U.C./DAVIS

PUBLISHED AT DAVIS, CALIFORNIA
Volume 10 - May, 1970 - Number 2

A series of administrative publications of the University of California, Davis.
Second-class postage paid at Davis, California, and at additional offices.
Four issues a year—one in February, two in May, and one in June.
All announcements herein are subject to revision.
Changes in the list of Officers and Administration may be made subsequent to the date of publication.
Price $1.00
UNIVERSITY CALENDAR
1970–71

Davis Campus

Fall 1970 Winter 1971 Spring 1971 (Fall 1971)
Friday Wednesday† Wednesday† Friday Friday Friday Monday

All continuing students obtain adviser’s approval of preferred program.†

Turn in registration and course enrollment materials along with fee payments (all continuing students). Course enrollment requests may be returned prior to return of registration forms and fee payments. Course enrollment requests will be given priority in the order in which they are received and fees must be paid in order to validate class assignments.

Late registration for continuing students.

Quarter begins.

Orientation and testing.

Registration in person.

Instruction begins.

File study lists by mail (continuing students only).

File study lists in person.

Last day of late registration.

Petitions to enroll or add courses to study lists must be filed with the Registrar’s Office on or before this date.

Petitions to drop courses without scholarship penalty must be filed with the Registrar’s Office on or before this date.

Petitions to take courses on a Passed or Not Passed basis must be filed in student’s college or school on or before this date.

* Weekends and holidays excepted.
† Adviser’s signature required of students enrolled in the College of Engineering and the Graduate Division, and students in the College of Agricultural and Environmental Sciences who did not obtain their adviser’s signature on their preferred program card.
‡ Dates are subject to change and should be checked with appropriate Schedule and Directory.
<table>
<thead>
<tr>
<th>Event Description</th>
<th>Fall 1970</th>
<th>Winter 1971</th>
<th>Spring 1971</th>
<th>Fall 1971</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications for admission to undergraduate standing, including applications for</td>
<td>Mar. 1,</td>
<td>Nov. 1,</td>
<td>Feb. 1,</td>
<td>Mar. 1,</td>
</tr>
<tr>
<td>intercampus transfer, must be filed with complete credentials with the Office of</td>
<td>Sunday</td>
<td>Sunday</td>
<td>Monday</td>
<td>Monday</td>
</tr>
<tr>
<td>Admissions on or before this date.</td>
<td></td>
<td></td>
<td></td>
<td>(1971)</td>
</tr>
<tr>
<td>Credentials and applications for admission to graduate standing must be filed with</td>
<td>June 1,</td>
<td>Oct. 1,</td>
<td>Jan. 1,</td>
<td>June 1,</td>
</tr>
<tr>
<td>the Dean of the Graduate Division on or before this date.</td>
<td>Monday</td>
<td>Thursday</td>
<td>Friday</td>
<td>Tuesday</td>
</tr>
<tr>
<td>Applications for admission to the School of Medicine for 1971–72 must be filed</td>
<td>Dec. 31,</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>with the School before this date.</td>
<td>Thursday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications for admission to the School of Veterinary Medicine for 1971–72 must</td>
<td>---</td>
<td>Feb. 28,</td>
<td>Apr. 1,</td>
<td>---</td>
</tr>
<tr>
<td>be filed with the Office of Admissions on or before this date.</td>
<td></td>
<td>Sunday</td>
<td>Thursday</td>
<td></td>
</tr>
<tr>
<td>Applications for admission to the School of Law for 1971–72 must be filed with</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>Apr. 1,</td>
</tr>
<tr>
<td>the School on or before this date.</td>
<td></td>
<td></td>
<td></td>
<td>Thursday</td>
</tr>
<tr>
<td>Applications for readmission to graduate status must be filed with the Registrar</td>
<td>Aug. 14,</td>
<td>Nov. 20,</td>
<td>Feb. 12,</td>
<td>Aug. 13,</td>
</tr>
<tr>
<td>on or before this date.</td>
<td>Friday</td>
<td>Friday</td>
<td>Friday</td>
<td>Friday</td>
</tr>
<tr>
<td>Applications for readmission to undergraduate status must be filed with the</td>
<td>Sept. 7,</td>
<td>Dec. 14,</td>
<td>Mar. 8,</td>
<td>---</td>
</tr>
<tr>
<td>Registrar on or before this date.</td>
<td>Monday</td>
<td>Monday</td>
<td>Monday</td>
<td></td>
</tr>
<tr>
<td>Candidates who expect to complete work for A.B. and B.S. degrees must file an</td>
<td>Oct. 16,</td>
<td>Jan. 19,</td>
<td>Apr. 13,</td>
<td>---</td>
</tr>
<tr>
<td>announcement of candidacy with the Registrar on or before this date.</td>
<td>Friday</td>
<td>Tuesday</td>
<td>Tuesday</td>
<td></td>
</tr>
<tr>
<td>Candidates who expect to complete work for masters’ degrees must file applications</td>
<td>Oct. 9,</td>
<td>Jan. 8,</td>
<td>Apr. 9,</td>
<td>---</td>
</tr>
<tr>
<td>for candidacy with the Dean of the Graduate Division on or before this date.</td>
<td>Friday</td>
<td>Friday</td>
<td>Friday</td>
<td></td>
</tr>
<tr>
<td>Theses for masters’ degrees must be filed with the committees in charge on or</td>
<td>Nov. 20,</td>
<td>Feb. 19,</td>
<td>May 14,</td>
<td>---</td>
</tr>
<tr>
<td>before this date.</td>
<td>Friday</td>
<td>Friday</td>
<td>Friday</td>
<td></td>
</tr>
<tr>
<td>Theses for masters’ degrees must be filed with the Dean of the Graduate</td>
<td>Dec. 18,</td>
<td>Mar. 19,</td>
<td>June 15,</td>
<td>---</td>
</tr>
<tr>
<td>Division on or before this date.</td>
<td>Friday</td>
<td>Friday</td>
<td>Tuesday</td>
<td></td>
</tr>
<tr>
<td>Candidates who expect to complete work for the degrees of Doctor of Philosophy</td>
<td>June 26,</td>
<td>Oct. 16,</td>
<td>Jan. 22,</td>
<td>Apr. 16,</td>
</tr>
<tr>
<td>and Doctor of Engineering must file applications for candidacy with the Dean of</td>
<td>Friday</td>
<td>Friday</td>
<td>Friday</td>
<td>Friday</td>
</tr>
<tr>
<td>the Graduate Division on or before this date.</td>
<td></td>
<td></td>
<td></td>
<td>(Sept. 1971)</td>
</tr>
<tr>
<td>Theses for the degrees of Doctor of Philosophy and Doctor of Engineering must be</td>
<td>Oct. 2,</td>
<td>Jan. 8,</td>
<td>Mar. 25,</td>
<td>---</td>
</tr>
<tr>
<td>filed with the committees in charge on or before this date.</td>
<td>Friday</td>
<td>Friday</td>
<td>Thursday</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall 1970</td>
<td>Winter 1971</td>
<td>Spring 1971 (Fall 1971)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Theses for the degrees of Doctor of Philosophy and Doctor of Engineering must be filed with the Dean of the Graduate Division on or before this date.</td>
<td>Nov. 25, Wednesday</td>
<td>Feb. 26, Friday</td>
<td>May 21, Friday</td>
<td></td>
</tr>
<tr>
<td>Applications for fellowships and graduate scholarships for 1971-72 must be filed on or before this date.</td>
<td>—</td>
<td>Jan. 15, Friday</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Applications for 1971-72 undergraduate scholarships must be filed on or before this date.</td>
<td>—</td>
<td>Jan. 15, Friday</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Instruction ends.</td>
<td>Dec. 12, Saturday</td>
<td>Mar. 13, Saturday</td>
<td>June 7, Monday</td>
<td></td>
</tr>
<tr>
<td>Quarter ends.</td>
<td>Dec. 19, Saturday</td>
<td>Mar. 20, Saturday</td>
<td>June 15, Tuesday</td>
<td></td>
</tr>
<tr>
<td>Academic and administrative holidays.</td>
<td>Nov. 26-27, Thursday-Friday</td>
<td>—</td>
<td>May 31, Monday</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec. 24-25, Thursday-Friday</td>
<td>Feb. 15, Monday</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec. 31-Jan. 1, Thursday-Friday</td>
<td>Mar. 26, Friday</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Commencement.</td>
<td>—</td>
<td>—</td>
<td>June 16, Wednesday</td>
<td></td>
</tr>
</tbody>
</table>
The University of California had its beginnings in 1868, with the Governor's signing of the Organic Act passed by the State Legislature. The following year the University opened its doors on the Oakland campus of the College of California. Five years later the University moved to Berkeley, when the first buildings were completed.

Today the University has nine campuses to serve the State of California. Davis continues to be the center for agricultural teaching and research. The other campuses are Berkeley, Irvine, Los Angeles, Riverside, San Diego, San Francisco, Santa Barbara, and Santa Cruz. Each campus has its own distinct atmosphere and special features, but all share the same high standards and adhere to the same admission regulations.

Each campus is headed by a chancellor, and the principal University-wide officer is the president. The government of the University is entrusted to a corporation called The Regents of the University of California. There are twenty-four Regents: sixteen are appointed by the Governor; the others, including the President of the University, serve ex officio. An Academic Senate governs the academic activities of the University; it is composed of the president, chancellors, vice-chancellors, vice-presidents, deans, directors, registrars, librarians, and all professors and instructors responsible for courses.

The Davis Division of the Academic Senate determines the conditions for certificates and degrees (subject to the approval of The Regents) and authorizes and supervises all courses of instruction in the academic and professional colleges and schools.

THE HISTORY OF THE CAMPUS

A spirit of service and an atmosphere of closeness and friendliness accompany the commitment to academic excellence on the Davis campus. They grew naturally from the first days of regular instruction in 1909, when the student body consisted of twenty-eight young men who wanted to become efficient farmers.

Originally known as the University Farm, the campus was acquired to serve the rural population of California, offering three years of instruction in the principles and practice of managing soils, crops, and animals. The need for such training had been anticipated by the late Judge Peter J. Shields, who helped write the legislative Act of 1905 establishing the Farm, and who is known as "the Father of the Davis Campus."

The need for greater educational opportunities in the state increased rapidly, and in 1922, in conjunction with the Berkeley College of Agriculture, the degree of Bachelor of Science in Agriculture was granted. A few years later the Davis campus had its own College of Agriculture. In 1946 the School of Veterinary Medicine was established. Meanwhile, from an institution which had offered only a few basic, practical courses emphasizing agriculture, a full-fledged University campus was beginning to emerge.

The period of most rapid change and expansion began in 1951 when the
College of Letters and Science was founded, and more degree programs became available. Although Davis had long offered courses in the humanities and social sciences, the faculty in these disciplines now joined with the natural sciences faculty to offer fully developed University curricula. By 1961 graduate programs were so extensive and so numerous that a Graduate Division was established as a separate academic unit. The College of Engineering was formed in the following year, owing much to the foundation already provided by the curriculum in agricultural engineering which had been offered on the campus for many years. The School of Law held its first classes in the fall of 1966, and the School of Medicine admitted its first students in the fall of 1968.

THE PRESENT STATE OF THE CAMPUS

Now, having been a general campus for almost twenty years; having an enrollment of over 12,500 students, more than 2,500 of whom are graduate students; and having a faculty of some 2,200 and a staff of 4,500, we are encountering, in common with all other university campuses in the nation, problems which changes in society in addition to our own rapid growth have forced upon us and which the founders of the "University Farm" could not have foreseen.

At Davis we are attempting to develop the means to address ourselves to these urgent problems from within and without the University. We are asking ourselves, as a campus, what the purpose of the University is and what role we are to play in the overall mission of the University. The faculty, students, and staff are reexamining the entire learning process and the environment of the student. We are working toward a formalized structure for decision making on matters of common concern to the entire community—some sort of community council representing the organized groups on campus: the Academic Senate, the Associated Students, the Academic Staff Organization, and the University Staff Assembly.

We feel that we have many advantages to bring to this attempt to solve our problems. Our location permits us to be somewhat insulated from the immediate thrust of society's urban problems. The spirit of friendliness and openness, maintained in the face of rapid growth, makes possible good communication between all segments of the campus. The presence of interdisciplinary groups from the beginnings of the campus makes mutual respect and cooperation between departments, colleges and schools the accepted rather than the extraordinary thing. The direction of the new administration toward decentralization of decision making, involvement of individuals affected by decisions in the decision making process, and providing administrative procedures for responsible change should insure that our advantages are utilized.

We are moving ahead; strengthening our two young professional schools; expanding our established colleges to meet our share of the projected undergraduate enrollment; developing new programs and interdisciplinary programs to respond to verifiable changes in student needs; unafraid of change yet requiring that change be made in a responsible fashion; cooperatively, deliberately, and with confidence that our strength and our willingness to listen to each other will carry us on.
STUDENT-FACULTY-STAFF COOPERATION

Faculty Advisers

The spirit of student-faculty cooperation on the campus is especially apparent in the willingness of the faculty advisers to furnish academic counsel when needed. Every student has access to faculty counsel and is encouraged to contact his departmental or area adviser during orientation week and preregistration periods for purposes of course selection and advice on college or university requirements. The various academic deans are also available at all times to furnish assistance with any academic problem.

Administrative Committee System

The administrative committee system of the University of California, Davis, provides the Chancellor with a means of seeking and obtaining policy recommendations and advice on a wide range of topics from members of the student body, faculty, and staff. A developing campus presents many opportunities for innovative approaches to insure the best use of the resources available. By appointing interested members of the campus community who have talents in solving problems of the various aspects of the campus, the Chancellor can bring to bear many viewpoints to provide for the widely varying needs of the campus population.

The Honor Spirit

A long-time tradition on the Davis campus, the Honor Spirit is most evident at examination time, when there are no proctors in the classrooms and students are relied on to do their own work.

But the Honor Spirit is not limited to student behavior during examinations. According to its code, the responsibility for good conduct rests with the individual student; this attitude pervades all student activities. It is largely responsible for the atmosphere of mutual respect and confidence that exists between students, faculty, and staff, as well as among the students themselves.

THE DAVIS COMMUNITY

Davis is a rapidly growing residential community of 21,750. Its population 20 years ago was 3,500 and the projection for 10 years from now is for 35,000. It is located in the Sacramento Valley, 15 miles west of Sacramento, 72 miles northeast of San Francisco, and connected to each by a major freeway, Interstate 80. It is a junction of the Southern Pacific Railroad, has a Greyhound bus depot, and is 20 minutes from the Sacramento Airport. Its climate is temperate. There is no snow in winter and the minimum average temperature is 36°. Summers are dry and warm with a maximum average temperature of 95°.

Davis is ideally situated for access to outdoor recreation areas. In a half hour, going west, one arrives at Lake Berryessa or, going east, at Folsom Lake, both of which are recreation areas featuring boating, picnicking, and swimming. An hour’s drive brings one to Clear Lake and the famed Napa Valley on the west or the historic Mother Lode country on the east. A two-hour drive to the west
brings one to the coastal areas, from Mendocino in the north to Santa Cruz in the south. Two hours drive to the east are Lake Tahoe and the Sierra mountains with excellent ski areas such as Squaw Valley.

The community offers many facilities. Twenty-two churches serve the area. There are 6 elementary schools, 2 junior highs, and 1 senior high in the district. Students rank very high in comparative achievement tests. Excellent facilities are provided for the needs of special children and school services are wide-ranging. A favorable pupil-teacher ratio is maintained.

A great variety of planned programs are offered, for all ages, in performing and fine arts, athletics, and special group recreation. Instructional programs are given on a year-round basis in aquatic and other sports and facilities for swimming, tennis, and other sports are provided in the community's central and neighborhood parks and at the 18-hole municipal golf course.

Cultural opportunities are outstanding for a small community. In addition to the University's Professional Resident Theatre and full schedule of professional concerts, lectures, and exhibits, the Davis Art Center provides directed workshops and classes in fine arts, music, dance, and language and a permanent gallery featuring the work of local artists and offering rental services. Many of the classes perform for the public. There are two movie houses in town, one showing popular features and one specializing in art films. A new branch of the Yolo County Free Library, housing 26,000 volumes, was completed in 1968. There are two local newspapers and home delivery of the Sacramento and San Francisco papers is available.

Professional services offered in town include those of physicians and surgeons, dentists, optometrists, attorneys, architects, and engineers. Davis has 2 convalescent hospitals and a 49-bed general hospital; there are several large private hospitals and a Kaiser facility hospital, as well as the University affiliated Sacramento Medical Center, in nearby Sacramento. There are banks, restaurants, clothing stores, travel agencies, and many other facilities in the downtown business area and three shopping centers in the peripheral areas.

TRANSPORTATION

The campus is closed to vehicular traffic from 7 a.m. to 6 p.m. Monday through Friday. Parking permits are required for all campus lots. Permit fees in 1969–70 range from $8 for motorcycles through $20 for Residence Hall lots and $30 for perimeter lots open to students to $40 for central campus lots open only to faculty and staff. A small number of metered and daily permit spaces are open for visitors. Most members of the campus community ride bicycles. Bicycle and pedestrian lanes are clearly marked on campus and bicycle parking is available near all major buildings. The City of Davis has bicycle lanes (which are closed to vehicular traffic) on the major arteries. Bicycles must be registered with the city and riders are subject to traffic regulations and citations for rule infractions.

There is no public transportation in the city, but the Associated Students (ASUCD) operate Unitrans, a service of three buslines to North, West, and East Davis (the University campus constitutes the southern portion of town). These buses run on a schedule convenient to class times and evening visits to
labs or the libraries. Schedules and ride tickets are available at the beginning of every quarter.

RESEARCH FACILITIES ON THE CAMPUS

A number of centers, institutes, and laboratories supplement the extensive departmental research facilities on the campus: the Agricultural History Center, the Center for Administration of Criminal Justice, the Computer Center, the Food Protection and Toxicology Center, the International Agricultural Center, and the National Center for Primate Biology; the Institute of Ecology and the Institute of Governmental Affairs; the Crocker Nuclear Laboratory, the Kearney Research Foundation, the Laboratory for Research in Fine Arts and Museology, the Radiobiology Laboratory, and the Arboretum. The diversity of the areas of research illustrate the breadth of interests pursued on the Davis campus.

UNIVERSITY LIBRARY

The Library on the Davis campus contains about 820,000 volumes and annually receives 22,000 current periodicals and serials including government publications. Its holdings in the natural sciences and agriculture are outstanding, and collections in the humanities, social sciences, fine arts, engineering, law, and medicine are being rapidly developed. In addition to the main library, there are branch libraries for health sciences, physical sciences, and agricultural economics; a law library; and several specialized departmental collections.

To accommodate the rapidly growing collection and satisfy the need for additional reading space, a wing was added to the General Library in 1964, and a second wing, completed in 1967, doubles the space available for books and readers. Plans for development anticipate 900,000 volumes by 1971.

The Library is operated on the “open stack” principle, permitting direct access to volumes shelved there. The Reference Department provides orientation and assistance in using the collection. In addition to the main stack collection, there are a number of special collections, including a Bibliographic Center collection, over 535,000 items on various forms of microcopy, some 30,000 maps, more than 350,000 pamphlets, a number of speech and music phonorecords, about 300,000 items in the F. Hal Higgins Library of Agricultural Technology, and a rare book collection of 13,000 volumes.

The Government Documents Department provides service for readers requiring use of government publications. The Library is an official depository for United States government publications, for all publications of the State of California, for the Atomic Energy Commission (which has made available over 145,000 unclassified publications of great value to scientific research) and for the National Aeronautics and Space Administration unpublished research reports.

The Reserve Book Service makes available for short-term loan periods a collection of several thousand volumes that are heavily used because of assigned class reading.

The Periodicals Room houses over 5,000 currently received, unbound titles of periodicals in a closed stack area. They are available for use only in the
Library. A coin-operated copying machine in the Periodicals stack area can supply facsimiles of articles for $.05 per exposure.

The Department of Special Collections provides readers with assistance in the use of rare books, University Archives, and the F. Hal Higgins Library of Agricultural Technology. Other special facilities include a browsing collection for recreational reading, headphones for music listening, audio-visual equipment, a typing room, an outdoor reading area, and a copying service that provides facsimiles of printed materials at a nominal cost.

The Library provides its users with a series of information leaflets explaining in more detail the various aspects of its services and resources.

SUMMER SESSIONS

In 1970 there will be two regular six-week Summer Sessions running from June 22 to July 31 and August 3 to September 11. The Summer Sessions will offer a number of lower division, upper division, and graduate courses of interest to students who may wish to maintain or accelerate progress toward their degree objectives. A substantial offering of upper division and graduate courses of interest to teachers and teacher candidates will also be provided, including courses for teacher candidates who have been admitted to internship programs and for other qualified graduate students who may wish to complete requirements for teaching credentials or degrees. In addition, courses in the 198–199 and 298–299 series, advanced special study and research, will be available for qualified students in many departments.

Summer Sessions will also be conducted on the Berkeley, Irvine, Los Angeles, Riverside, Santa Barbara, Santa Cruz, and San Diego campuses. Information about these summer sessions is available in the Summer Sessions bulletins, obtainable from the Admissions Office, or from the Office of Summer Sessions on the respective campuses.

Announcement concerning Summer Sessions in 1971 will be issued by the Registrar and the Office of Summer Sessions.

UNIVERSITY EXTENSION

University Extension, Davis, has a two-fold function: (1) through classes, workshops, and conferences in the fields of liberal arts, education, public affairs, health sciences, and management it offers continuing university education to adults of the twenty-nine county area served by UCD; (2) through its program of community development it offers the University's resources to local communities to assist in the solution of social, economic, and cultural problems.

The Continuing Education Program is self-supporting, generating its budget from student enrollment fees. A catalog, published four times yearly by University Extension, lists the courses available for the coming quarter. Many of these offer units of Extension credit (which, in some cases may be counted toward regular academic degree programs with the permission of the appropriate University department and academic dean). Instructors are drawn from the University faculty, near-by university and college faculties, and professionals
in the various fields of instruction. Guest speakers of national and international reputation participate in courses built around lecture series.

Extension’s Community Development Program is funded through foundation and government grants, and through contracts with groups requesting assistance. Programs are developed, as the need for them arises, in such areas as low-income housing, drug abuse, aging, cultural conservation, and educational and economic opportunity. Community Development also assists in establishing lines of communication between area residents and local government, and in training local community development workers.

Detailed information on University Extension courses and programs may be obtained by writing University of California Extension, Davis / University of California, Davis, Ca. 95616, or by telephoning (916) 752-0880.
Admission and Registration

The University's undergraduate admission requirements, which are the same on all campuses, are based on two principles. Simply stated, they are: first that the best predictor of success in the University is high scholarship in previous work, and second that the study of certain subjects in high school gives a student good preparation for University work and reasonable freedom in choosing an area for specialized study.

ADMISSION TO FRESHMAN STANDING

The University defines a "freshman applicant" as a student who has graduated from high school but who has not enrolled since then in a regular session in any collegiate-level institution. To be eligible for admission to the University as a freshman, applicants must meet the Subject Requirement, the Scholarship Requirement, and the Examination Requirement, which are described below. Special requirements for nonresident applicants will be found on page 19.

GRADUATION FROM HIGH SCHOOL

SUBJECT REQUIREMENTS

Courses offered in satisfaction of the following requirements must appear on a list certified by the high school principal as meeting the subject requirements and be approved by the Director of Admissions of the University of California.

a. History, 1 unit
 This consists of 1 unit of United States history, or ½ unit of United States history and ½ unit of civics or American government.

b. English, 3 units
 These consist of 6 semesters of English composition, literature, or oral expression.

c. Mathematics, 2 units
 These consist of 2 units of subjects such as elementary algebra, geometry, trigonometry, calculus, elementary functions, matrix algebra, probability, statistics, or courses combining these topics. Arithmetic and such nonacademic subjects as shop mathematics and business mathematics are excluded.

d. Laboratory Science, 1 unit
 This consists of an eleventh- or twelfth-grade year course in one laboratory science. Both semesters must be in the same subject field.

e. Foreign Language, 2 units
 These must be in one language. Any foreign language with a written literature is acceptable.

f. Advanced course, 1 (or 2) unit
 This is to be chosen from the following:
 Mathematics, a total of 1 unit of second-year algebra, solid geometry, trigonometry, or other certified advanced courses.
Foreign Language, either 1 additional unit in the same foreign language offered under e above or 2 units of another foreign language. Science, 1 unit of either chemistry or physics in addition to the science offered under d.

g. Electives
Additional elective units to complete the minimum of 15 standard high school entrance units are also required.

