Office of the Registrar
University of California
Davis, California
General Catalogue

DAVIS
Entrance to administrative section of Library-Administration Building
CONTENTS

Calendar .. 6
The Regents of the University .. 7
General Administrative Officers of the University .. 8
General Administrative Officers, Davis Campus .. 8
Administrative Officers of the Colleges and Schools ... 8

THE UNIVERSITY

Administration .. 9
Curricula at Davis ... 9
Summer Sessions ... 10
University Extension ... 10
University Library ... 11

ADMISSION TO THE UNIVERSITY

Admission in undergraduate status .. 12
Admission in freshman standing .. 12
 Admission on the basis of the high school record ... 12
 Agricultural Experimental Plan .. 15
 Admission by examination .. 15
 Responsibility of high school authorities ... 15
Preparation for University curricula .. 15
 Preparation for curricula in agriculture ... 16
 Preparation for curricula in engineering ... 16
 Preparation for curricula in Letters and Science ... 16
Removal of deficiencies incurred in high school .. 17
Admission in advanced standing ... 18
Removal of scholarship deficiencies by applicants from other colleges 18
Limitation of enrollment of out-of-state applicants ... 19
Admission of returning members of the armed forces .. 20
Admission of special students .. 20
Admission from schools and colleges in foreign countries 20
Late admission and registration ... 21
Admission in graduate standing .. 21

GENERAL REGULATIONS

Routine of registration .. 23
Medical and physical examination .. 23
Student Health Service ... 24
Physical education and use of gymnasium .. 25
Subject A: English Composition .. 25
American History and Institutions .. 27
Military Science .. 27
 The Reserve Officers Training Corps .. 28
Study-list regulations .. 29
Candidacy for degrees ... 29
Change of college or major .. 30
Honors .. 30
Credit and scholarship .. 30
Grades of scholarship; grade points ... 30

[3]
Minimum scholarship requirements .. 31
Credit by examination ... 32
Final examinations .. 32
Removal of deficiencies ... 33
Transcript of record ... 34
Leave of absence and honorable dismissal .. 34
Student responsibility for materials submitted in satisfaction 35
of course requirements ... 35
Student conduct and discipline ... 35

MISCELLANEOUS INFORMATION

Site and climate ... 36
Expenses of students ... 36
Rules governing residence ... 37
Living accommodations ... 38
Student employment .. 39
Opportunities for acquiring agricultural skills 39
Veterans affairs ... 40
Selective service .. 40
Scholarships, prizes, loans ... 41
Student activities ... 41

REQUIREMENTS AND CURRICULA IN THE SEVERAL
COLLEGES AND SCHOOLS

College of Agriculture .. 43
 Faculty advisers and study-list requirements 43
 Honors .. 43
 Admission in junior standing .. 43
 Requirements for the degree of Bachelor of Science 44
 Agricultural Economics ... 44
 Agricultural Education ... 46
 Agricultural Production ... 47
 Animal Science .. 52
 Entomology and Parasitology ... 55
 Food Science .. 56
 Home Economics .. 59
 Irrigation Science ... 61
 Plant Science .. 62
 Preforestry .. 68
 Preveterinary Medicine ... 69
 Range Management .. 70
 Soil Science ... 72

College of Letters and Science ... 75
 Faculty advisers and study-list regulations 75
 Degree of Associate in Arts .. 77
 Admission to the upper division ... 77
 Requirements in the upper division ... 79
 Majors for the A.B. degree ... 80
 Organized majors and professional curricula 81
 Interdepartmental Majors ... 81
 American Civilization ... 81
 Medical Science .. 83
 Physical Science .. 83
 Individual Group Majors .. 83
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprofessional Curricula</td>
<td>83</td>
</tr>
<tr>
<td>School of Dentistry</td>
<td>83</td>
</tr>
<tr>
<td>Admission to Dental Curricula</td>
<td>84</td>
</tr>
<tr>
<td>Predental Curriculum</td>
<td>85</td>
</tr>
<tr>
<td>Admission to the Dental Hygiene Curriculum</td>
<td>86</td>
</tr>
<tr>
<td>Medical Sciences</td>
<td>86</td>
</tr>
<tr>
<td>Premedical Curriculum</td>
<td>88</td>
</tr>
<tr>
<td>Prepharmacy Curriculum</td>
<td>89</td>
</tr>
<tr>
<td>Prephysical Therapy</td>
<td>89</td>
</tr>
<tr>
<td>Prelegal</td>
<td>89</td>
</tr>
<tr>
<td>Presocial Welfare Curriculum</td>
<td>89</td>
</tr>
<tr>
<td>Letters and Science List of Courses</td>
<td>90</td>
</tr>
<tr>
<td>Honors</td>
<td>91</td>
</tr>
<tr>
<td>Honors with the bachelor's degree</td>
<td>92</td>
</tr>
<tr>
<td>Colleges of Engineering</td>
<td>93</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>93</td>
</tr>
<tr>
<td>School of Veterinary Medicine</td>
<td>97</td>
</tr>
<tr>
<td>Admission to the School of Veterinary Medicine</td>
<td>97</td>
</tr>
<tr>
<td>Selection of applicants</td>
<td>98</td>
</tr>
<tr>
<td>Requirements for the degree of Bachelor of Science</td>
<td>99</td>
</tr>
<tr>
<td>Requirements for the degree of Doctor of Veterinary Medicine</td>
<td>99</td>
</tr>
<tr>
<td>Graduate study</td>
<td>100</td>
</tr>
<tr>
<td>Plan of study</td>
<td>100</td>
</tr>
<tr>
<td>Preveterniary curriculum</td>
<td>100</td>
</tr>
<tr>
<td>Veterinary curriculum</td>
<td>100</td>
</tr>
<tr>
<td>Graduate Division, Northern Section</td>
<td>102</td>
</tr>
<tr>
<td>Organization of graduate study and research</td>
<td>102</td>
</tr>
<tr>
<td>Curricula for Teacher Education</td>
<td>103</td>
</tr>
<tr>
<td>General requirements</td>
<td>103</td>
</tr>
<tr>
<td>Specific requirements</td>
<td>104</td>
</tr>
<tr>
<td>Special Secondary Credentials</td>
<td>104</td>
</tr>
<tr>
<td>General Secondary Credential</td>
<td>104</td>
</tr>
<tr>
<td>Teaching Majors and Minors for the General Secondary Credential</td>
<td>105</td>
</tr>
</tbody>
</table>

THE TWO-YEAR CURRICULUM IN AGRICULTURE

General information	108
Positions open to graduates	108
Training in agricultural skills	109
Admission and registration	109
Advanced standing	109
Extra-session work	109
Major-subject programs	111
Graduation	111
Animal Husbandry	111
Dairy Industry	112
Plant Production	112
Agronomy	112
Pomology	113
Vegetable Crops	114

Courses of Instruction | 117 |
Index | 249 |
CALENDAR 1957–1958*

DAVIS CAMPUS

First Summer Session
June 17, Monday Registration and first day of instruction.
July 4, Thursday Independence Day—academic and administrative holiday.
July 27, Saturday First Summer Session instruction ends.

Special Summer Session
July 1, Monday Registration and first day of instruction.
July 4, Thursday Independence Day—academic and administrative holiday.
Aug. 10, Saturday Special Summer Session instruction ends.

Second Summer Session
July 29, Monday Registration and first day of instruction.
Sept. 2, Monday Labor Day—academic and administrative holiday.
Sept. 7, Saturday Second Summer Session instruction ends.

Fall Semester
Sept. 16, Monday Fall semester begins.
Sept. 17, Tuesday { Registration.
Sept. 18, Wednesday Instruction begins.
Sept. 19, Thursday Thanksgiving holiday—academic and administrative holiday.
Nov. 28, Thursday { Fall recess.
Nov. 29, Friday Nov. 28, Thursday
Nov. 26, Thursday { Thanksgiving holiday—academic and administrative holiday.
Nov. 30, Saturday Jan. 1, Wednesday Christmas recess.
Dec. 19, Thursday Christmas holidays—academic and administrative holiday.
Dec. 24, Tuesday { New Year’s holidays—academic and administrative holiday.
Dec. 25, Wednesday Jan. 1, Wednesday Instruction resumes.
Dec. 31, Tuesday Jan. 15, Wednesday Instruction ends.
Jan. 15, Wednesday Jan. 25, Saturday Fall semester ends.
Jan. 17, Friday Jan. 30, Thursday
Jan. 25, Saturday
Jan. 30, Thursday

Spring Semester
Feb. 3, Monday Spring semester begins.
Feb. 7, Friday { Registration.
Feb. 8, Saturday Feb. 7, Friday Instruction begins.
Feb. 10, Monday Feb. 7, Friday Washington’s birthday—academic and administrative holiday.
Feb. 22, Saturday { Spring recess.
Mar. 31, Monday April 5, Saturday Instruction ends.
May 29, Thursday May 30, Friday Memorial Day—academic and administrative holiday.
May 30, Friday June 2, Monday { Final examinations.
June 10, Tuesday June 12, Thursday Spring semester ends.

* For complete calendar, refer to University Calendar prepared by the Registrar each semester and issued at registration.
THE REGENTS OF THE UNIVERSITY

REGENTS EX OFFICIO

His Excellency, Goodwin J. Knight, A.B.
Governor of California and President
of the Regents
State Capitol, Sacramento 14

Harold J. Powers
Lieutenant-Governor of California
State Capitol, Sacramento 14

Luther H. Lincoln
Speaker of the Assembly
4000 Redwood rd, Oakland 19

Roy E. Simpson, M.A., Litt.D.
State Superintendent of Public
Instruction
721 Capitol av, Sacramento 14

Arthur J. McFadden, B.S., LL.B.
President of the State Board of
Agriculture
902 River lane, Santa Ana

William G. Merchant
President of the Mechanics' Institute
804 Mechanics' Institute bldg.
San Francisco 4

O. Cort Majors, A.B.
President of the Alumni Association of
the University of California
% Fibreboard Products, Inc.
1789 Montgomery st, San Francisco 11

Robert B. Sproul, B.S., LL.D.,
Litt.D.
President of the University
250 Administration bldg, Berkeley 4

203 Administration bldg, Los Angeles 24

APPOINTED REGENTS

The term of the appointed Regents is sixteen years, and terms expire March 1 of the
years indicated in parentheses. The names are arranged in the order of original acces-
sion to the Board.

717 N Highland av, Los Angeles 35

Brodie E. Ahlport, A.B. (1972)
5657 Wilshire blvd, Los Angeles 36

Edward H. Heller, A.B. (1958)
100 Montgomery st, San Francisco 4

Victor R. Hanser, LL.B. (1962)
8517 Woodhaven blvd, Bethesda 14, Maryland

Earl J. Peniston, A.B. (1964)
504 Helm bldg, Fresno 1

Cornelius J. Haagerty (1966)
995 Market st, Room 810,
San Francisco 3

Jessie H. Steinhart, A.B., LL.B. (1962)
111 Sutter st, San Francisco 4

Donald H. McLaughlin, B.S., M.A.,
Ph.D., D.Eng. (1966)
100 Bush st, San Francisco 4

Gus Olson, B.S. (1960)
Clarksburg

Gerald H. Hagar, A.B., J.D. (1964)
First Western Bank bldg,
14th and Broadway, Oakland 12

Howard C. Naffger, B.S., M.S., M.D.
University of California Medical Center,
San Francisco 22

401 S Broadway, Los Angeles 13

Mrs. Dorothy B. Chandler (1970)
202 W First st, Los Angeles 53

Thomas M. Storke, A.B. (1960)
Santa Barbara News-Press,
De La Guerra plaza, Santa Barbara

Mrs. Catherine Hearst (1958)
701 N Canon dr, Beverly Hills

Samuel B. Mosher, B.S. (1972)
811 W Seventh st, Los Angeles 17

OFFICERS OF THE REGENTS

His Excellency, Goodwin J. Knight, A.B.
Governor of California
President
State Capitol, Sacramento 14

Edwin W. Pauley, B.S., Chairman
717 N Highland av, Los Angeles 38

Robert M. Underhill, B.S.
Secretary and Treasurer
240 Administration bldg, Berkeley 4

Stanley J. Thomson, A.B.
Assistant Treasurer
240 Administration bldg, Berkeley 4

Miss Marjorie J. Woolman
Assistant Secretary
240 Administration bldg, Berkeley 4

James H. Corley, B.S., Vice-President—
Business Affairs
250 Administration bldg, Berkeley 4

James M. Miller, B.S., Assistant
Vice-President—Business Affairs
250 Administration bldg, Berkeley 4

Raymond W. Kettler, M.A., Controller
401 Administration bldg, Berkeley 4

George E. Stevens, Assistant Controller
401 Administration bldg, Berkeley 4

Thomas J. Cunningham, A.B., LL.B.
General Counsel of the Regents
128 Administration bldg, Berkeley 4

John E. Landon, A.B., LL.B.
Associate Counsel of the Regents
128 Administration bldg, Berkeley 4

John P. Sparrow, A.B., LL.B.
Associate Counsel of the Regents
128 Administration bldg, Berkeley 4

R. Bruce Hoffe, A.B., LL.B.
Assistant Counsel of the Regents
128 Administration bldg, Berkeley 4

Mark Owens, Jr., A.B., LL.B.
Assistant Counsel of the Regents
and Attorney in Residence Matters
128 Administration bldg, Berkeley 4
UNIVERSITY OF CALIFORNIA

GENERAL ADMINISTRATIVE OFFICERS

Robert Gordon Sproul, B.S., LL.D., Litt.D., President of the University.
Clark Kerr, Ph.D., LL.D., Chancellor at Berkeley.
Raymond B. Allen, M.D., Ph.D., LL.D., D.Sc., Chancellor at Los Angeles.
Stanley E. McCaffrey, A.B., Vice-President—Executive Assistant.
Harry R. Wellman, Ph.D., Vice-President—Agricultural Sciences.
James H. Corley, B.S., Vice-President—Business Affairs.
Richard J. Stull, A.B., Vice-President—Medical and Health Sciences.
Claude B. Hutchison, M.S., LL.D., D.Agr. (hon.c.), Vice-President of the
University and Dean of the College of Agriculture, Emeritus.
Robert M. Underhill, B.S., Secretary and Treasurer of the Regents.
Herman A. Spindt, Ph.D., Director of Admissions and Director of Relations
with Schools.

DAVIS CAMPUS

GENERAL ADMINISTRATIVE OFFICERS

Stanley B. Freeborn, Ph.D., Sc.D. (hon.c.), Provost at Davis.
Howard B. Shontz, B.S., Registrar and Admissions Officer.
Lysie D. Leach, Ph.D., Dean of Students.
Susan F. Regan, M.A., Dean of Women and Assistant Dean of Students.
J. Price Gittinger, Ed.M., Director of Special Services, Assistant Director of
Relations with Schools, Foreign Student Adviser, and Manager of the
Bureau of Occupations.
J. Richard Blanchard, M.S., Librarian.
Cecil C. Norris, Business Manager.
Mahlen F. Cook, B.S., Accounting Officer.
Thomas Y. Cooper, M.D., Director, Student Health Service.
Edmund T. Price, B.S., Residence Halls Supervisor.

ADMINISTRATIVE OFFICERS OF THE
COLLEGES AND SCHOOLS

Roy Bainer, M.S., Assistant Dean of the Colleges of Engineering.
Fred N. Briggs, Ph.D., Dean of the College of Agriculture.
Byron R. Houston, Ph.D., Associate Dean of the Graduate Division, Northern
Section.
Donald E. Jasper, D.V.M., Ph.D., Dean of the School of Veterinary Medicine.
Oscar W. Schalm, D.V.M., Ph.D., Associate Dean of the School of Veterinary
Medicine.
Herbert A. Young, Ph.D., Dean of the College of Letters and Science.
THE UNIVERSITY OF CALIFORNIA

FOUNDED 1868

THE UNIVERSITY OF CALIFORNIA is composed of academic colleges, professional schools, divisions, departments of instruction, museums, libraries, research institutes, bureaus and foundations, and the University of California Press, situated on eight different campuses throughout the State: at Berkeley, Davis, La Jolla, Los Angeles, Mount Hamilton, Riverside, San Francisco, and Santa Barbara College at Goleta.

ADMINISTRATION

The Regents of the University of California, by authority vested in them by the State constitution, created an academic administrative body called the Academic Senate. The Senate, subject to the approval of the Regents, determines the conditions for admission, for certificates, and for degrees. It authorizes and supervises all courses of instruction in the academic and professional colleges and schools. It has general supervision of the discipline of students and recommends to the Regents all candidates for degrees. The dean or director of a school, college, or other division of the University has the duty of assisting the President in the administration of the University, with special reference to the welfare of the particular school, college, or other division concerned, and of the students therein.

CURRICULA AT DAVIS

Instruction is offered in (a) the College of Agriculture; (b) the College of Letters and Science; (c) the Colleges of Engineering (Agricultural Engineering); (d) the School of Veterinary Medicine; and (e) the Graduate Division, Northern Section.

The undergraduate curricula of four years in applied science in the College of Agriculture lead to the bachelor's degree in science (B.S.). The curricula include major subject offerings in agricultural economics, agricultural education, agricultural production, agronomy, animal husbandry, animal physiology, dairy industry, dietetics, entomology, and parasitology, foods, food technology, general soil science, genetics (animal science), genetics (plant science), general home economics, irrigation science, landscape management, nutrition, pedology, and soil survey, plant nutrition and soil fertility, plant pathology, pomology, poultry husbandry, preforestry, preveterinary medicine, range management, soil management and conservation, vegetable crops, and viticulture.

The undergraduate curricula of four years in the College of Letters and Science lead to the bachelor's degree in arts (A.B.). Organized majors and professional curricula include American civilization, art, botany, chemistry, economics, English, French, German, history, mathematics, medical sciences, microbiology, physical science, physics, political science, preprofessional offered in preclinical, premedical, prepharmacy, prephysical therapy, presocial welfare, sociology, Spanish, and zoology. Students who complete successfully the first two years in this College will qualify for the degree of Associate in Arts.

All course work required by the Colleges of Engineering for the Agricultural Engineering curriculum is offered, except that the course work of the third year is available only in the College of Engineering on either the Berke-
ley or the Los Angeles campus. The third year must be spent on one of these campuses.

The School of Veterinary Medicine offers a curriculum of four years, following two or more years of preprofessional work, leading to the degree of Doctor of Veterinary Medicine (D.V.M.).

Graduate study, leading to advanced degrees, is offered to college graduates formally admitted to the Graduate Division.

A Two-Year Curriculum in Agriculture is offered leading to a Certificate of Completion.

SUMMER SESSIONS

Present Summer Sessions provide instruction for:

1. Advanced undergraduate study.
2. Graduate study.
3. Limited undergraduate study.

In 1957 there are two regular six-week Summer Sessions beginning on June 17 and on July 29. These sessions are limited to the enrollment of qualified students who may pursue the courses numbered 199 for advanced undergraduate and/or the graduate research courses numbered in the 200 series. In addition, a Special Summer Session is offered during the period July 1 to August 10 to provide: (1) upper division and graduate courses in agriculture and education for interested agricultural students, vocational agriculture teachers, and agricultural extension personnel, (2) special study courses numbered 199 for advanced undergraduates and/or graduate research courses in the 200 series, and (3) certain courses which are applicable to teaching credentials.

Summer Sessions are also conducted on the Berkeley, Los Angeles, and Santa Barbara campuses. Information about these Summer Sessions is available in the SUMMER SESSIONS BULLETINS, obtainable from the Registrar, or from the Office of the Summer Sessions, University of California, Berkeley 4, or from the Office of the Summer Sessions, University of California, Los Angeles 24, or from the Office of the Registrar, University of California, Santa Barbara College, Goleta.

UNIVERSITY EXTENSION

University Extension, as a special educational service agency of the University, makes available educational facilities to adults who seek training in some form of higher education. The program includes classes, conferences, correspondence courses, and special activities in a wide range of subject fields and interests. During the past few years, there has developed an increasingly large program of courses designed for those in the professions and those with advanced training. In addition, University Extension offers a large number of courses designed primarily for intellectual and cultural interests in the arts, social sciences, and other fields.

The educational services of University Extension are organized around three primary aims: to help men and women advance professionally; to aid them in meeting their responsibilities as citizens; to assist in their pursuit of intellectual interests.

Five principal methods of instruction are used:
1. Classes are organized in cities and communities wherever a sufficient number of people indicate an interest in a particular subject.

* For information concerning admission to the University through University Extension, see page 17.
2. Conferences, institutes, and workshops for periods ranging from one day to several weeks, provide intensive instruction for groups interested in pursuing specialized knowledge.

3. Lectures, singly or in series, are provided for committees, clubs, organizations, or communities which make the necessary arrangements for securing this service.

4. Correspondence courses offer lessons, study materials, and University guidance by mail.

5. Visual education aids in the form of motion picture films are available from film libraries maintained by University Extension in Berkeley and Los Angeles.

For information regarding any of these services, contact University Extension on any of the following University campuses: Davis, Berkeley, Los Angeles, Riverside, or Santa Barbara.

UNIVERSITY LIBRARY

The University Library on the Davis campus, occupying much of the Library-Administration Building, contains about 140,000 books and receives annually about 3,500 current periodicals and serials. These have been selected to support the teaching and research needs of the College of Agriculture, the College of Letters and Science, and the School of Veterinary Medicine. The collection of works in agriculture and related fields is among the largest in the West. As a center for printed materials, the main library serves both students and faculty. It is supplemented by several specialized departmental collections, which are primarily for laboratory or office use. Research materials that are not available in Davis can be borrowed elsewhere through a nation-wide inter-library loan service. Trained reference librarians are available for information and advice on a 77-hour-a-week basis.

For further information students are referred to a pamphlet, Using Your Library, copies of which are available at the Library.
ADMISSION TO THE UNIVERSITY

ADMISSION IN UNDERGRADUATE STATUS

An applicant who wishes to enter the University must fulfill the general requirements for admission as set forth below. Formal application must be filed with the Registrar, University of California, Davis. Application blanks will be supplied upon request. The application should be filed during the semester preceding that for which the applicant wishes to register and not later than August 15 for the fall semester or January 15 for the spring semester.

Every applicant for admission pays a fee of $5 when the first application is filed. Remittance by bank draft or money order should be made payable to The Regents of the University of California.

Every new student (and every student returning to the University after an absence) must present at the time of medical examination by the University Medical Examiners a certificate establishing the fact that he has been successfully vaccinated against smallpox within the last seven years. Vaccination should be completed prior to registration. A form for this purpose will be furnished by the University.

The University of California bases its entrance requirements on two principles: first, that the best guarantee of success in the University is high scholarship in previous work; and second, that certain specified subjects will give to the student both good preparation for instruction in the University and reasonable freedom of choice of a major field of study. These principles apply to admission in either freshman or advanced standing.

ADMISSION IN FRESHMAN STANDING

An applicant who has attended a junior college, four-year college, university, extension classes of college level, or any comparable institution since graduating from high school is subject to regulations governing admission in advanced standing (see page 18). Such college attendance may not be disregarded, whether or not any courses were completed.

Admission on the Basis of the High School Record

The applicant, having filed formal application as directed above, must have the secondary schools he has attended send to the Registrar complete transcripts of record of all studies undertaken in those schools. Such transcripts must show that the applicant has been graduated from an accredited* high school. The Registrar will then evaluate the high school record, and the applicant will be eligible for admission if he qualifies under any one of the following methods. (There are additional requirements for out-of-state students. See page 19.)

* An accredited high school in California is one that has been officially designated, by the Board of Regents of the University, as a school from which students will be admitted to the University without examination on the basis of the high school record of subjects completed and scholarship attained. The list of accredited schools is published by the University annually. Accreditation by the University refers to the college preparatory function of the high school and implies no judgment regarding the other educational functions of the school. For information concerning the accrediting of schools, principals may communicate with the Office of Relations with Schools. For schools outside California, regional or other accrediting agencies are consulted; the University makes the final decision regarding acceptability. If the high school from which the applicant graduated is not accredited, the Registrar will, upon request, instruct the student regarding the procedure he should follow.
Method I

Subject Requirements

(a) History 1 unit. This requirement must be satisfied by 1 unit of United States history or 1 unit of United States history and civics.

(b) English 3 units. These may consist of any six semesters that give preparation in written and oral expression and in the reading and study of literature. Reading and study of contemporary literature may be included. The requirement in English must be satisfied by credit designated "English."

(c) Mathematics 2 units. These must consist of two semesters of elementary or advanced algebra, and two semesters of plane geometry, or solid geometry and trigonometry.

(d) Laboratory Science 1 unit. This may consist of a year course in one field of science, namely, biology, botany, chemistry, physics, physical science, physiology, or zoology. The science selected must be an advanced (3d or 4th year) laboratory science, and the two semesters must be in the same subject field.

(e) Foreign language ... 2 units. These must be in one language.

(f) Advanced course chosen from one of the following 1 (or 2) units. (1) mathematics, a total of 1 unit (second-year algebra, \(\frac{1}{2} \) or 1 unit; solid geometry, \(\frac{1}{2} \) unit; trigonometry, \(\frac{1}{2} \) unit); (2) foreign language, either 1 additional unit in the same foreign language offered under (e), or 2 units of a different foreign language; (3) science, 1 unit of either chemistry or physics in addition to the science offered under (d) above.

Additional elective units to complete a minimum of 15 standard entrance units.

Scholarship Requirement

An average of grade B, based on the marking system of four passing grades, in the (a) to (f) subjects listed above, which are taken in the tenth, eleventh, and twelfth grades.

Courses taken in the ninth grade or used as additional elective units need show passing grade only. In courses completed after the ninth year an A grade in one course will balance a C grade in another but will not balance a D grade. Courses completed after the ninth year in which a grade of D is received may not be counted either in reckoning the required scholarship, or in satisfaction of a subject requirement. Grades are considered on a semester basis, except from the schools that give only year grades. Only courses used
to meet the (a) to (f) subject requirements are used in computing the grade average. Courses taken in the tenth, eleventh, and twelfth years in which a grade of C or lower is received may be repeated to raise grades, as approved by the principal of an accredited high school, in an amount not to exceed two units of the (a) to (f) pattern. Only the first repetition of a subject will be used to satisfy scholarship requirements, although additional repetitions may be allowed for the purpose of satisfying a subject requirement.

Method II

Achieve a scholarship rank in the highest tenth of his graduating class, with a substantial academic preparation, although he need not complete the exact pattern of subjects (a) to (f) listed above.

Method III

Complete not less than 12 high school units of grade A or B in the work of the tenth, eleventh, and twelfth years with not more than two units of subject deficiencies in the required list (a) to (f) and in addition must attain no grades lower than C and an average of at least B in the (a) to (f) subjects attempted. (Grades earned in courses such as physical education, study period, work experience, military science, R.O.T.C. and religion are not to be counted under this method.)

Method IV

Complete not less than 12 high school units with no grade lower than C in work taken in the tenth, eleventh, and twelfth years, exclusive of grades earned in courses such as religion, physical education, study period, work experience, military science, and R.O.T.C. with not less than 6 high school units of grade A or B selected from the following 10 units of academic subjects:

- Third- and fourth-year English
- Third- and fourth-year mathematics
- Third- and fourth-year laboratory science
- Third- and fourth-year foreign language
- Third- and fourth-year history or social science of which one must be
- United States history

Method V

In addition to the foregoing methods, the Board of Admissions and Relations with Schools authorizes from time to time experimental programs to test the validity of suggested procedures. Information about these programs is communicated promptly to school authorities in California by the Director of Relations with Schools. Also, the Registrar is charged by the Board with the authority and responsibility for waiving minor deficiencies when justification is evident in the form of unusual academic recommendations or transcripts of record.

Experimental Plan (applicable September, 1953, through September, 1959): University authorities believe that high school students who follow the regular (a) to (f) pattern of subjects outlined above, together with the additional subjects recommended for particular majors will be well prepared for work in the University. However, the University does not wish to exclude a student who has followed a program of university preparatory studies recommended to him by his high school and will therefore admit an applicant on a grade B average scholarship in a different program of university preparatory studies, provided such a program has been previously filed with and approved by the Board of Admissions and Relations with Schools.
Experimental Plan for Admission to the College of Agriculture

Applicants for admission to freshman standing in the College of Agriculture may meet the minimum subject requirements prescribed in Method I by substituting for the (c) foreign language requirement either

1. Two years of agriculture or home economics, or
2. One year of mathematics or laboratory science in addition to that required under (f).

Such substitute courses must be passed with grades not lower than C. Under this plan the grades received in the additional mathematics or science will be used in meeting the B average minimum scholarship requirement, but grades received in agriculture or home economics will not be so used.

The same substitution for the foreign language requirement may be made by applicants for advanced standing in the College of Agriculture.

A student admitted under this plan must realize that if, after registration in the College of Agriculture, he wishes to transfer to another college of the University, he must meet one of the regular methods of admission.

Admission by Examination

(Applicable only to mature persons and to high school graduates)

The University of California does not itself offer entrance examinations, but accepts on all campuses the results of examinations given by the Educational Testing Service for the College Entrance Examination Board. Information about dates and places of examination may be secured from the Educational Testing Service, P.O. Box 592, Princeton, New Jersey, or P. O. Box 27896, Los Angeles 27, California. Definite arrangements to take the tests must be made at least four weeks prior to the date of the tests. If the applicant has completed all of the subjects in the (a) to (f) list with grades of C or better, but is deficient in the scholarship average, he may clear his admission requirements by standard scores of 500 or above on the Scholastic Aptitude Test and on three achievement tests in subject fields. If the (a) to (f) list of subjects has not been completed with grades of C or better, the applicant should consult the Admissions Office in regard to the tests he must take. If the high school from which the applicant graduated was unaccredited, he may offer an approved pattern of examinations, and he should consult with the Admissions Office regarding the tests he must take.

Responsibility of High School Authorities

The responsibility for the granting of certificates to high school students lies with the high school authorities, and the students naturally will be guided by their respective principals in preparing to enter the University.

Upon the high school authorities rests, also, the responsibility for determining the scope and content of courses preparatory to admission to the University and for certifying each course to the University.

PREPARATION FOR UNIVERSITY CURRICULA

In addition to those subjects required for admission, certain preparatory subjects are recommended for each University curriculum, which, if included in the high school program, will give a more adequate background for the student's chosen field of study. In some cases lack of a recommended high school course will delay entrance to certain University courses and postpone graduation from the University. Details of these recommendations will be found in
the circular, PREREQUISITES AND RECOMMENDED SUBJECTS, which may be obtained from the Registrar, or from the Assistant Director of Relations with Schools.

Preparation for Curricula in Agriculture

It is recommended that students entering the College of Agriculture complete, as a part of or in addition to those subjects required for admission, the following subjects in high school: intermediate algebra, 1 unit, or intermediate algebra, ½ unit, and trigonometry, ½ unit; physics, 1 unit, and/or chemistry, 1 unit. Students proposing to major in irrigation science or agricultural engineering should have, in addition, 1 unit of mechanical drawing. Failure to take the proper subjects in high school may delay completion of the University course beyond the usual four-year period.

Preparation for Curricula in Engineering

The prospective student in engineering will be seriously handicapped if he fails to include in his high school program certain subjects in addition to the general University requirements. Specifically, he should present the following total units: history, 1 unit; English, 3 units; algebra, 2 units; plane geometry, 1 unit; trigonometry, ½ unit; chemistry, 1 unit, or physics, 1 unit (both are desirable); foreign language, 2 units; mechanical drawing, 1 unit; and electives, 2 units. Without this preparation it will be impossible to complete the required curriculum in four years, because the student cannot register for certain freshman and sophomore courses to which matriculation subjects are prerequisite.

Laboratory courses in the various curricula of the Colleges of Engineering require manual skills in the operation and testing of machines and equipment. These courses are planned on the assumption that the student has had some previous work which will develop the skills. Unsatisfactory laboratory performance, which frequently results when such skills are absent, can be traced to the fact that the student has had no prior manual training. It is therefore recommended that students wishing to enter the Colleges of Engineering elect shop courses in high school, especially machine shop, for at least one semester.

All applicants for admission to the Colleges of Engineering at either the freshman or junior level must take Qualifying Examinations. The Engineering Examination Lower Division is primarily an aptitude test, but presumes that the student has had the required subjects in high school, particularly those in mathematics through trigonometry, physics or chemistry, mechanical drawing, and English. No preparation beyond successful completion of the high school courses is required. The Engineering Examination Upper Division is based on the subject matter of the preengineering and engineering courses given in the first two years and presumes the completion of mathematics through integral calculus, general college chemistry, general college physics, descriptive geometry, English, and engineering drawing.

Out-of-state applicants are permitted to use the engineering examination both for the engineering requirement and for the nonresident examination requirement.

Preparation for Curricula in Letters and Science

Attention is directed to the fact that foreign language and both physics and chemistry, recommended as preparation for many curricula in the University, will, if completed in high school, meet part of the subject requirements for the degree of Associate in Arts in the College of Letters and
Admission to the University

Science, and thereby give the student greater opportunity to choose elective subjects during his freshman and sophomore years.

The high school student should use special care in selecting a foreign language. The study of a foreign language is not only valuable as part of general education, but a reading knowledge of some foreign language will prove very useful in advanced work in many departments. High school Latin will satisfy either the (b) or (e) requirements for the degree of Associate in Arts in the College of Letters and Science; other languages satisfy only the (b) requirement.

REMOVAL OF DEFICIENCIES INCURRED IN HIGH SCHOOL

Before admission is approved, deficiencies in high school scholarship or subject requirements must be removed by examination (see page 15) or by completing additional courses.

If the applicant's only deficiency arises from not having studied a required subject, he may remove the deficiency by a satisfactory grade in an approved course. Meanwhile a satisfactory scholarship average must be maintained in other studies pursued.

If the deficiency is caused by a low scholarship average or by a combination of low scholarship and incomplete subject preparation, the applicant may remove his deficiencies as follows:

1. By college courses of appropriate content and amount completed with satisfactory scholarship in junior colleges or State colleges of California or University Extension, or in any other approved colleges. The applicant must include in his program courses acceptable for removing his subject shortages (see also 4 below) and present either:
 (a) A minimum of 30 units of transfer courses with a grade-point average of 2.4, plus the taking of assigned tests, or
 (b) 60 units or more of transfer courses with a grade-point average of 2.4.

Ordinarily, it is recommended that graduates of California high schools who are not eligible for admission to the University attend one of the California junior colleges and complete there the lower division requirements of the college in which they wish to register. (See 4 below and the section on "Admission in Advanced Standing").

2. By Combination program of the College of Agriculture at Davis. By satisfactory completion of specified courses in the Combination program of the College of Agriculture at Davis, Admission to the Combination program is based on high school record and aptitude test scores. The program will clear the applicant for admission to the College of Agriculture only.

3. By College Entrance Examination Board examinations (see section on "Admission by Examination").

4. As an alternative to making up specific high school subject deficiencies, an applicant may be admitted on the basis of a record showing completion of at least 60 units with a grade-point average of 2.4 or higher in which must be included all of the subjects required for junior standing in a school or college of the University.

5. In addition to the foregoing methods, the Board of Admissions and Relations with Schools authorizes from time to time experimental programs to test the validity of suggested procedures. Information about these programs is communicated promptly to school authorities in California.
Admission to the University

by the Director of Relations with Schools. Also, the Registrar is charged by the board with the authority and responsibility for waiving minor deficiencies when justification is evident in the form of unusual academic transcripts of record or recommendations.

ADMISSION IN ADVANCED STANDING

(1) An applicant for admission to the University in advanced standing who was eligible for admission in freshman standing or whose only deficiency arose from not having studied one or more required subjects must present evidence that:

(a) He has satisfied, through either high school or college courses, the subjects required for admission of high school graduates in freshman standing.

(b) His advanced work, in institutions of college level, has met the minimum scholarship standard required of transferring students (namely an average of grade C or higher in all college courses undertaken, including at least a C average in the last institution attended).

(c) He is entitled to return as a student in good standing to the last college attended.

(2) An applicant for admission to the University in advanced standing who was ineligible at the time of high school graduation because of low scholarship or a combination of low scholarship and incomplete subject preparation, is referred to the section "Removal of Admission Deficiencies Incurred in High School" above.

As an integral part of the system of public education of California, the University accepts at full value approved transfer courses completed with satisfactory grades in the public junior colleges of the State. Many students complete their advanced studies at the University after spending the first two years of their college career in one of the many excellent California public junior colleges.

An applicant may not disregard his college record and apply for admission in freshman standing; he is subject without exception to the regulations governing admission in advanced standing. He should request all preparatory schools and colleges he has attended to forward complete official transcripts directly to the Registrar. A statement of good standing from the last college attended must also be sent.

No applicant may receive transfer credit in excess of an average of 18 units per semester. After a student has earned 70 units acceptable toward a degree (except credit allowed on the basis of military service and training) no further unit credit will be granted for courses completed at a junior college.

Extension courses taken at some institution other than the University of California may not be acceptable; decision as to their acceptability rests with the Registrar. If such a program is planned to apply toward a degree at the University, the approval of the Registrar should be sought in advance.

REMOVAL OF SCHOLARSHIP DEFICIENCIES BY APPLICANTS FROM OTHER COLLEGES

If an applicant otherwise eligible seeks to transfer from other institutions of collegiate rank, but his college record fails to show a satisfactory scholarship average, he may be admitted only when the deficiency has been removed by additional work completed with grades sufficiently high to offset the shortage of grade points. This may be accomplished by work in other approved
higher institutions, in Summer Sessions, or by correspondence courses in the University Extension.

LIMITATION OF ENROLLMENT OF OUT-OF-STATE APPLICANTS

It has been necessary to limit somewhat the enrollment of nonresidents of California; only those of exceptional promise will be eligible for admission. In addition to the normal admission requirements described in the sections on "Admission on the Basis of the High School Record," page 12, and "Admission in Advanced Standing," page 18, the special regulations given below apply to nonresident applicants. Children of alumni of the University of California and residents of Hawaii are not subject to the special nonresident requirements for admission.

LOWER DIVISION

Applicants directly from high school or with less than 60 semester units of acceptable college credits may be admitted to the freshman or sophomore class if they meet the following out-of-state scholarship requirement and present a satisfactory score on one of the scholastic aptitude tests.

1. Out-of-State Scholarship Requirement:

 (a) High School:

 Grade-point average 3.3 or better in subjects required for admission, if taken in secondary schools accredited by a state university or a regional association. Grade-point average 3.5 in subjects required for admission, if taken in secondary schools accredited by other agencies.

 (b) Advanced Standing:

 A grade-point average of not less than 2.7 is required on any college work undertaken if the applicant is in advanced standing (has done college work) but presents less than 60 semester units of acceptable college credits (1 unit of A counts 4 grade points, 1 unit of B counts 3 grade points, 1 unit of C counts 2 grade points, 1 unit of D counts 1 grade point, an F yields no grade points). An applicant who has completed less than 15 quarters or 12 semester units of college work must, in addition, meet the minimum high school scholarship as stated above.

2. Out-of-State Examination: A properly certified record of standing must be presented on one of the following examinations:

 (a) College Entrance Examination Board Scholastic Aptitude Test: Arrangements must be made through the Educational Testing Service, Box 592, Princeton, New Jersey, or Box 27896, Los Angeles 27, California.

 (b) American Council on Education Psychological Examination—College Level: Arrangements may be made either through the applicant’s own school or through the Registrar. In applying to the Registrar, the applicant should submit the name and address of a responsible school official who has agreed to administer the examination. Arrangements to take the examination through the University should not be made until a formal Application for Admission to the University is on file.

UPPER DIVISION

Applicants who present 60 or more semester units of advanced standing credit, according to the evaluation by the Registrar, are admitted under regular rules (see “Admission in Advanced Standing,” page 18).
ADMISSION OF RETURNING MEMBERS OF THE ARMED FORCES

Some exceptions in the subject requirements for admission will be made for men and women whose schooling has been appreciably delayed by service in the armed forces. Such exceptions will apply, however, only when the scholarship record is high enough to indicate probable success in the University. Veterans whose scholastic records are good, and who do not have more than 3 units of high school deficiencies, are encouraged to apply even though they may not have all the usual requirements. A veteran with a good scholarship record but with subject deficiencies may, if he is over 21 years of age, be classified as a special student until deficiencies are removed, or until all requirements for junior standing in the college of his choice have been completed.

ADMISSION OF SPECIAL STUDENTS

Special students are persons of mature years who have not had the opportunity to complete a satisfactory high school program, but who, by reason of special attainments, may be prepared to undertake certain courses in the University. The conditions for admitting each applicant under this classification are assigned by the Registrar. Ordinarily, a personal interview is required before final action can be taken. In general, special students are required to confine their attention to some special study and its related branches.

Transcripts of record from all schools attended beyond the eighth grade must be submitted. The applicant may be required to take an aptitude test and the Examination in Subject A. The Registrar will supply, upon request, the forms of application for admission and for transcripts of high school record.

No person under the age of twenty-one will be admitted as a special student, but mere attainment of any given age is not in itself a qualification for admission.

An applicant will not be admitted directly from high school to the status of special student. Graduates of high schools are expected to qualify for admission in accordance with the usual rules; students admitted to regular status, if not candidates for degrees, may, with the approval of the dean of the college, pursue elective or limited programs.

The University has no "special courses." All courses are organized for regular students. A special student may be admitted to regular courses for which, in the instructor's judgment, he has satisfactory preparation.

A special student may at any time attain regular status by satisfying all the matriculation requirements for admission to the University, but an applicant will not be admitted to special status for the purpose of making up requirements.

ADMISSION FROM SCHOOLS AND COLLEGES IN FOREIGN COUNTRIES

The credentials of an applicant for admission from a foreign country, either in undergraduate or graduate standing, are evaluated under the general regulations governing admission. An application, with official certificates and detailed transcripts of records, should be submitted to the Registrar several months before the opening of the semester in which the applicant hopes to gain admittance. This will allow time for the necessary correspondence relative to entrance and, if the applicant is admitted, will aid him in obtaining the necessary passport visa.

An applicant from a foreign country whose education has been conducted in a language other than English may be admitted only after demonstrating
that his command of English will permit him to profit by instruction in this University. An applicant's knowledge of English is tested by an oral and written examination given by the University. This regulation applies to both graduate and undergraduate foreign students. The admission of an applicant who fails to pass this examination will be deferred until he has attained the required proficiency in English.

Language Credit for a Foreign Student.—College credit for the mother tongue of a foreign student and for its literature is given only for courses taken in native institutions of college level, or for upper division or graduate courses taken in the University or in another English-speaking institution of approved standing.

Foreign Student Advisers.—Special advisers have been appointed by the President of the University to assist foreign students in all matters pertaining to their attendance at the University. Each student who is not a citizen of the United States, upon his arrival at the University, must report to the Foreign Student Adviser, Room 211, Library-Administration Building.

LATE ADMISSION AND REGISTRATION

The student or prospective student should consult the Registration Circular for the dates upon which he is expected to register and begin work. Failure to register on the stated registration days will cause difficulty in making a satisfactory program and retard the progress of both the student and of each class to which he may be admitted.

A student who registers after the opening of the session and who later is found deficient in his work may not plead late admission as an excuse for his deficiency.

A fee of $2 is charged for late registration; this regulation applies both to old and new students.

A qualified student or applicant who fails to register on the stated registration days at the opening of the semester, but who, nevertheless, appears during the first two weeks of instruction, will usually be permitted to register. After the first week, however, he is required to obtain written approval from all the instructors in charge of his proposed courses and from the dean of his college, before his registration can be completed. In no event will a student be permitted to register or file his study list after Friday of the sixth week of instruction.

ADMISSION IN GRADUATE STANDING

Admission to the Graduate Division may be accorded holders of the bachelor's degree from institutions of acceptable standing on presentation of official transcripts showing all college or university work completed to date together with official evidence of the degree conferred, provided the undergraduate program represents the usual college course of four years, the scholarship record is satisfactory, and the student can be accommodated in the field in which he wishes to pursue study. The University may deny admission to graduate standing in cases where the scholarship record has not been satisfactory or where the undergraduate program has not furnished an adequate basis for advanced work leading to academic or professional higher degrees or certificates. This proviso applies to graduates of the University as well as to graduates of other institutions. In the absence of official records and official evidence of graduation or receipt of degree, registration will not in any case be permitted.

Transcripts of students' records and all other official credentials furnished for admission are retained permanently in the files of the Graduate Division,
Berkeley. In addition to the record sent for admission, the student must furnish an additional set of his official transcripts for conference with departmental advisers and for his own reference in planning a program of study. The Graduate Division office copies may not be borrowed for any purpose. Admission to the Graduate Division does not necessarily carry with it the privilege of proceeding to candidacy for a higher degree on the basis of minimum residence and subject requirements.

A formal application is required of all persons seeking admission to the Graduate Division, Northern Section, of the University. The application blank may be obtained from the Office of the Dean of the Graduate Division, 102 Administration Building, University of California, Berkeley 4, and must be filed there, preferably twelve weeks before the date of registration, and in no case later than July 15 for the fall semester and December 15 for the spring semester. It should be accompanied by a money order or bank draft for $5 in payment of the application fee. The application fee is chargeable to every person who files an application, and is not refundable under any circumstances. (For readmission of former graduate students, see below.) If applications and complete records are filed later than twelve weeks before the date of registration the student’s registration may be delayed and he must pay the $2 late registration fee.

Every new student and every student returning to the University after an absence must present, at the time of the medical examination by the University Medical Examiner, a certificate establishing the fact that he has been successfully vaccinated against smallpox within seven years. Vaccination should be completed prior to registration. A form for this purpose will be furnished by the University.

The level of work to which graduate students are assigned and their standing as candidates for degrees depend upon the extent and character of their undergraduate courses. If in the opinion of any department the preliminary training of an applicant has not qualified him for graduate work, he may be assigned to such undergraduate courses as are suited to his needs.

Readmission: An application for readmission is required of persons formerly registered in a regular session as graduate students who wish to return after an absence. The form for this purpose is obtainable from the Registrar, and no fee is charged. Each applicant is required, however, to file official evidence that he has been satisfactorily vaccinated as explained in the above paragraph for new students.

Foreign Students: Applicants for admission to the Graduate Division on credentials from universities and colleges in foreign countries must take the Examination in English for Foreign Students described in the preceding section, to demonstrate whether or not their command of English will enable them to profit by instruction in the University.

Study Lists: After admission to the Graduate Division, every graduate student must file with the Registrar, on a specified date, a study list containing his program of courses or a statement of other graduate work, including thesis and research approved by the graduate adviser in the department of his major subject. Study-list changes for graduate students are subject to the regulations applying to undergraduates.

For further information concerning the Graduate Division see the Announcement of the Graduate Division, Northern Section, obtainable from the Registrar or the Associate Dean of the Graduate Division; or from the Dean of the Graduate Division, University of California, Berkeley 4.

† Veterans who expect to enroll under the provisions of Public Law 894 (the G. I. Bill of Rights) or Public Law 16 are not required to remit this fee with their applications.
GENERAL REGULATIONS

CERTAIN GENERAL REGULATIONS govern residence and eligibility for study in the academic departments. Unless otherwise stated, these apply to graduate, undergraduate, and two-year students.

ROUTINE OF REGISTRATION

No student in the departments of the University may undertake any work or examination with a view to credit toward a University degree without registration for the work or examination with the Registrar; such registration must be accepted by the proper faculty before the work proposed is undertaken.

The prospective student should plan to arrive early in the registration week. A free circular, giving details of registration, is published each semester. All new undergraduate students may be required to take certain examinations, including Subject A, which are scheduled for specific hours on Tuesday and Wednesday of registration week. A fee of $1 is charged any student who fails to take a required examination at the prescribed time.

A student in good standing carrying a limited amount of regular classwork may be permitted, on the basis of private study outside of University classes, to take certain University examinations for the purpose of gaining advanced standing. The authorization of the proper faculty must, however, be obtained by written petition before preparation for the examination is begun.

Each student must file a study list with the Registrar at the time and place designated, showing his choice of courses to be pursued in any semester. Registration at a later date requires special permission. For further information, see “Late Admission and Registration,” page 21.

A student normally registers for course work at the beginning of each semester. He sometimes may register for year courses in the second semester without having been registered in the first semester. When this is done, credit is given for the work of the second semester only.

Concurrent enrollment in resident courses and in extension courses is permitted only when the student’s entire program has received the approval of the proper dean or study-list officer and has been registered before the work is undertaken.

After the study list is filed, a student may request changes in program by formal petition, which must be approved by the instructors concerned and by the dean or other proper officer of the student’s college.

Every regular student must include in his study list all required work appropriate to the college and year of his work. The Committee on Study Lists is authorized to withdraw study cards that do not comply with this regulation.

Any student who fails to comply with the regulations governing registration will not be listed on the official class rolls.

MEDICAL AND PHYSICAL EXAMINATION

To safeguard the health of the student and the University community, every new student (graduate, undergraduate, and two-year) prior to the filing of his registration papers must call upon the University Medical Examiners and pass a medical examination. Every new student must possess at the time of registration a certificate testifying to successful vaccination against smallpox within the last seven years. A form for this purpose is furnished by the University.
Tests for tuberculosis are a part of the physical examination of all new students. Applicants with contagious diseases will be excluded. Any having physical conditions that grossly disturb the classwork of other students, such as uncontrollable convulsive seizures, should not apply for admission, and will be disqualified when detected.

Each prospective student is advised to have a physical examination by his own physician to determine his fitness for college work before coming to the University. Any defects capable of remedial treatment, such as diseased tonsils or imperfect eyesight, should be corrected to prevent possible loss of time from studies.

Students returning after an absence must comply with the University requirements regarding smallpox vaccination and must have a health evaluation at the Student Health Service.

STUDENT HEALTH SERVICE

The purpose of the Student Health Service is to conserve the time of students for their classwork and studies, by preventing and treating acute illnesses. This service is made possible in part by the general funds of the University and in part by the staff physicians, and is not a health insurance plan; therefore, the service is limited by the staff and facilities available.

Each student registering in the fall and continuing through the spring semester, and each student registering in the spring semester may, at need, have such medical care as the campus health service is staffed and equipped to provide from the first day of the semester in which the student first registers during the academic year to the last day of the spring semester of the same academic year, or to the date of official withdrawal from the University. Additional service may be provided for seven days after the last day of the semester at the discretion of the Director of the Student Health Service. Any prospective registrant who receives health service and who does not register for the next following semester shall be required to pay toward the cost of the service rendered him up to the amount of the incidental fee. Surgical treatment is also included in the services offered when, in the opinion of the University Physician, this is necessary and within the limitations herein outlined.

In the event of serious illness during the semester, hospital care for a period of up to thirty days may be given on the recommendation of the University Physician. If the patient is still ill at the end of the semester, he will be released from the hospital to the care of his home or community as soon as the University Physician considers it safe. Also, if injuries or illnesses are of a nature requiring prolonged care that will obviously prevent continuance in college during the current semester, the patient will be returned to his community or home for definitive treatment.

Off-campus medical care on authorized trips will be provided if the student is unable to return safely to the Student Health Center for medical care.

No definitive surgical treatment will be undertaken (as, for example, tumors of the bone) if such treatment would prevent the student from returning to college the same semester. Charges will be made for unusual appliances or remedies not ordinarily available or for hospitalization in excess of thirty days.

The Student Health Service does not take responsibility for dealing with any chronic physical defects or illnesses present at the time of entrance to the University (for example, hernias, chronic bone and joint diseases or deformities, chronic gastrointestinal disorders, fibroids of the uterus, chronically infected tonsils, tuberculosis, syphilis, malignant diseases, allergic and endocrine disorders). Except for first aid and emergency care, the Student Health
Service will not undertake to treat any injury or illness when treatment has been initiated elsewhere. It does not take responsibility for treating remedial defects where medical or surgical treatment is elective and not of an emergency nature, and where the student's best interests will be served by treatment during vacation.

PHYSICAL EDUCATION AND USE OF GYMNASIUM

All students, by paying the incidental fee, are privileged to use the gymnasium, swimming pool, tennis courts, and athletic fields. Equipment for games and sports is available for exercise and recreation, either with or without instruction.

SUBJECT A: ENGLISH COMPOSITION

Every undergraduate entrant (except as noted below) must, when first registering in the University, take the Examination in Subject A, as a test of his ability to write English without gross errors in spelling, grammar, sentence structure, and punctuation.

This examination is offered at the opening of each fall and spring semester (see REGISTRATION CIRCULAR, obtainable from the Registrar). For late registrants a second examination is given (fee $1), not later than two weeks after the beginning of the semester.

Results of the first examination are available on the following day. Students are graded as "passed" or "not passed." Any student absent from the required examination in Subject A is treated as having failed.

Every student who fails the Subject A examination must enroll in the special Course in Subject A (three hours weekly for one semester) which is without unit credit toward graduation. This course is subject to the same rules of grading as other University courses. A fee of $20, payable before the study list is filed, is required for this course; the charge is repeated each time the student takes the course.

A student who has failed the examination in Subject A cannot take the second examination, but must enroll in the course in Subject A.

No student will be granted the bachelor's degree until he has satisfied the Subject A requirement.

A student who has received a satisfactory rating in the College Entrance Examination Board examination in English composition has satisfied the Subject A requirement. A student who has passed an examination in Subject A given by the University at Berkeley or Los Angeles or given under the jurisdiction of the University at various centers in the State annually in May or June also has satisfied the Subject A requirement.

A student is exempt from the requirement in Subject A if he enters the University of California with credentials showing completion elsewhere, with a grade not lower than C, of one or more acceptable college courses in English composition (with or without unit credit).

A student who maintains a grade of A in the course in Subject A is permitted, on recommendation of the Committee on Subject A, to withdraw from the course at a date determined by that committee and is considered as having fulfilled the Subject A requirement. Should any student fail in this course, he will be required to repeat the work in the next succeeding semester of his residence in the University.

Students from other countries whose native language is not English should take the special examination in English for foreign students rather than the Subject A examination. Students who subsequently complete Speech 26, the
advanced course in English for foreign students, with a grade of C or higher, will be credited as having met the Subject A requirement.

AMERICAN HISTORY AND INSTITUTIONS

Every student who intends to be a candidate for the bachelor's degree must demonstrate a knowledge of American History and Institutions. He may meet the requirement in any of the following ways:

1. By passing a single examination (without unit credit) in American History and Institutions. Seniors, as a general rule, are not permitted to take this examination.

2. By completing any two of the following courses, subject to the conditions noted below;† History 17A, 17B, 174A, 174B, 176A, 176B, 178A, 178B, 179, 187; Political Science 1A, 1B, 113, 128A, 157.

3. (a) By the automatic equivalence granted for courses offered by collegiate institutions within the state of California, provided an official transcript of the student's record indicates satisfaction of the requirement by such courses.

(b) By presenting a certificate of completion of acceptable courses at other collegiate institutions. Certificates may be obtained from the office of the Supervisor.

All foreign students attending the University on student visas who are candidates for the bachelor's degree are advised to see the Supervisor of the American History and Institutions Requirement early in their academic work at the University.

Further information concerning this requirement and the examination necessary to meet it may be obtained from the Supervisor of the Requirement of American History and Institutions, Room 13, Temporary Building 1.

MILITARY SCIENCE

Under the Act of Congress establishing the land-grant colleges, instruction in military science must be included in the curricula. The Board of Regents of the University of California has therefore directed that every undergraduate male student, unless excused, must pursue the study of military science during the first two years of residence. The University of California has an Army R.O.T.C. unit which offers courses in general military science.

Students must list the prescribed courses in military science on their study cards along with other University courses. Any petition for excuse from, or deferment of, military science must be filed within two weeks of the date of registration, except where illness or physical disability occurs after that date. Further information about the requirement in military science, including a statement of the grounds upon which students may be excused, may be obtained from the Registrar.

If a student who is subject to this requirement lists the prescribed course on his study card, and thereafter without authority fails to appear for the course, his neglect will be reported to the Registrar, who, with the President's approval, will notify the student that he is dismissed from the University. The Registrar will then report the dismissal to the dean of the student's college or other officer in charge of the student's program. Reinstatement will be made only upon approval of the President with the agreement of the Professor of Military Science and Tactics.

† Students taking these courses are subject to the regular rules that apply for prerequisites and majors. Upper division history courses may be taken to satisfy the requirement only with the permission of the instructor.
THE RESERVE OFFICERS' TRAINING CORPS

The Reserve Officers' Training Corps was established by Act of Congress in 1916. Its purpose is to train junior officers possessing qualities and attributes essential to their progressive and continued development in the United States Army Reserve and in the Regular Army. Military leadership is emphasized. Instruction includes subjects common to all branches of the Army with special attention to tactics and techniques of the military team. The United States Government furnishes arms, equipment, uniforms, and textbooks for the use of all students enrolled in courses of the department.

The R.O.T.C. program has been divided into three phases: (1) the required basic course (lower division), (2) the elective advanced course (upper division), and (3) summer camp (for upper division only).

Lower Division.—The lower division (basic) course is prescribed for all first- and second-year undergraduate male students who are citizens of the United States, able-bodied, under twenty-three years of age at the time of initial enrollment and are not otherwise exempt. The instruction is of a general type which prepares the graduate for duty with any branch of the Army upon completion of additional branch schooling.

A first- or second-year student claiming exemption because of noncitizenship, physical disability, age, or military service will present to the Registrar a petition for such exemption on the prescribed form. Pending action on his petition the student will enroll in the course prescribed for his year and enter upon the work of such course. Under certain conditions, nonresident aliens are permitted to enroll. Inquiry should be made to the Professor of Military Science and Tactics.

Upper Division.—The upper division (advanced) course is open to all students who have successfully completed the basic course, or who are eligible for equivalent credit, and who are under twenty-seven years of age at the time of initial enrollment. It is also open to veterans having over one year of military service who meet the age and physical requirements.

Application for admission to the advanced course will normally be made in the third semester of the basic course. To be accepted, an applicant must pass an entrance examination, a physical examination, be selected by the Professor of Military Science and Tactics and the Provost, and execute an agreement with the government to complete the course which includes attendance at a six-week summer camp between the junior and senior years.

Students selected for the advanced course are those who have shown potentialities for leadership and command and the promise of developing into efficient officers. Acceptance and enrollment in the upper division course will make the completion of the advanced course a prerequisite to graduation from the University, unless the student is excused by authority of the Secretary of the Army.

During the two-year period of the advanced course, the student will be paid a nominal commutation of subsistence in an amount prescribed by the Secretary of the Army.

During the third semester of the upper division (advanced) course, each student is classified according to his aptitude and qualifications for a particular branch of service and recommendations are made to the Department of the Army for commissioning in the various Arms and Services of the Army. Also, during this semester, outstanding students may be designated by the Provost and the Professor of Military Science and Tactics as distinguished military students. If their high records are maintained, they may be designated, upon graduation from the University, distinguished military graduates. These cadets may then apply for direct commission in the Regular Army as Second Lieutenants.
Successful completion of the advanced R.O.T.C. course, and four years of education at the college level, will qualify the student for appointment as a Second Lieutenant in the United States Army Reserve. Students who complete the advanced course are also eligible to be commissioned in the University Cadets by the Governor of the State of California.

STUDY-LIST REGULATIONS

At the beginning of each semester every student must file with the Registrar, on a specified date, a detailed study list bearing the approval of a faculty adviser or other designated authority.

The presentation of this study list and its acceptance by the college are evidence of the student’s obligation to perform the designated work to the best of his ability. Withdrawal from, or neglect of, any course entered on the study list, or a change in program without formal permission from the dean of the college, makes the student liable to enforced withdrawal from the University, or to other appropriate disciplinary action.

Each college has certain study-list limits with which the student must comply. Detailed regulations of the respective colleges are given in later pages of this bulletin.

Authority of Instructors.—No student will be permitted to enter upon the study of any subject if, in the instructor’s opinion, he lacks the necessary preparation to ensure competent work.

Every student must satisfy his instructors, in such ways as they may determine, that he is performing his work in a proper manner. Instructors will report to the Registrar from time to time the names of students whose attendance or work is unsatisfactory.

An instructor, with the Provost’s and the President’s approval, may at any time exclude from his course any student guilty of unbecoming conduct toward the instructor or the class, or a student who, in his judgment, has neglected the work. A student thus excluded will be recorded as having failed in that course unless the faculty determines otherwise.

Other General Requirements.—The student’s attention is directed to further University regulations concerning the requirements in scholarship and candidacy for degrees. The student should plan his program of studies carefully in relation to these requirements, and consult promptly with his adviser or the dean of the college or school concerning any irregularities in his program that may require special approval.

CANDIDACY FOR DEGREES

Every student who intends to be a candidate for a bachelor’s degree or the degree of Associate in Arts at the end of the semester, must file with the Registrar, on a date to be fixed by the Registrar, an announcement of candidacy. For filing this announcement later than the appointed date, a fee of $2 is charged. In 1957–1958 these dates are: Monday, September 30, 1957, for candidates who expect to complete their work in January, 1958; and Monday, February 17, 1958, for candidates for graduation in June, 1958.

All candidates for the bachelor’s degree must have been enrolled throughout the senior or final year of residence in that college of the University in which the degree is to be taken. This applies both to students entering from other institutions and to students transferring from one college to another within this University. Of the 120 (or more) units required for the bachelor’s degree, at least 24 must be completed at this University in resident courses of instruction during the final or senior year.
All graduates of any one calendar year—January 1 to December 31—are considered as belonging to the “class” of that year.

For filing dates concerning graduate degrees, see the University calendar. Candidates for advanced degrees will file announcement of candidacy on the dates set by the Dean of the Graduate Division.

CHANGE OF COLLEGE OR MAJOR

A student may be transferred from one college, major, or department of the University to another upon the approval of the dean or other responsible officer or committee of the college (or department) to which admission is sought. A form of petition for transfer is supplied by the Registrar.

No student may transfer from one major department to another after the opening of the final semester of his senior year.

HONORS

Honor students include those who have received honorable mention with the degree of Associate in Arts, or have attained junior standing in the College of Agriculture and the College of Letters and Science. Honors are granted also with the bachelor’s degree and the two-year certificate. Regulations concerning honors are given with explanations of curricula in the various colleges, in later pages of this bulletin.

CREDIT AND SCHOLARSHIP

In both the University and the high school the amount of the student’s work is evaluated in terms of units; the quality of his scholarship, in terms of grades. For more exact evaluation of his scholarship, the University assigns a numerical value in grade points to each scholarship grade (see below).

High school credit, when offered in application for admission to the University, is reckoned in matriculation units; each represents one year’s work in a given subject in the high school.

High school credit, when offered in satisfaction of high school graduation requirements, is measured in standard secondary units; that is, the credit granted for the study of a subject throughout the school year of thirty-six to forty weeks is stated in terms of the standard secondary unit. Each unit represents approximately one-quarter of a full year’s work in high school and four standard secondary units represent one full year’s work in high school.

Relation between high school matriculation units and University units.—One year’s work in the high school is regarded as equivalent to one University semester’s work of college level; that is, a student desiring to make up any high school subject deficiency by offering work of college level can in one University semester earn as much credit as in one high school year.

The value of a University course in units is one unit for three hours of work by the student per week per semester. The credit value assigned to a course is determined by the number of hours of work required of the student and not by the number of class meetings per week. For most courses the average student is expected to spend two hours in preparing for one hour of lecture or recitation.

GRADES OF SCHOLARSHIP; GRADE POINTS

The result of a student’s work in each course (including courses in which credit is sought by examination) is reported to the Registrar in one of six scholarship grades, four of which are passing, as follows: A, excellent; B, good; C, fair; D, barely passing; E and F, not passing. Grades are not other-
wise defined, as for example, by percentages, or by a rule stipulating the manner in which the several grades shall be distributed among the members of a class.

Grade E (not passed) indicates a record below passing, but one which may be raised, without repetition of the course, by success in a further examination or by performing other tasks required by the instructor. Grade F (not passed) denotes a record so poor that it may be raised to a passing grade only by repeating the course.

The term "incomplete" is not used in reporting the work of students. The instructor is required to assign, for every student, a definite grade based upon the work actually accomplished, irrespective of the circumstances which may have contributed to the results achieved.

Course reports filed by instructors at the end of each semester are final.

Grade points are assigned to the respective scholarship grades as follows: for each unit of credit, the scholarship grade A is assigned 4 points; B, 3 points; C, 2 points; D, 1 point; E and F, no points.

To qualify for the degree of Associate in Arts in the College of Letters and Science, or for the bachelor's degree in the College of Agriculture, College of Letters and Science, or School of Veterinary Medicine, the student must obtain at least twice as many grade points as there are units in the total credit value of all courses undertaken by him in the University of California.

Every student who desires a report on his scholarship grades at the end of the semester should deposit with the Registrar a self-addressed, stamped envelope.

