Professional

390. Teaching Comparative Literature in College (4)
Lecture—2 hours; discussion—2 hours. Prerequisite: appointment as a Comparative Literature Associate Instructor or consent of instructor. Restricted to graduate students. Discussion of the theory and practice of teaching composition at the college level in a department of comparative literature in relation to the major cultural and social developments and with specific application to the introductory courses 1, 2, 3, 4. (S/U grading only.)—F, W, S. (F, W, S.)

392. Teaching Internship in Comparative Literature (2)
Discussion—2 hours. Restricted to graduate students. Regular consultations between the student instructor teaching Comparative Literature courses and a supervisor. Specifically designed for first-time TAs in COM 5, 6, 7, and 10. Instruction in the teaching of writing in a literature course, grading of papers, leading discussions. (S/U grading only.)—F, W, S. (F, W, S.)

396. Teaching Assistant Training Practicum (1-4)
Prerequisite: graduate standing. May be repeated (1-4). (F, W, S.)

B.S. Major Requirements:

Preparatory Subject Matter.................50-55
Mathematics 21A 21B 21C; 22A or 6/715-16
Chemistry 2A 3A 4A 20A 40A 60A16
Computer Science Engineering 50 or Electrical and Computer Engineering 70 744
Courses listed in the following four: 151-159
(a) Chemistry 2A-2B-2C
(b) Chemistry 2A2B and Biological Sciences 2A
(c) Chemistry 2AH2B2CH
(d) Physics 9A-9B-9C and Mathematics 21D

Depth Subject Matter51-54
Computer Science Engineering 122A 120 or Electrical and Computer Engineering 171, 172, 180A, 180B, Linguistics 177; Mathematics courses numbered between 100 and 189, excluding Mathematics 111, Statistics 131A, 131B. No course can count as both a required course and a Computer Science elective.

Total Units for the Major...........101-109

Minor Program Requirements:

Computer Science

(See Computer Science, on page 230; Computer Science (A Graduate Group), on page 230; Engineering: Computer Science, on page 288; and Engineering: Electrical and Computer Engineering, on page 295.)

The Major Program

The Department of Computer Science administers two majors: Computer Science and Engineering (CSE), in the College of Engineering, and Computer Science (CS), in the College of Letters and Science. It also administers two minors: Computer Science, in the College of Letters and Science, and Computational Biology, in the College of Engineering. For information on the Computer Science and Engineering curriculum and the minor in Computational Biology, see Engineering: Computer Science, on page 288.

The primary differences between the CSE and CS majors are the extent of hardware coverage and curricular flexibility. The CSE major develops a solid understanding of the entire machine, including hands-on experience with its hardware components. The CS major teaches some hardware, at the digital-design level, on simulators. The CSE major has fewer free electives. The CS major’s more generous electives make it easier to complete a minor or double major.

Students in the CS major receive a solid grounding in the fundamentals of computer languages, operating systems, computer architecture, and the mathematical abstractions underlying computer science. Students are prepared for both industry and postgraduate study.

Computer Science

(See Computer Science, on page 230; Computer Science (A Graduate Group), on page 230; Engineering: Computer Science, on page 288; and Engineering: Electrical and Computer Engineering, on page 295.)

The Major Program

The Department of Computer Science administers two majors: Computer Science and Engineering (CSE), in the College of Engineering, and Computer Science (CS), in the College of Letters and Science. It also administers two minors: Computer Science, in the College of Letters and Science, and Computational Biology, in the College of Engineering. For information on the Computer Science and Engineering curriculum and the minor in Computational Biology, see Engineering: Computer Science, on page 288.

The primary differences between the CSE and CS majors are the extent of hardware coverage and curricular flexibility. The CSE major develops a solid understanding of the entire machine, including hands-on experience with its hardware components. The CS major teaches some hardware, at the digital-design level, on simulators. The CSE major has fewer free electives. The CS major’s more generous electives make it easier to complete a minor or double major.

Students in the CS major receive a solid grounding in the fundamentals of computer languages, operating systems, computer architecture, and the mathematical abstractions underlying computer science. Students are prepared for both industry and postgraduate study.

Computer Science

(See Computer Science, on page 230; Computer Science (A Graduate Group), on page 230; Engineering: Computer Science, on page 288; and Engineering: Electrical and Computer Engineering, on page 295.)

The Major Program

The Department of Computer Science administers two majors: Computer Science and Engineering (CSE), in the College of Engineering, and Computer Science (CS), in the College of Letters and Science. It also administers two minors: Computer Science, in the College of Letters and Science, and Computational Biology, in the College of Engineering. For information on the Computer Science and Engineering curriculum and the minor in Computational Biology, see Engineering: Computer Science, on page 288.

The primary differences between the CSE and CS majors are the extent of hardware coverage and curricular flexibility. The CSE major develops a solid understanding of the entire machine, including hands-on experience with its hardware components. The CS major teaches some hardware, at the digital-design level, on simulators. The CSE major has fewer free electives. The CS major’s more generous electives make it easier to complete a minor or double major.

Students in the CS major receive a solid grounding in the fundamentals of computer languages, operating systems, computer architecture, and the mathematical abstractions underlying computer science. Students are prepared for both industry and postgraduate study.