SCHOLARSHIP REQUIREMENTS
At least a B average is required in courses taken after the ninth year and used to meet the subject requirements. Grades received in elective courses or in courses taken in the ninth year or earlier are not used in computing this average. Subject requirements are satisfied by courses in which a grade of C or higher has been earned. Grades are considered on a semester basis except from schools that give only year grades. Grades, including those earned in accelerated and advanced courses, are accepted as they appear on the transcript.

In determining the B average, a grade of A in one course will be used to balance a C in another, but an A may not be used to compensate for D, I, or F grades. Courses taken in the ninth year or earlier in which a grade of D or lower is received may be repeated to establish subject credit.

Courses taken after the ninth year in which a grade of D or F is received may be repeated to establish subject credit and to improve scholarship. Courses may be repeated in an amount not to exceed a total of 1 unit of the a–f pattern. Grades earned in such repetitions will not be counted higher than a C in determining scholarship average.

EXAMINATION REQUIREMENTS
As a requirement for admission, all freshman applicants (and advanced standing applicants who have earned less than twelve units of college credit subsequent to high school graduation) must submit scores from the following examinations:

College Entrance Examination Board Scholastic Aptitude Test;
three CEEB Achievement Tests, which must include:
 a. English composition,
 b. social science or foreign language,
 c. mathematics or science.

Applicants whose scholarship average in the required high school subjects is 3.00 to 3.09 inclusive must achieve a minimum total score of 2500 on the examinations. The test results of all applicants will be used for the purposes of counseling, guidance, placement, and, when possible, in satisfaction of the Subject A requirement.

The tests should be taken after completion of the first half of the eleventh grade. The first repetition of a test will be accepted, but the verbal and mathematics scores on the Scholastic Aptitude section must be from the same sitting.
Examination Arrangements

Applicants for the fall quarter are urged to take the required examinations as early as possible. Those taking the examination any later than January will delay the processing of their applications.

Arrangements to take the tests should be made with the Educational Testing Service, P.O. Box 1025, Berkeley, California 94701, or P.O. Box 592, Princeton, New Jersey 08540. The fees are to be paid to the Educational Testing Service. Scores will be regarded as official only if they are received by the Office of Admissions directly from the Educational Testing Service. Admissions applications cannot be processed until scores from the CEEB tests have been received by the Admissions Office.

ADMISSION BY EXAMINATION ALONE

A high school graduate who has not satisfied the entrance requirements as a result of his high school record and who has not attempted college work subsequent to high school (except during summer session immediately following high school graduation) may qualify for admission if he achieves the prescribed minimum scores in the required examinations taken after the first half of the eleventh grade. See Examination Requirement above.

For admission by examination alone the total score on the Scholastic Aptitude Test must be at least 1100; the scores on the three Achievement Tests must total 1650, and the score on any one Achievement Test must not be less than 500.

SPECIAL REQUIREMENTS FOR OUT-OF-STATE APPLICANTS

GRADUATION FROM HIGH SCHOOL

The acceptability of records from high schools outside California will be determined by the Office of Admissions.

SUBJECT REQUIREMENTS

The same subject pattern as for a California resident is required (see page 17).

SCHOLARSHIP REQUIREMENTS

The scholarship requirements for a nonresident applicant are the same as those for a resident except that the scholarship average must be 3.4 or higher in the required high school subjects taken in tenth, eleventh, and twelfth years.

EXAMINATION REQUIREMENTS

A nonresident applicant must take the same College Entrance Examination Board tests as those required of a resident applicant (see page 18). The test scores submitted will be used for the purposes of counseling, guidance, placement, and, when possible, in satisfaction of the Subject A requirement.

ADMISSION BY EXAMINATION ALONE

A nonresident applicant who is ineligible for admission to freshman standing and who has not attempted college work subsequent to high school (except dur-
ing the summer session immediately following high school graduation) may qualify for admission on the basis of examination alone. The tests required of a nonresident applicant are the same as those for a resident except that the scores on the three Achievement tests must total at least 1725.

High School Preparatory Subjects

In addition to the high school subjects required for admission to the University, certain preparatory subjects are recommended for many University curricula to give the student an adequate background for his chosen field of study. Lack of a recommended high school course may delay graduation from the University. Details of these recommendations will be found in the bulletin *Prerequisites and Recommended Subjects*, which is ordinarily in the hands of high school and junior college counselors.

A student needing additional preparation is advised to attend one of the many excellent California junior colleges. There he can take courses applicable toward the requirements of the college or school of the University in which he wishes to enroll.

ADMISSION TO ADVANCED UNDERGRADUATE STANDING

Applicants who have registered since high school graduation in any collegiate institution, including junior colleges, summer school, or extension courses, must apply for admission to advanced standing. An applicant may not disregard his previous college record and apply as a freshman. However, an advanced standing applicant who has earned less than twelve units of college credit subsequent to high school graduation must satisfy the examination requirement for freshman applicants as described on page 18. The examination requirement may be disregarded in determining eligibility for freshman standing if the applicant has earned more than 12 units of college credit subsequent to high school graduation.

Regulations applying to admission to advanced standing are as follows:

1. Those eligible for admission from high school, but who attended another collegiate institution, must present from that institution a statement of good standing and a grade-point average of 2.0 (2.8 for nonresidents).

2. Those ineligible for admission from high school because of subject omissions may establish eligibility by completing, at an accredited college, the required courses with at least C grades, and by maintaining an average of 2.0 (2.8 for nonresidents).

3. Those ineligible for admission from high school because of grade-point deficiency may establish eligibility by taking, at an accredited college, a minimum of 56 acceptable semester units (or 84 quarter credits), with an average of 2.4 or better (2.8 for nonresidents).

4. Subject deficiencies of not more than 2 units may be waived for those who present the 56 or more semester units (or 84 quarter credits) and the 2.4 grade-point average mentioned above (2.8 for nonresidents). Deficiencies in excess of 2 units must be satisfied.

The University grants credit for courses consistent with its curriculum that
have been completed in accredited colleges and universities. The University accepts approved transfer courses completed with satisfactory grades in the public junior colleges of the state. Frequently, students who intend to complete their advanced studies at the University will find it to their advantage to complete the first two years of the college work in a California public junior college. After a student has earned 105 quarter units in a junior college (70 semester units) acceptable toward a degree, no further units will be granted for courses completed at a junior college, although subject credit may still be earned. (Note, however, that the final 75 units counted towards a degree in the College of Letters and Science must be completed at an institution offering instruction beyond the junior college level.)

The acceptability of extension courses taken at an institution other than the University is decided by the Office of Admissions. The faculty of the particular school or college in which the student plans to enroll, however, decides upon the applicability of such course work in satisfaction of degree requirements. Under the Advanced Placement Program of the College Entrance Examination Board, entering freshmen may receive advanced standing credit for Advanced Placement Examinations completed with scores of at least 3, 4, or 5 on both essay and objective sections of the tests.

ADMISSION OF APPLICANTS FROM OTHER COUNTRIES

Applicants from other countries will be admitted in accordance with the general regulations governing admissions. An application, official certificates, and detailed transcripts of record should be submitted to the Office of Admissions early in the appropriate filing period (see page 23). Doing so will allow time for exchange of necessary correspondence and, if the applicant is admitted, will help him in obtaining the necessary passport visa.

An applicant from another country whose native language is not English may be admitted only after demonstrating that his command of English will permit him to profit by instruction in the University. An applicant’s knowledge of English is tested by an examination given by the University. Admission of an applicant who fails to pass this examination will be deferred until he has acquired the necessary proficiency in the use of English.

Foreign students whose schooling has not been in English are urged to take the Test of English as a Foreign Language (TOEFL). Arrangements to take the test may be made in writing directly to TOEFL, Educational Testing Service, P. O. Box 592, Princeton, New Jersey 08540, U.S.A. Results of the test should be forwarded to the Office of Admissions, University of California, Davis 95616.

A student from a non-English speaking country is given college credit in his own language and literature only for courses completed in his country at institutions of college level, or for upper division or graduate courses taken in the University of California or in another English-speaking institution of approved standing.

REQUIREMENTS FOR ADMISSION TO GRADUATE STANDING

See page 152 or the Announcement of the Graduate Division.
SPECIAL ADMISSION CATEGORIES

In the case of a student who is technically ineligible for admission to the University, the Admissions Officer has authority and responsibility to consider other evidence of ability to pursue University work.

Conditions for admission to special or limited status are assigned by the Admissions Officer and are subject to the approval of the dean of the college or school in which the applicant plans to study. Admission is for a specified time only, and a prescribed scholarship average must be maintained. No degree can be granted to students in special or limited status. Applicants must submit transcripts of record from all schools attended beyond the eighth grade. They may also be required to take the examination in Subject A.

Special Status

Students admitted to special status are those twenty-one years of age or older who have not completed the University admission requirements but whose special attainments may qualify them for certain courses in the University toward a definite and limited objective.

No applicant will be admitted directly from high school, and only cases of unusual merit will be considered. A personal interview is usually required before final action can be taken.

A special status student will be admitted to courses for which, in the judgment of the instructor, he has satisfactory preparation. Students in this category will seldom be able to undertake the work of engineering and professional colleges or schools.

An applicant will not be admitted to special status for the purpose of making up requirements for admission to the University as a regular student.

Limited Status

Students in limited status are those with a bachelor’s degree who are not candidates for an advanced degree, or those without a bachelor’s degree who have completed a substantial amount of college work with a satisfactory scholarship average and whose special attainments may qualify them for certain courses in the University toward a definite and limited objective.

An applicant will not be admitted to limited status for the purpose of raising a low scholarship average.

Applicants for a Second Bachelor’s Degree

The second bachelor’s degree is limited to students who have completely changed their objective. Those admitted to this status must indicate very strong probability of academic success.

Admission is subject to the approval of the Admissions Officer and of the dean of the school or college in which the applicant plans to enroll.

APPLICATION PROCEDURES

Applicants are expected to study the admission requirements (starting on page 17) to determine as closely as possible their eligibility before following
the steps outlined below. Application should be directed to only one campus of the University. Admission to the University is not an assurance of financial aid nor does it guarantee assignment to University housing. Separate applications are required of applicants desiring financial aid or University housing.

For Freshman Standing

1. Application Form

An application for admission is obtained by writing the Office of Admissions, University of California, Davis, California 95616. Applications (and application fees) are to the University and not to a particular campus even though the applicant sends them to a campus of first choice. Consequently, the fee is not refundable if a particular campus cannot accommodate the applicant. Established enrollment quotas limit the number of new freshman and new advanced standing students who may be admitted to a campus. Once these quotas have been filled, additional applications will be accepted, but will be forwarded to another University campus where enrollment quotas have not been filled. For this reason, applicants should give careful thought to the order in which alternate campus preferences are listed on the application form. Equally important, the completed application should be filed very close to the appropriate opening date shown below.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Applications Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971 Winter Quarter (begins January 4)</td>
<td>May 1, 1979</td>
</tr>
<tr>
<td>1971 Spring Quarter (begins March 29)</td>
<td>August 1, 1970</td>
</tr>
<tr>
<td>1971 Fall Quarter (begins September 27)</td>
<td>October 1, 1970</td>
</tr>
</tbody>
</table>

2. Application Fee

The completed application form accompanied by a $10 non-refundable application fee should be returned to the Office of Admissions as promptly as possible. (The application fee should be in the form of a check or money order made out to The Regents of the University of California.) An application received without the $10 fee will be returned to the applicant.

3. Transcript of Record

The applicant is responsible for arranging to have transcripts sent and for insuring their early arrival at the Office of Admissions, University of California, Davis.

Students still in high school should request the school to send directly to the Office of Admissions an official transcript of all work completed through the junior year and a list of courses in progress during the final two semesters. A complete and final transcript, including a statement of high school graduation must be submitted for each applicant by the high school from which he graduated. Any additional schools attended after an application for admission has been filed are considered to be a part of the applicant’s record and are to be reported to the Office of Admissions. Transcripts and other documents submitted become the property of the University and are not returnable.
4. Notification of Eligibility

Applicants will be notified of eligibility in order of date of application providing appropriate transcripts are on file. A delay will occur if required documents or fees have not been received. Applicants will be notified of their eligibility status as soon as their records have been evaluated, but not before February 15, for the fall term.

5. “Statement of Intention to Register” Form

Admitted applicants will receive a “Statement of Intention to Register” form with their notification of eligibility. The form should be completed and returned along with a $50 nonrefundable fee. This fee will be credited to the University registration fee if the student registers for the quarter in which he is accepted.

6. Smallpox Vaccination Certificate

During the registration period every new student and every student returning to the University after an absence of one or more quarters must present at the time of examination by the University medical examiners, a certificate establishing the fact that he has been successfully vaccinated against smallpox within the last three years. A form for this purpose is routinely sent to all new students.

7. Change of Campus

If, after an applicant has filed for admission, his plans change and he prefers to register on a different campus, he must write to the Director of Admissions, University Hall, University of California, Berkeley, California 94720, indicating his reason for the change. His records will be transferred to the campus he wishes to attend provided facilities are available there. Such requests must be received before the end of the filing period.

8. Reapplication

An applicant who is not eligible for admission, or one who has been admitted but does not register in the quarter for which he applied and who later desires to attend the University, must submit a new application for admission with the $10 fee. The new application will be acted upon in light of the current availability of facilities and current admission requirements.

For Advanced Undergraduate Standing

Applicants for admission to advanced undergraduate standing should follow all steps outlined above for freshman standing and in addition arrange with each college or university attended since graduation from high school to send directly to the Office of Admissions, University of California, Davis 95616, an official transcript of work completed or in progress.

For Intercampus Visitor

A continuing undergraduate student enrolled on a campus of the University of California may register on any other general campus of the University, where facilities are available, as an Intercampus Visitor for a maximum of one quarter.
At the conclusion of the quarter's visitation a report of the student's work will be sent to the Registrar on his home campus for incorporation into his permanent University record. Applications for the Intercampus Visitor program are available from the Registrar on the home campus. Registration as an Intercampus Visitor will not entitle the visitor to continue as a student on the campus visited; if a student desires to register at another campus for more than one quarter he must request an Intercampus Transfer.

For Intercampus Transfer

An undergraduate student who is registered on any campus of the University, or who was previously registered in a regular session of the University and has not since been registered in another institution may apply for transfer to another campus of the University by filing the proper forms on the campus where he last registered. The intercampus transfer application forms and application for transcript of record forms may be obtained from the Office of the Registrar and must be filed with that office. There is a fee of $10 at the time of filing. Dates for filing are the same as those listed for new applicants.

For Graduate Standing

An application form and information are obtained by writing directly to the Office of the Graduate Division, Room 252, Mrak Hall, University of California, Davis 95616.

For Professional School Admission

School of Law

The requirements for admission to the School of Law are described on page 137. More detailed information and the appropriate application form may be obtained by writing the School of Law, University of California, Davis 95616.

School of Medicine

The requirements for admission to the School of Medicine are described on page 141. More detailed information may be obtained by writing to the School of Medicine, University of California, Davis 95616.

School of Veterinary Medicine

The requirements for admission to the School of Veterinary Medicine are described on page 145. More detailed information may be obtained by writing the School of Veterinary Medicine, University of California, Davis 95616. The application form may be obtained from the Office of Admissions, University of California, Davis 95616.

GENERAL REGISTRATION PROCEDURE

All students must complete registration requirements. These requirements include:

1. Obtaining registration materials from the Registrar at the designated time and place. (Detailed information may be found in the Schedule and Directory
available from the UCD Bookstore and the Information Desk in the lobby of Mrak Hall shortly before the opening of each quarter.)

Late registration privileges will be granted through the tenth day of instruction. A $10 fee will be assessed to defray the extra clerical costs of late registration.

2. Preparing with the faculty adviser when necessary, or required of a student, a study program of courses in accordance with the following regulations, and obtaining the adviser’s signature on the Study List Card, when such signature is required by instructions issued at the time of filing.

 a. Entering students must enroll in the Subject A course if they have not satisfied this requirement (see page 32).

 b. Students who wish to continue a foreign language studied only in high school will take a placement test to determine the appropriate level of language ability for proper placement in class (see page 128).

 c. Entering students will be given the American History and Institutions Examination at the beginning of the fall and spring quarters (see page 32).

 d. Maximum and minimum limits are placed on the number of units for which a student may enroll each term. These vary with each college or school. However, the University considers 12 quarter units a minimum full-time load. All students participating in student and intercollegiate activities must carry this minimum number of units.

3. Paying the prescribed fees (see page 35).

 For all nonimmigrant international students, the Associated Students Supplementary Health Insurance program is required (see page 45).

4. Passing a physical examination given by the University Medical Examiners (see page 45).

5. Submitting a Statement of Residence. This is required of all new and returning students, including new graduate students who may have been registered previously as Davis campus undergraduates, and those whose residency status has changed recently (see page 33).

6. Familiarizing themselves with the requirements of their particular college or school.

7. Presenting completed registration forms and packets to the Registrar by the prescribed times (see the Schedule and Directory).

ADDITION OR DROPPING COURSES

Adding or dropping courses after the registration materials have been submitted to the Registrar requires the filing out of the appropriate petition (with approval from the student’s adviser and the dean of his college, when required, according to instructions issued at the time of filing) which is subsequently presented to the Registrar. Since this entails a considerable amount of work for everyone, students are encouraged to keep these requests to a minimum by determining from the instructor as early as possible the nature of the course requirements such as the number of term papers required, examinations, reading lists, etc. The student’s appreciation of this problem will be of great help.
CHANGES OF MAJOR, COLLEGE, OR SCHOOL

With the approval of the appropriate dean or deans, a student in good standing can transfer from one area of study to another. Petition forms for this purpose may be obtained from the Registrar.

CHANGE OF NAME

Petition forms for this purpose may be obtained from the Registrar.

WITHDRAWALS

Withdrawals may be granted by the University for emergency reasons or for good cause. Unauthorized withdrawals may jeopardize the student's registration privileges and result in failing grades. Forms for this purpose may be obtained from the Registrar's Office.

It is also important that any student who has been receiving veterans benefits and those who have been deferred by Selective Service because of registration in the University, report immediately to the Dean of Students Office or write regarding any change of status.

READMISSION AFTER AN ABSENCE

All former students who wish to re-enter the University of California, Davis, must file an application for readmission with the Registrar and submit the non-refundable, non-refundable fee of $10. (Former students are those who have interrupted the completion of consecutive quarters of enrollment on the Davis campus.) Official transcripts of all work attempted in the interim must be submitted. Final dates for filing for readmission are listed on page 6.

RULES GOVERNING RESIDENCE

The residence classification of each student is determined in accordance with Section 244 of the California Government Code, Sections 23054 through 23059 of the California Education Code; and the Standing Orders of the Regents. It is therein provided that a resident student is any person who has been a legal resident of the State of California for more than one year immediately preceding the opening day of the quarter during which he proposes to enroll.

The attention of the prospective student who is not a citizen is directed to the fact that he is a nonresident unless, in addition to the general California residence requirements for tuition purposes, he has been admitted to the United States for permanent residence in accordance with all applicable laws of the United States. The attention of the prospective student who has not attained the age of 22 and whose parents are not California residents, and the attention of the veteran who was not a resident of California at the time of his entrance into the Armed Forces, is directed to the fact that presence in California for more than one year does not, of itself, entitle the student to classification as a resident.

A person incorrectly classified as a resident student is subject to reclassification as a nonresident. If the incorrect classification resulted from concealed
facts or untruthful statements made by him, the student then shall be required to pay all tuition fees which would have been charged to him as a nonresident student. He shall be subject also to such discipline as the President of the University may approve.

Every student who is classified as a resident but who becomes a nonresident of California is obliged to notify the Registrar at once.

The final determination of the eligibility of a student to register as a resident will be made by the Attorney in Residence Matters, 590 University Hall, University of California, Berkeley, California 94704 or by his deputy in the Registrar’s office. Application for a change in classification with respect to a previous quarter will not be received under any circumstances.

Students classified as nonresidents are required to pay a tuition fee of $400 each quarter. This fee is in addition to the registration fee. (Exemption from payment of the nonresident tuition fee may be granted to an unmarried minor whose parent is in the active military service of the United States and is stationed in California on the opening day of the quarter during which the minor proposes to attend the University or is stationed outside the United States immediately after having been stationed on active duty in California. This waiver is also available to the spouse of a member of the military service of the United States with an active duty station as described above. It is the responsibility of the student to file an official verification of the spouse or parent’s status received from the spouse or parent’s commanding officer. This verification should be addressed to the Registrar and filed when the student declares residency.)
Scholastic Requirements

EVALUATIONS

Every instructor is required to assign a letter grade for each student registered in his course. The QUALITY of a student’s work will be reported in one of the following grades:

Passing work: A, excellent; B, good; C, fair; D, barely passing.

Failing work: F, work so poor that it must be repeated to receive recognition.

Undetermined: I, work is satisfactory but incomplete for good cause.

Passed (P) or Not Passed (NP): Subject to regulation by the faculties of the various colleges and schools, a student in good standing is authorized to undertake one course each term (on the average) on a Passed or Not Passed basis. Units thus earned shall be counted in satisfaction of degree requirements, but such courses will be disregarded in determining the student’s grade-point average. Students wishing to exercise this option should familiarize themselves with the requirements of their particular college or school.

In specific courses which have been approved by the respective departments and by the appropriate Committees on Courses of Instruction, individual instructors may assign only Passed or Not Passed grades. A student electing such a course may do so in addition to using his Passed-Not Passed options.

Satisfactory (S) or Unsatisfactory (U): Graduate students, under certain circumstances, may be assigned grades of S or U, but in calculating the grade-point average, units gained in this way will not be counted.

Evaluation of the student’s performance may be deferred in certain sequential courses (those that carry the designation Deferred Grading Only, pending completion of the sequence). In order to gain credit toward graduation, a student must successfully complete the entire sequence in successive quarters. Such courses may not be taken by students on probation, nor may the student take such a course using the Passed/Not Passed or Satisfactory/Unsatisfactory option.

Quality points (grade points) will be assigned each grade as follows:

\[A = 4; \ B = 3; \ C = 2; \ D = 1; \ I \text{ and } F = 0. \]

All grades except I are final when filed by an instructor in his end-of-term course report. No final grade except I may be revised by re-examination. A student whose record shows more than 16 units of incomplete will be subject to probation or disqualification. While I grades do not count in the grade-point average for or against the student’s record during his enrollment, they do count at the time of his graduation. Hence, it is recommended that students do not delay the clearance of incomplete grades as graduation may well be jeopardized. A student may repeat only those courses in which he has received a grade of D, F, or Not Passed. However, courses in which a grade of D or F has been earned may not be repeated on a Passed/Not Passed basis. When an under-graduate student repeats the first 16 units of D or F work, he will receive only the most recently earned grade and grade points. Thereafter the student will receive the grade assigned and the corresponding grade points earned for each
time he takes the class. However, when a course is repeated, the units completed shall be credited toward a degree only once.

The QUANTITY of work attempted by the student is measured in quarter units (see page 161) which are assigned by the faculty for each individual course. To convert these units to semester units multiply by 2/3; from semester to quarter units by 3/2.

The student's course work is recorded in terms of units, grades, and grade points. The ratio of grade points over units attempted determines the grade-point average. The student is expected to maintain a C (2.0 grade-point average) or better on all work undertaken in the University. If he falls below a C average, he will be scholastically deficient.