MINIMUM SCHOLARSHIP REQUIREMENTS

The following provisions apply to all two-year and undergraduate students except students in the School of Veterinary Medicine:

Probation.—A student will be placed on probation
(1) If at the close of his first semester his record shows six or more grade points less than twice the number of units undertaken; or
(2) If at the close of any subsequent semester his grade-point average is less than two (a C average), computed on the total of all courses undertaken in this University for which he has received a final report.

Dismissal.—A student will be subject to dismissal
(1) If during any semester he fails to pass with a grade of C or higher courses totaling at least 4 units; or
(2) If while on probation his grade-point average for the work undertaken during any semester falls below two (a C average); or
(3) If after two semesters of probationary status he has not obtained a grade-point average of two (a C average), computed on the total of all courses undertaken in this University for which he has received a final report.

A student who becomes subject to the provisions of this regulation will also be subject to such supervision as the faculty of his college or school may determine. The faculty may dismiss from the University a student under their supervision; or, by suspending the provisions of this regulation, they may permit a student subject to dismissal to remain in the University or permit the return to the University of a student dismissed under this regulation.

SCHOOL OF VETERINARY MEDICINE

The following scholarship provisions apply to students in the School of Veterinary Medicine:

Probation.—A student shall be placed on probation if at the close of his first semester in the School of Veterinary Medicine his record for that semes-
ter falls below a C average, computed on the total of all courses taken in the veterinary curriculum.

Dismissal.—A student shall be subject to dismissal from the School of Veterinary Medicine

(1) If at the end of any semester subsequent to his first he has failed to maintain a grade-point average of two (a C average), computed on the total of all courses taken in the veterinary curriculum subsequent to his admission to the School for which he has received a final report; or

(2) If during any semester he fails to pass with a grade of C or higher courses totaling at least four units; or

(3) If at any time he has, in the judgment of the faculty of the School, proved himself to be physically, morally, or mentally unfit for the profession of veterinary medicine.

A student in the School of Veterinary Medicine who becomes subject to the provisions of this regulation shall be under the supervision of the faculty of the School. The faculty, or persons designated by it, shall have the power to dismiss from the University students under its supervision, or at its discretion to suspend the provisions of this regulation and permit the retention in the University of students thus subject to dismissal, and the return to the University of students who have been dismissed under this regulation.

Graduate students who acquire scholarship deficiencies are subject to action at the discretion of the Dean of the Graduate Division.

CREDIT BY EXAMINATION

An undergraduate student in residence and in good standing may, under certain conditions, take examinations for degree credit either (a) in courses offered in the University, without formal enrollment in them, or (b) in subjects appropriate to the student’s curriculum, but not offered as courses by the University. The results of all such examinations, with grades and grade points, are entered on the student’s record in the same manner as are regular courses of instruction. No fees are required.

The privilege of taking an examination for credit will ordinarily be granted only to students who have at least a B average for all University courses undertaken.

Arrangements must be made in advance with the dean of the student’s college or school; his approval, and that of the instructor appointed to give the examination, are necessary before an examination can be given.

The application form for examinations may be obtained from the Registrar.

FINAL EXAMINATIONS

Final examinations are obligatory in most undergraduate courses. All examinations will, as far as practicable, be conducted in writing. For each examination, a maximum time is assigned beforehand which no student is allowed to exceed. The time for examination sessions will be not more than three hours. Leave to be absent from a final examination must be sought by written petition to the proper faculty.

If a final examination is among the regular requirements in a course, there can be no individual exemption, except as provided in the preceding paragraph.

Any department may examine a student, at the end of the semester immediately preceding his graduation, in the major subject in which the department has given instruction; and a student to be examined in a major subject may, at the discretion of the department, be excused from all final ex-
aminations in courses in the department of the major subject in which he has been enrolled during the semester. Credit value may be assigned to this general examination in the major subject.

Reexaminations are permitted only for the purpose of raising grade E (not passed) to a passing grade. A student who received grade B, C, or D in any course is not allowed a reexamination for the purpose of raising the grade. Methods of raising nonpassing grades to passing grades are described under "Removal of Deficiencies," below.

Application for examination for advanced standing on the basis of work done before entrance to the University should be made to the Registrar upon entrance.

REMOVAL OF DEFICIENCIES

The following rules for removal of deficiencies are effective for all work completed on and after July 1, 1957.

A student who receives a grade lower than C in a lower division course may repeat the course. The units will count only once toward the degree; however, he will be charged with the units undertaken on each attempt. Upon repetition of the course, the student will receive the grade assigned by the instructor and grade points appropriate to that grade. The foregoing privilege does not apply to grades received in upper division or graduate courses. A student who receives grade E or F in an upper division or graduate course may repeat the course. The units will count only once toward the degree; however, he will be charged with the units undertaken on each attempt. Upon repetition, the student can receive no more than two grade points per unit. (For exceptions, see below.)

Special provision is made for students whose university work has been interrupted by one year or more of service with the armed forces of the United States and who, before such service, had undertaken one or more courses forming part of an announced sequence. Such a student may, with the approval of the dean of his college or school (or if he is a graduate student, with the approval of the Associate Dean of the Graduate Division), be permitted to repeat any course previously undertaken in the sequence, irrespective of the grade previously assigned, and to receive the new grade assigned by the instructor and grade points appropriate thereto. However, the unit credit thereby allowed toward graduation or the satisfaction of major requirements may not exceed the difference between the full unit value of the course and the number of units, if any, that he has previously received from the same course.

For the purpose of raising an E to a passing grade the student may, with the consent of the instructor concerned and of the dean of the appropriate school or college, have the privilege of a "condition examination."

Any examination, term paper, or other exercise that the instructor may require of the student to raise an E to a passing grade in a course is a "condition examination." For every such examination a formal permit, to be obtained in advance from the Registrar, must be shown to the instructor in charge; otherwise he will lack authority to consider and report upon the work submitted by the student. For each course in which a special examination is undertaken with a view to raising an E to a passing grade, $2 is charged. The fee for a permit for two or more special examinations of this type is $3. There is no fee for a reexamination (final examination taken with the class), if the final examination is the only task required by the instructor to raise E to a passing grade and if this final examination is taken with the class not later than the close of the next succeeding semester of the student's residence during which the course is offered. The Registrar will provide a form
of petition for a special examination or for admission to an examination with a class, with instructions concerning procedure. Grade E in a course in which a final examination is regularly held can be raised to a passing grade only if the student passes a satisfactory final examination.

If a student who has received a grade E in any course fails to raise it to a passing grade by the end of the next semester of his residence in which the course is regularly given, then the grade shall be changed to F. But if, meanwhile, the student has repeated the course and has again received an E, his grade in the course will remain grade E, as it would be if he were taking the course for the first time. A student who fails to attain a grade D or higher in any course following a reexamination for the purpose of raising an E to a passing grade will be given a grade of F in the course.

Ordinarily, no grade points shall be assigned to a student who raises a grade E or F, incurred in an upper division or graduate course, to a passing grade by successfully repeating the course; or to a student who raises a grade E, incurred in any course (lower division, upper division, or graduate), to a passing grade by examination or by performing other tasks required by the instructor (short of actual repetition of the course). An exception to this rule is permitted, however, when the deficiency consists solely in the omission of the final examination or other required exercise because of illness or other unavoidable circumstances, the student’s performance in all other respects having been satisfactory. In such circumstances the student may petition to have that grade assigned which he would have received if the work had been completed without delay, together with the appropriate number of grade points. His petition must set forth in detail the reasons for his failure to complete the course within the usual limit of time. The petition must be endorsed by the instructor concerned, and must be submitted for final approval as follows: by two-year and undergraduate students, to the Dean of Students; by graduate students, to the Associate Dean of the Graduate Division.

TRANSCRIPT OF RECORD

Each student will be provided, upon request to the Registrar, with one official transcript (copy) of his University record, without charge. After the first request a minimum of $1 is charged for each additional transcript. Students who plan to seek employment after graduation should obtain one or more transcripts as official evidence of attendance at the University.

Application for a transcript of record should be made directly to the Registrar one week in advance of the time when needed.

LEAVE OF ABSENCE AND HONORABLE DISMISSAL

A student in good standing who needs to withdraw for a short time but wishes to retain his status in classes and resume work before the end of the current semester should apply for a brief leave of absence, which expires on a definite date. A petition for this purpose is available from the Registrar. No excuse for absence will relieve a student from the need to complete all work in each course to the satisfaction of the instructor.

For any college exercise other than a final examination, leave to be absent or an excuse for absence should be presented to the instructor in charge. Leave to be absent from a final examination should be sought by written petition to the proper faculty.

If a student must depart suddenly, as in a family emergency, he should write the Registrar as soon as possible, requesting a leave. An honorable dismissal or an indefinite leave of absence may, upon petition, be issued to any student in good standing who complies with the instructions
on the petition, which may be obtained from the Registrar. Undergraduate students will need to have the petition approved by the dean of the school or college and the Dean of Students. Graduate students require the approval of the Dean of the Graduate Division. In addition, men who are receiving veterans' benefits or who have been deferred by Selective Service because of registration in the University must immediately upon ceasing class attendance report in writing or in person to the Supervisor of Special Services.

A student is in good standing if he is entitled to enjoy the normal privileges of the status in which he is officially registered. Students dismissed for scholarship deficiencies, students on scholastic probation, students under censure, and students under suspension are not in good standing.

Discontinuance Without Notice.—Students who discontinue their work without formal leave of absence do so at the risk of having their registration privileges curtailed or withdrawn.

STUDENT RESPONSIBILITY FOR MATERIALS SUBMITTED IN SATISFACTION OF COURSE REQUIREMENTS

All material of whatever nature submitted by a student in satisfaction of all or any portion of a course requirement is the property of the University and is not subject to any claim on the part of the student who has so submitted the same. Further, it is a condition of attendance of any student in any course that any material that he shall produce independently and not as a part of any course requirement must be removed by him from University premises not later than the last day of the semester in which he produced such material and that if he shall fail to remove the same, as here provided, there shall be no obligation on the part of the University to hold or safeguard the same, and all risks of its destruction, loss, or other disposition shall rest solely upon the student.

STUDENT CONDUCT AND DISCIPLINE

The University authorities assume that the student has an earnest purpose and that his conduct will bear out this presumption. If, however, he should be guilty of unbecoming behavior or should neglect his academic duties, the authorities will take such action as, in their opinion, his conduct warrants. Students who fail to utilize properly the opportunities freely given to them by the University must expect to have their privileges curtailed or withdrawn.

Administration.—By authority of the Academic Senate, the President of the University administers student discipline and has full power to act. He accomplishes this duty through the assistance of his teaching staff, the administrative officers concerned with student welfare, and the Faculty-Administration Committee on Student Discipline.

Degrees of Discipline.—There are five degrees of discipline: warning, censure, suspension, dismissal, and expulsion. Censure indicates that the student is in danger of exclusion from the University. Suspension is exclusion for a definite period. Dismissal is exclusion for an indefinite period, with the presumption that the student's connection with the University will be ended by it. Expulsion, the most severe academic penalty, is final exclusion from the University.

Student Welfare Council.—The Welfare Council of the Associated Students advises the Faculty-Administration Committee on Student Discipline regarding student views on conduct, penalties, and procedures, and recommends measures for improvement of student conduct. The Council is responsible for a program to create among the students attitudes and opinions favorable to good conduct.
MISCELLANEOUS INFORMATION

SITE AND CLIMATE

The Davis Campus of the University of California is adjacent to the city of Davis in the center of the Sacramento Valley. The University properties, totaling more than 3,000 acres, are in a prosperous agricultural area of varied crops and livestock production. Sacramento is 13 miles to the east, while Berkeley and San Francisco are within two hours by rail, bus, or automobile.

The climate at Davis is typical of the Great Central Valley of California, cool in the winter rainy period, and warm in the long, dry summer season. Average winter temperatures (December to February) are about 47° to 51° F; summer temperatures (July to September) average about 71° to 75° F. The heat of summer is tempered by breezes from the San Francisco Bay region, which make for cool nights. The average annual rainfall is 17 inches.

EXPENSES OF STUDENTS

It is not possible to give exact figures for the budget of a student on the Davis campus. Costs will vary according to personal tastes and the financial resources of the individual. In general, the total expense for a college year of two semesters will average about $1,100 for residents of California and $1,400 for nonresidents. Expenses of about $225 for resident students and $375 for nonresident students are necessary during the first month after entering college. It is possible to live simply and to participate moderately in the life of the student community on a limited budget. The best that University authorities can do to assist the student in planning his budget is to indicate certain and probable expenses.

Tuition.—For residents of California, tuition is free. Any student classed by the University Attorney as a nonresident pays a tuition fee of $150 per semester in addition to the incidental fee (see nonresident tuition below).

Incidental Fee.—Each semester at Davis the incidental fee is $50 for graduates, undergraduates, and two-year students. This fee, which must be paid at the time of registration, covers certain expenses for use of library books, for athletic and gymnasium facilities and equipment, for lockers and washrooms, for registration and graduation, for all laboratory and course fees, and for such consultation, medical advice, and hospital care or dispensary treatment as can be furnished by the Student Health Service. No part of this fee is remitted to those students who may not desire to make use of all or any of these privileges.

Student Body Membership Fee.—The student body membership fee is $7.50 each semester. This fee must be paid by all undergraduate and two-year students at the time of registration. Membership privileges include participation in student affairs, a free subscription to the student newspaper, free admission to the many athletic contests, and reduced admission rates to others.

The student body membership fee is not mandatory for graduate students.

—Graduate students who wish membership privileges may purchase an A.S.U.C.D. card for $7.50.

Laboratory Fees.—There are no laboratory fees. The incidental fee has been adapted to meet these costs.

Miscellaneous expenses.—Books and stationery for a student in Letters and Science courses average $80 to $70 a year. Books and special equipment for students in the preprofessional and professional programs cost $50 to $200.
Exact information on these items may be obtained by writing directly to the school or department. Students who fail to pass the required examination in Subject A must pay a fee of $20 for the course in Subject A (see page 25).

Nonresident Tuition.—The University charges a tuition fee to every student who has not been a legal resident of the State of California for one year immediately preceding the opening day of the semester for which he proposes to enroll. Such a student is classified as a nonresident. A student entering the University for the first time should read carefully the rules governing determination of residence, as quoted below, that he may be prepared, in the event of classification as a nonresident, to pay the required tuition fee. This fee must be paid at registration. The attention of prospective students who have not attained the age of 22 years and whose parents do not live in the State of California is directed to the fact that presence in the State of California for a period of more than one year immediately preceding the opening day of the semester during which it is proposed to attend the University, does not, of itself, entitle the student to classification as a resident.

An alien is classified as a nonresident if he has not made, prior to the opening day of the semester during which he proposes to attend the University, a valid declaration of intention to become a citizen of the United States.

Tuition in the academic colleges is free to students who have been residents of the State of California for one year immediately preceding the opening day of the semester during which they propose to attend the University. Students who are classified as nonresidents are required to pay a tuition fee of $150 each semester in addition to the incidental fee. On the approval of the Dean of the Graduate Division, the nonresident tuition fee may be remitted for graduate students in the academic departments who enter without deficiencies, who have proved that they are distinguished scholars, and who are carrying full programs toward the fulfillment of requirements for academic higher degrees. For conditions of eligibility for exemption from, and of possible commutation of, this fee, see the ANNOUNCEMENT OF THE GRADUATE DIVISION, NORTHERN SECTION.

Any student in doubt about his residence status may communicate in person or by letter with the Attorney for the Regents in Residence Matters, % the Registrar, or at Room 128, Administration Building, University of California, Berkeley 4, California.

The eligibility of a person to register as a resident student may be determined only by the Attorney for the Regents in Residence Matters. Every entering student, and every student returning after an absence, is required to make a "Statement as to Residence" on the day of registration, on a form provided for that purpose, and his status with respect to residence will be determined by the Attorney soon after registration. Application by former or continuing students for reclassification in resident status must be filed within ten days after regular registration; and by late registrants, within one week after registration. No application may be made for a change of classification with respect to some preceding semester.

Refunds.—For students who leave before the end of any semester, part of the fees enumerated above may be refunded. A schedule of refunds and other information will be found in a separate circular (STUDENT FEES AND DEPOSITS) which may be obtained from the Registrar.

RULES GOVERNING RESIDENCE

The term "nonresident student" is construed to mean any person who has not been a bona fide resident of the State of California for more than one year.
immediately preceding the opening day of a semester during which he proposes to attend the University.

The residence of each student is determined in accordance with the rules for determining residence prescribed by the provisions of Section 244 of the Government Code of California, and Section 20005 of the Education Code of California, provided, however, every alien who has not been lawfully admitted to the United States for permanent residence in accordance with all applicable provisions of the laws of the United States, or whose status, he having been so admitted, has been changed, is classified as a nonresident.

Every person who has been, or who shall hereafter be classified as a nonresident student shall be considered to retain that status until such time as he shall have made application in the form prescribed by the Registrar of the University for reclassification and shall have been reclassified as a resident student.

Every person who has been classified as a resident student shall nevertheless be subject to reclassification as a nonresident student and shall be so reclassified whenever there shall be found to exist circumstances that, if they had existed at the time of his classification as a resident student, would have caused him to be classified as a nonresident. If any student who has been classified as a resident student shall be determined to have been erroneously so classified, he shall be reclassified as a nonresident; and if his incorrect classification shall be found to be due to any concealment of facts or untruthful statement made by him at or before the time of his original classification, he must pay all tuition fees that would have been charged to him except for such erroneous classification, and shall be subject also to such discipline as the President of the University may approve.

LIVING ACCOMMODATIONS

The University maintains residence halls and dining units for men and women, and emergency housing apartments for married students. In providing meals and living accommodations for students, the University is mindful of two responsibilities: one is to assure wholesome living conditions; the other is to make residence living contribute specifically to the educational experience of the student.

Within the framework of the A.S.U.C.D., the student government functions in the residence halls, each hall maintaining its own council to act upon matters concerning the welfare of the individual residents.

In accordance with the policy of the University, each student is expected to observe the commonly accepted standards of morality, behavior, and good taste. A willful disregard for the spirit of these standards may constitute sufficient cause for terminating the student's connection with the University.

Board and room in the University residence halls costs about $350 to $375 a semester—approximately the same as for fraternities and private accommodations in the city of Davis. Rooms in the residence halls contain the necessary furniture and linen; the rent includes the weekly laundering of linen. Contracts are binding for the semester, subject to continued residence in the University. Applications for residence in any of the University halls should be addressed to the Housing Office, University of California, Davis.

A residence card must be filed in the office of the Dean of Women by every woman student before her registration can be completed. Every two-year and undergraduate woman under 21 years of age not living in campus housing must have not only the permission of the Dean of Women for her college residence but also the permission of her parent or guardian, whose approval must be indicated by signature on the woman's residence card provided at registration.
Fraternities.—Fraternity membership is by invitation only. These organizations provide living quarters and meals for their members. Information about fraternities may be obtained by addressing the Dean of Students.

STUDENT EMPLOYMENT

Many students who attend the University expect to earn a part of their expenses. However, the undergraduate curricula are organized on the assumption that a student will give most of his time and attention to college studies and, if possible, the student should avoid outside employment until he has become adjusted to his new environment, has established sound study habits and is maintaining a good scholastic standing. By the end of the first semester the student should know the demands of University life and his own capabilities well enough to plan a program combining studies and work for subsequent semesters.

A few part-time jobs are available to students who can adjust their academic programs to the employers’ needs. Usually, programs must be arranged before referrals for employment can be given. Men with limited time or difficult schedules may often supplement their income by doing casual work such as gardening, housework, or miscellaneous odd jobs on the campus and in the community. Women students have some opportunities for work in food service on the campus and there are calls for housework and baby sitting. Private homes occasionally provide room and board in exchange for assistance within the home for both men and women students.

The University Bureau of Occupations assists students in finding part-time employment both on and off the campus. There is no charge for this service. Personal interviews are necessary, as arrangements cannot be made satisfactorily by correspondence. Those wishing part-time work should register with the Bureau of Occupations, Room 212 Library-Administration Building, upon arrival on the campus.

OPPORTUNITIES FOR ACQUIRING AGRICULTURAL SKILLS

Many students who enroll as undergraduates in the College of Agriculture with the intention of making a career in the production fields of agriculture have had little or no opportunity to acquire the basic manual skills that form an essential part of successful farming.

The University of California does not prescribe practical farm experience as a requirement for graduation, nor does it grant degree credit for the acquisition of manual skills attained by repetitive practice.

As a result of a grant by the late Mr. Fred H. Bixby, the Division of Farm Practice was organized to assist undergraduates in acquiring such practical farm experience.

Each new student is questioned as to his agricultural experience and facility with the skills involved in his proposed major subject. The results are placed in the hands of his individual academic adviser.

Two separate programs are open to him under the supervision of the Farm Practice Division working cooperatively with the subject matter division of the student’s major subject. In some fields there is ample opportunity for all major students to find employment in connection with Experiment Station projects dealing with production problems.

For others, however, land has been allocated to the Farm Practice Division where students may learn, by practical experience, the proper use of farm implements and the various manual skills.

In addition, the Farm Practice Division will assist students in finding opportunities with selected farmers in all areas of the State where they may
participate as employees in various farm operations to supplement their college instruction. Many students find that the summer vacation period is the most convenient time to enlarge their knowledge and skill in farm operations, while others may find it advantageous to take a leave of absence for a semester or more to insure participation in at least one complete production cycle.

During the period of employment, a Farm Practice representative makes frequent visits to the student and his teacher-employer to develop records and recommendations that will be of value to the student when he seeks permanent employment upon graduation. Also, many students find that they are able to establish contacts that lead to permanent jobs as the result of such practical training employment.

Students whose practical farm experience is limited are encouraged to discuss this problem with their faculty advisers and to contact the Farm Practice Office soon after registration, to insure sufficient time for the development of job opportunities that best meet their requirements for practical training in farming and to avail themselves of the noncredit skills-training program that is in operation on the campus.

VETERANS AFFAIRS

The Office of Special Services maintains liaison between certain veterans and veterans' dependents, and the Veterans Administration, the State Department of Veterans Affairs, and other agencies offering veterans educational benefits, and assists veterans in becoming assimilated into the life and spirit of the University. This office is located in Room 206, Library-Administration Building. Offices of the United States Veterans Administration are located as follows:

San Francisco Regional Office, 49 Fourth Street, San Francisco 3, California
Los Angeles Regional Office, 1380 South Sepulveda Boulevard, Los Angeles 25, California

Information regarding educational benefits available from the State of California (CVEI) may be obtained from the State Department of Veterans Affairs by writing to P.O. Box 1559, Sacramento 7, California, or to 1102 South Grand Avenue, Los Angeles 15, California, or to 515 Van Ness Avenue, San Francisco 2, California.

Veterans wishing to enroll under the provisions of Public Law 550 ("Korean" G. I. Bill) should obtain from the United States Veterans Administration a Certificate for Education and Training, which should be filed with the Office of Special Services upon completion of registration. These veterans must be prepared to pay all fees and educational costs at the time of registration, since education and training allowances are paid to the veteran by the Veterans Administration and the first monthly payment will normally be received 60 to 75 days after compliance with the above.

SELECTIVE SERVICE

Matters relating to the deferment of students eligible under Selective Service are handled by the Director of Special Services, 206 Library-Administration Building. Certifications regarding enrollment, class standing and other pertinent information will be submitted to the student's Selective Service Board upon request. To be considered for deferment by Selective Service, the student must be pursuing a full-time course of instruction, which for undergraduates, consists of at least 15 units. This does not include noncredit courses, such as Subject A. Students who plan to seek deferment continuously until
SWCHLARSHIPS, PRIZES, LOANS

Through the generosity of alumni and other friends of the University, scholarships, fellowships, prizes, and loan funds are available to undergraduate and graduate students in accordance with the conditions laid down by the donors.

Scholarships and Fellowships.—A circular giving information about undergraduate scholarships may be obtained from the Registrar. Students who maintain an excellent scholarship standing are eligible to make application. Awards are made on the basis of scholarship, financial need, character, and promise. Recipients of undergraduate scholarships must enroll for a minimum of 12 units a semester. Applications for scholarships for any academic year (July 1–June 30) must be filed with the Committee on Undergraduate Scholarships not later than the preceding January 10 by students already in attendance, and not later than March 1 by entering students. Application forms are available each year from the beginning of the last week in November in the office of the Committee on Undergraduate Scholarships.

Information about fellowships for graduate students may be obtained from the Associate Dean of the Graduate Division, 201 Library-Administration Building. Fellowships and graduate scholarships are ordinarily awarded as a mark of honor, on the basis of scholarship, and not of need. The holders of fellowships or graduate scholarships are expected to devote all their time to graduate study and research in the University. Applications for fellowships and graduate scholarships must be filed with the Dean of Graduate Division, 102 Administration Building, University of California, Berkeley 4, not later than the February 15th (February 16th when the 15th falls on Sunday) prior to the academic year for which the award is sought.

Prizes.—A complete list of available prizes, together with the regulations governing each competition, may be obtained from the Registrar.

Loans.—The loan funds for both graduate and undergraduate students are administered in the office of Dean of Students. Loans are not available to students in their first semester of residence at the University. Applicants are required to have a creditable scholarship record and must present a satisfactory repayment program. There are no loans available by which a student may finance his entire college course.

STUDENT ACTIVITIES

Students participate in the general student affairs of the University as well as in activities relating to their major departments and to their special interests. The entire undergraduate and two-year student body has member-
ship in the Associated Students, an organization that governs all student affairs on the campus and supervises the honor system. All undergraduate and two-year women are also members of the Associated Women Students.

The California Aggie, a weekly newspaper, and El Rodeo, the yearbook, are published by students.

Opportunity to participate in many forms of athletics is presented. The University of California at Davis is a member of the Far Western Intercollegiate Athletic Conference and stresses both intercollegiate and intramural athletics. The major sports include football, basketball, boxing, track, and baseball; the minor sports are tennis, wrestling, golf, riding, swimming, and skiing. The Women’s Athletic Association sponsors women’s sports.

The Associated Students also support other activities, including the University band, an orchestra, ensemble groups, men’s and women’s choruses, dramatics, radio broadcasting, and a rodeo team.

The California Club is an organization that emphasizes the unity of student life on all campuses of the University and stresses both intercollegiate and intramural athletics. The International Club promotes friendly relations among foreign-born and native students and studies world problems. Students maintain clubs serving those interested in various special fields. Junior and senior honoraries include Blue Key, Alpha Zeta, and Scabbard and Blade for men students, and Prytanean for women.
REQUIREMENTS AND CURRICULA IN THE SEVERAL COLLEGES AND SCHOOLS

COLLEGE OF AGRICULTURE*

THE PROSPECTIVE STUDENT should read the requirements and recommendations for admission on pages 12–22.

Faculty Advisers and Study-List Requirements

Freshmen and Sophomore Years.—Each student designates a major subject upon matriculation and must consult his adviser each semester for guidance in following the requirements of the curriculum which includes the major of his choice. Program schedules for the freshman and sophomore years are shown for each curriculum. Students who are unable to meet the suggested outlines of study during the first two years may take some of the requirements in their junior or senior year. It should be noted, however, that any great departure from the recommended programs may delay graduation beyond the normal four-year period.

Junior and Senior Years.—The schedule for the junior and senior years is determined by the major subject requirements, supplemented by optional courses selected by the student with the advice and consent of the major adviser.

Approval of Study List.—The study lists of all students must be endorsed by the major-subject adviser before they may be filed with the Registrar. Students will not be permitted to enroll for fewer than 12 or more than 18 units a semester without approval of the Dean of the College of Agriculture. To this maximum there may be added a lower division course in physical education of not more than 1 unit.

Honors

Honors in Junior and Senior Years.—Students who have completed 62 units with an average of at least 3 grade points for each unit undertaken and who maintain this average are designated as honor students, receiving recognition in the student directory and certain privileges in the use of the library.

Honors at Graduation.—Honors are granted to the graduating student who has completed his major with distinction and whose general record is satisfactory to the Study-Lists Committee. The student who has done work of unusual excellence may be recommended for highest honors. The list of students to whom honors and highest honors in the College have been awarded is published in the Commencement Program.

Admission in Junior Standing

To be admitted in junior standing in the College of Agriculture the student must have completed at least 60 units of college work including (1) a total of 9 units of mathematics, which may include high school courses required

* For details concerning agricultural curricula on the other campuses, see Prospectus of the College of Agriculture, obtainable without charge from the Dean of the College of Agriculture, or from the Registrar, University of California, Davis.

[43]
for matriculation, and (2) 40 units of college level work selected from the courses listed below, with not less than 18 units from Group A and not less than 12 units from Group B, or equivalent.

Group A
- Bacteriology 1, 2
- Botany 1, (3), (6), 12
- Chemistry 1A, 1B, 5, (5A), 8, (10)
- Geology 1, 2, 5
- Mathematics 3A, 3B, 12, 13, 16A, 16B
- Physics 2A, 2B, 3A, 3B, 10
- Physiology 1, 1L
- Zoology 1A, 1B, 10, (15)
- (Biology 12)

(Courses offered only at Los Angeles, either in place of, or in addition to those offered at Berkeley and Davis, appear in parentheses.)

Requirements for the Degree of Bachelor of Science

The degree of Bachelor of Science is awarded to those candidates who:

1. Satisfy the general University requirements as follows:
 (a) **Subject A.** See page 25.
 (b) **Military or Naval Science.** See page 27.
 (c) **American History and Institutions.** The student may meet this requirement by the passing of an examination in American History and American Institutions or by the completion of courses prescribed by the University.
 (d) **Residence in the University during the senior year** in the college and completion of at least the final 24 units of credit.
 (e) **At least twice as many grade points as units of credit** in courses undertaken at this University.
 (f) **File notice for candidacy with the Registrar on dates as prescribed by the University Calendar.**

2. Satisfy the general requirements of the College of Agriculture as follows:
 (a) **At least 124 units of University work.** Not more than 4 units may be in lower division physical education courses.
 (b) **Thirty-six units of the above total in upper division courses** (courses numbered 100-199).
 (c) **Nine units of mathematics.** Matriculation work may be offered toward this requirement, counting each year of high school work as 3 units. Trigonometry taken in high school is recommended as partial satisfaction of this requirement.

3. Satisfy the requirements of one of the curricula in the College of Agriculture.

AGRICULTURAL ECONOMICS

Instruction in agricultural economics is designed to develop leaders in rural affairs. A wide choice of courses permits specializing in a particular production field while acquiring the economic background vital to management decisions in agriculture. It is sought to foster in the student an ability to analyze the impact of economic forces upon general welfare, as well as upon the efficiency of farm enterprises and marketing agencies.

There are numerous fields in which graduates in this major are employed. Many engage in farming as proprietors and managers. Others are employed
by commercial agencies; by agricultural marketing organizations, both private and cooperative; by handlers of farm products, materials, and equipment; or by agricultural credit agencies. Still others become teachers or obtain work with public agencies, such as the Agricultural Extension Service and other state and federal agencies dealing with economic issues. For certain types of professional work the student should expect to complete one or more years of graduate work.

There are no formal subdivisions or major groups within the agricultural economics curriculum; however, students may develop subfields such as farm management, marketing, and rural appraisal by a proper selection of courses. The program is necessarily flexible, for agricultural economics exists to be used in other agricultural activities. Students who plan a particular emphasis should consult with their major advisers as soon after arrival on the Davis campus as possible. An appropriate selection of courses may then be made to prepare properly for the expected field of emphasis. Advisers are assigned to all students. Individual conferences are held prior to the beginning of instruction each semester and several times during the course of each academic year.

To graduate with a major in agricultural economics, a student must have at least a grade C average in all upper division courses taken in agricultural economics.

Curriculum in Agricultural Economics

(a) Required:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology, botany, chemistry, geology, physics, physiology, or zoology (including at least 5 units of chemistry and 3 units of physics)</td>
<td>18</td>
</tr>
<tr>
<td>*Mathematics (including analytic geometry and calculus)</td>
<td>6</td>
</tr>
<tr>
<td>English or speech</td>
<td>6</td>
</tr>
<tr>
<td>Principles of economics</td>
<td>6</td>
</tr>
<tr>
<td>Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Anthropology, geography, history, philosophy, political science, psychology, or sociology and social institutions</td>
<td>12</td>
</tr>
<tr>
<td>Agriculture, other than agricultural economics</td>
<td>8</td>
</tr>
</tbody>
</table>

62

(b) In addition to the above, all majors must complete at least 18 units of upper division work in agricultural economics, including courses 100A, 100B, and 106.

Example of Agricultural Economics Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture Economics 1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agronomy 2 or Vegetable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crops 1</td>
<td></td>
<td>2 or 3</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics 1A-1B</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physics 2A</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

16 to 16 or 16

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Husbandry 7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics 11A</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History 17A</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics 13</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

16 16

* Mathematics beyond this requirement may be used in partial fulfillment of the physical and biological science requirements.
AGRICULTURAL EDUCATION

This curriculum provides training for students planning to teach agriculture in the high schools and junior colleges of the State. The basic requirements provide a good foundation in the physical and biological sciences and include the necessary prerequisites for many courses in all of the major agricultural departments.

Besides preparing students to teach in high schools and junior colleges, the training in agricultural education has also proved to be an excellent preparation for work in agricultural extension and general farming, and for positions with federal and state departments of agriculture.

Credentials

Teaching agricultural subjects (for general background rather than for a vocation) is authorized by one of two credentials: The general secondary credential with a teaching major in agriculture; or the special secondary limited credential in agriculture. The holder of a limited credential is restricted to teaching the subjects named therein, and he must have taken at least 8 college units of work in each subject.

Holders of the special secondary credential in vocational agriculture are entitled to teach agriculture as a vocation in departments organized under the Federal and State Vocational Education Acts.

Undergraduate preparation for this credential, as specified by the California State Plan for Vocational Education, includes:

1. Three years of farm experience, or its equivalent. (Students not so qualified should seek their major adviser’s assistance in arranging summer work.)

2. Technical agricultural subjects, totaling 60 units and so selected as to meet the minimum requirements of each of the following fields:

 Minimum Recommended

 (a) Plant and soil science 15 20
 (b) Animal science 15 20
 (c) Agricultural engineering and mechanics 8 10
 (d) Agricultural economics and rural sociology ... 6 10

For requirements of the general secondary credential see “Curricula for Teacher Education,” pages 103–105.

Curriculum in Agricultural Education

(a) Required: Units
 Chemistry (including organic) 8
 Physics 4
 Botany and zoology (laboratory courses) 9
 Soil science 3
 Genetics 4
 Economics 3
 English and/or speech 6
 Psychology 3
 Additional Science:
 Bacteriology, botany, chemistry, entomology, geology, plant pathology, or zoology 8
 Additional Humanities and Social Sciences:
 English, economics, geography, philosophy, psychology, or sociology 6

 Total 54
(b) In addition students must complete 45 units of work in agriculture selected with the approval of the major adviser, including at least 12 units of animal science, 12 units of plant science, 9 units of agricultural engineering, and 6 units of agricultural economics.

(c) Complete the following either as a part of requirements (a) or (b) or in addition to: Education 320A, Education 160 or 187; Irrigation 110 or equivalent; Entomology 124; Plant Pathology 120; Animal Husbandry 103 and Veterinary Science 111.

Example of Agricultural Education Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Husbandry 7</td>
<td>3</td>
<td></td>
<td>Agronomy 1, 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Animal Husbandry 8</td>
<td>1</td>
<td></td>
<td>Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td></td>
<td>5</td>
<td>English 1B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>English 1A</td>
<td>3</td>
<td></td>
<td>Military Science</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
<td>Physics 2A, 3A</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Vegetable Crops 1 and 2</td>
<td>3</td>
<td></td>
<td>Pomology 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Zoology 1A</td>
<td></td>
<td>3</td>
<td>Psychology 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
<td></td>
<td>Viticulture 1B</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 16 | 15 | Total | 15 | 16 |

AGRICULTURAL PRODUCTION

This curriculum provides agricultural training for students who wish to go into diversified farming or businesses and services related to agriculture. The student chooses a major and a minor field of emphasis (see below) after consulting his adviser. The curriculum is not intended to replace majors in the College of Agriculture in which students specialize in a single field.

The requirements are flexible. They not only insure a good foundation in the basic physical, biological, and social sciences, but also enable students to prepare for advanced work in two or more phases of agriculture. The student is thus free to choose from numerous agricultural courses those that will best meet his needs.

Graduates in production agriculture will find their greatest opportunity for employment in the production of agricultural commodities and in closely related industries. Farm units in California often engage in two or more types of agricultural activities. Some examples of the combinations commonly found are livestock and field crops; field crops and vegetable crops; orchards or vineyards combined with vegetable crops. Agricultural economics and agricultural engineering are examples of other important aspects of modern farming. Those interested in sales and services will find a broad knowledge of agriculture of great value in their business.

Major Fields of Emphasis

Agricultural Economics.—The student selecting agricultural economics as a major field of emphasis may elect one of several options, depending upon his interests and his chosen field of minor emphasis. Subject matter available includes agricultural business management, agricultural finance, agricultural marketing, farm management, and general agricultural economics.

A field of minor emphasis ordinarily would be one of the following: agronomy, animal husbandry, dairy industry, food technology, pomology, poultry husbandry, or vegetable crops.

Agronomy.—The student who wishes to emphasize training in field crops production will go to agronomy for his major instruction. Field crops in-
Include cotton, alfalfa, barley, rice, wheat, beans, sugar beets, corn, sorghums, flax, irrigated pastures, dry ranges and many other crops less widely grown.

A field of minor emphasis ordinarily would be one of the following: agricultural economics, agricultural engineering, animal husbandry, irrigation, range management, soils, or vegetable crops.

Animal Husbandry.—The student interested in production of beef cattle, dairy cattle, sheep, swine, horses, or other livestock or in sales or service fields related to the livestock industry should choose animal husbandry as the major field of emphasis.

A field of minor emphasis might be one of the following: agricultural economics, agricultural engineering, agronomy, irrigation, or range management.

Dairy Industry: Dairy Plant Management.—A student interested primarily in dairy plant operations may choose dairy plant management as his major field of interest.

Enology.—The student who is interested in wine and brandy production will go to viticulture and enology for his major instruction.

A field of minor emphasis might be one of the following: agricultural economics, agricultural engineering, or food technology.

Food Technology.—The student who wishes to emphasize training in the field of processing fruits, vegetables, cereal crops, and meat products should choose food technology as his major field of emphasis. Processing procedures include canning, dehydration, freezing, juice manufacture, concentration, pickling, storing, packing and packaging of foods.

A field of minor emphasis might be one of the following: agricultural economics, agricultural engineering, agronomy, poultry husbandry, animal husbandry, pomology, vegetable crops, or viticulture.

General Agriculture.—This option is intended for the student who desires the broadest type of agricultural training. His course work will ordinarily be distributed in animal science, plant science, agricultural economics, and agricultural engineering.

Irrigation.—Management of irrigation water is an important aspect of crop production affecting both yield and quality of agricultural products. The department offers instruction in general irrigation practices and in more specialized subjects such as development of water supplies, determination of the suitability of a water supply for irrigation, drainage of land, and the effects of irrigation on crop production and cultural practices.

A minor field of emphasis would ordinarily be in a production department or in soils.

Pest Control.—The increasing complexities of the use and application of agricultural chemicals calls for a specialized knowledge and training in this phase of agricultural sales and service. This field of study covers the fundamentals of disease, insect and weed identification and control. The nature of the agents responsible for the adverse effect upon the host and their mode of injury is covered. The emphasis is in the fields of entomology and plant pathology.

Students trained in this field will be well prepared for positions in pesticide sales and services, agricultural extension service and in county and state agencies charged with identification and regulation of agricultural pests.

Pomology.—The student wishing specialized training in the production of tree and small fruits will go to pomology for instruction in his major field of emphasis. Crops considered are all deciduous tree fruits and nuts, bush fruits, strawberries, and the olive.

A field of minor emphasis might be one of the following: agricultural economics, agricultural engineering, vegetable crops, viticulture, or agronomy.
Range Management.—If a student is interested in the management of grazing lands or livestock ranching he may choose range management for major emphasis. Such students should have a combination of courses representing agronomy, animal husbandry, and range management. The emphasis within this combination will depend on the minor field of emphasis chosen by the student. Ordinarily this minor field will be one of the following: agricultural economics, agronomy, animal husbandry, or soils and plant nutrition.

Soils and Plant Nutrition.—Students who select soil science as a major field of emphasis may elect training in soil fertility, the use and characteristics of fertilizers, soil survey and classification, and in the management of unproductive soils.

A field of minor emphasis might be selected from the following: agricultural economics, agricultural engineering, agronomy, irrigation, pomology, vegetable crops, or viticulture.

Vegetable Crops.—A student with a special interest in vegetables should place the major emphasis of his studies in vegetable crops. Potatoes, sweet potatoes, and some twenty other vegetables are of commercial importance in California.

A field of minor emphasis could be agricultural economics, agricultural engineering, agronomy, food technology, irrigation, pomology, or soils.

Viticulture.—The student who is interested in table, raisin, or wine grape production will go to viticulture for his major instruction.

A field of minor emphasis might be one of the following: enology, pomology, vegetable crops, agricultural economics, agricultural engineering, soils, or irrigation.

Curriculum in Agricultural Production

(a) Required:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>English and/or speech</td>
<td>6</td>
</tr>
<tr>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Physics</td>
<td>3</td>
</tr>
<tr>
<td>Zoology</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional units from:

Group I

(Animal physiology, bacteriology, botany or plant physiology, chemistry, genetics, geology, mathematics,* physics or zoology)

9

Group II

(Anthropology, art, economics, English, foreign languages, geography, history or political science,† philosophy, psychology, music, sociology, or speech)

6

46

(b) In addition, students must complete a minimum of 45 units in agriculture, selected with the approval of the student's adviser, including at least 12 units from one department or closely related field, and at least 9 units from another department or closely related field.

* Not including Mathematics C or D.
† In addition to University requirements.
Certain courses are required for major and minor fields of emphasis:

Agricultural Economics

Major.—Economics 1A, 1B; Agricultural Economics 100A, and 9 additional units of upper division courses in agricultural economics. To graduate with a major in agricultural economics, a student must have at least a C average in all upper division courses taken in agricultural economics.

Minor.—Economics 1A, 1B; Agricultural Economics 1, and 6 additional units of upper division courses in agricultural economics.

Agricultural Engineering

Major.—No major given.

Minor.—Nine units chosen from the following courses: Agricultural Engineering 12, 103, 104, and 105.

Agronomy

Major.—Botany 7; Chemistry 8; Entomology 124 or Plant Pathology 120; Irrigation 110 or Soil Science 1; Agronomy 1, and 9 additional units of upper division courses in agronomy.

Minor.—Botany 7; Chemistry 8; Entomology 124 or Plant Pathology 120; Irrigation 110 or Soil Science 1; Agronomy 1, and 6 additional units of upper division courses in agronomy.

Animal Husbandry

Major.—Bacteriology 1; Chemistry 1A, 8; Physics 2A, 3A; Veterinary Science 111; Zoology 1A, 1B, 100A; Animal Husbandry 7, 8, 101, 103, 104A, 104B, 110, and 112 or 118.

Minor.—Chemistry 1A, 8; Animal Husbandry 7, 8, 103, and 112 or 118.

Dairy Industry: Dairy Plant Management

Major.—A minimum of 12 units in upper division dairy industry courses. At least 9 units in upper division courses chosen from economics, agricultural economics, or other fields with the approval of the major adviser. Required dairy industry courses: Dairy Industry 1 and 2 or 3; 101A, 101B, 102A, 102B, 107, and 108.

Minor.—No minor given.

Enology

Major.—Bacteriology 1; Botany 1; Chemistry 5; Physics 2A, 2B; Viticulture 1A, 1B; 10 units selected from Viticulture 117, 124, 125, 140; and Agricultural Engineering 102.

Minor.—Bacteriology 1; Chemistry 5; Viticulture 1A, 1B; and 7 units selected from Viticulture 117, 124, 125, 140.

Food Technology

Major.—Bacteriology 1; Chemistry 1A, 1B, 8; Physics 2A, 2B. Also 12 units selected from the following: Food Technology 112, 113, 117, 127; Agricultural Engineering 102; Dairy Industry 108; Poultry Husbandry 121; Veterinary Science 111.

Minor.—Bacteriology 1; Chemistry 1A, 8; Physics 2A, 2B. Also 9 units selected from the list of courses given under the major above.

General Agriculture

Major.—A total of 21 units of animal and plant science. Twelve units to be chosen from either animal or plant science and 9 units for the minor from the other field; 6 units of agricultural engineering; 6 units of agricultural economics; and completion of 5 of the following courses which may be used in partial fulfillment of the above requirements: Animal Husbandry 103; Botany 107; Entomology 124; Irrigation 10 or 110; Plant Pathology 120; Soil Science 1; Veterinary Science 111.
Genetics
Major.—No major given.
Minor.—Genetics 100C (concurrently with Genetics 100); Mathematics 13; and 9 units chosen from the following: Genetics 101, 101C, 103; Agronomy 114; Animal Husbandry 126; Botany 130, 131; Mathematics 105; Pomology 114; Vegetable Crops 120.

Irrigation
Major.—Botany 7; Mathematics 16A; Soil Science 1, 107; and 12 units of irrigation including Irrigation 10 or 110, and 106.
Minor.—Botany 7; Soil Science 1, 107; and 9 units of irrigation including Irrigation 10 or 110, and 106.

Pest Control
Major.—A minimum of 12 units for the major in entomology or plant pathology and 9 units as the minor in the other of the two fields. The 12 and the 9 units to be chosen from the following courses: Entomology 1 or 5 and 5L, 124, 128, and 199; Plant Pathology 120, 122, 125A, 125B, 199. In addition, students must complete 4 of the following courses: Agricultural Engineering 104; Botany 107; Plant Nematology 100; Soil Science 109; Zoology 116.

Pomology
Major.—Botany 1, 7; Chemistry 1A, 1B, 8; Physics 2A; Plant Pathology 120; Irrigation 110; Entomology 124; Soil Science 1; Pomology 2 plus 12 units in pomology, 9 of which must be upper division units.
Minor.—Pomology 2 plus 9 other units in pomology, 6 of which must be upper division units.

Poultry Husbandry
Major.—No major given.
Minor.—Poultry Husbandry 1, 48A, 48B, 112; and Veterinary Science 111.

Range Management
Major.—Engineering 1A; 12 units selected from the following list of courses with the approval of the range management adviser: Agronomy 2, 110, 112, 115; Animal Husbandry 7, 8, 103, 118; Botany 7, 108, 110; Soil Science 1; and the following courses offered at Berkeley: Forestry 103; Range Management 101, 102, 123, 133.
Minor.—Nine units selected from the listing of courses under the major above.

Soils and Plant Nutrition
Major.—Chemistry 1A, 1B, 8; Geology 2; Soil Science 1, 103, 109, 118, 124.
Minor.—Soil Science 1, and 6 additional units selected from the soil science courses listed under major requirements above.

Vegetable Crops
Major.—Botany 7; Chemistry 8; Entomology 124; Irrigation 110; Plant Pathology 120; Soil Science 1; Vegetable Crops 1, 2, 101 and 6 additional units in vegetable crops. Recommended: Agricultural Economics 140; Botany 107.
Minor.—Vegetable Crops 1, 2, 101, 105. Recommended: Botany 107; Irrigation 110.

Viticulture
Major.—Botany 7; Chemistry 8; Physics 2A; Soil Science 1; Viticulture 1A, 1B, 105 and 116; and an additional course chosen from the
following: Agricultural Engineering 103; Pomology 121; Botany 108.

Minor.—Viticulture 1A, 1B, 105 and 116.

Example of Agricultural Production Program

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOPHOMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 1A</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective Agriculture</td>
<td>4</td>
</tr>
<tr>
<td>Elective Social Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

ANIMAL SCIENCE

The animal science curriculum is designed to train men in the fundamentals of animal production, including the handling and processing of animal products. It thus covers a very broad field. The courses include the physical and biological sciences, with English and economics, in a general requirement of 62 units listed below.

This is followed by a wide range of specialization in the upper division work between and within the majors involved—animal husbandry, animal physiology, genetics, and poultry husbandry.

Graduates are fitted to enter a variety of animal-production and technical additional graduate work) and investigators, or proceed with graduate work fields, including general agriculture. They may also become teachers (after in genetics, nutrition, agricultural chemistry, and physiology, or complete the course in veterinary medicine.

Majors

Animal Husbandry.—Instruction in animal husbandry deals with the sciences and their application to livestock husbandry, with special reference to conditions in California.

The department has developed herds and flocks of several breeds of each species of livestock of economic importance. These are used for student instruction in breeding, feeding, management, and judging.

Nutrition, physiology, genetics, and wool laboratories, a respiration chamber and a psychrometric room for large animals, and a small-animal colony are provided in the Animal Science Building. The departments of Zoology, Agronomy, and Entomology and Parasitology, as well as the School of Veterinary Medicine, cooperate closely in research and teaching with the Animal Husbandry Department.

Animal Physiology.—The major is offered by the Group in Animal Physiology, a cooperative body of members of the several departments on the Davis campus concerned with this field of science. Courses in the major deal with vital functions of animals; with a systematic study of the physiology of tissues and organs; with comparisons between fundamental processes of various classes of animals, such as reaction and adaptation to the environment, endocrine control of biological processes, reproduction, etc., with special attention to appreciation of the physiological basis of the husbandry of do-
mestic mammals and birds. The major is intended to prepare students for the following: a) employment in certain fields related to animal production; b) graduate studies particularly in the field of Comparative Physiology (see the Graduate Division bulletin entitled ANNOUNCEMENT IN AGRICULTURE AND RELATED SCIENTIFIC FIELDS); and c) other occupations which require a basic knowledge of the physiology of a wide variety of animals. Facilities are available within the School of Veterinary Medicine, and the Departments of Agricultural Engineering, Animal Husbandry, Poultry Husbandry, and Zoology.

Genetics.—The principles of genetics are the same in plants and animals (see "Plant Science," page 62), but mathematical and statistical methods play an especially important role in the improvement of domestic animals by selective breeding. Students who intend to specialize in the genetics of farm animals should therefore obtain an adequate mathematical background for the study of modern statistical methods.

Poultry Husbandry.—Courses in this major present the applications of scientific knowledge to commercial poultry production. Special emphasis is placed upon the methods of poultry husbandry practiced in California and other western states.

The introductory course consists of a survey of the poultry industry in the United States, including the application of the several sciences which contribute methods used in poultry husbandry. Laboratory instruction deals with the biology of the fowl, culling and selection, poultry products, and flock management. Advanced courses in the application of genetics, physiology, biochemistry, and embryology, to poultry production provide a review of knowledge regarding successful methods of breeding, feeding, and incubation, as well as the basis for the experimental solution of problems in these fields. Special studies are designed to be taken by advanced undergraduates or graduates and provide opportunities to become acquainted with experimental methods; they involve work dealing with some form of poultry or poultry products elected by the student.

This major prepares students for commercial chicken and turkey farming, for service or production work with poultry breeders, hatcheries, and feed manufacturing firms, and for positions with organizations dealing with poultry products or supplies. Students with good scholarship and sound fundamental training are eligible for employment in federal, state, or commercial experimental work, and in agricultural extension services. Excellent opportunities exist for men in graduate study in fields related to poultry husbandry.

Curriculum in Animal Science

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry, and/or biochemistry</td>
<td>16</td>
</tr>
<tr>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td>4</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>Zoology</td>
<td>10</td>
</tr>
<tr>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>4</td>
</tr>
<tr>
<td>Animal physiology</td>
<td>5</td>
</tr>
<tr>
<td>Animal nutrition</td>
<td>3</td>
</tr>
<tr>
<td>Animal pathology, parasitology, or additional zoology</td>
<td>3</td>
</tr>
<tr>
<td>English and/or speech</td>
<td>6</td>
</tr>
</tbody>
</table>

| Total Units | 62 |
(b) In addition, students must complete a minimum of 12 units of upper division courses in one of the following departments, or in a closely related department selected with the approval of the major adviser: Animal Husbandry, Animal Physiology, Poultry Husbandry, and Genetics.

Certain courses are required by the following majors:

Animal Husbandry.—Animal Husbandry 7, 8, 110, and Veterinary Science 111. Animal Husbandry 105 satisfies the animal nutrition requirement and Veterinary Science 111 satisfies the pathology requirement in the list of general animal science requirements. Genetics 100, and in addition Genetics 100C or Animal Husbandry 107, will satisfy the genetics requirement. Chemistry 1A, 1B, 8, and Animal Husbandry 101 are included in the 16 units of required chemistry. To be included in the 12 units upper division animal husbandry electives are Animal Husbandry 104A, 104B, 109 and any two of the following courses: Animal Husbandry 113, 114, 115, 117, 119. It is recommended that animal husbandry majors select as many courses as possible from the following list: Agricultural Economics 140; Agricultural Engineering 103, 104; Agronomy 2 or 112, 115; Irrigation 110; and Soil Science 1 or 108. Students in this major must spend the last two semesters (before the degree) in residence as bona fide animal husbandry majors.

Animal Physiology.—Majors in this subject must take Chemistry 1A, 1B, 5, and 8, Zoology 1A, 1B, and at least 5 units from the following: Zoology 106A, 100C, 106, 107, and 112. Animal Husbandry 105 satisfies the animal nutrition requirement. In addition to animal science curriculum requirements, students must include in their program the following: biochemistry (Animal Husbandry 101, 102, or Veterinary Science 102) which may be used for upper division credit in the major, additional physics (Physics 2B—3B) and calculus (Mathematics 3A—3B or 16A—16B). A minimum of 12 units of animal physiology courses must be completed; these must include at least 4 units of general physiology and 5 units of mammalian physiology, and at least 3 units must be in physiology laboratory courses.

Genetics.—Chemistry 1A, 1B, 8; Botany 1; Zoology 1A, 1B, 100A, 100C; Physiology 1, 1L; Mathematics 13, 105. Recommended: Mathematics 3A, 3B; German 1, 2.

Poultry Husbandry.—Poultry Husbandry 1, 112; Veterinary Science 111 and 112; Animal Husbandry 101; Zoology 100A and 100C; or their equivalents. Poultry Husbandry 104 satisfies the nutrition requirement and Veterinary Science 111 and 112 satisfies the pathology requirement of the animal science curriculum. Chemistry 1A, 1B, 8, and Animal Husbandry 101 are included in the 16 units of required chemistry.

Example of Animal Husbandry Program

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOFMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Animal Husbandry 7, 8</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
</tr>
<tr>
<td>English 1A—1B</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 1A—1B</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>
Example of Animal Physiology Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A-1B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 1A-1B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 5, 6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A-2B, 3A-3B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 5, 6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A-3A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Example of Genetics Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Husbandry 7, 8 or Poultry Husbandry 1...4 or 3</td>
<td>16 or 15</td>
<td>17</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 1A-1B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1B, 8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A-3A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1B, 8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A-3A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Example of Poultry Husbandry Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Poultry Husbandry 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zoology 1A-1B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1B, 8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A-3A</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

ENTOMOLOGY AND PARASITOLOGY

The curriculum in this department is organized to furnish the basic training for students planning to make a career of one of the phases of entomology and parasitology, and to serve the needs of students in the general fields of biology and agriculture. The fundamental background is intended for those individuals planning to engage in research, teaching, public service, or in one of the many commercial fields of the numerous phases of entomology and parasitology. Careers are open for graduates of the four-year curriculum with private, municipal, county, state, and federal agencies employing entomologists and quarantine officers, inspectors, and technicians; and as pest control operators. Professional positions on the higher levels in college teaching and in experiment station work, as well as research with commercial organizations, usually require additional training. Such training, with special emphasis in one or more of the fields of entomology and parasitology, may be obtained in a minimum of from one to two years of graduate study leading to a higher degree. (See Announcement of the Graduate Division, Northern Section.)

The several principal fields of entomology emphasized are as follows:

Agricultural Entomology.—The study of insects and related arthropods
which attack agricultural crops, their life histories, mode of injury, economics, distribution, and methods of control.

Systematic Entomology.—The field dealing with the phylogeny, classification, nomenclature, and identification of insects.

Agriculture or Beekeeping.—A study of the life history, practical handling, and the agricultural importance of the honeybee.

The courses offered give the student a general training in the subject. Corollary courses in other departments, such as weed and plant disease control, enable the student to fit himself for practical agricultural work in these fields.

Curriculum in Entomology and Parasitology

(a) Required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture and/or forestry, other than entomology and parasitology</td>
<td>6</td>
</tr>
<tr>
<td>Botany and zoology</td>
<td>20</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td>3</td>
</tr>
<tr>
<td>English and/or speech</td>
<td>6</td>
</tr>
<tr>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Plant or animal physiology or nutrition or biochemistry</td>
<td>3 (or 4)</td>
</tr>
<tr>
<td>Plant or animal pathology</td>
<td></td>
</tr>
<tr>
<td>Geography, geology, or paleontology</td>
<td>3</td>
</tr>
</tbody>
</table>

64 or 65

(b) In addition to the above, every student shall complete a summer practice course in entomology and parasitology (course 49).

(c) In addition to (b) above, students must complete at least 23 units of courses in entomology and parasitology. (Courses 1 or 100, 106, 112, and 127 should be included.)

(d) In addition to (b) and (c) above, students must have one course in high school or college trigonometry.

Example of Entomology and Parasitology Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A–1B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English 1A–1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 1A–1B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>†Elective</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bacteriology 1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Botany 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Entomology 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pomology 2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>†Elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

16 16

Food Science

The curriculum in food science is intended to prepare students for service and leadership in the food processing industries—dairy industry, entology, and food technology (including plant and animal products). The courses include the physical and biological sciences with English and economics in a general requirement of at least 62 units, as mentioned below, followed by intensive specialization in the upper division work between and within the majors involved.

† Recommended electives: Agronomy 1, Animal Husbandry 7, Vegetable Crops 1, Agricultural Engineering 12, or Geology 2.
Several lines of specialization are open to the student. Graduates are fitted for careers in plant operation and the handling of milk, fresh fruits or vegetables intended for processing, animal products, in chemical research and control, or in the economic and management side of the food-processing industries. Many graduates are engaged in creameries, wineries, breweries, canneries, freezing plants, dried fruit packing plants, other food plants and allied industries such as can, glass, food equipment and others. Some have followed the plant operation, managerial, or sales phases of the food industries. Others are engaged in research or teaching in various universities and experiment stations, in federal government research, Food and Drug Administration and food-inspection laboratories. A student may also undertake graduate work to fit him more particularly for one of a number of specialized fields such as agricultural chemistry, comparative biochemistry, microbiology, and food engineering.

Majors

No formal subdivisions have been made in the curriculum; but with the approval and advice of his faculty adviser, a student may plan a curriculum leading to specialization in one of the following majors:

Dairy Industry.—Instruction in this major is offered in the principles and art of manufacturing dairy products for the student who wishes to enter dairy manufacturing; to prepare for positions as operator, manager, or inspector of dairy farms, creameries, cheese factories, or city milk and ice-cream plants; or to become a farm advisor, a teacher in high school or agricultural college with additional graduate work, a technician, or a research worker in an agricultural college.

The facilities of the Department of Dairy Industry consist of a modern dairy plant, with the latest types of equipment for dairy products manufacturing, and chemical, bacteriological, and testing laboratories. The dairy manufacturing is in daily operation: market milk is pasteurized, and butter, cheese, ice cream, condensed milk, and dried milk are processed regularly. This provides excellent opportunities for student instruction. Courses in dairy cattle production are given by the Department of Animal Husbandry, which maintains a well-equipped dairy barn and a herd representing the principal breeds of dairy animals.

Enology.—The Department of Viticulture offers facilities for undergraduate and graduate work in enology. A vineyard of over 1,000 named varieties of wine grapes is maintained for instruction and research. The Enology Building, designed for teaching and investigation, provides chemical and microbiological laboratories, fermentation and conditioning rooms, distilling equipment, and storage and aging cellars for research on wines and brandies. Classroom instruction is supplemented by cellar practice.

Students primarily interested in grape and raisin production will normally major in viticulture under plant science.

Food Technology.—The laboratories and facilities of this department afford opportunity for instruction and research in the application of chemistry, biochemistry, physics, biology, statistics, and engineering to the manufacture, utilization, and preservation of foods. Typical fields of advanced study include the biological and chemical factors involved in the preparation and preservation of canned, dried, and frozen foods; enzyme behavior and control; foreign chemicals in food products; behavior and properties of the pigments of foods; the properties of and utilization of yeasts, molds, and bacteria; influence of maturity, variety, and cultural conditions on the quality of processed fruits and vegetables; factors influencing acceptability of foods as evaluated by taste panel; development of new food products; and food plant sanitation.
Graduate instruction is offered in food science, agricultural chemistry, microbiology, comparative biochemistry, nutrition, engineering, and plant physiology.

Curriculum in Food Science

(a) Required:
- Chemistry ... 19
- Microbiology 8
- Botany or zoology 5 or 3
- Physics (including laboratory) 8
- Biochemistry and/or physiology 6
- Mathematics (including differential calculus) .. 6
- Speech and/or English 6
- Economics ... 6

\[\text{Total Units: 64 or 62} \]

(b) Six units of course work in production fields of agriculture are required. A summer practice course may be required.

(c) In addition, every student must complete at least 20 units of courses in one of the following majors: dairy industry, enology, or food technology. A limited number of allied subjects, selected with the approval of the major adviser, may apply to this requirement.

Certain courses are required by the following majors:

- **Dairy Industry.**—Animal Husbandry 103 or 105, and 108; Chemistry 1A, 1B, 5, and 8; Dairy Industry 1, 2, 49 (or equivalent practical experience), 160A, and 160B.

- **Enology.**—Agricultural Engineering 102; Botany 1 and 7; Chemistry 1A, 1B, 5, 8, and 101 (or 109); Viticulture 1A, 1B, 105, 116, 117, 124, 125, and 140.

- **Food Technology.**—Bacteriology 1; Chemistry 1A, 1B, 5, 8, and 109; 15 units of food technology including 112, 113, 114, 115, and 127, or equivalent.

Example of Dairy Industry Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Spring</th>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Units</td>
<td>Units</td>
<td>Course</td>
<td>Units</td>
<td>Units</td>
</tr>
<tr>
<td>Chemistry 1A-1B</td>
<td>5</td>
<td>5</td>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Dairy Industry 1 and 2</td>
<td>4</td>
<td></td>
<td>Chemistry 5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
<td>Chemistry 8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>3</td>
<td>3</td>
<td>Economics 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 10</td>
<td>3</td>
<td>3</td>
<td>Physics 2A-2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physics 3A-3B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>Total</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Example of Enology Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Spring</th>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Units</td>
<td>Units</td>
<td>Course</td>
<td>Units</td>
<td>Units</td>
</tr>
<tr>
<td>Chemistry 1A-1B</td>
<td>5</td>
<td>5</td>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
<td>Botany 1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>3</td>
<td>3</td>
<td>Chemistry 5, 8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
<td>Economics 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Viticulture 1A-1B</td>
<td>2</td>
<td>2</td>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physics 2A-2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physics 3A-3B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>Total</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>
Example of Food Technology Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 1 or Dairy Industry 1 and 2</td>
<td>5 or 4</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1A–1B</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>English 1A–1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A–16B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chemistry 8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics 1A–1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A–2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 3A–3B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td>2 or 3</td>
</tr>
</tbody>
</table>

18 or 17 16

HOME ECONOMICS

The curricula in home economics provide opportunity for personal development, training for the responsibilities of homemaking and citizenship, and preparation for a variety of professional careers. Credits required for the Bachelor of Science degree are divided approximately equally among required courses within the Department of Home Economics, credits in various other departments, and electives.

The number of homemakers who accept positions beyond marriage is increasing regularly. Successful performance of the dual role taken by many women is a challenge which requires an understanding of the needs of the family, knowledge of how to solve home and family problems, plus training which is in demand for interesting and worth-while positions. A university degree in home economics has aided many women in carrying out this dual role successfully.

Curriculum A recommended for teachers and extension workers affords a liberal program including all areas of home economics.

Curriculum B emphasizes the natural sciences and provides appropriate instruction for students interested in dietetics, foods, or nutrition.

