Applied Mathematics (A Graduate Group)

Graduate Office, 1130 Mathematical Sciences Bldg. 530-752-8130
studentservices@math.ucdavis.edu; http://math.ucdavis.edu/grad/ggam

Faculty. The Group includes approximately 90 faculty members, of whom about one-third are in the Department of Mathematics. Membership comprises chemists, biologists, physicists, geologists, statisticians, computer scientists, and engineers. Research interests include biology, atmospheric sciences, mechanics, solids and fluid dynamics, optimization and control, theoretical chemistry, computer and engineering sciences, mathematical physics, signal and image processing, harmonic analysis, numerical analysis and nonlinear partial differential equations. A complete list of faculty and their research areas are available at http://math.ucdavis.edu/grad/ggam/faculty.

Graduate Study. Students prepare for careers where mathematics is applied to problems in the physical and life sciences, engineering, and management. The degree requirements consist of rigorous training in applied mathematics, including course work and a research dissertation under the direction of a member of the Graduate Group in Applied Mathematics. The M.S. degree provides preparation for further study in applied mathematics or an application area, or for a career in industry or public service. The Ph.D. degree provides preparation for a career in research and/or teaching, or in industrial or national research laboratories. For further information, please contact studentservices@math.ucdavis.edu or 530-752-8130.

New applicants are admitted to the fall quarter only.

Preparation. The program admits qualified students with a bachelor’s degree in mathematics, physics, chemistry, engineering, economics, the life sciences and related fields. General and advanced mathematics GRE scores are required, and applicants should display evidence of strong quantitative skills. Undergraduate courses should include calculus (including vector calculus), linear algebra, and ordinary differential equations. Advanced calculus (introduction to real analysis) is strongly recommended. Additional background in probability, partial differential equations, and/or numerical analysis is a plus. The ability to program in a high-level computer programming language (e.g., C, Fortran, MATLAB, Python, R, etc.) is assumed.

Graduate Advisers. Contact the Student Services Office at 530-752-8130 or by email at studentservices@math.ucdavis.edu.

Courses. For a list of the courses in applied mathematics and mathematics, see Mathematics, on page 390.

Applied Physics

See Physics, on page 466.

Aquaculture

See Animal Biology, on page 150; Animal Science, on page 153; Applied Biological Systems Technology, on page 164; and Wildlife, Fish, and Conservation Biology, on page 544.

Arabic

See Classics, on page 198.

Art History

See Languages, on page 119.

Art History

(College of Letters and Science) Department Office, 101 Art Building 530-752-0105; http://arthistory.ucdavis.edu

Faculty

Katharine Burnett, Ph.D., Associate Professor
Lynn Roller, Ph.D., Professor
Diana Strazdes, Ph.D., Associate Professor
Hegnar Waterpaw, Ph.D., Associate Professor
Emeriti Faculty

Mary H. Fong, Ph.D., Professor Emerita
Robert J. Grigg, Ph.D., Professor Emeritus
Seymour Howard, Ph.D., Professor Emeritus
Jeffrey Ruda, Ph.D., Professor Emeritus
Dianne Sachko Macleod, Ph.D., Professor Emerita

The Major Program

Art History studies the changing visual expression of values, beliefs and experiences across diverse cultures and over time. It provides training in historical, social and aesthetic understanding, critical thinking, scholarly research, and lucid, thoughtful analysis and writing. More than any other discipline art history sharpens its students’ visual acuity and deepens their visual literacy. In so doing, it prepares them to face the increasingly complex visual world we find ourselves in today.

The Program. The major begins with a series of courses that surveys major landscapes in the history of visual culture, art and architecture in Asia, Europe, and the United States. More advanced lecture courses and seminars focus on particularly important periods and issues. Students are encouraged to personalize their training with internships, independent study, and focused upper-division study. Top students considering graduate study are encouraged to engage in more advance study in the Honors program.

Career Options. A major in Art History develops critical thinking and the integration of research, interpretation and understanding. It provides an excellent liberal arts basis for professions as far ranging as advertising, law, medicine, politics and business. The major prepares students for advanced study in Art History, Architecture, Museum Studies and Cultural Studies. It also serves as the foundation for careers in teaching, arts, administration, museums,