SCHOLASTIC DEFICIENCIES

The following provisions apply to all undergraduate students in the College of Agricultural and Environmental Sciences, Engineering, and Letters and Science.

A student shall be placed on probation if at the end of any term his grade-point average for that term, or his cumulative grade-point average, is less than C (2.0) computed on the total of all courses undertaken at the University of California.

To be removed from probationary status, a student must achieve an overall grade-point average of at least C (2.0) on all work attempted in the University of California, including courses graded I (incomplete).

A student shall be subject to disqualification from the University if:

a. His grade-point average falls below 1.5 for any term, or

b. After two consecutive terms on probation he has not achieved an overall grade-point average of at least C (2.0) on all work attempted in the University of California, or

c. He has accumulated more than 16 units of I (Incomplete).

The student subject to disqualification is subject to such action as the faculty of his college or school may determine. The faculty may:

a. Disqualify such a student from the University, or

b. Suspend his disqualification, continuing him on probation.

The faculty of his school or college is also the body which may authorize the return on probation of a disqualified student.

To transfer from one campus of the University to another, or from one college or school to another on the same campus, a student who has been disqualified or is on probation must obtain the approval of the dean whose jurisdiction he is seeking. After making the transfer, the student is subject to supervision by the faculty of the new college, school or campus.

Graduate and professional students with scholarship deficiencies are subject to action at the discretion of their respective deans.

The School of Veterinary Medicine has the following provisions:

Probation. A student shall be placed on probation if at the close of his first
term in the School of Veterinary Medicine his record for that term falls below a C average, computed on the total of all courses taken in the veterinary medical curriculum.

Disqualification. A student shall be subject to disqualification from the School of Veterinary Medicine:

a. If at the end of any term subsequent to his first he has failed to maintain a grade-point average of 2.0 (a C average), computed on the total of all courses taken in the veterinary medical curriculum, subsequent to his admission to the School, for which he has received a final report; or

b. If during any term he fails to pass with a grade of C or higher courses totaling at least 4 units; or

c. If at any time he has, in the judgment of the faculty of the School, failed to meet the professional and ethical standards of the profession of veterinary medicine.

TRANSCRIPTS OF RECORD

Upon written request to the Office of the Registrar, a student will be provided with an official transcript of work he has completed at the Davis campus of the University of California. Transcripts of work completed at any other University campus or any other institution must be requested directly from the school concerned. University Extension transcripts must be requested from the Recorder, University Extension, University of California, Berkeley, California 94720.

A fee of $1 per copy of each graduate and each undergraduate record should accompany each request. Graduate and undergraduate transcripts are individual records and must be requested separately.

Application for a transcript of record should be made at least one week in advance of the time needed.

MID-TERM GRADE STANDING

Students wishing to know their cumulative grade at the mid-quarter may inquire from their instructor. Those who have deficient grades (D, F, or Not Passed) should confer with their adviser. The Dean of Students Office may also be of assistance.

FINAL EXAMINATIONS

The Schedule and Directory lists the final examination groups. This information is available at the beginning of the term so that students can avoid final examination conflicts.

Final examinations are mandatory in all undergraduate courses. They are, however, not normally required in laboratory courses or their equivalent. A department may require a final examination if prior announcement has been made in the Schedule and Directory.

Wherever practicable, final examinations are written and must be completed within a previously announced time limit. Examinations in non-laboratory courses may not exceed two hours.
Under certain prescribed conditions a student may receive Credit by Examination without formal enrollment in a course. The rules governing such examinations may be obtained from the Registrar.

Final grade notices will be sent to the student if, before the end of the term, he has deposited with the Registrar a self-addressed, stamped envelope.

DEGREE REQUIREMENTS

Three groups of requirements must be satisfied before the student can become eligible for candidacy for the bachelor's degree. They are: 1) college or school requirements; 2) individual departmental requirements, which are all specific and vary as to particulars; and 3) the University requirements, which are general and apply to all schools and colleges. For information on college, school, or departmental requirements see the appropriate section of this catalog.

The University requirements are as follows:

Subject A: English Composition

Every entering student must satisfy the Subject A requirement. This requirement is designed to assure a level of competence in written English essential to satisfactory progress as a University student. The requirement can be met:

1. By achieving a grade of 5, 4, or 3 in the College Entrance Examination Board (CEEB) Advanced Placement Examination in English, or
2. By achieving a score of 550 or higher in the CEEB Achievement Test in English Composition, or
3. By entering the University with credentials showing the completion of an acceptable college-level course in English composition with a grade of C or better.

Satisfaction of the Subject A requirement is determined by the Office of Admissions. Students not meeting the requirement in one of the ways described above must enroll in the non-credit course in Subject A during their first quarter of residence in the University. A fee of $45 is charged for the course.

Foreign students whose native language is not English can meet the Subject A requirement by passing a special examination in English Composition, and if necessary, completing English 26 with a minimum grade of C.

American History and Institutions

Every student must demonstrate a knowledge of American History and Institutions. Every graduating student should have at least a minimum knowledge of the background of this country’s development and an understanding of the political, economic, and social interrelationships of its way of life.

He may meet this requirement in any of the following ways:

1. By passing a special examination in American History and Institutions. No unit credit is given for completing this requirement by examination. This examination is given to all entering students, freshmen and transfers, who have not already fulfilled the requirement. The exam is given at the start of the fall
and spring quarters. Students attending the University before the exam was mandatory may also take it, but it can only be taken once.

2. By completing any two of the following courses: History 17A, 17B, 27A, 27B, 170A, 170B, 170C, 171A, 171B, 171C, 174A, 174B, 175A, 175B, 176A, 176B, 178A, 178B, 179A, 179B, 180, 183A, 183B; Political Science 1A, 1B, 100, 102, 103A, 103B, 104, 105, 106, 113, 128A, 128B, 163, 164, 166; Economics 111. Students taking these courses are subject to the rules that apply for prerequisites and majors. Upper division history courses may be taken to satisfy the requirement only with the permission of the instructor. Other courses not on the list may be used to satisfy the requirement, but approval must be obtained from the Requirements Supervisor (see below).

3. By presenting evidence that the requirement has been satisfied at another collegiate institution through equivalent courses whose credits are acceptable for transfer to the Davis campus of the University of California.

4. By successful completion of the Advanced Placement Examination in American History.

Foreign students studying at the University on F class (student) or J’class (exchange visitor) visas should call at the American History and Institutions office to secure exemption from the requirement. They should bring their passports, visas, and registration cards with them.

Further information may be obtained from the Supervisor of the American History and Institutions Requirement, 227 Voorhies Hall.

Residence Requirement

The minimum residence requirement for a bachelor’s degree at the University of California is one academic year. Each summer session in which a student completes a course of at least 3 quarter units may be counted as half a quarter’s residence. Thirty-five of the final 45 quarter units completed by each candidate must be earned in residence in the college or school of the University of California in which the degree is to be taken; no more than 18 of these 35 quarter units may be completed in summer session courses on the campus of residence.

Exceptions to this rule are candidates for the Juris Doctor degree, and those who have been in the military service. With the approval of the dean of his college or school, a candidate for the bachelor’s degree who was in active service in the armed forces of the United States in the year preceding the award of the degree may be recommended for the degree after only one quarter of University residence in which he completes at least 16 units or passes a comprehensive examination in his major or field of concentration.

Scholarship Requirement

To receive a bachelor’s degree, a student must obtain twice as many grade points as units for all courses attempted by him in the University. An exception to this rule is authorized for honors students undertaking certain courses (see conditions for Credit by Examination, page 32.)
Unit Requirement

Every candidate will present a minimum of 180 quarter units as partial satisfaction of the requirements for the bachelor’s degree.

Filing for Degree Candidacy

Each candidate for a degree must file an Announcement of Candidacy with the Registrar at the beginning of the quarter in which he plans to receive it. The dates for filing are published on page 6 of this catalog and in the Schedule and Directory.

HONORS AND PRIZES

Honors at Entrance

All entering freshmen are considered for Honors at Entrance on the basis of outstanding scholarship achieved in high school. Certificates are presented to the honors recipients shortly after registration in the University.

Deans’ Honors List

The names of all students, with the exception of Letters and Science students (see page 133), who have completed a minimum of 12 units of work on the Davis campus and who have achieved a 3.0 grade-point average or better in all work undertaken in the University and in the college will be listed by the various deans and submitted to the Registrar for publication in the Student Directory the following quarter.

Honors students may request credit by examination in courses without formally enrolling in them, or in subjects appropriate to their curriculum but not offered as courses in the University. Arrangements should be made with the dean, and his consent and that of the instructor appointed to give the examination are necessary before the examination can be given. Application forms for such examinations may be obtained from the Registrar.

Graduation Honors

Graduating students may qualify for honors, high honors, or highest honors. The names of recipients are published in the commencement program and the appropriate notation is made on their diploma and on their permanent record in the Registrar’s Office.

Prizes

Prizes for student achievement and scholarship on the Davis campus consist of inscribed plaques and cash awards. The University Medal is the highest honor awarded to a graduating senior in recognition of superior scholarship and achievement. In addition, a College Medal is given to the outstanding graduating senior of each of the colleges and professional schools.
FINANCIAL AIDS PROGRAM

The primary purpose of the Financial Aids Program at Davis is to provide financial assistance and advice to students who would be unable to pursue their education at the University without such help.

In addition to budgetary advice and counsel, financial assistance consists of scholarships, grants, loans, and employment—offered singly or in various combinations—to meet the difference between the student’s resources and the cost of attending the University.

The University expects parents to make a maximum effort to assistant their sons and daughters with college expenses. The student’s desire to be independent of his parents and rejection of their support is not held to be a valid reason for granting financial aid. The University also expects that all students will provide a part of the total cost of attending the University from resources outside the University. The financial assistance given by the University should be viewed only as supplementary to the resources of the applicant and his family. These premises are assumed in determining the type and amount of assistance necessary to meet the student’s financial deficit.

The following information will introduce you to the various types of financial assistance available on the Davis campus as well as to the procedures for making application for assistance. We invite you to make further inquiries about our Financial Aids Program and about the various ways in which a college education might be financed.

EXPENSES

Legal residents of California are not required to pay tuition at the University. (Students classified as nonresidents must pay a tuition of $1,200 per year.) Nevertheless, there are certain other expenses that have to be considered. Although each student must determine his own budget in keeping with his needs and resources, the following approximated costs per quarter are presented as a guide.

<table>
<thead>
<tr>
<th>Registration:</th>
<th>Undergraduates</th>
<th>Graduates</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Registration fee</td>
<td>$100.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>Memorial Union fee</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Student body membership fee</td>
<td>5.00</td>
<td>...</td>
</tr>
<tr>
<td>Education fee</td>
<td>50.00</td>
<td>60.00</td>
</tr>
<tr>
<td>Room and board</td>
<td>434.00</td>
<td>434.00</td>
</tr>
<tr>
<td>Books and supplies</td>
<td>55.00</td>
<td>55.00</td>
</tr>
<tr>
<td>Miscellaneous (includes travel, health insurance, laundry and clothing, recreation, medical and dental care, and toiletries)</td>
<td>170.00</td>
<td>170.00</td>
</tr>
<tr>
<td>Total for California residents</td>
<td>$817.50</td>
<td>$822.50</td>
</tr>
<tr>
<td>Tuition for nonresidents</td>
<td>400.00</td>
<td>400.00</td>
</tr>
<tr>
<td>Total for nonresidents</td>
<td>$1,217.50</td>
<td>$1,222.50</td>
</tr>
</tbody>
</table>

The costs listed above are average costs and fees are subject to revision.
Students should have enough funds with them at the beginning of the fall quarter to cover registration fees, books, and the first month’s room and board, as scholarship, grant, work-study, and loan checks will not be available until after registration.

Students may be subject to the following fees for optional services: parking, $30 or $20 for cars, depending on the type of permit desired, and $8 for motorcycles; $26 for health insurance; $3 for changes in study lists after the announced deadlines; $10 for late filing of study lists; $10 for late payment of fees; $10 for late registration; $1 for each transcript requested; $10 for applications for re-admission or intercampus transfer. The $50 undergraduate Acceptance of Admission Fee is nonrefundable and is applied toward the University Registration Fee at the first registration.

APPLICATION PROCEDURE

Application forms may be obtained from the Office of Financial Aids, South Hall, University of California, Davis, California 95616. To facilitate the granting of monies to students, one application form has been developed to handle all of the undergraduate scholarships, loans, grants, and Work-Study jobs administered by the Davis campus.

The application, which consists of the student’s personal and budgetary information, and the Parents’ Confidential Statement, is reviewed by the financial aids committee to determine eligibility for, and dollar amount of, a scholarship, loan, grant, employment under the Work-Study Program, or a combination of these, to be awarded.

Thus, a student applicant is first considered for a scholarship, and then is automatically considered for a grant, a loan, and/or a job until his financial need (the difference between student and family resources and the cost of attending the University) has been met.

A Parents’ Confidential Statement must accompany the student’s personal and budget information page in order for the application to be complete and to permit an evaluation of need. The Parents’ Confidential Statement form may be obtained from the high school or college and must be sent to the College Scholarship Service, P.O. Box 1025, Berkeley, California 94701 for evaluation at least one month before the deadline stated below.

Application Deadline. Applications are available in November for the following academic year. In order to be given consideration for a scholarship, the completed application must be received by the Financial Aids Office no later than January 15.

For other types of financial assistance (loans, jobs, grants) applications must be received no later than March 1.

Applications submitted after these dates will be considered only as funds become available.

Notification of awards will be made to students by

April 30—for scholarships

July 1—for other types of financial aid (loans, jobs, grants).
TYPES OF AID AVAILABLE THROUGH THE FINANCIAL AIDS OFFICE

Undergraduate Scholarships

Regents Scholarships. These awards, granted by the President of the University and the Chancellor of the Davis campus, are among the highest honors that may be conferred upon an undergraduate student. Recipients are selected on the basis of academic excellence and exceptional promise. Students are eligible for Regents Scholarships upon graduation from high school or upon completion of the sophomore year at the University, at one of California’s public junior colleges, or at another accredited collegiate institution. All scholarship applicants who meet the qualifications are considered for these awards.

The amount of each scholarship is based on the student’s financial need. Awards may be honorary in nature or may be accompanied by a stipend to cover the difference between family resources and the yearly standard cost of education at the University. *If you wish to be considered for a Regents Scholarship with honorarium only, you should so indicate, and you need not file a Parents’ Confidential Statement.*

The term of appointment is four years for students entering from high school and two years for students appointed on completion of the sophomore year. Regents scholars are expected to maintain at least a “B” average in course work undertaken at the University.

President’s Scholarships. These one-year awards are made annually to entering and continuing students, including junior college transfers. They are granted by the President of the University and the Chancellor of the Davis campus. Again, all scholarship applicants are considered for these awards.

President’s scholarships are awarded on the basis of scholastic attainment, financial need, and promise. The awards carry a maximum stipend of $500. In cases where the established financial need exceeds this amount, the awards will be supplemented by additional scholarship funds, grants, loans, and/or part-time work under the College Work-Study Program.

University, Alumni, Endowed, and Agency Scholarships. These scholarships are made possible through funds provided by individual donors, private corporations and agencies, the alumni associations, and The Regents of the University. These awards vary considerably in amount but normally average between $400 and $500 per year.

Most scholarships are open to all undergraduate students on a competitive basis. Although some are restricted by the donors to recipients who meet given criteria, students need not apply for any specific scholarship, but should indicate on the application form all the listed qualifications which they can satisfy.

These scholarships, with the exception of some agency grants, are awarded by the Chancellor of the Davis campus on the advice of the faculty. They are granted on the basis of academic achievement, financial need, and promise.

Normally, scholarships are awarded for one year; financial assistance for succeeding years will depend upon the academic performance in the University and continued financial need. A “B” average in the University is generally re-
required for a recipient to be considered for awards after the first year. Where the established financial need exceeds the amount of the awards, the awards will be supplemented by additional scholarship funds, grants, loans and/or part-time work under the College Work-Study Program.

Educational Opportunity Grants

Eligibility for Educational Opportunity Grants is limited to undergraduate students of exceptional financial need, as measured on a scale of parent contribution which has been established by the Federal Government. Upon receipt of the completed Financial Aids Application and the Parents' Confidential Statement, the Financial Aids Office determines the parent contribution by using College Scholarship Need Analysis procedures. The amounts of the grants range from $200 to $1,000 per academic year. The amount of grant may not exceed one-half of the total financial aid award, as the grant must be matched on an equal basis with some other form of financial aid (i.e., a scholarship, grant, loan, or job from the University, or a scholarship, grant, loan, or job from outside sources).

College Work-Study Program

The College Work-Study Program, established under the Economic Opportunity Act of 1964, enables the University to offer employment to financially needy students during the school year and vacation periods. The program is designed to assist those students who are from low or middle-income families, who need funds to continue their education, and who are enrolled or accepted for enrollment for a full-time course of study at the University. The on-campus and off-campus jobs are limited to an average of 15 hours per week for any one quarter. During scheduled holidays or vacations of at least one week in length, the student may work a 40-hour week without having these hours count as part of the 15 hour weekly average. Work-study jobs are specifically awarded to assist students in meeting their college expenses and secondly to provide practical job experience in an area closely related to the student's academic endeavors. The number of working hours awarded to any one student will be dependent on his financial need. In other cases of demonstrated financial need, Work-Study jobs may be awarded during the summer on a full-time basis.

These jobs should not be confused with the employment offered by the Student Placement Center, as the jobs under the Work-Study Program are limited to those students having a definite financial need.

Loans

National Defense Education Act Loans (NDEA). Regularly enrolled students, or applicants for admission to the University, who are United States citizens or permanent residents of the United States, are eligible for NDEA loans to meet their financial need.

The maximum loan that any undergraduate student may obtain for one academic year (three quarters) is $1,000. A fraction thereof may be awarded for one or two quarters. The total amount which may be borrowed by undergraduate
students under this program—including loans granted by other collegiate institutions—is $5,000. For graduate students, the maximum for one academic year (three quarters), is $2,500 or a fraction thereof for one or two quarters. The total that may be borrowed by graduate students under this program is $10,000 (including loans granted as undergraduates and by other institutions of higher education). However, when demand exceeds the funds available, loans will be granted on a competitive basis and amounts restricted.

Repayment of NDEA loans begins nine months after graduation or withdrawal from the Davis campus and may be extended over a ten-year period at 3 per cent interest on the unpaid balance. Members of the armed forces, members of the Peace Corps, members of VISTA, and students who transfer to other schools may defer payment and extend the repayment period.

Up to 50 per cent of the loan (and interest thereon) may be forgiven those entering the teaching profession, at the rate of 10 per cent for each year of full-time teaching in public or nonprofit (1) elementary and/or secondary school or (2) institution of higher education. A cancellation of 15 per cent is made for each year of service as a full-time teacher of handicapped children or a full-time teacher in public or other nonprofit elementary or secondary school which is in an area designated by the Commissioner of Education as a poverty area. Hence, the total amount of the loan may be cancelled by teaching the handicapped or teaching in a deprived area for seven years.

Regents Loan Funds. These funds are principally used to supplement stipends of scholarship and fellowship recipients but may also be granted to other qualified students. Regents Loans, normally repayable in five years, bear an interest rate of 3 per cent on the unpaid balance, beginning upon graduation or withdrawal from the University of California. Students who undertake graduate studies at the University of California may defer payment until they complete or terminate such studies. Regents loans are limited to $1,500 a year or $6,000 per student.

University Short-Term Loans. To be eligible for a short-term loan, a student ordinarily must have attended the University for at least one quarter. These funds, made possible by gifts to the University, are granted in small amounts, $300 to $500, to help students with educational expenses. Although repayment schedules are determined individually for each loan, these loans are usually repaid within the academic year or with earnings from employment the following summer.

Emergency Loans. Loans not to exceed $100 are available for emergency educational expenses for members of the Associated Students (ASUCID). Repayment is normally made within 30 days. Interest at the rate of 1 per cent per month is charged on the unpaid balance after the loan has been outstanding more than 30 days.

Federally insured loans are available through local banks, credit unions, and savings and loan associations for citizens and nationals of the United States or those in the country for other than a temporary purpose.

The maximum loan amount for any student is $1,500 per academic year, with
an aggregate maximum of $7,500. The loan may be made only for meeting costs of the student’s education while he is attending school and carrying at least one-half of the normal full-time workload as determined by the school. It is the lender’s option to make or deny the loan.

Applications may be obtained from the Financial Aids Officer, eligible lenders, or the U.S. Office of Education in San Francisco. The student completes his portion of the application and then submits it to the Financial Aids Office for proper attestation of his status. When the application is returned the student presents it to an eligible lender. If the lender is willing to make the loan, the application is forwarded to the U. S. Office of Education in San Francisco where it is reviewed for compliance with governing regulations. If the student meets all requirements the lender is issued an insurance commitment. Upon receipt of the commitment the lender sends the check to the Financial Aids Office for disbursement to the student.

Loan repayment may be deferred while the student is in the Armed Forces, Peace Corps, or VISTA.

Veterans Benefits

Students who qualify for veterans benefits under the program established on July 1, 1966, by Public Law 89-358, will be certified to the Veterans Administration by the Financial Aids Office.

Eligibility for educational benefits is dependent on service in the U. S. Armed Forces for at least 181 days, any part of which was after January 31, 1955. For each month of active duty, a veteran is entitled to one and one-half months of educational assistance, up to a maximum of 36 months.

Application forms for veterans benefits may be obtained in the Financial Aids Office as well as the Regional Office of the Veterans Administration. These should be filled out and submitted to the Veterans Administration, Regional Office, 49 Fourth Street, San Francisco, California 94103. This should be done well in advance of the date of enrollment in the University.

Dependents of deceased or disabled veterans are entitled to certain educational benefits under California and Federal laws. Certification of their enrollment is also a function of the Financial Aids Office.

STUDENT AID FUNDS NOT HANDLED BY THE FINANCIAL AIDS OFFICE

Health Professions Student Assistance Program

Health Professions Student Loan Program and the Health Professions Scholarship Program are designed to assist students needing financial aid to pursue a course of study leading to the degree of Doctor of Medicine or Doctor of Veterinary Medicine. Eligible students should contact the Schools of Medicine or Veterinary Medicine for applications.

Awards are made on the basis of financial need. The maximum loan in a 9-month academic year is $2,500 and the maximum scholarship in a 12-month period is $2,500. Interest at the rate of 3 per cent per year accrues one year after
the borrower ceases to pursue a full-time course of study, at which time the aggregate of loans is repayable over a 10-year period. There are various conditions of deferment and cancellation of the loan which may be discussed at the time of application.

Graduate Scholarships and Fellowships

Information about scholarships or fellowships, etc., for graduate students may be obtained from the Dean of the Graduate Division, Room 252, Mrak Hall. Applications for fellowships and graduate scholarships must be filed with the Dean of the Graduate Division, University of California, Davis 95616 not later than February 1 prior to the academic year for which the award is sought.

Army ROTC Scholarship Program

One-, two-, three-, and four-year ROTC scholarships, which $50 a month plus all fees, books, and school supplies, are available to selected students. Four-year scholarships are limited to high school seniors, with applications due prior to January. One-, two-, and three-year scholarships are limited to students enrolled in ROTC. Additional information and application blanks may be obtained from the Department of Military Science.

California State Scholarships

The University is one of sixty institutions participating in the California State Scholarship Program. Nearly 30 per cent of all California State Scholars are enrolled on the several campuses of the University.

These awards, administered by the California State Scholarship and Loan Commission, cover the amount of compulsory fees and are for a maximum of four years. To qualify for renewal as a California State Scholar in the University, a student must have continuing financial need and maintain at least a "C" average.

California State Scholars who elect to attend a public junior college before enrolling in the University may have their scholarships held and activated upon entering the University. Information and application forms have been sent to all schools and colleges in the State, and may be obtained from local school counselors or by writing to the California State Scholarship and Loan Commission, 714 P Street, Suite 1640, Sacramento, California 95814.