Curricula in Home Economics

Curriculum A: Preteaching, Extension, and General Home Economics

1. **(a) Required:**
 - Bacteriology or epidemiology ... 3
 - Chemistry (general, organic) ... 8
 - Decorative Art ... 4
 - Economics ... 6
 - Sociology, political science and/or anthropology (cultural) 6
 - English and/or speech ... 6
 - Physiology ... 3
 - Psychology ... 3
 - Statistics ... 3

 Units

 42

2. **(b) In addition, students must complete 30 units of upper division work in home economics or related fields selected with the approval of the major adviser.**

 Certain courses are required for the preteaching, extension, and general home economics major: Decorative Art 6A–6B; Home Economics 1A–1B, 6, 7, 112A–112B, 131, 133, 137 (for preteaching), 140, 140L (for preteaching), 141, 142, 150, 175; Decorative Art 130A or Home Economics 152.
Curriculum B: Dietetics, Foods, and Nutrition

(a) Required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art, foreign language, history, music and/or philosophy</td>
<td>9</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry (general, qualitative analysis, organic)</td>
<td>13</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>English and/or speech</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>3</td>
</tr>
<tr>
<td>Physiology, public health, botany and/or zoology</td>
<td>4</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
</tr>
</tbody>
</table>

(b) In addition, students must complete 27 units of upper division work in home economics or closely related fields selected with the approval of the major adviser.

Certain courses are required by the following majors:

Dietetics.—Chemistry 1A, 1B, 8, 101; Economics 1B, 11A; Education 110; Home Economics 1A–1B, 100, 112A–112B, 116, 121, 122, plus 12 additional units in home economics selected from areas other than foods or nutrition; Physiology 1, 1L.

Foods.—Chemistry 1A, 1B, 5, 8; Decorative Art 6A; 6 units of food technology; Mathematics 13; Physics 2A–2B; Home Economics 1A–1B, 104A–104B, 112A–112B, plus 12 additional units in home economics selected from areas other than foods or nutrition. Recommended: Physics 3A–3B; 3 units of biochemistry; 3 units of physical chemistry.

Nutrition.—Chemistry 1A, 1B, 5, 8, 101, 102; Mathematics 13; Physiology 1, 1L; Home Economics 1A–1B, 112A–112B, 117, 141, plus 12 additional units in home economics selected from areas other than foods or nutrition.

Example of Prefecting, Extension, and General Home Economics Program

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOPHOMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>2</td>
</tr>
<tr>
<td>Decorative Art 6A–6B</td>
<td>2</td>
</tr>
<tr>
<td>English 1A–1B</td>
<td>3</td>
</tr>
<tr>
<td>Home Economics 12</td>
<td>2</td>
</tr>
<tr>
<td>Physiology 1</td>
<td>3</td>
</tr>
<tr>
<td>Sociology 1</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>5</td>
</tr>
</tbody>
</table>

| Total | 15 | 16 | 15 | 16 |

Example of Dietetics Program

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOPHOMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Chemistry 1A, 8</td>
<td>5</td>
</tr>
<tr>
<td>English 1A–1B</td>
<td>3</td>
</tr>
<tr>
<td>Physiology 1, 1L</td>
<td>5</td>
</tr>
<tr>
<td>Psychology 1A</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 16 | 15 | 16 | 15 |
Example of Foods Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Freshman Year</th>
<th>Fall</th>
<th>Spring</th>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A, 8</td>
<td></td>
<td>5</td>
<td>3</td>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Decorative Art 6A</td>
<td></td>
<td>3</td>
<td>2</td>
<td>Chemistry 1B, 5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>English 1A–1B</td>
<td></td>
<td>3</td>
<td>3</td>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physiology 1</td>
<td></td>
<td>3</td>
<td></td>
<td>Home Economics 1A–1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Psychology 1A</td>
<td></td>
<td>5</td>
<td>4</td>
<td>Mathematics 13</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td>Elective</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of Nutrition Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Freshman Year</th>
<th>Fall</th>
<th>Spring</th>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A, 8</td>
<td></td>
<td>5</td>
<td>3</td>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Economics 1A</td>
<td></td>
<td>3</td>
<td>3</td>
<td>Chemistry 1B, 5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>English 1A–1B</td>
<td></td>
<td>3</td>
<td>3</td>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physiology 1, 1L</td>
<td></td>
<td>5</td>
<td>3</td>
<td>Home Economics 1A–1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Psychology 1A</td>
<td></td>
<td>3</td>
<td></td>
<td>Mathematics 13</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>5</td>
<td>4</td>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Irrigation Science

In many areas of the world, a successful agriculture is dependent upon sound irrigation and drainage practices. The need for persons trained in the scientific management of water resources in agriculture is becoming increasingly critical.

The fundamental training in the agricultural phases of irrigation provided by this broad curriculum prepares a student for many occupations—in farming, industry, irrigation enterprises, public agencies, research and teaching. In addition to instruction in irrigation, this curriculum includes courses in soils, crops, engineering, and in the basic sciences of mathematics, chemistry and physics.

The first and second years of this curriculum may be taken at Berkeley, Los Angeles, or Davis; the last years are offered only at Davis.

Facilities

Excellent laboratory, greenhouse and field installations are available for instruction and research. These include indoor and outdoor hydraulic laboratories, drainage laboratories and equipment for studies of plant-soil-water relationships. More than 2,500 acres of the University Experimental Farm at Davis are irrigated providing demonstrations of many types of systems on a variety of crops.

Employment

This curriculum (plus advanced study for some occupations) prepares students to become managers of large farm enterprises or operators of individually owned farms; employees of irrigation districts and water companies; instructors and scientists in schools, universities and experiment stations; and workers in agricultural extension services and in other state and federal agencies dealing with the supply, use, control, and conservation of water. A number of commercial opportunities are available with irrigation equipment companies and public utilities.
Requirements and Curricula

Subject Matter
Undergraduate instruction covers surface and ground water supply, wells and pumps, water rights, water quality and salinity; irrigation hydraulics; land preparation and irrigation systems; water-soil-plant relationships and crop water requirements; irrigation management and water conservation; drainage in relation to irrigation; and organization and operation of irrigation enterprises.

Advanced instruction is offered in hydrology, irrigation hydraulics, water movement in soils, moisture relations of plants and in other phases of irrigation.

Curriculum in Irrigation Science

(a) Required:
- Mathematics (including integral calculus) 6 units
- Chemistry 13 units
- Physics (including laboratory) 8 units
- Botany (including plant physiology) 9 units
- Engineering (surveying) 3 units
- Economics or agricultural economics 3 units
- Geology 3 units
- English and/or speech 6 units
- Soil science 8 units

Total: 59 units

(b) In addition, students must take at least 24 units in irrigation to be selected with the approval of the major adviser.

(c) In addition to the above, students must take 3 units in agricultural engineering dealing with agricultural power, agricultural machinery, or agricultural climatology.

Example of Irrigation Science Program

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1A-1B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Geology 2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total: 16 units

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Irrigation 10</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 2A-2B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physics 3A-3B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Soil Science 1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total: 15 units

PLANT SCIENCE

The plant science curriculum is designed to serve the people of California by training young men and women for positions of leadership in plant production and processing. The courses offered at the University are based upon the latest information developed through research on field crops, vegetable crops, grapes, tree fruits, berries, nuts, plant diseases, genetics, landscape management, and ornamental horticulture. University teaching is continually kept up to date and the demand is great for students graduating from the University. Students become familiar with recent research in such fields as chemical control of weeds and diseases, breeding better varieties to meet market demands,

* A knowledge of mechanical drawing is required and may be satisfied by a high school or University Extension course or by demonstration of proficiency.
and better cultural practices to improve yield and quality. They also become personally acquainted with the research workers. These contacts are invaluable to young men and women who must continue to keep abreast of new developments after graduation. These are some of the reasons why university-trained men and women in plant science are in great demand by agricultural industries.

The curricula in plant science permit a student at the University to specialize in fields which are of particular interest to him and for which he is best suited. These fields of specialization include agronomy (field crops), vegetable crops, pomology (fruit crops), viticulture, landscape management, plant pathology, and genetics. Nearly all graduates find positions in the type of work for which they prepare themselves.

The occupational objectives of university training in plant science are to prepare young people to engage in farming for themselves and to become managers and operators of large-scale farming enterprises for others; to enter commercial work in agricultural industries; or to become agricultural teachers in high schools and colleges; extension specialists and county farm advisors; farm management consultants; plant breeders for private or government agencies; research workers in private, state, or federal agencies; or to become laboratory or field technicians for public or private organizations.

Educated men and women working in these fields are better equipped to serve the needs of agriculture and to accept leadership in community affairs.

Graduate Work

The student may pursue graduate work leading to the degree of Master of Science in the following plant science fields: agronomy, genetics, horticulture (pomology, viticulture), plant pathology, and vegetable crops.

Students may prepare for a research career in plant science by seeking a doctorate in agricultural chemistry, botany, comparative biochemistry, genetics, plant pathology, plant physiology, or soil science.

Students contemplating graduate work in plant science should familiarize themselves with the requirements for higher degrees. (See Announcement of the Graduate Division, Northern Section.) They are strongly advised to include appropriate basic courses, such as languages and mathematics, in their undergraduate programs.

Majors

Agronomy.—The agronomy major has as its objective training in agriculture with emphasis on field crop production. The field crops include cotton, alfalfa, barley, rice, wheat, beans, sugar beets, corn, sorghums, flax, irrigated pastures, dry ranges, and many other crops less widely grown. Supporting and elective courses are taken in related fields to broaden the student’s knowledge in the entire field of agriculture. Students learn to produce better crops more profitably and to understand the scientific principles behind better farming practices. Knowledge of principles as well as practices of field crop production enable operators to adjust production and marketing practices to changing demands.

In addition to farming, students are prepared for positions in agricultural industries, the Agricultural Extension Service, soil conservation, teaching, and numerous other types of employment relating to field crops.

The Department of Agronomy offers graduate instruction leading to the degree of Master of Science. Problems in agronomy leading to the degree of Doctor of Philosophy are undertaken under the supervision and in the laboratories of agronomy staff members in the fields of genetics, plant physiology,
soil science, agricultural chemistry, and comparative biochemistry. Problems suitable for graduate students may include investigations in genetics and plant breeding as related to the improvement of field crops; physiological and chemical problems of crops as related to factors such as light, heat, drought, and disease resistance; crop and soil interrelations with special reference to fertility, legumes, crop residues, enzymes, and crop sequence.

Genetics.—It is possible to arrange various combinations of courses so as to complete an undergraduate major in genetics. Such a major must include general genetics, statistics and either plant or animal cytology; it may include plant breeding, fruit breeding, vegetable breeding, organic evolution, or theory of probability.

Prospective students should study general botany and zoology, followed by either plant or animal morphology, anatomy, physiology, and taxonomy. Students intending to specialize in statistics as a genetic tool should have at least one semester of calculus.

Landscape Management.—This major is designed to train the student in the basic knowledge of the culture and management of ornamental plants, as well as in the use of construction materials and their application in landscape design.

By proper selection of courses, a student may prepare himself for one of the following careers: teaching, research, extension, nursery production and management, nursery inspection, propagation, the management of parks and public grounds or for the field of landscape construction and contracting.

Facilities: Courses offered by the department are given in the Landscape Management Building where a drafting room, classrooms and offices are located. A new field headquarters, with an ornamentals laboratory, construction laboratory, shop, greenhouse, lath house, growing areas and land for construction operations, is used in the teaching program. A research laboratory is available also for the use of staff and advanced students in this new facility.

Large collections of plant materials on the University campus and in the University Arboretum are available for use in teaching and research.

Subject Matter: The department offers course work in ornamental and decorative plant materials, nursery management, planting and care of turf grasses, general floriculture, and in design and construction.

To make up a well-rounded program, students are advised to enroll in courses in related fields such as soils, irrigation, engineering, botany, pomology, and art.

Students desiring to enter the teaching or research fields may complete their training in the Graduate Division.

Plant Pathology.—The upper division courses afford instruction in the different types of plant diseases and the principles and techniques of plant pathology.

Those desiring to go into professional work involving teaching or research ordinarily take several years of graduate work after attaining the bachelor's degree. For such students the following courses are recommended: botany (taxonomy, anatomy, cytology, physiology, and mycology), bacteriology, entomology, genetics, chemistry (quantitative, organic, and biochemistry), physics, soils, zoology, French, and German.

Pomology.—This major deals with the principles and practices involved in the production of all deciduous tree fruits, nuts, bushberries, strawberries, and olives.

Upper division lecture and laboratory instruction is directed toward the evaluation and integration of such orchard operations as pruning, fruit thinning, spraying, fertilization, irrigation, and cultivation and their influence upon the ultimate quantity and quality of the fruit produced, whether fresh
or processed. The effects of environment (site, soil, climate), selection of varieties and rootstocks, use of plant growth regulators, propagation methods, attention to the need of cross-pollination facilities, and experimental techniques are some of the subjects studied in relation to fruit production. The principles involved in fruit handling including harvesting, packaging, precooling and storage are stressed.

The major is flexible enough to permit the student to prepare for fruit growing as a vocation either independently or as a superintendent for others, or for a position as field representative of a fertilizer or spray company, an employee of a federal or state governmental agency, or for graduate study.

The Department of Pomology offers graduate instruction for the degree of Master of Science in Horticulture. Also problems related to horticulture and leading to the degree of Doctor of Philosophy may be studied under the supervision of pomology staff members in such fields as botany, plant physiology, genetics, soil science, and comparative biochemistry.

Facilities available for both undergraduate and graduate studies include well-equipped laboratories and cold storage rooms, greenhouse and lathouse space, and fruit variety and species collections including more than 20 species and 1,000 named varieties. Orchards totaling over 300 acres of the major California fruit crops are maintained under irrigation and are used for research and instruction.

Problems suitable for graduate students include studies on such varied subjects as the genetics and techniques of fruit breeding, the chemistry of fruit maturation, factors influencing flower formation and fruit setting, and the mineral nutrition of fruit crops.

Vegetable Crops.—This major deals with all the various aspects of the production, harvesting, and distribution of the many important California vegetables.

The upper division lecture and laboratory studies are concerned with the principles and practices of plant production, soil management, transplanting, fertilization, irrigation and weed control in their effects on yield and quality. Seed production, variety adaptation, soil and climate as factors in vegetable production, special cultural techniques, development of new varieties, mechanical harvesting, and post-harvest handling for fresh market, canning, or freezing are considered. Flexibility is provided by the various courses of the major so as to prepare students for vegetable farming, employment with seed, fertilizer, shipping and processing companies, graduate study, or positions in governmental agencies. Courses in allied fields may be used to broaden the vegetable production option.

The Master of Science degree is offered by the department. Work for the degree of Doctor of Philosophy may be taken under staff members of the Vegetable Crops Department on a problem related to vegetable production in any one of seven fields of concentration: agricultural chemistry, comparative biochemistry, botany, genetics, plant pathology, plant physiology, and soil science.

The department is equipped with excellent chemical, physiological, and morphological laboratories, greenhouses, lathouse, specially constructed bulb storage house, cold storage facilities, and 140 acres of land with a complete irrigation system for studies on the problems of this major California industry.

Viticulture.—This major comprises the study of the grapevine and its products. Teaching and investigation are directed toward the improvement of the production and quality of table grapes, wines, raisins, and other products of the grape.

Upper division instruction includes such cultural operations as pruning,
thinning, girdling, fertilization, and cultivation. Methods of propagating the vine, the breeding and testing of new varieties, insect and disease control, and the use of growth-regulators are part of the course work. The basic importance of soil, climatic conditions and variety is emphasized in relation to the yield and quality of the fruit and its products.

The world's most complete collection of cultivated grape varieties, native species and hybrids, is maintained for instruction and research. A vineyard of 95 acres supplies fruit of the important varieties for studies on packing, precooling, and storage. Laboratories, greenhouse space, and a field house provide facilities for the growing and handling of the vine and its fruit.

Graduate instruction leading to the degree of Master of Science in Viticulture is offered by the Department of Viticulture. Problems related to viticulture and leading to the degree of Doctor of Philosophy may be studied under the supervision of viticulture staff members in such fields as genetics, cytology, plant physiology, or soil science.

Curriculum in Plant Science

(a) Required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>13</td>
</tr>
<tr>
<td>Botany and plant physiology</td>
<td>9</td>
</tr>
<tr>
<td>Physics</td>
<td>3</td>
</tr>
<tr>
<td>Economics</td>
<td>3</td>
</tr>
<tr>
<td>English and/or speech</td>
<td>6</td>
</tr>
<tr>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>Plant pathology</td>
<td>4</td>
</tr>
<tr>
<td>Soils, irrigation, or plant nutrition</td>
<td>3</td>
</tr>
<tr>
<td>Entomology</td>
<td>4</td>
</tr>
</tbody>
</table>

Additional units from:

Natural sciences (bacteriology, biochemistry, botany or plant physiology, chemistry, entomology, geology, irrigation, mathematics*, physics, plant pathology, plant nutrition, soils, zoology, or animal physiology) ... 9–15

Social sciences and foreign languages (economics, English or speech, foreign language, history or political science†, philosophy, psychology, sociology) 3–9

A minimum of 65 units is required.

(b) In addition, students must complete a minimum of 12 units of upper division work in one of the following majors, or in a closely related major, selected with the approval of the major adviser: agronomy, genetics, landscape management, plant pathology, pomology, vegetable crops, or viticulture.

(c) A summer practice course of six weeks may be prescribed in addition to the above as a major requirement.

Certain courses are required by the following majors:

Agronomy.—Production Major—Agronomy 1; Botany 1, 7; Chemistry 1A-1B, 8; Entomology 124; Irrigation 110; Plant Pathology 120; Soil Science 1; 3 units of zoology.

Agronomy.—Science Specialization—In addition to the requirements for a production major, the following courses are required: Botany 105 or 108; Chemistry 5, 9, or 101; German 1 or French 1; Mathematics 16A, 16B (or 3A, 3B) and 13; Physics 2B.

Genetics.—Chemistry 1A, 1B, 8; Mathematics 13, 105; Zoology 1A. Recommended: German 1, 2; Mathematics 3A, 3B.

* Not including Mathematics C or D.

† In addition to University requirements.
Landscape Management.—Botany 1 and 7, (or 120A-120B); Chemistry 1A-1B; Landscape Management 1A-1B or 3, 105A-105B, 106A-106B; Pomology 9. Recommended: Engineering 1A.

Plant Pathology.—Bacteriology 1 or 2; Botany 105 or 108; Chemistry 1A-1B, 8, and 5 or 101; Entomology 124; Irrigation 100 or 110; Soil Science 1 or 108; Zoology 1A or 10.

Pomology.—Bacteriology 1; Botany 1 and 7, (or 120A, 120B, and 121A, 121B); Chemistry 1A-1B, 8; Irrigation 110; Physics 2A, 2B; Pomology 2; Soil Science 1. Recommended: Agricultural Engineering 103; Pomology 9, 105, 106A, 106B, 112, 121; Viticulture 116.

Vegetable Crops.—Botany 1, 7; Chemistry 1A-1B, 8; Vegetable Crops 101, 190. Recommended: Irrigation 110; Physics 2B; Botany 107; Agricultural Economics 140.

Viticulture.—Botany 1, 7; Chemistry 1A-1B, 8; Viticulture 1A-1B, 105, 116. Recommended: Agricultural Engineering 103; Irrigation 110; Pomology 121 or Viticulture 124 and 125.

Example of Agronomy Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zoology 10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1B, 8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Soil Science 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 |

Example of Genetics Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 1 or Pomology 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Botany 7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1B, 8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 1B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 |

Example of Landscape Management Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Landscape Management 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1B, 8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Engineering 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Landscape Management 4A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physics 2A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pomology 9</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 |
Example of Plant Pathology Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall</td>
</tr>
<tr>
<td>Agronomy 1</td>
<td>3</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>Vegetable Crops 1 and 2</td>
<td>2</td>
</tr>
<tr>
<td>Military Science</td>
<td>8</td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Example of Pomology Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall</td>
</tr>
<tr>
<td>Agronomy 1 or Soil Science</td>
<td>3</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>16 or 16</td>
</tr>
</tbody>
</table>

Example of Vegetable Crops Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall</td>
</tr>
<tr>
<td>Agronomy 1</td>
<td>3</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>History 17A</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
</tr>
<tr>
<td>Vegetable Crops 1 and 2</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Example of Viticulture Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
</tr>
<tr>
<td>Viticulture 1A-1B</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

PREFORESTRY

The preforestry curriculum is administered by the College of Agriculture, and is designed to offer a broad basic training which will prepare the candidate for the courses in the School of Forestry.

The School of Forestry of the University of California is located on the Berkeley campus. For further information concerning admission to the School of Forestry see the ANNOUNCEMENT OF THE SCHOOL OF FORESTRY, or write to the School of Forestry, 243 Walter Mulford Hall, University of California, Berkeley 4.
College of Agriculture

Curriculum in Preforestry

Required:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany (general botany)</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry (general inorganic and organic)</td>
<td>8</td>
</tr>
<tr>
<td>Engineering (plane surveying)</td>
<td>3</td>
</tr>
<tr>
<td>Economics (elements of economics)</td>
<td>6</td>
</tr>
<tr>
<td>Geology (structural)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (beyond trigonometry)</td>
<td>3</td>
</tr>
<tr>
<td>Physics (general physics)</td>
<td>6</td>
</tr>
<tr>
<td>Statistical methods</td>
<td>3</td>
</tr>
<tr>
<td>Zoology (general biology)</td>
<td>3</td>
</tr>
<tr>
<td>Speech or English</td>
<td>6</td>
</tr>
</tbody>
</table>

46

For admission to the School of Forestry, a student must have junior standing with at least 60 units of credit, including essentially the prescribed subjects listed above, and a grade average of C or higher. The summer field practice course, Forestry 49, is prerequisite of all required forestry courses.

The schedule of study offers a broad basic training in the first four semesters. To complete his work for the degree of Bachelor of Science in the normal eight-semester period, the student should adhere closely to the recommended program, which follows. It enables him to complete the maximum number of lower division courses in an orderly manner and without conflicts. Much of this work is prerequisite to necessary courses in the School of Forestry, and by following the recommended program the student is prepared to make an advantageous selection of electives and a logical arrangement of requirements after his admittance to the School of Forestry.

Example of Preforestry Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A-1B</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Example of Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Chemistry 8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Engineering 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geology 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics 18</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A-2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

PREVETERINARY MEDICINE

The preveterinary curriculum is administered by the College of Agriculture and is designed to offer a well-balanced basic training in natural science and the humanities which will not only prepare the candidate for the courses in the School of Veterinary Medicine, but also for the varied problems in his chosen profession.

The School of Veterinary Medicine offers instruction leading to the Bachelor of Science and Doctor of Veterinary Medicine degrees. For further information concerning admission to the School, see page 97.

* One-half year of geometrical drawing and one-half year of trigonometry are necessary for forestry courses. Trigonometry is also prerequisite to engineering. They should be taken in high school. The University does not offer a course in geometrical drawing.

† Students who prepare for forestry at other institutions which do not offer a one-semester 5-unit course in general botany (equivalent to Botany 1) should take the year course (Botany 1A-1B or equivalent) usually with a total of 8 units of credit. This does not take the place of 4 units of plant physiology with laboratory (Botany 111).
Curriculum in Pre-veterinary Medicine

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English composition and additional English or speech</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry (general, inorganic, organic, and analytical)</td>
<td>5</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Zoology</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Physics (mechanics, heat, light, electricity)</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Restricted electives†</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Example of Pre-veterinary Medicine Program

The following schedule of study need not be rigidly adhered to but it satisfies the requirements without conflicts. This schedule also satisfies the general requirements of the Animal Science Curriculum if Botany 1, Bacteriology 1, and Economics 1A are taken as electives.

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A–1B</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>English 1A–1B</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 8, 5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History 17A–17B</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A–2B</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Zoology 1A–1B</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

RANGE MANAGEMENT

The curriculum in range management is designed to give students broad training and to qualify them as managers of ranch properties, as farm advisors, as range technicians in state and federal agencies, and for graduate studies leading to positions in teaching and research. Range management has been growing in importance in the past few years and has made very great advancement in California. The California Agricultural Experiment Station has several research projects on the various range problems; many farm advisors are taking range management information to the ranchers; and several state and federal agencies have both research and educational programs in this field.

Approximately 37,000,000 acres, or one-third of California, are used to some extent for domestic livestock grazing. The actual grazing value of many of the acres is low, but collectively, they are the supporting base for California’s second largest agricultural industry—livestock production. Much of this land also has values other than livestock grazing, in watershed development, timber production, recreation, and wildlife.

The varied nature of range management work, whether it be in public service or as a ranch operator, makes it desirable that a student entering this field have some training in several or all of the following fields: animal husbandry, agronomy, range management, soils, forestry, watershed management, and wildlife. For this reason, the student must spend either his third or fourth year on the Berkeley campus where he takes required courses chiefly in range management.

The first and second years of the range management curriculum offer a broad basic training. Since the number of courses required in the freshman and sophomore years is large, students are advised to adhere closely to the program. The junior and senior years are purposely not crowded with specific

† Courses selected from the fields of social sciences, foreign languages, philosophy, psychology, fine arts, literature, and/or additional courses in English, speech, and mathematics beyond trigonometry.
required courses to make it possible for the student to exercise considerable selection in the courses he wishes. For example, if the student has a special wish to take more courses in animal husbandry, forestry, or some other field, the large space for electives will make it possible for him to do so.

Curriculum in Range Management

(a) Required:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany</td>
<td>9</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>Economics or economics and agricultural economics</td>
<td>6</td>
</tr>
<tr>
<td>Engineering</td>
<td>6</td>
</tr>
<tr>
<td>English and/or speech</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>6</td>
</tr>
<tr>
<td>Soil science and/or geology</td>
<td>6</td>
</tr>
<tr>
<td>Zoology</td>
<td>8</td>
</tr>
</tbody>
</table>

52

(b) In addition, 15 units of restricted electives; and at least 9 units of agronomy, 11 units of animal husbandry, 3 units of plant ecology, and 9 units of range management courses selected with the approval of the major adviser.

(c) In addition, a summer field practice course* in applied range management is required without units of credit.

Certain courses are required in partial satisfaction of (a) above: Economics 1A; Engineering 1A; a course in plant physiology. Botany 108 (plant taxonomy) should be elected by students who wish to meet the U. S. Civil Service requirement for range managers.

The restricted electives are:

Berkeley.—Agricultural Economics 140, 145; Biochemistry 102; Botany 108; Economics 2; Forestry 104, 125, 128, 132; Genetics 100; Soil Science 100, 101, 101F; Zoology 116, 125.

Davis.—Agricultural Economics 140; Agricultural Engineering 104; Animal Husbandry 101, 104A—104B, 110, 117; Botany 8, 107, 108; Genetics 100, 100C; Irrigation 125; Mathematics 13; Soil Science 108, 109, 118; Zoology 116.

The following comparable courses in the above restricted electives cannot both be elected: Animal Husbandry 101 and Biochemistry 102; Economics 2 and Mathematics 13.

Example of Range Management Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Animal Husbandry 7, 8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics 1A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>English 1A—1B</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Zoology 1A—1B</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Botany 8</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics 1B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering 1A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geology 2 or Soil</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Science 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A—2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

16
17
17
15

* Application must be filed with the School of Forestry, 242 Walter Mulford Hall, University of California, Berkeley 4, by March 1 of the year of enrollment.
† Satisfied by Botany 110 (at Davis) or Forestry 108 (at Berkeley).
SOIL SCIENCE

Soil is a basic resource which is utilized for the production of most of the foods and fibers used by mankind. A general understanding of soils is needed by all farmers and other agricultural workers. In addition to those who require a general knowledge of soils there must be a group of thoroughly trained soil scientists prepared to deal with the many problems of soil-plant-water relations.

The soil science curriculum is designed to train students in the application of scientific principles to the problems of soil management, soil conservation, soil survey, and other aspects of agriculture related to soil science and crop production.

Graduates in soil science may become research workers in government, state, and private research laboratories, managers of farms and commercial greenhouses, specialists in soil fertility and plant nutrition for large agricultural corporations, and government soil surveys and conservationists. As farmers, teachers in agricultural colleges, farm advisors, and land-use planners, they are influential in advancing education in agriculture and in contributing to the economic welfare of the community.

Basic training in chemistry, physics, botany, microbiology, and geology is required. In addition, all students will undertake courses dealing with the chemical characteristics of soils, plant nutrition, and the activities of soil microorganisms which influence the fertility of soil. They will study the physical properties of soils and the behavior of water in the soil. Also, they will learn how soils are formed, how they evolve, and how the characteristics of soils affect their productivity and adaptation to different crops.

Graduate study leading to the degrees of Master of Science and Doctor of Philosophy in soil science is offered to qualified students. Any student who becomes interested in advanced research and university teaching should consult his faculty adviser regarding his undergraduate program.

Majors

The student has a choice of four majors, as follows:

General Soil Science.—This major provides broad training in soil science and related physical and biological sciences. Students who do not wish to specialize in a particular phase of soil science may elect this major.

Pedology and Soil Survey.—Pedology is the study of the origin and development of soils. It is essential to the study of soil classification and to the

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 111†, 108</td>
<td>4</td>
<td>4</td>
<td>Agronomy 110, 112</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Forestry 103</td>
<td>3</td>
<td></td>
<td>Agronomy 115</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Range Management 102</td>
<td>3</td>
<td></td>
<td>Animal Husbandry 7, 8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Range Management 123</td>
<td>3</td>
<td></td>
<td>Animal Husbandry 103</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Range Management 133</td>
<td>3</td>
<td></td>
<td>Animal Husbandry 104A-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Zoology 116</td>
<td>4</td>
<td>6</td>
<td>104B</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td></td>
<td>Animal Husbandry 118</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Genetics 100, 1000</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>‡Soil Science 108</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>‡Soil Science 109</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td></td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

† Courses listed for junior year may be taken in senior year and vice versa.
‡ For students taking lower division work at Davis.
§ For students taking lower division work at Berkeley.
applied field of soil survey. This major provides training in the techniques of soil surveying, mapping, classifying, and land-use planning.

Plant Nutrition and Soil Fertility.—This major is designed for students interested in plant nutrition and plant biochemistry who wish to direct their primary attention to the soil as a medium for plant growth. Students pursuing this major must at present take one or two semesters on the Berkeley campus since not all of the required courses are available at Davis.

Soil Management and Conservation.—This major provides training in the application of basic principles of soil science to practical agriculture. Integration of soil management concepts and practices with crop management, irrigation, farm management, and agricultural engineering are emphasized.

Curriculum in Soil Science

(a) **Required:**

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>16</td>
</tr>
<tr>
<td>Physics</td>
<td>8</td>
</tr>
<tr>
<td>Botany (including plant physiology)</td>
<td>9</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>4</td>
</tr>
<tr>
<td>Geology</td>
<td>3</td>
</tr>
<tr>
<td>English and/or speech</td>
<td>6</td>
</tr>
<tr>
<td>Anthropology, art, classics, decorative art, dramatic art, economics, English, foreign language, geography, *history, music, philosophy, *political science, psychology, sociology, or speech</td>
<td>6</td>
</tr>
<tr>
<td>Crop science or ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 55 |

(b) In addition, students must take at least 20 units in soil science to be selected with approval of the major adviser.

Certain courses or groups of courses are required by the following majors:

- **General Soil Science.**—Chemistry 109; Geology 1 or 2, 103; Mathematics 16A—16B or equivalent; Mineralogy 6; Plant Nutrition 115 or Botany 120A. A total of 27 units of soil science including Soil Science 105.

- **Pedology and Soil Survey.**—Engineering 1A; Geography 1, 1A, or 113; Geology 3, 103; Mineralogy 6; Plant Nutrition 115 or Botany 120A. A total of 29 units of soil science including Soil Science 105 and 116 or 135.

- **Plant Nutrition and Soil Fertility.**—Biochemistry 102; Chemistry 109; Mathematics 16A—16B or equivalent; Mathematics 12 or 13 or Public Health 160A; Plant Biochemistry 123; Plant Nutrition 115, 117; Plant Pathology 120. A total of 20 units of soil science.

- **Soil Management and Conservation.**—Agricultural Economics 140; Engineering 1A or Agricultural Engineering 12 or 104; Irrigation 110, 135; an additional 5 units of crop science. A total of 31 units of soil science including Soil Science 105, 109, and 135.

* * In addition to University requirements.
Example of General Soil Science Program

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOPHOMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>2</td>
</tr>
<tr>
<td>Geology 2</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 16A-16B</td>
<td>2</td>
</tr>
<tr>
<td>Military Science</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Example of Pedology and Soil Survey Program

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOPHOMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>Engineering 1A</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>2</td>
</tr>
<tr>
<td>Geology 2, 3</td>
<td>2</td>
</tr>
<tr>
<td>Military Science</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of Soil Management and Conservation Program

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOPHOMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Botany 1</td>
<td>5</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3</td>
</tr>
<tr>
<td>Geology 2</td>
<td>2</td>
</tr>
<tr>
<td>Military Science</td>
<td>3</td>
</tr>
<tr>
<td>Physics 2A-2B</td>
<td>1</td>
</tr>
<tr>
<td>Physics 3A-3B</td>
<td>3</td>
</tr>
<tr>
<td>Pomology 1</td>
<td>3</td>
</tr>
<tr>
<td>Elective (restricted)</td>
<td>15</td>
</tr>
</tbody>
</table>
COLLEGE OF LETTERS AND SCIENCE

THE COLLEGE OF LETTERS AND SCIENCE offers curricula which enable the student to pursue fundamental knowledge primarily for its own sake and to learn basic intellectual disciplines whereby he becomes aware of man's achievements, responsibilities, and environment. Such a liberal education is not without vocational value, since various worth-while career opportunities are open to letters and science graduates, but the emphasis is more upon the ends of living rather than the means. With a well-balanced cultural education including specialized knowledge in his major field, the graduate is prepared for a satisfying life whatever his chosen career.

To safeguard the liberal character of its instruction, each College of Letters and Science on the several campuses of the University publishes annually a Letters and Science List of Courses based on essentially uniform criteria of acceptability. The list for the Davis campus is somewhat distinctive in that it includes certain courses offered by the College of Agriculture (including Home Economics) and the School of Veterinary Medicine. (See pages 97–100.)

The College divides the traditional four-year program into a lower division and an upper division. To accomplish its educational aims efficiently, the College plans that the first two years or lower division impart a background of general information and cultural breadth together with preparation for the major. In the upper division the College requires the student to gain further intellectual depth and to develop competence in his chosen major field. (For lower and upper division requirements see pages 77–80; for requirements in the major, see page 80.)

The College offers two undergraduate degrees: the Associate in Arts and the Bachelor of Arts. The Associate in Arts degree represents the culmination of two years of broad general education, and was established primarily for students who choose to terminate their formal studies after completing the requirement of the lower division. The degree is not prerequisite to the upper division or to the bachelor's degree. (See page 77.)

The Bachelor of Arts degree is the traditional college degree conferred at the end of four academic years and upon completion of the upper division and major requirements. The degree serves as a foundation for graduate studies leading toward graduate degrees and/or teaching credentials obtainable on the Davis campus or elsewhere.

More detailed information is given in the following paragraphs.

Faculty Advisors and Study-List Regulations

Lower Division.—At registration every lower division student will report to a faculty adviser, by whom his study list must be approved. A special adviser is provided for each student who contemplates a major not offered on the Davis campus. The study list may total 12 units or more a semester without special permission in respect to quantity of work; but the maximum is 16 units for a freshman and for a transfer student in his first semester of residence at this University. Any request to take fewer than 12 units must be approved by the Dean of the College.

In addition to these study-list limits, two lower division courses in physical education, with degree credit totaling not more than 1 unit, may be included in a student's program in any semester or session. Not more than 4 units of credit in physical education may be counted toward graduation.
A lower division student may seek advice from his proposed major department or committee.

Advisers for Students Entering with Advanced Standing.—A lower division student transferring into the College of Letters and Science will report to a faculty adviser; an upper division transfer student must consult the adviser for his major. Any transfer student who has problems unrelated to his major should consult the Dean of the College.

Upper Division.—Each upper division student must designate his major or group major on his study list. He must register with his major department or with the committee in charge of his group major. His study list must be approved (in relation to his major program) by a representative of the major department or of the group major committee.

If a student in the lower division fails to complete the preparation for a major, both in subjects and grades, he may, at the option of the department, be denied the privilege of majoring in the subject concerned.

The major may be changed only by permission of the Dean of the College, and of the department to which the student petitions to transfer. When the change has been authorized, the Registrar will notify the departments concerned.

Every student must complete at least 6 units in his major during the last or senior year: either 3 units each semester, or 2 units in one semester and 4 units in the other.

A student who enters as a senior in the College of Letters and Science after attending another college of this University, or another collegiate institution, must complete at least 24 units, including 18 units in upper division Letters and Science courses, of which at least 12 units will normally be in his major department or group major in this University.

Status of Courses in Professional Curricula.—The first year of certain designated professional curricula (for example, in the School of Medicine) is accepted as a year's work toward the A.B. degree. If this substitute is offered for a major in Letters and Science, all the courses required or included as part of the student's program in that curriculum become requirements for the degree.

Degree of Associate in Arts

The degree of Associate in Arts will be granted, upon application, when the candidate has satisfied the following requirements:

1. Completion of not less than 60 units which may be counted toward the A.B. degree, with an average grade of at least C in all courses undertaken in this University.

2. Completion of requirements (a) to (e) inclusive, below.

3. Completion of at least the two final semesters (24 units or more) in residence at this University, and at least the final semester in the College of Letters and Science.

4. The requirements below shall have been completed at least one semester prior to receipt of the bachelor's degree.

Honorable mention with the degree of Associate in Arts will be granted a student who attains an average grade of B or better for all units undertaken. The list of students who receive honorable mention with the degree of Associate in Arts will be sent to the chairmen or advisers of departments before the beginning of the next semester.

Admission to the Upper Division

To be admitted to the upper division of the College of Letters and Science, the student (1) must have completed at least 60 units of college work, and
(2) must have satisfied the following general and specific requirements: (a), (b), (c) and (d), as shown below, except that upon petition one exemption of not more than 4 units is allowed among these; and three of the four sequences under (e). However, requirements (a) to (e) inclusive must be completed before graduation.

A student who transfers to the Davis campus of the University after having completed the requirements for upper division standing in the College of Letters and Science at Berkeley, Los Angeles, Riverside, or Santa Barbara shall be admitted to the upper division in this College. A student transferring from another college of this University or from another collegiate institution must meet the requirements for admission to the upper division, but will not be held strictly to the time distribution of requirements, provided the credit allowed him in the College of Letters and Science at this University totals 60 units or more.

Certain of the requirements listed below may be satisfied by courses taken in the high school. The satisfaction of requirements in the high school does not, however, reduce the amount of work required in this University for the degree of Associate in Arts (60 units) or for the A.B. degree (120 units).

General and specific requirements for admission to the upper division are as follows:

(a) General University Requirements.—Subject A; Military Science and Tactics, 8 units, 4 semesters (men).

(b) Foreign Languages.—At least 16 units in not more than two languages, with not less than 4 units in any one language. The first two years of high school work in a foreign language will be counted in satisfaction of 4 units of this requirement, and each year thereafter as 4 units. A student may satisfy this requirement either in whole or in part by giving such evidence of his proficiency in foreign language as may be authorized by the Executive Committee of the College.

(c) Mathematics.—Elementary algebra and plane geometry.

(d) Natural Science.—At least 12 units, including 2 units (6 semester hours) of laboratory, chosen from the following list:
- High school physics*, 3 units (1 high school credit).
- High school chemistry*, 3 units (1 high school credit).
- Anthropology 1.
- Bacteriology 1*, 2*.
- Botany 1*, 7.
- Chemistry 1A*, 1B*, 5*, 8.
- Entomology 1*.
- Geography 1A†.
- Geology 2, 2L†, 3, 3L†.
- Physics 2A, 2B, 3A†, 3B†, 4A†, 4B†, 4C†.
- Physiology 1, 1L*.
- Zoology 1A*, 1B*, 10.

(e) Additional.—A sequence (of 4 to 6 units) in subjects of college level in each of four of the following six groups:

YEARS COURSES IN FULFILLMENT OF REQUIREMENT (e) ABOVE

Group 1—English and Speech

English 1A–1B.

* Will be accepted as fulfilling the laboratory requirement.
† Two courses satisfy the laboratory requirement.
‡ Geography 1A may be used in partial satisfaction of the natural science requirement; if so used, it may not be included in requirement (e), group 4.
Group 2—Foreign Languages
In addition to (b) above, one college course of not less than 4 units. Classics. Latin 1, 2. Two years of high school Latin are accepted as satisfying this requirement.
French 1, 2, 3, 4, or any upper division year sequence.
German 1, 2, 3, 4, or any upper division year sequence.
Spanish 1, 2, 3, 4, 25A–25B, or any upper division year sequence.

Group 3—Mathematics
Any two of the following courses: C or high school trigonometry, 3A or 16A, 3B or 16B, 8, 13, 36.

Group 4—Social Sciences
Economics 1A–1B.
*Geography 1A–1B.
History 4A–4B, 17A–17B.
Political Science 1A–1B or 2.
Psychology 1A–1B or 33.
Sociology 1 and 2.

Group 5—Philosophy
Philosophy 6A–6B.
Philosophy 20A–20B.

Group 6—Fine Arts and Literature
This may be satisfied by two or more courses which may or may not form a sequence.
Art 1A, 1B, 1C, 1D, 10.
English 30, 45A, 45B, 46A, 46B.
Music 21A, 21B, 27A, 27B.
Speech 2A.

Summer Session Courses.—A student who desires to satisfy the specific subject requirements for the degree of Associate in Arts in the Summer Sessions may use only those courses which are the equivalent of courses offered in the regular semesters listed as acceptable in meeting requirements for the degree of Associate in Arts.

University Extension Courses.—Requirements (b), (c), (d), and (e) may be met in whole or in part by the completion of acceptable courses in University Extension. For a list of such courses, see the announcements of University Extension. Any student intending to use Extension courses for satisfying the requirements set forth above should first secure written approval from the Dean of the College of Letters and Science.

Requirements in the Upper Division
The degree of Bachelor of Arts is granted upon the following conditions:
1. The total number of units in college courses in the lower and upper divisions offered for the degree must be at least 120, of which at least 108 must be in courses chosen from the Letters and Science List of Courses. Not more than 6 units of courses numbered in the 300 or 400 series will be accepted toward the A.B. degree. No credit will be allowed toward the A.B. degree for work completed at a junior college after the student has received 66 units toward the degree.

* If Geography 1A is used in satisfaction of requirement (e), it may not be used in satisfaction of requirement (d).
2. The student must attain twice as many grade points as there may be units in the credit value of all courses undertaken by him in the University. (Attention is called to the fact that the School of Education will admit to candidacy for the Certificate of Completion only those students who have maintained a grade-point average of 2.5 or better in the work undertaken during the junior and senior years.)

3. At least 54 units of college work must be completed after admission to the upper division.

4. The requirement of American History and Institutions must be completed by all candidates for the bachelor's degree. A student may complete this requirement in any one of the following four ways:
 (a) by passing a single examination, for which no unit credit will be assigned;
 (b) by completing certain courses;
 (c) by presenting an official transcript from a collegiate institution in California, stating that the requirement has been fully satisfied there by courses taken;
 (d) by presenting a certificate of completion of acceptable courses at another collegiate institution.

5. At least 36 units chosen from the upper division courses named in the Letters and Science List (see page 90), with the exception there noted, must be completed after the student has attained upper division standing.

6. The student must complete a departmental major of at least 24 upper division units, or an interdepartmental or individual group major of 24 to 36 upper division units according to the specifications given below.

7. Any candidate for the A.B. degree who enters the College of Letters and Science with senior standing, after attending another college of this University, or another collegiate institution, is required to be enrolled during the senior or final year in resident courses of instruction in the College of Letters and Science on this campus. During this period the student must complete at least 24 units, including at least 18 units in upper division courses, of which normally 12 units must be in the major.

8. No student is permitted to transfer from one major department to another or to elect an individual group major after the third week of the third semester before graduation.

Majors for the A.B. Degree

A major consists of a substantial group of coordinated upper division courses, representing one or more departments of the College. If one year of an acceptable professional curriculum, for example the first year of the School of Medicine, is offered by the student as part of his program for the A.B. degree, this fulfills the requirement of the major. It will not be counted, however, as more than 30 units toward the A.B. degree.

A major may be offered for the A.B. degree in any of the subjects or departments listed below. The details of the program must be approved by the authorized adviser in the major chosen.

Special attention is directed to the courses listed as preparation for or prerequisite to the major. Usually it is essential that these courses be completed before upper division major work is undertaken. In any event, they are essential requirements for the completion of the major.

The 24-unit major must in its entirety be completed in the upper division. In exceptional cases, however, a student who has completed all requirements for the degree of Associate in Arts may be permitted by the Dean of the College, on recommendation by the department, to count not more than 6 units
of upper division work taken in the lower division as part of the major, but not as part of the 36 units of upper division work required to be completed in the upper division.

Not more than 30 units of upper division courses taken in one department after admission to the upper division will be counted toward the A.B. degree. The major must consist (1) of courses taken in resident instruction at this or another university (in a regular semester or in a summer session) or (2) of courses in University Extension with numbers having the prefix X, XB, XL, XR, or XSB (with the approval of the department concerned). See, however, paragraph 7, above.

No courses numbered in the 300 series (teachers' courses) or 400 series (professional courses) will be accepted as part of the major.

See further, under Study-List Regulations, page 29.

ORGANIZED MAJORS AND PROFESSIONAL CURRICULA

To fulfill the major requirement for the A.B. degree, a student may select one of the organized programs listed below. It is possible to prepare other suitable programs. A student may therefore present a plan for a major program to the Executive Committee of the College. If the plan is approved, the committee will designate a member of the faculty to take charge of the student's special major and to approve the upper division study lists and the completion of the major.

To facilitate intercampus relations, the Dean of the College is authorized to designate a major, entitled "General Major" for those students enrolled on this campus for one semester only, and who are to graduate from another campus of the University. This will enable intercampus transfers to be resident here for one semester and continue with majors not as yet organized on this campus.

Departmental programs are described in detail under Courses of Instruction beginning on page 117.

Art
American Civilization
Botany
Chemistry
Economics
English
French

German
History
Mathematics
Medical Sciences
Microbiology
Physical Science
Physics

Political Science
Premedical Curriculum
(see Medical Science)
Sociology
Spanish
Zoology

Preprofessional training is offered in Predental Science (2 years), in Premedical (3 years), in Prepharmacy (1 year), in Prephysical Therapy (2 years), and in Presocial Welfare.

Students who are interested in obtaining teaching credentials are referred to pages 103–105 of this bulletin.

INTERDEPARTMENTAL MAJORS

American Civilization

Chairman and Adviser: Mr. W. Turrentine Jackson. (For members of the committee in charge, see page 130).

Preparation for the Major.—No courses are required in addition to those necessary to fulfill the lower division requirements of the College of Letters and Science. Students are advised to select courses, especially History 4A—
4B, from the recommended list below. Selection should be made in consultation with the adviser.

Art 1A, 1B, 1C, 10.
Economics 1A–1B.
English 30, 46A, 46B.
History 4A–4B, 17A–17B.
Music 27A–27B.
Philosophy 6A–6B, 20A–20B.
Political Science 1A–1B, 2.
Psychology 1A.
Sociology 1 and 2.

The student must have maintained an average grade of C or higher and must have obtained the degree of Associate in Arts, or upper division standing.

The Major.—The American civilization program is designed to give the students an understanding of their own civilization as a living culture. To this end they are directed to investigate its origins; its development; its economic, political, and social institutions; its philosophy; and its intellectual, scientific, and artistic achievements.

Thirty-six upper division units are required for the major, of which 24 will consist of the following basic courses:

Economics 110*.
English 137A–137B.
History 178A–178B.
History 176A–176B or 179*, 187.
Political Science 113.
Sociology 123.

The student may select 9 units from the following recommended list:

American Civilization 196, 199.
Anthropology 105.
Art 118.
Dramatic Art 150.
Economics 121, 150.
English 191.
Geography 121.
History 174A–174B.
Music 128.
Philosophy 135A.
Psychology 145.
Sociology 144.

Students who are interested in Latin-American studies for purposes of comparison with the United States may elect 9 units from the following courses in place of those immediately above.

Art 119.
History 161A–161B.
Spanish 104A–104B.

Students will receive 3 units in the senior year for a required course, American Civilization 197. Conferences will be held with students to advise them concerning the selection of electives. During the last semester of the senior year students will read in preparation for a comprehensive examination in

* Economics 110 and History 179 are to be interchangeable.
American studies under the supervision of a faculty committee. The graduating student will register in American Civilization 197 for this purpose.
For additional information see page 130.

Medical Science

The requirements of the first year of the School of Medicine are accepted as fulfilling the major requirement, and the senior year of the College.

Adviser: Mr. M. Hildebrand

Preparation for the Major.—The premedical curriculum outlined on page 88.

The Major.—Anatomy 101, 105; Biochemistry 101M; Physiology 101M.

Physical Science

Chairman and Major Adviser: Mr. Reiber.

Major in Physical Science.—This major is designed primarily for students who wish to obtain subsequently a general secondary credential with a major in this field. It should be noted that the lower division requirements parallel to a considerable degree those of the major in chemistry or physics.

Preparation for the Major.—Required: Chemistry 1A–1B, 5, Physics 4A, 4B, 4C, Mathematics 16A–16B.

The Major.—Twenty-four units of upper division work in chemistry, physics, and allied subjects taken in accordance with a plan approved by the major adviser. These must include Chemistry 8, 9, 109, or their equivalent, and a minimum of 6 upper division units in physics.

All units in chemistry in excess of 13 are counted as upper division units, and if taken in the upper division will count as upper division credit toward the 36-unit requirement of the College of Letters and Science.

Individual Group Majors

A student desiring to elect other than an established departmental or interdepartmental major or a professional curriculum may petition for an individual group major adapted to his particular interests. The petition must be presented to the Dean for submission to the Executive Committee of the College for approval not later than the third week of the third semester before graduation. To insure proper breadth and depth, an individual group major must consist of a minimum of 36 upper division units in at least two fields, 24 of which must be taken after the student has submitted his major plan for approval. This plan should be prepared in consultation with a member of the department in which the student will do most of his work. It should describe the special educational aims of the major and indicate that it meets the University standards with respect to majors. On approval of the plan, an appropriate adviser will be designated to supervise the major program.

PREPROFESSIONAL CURRICULA

School of Dentistry

The School of Dentistry in San Francisco offers two curricula leading to the degree of Bachelor of Science and to the degree of Doctor of Dental Surgery. The student has the option, at the close of the second semester in the School of Dentistry, of registering in either one of two major curricula: (1) restorative dentistry, or (2) preventive dentistry. At the end of the sophomore year (fourth semester) a selected small group of students may enter the Honors Curriculum, which is designed to train outstanding students in the fields of dental research and teaching. In addition to these, there is a curriculum for the training of dental hygienists, leading to the degree of Bachelor of Science.
Classes are admitted to the School of Dentistry once a year, in September. Applications for admission in September, 1958, may be filed between July 1, 1957, and December 31, 1957. For further information write to the office of the Dean of the School of Dentistry. Freshman students who plan to apply for admission in 1959 may file preapplication declaration forms as soon as they have completed their first semester of college work, provided they have a grade B average or better. This declaration may not be filed later than March 1, 1958.

Upon the satisfactory completion of six semesters of work the dental student will be eligible for the Bachelor of Science degree, and for the Doctor of Dental Surgery degree upon the completion of two additional semesters. The Bachelor of Science degree will be granted the student in the dental hygiene curriculum at the end of the fourth semester.

The dental student who wishes to qualify for the degree of Bachelor of Science in addition to the degree of Doctor of Dental Surgery must complete satisfactorily a special project and thesis in the field of his major interest under the supervision of a faculty committee, and receive passing grades in 4 units of special instruction selected by the committee.

Admission to Dental Curricula

All applicants for admission to the dental curricula must have completed at least 60 units of college work with a scholarship average satisfactory to the Admissions Committee, including the requirements (2)–(5) listed below. Students who have attended the University of California must have a grade C average or better in work undertaken in the University. In addition, all applicants must take a performance test, designed to test manual dexterity. This test must be taken on the San Francisco campus, and is given during the Christmas recess and during the period between the fall and spring semesters. A third test is given during the summer, but is limited to preapplicants, applicants for admission in advanced standing, and persons taking the test for predictive purposes. The dental aptitude test of the American Dental Association is also a requirement for admission. This test is usually given in October, January, and April. Applicants for admission to the School of Dentistry must take one of the first two tests. For further information regarding this test, write to the Admissions Office, Room 62A, U. C. Hospital Building, University of California, Medical Center, San Francisco 22.

The School of Dentistry reserves the right to limit enrollment on the basis of scholarship, results of the performance and aptitude tests, recommendations, and interviews. At the present time, because of limited facilities and the large number of applications, it is not possible for the School of Dentistry to act favorably upon applications from persons who have not had the major portion of their high school and preprofessional education and residence in California or in one of the far western states. Exception to this is made only in cases of persons who are over 21 years of age and who have been residents of the state of California for over one year. Students from the far western states without dental schools who are interested in certification for education benefits under the Western Interstate Commission for Higher Education program may write to the Dean of the School of Dentistry for a pamphlet describing the program.

The student will find himself more adequately prepared for the dental curricula if he has taken in high school the following subjects: English, 3 units; history, 1 unit; mathematics, 3 units (algebra, plane geometry, and trigonometry); chemistry, 1 unit; physics, 1 unit; foreign language, 2–4 units.
Predental Curriculum

Adviser: Mr. R. L. Rudd.

Requirements for First and Second Years

1) General University requirements.
 Subject A (see page 25).
 Military Science and Tactics (men) 8 units
 The requirements of American History and Institutions is pre-
 requisite to the bachelor's degree. Although this requirement may
 be satisfied while enrolled in the School of Dentistry, it is pref-
 erable that it be completed in the predental program.

2) English or Speech (1A–1B) 6 units

3) Science ... 28–32 units
 (a) Chemistry
 Inorganic (1A–1B) .. 10 units
 Organic lecture (8) 3 units
 Organic laboratory (9) or quantitative analysis (5) 3 units
 (b) Physics with laboratory (2A–2B and 3A–3B or 4A–4B) ... 6–8 units
 (c) Biology, including one full semester of vertebrate zoology,
 with laboratory (Zoology 1A–1B) 6–8 units

4) Trigonometry (Mathematics C) 3 units
 It is strongly recommended that this requirement be completed in
 high school.

5) Three year courses selected from the following groups. No two year
 courses may be selected from the same group.
 Group I: economics, history, political science (one semester of American
 history and one semester of American government may be used as a year
 course in this group).
 Group II: anthropology, psychology, sociology and social institutions.
 Group III: foreign language (two years of high school Latin may be used
 to satisfy a year course in this group. If a student has had four years of
 one foreign language in high school, he may satisfy this requirement with
 one 4-unit course in the same or another foreign language).
 Group IV: mathematics (high school trigonometry may be used as half of
 a year course in this group).
 Group V: philosophy.
 Group VI: fine arts and literature.

At the University of California, Davis campus, the following courses may
be used to satisfy the year course requirements:
 Group I: Economics 1A–1B; History 4A–4B, 17A–17B; Political Science
 1A–1B; History 17A, or 17B in combination with Political Science 1A.
 Group II: Psychology 1A and 1B or 33; Sociology 1–2.
 Group III: French 1, 2, 3, 4; German 1, 2, 3, 4; Spanish 1, 2, 3, 4, 25A–
 25B.
 Group IV: Mathematics C (or high school trigonometry), 3A or 16A,
 3B or 16B, and 13.
 Group V: Philosophy 6A–6B, 20A–20B.
 Group VI: Art 1A, 1B, 1C, 1D, 10; English 30, 45, 46A–46B; Music
 21A–21B, 27A–27B.
Admission to the Dental Hygiene Curriculum
(Open to Women Only)

Applicants for admission to the dental hygiene curriculum must have completed at least 60 units of college work with a scholarship average satisfactory to the Admissions Committee, including the requirements (2) to (5) listed below. Students who have attended the University of California must have a grade C average or better in work undertaken in the University. The School of Dentistry reserves the right to limit enrollment if applications exceed the available facilities and to require interviews and aptitude tests if they are necessary in the selection of a class. The student will find herself more adequately prepared if she has taken in high school the following subjects: English, 3 units; history, 1 unit; mathematics, 2 units (algebra, plane geometry); chemistry, 1 unit; physics, 1 unit; foreign language, 3 or, preferably, 4 units.

(1) General University Requirements:

Subject A (examination in English composition). American History and Institutions (required for the bachelor's degree). The examination in American History and Institutions may be taken in the School of Dentistry, but it is preferable to satisfy the requirement in the pre-dental hygiene program. (See page 25.)

(2) English or Speech (1A–1B) .. 6 units

(3) Chemistry (1A, 8) .. 8 units

(4) Biology (Zoology 1A–1B) ... 8 units

(5) Either the Associate in Arts degree from the University of California or the University's degree requirements completed at another accredited university or college, or the following program of courses:

(a) Year courses selected as indicated from the following groups .. 18–20 units

Group I. Two one-year courses selected from: Economics (1A–1B), History (4A–4B, 17A–17B), Home Economics (1A–1B), Political Science (1A and 1B or 2), Psychology (1A–33), Sociology (1, 2). (History 17A or 17B in combination with Political Science 1A will be accepted as a year course in this group.)

Group II. One one-year course selected from: Philosophy, Art, Music, Literature, Foreign Language.

(b) Six additional units selected from either of the two groups listed under (a) .. 6 units

(c) Electives ... 12–16 units

Medical Sciences

Candidates for the degree of A.B. in the College of Letters and Science who plan to pursue the four-year curriculum leading to the M.D. degree in the School of Medicine, San Francisco, may reduce by one year the total time for attaining the two degrees, by offering the first year of the School of Medicine curriculum as the senior year in the College of Letters and Science. In order to do this, the student should register as a premedical student on entering the College of Letters and Science. He should then fulfill the requirements for the degree of Associate in Arts, comply with the requirements in American History and Institutions and military science, complete the premedical subjects required for admission to the School of Medicine, and attain full senior stand-
ing. Full senior standing for this purpose means the completion of at least 90 units toward the A.B. degree (at least 24 units after attaining upper division status), including at least 6 units of upper division courses (on the Letters and Science list) taken in the upper division. In order that the student may matriculate into the School of Medicine in his fourth college year, it is essential that he satisfy the lower division requirements by the end of his sophomore year.

A student who has attained full senior standing in the premedical curriculum has thereby complied with the requirements for admission to the School of Medicine, and if he is admitted to the School of Medicine may register simultaneously as a senior in the College of Letters and Science. The curriculum of the first year of the School of Medicine will be accepted as the senior year (30 units) of the College of Letters and Science, and as fulfilling the major requirement for the A.B. degree.

Enrollment in the School of Medicine is limited. Candidates for admission in the first-year class are accepted primarily on the basis of scholarship, particular emphasis being placed on the required subjects. Two personal interviews are also held. Arrangements for personal interviews are made by the Dean's office after a formal application has been filed and credentials rated. In addition, each applicant must take the Medical College Admission Test.

California Applicants.—The majority of places in each class are given to students from California. Applicants are screened carefully by the Committee on Admissions. In reaching a decision, the committee takes into consideration the applicant's legal residence, the location of his high school and of the institution in which he has taken premedical work, the legal residence of his parents, and, occasionally, other factors.

Out-of-State Applicants.—Approximately 10 per cent of the places may be filled with applicants in the following categories:

1. From other states: Preference will be given to applicants from the following Western states not having medical schools: Arizona, Idaho, Montana, Nevada, New Mexico, and Wyoming, or from the territories of Alaska and Hawaii.

2. From foreign countries: Ordinarily, not more than one applicant will be accepted from outside continental United States, Alaska, and Hawaii. This applicant must have completed at least one year of premedical or academic work at the University of California, or at an equivalent institution in the United States, one semester of which must have been completed previous to February 15 of the year of admission. For this place, the committee will select an individual from a foreign country who is in the United States for the purpose of pursuing his medical education and who intends to return to his own country following graduation, preferably for teaching in a school of medicine, for public health or for related work. The attention of applicants for this place is called to the fact that completion of the premedical program in the University of California, or in some other institution, does not necessarily guarantee acceptance by a school of medicine.

It may happen that a student who has completed the premedical curriculum and attained full senior standing in the College of Letters and Science is not admitted to the School of Medicine. In order to qualify for the A.B. degree, such a student must select some other major subject, and complete the requirements of its program and the other requirements for the degree. It may be impossible for such a student to complete his chosen major program in one year unless he has already partly fulfilled its requirements before entering the senior year. It is therefore desirable that each premedical student should plan his program with this contingency in mind, and undertake in his junior year
the part of the major program of his alternative choice that will make it possible for him to complete the program for the A.B. degree in one year if he is not admitted to the School of Medicine. This can be done without in any way interfering with the completion of the premedical requirements.

An applicant for admission to the School of Medicine who in any year is unsuccessful in gaining admission to the School on account of an inferior scholarship record, may, at the proper time, present a second application for admission. His success in being granted admission will depend on his scholarship rank as a member of the group of applicants for the new group.

An accepted applicant who finds it impossible to begin his work in the School of Medicine with the entering class, or a student who actually enters and begins his work, but finds it necessary to withdraw during his first year, loses his place in the list of applicants. If he desires to begin his work in a later year, he is required to reapply with the group of applicants for that year.

While it is virtually essential that a student register in the premedical curriculum if he wishes to proceed to the A.B. and M.D. degrees in the shortest possible time, such registration is not required for admission to the School of Medicine. Certain medical schools require an A.B. degree for admission; and the holder of an A.B. degree who has not been in the premedical curriculum may apply for admission to the University of California School of Medicine, provided he has completed work in the specific subjects required for admission. The minimum requirements in these subjects in terms of courses offered at Berkeley are: English 1A–1B (or Speech 1A–1B); Chemistry 1A–1B, 5, 8; Physics 2A–2B, 3A–3B; Zoology 1A–1B, 100; 8 units of a modern foreign language.

The Committee on Admissions to the School of Medicine is authorized to refuse admission to students who have a low academic record and to those of obvious physical, mental, or moral disability.

For further information concerning the School of Medicine, see the Announcement of the School of Medicine, obtainable upon request from: The Dean, University of California School of Medicine, San Francisco 22.

Premedical Curriculum

Advisor: Mr. M. Hildebrand.

In order that entrance to the School of Medicine and attainment of the A.B. and M.D. degrees may not be delayed, the student should make sure that his program is arranged so as to satisfy the requirements for the degree of Associate in Arts by the end of the sophomore year, and all other premedical requirements by the end of the spring semester just preceding the proposed date of entering the School of Medicine. A suggested program follows:

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A–1B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>†English 1A–1B or Speech 1A–1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>†Foreign Language</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Subject A</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives as necessary to make up units</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Foreign Language</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Year Course (See requirement (e) for degree of Associate in Arts)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Year Course (See requirement (e) for degree of Associate in Arts)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zoology 1A–1B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

* For regulations concerning Subject A, see page 25; American History and Institutions, page 27.
† English: any 3 units in composition plus any 3 units in English literature will satisfy
College of Letters and Science

THIRD YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>†Chemistry 5</td>
<td>3 or 3</td>
<td></td>
</tr>
<tr>
<td>†Chemistry 8</td>
<td>3 or 3</td>
<td></td>
</tr>
<tr>
<td>Physics 2A-2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 3A-3B</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Zoology 100A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Zoology 100C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3 or 11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

Prepharmacy Curriculum

Adviser: Mr. R. M. Keefer.
The University offers a six-year program leading to the Doctor of Pharmacy degree. The first two years (preprofessional) may be taken at any approved collegiate institution. The last four years must be taken at the School of Pharmacy on the San Francisco campus. Admission to the School of Pharmacy will be made on the basis of scholarship as determined from the transcript of record and by examination. A personal interview is normally required.

Students enrolling at Davis may complete the subject requirements for entrance to the School of Pharmacy with the following program.

FIRST YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A-1B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>†Elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>‡Elective</td>
<td>3 or 4</td>
<td>3</td>
</tr>
<tr>
<td>English 1A-1B</td>
<td>3 or 4</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16-17</td>
<td>18</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>History 17A-17B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>†Mathematics 16A-16B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2A-2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 3A-3B</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Zoology 1A-1B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Prephysical Therapy

Adviser: G. W. Salt.
Students interested in this field should consult Mr. Salt for requirements.

Prelegal

Adviser: Mr. C. E. Jacobs.
Students interested in entering the profession of law should consult with Mr. Jacobs of the Department of History and Political Science.

Presocial Welfare Curriculum

Adviser: Mr. E. M. Lemert.
Students planning to enter a graduate school of social work are referred to Mr. Lemert of the Department of Sociology, Anthropology and Geography (see page 213).

this requirement. Speech 1A or 1B may be offered in place of either course in English. If the student fails to pass the examination in Subject A it will be necessary to postpone English (or Speech) until he has completed the course in Subject A, for which no credit in units is given. The student is advised to substitute in the interim one of the year courses under requirement (e) for the degree of Associate in Arts in place of English (or Speech).