LIVING ACCOMMODATIONS

Residence Halls

The University provides housing for approximately 2,900 students in a variety of residence halls on campus. There are five coed halls of 400 students each and four 200-student coed halls. In addition there is space for approximately 900 single students in off-campus University Affiliated Residence Halls. Each of these halls is staffed with professional personnel who work in conjunction with the residents, striving to create and maintain an environment conducive to educational goals.
Each hall elects its own student officers to act on matters such as student government, planning programs, and helping to solve problems of student discipline. Annual hall dues average about $12. The Residence Hall Association is a coordinating governing body for all of the residence halls.

The room and board rate (which includes 20 meals a week) for the 1969–70 academic year was $1,146 and is subject to change. All students planning to live in residence halls sign a contract for one academic year. Payment is usually made in installments according to a payment schedule. Rooms in the residence halls contain all of the necessary furniture and also include study lamps, linen, and blankets. Telephones and weekly laundering of linen are included in the room and board rate. Further information and applications for housing are sent when students apply for admission to the University. Specific questions should be directed to the Housing Office, South Hall, University of California, Davis 95616. Since accommodations are limited, early application is advised. A deposit of $125 is required when a signed contract is returned. If a student withdraws and sends written notice to the Housing Office before June 15, a total refund will be made; after this date, only a partial refund will be effected. An additional $25 for damage and loss deposit is required of new students and remains with the University until the student terminates University housing.

Housing for Married Students

There are 476 apartments for married students on the Davis campus. Some of these apartments have one bedroom, but most are two-bedroom units. Both furnished and unfurnished accommodations are available. Apartment rates for 1969–70 were: one bedroom, unfurnished, $83; two bedrooms, unfurnished, $95; two bedrooms, furnished, $110. Rates include water, gas, trash collection, and electricity. Applications for these units can be obtained by writing the Married Student Housing Office, South Hall, University of California, Davis 95616.

Off-Campus Accommodations

The members of the Housing Office staff believe that living in the community is an integral part of the university experience and a student’s total educational growth. Our staff works closely with the members of the ASUCD Student Fair Housing Committee and the Davis Apartment Owners and Managers Association and is committed to a program of expanding our services to meet the ever increasing housing needs of the University community.

One of the services of the Housing Office staff is to assist students, faculty, and other University personnel by maintaining lists of private rooms, apartments, duplexes, trailers, and houses available for rent in the Davis area. Since these listings change quite rapidly as the different units are rented, prepared lists are not furnished by mail. It is suggested that those who wish to find off-campus housing plan to make arrangements early by consulting the list of vacancies in the Housing Office. Also on file are lists of “Roommates Wanted.” Students may advertise here for roommates or may use the file to contact others who have already obtained living accommodations.
Rental arrangements should be made in person with the manager or owner and a clear understanding reached on the conditions of occupancy. If a lease is required, we recommend the "Model Lease," a document written jointly by the ASUCD Student Fair Housing Committee and the Davis Apartment Owners and Managers Association.

The Student Fair Housing Committee publishes a viewpoint on housing which is a helpful guide to living in the community. Additional material is available at the Housing Office in South Hall.

For those who live off-campus without kitchen facilities, meal plans which allow students to eat in any one of the residence hall dining rooms or the Memorial Union are available.

Fraternities

Thirteen national fraternities are represented on the Davis campus, providing living quarters and meals for their more than 600 undergraduate members and pledges. The fraternities, under their system of self-government, provide social, recreational, and academic programs for their members as well as some experience with business activities. This unique "total" living experience gives fraternity members the opportunity to secure a progressive education both in and out of the classroom.

The cost of fraternity living is roughly the same as that of the residence halls. Room and board rates range from a low of $110 per month to a high of $130.

Membership in fraternities is by invitation. Men who are interested in fraternities should write or call on the Fraternity Adviser in the Housing Office.

The national fraternities are—Alpha Gamma Rho, Chi Phi, Delta Sigma Phi, Farm House, Kappa Sigma, Phi Delta Theta, Phi Kappa Tau, Phi Sigma Kappa, Sigma Alpha Epsilon, Sigma Nu, Sigma Phi Epsilon, Theta Chi, Theta Xi.

Sororities

There are no sororities on the Davis campus by vote of the women students.
Student Services and Activities

STUDENT HEALTH PROGRAM
Medical Evaluation

To safeguard the health of the student and the University community, every new student, as a part of registration, must be examined by the University Medical Examiners. Every new student should have at the time of registration a certificate of successful vaccination against smallpox performed within the last three years. A form for certification is provided by the University. Tests for tuberculosis are a part of the physical examination of all new students.

Applicants with contagious diseases will be excluded. Any applicant having physical conditions that grossly disturb the classwork of other students should not apply for admission as he would be disqualified at registration.

Each prospective student is advised to have a physical examination by his own physician to determine his fitness for college work before coming to the University. Any defects capable of remedial treatment, such as diseased tonsils or imperfect eyesight, should be corrected to prevent possible loss of time from studies.

Students returning after an absence must comply with the Student Health Service requirement regarding smallpox vaccination and must have a health evaluation at the Student Health Service.

Supplementary Health Insurance

A supplementary health insurance plan is available at the time of registration. This insurance supplements the student health program and is used for medical care needed between quarters and when away from the campus. It likewise provides for surgical-professional fees and other benefits as outlined in the Supplementary Health Insurance brochure. Procurement of this insurance is strongly urged, and a waiver must be signed if it is not obtained.

International Students. The acquisition of health insurance is a condition of registration for all nonimmigrant international students. At the time of registration, all nonimmigrant international students must enroll in the Associated Students Supplementary Health Plan. Students who present documentary evidence of equivalent insurance coverage may petition the Office of International Student Services for permission to waive the Associated Students Supplementary Health Plan.

Those sponsored students who do not pay the registration fees are not eligible for Student Health Service or the Associated Students Supplementary Health Plan without making special arrangements.

Student Health Service

The Student Health Service, by preventing and treating acute illnesses, conserves the time of students for their classwork and studies. This service is made possible, for the most part, by the registration fee. It is not a health insurance. Each regularly enrolled student may have such medical care as the Health
Service is staffed and equipped to provide from the first day of the quarter through the last day of the quarter. Hospitalization, up to ten days per quarter, is provided for illnesses.

Continuing students not enrolled during a quarter or summer session but remaining in residence in Davis, may maintain their eligibility for the medical services of the Student Health Service by paying an appropriate fee to the Cashier. Enrollment in this program may be initiated only during the registration period for each quarter or summer session.

When, in the opinion of the Director of the Student Health Service, serious illness or injury requires prolonged care and will obviously prevent continuation in college during the current quarter, the patient will be returned to his community or home for definitive treatment.

The Student Health Service does not take responsibility for dealing with chronic physical defects or illnesses present at the time of entrance to the University. Except for first aid and emergency care, the Student Health Service does not assume responsibility for dental treatment. It does not take responsibility for treatment of remedial defects where medical or surgical treatment is elective and not of an emergency nature, and where the student's best interest will be served by treatment during vacation.

The Student Health Service is designed as a medical facility to provide medical care while the student is away from home and in attendance at the University; it does not supplant the medical care of the family physician. Full cooperation is encouraged between the student, the Student Health Service, and the family physician.

STUDENT AND ALUMNI PLACEMENT SERVICES

Placement advisers assist students in their career planning, in locating initial positions following graduation, and in locating part-time and/or summer employment. Students dropping out of the University for a term or longer who are interested in employment or military service should see a placement adviser. The services of the Placement Center are available without cost to students and alumni.

Student Part-Time and Summer Employment

Many students who attend the University expect to earn part of their expenses. However, the undergraduate curricula are organized on the assumption that a student will give most of his time and attention to college studies. If possible, the student should avoid outside employment until he has become adjusted to his new environment, has established sound study habits, and is maintaining a good scholastic standing. By the end of the first quarter the student should know the demands of University life and his own capabilities well enough to plan a program combining studies and work.

Placement advisers help students to find part-time and summer employment. The office receives job listings from employers and refers qualified students to these openings. To receive assistance students must be interviewed personally, as satisfactory arrangements cannot be made by correspondence. Interested stu-
udents should register with the Part-Time and Summer Employment Division after arriving on campus.

Career Placement Service

Students and alumni seeking careers in business, industry, agriculture, and government are invited to use the services of the Placement Center. Placement advisers discuss matters of job choice and methods of obtaining jobs with registrants. In addition, they arrange employment interviews, receive job listings from employers, and refer suitable registrants to these employers. Graduating students regardless of impending military service, graduate school or other plans are encouraged to register with the Placement Center early in their final year of study. Alumni may use the placement services for initial or subsequent placement at any time.

Educational Placement Service

Placement service is available to students and alumni who are interested in teaching. Information on the background, training, and professional experience of its candidates, which is kept in confidential files, enables this office to match qualifications with specifications of available positions. Placement advisers counsel candidates, communicate with employers, receive vacancy data, and arrange interviews. The University reserves the right to refer only those persons who are considered to be fully qualified.

Occupational Information—Career Planning

A library of vocational information is maintained by the Placement Service and the Counseling Service (see below). Students may use this library at their convenience. Placement advisers encourage students of all levels to discuss their career planning and the various occupational opportunities available.

COUNSELING CENTER

The Counseling Center is staffed with psychologists who provide educational, vocational, and personal counseling to all regularly enrolled students. Through individual interviews and group discussions, they

- Help students with personal problems.
- Assist students in their choice of academic majors and future occupational goals.
- Provide a wide range of psychological testing when appropriate.
- Make available information about various occupational opportunities for which students may wish to prepare.
- Work with students who are involved in the process of self-exploration.
- Organize and lead encounter or self-awareness groups as staff resources and the demand for this type of experience indicate.

SELECTIVE SERVICE

The Office of the Dean of Men assists students who have inquiries and problems with their status regarding Selective Service. It is up to each individual,
however, to request educational or other deferments from his local draft board, which has exclusive authority over all deferments. The Dean of Men's Office will, upon request of the student, certify information about the student's educational progress to the local board. Under existing Selective Service regulations, a student must make satisfactory unit progress toward his degree to be eligible for a student deferment. All male students (undergraduate and graduate) will find it to their advantage to continually keep themselves aware of Selective Service laws and procedures.

Students attaining their eighteenth birthday may register for Selective Service at the Office of the Dean of Men.

Individual counseling in all areas relating to the draft is available at any time through the "Draft Help" Center in the office of the Dean of Men.

The University has an Army Reserve Officers' Training Corps unit at Davis which offers both basic and advanced courses in general military science. Enrollment in military science is on a voluntary basis. The ROTC Program is described in detail with the course offerings of the Department of Military Science.

INTERNATIONAL STUDENT SERVICES

International Students

Staff is available to assist students from abroad in all matters pertaining to their attendance at the University and to their residence in the United States.

Education Abroad

The University's Education Abroad Program offers outstanding students the opportunity to study overseas. The primary purpose of the program is to provide a sound academic experience in a different educational system. Through this study experience the student is able to become involved in the language and culture of the host country.

For the 1970–71 academic year study centers will continue to operate in the United Kingdom, Japan, Scandinavia, Hong Kong, France, Lebanon, Germany, Italy, Israel, Ireland, Spain, Kenya, and Ghana, with specialized programs in Paris and Mexico City. The programs in Mexico City and in Paris are designed for individuals working toward a teaching credential who wish to teach Spanish or French. Estimated cost for the Paris and Mexico City programs is approximately $1,300 for Mexico and $1,400 for France.

The Education Abroad Program, centrally administered from the Santa Barbara campus, is open to both undergraduate and graduate students in the University. Eligibility requirements for undergraduate students include: junior standing by the time of participation in the program; two years of University-level work with a B average in the language of the country in which they wish to study, if language competency is required; and the ability to adapt successfully to a new culture. Graduate students are eligible for consideration if they have completed at least one year of graduate work at the University of California, have the support of their department and the Graduate Division, meet
the language requirements, and acquire the endorsement of the Education Abroad Selection Committee on the Davis campus.

Undergraduate participants spend a minimum of nine months abroad in the program. The first part of the program is usually devoted to intensive language preparation and orientation. Full academic credit is granted for course work successfully completed. The centers are administered overseas by University of California faculty members who assist students in meeting their education objectives and help with living arrangements and personal problems. Estimated minimum costs for the 9-month program range from approximately $2,150 to $2,800. Students planning to study abroad during the senior year are advised to investigate residency requirements of their college. More detailed information on the Education Abroad Program as well as application forms are available from the Office of International Student Services, 109 North Hall.

Information pertaining to other opportunities for study, travel, and employment abroad is available at the same office.

Research and field work overseas may be facilitated by oral proficiency training in any of twenty-eight languages taught at the Defense Language Institute at the Presidio of Monterey. This unique program is available on a limited basis to University graduate students and faculty. Application forms and additional information may be obtained from the Secretary, University of California Language Training Advisory Committee, University of California, Santa Cruz, California 95060, or by phoning the Santa Cruz campus, (408) 429-2888.

STUDENT CONDUCT AND DISCIPLINE

Students enrolling in the University assume an obligation to conduct themselves in a manner compatible with the University's function as an educational institution. Misconduct for which students are subject to disciplinary actions falls into the following categories:

1. Dishonesty, such as cheating, plagiarism, or knowingly furnishing false information to the University;

2. Forgery, alteration, or misuse of University documents, records, or identification;

3. Obstruction or disruption of teaching, research, administration, disciplinary procedures, or other University activities, including its public service functions, or of other authorized activities on University premises;

4. Physical abuse of any person on University-owned or -controlled property or at University-sponsored or -supervised functions, or conduct which threatens or endangers the health or safety of any such person;

5. Theft of or damage to property of the University or of a member of the University community or campus visitor;

6. Unauthorized entry to or use of University facilities;

7. Violation of University policies or of campus regulations, including campus regulations concerning the registration of student organizations, the use of University facilities, or the time, place, and manner of public expression;

8. Use, possession, or distribution of narcotic or dangerous drugs, such as
marijuana and lysergic acid diethylamide (LSD), except as expressly permitted by law;

9. Violation of the rules governing residence in University-owned or controlled property;

10. Disorderly conduct or lewd, indecent, or obscene conduct or expression on University-owned or controlled property or at University-sponsored or supervised functions;

11. Failure to comply with directions of University officials acting in the performance of their duties; or

12. Conduct which adversely affects the student's suitability as a member of the academic community.

Students are subject to disciplinary action for misconduct on other campuses of the University.

Administration

The President of the University, through the Chancellor, has ultimate authority for the administration of student discipline. Assistance in this area is provided by members of the teaching staff, the administrative officers concerned with student welfare, the Student Conduct Committee, and several student hearing bodies.

Types of Discipline

The major types of disciplinary actions are:

Warning: Notice to the student that continuation or repetition of specified conduct may be cause for other disciplinary action;

Censure: Written reprimand for violation of specified regulation;

Probation: Exclusion from participation in privileges or extracurricular University activities as set forth in the notice of disciplinary probation for a specified period of time. If a student while on probation violates any of the terms set forth in the notice of probation or violates the Standard of Conduct, as determined after the opportunity for a hearing, he shall be subject to further discipline in the form of suspension, dismissal, or expulsion;

Interim Suspension: Exclusion from classes and other privileges or activities as set forth in the notice of interim suspension, pending final determination of an alleged violation;

Suspension: Exclusion from classes and other privileges or activities or from the campus as set forth in the notice of suspension, for a definite period of time with reinstatement thereafter dependent upon a showing of observance during the period of suspension of the terms set forth in the notice of suspension. If a student while on suspension violates any of the terms set forth in the notice of suspension or violates the Standard of Conduct while on a campus of the University or in relation to a University-sponsored activity, as determined after the opportunity for a hearing, he shall be subject to further discipline in the form of dismissal or expulsion;

Dismissal: Termination of student status for an indefinite period. The student may be readmitted to the University only with the specific approval of the
Chancellor of the campus to which he applies. If a dismissed student violates the Standard of Conduct while on a campus of the University or in relation to a University-sponsored activity, as determined after the opportunity for a hearing, he shall be subject to further discipline in the form of expulsion.

Expulsion: Permanent termination of student status without possibility of readmission to any campus of the University.

Other: Other types of discipline as set forth in campus regulations.

Student Honor Council

The Honor Council of the Associated Students deals with student welfare, student conduct, student-faculty relations, and ASUCD Constitution interpretation. The Council fosters the honor spirit, a code which places the responsibility for classroom and campus conduct with the individual student.

THE ASSOCIATED STUDENTS AND STUDENT ACTIVITIES

The entire undergraduate student body holds membership in the Associated Students, University of California at Davis, (ASUCD). Graduate students may become members by paying the fees. The ASUCD, through its elected governing body (the Legislative Assembly), and appointed activities chairmen, is responsible for many student services and student activities on campus.

ASUCD administers valuable student services such as a low-cost health insurance program; Unitrans, the only mass transit system in Davis; a convenient copying service; a free legal counseling service; a travel service for students traveling abroad during summer vacation; and the Coffee House.

The ASUCD publishes the California Aggie, a daily campus newspaper; El Rodeo, the yearbook; and has Committees on Fair Housing, which publishes the annual Housing Viewpoint; Consumer Rights; and Academic Affairs.

A major effort of the ASUCD is Picnic Day, the campus open house welcoming the public each spring. Other special ASUCD events or activities include, Experimental College, Judging Day (competition in agricultural skills and knowledge for high school students), Cal Aggie Camp (an annual summer encampment for underprivileged children in the area, financed by student fund-raising events), many community service projects, Homecoming, Radio KDVS FM and AM, the Cal Aggie Marching Band, Student Forums, Blood Bank, Spring Sing, and the all-important Orientation Week for incoming students. The Entertainment Committee presents a continuing entertainment program and concert series for students.

Independent student organizations are administered by the Dean of Students Office. Included in this category are departmental, honor, service, special interest, political, and religious organizations, as well as an International Club.

Davis students join those of all other University campuses in All-University festivals featuring the arts and intramurals.

Unity of student life on all campuses of the University is emphasized by the California Club, an organization of students.
RECREATIONAL FACILITIES

Student recreational activities at Davis are centered in the Memorial Union, the Recreational Swimming Pool Complex, the Putah Creek Recreational Area, the Coffee House and snack bars, the Gym and Intramural Playing Fields, and the campus theatres. The Memorial Union, located at the North end of the quad, is a center containing conference rooms; offices for the Student Activities staff and the ASUCD staff; activities chairmen, and officers; lounges equipped with comfortable furniture, magazines, and newspapers; the Coop and Dining Commons (largest meal and snack centers on campus); the UCD Bookstore and campus post office branch; KDVS, the campus radio station and The Cal Aggie, the campus newspaper; the Art Gallery; the Craft Center with photo facilities, jewelry and small metal sculpture rooms, weaving equipment, and facilities for sewing, silk screening, block printing, leather work, and wood carving; the Campbell Library for recreational reading; the Cameron Music Listening room; the music rehearsal room with piano, music stands and chairs reserved for rehearsals by individuals, groups, or small bands and choruses; the Games Area with bowling lanes, billiard tables and facilities for shuffleboard, table tennis, and cards; Freeborn Hall, the large campus auditorium for concerts, dances, banquets, and conferences; the MU Box Office; the Information Desk where the campus Master Calendar of events is compiled and reservations for campus facilities are made; and the outdoor plazas.

The Recreational Swimming Pool complex includes a large, cloverleaf shaped swimming pool with a water capacity in excess of half a million gallons; separate wading pool; bath house; snack bar; terrace; shuffleboard courts and a lodge. The lodge, newest recreation facility on campus, has a main floor lounge with a fireplace, a well-equipped kitchen, and meeting rooms on the second floor.

The Putah Creek Recreation Area features bicycle paths and hiking trails with footbridges at convenient intervals; a small lake with boating facilities; a well developed arboretum; bridal paths; and picnic areas. The “Rec Lodge,” set on a grassy area suitable for small team sports, has outdoor barbeque pits and tables as well as an indoor fireplace, kitchen, and lounge suited to dancing.

The Associated Students run a Coffee House in East Hall where delicatessen-type food, coffee, tea, cider, and soft drinks are sold. There is live entertainment on weekend evenings and recorded music during the week in an informal atmosphere with small tables and a sawdust covered floor. Other snack bars on campus, in addition to the MU Coop, are “The Roost” in Segundo Dining Hall at the dorms; “The Silo,” serving the Vet Med, engineering, and chemistry building portions of the campus; the Wyatt Pavilion snack bar on Putah Creek; and the Rec Pool Snack Bar. These are run by the campus food service and serve limited menus designed for the needs of each area. Vending machines are located conveniently around the campus.

The Intramural Recreation Program is a major feature of the Davis Campus. Hundreds of students, male and female, participate in individual and team sports scheduled during all three quarters. They use the several gymnasiums; the Physical Education Pool; badminton, handball, volleyball, and tennis courts;
playing fields; the MU Games Area; the track at Toomey Field; and off-campus facilities such as the Davis Municipal Golf Course. The well-attended competitions provide not only active sports participation but spectator sports to all living units of the campus—dorms, fraternities and off-campus housing.

The campus theatres house a rich fare of dramatic art and concerts throughout the year. The Dramatic Art Department's Professional Resident Theatre brings professional actors and directors to work with faculty and students in productions given in the 500-seat, proscenium stage, Main Theatre of the Dramatic Art Building or in Wyatt Pavilion Theatre, a former horse judging pavilion converted into an octagon-shaped Elizabethan theatre with thrust stage. Faculty and student productions utilize Theatre Labs A and B for dramatic readings and intimate theatre productions where arena performance is more suitable, as well as the two larger theatres. Most off-campus groups perform in Freeborn Hall when visiting on the Committee for Arts and Lectures or ASUCD Entertainment Committee sponsored series.
Requirements and Curricula

The programs and majors described in the following pages have been developed by the colleges and schools to aid students in achieving their educational goals. Self-designed and self-initiated programs of study can be arranged for students who seriously attempt to find, and cannot find, an existing program which meets their needs. Academic advisers and deans will assist such students to draw up acceptable programs.

College of AGRICULTURAL AND ENVIRONMENTAL SCIENCES 57

College of ENGINEERING .. 105

College of LETTERS AND SCIENCE .. 121

School of LAW ... 137

School of MEDICINE ... 141

School of VETERINARY MEDICINE .. 145

GRADUATE DIVISION ... 151
College of Agricultural and Environmental Sciences

UNDERGRADUATE PROGRAM

The undergraduate program of the college is divided into eight broad instructional programs. These curricula and related majors (see p. 58) vary in their requirements but reflect the common desire:

— to ignite curiosity
— to increase understanding of the significance, methods, and interrelations of the various ways of studying the universe
— to teach habits of honesty, accuracy, and inventiveness of thought
— to cultivate the skills and self-discipline essential for successful inquiry and action
— to develop understanding of the students’ own and other cultures
— to permit the student to develop an educational program which utilizes to greatest advantage his individual abilities and interests
— to provide the expertise and sense of competence necessary for successful pursuit of a career

Challenge and opportunity as a result of social and technological changes characterize these times. Today’s challenges—protection of the environment from man’s diverse activities, prevention of starvation in major segments of the burgeoning population, total development and utilization of human as well as renewable natural resources—are challenges of special significance.

Teaching and research in the College of Agricultural and Environmental Sciences now extend far beyond the traditionally important mission of food and fiber production. Activities reach from the soil to the home; from the farms to the cities. The needs and interests of families, rural as well as urban, are served. The wise and perpetual use of land and forest areas and control of water for home, agriculture, and industry, as well as for fish and wildlife and recreational purposes are studied. These areas, along with industries which serve the needs associated with the production, processing, and marketing of more than 200 crops, offer special challenges as well as outstanding career opportunities.

The educational objective is the application of the biological, physical and social sciences to resource management, farming and ranching, business, education, conservation, recreation, and the family and community.

Social problems as well as technological advances are major considerations. The goal is to develop concern within people, not only with technology, but with the human problems that such technology might create. The teaching and research programs of the College of Agricultural and Environmental Sciences were designed to meet these challenges and to contribute significantly to progress in these changing times.
Choosing a Major

Exploratory Program—an aid to finding a major

Many freshmen students are undecided about the major they really want to pursue and are unaware of the alternatives available to them. The Exploratory Program permits students, with the assistance of specially selected advisers, to take courses which pinpoint more accurately individual interests and aptitudes. This is not a degree program, but is an aid to the student in finding a major best suited to him and his needs. He should not expect to stay in the program more than two years as further delay in selecting a major may delay graduation. For registration purposes, students should indicate Exploratory on admission materials and study list cards.

Curricula and Majors

Programs of instruction are offered in the following curricula and majors. If your career objective is not apparent among the majors below, refer to Fields of Interest listed on page 59 or to the Group Major described on page 96.

<table>
<thead>
<tr>
<th>Curricula</th>
<th>Majors</th>
<th>Requirements</th>
<th>Sample Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Biosciences</td>
<td>Agricultural Genetics</td>
<td>Page 68</td>
<td>Page 96</td>
</tr>
<tr>
<td></td>
<td>Animal Science</td>
<td>Page 71</td>
<td>Page 96</td>
</tr>
<tr>
<td></td>
<td>Entomology</td>
<td>Page 79</td>
<td>Page 96</td>
</tr>
<tr>
<td></td>
<td>Plant Protection</td>
<td>Page 87</td>
<td>Page 96</td>
</tr>
<tr>
<td></td>
<td>Plant Science</td>
<td>Page 88</td>
<td>Page 96</td>
</tr>
<tr>
<td>Agricultural Economics & Business Management</td>
<td>Agricultural Economics</td>
<td>Page 66</td>
<td>Page 97</td>
</tr>
<tr>
<td></td>
<td>Agricultural Business Management</td>
<td>Page 65</td>
<td>Page 97</td>
</tr>
<tr>
<td></td>
<td>Agricultural Education & Development</td>
<td>Page 67</td>
<td>Page 98</td>
</tr>
<tr>
<td></td>
<td>International Agricultural Development</td>
<td>Page 83</td>
<td>Page 98</td>
</tr>
<tr>
<td>Family and Consumer Sciences</td>
<td>Applied Behavioral Sciences</td>
<td>Page 72</td>
<td>Page 98</td>
</tr>
<tr>
<td></td>
<td>Child Development</td>
<td>Page 75</td>
<td>Page 99</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td>Page 76</td>
<td>Page 99</td>
</tr>
<tr>
<td></td>
<td>Dietetics and Nutrition</td>
<td>Page 77</td>
<td>Page 99</td>
</tr>
<tr>
<td></td>
<td>Foods</td>
<td>Page 80</td>
<td>Page 99</td>
</tr>
<tr>
<td></td>
<td>Home Economics</td>
<td>Page 82</td>
<td>Page 99</td>
</tr>
<tr>
<td></td>
<td>Textile Sciences</td>
<td>Page 83</td>
<td>Page 99</td>
</tr>
<tr>
<td>Food Science</td>
<td>Food Science</td>
<td>Page 81</td>
<td>Page 100</td>
</tr>
<tr>
<td>Quantitative Biology</td>
<td>Biochemistry</td>
<td>Page 74</td>
<td>Page 100</td>
</tr>
<tr>
<td></td>
<td>Nutrition</td>
<td>Page 84</td>
<td>Page 101</td>
</tr>
<tr>
<td></td>
<td>Physiology</td>
<td>Page 86</td>
<td>Page 101</td>
</tr>
<tr>
<td>Resource Sciences</td>
<td>Atmospheric Science</td>
<td>Page 73</td>
<td>Page 102</td>
</tr>
<tr>
<td></td>
<td>Park and Recreation Administration</td>
<td>Page 85</td>
<td>Page 102</td>
</tr>
<tr>
<td></td>
<td>Range Management</td>
<td>Page 90</td>
<td>Page 102</td>
</tr>
<tr>
<td></td>
<td>Renewable Natural Resources</td>
<td>Page 91</td>
<td>Page 102</td>
</tr>
<tr>
<td></td>
<td>Soil and Water Science</td>
<td>Page 92</td>
<td>Page 102</td>
</tr>
<tr>
<td></td>
<td>Wildlife and Fisheries Biology</td>
<td>Page 94</td>
<td>Page 102</td>
</tr>
<tr>
<td>Pre Professional</td>
<td>PreForestry</td>
<td>Page 89</td>
<td>Page 102</td>
</tr>
<tr>
<td></td>
<td>PreVeterinary Medicine</td>
<td>Page 89</td>
<td>Page 146</td>
</tr>
</tbody>
</table>
Fields of Interest

The fields of interest that are broadly grouped under the agricultural and environmental sciences differ in nomenclature or major title depending upon institutional organization. The following list is given as a cross-reference to majors offered by the College as an aid to the student:

<table>
<thead>
<tr>
<th>Fields of Interest</th>
<th>Offered in These Majors in the College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Policy</td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>Agronomy</td>
<td>Plant Science or Agricultural Science and Management</td>
</tr>
<tr>
<td>Animal Husbandry</td>
<td>Animal Science or Agricultural Science and Management</td>
</tr>
<tr>
<td>Applied Behavioral Sciences</td>
<td>Applied Behavioral Sciences</td>
</tr>
<tr>
<td>Bee Biology</td>
<td>Entomology</td>
</tr>
<tr>
<td>Biological Control</td>
<td>Entomology or Plant Protection</td>
</tr>
<tr>
<td>Biology</td>
<td>Entomology, Animal Science, Plant Science, Biochemistry, Nutrition or Physiology</td>
</tr>
<tr>
<td>Biometeorology</td>
<td>Atmospheric Sciences</td>
</tr>
<tr>
<td>Biophysics</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Brewing Technology</td>
<td>Food Science</td>
</tr>
<tr>
<td>Business Management</td>
<td>Agricultural Business Management</td>
</tr>
<tr>
<td>City Planning</td>
<td>Park and Recreation Administration</td>
</tr>
<tr>
<td>Clothing</td>
<td>Textile Science</td>
</tr>
<tr>
<td>Community Development, Education, Inter-group Relations</td>
<td>Applied Behavioral Sciences</td>
</tr>
<tr>
<td>Costume Design</td>
<td>Design or Textile Science</td>
</tr>
<tr>
<td>Dairy Husbandry</td>
<td>Animal Science or Agricultural Science and Management</td>
</tr>
<tr>
<td>Dairy Industry</td>
<td>Food Science</td>
</tr>
<tr>
<td>Dietetics</td>
<td>Dietetics and Nutrition</td>
</tr>
<tr>
<td>Enology</td>
<td>Food Science</td>
</tr>
<tr>
<td>Entomology</td>
<td>Entomology, Plant Protection</td>
</tr>
<tr>
<td>Environmental Horticulture</td>
<td>Plant Science (Environmental Horticulture, specialization)</td>
</tr>
<tr>
<td>Fabrics</td>
<td>Textile Science</td>
</tr>
<tr>
<td>Farm Management</td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>Finance</td>
<td>Agricultural Business Management and Agricultural Economics</td>
</tr>
<tr>
<td>Fish and Game Management</td>
<td>Wildlife and Fisheries Biology</td>
</tr>
<tr>
<td>Floriculture</td>
<td>Plant Science (Environmental Horticulture, specialization), Plant Protection</td>
</tr>
<tr>
<td>Food Technology</td>
<td>Foods and Food Science</td>
</tr>
<tr>
<td>Foreign Service or Agriculture</td>
<td>International Agricultural Development</td>
</tr>
<tr>
<td>Genetics—Animal or Plant</td>
<td>Agricultural Genetics, Animal Science, or Plant Science</td>
</tr>
<tr>
<td>Horticulture</td>
<td>Plant Science (Environmental Horticulture, specialization), Agricultural Science and Management, or Plant Protection</td>
</tr>
</tbody>
</table>
Fields of Interest

Interior Decoration
Irrigation
Landscape Horticulture
Marketing
Meat Science
Meat Technology
Merchandising
Meteorology
Molecular Biology
Nematology
Nursery Production
Nursery School
Nutrition

Ornamental Horticulture
Packaging
Park Administration
Physiology
Plant Disorder Diagnosis
Plant Pathology
Plant Nutrition
Pomology
Poultry Husbandry
Production
Ranching

Soils
Teaching
Truck Crops
Turf Management

Vegetable Crops
Viticulture
Vocational Agriculture
Weed Science
Wine Making

Offered in These Majors in the College

Design
Soil and Water Science
Plant Science (Environmental Horticulture specialization)
Agricultural Economics
Animal Science
Food Science
Design or Textile Science
Atmospheric Sciences
Biochemistry
Plant Protection or Plant Science
Plant Science (Environmental Horticulture specialization)
Child Development
Dietetics and Nutrition; Animal Science; or Nutrition
Plant Science (Environmental Horticulture specialization)
Agricultural Business Management, Design, Food Science
Park and Recreation Administration
Animal Science or Physiology
Plant Protection
Plant Science or Plant Protection
Soil and Water Science or Plant Science
Plant Science or Agricultural Science and Management
Animal Science or Agricultural Science and Management
Animal Science and Plant Science
Soil and Water Science
Agricultural Education or Home Economics
Plant Science or Agricultural Science and Management
Plant Science (Environmental Horticulture specialization)
Plant Science or Agricultural Science and Management
Plant Science or Agricultural Science and Management
Agricultural Education
Plant Protection or Plant Science
Food Science

PROGRAM PLANNING

The Academic Adviser

The advising program has a number of goals, but paramount among these is helping the student to maximize his educational experience. Each student pos-
asses specific and unique characteristics and desires and these will be taken into consideration during program planning.

Some flexibility is included in all majors and advisers assist in examining and evaluating the alternatives this flexibility allows. Careful selection of electives can be especially helpful in broadening interests—each adviser has a booklet of course outlines, describing the course content and objective of various lower division courses offered by the College of Agricultural and Environmental Sciences.

Advisers can play a significant role in improving the educational programs because of their close personal contact with students. It is often through their advisees that they become aware of needed educational innovations and changes.

General Requirements

It is the Student's responsibility to see that he fulfills all requirements for graduation. In brief these are:

University Requirements: Subject A; American History and Institutions requirement; Residence requirement; total of 180 quarter units of work with a C average or better; Announcement of Candidacy at the beginning of the quarter in which student plans to graduate (see pages 32 to 34 for complete details).

College Requirements: Completion of Bachelor of Science requirements in a major as prescribed by the faculty; not more than 6 units of the required total of 180 units may be Physical Education I, and 54 units must be upper division work.

Major Requirements: See various majors beginning on page 65 of this section. Specializations are encouraged in some majors to give greater emphasis to a particular area of the major.

Study List

The student has the authority to structure his program any way he wishes provided he shows academic responsibility toward meeting the above requirements at a normal pace. Advice on program planning is available and recommended through carefully selected faculty advisers. Sample programs may be found beginning on page 96. Each student should consult with his adviser at least once a quarter concerning his program. The signature of the adviser must be obtained on either the Preferred Program Card used in early registration or on the Official Study List Card. Signature on the final study list is required only if there is a change in program prior to final filing.

RESPONSIBLE PLANNING on the part of the student is shown by:

1. Taking an average course load of 15 units per quarter. Regular students are limited to a program of not less than 12 (including Subject A which earns no units) or more than 18 units unless an exception is approved by the Dean. A lower division physical education course may be added to the maximum number of units without the Dean's approval. Students should consider that each unit normally requires three hours of student effort per week.
2. Taking courses in appropriate sequence so that course prerequisites are met and maximum benefits achieved.

In addition, the following details may prove important:
1. Assure adequate high school preparation in trigonometry and advanced algebra or the equivalent, by correspondence if necessary. Some courses at the University that are required for majors in the College of Agricultural and Environmental Sciences have prerequisites of mathematics equivalent to three years of high school mathematics, whereas the University admission requirement is only two years.
2. Foreign language is not generally required, except for the major in International Agricultural Development and recommendations for the Biochemistry major. (See major requirements.)

Passed or Not Passed Option

To enable students to enroll in courses outside their major area of study without jeopardizing their grade-point average, a Passed or Not Passed option has been approved by the faculty of the College. Students in good standing (not on probation) may take an average of one elective type course each term on a Passed or Not Passed basis. Grades of D or better are designated as Passed for courses taken in any college for students enrolled in the College of Agricultural and Environmental Sciences. Units attempted shall be disregarded in calculating grade-point average, but those passed may be used to satisfy elective unit requirements indicated in the various majors by a double asterisk (**). Permission of the adviser and the Dean is required on petitions available at the Dean's Office, 228 Mrak Hall. The petitions must be completed and filed by the end of the fifth week of classes.

Special courses may be authorized in which only Passed or Not Passed grades are given. Such courses may be taken in addition to those which a student takes on his own Passed or Not Passed option.

Credit by Advanced Placement Tests

Students who have taken advanced courses in high school may earn up to 10 units advanced standing credit for each College Entrance Examination Board Advanced Placement Test successfully passed with a score of 5, 4, or 3.

The credit allowed will fulfill requirements within the College equivalent to the courses listed in the table on page 132. Students should consider the list carefully in selecting course work in the same areas to avoid taking equivalent courses and thus duplicating credit.

Transfer Students

The breadth requirements of the College of Agricultural and Environmental Sciences at Davis are designed to provide a balanced program in the natural sciences, the social sciences and humanities, and the agricultural sciences. The 180 units required for graduation cover a variety of fields. The preparatory or core courses indicated may be taken at the University of California or elsewhere. The list of courses and their descriptions may be used by prospective transfer students as a guide in selecting courses of similar content and purpose offered in their own institutions. Students attending a California junior college
should consult their counselors to determine which junior college courses are appropriate and are accepted in satisfaction of the breadth requirements of the college in which they plan to enroll.

Work Experience Opportunities

One of the unique programs available to all students on the Davis campus is the Agricultural Practices work-experience program. It enables students to acquire initial and advanced work experience in nearly all phases of the agricultural industry, including production, processing, marketing, and distribution. Summer placement on farms and ranches, with State and Federal Divisions of Forestry in range or wildlife management, and in the production, distribution, and service organizations of agriculture, enables students to combine earning and learning activities in a broad and impressive spectrum of employment opportunities. Students who are uncertain about the selection of a major may use the experience to identify occupations leading to satisfying, productive careers.

Made possible by grant from the late Fred H. Bixby, the voluntary noncredit program enables students to supplement their academic training with supervised work experience. Instruction in the operation, care, and maintenance of both basic and specialized agricultural equipment is provided in the course, Agricultural Practices 49 (see Agricultural Practices page 169).

Students wishing to participate in this program should register during Orientation at the Agricultural Practices Office and complete a work-experience questionnaire.

Honors

Undergraduate Honors

The Dean’s Honors List, published at the end of each quarter, includes the names of all students in the College of Agricultural and Environmental Sciences who have completed at least 12 units on the Davis campus and have a grade-point average of at least 3.0 for all work undertaken in the University.

Senior students in honors status have the privilege of taking courses in the 194H series entitled “Special Study for Honors Students.”

Honors at Graduation

The graduating student who is completing his major with distinction may be recommended for honors or highest honors. The names of students to whom honors and highest honors have been awarded are published in the commencement program, and the distinction is noted on their transcripts and diplomas. The minimum grade-point averages required to qualify for these honors are shown in the following table:

<table>
<thead>
<tr>
<th>Units Completed at the University</th>
<th>Grade-Point Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Honors</td>
</tr>
<tr>
<td>135 or more</td>
<td>3.15</td>
</tr>
<tr>
<td>90–134</td>
<td>3.35</td>
</tr>
<tr>
<td>45–89</td>
<td>3.45</td>
</tr>
<tr>
<td>Less than 45</td>
<td>not eligible</td>
</tr>
</tbody>
</table>
College Medal

Each year the outstanding graduating senior in the College is awarded a silver medal bearing the University Seal and known as the “Agricultural and Environmental Sciences Medal.” Scholastic excellence is the primary basis for choosing the recipient, but other considerations also receive attention.

Scholarships

To encourage capable young men and women to pursue a career in the agricultural and environmental sciences, many companies and private individuals have established scholarships restricted to students majoring in the College. Approximately one-third of the scholarships administered by the Committee on Undergraduate Scholarships are awarded to students in the College of Agricultural and Environmental Sciences. Students with high scholastic standings who need additional financial support are, therefore, encouraged to apply (see page 36).

Graduate Instruction

Graduate instruction is under the jurisdiction of the Dean of the Graduate Division, and inquiries concerning the graduate program should be addressed to him. In addition to pursuing advanced studies, the graduate student may qualify for an assistantship to work with members of the research staff in the Agricultural Experiment Station. A number of assistantships providing half-time employment during the academic terms and full-time summer employment are available to outstanding students.

Programs for certain graduate degrees are offered by the faculty of individual departments, and the degree normally bears the name of the department. Other graduate programs are offered by groups composed of faculty members from several departments, and the degree bears the name of the group, such as Agricultural Chemistry, Plant Physiology, Comparative Biochemistry, International Agricultural Development, etc. The Announcement of the Graduate Division should be consulted for complete information regarding graduate instruction, but work leading to advanced degrees may be pursued in the following departments of the College:

- Agricultural Botany
- Agricultural Economics
- Agricultural Engineering
- Agricultural Zoology
- Agronomy and Range Science
- Animal Science
- Animal Physiology
- Applied Behavioral Sciences
- Biochemistry and Biophysics
- Consumer Sciences
- Entomology
- Environmental Horticulture
- Environmental Toxicology
- Food Science and Technology
- Genetics
- Nematology
- Nutrition
- Plant Pathology
- Pomology
- Poultry Husbandry
- Soils and Plant Nutrition
- Vegetable Crops
- Viticulture and Enology
- Water Science and Engineering
Teaching Credentials

Inquiries concerning preparation for teaching credentials in subject matter taught in the College should be addressed to the Department of Applied Behavioral Sciences, University of California, Davis 95616. Teacher education is provided not only in such specialized fields as home economics and vocational agriculture but also in more general areas.

THE MAJORS

AGRICULTURAL BUSINESS MANAGEMENT provides training in the managerial aspects of agricultural business. It emphasizes the decision-making function of management, the use of management controls, personnel policies, and procurement and marketing methods. The major provides knowledge and training in such areas as scheduling, producing, maintaining adequate inventories, controlling quality of products, marketing products, evaluating data, and organizing the business operation as well as in managing financial resources, investment alternatives, and the growth of the firm. Computer-oriented problem-solving techniques are emphasized.

Because of this need for training in scientific management, the Agricultural Business Management program focuses on production and distribution theory, development and use of managerial tools (accounting and statistics) for control and analysis, and principles of management and organization. The student's understanding of the total economic and social environment is developed and extended through study of the agricultural, biological, physical, and social sciences.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in Agricultural Economics and Business Management curriculum)

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting (Economics 11A, 11B)</td>
<td>6</td>
</tr>
<tr>
<td>Agriculture other than agricultural economics**</td>
<td>9</td>
</tr>
<tr>
<td>Chemistry and physics (Chemistry 1A or 10 and Physics 2A or 10)</td>
<td>8</td>
</tr>
<tr>
<td>Economics (Economics 1A, 2A, 2B, 2C)</td>
<td>9</td>
</tr>
<tr>
<td>English (choose from English 1, 2, 3, 4A, 4B, or 5)</td>
<td>4</td>
</tr>
<tr>
<td>English or rhetoric (choose from above or Rhetoric 1)</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics, including discrete, analytical geometry and calculus (Mathematics 15, 16A)</td>
<td>6</td>
</tr>
<tr>
<td>Natural science electives**</td>
<td>18</td>
</tr>
<tr>
<td>Statistical Methods (Mathematics 13)</td>
<td>4</td>
</tr>
<tr>
<td>Social sciences and humanities electives approved by adviser†**</td>
<td>19</td>
</tr>
<tr>
<td>Unrestricted electives**</td>
<td>33</td>
</tr>
</tbody>
</table>

MAJOR COURSES:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics 18, 100A, 100B, 106A, 112</td>
<td>17</td>
</tr>
<tr>
<td>Agricultural Economics 106B or 155†</td>
<td>3</td>
</tr>
</tbody>
</table>

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† Agricultural Economics 155 may be used to meet only one requirement.

‖ Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Three Agricultural Economics courses from: 100C, 113, 114, 117, 130, 155†. 10
Economics, upper division .. 7
Agricultural Economics 190A, 190B (senior research project) 4
Electives approved by adviser** 19

Total units for the degree ... 180

See Sample Program II, page 97. For further details concerning the major, contact C. W. Dean, Chairman of the major, 213 Voorhies Hall.

AGRICULTURAL ECONOMICS considers the economics of agricultural production, marketing, use of resources, prices and policy. It permits the student a choice of specialization best adapted to his plans and broadens his knowledge of economic forces and the environment in which agricultural production and distribution take place. Decisions concerning the size of the farm, ranch or other business unit, the crops to plant, the amount of fertilizer to use, the type of livestock to purchase, whether to participate in government control programs, and when to sell products are apt to have greater impact on profits than the physical operation itself. Changes in production techniques, governmental programs, and market outlets are the rule, not the exception, so ranchers must be able to analyze their effects. Supplemental courses are offered in statistics, effects of governmental policy toward agriculture, rural appraisal, and the general areas of business. Emphasis is placed on the decision-making process under changing economic and technological conditions.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in Agricultural Economics and Business Management curriculum)

Accounting (Economics 11A, 11B) 6
Agriculture other than agricultural economics** 9
Chemistry and physics (Chemistry 1A or 10 and Physics 2A or 10) 8
Economics (Economics 1A, 1B or 2A, 2B, 2C) 9
English (choose from 1, 2, 3, 4A, 4B or 5) 4
English or rhetoric (choose from above or Rhetoric 1) 4
Mathematics including discrete, analytical geometry and calculus (Mathematics 15, 16A, 16B) .. 9
Natural science electives** ... 15
Statistical methods (Mathematics 13) 4
Social sciences and humanities electives approved by adviser†** 19
Unrestricted electives** .. 33

MAJOR COURSES:

Agricultural Economics 100A, 100B, 100C, 106A, 106B 15
Agricultural Economics electives, including one senior level course (include one course from: 155†, 160, 170, 176) 12
Economics 101, plus one other upper division economics course 8

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† Agricultural Economics 155 may be used to meet only one requirement.

‡ Units earned in satisfaction of the American History and Institutional requirements may be used in partial satisfaction of the social sciences and humanities requirement.
Agricultural Economics 190A, 190B (senior research project) 4
Electives approved by adviser** 21

Total units for the degree .. 180

See Sample Program II, page 97. For further details concerning the major, contact G. W. Dean, Chairman of the major, 213 Voorhies Hall.

AGRICULTURAL EDUCATION is designed primarily for those students interested in teaching agricultural sciences or other forms of vocational instruction in high schools and junior colleges.

Recent social developments in the United States have helped to emphasize the need to provide all secondary school students an opportunity to participate in some form of creative learning. The need for scientists, technicians, and educators to assist in domestic and international agricultural programs has created an unprecedented demand for qualified instructors and supervisory personnel.

The major also provides background for work in banking, public service, and industry.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in Agricultural Education and Development curriculum)

Agricultural science (introductory) ... 3
Biological sciences, including genetics (Biology 1, Zoology 2, Genetics 100A, 100B, 100L) .. 19
Chemistry, including organic (Chemistry 1A, 1B, 8A, 8B) 16
Economics (Economics 1A or 1B) .. 5
English (choose from 1, 2, 3, 4A, 4B or 5) 8
Mathematics, statistics (Mathematics 13) 4
Physics (Physics 2A, 2B) ... 6
Social sciences and humanities electives†** 15
Unrestricted electives** ... 24

MAJOR COURSES:

Agricultural economics ... 9
Agricultural Education 160, 320A ... 4
Agricultural engineering ... 11
Animal science ... 16
Plant and soil science .. 16
Social sciences and humanities†** .. 8
Electives approved by adviser (from the following: Nutrition 103, Entomology 110, Plant Pathology 120, Soil and Water Science 1, Water Science 110A, 110B) 16

Total units for the degree .. 180

See Sample Program III, page 98. For further details concerning the major, contact H. Heitman, Jr., Chairman of the major, 124 Animal Science.