‡ Foreign language: the School of Medicine requirement is 8 units of credit in a modern foreign language, and the requirement for the degree of Associate in Arts is 16 units in no more than two languages. These may be satisfied partly in high school.

A student who has completed all or part of the language requirement in high school may take Chemistry 5 or Chemistry 8 in the second year.

† Trigonometry and Intermediate Algebra are prerequisite to Mathematics 16A.

‡ A year course chosen from foreign language, mathematics, social science, philosophy, or the fine arts and selected from the courses offered in satisfaction of the (e) requirement in the College of Letters and Science.
Letters and Science List of Courses

Of the 120 units required for the degree of Bachelor of Arts, at least 108 units must be in courses chosen from the Letters and Science List of Courses. Any course not included in this list, but required, or accepted, as part of a major or as a prerequisite to a group major, shall, for any student in that major or group major, but for no others, be treated as if it were in the Letters and Science List of Courses.

The following list refers to the courses as given in the departmental offerings for the fall and spring semesters, 1957–1958.

Agricultural Economics 120, 125.
Agronomy 130.
American Civilization. All undergraduate courses.
Animal Husbandry 101, 105, 110, 120, 125, 130.
Animal Physiology 100.
Anthropology. All undergraduate courses.
Art. All undergraduate courses.
Bacteriology. All undergraduate courses, except 105.
Botany. All undergraduate courses except 8, 107, 131, 155.
Chemistry. All undergraduate courses.
Decorative Art. All undergraduate courses; a total of not more than 8 units will be accepted for Letters and Science credit.
Dramatic Art. All undergraduate courses.
Economics. All undergraduate courses.
Education 110.
English. All undergraduate courses, except 300.
Entomology 1, 106, 112, 127.
Food Technology 116.
French. All undergraduate courses.
Genetics. All undergraduate courses.
Geography. All undergraduate courses.
Geology. All undergraduate courses.
German. All undergraduate courses.
Greek. All undergraduate courses.
History. All undergraduate courses.
Home Economics 113A–113B, 131, 136, 137.
Latin. All undergraduate courses.
Mathematics. All undergraduate courses.
Military Science and Tactics; a total of not more than 8 units of lower division courses.
Mineralogy. All undergraduate courses.
Music. All undergraduate courses.
Philosophy. All undergraduate courses.
Physics. All undergraduate courses.
Physiology 1, 1L.
Plant Pathology 124A–124B.
Political Science. All undergraduate courses.
Pomology 110.
Poultry Husbandry 107, 108.
Psychology. All undergraduate courses.
Sociology. All undergraduate courses.
Soil Science 106, 110.
Spanish. All undergraduate courses.
Speech. All undergraduate courses.
Veterinary Science 124, 140, 140L.
Zoology. All undergraduate courses, except 104.
HONORS

Honors are granted only with the bachelor's degree; honorable mention is given with the Associate in Arts degree. Honor students in the upper division shall be:
(a) Any student who has received honorable mention with the degree of Associate in Arts (or with junior standing) and who is in the first semester of the upper division;
(b) Any upper division student who has an average of at least 3 grade points for all units of undergraduate work undertaken at the University of California;
(c) Any upper division student specially approved for listing in honors status by the Committee on Honors of the College, either on recommendation made by departments of instruction, or on some other basis determined by the committee.

Any department is authorized to post a departmental honors list on its bulletin board at the beginning of a semester. Copies are sent by the department to the Committee on Honors and to the Registrar.

Each department has freedom in determining the most effective method for the training of honor students.

Departments may offer special honors courses in reading and in research with credit to be determined by the instructors in charge, subject to such general restrictions as may be imposed by the department, the College, or the Committee on Courses of Instruction of the Davis Division, Northern Section of the Academic Senate. Such an honors course may consist of additional work in connection with a regular course of instruction, or may be independent.

Special honors courses may be taken by any student named on the honors list of the College, and by any other student authorized to do so by the Committee on Honors.

Credit in any honors course for undergraduates may not exceed 5 units a semester.

At the discretion of the Dean, an honor student may make study-list changes involving honors courses under suspension of the regulations fixing the time during which such changes are ordinarily permissible and of the rules requiring fees for such changes. He should complete any reorganization of his program with all possible promptness.

Each semester an honor student may take, subject to the approval of the instructor concerned, one course in which he will be graded only "passed" or "not passed" provided that this course is not required for his major and not related to the field of his major. To take such a course the honor student must present a petition, approved by the instructor, to the Dean of the College before the last date on which courses may be added to the study list. The status of a course on the "passed" "not passed" basis may not be changed after that date. Units thus gained are not counted in the total required for graduation (120 units) for which grade points are recorded.

An honor student in senior standing who has attained at least a B average in the junior year at the University of California has the following additional privileges:
(a) The study-list total may be less than 12 units.
(b) The number of units in upper division (or graduate) courses required after admission to the upper division may be less than 36.
(c) The number of upper division units which may be taken in one department after admission to the upper division may exceed 30.
(d) With the consent of the major department, requirements concerning specific courses or sequences in the major may be set aside. Except as specifically provided, all existing regulations for students in the upper division apply to honor students.

HONORS WITH THE BACHELOR’S DEGREE

Honors at graduation are granted only to those students who have completed a major with distinction, and whose general record is satisfactory to the Committee on Honors.

Before Commencement each department, and also the major adviser for each interdepartmental and individual group major, shall determine, by such means as they deem best, which students are to be recommended to the Dean of the College for Honors at graduation.

These recommendations are transmitted by the Dean to the Committee on Honors for consideration. The Committee on Honors shall submit the names of candidates chosen from this list to the Executive Committee of the College of Letters and Science for the final recommendation for the award of Honors.

Students who display marked superiority may be recommended for the special distinction of Highest Honors.

The list of students receiving Honors or Highest Honors is published in the annual COMMENCEMENT PROGRAM.
COLLEGES OF ENGINEERING*

Agricultural Engineering

THE COLLEGES OF ENGINEERING, Berkeley and Los Angeles, with the cooperation of the College of Agriculture, offer the curriculum in Agricultural Engineering leading to the degree of Bachelor of Science. The first two years of this curriculum may be taken at Davis; the third year is given only at Berkeley or Los Angeles; and the summer field course and the senior program at Davis.

At Davis

The curriculum in Agricultural Engineering is designed to prepare the student to apply engineering principles to agricultural practice; and the courses are planned to take advantage of the agricultural staff and laboratories, in such fields as soil science, agronomy, and irrigation, and particularly of the staff and facilities of the Department of Agricultural Engineering.

The engineering courses include the design, selection, operation, and maintenance of farm power and machinery; the design of housing, farm structures, and physical plant for efficient livestock production including feed storage and handling; design of farmstead sanitation, lighting, and water supply; theory of heat transfer, evaporation, and agricultural processing; and the interpretation of climatic factors of agricultural environments. A course in irrigation covers hydraulic systems, ground-water supplies and plant use of water. Soil profiles, properties, structures, classification, and management are included in a supplementary course in soil science. A special summer course includes a study of engineering problems on typical farms in California; dairy processing plants, fruit and vegetable packing plants, dehydrators and implement manufacturing plants; and laboratory and field studies of farming equipment.

EXAMPLE OF AGRICULTURAL ENGINEERING PROGRAM

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>SOPHOMORE YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Fall Units</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>12</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>12L</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 8</td>
<td>3</td>
</tr>
<tr>
<td>Engineering 25</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 3A-3B</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 3A</td>
<td>3</td>
</tr>
<tr>
<td>Physics 4A</td>
<td>4</td>
</tr>
<tr>
<td>Nontechical studies</td>
<td>3</td>
</tr>
<tr>
<td>Military Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

* Prospective students should consult the ANNOUNCEMENT OF THE COLLEGES OF ENGINEERING.
† Agricultural Engineering 12 and 12L are recommended but not required of students entering as juniors.
‡ Or Animal Husbandry 7, Pomology 1, Vegetable Crops 1 and 2, or equivalent.
<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering 130</td>
<td>3</td>
<td></td>
<td>Engineering 100A-100B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Civil Engineering 111</td>
<td>1 or (1)</td>
<td></td>
<td>Engineering 102B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>3</td>
<td>3</td>
<td>Engineering 104A-104B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>100A-100B</td>
<td></td>
<td></td>
<td>Engineering 105A-105B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>1</td>
<td>1</td>
<td>Engineering 108B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>104A-104B</td>
<td></td>
<td></td>
<td>Mathematics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering 102</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering 103</td>
<td></td>
<td>3</td>
<td>Nontechical studies</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Design 106A</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(or Civil Eng 131)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nontechical studies</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 or 16</td>
<td>16 or 17</td>
<td></td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Science 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nontechical studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>*Technical elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

The program outlined may be modified, with the approval of the Study-List Committee, to meet the needs of the student who is preparing for some special phase of agricultural engineering, such as rural electrification, pest control, or food processing.

The allocated technical courses have been limited in order to provide opportunity for the student to take cultural courses.

The 6 units of American history and institutions technically falls in the units of free electives, but it is possible for these subjects to be passed by examination if greater advantage is to be taken of the wide selection of nonengineering courses available at Berkeley, Davis, and Los Angeles.

Students preparing for careers in teaching, research, or analytical design should intensify their undergraduate work and plan for graduate work. The ANNOUNCEMENT OF THE GRADUATE DIVISION, NORTHERN SECTION, and the ANNOUNCEMENT OF THE GRADUATE DIVISION, SOUTHERN SECTION, describe the requirements for advanced degrees. Fellowships or half-time assistantships are available to superior students.

* Upper division course in chemistry, physics, mathematics, irrigation, soil science, English, or appropriate engineering course approved by the student adviser.
SCHOOL OF VETERINARY MEDICINE*

The School of Veterinary Medicine offers a two-year curriculum leading to the degree of Bachelor of Science and a two-year graduate curriculum leading to the degree of Doctor of Veterinary Medicine.

Admission to the School of Veterinary Medicine

Candidates for admission to the School of Veterinary Medicine must complete:

A. Mathematics, 6 units‡; Subject A; military or naval science; and American History and Institutions, as required.

B. At least 60 units of credit in one of the colleges of the University of California or in an accredited institution, including the prescribed subjects listed in the following preveterinary curriculum (except that minor shortages may be waived by the Admissions Committee of the School of Veterinary Medicine):

<table>
<thead>
<tr>
<th>Preveterinary Curriculum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English composition and additional English or speech</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry (general, inorganic, organic, and analytical)</td>
<td>16</td>
</tr>
<tr>
<td>Physics (mechanics, heat, light, electricity)</td>
<td>6</td>
</tr>
<tr>
<td>Zoology</td>
<td>8</td>
</tr>
<tr>
<td>Restricted electives†</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

Students are frequently required to take more than a minimum 60 units in order to demonstrate scholastic achievement.

The preveterinary curriculum offers a well-balanced basic training in natural science and the humanities which will not only prepare the candidate for the courses in the School of Veterinary Medicine, but also to meet the varied problems of his chosen profession. This course of study can be completed on any of the campuses of the University, or at any junior college or four-year college offering the prescribed courses.

Enrollment in the School is limited, with the candidates being selected in major part on the basis of scholarship. In addition, applicants must have had sufficient animal experience to justify their desire to work with animals. The student should plan his program in such a way that in the event that he fails to enter the School of Veterinary Medicine, he can complete the requirements for the bachelor's degree in some other curriculum without loss of time.

Students are admitted to the School of Veterinary Medicine in the fall of each year. The necessary application blanks may be obtained after January 1 from the Registrar, University of California, Davis, and filed with him before April 1. All the requirements need not be completed at that time, but the student must supply a transcript showing work in progress.

Students who hold a recognized baccalaureate degree and are admitted to

* Prospective students should consult the ANNOUNCEMENT OF THE SCHOOL OF VETERINARY MEDICINE, obtainable without charge from the Registrar, University of California, Davis.

† Courses selected from the fields of social sciences, foreign languages, philosophy, psychology, fine arts, and literature, and/or additional courses in English, speech, and mathematics beyond trigonometry.

‡ May be completed in high school.
the School of Veterinary Medicine will register as graduate students studying
directly for the degree of Doctor of Veterinary Medicine.

Admission in Advanced Standing.—An applicant for admission in advanced
standing may be accepted under the following conditions:

1. He must furnish evidence that he was eligible for admission to the first
semester of the School of Veterinary Medicine.

2. He must show that he has satisfactorily completed courses equivalent in
kind and amount to those given in the School of Veterinary Medicine in
the semester or semesters preceding that in which admission is desired.

3. He may be required to pass examinations in any or all subjects for which
credit is asked.

Selection of Applicants

Enrollment in the School of Veterinary Medicine is limited. Candidates for
admission are selected primarily on scholarship with particular emphasis
being placed on the preveterinary requirements. Animal experience and per-
sonal qualifications must also be considered satisfactory. A personal inter-
view may be required; if so, the Chairman of the Committee on Admissions
will notify those concerned. Eligible applicants will not be considered until
after the last date for filing applications.

For the information of those applicants who may be concerned with resi-
dence requirements, the following statements relative to residency are offered:

1. Not more than five applicants in each class whose legal residence is other
than that of California will be accepted. The Committee on Admissions,
however, is not obligated to select any out-of-state applicants.
 a. These five out-of-state applicants will ordinarily be selected from the
 bordering western states of Arizona, Nevada, and Oregon, and from the
 Territory of Hawaii. To be considered an applicant from one of these
 places mentioned, the student must be a legal resident of that state or
 territory.
 b. An exceptional candidate from anywhere in the world will be con-
 sidered.

2. To be considered a bona fide California applicant a student must have
been a legal resident of the state prior to the beginning of his pre-
veternary work. An exception to this rule may be made in the case of
individuals whose legal residence in California has been clearly estab-
lished on another basis than for the purpose of completing the preveteri-
ary curriculum.

3. The Western Interstate Commission for Higher Education was estab-
lished to provide a greater measure of educational opportunity in the
health science fields for students in the western states. Students from the
Territory of Alaska, Arizona, Colorado, Idaho, Montana, New Mexico,
Oregon, Utah, Washington, and Wyoming should contact the commission
in their state as soon as they consider applying to the School of Veteri-
ary Medicine.

It is necessary to limit enrollment in the School. The basic reason is the
supply of clinical material. Registration of students in excess of material and
facilities available has been tried at other veterinary schools. It resulted in
so many students necessarily being assigned to limited numbers of cases that
accreditation of the schools attempting it became jeopardized.

Minimum requirements for accreditation are outlined by the American Vet-
erinary Medical Association and the Agricultural Research Service, United
States Department of Agriculture, the largest employer of veterinarians in
this country.

The two final years of the curriculum in Veterinary Medicine are admin-
istered by the Graduate Division, Northern Section. Upon completion of the
requirements for the degree of Bachelor of Science, application must be filed
for admission to the Graduate Division through the Dean of the School of
Veterinary Medicine. Further information is given in the ANNOUNCEMENT OF
THE GRADUATE DIVISION, NORTHERN SECTION, which may be obtained from the
Associate Dean of the Graduate Division, Room 201, Library-Administration
Building.

Requirements for the Degree of Bachelor of Science

The degree of Bachelor of Science with a major in veterinary science is
granted, upon the recommendation of the faculty of the School of Veterinary
Medicine, to students who:

1. Satisfy the general University and School of Veterinary Medicine re-
 quirements, including:
 (a) Subject A. The Subject A examination in English composition is
 required of every undergraduate student at the time of his first reg-
 istration in the University. Students admitted with advanced stand-
 ing may satisfy this requirement with a grade of C or better in one
 or more courses in English composition.
 (b) American History and Institutions. The student may meet this re-
 quirement by the passing of an examination in American History
 and Institutions or by the completion of courses prescribed by the
 University.
 (c) Residence in the University during the final undergraduate year in
 the School of Veterinary Medicine and completion of at least the
 final 24 units of credit.
 (d) Attain at least twice as many grade points as units of credit in
 courses undertaken at this University.
 (e) File notice for candidacy with the Registrar on dates as prescribed
 by the University Calendar.
 (f) Complete at least 12& units of University work. Not more than 4
 units may be in lower division physical education courses, and at
 least 56 units of the above total in upper division courses (courses
 numbered 100–199).

2. Complete, in the School of Veterinary Medicine, the following 75 units of
 prescribed courses. This total may be reduced in the case of students
 with advanced standing.

 Units
 (a) Biochemistry ... 3
 (b) Botany .. 2
 (c) Embryology ... 2
 (d) Genetics .. 3
 (e) Histology ... 4
 (f) Nutrition ... 3
 (g) Veterinary Science 58
 .. 75

Requirements for the Degree of Doctor of Veterinary Medicine

A. The candidate for the degree of Doctor of Veterinary Medicine must
have completed the requirements for the bachelor's degree in one of the col-
leges or schools of the University of California or at another college or un-
iversity of approved standing.

B. He must give satisfactory evidence of possessing a good moral character.
C. He must have studied veterinary medicine for the equivalent of eight semesters of sixteen weeks each. The last two years must have been spent in the University of California School of Veterinary Medicine. He must have completed the required work, have fulfilled satisfactorily all special requirements, and have received throughout the entire veterinary course a satisfactory grade as determined by the faculty of the School and by the Graduate Council of the Northern Section.

Graduate Study

For information on work leading to higher degrees other than the D.V.M., see the ANNOUNCEMENT OF THE GRADUATE DIVISION, NORTHERN SECTION, which may be obtained from the Associate Dean of the Graduate Division, Room 201, Library-Administration Building.

PLAN OF STUDY

Preveterinary Curriculum

The following schedule of study need not be rigidly adhered to but it satisfies the requirements without conflicts. This schedule also satisfies most of the requirements of the first two years of the animal science curriculum. For details of other curricula including animal science, the student should consult the College of Agriculture section of this bulletin.

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 1A, 1B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English 1A, 1B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 5, 8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 2A, 2B</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Zoology 1A, 1B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Veterinary Curriculum

The completion of the first two years of the curriculum of the School of Veterinary Medicine satisfies the requirements for the degree of Bachelor of Science. The courses are primarily preclinical sciences but are closely correlated with and are basic to the work in the clinical sciences of the last two years.

The following are the schedules for the first two years of the School of Veterinary Medicine, corresponding to the junior and senior years of undergraduate study. The graduate curriculum in the School of Veterinary Medicine is given under the third and fourth years.

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Husbandry 101</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Animal Husbandry 105</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Veterinary Science 102</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Veterinary Science 120, 140</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Veterinary Science 140L</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Zoology 107</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Zoology 100A</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veterinary Science 121, 124</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Veterinary Science 122A, 122B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Veterinary Science 123A, 123B</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Veterinary Science 125</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Course</td>
<td>Fall Units</td>
<td>Spring Units</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Veterinary Medicine 201, 202</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Veterinary Medicine 203, 205</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Veterinary Medicine 208, 206</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Veterinary Medicine 210, 220</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Veterinary Medicine 230, 231</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Veterinary Medicine 260, 250</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Veterinary Medicine 254</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall Units</th>
<th>Spring Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veterinary Medicine 207, 204</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Veterinary Medicine 223, 235</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Veterinary Medicine 224, 240</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Veterinary Medicine 251A-251B</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Veterinary Medicine 256A-256B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Veterinary Medicine 270A-270B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Veterinary Medicine 225</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>
GRADUATE DIVISION, NORTHERN SECTION

The University of California offers opportunities for graduate study in academic and professional fields on its campuses at Davis, Berkeley, San Francisco, Mount Hamilton, Los Angeles, and Riverside, and at the Scripps Institution of Oceanography at La Jolla. Graduate study and research in the University's centers of instruction at Berkeley, Davis, Mount Hamilton, and San Francisco is administered by the Council of the Graduate Division, Northern Section, which maintain offices on the Berkeley campus under the Dean of the Graduate Division. The work offered on the campuses at Los Angeles, Riverside, and La Jolla is administered by the Graduate Division, Southern Section, with offices at Los Angeles. An Associate Dean of the Graduate Division, Northern Section, is resident on the Davis campus in Room 201 Library-Administration Building.

The University endeavors to publish full information for the guidance of graduate students. Failure of students to acquaint themselves fully with the organization and regulations of the University may cause complications for which the student is expected to assume the responsibility. For information concerning all matters pertaining to the Graduate Division, including the list of available fellowships and the requirements for higher degrees, see the ANNOUNCEMENT OF THE GRADUATE DIVISION, NORTHERN SECTION, which may be obtained from the Associate Dean of the Graduate Division. Special announcements for the information and guidance of graduate students are published from time to time in the University Calendar and on the bulletin boards. Students should consult the bulletin boards regularly.

Requests for information affecting the status of graduate students, not contained in the official University bulletins, should be addressed to the Office of the Graduate Division, 201 Library-Administration Building.

Organization of Graduate Study and Research

Graduate study and research is offered at Davis in:

- Agricultural Chemistry
- Agricultural Engineering
- Agronomy
- Animal Husbandry
- Botany
- Chemistry
- Comparative Biochemistry
- Comparative Pathology
- Comparative Pharmacology and Toxicology
- Comparative Physiology
- Education
- Entomology
- Food Science
- Genetics
- Home Economics
- Horticulture
- Irrigation
- Mathematics
- Microbiology
- Nutrition
- Physics
- Plant Pathology
- Plant Physiology
- Poultry Science
- Pre-veterinary Medicine
- Range Management
- Soil Science
- Vegetable Crops
- Veterinary Medicine
- Veterinary Science
- Zoology

The School of Veterinary Medicine offers a curriculum leading to the degree of Doctor of Veterinary Medicine (see page 100).

For complete information concerning opportunities for graduate study and research, students should confer with the department concerned.
Curricula for Teacher Education

Curricula leading to teaching credentials valid in the secondary schools of California are offered in the following fields:

- Agriculture
- Life Science
- English
- Mathematics
- Foreign Languages
- Physical Education (minor only)
- Homemaking
- Physical Science
- Language Arts (minor only)
- Social Studies

GENERAL REQUIREMENTS

The student must satisfy the following general requirements in order to complete a curriculum leading to a recommendation for a teaching credential. He must also fulfill the specific requirements of the credential for which he applies.

Oral English.—The student must prove that he has a command of spoken English adequate to the purposes of instruction.

Health Certificate.—The student is required to have a medical examination and to obtain a satisfactory certificate of health from a physician. Every new student must have with him at the time of registration, a certificate testifying to successful vaccination against smallpox within the last seven years. A form for this purpose is provided by the University.

Citizenship.—Each applicant for a credential must be a citizen of the United States. This is a requirement of the California State Department of Education. Noncitizens who have filed their first papers are eligible to apply for short-term credentials. Failure to complete the naturalization process within six months of the date of eligibility will result in the revocation of the credential. After a foreign student has become naturalized he may apply for a long-term credential.

Oath of Allegiance.—The State Department of Education also requires each applicant for a credential to take an oath of allegiance.

The Constitution of the United States.—The State Department of Education requires the completion of a course on the provisions and principles of the Constitution of the United States. This requirement may be satisfied by completing one of the following courses: Political Science 1A, 1B, 113, 128A, 157; or one of the following sequences: History 17A–17B, 174A–174B, 176A–176B, 178A–178B, 179, 187; or by passing an examination in American History and Institutions.

Admission to Graduate Standing.—Upon graduation, each prospective candidate for a teaching credential must file a formal application for admission to graduate standing with the Dean of the Graduate Division, Northern Section, 102 Administration Building, University of California, Berkeley 4. This application must be filed preferably twelve weeks before the beginning of graduate residence, and in no case later than July 15 for the fall semester and December 15 for the spring semester. The application must be accompanied by a bank draft or money order for the $5 application fee, which is payable to The Regents of the University of California. The transferring graduate student must furnish a transcript of his college or university work to both the Dean of the Graduate Division and the Chairman of the Department of Education when he files his preliminary application.

† Veterans who expect to enroll under the provisions of Public Law 894 or Public Law 16 are not required to remit this fee with their applications. If the applicant is accepted and registers in the University, the fees will be paid by the government.
SPECIFIC REQUIREMENTS

SPECIAL SECONDARY CREDENTIALS

The student who desires to teach agriculture or home economics in the secondary schools may obtain the special secondary credential in vocational agriculture or homemaking, or the general secondary teaching credential, or both. At least two semesters of graduate work is required to fulfill the requirements in vocational agriculture, and one semester in homemaking.

In some schools it is an advantage to hold both a special vocational credential and a general secondary credential. An applicant qualifying for the special credential may use agriculture as the major and may secure the general secondary credential by completing a minor and meeting the other requirements as outlined below.

*The Special Secondary Credential in Vocational Agriculture.—The University of California cooperates with the Bureau of Agricultural Education of the State Department of Education in offering the graduate training for the special vocational agriculture credential. Students desiring admission to the graduate training for the special credential must apply for and receive "cadet" appointments from the Chief of the Bureau of Agricultural Extension in addition to applying for admission to the Graduate Division. Appointments are made only after personal interviews. Since supervised teaching comprises a major part of this training, students must spend one semester of this fifth year in directed teaching centers.

The Special Secondary Limited Credential in Agriculture.—This credential authorizes the holder to teach the agricultural subjects named in the credential in secondary schools and requires 8 semester units of work in each of the subjects named. It does not authorize the holder to teach vocational agriculture in departments organized under the Federal and State Vocational Acts. Fifteen semester hours of professional work in education, including 4 semester units of directed teaching in agriculture, are required.

The Special Secondary Credential in Homemaking.—The University of California cooperates with the Bureau of Homemaking Education of the State Department of Education in offering the training required for this credential. The undergraduate courses comprising the general major in home economics satisfy the subject-matter requirements for this credential.

Normally one semester of graduate work devoted primarily to supervised teaching and instruction in professional methods is required to complete credential requirements.

GENERAL SECONDARY CREDENTIALS

This credential authorizes the holder to teach any or all subjects in all grades of any junior college, senior high school, four-year high school, junior high school, and the seventh and eighth grades of elementary schools with the exception of classes organized under the provisions of the Federal and State Vocational Educational Acts where special credentials in specific vocational subjects are required.

Candidates for recommendation for this credential must satisfy the following specific requirements, in addition to the general requirements stated above.

* A special summer session for high school teachers of vocational agriculture will be offered on the Davis campus beginning July 1, 1957, and ending August 10, 1957. This session will offer courses in education and agriculture for students who are candidates for teaching credentials and for teachers of agriculture and farm advisors who desire graduate training. Courses will also be offered for teachers who desire to complete requirements for administrative, supervisory, and general credentials.

† Preference is given to holders of the master's or doctor's degree in appointment to junior college faculties.
1. Forty semester hours of general education with a minimum of 6 semester hours in each of the following four areas:
 a) Science and mathematics.
 b) The practical arts and the fine arts—art, music, homemaking, health education, physical education, industrial arts, and similar fields.
 c) Social studies.
 d) The communicative arts—languages, literature, speech arts, and similar fields.

Courses offered in fulfillment of the general education requirement for the bachelor's degree may also be applied toward the fulfillment of major and minor requirements, provided the courses are within the same subject field as the major and minor.

2. One major* and one minor* in teaching fields commonly taught in California senior or four-year high schools, or a major in a field not commonly taught, and two minors in acceptable teaching fields.

3. Complete the following 22 units in education:
 - Introduction to Educational Psychology—Education 110 3
 - Tests and Measurements—Education 115 3
 - Introduction to Guidance and Counselling—Education 163 3
 - Principles of Secondary Education—Education 170 2
 - Introduction to Teaching—Education 320A 1
 - Audio-Visual, Radio, and Other Instructional Aids—Education 320B .. 2
 - Supervised Teaching—Education 320C 3
 - Methods of Teaching—Education 320E 2
 - Practicum in Supervised Teaching—Education 323 4

 (Psychology 1A or its equivalent is prerequisite to all education courses.)

In addition to the required courses in education, it is recommended that all candidates for the general secondary credential complete either Child Development—Home Economics 131, 3 units, or Adolescent Development—Home Economics 136, 3 units.

The following sequence of courses is recommended:
 - Junior year—Education 320A, Home Economics 131 or 136.
 - Senior year—Education 110.
 - Graduate year—(first semester)—Education 115, 163, 170, 320B;
 (second semester)—Education 320C, 320E, 323.

4. Two graduate semesters of not less than 24 units including 6 semester hours in subject fields commonly taught in junior and senior high schools, and 6 semester hours in education courses.

5. A scholarship record of 2.5 or better in upper division courses, and 2.75 or better in postgraduate courses.

TEACHING MAJORS AND MINORS FOR THE GENERAL SECONDARY CREDENTIAL

In many instances the departmental major fulfills subject matter requirements for the teaching major. Prospective teachers are advised to consult counselors in the Department of Education and the authorized subject representatives of the proposed teaching fields as early as possible after undertaking University work. The beginning of the freshman year in undergraduate status is not too early for such consultations.

In the program for the bachelor's degree, the student is permitted a number of electives. A wise selection insures an adequate background of preparation for teaching. Helpful guidance in this choice may be obtained from the subject representatives.

* See page 103.
College of Agriculture

Agriculture. Subject Representatives: Sidney S. Sutherland, Elwood M. Juergenson.
Major: See pages 45, 46.
Minor: A minimum of 20 units in agricultural subjects. Students should consult with subject representatives.

Homemaking. Subject Representative: Arline Johnson.
Minor: A minimum of 20 units in home economics.

College of Letters and Science

English. Subject Representative: Elizabeth R. Homann.
Major: See English, page 155.
Minor: 20 units including English 1A–1B, 46A–46B, and at least 9 units of upper division courses including English 106L and two courses chosen from English 125C–125D, 117J, 137A–137B. English 300 is to be taken in the postgraduate year.

Language Arts (minor only). Subject Representative: Theodore J. Shank.
Minor: 20 units including Speech 1B, 2A, Dramatic Art 10A–10B, and 9 units of upper division courses including Dramatic Art 128 and 6 units selected from Dramatic Art 158 and 150. The student may also choose to work on a special project in Dramatic Art 199.

Foreign Languages.

French. Subject Representative: Merle L. Perkins.
Major: See French, page 164.
Minor: Four semester French courses in the lower division, or their equivalents. Usually these will consist of French 1, 2, 3, 4. At least 12 units of upper division work in French, including a full year course in conversation and composition.

German. Subject Representative: S. B. Pukat.
Major: See German, page 166.
Minor: Four semester German courses in the lower division, or their equivalent. Usually these will consist of German 1, 2, 3, 4. At least 12 units of upper division work in German, including a full year course in conversation and composition.

Spanish. Subject Representative: Iver N. Nelson.
Minor: 18 to 22 units in the lower division, or their equivalents. Usually these will consist of Spanish 1, 2, 3, 4, 25A–B. Spanish 4 may be omitted with a grade of B or better. At least 12 units of upper division work including Spanish 103A–B and 107A–B.

Life Science. Subject Representative: Milton A. Miller, T. Elliot Weier.
Major: An individual group major in the life sciences is recommended, although a degree in one of the life sciences may be offered. Students should consult with subject representatives in arranging their programs.
Minor: Zoology 1A–1B, Botany 1, Chemistry 1A–1B, Physics 2A–2B. At least 8 units of advanced work in zoology and botany.

Mathematics. Subject Representative: Albert C. Burdette.
Major: See Mathematics, page 185.
Minor: 20 units of mathematics including courses G, 8, 16A–B, and not less than 6 units of upper division mathematics including course 118. Not more than 3 units from courses C and D may be counted toward the minor.
Physical Education (minor only). Subject Representatives: Men—George A. Stromgren; Women—Marya Welch.

Minor: 20 units of physical education. Students should consult with representatives of the department as early as possible in their university programs.

Physical Science. Subject Representative: Harold G. Reiber.

Major: See page 83.

Minor: Chemistry 1A–B and 8; Physics 2A–B and 3A–B; Chemistry or Physics—3 upper division units; a laboratory course in botany, zoology, or physiology.

Major: A degree in one of the social sciences or an interdepartmental major may be offered (see page 81; and the course section of this bulletin under the headings of Economics, Geography, Sociology and Anthropology; History and Political Science). Students should consult with subject representatives in arranging their programs.

Minor: 20 units in the social sciences, of which 9 shall be in upper division courses.
THE TWO-YEAR CURRICULUM IN AGRICULTURE

GENERAL INFORMATION

The University of California, in its Two-Year Curriculum in Agriculture, offers prospective farmers, persons preparing for related vocations, and all others interested in California agriculture a systematic and practical training on a college level in a university atmosphere and a rural environment. Formal scholastic qualifications are not required. This opportunity is intended for both men and women. It is open not only to high school graduates, but to other qualified persons at least eighteen years of age who wish to study agriculture without undertaking a four-year curriculum leading to an academic degree.

The nature of the subject matter covered and of the instructional methods employed is such, however, that only those persons having adequate preliminary practical farm experience, or those otherwise genuinely motivated, can hope to realize the fullest possibilities of the training facilities available. Efficient agricultural production or effective performance in a related technical or semi-professional field is assumed to be the educational objective of every student.

A Certificate of Completion is awarded those students who meet the requirements set forth in this bulletin. Students may satisfy the requirements for completion by pursuing a program of study as suggested under the various major-subject programs, or by the completion of a more generalized program of study, which must include a course in American History and Institutions.

POSITIONS OPEN TO GRADUATES

Most of the graduates and former students in the University Farm School and the later Nondegree and Two-Year Curricula are either managing their own farms or are employed as farm managers and foremen; this situation will probably continue. Many of the older alumni, however, are now engaged in related agricultural vocations.

Close contact with the agricultural industry of the State enables members of the teaching and research staff to anticipate the demands for trained men in the various fields, to meet the changing needs of the industry, and to recommend graduates for employment. Positions of responsibility usually require, besides the regular college courses, one or more seasons of practical training under commercial conditions. Such experience, which often results in business connections leading to permanent employment, may be obtained during summer vacations or through apprenticeship after graduation. Much depends upon the candidate's inherent ability.

Many different vocations have been open to graduates of the Two-Year Curricula in the past, and the demand for trained personnel still continues. Positions that pay adequate wages and permit advancement are often available for assistant buttermakers, cheesemakers, ice-cream makers, milk testers, and assistant technicians in commercial dairy-manufacturing and distribution plants; herdsmen; advanced registry testers; skilled poultry and apiary workers; horticultural and dairy inspectors; field agents in the fruit- and vegetable standardization and shipping-point inspection services; county agricultural inspectors; caretakers of private estates; foremen of public parks, landscape contractors, nurserymen, and florists; fieldmen, salesmen, and skilled workers for seedmen; weed- and rodent-control specialists; workers skilled in controlling insect and other household and farmstead pests; plant-
and disease-control specialists and contractors; and foremen of water delivery for irrigation districts and large farm enterprises. The rapidly expanding field of food preservation (canning, dehydration, and freezing storage) offers new opportunities to graduates in vegetable crops and horticulture.

TRAINING IN AGRICULTURAL SKILLS

Supported by a generous gift to the University by the late Mr. Fred H. Bixby, a program has been developed to offer training without credit in various agricultural skills.

The Division of Farm Practice provides opportunities to obtain practical agricultural experience by working on selected farms and in agricultural industries over the State. On-campus training in skills has been organized to supplement classroom instruction.

Students who have had limited practical farm experience are encouraged to discuss this problem with their faculty advisers and to contact the Farm Practice Office soon after registration to insure sufficient time for the development of a job opportunity that best meets their requirements for practical training in farming and to avail themselves of the noncredit skills training program that is in operation on the campus.

ADMISSION AND REGISTRATION

Requirements for Admission.—Admission to the Two-Year Curriculum is granted any qualified person who has a high school diploma or who, if not a high school graduate, is at least 18 years of age. Application blanks may be obtained from the Registrar. Every applicant for admission is required to pay a fee of $5 when the first application is filed. Remittance by bank draft or money order should be made payable to The Regents of the University of California. Credentials from schools beyond the eighth grade (including those from any foreign schools attended) should be submitted at the time of application.

Prospective students who are not graduates of a high school, whose high school academic record is less than average, or who have little or no practical farm or related vocational experience, should make application in person. Such personal application should be made at least 30 days prior to the opening of any regular semester.

ADVANCED STANDING

Candidates for graduation from the Two-Year Curriculum will receive credit for equivalent courses completed with a grade of C or higher in junior colleges or other institutions of collegiate rank. In every instance, however, the final year of residence is required for the Certificate of Completion.

EXTRA-SESSION WORK

Two-Year students who have completed at least one semester in residence may, with the approval of the instructor, the head of the subject-matter department, and the Dean of the College of Agriculture, undertake extra-session work. Under this plan, credit toward the Certificate of Completion is given for a special problem dealing with the laboratory or field phases of a subject pursued during the Christmas recess or the summer vacation period, provided the four following regulations are complied with:
1. The problem shall require 1 to 8 weeks' effort of 8 hours a day, 5 days a week.
2. The student receives no remuneration for his work, other than board and room.
3. The credit granted shall not exceed 1 unit for each week of study.
4. The student enrolls with the Registrar before beginning the work.
THE TWO-YEAR CURRICULUM AND MAJOR-SUBJECT PROGRAMS

GRADUATION

Requirements for the Certificate of Completion.—Students completing the following requirements in the Two-Year Curriculum in Agriculture will be awarded the Certificate of Completion by the University of California:
1. A minimum of 60 units of credit (of which at least 30 units and the last semester must be completed in residence), and at least as many grade points as credit units in all courses undertaken in the Two-Year Curriculum.
2. A course in American History and Institutions (History 57A or 57B).
3. File notice for candidacy with the Registrar on dates as prescribed by the University Calendar.

Graduation with Honors.—Students who complete at least two semesters in the Two-Year Curriculum with a minimum of 30 semester units and a grade-point average of 3.5 or better are awarded a special Honor Certificate at the time of graduation.

ANIMAL HUSBANDRY

The two-year program in animal husbandry is for students primarily interested in horses, dairy cattle, beef cattle, sheep, hogs, or other domestic animals.

The animal husbandry courses, along with recommended electives are listed below in the sequence which will be found most satisfactory. Students interested primarily in dairy husbandry are particularly urged to elect Chemistry 51, Dairy Industry 54, Bacteriology 61, and Animal Husbandry 58.

<table>
<thead>
<tr>
<th>FALL SEMESTER</th>
<th>SPRING SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Units</td>
</tr>
<tr>
<td>Elective 5</td>
<td>Hist. 57B. History and Institutions of the United States 3</td>
</tr>
<tr>
<td></td>
<td>Elective 5</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

First Year

<table>
<thead>
<tr>
<th>FALL SEMESTER</th>
<th>SPRING SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Units</td>
</tr>
<tr>
<td>Agr. Econ. 54. Farm Management 3</td>
<td>†An. Husb. 56. Horse Production 2</td>
</tr>
<tr>
<td>†An. Husb. 61. Swine Production 2</td>
<td>†An. Husb. 58. Milk Production 2</td>
</tr>
<tr>
<td>†An. Husb. 63. Beef Production 2</td>
<td>Elective 12</td>
</tr>
<tr>
<td>†An. Husb. 65. Sheep Production 2</td>
<td></td>
</tr>
<tr>
<td>Elective 7</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

* Math. 50 is a prerequisite for courses in irrigation, agricultural engineering, agricultural economics, and bacteriology.
† The election of Animal Husbandry production courses will depend upon the student's interest. The first-year courses are considered fundamental to the production courses.
Recommended Electives

FALL SEMESTER

Course Units
Bact. 61. Elementary Bacteriology ... 2
Poul. Husb. 51. Introduction to ... 2
Poultry Husbandry ... 4
*Chem. 51. Elementary Chemistry ... 3
Dairy Ind. 50. Elements of Dairying ... 3
Agr. Engin. 50. Farm Mechanics ... 3
*Botany 50. Elementary Botany ... 3
Botany 51. Weed Control ... 3
Irrig. 51. Plane Surveying ... 3
Irrig. 53. Irrigation Practice ... 3
Vet. Sci. 51. Animal Hygiene ... 2

SPRING SEMESTER

Course Units
Agr. Econ. 55. Farm Bookkeeping ... 3
Agr. Engin. 52. Farm Structures ... 3
Agr. Engin. 54. Farm Machinery ... 3
Agron. 54. Forage Crops ... 3
Soil Sci. 52. Soils ... 3
Dairy Ind. 54. Market Milk ... 3
Botany 50. Elementary Botany ... 3

DAIRY INDUSTRY

The two-year program in dairy industry is primarily concerned with the handling of milk and the manufacture of dairy products. The courses are designed for persons who wish to qualify as buttermakers, cheesemakers, ice-cream makers, milk-plant workers, laboratory workers, and dairy inspectors.

First Year

FALL SEMESTER

Course Units
Agr. Engin. 50. Farm Mechanics ... 3
Chem. 51. Elementary Chemistry ... 3
Dairy Ind. 50. Elements of Dairying ... 3
Math. 50. Elementary Mathematics ... 5
Elective ... 2

SPRING SEMESTER

Course Units
Agr. Eng. 57. Dairy Equipment ... 3
An. Husb. 52. Feeds and Feeding ... 3
Dairy Ind. 54. Market Milk ... 3
Dairy Ind. 60. Creamery Practice ... 3
Engl. 50. Business Writing ... 3
Elective ... 2

17

Second Year

FALL SEMESTER

Course Units
Bact. 61. Elementary Bacteriology ... 2
Dairy Ind. 51. Cheesemaking ... 3
Dairy Ind. 53. Ice-Cream Making ... 3
Hist. 57A. History and Institutions of the United States ... 3
Elective ... 3

SPRING SEMESTER

Course Units
Agr. Engin. 52. Farm Structures ... 3
An. Husb. 58. Milk Production ... 3
Dairy Ind. 52. Buttermaking ... 3
Dairy Ind. 65. Dairy Plant Manage- ... 3
ment ... 3
Elective ... 3

16

Recommended Electives

FALL SEMESTER

Course Units
Agr. Econ. 51. Marketing Agricultural Products ... 3
An. Husb. 51. Principles of Animal Husbandry ... 4
Chem. 51. Elementary Chemistry ... 3
Zool. 51. Biology of Domestic Animals ... 3

SPRING SEMESTER

Course Units
An. Husb. 52. Feeds and Feeding ... 3
An. Husb. 58. Milk Production ... 3
Agr. Engin. 52. Farm Structures ... 3

PLANT PRODUCTION

AGRONOMY

The two-year program in agronomy, as outlined below, has been formulated primarily for students planning to engage in farming. Opportunities are

* Chemistry 51 is prerequisite for Bacteriology 61. Botany 50 is a prerequisite for Botany 51.
available in special work that involves grading, standardization, and inspection in the control of weeds, insect pests, and plant diseases of field crops.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Units</td>
</tr>
<tr>
<td>Agron. 51. Introduction to Agronomy</td>
<td>3</td>
</tr>
<tr>
<td>Bot. 50. Elementary Botany</td>
<td>3</td>
</tr>
<tr>
<td>Irrig. 53. Irrigation Practice</td>
<td>3</td>
</tr>
<tr>
<td>Math. 60. Elementary Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Units</td>
</tr>
<tr>
<td>Agron. Engin. 55. Farm Power</td>
<td>3</td>
</tr>
<tr>
<td>Agron. 53. Cotton, Sugar Beets, Beans, and Miscellaneous Crops</td>
<td>3</td>
</tr>
<tr>
<td>Bot. 51. Weed Control</td>
<td>3</td>
</tr>
<tr>
<td>Entom. 51. Agricultural Entomology</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

Recommended Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agron. Econ. 54. Farm Management</td>
<td>3</td>
</tr>
<tr>
<td>Agron. Engin. 50. Farm Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Pomol. 51. Fruit Growing</td>
<td>3</td>
</tr>
<tr>
<td>Poultry Husbandry</td>
<td>4</td>
</tr>
<tr>
<td>Agron. Engin. 50. Farm Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>An. Huab. 52. Feeds and Feeding</td>
<td>3</td>
</tr>
<tr>
<td>Vegetable Crops 52. Vegetable Crops</td>
<td>3</td>
</tr>
</tbody>
</table>

Pomology

The two-year program in pomology deals with the production of temperate zone tree fruits and berries under California conditions, and with certain phases of their utilization. Field and laboratory facilities and classroom instruction are provided to give opportunity for study of the establishment of orchards; pruning and training of trees; cultivation, irrigation, and fertilization of orchards; varieties; harvesting and packing of fruit for fresh shipment; inspection and marketing of fruits; and drying of prunes, peaches, apricots, and pears. The program is designed as basic training for students who plan to operate and manage their own orchards; to be orchard foremen, managers, or superintendents; or to work in the inspection and standardization of fruits.

Students who plan to complete the two-year program may take the maximum number of courses offered, and will have least difficulty in arranging schedules if the courses are taken in the sequence suggested below. Those entering in the spring semester may arrange a similar sequence of courses with the aid of their advisers. Spring entrants may, however, experience difficulty in completing the work in four semesters.
Two-Year Curriculum

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bot. 50. Elementary Botany</td>
<td>3</td>
<td>Agr. Eng. 54. Farm Machinery</td>
<td>3</td>
</tr>
<tr>
<td>Pomol. 51. Fruit Growing</td>
<td>3</td>
<td>Pomol. 54. Orchard Operations</td>
<td>2</td>
</tr>
<tr>
<td>Pomol. 53. Orchard Operations</td>
<td>2</td>
<td>Soil Sci. 52. Soils</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
<td>Elective</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entom. 51. Agricultural Entomology</td>
<td>3</td>
<td>Hist. 57B. History and Institutions</td>
<td>3</td>
</tr>
<tr>
<td>Irrig. 53. Irrigation Practice</td>
<td>3</td>
<td>Pl. Path. 52. Plant Diseases</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>10</td>
<td>Pomol. 52. Plant Propagation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Elective</td>
<td>16</td>
</tr>
</tbody>
</table>

Recommended Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agr. Econ. 51. Marketing Agricultural Products</td>
<td>3</td>
<td>Agr. Econ. 55. Farm Bookkeeping</td>
<td>3</td>
</tr>
<tr>
<td>Agr. Econ. 54. Farm Management</td>
<td>3</td>
<td>Agr. Engin. 50. Farm Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Agr. Engin. 50. Farm Mechanics</td>
<td>3</td>
<td>Agr. Engin. 52. Farm Structures</td>
<td>3</td>
</tr>
<tr>
<td>Agr. Engin. 55. Farm Power</td>
<td>3</td>
<td>Agron. 52. Cereals</td>
<td>3</td>
</tr>
<tr>
<td>Agron. 51. Introduction to Agronomy</td>
<td>3</td>
<td>Agron. 54. Forage Crops</td>
<td>3</td>
</tr>
<tr>
<td>Bot. 51. Weed Control</td>
<td>3</td>
<td>Entom. 52. Beekeeping</td>
<td>3</td>
</tr>
<tr>
<td>Lands. Man. 51. General Landscape</td>
<td>3</td>
<td>Vegetable Crops 52. Vegetable Crops</td>
<td>3</td>
</tr>
<tr>
<td>Management</td>
<td>3</td>
<td>Vit. 62. Vineyard Operations</td>
<td>3</td>
</tr>
<tr>
<td>Vit. 61. Viticulture</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VEGETABLE CROPS

The two-year program in vegetable crops is designed to give a general understanding of the subject. Advanced courses are planned primarily for students especially interested. A course in seed growing and in methods of improving vegetable varieties is offered for those who may become connected with the seed-growing industry. Vegetable crops majors may undertake a special program in vegetable production. The department is well equipped with land and with packing-shed, greenhouses, and coldframe facilities, as well as a large field laboratory.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agr. Econ. 54. Farm Management</td>
<td>3</td>
<td>Agr. Econ. 55. Farm Bookkeeping</td>
<td>3</td>
</tr>
<tr>
<td>Agron. 53. Cotton, Sugar Beets</td>
<td>3</td>
<td>Agr. Engin. 54. Farm Machinery</td>
<td>3</td>
</tr>
<tr>
<td>Beans, and Miscellaneous Crops</td>
<td>3</td>
<td>Agron. 52. Cereals</td>
<td>3</td>
</tr>
<tr>
<td>Entom. 51. Agricultural Entomology</td>
<td>3</td>
<td>Botany 50. Elementary Botany</td>
<td>3</td>
</tr>
<tr>
<td>Irrig. 53. Irrigation Practice</td>
<td>3</td>
<td>English 50. Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>Math. 50. Elementary Mathematics</td>
<td>3</td>
<td>Veg. Crops 52. Vegetable Crops</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agr. Econ. 51. Marketing Agricultural Products</td>
<td>3</td>
</tr>
<tr>
<td>Agr. Engin. 55. Farm Power</td>
<td>3</td>
</tr>
<tr>
<td>Agron. 51. Introduction to Agronomy</td>
<td>3</td>
</tr>
<tr>
<td>Botany 51. Weed Control</td>
<td>3</td>
</tr>
<tr>
<td>Pomol. 51. Fruit Growing</td>
<td>3</td>
</tr>
<tr>
<td>Veg. Crops 53. Vegetable Varieties</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 18

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agr. Engin. 50. Farm Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Hist. 57B. History and Institutions of the United States</td>
<td>3</td>
</tr>
<tr>
<td>Pl. Path. 52. Plant Diseases</td>
<td>3</td>
</tr>
<tr>
<td>Soil Sci. 52. Soils</td>
<td>3</td>
</tr>
<tr>
<td>Veg. Crops 54. Vegetable Improvement</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 15

Electives which may be substituted for above with consent of adviser

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 51. Elementary Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Pomol. 53. Orchard Operations</td>
<td>2</td>
</tr>
<tr>
<td>Vit. 61. Viticulture</td>
<td>8</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agr. Engin. 52. Farm Structures</td>
<td>3</td>
</tr>
<tr>
<td>Entom. 52. Beekeeping</td>
<td>3</td>
</tr>
<tr>
<td>Pomol. 54. Orchard Operations</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSES OF INSTRUCTION

The course offerings listed in this bulletin are subject to change without notice

EXPLANATORY NOTE

The credit value of each course in semester units is indicated for each semester by a number in parentheses following the title. A semester unit is one hour of the student's time at the University, weekly, during one semester, in lecture or recitation, together with the time necessary in preparation therefor; or a longer time in laboratory or other exercises not requiring preparation. The semester in which the course is given is shown as follows: I, first semester (September to January); II, second semester (February to June); Yr., throughout the first and second semesters. Information concerning class hours will be found in the Schedule and Directory.

Year courses.—A course designated by a double number (for example, Home Economics 1A–1B) is continued through two successive semesters, ordinarily from September to June; occasionally, however, the first part of a year course may begin in February. The student should use the first number in registering for the course during its first semester, and the second number during its second semester. The first half of such a course is prerequisite to the second half unless there is an explicit statement to the contrary. The instructor makes a final report on the student's work at the end of each semester. Unless otherwise noted, the student may take the first half only and receive final credit for it.

CLASSIFICATION AND NUMBERING

Courses are classified and numbered as follows:

(1) Undergraduate courses. These are of two kinds, lower division and upper division.

(a) Lower division courses (numbered 1–49, or sometimes indicated by letters if in subjects usually given in a high school). A lower division course is one open to freshmen and to sophomores; such courses do not count as upper division work in any department.

(b) Upper division courses (numbered 100–199). An upper division course is one which is open only to those students who have completed a lower division course, or courses, in that department; or is an elementary course in a subject of such difficulty as to require the maturity of upper division students. Registration in upper division courses in the College of Agriculture is regulated by the possession of the necessary prerequisites rather than by class standing.

Special study courses for individual advanced undergraduates, usually numbered 199, should be restricted to senior honor students having an adequate background in the subject proposed for special study. This would normally require a sound background in upper division courses in the field of 199 course study.

The maximum number of units per student in any and all 199 courses in any one semester shall be limited to five.

Departments may offer special honors courses (marked H) in reading and research, with credit to be determined by the instructors in charge, according
to the performance of the individual student, subject to such general restrictions as may be imposed by the department, the College, or the Committee on Courses of Instruction of the Academic Senate. The work of the student in an honors course may consist of additional work in connection with other courses of instruction, or may be independent of such courses.

(2) Graduate courses (numbered 200–299). As a condition for enrollment in a graduate course the student must submit to the instructor in charge of the course satisfactory evidence of preparation for the work proposed; adequate preparation normally consists of the completion of at least 12 units of upper division work basic to the subject of the graduate course, irrespective of the department in which such basic work may have been completed.

(3) Professional teacher-training courses in the Department of Education and courses in other departments that are specially intended for teachers or prospective teachers (numbered 300–399).

Courses are further classified as follows:

Resident courses.—Courses of resident instruction are given either during regular sessions or summer sessions or (by special arrangement) as extra-session courses. Laboratory, field, or other individual work, done out of session under the direction of a department of instruction, may be accepted upon the recommendation of the department in partial fulfillment of the residence requirement for the bachelor's degree. All such work is in the form of upper division or graduate extra-session courses, and these courses must be approved in advance by the Committee on Courses of Instruction. Moreover, in pursuance of existing regulations, students must register in advance for all such work, and this registration must be approved by the proper faculty before the work is undertaken.

University Extension courses.—In the curricula leading to the A.B. and B.S. degrees, credit is allowed for courses in University of California Extension that bear numbers prefixed by X, XB, XL, XF, or XS. Such courses are rated, with respect to the general and specific requirements for the bachelor's degree, on the same basis as courses taken in residence at collegiate institutions of approved standing.

For information concerning University Extension courses, apply to the Director, University Extension, University of California, Berkeley 4, California.
AGRICULTURAL CHEMISTRY
(Committee Office, 53 Chemistry Building)

Committee in Charge:
Maynard A. Amerine, Ph.D., Professor of Enology.
Lawrence J. Andrews, Ph.D., Professor of Chemistry.
Clinton O. Chichester, Ph.D., Assistant Professor of Food Technology.
†John P. Conrad, Ph.D., Professor of Agronomy.
Luther D. Davis, Ph.D., Professor of Pomology.
Walter L. Dunkley, Ph.D., Associate Professor of Dairy Industry.
Harold Goss, Ph.D., Professor of Animal Husbandry.
Charles R. Grau, Ph.D., Associate Professor of Poultry Husbandry.
James F. Guymon, Ph.D., Associate Professor of Enology.
Eugene L. Jack, Ph.D., Professor of Dairy Industry.
Walter G. Jennings, Ph.D., Assistant Professor of Dairy Industry.
Raymond M. Keefer, Ph.D., Professor of Chemistry.
Richard E. Kepner, Ph.D., Associate Professor of Chemistry.
Max Kleiber, Sc.D., Professor of Animal Husbandry.
George L. Marsh, M.S., Professor of Food Technology.
Thomas A. Nickerson, Ph.D., Assistant Professor of Dairy Industry.
Edgar P. Painter, Ph.D., Professor of Chemistry.
Daniel W. Peterson, Ph.D., Assistant Professor of Poultry Husbandry.
Herman J. Phaff, Ph.D., Associate Professor of Food Technology.
Harlan K. Pratt, Ph.D., Associate Professor of Vegetable Crops.
Harold G. Reiher, Ph.D., Professor of Chemistry.
Lloyd M. Smith, Ph.D., Assistant Professor of Dairy Industry.
Clarence Sterling, Ph.D., Associate Professor of Food Technology.
†George F. Stewart, Ph.D., Professor of Poultry Husbandry.
Aloys L. Tappel, Ph.D., Associate Professor of Food Technology.
Nikita P. Tarassuk, Ph.D., Professor of Dairy Industry.
David H. Volman, Ph.D., Professor of Chemistry (Chairman of the Executive Committee).
A. Dinsmoor Webb, Ph.D., Associate Professor of Enology.
John R. Whitaker, Ph.D., Assistant Professor of Food Technology.
Masatoshi Yamaguchi, Ph.D., Lecturer in Vegetable Crops.
Herbert A. Young, Ph.D., Professor of Chemistry.
Frederick P. Zschille, Jr., Ph.D., Professor of Agronomy.

GRADUATE COURSES

290. Seminar in Agricultural Chemistry. (1) I and II.
One seminar is offered during each semester. One weekly meeting is held.

299. Research in Agricultural Chemistry. (1–6) I and II.
The research work will ordinarily be under the direction of a member of the group who is in the field in which the student's preparation has been found to be adequate.

‡ Absent on leave, fall semester, 1957–1958.

[119]
AGRICULTURAL ECONOMICS

(Department Office, 5 Temporary Building No. 2)

Trimble R. Hedges, Ph.D., Professor of Agricultural Economics.
George L. Mehren, Ph.D., Professor of Agricultural Economics (Chairman of the Department, Berkeley, Davis).
James M. Tinley, Ph.D., Professor of Agricultural Economics.
Edwin C. Voorhies, B.S., Professor of Agricultural Economics.

Jerry Foytik, Ph.D., Associate Professor of Agricultural Economics.
Chester O. McCorkle, Jr., Ph.D., Associate Professor of Agricultural Economics.

H. Russell Shaw, Ph.D., Assistant Professor of Agricultural Economics.
J. Herbert Snyder, Ph.D., Assistant Professor of Agricultural Economics.
Stephen H. Sosnick, Ph.D., Assistant Professor of Agricultural Economics.

Gordon A. King, Ph.D., Lecturer in Agricultural Economics.
J. Edwin Faris, Jr., Ph.D., Lecturer in Agricultural Economics.

Letters and Science List.—Agricultural Economics, 120, 125.

Departmental Major Advisers.—Mr. Faris, Mr. McCorkle, Mr. Tinley

The Major.—See pages 44-45.

LOWER DIVISION COURSES

1. The Agricultural Industry. (3) I.

Comparison of agriculture with other industries: population, production, improvements, trends, etc. Historical sketch of the development of agriculture. Types of farming and their geographical distribution. Movements of agricultural products. Institutional aids to agriculture.

Not open to students with credit for Business Administration 18.

Introduction to law, contracts, sales, and agency.

49. Field Practice. (1-6) I and II.

Field trips to observe economic aspects of production, processing, handling, or marketing of California agricultural products. Various areas and problems—such as management, tenure, financing, taxation, labor practices, market functions, transportation—will be emphasized on the different trips.

UPPER DIVISION COURSES

To graduate with a major in agricultural economics a student must have at least a C average in all upper division courses taken in agricultural economics.

100A. Economic Analysis in Agriculture. (3) I.

Prerequisite: Economics 1A-1B, and one course in statistics.

The application of economic principles to problems of agriculture: economic structure and aspects of American agriculture; analysis of demand, supply, and production of agricultural products with particular reference to the individual firm.
100B. Economic Analysis in Agriculture. (3) II.
Prerequisite: course 100A or equivalent.
The application of economic principles to the problems of agriculture: economic pricing of agricultural output and productive services, including multiple products, multiple markets and multiple time periods; regional specialization, location and trade; determinants of economic change; effects of economic organization.

106. Analysis of Agricultural Economic Data. (3) II.
Lectures and laboratory.
Prerequisite: Mathematics 13 or equivalent, Mathematics 16A, or equivalent, or consent of the instructor.
Evaluation and treatment of economic data in agriculture with emphasis on methods of analyzing relations among economic variables.

110. Agricultural Finance. (3) I.
Prerequisite: Economics 1A or 1B.
Farmers' credit needs, methods of financing the agricultural industry, and the agencies supplying agricultural credit.

115. Agricultural Business Management. (3) II.
Prerequisite: Economics 1A or 1B or 11A; or equivalent course (Economic Principles or Elementary Accounting), or consent of the instructor.
Application of general management principles and practices to agricultural business; the economic and legal aspects of organizational and operational problems.

120. Agricultural Policy. (3) I.
Prerequisite: Economics 1A–1B.

125. Comparative Agriculture. (3) II.
Prerequisite: Economics 1A or 1B.
The agriculture of the principal countries of the world, with special reference to the influence of food supply upon the development of man.

130. Agricultural Marketing. (3) I.
Prerequisite: Economics 1A or 1B.

135. Cooperation in Agriculture. (3) I.
Types of cooperative agencies; scope and objectives of agricultural cooperation, functions, supply, services, insurance, irrigation, production, consumption, marketing; problems of organization, pooling management, member relations, financing, taxation, market control, demand creation, cost control; economic effects; legal, political, social aspects.

140. Farm Management. (4) I and II.
Lectures and laboratory.
Prerequisite: junior standing.
Survey of farm management: nature of the farm and the problems and methods of farm management; organizational aspects of the individual farm unit; administration of the farm business.
145. Land Economics and Farm Appraisal. (3) II.
Lectures and laboratory. One field trip is required.
Prerequisite: Economics 1A or 1B.
Appraisal of agricultural land, land utilization in relation to problems of
development and valuation, use and appraisal of land and water resources,
land and water policies.

Courses 160A–180 are senior courses designed for those who have com-
pleted courses 100A, 100B, 106 and the appropriate survey course in the
120–145 series. A student not having this preparation but who desires a
course in the 160A–180 series may be admitted with the consent of the
course instructor.

160A. Economics of Agricultural Marketing. (3) I.
An analytical treatment of agricultural marketing, the marketing firm in
its economic context, the theory of interregional trade, economic analysis of
market organization.

160B. Economics of Agricultural Marketing. (3) II.
An analytical treatment of agricultural marketing; collective marketing;
government in marketing; the marketing system and the general economy.

170A. Economics of Farm Management. (3) I.
An analytical treatment of farm management: farm organization;
management costs and returns; combination of resources in farm manage-
ment; principles of enterprise combination; problems and principles of size;
measures and analyses of earnings.

170B. Economics of Farm Management. (3) II.
An analytical treatment of farm management: farm administration and
management; business organization and control; financial analysis; capital
structure; tenure; market influences; relation of nonfarm influences to farm
management.

180. Economics of Agricultural Policy. (3) II.
An analytical treatment of agricultural policy: economic appraisal of types
of policies and policy problems; production, marketing and price; land;
credit; markets, relations to national economic policy.

188. Directed Group Study. (1–5) I and II.
Prerequisite: consent of the instructor.
Directed group study of selected topics in agricultural economics for ad-
vanced undergraduates.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
Prerequisite: senior standing and approval of the department.
Limited to majors in agricultural economics with a B average or higher.

GRADUATE COURSE

299. Special Study for Graduate Students. (1–4) I and II.
Any properly qualified graduate student who wishes to pursue a special field
of study may do so if his proposed program of study is acceptable to the
members of the staff with whom he works.
AGRICULTURAL ENGINEERING

(Department Office, 206 Agricultural Engineering Building)

Roy Bainer, M.S., Professor of Agricultural Engineering (Chairman of the Department).
Frederick A. Brooks, Sc.D., Professor of Agricultural Engineering.
Clarence F. Kelly, M.S., Professor of Agricultural Engineering.
Robert A. Kepner, B.S., Professor of Agricultural Engineering.
Coby Lorenzen, Jr., M.S., Professor of Agricultural Engineering.
†Norman B. Akesson, M.S., Associate Professor of Agricultural Engineering.
John C. Harper, D.Sc., Associate Professor of Agricultural Engineering.
S. Milton Henderson, M.S., Associate Professor of Agricultural Engineering.
Lloyd H. Lamouria, M.S., Associate Professor of Agricultural Engineering.
Loren W. Neubauer, Ph.D., Associate Professor of Agricultural Engineering.
Samuel A. Hart, Ph.D., Assistant Professor of Agricultural Engineering.
†Allan A. McKillop, M.S., Assistant Professor of Agricultural Engineering.
Michael O'Brien, Ph.D., Assistant Professor of Agricultural Engineering.
Wesley E. Yates, M.S., Assistant Professor of Agricultural Engineering.
—, Assistant Professor of Agricultural Engineering.

—

Robert H. Burgy, M.S., Assistant Professor of Irrigation.
John R. Goss, M.S., Lecturer in Agricultural Engineering.
Arthur S. Leonard, M.S., Lecturer in Agricultural Engineering.
†John B. Powers, B.S., Lecturer in Agricultural Engineering.
Franklin B. Shealer, M.S., Lecturer in Agricultural Engineering.
James R. Tavernetti, M.S., Lecturer in Agricultural Engineering.

AGRICULTURAL ENGINEERING

Departmental Major Advisers.—Mr. Henderson, Mr. Kepner, Mr. Lorenzen.
The Major.—See pages 93–95.

LOWER DIVISION COURSES

12. Survey and Problems in Agricultural Engineering. (2) I.
The development and the application and use of farm machinery; the utilization of power on the farm; elements of hydrology in relation to agricultural engineering; the economics of farm buildings; elementary problems in the mechanics of agriculture.

12L. Agricultural Engineering Laboratory. (1) I.
Prerequisite: concurrent enrollment in course 12. Open only to students majoring in agricultural engineering.
Studies of engineering systems in agriculture; cost, labor and performance analysis of agricultural engineering operations.

14A–14B. Farm Mechanics for Teachers. (2–2) Yr.
Laboratory.
Selection, use, and care of tools and shop equipment. Practice in the ap-

plication of mechanical principles to the maintenance and repair of farm buildings, farm machinery, farm power, and electrical wiring. Demonstration of methods. A demonstration and laboratory course for majors in agricultural education.