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Teacher Credential

Students may make appointments with credential counselors and obtain a statement of the complete requirements for the credential at the Applied Behavioral Sciences departmental office.

Required courses for professional preparation include: Education 110, 120; Agricultural Education 160, 320B, 320C, 320E; and 9 quarter units of subject matter courses.

AGRICULTURAL GENETICS major emphasizes the study of heredity in plants and animals, with the aim of improving domestic species. Genetics uses information taken from many other disciplines, but makes special use of chemistry, physics, and mathematics. Students majoring in agricultural genetics take basic courses in these subjects, as well as courses designed to give broad training in biology. These undergraduate studies prepare a student not only for graduate work in genetics, but also for careers in private industry, governmental agricultural agencies, medical technology, and teaching.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in Agricultural Biosciences curriculum)

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological sciences, including one animal-oriented and one plant-oriented course</td>
<td>20</td>
</tr>
<tr>
<td>Chemistry, including organic chemistry (Chemistry 1A, 1B, 8A, 8B)</td>
<td>16</td>
</tr>
<tr>
<td>English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5 or Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics, including calculus and/or statistics (Mathematics 13, 16A)</td>
<td>7</td>
</tr>
<tr>
<td>Physics (Physics 2A, 2B, 2C)</td>
<td>9</td>
</tr>
<tr>
<td>Social sciences and humanities electives†</td>
<td>28</td>
</tr>
<tr>
<td>Unrestricted electives**</td>
<td>24</td>
</tr>
</tbody>
</table>

MAJOR COURSES:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 101A, 101B</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1C</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 16B–16C or 21B–21C, and 105A–105B or 130A–130B</td>
<td>12</td>
</tr>
<tr>
<td>Genetics 100A, 100B, 100L</td>
<td>7</td>
</tr>
<tr>
<td>Additional genetics</td>
<td>9</td>
</tr>
<tr>
<td>Animal, microbial or plant physiology</td>
<td>4</td>
</tr>
<tr>
<td>Electives approved by adviser, including 9 upper division units each in agricultural and biological sciences</td>
<td>25</td>
</tr>
</tbody>
</table>

Total units for the degree 180

See Sample Program I, page 96. For further details concerning the major, contact S. R. Snow, major adviser, 203 Hutchison Hall.

AGRICULTURAL SCIENCE AND MANAGEMENT is designed for students interested in management positions in farming, ranching or other agr-
culturally oriented industries. The scientific principles involved in Agricultural Science and Management receive equal emphasis.

The trend to larger farm, ranch, and industry operations has caused many extensive and highly visible changes within agriculture. Farmers and ranchers have increased the size of their production units and the related processing and service organizations have expanded the scope of their operations. Less apparent, but certainly of equal importance, is the parallel increase in demand for management personnel with training associated with both production and management. Students may specialize in one of three areas: animal science, food technology, or plant science.

A core program during the first three years, including the biological, physical, and social as well as agricultural sciences permits students to develop programs which satisfy individual objectives. Supporting courses in economics, business, and management prepare graduates for a large number of operator-management positions. Depending upon the extent of specialization and training desired, students may elect to pursue the Bachelor of Science program, normally completed in four years, or the Master of Science program which requires an additional year.

Bachelor of Science Major Requirements

CORE COURSES:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural science, at least one course in each of the following: animal science, food science, plant science, soil and/or water science</td>
<td>20</td>
</tr>
<tr>
<td>Biological sciences</td>
<td>16</td>
</tr>
<tr>
<td>Chemistry, including organic (Chemistry 1A, 1B, 8A 8B)</td>
<td>16</td>
</tr>
<tr>
<td>Economics† (Economics 1A, 1B, 11A, 11B)</td>
<td>10</td>
</tr>
<tr>
<td>English or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; and/or Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics (including calculus and statistics)</td>
<td>10</td>
</tr>
<tr>
<td>Physics (Physics 2A and 2B or 2C)</td>
<td>6</td>
</tr>
<tr>
<td>Social sciences and humanities electives‡**</td>
<td>18</td>
</tr>
<tr>
<td>Unrestricted electives**</td>
<td>24</td>
</tr>
</tbody>
</table>

UNITS

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

MAJOR COURSES:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural economics† (economics of agricultural management), including 100A and two chosen from 112, 114, 117 and 140</td>
<td>15</td>
</tr>
<tr>
<td>Animal science, food technology, or plant science specialization (see specializations listed below)</td>
<td>18</td>
</tr>
<tr>
<td>Electives approved by adviser**</td>
<td>19</td>
</tr>
</tbody>
</table>

Total units for the degree

180

See Sample Program IV, page 98. For further details concerning the major, contact W. C. Weir, Chairman of the major, 162 Animal Science.

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

† These elective courses may be taken on a Passed or Not Passed basis.

‡ Agricultural Economics 100A-100B, 106A-106B, and Economics 1A-1B, 11A-11B are recommended for students taking the program leading to the Master of Science Degree.

** Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Specialization Requirements

Animal Science: Animal Genetics 107; Animal Genetics 107A, 107B, 107C, or 107D; Animal science, choose from 114A–114B§, 116A–116B§, 118A–118B, or any two from Avian Sciences 10§, 11§ 12, or 149§; Nutrition 108 or 110§; 5 units of animal science electives. The following required courses may be used to satisfy the preparatory core requirements in addition to fulfilling the specialization requirements: Biology 1; Genetics 100A, 100B; and Physiology 101 recommended. The indicated ($) courses are recommended for students who may take the program leading to a Master of Science degree.

The animal science major is described on page 71.

PROGRAM LEADING TO THE MASTER OF SCIENCE DEGREE

1. Completion of the Bachelor of Science program or its equivalent.

2. Completion of the Graduate Division requirements of one year of graduate residence and 36 units, including 21 units of graduate credit, in addition to the requirements for a Bachelor of Science degree.
 a. Graduate units (200 series)
 Seminar ... 3
 Agricultural economics (economics of agricultural management) 6
 Animal science, food technology, plant science, or resource science 6
 Additional graduate work in agricultural economics or the specialization ... 6
 — .. 21
 b. Electives approved by adviser (upper division or graduate) 15
 — .. 36

3. A comprehensive oral examination in agricultural economics and the field of specialization ... —

Total units required for the Master of Science degree 36

All students must complete the requirements in Economics of Agricultural Management and one other specialization. Certain courses are required and may have been satisfied while in undergraduate standing or must be included as part of the graduate program:

Economics of Agricultural Management

Agricultural Economics including 100A, 100B, 106A, 106B, 3 units from 155, 160, 170, 176; and Economics 1B, 11B. The 6 graduate units must be selected from Agricultural Economics 250, 253, 254, 257, and 260.

Animal Science

Biochemistry, 6 units; physiology (excluding Physiology 101, 101L), 6 units.

The indicated ($) courses listed under the Bachelor of Science program are recommended. See above on this page.

Food Technology

Program of courses to be developed in consultation with the adviser.

Plant Science

Entomology 110; Genetics 100A, 100B; Plant Pathology 120; and Nematology 110 or Plant Science 120.

Resource Technology

Soil Science 103, 120B; Water Science and Engineering 110B; a course in climatology.

Recommended: Geography 161; Political Science 181.
Food Technology: Food science, 18 units including Food Science and Technology 100, 101, 104A, 104B and a food processing course. The following courses may be used to satisfy the preparatory core requirements in addition to fulfilling the requirements of the specialization: Bacteriology 2; Biology 1; Biochemistry 101A, 101B; Chemistry 1C and 5 recommended.

The food science major is described on page 81.

Plant Science: 12 units related to agronomy, floriculture, landscape horticulture, park administration, plant pathology, pomology, vegetable crops, or viticulture. 8 units from: Entomology 110; Genetics 100A, 100B; Plant Pathology 120; Nematology 110; and Plant Science 120. The following courses may be used to satisfy the preparatory core requirements in addition to fulfilling the requirements of the specialization: Biology 1; Botany 2, 111; Plant Science 2, 101, 102; Soil and Water Science 1, 2.

The plant science major is described on page 88.

ANIMAL SCIENCE is the study of the biological, physical and social sciences as they apply to animal and poultry production. Students may specialize in livestock, dairy, or poultry sciences, nutrition, physiology, or animal breeding. In recent years increased understanding of the biological principles of inheritance, reproduction and growth in animals has extended dramatically the usefulness of animals to mankind. Future activities will include efforts to improve meat and carcass characteristics, a shortening of the growth period required to produce finished animals, more effective disease prevention and control, and research designed to answer questions concerning the total nutritional needs of livestock, fowl, and fish.

Outstanding opportunities for using science to enhance the use of animals exist on ranches, in chemical and feed companies, in food processing and distributing units, and in all of the occupations supporting the animal industry. Community, government, education, industry, and business have places for individuals with a sound knowledge of science related to animal production and use.

Bachelor of Science Major Requirements

CORE COURSES: (Unit requirements common to majors in Agricultural Biosciences curriculum)

<table>
<thead>
<tr>
<th>Course Description</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological sciences, including one animal-oriented and one plant-oriented course (Biology 1; Physiology 101, 101L. Recommended: Animal Science 1, 2 and Bacteriology 2)</td>
<td>20</td>
</tr>
<tr>
<td>Chemistry, including organic (Chemistry 1A, 1B, 8A, 8B)</td>
<td>16</td>
</tr>
<tr>
<td>English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5 or Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics, including calculus and/or statistics</td>
<td>7</td>
</tr>
<tr>
<td>Physics (Physics 2A, 2B, 2C)</td>
<td>9</td>
</tr>
<tr>
<td>Social sciences and humanities electives*</td>
<td>28</td>
</tr>
<tr>
<td>Unrestricted electives**</td>
<td>22</td>
</tr>
</tbody>
</table>

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

**These elective courses may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
MAJOR COURSES:

Additional courses to be approved by the Major Committee 70

Total units for the degree 180

See Sample Program I, page 96. For further details concerning the major and specialization, contact M. Ronning, Chairman of the major, 180 Animal Science.

Students may also specialize in Animal Science under the Agricultural Science and Management major described on page 68.

APPLIED BEHAVIORAL SCIENCES prepares students for creative work with people in helping them improve their social and their physical environments. The study of human social behavior together with the study of processes and strategies of social change are emphasized. Knowledge of the behavioral and environmental sciences is integrated with the development of skills necessary to apply this knowledge to the solving of complex social problems.

The curriculum is intended primarily for students whose career goals are oriented toward public and community service. Community development, education, environmental design, and inter-group relations are examples of fields offering opportunities for employment of graduates in a wide variety of settings.

In the core curriculum students obtain a balanced grounding in four areas of study. These areas are designed to provide foundations of knowledge in the natural and social sciences and the humanities and to develop skills of inquiry and creative endeavor. The student and his adviser select course sequences most appropriate for the student’s educational and career goals.

CORE CURRICULUM:

A minimum of 12 units in each of the following areas, with an overall total of... 80

Inquiry: intellectual skills of inquiry and critical analysis
Ecological-Environmental Studies: understanding the dynamic interaction of man and his environment
Personal and Social Behavior: understanding the dynamics of human relationships extending from the individual to the international level
Creative Expression: the student explores and develops his own creative powers, intellectual and aesthetic

List of suggested courses in each of the above areas may be obtained from the Department of Applied Behavioral Sciences.

MAJOR COURSES:

Individualized program, including senior project, to be determined by student and advisory committee 60
Unrestricted electives 40

Total units for the degree 180

Other Requirements.—Admission: Development in consultation with adviser a statement of academic and career objectives and plan for attaining stated goals. Graduation: Minimum of one year in residence in the major and satisfac-

† Courses may also satisfy University requirements.
tory completion of supervised field experience, internship, thesis or other creative activity.

For further details concerning the major, contact O. E. Thompson, Chairman of the major, 206 Walker Hall.

ATMOSPHERIC SCIENCE comprises studies of the basic meteorological elements, including atmospheric circulation and weather systems; mass and energy transfers between atmosphere and surface and within the atmosphere; radiation, turbulence, diffusion, and precipitation mechanisms; and developments in meteorological instrumentation. This field is now a fully developed branch of applied physics, with impressive credentials of achievement and exciting prospects for the future. For instance, the possibility of significant weather and climate modifications now looms on the horizon, and our understanding of basic physical processes in the atmosphere is expanding as never before. The challenge to the new generation of atmospheric scientists is immense and the solution of the scientific and technical problems is of profound importance to the people of the world.

The course of study is designed to provide a strong mathematical and physical science background on which the student can build his career in research, education, or the most direct application of scientific knowledge. Emphasis is on studies of the basic meteorological elements and their role in the larger context of the physical and biological environment. While the major provides a broad background in Atmospheric Science, many students will be encouraged to specialize in some particular phase through the pursuit of graduate work.

Bachelor of Science Major Requirements

CORE COURSES: (Unit requirements common to majors in the Resource Sciences curriculum)

Biological sciences, including biology and botany (Biology 1, Botany 2)	11
Physics and chemistry, 24 units (Physics 4A, 4B, 4C, 4D); mathematics, 9 units (Mathematics 21A, 21B, 21C)	33
Social sciences and humanities, including: English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; Rhetoric 1, 3)	8
Upper division social sciences in at least two of the following: agricultural economics, economics, geography, political science**	12
Electives approved by adviser†**	16
Renewable natural resources (Resource Sciences 100, 190)	6
Unrestricted electives**	24

MAJOR COURSES:

| Additional physical sciences to include: Mathematics (Mathematics 22A, 22B, 22C recommended) | 15 |
| Physics | 2 |

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Atmospheric science courses approved by adviser:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamics and statics of the atmosphere, Atmospheric</td>
<td>3</td>
</tr>
<tr>
<td>Science 120</td>
<td></td>
</tr>
<tr>
<td>Dynamics of the atmosphere, Atmospheric Science 121A, 121B</td>
<td>6</td>
</tr>
<tr>
<td>Micrometeorology, Atmospheric Science 123</td>
<td>3</td>
</tr>
<tr>
<td>Meteorological instruments and observations, Atmospheric</td>
<td>3</td>
</tr>
<tr>
<td>Science 124</td>
<td></td>
</tr>
<tr>
<td>Weather analysis and forecasting, Atmospheric Science 110A-</td>
<td>9</td>
</tr>
<tr>
<td>110B-110C</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>7</td>
</tr>
<tr>
<td>Biological sciences electives**</td>
<td>14</td>
</tr>
<tr>
<td>Electives**</td>
<td>8</td>
</tr>
</tbody>
</table>

Total units for the degree 180

See Sample Program VIII, page 102. For further details concerning the major, contact L. O. Myrup, Chairman of the major, 2042 Engineering.

BIOCHEMISTRY considers the quantitative, organic, and physical-chemical aspects of living systems as these relate to the broad areas of zoology, botany, microbiology, and chemistry. The major consists of a sequence of at least 26 units in biochemistry and related subjects. Included are laboratory, advanced lecture, and undergraduate research. Also required are courses in bacteriology and genetics, a year of physical chemistry, and reading knowledge of a foreign language. A Biochemistry major is available in both the College of Agricultural and Environmental Sciences and the College of Letters and Science. The major requirements are the same in both colleges, although there are some differences in the College requirements (see pages 61 and 122).

The undergraduate program may serve as a basis for further training in schools of human and veterinary medicine, medical technology, pharmacy, dentistry, optometry, and education. Students interested in research and advanced teaching may use this program as preparation for continued study leading to the Master of Science and Doctor of Philosophy degrees.

Bachelor of Science Major Requirements

CORE COURSES: (Unit requirements common to majors in Quantitative Biology curriculum)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>21</td>
</tr>
<tr>
<td>Preparation: Biology 1; one additional course from Bacteriology 2, Botany 2, Zoology 2, or Physiology 101 and 101L.</td>
<td></td>
</tr>
<tr>
<td>Upper Division Biology Core: at least one upper division course from two areas other than the major subject: anatomy, botany, bacteriology, genetics, nutrition, physiology and zoology (Genetics 100A, 100B)</td>
<td></td>
</tr>
<tr>
<td>Chemistry (Chemistry 1A, 1B, 1C, 5, 112A, 112B, or 1A, 7A, 7B, 112A, 112B)</td>
<td>25</td>
</tr>
<tr>
<td>English and/or rhetoric (choose from English 1, 2, 4A, 4B, 5; and/or Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics, including one year of calculus (Mathematics 16A, 16B, 16C or Mathematics 21A, 21B, 21C)</td>
<td>12</td>
</tr>
<tr>
<td>Physics, any courses except Physics 10, and including at least one laboratory course (Physics 2A, 2B, 2C, and 3A, 3B, 3C, or 4A, 4C, 4D)</td>
<td>10</td>
</tr>
</tbody>
</table>

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.
Social science and humanities electives† ‡ 28
Unrestricted electives‡ 24

MAJOR COURSES:
 Biochemistry 101A, 101B, 101L, 190 ... 12
 Additional biochemistry or closely related courses (e.g., Biochemistry 108 or
 122; additional courses in biology, chemistry, mathematics, or physics.)
 .. 15
 Chemistry 110A, 110B, 110C, 112C ... 14
 Genetics 100A, 100B†
 Mathematics 16C or 22C†
 Physics, including at least 3 units of laboratory† 2
 Electives approved by adviser ... 9

Total units for the degree ... 180

There is no foreign language requirement, but students are strongly urged to com-
plete at least 12 units of college level foreign language (or place in the appropriate
course). Students electing not to take foreign language should consider devising a one-
year foreign culture course sequence.

See Sample Program VIIA, page 100. For further details concerning the major,
contact J. L. Hedrick, Chairman of the major, 5206 Storer Hall.

CHILD DEVELOPMENT is an appropriate major for students who plan to
work with children in a wide variety of situations—in teaching, counseling, or
in welfare or community agencies for children and youth. It is valuable prepara-
tion for working directly with the disadvantaged, retarded, handicapped, or
gifted child—as well as with the "normal" child.

How does a child grow? What are his needs? How can we help him to meet
life—to find fulfillment in our complex world? Students of Child Development,
a major of the Family and Consumer Sciences curriculum, seek answers to these
questions. They study the intelligence, personality, and special abilities of chil-
dren. Students observe infants and children in a variety of situations: in real
life, in films, and on closed-circuit television. They participate in study projects
with children from different socio-economic and cultural backgrounds who need
special counseling or educational services. They study not only from books but
also from life. The emphasis is on the child, his family, the community, and the
interrelationship of all three.

Bachelor of Science Major Requirements

CORE COURSES: (Requirements common to majors in the Family and Consumer Sciences curriculum)

Natural Sciences:
 Chemistry, one course
 Physics, one course
 Statistics or other mathematics, one course
 One course in each of two biological sciences
 Additional courses in the natural sciences to make a total of ‡ 27

†† These elective courses may be taken on a Passed or Not Passed basis.
† May be used to satisfy the core requirements in part, in addition to fulfilling the requirement of
the major field.
†† Units earned in satisfaction of the American History and Institutions requirement may be used
in partial satisfaction of the social sciences and humanities requirement.
Social Sciences:
One course in each of two of the following: psychology, sociology, cultural anthropology
One course: economics or political science†
Additional courses in the social sciences to make a total of **

Humanities:
English, 8 units (choose from English 1, 2, 3, 4A, 4B, or 5)
One course in each of two of the following: foreign language, history†, literature, philosophy
One course: art, design, dramatic art, music, or rhetoric
Additional courses in the humanities to make a total of **

MAJOR COURSES: major requirements (see below) and electives

The following courses may be used to partially satisfy the above core requirements:

Anthropology 2
Biology 10
Genetics 115
Human Development 131, 133, 136, 137, 139, 140, 141, 142
Nutrition 10
Physiology, one course
Psychology 1A, 1B, 1C
Sociology 1, 2 and any upper division sociology course
Statistics, one course

Total units for the degree

For information regarding the Elementary Teacher Credential, contact the Education Department.

See Sample Program VB, page 99. For further details concerning the major, contact David Lynn, Chairman of the major, 210 Walker Hall.

DESIGN emphasizes interior, costume, and textile design. Graduates will be prepared for advanced study in design, for teaching, and for the satisfaction of being a creative member of society.

With a growing staff of practicing designers, Design at Davis, a part of the Family and Consumer Sciences curriculum, builds on the needs of people in the environment. Through laboratory classes, lectures, seminars, workshops, exhibitions, and field trips, the Design major places emphasis on the behavior and artistic foundations of individual and family living. Specializations are offered in interior, costume, and textile design.

Design is also an accepted academic major for the individual wishing a background for a teaching credential.

** These additional courses and other unrestricted electives may be taken on a Passed or Not Passed basis.
† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Bachelor of Science Major Requirements

CORE COURSES: (Requirements common to majors in the Family and Consumer Sciences curriculum)

Natural Sciences:
- Chemistry, one course
- Physics, one course
- Statistics or other mathematics, one course
- One course in each of two biological sciences
- Additional courses in the natural sciences to make a total of** 27

Social Sciences:
- One course in each of two of the following: psychology, sociology, and cultural anthropology
- One course: economics or political science†
- Additional courses in the social sciences to make a total of** 27

Humanities:
- English, 8 units (choose from English 1, 2, 3, 4A, 4B, or 5)
- One course in each of two of the following: foreign language, history, literature, philosophy
- One course: art, dramatic art, music, or rhetoric
- Additional courses in the humanities to make a total of** 27

MAJOR COURSES: Major requirements (see below) and electives 99

The following courses may be used to partially satisfy the above core requirements.

Anthropology 2
Art 1A, 1B, 2, 16; two courses chosen from the following: Art 14A, 14B, 112A, 112B; one additional course in the history of art
Design 6, 120A, 120C, 140A, 140B, 197; one course from the following:
- Design 143 or 144; four courses from the following nine courses: Design 160A, 160B, 160C, 170A, 170B, 170C, 180A, 180B, 180C
- Philosophy 123
- Psychology 1A or 10

Total units for the degree 180

For information regarding the Elementary or General Secondary Teaching Credential, contact the Department of Applied Behavioral Sciences.

See Sample Program VB, page 99. For further details concerning the major, contact K. Rossbach, Chairman of the major, 155 Home Economics Building.

** DIETETICS AND NUTRITION prepares students for work as dietitians in hospitals and other institutions or for participation in research on nutritional properties of foods and their relation to human health. The major includes a basic background in physiology, biochemistry, bacteriology, and nutrition. The dietetics option adds emphasis on nutrition in disease and on management. It qualifies the student for a one-year dietetic internship which leads to professional work as a dietitian. The nutrition option offers additional background in biochemistry and nutrition for those interested in laboratory work. Either option

** These additional courses and other unrestricted electives may be taken on a Passed or Not Passed basis.
† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
may be used as preparation for advanced work leading to a graduate degree. The major is a part of the Family and Consumer Sciences curriculum.

Bachelor of Science Major Requirements

CORE COURSES: (Requirements common to majors in the Family and Consumer Sciences curriculum)

Natural Sciences
Chemistry, one course
Physics, one course
Statistics or other mathematics, one course
One course in each of two biological sciences
Additional courses in the natural sciences to make a total of** 27

Social sciences:
One course in each of two of the following: psychology, sociology, and cultural anthropology
One course: economics or political science†
Additional courses in the social sciences to make a total of** 27

Humanities:
English, 8 units (Choose from English 1, 2, 3, 4A, 4B, or 5)
One course in each of two of the following: foreign language, history, literature, philosophy
One course: art, design, dramatic art, music, or rhetoric
Additional courses in the humanities to make a total of** 27

MAJOR COURSES: Major requirements (see below) and electives 99

The following courses may be used to partially satisfy the above core requirements:

Bacteriology 2
Biochemistry 101A, 101B
Biology 1
Chemistry 1A, 1B, 8A, 8B
Economics 1A, 1B
Foods 100A, 100B, 101A, 101B
Mathematics 13
Nutrition 110, 111, 111L
Physiology 101L
Psychology 1A or 10

Plus either Group A (Dietetics) or Group B (Nutrition), as follows:

Group A
Economics 11A, 11B
Education 110
Institution Management 121, 122A, 122B
Nutrition 116

Group B
Biochemistry 101L
Chemistry 1C, 5
Nutrition 117
Physics 2A, 2B, 2C and one laboratory course
Mathematics 16A, 16B recommended

Total units for the degree 180

See Sample Program VA, page 99. For further details concerning the major, contact F. Zeman, Chairman of the major, 161 Home Economics Building.

** These additional courses and other unrestricted electives may be taken on a Passed or Not Passed basis.
† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
ENTOMOLOGY is the study of a fascinating and complex group of organisms—the insects. There are more kinds of insects than of all other animals combined. This diverse assemblage includes both beneficial and harmful forms. Progress in research on insects has been immense but represents only a small part of the information needed before man can deal most advantageously with them. Some of the special branches of entomology are: transmission of plant and animal diseases; control of insects with natural enemies and chemicals; management of honeybees for honey production and crop pollination; and the study of insects themselves—their behavior, physiology, classification, and intricate structure.

Excellent employment opportunities are available in managerial and technical positions with agricultural chemical companies and state and federal agencies concerned with insects and their control. Some graduates in entomology prepare to teach zoology, biology, and entomology in high schools and junior colleges.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the Agricultural Biosciences curriculum)

Biological sciences, including one animal-oriented and one plant-oriented course (Biology 1, Zoology 2, Botany 2)	20
Chemistry, including organic chemistry (Chemistry 1A, 1B, 8A, 8B)	16
English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; Rhetoric 1, 3)	8
Mathematics, including calculus and/or statistics (Mathematics 13, 16A)	7
Physics (Physics 2A, 2B, 2C)	9
Social sciences and humanities electives†**	28
Unrestricted electives**	24

MAJOR COURSES:

Bacteriology (Bacteriology 2)	5
Botany or zoology, in addition to core requirements (courses generally selected from: Botany 107, 108, 111, 117, 140, 141, 180; Zoology 112, 116, 125, 125L, 140, 147, 148)	12
Genetics (Genetics 100A, 100B)	6
Plant physiology, plant pathology, or biochemistry (Botany 111, Plant Pathology 120, or Biochemistry 101A and 101B or equivalent)	4
Introduction to entomology, Entomology 1	5
Structure and function of insects, Entomology 101	4
Insect physiology, Entomology 102	4
Systematic entomology, Entomology 103	4
Insect ecology, Entomology 104	4
Field taxonomy and ecology, Entomology 109	5
Electives approved by adviser	15

Total units for the degree: 180

See Sample Program I, page 96. For further details concerning the major, contact O. G. Bacon, Chairman of the major, 124 Robbins Hall.

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
FOODS emphasizes the socio-cultural aspects, as well as the chemical and physical properties of foods. Attention is given to the changes occurring in the sensory and functional properties of foods during processing and preparation for the table. Graduates are prepared for careers in teaching, new-product development in test kitchens, and food research in industrial, governmental, and university laboratories. The major is part of the Family and Consumer Sciences curriculum.

Food is more than something that nourishes. We know that nutrition is not necessarily of prime importance in the selection of the foods that people eat. People select food on the basis of color, texture, and flavor and their individual responses to these properties. Habit and tradition play a part in the selection. Pleasant or unpleasant associations with a particular food also play a part in the choice.

Of concern to the Foods major are questions about color, odor, taste, and the textural properties of foods, as well as biological and behavioral responses to these properties. These questions encompass the effects of processing, storage, and consumer handling of foods, and the socio-economic and cultural aspects of food as they relate to consumer acceptability and use.

Bachelor of Science Major Requirements

CORE COURSES: (Requirements common to majors in the Family and Consumer Sciences curriculum)

<table>
<thead>
<tr>
<th>Natural Sciences:</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry, one course</td>
<td></td>
</tr>
<tr>
<td>Physics, one course</td>
<td></td>
</tr>
<tr>
<td>Statistics or other mathematics, one course</td>
<td></td>
</tr>
<tr>
<td>One course in each of two biological sciences</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the natural sciences to make a total of**</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social Sciences:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One course in each of two of the following: psychology, sociology, and cultural anthropology</td>
<td></td>
</tr>
<tr>
<td>One course: economics or political science†</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the social sciences to make a total of**</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humanities:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>English, 8 units (choose from English 1, 2, 3, 4A, 4B, or 5)</td>
<td></td>
</tr>
<tr>
<td>One course in each of the two of the following: foreign language, history†, literature and philosophy</td>
<td></td>
</tr>
<tr>
<td>One course: art, design, dramatic art, music or rhetoric</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the humanities to make a total of**</td>
<td>27</td>
</tr>
</tbody>
</table>

MAJOR COURSES: major requirements (see below) and electives 99

The following courses may be used to partially satisfy the above core requirements:

- Bacteriology 2
- Biochemistry 101A, 101B
- Biology 1
- Chemistry 1A, 1B, 1C, 5, 8A, 8B

** These additional courses and other unrestricted electives may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Economics 1A
Food Science and Technology 107A, 107B
Mathematics 13
Nutrition 102A, 102B, 102L or 110, 111, and 111L
Physics 2A, 2B, 2C
Physiology 2 or 101
Psychology 1A or 10

Total units for the degree 180

See Sample Program VA, page 99. For further details concerning the major, contact G. F. Russell, Chairman of the major, 158 Home Economics Building.

FOOD SCIENCE is the study of the principles of processing and preserving of plant and animal products.

The biological, physical, and behavioral sciences, as well as engineering, all play important roles in the development of new food products, new processing methods, and the evaluation and improvement of products. The focus of the food scientist is maintaining product quality at all times, especially in terms of controlling chemical and microbiological changes both during processing and during the period between processing and consumption. Graduates qualify for supervisory, technical, sales and executive positions in the food and allied industries. The program offers interdisciplinary training to students planning careers in food processing, food research, and other food-related fields. The curriculum is sufficiently flexible to satisfy a student's individual interest in a general program, in a scientific discipline applicable to food processing and utilization, or in a specialized area of food technology such as **brewing**, **dairy**, **fruits and vegetables**, **meat and poultry**, or **enology**. This program also provides an excellent basis for graduate study leading to the M.S. degree in food science and the Ph.D. degree in such fields as agricultural chemistry, comparative biochemistry, microbiology, and nutrition.

Bachelor of Science Major Requirements

CORE COURSES:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology-biology (Biology 1, Bacteriology 2)</td>
<td>11</td>
</tr>
<tr>
<td>Biochemistry-chemistry (Chemistry 1A, 1B, 1C, 5, 8A, 8B; Biochemistry 101A, 101B)</td>
<td>31</td>
</tr>
<tr>
<td>English and/or rhetoric (English 1, 2; or Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics-physics (Mathematics 13, 16A, 16B, 16C; Physics 2A, 2B, 2C)</td>
<td>20</td>
</tr>
<tr>
<td>Social sciences and humanities electives† **</td>
<td>28</td>
</tr>
<tr>
<td>Unrestricted electives**</td>
<td>24</td>
</tr>
</tbody>
</table>

MAJOR COURSES:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses listed in General Catalog under the heading Food Science and Technology or Viticulture and Enology</td>
<td>30</td>
</tr>
<tr>
<td>Electives approved by adviser</td>
<td>28</td>
</tr>
</tbody>
</table>

Total units for the degree 180

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted.

** These elective courses may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
A food technology specialization is available to interested students under the Agricultural Science and Management curriculum described on page 68. See Sample Program VI, page 100. For further details concerning the major, contact E. B. Collins, Chairman of the major, 114C Roadhouse Hall.

HOME ECONOMICS is designed primarily for the student who wishes to become a professional home economist. The demand for home economists is growing as never before—in teaching at high school and junior college levels, in Extension Service, in governmental and community agencies dealing with social service, and in private industry. In addition, this major provides an excellent background for homemaking and professional work. The major is part of the Family and Consumer Sciences curriculum.

The academic program encompasses the broad field of family and consumer sciences, with courses including laboratory work along with academic theory in exciting areas: Child Development, Family Relationships, Consumer Economics, Home Management, Housing, Design, Nutrition, Foods, Clothing and Textiles. The foundation is broad and liberal, including humanities and social sciences as well as natural sciences.

The major in Home Economics at Davis is also an academic major for the individual wishing to obtain a teaching credential.

Bachelor of Science Major Requirements

CORE COURSES: (Requirements common to majors in the Family and Consumer Sciences curriculum)

<table>
<thead>
<tr>
<th>Natural Sciences:</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry, one course</td>
<td></td>
</tr>
<tr>
<td>Physics, one course</td>
<td></td>
</tr>
<tr>
<td>Statistics or other mathematics, one course</td>
<td></td>
</tr>
<tr>
<td>One course in each of two biological sciences</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the natural sciences to make a total of**</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social Sciences:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One course in each of two of the following: psychology, sociology, and cultural anthropology</td>
<td></td>
</tr>
<tr>
<td>One course: economics or political science†</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the social sciences to make a total of**</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humanities:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>English, 8 units (choose from English 1, 2, 3, 4A, 4B, or 5)</td>
<td></td>
</tr>
<tr>
<td>One course in each of two of the following: foreign language, history†, literature, and philosophy</td>
<td></td>
</tr>
<tr>
<td>One course: art, dramatic art, music, or rhetoric</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the humanities to make a total of**</td>
<td>27</td>
</tr>
</tbody>
</table>

MAJOR COURSES: Major requirements (see below) and electives

The following courses may be used to partially satisfy the above core requirements.

- Bacteriology 2
- Biology 1
- Chemistry 1A, 1B, 8A, 8B

**These additional courses and other unrestricted electives may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Consumer Economics 142
Design 6
Applied Behavioral Sciences 150
Economics 1A
Foods 100A, 100B
Human Development 131, 133, 137
Mathematics 13
Nutrition 102A, 102B
Physiology 2 or 101
Psychology 1A or 10
Home Management 140
Textiles and Clothing 7, 160

Total units for the degree 180

See Sample Program VA, page 99. For further details concerning the major, contact ———, Chairman of the major, 205 Walker Hall.

Additional requirements for the secondary teaching credential or for extension positions are: Foods 101A, 101B; Nutrition 102L; Home Management 140L; Textiles and Clothing 172. For further details contact the Department of Applied Behavioral Sciences.

INTERNATIONAL AGRICULTURAL DEVELOPMENT prepares students for overseas service in agriculture in the developing countries.

The most persistent and urgent need of the developing countries of the world is food: food of high quality available in large amounts. Impressive outlays of financial and technical assistance have done much to increase the agricultural and industrial capacities of the less well-developed areas. International Agricultural Development graduates, who are prepared for careers in world-wide agricultural affairs by virtue of competency in a technical field of agriculture, hold a unique and enviable position in terms of opportunity to assist others. Assuming a given degree of technical competency (whether, for example, in agricultural business, agricultural engineering, agronomy, animal science, entomology, or horticulture), students interested in careers in foreign countries also must be perceptive, sensitive, understanding, and possessed with a knowledge of the political, economic, social, and cultural differences among people in other countries.

Graduates may enter the Foreign Agricultural Service or other governmental agencies with overseas activities through civil service examinations or join commercial firms with foreign branches or departments. The Peace Corps and similar organizations offer additional career opportunities.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the Agricultural Education and Development curriculum)

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural science (introductory)</td>
<td>3</td>
</tr>
<tr>
<td>Biological sciences, including genetics (animal or plant physiology, bacteriology, biochemistry, botany, zoology, Genetics 100A)</td>
<td>19</td>
</tr>
</tbody>
</table>

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.
Chemistry, including organic (Chemistry 1A, 1B, 8A, 8B) 16
Economics (Economics 1A or 1B) ... 5
English (choose from English 1, 2, 3, 4A, 4B, or 5) ... 8
Mathematics, statistics (Mathematics 13) ... 4
Physics (Physics 2A, 2B) ... 6
Social sciences and humanities electives** including two courses from the
following if student has not already satisfied American History and
179A, 179B, and 180; Political Science 102, 105, 113, 128A, 163, and 166 15
Unrestricted electives** .. 24

MAJOR COURSES:

International Agricultural Development 101 or 102, 190 6
Economics or agricultural economics ... 6

Foreign language, humanities and social sciences (anthropology, sociology,
geography and/or psychology with approval of adviser); proficiency in a
single foreign language equivalent to passing course 4 is required................. 32

Primary field of specialization (plant science, animal science, agricultural sci-
ence and management, plant protection, food science, atmospheric science,
environmental horticulture, soil science, or water science [at least
12 units upper division]) ... 20

Agricultural and other science electives approved by adviser to be selected
from agricultural engineering, animal physiology, bacteriology, biochem-
istry, entomology, nutrition, plant pathology, soil science, water science
and weed science ... 16

Total units for the degree 180

See Sample Program III, page 98. For further details concerning the major,
contact D. S. Mikkelsen, Chairman of the major, 109 Hunt Hall.

NUTRITION is the study of food components that are basic to life and
health, with primary interest centered on the biochemical and physiological
aspects of these factors in the animal body. The major includes at least 25 units
of nutrition and closely related courses plus mammalian physiology and general
biochemistry, with laboratory. Courses in bacteriology and genetics are required.
The considerable elective freedom provided allows emphasis on specific aspects
of nutrition and related areas of biology. The undergraduate program may serve
as a basis for further training in schools of human and veterinary medicine, med-
cal technology, pharmacy, dentistry, optometry, and education. Students inter-
ested in research and advanced teaching may use this program as preparation
for continued study leading to the Master of Science and Doctor of Philosophy
degrees.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the
Quantitative Biology curriculum)

Biology .. 21

* For convenience in planning your program the usual courses taken to satisfy the requirements
are shown in parentheses where possible. Equal or more comprehensive courses will be accepted.
Courses shown without parentheses are required.
** These elective courses may be taken on a Passed or Not Passed basis.
† Units earned in satisfaction of the American History and Institutions requirement may be used
in partial satisfaction of the social sciences and humanities requirement.
Preparation: Biology 1; one additional course chosen from Bacteriology 2, Botany 1; Zoology 2 or Physiology 101 and 101L.

Upper division biology core: at least one upper division course from two areas other than the major subject: anatomy, bacteriology, biochemistry, botany, genetics, nutrition, physiology, and zoology.

Chemistry .. 25
English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; Rhetoric 1, 3) .. 8
Mathematics, including one year of calculus (Mathematics 16A, 16B, 16C) 12
Physics, any courses except Physics 10, and including at least one laboratory course .. 10
Social sciences and humanities electives†*** 28
Unrestricted electives** 24

MAJOR COURSES:

Bacteriology 2, English 1, Physiology 101, 101L and an upper division course in genetics†
Biochemistry 101A, 101B, 101L (or Animal Biochemistry 102) 9
Nutrition 110 ... 5
Additional nutrition or closely related courses ... 20
Physiology 110A, 110B, 111A, 111B 8
Electives approved by adviser ... 10

Total units for the degree .. 180

See Sample Program VIIB, page 101. For further details concerning the major, contact Lucille Hurley, Chairman of the major, 233 Home Economics Building.

PARK AND RECREATION ADMINISTRATION is the study of the planning, design, management and interpretation of recreation environments. It relates leisure behavior to recreation resources and the decision process through an ecological approach to the allocation, development, and management of resources in man-made and natural landscapes.

Environmental quality provides a value context for relating man to his surroundings through outdoor recreation experiences in areas that can range from inner-city parks to wilderness and resorts. These outdoor areas are an important visual and functional part of man’s total environment. They are found in the city or suburb, airports, shopping centers, new communities, ski resorts, golf courses, botanical and zoological gardens, industrial parks, campuses, and municipal, state or national park and recreation areas. These opportunities are viewed as part of a social service system for public agencies and private enterprise.

A student can emphasize: (1) landscape management, (2) planning and design, (3) administration or (4) environmental education. These options emphasize an interdisciplinary approach to real problems and a balanced program in the social and natural sciences.

Graduates can expect increasing opportunities leading to careers such as: directors of park systems, park rangers, landscape contractors, grounds maintenance supervisors, park naturalists, resort managers, outdoor education specialists, science teachers, botanical or zoological park managers, resource man-

** These elective courses may be taken on a Passed or Not Passed basis.
† Units earned for these major courses may be used also to satisfy the above core requirements in part.
†† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
agers, recreation planners, or consultants and urban planners with government agencies, private industry, public utilities and institutions.

Bachelor of Science Major Requirements

CORE COURSES:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological sciences, including: Biology 1, Botany 2</td>
<td>11</td>
</tr>
<tr>
<td>Physical sciences, including:</td>
<td></td>
</tr>
<tr>
<td>Physics and chemistry (Chemistry 1A, 1B)</td>
<td>24</td>
</tr>
<tr>
<td>Mathematics</td>
<td>9</td>
</tr>
<tr>
<td>Social sciences and humanities, including:</td>
<td></td>
</tr>
<tr>
<td>English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Upper division social sciences in at least two of the following areas*: agricultural economics, economics, geography, political science|</td>
<td>12</td>
</tr>
<tr>
<td>Electives approved by adviser**</td>
<td>16</td>
</tr>
<tr>
<td>Renewable natural resources (Resource Sciences 100, 190)</td>
<td>6</td>
</tr>
<tr>
<td>Unrestricted electives**</td>
<td>24</td>
</tr>
</tbody>
</table>

MAJOR COURSES:

- Introduction to Landscape Design (Environmental Horticulture 1, 1L) | 5 |
- Environmental Quality (Park and Recreation Administration 1) | 3 |
- Urban and Regional Planning (Park and Recreation Administration 110) | 3 |
- Outdoor Recreation (Park and Recreation Administration 116) | 3 |
- Recreation Policy (Park and Recreation Administration 122) | 3 |
- Leisure Systems (Park and Recreation Administration 124) | 3 |
- Planning of Recreation Environments (Park and Recreation Administration 134) | 3 |
- Electives | 7 |
- Additional biological and physical science electives: including at least 14 biological and 9 physical sciences units*** | 40 |

Total units for the degree

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

See Sample Program VIII, page 102. For further details concerning the major, contact R. W. Harris, Chairman of the Major, 162 TB-38.

PHYSIOLOGY is concerned with the vital functions of living things, including a systematic study of the functional properties of tissues and organs and comparisons of processes among different kinds of animals. The major consists of a sequence of at least 25 units of physiology and closely related courses. Lecture and laboratory courses in mammalian and general physiology lead to more specialized courses, such as environmental, avian, comparative, and reproductive physiology; endocrinology; growth; biodynamics; and nervous function. Biochemistry, with laboratory, is required. Additional organic chemistry, and gross and microscopic anatomy are also advised.

The undergraduate program may serve as a basis for further training in schools of human and veterinary medicine, medical technology, pharmacy.

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

*** Courses selected with approval of adviser to meet the student's emphasis within the major.

\| Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
dentistry, optometry, and education. Students interested in research and advanced teaching may use this program as preparation for continued study leading to the Master of Science and Doctor of Philosophy degrees.

Bachelor of Science Major Requirements

CORE COURSES: (Unit requirements common to majors in Quantitative Biology curriculum)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>21</td>
</tr>
<tr>
<td>Preparation: Biology 1; one additional course chosen from Bacteriology 2, Botany 2, Zoology 2 or Physiology 101 and 101L</td>
<td></td>
</tr>
<tr>
<td>Upper division biology core: At least one upper division course from two areas other than the major subject: anatomy, bacteriology, biochemistry, botany, genetics, nutrition, physiology, and zoology (Genetics 100A, 100B; Nutrition 110)</td>
<td></td>
</tr>
<tr>
<td>Chemistry (equivalent to Chemistry 1A, 1B, 1C and 5)</td>
<td>25</td>
</tr>
<tr>
<td>English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; and/or Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics, including one year of calculus</td>
<td>12</td>
</tr>
<tr>
<td>Physics, any course except Physics 10, and including one laboratory course</td>
<td>10</td>
</tr>
<tr>
<td>Social sciences and humanities electives**</td>
<td>28</td>
</tr>
<tr>
<td>Unrestricted electives**</td>
<td>24</td>
</tr>
</tbody>
</table>

MAJOR COURSES:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 101A, 101B and laboratory (preferably Animal Biochemistry 102)</td>
<td>10</td>
</tr>
<tr>
<td>Genetics, one upper division course†</td>
<td></td>
</tr>
<tr>
<td>Nutrition, one upper division course†</td>
<td></td>
</tr>
<tr>
<td>Physiology 100A, 100B, 100L, 110A, 110B, 111A, 111B</td>
<td>17</td>
</tr>
<tr>
<td>Additional physiology courses</td>
<td>10</td>
</tr>
<tr>
<td>Electives approved by adviser</td>
<td>15</td>
</tr>
</tbody>
</table>

Total units for the degree 180

See *Sample Program VIIC*, page 101. For further details concerning the major, contact J. M. Boda, Chairman of the major, TB-30.

PLANT PROTECTION includes the sciences involved in the control of agricultural pests. To ensure future generations the high standard of living we now enjoy, we must increase our production of food and fiber at least as fast as the population increases. An important way of increasing production and quality is through the control of harmful insects, nematodes, plant disease, and weeds. To gain competence in diagnosing ills of agricultural crops and prescribing treatments, students in this major take work in plant physiology and weed science, entomology, plant pathology, nematology, agricultural engineering, agricultural toxicology, and wildlife.

Career opportunities are available as research technicians and in technical sales and service with chemical companies, food processing firms, Farm Adviser offices, and grower's organizations.

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† May be used to partially satisfy the preparatory core requirements.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the Agricultural Biosciences curriculum)

- Biological sciences, including one animal-oriented and one plant-oriented course: Biology 1, Botany 2, Plant Science 1 (Recommended: Plant Science 2, Animal Science 1, 2 or Zoology 2) .. 20
- Chemistry, including organic chemistry (Chemistry 1A, 1B, 8A, 8B) .. 16
- English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5, or Rhetoric 1, 3) .. 8
- Mathematics, including calculus and/or statistics (Mathematics 13 and 16A) .. 7
- Physics (Physics 2A, 2B, 2C) ... 9
- Social sciences and humanities electives** .. 28
- Unrestricted electives** ... 24

MAJOR COURSES:

- Agricultural engineering, chemical application (Agricultural Engineering 110) .. 3
- Agricultural toxicology (Environmental Toxicology 180) ... 3
- Animal science, wildlife ecology (Wildlife and Fisheries Biology 151, 151L) .. 4
- Botany, plant physiology and weed science (Botany 107, 111, 180) .. 12
- Economics (Economics 1A)† .. 3
- Entomology (Entomology 110, 112, 117) ... 12
- Nematology (Nematology 100, 130) ... 8
- Plant pathology (Plant Pathology 120, 125) ... 12
- Electives approved by adviser ... 14

Total units for the degree ... 180

See Sample Program 1, page 96. For further details concerning the major, contact J. A. Cook, Chairman of the major, 2009 Wickson Hall.

PLANT SCIENCE is the study of the biological, physical and social sciences as they apply to plant and crop production. Students may specialize in agronomy, floriculture, landscape horticulture, nursery management, plant pathology, pomology, vegetable crops, and viticulture.

A major in Plant Science discovers that the life processes are no less complex in plants than in other organisms. He learns that plants are very responsive to their environment, and that plant growth and yield can be dramatically affected by the manipulation of plants and environment.