49. Summer Field Practice. (6)
Six weeks' course (first summer session), daily except Sunday, 8–5.
Prerequisite: junior standing in engineering.
Practice in the mechanics, machinery, power, and building laboratories; study of equipment on typical farms. It should be taken after the sophomore or junior year.

UPPER DIVISION COURSES

Physics 2A–2B or 4A–4B are prerequisite to all upper division courses in agricultural engineering.

102A–102B. Unit Operations in Processing Agricultural Products.
(3–3) Yr.
Lectures and laboratory.
Prerequisite: a course in differential calculus.
The principles and applications of unit operations to the food processing field. Principles studied include electricity, fluid-mechanics, heat transfer, steam generation, air-vapor mixtures, refrigeration, air conditioning, drying, plant layout, materials handling and work simplification.

103. Agricultural Power. (3) II.
Lectures and laboratory.
Theory of operation, construction, and utilization of internal combustion engines; tractors; electric motors and appliances. Open to qualified lower division students by permission.

104. Agricultural Machinery. (3) I.
Lectures and laboratory.
Construction, operation, requirements, and utilization of tillage, seeding, harvesting, belt-operated farm machinery and pest-control equipment; theory and testing of displacement and centrifugal pumps.

105. Farm Structures. (3) I.
Lectures and laboratory.
A course in agricultural housing, including structural materials and methods of construction; design of typical farm dwellings, storage buildings, and production structures; farmstead utilities; farmstead arrangement; plans, specifications, contracts and cost estimating.

106. Heat Transfer in Agricultural Climatic Environment. (2) II.
Atmospheric and thermal environment of life and structures near the earth's surface. Introduces agricultural climatology and treats solar and nocturnal radiations, thermal convection, diurnal heat flow, cold-air drainage, and frost protection; outdoor condensation and evaporation; dispersion of aerosols.

107. Problems in Teaching Farm Mechanics. (3) I and II.
Lectures and laboratory.
Prerequisite: 8 units in agricultural engineering, including course 14A–14B. Limited to graduate students in agricultural education.
Demonstration and practice in the methods of teaching farm mechanics in secondary schools. School shop planning including the selection, arrangement, and management of equipment. Curriculum-planning including the relation of teaching materials, references and visual aids.

Courses 112, 113, 114, 115, and 130 are designed for students in the College of Engineering whose major is agricultural engineering; they are not open to students in the College of Agriculture.

112. Unit Operations in Agricultural Processing. (3) II.

Lectures and laboratory.
Prerequisite: Mechanical Engineering 105A–105B.
Thermodynamic, heat, and mass transfer principles applied to the unit operations of processing agricultural products. Analysis and design of processes involving drying, dehydration, refrigeration, size reduction, separation, mixing, materials handling, and work simplification.

113. Agricultural Power. (4) II.

Lectures and laboratory.
Prerequisite: Mechanical Engineering 105A–105B.
The study of the different types of internal combustion engines, their accessories and fuels used for stationary and mobile power on the farm; the construction, operation, and testing of farm tractors, and the application of electrical heat, light, and power to agricultural operations.

114. Principles of Farm Machinery. (3) I.

Lectures and laboratory.
Prerequisite: Engineering 35, Mechanical Engineering 102B.
Principles of operation, functional requirements, and performance characteristics of field machines. Includes general design considerations, cost analysis, testing methods, and laboratory studies of specific machines.

115. Farm Structures Design. (3) I.

Lectures and laboratory.
Prerequisite: Engineering 35; Mechanical Engineering 102B.
The design of farm buildings including houses, storage buildings, and production structures, with emphasis on functional requirements and characteristics of materials. Study of the principles of lighting, air conditioning, water supply, and sanitation.

130. Proseminar. (1) II.
Professional ethics and social responsibilities of engineers; cooperative research procedures, validity of findings, written and oral presentation of short technical reports.

198. Directed Group Studies for Advanced Undergraduates. (1–5) I and II.
Prerequisite: senior standing in engineering with at least a B average.
Group study of selected topics. Student groups may be organized in instrumentation and design problems. Students may enroll in one or more separate subjects.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
GRADUATE COURSES

201. Seminar in Agricultural Engineering. (1) II.
Prerequisite: graduate standing.
Discussion of current graduate research with particular attention to
validity of experimental procedures, and including oral and written presenta-
tion of a term paper.

202. Engineering Analysis and Synthesis. (2) I.
Prerequisite: graduate standing.
Procedures for analyzing engineering data and synthesizing engineering
systems with special reference to agricultural problems.

298. Group Study. (1–5) I and II.
Prerequisite: graduate standing.
Group study of selected topics of importance to advanced engineering in
agriculture.

299. Research in Agricultural Engineering. (1–6) I and II.

ENGINEERING

LOWER DIVISION COURSES

1A. Plane Surveying. (3) I.
Lectures and laboratory.
Prerequisite: plane trigonometry.
Principles; field practice; calculations and mapping with special reference
to irrigation, drainage, and agricultural engineering problems.

25. Engineering Graphics. (4) II.
Lectures and laboratory.
Prerequisite: trigonometry, mechanical drawing, and Mathematics 3A
(Mathematics 3A may be taken concurrently).
The fundamental principles of orthogonal projection and their application
to the solution of three-dimensional problems arising in the various branches
of engineering; freehand pictorials; dimensioning; freehand and instru-
mental working drawings; graphic computations; plotting experimental
data and determination of elementary empirical equations.

35. Statics. (3) II.
Prerequisite: Physics 4A, Mathematics 4A–4B (Mathematics 4B may be
taken concurrently).
Force systems and equilibrium conditions with emphasis on engineering
problems covering structures, distributed forces, beams, cables, and friction.
Includes graphical solutions and an introduction to the method of virtual
work.

45. Properties of Materials. (3) II.
Prerequisite: sophomore standing in agricultural engineering.
An introductory course on the properties of engineering materials. Applica-
tions of basic principles to the selection and use of engineering materials.

MECHANICAL ENGINEERING

UPPER DIVISION COURSE

151. Industrial Heat Transfer. (3) I.
Prerequisite: course 105A–105B, or equivalent.
The study of the basic principles of heat transfer and their application to the design of industrial equipment. Steady-state and transient problems of conduction by analytical and graphical methods. Free and forced convection. Transfer of radiant energy.

AGRONOMY

(Department Office, 131 Hunt Hall)

Robert W. Allard, Ph.D., Professor of Agronomy.
Fred N. Briggs, Ph.D., Professor of Agronomy.
† John P. Conrad, Ph.D., Professor of Agronomy.
R. Merton Love, Ph.D., Professor of Agronomy.
Maurice L. Peterson, Ph.D., Professor of Agronomy (Chairman of the Department).
Francis L. Smith, Ph.D., Professor of Agronomy.
Frederick P. Zscheile, Jr., Ph.D., Professor of Agronomy.
Ben A. Madson, B.S.A., Professor of Agronomy, Emeritus.
Paulden F. Knowles, Ph.D., Associate Professor of Agronomy.
Horton M. Laude, Ph.D., Associate Professor of Agronomy.
Duane S. Mikkelsen, Ph.D., Associate Professor of Agronomy.
Charles W. Schaller, Ph.D., Associate Professor of Agronomy.
Ernest H. Stanford, Ph.D., Associate Professor of Agronomy.
Dale G. Smeltzer, Ph.D., Assistant Professor of Agronomy.
William A. Williams, Ph.D., Assistant Professor of Agronomy.
——, Assistant Professor of Agronomy.
——, Assistant Professor of Agronomy.
Robert S. Loomis, Ph.D., Instructor in Agronomy.
Wyman E. Nyquist, Ph.D., Lecturer in Agronomy.
Dorman C. Sumner, B.S., Lecturer in Agronomy.

Letters and Science List.—Agronomy 130.
Departmental Major Advisers.—Mr. Laude, Mr. Smeltzer, Mr. Stanford.
The Major.—See pages 63–67.

LOWER DIVISION COURSES

1. Introduction to Agronomy. (3) I.
Lectures and laboratory.
The principles and practices of field crop production and soil management; a survey of the production and uses of field crops including pastures and other forages, cereals, edible legumes, oil, fiber, sugar, and green manure crops; laboratories and field trips to familiarize the student with production methods, plants and seeds, processing, and quality of field crops.

2. Forage Crops. (3) II.
Lectures and laboratory.
Prerequisite: course 1 recommended.
Adaptation, establishment, management, and utilization of forage plants as irrigated pasture, range, hay, and silage; aspects of forage quality which affect feeding value to livestock. Field trips will be arranged to observe developments in irrigated pasture management and range improvement.

† Absent on leave, fall semester, 1957–1958.
110. Principles of Crop Production. (3) I.
Prerequisite: Chemistry 8, Botany 1.
The relation of environment to the distribution and utilization of field crops. The theory of soil management and improvement, fertilization, rotation, erosion control, tillage, and other practices relating to the production of field crops.

111. Small Grains, Corn, Sorghum, and Beans. (3) II.
Lectures and laboratory.
Prerequisite: course 110.
Adaptation, distribution, culture, utilization, processing and other factors determining quality of wheat, oats, barley, rye, rice, corn, sorghum, and field beans.

112. Hay and Pasture Production. (3) II.
Lectures and laboratory.
Prerequisite: course 110.
The adaptation, management, and utilization of hay crops, irrigated pastures, and other harvested forages; factors which determine quality and value of forages.

113. Cotton, Sugar Beets and Miscellaneous Crops. (3) I.
Lectures and laboratory.
Prerequisite: course 110.
Adaptation, distribution, culture, utilization, processing and other factors determining quality of cotton and other fiber crops, sugar crops, oil crops, and miscellaneous crops.

114. Plant Breeding. (3) II.
Lectures and laboratory.
Prerequisite: Genetics 100.
The application of genetics to the problems and methods of plant improvement.

115. Range Improvement. (3) II.
Lectures and laboratory.
Prerequisite: course 110.
Adaptation, distribution, growth habits, and utilization of the more important forage and grazing plants, with special emphasis on their systematic relationships. Principles of the artificial establishment and management of ranges and nonirrigated pastures. Special field trips will be arranged.

*130. Quantitative Inheritance in Plant Breeding. (3) I.
Lectures and laboratory.
Prerequisite: Genetics 102 (given on the Berkeley campus) or Mathematics 105; and a course in plant breeding.
The genetic theory underlying quantitative inheritance; theory of inbreeding and heterosis; effects of selection upon populations; applications to plant improvement.
Offered in alternate years.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
Prerequisite: 6 upper division units of agronomy.

* Not to be given, 1957–1958.
RELATED COURSES

Weed Control (Botany 107)
Water-Soil-Plant Relationships (Irrigation 100)
Irrigation Principles and Practices (Irrigation 110)
Elementary Statistics (Mathematics 13)
Applied Statistical Methods (Mathematics 105)
Diseases of Crop Plants (Plant Pathology 125A–125B)
Introduction to Soil Science (Soil Science 1)
Soil and Plant Relations (Soil Science 108)
Soil Fertility (Soil Science 109)

Other courses related to agronomy are given in the departments of Agricultural Economics, Agricultural Engineering, Animal Husbandry, Botany, Genetics, and Soil Science.

GRADUATE COURSES

200A–200B. Research in Agronomy. (1–6; 1–6) Yr.
Open to qualified graduate students who wish to pursue original research involving plant physiology, plant genetics, plant biochemistry, agricultural chemistry, or soil-plant relationships of field crops or of range and pasture plants.

201A–201B. Seminar in Agronomy. (1–1) Yr.
Prerequisite: graduate standing.
Technical topics of current interest in agronomy will be discussed. Students will prepare and present reports to the seminar.

205. Design of Field Experiments. (2) I.
Lectures and laboratory.
Prerequisite: Mathematics 105.
The planning and analysis of field and related experiments with emphasis on the biological interpretation of results.
Offered in alternate years.

206. Chemical and Physical Methods in Agronomic Research. (3) I.
Prerequisite: Chemistry 5 and 9 or their equivalents.
Advanced laboratory techniques and instrumental methods of analytical chemistry in agronomic research. Includes an introduction to laboratory research methods, preparation of samples, principles and operation of research instruments and laboratory practice in methods of plant analysis.
AMERICAN CIVILIZATION

(Committee Office, 10 Temporary Building No. 1)

Committee in Charge:
Joseph A. Baird, Jr., Ph.D., Assistant Professor of Art.
Paul Dempsey, Ph.D., Assistant Professor of Psychology.
Warren S. Gramm, Ph.D., Assistant Professor of Economics.
W. Turrentine Jackson, Ph.D., Professor of History (Chairman of the Committee).
Clyde E. Jacobs, Ph.D., Assistant Professor of Political Science.
Daniel S. Keller, Ph.D., Assistant Professor of Spanish.
Edwin M. Lemert, Ph.D., Professor of Sociology.
†David L. Olmsted, Ph.D., Assistant Professor of Anthropology.
Theodore J. Shank, Ph.D., Instructor in Dramatic Art.
Richard G. Swift, M.A., Instructor in Music.
T. Elliot Weier, Ph.D., Professor of Botany.
Robert A. Wiggins, Ph.D., Assistant Professor of English (Vice-Chairman of the Committee).

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

Group Major Adviser.—Mr. Jackson.

Preparation for the Major.—See description, page 81.

The Major.—See description, pages 81–83.

UPPER DIVISION COURSES

*196. Science in American Civilization. (3) II.
Prerequisite: junior standing. History 4A–4B, and a laboratory course in science are desirable.
A study of selected problems of American science, past and present, with emphasis on their antecedents and consequences.
Offered in alternate years.

197. Special Study for the Comprehensive Examination. (3) I and II.
Prerequisite: completion of all other major requirements for the A.B. degree in American civilization.
Study for a written and oral examination by an interdepartmental committee, the members to be chosen from the student’s instructors in American civilization courses.

199. Special Study for Advanced Undergraduates. (1–3) I and II.

REQUIRED COURSES

Economics 110‡: Economic History Since 1750.
English 137A–137B: Survey of American Literature.
History 178A–178B: Great Issues in United States History: Ideas and Interpretations.

* Not to be given, 1957–1958.
† Absent on leave, fall semester, 1957–1958.
‡ Economics 110 and History 179 are to be interchangeable.
American Civilization; Animal Husbandry

History 176A—176B: Social and Cultural History of the United States, or;
History 179: Economic Growth of the United States, and
History 187: The American Frontier.
Political Science 113: American Political Theory.
Sociology 123: American Society.

RECOMMENDED COURSES

American Civilization 196: Science in American Civilization.
American Civilization 199: Special Study for Advanced Undergraduates.
Anthropology 105: The American Indian.
Art 119: Art of the Americas.
Dramatic Art 150: The American Drama.
Economics 121: Industrial Organization.
Economics 150: Labor Economics.
English 191: Literature in English from 1900.
Geography 121: The Geography of Anglo-America.
History 174A—174B: Recent History of the United States.
Philosophy 135A: Contemporary Tendencies: British-American.
Political Science 102A: State Government and Administration.
Political Science 128A: Recent American Foreign Policy.
Political Science 128B: The Conduct of American Foreign Relations.
Psychology 145: Social Psychology.
Sociology 144: Rural Sociology.

RECOMMENDED COURSES IN HISPANIC-AMERICAN STUDIES FOR COMPARATIVE PURPOSES

Art 119: Art of the Americas.
History 161A—161B: Hispanic-American History.
Spanish 104A—104B: Survey of Spanish-American Literature.

ANIMAL HUSBANDRY

(Department Office, 128 Animal Science Building)

Harold H. Cole, Ph.D., Professor of Animal Husbandry (Chairman of the Department).
Harold Goss, Ph.D., Professor of Animal Husbandry.
Paul W. Gregory, Sc.D., Professor of Animal Husbandry.
Carroll E. Howell, M.S., Professor of Animal Husbandry.
Max Kleiber, Sc.D., Professor of Animal Husbandry.
Sylvester W. Mead, M.S., Professor of Animal Husbandry.
William M. Regan, Sr., M.A., Professor of Animal Husbandry, Emeritus.
James F. Wilson, M.A., LL.D., Professor of Animal Husbandry, Emeritus.
Floyd D. Carroll, Ph.D., Associate Professor of Animal Husbandry.
Perry T. Cupps, Ph.D., Associate Professor of Animal Husbandry.
Hubert Heitman, Jr., Ph.D., Associate Professor of Animal Husbandry.
Glen P. Lofgren, Ph.D., Associate Professor of Animal Husbandry.
Wade C. Rollins, Ph.D., Associate Professor of Animal Husbandry.

† Economics 110 and History 179 are to be interchangeable.
Animal Husbandry

†William C. Weir, Ph.D., Associate Professor of Animal Husbandry.
James M. Boda, Ph.D., Assistant Professor of Animal Husbandry.
Moses T. Clegg, Ph.D., Assistant Professor of Animal Husbandry.
Robert C. Laben, Ph.D., Assistant Professor of Animal Husbandry.
James H. Meyer, Ph.D., Assistant Professor of Animal Husbandry.
Glenwood M. Spurlock, Ph.D., Assistant Professor of Animal Husbandry.

Verne E. Mendel, B.S., Associate in Animal Husbandry.

Departmental Major Advisers.—Mr. Boda, Mr. Cupps, Mr. Heitman, Mr.
Lofgreen, Mr. Mead, Mr. Meyer.
The Major.—See pages 52–54.

LOWER DIVISION COURSES

7. Introduction to Animal Husbandry. (3) I.
A survey of the sources of the world’s supply of animal products, the
distribution of domestic animals in the United States and factors influencing
this; the origin, characteristics, and adaptation of the more important breeds
and the influence of environment upon their development.

8. Livestock Judging and Selection. (1) I.
Laboratory.
Prerequisite: course 7 (may be taken concurrently).
The animal form in relation to its various functions.

UPPER DIVISION COURSES

101. Animal Biochemistry. (3) I.
Prerequisite: Chemistry 8.
The chemistry of animal food constituents, tissues, hormones, and excre-
tory products; chemistry of enzymes and digestion; the fate of foodstuffs in
metabolism; survey of fundamentals of blood chemistry.

102. Animal Biochemistry Laboratory. (3) I.
Lectures and laboratory.
Prerequisite: course 101 (may be taken concurrently).

103. Feeds and Feeding. (3) II.
Prerequisite: Chemistry 8.
The basic principles of animal nutrition as they are applied to livestock
feeding; the composition and uses of feedstuffs in their relation to the feeding
of farm animals; the balancing of rations. (This course does not satisfy
the animal nutrition requirement for animal husbandry majors.)

104A–104B. Livestock Management and Practices. (1–1) Yr.
Laboratory.
Prerequisite: courses 7, 8.
A course designed to give modern concepts regarding identification of
animals, work simplification in the care of animals, arrangement of manage-
ment operations to fit in with seasonal conditions and means of keeping ade-
quate breeding and production records.

† Absent on leave, fall semester, 1957–1958.
105. Elements of Animal Nutrition. (3) II.
Prerequisite: course 101.
A study of the fundamental principles of animal nutrition. Includes a survey of the role of carbohydrates, proteins, lipids, minerals, vitamins and water in nutrition; methods used in evaluation of feeds; nutrient requirements for productive function.

106. Animal Nutrition Laboratory. (3) II.
Lectures and laboratory.
Prerequisite: a course in biochemistry or quantitative analysis and a course in nutrition or in feeds and feeding.
A study of nutrition through animal experimentation, including studies of deficiency symptoms, nutritional balances and measures of the usefulness of feeds.

107. The Genetics of Animal Breeding. (3) II.
(Formerly course 125.)
Lectures and laboratory.
Prerequisite: Genetics 100.
The application of modern genetics to livestock improvement; the principles underlying inbreeding, outbreeding, assortative mating, mass selection, progeny testing, and family selection.

109. The Composition and Use of Feedstuffs. (2) I.
Lectures and laboratory.
Prerequisite: course 105.
The composition of feedstuffs and its relation to the feeding of livestock; preparation of balanced rations; study of feedlot and range and pasture feeding of livestock; discussion of new developments in livestock feeding.

110. Physiology of Domestic Animals. (5) I.
Lectures and laboratory.
Prerequisite: Chemistry 8, Zoology 1A-1B.
The physiology of the neuromuscular, central nervous, circulatory, respiratory, digestive, endocrine, reproductive, and excretory systems.

111. Advanced Livestock Judging. (2) I.
Laboratory. Occasional field trips.
Prerequisite: courses 7, 8.
The relation of form to function. Training in the selection of beef cattle, sheep, hogs, and horses. Some carcass study of meat animals. Given for the first six weeks of the semester.

112. Milk Production. (3) I.
(Formerly course 108.)
Prerequisite: Animal Husbandry 103 or 105.
A study of the basic principles involved in the breeding, feeding, and management of dairy cattle, including a survey of dairying in California.

113. Sheep Production. (2) I.
Prerequisite: Animal Husbandry 105, 107 and 110.
Characteristics of the breeds of sheep and their adaptability to various climates; management of flocks under range and farm systems of agriculture; marketing of lambs; nutrition of sheep; selection of breeding stock and feeders.
114. Advanced Dairy Cattle Production. (3) II.
(Formerly course 112.)
Lectures and laboratory.
A study of factors involved in milk production. Special emphasis will be placed on current scientific literature and findings in the fields of milk secretion, dairy breeding, and genetics, nutrition, physiology, and dairy herd management.

115. Horse Production. (3) II.
Prerequisite: course 103 or 105.
Care, feeding, management, and problems of production of all classes of horses. Developing successful breeding programs. The use of horses for power and pleasure.

116. Advanced Dairy Cattle Judging. (2) I.
Laboratory.
Prerequisite: courses 7, 8.
The relation of form to function; training in the selection of the five principal breeds of dairy cattle. Given for the first six weeks of the semester.

117. Swine Production. (2) II.
Prerequisite: Animal Husbandry 105.
The relation of nutrition, heredity, physiology, climatology and economics to feeding, breeding and management of swine; pork products and consumer demands; marketing.

118. Meat Production. (3) II.
Prerequisite: Animal Husbandry 7, 8, 103 or 105 (which may be taken concurrently).
Managing the breeding herd; improvement of meat type through selection and breeding; comparative reproductive and feed efficiency; environmental adaptability and distribution; and growth and fattening for meat.

119. Beef Cattle Production. (2) I.
Lectures and laboratory.
Prerequisite: Animal Husbandry 105, 107, and 110.
Managing the cow herd; selecting replacement heifers and bulls; reproduction problems; climatic adaptability; growth and fattening; and quality of beef as affected by age, condition, and type.

120. Metabolism and Food Utilization. (3) I.
Prerequisite: course 105 or equivalent.
Physical, chemical and physiological principles in animal nutrition especially bioenergetics and biokinetics. Energy transformations (chemical energy, work and heat) in animals. Metabolic paths, pools, turnover rates and precursor-product relationships involved in the formation of animal products.

121. Physiology of Reproduction. (3) II.
(Formerly course 117.)
Lectures and laboratory.
Prerequisite: course 110.
The physiological mechanisms related to reproduction, breeding efficiency and fertility with special reference to domestic animals.
*122. Wool Technology. (2) I.
 (Formerly course 113.)
 Prerequisite: courses 7 and 8.
 Survey of world production and consumption of wool; a study of the
 physical properties; marketing of the clip; grading, scouring, drying; prin-
 ciples of manufacture.

*123. Wool Technology Laboratory. (2) I.
 (Formerly course 114.)
 Prerequisite: courses 7, 8, 122 (may be taken concurrently).
 Microscopic structure of wool and other textile fibers; judging the shorn
 and unshorn fleece, grading the clip, scouring.

130. Physiology of the Endocrine Glands. (3) II.
 Prerequisite: course 110 or equivalent.
 Control of endocrine secretion and the physiological effects of the hor-
 mones with emphasis on endocrine problems relating to domestic animals.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
 related courses

Principles of Pathology and Control of Diseases of Domestic Animals.
 (Veterinary Science 111)

Poultry Pathology Laboratory (Veterinary Science 112)

Graduate Courses

290. Seminar in Animal Husbandry. (1) I and II.
 Reports and discussions of topics of interest in the fields of animal hus-
 bandry, animal nutrition, animal physiology or animal genetics.

299. Research in Animal Husbandry. (1–6) I and II.
 Research may be undertaken in the fields of animal husbandry, animal
 nutrition, animal physiology, or animal genetics.

ANIMAL PHYSIOLOGY

(Committee Office, 109 Poultry Building)

Committee in Charge:

Arthur L. Black, Ph.D., Associate Professor of Biochemistry.
James M. Boda, Ph.D., Assistant Professor of Animal Husbandry.
Floyd D. Carroll, Ph.D., Associate Professor of Animal Husbandry.
Moses T. Clegg, Ph.D., Assistant Professor of Animal Husbandry.
Harold H. Cole, Ph.D., Professor of Animal Husbandry.
Perry T. Cupps, Ph.D., Associate Professor of Animal Husbandry.
George H. Hart, V.M.D., M.D., Professor of Veterinary Medicine, Emeritus.
Louis W. Holm, Ph.D., Associate Professor of Veterinary Medicine (Acting
Chairman of the Committee).

* Not to be given, 1957–1958.
Instruction in Animal Physiology is not organized as a single administrative unit in the University, but the relevant courses are offered by a number of departments, and are coordinated by the Group in Animal Physiology. An undergraduate major is offered within the animal science curriculum.

Letters and Science List.—Animal Physiology 100.
Group Major Adviser.—Mr. Holm.
The Major.—See pages 52–55.

Upper Division Courses

100. General Physiology. (4) I.
Lectures and laboratory.
Prerequisite: Chemistry 1A–1B, 8; Physics 2A–2B; Physiology 1, IL, or Zoology 1A–1B, or Botany 1. Recommended: Animal Husbandry 101 or Chemistry 101; Animal Husbandry 110; Mathematics 16A–16B.
Lectures and laboratory on the physical and chemical processes of cells and tissues.

*143. Use of Isotopes as Tracers in Biological Research. (2) II.
Prerequisite: physiology or biochemistry (plant or animal). Recommended: Animal Husbandry 120, calculus, Physics 121, Bacteriology 103.
Discussion and demonstration of the use of isotopes as tracers particularly in the study of metabolic processes in organisms.
Given in the spring semester of odd-numbered years.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

Graduate Course

201A–201B. Seminar in Animal Physiology. (1–1) Yr.
Discussion and critical evaluation of advanced topics and current trends in research.

* Not to be given, 1957–1958.
Animal Physiology; Bacteriology

RELATED COURSES

Introductory Physiology (Physiology 1, 1L, see Zoology)
Physiology of Domestic Animals (Animal Husbandry 110)
Mammalian Physiology (Veterinary Science 140, 140L)
Avian Physiology (Poultry Husbandry 107, 108)
Physiology of the Endocrine Glands (Animal Husbandry 130)
Physiology of Reproduction (Animal Husbandry 121)
Environmental Physiology of Domestic Animals (Poultry Husbandry 149)
Metabolism and Food Utilization (Animal Husbandry 120, Veterinary Science 105)
Experimental Physiology (Veterinary Science 265)

ANTHROPOLOGY

For courses in anthropology see "Sociology, Anthropology, and Geography" on page 213.

ART

For courses in art see "Philosophy and Fine Arts" on page 192.

BACTERIOLOGY

(Department Office, 1076C Haring Hall)

Robert E. Hungate, Ph.D., Professor of Bacteriology (Chairman of the Department).
Courtland S. Mudge, Ph.D., Professor of Bacteriology, Emeritus.
Donald M. Reynolds, Ph.D., Associate Professor of Bacteriology.
†Mortimer P. Starr, Ph.D., Associate Professor of Bacteriology.
Allen G. Marr, Ph.D., Assistant Professor of Bacteriology.

Reese H. Vaughn, Ph.D., Professor of Food Technology.

Letters and Science List.—All undergraduate courses in bacteriology except course 105 are included in the Letters and Science List of Courses (see page 90).

The Major in Microbiology.—To permit a broader training than possible within the usual major in bacteriology, a major in microbiology is offered. This permits a proper balance of studies in bacteriology with the auxiliary chemical and biological sciences.

Major Adviser.—Mr. Reynolds.

Preparation for the Major.—Required: Bacteriology 1; Botany 1; Chemistry 1A–1B, and 8; Physics 2A–2B; Zoology 1A. Recommended: Chemistry 9; Mathematics 16A–16B; elementary courses in German and French.

† Absent on leave, spring semester, 1957–1958.
The Major.—Required: Bacteriology 100 and at least 5 units of other upper division courses in bacteriology; Chemistry 5, 101, 102. In addition, at least 6 units from the following list with the approval of the major adviser (in special cases, substitutions may be permitted): Bacteriology 103, 104, 105, 199; Botany 114; Chemistry 109; Food Technology 116; Genetics 100; Plant Pathology 124A–124B; Veterinary Science 124; Zoology 110.

All students majoring in microbiology are required to take a comprehensive final examination during the final semester of the senior year. The examination carries no credit value.

All courses required for the major must be completed with at least a grade of C.

Graduate Study.—The Group in Microbiology offers programs of study and research leading to the M.A. and Ph.D. degrees in general microbiology, including bacteriology. The offerings of the Department of Bacteriology are augmented by courses and personnel of the departments of Botany, Food Technology, Chemistry, and Dairy Industry, the Enology Laboratory, and the School of Veterinary Medicine. For detailed information regarding graduate study in microbiology address the Graduate Adviser in Microbiology, Department of Bacteriology.

Lower Division Courses

1. Introduction to Microbiology. (4) II.

Lectures and laboratory.
Prerequisite: Chemistry 1A; one course in botany, zoology, or physiology (Botany 1, Zoology 1A or 10, Physiology 1, or equivalent).
A general introduction to microbiology.

*2. Bacteriology. (4) II.

Lectures and laboratory.
Prerequisite: Chemistry 1A; Botany 1; Zoology 1A or 10.
Morphology, classification, ecology, and metabolism of microorganisms; preparation of culture media; microscopic examination, cultivation, and identification of bacteria; introduction to microbiology of air, water, soil, foods (including milk), industrial processes, and certain human, animal, and plant diseases.

Upper Division Courses

100. Advanced Bacteriology. (5) I.

Lectures and laboratory.
Prerequisite: course 1; Chemistry 8; Physics 2B.
Microscopy, cytology and growth of microorganisms, effects of the physicochemical environment, and microbial genetics.

103. Microbial Metabolism. (2) I.
Prerequisite: course 1; biochemistry (Chemistry 101, Animal Husbandry 101, or equivalent).
A survey of the metabolic activities of microbes.

104. Advanced General Microbiology. (4) I.

Lectures and laboratory.
Prerequisite: course 1; Chemistry 8.
Intensive study of selected groups of microbes, techniques of enrichment culture, ecology, and principles of classification.

* Not to be given, 1957–1958.
105. Food and Industrial Microbiology. (3) I.
 Prerequisite: Bacteriology 1, Chemistry 1A–1B, 8.
 Microorganisms and their activities in relation to food industries and indus-
trial processes such as production of industrial alcohol, vinegar, solvents,
vitamins and enzymes, antibiotics and other drugs. For laboratory to accom-
pany the course, students should register in Food Technology 105.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
 Prerequisite: consent of the instructor based on adequate preparation of
 the student in allied fields.
 Investigation of special problems.

GRADUATE COURSES

201. Special Study and Research in Microbiology. (1–6) I and II.

202. Seminar in Bacteriology and Microbiology. (1) I and II.

203. Selected Topics in Microbial Metabolism. (2) II.
 Prerequisite: course 103.
 Lectures and discussions. Metabolic pathways of microbes, comparative
biochemistry, and enzymology.
 May be repeated once for credit.

204. Microbial Biochemistry. (3) I.
 Lectures and laboratory.
 Prerequisite: course 103.
 Discussions of aspects of microbial biochemistry including manometry,
spectrophotometry, chromatography, use of radioactive tracers, and isolation
and purification of enzymes.
 Enrollment limited to 5 students selected by consultation with the instructor
during the registration period.
 Offered in alternate years.

205. Bacterial Taxonomy. (2) I.
 Principles of classification. Nomenclatural systems and codes. Evolution
and phylogeny of bacteria and other microorganisms. Determinative methods,
manuals and schemes.

RELATED COURSES

Comparative Morphology of Nonvascular Plants (Botany 114)

Dairy Bacteriology (Dairy Industry 142)

Food and Industrial Microbiology (Food Technology 105)

Yeast and Related Organisms (Food Technology 116)

Pathogenic Fungi (Plant Pathology 124A–124B)

Soil Microbiology (Soils and Plant Nutrition 111)

Immunology (Veterinary Science 126)
Bacteriology; Botany

Medical Microbiology (Veterinary Science 127)
Microbiology of Wine Production (Viticulture and Enology 117)
Protozoology (Zoology 110)

BOTANY

(Department Office, 2 Botany Building)

Vernon I. Chandle, Ph.D., Professor of Botany (Chairman of the Department).
†Alden S. Crafts, Ph.D., Professor of Botany.
Katherine Eau, Ph.D., Professor of Botany.
T. Elliot Weier, Ph.D., Professor of Botany.
Herbert B. Currier, Ph.D., Associate Professor of Botany.
Ernest M. Gifford, Jr., Ph.D., Associate Professor of Botany.
C. Ralph Stocking, Ph.D., Associate Professor of Botany.
John M. Tucker, Ph.D., Associate Professor of Botany.
Jack Major, Ph.D., Assistant Professor of Botany.
—, Assistant Professor of Botany.

Thomas J. Sheets, M.S., Associate in Botany.

Letters and Science List.—All undergraduate courses except Botany 8, 107, 131, and 155 are included in the Letters and Science List of Courses (see page 90).

Departmental Major Adviser.—Mr. Stocking.

Preparation for the Major.—Required: Botany 1 and Chemistry 1A, 8. If the lower division program is crowded, the student may postpone Chemistry 8 until he reaches the upper division, provided it is taken before Botany 7.

Recommended.—German, French, Physics 2A–2B, 3A–3B; elementary courses in other biological sciences.

The Major.—The courses in botany are organized on levels of increasing specialization corresponding to the elementary, intermediate, and the advanced stages of instruction. Requirements for the major are: the elementary course, Botany 1; the intermediate courses, Botany 7, 108, 114, and 116; of the additional required 13 upper division units, with the approval of the major adviser, 6 units may be elected from upper division courses in allied fields.

Students wishing to prepare for employment as seed analysts should confer with the major adviser about recommended course selections in other departments.

Graduate Study.—Graduate programs leading to M.A., M.S., and Ph.D. degrees are offered in cytology, plant physiology, anatomy, and allied areas. The resources of the department are augmented by appropriate courses in related departments.

LOWER DIVISION COURSES

1. General Botany. (5) I and II.

Lectures and laboratory.

An introduction to the morphology, physiology, and genetics of flowering plants; brief survey of the plant kingdom including fungi causing plant diseases.

7. Introduction to Plant Physiology. (4) II.
Prerequisite: course 1, Chemistry 1B or 8.
The fundamental activities of plants, such as absorption, transpiration, synthesis of foods, respiration, growth, movement, and reproduction.

8. Poisonous Plants. (2) II.
Lectures and laboratory.
Identification, distribution, toxic principles, nature of injury and animals affected, and plant control measures.

Upper Division Courses

In addition to requirements specifically noted, the prerequisite for all upper division courses is Botany 1.

Morphology and Taxonomy

105. Plant Anatomy. (4) I.
Lectures and laboratory.
Structure and growth of meristems; development and structure of cells, tissues, and tissue systems; comparative anatomy of stem, root, and leaf.

107. Weed Control. (4) II.
Lectures and laboratory.
Prerequisite: Chemistry 1A–1B.
Introduction and spread of weeds; cultural, cropping, biological, and chemical methods of control.

108. Systematic Botany of Flowering Plants. (3) II.
Lectures and laboratory.
Laboratory and field studies of the characters and relationships of the principal families and orders of flowering plants. Principles of taxonomy. Practice in identification of species by means of keys.

110. Plant Ecology. (4) II.
Lectures and laboratory.
Prerequisite: Botany 7. Recommended: Botany 108 and a course in soil science.
Study of individual plants, species, and vegetation in relation to environment, and of modification of the environment by vegetation.

114. Comparative Morphology of Nonvascular Plants. (4) II.
Lectures and laboratory.
Prerequisite: Botany 1, or Bacteriology 1, or equivalent.
Introduction to structure and reproduction of the algae, fungi, and bryophytes; special emphasis on the cytology, physiology, and economic importance of fresh-water and marine algae; field trips.
Offered in alternate years.

116. Comparative Morphology of Vascular Plants. (4) I.
Lectures and laboratory.
Prerequisite: Botany 1 or equivalent.
Introduction to structure, reproduction, and evolution of the major groups of living and extinct vascular plants; special emphasis on development of pollen, embryo, seed, and fruit of seed plants.
RELATED COURSES

Pathogenic Fungi (Plant Pathology 124A–124B)
Fruit Morphology (Pomology 110)

Plant Physiology and Plant Biochemistry

120A–120B. Plant Physiology. (2–2) Yr.
Prerequisite: Chemistry 8. Recommended: Chemistry 5. Course 121A–121B should be taken concurrently.
The cell as a physicochemical system, water relations, mineral nutrition, translocation; plant metabolism including enzymes, photosynthesis, respiration, and various aspects of growth.

121A–121B. Plant Physiology Laboratory. (2–2) Yr.
Laboratory.
Prerequisite: Chemistry 8. Recommended: Chemistry 5.
To be taken concurrently with course 120A–120B.

RELATED COURSES

General Biochemistry (Chemistry 101)
Biochemistry Laboratory (Chemistry 102)

Cytology and Genetics

130. Plant Cytology. (4) I.
Lectures and laboratory.
Prerequisite: Genetics 100.
The structure and function of the cytoplasm and cytoplasmic bodies; detailed studies of the nucleus, mitosis, and meiosis; chromosome structure and chemistry; chromosome aberrations.

131. Chromosome Techniques. (2) II.
Laboratory.
Prerequisite: course 130 or equivalent, and permission of the instructor.
A technique course devoted to methods used in the preparation of chromosomes for detailed study. Laboratory work to consist of preparation of temporary and permanent chromosome smears by various methods, preparation of illustrations for publications, including photomicrographs.

RELATED COURSES

Principles of Genetics (Genetics 100)
Principles of Genetics Laboratory (Genetics 100C)

General Courses

155. Plant Microtechnique. (2) I.
Laboratory.
Prerequisite: course 116 or 105, or equivalent.
Introduction to theory and practical laboratory methods in preparing plant materials for microscopic examination.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
GRADUATE COURSES

200A–200B. Research in Botany. (1–6; 1–6) Yr.

203. Seminar in Plant Physiology. (1) I and II.
Survey and discussion of recent developments in the field of plant physiology at the graduate level.

206. Seminar in Plant Morphology. (1) II.
Survey and discussion of recent developments in the field of plant morphology at the graduate level.

*210. Cell Physiology-Protoplasmatics. (3) II.
Lectures and laboratory.
Prerequisite: Botany 120A, 120B, 121A, 121B. Recommended: Botany 105 and/or Botany 130.
Selected plant physiological topics treated on the cellular level: water relations, plasmolytic phenomena, cytoplasmic movements, transport mechanisms, vital staining, responses of cells to high and low temperatures, wound reactions, effect of poisons. Microscopic techniques are stressed.
Offered in alternate years.

211. Plant Cell Metabolism. (3) I.
Lectures and laboratory.
Prerequisite: consent of the instructor.
Physiology of the plant cell dealing particularly with the roles of plastids, mitochondria, microsomes, and nuclei in cellular metabolism. Isolation and study of these particulates, using centrifugation, gasometric, chromatographic, and spectroscopic methods. Detailed consideration of photosynthesis and respiration.
Offered in alternate years.

*212. Physiology of Herbicidal Action. (3) I.
Lectures and laboratory.
Prerequisite: Botany 107, 120A, 120B, 121A, 121B.
Lectures and laboratory exercises on the fundamental processes of absorption, translocation, and physiological action of herbicides. Greenhouse studies on toxicants applied through the soil and applied to foliage. Greenhouse culture, toxicity rating, autoradiography, and chromatography.
Offered in alternate years.

CHEMISTRY

(Department Office, 32 Chemistry Building)

Lawrence J. Andrews, Ph.D., Professor of Chemistry.
Raymond M. Keefer, Ph.D., Professor of Chemistry.
Edgar P. Painter, Ph.D., Professor of Chemistry.
Harold G. Reiber, Ph.D., Professor of Chemistry (Chairman of the Department).
David H. Volman, Ph.D., Professor of Chemistry.

* Not to be given, 1957–1958.
Herbert A. Young, Ph.D., Professor of Chemistry.
Robert K. Brinton, Ph.D., Associate Professor of Chemistry.
Richard E. Kepner, Ph.D., Associate Professor of Chemistry.
Thomas L. Allen, Ph.D., Assistant Professor of Chemistry.
Charles P. Nash, Ph.D., Instructor in Chemistry.

Letters and Science List.—All undergraduate courses in chemistry are included in the Letters and Science List of Courses (see page 90).

Major Subject Adviser.—Mr. Keefer.

Preparation for the Major.—The recommended preparation is as follows: Chemistry 1A–1B, 5, and either 105 or 112A; English 1A–1B; Physics 4A, 4B, 4C; Mathematics 3A–3B, 4A–4B; and a reading knowledge of German.

High school students should note that the preparation for the major is simplified if their high school programs include chemistry and four years of mathematics.

The Major.—The minimum requirement for the major in chemistry is Chemistry 105 or 112A, 110A–110B, 111, 112B and two additional courses in chemistry, of which one must include laboratory work, selected from the following group: 114H, 124, 130, 133, 180H. All units in chemistry in excess of 13 are counted as upper division units toward the major; all units in chemistry in excess of 13, taken in the upper division will count as upper division credit toward the 36-unit requirement.

Completion of the major in chemistry meets the standards recommended by the American Chemical Society for professional training in chemistry and the requirements for eligibility to full membership in the American Chemical Society in the minimum time of two years after graduation.

Honor Students in the Upper Division.—Upper division students in the College of Letters and Science who propose to make chemistry their major are placed on the honors list when they have attained a scholarship average of at least grade B. Normally only students in the honors group are permitted to enroll for honors courses (marked H).

Graduate Study.—The Department of Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees in chemistry. Prospective candidates for advanced degrees in chemistry may specialize in agricultural, biological, inorganic, organic, or physical chemistry. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Chemistry.

Lower Division Courses

1A. General Chemistry. (5) I and II.
Lectures and laboratory.
Prerequisite: high school chemistry; or high school physics and three years of high school mathematics (with average grade of B or higher); or second-semester standing.

1B. General Chemistry (Qualitative Analysis). (5) I and II.
Lectures and laboratory.
Prerequisite: course 1A.
5. Quantitative Analysis. (3) I and II.
Lectures and laboratory.
Prerequisite: course 1B with grade of C or higher.
A short course dealing with the principles and methods of quantitative analysis.

8. Short Survey of Organic Chemistry. (3) I and II.
Prerequisite: course 1A or 1B with a grade of C or higher.
An introductory study of the compounds of carbon.

Lectures and laboratory.
Prerequisite: course 1B with a grade of C or higher and course 8, which should be taken concurrently.
An experimental study of the physical properties and chemical reactions of the common classes of organic substances.

Upper Division Courses

101. General Biochemistry. (3) II.
Prerequisite: course 8 or 112A with a grade of C or higher, or consent of the instructor.
The chemistry of carbohydrates, fats, proteins, amino acids, nucleic acids, and related compounds in plant and animal tissues. The role of these compounds in life processes.

*102. Biochemistry Laboratory. (2) II.
Laboratory.
Prerequisite: course 5 or 112B, and 101 (101 may be taken concurrently).

105. Advanced Quantitative Analysis. (3) II.
Lectures and laboratory.
Prerequisite: course 5.

109. Physical Chemistry, Brief Course. (3) II.
Prerequisite: course 5; one year of college physics.
Graduate students of high standing may, under exceptional circumstances, be admitted without the prerequisite course in chemistry.
Selected topics in physical chemistry.

110A. Physical Chemistry. (3) II.
Prerequisite: course 5; Mathematics 4A; one year of college physics.
The general principles of physical chemistry and elementary thermodynamics.

*110B. Physical Chemistry. (3) I.
Prerequisite: course 110A.
A continuation of course 110A.

111. Physical Chemistry. (3) I.
Laboratory.
Prerequisite: courses 110A–110B or course 109; and calculus.
Physicochemical measurements and laboratory experiments illustrating some of the important principles of physical chemistry.

* Not to be given, 1957–1958.
112A. General Organic Chemistry. (5) II.
Lectures and laboratory.
Prerequisite: course 11B with a grade of C or higher.
A course with some emphasis on modern theoretical concepts designed
primarily for majors in Chemistry. With course 112B, a broader coverage of
organic chemistry than courses 8 and 9.

112B. General Organic Chemistry. (5) I.
Lectures and laboratory.
Prerequisite: course 112A or 8 and 9.
A continuation of course 112A.

112C. General Organic Chemistry. (3) I.
Prerequisite: course 112A or 8 and 9; and consent of instructor.
Equivalent to the lecture part of 112B. Intended primarily for graduate
students in fields other than chemistry. Except in very unusual circumstances
undergraduates will enroll in 112B rather than 112C.

*114H. Physical Chemistry—Thermodynamics. (3) I.
Prerequisite: courses 5, 110A–110B; Physics 4C or equivalent; familia-
ricity with differential and integral calculus. Restricted to honor students.
The principles of thermodynamics, with examples of their application to
chemistry.

124. Advanced Inorganic Chemistry. (3) II.
Lectures and laboratory.
Prerequisite: course 105, and 109 or 110B (110B may be taken concur-
rently).
Selected groups of inorganic compounds are studied with the aid of modern
physicochemical concepts.

130. Qualitative Organic Analysis. (3) II.
Lectures and laboratory.
Prerequisite: courses 5 and 112B or 112C.
The application of physical and chemical techniques to the qualitative
identification of organic compounds.

133. Advanced Organic Chemistry. (3) I.
Prerequisite: courses 8 and 9 or 112B; 109 or 110B.
Modern concepts of substitution, elimination and addition reactions, re-
arrangements, and stereochemistry.

180H. Undergraduate Research. (2–5) I and II.
Prerequisite: course 110B.
Students who have completed with high credit a satisfactory number of
advanced courses may prosecute original research under the direction of one
of the members of the instructing staff. The consent of the instructor must be
obtained.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
Prerequisite: consent of the instructor based upon adequate preparation
in chemistry, mathematics, and physics.
Investigation of special problems to be selected according to the prepara-
tion and needs of the individual.

* Not to be given, 1957–1958.
GRADUATE COURSES

204. Chemical Kinetics. (3) II.
A consideration of important classes of chemical reactions in gaseous and condensed phases. Experimental methods, and application of theory.
Offered in alternate years.

205. Quantum Chemistry. (3) I.
The quantum theory and its chemical applications.
Offered in alternate years.

213. Physical Biochemistry. (3) II.
The application of physical-chemical principles to selected topics of biological interest.

*220A. Organic Chemistry. (3) II.
Selected topics of current interest concerning the structure and synthesis of the more complex organic compounds with emphasis on heterocyclic systems.
Offered in alternate years.

220B. Organic Chemistry. (3) II.
Selected topics of current interest concerning the structure and synthesis of the more complex organic compounds with emphasis on acyclic and homocyclic systems.
Offered in alternate years.

280. Research. (2–9) I and II.
The laboratory is open to qualified graduate students who wish to pursue original investigation. Students desiring to enroll in this course should communicate with the department well in advance of the opening of the semester in which the work is to be undertaken. Such work will be under the direction of some member of the instructing staff, who will determine the credit value.

290. Seminar. (1) I and II.
Prerequisite: consent of instructor.
The subjects covered will vary from year to year and will be announced at the beginning of each semester.

291. Seminar in Biochemistry. (1–1) I and II.
Prerequisite: consent of the instructor.
Topics in biochemistry will be arranged each semester.

CLASSICS

For courses in classics, see “Foreign Languages” on page 164.

DAIRY INDUSTRY

(Department Office, 209 Dairy Industry Building)

Eugene L. Jack, Ph.D., Professor of Dairy Industry (Chairman of the Department).

Nikita P. Tarassuk, Ph.D., Professor of Dairy Industry.

* Not to be given, 1957–1958.
Edwin B. Collins, Ph.D., Associate Professor of Dairy Industry.
Walter L. Dunkley, Ph.D., Associate Professor of Dairy Industry.
Walter G. Jennings, Ph.D., Assistant Professor of Dairy Industry.
Thomas A. Nickerson, Ph.D., Assistant Professor of Dairy Industry.
Lloyd M. Smith, Ph.D., Assistant Professor of Dairy Industry.
Bruce E. Hubbell, Jr., B.S., Lecturer in Dairy Industry.

Reese H. Vaughn, Ph.D., Professor of Food Technology.

Departmental Major Adviser.—Mr. Jennings.
The Major.—See pages 57–58.

LOWER DIVISION COURSES

1. **Principles of Dairying.** (3) I.
The composition and properties of milk and their influence on the principles of dairy products processing. The importance of the milk constituents in human nutrition. Some economic aspects of the dairy industry in California.

2. **Laboratory in Principles of Dairying.** (1) I.
 Laboratory.
 Prerequisite: course 1 (may be taken concurrently).
 A laboratory course to accompany course 1; primarily for dairy industry majors. Identification and properties of the constituents of milk, laboratory tests of milk and milk products; study of dairy processing.

3. **Dairy Plant Operations.** (1) I.
 Laboratory.
 Prerequisite: course 1 (may be taken concurrently).
 Demonstrations, practices, and problems in commercial dairy processing operations, including sanitary milk production, dairy inspection, receiving operations; processing market milk, ice cream, cheese, butter and concentrated dairy products. An elective course for students not majoring in dairy industry.

49. **Summer Practice and Observation Course.** (No credit)
 Daily, except Sunday, 8–5, six weeks. Required of all students whose major is dairy industry, unless proof of equivalent experience can be shown.
 Prerequisite: course 1.
 Practice in processing dairy products, including market milk, butter, cheese, ice cream, and concentrated milks. Applications of laboratory control and some practice in equipment maintenance.

UPPER DIVISION COURSES

 Prerequisite: courses 1 and 2 recommended.
 The principles of dairy processes including pasteurization, sterilization, homogenization, separation, clarification, freezing, condensing, drying, and crystallization, and their application in the processing of milk, ice cream, cheese, butter, condensed and dried milks, and specialty products.
102A–102B. Dairy Processing Laboratory. (2–2) Yr.
Laboratory.
Prerequisite: courses 2; 101A–101B (may be taken concurrently); or consent of the instructor.
A laboratory course to accompany courses 101A–101B, primarily for dairy industry majors. Laboratory- and commercial-scale studies of dairy-processing operations; problem assignments; field trips.

*106. Chemistry of Milk and Dairy Products. (4) II.
Lectures and laboratory.
Prerequisite: Chemistry 8.
The physical, and chemical properties of milk and milk products, and their relation to the manufacture and quality of dairy products.

107. Laboratory Control for Dairy Plants. (2) I.
Lecture and laboratory.
Prerequisite: course 1; Bacteriology 1; Chemistry 5.
Bacteriological and chemical control practices in the processing of dairy products.

108. Food Industry Sanitation. (3) II.
Lectures and laboratory.
Prerequisite: Bacteriology 1, Chemistry 8.
Principles and practices of food industry sanitation, laws and regulations; inspection techniques; significance of microorganisms; control of animal and insect pests; detergents and chemical sanitizers; water supplies and waste disposal; plant and equipment problems; and sanitation of selected food industries.

142. Dairy Bacteriology. (3) I.
Lectures and laboratory.
Prerequisite: Chemistry 1A; Bacteriology 1.
The bacteria found in milk and other dairy products; their ways of entry; methods used in determining their number; effect of pasteurization and other processes on bacteria.

160A–160B. Proseminar. (1–1) Yr.
160A. Proseminar in determining the quality of dairy products and identifying defects.
160B. Proseminar in assigned and selected topics.
Required of all dairy industry majors in their senior year.

198. Directed Group Study. (1–5) I and II.
Prerequisite: junior or senior standing.
Group study of selected topics. Students may enroll for field trips of at least one week's duration.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

* Not to be given, 1957–1958.
GRADUATE COURSES

290. Seminar. (1) I and II.
Prerequisite: graduate standing.
Selected topics in the fields of dairy chemistry, dairy bacteriology, dairy technology and dairy engineering.

299. Research. (1-6) I and II.
Prerequisite: graduate standing.
Investigations may be undertaken in the chemical, bacteriological, technological and engineering phases of dairy science under the direction of a member of the instructional staff.

DECORATIVE ART

For courses in decorative art, see "Home Economics" on page 177.

DRAMATIC ART

For courses in dramatic art, see "English, Dramatic Art, Speech" on page 155.

ECONOMICS

(Department Office, 112 Temporary Building No. 8)

†John B. Glassburner, Ph.D., Assistant Professor of Economics (Chairman of the Department).
Warren S. Gramm, Ph.D., Assistant Professor of Economics.
Adam A. Pepelasis, Ph.D., Assistant Professor of Economics.

Letters and Science List.—All undergraduate courses in economics are included in the Letters and Science List of Courses (see page 90).

Departmental Major Advisers.—Mr. Glassburner, Mr. Gramm.

Preparation for the Major.—Required: Economics 1A–1B and one other sequence in Group 4 as listed for the (e) requirement for admission to the upper division of the College of Letters and Science; Mathematics 13 or a course in statistics approved by the department; and at least an average grade of C in these courses. Students planning to major in economics should complete these requirements by the end of the sophomore year.

The Major.—Required: 24 units of upper division courses in economics, of which Economics 100A–100B and 110 are required.

Except under extraordinary circumstances, no more than 9 units of economics may be taken in any one semester.

The department will certify to the completion of the major program for graduation only on the basis of at least a C average in the upper division courses taken in the department in satisfaction of major requirements. Students who do not maintain such an average may be required at any time to withdraw from the major in economics.

LOWER DIVISION COURSES

1A. Principles of Economics. (3) I and II.
Course 1A will emphasize employment, income and money.

1B. Principles of Economics. (3) I and II.
Course 1A is not a prerequisite to 1B, but it is recommended that the courses be taken in sequence.
Course 1B will emphasize price theory, distribution, and industrial structure.

11A–11B. Elementary Accounting. (3–3) Yr.
Lectures and laboratory.
Prerequisite: sophomore standing.
The basic concepts and techniques of accounting practice. 11A is prerequisite to 11B.

UPPER DIVISION COURSES

Upper Division Prerequisites.—For students with a major in economics, courses 1A–1B are prerequisite to all upper division work in the department. For students not majoring in economics, junior standing or consent of the instructor is prerequisite to all upper division courses in the department.

100A–100B. Economic Theory. (3–3) Yr.
Course 100A will be concerned with the scope and method of economic science and the theory of income and employment. Course 100B will be concerned with price and distribution theory.

101. History of Economic Thought. (3) I.
The attempts of economic theorists to solve the problems which have been of critical importance to society. Emphasis on the meaning of theories within the historical periods of their projection.

110. Economic History Since 1750. (3) I.
Economic development since 1750 in the leading industrialized countries.

121. Industrial Organization. (3) I.
The organization and structure of industries and their markets in the American economy, competitive behavior, price policy, and market performance in such industries; public policy in the regulation of industry.

130A*–130B. Public Finance and Taxation. (3–3) Yr.
A general survey of the growth and economic effects of public expenditure, revenue, and borrowing; the relations between public fiscal policy, the business cycle, and economic development.

133. Dynamic Economics and Business Fluctuations. (3) II.
Prerequisite: Mathematics 13 and consent of the instructor.
An analysis of the general features and chief causes of economic change, with special emphasis on the cyclical instability of economic activity. It is recommended that this course be taken in the senior year.

135. Money and Banking. (3) I.
Primarily for juniors.
Monetary and banking institutions; monetary theory, international monetary relations, monetary policy.

* Not to be given, 1957–1958.
150. Labor Economics. (3) II.
Historical and structural analysis of the growth of trade unionism; modern collective bargaining; labor legislation.

190. International Economic Relations. (3) II.
The theory of international trade; international monetary relationships; economic nationalism; relationships between external trade and finance and domestic economic activity.

199. Special Study for Advanced Undergraduates. (1–3) I and II.

EDUCATION

(Department Office, 8 Temporary Building No. 6)

Sidney S. Sutherland, M.S., Professor of Education (Chairman of the Department).
Frederick L. Griffin, M.S., Professor of Agricultural Education, Emeritus.
Donald F. Harder, Ed.D., Assistant Professor of Education.
Elwood M. Juergenson, M.Ed., Assistant Professor of Education.
Margaret R. Sutherland, Ph.D., Assistant Professor of Education.
Orville E. Thompson, Ph.D., Assistant Professor of Education.

Lawrence P. Newberry, M.A., Lecturer in Education.
Arline Johnson, M.S., Lecturer in Education.

Letters and Science List.—Education 110.
Departmental Major Advisers.—Mr. Juergenson, Mr. Thompson.
Credentials Counselors:
General Secondary.———, Miss Sutherland.
Special Secondary—Agriculture.—Mr. Juergenson.
Special Secondary—Home Economics.—Miss Johnson.
The Major.—See pages 46–47.

Upper Division Courses

110. Introduction to Educational Psychology. (3) I and II.
Prerequisite: Psychology IA.
Original nature and tendencies of man; the learning process; individual differences and their measurement; the growth and development of children.

115. Tests and Measurements. (3) I and II.
Prerequisite: course 110 (may be taken concurrently).
A critical survey of teacher-made and standardized tests; principles and functions of measurement in education, current practices in school marks; supervised work in test administration, scoring, and interpretation.

150. Bibliographic Methods. (1) I.
Prerequisite: junior standing.
Techniques of literature searching and the location of information. Use of bibliographies, abstract journals, card catalogs, reference works and other
source materials. Preparation of scientific bibliographies. Designed to assist upper division and graduate students in preparation of research papers and dissertations.

160. Vocational Education. (2) I and II.

Philosophy and organization of vocational education of less than college grade, with particular reference to educational principles for agriculture, commerce, homemaking, and industry.

†161. Problems in Vocational Education. (2) I and II.

Vocational surveys, junior employments, occupational analysis, trade tests, apprentice training, vocational education for adults, foremanship courses, corporation schools, current legislation, etc.

163. Introduction to Guidance and Counseling Psychology. (3) I and II.

Prerequisite: course 110 (may be taken concurrently).

Nature and scope of guidance programs in public schools; role of teacher, counselor, and administrator. Survey of basic tools and techniques. Theory and practice of counseling psychology with particular emphasis on educational and vocational adjustment.

170. Secondary Education. (2) I and II.

Prerequisite: course 110.

Function, scope, objectives, and curricula, including the fields of the high school and junior college in relation to individual and social needs.

187. Extension Education in Agriculture and Home Economics. (2) II.

Lectures and laboratory or field trip.

Prerequisite: junior or senior standing.

A study of the techniques of teaching agriculture and home economics as developed in the United States through the Agricultural Extension Service. Laboratory practice in extension methods such as program planning, demonstrations, discussions, use of bulletins, the press, visual aids. Field study of organization and programs.

*188. Technical Journalism. (3) II.

Lectures and laboratory.

Prerequisite: junior or senior standing.

Principles and techniques of presenting and interpreting technical information in agriculture and home economics to lay groups. Preparation and use of news and feature articles, circulars, radio and television scripts, and feature exhibits.

198. Directed Group Study. (2) I and II.

199. Special Study for Advanced Undergraduates in Agricultural Education. (1–5) I and II.

GRADUATE COURSE

260A–260B. Vocational Education Seminar. (2–2) Yr.

For graduate students whose major interest is in vocational education, vocational guidance, or closely related problems.

* Not to be given, 1957–1958.
† Open only to apprentice teachers and graduate students.
SUPERVISED TEACHING COURSES

†320A. Introduction to Teaching. (1) I and II.
A limited number of juniors and seniors will be admitted.
Lectures, conferences, and field work. Observations and participation in
some form of public school work.

320E. Audio-Visual, Radio, and Other Instructional Resources. (2) I and
II.
Lectures, conferences, demonstrations, and school experience. Introduction
to the materials and methods of audio-visual-radio education. Preparation
of teaching materials; collecting, organizing, processing, and evaluating
audio-visual materials.

†320C. Supervised Teaching. (3) I and II.
Prerequisite: course 320A. Course 320E must be taken concurrently.
Sec. 1. Agriculture.
Sec. 2. Homemaking.
Sec. 3. General.
Directed teaching for candidates for the special secondary and general
secondary credentials.

†320E. Methods of Teaching. (2) I and II.
Lectures, conferences, and laboratory.
All students enrolled in 320E must enroll in 320C concurrently.
Sec. 1. Agriculture.
The principles and methods of teaching agriculture in the secondary
schools of California in accordance with the provisions of the Federal and
State Vocational Education Acts.
Sec. 2. Homemaking.
Planning for teaching; basis for selection and organization of materials,
their use and evaluation; teaching methods and classroom aids. Practices in
class and department management. Relation of department programs to
school and community.
Sec. 3. General.
Student teaching in subjects other than agriculture and homemaking.
Selection, organization, presentation, and evaluation of materials. Practice in
the provision of good learning situations in secondary schools.

†323. Practicum in Supervised Teaching. (2-4) I and II.
Prerequisite: course 320C, which may be taken concurrently or experience
as a teacher and consent of the instructor.
Sec. 1. Agriculture.
Sec. 2. Homemaking.
Sec. 3. General.
An opportunity to obtain more extended and varied experience under
supervision. One hundred hours of work, including preparation and attendance
at the professional methods section under course 320C is the
minimum requirement.

† Open only to apprentice teachers and graduate students. Courses 320C, 320E and
323 are scheduled as extra-session courses, to begin with the opening of the public
schools and to end with the closing of the semester in the public schools. Thus teaching
assignments in the fall semester, 1957, will begin on or about September 1 and end
January 28. For the spring semester, 1958, they will begin on or about February 1 and
end June 16. Students should make arrangements accordingly.
ENGLISH, DRAMATIC ART, AND SPEECH

(Department Office, 2 and 3 Temporary Building No. 1)
(Dramatic Art Office, 121 East Hall)

Solomon Fishman, Ph.D., Professor of English (Chairman of the Department).
Celeste T. Wright, Ph.D., Professor of English.
Elizabeth R. Homann, Ph.D., Associate Professor of English.
Gwendolyn B. Needham, Ph.D., Associate Professor of English.
Linda Van Norden, Ph.D., Associate Professor of English.
†Everett Carter, Ph.D., Assistant Professor of English.
Jay L. Halio, Ph.D., Assistant Professor of English.
†Thomas A. Hanzo, Ph.D., Assistant Professor of English.
Robert A. Wiggins, Ph.D., Assistant Professor of English.
John T. Goldthwait, Ph.D., Instructor in Speech.
Theodore J. Shank, Ph.D., Instructor in Dramatic Art.

Leonard G. Homann, A.B., Associate in English.

DRAMATIC ART

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).
Departmental Major Adviser.—Mr. Shank.

LOWER DIVISION COURSE

Lectures and laboratory.
With the consent of the instructor students may be admitted to course 10B without 10A.

UPPER DIVISION COURSES

Upper division standing is prerequisite to all upper division courses.

128. Play Production. (3) I.
Lectures and laboratory.
Principles involved in producing a play. Practice in directing scenes from plays and in the construction, painting, and lighting of stage scenery. Recommended to prospective teachers of high school English.
150. American Drama. (3) II.
Selected plays and the history of the theater from Colonial times to the present.

† Absent on leave, spring semester, 1958.
158. World Drama. (3) I.
A study of the development of theater through its effects on dramatic literature, from ancient Greece to the present, with emphasis on modern world drama.

199. Special Study for Advanced Undergraduates. (1–3) I and II.
Prerequisite: consent of the instructor.
Advanced study of dramatic literature, acting, or play production.

ENGLISH

Letters and Science List.—All undergraduate courses except 300 are included in the Letters and Science List of Courses (see page 90).
Departmental Major Advisers.—Mrs. Homann, Mr. Hanzo, Mr. Wiggins, Mrs. Wright.

Preparation for the Major.—First year, course 1A–1B required. Second year, courses 46A–46B, and 45. Recommended: philosophy.
The Major.—Twenty-four units of upper division work with specific requirements; third year, course 117J; fourth year, course 198.
The upper division program must also include 6 units of Type courses (English 114A, 125C, 125D, 125E, 149); 9 units of Age courses (English 119, 155, 158A, 158B, 166, 177, 187, 191), with not more than two courses in adjacent periods; 3 units of American literature (English 30, 125E, 137A, 137B). (English 30 may satisfy the American literature requirement, but may not be included in the requirement of 24 upper division units.) Recommended: a course in English history.
Courses 106L and 110 and Speech 1A or 2A are required of candidates for the Certificate of Completion of the teacher-training curriculum whose teaching major is English.
The department will certify to the completion of a major program for graduation only on the basis of at least a C average in the upper division courses taken in the department. Students who do not maintain such an average will be required to withdraw from the major in English.
Attention is called to the requirements in foreign languages for higher degrees in English at Berkeley—a reading knowledge of French or German for the M.A.; of French, German, and Latin for the Ph.D. Undergraduates contemplating advanced study in English should prepare to satisfy these requirements as they proceed to the bachelor’s degree.

LOWER DIVISION COURSES
Students must have passed Subject A before taking any course in English.

1A. First-Year Reading and Composition. (3) I and II.
Principles of effective reading, writing, and speaking.

1B. First-Year Reading and Composition. (3) I and II.
Prerequisite: course 1A.
Continuation of course 1A. For maximum benefit, the student is advised to complete both courses.

30. Introduction to American Literature. (3) II.
Prerequisite: course 1A.
Reading and discussion of masterpieces of American literature.

45. Critical Reading of Prose and Poetry. (3) I and II.
Prerequisite: course 1B.
Analysis and evaluation of English and American literature.
46A–46B. Survey of English Literature. (3–3) Yr.
Prerequisite: course 1A and sophomore standing. Course 46A is not prerequisite to 46B.
The more important aspects of the history of English literature from the beginnings to 1900.

Upper Division Courses

English 1A and upper division standing are prerequisite to all upper division courses.

106G. Creative Writing. (3) I.
Prerequisite: course 1B. Sophomore students may enroll in this course with the consent of the instructor.

106J. Advanced Technical Writing. (3) I.
The preparation, organization, and writing of reports in fields other than English.
Offered in alternate years.

106L. Advanced Composition. (3) II.
Prerequisite: course 1B.
Designed to develop a clear, accurate, interesting style. Required of prospective high school English teachers.

110. Language. (3) I.
Origins, materials, growth, and function of language with emphasis on English.

114A. The English Drama to 1642. (3) I.
From the miracle plays to Elizabethan drama.
Offered in alternate years.

116. The English Bible as Literature. (3) II.

117J. Shakespeare. (3) I.
Study of twelve to fifteen of Shakespeare’s principal plays.

119. The Age of Johnson. (3) II.
Offered in alternate years.

125C. The English Novel. (3) I.
From the beginning to Dickens.

125D. The English Novel. (3) II.
Course 125C is not prerequisite to 125D.
From Dickens to Hardy.

*125E. The American Novel. (3) II.
Reading and discussions of selected American novels.

137A. Survey of American Literature. (3) I.
From the beginning to the Civil War.

137B. Survey of American Literature. (3) II.
Course 137A is not prerequisite to 137B.
From the Civil War to the present.

144A–144B. Masterpieces of World Literature. (3–3) Yr.

144A. The Epic: Iliad; Odyssey; Aeneid; Beowulf; Divine Comedy; Paradise Lost.

144B. Drama and the Novel: Agamemnon; Oedipus; Medea; Tartuffe; The Miser; Don Quixote; War and Peace; Madame Bovary.

* Not to be given, 1957–1958.
*147. Survey of Literary Criticism. (3) II.
Reading and discussion of the major texts in literary criticism, from Aristotle to the present.
Offered in alternate years.

149. The English Lyric. (3) II.
The development of the English traditions of structure and style in lyric poetry.

151. Study of a Major Writer. (3) I and II.
II. Milton.

155. The Age of Chaucer. (3) II.
Chaucer: his writings, contemporaries, and background.

158A. The Age of Elizabeth. (3) I.
Beginnings of the English Renaissance, and literature of the sixteenth century.

158B. Literature of the Seventeenth Century. (3) II.
Course 158A is not prerequisite to 158B.

166. The Age of Swift and Pope. (3) I.

177. The Romantic Period. (3) I.
Wordsworth, Coleridge, Byron, Shelley, Keats, and their eighteenth-century precursors.
Offered in alternate years.

187. The Victorian Period. (3) II.

*191. Literature in English from 1900. (3) II.

198. Senior Preceptorial Course. (3) II.
Prerequisite: senior standing.
Reading in chosen fields, determined by the English major reading list, with critical writing.

199. Special Study for Advanced Undergraduates. (1–3) I and II.
Limited to seniors who have completed at least 9 units of upper division English and who have the consent of the instructor.

GRADUATE COURSES

200. Techniques of Literary Scholarship. (3) I.

299. Special Study. (1–3) I and II.

300. Problems in Teaching English Literature and Composition in Secondary Schools. (2) I.
Prerequisite: senior or graduate standing; an English teaching major or minor.
This course, designed for seniors and graduate students undertaking an English teaching major or minor, should be completed before practice teaching. The course is accepted in partial satisfaction of the 22-unit requirement in education for the general secondary credential.

* Not to be given, 1957–1958.
SPEECH

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

LOWER DIVISION COURSES

Students must have passed Subject A before taking Speech 1A.

1A. Elements of Speech. (3) I and II.
 The principles and practice of effective speech composition and delivery, with emphasis upon the logical organization and presentation of ideas.

1B. Elements of Speech. (3) II.
 Prerequisite: Speech 1A.
 Application of the principles of effective speech composition and delivery to group discussion and public address.

2A. The Fundamentals of Oral Interpretation of Literature. (3) I.
 Prerequisite: English 1A–1B.
 Introduction to the oral reading of prose and poetry; practice in speaking and reading, with training in the principles of effective delivery.

25. Oral English for Foreign Students. (4) I and II.
 For foreign students only. Pronunciation, speaking, grammar, reading, and writing of English. Required of those who do not pass the examination in English and who are not qualified to take course 26.

26. Oral English for Foreign Students. (4) I and II.
 Continuation of course 25; required of those who have taken course 25.

UPPER DIVISION COURSE

199. Special Study for Advanced Undergraduates. (1–3) I and II.
 Prerequisite: consent of the instructor.
 Advanced study of one phase of speech, such as public speaking, discussion, debate, oral interpretation.

ENOLOGY

For courses in enology see “Viticulture and Enology,” page 227.

ENTOMOLOGY AND PARASITOLOGY

(Department Office, 2 Entomology Building)

Stanley F. Bailey, Ph.D., Professor of Entomology.
† John E. Eckert, Ph.D., Professor of Entomology.
Stanley B. Freeborn, Ph.D., Professor of Entomology.
E. Gorton Linsley, Ph.D., Professor of Entomology (Chairman of the Department) (Berkeley campus).
William H. Lange, Jr., Ph.D., Professor of Entomology.

† Absent on leave, fall semester, 1957–1958.
Leslie M. Smith, Ph.D., Professor of Entomology.
Oscar G. Bacon, Ph.D., Associate Professor of Entomology.
Richard M. Bohart, Ph.D., Associate Professor of Entomology (Vice-Chairman of the Department).
Harry H. Laidlaw, Jr., Ph.D., Associate Professor of Entomology.
Eugene M. Stafford, Ph.D., Associate Professor of Entomology.
Francis M. Summers, Ph.D., Associate Professor of Entomology.
John W. MacSwain, Ph.D., Assistant Professor of Entomology (Berkeley campus).

†James R. Douglas, Ph.D., Professor of Parasitology.

ENTOMOLOGY

Letters and Science List.—Entomology 1, 106, 112, 127.
Departmental Major Adviser.—Mr. Bacon.
The Major.—See pages 55-56.

LOWER DIVISION COURSES

1. An Introduction to Entomology. (4) II.
 Lectures and laboratory.
 A basic study of insects: their biology, anatomy, classification, and relation to human welfare.

5. Apiculture. (2) II.
 Biology and behavior of bees and fundamentals of beekeeping.

5L. Apiculture Laboratory. (2) II.
 Prerequisite: course 5 (may be taken concurrently).
 Principles of hive manipulation and apiary management.

49. Summer Field Course. (No credit)
 Six weeks, daily, except Sunday.
 Prerequisite: one course in entomology or approval of instructor.
 The study and collection of insects in their natural habitats, with special emphasis on ecology, life histories, and field recognition.

UPPER DIVISION COURSES

106. Introduction to Structure and Function in Insects. (5) I.
 Lectures and laboratory.
 Prerequisite: course 105 or equivalent.
 Comparative anatomy and physiology of selected insect types; histological techniques; general principles of insect physiology.

107. Queen Bee Rearing. (4) II.
 Lectures and laboratory.
 Prerequisite: course 105 or advanced training in apiculture, and consent of the instructor.
 History, critical role played by queen bees in beekeeping practice; morphology of reproductive system; formation of germ cells; embryology and postembryological development; practice in modern queen-rearing methods; selection and testing of stock; artificial insemination of queen bees.

† Absent on leave, fall semester, 1957-1958.
Entomology and Parasitology; Food Technology

112. Systematic Entomology. (4) I.
 Lectures and laboratory.
 Prerequisite: course 1 or equivalent.
 The classification of insects, taxonomic categories and procedures; bibliographical methods; nomenclature; museum practices.

124. Economic Entomology. (4) I.
 Lectures and laboratory.
 Life histories, habits, and control of insects attacking fruit trees and field and vegetable crops of California.

127. Insect Ecology. (3) II.
 Prerequisite: upper division standing in one of the biological sciences.
 Principles of ecology with examples from the insects; insect behavior; analysis of the insect environment; population dynamics.

128. Chemistry of Insecticides and Fungicides. (4) II.
 Lectures and laboratory.
 Prerequisite: Chemistry 8, or consent of the instructor.
 Chemical composition and reactions of insecticides and fungicides, and their physiological effects on plant and animal tissues.

199. Special Study for Advanced Undergraduates. (1-5) I and II.

GRADUATE COURSES

200A–200B. Research in Entomology and Parasitology. (1-6; 1-6) Yr.
201A–201B. Seminar in General Entomology. (1-1) Yr.

FOOD TECHNOLOGY

(Department Office, 126 Food Technology Building)

Gordon Mackinney, Ph.D., Professor of Food Technology (Vice-Chairman of the Department) (Berkeley campus).
George L. Marsh, M.S., Professor of Food Technology.
Emil M. Mrak, Ph.D., Professor of Food Technology (Chairman of the Department).
Reese H. Vaughn, Ph.D., Professor of Food Technology.
Herman J. Phaff, Ph.D., Associate Professor of Food Technology.
Clarence Sterling, Ph.D., Associate Professor of Food Technology.
Aloys L. Tappel, Ph.D., Associate Professor of Food Technology.
Clinton O. Chichester, Ph.D., Assistant Professor of Food Technology.
John R. Whitaker, Ph.D., Assistant Professor of Food Technology.

Maynard A. Amerine, Ph.D., Professor of Enology.
Jerry Foytik, Ph.D., Associate Professor of Agricultural Economics.
John C. Harper, D.Sc., Associate Professor of Agricultural Engineering.
Samuel Lepkovsky, Ph.D., Professor of Poultry Husbandry.
DONALD M. REYNOLDS, PH.D., ASSOCIATE PROFESSOR OF BACTERIOLOGY.
EDWARD B. ROESSLER, PH.D., PROFESSOR OF MATHEMATICS.
†GEORGE F. STEWART, PH.D., PROFESSOR OF POULTRY HUSBANDRY.

LETTERS AND SCIENCE LIST.—FOOD TECHNOLOGY 116.
DEPARTMENTAL MAJOR ADVISERS.—MR. MARSH, MR. TAPPOL.
The Major.—See pages 57–59.

UPPER DIVISION COURSES

105. FOOD AND INDUSTRIAL MICROBIOLOGY LABORATORY. (2) I.
Laboratory.
Prerequisite: Bacteriology 1, Chemistry 1A–1B, 8. (Recommended: concurrent enrollment in Bacteriology 105.)
Microorganisms and their activities in relation to food production and spoilage and other industrial processes such as production of antibiotics, enzymes, industrial alcohol, solvents, vinegar, vitamins and waste disposal.

112. PRINCIPLES AND PRACTICES OF FOOD PROCESSING. (3) I.
Prerequisite: Chemistry 1A–1B; Bacteriology 1.
Principles and technological processes involved in the various methods of preservation, and the examination of fruit and vegetable products.

113. CHEMICAL AND BIOCHEMICAL ASPECTS OF FOOD PROCESSING. (3) II.
Prerequisite: Chemistry 1A–1B, 8; Bacteriology 1.
Relation of food processing and handling to acceptability, color changes, enzyme activity, deterioration, flavor, vitamin retention, and other factors.

114. PRINCIPLES OF FOOD PROCESSING OPERATIONS. (4) I.
Lectures and laboratory.
Prerequisite: Chemistry 5, 8; Bacteriology 1.
Technical principles relating to processing operations used in the commercial preservation of fruits, vegetables, and other foods; theory and practical applications, including field trips.

115. FOOD ANALYSIS. (4) II.
Lectures and laboratory.
Prerequisite: Chemistry 5, 8.
Application of quantitative physical and chemical methods of analysis to examination of commercial fruit and vegetable products; laboratory control and research, methods of analysis as applied to food processing; interpretation of results in relation to manufacturing methods and commercial standards.

116. YEASTS AND RELATED ORGANISMS. (4) II.
Lectures and laboratory.
Prerequisite: Chemistry 8; Bacteriology 1; a course in botany and in biochemistry.
Morphology, development, classification, and distribution of yeasts; relation to other fungi, growth requirements; physiological activities, including certain industrial aspects.

119. MICROSCOPY OF FOOD MATERIALS. (3) II.
Lectures and laboratory.
Prerequisite: organic chemistry; Botany 1 and consent of instructor.

Histology of foods; histochemical methods; effects of processing on microscopic structure of food materials.

120. **The Natural Coloring Matters.** (3) I.
Lectures and laboratory.
Prerequisite: 3 units of biochemistry or plant biochemistry, or upper division organic chemistry.
Chemistry of natural pigments and related compounds; spectrophotometric and chromatographic techniques; special emphasis on pigments in relation to foods.

124. **Analyses of Foods by Sensory Tests.** (3) II.
Lectures and laboratory.
Prerequisite: Mathematics 13.
Nature of sensory response with emphasis on taste and smell as related to foods; design and methodology of small panel and consumer panel testing; and application of appropriate mathematical procedures.

127. **Recent Advances in Food Technology.** (1) I and II.
May be repeated once for credit.
Prerequisite: two courses in food technology or the equivalent.
Assigned topics, reports, and discussions concerning recent advances in food technology.

199. **Special Study for Advanced Undergraduates.** (1–5) I and II.

RELATED COURSES

Agricultural Business Management (Agricultural Economics 115)

Unit Operations in Processing Agricultural Products (Agricultural Engineering 102A–102B)

Food and Industrial Microbiology (Bacteriology 105)

Chemistry of Milk and Dairy Products (Dairy Industry 106)

Food Industry Sanitation (Dairy Industry 108)

Handling, Storage, and Transit of Fruits (Pomology 112)

Technology of Handling Poultry Products (Poultry Husbandry 121)

Concepts of Animal Nutrition (Poultry Husbandry 150)

Handling, Storage, and Transit of Vegetables (Vegetable Crops 112)

Enology: Wine Processing and Analyses (Viticulture 124)

Enology: Wine Preparation (Viticulture 125)

GRADUATE COURSES

200A–200B. Seminar in Food Technology. (1–1) Yr.

237A–237B. Research in Food Technology. (1–9; 1–9) Yr.
FOREIGN LANGUAGES

(Department Office, 3 Temporary Building No. 4)

Iver N. Nelson, Ph.D., Associate Professor of Spanish.
Siegfried B. Puknat, Ph.D., Associate Professor of German (Chairman of the Department).
Max Bach, Ph.D., Assistant Professor of French.
Roland W. Hoermann, Ph.D., Assistant Professor of German.
Daniel S. Keller, Ph.D., Assistant Professor of Spanish.
Merle L. Perkins, Ph.D., Assistant Professor of French.
Marshall Lindsay, M.A., Acting Instructor in French.

Anthony S. Kawczynski, Mag.Phil., Associate in Foreign Languages.
Ruth J. Volman, M.A., Associate in Foreign Languages.

CLASSICS

Courses in this group which are designated Classics 34 and Classics 35 do not require a knowledge of the Greek or the Latin language.

LOWER DIVISION COURSES

*34. Epic Poetry: Homer and Virgil. (2) I.
A study of the Iliad, Odyssey, and Aeneid with reference to content, structure, significance, and influence.

*35. Greek Drama. (2) II.
Lectures on twelve Greek tragedies.

FRENCH

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses. For regulations governing this list, see page 90.

Departmental Major Adviser.—Mr. Perkins.
Preparation for the Major.—French 1, 2, 3, and 4, or their equivalents.
The Major.—Required: 24 units of upper division courses, including 101A–101B, 109A, a separate course in each of the following periods: seventeenth century, eighteenth century, nineteenth century. With the permission of the staff, three of the 24 units may be related work in other fields. Students who major in French must maintain at least an average of C in upper division French courses.

LOWER DIVISION COURSES

(A course may not ordinarily be taken for credit if it is a prerequisite to a course already completed.)

1. Elementary French—Beginning. (4) I and II.
This course corresponds to the first two years of high school French.

* Not to be given, 1957–1958.
2. Elementary French—Continued. (4) I and II.
Prerequisite: course 1 or two years of high school French.

3. Intermediate French. (4) I and II.
Prerequisite: course 2 or three years of high school French.

Prerequisite: course 3 or four years of high school French.

Upper Division Courses

Prerequisite: course 4 or its equivalent.

*101A. Advanced Grammar, Composition, and Conversation. (3) I.
Offered in alternate years.

*101B. Advanced Grammar, Composition, and Conversation. (3) II.
Course 101A is not a prerequisite to 101B.
Offered in alternate years.

109A. A Survey of French Literature from the Middle Ages to the End
of the Seventeenth Century. (3) I.
Offered in alternate years.

109B. A Survey of French Literature from the Beginning of the Eighteenth
Century to the Present. (3) II.
Course 109A is not a prerequisite to 109B. Offered in alternate years.

*117. The Theater of the Seventeenth Century. (3) II.

*118A. The Age of Voltaire and Rousseau. (3) I.
A study of writings which helped mold the intellectual environment of the
American and French Revolutions.
Offered every third year.

118B. Drama and Novel in the Eighteenth Century. (3) II.
Plays of Marivaux and Beaumarchais; novels of Lesage, Prevost, Diderot,
Voltaire, Rousseau.
Course 118A is not a prerequisite to 118B.
Offered in alternate years.

119A. The Nineteenth Century. (3) I.
Romanticism in drama and poetry: Hugo, Musset, Vigny; novels of Balzac
and Stendhal.
Offered in alternate years.

*119B. The Nineteenth Century. (3) II.
Realism and naturalism (Flaubert, Zola, Maupassant); criticism (Sainte-
Beuve, Renan, Taine); symbolism (Baudelaire, Verlaine, Rimbaud, Mallarme).
Course 119A is not a prerequisite to 119B.
Offered in alternate years.

* Not to be given, 1957-1958.
*122. French Literature of the Twentieth Century. (3) I.
Representative readings from Proust, Gide, Valery, Sartre and others.
Offered in alternate years.

199. Special Study for Advanced Undergraduates. (1–4) I and II.
For special problems.

GERMAN

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses. For regulations governing this list, see page 90.
Departmental Major Adviser.—Mr. Puknat.
Preparation for the Major.—German 1, 2, 3, 4, or their equivalents.
The Major.—Required: 24 units in upper division courses, including one full year’s course in composition. Six of the 24 units may be related work in other departments. Students who fail to maintain an average of C or better in upper division courses in German will be excluded from the major.

LOWER DIVISION COURSES

(A course may not ordinarily be taken for credit if it is a prerequisite to a course already completed.)

1. Elementary German—Beginning. (4) I and II.
This course corresponds to the first two years of high school German.

2. Elementary German—Continued. (4) I and II.
Prerequisite: course 1 or two years of high school German.

3. Intermediate German. (4) I and II.
Prerequisite: course 2 or three years of high school German.

4. Intermediate German. (4) II.
Prerequisite: course 3 or four years of high school German.

1G. German for Graduate Students. (No credit) I.
A course designed to prepare students for the graduate reading examination.

UPPER DIVISION COURSES

Prerequisite: course 4 or its equivalent.

*100. Introduction to Modern German Literature. (3) I.
Lectures on, and readings from, the main figures of German literature in the past half century: the crisis of modern man as reflected in Rilke, Kafka, Hesse, Thomas Mann, and others.
Offered in alternate years.

103A–103B. The Classical Period. (3–3) Yr.
Course 103A is not a prerequisite to 103B.
103A. Lessing and Schiller.
103B. Goethe.
Offered in alternate years.

* Not to be given, 1957–1958.
*104. The Nineteenth-Century Drama. (3) II.
The development of the German drama after the Classic Age and to the end of the nineteenth century. Reading of representative plays by Kleist, Grillparzer, Büchner, Hebbel, Wagner, and Hauptmann.
Offered in alternate years.

114. Nineteenth-Century Prose. (3) I.
Readings from representative German prose writers of the nineteenth century.
Offered in alternate years.

*118A–118B. History of German Literature. (3–3) Yr.
Course 118A is not a prerequisite to 118B.
118A. The Middle Ages to 1624.
118B. From 1624 to 1885.
Offered in alternate years.

130A–130B. Advanced Grammar, Composition, and Conversation. (3–3) Yr.
Course 130A is not a prerequisite to 130B.
Offered in alternate years.

199. Special Study for Advanced Undergraduates. (1–3) I and II.

GREEK

LOWER DIVISION COURSES

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

*1A–1B. Greek for Beginners. (3–3) Yr.

LATIN

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses. For regulations governing this list, see page 90.

LOWER DIVISION COURSES

*1. Elementary Latin—Beginning. (4) I.

*2. Elementary Latin (continuation of 1). (4) II.
Prerequisite: two years of high school Latin or course 1 or consent of the instructor.

SPANISH

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses. For regulations governing this list, see page 90.
Departmental Major Adviser.—Mr. Nelson.
Preparation for the Major.—Four years of high school Spanish, or courses 1, 2, and 3, and also 4 unless 3 has been passed with a grade of A or B; course 25A–25B.

* Not to be given, 1957–1958.
The Major.—Required: 24 units of upper division courses including 106A–106B (6 units). The remaining units may be from any of the upper division courses.

Students who fail to maintain an average grade of at least C in the Spanish courses taken in the upper division will be excluded from the major.

LOWER DIVISION COURSES

(A course may not ordinarily be taken for credit if it is a prerequisite to a course already completed. Students whose native tongue in Spanish will not normally be admitted to any lower division courses except Spanish 25A–25B.)

1. Elementary Spanish—Beginning. (4) I and II.
 This course corresponds to the first two years of high school Spanish.

2. Elementary Spanish—Continued. (4) I and II.
 Prerequisite: course 1 or two years of high school Spanish.

3. Intermediate Spanish. (4) I and II.
 Prerequisite: course 2 or three years of high school Spanish, or the equivalent.

4. Intermediate Spanish (continuation of 3). (4) II.
 Prerequisite: course 3 or four years of high school Spanish, or the equivalent.

 Required as preparation for the major.
 Prerequisite: four years of high school Spanish, or course 3 (with a grade of at least B) or course 4, or the equivalent.

UPPER DIVISION COURSES

Prerequisite: course 4 or its equivalent.

*104A–104B. Survey of Spanish-American Literature. (3–3) Yr.
 Course 104A is not prerequisite to 104B.
 Survey of major authors and important aspects of Spanish-American literary history from the Colonial Period to the present.
 Offered in alternate years.

*105. Peninsular Drama from the Romantic Movement to the Present. (3) II.
 Offered in alternate years.

*106A. History of Spanish Literature to 1680. (3) I.
 Offered in alternate years.

106B. History of Spanish Literature from 1680 to the Present. (3) I.
 Course 106A is not prerequisite to course 106B.
 Offered in alternate years.

108. Modern Peninsular Prose Literature. (3) II.
 Study of the Spanish novel and essay of the nineteenth and twentieth centuries.
 Offered in alternate years.

* Not to be given, 1957–1958.
109. Spanish Drama of the Golden Age. (3) I.
 Offered in alternate years.

111. Cervantes, (3) II.
 Offered in alternate years.

199. Special Study for Advanced Undergraduates. (1–3) I and II.

FRENCH

For courses in French see “Foreign Languages” on page 164.

GENETICS

(Section Office, 222 Animal Science Building)

James A. Jenkins, Ph.D., Professor of Genetics (Chairman of the Department) (Berkeley campus).

G. Ledyard Stebbins, Ph.D., Professor of Genetics (Vice-Chairman of the Department).

Melvin M. Green, Ph.D., Associate Professor of Genetics.

Sidney R. Snow, Ph.D., Instructor in Genetics.

Members of the Genetics Group:

Hans Abplanalp, Ph.D., Assistant Professor of Poultry Husbandry.

Robert W. Allard, Ph.D., Professor of Agronomy.

Vigfus S. Asmundson, Ph.D., Professor of Poultry Husbandry.

Fred N. Briggs, Ph.D., Professor of Agronomy.

Royce S. Bringhurst, Ph.D., Associate Professor of Pomology.

Gil N. Davis, Ph.D., Professor of Vegetable Crops.

Paul W. Gregory, Sc.D., Professor of Animal Husbandry.

Claron O. Hesse, Ph.D., Professor of Pomology.

Paulden F. Knowles, Ph.D., Associate Professor of Agronomy.

Robert C. Laben, Ph.D., Assistant Professor of Animal Husbandry.

Harry H. Laidlaw, Jr., Ph.D., Associate Professor of Entomology.

Lloyd A. Lider, Ph.D., Assistant Professor of Viticulture.

R. Merton Love, Ph.D., Professor of Agronomy.

Wyman E. Nyquist, Ph.D., Lecturer in Agronomy.

Harold P. Olmo, Ph.D., Professor of Viticulture.

Charles M. Rick, Jr., Ph.D., Professor of Vegetable Crops.

Wade C. Rollins, Ph.D., Associate Professor of Animal Husbandry.

Charles W. Schaller, Ph.D., Associate Professor of Agronomy.

Dale G. Smeltzer, Ph.D., Assistant Professor of Agronomy.

Francis L. Smith, Ph.D., Professor of Agronomy.

Paul G. Smith, Ph.D., Associate Professor of Vegetable Crops.

Ernest H. Stanford, Ph.D., Associate Professor of Agronomy.

Clyde N. Stormont, Ph.D., Associate Professor of Veterinary Science.

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).
Departmental Major Adviser.—Mr. Stebbins.
The Major.—See Animal Science Curriculum, pages 52–55, and Plant Science Curriculum, pages 62–68.

UPPER DIVISION COURSES

100. Principles of Genetics. (3) I and II.
Lectures and conference.
Prerequisite: general botany or general zoology.
Introduction to genetics with some consideration of its applications in agriculture and biology.
Students taking course 100C concurrently will include their conference hour within the laboratory period of that course.

100C. Principles of Genetics Laboratory. (1) I and II.
Laboratory.
Course 100C must be taken concurrently with course 100.
Laboratory work in elementary genetics to supplement course 100.

101. Cytogenetics. (3) II.
Prerequisite: course 100; general cytology (Botany 130 or its equivalent).
Course 101L may be taken concurrently.
Genetics as related to cytological conditions, with particular reference to plant materials.

101L. Cytogenetics Laboratory. (2) II.
Laboratory.
Prerequisite: course 101 (may be taken concurrently).
Laboratory study of chromosome morphology and behavior as related to problems in genetics.

*103. Organic Evolution. (3) I.
Prerequisite: course 100.
The principles of evolution, with particular reference to the evolutionary processes in plants.
Offered in fall semester of even-numbered years.

106. Advanced Genetics. (3) II.
Prerequisite: course 100, Botany 130, Chemistry 8.
An introduction into the nature and properties of the gene; gene mutation, the mechanism of gene action and related topics.
Offered in spring semester of even-numbered years.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

RELATED COURSES

Plant Breeding (Agronomy 114).
Quantitative Inheritance in Plant Breeding (Agronomy 130).
Plant Cytology (Botany 130).
Chromosome Techniques (Botany 131).
Applied Statistical Methods (Mathematics 105).

* Not to be given, 1957–1958.
Fruit Breeding (Pomology 114).
Vegetable Breeding (Vegetable Crops 120).

Graduate Courses

200A–200B. Research in Genetics. (1–6; 1–6) Yr.

201A–201B. Staff Seminar in Genetics. (No credit) Yr.
Prerequisite: course 100.
Weekly meetings for presentation of topics by members of the staff, visiting investigators and graduate students.

202A–202B. Graduate Seminar in Genetics. (1–4; 1–4) Yr.
Prerequisite: graduate standing in Genetics.
Intensive study of special topics, under supervision of some member of the staff.

Geography
For courses in geography see “Sociology, Anthropology, and Geography” on page 213.

Geological Sciences

(Department Office, 241 Soils and Irrigation Building)

Donald O. Emerson, M.S., Acting Assistant Professor of Geology.
†Charles G. Higgins, Ph.D., Assistant Professor of Geology (Chairman of the Department).
— — —, Assistant Professor of Geology.

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

Departmental Subject Adviser.—Mr. Higgins.

Preparation for the Major.—Required: Chemistry 1A–1B; Geology 2, 3; Mathematics C, D; Mineralogy 6; Physics 2A–2B. Required or recommended:
Engineering 1A; Geology 2L, 3L; Mathematics 3A–3B; Physics 3A–3B.

As preparation requirements differ somewhat for different fields of specialization within the geological sciences at Berkeley and Los Angeles, no single lower division preparatory course program will satisfy the needs and interests of all students proposing to major in geology. Therefore, an individual program must be planned for each student after consultation with the departmental adviser.

The Major.—Although no major in geology is offered, students may complete the lower division preparation for the major during their first two years at Davis. They may then transfer to Berkeley or Los Angeles to complete the requirements for the major during their third and fourth years.

Geology

Lower Division Courses

2. General Geology: Physical. (3) I.
Prerequisite: high school or college chemistry.

Students are urged to take course 2L concurrently, if possible. Not open to students who have credit for Geology 1. Survey of minerals, rocks, and the forces that form and shape these elements into the earth's crust and landscape.

2L. Physical Geology Laboratory. (1) I.
Field trip(s) during laboratory period.
Prerequisite: course 2 (may be taken concurrently).
Not open to students who have credit for Geology 1.
Identification of common minerals and rocks; interpretation of landforms and geologic structures from topographic and geologic maps and air photographs.
Recommended to all students taking Geology 2.

3. General Geology: Historical. (3) II.
Prerequisite: course 2.
Students are urged to take course 3L concurrently, if possible.
Origin and geological history of the earth and the evolution of its plant and animal inhabitants.

3L. Historical Geology Laboratory. (1) II.
Prerequisite: course 3 (may be taken concurrently).
Identification of common fossil types; problems in interpreting geologic history.
Recommended to all students taking Geology 3.

Upper Division Course

103. Introduction to Petrology. (3–4) I.
Lectures and laboratory.
This course may be elected with one laboratory period per week for 3 units of credit, or, with the consent of the instructor, with two laboratory periods per week for 4 units of credit.
Prerequisite: course 2 and Mineralogy 6.
Origin, occurrence, characteristics, and classification of rocks. Laboratory practice in determination of textures, mineral components, and rock types by study of hand specimens.

Mineralogy

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

Lower Division Course

6. Introduction to Mineralogy. (4) II.
Lectures and laboratory.
Prerequisite: high school or college chemistry. Recommended: Geology 2 and 2L (may be taken concurrently) or former course Geology 1.
Origin, occurrence and associations, properties, and identification of minerals; study of mineral crystals and crystal models.

German

For courses in German see "Foreign Languages" on page 164.
GREEK

For courses in Greek see "Foreign Languages" on page 164.

HISTORY AND POLITICAL SCIENCE

(Department Office, 13 Temporary Building No. 1)

W. Turrentine Jackson, Ph.D., Professor of History.
Vernon J. Puryear, Ph.D., Professor of Political Science.
C. Bickford O'Brien, Ph.D., Associate Professor of History (Chairman of the Department).
James H. Shideler, Ph.D., Associate Professor of History.
Clyde E. Jacobs, Ph.D., Assistant Professor of Political Science.
Richard N. Schwab, Ph.D., Assistant Professor of History.
W. Sheridan Warrick, M.A., Associate in History.

HISTORY

Letters and Science List.—All undergraduate courses in history are included in the Letters and Science List of Courses (see page 90).

Departmental Advisers.—Mr. Schwab, Mr. Shideler.

Introductory Courses.—Course 4A–4B is open to all students; course 17A–17B is open to all students above the freshman year.

Preparation for the Major.—Required: courses 4A–4B, 17A–17B, Political Science 1A and 1B or 2, and Economics 1A.

The Major.—Required: (1) Students majoring in history must complete 24 upper division units in history, including:

(a) In the junior year: course 101 and at least two semester courses of broad scope preparatory to more specialized work in the same fields (courses 131, 132, 145, 151A, 151B, 161A, 161B, 176A, 176B, 179).

(b) In the junior or senior year: two additional semester courses in different fields from that chosen under (a) above. (These may be from courses 136, 137, 146, 178A, 178B, 187.)

(c) In the senior year: some concentration in one of the fields already studied, to be determined in consultation with the adviser. (This may be from courses 174A, 174B, 188A, 188B, 189A, 189B.)

(2) History students must maintain at least a grade C average in the major.

\section{LOWER DIVISION COURSES}

4A–4B. History of Western Europe. (3–3) Yr.

Course 4A is not prerequisite to 4B.

The growth of Western European civilization in its world setting from ancient times to the present.

17A. History of the United States. (3) I and II.

Open to all students above the freshman year.

American national beginnings from colonial times through 1865.
17B. History of the United States. (3) I and II.
Course 17A is not a prerequisite to 17B. Open to all students above the freshman year.
The American nation from the Civil War to the present.

UPPER DIVISION COURSES

101. Introduction to Historical Method and Historiography. (3) II.

131. The Renaissance and Reformation. (3) I.
The economic, political, intellectual, and religious history of continental Europe from about 1300 to 1600. The conflict between old institutions and new forces, emphasizing the relationship between intellectual and social change during the transition from medieval to modern times.
Offered in alternate years.

*132. Europe in the Seventeenth and Eighteenth Centuries. (3) I.
A survey of the period 1600–1789 with emphasis on the growth of the modern state, the new interest in science, and the growth of critical thought leading to revolutionary sentiment.
Offered in alternate years.

*136. The Soviet Union in World Affairs. (3) II.
Primarily a history of Russia in world politics and economics since 1917. The long-range nature and problems of Russian foreign policy will be investigated.
Offered in alternate years.

*137. History of Russian Civilization. (3) I.
An outline of Russian social, political and economic institutions and intellectual development from earliest times to the Second World War. Emphasis will be on the period from Peter the Great through the Revolution of 1917.
Offered in alternate years.

145. Europe, 1789–1871. (3) I.
Prerequisite: course 4B.
A survey of the history of Western Europe from the French Revolution to the Franco-Prussian War.

146. Europe Since 1870. (3) II.
The political, social, and economic development of Europe from the Franco-Prussian War to the present.

151A–151B. History of England from 1485 to the Present. (3–3) Yr.
Course 151A is not prerequisite to 151B.
151A. Tudor and Stuart England and the Empire, 1485–1714.
151B. History of Great Britain since 1714.

161A–161B. Hispanic-American History. (3–3) Yr.
Course 161A is not prerequisite to 161B.
161A. Colonial History of Latin America.

* Not to be given, 1957–1958.
174A–174B. Recent History of the United States. (3–3) Yr.
Course 174A is not prerequisite to 174B.
174B. 1928 to the present.
A study of political, economic, and cultural aspects of American democracy in recent years.

*176A–176B. Social and Cultural History of the United States. (3–3) Yr.
Course 176A is not prerequisite to 176B.
176A. To 1865.
176B. 1865 to the present.

178A–178B. Great Issues in United States History: Ideas and Interpretations. (3–3) Yr.
Course 178A is not prerequisite to 178B.
178A. To 1876.
178B. 1876 to the present.
Selected topics in the political, economic, social, and intellectual history of the United States. A study of historical thought and interpretation concerning the main currents of national development.

179. Economic Growth of the United States. (3) II.
A study of the development of capitalism and industrialism and of resultant problems in agriculture, labor, business, and government.

187. The American Frontier. (3) I.
The political, economic, and social significance of the westward movement from colonial times to 1850.

188A–188B. History of Agriculture in the United States. (3–3) Yr.
Course 188A is not prerequisite to 188B.
188A. History of agricultural development to 1900 with emphasis on social and economic institutions.
188B. History of agricultural changes from 1900 to the present with emphasis on the background and evolution of government policy.

189A–189B. History of California and the West. (3–3) Yr.
Course 189A is not prerequisite to 189B.
189A. History of the Trans-Mississippi West and early California.
189B. History of California since 1840.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

Graduate Courses

271A–271B. Seminar in the History of the American West. (2–2) Yr.
288A–288B. Seminar in the Agricultural History of the United States.
(2–2) Yr.

298. Directed Research. (2–4) I and II.

Political Science

Letters and Science List.—All undergraduate courses in Political Science are included in the Letters and Science List of Courses. (See page 90.)

* Not to be given, 1957–1958.
Departmental Major Adviser.—Mr. Jacobs.

The American History and Institutions Requirement may be satisfied by any two of the following courses: 1A, 1B, 113, 128A, 157A, 157B.

Preparation for the Major.—Required: courses 1A, 1B, 2, Economics 1A, Philosophy 6A or 20A, and either History 4A-4B or History 17A-17B, and a minimum average grade of C in these courses.

The Major.—Required: (1) 24 units of upper division work as follows:
(a) 18 units in Political Science. This must include at least one course from each of four of the five groups offered: American Government, Political Theory, International Relations, Comparative Government, Public Law.
(b) 6 units in related social sciences to be chosen in consultation with the adviser.
(2) Political Science students must maintain at least a grade C average in the major.

LOWER DIVISION COURSES

1A-1B. American Government. (3–3) Yr.
Course 1A is not prerequisite to 1B.
National, state, and local government in the United States.

2. European Governments. (3) II.
A study of constitutional principles, governmental institutions, and political problems of selected foreign governments.

UPPER DIVISION COURSES

*102A. State Government and Administration. (3) II.
Structure, organization, and problems of state governments.

113. American Political Theory. (3) II.
Underlying theories and principles of United States government and politics.

118. Political Thought from Plato to Dante. (3) I.
Critical analysis of the works of major political theorists of ancient and medieval times.

123. International Politics. (3) I.
Rise and development of the Western State system; problems of nationalism and imperialism, particularly in connection with the peace settlement following World War II.

*124. International Organization. (3) II.
The preservation of world peace through collective security arrangements. Analysis of the conditions under which international organizations can or cannot preserve peace, through examination of the record of the United Nations, League of Nations, and more restricted security organizations. Offered in alternate years.

128A. Recent American Foreign Policy. (3) I.
Abandonment of isolation and assumption of leadership during the First World War. Return to isolationist policies in the twenties. The neutrality acts of the thirties. The Second World War and reversal of the policy of isolation.

* Not to be given, 1957-1958.
128B. The Conduct of American Foreign Relations. (3) II.
Diplomacy and the conduct and control of foreign relations. The Department of State and the Foreign Service. Case studies in recent diplomacy to illustrate policy formation and execution. Some comparative materials will be introduced but emphasis will be placed upon the United States.

144. Government in Great Britain and the British Empire. (3) II.
The democratic process in Britain; party politics; the cabinet system; the colonies; the evolution of the British Commonwealth of Nations.
Offered in alternate years.

157A–157B. American Constitutional Law. (3–3) Yr.
Prerequisite: course 1A or History 17A–17B. Political Science 157A is prerequisite to 157B.
Analysis of judicial cases and related materials illustrating the historical and current interpretations of the Constitution.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

GRADUATE COURSES

230A–230B. Seminar in American Foreign Policy. (2–2) Yr.

290. Seminar in American Public Law. (2) I and II.
Prerequisite: consent of instructor.
Selected current topics.

299. Research in Political Science. (2–4) I and II.

HOME ECONOMICS

(Department Office, 148 Home Economics Building)

Gladys J. Everson, Ph.D., Professor of Home Economics (Chairman of the Department).
Pauline C. Paul, Ph.D., Associate Professor of Home Economics.
Richard D. Cramer, M.F.A. (Architecture), Assistant Professor of Home Economics.
Marilyn M. Dunsing, Ph.D., Assistant Professor of Home Economics.
Lucille S. Hurley, Ph.D., Assistant Professor of Home Economics.
Thomas M. Poffenberger, Ed.D., Assistant Professor of Home Economics.
Carol L. Engbretson, M.S., Acting Assistant Professor of Home Economics.
Marie Lien, Ph.D., Acting Assistant Professor of Home Economics.
———, Assistant Professor of Home Economics.
Anita M. Lear, M.S., Instructor in Home Economics.
———, Instructor in Home Economics.

Ruby L. Dryden, M.A., Lecturer in Home Economics.
Doris F. Heineman, B.A.E., Lecturer in Home Economics.
Arlene Johnson, M.S., Lecturer in Education.

Letters and Science List.—Decorative Art. All undergraduate courses; a total of not more than 8 units will be accepted for Letters and Science credit. Home Economics 113A–113B, 131, 156, 137.
Departmental Major Advisers.—Mr. Cramer, Miss Dunsing, Miss Englebertson, Miss Everson, Mrs. Heineman, Mrs. Hurley, Mrs. Lear, Mrs. Lien, Miss Paul, Mr. Poffenberger.

The Major.—See page 59.

DECORATIVE ART

LOWER DIVISION COURSES

6A. Theory of Design and Color. (2) I and II.
Laboratory.
Principles of design and color; original problems in the general field of design.

6B. Theory of Design and Color. (2) II.
Laboratory.
Prerequisite: course 6A.
Principles of design and color as applied to textiles through the mediums of block print, stencil, and silk screen process.

7A-7B. Theory of Design and Color. (2-2) Yr.
Laboratory.
Prerequisite: course 6A-6B.
Second-year problems in the theory of design and color.

UPPER DIVISION COURSE

130A. Interior Design. (2) I.
Study of design, selection, and arrangement of furnishings. Lectures, demonstrations, field trips.

HOME ECONOMICS

LOWER DIVISION COURSES

1A–1B. Experimental Food Study. (3-3) Yr.
Lectures and laboratory.
Prerequisite: Chemistry 8. Recommended: Bacteriology 1.
Composition of food and principles involved in food preservation, meal preparation, and management.

6. Introduction to Textiles. (3) II.
Lectures and laboratory.
Prerequisite: Chemistry 1A, 8.
Study of plant, animal, and synthetic fibers used in textiles and of the finished textile fabrics.
Field trips are included.

7. Elementary Clothing Study. (3) I and II.
Lectures and laboratory.
Prerequisite: Decorative Art 6A.
Practical and cultural problems in garment design and selection, with application in construction problems in clothing.

12. Euthenics. (2) I.
A study of the function of the family and the homemaker in modern society, and of the contributions of the basic sciences and the arts to the solution of present-day social and economic problems of the individual and the family.

Upper Division Courses

*100. Food Economics. (3) II.
Lectures and laboratory.
Prerequisite: courses 1B, 141 (may be taken concurrently).
Discussion and field observation of food production and distribution; their relation to food consumption and expenditures. Food buying for families and institutions; factors affecting price and quality; food legislation.

104A–104B. Advanced Food Study. (4–4) Yr.
Lectures and laboratory.
Prerequisite: course 1B or consent of the instructor.
Application of principles of chemistry to food preparation. Development of experimental attitudes and techniques.

112A–112B. Nutrition and Dietetics. (3–3) Yr.
Lectures and laboratory.
Prerequisite: course 1A–1B; Chemistry 1A, 8; Physiology 1.
The food requirements of the normal individual and the special needs imposed by growth, pregnancy, lactation, and disease. The planning and computation of diets.

113A–113B. Nutrition and Dietetics. (2–2) Yr.
Prerequisite: Chemistry 1A, 8; Physiology 1 or biochemistry (Animal Husbandry 101).
The food requirements of the normal individual and the special needs imposed by growth, pregnancy, lactation, and disease. The planning and computation of diets.

116. Nutrition and Diet Therapy. (3) I.
Prerequisite: course 112B or equivalent.
Physiological basis for the use of special diets. Problems in the planning and computation of diets for normal and pathological conditions.

117. Problems in Human Nutrition. (4) II.
Lectures and laboratory.
Prerequisite: biochemistry with laboratory, course 112B or equivalent.
Fundamental concepts of human nutrition. Quantitative laboratory studies in methods of approach to nutrition problems.

*121. Institution Food Study. (4) I.
Lectures and laboratory.
Prerequisite: course 1A–1B.
The principles and problems involved in the preparation and service of food in institutions.

*122. Institution Organization and Management. (4) II.
Lectures and laboratory.
Prerequisite: course 121 or permission of instructor.
The principles and problems involved in the organization and management of institution households, such as residence halls, hospitals, and hotels.

131. Child Development. (3) I.
Prerequisite: Psychology 1A.
Development from conception through the first ten years. Parent-child rela-

* Not to be given, 1957-1958.
tions and self-understanding stressed as a first step to understanding children. Work in the child-development laboratory; contact with parents and children in the home. Open to men and women.

Not open to students who have had course 132.

133. Laboratory in Child Development. (1) I.
 Lectures and laboratory.
 Course 133 must be taken concurrently with course 131.
 Laboratory conducted at the nursery school.

136. Adolescent Development. (3) II.
 Prerequisite: Psychology 1A.
 Development of the preadolescent and the adolescent covering ages ten through twenty. Changes during this period; their significance to the child, his parents, agemates, school and community. Contact with youth groups, schools and parents. Open to men and women.

137. Marriage and Family Relationships. (3) II.
 A survey of the most recent information on courtship, mate selection, husband-wife adjustments, and parent-child relationships.

140. Home Management. (3) I.
 Lectures and laboratory.
 Prerequisite: Physiology 1 and Psychology 1A.
 Use of time, energy, and equipment in the home from the viewpoint of the satisfaction of members of the family.
 Field trips are included.

140L Home Management Laboratory. (2) I and II.
 Laboratory.
 Prerequisite: course 140 (may be taken concurrently).
 Laboratory which includes living for a period of 5 weeks under supervision in the home management house. A fee is required to cover food, lodging and laundry.

141. Consumers and the Market. (3) I.
 Prerequisite: Economics 1A–1B.
 A study of the functions and structure of the market from the standpoint of consumers; evaluation of the guides available for consumers in buying; agencies aiding and protecting consumers.

142. Social and Economic Problems of Families. (3) II.
 Prerequisite: Economics 1A–1B; and a course in statistics.
 Present-day problems of families as they are related to economic and social conditions.
 Field trips are included.

144. Family Finance. (3) II.
 Prerequisite: Economics 1A–1B; and a course in statistics.
 Management of personal and family finances—money income, household production, credit, savings, investments, financing home ownership.

147. Consumption and Standards of Living. (3) I.
 Prerequisite: Economics 1A–1B, Mathematics 13.
 Surveys consumption data emphasizing the effects of family income, size, residence, occupation, etc., on consumption; the relation of standards of

* Not to be given, 1957–1958.
living to levels of consumption. Appraisal of methodology of collecting data and analysis.

150. The House. (2) II.
The house considered from the family point of view; activities carried on in the home and yard by the family; space requirements for these activities; area planning; relating areas to each other in a house plan. Field trips are included.

*152. Home Furnishing. (2) II.
Lectures and laboratory.
Prerequisite: Decorative Art 6B.
Arrangement of the house and furnishings in terms of color and design. Lectures, demonstrations, and field trips.

*162. Clothing Economics. (3) I.
Lectures and laboratory.
Prerequisite: courses 6, 141.
The problems involved in the selection, purchase, and care of household textiles and clothing, of consumer protection in this field, and of the ready-to-wear and cleaning industries. Field trips are included.

175. Clothing Design and Construction. (3) I and II.
Lectures and laboratory.
Prerequisite: courses 6, 7.
Wardrobe planning and problems in advanced clothing construction.

198. Directed Group Study. (1–2) II.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

RELATED COURSE

Extension Education in Agriculture and Home Economics (Education 187)

GRADUATE COURSES

200A–200B. Research in Home Economics. (2–6; 2–6) Yr.
Prerequisite: graduate standing.
Original investigation in the fields of food and/or nutrition.

290. Seminar in Home Economics. (1) I and II.
Prerequisite: consent of the instructor.
Discussion of selected topics in the fields of food and or/nutrition.

IRRIGATION

(Department Office, 113 Soils and Irrigation Building)

Lloyd D. Doneen, Ph.D., Professor of Irrigation.
Robert M. Hagen, Ph.D., Professor of Irrigation (Chairman of the Department).
Frank Adams, M.A., LL.D. (hon.c.), Professor of Irrigation, Emeritus.
Frank J. Veihmeyer, C.E., Ph.D., Professor of Irrigation, Emeritus.
John R. Davis, M.S., Acting Associate Professor of Irrigation.
†James N. Luthin, Ph.D., Associate Professor of Irrigation.

* Not to be given, 1957–1958.
† Absent on leave, spring semester, 1958.
10. Introduction to Irrigation. (3) II.
Prerequisite: sophomore standing or consent of the instructor.
An introductory course in irrigation principles, equipment and methods
with practical application to irrigated agriculture.

100. Water-Soil-Plant Relationships. (2) II.
Prerequisite: soil physics and plant physiology or consent of the in-
tructor.
Basic principles underlying irrigation in its soil and plant relationships.
Movement of irrigation water in soil, soil-moisture measurement, moisture-
energy concepts, relation of soil moisture to plant growth, irrigation re-
quirements for principal crops, and scheduling irrigations for maximum
efficiency.

110. Irrigation Principles and Practices. (4) I.
Lectures and laboratory.
Prerequisite: Physics 2A.
A general course for students not majoring in irrigation. Irrigation as a
factor in agriculture, principles of irrigation practice, development of the
farm irrigation water supply, preparation of land for irrigation, design of
farm irrigation systems, and water requirements of crops.

115. Water Quality and Salinity as Factors in Irrigation. (3) I.
Lectures and laboratory.
Prerequisite: Chemistry 1A-1B. Recommended: Chemistry 5, Soil Sci-
ence 1.
Water quality, water analysis, salinity, soil reclamation, infiltration prob-
lems, and soil amendments.

119. Basic Irrigation Hydraulics. (3) I.
Lectures and laboratory.
Prerequisite: Physics 2A-2B; Mathematics 16A-16B.
Principles of fluid mechanics as applied to irrigation.

120. Applied Irrigation Hydraulics. (3) II.
Lectures and laboratory.
Prerequisite: course 119, Engineering 1A. (Civil Engineering 110 or
Mechanical Engineering 103 at Berkeley may be substituted for course 119.
Principles of hydraulics as applied to design of water-measuring devices, flumes, ditches, pipelines, drops, diversion structures, reservoirs, etc.

125. Water Supply and Surface Hydrology. (3) I.
Lectures and laboratory.
Prerequisite: Physics 2A, 2B; Geology 2.
Hydrologic cycle, precipitation, evaporation and transpiration, relation of precipitation and watershed management to runoff, measurement of discharge, mass diagrams and duration curves, estimating stream flow, and flood flows.

130. Ground Water, Wells, and Pumping Plants. (2) II.
Prerequisite: Physics 2A–2B; Geology 2. Recommended: course 125.
Origin and utilization of ground water, methods of estimating the sufficiency of ground water supplies, hydraulics of wells, construction of wells, and installation and operation of irrigation pumping systems.

135. Irrigation Management and Water Conservation. (2) II.
Prerequisite: senior standing in irrigation science or soil science and concurrent enrollment in Soil Science 135.
Irrigation practices as affected by soil properties and topography, irrigation-tillage interrelationships, irrigation-fertility interrelationships, irrigation in relation to fertilizer applications, moisture control during germination and harvest, irrigation practices for water conservation, and influences of salinity and drainage on irrigation management.

140. Drainage in Relation to Irrigation. (2) II.
Prerequisite: course 119; Mathematics 16A–16B; Physics 2A–2B.
Drainage methods and principles, location of drains, construction of drainage systems with special reference to irrigated farms.

150. Water Rights and Irrigation Institutions. (3) I.
Water rights; kinds, acquirements, adjudication, administration, loss, and evaluation. Irrigation enterprises; kinds, organization, financing, public regulation, operation, and usefulness under different conditions.

160. Farm Irrigation System Design and Operation. (3) II.
Prerequisite: senior standing in irrigation science.
Design, construction, operation and maintenance of farm irrigation systems including appurtenant structures. Suitability criteria and preparation of land for irrigation. Selection of irrigation systems and water application practices.

170. Irrigation and Drainage Laboratory. (3) II.
Lectures and laboratory.
Prerequisite: senior standing in irrigation science.
Laboratory and field exercises on ground water, wells, and pumping plants; soil-moisture characteristics and water-soil-plant relationships; farm irrigation system design and operation; evaluation of water application methods; drainage investigation techniques; and layout of farm drainage systems.

190. Irrigation Proseminar. (1) I.
Prerequisite: consent of instructor.
Current problems in irrigation.
198. Directed Group Study. (1–5) I and II.
Group study of selected problems in irrigation.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
Prerequisite: senior standing.

GRADUATE COURSES

200. Seminar in Plant-Soil-Water Relationships. (1) II.
Prerequisite: consent of instructor.
Discussions of recent developments in problems of soil moisture and plant-
soil-water relationships.

240. Principles of Infiltration and Drainage. (2) II.
Prerequisite: calculus and consent of the instructor.
An advanced course dealing with movement of water through soils with
emphasis on the theory of drainage and infiltration. Topics include elec-
tronsorption, Darcy's law, methods of solving Laplace's equation, and the general
differential equation of flow.

290. Seminar in Irrigation Science. (1) I.
Required of all graduate students in irrigation science. Discussions of
advanced problems in irrigation. May be repeated for credit.

298. Group Study in Irrigation. (1–6) I and II.
Group study on advanced topics in irrigation.

299. Research in Irrigation. (1–6) I and II.
Individual research in irrigation science. May be repeated for credit.

LANDSCAPE MANAGEMENT

(Department Office, 101 Landscape Management Building)

Warren P. Tufts, Ph.D., Professor of Pomology, Emeritus (Chairman of the
Department).

———, Associate Professor of Landscape Management.
Robert D. Danielson, M.S., Assistant Professor of Landscape Management.
John H. Madison, Jr., Ph.D., Assistant Professor of Landscape Management.

———, Assistant Professor of Landscape Management.

Philip A. Barker, M.S., Lecturer in Landscape Management.

Departmental Major Advisers.—Mr. Madison.
The Major.—See pages 64–67.

LOWER DIVISION COURSES

1A–1B. Elementary Landscape Design and Theory. (3–3) Yr.
Lectures and laboratory.
Prerequisite: consent of instructor. Recommended: Art 2A, 16; or Deco-
Rative Art 6A. (Not open for credit to students who have taken Landscape
Architecture 1A–1B.)
The analysis and solution of typical site problems.
3. Planning the Home Grounds. (3) II.
 Lectures and laboratory.
 A general study of the principles and methods governing the design and
 construction of small properties, including the use of plant materials.

4. Ornamental Plants for the Home Grounds. (3) II.
 Lectures and laboratory.
 The selection, planting and maintenance of annuals, herbaceous perennials,
 turf, and woody plants for the home grounds.

Upper Division Courses

104. Landscape Construction. (3) I.
 Lectures and laboratory.
 Prerequisite: course 1A–1B or 3; Engineering 1A, which may be taken
 concurrently.
 Consideration of construction problems as they relate to design. Site de-
 velopment and such facilities as retaining walls, steps, grading, drainage
 systems, and physical structures other than plant materials.

 (3–3) Yr.
 Lectures and laboratory.
 Prerequisite: Botany 1. Course 105A is not prerequisite to 105B. (Not
 open for credit to students who have taken Ornamental Horticulture 131A–
 131B.)
 The botanical classification, relationships, and identification of the more
 important ornamental plants in Northern California with special emphasis
 on their environmental requirements and adaptations. Field trips are in-
 cluded.

 (3–3) Yr.
 Lectures and laboratory.
 Prerequisite: Botany 7. Recommended: Pomology 9. Course 106A is not
 prerequisite to 106B.
 The basic practices and physiological principles involved in the produc-
 tion and handling of commercial nursery and floricultural crops. The mainte-
 nance of perennial ornamental plants including trees.

108. Turf. (2) II.
 Lectures and laboratory.
 Prerequisite: Botany 7.
 A study of turfgrasses, turf establishment and maintenance. The applica-
 tion of results of research to turfgrass problems.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

Latin

For courses in Latin see “Foreign Languages” on page 164.

Mathematics

(Department Office, 161 Home Economics Building)

George A. Baker, Ph.D., Professor of Mathematics.
Edward B. Roessler, Ph.D., Professor of Mathematics (Chairman of the De-
partment).
Letters and Science List.—All undergraduate courses in mathematics are included in the Letters and Science List of Courses. (See page 90.)

Major Subject Adviser.—Mr. Burdette.

Preparation for the Major.—Before taking upper division courses for the major, the student is required to have a basis of knowledge equivalent to courses C, G, 8, 3A, 3B, 4A, 4B. In order to anticipate as much of this work as possible, it is desirable that he should have completed in high school two years of algebra, plane and solid geometry, and trigonometry.

The Major.—In the 24 units of upper division work required for the major in mathematics, the student is supposed to acquire competence in algebra, analysis, and geometry. For this purpose he must elect, subject to the approval of the adviser, at least 3 units of upper division work in each of these fields.

Subject to the above requirement of competence, and with the approval of the adviser, the student is at liberty to take a maximum of 6 units of theoretical courses in other sciences as a part of his major in mathematics. Courses in statistics may be used as part of the mathematics major.

LOWER DIVISION COURSES

C. Trigonometry. (3) I and II.
Prerequisite: plane geometry; one and one-half years of high school algebra or course D. Only 2 units credit will be allowed if the student has taken trigonometry in high school. Not open for credit to students who have received credit in course 3B.

The course includes plane trigonometry and spherical right triangles.

D. Intermediate Algebra. (3) I and II.
Prerequisite: one year of high school algebra. One and one-half years of high school algebra is advised. Not open for credit to students who have received credit for two years of high school algebra, or course 16A, or any course for which course D is a prerequisite.

G. Solid Geometry. (2) I.

3A. Plane Analytic Geometry. (3) I and II.
Prerequisite: two years of high school algebra or course D; plane geometry; plane trigonometry. Only 2 units credit will be allowed if the student has received credit in course 16A.

‡ Absent on leave, fall semester, 1957–1958.
3B. Calculus, First Course. (3) I and II.
Prerequisite: course 3A or course 16A-16B. Only 2 units credit will be allowed if the student has received credit in courses 16A-16B.
Differentiation of algebraic and transcendental functions, with applications, and introduction to integral calculus.

4A. Calculus, Second Course. (3) I and II.
Prerequisite: course 3B.
Techniques of integration, with applications, indeterminate forms, infinite series of constant terms.

4B. Calculus, Third Course. (3) I and II.
Prerequisite: course 4A.
Infinite series of variable terms, solid analytic geometry, partial differentiation, multiple integration.

8. Theory of Algebraic Equations. (3) II.
Prerequisite: two years of high school algebra or course D; trigonometry.
Complex numbers, theory of equations including equations of third and fourth degrees and Sturm's theorem, determinants.

13. Elementary Statistics. (3) I and II.
Prerequisite: two years of high school algebra or course D.
Arrays of experimental measurements, measures of central tendency, variation and correlation, significance of measures; elementary reliability and validity of tests.

16A. Analytic Geometry and Calculus. (3) I and II.
Prerequisite: one and one-half years of high school algebra or course D, plane geometry, and plane trigonometry. Only 2 units credit will be allowed if the student has received credit in course 3A. Not open for credit to students who have received credit in course 3B.
A short course in analytic geometry and differential and integral calculus. Primarily for students in the College of Agriculture.

16B. Analytic Geometry and Calculus. (3) I and II.
Prerequisite: course 16A. Not open for credit to students who have received credit in course 3B.
A short course in analytic geometry and differential and integral calculus. Primarily for students in the College of Agriculture.

36. Fundamentals of Mathematics. (3) I.
Introduction to fundamental mathematical ideas selected from the principal areas of modern mathematics.

UPPER DIVISION COURSES

102A-102B. Selected Topics in Advanced Calculus. (3-3) Yr.
Prerequisite: course 4A-4B. Course 102A is not prerequisite to course 102B.
102A: Solution of ordinary differential equations with applications to physical and engineering problems, special functions, introduction to partial differential equations.
102B: Line and surface integrals, Fourier series, elementary aspects of complex variable theory.
105. Applied Statistical Methods. (3) II.
Prerequisite: course 13.
Recent developments in statistical analysis, methods of sampling, design of experiments, and interpretation of results; illustrative examples, primarily from biology.

109. Introduction to Mathematical Logic. (3) II.
Prerequisite: course 111A or consent of the instructor.
The propositional and functional calculi. Examples for formalized mathematical theories. Introduction to metalogical problems.

111A–111B. Algebra. (3–3) Yr.
Prerequisite: courses 4B, 8.
Introduction to formal systems of modern algebra, including groups, rings, and fields; matrices and quadratic forms; ideals.

112A. Higher Geometry. (3) I.
Prerequisite: course 8, or consent of the instructor.
Homogeneous point and line coordinates, cross ratio, one- and two-dimensional projective geometry, point and line conics.
Offered in alternate years.

*112B. Metric Differential Geometry. (3) II.
Prerequisite: course 4A–4B.
Vector analysis, study of curves and surfaces in three dimensions.
Offered in alternate years.

113. Synthetic Projective Geometry. (3) II.
Prerequisite: course G or high school solid geometry, course 8, or consent of the instructor.
Duality, perspectivity, harmonic sets, projectivity, definition of conics, theorems on conics, pole and polar.
Offered in alternate years.

Prerequisite: course 8.
Divisibility, congruences, diophantine equations; selected topics from the theory of prime numbers; partitions; continued fractions.
Offered in alternate years.

122A–122B. Advanced Calculus. (3–3) Yr.
Prerequisite: course 4B.
Introduction to real and complex variable theory, including limit theorems, functions of several variables, line and surface integrals, series, orthogonal functions, studies of special functions.

*127. Foundations of Analysis. (3) I.
Prerequisite: course 3B or consent of the instructor.
Sets, functions, Peano's postulates; the rational, real, and complex number systems; the axiom of choice; transfinite numbers.

128. Numerical Analysis. (3) II.
Prerequisite: course 102A, or consent of the instructor.
Practical aspects of computational methods for problems in applied mathematics. Finite difference methods and their applications to numerical integration, solution of equations, and numerical integration of

* Not to be given, 1957–1958.
ordinary and partial differential equations. Methods for large-scale computing systems.
Offered in alternate years.

131A–131B. Statistics. (3–3) Yr.
Prerequisite: course 4A or 16A–16B.
A basic introductory course in the theory and applications of statistical methods.

147. Introduction to Topology. (3) I.
An introduction to topology based on a study of spaces of low dimension. Topics will be selected from linear graphs, complexes, Euclidean plane, fixed points, homology, homotopy, and applications.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

GRADUATE COURSES

201A–201B. Function Theory. (3–3) Yr.
Prerequisite: course 122A–122B. Recommended: course 127.
Real number system, theory of point sets in Euclidean spaces, content, measure, Riemann-Stieltjes and Lebesgue integration.

*205A–205B. Theory of Functions of a Complex Variable. (3–3) Yr.
Prerequisite: course 122A–122B. Recommended: course 127.
Theory of analytic functions, Cauchy integral theorem, power series, analytic continuation, conformal mapping, special functions.

Topics selected from general topology (compactness, connectedness, metrization, Euclidean space); algebraic topology (complexes, homology, duality); and applications to analysis, geometry, and algebra.

220A–220B. Differential Equations and Other Topics. (3–3) Yr.
Prerequisite: course 102A–102B.
General theories, topics in ordinary and partial differential equations, boundary value problems.

231. Multivariate Analysis. (3) I.
Prerequisite: course 131A–131B. Recommended: course 102A–102B.
Multivariate normal distribution, analysis of variance, correlation and regression, chi-square.

*232. Theory of Estimation and Testing Hypotheses. (3) II.
Prerequisite: course 131A–131B. Recommended: course 102A–102B.
Estimates, asymptotic efficiency and normality, theory of statistical tests.

Prerequisite: course 112B.
Transformation of coordinates, tensor analysis, intrinsic geometry of surfaces, parallel displacement, Riemannian manifolds, the geometry of subspaces, subspaces of a flat space, application of tensor analysis to the theory of relativity.

* Not to be given, 1957–1958.
250A—250B. Algebra. (3–3) Yr.
Prerequisite: course 111A—111B.
The basic tools of commutative algebra: theory of fields; algebraic and transcendental extensions; Galois theory; valuations; ideal theory.

290. Seminars. (1–6) I and II.
Advanced study in various fields of mathematics as follows: (a) algebra; (b) analysis; (c) geometry; (d) mathematical logic; (e) number theory; (f) topology; (g) theoretical statistics; (h) applied statistics; (i) applied mathematics.

295. Research in Mathematics. (2–6) I and II.

MECHANICAL ENGINEERING
For courses in mechanical engineering see “Agricultural Engineering” on page 123.

MICROBIOLOGY
For courses in microbiology see “Bacteriology” on page 137.

MILITARY SCIENCE AND TACTICS
(Department Office, 125 Gymnasium)
Louis B. Besbeek, Lieutenant Colonel, Infantry; Professor of Military Science and Tactics (Chairman of the Department).
Bernard J. Ambrose, Captain, Infantry; Assistant Professor of Military Science and Tactics.
Lorne S. Black, Captain, Infantry; Assistant Professor of Military Science and Tactics.
Melburn L. Gustaveson, First Lieutenant, Quartermaster Corps, Assistant Professor of Military Science and Tactics.

Letters and Science List.—A total of not more than 8 units of lower division courses in military science may be included in the Letters and Science List of Courses. Upper division military science courses are not included in the Letters and Science List of Courses (see page 90).

GENERAL MILITARY SCIENCE
For the general regulations concerning enrollment and the program in Military Science and Tactics see page 27.

LOWER DIVISION COURSES
1A. Basic General Military Science (First Year). (2) I.
Lectures and drill.
Required of all physically fit male students unless specific exemption is granted.
Military organization; individual weapons and marksmanship; school of the soldier and exercise of command.
1B. Basic General Military Science (First Year). (2) II.
Lectures and drill.
Required of all physically fit male students unless specific exemption is granted.
American military history; school of the soldier and exercise of command.

20A. Basic General Military Science (Second Year). (2) I.
Lectures and drill.
Prerequisite: course 1A–1B, or equivalent.
Required of all physically fit male students unless specific exemption is granted.
Map and aerial photograph reading; crew-served weapons; school of the soldier; exercise of command and development of leadership.

20B. Basic General Military Science (Second Year). (2) II.
Lectures and drill.
Prerequisite: course 20A, or equivalent.
Required of all physically fit male students unless specific exemption is granted.
Crew-served weapons; school of the soldier; exercise of command and development of leadership.

Upper Division Courses

130A. Advanced General Military Science (First Year). (4) I.
Lectures and drill. Field trips to be arranged.
Prerequisite: completion of the lower division courses or the equivalent.
Military organization; small-unit tactics; military teaching methods; leadership; school of the soldier and exercise of command.

130B. Advanced General Military Science (First Year). (4) II.
Lectures and drill. Field trips to be arranged.
Prerequisite: course 130A.
Small-unit tactics; communications; leadership; school of the soldier and exercise of command.

140A. Advanced General Military Science (Second Year). (4) I.
Lectures and drill. Field trips to be arranged.
Prerequisite: course 130A–130B.
Command and staff; estimate of situation and combat orders; military intelligence; the military team; motor transportation; school of the soldier leadership and exercise of command.

140B. Advanced General Military Science (Second Year). (4) II.
Lectures and drill. Field trips to be arranged.
Prerequisite: course 140A.
Supply and evacuation; troop movement; military administration; military justice; service orientation; school of the soldier and exercise of command and leadership.

Mineralogy

For courses in mineralogy see “Geological Sciences” on page 171.

Music

For courses in music see “Philosophy and Fine Arts,” on page 192.
PARASITOLOGY

For courses in parasitology see "Entomology and Parasitology," page 159.

PHILOSOPHY AND FINE ARTS

Arthur Child, Ph.D., Associate Professor of Philosophy (Chairman of the Department).
Richard L. Nelson, M.A., Associate Professor of Art.
Jerome W. Rosen, M.A., Associate Professor of Music.
Joseph A. Baird, Jr., Ph.D., Assistant Professor of Art.
George Perle, Ph.D., Assistant Professor of Music.
Roland C. Petersen, M.A., Assistant Professor of Art.
Richard G. Swift, M.A., Instructor in Music.
William H. Bossart, M.A., Acting Instructor in Philosophy.
———, Instructor in Art.

‡Anne C. Morel, Ph.D., Assistant Professor of Mathematics.

ART

(Department Office, 227 Home Economics Building)

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

Departmental Major Adviser.—Mr. Nelson.

Preparation for the Art Major.—Courses 2A–2B, 3A–3B, and 6 units chosen from courses 1A, 1B, 1C, and 1D.

The Major.—Twelve units of Group A courses under two different artists, 2 units of Group B, 4 units of Group C, and 6 units chosen from Group A, B, or C.

Transfer Students.—Transfer students who have fulfilled unit requirements elsewhere are: (a) required to take an examination in order to qualify for Group A courses, and (b) are requested to present examples of their work done in other institutions before being admitted to classes and before credit can be given toward the major for work done elsewhere.

Students who qualify will be advised to take course 195 in order to acquaint themselves with the methods expected for this department's advanced courses. The department will recommend for graduation only students with at least a grade C average in the major.

LOWER DIVISION COURSES

1A. History of Ancient Mediterranean Art. (3) II.

From the Stone Age to the end of the Roman Empire. Field trips are included.

1B. History of Medieval, Renaissance, and Modern Art—Emphasis on Painting. (3) I.

Field trips are included.

1C. History of Medieval, Renaissance, and Modern Art—Emphasis on Architecture and Sculpture. (3) I.

Field trips are included.

‡ Absent on leave, fall semester, 1957–1958.
*1D. History of Oriental Art. (3) II.
 The art of India, China, and Japan. Field trips are included.
 Offered in alternate years.

2A–2B. Elementary Form and Color. (2–2) Yr.
 Laboratory.
 Beginning each semester.
 2A: Form in composition using black and white media.
 2B: Introduction to color in composition.

3A–3B. Intermediate Form and Color. (2–3) Yr.
 Laboratory.
 Beginning each semester.
 Prerequisite: course 2A–2B.
 3A: Color and form in composition.
 3B: Form in composition using the human figure as subject.
 Field trips are included.

10. An Introduction to Art. (2) I.
 Open to nonmajors.
 The understanding and appreciation of painting, sculpture, architecture,
 and industrial art. Consists of illustrated lectures.

16. Descriptive Drawing and Rendering. (2) I.
 Lectures and laboratory.
 Methods of objective drawing and of space description; rendering in
 various media.
 Field trips are included.

Upper Division Courses

Group A: Appreciation and Practice

Prerequisite: courses 2A–2B, 3A–3B.

The various courses in Group A differ in content, use of materials, type of
subject matter, etc., depending upon the individual aims of the artists in
charge. All courses in this group may be repeated indefinitely without dupli-
cation of credit, and part A is not prerequisite to part B.

The subject matter will range from still-life and landscape to life classes,
figure and mural compositions.

The materials used will range from charcoal and sumi to water-color,
gouache, egg tempera, oil, mixed technique, and fresco painting.

101A–101B. Advanced Drawing and Painting. (2–2) Yr.
 Laboratory.
 Prerequisite: courses 2A–2B, 3A–3B. Course 101A is not prerequisite to
 101B.
 Representational composition based upon out-of-door subjects in any
 medium.

102A–102B. Advanced Drawing and Painting. (2–2) Yr.
 Laboratory.
 Prerequisite: courses 2A–2B, 3A–3B. Course 102A is not prerequisite to
 102B.
 Composition with the human figure as a basic motif. Paintings in various
 media including oil, tempera, gouache, and wax.
 Field trips are included.

* Not to be given, 1957–1958.
Group B: Theory and Criticism

107. The Human Figure in Art. (2) II.
Prerequisite: courses 2A–2B, 3A–3B.
Problems of light, color, and space that involve the human figure and its environment.

Group C: History of Art

Open to nonmajors. General prerequisite: upper division standing and consent of the instructor.

119. Art of the Americas. (3) I.
A survey of the architecture, sculpture, and painting of the Americas, with emphasis on Central and North America, from pre-Columbian times to the twentieth century.
Field trips are included.

178. Baroque Art. (3) II.
Painting, sculpture, architecture, and the art of the garden from the formative stages of the Baroque style to the Rococo.
Field trips are included.
Offered in alternate years.

183A. European Painting in the Nineteenth Century. (3) II.
Field trips are included.
Offered in alternate years.

*183B. European Painting in the Twentieth Century. (3) II.
Field trips are included.
Offered in alternate years.

Special Study Courses

195. Special Study in Practice of Art. (2) I and II.
Prerequisite: 8 units of practice work or equivalent, taken at another university. Restricted to art majors. May not be repeated for credit.

198. Directed Group Study. (1–4) I and II.

199. Special Study for Advanced Undergraduates. (1–4) I and II.

MUSIC

(Department Office, 1 Music Building)

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).
A student may not receive more than 16 units of credit in performance courses.
Major Subject Adviser.—Mr. Rosen. Individual group majors may be established by combining the work offered in this field with courses in allied fields. The major subject adviser should be consulted for details.

LOWER DIVISION COURSES

A. Musicianship. (2) I.
Elements of music, with ear training, sight singing, and dictation.

* Not to be given, 1957–1958.
B. Musicianship. (2) II.
A continuation of course A, which is prerequisite.

2. Elementary Counterpoint. (3) I.
Prerequisite: course A (may be taken concurrently) or consent of the instructor.
Sixteenth-century polyphony; theory and practice. Preparatory exercises and motet writing.

3A. Elementary Harmony. (3) I.
Prerequisite: course B (may be taken concurrently) or consent of the instructor.
Studies in tonal organization with emphasis on chords, their construction and progression. Lectures and written exercises.

3B. Intermediate Harmony. (3) II.
Prerequisite: course 3A.
A continuation of course 3A.

*21A–21B. History and Literature of Music. (3–3) Yr.
Prerequisite: courses 2 and 3A, or consent of the instructor.
A study of the development of music from antiquity to the present; lectures, listening, technical analysis, and written reports.

27A. Introduction to Musical Literature. (3) I and II.
Two lectures and one section meeting per week.
Lectures, guided listening, and readings designed to furnish the student with an understanding of basic musical concepts.
Intended primarily for students whose major is not music.

27B. Introduction to Musical Literature. (3) II.
Prerequisite: course 27A or consent of the instructor.
Two lectures and one section meeting per week.
Lectures, guided listening, and readings designed to acquaint the student with stylistic elements characterizing music of the eighteenth, nineteenth and twentieth centuries.
Intended primarily for students whose major is not music.

41. University Symphony Orchestra. (2) I and II.
Two hour-and-a-half rehearsals and one section hour per week.
Open to any student in the University whose technical proficiency meets the requirements of concert performance.
Rehearsal and performance of symphonic music. May be repeated once for credit.

43. University Concert Band. (2) II.
Two hour-and-a-half rehearsals and one section hour per week.
Open to any student in the University whose technical proficiency meets the requirements of concert performance.
Rehearsal and performance of band music. May be repeated once for credit.
In the fall semester, band practice and performance will be offered as an activity, rather than a course, with one two-hour rehearsal per week.

* Not to be given, 1957–1958.
44. University Chorus. (2) I and II.
Two hour-and-a-half rehearsals and one section hour per week.
Rehearsal and performance of choral music. May be repeated once for credit.

*46A-46B. Chamber Music Ensemble. (1-1) Yr.
Course 46A is not prerequisite to 46B.
Two one-hour rehearsals per week.
Open to any student in the University of sufficient technical ability to take part in ensemble combinations for strings, wind instruments, and piano.
May be repeated once for credit.

UPPER DIVISION COURSES

127A. Musical Literature: The Opera. (3) I.
Prerequisite: course 27A–27B or consent of the instructor.
Two lectures and one section meeting per week.
A study of selected operas such as Dido and Aeneas, The Marriage of Figaro, The Barber of Seville, Tristan and Isolde, Aida, Pelleas and Melisande, and Wozzeck, emphasizing the contribution of music to the total dramatic effect.
Intended primarily for students whose major is not music.

*127B. Musical Literature: The Symphony. (3) II.
Prerequisite: course 27A–27B or consent of the instructor.
Two lectures and one section meeting per week.
A study of selected symphonies by composers such as Haydn, Mozart, Beethoven, Schubert, Brahms, and Stravinsky, emphasizing form and style.
Intended primarily for students whose major is not music.
Offered in alternate years.

128. Musical Literature: Music in the United States. (3) II.
Prerequisite: course 27A–27B or consent of the instructor. Intended primarily for students whose major is not music.
A study of the musical scene in America from colonial times to the present. Lectures, reading assignments, and guided listening to representative works of significant composers.
Offered in alternate years.

141. Advanced University Symphony Orchestra. (2) I and II.
Prerequisite: 2 semesters in course 41.
May be repeated once for credit.

143. Advanced University Concert Band. (2) II.
Prerequisite: 2 semesters in course 43.
May be repeated once for credit.

144. Advanced University Chorus. (2) I and II.
Prerequisite: 2 semesters in course 44.
May be repeated once for credit.

199. Special Study for Advanced Undergraduates. (1-4) I and II.

* Not to be given, 1957-1958.
PHILOSOPHY

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

Major Subject Adviser.—Mr. Child, Individual group majors may be established by combining the work offered in this field with courses in allied fields. The major subject adviser should be consulted for details.

LOWER DIVISION COURSES

6A–6B. Introduction to Philosophy. (3–3) Yr.
Course 6A is prerequisite to 6B.

11. Logic. (3) I.
Deductive and inductive argument; fallacies and the criteria of correct thinking; symbolism; the characteristics of scientific method; the nature and function of logic.

12A. Introduction to Modern Logic. (3) II.
The concept of a deductive theory. The sentential calculus; use of variables and quantifiers. Construction of an elementary mathematical theory.

20A–20B. History of Philosophy. (3–3) Yr.
Prerequisite: sophomore standing. Course 20A is not prerequisite to 20B.
I. From the Pre-Socratics to Plotinus.
II. From the Scholastics to Kant.

UPPER DIVISION COURSES

*103. Philosophy of the Nineteenth Century. (3) I.
The idealism of Hegel and his successors; the positivism of Comte and Mill; the irrationalism of Kierkegaard and Nietzsche.
Offered in alternate years.

104. Ethics. (3) I.
The principles of intelligent conduct: their status and nature; how they are discovered, known, and proved; and their relationships to the principles of art, science, and logic.
Offered in alternate years.

*105. Kant. (3) I.
The Critique of Pure Reason and selections from other works.
Offered in alternate years.

111. Metaphysics. (3) I.
The search for being; the meaning of being and the relation of being to ontology. The theory of knowledge. Possible types of world order.
Offered in alternate years.

*112. Philosophy of Religion. (3) I.
The nature and validity of religious ideas.
Offered in alternate years.

*116. Plato. (3) II.
Several dialogues, exemplifying various aspects of Plato’s thought, from

* Not to be given, 1957–1958.
among such works as the Gorgias, Phaedrus, Statesman, Theaetetus, Timaeus, Parmenides, Philebus, and Sophist.
Offered in alternate years.

117. Aristotle. (3) II.
The Metaphysics and related portions of other treatises.
Offered in alternate years.

*124. Philosophy of Science. (3) II.
Basic concepts and methods of the mathematical, physical, biological, and social sciences; philosophical reflections on science.
Offered in alternate years.

*135A. Contemporary Tendencies: British-American. (3) II.
Idealism, realism, pragmatism, logical empiricism, Cambridge analysis.
Offered in alternate years.

135B. Contemporary Tendencies: European. (3) II.
Existentialism, phenomenology, and their immediate antecedents.
Offered in alternate years.

136C. Aesthetics. (3) II.
The nature of art (as inclusive of dance, drama, landscaping, literature, music, painting, etc.), of artistic creation, of the work of art, and of aesthetic experience; the nature and validity of criticism; and the relations of art to its environment.
Offered in alternate years.

PHYSICAL EDUCATION

(Department Office, 204 Gymnasium)

Charles R. Kovacic, Ed.D., Associate Professor of Physical Education.
Marya Welch, Ed.D., Associate Professor of Physical Education.
—, Assistant Professor of Physical Education.
Vernard B. Hickey, A.B., Lecturer and Supervisor of Physical Education.
Irving F. Toomey, B.S., Supervisor of Physical Education (Chairman of the Department).
‡George A. Stromgren, M.S., Lecturer and Associate Supervisor of Physical Education.
Eugene S. Wilson, B.S., Associate Supervisor of Physical Education.
Charles W. Dutton, A.B., Assistant Supervisor of Physical Education.
Alva J. Johnson, M.S., Assistant Supervisor of Physical Education.
Willard S. Lotter, A.B., Associate in Physical Education and Assistant Supervisor of Physical Education.
Ruth J. Rose, M.A., Assistant Supervisor of Physical Education.
†Myron R. Schall, A.B., Assistant Supervisor of Physical Education.
Herbert A. Schmalenberger, A.B., Assistant Supervisor of Physical Education.

The incidental fee payable by all students at the time of registration, entitles students to the use of the gymnasium, swimming pool, shower, towels,

* Not to be given, 1957–1958.
† Absent on leave, fall semester, 1957–1958.
‡ Absent on leave, spring semester, 1958.
lockers, tennis courts, and the athletic fields. Equipment for games and sports is available for exercise and recreation, either with or without instruction. Courses may be elected with or without academic credit.

Fines are imposed for each formal transaction necessitated by failure of the student to comply with the regulations of the department.

LOWER DIVISION COURSES FOR MEN

1. **Physical Education for Men.** (4) I and II.
 Sections meet twice weekly at hours to be arranged.
 Sections are organized in baseball, basketball, boxing, football, golf, riding, soccer, tennis, touch football, track, wrestling, swimming, lifesaving, and water sports. Men qualified for athletics may enroll in any sport pursued at Davis, such as football and basketball, and receive credit for this elective.
 This course may be repeated for credit not to exceed a total of 4 units.

10. **Professional Physical Education Activities (Men).** (1) I and II.
 Fundamental knowledges and skills in swimming, basketball, football, track, baseball, tennis, golf, combative sports, developmental activities, court sports, tumbling.

LOWER DIVISION COURSES FOR WOMEN

22. **Professional Physical Education Activities (Women).** (1) I and II.
 Fundamental knowledge and skill in aquatics (swimming—beginning, intermediate, advanced, synchronized; diving; lifesaving; water safety); archery; badminton; basketball; dance (folk and square, modern, social); tennis; tumbling; gymnastics; volleyball.

26. **Physical Education for Women.** (4) I and II.
 Sections meet twice weekly at hours to be arranged.
 Sections are organized in archery, badminton, volleyball, riding, swimming, lifesaving, and swimming formations.
 This course may be repeated for credit not to exceed a total of 4 units.

35. **Rhythmic Form and Analysis.** (1) I.
 The fundamentals of rhythmic form; the use of rhythm as the basic element in activity and its application to physical education. A workshop class in the function of rhythm, form, and analysis.

LOWER DIVISION COURSES FOR MEN AND WOMEN

5A. **First Aid.** (1) I and II.
 Standard course. Upon successful completion of the course, the Red Cross Certificate is awarded.

20. **Introduction to Physical Education.** (1) I.
 An orientation and interpretation of the field of physical education for the prospective major. Open only to students specializing in physical education and candidates for the teaching credential.

44. **Principles of Healthful Living.** (1) II.
 Use of scientific information, proper attitudes, knowledge and health practices in daily living.
UPPER DIVISION COURSE FOR MEN

171. Conditioning of Athletics and Care of Injuries. (2) I.
 Prerequisite: course 5A, physiology or anatomy.
 Modern principles and practices in conditioning and care of athletes.
 Prevention, care of athletic injuries and therapeutic exercises applied to
 athletic injuries; training-room equipment, protective devices and supplies.

UPPER DIVISION COURSES FOR MEN AND WOMEN

103A–103B. Analysis of Human Movement. (4–4) Yr.
 Lectures and laboratory.
 Prerequisite: Physiology 1–1L.
 Analysis of human movement based upon the integration of kinesiology,
 physiology of activity and adapted physical education.

124. The Theory of Swimming and Diving. (1) I and II.
 Lectures and laboratory.
 Prerequisite: course 1 in swimming or equivalent.
 Skills and teaching technique.

125. The Theory of Life Saving and Water Safety. (1) I and II.
 Lectures and laboratory.
 Prerequisite: course 124 or equivalent and a Red Cross Life Saving
 Certificate.
 Skills and teaching technique. Upon successful completion of the course,
 the Red Cross Certificate of Completion is awarded.

130. Principles and Theory of Physical Education. (3) II.
 Prerequisite: course 20.
 A critical analysis of the assumptions underlying the physical education
 program.

140. Recreation in the Community. (2) I.
 The nature, scope and significance of recreation with its implications for
 leisure. The development, organization and purpose of public and voluntary
 agencies which serve the recreational needs of the community.

145. School Health Education. (2) II.
 Prerequisite: course 44 or consent of instructor.
 A study of the school health program as an integral part of the school
 curriculum; the underlying principles and functions of health instruction,
 health service, healthful school living and the contributing community health
 agencies.

180A–180B. Physical Education in the Secondary School. (2–2) I and II.
 Prerequisite: course 130 and individual proficiency in activities.
 An analysis and study of the principles and methods basic to the physical
 education program in the secondary school; the role of the teacher in the
 program and the competencies necessary to carry out the functions of the
 physical education teacher.
GRADUATE COURSES

380A–380B. Methods of Physical Education in the Secondary School. (2–2)
I and II.
Prerequisite: course 130 and individual proficiency in activities. Physical
Education 180A–180B must be taken concurrently.
The methods of teaching group and individual activities in the secondary
school; program planning; class management; organization of the intra-
mural and extramural programs. Laboratory experience in teaching methods.

PHYSICS

(Department Office, 2 Physics Building)
Milton E. Gardner, Ph.D., Associate Professor of Physics.
John A. Jungerman, Ph.D., Associate Professor of Physics.
Charles G. Patten, Ph.D., Associate Professor of Physics (Chairman of the
Department).
Philip G. Lichtenstein, Ph.D., Assistant Professor of Physics.
——, Assistant Professor of Physics.
——, Assistant Professor of Physics.

Letters and Science List.—All undergraduate courses in physics are in-
cluded in the Letters and Science List of Courses (see page 90).

Major Subject Adviser.—Mr. Patten.

Preparation for the Major.—Required: Physics 4A, 4B, 4C, or the equiva-
 lent (courses 2A–2B, 3A–3B and 38A–38B will be accepted); Chemistry
1A–1B, Mathematics 3A–3B, 4A–4B, or their equivalent. Recommended:
Mathematics 8 and a reading knowledge of French and German.
The Major.—The major must include Physics 105A–105B, 108B, 110A–
110B, 115, 121, and Mathematics 102A–102B. The department will certify
to the completion of the major program for graduation only on the basis of
at least a C average in the upper division courses taken in the department.
Students who cannot maintain such an average may be required at any time
to withdraw from the major in physics.

LOWER DIVISION COURSES

Physics 4A, 4B, 4C are fundamental and are designed to meet the needs of
students whose major is physics and of students preparing for applications
of physics in the colleges of Engineering and Chemistry. After completing
4A, the order of taking 4B and 4C is immaterial.

Prerequisite for all lower division courses: (1) either high school physics
or chemistry; (2) trigonometry (may be taken concurrently).

2A. General Physics Lecture. (3) I and II.
Prerequisite: (1) either high school physics or chemistry; (2) trigonome-
try (may be taken concurrently).
Elective in the College of Letters and Science. Required for premedical
students.
Mechanics, properties of matter, heat, and sound.

2B. General Physics Lecture. (3) I and II.
Prerequisite: course 2A.
Elective in the College of Letters and Science. Required for premedical
students.
Properties of light, electricity, magnetism, and atomic and nuclear physics.
3A. General Physics Laboratory. (1) I and II.
Required for premedical students. Recommended for all students who elect course 2A.
Mechanics, properties of matter, heat, and sound. Experimental work planned to accompany the lectures in course 2A.

3B. General Physics Laboratory. (1) I and II.
Required for premedical students. Recommended for all students who elect course 2B.
Properties of light, electricity, magnetism, and atomic and nuclear physics. Experimental work planned to accompany the lectures in course 2B.

4A. General Physics. (4) II.
Lectures and laboratory.
Prerequisite: (1) high school physics or chemistry; (2) Mathematics 3A–3B, or its equivalent. Mathematics 3B may be taken concurrently.
Open to students in all colleges. Together with courses 4B and 4C, required for students in the College of Letters and Science whose major subject is physics, and for students in engineering and chemistry.
Mechanics, properties of matter.

4B. General Physics. (4) I.
Lectures and laboratory.
Prerequisite: course 4A.
Open to students in all colleges. Required for students in the College of Letters and Science whose major subject is physics, and for students in engineering and chemistry.
Electricity and magnetism.

4C. General Physics. (4) II.
Lectures and laboratory.
Prerequisite: course 4A.
Open to students in all colleges. Required for students in the College of Letters and Science whose major subject is physics, and for students in engineering and chemistry.
Heat, wave motion, sound, and light.

38A–38B. Supplementary Lecture Course in General Physics. (2–2) Yr.
Prerequisite: courses 2A–2B, Mathematics 3A–3B, 4A (4A may be taken concurrently).
Equivalent to parts of the lecture material in courses 4A, 4B, and 4C. Together with the laboratory courses 3A–3B, this course will supply the student with the necessary basic training required for the upper division program in physics.
Offered in alternate years.

Upper Division Courses

Courses 4A, 4B, 4C or their equivalent and differential and integral calculus are prerequisite to all upper division courses, except course 107.

104. Vector Analysis. (3) I.
Elements of vector and tensor analysis with applications to physics.
Offered in alternate years.
Fundamental principles of Newtonian mechanics.

107. Introduction to Electronics. (3) I.
Prerequisite: course 2B, or equivalent.
Elementary principles of single-phase alternating-current circuits, characteristics of thermionic tubes and a study of simple electronic circuits.
Offered in alternate years.

108B. Physical Optics. (3) I.
Lectures and laboratory.
The phenomena of diffraction, interference, and polarization of light, and their applications.

110A–110B. Electricity and Magnetism. (3–3) Yr.
Prerequisite: Mathematics 102A–102B.
Elementary and mathematical theory of electrostatics, magnetostatics, magnetism, steady and varying currents, electron theory, and electromagnetic waves.

*112. Heat. (3) I.
The thermal properties of matter, with an introduction to the mathematical theory of heat conduction, the kinetic theory of matter, and thermodynamics.
Offered in alternate years.

115. Introduction to Quantum Mechanics. (3) II.
Prerequisite: courses 105A, 121.
The classical background, basic ideas, and methods of quantum mechanics, with applications to atomic physics.

121. Introduction to Atomic Structure. (3) II.
An introduction to atomic physics treating cathode and positive rays, the electron, thermionic emission, the photoelectric effect, the structure of the atom, and the interpretation of spectra and X rays.

129A–129B. Nuclear Physics. (3–3) Yr.
Prerequisite: course 121.
Natural and artificial radioactivity, nuclear radiations and their interaction with matter, general properties of nuclei and the theory of nuclear structure, high energy physics, mesons.
Offered in alternate years.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
All special work of upper division grade not included in courses announced above.

GRADUATE COURSES

205. Theoretical Mechanics. (3) I.
Prerequisite: course 105A–105B or the equivalent.
The generalized methods of Lagrange, Hamilton, and Jacobi. Advanced theories leading to the formulation of quantum mechanics.
Offered in alternate years.

* Not to be given, 1957–1958.
210. Theory of Electricity and Magnetism. (3) II.
Prerequisite: course 110A–110B or the equivalent, and a working knowledge of differential equations.
Classical description of the electromagnetic field including special relativity and electron theory.
Offered in alternate years.

*219. Statistical Mechanics and Kinetic Theory. (3) II.
Foundations of statistical mechanics. Classical and quantum statistics, with applications to properties of matter; kinetic theory; gases at very low pressure; Boltzmann transport equation; irreversible processes.
Offered in alternate years.

*229. Nuclear Theory. (3) I.
Prerequisite: courses 115, 129A, or their equivalent.
Nuclear structure with emphasis on recent theoretical models of nuclear forces and potentials and the physical properties and behavior of nuclei at low excitation energy. Theoretical problems of experimental interest, such as the penetration of electrons through matter.
Offered in alternate years.

290. Seminar. (1–3) I and II.
Advanced study in various fields of modern physics. Topics will vary from year to year.

299. Research. (1–6) I and II.

PHYSIOLOGY

For courses in physiology see "Animal Physiology," page 135, and "Zoology," page 228.

PLANT NEMATOLOGY

(Department Office, 12 Temporary Building No. 6)

Benjamin F. Lownber, Ph.D., Lecturer in Nematology.
Dewey J. Raski, Ph.D., Lecturer in Nematology (Chairman of the Department).

UPPER DIVISION COURSE

100. General Plant Nematology. (3) I.
Lectures and laboratory.
Prerequisite: Zoology 1A or 10.
An introduction to the classification, morphology, biology, and control of the nematodes attacking cultivated crops.

PLANT NUTRITION

For courses in plant nutrition see "Soils and Plant Nutrition" page 216.

* Not to be given, 1957–1958.
PLANT PATHOLOGY

(Department Office, 258 Hunt Hall)

W. Harley English, Ph.D., Professor of Plant Pathology.
William B. Hewitt, Ph.D., Professor of Plant Pathology.
Byron R. Houston, Ph.D., Professor of Plant Pathology.
James B. Kendrick, Sr., Ph.D., Professor of Plant Pathology (Chairman of the Department).
Lysle D. Leach, Ph.D., Professor of Plant Pathology.
Edward E. Wilson, Ph.D., Professor of Plant Pathology.
Raymond G. Grogan, Ph.D., Associate Professor of Plant Pathology.
George Nyland, Ph.D., Associate Professor of Plant Pathology.
James E. DeVay, Ph.D., Assistant Professor of Plant Pathology.
Philip M. Halisky, Ph.D., Instructor in Plant Pathology.

Joseph M. Ogawa, Ph.D., Lecturer in Plant Pathology.

Letters and Science List.—Plant Pathology 124A—124B, Departmental Major Advisers.—Mr. English, Mr. Houston. The Major.—See pages 64—68.

LOWER DIVISION COURSE

*1. Introduction to Plant Pathology. (3) II.
Lectures and laboratory.
Prerequisite: Botany 1 or consent of the instructor.
An introduction to plant diseases with reference to general groups of causal agents, symptomatology, control and the relation of plant diseases to human life. Not open to students who have had course 120 and is not a substitute for course 120 in the plant science curriculum.

UPPER DIVISION COURSES

120. Plant Diseases. (4) I and II.
Lectures and laboratory.
Prerequisite: Botany 1. Recommended: Bacteriology 1.
A general course on the nature, cause, and control of plant diseases.

122. Plant Pathology Methods. (3) I.
Lectures and laboratory.
Prerequisite: course 120.
The laboratory methods and techniques used in the study of plant diseases.

124A—124B. Pathogenic Fungi. (3—3) Yr.
Lectures and laboratory.
Prerequisite: course 120 or Botany 114.
The morphology and taxonomy of fungi with special emphasis on plant pathogens.

125A—125B. Diseases of Crop Plants. (3—3) Yr.
125A. Field and Vegetable Crops.
125B. Fruit, Nut, and Vine Crops.
Lectures and laboratory.
Prerequisite: course 120.

* Not to be given, 1957—1958.
The pathology of important crop plants. Diagnosis, host reaction, factors influencing inception and severity of the disease, dissemination and control. Frequent field trips are required.

*128. Advanced Plant Pathology. (3) II.
 Prerequisite: courses 122, 124A–124B.
 A study of the factors influencing pathogenicity and of the reaction of host plants to disease.

199. Special Study for Advanced Undergraduates. (1–5) I and II.

GRADUATE COURSES

201A–201B. Seminar in Plant Pathology. (1–1) Yr.

230A–230B. Research in Plant Pathology. (1–6; 1–6) Yr.

POLITICAL SCIENCE

For courses in political science see "History and Political Science" on page 173.

POMOLOGY

(Department Office, 201 Horticulture Building)

Reid M. Brooks, Ph.D., Professor of Pomology.
†Lawrence L. Claypool, Ph.D., Professor of Pomology.
Luther D. Davis, Ph.D., Professor of Pomology.
Carl J. Hansen, M.S., Professor of Pomology.
Claron O. Hesse, Ph.D., Professor of Pomology (Chairman of the Department).
E. Louis Proebsting, Ph.D., Professor of Pomology.
Frank W. Allen, M.S., Professor of Pomology, Emeritus.
Warren P. Tufts, Ph.D., Professor of Pomology, Emeritus.
Royce S. Bringhurst, Ph.D., Associate Professor of Pomology.
Dillon S. Brown, Ph.D., Associate Professor of Pomology.
†Julian C. Crane, Ph.D., Associate Professor of Pomology.
William H. Griggs, Ph.D., Associate Professor of Pomology.
Hudson T. Hartmann, Ph.D., Associate Professor of Pomology.
Richard W. Harris, Ph.D., Assistant Professor of Pomology.
Dale E. Kester, Ph.D., Assistant Professor of Pomology.

~

Muriel V. Bradley, Ph.D., Lecturer in Pomology.
Omund Lillevand, Ph.D., Lecturer in Pomology.
Edward C. Maxie, Ph.D., Lecturer in Pomology.
Harold P. Olmo, Ph.D., Professor of Viticulture.
Eugene F. Serr, Jr., B.S., Lecturer in Pomology.

* Not to be given. 1957–1958.
‡ Absent on leave, fall semester, 1957–1958.
1. General Fruit Growing. (3) I.
 Lectures and laboratory
 Not open to students who have completed course 2.
 A survey of the fruit industry, including climatic influences, varieties, root-
 stocks, and cultural practices.

2. Principles of Fruit Growing. (3) I.
 Prerequisite: Botany 1.
 An introduction to the principles underlying the behavior of fruit trees,
 their response to environment and cultural operations.

3. Citrus and Other Subtropical Fruits. (2) II.
 Lectures and laboratory.
 The production of the evergreen subtropical fruits including avocados,
 dates, olives, and citrus with special emphasis on citrus. A study of the
 fundamental information relating to orchard management as applied to
 these fruits.

9. Plant Propagation. (2) II.
 Lectures and laboratory
 Prerequisite: Botany 1
 Principles of propagation with special reference to horticultural plants.

UPPER DIVISION COURSES

105. Fruit Handling and Varieties. (5)
 Eight lectures; eight laboratory periods.
 Prerequisite: course 2, or consent of the instructor.
 A six-week summer course.
 Fruit-handling practices and summer orchard operations emphasizing the
 characteristic differences of certain species and varieties of fruit. Field trips
 to the important deciduous fruit-growing districts of California will be in-
 cluded.
 The course will be offered in the second Summer Session of odd-numbered
 years. Students should register with the instructor on or before June first of
 the preceding spring semester.

106A-106B. Fruit Plants. (2-2) Yr.
 Lectures and laboratory
 Prerequisite: course 2. Course 106A is not prerequisite to 106B.
 Fruit-growing practices emphasizing the characteristic differences of cer-
 tain species of fruit plants.

107. Small-Fruit Culture. (2) I.
 Prerequisite: course 2.
 Principles and practices of growing strawberries and bush fruits with
 special reference to climatic and soil requirements; selection of varieties and
 sites is emphasized; propagation, planting, cultural methods, harvesting, and
 preparation for market. Field trips may be arranged.
110. Fruit Morphology. (3) I.
Lectures and laboratory.
Prerequisite: Botany 1.
The morphological development of the flower, fruit, and seed of more than thirty typical horticultural species.

112. Handling, Storage, and Transit of Fruits. (3) I.
Lectures and laboratory.
Prerequisite: course 2, Botany 7.
Fundamentals of certain fruit-handling operations; fruit maturity; pre-cooling; fruit storage and transportation. Particular emphasis is given to the physiological principles underlying these postharvest practices.

114. Fruit Breeding. (3) II.
Lectures and laboratory.
Prerequisite: course 2, Genetics 100.
The genetics and cytology of fruit species in relation to varietal improvement, including a study of sterility, incompatibility, interspecific hybridization, and clonal selection in fruit varieties.

121. Advanced Pomology. (3) II.
Prerequisite: course 2, Botany 7, consent of the instructor.
The physiology of fruit trees, their response to environment and to cultural operations.

198. Directed Group Study in Experimental Pomology. (2) I.
Prerequisite: 3 units upper division work in pomology completed; consent of the instructor.
A critical review and discussion of horticultural research in selected fields. Emphasis is placed on criticism of methods and their application, validity of conclusions, and relation to the development of the field of study.

199. Special Study for Advanced Undergraduates in Pomology.
(1-5) I and II.

GRADUATE COURSES

201A–201B. Research in Pomology. (1–6; 1–6) Yr.

202A–202B. Seminar in Postharvest Physiology. (1–1) Yr.
Prerequisite: consent of the instructor. Course 202A is not prerequisite to course 202B.
An intensive study of selected topics in the field of postharvest physiology of fruits and vegetables. This seminar will be conducted jointly with Vegetable Crops 202A–202B.

205A–205B. Seminar. (1–1) Yr.

POULTRY HUSBANDRY

(Department Office, 109 Poultry Building)

Vigfus S. Asmundson, Ph.D., Professor of Poultry Husbandry.
Frank H. Kratzer, Ph.D., Professor of Poultry Husbandry.
Samuel Lepkovsky, Ph.D., Professor of Poultry Husbandry (Berkeley campus).
†Frederick W. Lorenz, Ph.D., Professor of Poultry Husbandry.
†George F. Stewart, Ph.D., Professor of Poultry Husbandry (Chairman of the Department).
Lewis W. Taylor, Ph.D., Professor of Poultry Husbandry (Berkeley campus).
Charles R. Grau, Ph.D., Associate Professor of Poultry Husbandry.
Arthur H. Smith, Ph.D., Associate Professor of Poultry Husbandry.
Wilbor O. Wilson, Ph.D., Associate Professor of Poultry Husbandry (Acting Chairman of the Department).
Ursula H. Abbott, Ph.D., Assistant Professor of Poultry Husbandry.
Hans Abplanalp, Ph.D., Assistant Professor of Poultry Husbandry.
Daniel W. Peterson, Ph.D., Assistant Professor of Poultry Husbandry.
Norman S. VanMatre, Ph.D., Acting Instructor in Poultry Husbandry.

Letters and Science List.—Poultry Husbandry 107, 108.
Departmental Major Adviser.—Mr. Grau.
The Major.—See pages 53–55.

LOWER DIVISION COURSES

1. Poultry Production. (3) I.
Lectures and laboratory.
An introductory study of the relation of the several sciences underlying poultry production to flock management.

48A–48B. Poultry Management Practice. (2–2) Yr.
Laboratory.
Prerequisite: course 1.
Practice and directed study of poultry management; incubation of eggs; brooding and rearing management of chicks and poultts and culling of the laying flock; artificial insemination; chicken and turkey meat production; poultry products technology and marketing. Field trips will be made to poultry ranches, hatcheries, feed mills, processing plants, etc., as applicable.

UPPER DIVISION COURSES

102. Experimental Incubation. (3) I.
Lectures and laboratory.
Prerequisite: Zoology 100A and 100C, Chemistry 8.
Problems of embryonic development, causes of embryonic mortality in poultry, and principles of artificial incubation.

103. Poultry Breeding. (3) I.
Prerequisite: Genetics 100.
Inheritance in poultry and study of the application of genetic principles to problems in poultry breeding (chickens and turkeys).

103L. Laboratory in Poultry Breeding. (1) I.
Prerequisite: course 103; Genetics 100 (course 103 may be taken concurrently).
Problems in quantitative genetics with applications to practical poultry breeding procedures. Exercises in the analysis, interpretation, and use of breeding records.

104. Poultry Feeds and Feeding. (3) I.
Lectures and laboratory.
Prerequisite: Animal Husbandry 105.

A study of the manufacture, composition, and use of poultry feedstuffs; elementary feed analysis.

107. Avian Physiology. (2) II.
Prerequisite: Physiology 1 and 1L or Animal Husbandry 110 or equivalent; Zoology 1B.
Physiology of the various systems of birds with emphasis on reproduction, digestion, metabolism, and endocrinology.

108. Avian Physiology Laboratory. (1) II.
Laboratory.
Prerequisite: course 1, 107 (may be taken concurrently); consent of the instructor.
Selected problems in the physiology of birds.

112. Poultry Meat Production. (3) II.
Prerequisite: course 1; senior standing in animal science or consent of the instructor.
The relation of heredity, nutrition, physiology and environment to the breeding, feeding and management of poultry for meat production with particular reference to turkeys and chickens.

121. Technology of Handling Poultry Products. (2) I.
Prerequisite: consent of the instructor.
Lectures and demonstrations regarding the physical, chemical, and nutritional composition of poultry products; quality criteria and standards; physical, chemical, and microbiological factors influencing keeping quality.

149. Environmental Physiology of Domestic Animals. (2) I.
Prerequisite: Zoology 1A, 1B.
The relation of environmental factors on physiological processes related to animal production.
Offered in alternate years.

150. Concepts of Animal Nutrition. (2) II.
Prerequisite: Animal Husbandry 101, Chemistry 3, Physiology 1, Zoology 1B or their equivalents.
Dynamic interrelationship between food, animal and environment. Covers: (1) transfer of nutrients from environment to gastrointestinal tract; (2) processing in gastrointestinal tract; (3) transfer from gastrointestinal tract to cell; (4) utilization by cell.

198. Directed Group Study. (1–2) II.
Prerequisite: senior standing and consent of the instructor.
Group study of methods employed in poultry production and management.

199. Special Study for Advanced Undergraduates. (1–5) I and II.
Prerequisite: course 1; courses basic to problem elected; consent of the instructor.
Problems may be elected relating to the nutrition, breeding, incubation, physiology, and egg quality of chickens or turkeys.

RELATED COURSES

Farm Management (Agricultural Economics 140)

Principles of Pathology and Control of Diseases of Domestic Animals (Veterinary Science 111)
Poultry Pathology Laboratory (Veterinary Science 112)

GRADUATE COURSES

200A–200B. Research in Poultry Husbandry. (1–6; 1–6) Yr.

201A–201B. Seminar in Poultry Science. (1–1) Yr.
 Course 201A is not prerequisite to 201B.
 Reports and discussion of recent advances and selected topics of current
 interest in avian genetics, physiology, and nutrition, and poultry-products
 technology.

PSYCHOLOGY

(Department Office, 2165 Haring Hall)

William F. Dukes, Ph.D., Associate Professor of Psychology (Chairman of
 the Department).
Paul Dempsey, Ph.D., Assistant Professor of Psychology.

Letters and Science List.—All undergraduate courses are included in the
Letters and Science List of Courses (see page 90).
Departmental Major Adviser.—Mr. Dukes.

LOWER DIVISION COURSES

1A. General Psychology. (3) I and II.
 Not open to entering freshmen.
 An introduction to the facts and principles of psychology.

1B. General Psychology. (3) II.
 Prerequisite: course 1A.
 A continuation of course 1A with a detailed treatment of the application
 of the scientific method in the study of behavior. Basic assumptions, limita-
 tions, and advantages of the method of experiment. Intended primarily for
 prospective major students.

33. Personal and Social Adjustment. (3) II.
 Prerequisite: course 1A.
 A continuation of course 1A, intended primarily for students who will not
 major in psychology. The dynamics of normal personality development. Fam-
 ily relationships, social adjustment, and self-evaluation are emphasized.

UPPER DIVISION COURSES

130. Learning. (3) I.
 Lectures and laboratory.
 Prerequisite: course 1A.
 Consideration of major theories of learning and memory with critical exam-
 ination of relevant experimental, clinical and social data.

145. Social Psychology. (3) II.
 Prerequisite: course 1A.
 Behavior of the individual in the group. Examination of basic psychologi-
 cal processes in social situations, surveying various problems of social inter-
action: group tensions, norm-development, attitudes, values, public opinion, status.

147. Personality Theory and Assessment. (3) I.
 Lectures and laboratory.
 Prerequisite: Psychology 1A.
 A systematic consideration of contemporary theories in the field of personality, together with an exploration and evaluation of some of the principal methods of collecting relevant empirical evidence.

168. Abnormal Psychology. (3) I.
 Prerequisite: course 1A.
 A descriptive and functional account of behavior disorders with primary consideration given to neurotic and psychotic behavior. Methods and theories of psychotherapy.

199. Special Study for Advanced Undergraduates. (1-3) I and II.
 Investigation of special problems.

RANGE MANAGEMENT

Committee in Charge:
Harold H. Biswell, Ph.D., *Professor of Forestry (Berkeley campus).*
R. Merton Love, Ph.D., *Professor of Agronomy.*
Henry J. Vaux, Ph.D., *Professor of Forestry (Chairman of the Committee) (Berkeley campus).*
Harold F. Heady, Ph.D., *Associate Professor of Forestry (Berkeley campus).*
†William C. Weir, Ph.D., *Associate Professor of Animal Husbandry.*

Instruction in Range Management is not organized as a single administrative unit in the University, but the relevant courses are offered by a number of departments, and are coordinated by the committee in charge.

Group Major Adviser.—Mr. Love.
The Major.—See pages 70–72.

LOWER DIVISION COURSE

49. Range Management Field Practice Course. (No credit)
 Approximately four weeks devoted to field studies of range conditions and methods of utilization in various parts of the state. Required of all students with a major in range management.

UPPER DIVISION COURSE

199. Special Study for Advanced Undergraduates. (1-5) I and II.
 Prerequisite: senior standing and consent of the instructor.

REQUIRED COURSES IN THE MAJOR

Principles of Crop Production (Agronomy 110)

Hay and Pasture Production (Agronomy 112)

† Absent on leave, fall semester, 1957–1958.
Range Improvement (Agronomy 115)
Introduction to Animal Husbandry (Animal Husbandry 7)
Livestock Judging and Selection (Animal Husbandry 8)
Feeds and Feeding (Animal Husbandry 103)
Meat Production (Animal Husbandry 118)
Plant Ecology (Botany 110)

GRADUATE COURSES

200A–200B. Research in Range Management. (1–6; 1–6) Yr.
Course 200A is not prerequisite to 200B.

*201A–201B. Seminar in Range Management. (2–2) Yr.
Prerequisite: course 133 (given at Berkeley). Course 201A is not prerequisite to 201B.

SOCIOLOGY, ANTHROPOLOGY, AND GEOGRAPHY

(Department Office, 112 Temporary Building No. 8)

Edwin M. Lemert, Ph.D., Professor of Sociology (Chairman of the Department).
‡David L. Olmsted, Ph.D., Assistant Professor of Anthropology.
Kenneth Thompson, Ph.D., Assistant Professor of Geography.
Herbert L. Aarons, M.A., Acting Instructor in Sociology.

Herbert B. Schultz, Ph.D., Lecturer in Geography.

The department offers a major in sociology, described below, and encourages individual group majors combining geography with sociology or anthropology. For assistance in preparing such majors, students should consult the departmental advisers whose names follow.

Departmental Advisers: Anthropology: Mr. Lemert
Geography: Mr. Thompson
Sociology: Mr. Lemert

Students enrolled, as of June 30, 1955, in the major in economics and sociology, formerly offered by the department, will be graduated in that major.

ANTHROPOLOGY

Letters and Science List.—All undergraduate courses in anthropology are included in the Letters and Science List of Courses (see page 90).

LOWER DIVISION COURSE

1. Physical Anthropology. (3) II.
 Human biology and physical anthropology; the relation of man and the animals; the origin and antiquity of man; fossil man; anthropometry; the
* Not to be given, 1957–1958.
‡ Absent on leave, fall semester, 1957–1958.
criteria of race and racial classification; current racial theories; race problems.

UPPER DIVISION COURSES

*102. Ethnology. (3) I.
Prerequisite: Sociology 1 and 2, or consent of the instructor.
Major theories of culture; survey of principal culture types and their distribution; discussion of ethnological problems.

*105. The American Indian. (3) I.
Prerequisite: Sociology 1 and 2, or consent of the instructor.
An introductory survey of the Indians of North and South America; origins, languages, civilizations, and history.

110. Language and Culture. (3) II.
Prerequisite: Sociology 1 and 2, or consent of the instructor.
The study of language as an aspect of culture; the relation of habitual thought and behavior to language; the problem of meaning.

*139. Peoples of Africa. (3) I.
Prerequisite: Sociology 1 and 2, or consent of the instructor.
Peoples and culture of Africa: survey and comparative analysis of representative societies and cultures in the area.

GEOGRAPHY

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

LOWER DIVISION COURSES

1A. Introduction to Geography: Physical Elements. (3) I.
A study of the basic physical elements of geography (especially climate, landforms, soils, and natural vegetation), and their integrated patterns of world distribution.

1B. Introduction to Geography: Cultural Elements. (3) II.
Prerequisite: course 1A or consent of instructor.
A study of the basic cultural elements of geography (population distribution, general land-use patterns, and trade) and their correlation with the physical elements. Delimitation of the major geographic regions of the world.

3. Introduction to Climate and Weather.
Composition and structure of atmosphere, weather elements, pressure, wind, temperature, moisture, fog, and clouds; weather maps; regional climates and world climate classification; instruments for obtaining climatological data; installation and maintenance of weather stations; evaluation of recordings.

UPPER DIVISION COURSES

121. The Geography of Anglo-America. (3) II.
Prerequisite: Geography 1A–1B or consent of the instructor.
A geographical survey of the major natural and economic regions of the United States, Canada, and Alaska.

* Not to be given, 1957–1958.
123. The Geography of Europe. (3) I.
Prerequisite: Geography 1A–1B or consent of the instructor.
A study of the geographic conditions and their relation to the economic, social, and political problems of Europe, excluding the USSR.

141. Economic Geography. (3) II.
A geographical analysis of the distribution and production of the world's major agricultural and mineral raw materials.

Sociology

Letters and Science List.—All undergraduate courses are included in the Letters and Science List of Courses (see page 90).

M. Adviser: Mr. Lemert.

Preparation for the Major.—Sociology 1, 2, Anthropology 1, Psychology 1A

The Major.—Required: 27 units of upper division courses in sociology and anthropology.

Lower Division Courses

1. *Introduction to Sociology: Man and Culture.* (3) I.
A general introduction to the study of culture, group, status, role, and personality. Emphasis will be upon the presentation of basic concepts accompanied by selected readings in the fields of sociology and anthropology. The approach will be comparative.

2. *Introduction to Sociology: Social Organization.* (3) II.
Deals with social organization, institutions, community and ecology, and sociocultural change.

Upper Division Courses

120. *Social Disorganization and Sociopathic Behavior.* (3) I.
A survey of the incidence and forms of social disorganization. An analysis of selected deviant and sociopathic behaviors.

123. *American Society.* (3) I.
Prerequisite: 6 units in the social sciences or consent of the instructor.
The institutional structure and social organization of the United States.

126. Society, Culture, and Personality. (3) II.
Prerequisite: courses 1 and 2 or consent of the instructor.
The interrelationships of society, culture and personality in primitive and modern settings with special attention to social roles. Emphasis upon comparative materials.
Offered in alternate years.

144. *Rural Society.* (3) II.
The characteristics of rural social systems in contrast to urban; the nature of peasant and folk societies; the impact of social change upon rural community life considered from the standpoint of regional differences in the United States and selected world areas.

150. *Criminology.* (3) II.
Prerequisite: 3 units of sociology, or 3 units of psychology, or consent of the instructor.

Not to be given, 1957–1958.
The sociological analysis of criminal behavior in relation to social structure and the criminalization process.

199. Special Study for Advanced Undergraduates. (1-3) I and II.
Open to seniors only.

SOILS AND PLANT NUTRITION
(Department Office, 241 Soils and Irrigation Building)

Daniel G. Aldrich, Ph.D., Professor of Soils (Chairman of the Department).
Lannes E. Davis, Ph.D., Professor of Soils.
Francis E. Broadbent, Ph.D., Associate Professor of Soil Microbiology.
Frank F. Harradine, Ph.D., Associate Professor of Soils (Berkeley campus).
Victor V. Rendig, Ph.D., Associate Professor of Soils.
James A. Vomocil, Ph.D., Assistant Professor of Soil Physics.
Lynn D. Whittig, Ph.D., Assistant Professor of Soils.

Arthur L. Brown, Ph.D., Lecturer in Soils.
Jerome J. Jurinak, Ph.D., Lecturer in Soils.

Departmental Major Advisers.—Mr. Aldrich, Mr. Davis.
The Major.—See pages 72–74.

SOIL SCIENCE
LOWER DIVISION COURSE

1. Introduction to Soil Science. (3) I.
Lectures and laboratory.
Prerequisite: high school chemistry.
Elementary principles of soil-plant interrelations; development of soil as a natural body; physical, chemical, and biological properties of soils; soil moisture; effect of management practices on soil properties; composition and use of fertilizers.

UPPER DIVISION COURSES

104. Soil Chemistry. (3) I.
Prerequisite: course 1 or 106; Chemistry 5 (may be taken concurrently); Chemistry 8.
Mineral and organic constituents of soils and their chemical reactions; the interactions of the liquid and solid phases including ion exchange and other colloidal phenomena; the chemical reactions involved in aggregation and structure formation; chemical factors of soil formation.

105. Summer Field Course. (6)
Prerequisite: course 118.
Field study of soil characteristics, development, and morphology of soils. Field work in soil surveying including mapping and classifying soils; and the preparation of soil reports. Field practice in identifying and judging the probable value of the dominant soils of the state for agricultural, grazing, and forest use.
107. Principles of Soil Physics. (3) I.
Lectures and laboratory.
Prerequisite: course 1 or 106; Physics 2A–2B.
An introduction to the physical properties and behavior of mineral and organic soil particles and structural units; the effect of environmental factors and cultural treatments on structure; soil-water relations; laboratory methods of evaluating the effect of various treatments on soil aggregation, permeability and degree of compaction.

108. Soil and Plant Relations. (2) II.
Prerequisite: course 1 or 106; Chemistry 8.
Physicochemical properties of soils in relation to plant growth, occurrence and availability of plant nutrients, mechanisms of nutrient uptake.

109. Soil Fertility. (2) I.
Prerequisite: course 1, Chemistry 1A–1B.
The nature of fertilizers and soil amendments, their properties, methods of application, and reaction upon soils and plants.

111. Soil Microbiology. (3) I.
Lectures and laboratory.
Prerequisite: course 1; Bacteriology 1 or 2; Chemistry 8.
Microorganisms occurring in soils, biochemical activities of the soil population, and the formation and properties of soil organic matter.

117. Soil Chemistry Laboratory. (2) II.
Prerequisite: courses 104; 108 (may be taken concurrently).
Laboratory and greenhouse experiments illustrating the material presented in courses 104 and 108. Methods of determining the chemical properties of soils and techniques for appraising soil fertility.

118. Soil Morphology and Survey. (4) II.
Lectures and laboratory.
Prerequisite: course 1, Geology 2.
Soil-forming factors and processes; study of the soil profile; soil survey practices: relationship between soil groups and agricultural use.
One field trip required.

123. Soil Analysis. (3) II.
Lectures and laboratory.
Prerequisite: course 1, Chemistry 5.
Methods of chemical analysis of soils, fertilizers, and plant material, including those useful in evaluating fertility and alkali problems.

124. Recent Advances in Soil Science. (1) I and II.
Prerequisite: senior standing.

135. Soil Management and Conservation. (2) II.
Prerequisite: senior standing in soil science or irrigation science and concurrent enrollment in Irrigation 135.
Effect of various soil management and conservation practices including
irrigation, reclamation, fertilization, tillage, and cropping on the physical, chemical and microbiological properties of soils and their relationship to crop production.

198. Directed Group Study. (1-5) I and II.
 Directed group study in soil science for advanced undergraduates.

199. Special Study for Advanced Undergraduates. (1-5) I and II.
 RELATED COURSE
 Water-Soil-Plant Relationships (Irrigation 100)

 GRADUATE COURSE

SPANISH

For courses in Spanish see “Foreign Languages” on page 164.

SPEECH

For courses in speech see “English, Dramatic Art, and Speech” on page 155.

SUBJECT A

(Department Office, 2 and 3 Temporary Building No. 1)

Alberta M. Armer, A.B., Associate in Subject A.
Leonard G. Homann, A.B., Associate in Subject A.
Albert Rosenberg, Ph.D., Associate in Subject A.
 ———, Associate in Subject A.

Subject A. English Composition. (No credit) I and II.
 Required of all students who do not pass the examination in Subject A.
 Fee, $20. Students who maintain an average grade of A during the first
 seven weeks of the semester will receive a refund of $5 and will be
 excused from further attendance in the course.

VEGETABLE CROPS

(Department Office, 152 Hunt Hall)

Glen N. Davis, Ph.D., Professor of Vegetable Crops (Acting Chairman of the
 Department).
†James E. Knott, Ph.D., Sc.D. (Hon.c.), Professor of Vegetable Crops (Chair-
 man of the Department).
John H. MacGillivray, Ph.D., Professor of Vegetable Crops.
Charles M. Rick, Jr., Ph.D., Professor of Vegetable Crops.
James F. Harrington, Ph.D., Associate Professor of Vegetable Crops.

† Absent on leave, fall semester, 1957–1958.
Vegetable Crops

Louis K. Mann, Ph.D., Associate Professor of Vegetable Crops.
Leonard L. Morris, Ph.D., Associate Professor of Vegetable Crops.
Harlan K. Pratt, Ph.D., Associate Professor of Vegetable Crops.
Paul G. Smith, Ph.D., Associate Professor of Vegetable Crops.
John C. Lingle, Ph.D., Assistant Professor of Vegetable Crops.
Arthur R. Spurr, Ph.D., Assistant Professor of Vegetable Crops.

William J. Flocker, Ph.D., Lecturer in Vegetable Crops.
Gordie C. Hanna, B.S., Lecturer in Vegetable Crops.
Lawrence Rappaport, Ph.D., Lecturer in Vegetable Crops.
James E. Welch, Ph.D., Lecturer in Vegetable Crops.
Masatoshi Yamaguchi, Ph.D., Lecturer in Vegetable Crops.

Departmental Major Advisers.—Mr. Davis, Mr. Smith.
The Major.—See pages 65–68.

LOWER DIVISION COURSES

1. Vegetable Production. (2) II.
 Principles involved in vegetable production; survey of the vegetable industry.

2. Laboratory in Principles of Vegetable-Crops Production. (1) II.
 Laboratory.
 Prerequisite: course 1, which may be taken concurrently.
 A laboratory course involving a study of the methods used in seeding, propagation and culture of vegetables, and the application of the principles underlying vegetable-production techniques. One or more field trips will be made.

UPPER DIVISION COURSES

101. Major California Vegetable Crops. (3) I.
 Prerequisite: course 1, or consent of the instructor.
 Adaptation, distribution, growth habits, and methods of production and handling of the principal California vegetable crops. The application of pertinent experimental evidence to production problems is stressed.

105. Systematic Olericulture. (3) I.
 Lectures and laboratory.
 Prerequisite: course 1; Botany 1.
 Origin, history, types, classification, nomenclature, adaptation, and judging of the more important American vegetable varieties. One or more field trips will be made.

112. Handling, Storage, and Transit of Vegetables. (3) I.
 Lectures and laboratory.
 Prerequisite: course 1; Botany 7, or consent of the instructor.
 Physiological processes contributing to the postharvest deterioration of vegetables and their relation to practices involved in harvesting, packing, transit, storage, and marketing. One or more field trips will be made.
118. Vegetable-Seed Production. (2) II.
Prerequisite: course 1.
Principles and techniques of vegetable-seed production; factors affecting
induction of seeding, development of seed crops, viability and longevity
of seed. One or more field trips will be made.

120. Vegetable Breeding. (3) I.
Lectures and laboratory.
Prerequisite: course 1; Genetics 100. Recommended: course 105.
Genetics, cytology, reproductive mechanisms, floral morphology, and
field-plot techniques as related to the improvement of the vegetable crop
species. One or more field trips will be made.

121. Vegetable Physiology. (3) II.
Lectures and laboratory.
Prerequisite: course 1; Botany 7.
Physiological principles involved in the production of vegetables.

190. Proseminar. (1) II.
Prerequisite: consent of instructor.
Current problems and research in vegetable production.

199. Special Study for Advanced Undergraduates. (1-5) I and II.

GRADUATE COURSES

200A–200B. Research in Vegetable Crops. (1–6; 1–6) Yr.
201A–201B. Seminar in Vegetable Crops. (1–1) Yr.
202A–202B. Seminar in Postharvest Physiology. (1–1) Yr.
Prerequisite: consent of instructor. Course 202A is not prerequisite to
course 202B.
An intensive study of selected topics in the field of postharvest physi-
ology of fruits and vegetables. This seminar will be conducted jointly with
Pomology 202A–202B.

VETERINARY SCIENCE

(Department Office, 1018 Haring Hall)

Hugh S. Cameron, D.V.M., Ph.D., Professor of Veterinary Science.
John F. Christensen, D.V.M., Ph.D., Professor of Veterinary Science.
†James R. Douglas, Ph.D., Professor of Parasitology.
Donald E. Jasper, D.V.M., Ph.D., Professor of Veterinary Medicine (Chair-
man of the Department).
Delbert G. McKercher, D.V.M., Ph.D., Professor of Veterinary Medicine.
Stuart A. Peoples, M.D., Professor of Comparative Pharmacology.
Oscar W. Schalm, D.V.M., Ph.D., Professor of Veterinary Science.
William H. Boynton, D.V.M., Professor of Veterinary Medicine, Emeritus.
George H. Hart, V.M.D., M.D., Professor of Veterinary Medicine, Emeritus.

† Absent on leave, fall semester, 1957–1958.
Jacob Traum, D.V.M., M.S., Professor of Veterinary Medicine, Emeritus.
Henry E. Adler, D.V.M., Ph.D., Associate Professor of Veterinary Medicine.
†Raymond A. Bankowski, D.V.M., Ph.D., Associate Professor of Veterinary Science.
Arthur L. Black, Ph.D., Associate Professor of Biochemistry.
Donald R. Cerdy, D.V.M., Ph.D., Associate Professor of Veterinary Science.
John B. Enright, Ph.D., Associate Professor of Veterinary Science.
Theodore J. Hage, D.V.M., M.S., Associate Professor of Veterinary Medicine.
Louis W. Holm, Ph.D., Associate Professor of Veterinary Medicine.
Logan M. Julian, D.V.M., Ph.D., Associate Professor of Veterinary Science.
†John W. Kendrick, D.V.M., M.S., Associate Professor of Veterinary Medicine.
John W. Osebold, D.V.M., Ph.D., Associate Professor of Veterinary Medicine.
Peter P. T. Sah, Ph.D., Associate Professor of Comparative Pharmacology.
Clyde N. Stormont, Ph.D., Associate Professor of Veterinary Science.
John D. Wheat, D.V.M., Associate Professor of Veterinary Medicine.
Norman F. Baker, D.V.M., Ph.D., Assistant Professor of Parasitology.
Ernst L. Biberstein, D.V.M., Ph.D., Assistant Professor of Veterinary Medicine.
Robert M. Cello, D.V.M., Assistant Professor of Veterinary Medicine.
Charles E. Cornelius, D.V.M., Acting Assistant Professor of Veterinary Medicine.
Jack A. Howarth, D.V.M., Ph.D., Assistant Professor of Veterinary Medicine.
Peter C. Kennedy, D.V.M., Ph.D., Assistant Professor of Veterinary Pathology.
Blaine McGowan, Jr., D.V.M., Assistant Professor of Veterinary Medicine.
Jack E. Moulton, D.V.M., Ph.D., Assistant Professor of Veterinary Pathology.
Ghery D. Pettit, D.V.M., Assistant Professor of Veterinary Science.
Edward A. Rhode, D.V.M., Assistant Professor of Veterinary Science.
Walter S. Tyler, D.V.M., Assistant Professor of Veterinary Medicine.
Alida P. Wind, M.V.D., Instructor in Veterinary Science.

Atwood C. Asbury, D.V.M., Lecturer in Veterinary Medicine.
Earl H. Gray, M.D., Lecturer in Radiology.
John P. Hughes, D.V.M., Lecturer in Veterinary Science.
Jiro J. Kaneko, D.V.M., Lecturer in Veterinary Medicine.
Larry Z. McFarland, D.V.D., Lecturer in Veterinary Medicine.
Livio G. Raggi, D.V.M., Ph.D., Lecturer in Veterinary Medicine.
Walter W. Sadler, D.V.M., Lecturer in Veterinary Medicine.

Letters and Science List.—Veterinary Science List.—Veterinary Science 124, 140, 140L.

Departmental Major Advisers.—Mr. Black, Mr. Cameron, Mr. Christensen, Mr. Cordy, Mr. Douglas, Mr. Hage, Mr. Holm, Mr. Julian, Mr. Moulton, Mr. Osebold, Mr. Peoples, Mr. Sadler, Mr. Tyler.
The Major.—See page 99.

102. Veterinary Biochemistry Laboratory. (3) II.
Lectures and laboratory.
Prerequisite: Chemistry 8; Animal Husbandry 101, which may be taken concurrently.
Laboratory practice in biochemical procedures with special emphasis on the analysis of urine and blood.

105. Intermediary Metabolism. (3) II.
Prerequisite: biochemistry and physiology or consent of the instructor.
The intermediary metabolism of carbohydrates, proteins, lipids, and other metabolites of importance in animal systems; the oxidative systems; generation and utilization of high-energy bonds; the function of vitamins and minerals in enzyme systems; hormonal control of enzyme activity.

111. Principles of Pathology and Control of Diseases of Domestic Animals. (8) II.
Prerequisite: Bacteriology 1 or 2.
The causes, pathology, prevention, and control of animal diseases in relation to economic production and public health.
This course meets the requirement of 3 units of parasitology in the animal science curriculum.

112. Poultry Pathology Laboratory. (1) II.
Laboratory.
Prerequisite: Zoology 1A, Bacteriology 1 or 2 and course 111 (may be taken concurrently); junior standing in poultry husbandry; or consent of the instructor.
Designed to acquaint students majoring in poultry husbandry with the procedures required for identification, prevention, and control of the more prevalent parasites and diseases of poultry in California.

Veterinary Science 120, 121, 122A–122B, 123A–123B, and 124 are designed for students who have been accepted by the School of Veterinary Medicine; they are open to other students only with the consent of the instructor.

120. Anatomy of Domestic Animals. (10) I.
Lectures and laboratory.
Prerequisite: open only to students in the School of Veterinary Medicine.
Lectures, demonstrations and student dissection of domestic animals.

121. Microbiology. (10) I.
Lectures and laboratory.
Prerequisite: second-year standing in the School of Veterinary Medicine or permission of instructor.
The principles of immunity, and a study of the bacterial, mycotic, and viral disease-producing agents of importance in veterinary medicine.
122A–122B. Veterinary Pathology. (5–5) Yr.
Lectures and laboratory.
Prerequisite: second-year standing in the School of Veterinary Medicine. Qualified graduate students admitted with consent of instructor.

123A–123B. Comparative Pharmacology. (4–4) Yr.
Lectures and laboratory.
Prerequisite: second-year standing in School of Veterinary Medicine or permission of instructor.
The action of drugs on the physiological mechanism of domestic animals. Laboratory exercises and demonstrations to illustrate the principles of pharmacology, chemotherapy, and toxicology.

124. Veterinary Parasitology. (6) II.
Lectures and laboratory.
Prerequisite: second-year standing in the School of Veterinary Medicine or permission of instructor.
The protozoan, helminth, and arthropod parasites of domesticated animals with emphasis on biology, life history, identification and control.

125. Veterinary Genetics. (3) II.
Lectures and laboratory.
Prerequisite: Genetics 100, Recommended: general bacteriology course.
Special veterinary aspects of genetics to supplement general genetics.

*126. Immunology. (3) II.
Lectures and laboratory.
Prerequisite: course 121, or Bacteriology 100 with consent of the instructor. Also one of the following courses: Zoology 107, Animal Husbandry 110, Physiology 1 and 1L, Veterinary Science 140.
Dynamics of infection and resistance: host responses to invasion of foreign substances, factors in microbial invasiveness and virulence, antibody production and manifestations of antigen-antibody reactions, immunocytochemistry. Immunological considerations of the groups of disease agents. Offered in spring semester of even-numbered years.

*127. Medical Microbiology. (4) II.
Lectures and laboratory.
Prerequisite: Bacteriology 1, Zoology 1B, Chemistry 8.
The pathogenic microorganisms (exclusive of protozoa) affecting man; immunological phenomena especially as related to human disease.
Offered in alternate years.

140. Mammalian Physiology. (6) II.
Prerequisite: Physiology 1 and 1L or Zoology 1A–1B; Physics 2A–2B, Chemistry 1A–1B, 8.
A comprehensive survey of mammalian physiology.

140L. Laboratory in Mammalian Physiology. (3) II.
Laboratory.
Prerequisite: course 140 or equivalent (may be taken concurrently).

199. Special Study for Advanced Undergraduates. (1–5) I and II.

* Not to be given, 1957–1958.
GRADUATE COURSES

265. Experimental Physiology. (3) I.
Lectures and laboratory.
Prerequisite: Veterinary Science 140–140L or Animal Husbandry 110. Animal Husbandry 101, Animal Husbandry 102 or Veterinary Science 102; and consent of instructor.
Selected lectures and experiments on the physiology of the nervous system, neutrality regulation, cardiac function and rumen function. Preparation and study of certain endocrine deficiencies and excesses.

290. Seminar in Comparative Pathology. (1–1) Yr.

299. Research in Comparative Pathology. (1–6; 1–6) Yr.

VETERINARY MEDICINE
GRADUATE COURSES

201. Clinical Pathology. (3) I.
Laboratory.
Prerequisite: third-year standing in the School of Veterinary Medicine. Other qualified students admitted with consent of the instructor.
Bacteriologic and hematologic techniques in the diagnosis of diseases. Special emphasis on mastitis.

202. Clinical Pathology. (3) II.
Lectures and laboratory.
Prerequisite: third-year standing in the School of Veterinary Medicine. Other qualified students admitted with consent of the instructor.
Biochemical methods in the diagnosis of disease. Special emphasis on electrolyte balance, liver function, kidney function, urinalysis, osteological diseases, thyroid function, and disorders of carbohydrate, protein and lipid metabolism.

203. Introductory Medicine. (4) I.
Lectures and laboratory.
Prerequisite: Veterinary Science 122A–122B, 123A–123B, 140–140L.
Lectures on the principles of clinical diagnosis of animal diseases, with special emphasis on history taking and identification and interpretation of symptoms. The laboratory will provide practice in physical examination of normal and abnormal animals.

204. Infectious Diseases. (5) II.
Prerequisite: course 203.
Epidemiology, pathology, and control methods on diseases of livestock, including those diseases important in public health in which domestic livestock are the reservoirs of infection.

205. Small-Animal Medicine. (5) II.
Prerequisite: course 203.
Diagnosis, treatment, and prevention of infections and noninfectious diseases of the dog, cat, and other small animals.

206. Large-Animal Medicine. (3) II.
Prerequisite: courses 203, 210.
The diagnosis and control of internal parasitism, diseases of the respiratory, cardiovascular, and urinary systems, and diseases of the blood-forming organs of horses, cattle, swine, sheep, and goats.
207. Large-Animal Medicine. (4) I.
Prerequisite: courses 203, 206.
The diagnosis and control of diseases of the skin, internal parasitism, mastitis, diseases of the nervous and locomotor systems, diseases of the eye, metabolic and nutritional diseases, and poisonings of horses, cattle, swine, sheep, and goats.

208. Poultry Diseases. (3) I.
The etiology, diagnosis, and control of the diseases of poultry.

210. Large-Animal Medicine. (2) I.
Prerequisite: course 203.
The diagnosis and control of diseases of the gastrointestinal system, liver and peritoneum, and diseases of the newborn of horses, cattle, swine, sheep, and goats.

220. Introductory Surgery. (4) II.
Lectures and laboratory.
Prerequisite: Veterinary Science 122A–122B, 123A–123B.
Principles and methods of surgical technique.

221. Surgical Anatomy. (4) II.
Lectures and laboratory.
Prerequisite: Veterinary Science 120.
Regional anatomy with reference to its application in surgery.

223. Large-Animal Surgery. (4) I.
Prerequisite: courses 220, 221.
Diseases of domestic animals that require surgical treatment.

224. Small-Animal Surgery. (2) I.
Prerequisite: course 220.
Surgical diseases of small animals.

225. Operative Surgery. (1) I.
Laboratory.
Prerequisite: courses 223 and 224 (may be taken concurrently).
A laboratory course in specific surgical procedures in large and small animals.

230. Diseases of the Genital Organs, and Obstetrics. (4) I.
Lectures and laboratory
Prerequisite: Veterinary Science 122A–122B, 123A–123B.
A course in the diagnosis, treatment, and control of diseases affecting the reproductive organs; the normal and disturbed physiology of reproduction; and obstetrics.

235. Therapeutics. (2) II.
Prerequisite: Veterinary Science 123A–123B, 140, 140L; course 203.
Lectures and discussions of newer developments in the therapy of animal diseases.

240. Veterinary Public Health. (5) II.
Lectures and laboratory.
Prerequisite: course 206, or permission of the instructor.
Meat, milk, and food hygiene. Epidemiologic and public health aspects of diseases of animals transmissible to man.
249. Extra-Session Clinic. (2-4)
Laboratory.
Prerequisite: completion of the first three years of the professional course in veterinary medicine.
Diagnosis and treatment of diseases and disorders of domestic animals. Work will be done in the clinic during the summer for any continuous period of six weeks.
May be repeated for credit.

250. Clinic Orientation. (1) II.
Laboratory.
Prerequisite: course 203.
Laboratory exercises in the practice of clinical procedures and methods of restraint used in the handling and treatment of horses, cattle, swine, sheep, dogs, cats, and other species.

251A–251B. Clinics. (5-5) Yr.
Laboratory.
Prerequisite: courses 203, 220. Course 251A is prerequisite to 251B.
Interdepartmental course, offering training in ambulatory clinic, autopsy, clinical pathology, large-animal clinic, pharmacy, poultry pathology, radiology, and small-animal clinic. The student must make a passing grade in all sections to pass the course.

254. Clinic Conference. (No credit) II.
Prerequisite: course 203.
Discussion of selected cases from the clinic.

256A–256B. Clinic Conference. (1-1) Yr.
Prerequisite: fourth-year standing.
Discussion of selected cases from the clinic.

260. Radiology. (2) I.
Lectures and laboratory.
Prerequisite: Veterinary Science 120.
Production of X rays, roentgenographic technique, roentgenographic interpretation, biological effect of, protection from, and the therapeutic use of ionizing irradiation as applied to veterinary medicine.

270A–270B. Jurisprudence. (No credit) Yr.
Professional ethics and business law.

*280. Advanced Special Pathology. (3) I.
Lectures and laboratory.
Prerequisite: Veterinary Science 122A–122B; course 251A–251B.
Selected topics in the pathology of communicable, systemic, neoplastic, nutritional and metabolic diseases and the toxicoes.
Offered in the fall semester of even numbered years.

281. Necropsy and Surgical Pathology. (1–4) I and II.
Laboratory.
Prerequisite: Veterinary Science 122A–122B; courses 204, 207.
Responsible pathologic diagnosis of necropsy, performance of necropsies, slide reading, and case reporting. Attendance at histopathology slide conferences required. May be repeated for credit.

* Not to be given, 1957–1958.
VITICULTURE AND ENOLOGY

(Department Office, 2 Viticulture Building)

†Maynard A. Amerine, Ph.D., Professor of Enology.
Harold P. Olmo, Ph.D., Professor of Viticulture.
Albert J. Winkler, Ph.D., Professor of Viticulture (Chairman of the Department).
John G. B. Castor, Ph.D., Associate Professor of Enology.
James F. Guymon, Ph.D., Associate Professor of Enology.
A. Dinsmoor Webb, Ph.D., Associate Professor of Enology.
Lloyd A. Lider, Ph.D., Assistant Professor of Viticulture.

James A. Cook, Ph.D., Lecturer in Viticulture.
Klayton E. Nelson, Ph.D., Lecturer in Viticulture.
Robert J. Weaver, Ph.D., Lecturer in Viticulture.

Departmental Major Advisers.—Viticulture, Mr. Olmo; Enology, Mr. Amerine.
The Majors.—See pages 65–68 for Viticulture and pages 57–58 for Enology.

VITICULTURE

LOWER DIVISION COURSES

1A–1B. Introduction to Grape and Wine Production. (2–2) Yr.
Course 1A is not prerequisite to 1B.
A survey of the grape and wine industry, including history, distribution, climatic influences, grape varieties, and raisin, table-grape, wine and brandy production. Principles of vineyard operation, control of vineyard diseases, wine and brandy types, and economic problems of the industry.

2. Laboratory in Grape Production. (2) I.
Prerequisite: course 1A (may be taken concurrently).
A laboratory course covering the principal varieties and the principles and practices involved in the production of table, raisin, and wine grapes. Not open for credit to students in the major.

UPPER DIVISION COURSES

105. Fruit Handling and Varieties. (3) I.
Lectures and laboratory.
Prerequisite: course 1A–1B or Pomology 2.
Maturity and standardization; varieties; harvesting table grapes, raisin drying, storage; costs and returns.

116. General Viticulture. (4) II.
Lectures and laboratory.
Prerequisite: course 1A–1B or Pomology 2.
Plant structure and physiology; principles underlying propagation, pruning, grafting and cultivation; and factors influencing fruit development and quality.

† Chairman of the Department from November 1, 1957.
117. Microbiology of Wine Production. (4) I.
 Lectures and laboratory.
 Prerequisite: Bacteriology 1; Chemistry 5, 8.
 Nature, development, physiology, biochemistry and control of yeasts and
 bacteria involved in the making, aging, and spoilage of wine.

124. Enology: Wine Processing and Analyses. (3) II.
 Lectures and laboratory.
 Prerequisite: Bacteriology 2; Chemistry 5. Recommended: course 1A–1B
 and Food Technology 124.
 Introduction to enology; wine types, wine analyses, principles of organo-
 leptic examination, nonbacterial disorders and their control, fining, filtration,
 and the preparation of vermouths and sparkling wines.

125. Enology: Wine Preparation. (3) I.
 Lectures and laboratory.
 Prerequisite: courses 105, 116; Bacteriology 1, Chemistry 5, 8.
 The principles and practices of making the various standard types of
 wine, with special reference to the varieties used, and the method of vinification
 required for each.

140. Brandy Production and Related Winery Operations. (3) II.
 Lectures and laboratory.
 Prerequisite: Chemistry 5, 8.
 The technology of brandy production including the preparation of distilling
 wines, distillation principles and methods, physicochemical characteristics
 of the ethyl alcohol-water system, aging and processing, brandy types,
 legal aspects, analytical and tasting methods; selected problems in winery
 operations.

160. Proseminar. (1) I.
 Reports and discussions concerning recent advances in viticulture.

199. Special Study for Advanced Undergraduates in Viticulture. (1–5) I
 and II.

RELATED COURSES

Yeasts and Related Organisms (Food Technology 116)
Analyses of Food by Sensory Tests (Food Technology 124)
Fruit Breeding (Pomology 114)

GRADUATE COURSES

200A–200B. Research in Viticulture and Enology. (1–6; 1–6) Yr.
205. Seminar. (1) II.

ZOOLOGY

(Department Office, 249 Animal Science Building)

Milton A. Miller, Ph.D., Professor of Zoology.
Lauren E. Rosenberg, Ph.D., Professor of Zoology (Chairman of the Depart-
ment).
Zoology

Tracy I. Storer, Ph.D., Professor of Zoology, Emeritus.
Milton Hildebrand, Ph.D., Associate Professor of Zoology.
Everett W. Jameson, Jr., Ph.D., Associate Professor of Zoology.
George W. Salt, Ph.D., Assistant Professor of Zoology.
Robert L. Rudd, Ph.D., Instructor in Zoology.

G. Victor Morejohn, M.A., Associate in Zoology.
P. Quentin Tomich, A.B., Associate in Zoology.

PHYSIOLOGY

Letters and Science List.—Physiology 1, 1L.

LOWER DIVISION COURSES

1. Introductory Physiology Lecture. (3) I.
 Prerequisite: high school chemistry.
 The physiology of muscle, nerve, central nervous system, sensation, circulation, respiration, excretion, and digestion.

1L. Introductory Physiology Laboratory. (2) I.
Laboratory.
Prerequisite: course 1 completed or in progress.

ZOOGEOGRAPHY

Letters and Science List.—All undergraduate courses in zoology except course 104 are included in the Letters and Science List of Courses (see page 90).

Departmental Major Adviser.—Mr. Miller.

The Major.—Required: 24 units of upper division courses in zoology (not more than 4 units of Zoology 199 may be counted in this requirement). With the approval of the major adviser, 6 units of this requirement may be satisfied by upper division courses in bacteriology, biochemistry, botany, organic chemistry, entomology, genetics, physical chemistry, physiology, and physics.

LOWER DIVISION COURSES

1A. General Zoology. (4) I.
Lectures and laboratory.
Introduction to the structure, physiology, classification, and interrelations of animals, and the principles of evolution and heredity.

1B. General Zoology. (4) II.
Lectures and laboratory.
Prerequisite: course 1A.
Structure of the vertebrate body with special reference to the mammal and bird; gross and microscopic anatomy of organs and organ systems.
10. **General Biology. (3) II.**
Not open for credit to students who have had course 1A, but students who have taken course 10 may elect course 1A for credit. Open without prerequisite to all students, but designed for those not specializing in zoology.
An outline of the main facts and principles of animal biology, with special reference to evolution, heredity, and the bearing of biology upon human life.

Upper Division Courses

100A. **Vertebrate Embryology. (2) I.**
Prerequisite: course 1B.
Embryologic development of the vertebrates, including amphibian, chick, and mammal.

100C. **Vertebrate Embryology Laboratory. (2) I.**
Laboratory.
Prerequisite: course 100A, which should be taken concurrently.

104. **Materials and Methods of Animal Micrology. (3) I.**
Lectures and laboratory.
Prerequisite: course 1B. (Limited enrollment.)
History, theory, and application of methods for microscopic work in the animal sciences.

106. **Comparative Anatomy of the Vertebrates. (4) II.**
Lectures and laboratory.
Prerequisite: course 1B. Recommended: courses 100A, 100C.
Evolution and adaptations of organ systems and phylogeny of the major vertebrate groups.

107. **Microanatomy. (4) I.**
Lectures and laboratory.
Prerequisite: course 1B.
The finer structure and activities of organs, tissues, and cells of vertebrates, with emphasis on those of mammals.

110. **Protozoology. (4) II.**
Lectures and laboratory.
Prerequisite: course 1A and junior standing.
Structure, life history, and ecology of the groups of protozoa with emphasis on relationships to biological problems.
Minimum enrollment of 5 students.

112. **Invertebrate Zoology. (4) II.**
Lectures and laboratory.
Prerequisite: course 1A and junior standing.
Anatomy, classification and natural history of representative invertebrate animals, excluding protozoans and insects.

116. **Economic Vertebrate Zoology. (3) I.**
Lectures and laboratory.
Prerequisite: course 1A and junior standing.
Relation of vertebrate animals to human affairs; effect of settlement, forestry, agriculture, and hunting on wild populations; attention to rodents, deer, carnivorous mammals and birds, fur production, game birds, food and game fisheries; principles and agencies of management and conservation.
Minimum enrollment of 5 students.
125. Animal Ecology. (3) II.
Prerequisite: upper division standing in one of the biological sciences.
Study of animal communities; with emphasis on vertebrates and their
environment.

*133. Biology of the Cold-Blooded Vertebrates. (4) II.
 Lectures and laboratory.
 Prerequisite: course 12B.
 Fishes, amphibians and reptiles; identification and classification; ecologic
and geographic distribution; field study of habits and life histories; emphasis
on species in California and western North America.
 Offered in spring semester of odd-numbered years.

134. Biology of Birds and Mammals. (4) II.
 Lectures and laboratory; including field trips; two or three week-end trips.
 Prerequisite: course 12B.
 Identification, ecologic and geographic distribution; field study of habits
and life histories; emphasis on species in California and Western North
America.
 Offered in spring semester of even-numbered years.

199. Special Study for Advanced Undergraduates. (1-5) I and II.

GRADUATE COURSES

200A–200B. Research in Zoology. (1–6; 1–6) Yr.

201. Zoology Seminar. (1) I and II.

290. Seminar on Systematic Zoology and Evolution. (1) II.
 Prerequisite: consent of the instructor.
 Reports and discussion on principles of animal classification, speciation,
and the evolution of higher categories, with emphasis on modern concepts and
pertinent contributions from the fields of genetics and paleontology.

291. Seminar in Protozoology. (1) II.
 Prerequisite: course 110 or consent of the instructor.
 Reports and discussion on selected topics in the field of protozoology.

292. Seminar on Development. (1) I.
 Prerequisite: consent of the instructor.
 Reports and discussion on embryology, morphogenesis, and developmental
mechanisms.

293. Seminar in Invertebrate Zoology. (1) I.
 Prerequisite: course 112 or consent of the instructor.
 Reports and discussion on selected topics in invertebrate zoology with em-
phasis on recent advances.

294. Seminar in Animal Ecology. (1) I.
 Prerequisite: course 125 or consent of the instructor.
 Discussion of advanced topics in the field of animal ecology.

* Not to be given, 1957–1958.
TWO-YEAR CURRICULUM

COURSES OF INSTRUCTION

EXPLANATION OF TERMS USED

Classification and Numbering.—Courses numbered 50–99 are designed to meet the special needs of students enrolled in the Two-Year Curriculum on the Davis campus.

Abbreviations.—The credit value of each course in units is indicated by a number in parentheses after the title. Varying units may be indicated for courses numbered 90, since the student is permitted to select the amount of work to be undertaken. The session in which the course is given is shown by the roman numeral I for the fall semester and II for the spring semester.

Credit.—One unit of credit is given for three hours of student effort per week throughout the semester. The three hours may be devoted to lectures, class discussions, laboratory work, field trips, or out-of-class preparation, at the discretion of the instructor.

AGRICULTURAL ECONOMICS

(Department Office, 5 Temporary Building No. 2)

Trimble R. Hedges, Ph.D., Professor of Agricultural Economics.
George L. Mehren, Ph.D., Professor of Agricultural Economics (Chairman of the Department) (Berkeley, Davis).
James M. Tinley, Ph.D., Professor of Agricultural Economics.
J. Edwin Faris, Jr., Ph.D., Lecturer in Agricultural Economics.

51. Marketing Agricultural Products. (3) I.
Problems, types of marketing agencies, major marketing functions, marketing costs and margins, factors affecting prices of farm products, speculation, commodity exchanges and hedging, group or cooperative marketing, market control, market efficiency, role of government in marketing. Special emphasis on California products and marketing problems.

54. Farm Management. (3) I.
Lectures and laboratory.
Prerequisite: Mathematics 50 (may be taken concurrently).
Economic factors affecting location of farm enterprises; choice and combination of enterprises; the calendar of operations; efficient use of labor, machinery, and land; production costs; analyzing the farm business; reorganizing the farm and testing for efficiency; choice of farms, location, appraisal; profit and loss statements and measures of efficiency.

55. Farm Bookkeeping. (3) II.
Lectures and laboratory.
Prerequisite: Mathematics 50 (may be taken concurrently).
Essentials of farm bookkeeping, types of records and their functions; use of cashbooks, journals, ledgers; recording noncash items, inventories, depreciation, special records; analysis of records, profit and loss statements; use of double-entry systems; enterprise accounting; income tax records and returns.
AGRICULTURAL ENGINEERING

(Department Office, 206 Agricultural Engineering Building)

Roy Bainer, M.S., Professor of Agricultural Engineering (Chairman of the Department).
†Norman B. Akesson, M.S., Associate Professor of Agricultural Engineering.
S. Milton Henderson, M.S., Associate Professor of Agricultural Engineering.
Samuel A. Hart, Ph.D., Assistant Professor of Agricultural Engineering.
Lloyd H. Lamouria, M.S., Associate Professor of Agricultural Engineering.
†Allan A. McKillop, M.S., Assistant Professor of Agricultural Engineering.
John A. Goss, M.S., Lecturer in Agricultural Engineering.
Franklin B. Shesler, M.S., Lecturer in Agricultural Engineering.

50. Farm Mechanics. (3) I and II.
 Lectures and laboratory.
 Forging; soldering; plumbing; sheetmetal work; electric and acetylene welding and cutting; tool conditioning; selection of shop tools and equipment; shop layouts.

51. Drawing. (2) I.
 Lectures and laboratory.
 Mechanical and detail drawing including orthographic plans, isometric, oblique, and perspective developments; frechand sketching; contour and section mapping; graphical presentation; care and use of drawing instruments.

52. Farm Structures. (3) II.
 Lectures and laboratory.
 Prerequisite: Mathematics 50.
 Planning of farm structures; requirements for production and storage structures; selection of materials; estimating of materials and costs; principles of framing; concrete work; painting.

54. Farm Machinery. (3) II.
 Lectures and laboratory.
 Prerequisite: Mathematics 50.
 Principles, construction, operation, adjustment, performance, power requirements, and selection of tillage, seeding, harvesting, and pest-control machinery; construction and testing of displacement, and centrifugal pumps and domestic water systems. Practical problems are regularly assigned to emphasize the lecture and laboratory work.

55. Farm Power. (3) I.
 Lectures and laboratory.
 Prerequisite: Mathematics 50.
 Principles, construction, operation, adjustment, and maintenance of various types of internal combustion engines, tractors, and electric motors; field operation of tractors. Regular problem assignments are made to supplement the class work.

57. Dairy Equipment. (3) II.
 Lectures and laboratory.
 Prerequisite: Mathematics 50.
 Principles of steam generation and use, electricity, hydraulics, refrigeration, and air conditioning with their application to agriculture. Laboratory

exercises include study, operation, maintenance, and testing of typical equipment. Offered in even-numbered years.

AGRONOMY

(Department Office, 131 Hunt Hall)

†John P. Conrad, Ph.D., Professor of Agronomy.
Maurice L. Peterson, Ph.D., Professor of Agronomy (Chairman of the Department).
Francis L. Smith, Ph.D., Professor of Agronomy.
Charles W. Schaller, Ph.D., Associate Professor of Agronomy.
Dorman C. Sumner, B.S., Lecturer in Agronomy.

51. Introduction to Agronomy. (3) I.
The principles and practices of field-crop production and soil management. The subjects considered will include the relation of crop production to environment, climate, soil, rotation, fertilization, irrigation, land preparation, seeding, tillage and harvesting.

52. Cereals. (3) II.
Lectures and laboratory.
Classification, production, and use of the small grains, corn, and sorghum. Discussion of the factors determining quality and market classes; commercial grading and seed processing.

53. Cotton, Sugar Beets, Beans, and Miscellaneous Crops. (3) I.
Lectures and laboratory.
Adaptation, production, and use of such field crops as beans, fiber, sugar, and oil crops.

54. Forage Crops. (3) II.
Lectures and laboratory.
Adaptation, production, and use of forage crops for hay, range, irrigated pasture and silage; identification of forage plants and seeds, determination of seed quality, and hay grading. Field trips to irrigated pastures and improved range will be arranged.

ANIMAL HUSBANDRY

(Department Office, 128 Animal Science Building)

Harold H. Cole, Ph.D., Professor of Animal Husbandry (Chairman of the Department).
Harold Goos, Ph.D., Professor of Animal Husbandry.
Paul W. Gregory, ScD., Professor of Animal Husbandry.
Carroll E. Howell, M.S., Professor of Animal Husbandry.
James F. Wilson, M.A., LL.D., Professor of Animal Husbandry, Emeritus.
Floyd D. Carroll, Ph.D., Associate Professor of Animal Husbandry.
Hubert Heitman, Jr., Ph.D., Associate Professor of Animal Husbandry.
Glen P. Lofgreen, Ph.D., Associate Professor of Animal Husbandry.

Lectures and laboratory.
Principles and practices of livestock production. The selection of market classes and breeds of beef cattle, dairy cattle, sheep, hogs, and horses.

52. Feeds and Feeding. (3) II.
Composition and use of feedstuffs.

54. Animal Breeding. (3) II.
Introduction to genetics and a discussion of the laws of heredity as they apply to the problems of animal production.

56. Horse Production. (2) II.
Lectures and laboratory.
Prerequisite: course 52.
Breeding, feeding, and management of horses.

58. Milk Production. (2) II.
Lectures and laboratory.
Prerequisite: course 52.
Breeding, feeding, and management of dairy cattle.

61. Swine Production. (2) I.
Lectures and laboratory.
Prerequisite: course 52.
Selection, breeding, feeding, and management of hogs.

63. Beef-Cattle Production. (2) I.
Lectures and laboratory.
Prerequisite: course 52.
Selection, breeding, feeding, and management of beef cattle.

65. Sheep Production. (2) I.
Lectures and laboratory.
Prerequisite: course 52.
Selection, breeding, feeding, and management of sheep.

90. Special Problems. (1–5) I and II.
Prerequisite: consent of the instructor.
Special problems and assignments for qualified students.

BACTERIOLOGY
(Department Office, 1076C Haring Hall)

Robert E. Hungate, Ph.D., Professor of Bacteriology (Chairman of the Department).

† Absent on leave, 1957–1958
Bacteriology; Dairy Industry

61. Elementary Bacteriology. (2) I.
Prerequisite: Chemistry 51 and Mathematics 50.
Fundamental principles of bacteriology and microbiology. Applications to such fields as soils, sanitation, food technology, and animal and plant disease.

BOTANY

(Department Office, 2 Botany Building)

Vernon I. Cheadle, Ph.D., Professor of Botany (Chairman of the Department).

†Alden S. Crafts, Ph.D., Professor of Botany.

50. Elementary Botany. (3) I and II.
Lectures and laboratory.
Principles underlying the structure, nutrition, growth, reproduction, and classification of plants. Special emphasis on plants of orchard, garden, and field. Basic information for students majoring in the plant-production curricula. A practical course employing laboratory demonstrations and lectures.

51. Weed Control. (3) I.
Lectures and laboratory.
Prerequisite: course 50 or equivalent; consent of the instructor.
Weed characteristics and identification; principles of weed control including tillage, selective and nonselective chemical weed killers, soil sterilants, and machinery and equipment; analysis of special weed problems; laws and regulations.

CHEMISTRY

(Department Office, 31 Chemistry Building)

Harold G. Reiber, Ph.D., Professor of Chemistry (Chairman of the Department).

*51. Elementary Chemistry. (3) I.

DAIRY INDUSTRY

(Department Office, 209 Dairy Industry Building)

Eugene L. Jack, Ph.D., Professor of Dairy Industry (Chairman of the Department).
Walter G. Jennings, Ph.D., Assistant Professor of Dairy Industry.
Thomas A. Nickerson, Ph.D., Assistant Professor of Dairy Industry.
Bruce E. Hubbell, Jr., B.S., Lecturer in Dairy Industry.

50. Elements of Dairying. (3) I.
Lectures and laboratory.
The principles of dairying, including Babcock testing and analysis of milk and its products, the composition, properties, care, and handling of milk, and a brief survey of market milk, butter, cheese, ice cream, condensed milk, and powdered-milk processes.

* Not to be given, 1957–1958.
51. Cheesemaking. (3) I.
Lectures and laboratory.
Prerequisite: course 50 (may be taken concurrently).
A study of milk quality and pasteurization of milk as related to quality of cheese, preparation and care of starters, the principles in the manufacture of casein, cottage cheese, cream cheese, cheddar, Monterey, granular, and brick cheese; processed cheese, cheese spreads, including causes and remedies of the various defects commonly found in market cheese.

52. Buttermaking. (3) II.
Lectures and laboratory.
Prerequisite: course 50.
Problems involved in the procurement of raw material; principles; procedures and equipment used in pasteurization, churning, packaging; efficient methods of creamery operation; quality and defects of creamery butter.
Offered in alternate years.

53. Ice-Cream Making. (3) I.
Lectures and laboratory.
Prerequisite: course 50.
The calculation, pasteurization, and processing of ice-cream and ice-milk mixes. Operation of continuous, batch, and counter freezers in making ice cream, ice milk and sherbets, and the hardening and storing of these products. The causes and prevention of ice-cream defects.

54. Market Milk. (3) II.
Lectures and laboratory.
The operation of the market milk industry including conditions affecting quality of milk utilized for city supply; sanitary production, transportation, pasteurization, distribution, and inspection of milk and related products; a study of city milk ordinances and state dairy-inspection regulations.

60. Creamery Practice. (3) I and II.
Lectures and laboratory.
Prerequisite: course 50 or 54 (may be taken concurrently).
Practice in processing dairy products and in the operation of the equipment used in the manufacture of cheese, butter, market milk, ice cream, condensed and powdered milk. Operation of refrigeration equipment and plant maintenance.
This course, with the consent of the instructor, may be repeated once for credit.

62. Dairy Plant Management. (3) II.
Lectures and laboratory.
Prerequisite: courses 50, 60.
Problems involved in the organization, management, and operation of dairy plants. The keeping of records, merchandising, advertising, personnel management, and procurement of raw products as it pertains to dairy plants. Practice in plant layout and arrangement for efficient handling of products and use of labor.

EDUCATION

(Department Office, 8 Temporary Building No. 6)

Sidney S. Sutherland, M.S., Professor of Education (Chairman of the Department).

* Not to be given, 1957-1958.
60. Field Practice in Agriculture. (No credit) I and II. Practice in basic farm operations. Includes the operation and maintenance of farm machinery, soil tillage, irrigation, cultivation, and harvesting operations. Recommended for the student whose experience is inadequate for his occupational objectives.

ENGINEERING

(See “Agricultural Engineering,” page 234)

ENGLISH, DRAMATIC ART, AND SPEECH

(Department Office, 2 and 3 Temporary Building No. 1)

Solomon Fishman, Ph.D., Professor of English (Chairman of the Department).
Leonard G. Homann, A.B., Associate in English.

ENGLISH

50. Business Writing. (3) II. Practice in business correspondence: selling and ordering goods, extending credit and collecting accounts, making adjustments, applying for positions. Study of grammar, spelling, punctuation, sentence construction.

90. Special Problems. (1–3) I and II. Prerequisite: course 50 or Subject A; consent of the instructor. Individual work in literature or composition for advanced students.

SPEECH

55. Oral English for Foreign Students. (4) I and II. For foreign students only. Pronunciation, speaking, grammar, reading, and writing of English. Required of those who do not pass the Examination in English and who are not qualified to take course 56.

56. Oral English for Foreign Students. (4) I and II. For foreign students only. Required of those who need further instruction in English, but whose level of proficiency is higher than that expected in course 55.

ENOLOGY

(See “Viticulture,” page 246)

ENTOMOLOGY AND PARASITOLOGY

(Department Office, 2 Entomology Building)

Stanley F. Bailey, Ph.D., Professor of Entomology.
† John E. Eckert, Ph.D., Professor of Entomology.
E. Gorton Linsey, Ph.D., Professor of Entomology (Chairman of the Department) (Berkeley campus).
Oscar G. Bacon, Ph.D., Associate Professor of Entomology.
Richard M. Bohart, Ph.D., Associate Professor of Entomology (Vice-Chairman of the Department).

† Absent on leave, fall semester, 1957–1958.
ENTOMOLOGY

51. Agricultural Entomology. (3) I.
 Lectures and laboratory.
 Identification, life histories, habits, and control of injurious insects, par-
 ticularly those affecting agricultural crops. Supervised field excursions will
 include collection of insects and observations of damage and control.

52. Beekeeping. (3) II.
 Lectures and laboratory.
 The fundamentals of beekeeping are taught from the viewpoint of the
 beginner and include a study of the anatomy, life history, and habits of the
 honeybee; practice in the handling of bees; production and characteristics of
 honey; use of bees in pollination; a study of modern beekeeping equipment
 and methods.

90. Special Problems. (2–6) I and II.
 Prerequisite: consent of the instructor.
 Special problems in beekeeping for advanced students and for those who
 have had prior experience in beekeeping, including the rearing of queens and
 package bees, disease control and apiary inspection, toxicity of various insec-
 ticides to beekeeping. Also, for selected students interested in quarantine and
 regulatory work, special problems are offered covering various aspects of the
 quarantined insects, as well as survey, inspection, and eradication procedures.

HISTORY AND POLITICAL SCIENCE

(Department Office, 13 Temporary Building No. 1)

C. Bickford O’Brien, Ph.D., Associate Professor of History (Chairman of the
 Department).
W. Sheridan Warrick, M.A., Acting Assistant Professor of History.

HISTORY

57A–57B. History and Institutions of the United States. (3–3) Yr.
 Course 57A is not prerequisite to course 57B.
 57A. American national beginnings from colonial times through 1865.
 57B. The American nation from the Civil War to the present.
 The completion of either course 57A or 57B will satisfy the graduation
 requirement of American history and institutions of the Two-Year Cur-
 riculum.

HORTICULTURE

(See Pomology, Vegetable Crops, and Viticulture)

IRRIGATION

(Department Office, 113 Soils and Irrigation Building)

Robert M. Hagan, Ph.D., Professor of Irrigation (Chairman of the Depart-
 ment).
Robert H. Burgoy, M.S., Assistant Professor of Irrigation.
———, Lecturer in Irrigation.
Irrigation; Mathematics

51. Plane Surveying. (3) I.
Lectures and laboratory.
Prerequisite: plane trigonometry and consent of the instructor.
Principles; field practice; calculations and mapping with special reference to irrigation, drainage, and agricultural engineering problems.

53. Irrigation Practice. (3) I.
Lectures and laboratory.
Prerequisite: Mathematics 50.
Soil moisture in relation to irrigation practice; water requirements of crops; preparation of land; design of ditches and pipe lines; measurements of water; development of water supplies; selection and operation of pumping plants; drainage and reclamation.

LANDSCAPE MANAGEMENT

(Department Office, 101 Landscape Management Building)
Warren P. Tufts, Ph.D., Professor of Pomology, Emeritus (Chairman of the Department).
Robert D. Danielson, M.S., Assistant Professor of Landscape Management.
John H. Madison, Jr., Ph.D., Assistant Professor of Landscape Management.

51. General Landscape Management. (3) I.
Lectures and laboratory.
Landscaping the small property; the arrangement of walks and drives; plant forms and their use in design; ground covers, lawns, and maintenance problems.

52. Plant Materials. (2) II.
Lectures and laboratory.
Prerequisite: course 51.
Identification of ornamental trees and shrubs; the study of plant forms and growth habits, and their use in design.

53. Nursery Practice. (3) I.
Lectures and laboratory.
Prerequisite: course 52.
Propagation and care of ornamental plants in seed beds, cold frames, lathouses and nursery; lining out and planting nursery stock; seed collection, propagation, and nursery care; digging,balling, canning, assembling, and packing nursery stock; nursery sales, field trips to nurseries.

MATHEMATICS

(Department Office, 161 Home Economics Building)
Edward B. Roessler, Ph.D., Professor of Mathematics (Chairman of the Department).

50. Elementary Mathematics. (3) I and II.
Review of the principles of arithmetic, elements of algebra, ratio and proportion, percentage with applications to agriculture, mensuration, building construction, farm mechanics, and an introduction to the mathematics of finance.

MUSIC

(See "Philosophy and Fine Arts," page 242)
PARASITOLOGY
(See "Entomology and Parasitology," page 239)

PHILOSOPHY AND FINE ARTS
(Department Office, 1 Music Building)
Arthur Child, Ph.D., Associate Professor of Philosophy (Chairman of the Department).
Jerome W. Rosen, M.A., Associate Professor of Music.
George Perle, Ph.D., Assistant Professor of Music.
Richard G. Swift, M.A., Instructor in Music.

MUSIC

52. University Concert Band. (2) II.
Two hour-and-a-half rehearsals and one section hour per week.
Open to any student in the University whose technical proficiency meets the requirements of concert performance.
Rehearsals and performance of band music. May be repeated once for credit.
In the fall semester, band practice and performance will be offered as an activity, rather than a course, with one two-hour rehearsal per week.

57A. Introduction to Musical Literature. (3) I.
Two lectures and one section meeting per week.
Lectures, guided listening, and readings designed to furnish the student with an understanding of basic musical concepts.
Intended primarily for students whose major is not music.

57B. Introduction to Musical Literature. (3) II.
Two lectures and one section meeting per week.
Lectures, guided listening, and readings designed to acquaint the student with stylistic elements characterizing music of the eighteenth, nineteenth, and twentieth centuries.
Intended primarily for students whose major is not music.

60. University Chorus. (2) I and II.
Two hour-and-a-half rehearsals and one section hour per week.
Rehearsals and performance of choral music. May be repeated once for credit.

70. University Symphony Orchestra. (2) I and II.
Two hour-and-a-half rehearsals and one section hour per week.
Open to any student in the two-year curriculum whose technical proficiency meets the requirements of concert performance.
Rehearsals and performance of symphonic music. May be repeated once for credit.

PHYSICAL EDUCATION
(Department Office, 204 Gymnasium)
Charles R. Kovacic, Ed.D., Associate Professor of Physical Education.
Marya Welch, Ed.D., Associate Professor of Physical Education.
———, Assistant Professor of Physical Education.
Vernard B. Hickey, A.B., Lecturer and Supervisor of Physical Education.
Physical Education; Plant Pathology

Irving F. Toomey, B.S., Supervisor of Physical Education, Director of Athletics (Chairman of the Department).
‡George A. Stromgren, M.S., Lecturer and Associate in Physical Education and Associate Supervisor of Physical Education.
Eugene S. Wilson, B.S., Associate Supervisor of Physical Education.
Charles W. Dutton, A.B., Assistant Supervisor of Physical Education.
Alva J. Johanson, M.S., Assistant Supervisor of Physical Education.
Willard S. Lotter, A.B., Associate in Physical Education and Assistant Supervisor of Physical Education.
Ruth J. Rose, M.A., Assistant Supervisor of Physical Education.
‡Myron R. Schall, A.B., Assistant Supervisor of Physical Education.
Herbert A. Schmidenberger, A.B., Assistant Supervisor of Physical Education.
—Assistant Supervisor of Physical Education.

The incidental fee, payable by all students at the time of registration, entitles students to the use of the gymnasium, swimming pool, showers, towels, lockers, tennis courts, and the athletic fields. Equipment for games and sports is available for exercise and recreation, either with or without instruction. Courses may be elected with or without academic credit.
Fines are imposed for each formal transaction necessitated by failure of the student to comply with the regulations of the department.

50. Physical Education for Men. (4) I and II.
Sections meet twice weekly at various hours.
Sections are organized in baseball, basketball, boxing, football, golf, riding, soccer, tennis, touch football, track, wrestling, swimming, lifesaving, and water sports. Men qualified for athletics may enroll in any sport pursued at Davis, such as football and basketball, and receive credit for this elective.
This course may be repeated for credit not to exceed a total of two units.

55A. First Aid. (1) I and II.
Standard course. Upon successful completion of the course, the Red Cross Certificate is awarded.

60. Physical Education for Women. (4) I and II.
Sections meet twice weekly at various hours.
Sections are organized in archery, badminton, tennis, volleyball, riding, swimming, lifesaving, and swimming formations.
This course may be repeated for credit not to exceed a total of two units.

PLANT PATHOLOGY

(Department Office, 258 Hunt Hall)

James B. Kendrick, Sr., Ph.D., Professor of Plant Pathology (Chairman of the Department).
Joseph M. Ogawa, Ph.D., Lecturer in Plant Pathology.

52. Plant Diseases. (3) II.
Lectures and laboratory.
Prerequisite: Botany 50.
A study of the most important plant diseases affecting the principal field, vegetable, fruit, and nut crops grown in California. Emphasis is placed on recognition and control of these diseases.

‡ Absent on leave, fall semester, 1957-1958.
‡ Absent on leave, spring semester, 1958.
POMOLOGY
(Department Office, 201 Horticulture Building)
Claron O. Hesse, Ph.D., Professor of Pomology (Chairman of the Department).
William H. Griggs, Ph.D., Associate Professor of Pomology.
Richard W. Harris, Ph.D., Assistant Professor of Pomology.
Dale E. Kester, Ph.D., Assistant Professor of Pomology.

51. Fruit Growing. (3) I.
Prerequisite: Botany 50, which may be taken concurrently.
Principles of fruit growing, with special reference to California conditions. The subjects considered will include pruning, propagation, rootstocks, varieties, pollination, fruit thinning, orchard soil management, disease and insect control, and effect of climate.

52. Plant Propagation. (2) II.
Lectures and laboratory.
Prerequisite: Botany 50.
Principles and methods of propagation with special emphasis on fruit plants. Practice in grafting, budding, layering, and making of cuttings.

53. Orchard Operations. (2) I.
Lectures and laboratory.
Prerequisite: course 51, which may be taken concurrently.
Lectures on nut crops, pome fruits, small fruits, and pruning. Laboratory studies of fruit species, walnut harvesting, varieties of nuts and fruits, fruit-bud differentiation and fruit-bearing habits, and pruning.

54. Orchard Operations. (2) II.
Lectures and laboratory.
Prerequisite: course 53, or consent of instructor.
Lectures on production and handling of peaches, apricots, plums, prunes, cherries, figs, and persimmons. Laboratory studies of orchard planting, spraying, frost protection, tree wiring, rootstocks, pollination, fruit thinning, nutritional deficiencies, and orchard management.

90. Special Problems. (1-5) I and II.
Prerequisite: consent of the instructor.

POULTRY HUSBANDRY
(Department Office, 109 Poultry Building)
Vigfus S. Asmundson, Ph.D., Professor of Poultry Husbandry.
†George F. Stewart, Ph.D., Professor of Poultry Husbandry (Chairman of the Department).
Arthur H. Smith, Ph.D., Associate Professor of Poultry Husbandry.
Wilbor O. Wilson, Ph.D., Associate Professor of Poultry Husbandry (Acting Chairman of the Department).
Daniel W. Peterson, Ph.D., Assistant Professor of Poultry Husbandry.

† Absent on leave, 1957-1958.
TWO-YEAR CURRICULUM

Poultry Husbandry; Vegetable Crops 245

51. Introduction to Poultry Husbandry. (3) I.
Lectures and laboratory.
A study of poultry husbandry and flock management. Laboratory exercises
include culling, housing, management, and marketing practices.

52. Poultry Management Practice. (2) II.
Lectures and laboratory to be arranged.
Prerequisite: course 51.
Practice and directed study of chicken and turkey rearing and laying-bird
management. Field trips to commercial ranches, hatcheries, feed mills, proc-
essing plants, etc., as applicable.

54. Poultry Meat Production. (2) I.
Prerequisite: course 51.
Selecting, breeding, hatching, brooding, and growing chickens and turkeys
for meat.

90. Special Problems. (1–5) I and II.
Prerequisite: course 51, which may be taken concurrently, and consent of
the instructor.

SOILS AND PLANT NUTRITION
(Department Office, 241 Soils and Irrigation Building)
Daniel G. Aldrich, Ph.D., Professor of Soils (Chairman of the Department).
Arthur L. Brown, Ph.D., Lecturer in Soils.

SOIL SCIENCE

52. Soils. (3) II.
Lectures and laboratory.
This is a survey course. The natural origin of soils, the properties of soils,
and soil moisture are discussed. Special soil problems, for example, those con-
cerned with alkali and acid soils are emphasized. The early part of the course
is presented as a background to the broad problem of soil management, which
is treated in the final group of studies. Soil management involves fertilization,
tillage, growth of cover crops, use of green manures, and erosion control.

SPEECH
(See “English, Dramatic Arts, and Speech,” page 239)

VEGETABLE CROPS
(Department Office, 152 Hunt Hall)
Glen N. Davis, Ph.D., Professor of Vegetable Crops (Acting Chairman of the
Department).
†James E. Knott, Ph.D., Sc.D. (hon.c.), Professor of Vegetable Crops (Chair-
man of the Department).
Paul G. Smith, Ph.D., Associate Professor of Vegetable Crops.
† Absent on leave, fall semester, 1957–1958.
Gordie C. Hanna, B.S., Lecturer in Vegetable Crops.
James E. Welch, Ph.D., Lecturer in Vegetable Crops.

52. Vegetable Crops. (3) II.
Lectures and laboratory.
The principles and practices of vegetable-crop production. A survey of the vegetable industry. Varieties, adaptation to climate and soil, cropping systems, land preparation, fertilization, culture, harvesting, marketing, and grading.

53. Vegetable Varieties. (3) I.
Lectures and laboratory.
Prerequisite: course 52.
The identification, classification, and origin of vegetable crops. Study of the history, uses, advantages, and limitations of the principal California and U. S. vegetable varieties. One or more field trips will be made.

54. Vegetable Improvement. (3) II.
Lectures and laboratory.
Prerequisite: Botany 50; course 52, or Agronomy 51, or Landscape Management 51, or Pomology 51.
The principles of heredity as applied to vegetable improvement. Methods and techniques of hybridization, selection, maintenance, and improvement of vegetable varieties. Production, harvesting, and storage of vegetable seeds.

90. Special Problems. (2-4) I and II.
Prerequisite: consent of the instructor.

VETERINARY SCIENCE
(Department Office, 1018 Haring Hall)

Hugh S. Cameron, D.V.M., Ph.D., Professor of Veterinary Science.
Donald B. Jasper, D.V.M., Ph.D., Professor of Veterinary Medicine (Chairman of the Department).

51. Animal Hygiene. (2) I.
Prerequisite: Zoology 51.
The general principles of disease control. The various causes of diseases are discussed with relation to methods of prevention. Emphasis is placed on the maintenance of the health of the herd or flock rather than on major treatment or surgery of sick animals. Specific epidemics of economic importance to domestic livestock production are also discussed.

VITICULTURE
(Department Office, 2 Viticulture Building)

Maynard A. Amerine, Ph.D., Professor of Enology.
Albert J. Winkler, Ph.D., Professor of Viticulture (Chairman of the Department).
John G. B. Castor, Ph.D., Associate Professor of Enology.
James F. Guymon, Ph.D., Associate Professor of Enology.
A. Dinsmoor Webb, Ph.D., Associate Professor of Enology.
Viticulture; Zoology

Lloyd A. Lider, Ph.D., Assistant Professor of Viticulture.
Klayton E. Nelson, Ph.D., Lecturer in Viticulture.
Robert J. Weaver, Ph.D., Lecturer in Viticulture.

61. Viticulture. (3) I.
 Lectures and laboratory.
 Prerequisite: Pomology 51 or consent of the instructor.
 Climate in relation to grape production; grape development and ripening; history and distribution of grape growing; the principal varieties; harvesting, packing, and marketing grapes and raisins.

62. Vineyard Operations. (3) II.
 Lectures and laboratory.
 Prerequisite: Pomology 51 or consent of the instructor.
 Cultural operations in establishing and maintaining vineyards: planting; training; pruning; cultivation and irrigation; thinning and girdling. Vineyard insect and disease pests and their control. Vineyard management.

70. Enology Practice. (1-5) I and II.
 Conferences and laboratory.
 Practice in winery operation and control procedure applied in wine production.
 This course may be repeated once for credit.

90. Cellar Practice. (1-5) I and II.
 For work on yeast and bacteria, students will enroll with Mr. Castor; for work in winery operations and distillation, with Mr. Guymon.

ZOOOLOGY

(Department Office, 249 Animal Science Building)

Lauren E. Rosenberg, Ph.D., Professor of Zoology (Chairman of the Department).
Robert L. Rudd, Ph.D., Instructor in Zoology.

51. Biology of Domestic Animals. (3) I.
 Anatomy and physiology of domesticated livestock and poultry, with some attention to lower forms of animal life of economic importance.
INDEX

A. Subject, 25, 44, 78, 99, 218
Abbreviations used, 117, 233
Absence, leave of, 34
Academic Senate, 9
Accrediting of schools in California, 12
Administration of the University, 9
Administrative officers, general, 8
of the colleges and schools, 8
Admission, by examination, 15
deficiencies, removal of, 17
from foreign countries, 20
in advanced standing, 18, 43, 77, 109
in freshman standing, 12
in graduate standing, 21, 102
in undergraduate status, 12
late, 21
of returning members of armed forces, 20
of special students, 20
preparation for, 15, 16
requirements for nonresidents, 19
to School of Veterinary Medicine, 97
to the two-year curriculum in agriculture, 109
to upper division, College of Letters and Science, 77
Advanced standing, 18, 43, 77, 109
Advisers, in the College of Agriculture, 43
for foreign students, 8, 21
in the College of Letters and Science, 75
Agricultural
chemistry, 119
economics, 44, 47, 50, 120
two-year curriculum, 233
education, 46
engineering, 50, 93, 123
two-year curriculum, 234
Agriculture
College of, at Davis, 9, 42–74
curriculum of the College of, 43
honors, 43
junior standing in, College of, 43
minimum scholarship requirements, 31
requirements for Bachelor of Science degree, 44
study-list requirements, 43
Agronomy, 47, 50, 63, 66, 127
two-year curriculum, 112, 235
American civilization, 81, 130
American history and institutions, 27, 44
Animal husbandry, 48, 50, 52, 54, 131
two-year curriculum, 111, 235
Animal physiology, 52, 54, 55, 135
Animal science, 52–55
Anthropology, 213
Application fee, 12, 21
Approval of housing, 38
Art, 192
Art, decorative, 178
Art, dramatic, 155
Arts, requirements for degree of Bachelor of, 79
Associate in Arts degree, requirements for, 77
Associated Students, 41
Athletic Association, Women’s, 42
Athletics, 42
Attorney for the Regents, 7
in residence matters, 37
Bachelor of Arts degree, requirements for, 79
Bachelor of Science degree, requirements for, 44
in the School of Veterinary Medicine, 99
Bacteriology, 137
two-year curriculum, 236
Biochemistry, plant, 142
Board and lodging, 38
Botany, 140
two-year curriculum, 237
Brief leave of absence, 34
Calendar, 6
California Club, 42
Candidacy for degrees, 29
Certificate of Completion, two-year curriculum, 108, 111
Changes of college or major, 30
Chemistry, 143
two-year curriculum, 237
Chemistry, agricultural, 119
Citizenship, required for teaching credentials, 103
Classics, 164
Climate and site, Davis campus, 36
Clubs and societies, 41
College entrance examinations, 15, 19
Composition, English required, 35
Condition examination, 33
Constitutions, course on, for teaching credentials, 103
Correspondence instruction, 10
Courses, classification and numbering of, 117, 233
credit value of, 117, 233
Credentials, teaching, 163–105
Credit, by examination, 32
upon repetition of lower division course, 33
value of courses, 117, 233
Curricula, survey of, 9
for teacher education, 103–105
Curriculum, two-year, in agriculture, 111–115
Cytology, plant, 142
Dairy industry, 48, 50, 57, 58, 147
two-year curriculum, 112, 237
Design of the colleges and schools, 8
Decorative art, 178
Deficiencies, admission, 17, 18
in University courses, 33
Degrees conferred in the several colleges
and schools, 8
dates of application for, 29
requirements for, 44, 77, 80, 99
Dental hygiene curriculum, admission to,
86
Dentistry, School of, 83
admission to dental curricula, 84
Design (see Landscape Management)
Dietetics, 60
Discipline, 35
Discontinuance without notice, 35
Dismissal, honorable, 34
for scholarship delinquency, 31
Doctor of Veterinary Medicine, requirements
for degree, 99
Dormitories, 39
Dramatic art, 155
Economics, 150
Economics, agricultural, 44, 120
two-year curriculum, 233
Education, 152
aricultural, curriculum in, 46
curricula for teaching credentials, 103—
105
two-year curriculum, 238
Employment, 39
of two-year graduates, 108
Engineering, 126
Engineering, agricultural, 93, 123
two-year curriculum, 224
Engineering, Colleges of, 93
Engineering, mechanical, 125
English, 155
composition, Subject A, 25
examination for foreign students, 20
oral, requirement of teaching credentials, 103
requirements for admission, 13
requirement for Associate in Arts degree, 77
two-year curriculum, 230
Entomology, 50, 57, 58, 227
two-year curriculum, 246
Enrollment limitation, 19
in School of Veterinary Medicine, 97, 98
of out-of-state applicants, 19
Entomology and parasitology, 55, 159
two-year curriculum, 238
Enterance requirements, 12-22
Examinations
condition or special, 33
credit by, 32
entrance, 15, 20
for foreign students, 20
medical, required, 23
regulations concerning, 32
Excuse for absence, 34
Expenses of students, 36
Experimental plan, agricultural, for ad-
mission, 15
Extension, University, 10, 17, 79
Extra-sessional work, two-year curriculum,
109
Faculty advisers (see Advisers)
Failures and conditions, 31
Farm experience, opportunities for, 39,
109
Farm management (see Agricultural econo-
mics)
Farm Practice, Division of, 39, 109
Fees, application, 12, 21
commutation of, 36, 37
condition examinations, 33
exemption from tuition, 37
for Subject A course, 25
incidental, 36
laboratory, 36
late registration, 21
nonresident, 37
refunds, 37
tuition, 36
Fellowships, 41
Final examinations, regulations concern-
ing, 32
Fine arts, 192
requirements for Associate in Arts de-
gree, 79
two-year curriculum, 242
Foods, 60, 61
Food science, 56-59
Food technology, 48, 50, 57, 58, 161
Foreign languages, 164
credit for foreign students, 21
requirements for admission, 13
requirements for Associate in Arts de-
gree, 77
Foreign students
admission from foreign schools, 20
advisers for, 8, 21
American history and institutions for,
27
examination in English for, 20, 35
language credit in mother tongue, 21
Forestry (see Preforestry)
Fraternities, 39
French, 164
General agriculture, 48, 50
General secondary credentials, 104, 105
Genetics, 51, 169
animal science, 53, 54, 55
plant science, 64, 65, 67, 142
Geography, 214
Geological sciences, 171
Index

Geology, 171
German, 166
Government, of the University, 9
 student self-government, 35, 41
Grade points, 30
Grades of scholarship, 30
Graduate courses, prerequisites for, 118
Graduate Division, 102
Graduate fellowships and scholarships, 41
Graduate subjects, 102
Greek, 167
Group majors, 83
Gymnasium, uses of, 25

Health certificate, for teaching credential, 103
Health service, 24
High school, matriculation units in relation to University units, 30
 program required for admission, 12-16
Higher degrees, 100
History, 173
 American, for graduation, 27, 111
 for admission, 13
 two-year curriculum, 240
Home economics, 59, 177
Homemaking, special secondary credential in, 104
Honor certificate, two-year, 111
Honorable dismissal, 34
Honorable mention with Associate in Arts degree, 77
Honorary societies, 42
Honors, 30, 43
 with Bachelor's degree, 92
Household science (see Home economics), 38
Housing, 38

Incidental fee, 36
Individual group majors, 83
Instructors, authority to exclude students, 29
Interdepartmental majors, College of Letters and Science, 81
International Club, 42
Irrigation, 181
 two-year curriculum, 240
Irrigation science, 48, 51, 61

Laboratory fees, 36
Laboratory science, for admission, 13
 for Associate in Arts degree, 77
Landscaping management, 64, 67, 184
 two-year curriculum, 241
Languages, credit in, for a foreign student, 21
 for the Associate in Arts degree, 77
 foreign, for admission, 13
Late admission and registration, 21
Latin, 167
Leave of absence, 34
Legal (see Prelegal)
Letters and Science, College of, 9, 75-92
 faculty advisers, 75
 honors, 91
 list of courses, 90
 majors for Bachelor of Arts degree, 80
 requirements for degrees in, 77-81
 scholarship requirements, 30
 study-list regulations, 75
Library, 41
Limitation of enrollment, 19
 in School of Veterinary Medicine, 98
 of out-of-state applicants, for admission, 19
List of courses, College of Letters and Science, 90
Living accommodations, 38
 expenses, 38
Loans, 41
Location of campus, 36
Lodging and board, 38

Majors, change of, 30, 77
 for the Bachelor of Arts degree, 80-83
 for the general secondary credential, 104
 in the College of Agriculture, 44-74
 in the two-year curriculum in agriculture, 111-115
Mathematics, 185
 for admission to upper division, 78
 for Associate in Arts degree, 77
 required for admission, 13
 two-year curriculum, 241
Matriculation, credit, 39
 examinations, 15
Mechanical engineering, 126
Medical examination required, 23
Medical science, 89
 preprofessional curricula, 83-89
Medicine, School of, requirements for, 88
Microbiology, 137
Military science and tactics, 27, 190
Military science, required, 27
 for Associate in Arts degree, 77
 for admission to upper division, 78
Mineralogy, 172
Minimum scholarship requirements, 31
Music, 154
 two-year curriculum, 242

Natural science requirement, 78
Nonresident, students
 admission of, 19, 20
 status determined, 37
 tuition fee for, 37
Nutrition, 60, 61

Oath of allegiance, for teaching credentials, 103
Office of Special Services, 40
Officers, administrative, 8
 of the Regents, 7
Out-of-state applicants, see Nonresident students
Parasitology, 55, 159
two-year curriculum, 239
Passing and nonpassing grades, 30, 31
Philosophy, 192
Physical education, 25, 198
two-year curriculum, 242
Physical examination required, 23
Physical science, 83
Physics, 201
Physiology, 229
animal, 52, 54, 55, 135
plant, 142
Plant biochemistry, 142
Plant nematology, 204
Plant nutrition, 216
Plant pathology, 64, 68, 205
two-year curriculum, 243
Plant physiology, 142
Plant production, two-year curriculum, 112
Plant science, 62
Political science, 175
Pomology, 48, 51, 64, 68, 206
two-year curriculum, 244
Poultry husbandry, 51, 54, 55, 208
two-year curriculum, 244
Pre-dental curriculum, 85
Preforestry, 68
Prelegal, 89
Premedical, curriculum, 88
students, regulations concerning, 86
Preparation for University curricula, 15, 16
Prepharmacy curriculum, 89
Prephysical therapy, 89
Preprofessional curricula, 83-89
Presocial welfare curriculum, 89
Pre-veterinary curriculum, 69, 100
Prizes, 41
Probation, 31
Professional curricula, 81
status of courses in, 77
Psychology, 211
Range management, 49, 51, 213
Readmission after dismissal, 81
RedeXaminations, 33
Refunds of fees, 37
Regents of the University, 7
Registration, routine of, 23
in two-year curriculum in agriculture, 109
late, 21
Regulations concerning students in academic departments, 23-32
Removal of admission deficiencies, 17
by applicants from other colleges, 18
scholarship deficiencies, 33
Repetition of course for higher grade, 32
Reports of student grades, 30
Requirements, for admission, 12-22, 109
for degrees, see under the various colleges
Reserve Officers Training Corps, 28
Residence halls, 38
Residence, rules governing, 37
requirements for degree, 99
Scholarship, grades of, 30
minimum requirements of, 31
requirements for admission, 13
Scholarships, 41
Science, requirements for degree of Bachelor of, 44, 99
Sciences, see under the various departments
for admission, 13
for Associate in Arts degree, 77
Selective service, 40
Self-government of students, 35
Self-support of students, 39
Senate, Academic, 9
Site and climate, Davis campus, 36
Social sciences, for Associate in Arts degree, 79
Sociology, 213
Soil science, 72, 218
two-year curriculum, 245
Spanish, 167
Special examinations, 32
Special secondary credential, 104
Special students, 20
Speech, 159
two-year curriculum, 239
Staff, administrative, 8
Student, activities, 41
clubs and societies, 41
Student employment, 39
Student health service, 24
Student publications, 41
Student responsibility for materials submitted in satisfaction of course requirements, 35
Student Welfare Council, 35
Study-list regulations, 29, 43, 75
Subject A, 25, 218
required for Associate in Arts degree, 78
required for Bachelor of Science degree, 44, 99
Summer Sessions, 10
courses for the Associate in Arts degree, 79
courses for removal of admission deficiencies, 18
Survey of curricula, 9
Teaching credential, 103-105
general requirements for, 103
general secondary credential, 104
special secondary credentials, 104
specific requirements for, 104
Teaching majors and minors for, 105
Transcript of record, 34
Tuition, 36
Two-year curriculum in agriculture, 108–115
admission and registration, 109
courses of instruction, 233–247
extra-session work, 109
general information, 108
major-subject programs, 111–115
positions open to graduates of, 108
requirements for graduation, 108
special Honor Certificate, 108
Undergraduate curricula, 9
Units of work and credit, 30
University Extension, 10
courses for Associate in Arts degree, 77
courses for removal of deficiencies, 17
University of California, Berkeley, 9
Upper division, College of Letters and Science, 77–79
admission to, 77
requirements in, 79
Vaccination required, 23
Vegetable crops, 49, 51, 65, 68, 218
two-year curriculum, 114, 245
Veterans affairs, 40
Veterinary curriculum, 100
Veterinary medicine, 224
Veterinary Medicine, School of, 97–101
admission to, 97
enrollment limitation in, 97, 98
requirements for degrees in, 99
selection of applicants for, 98
Veterinary science, 220
two-year curriculum, 246
Visual instruction, 11
Viticulture, 49, 51, 65, 68, 227
two-year curriculum, 246
Women's Athletic Association, 41
Year courses, classification and numbering of, 117
Zoology, 228
two-year curriculum, 247