Basic biological and physical sciences provide broad training for the plant sciences, including plant genetics, plant nutrition, plant pathology, plant physiology, and the related fields of entomology and soil and water science.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the Agricultural Biosciences curriculum)

- Biological sciences, including one animal-oriented and one plant-oriented course (Biology 1, Botany 2, Plant Science 1, 2; Animal Science 1, 2 or Zoology 2) .. 20

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted.
+ Courses shown without parentheses are required.
+ These elective courses may be taken on a Passed or Not Passed basis.
† May be used to satisfy the social sciences and humanities requirement in part.
‡ Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
Chemistry, including organic (Chemistry 1A, 1B, 8A, 8B) 16
English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; or Rhetoric 1, 3) .. 8
Mathematics, including calculus and/or statistics (Mathematics 13, 16A) 7
Physics (Physics 2A, 2B, 2C) ... 9
Social sciences and humanities electives** 28
Unrestricted electives** .. 24

MAJOR COURSES:
Entomology (Entomology 110 or 112) 4
Genetics (Genetics 100A, 100B) .. 6
Nematology or weed science (Nematology 110 or Plant Science 120) 2
Plant pathology (Plant Pathology 120) 4
Plant physiology (Botany 111) .. 5
Soil and water science (Soil and Water Science 1 and 2) 6
Electives approved by adviser:
 a) Biochemistry, botany, chemistry, genetics, geography, geology,
 mathematics, microbiology, physics or zoology 6
 b) Entomology, nematology, plant nutrition, plant pathology, plant science,
 soil and water science or weed science 9
 c) Courses to complete major 26

Total units for the degree .. 180

See Sample Program I, page 96. For further details concerning the major,
contact D. S. Brown, Chairman of the major, 1043 Wickson Hall.

Students may also specialize in Plant Science under the Agricultural
Science and Management curriculum described on page 68.

PREFORESTRY students are admitted to the School of Forestry and Con-
servation located on the Berkeley campus, following completion of the sopho-
more year. The preparatory programs offered at Davis provide full preparation
for admission to the School. To qualify for such admission, a student must com-
plete at least 84 quarter units of credit with a grade-point average of C or higher.
In addition, he must satisfy the preparatory subject matter requirements for one
of the two majors offered.

General Forestry. The requirements of the preparatory program may be satisfied in
full by completion of the course work shown in Sample Program IXA, page 102.

Wood Science and Technology. The requirements of the preparatory program may
be satisfied in full by completion of the course work shown in Sample Program IXB,
page 103.

For full details on the majors in general forestry and in wood science and technology,
please consult the Announcement of the School of Forestry and Conservation, 145
Mulford Hall, Berkeley, California 94720.

See Sample Program IXA and IXB, page 102.

PREVETERINARY MEDICINE students may apply for admission to the
School of Veterinary Medicine on the Davis campus following completion of
at least 90 quarter units, including the requirements listed below. This normally
requires a minimum of two years of study and satisfies the course requirements

** These elective courses may be taken on a Passed or Not Passed basis.
† Units earned in satisfaction of the American History and Institutions requirement may be used
in partial satisfaction of the social sciences and humanities requirement.
for admission to the School of Veterinary Medicine. For further information, including a sample program, refer to the material beginning on page 145 or write to the Office of the Dean, School of Veterinary Medicine, Davis 95616.

Subject and unit requirements for the preveterinary medical curriculum are:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry (general, qualitative, organic, and quantitative)</td>
<td>25</td>
</tr>
<tr>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Physics (general)</td>
<td>9</td>
</tr>
<tr>
<td>Biology, zoology, embryology</td>
<td>17</td>
</tr>
<tr>
<td>English composition and additional English or rhetoric</td>
<td>8</td>
</tr>
<tr>
<td>Restricted electives in social sciences and humanities†</td>
<td>17</td>
</tr>
<tr>
<td>Additional electives in social sciences, humanities or agriculture**</td>
<td>11</td>
</tr>
<tr>
<td>Animal science no longer required, but recommended</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>

RANGE MANAGEMENT as a field of study includes the sciences required for development and management of public and private lands used primarily for grazing—that is, animal and plant sciences, soil and water sciences, and social sciences. Under the multiple-use concept the program takes into account the demands imposed on these lands for recreation and forestry, and for watersheds as well. The program includes the study of botany, ecology, genetics, geology, animal nutrition, range management, soil and water science, and zoology.

The student draws upon the interdisciplinary aspects of the major when he learns to make decisions affecting the multiple-use potential of an area. For example, conversion (not necessarily complete) of a brushland site to grassland means more forage and browse for livestock and big game, thus providing more meat and better hunting, better habitats for wildlife, newly developed springs, increased stream flow, and less fire hazard. The resulting parklike landscape is a better environment for man, livestock, and wildlife.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the Resource Sciences curriculum)

| Biological sciences, including biology and botany (Biology 1, Botany 2) | 11 |
| Physical sciences, including: |
| Physics 2A, 2B, 3A, 3B; Chemistry 1A, 1B, 8A, 8B | 24 |
| Mathematics | 9 |
| Social sciences and humanities, including: |
English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; and/or Rhetoric 1, 3)	8
Upper division social sciences in at least two of the following areas**: agricultural economics, economics, geography, political science†	12
Electives approved by advisor†	16
Renewable natural resources (Resource Sciences 100, 190)	6
Unrestricted electives**	24

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** Refer to page 145 for School of Veterinary Medicine recommendations regarding Passed or Not Passed options.

† May be used to satisfy the social sciences and humanities core requirement in part, in addition to fulfilling the requirement of the major.

†† Art, anthropology, economics, foreign languages, geography, history, music, philosophy, political science, psychology, and/or additional English, rhetoric, and mathematics.
MAJOR COURSES:
Additional biological sciences, including:
Botany (Botany 108, 111) ... 10
Ecology (Plant Science 101 or Botany 117) 3
Genetics (Genetics 100A) 3
Zoology (Zoology 2 and 116, 125, 136, 137, 147, or 155) ... 9

Additional physical sciences, including:
Geology (Geology 1) ... 3
Soil and water science (Soil and Water Science 1 and 2) 6

Additional requirements to complete the major include:
Plant science (Plant Science 1) 3
Agronomy (Agronomy and Range Science 2 or 112 and 112L) 3 or 4
Animal science (Animal Science 1, 2, 118A) 9
Nutrition (Nutrition 103 or Wildlife and Fisheries Biology 108) . 4

Range management (Range Management 100, 103, 105; and 133, 198 or 199) ... 14
Electives** ... 2 or 3

Total units for the degree 180

See Sample Program VIII, p. 102. For further details concerning the major, contact R. M. Love, Chairman of the major, 131 Hunt Hall.

RENEWABLE NATURAL RESOURCES involves the study of those natural resources (i.e., air, water, land, plants, animals, and climate) which are vital to man’s existence. An integrated, multi-departmental approach to resource development, management, and protection considers the varied aspects of resource use and protection. Elimination of air, water, and soil pollution and planning for the most beneficial use of land, water, and recreational areas are included as primary objectives. The major provides students excellent opportunity to develop an appreciation of the social, technological, and economic forces affecting the resource management efforts.

Courses in the biological, physical, and social sciences and humanities enable students to develop programs which include the elements of a well-balanced general education while providing technical-professional competencies in the vocational areas selected for in-depth preparation. Within the Renewable Natural Resources major, course emphasis may be directed to: agricultural economics, agricultural engineering, animal science, atmospheric science, environmental horticulture, geography, geology, plant science, range management, park administration, soil science, water science, wildlife and fisheries biology, and zoology.

Graduates are prepared for technical and managerial positions dealing with the development, use and conservation of renewable natural resources, and for graduate work in the technical specialties of Resource Sciences.

Bachelor of Science Major Requirements*
CORE COURSES: (Unit requirements common to majors in the Resources Sciences curriculum)

Biological sciences, including biology and botany (Biology 1, Botany 2) 11

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.
** These elective courses may be taken on a Passed or Not Passed basis.
Physical sciences, including:
 Physics 2A, 2B, 3A, 3B; Chemistry 1A, 1B, 8A, 8B 24
 Mathematics ... 9

Social sciences and humanities, including:
 English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B 5; Rhetoric 1, 3) 8
 Upper division social sciences in at least two of the following areas**:
 agricultural economics, economics, geography, political science§ 12
 Electives approved by adviser** 16

Renewable natural resources (Resource Sciences 100, 190) 6
Unrestricted electives** .. 24

MAJOR COURSES:

Additional biological sciences, including:
 Plant science (Plant Science 1 and 2) 6
 Animal science (Animal Science 1 and 2) 6
 Electives** .. 2

Additional physical sciences, including:
 Soil and water science (Soil and Water Science 1 and 2) 6
 Geology (Geology 1) ... 3

Biological and physical sciences electives** 17

Agricultural economics (Agricultural Economics 148 or 176) 3

One upper division course from each of four departments or groups from the following:
 agricultural economics, agricultural engineering, animal sciences,
 atmospheric science, environmental horticulture, geography, park administration,
 plant science, range management, soil science, water science,
 wildlife and fisheries biology, and zoology 15

Electives** .. 12

Total units for the degree 180

See Sample Program VIII, p. 102. For further details concerning the major,
contact H. O. Walker, Chairman of the major, 228 Mrak Hall.

SOIL AND WATER SCIENCE is the study of the chemistry, physics, and
biochemistry of the soil-water-plant system, soil microbiology, water quality,
hydrology, and land use planning. Soil and water resource development and use
are critical to the welfare of nations. As population pressures increase, greater
numbers of qualified persons will be needed to deal with the complex problems
involved in proper management of these vital limited resources.

Excellent employment opportunities are available in managerial and technical
positions—with agribusiness and associated enterprises, such as equipment and
supply companies; private, state and federal agencies; and international organizations
dealing with soil and water development, use and conservation. Those
planning on graduate study will find that this program provides excellent
preparation.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the Resource Sciences curriculum)

 Biological sciences, including biology and botany (Biology 1, Botany 2) 11

* For convenience in planning your program the usual courses taken to satisfy the requirements
are shown in parentheses where possible. Equal or more comprehensive courses will be accepted.
Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used
in partial satisfaction of the social sciences and humanities requirement.
Physical sciences, including:
 Physics 2A, 2B, 2C; Chemistry 1A, 1B, 1C*** 24
 Mathematics .. 9
Social sciences and humanities, including:
 English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5;
 Rhetoric 1, 3) ... 8
 Upper division social sciences in at least two of the following areas**:
 agricultural economics, economics, geography, political science† 12
 Electives approved by adviser†‡† 16
 Renewable natural resources (Resources Sciences 100, 190) 6
 Unrestricted electives** 24

MAJOR COURSES:

Additional biological sciences, including:
 Plant Science .. 3
 Soil-water-plant relationships, Soil and Water Science 104 4
 Electives** .. 7

Additional physical sciences, including:
 Physics 3A, 3B, 3C ... 3
 Geology and/or physical geography 4
 Introductory soil and water science, Soil and Water Science 1 and 2 6
 Physics of soil and water systems, Soil and Water Science 101 5
 Soil and water chemistry, Soil and Water Science 102 5
 Water quality, salt control, and reclamation, Soil and Water Science 103 4
 Social sciences and humanities, including economics, 5 units† 19
 Soil and water science electives 9
 Electives† .. 20

Total units for the degree 180

See Sample Program VIII, p. 102. For further details concerning the major,
contact V. V. Rendig, Chairman of the major, 139 Hoagla Hall.

TEXTILE SCIENCE studies the properties, uses, and care of fibers and fabrics;
their use in design; and the socioeconomic aspects involved. The major
combines scientific and creative disciplines, and can lead many different
careers in research and development, technical service, marketing, and product
control. Other employment opportunities are in teaching, Extension Service,
merchandising, design, and journalism. The major is part of the Family and
Consumer Sciences curriculum.

Textiles and clothing are important in our lives and in the world economy.
The use of textiles in clothing and in homes can affect appearance, safety, and
comfort. Our clothing has an impact on the way we act and on the image we
show others.

The major offers two options: one stresses the sciences and the other
emphasizes design. Textiles and clothing courses cover the chemical and physical

*** These elective courses may be taken on a Passed or Not Passed basis.
Qualified students may take Chemistry 1A–7A–7B sequence instead of Chemistry 1A–1B–1C. Such students could then take four additional units of unrestricted electives.
† May be used to satisfy the core social sciences and humanities requirement in part.
‡ May be used in partial satisfaction of the American History and Institutions requirement may be used
in partial satisfaction of the social sciences and humanities requirement.
properties of fibers, fabrics, and finishes; the principles of clothing construction; and the socioeconomic aspects of clothing.

Bachelor of Science Major Requirements

CORE COURSES: (Requirements common to majors in the Family and Consumer Sciences curriculum)

<table>
<thead>
<tr>
<th>Natural Sciences:</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry, one course</td>
<td></td>
</tr>
<tr>
<td>Physics, one course</td>
<td></td>
</tr>
<tr>
<td>Statistics or other mathematics, one course</td>
<td></td>
</tr>
<tr>
<td>One course in each of two biological sciences</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the natural sciences to make a total of **</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social Sciences:</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>One course in each of two of the following: psychology, sociology, and cultural anthropology</td>
<td></td>
</tr>
<tr>
<td>One course: economics or political science †</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the social sciences to make a total of **</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humanities:</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English, 8 units</td>
<td></td>
</tr>
<tr>
<td>One course in each of the following: foreign language, history, literature, and philosophy</td>
<td></td>
</tr>
<tr>
<td>One course: art, design, dramatic art, music, or rhetoric</td>
<td></td>
</tr>
<tr>
<td>Additional courses in the humanities to make a total of **</td>
<td>27</td>
</tr>
</tbody>
</table>

MAJOR COURSES: Major requirements (see below) and electives

The following courses may be used to partially satisfy the above core requirements:

- Biology 1
- Chemistry 1A, 1B, 8A, 8B
- Consumer Economics 141
- Economics 1A, 1B
- Mathematics 13
- Psychology 1A or 10
- Textiles and Clothing 6, 7, 160, 161, 161L, 162, 162L. '2, 197

Plus either Group A or Group B as follows:

Group A:
- Bacteriology 2
- Chemistry, additional 9 units
- Mathematics, additional
- Physics 2A, 2B, 2C

Group B:
- Art 2
- Design 143, 170A, 170B
- Textiles and Clothing 17A, 17B
- Two courses in history of art or design

Total units for the degree: 180

See *Sample Program VA*, p. 99. For further details concerning the major, contact S. Haig Zeronian, Chairman of the major, 154 Home Economics Building.

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These additional courses and other unrestricted electives may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
WILDLIFE AND FISHERIES BIOLOGY prepares students for careers associated with public and private wildlife areas and fisheries. Emphasis is placed upon development of a balanced program in the social, biological, and physical sciences, and maintenance of flexibility in the selection and development of areas of specialization such as ecology, fisheries, or wildlife.

There is an increasing need for graduates with the scientific knowledge essential to development and management of effective fish and wildlife programs. Creatures of the wildland, oceans, and stream areas not only provide recreation in the form of hunting and fishing but also hold considerable promise as an undeveloped, though potentially important, source of nourishment. Some species of wildlife are threatened because they cannot adapt to man's activities, whereas others have thrived so well under man-made changes in the environment that their numbers must be controlled. A reasonable balance between the needs of man and wildlife must be maintained for the sake of future generations.

Students may prepare for careers as wildlife or fishery biologists, animal control specialists, park or forest rangers, land managers or game technicians or, following additional academic preparation, for careers in research and administration of those areas.

Bachelor of Science Major Requirements*

CORE COURSES: (Unit requirements common to majors in the Resource Sciences curriculum)

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological sciences, including biology and botany</td>
<td>11</td>
</tr>
<tr>
<td>Physical sciences, including:</td>
<td></td>
</tr>
<tr>
<td>Chemistry and physics</td>
<td>24</td>
</tr>
<tr>
<td>Mathematics (Mathematics 13, 16A, 16B or 30)</td>
<td>9</td>
</tr>
<tr>
<td>Social sciences and humanities, including:</td>
<td></td>
</tr>
<tr>
<td>English and/or rhetoric (choose from English 1, 2, 3, 4A, 4B, 5; and/or Rhetoric 1, 3)</td>
<td>8</td>
</tr>
<tr>
<td>Upper division social sciences in at least two of the following areas**:</td>
<td>12</td>
</tr>
<tr>
<td>agricultural economics, economics, geography, political science†</td>
<td>16</td>
</tr>
<tr>
<td>Electives approved by adviser‡</td>
<td>6</td>
</tr>
<tr>
<td>Renewable natural resources (Resource Sciences 100, 190)</td>
<td></td>
</tr>
<tr>
<td>Unrestricted electives</td>
<td>24</td>
</tr>
</tbody>
</table>

MAJOR COURSES:

Additional courses to be approved by the Major Committee 70

Total units for the degree ... 180

See Sample Program VIII, p. 102. For further details concerning the major, contact J. M. Boda, Chairman of the major, TB-30.

* For convenience in planning your program the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses will be accepted. Courses shown without parentheses are required.

** These elective courses may be taken on a Passed or Not Passed basis.

† Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the social sciences and humanities requirement.
GROUP MAJOR

A group major may be organized by the student to permit him to pursue a specific academic interest which cannot be accommodated within the framework of an existing major program. Such a major involves interrelated courses of 45 upper division units from two or more areas of study. After preliminary consultation with the Dean of the College about this special program, the student plans his major with an adviser. He then submits the proposed program to the Dean at least four quarters before graduation review. This proposal must include: (1) a description of the special educational aims of the student and (2) a list of the planned courses. For further details concerning the Group Major, contact one of the Associate Deans, 228 Mrak Hall.

AREA REQUIREMENTS

In addition to the College of Letters and Science Area Requirements List on page 134, the faculty of the College of Agricultural and Environmental Sciences has approved the following courses as acceptable in fulfillment of the area requirements of the College. Exceptions to the Letters and Science list are noted below:

English: courses numbered 1, 2, 3, 4A, 4B, and 5, as well as English 26 for foreign students and in some majors Rhetoric 1, 3, may be used to satisfy the English requirement. All other courses except English 25 may be counted toward the humanities requirement.

Social Sciences**

Agricultural Economics except: 18, 49, 106A, 106B, 116
Agricultural Education 188
Applied Behavioral Sciences 18, 47, 151, 160
Design 6, 140A, 140B, 143, 144
Human Development 131, 136, 137, 140

SAMPLE PROGRAMS:

The core and major requirements allow for considerable flexibility, enabling the student to make certain selections in accordance with his academic preparation and his particular interests. Students may satisfy the requirements of the various majors by courses other than the ones listed in the Sample Programs. All requirements of each major may not be included. Students are strongly urged to consult the major adviser in planning their lower division preparatory course work.

SAMPLE PROGRAM I—Agricultural Biosciences

Majors: Agricultural Genetics (p. 68), Animal Science (p. 71), Entomology (p. 79), Plant Protection (p. 87), Plant Science (p. 88)

The following two-year program is offered only as a guide, and does not neces-

** A student majoring in one of the areas listed above may not use any course in that area to satisfy the social sciences and humanities requirement.
sarily include all requirements for each major (for details see majors as noted above).

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Science 1 and Plant Science 1</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Biology 1</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1A, 1B</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>English*</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 2 or Botany 2</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 8A, 8B</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 13, 16A</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>5</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

SAMPLE PROGRAM II—Agricultural Economics and Business Management

Majors: Agricultural Business Management (p. 65), Agricultural Economics (p. 66)

The following two-year program is offered only as a guide, and does not necessarily include all requirements for each major (for details see majors as noted above).

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>English 1 or 2; Rhetoric 1, 3</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Physics 10</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Agriculture elective</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Natural science elective (Biology 10)</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Social science elective (Political Science 1A, 1B)</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 2A, 2B, 2C</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 11A, 11B</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 15, 16A or equivalent</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Agriculture elective</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natural science elective</td>
<td>-</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Social science elective</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

English—8 units to be chosen from: English 1, 2, 3, 4A, 4B, or 5; and/or Rhetoric 1 or 3, in addition to satisfaction of Subject A requirement.
SAMPLE PROGRAM III—Agricultural Education and Development

Majors: Agricultural Education (p. 67), International Agricultural Development (p. 83)

The following two-year program is offered only as a guide, and does not necessarily include all requirements for each major (for details see majors as noted above).

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural science (introductory)</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 1A, 1B</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 8A, 8B</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Economics 1A</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Physics 2A, 2B</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>6</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

SAMPLE PROGRAM IV—Agricultural Science and Management

Major: Agricultural Science and Management (p. 69)

The following two-year program is offered only as a guide, and does not necessarily include all requirements for the major (for details see major as noted above).

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Science 1, 2</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 1A, 1B</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English†</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 13, 16A, 16B</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Plant Science 1, 2</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics 1</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bacteriology 2 or Botany 2</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Biology 1</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 8A, 8B</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Economics 1A, 1B</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Soil and Water Science 1, 2</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

*English—8 units to be chosen from: English 1, 2, 3, 4A, 4B, or 5; in addition to satisfaction of Subject A requirement.
† English—8 units to be chosen from: English 1, 2, 3, 4A, 4B, or 5; and/or Rhetoric 1 or 3.*
SAMPLE PROGRAM V—Family and Consumer Sciences

A. Majors: Dietetics and Nutrition (p. 77), Foods (p. 80), Home Economics (p. 82), Textile Sciences (p. 93)

The following two-year program is offered only as a guide, and does not necessarily include all requirements for each major (for details see majors as noted above).

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 2 and/or humanities requirement</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 1A, 1B</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>or 1A, 1B, 1C</td>
<td>(5)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Economics 1A or other social science</td>
<td>-</td>
<td>-</td>
<td>4-5</td>
</tr>
<tr>
<td>English*</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Psychology 1A, 10, and/or other social science</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Textiles and Clothing 7 or elective</td>
<td>-</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>3-4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>15-16</td>
<td>16</td>
<td>15-17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 2 or other biological science</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Biology 1</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 8A, 8B</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 5 or elective</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Economics 1B and/or other social science</td>
<td>-</td>
<td>4-5</td>
<td>4-5</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C or Physics 10 and electives</td>
<td>3-4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16-17</td>
<td>15-16</td>
<td>15-16</td>
<td></td>
</tr>
</tbody>
</table>

B. Majors: Child Development (p. 75), Design (p. 76)

The following two-year program is offered only as a guide, and does not necessarily include all requirements for each major (for details see majors as noted above).

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art, design and/or other humanities requirement</td>
<td>4-8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Biological science</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 1A</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>English*</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics or statistics</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Psychology 1A, 1B, 1C or 1A and other social science</td>
<td>4-8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology 2 and other social science</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Art and other humanities requirement</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

* English—8 units to be chosen from: English 1, 2, 3, 4A, 4B, or 5.
Biological science 4 - 4
Physics 10 4 - -
Electives or other requirements - 8 4
\[
\begin{array}{ccc}
16 & 16 & 16 \\
\end{array}
\]

SAMPLE PROGRAM VI—Food Science

Major: Food Science (p. 81)

The following two-year program is offered only as a guide, and does not necessarily include all requirements for the major (for details see major as noted above).

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1A, 1B, 1C</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English†</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Food Science 1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>3</td>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
15 & 15 & 15 \\
\end{array}
\]

Sophomore Year

Bacteriology 2	-	5	-
Chemistry 5	-	-	4
Chemistry 8A, 8B	3	3	-
Mathematics 16A, 16B, 16C	3	3	3
Physics 2A, 2B, 2C	3	3	3
Electives or other requirements	6	1	5
\[
\begin{array}{ccc}
15 & 15 & 15 \\
\end{array}
\]

SAMPLE PROGRAM VII—Quantitative Biology

A. Major: Biochemistry (p. 74)

The following two-year program is offered only as a guide. Student programs are developed on an individual basis, courses being determined by student's career goals.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A, 1B, 1C</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English†</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 3A, 3B, 3C</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
16 & 16 & 15 \\
\end{array}
\]

† English—8 units to be chosen from: English 1, 2, 3, 4A, 4B, or 5; and/or Rhetoric 1 or 3.
Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 2</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Biology 1</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 5</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 112A, 112B</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

| Total | 15 | 15 | 15 |

B. Major: Nutrition (p. 84)

The following two-year program is offered only as a guide. Student programs are developed on an individual basis, courses being determined by student’s career goals.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A, 1B, 1C</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English†</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 3A, 3B, 3C</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total | 15 | 15 | 15 |

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 2</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Biology 1</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 8A, 8B, 9</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physiology 101, 101L</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 15 | 15 | 15 |

C. Major: Physiology (p. 86)

The following two-year program is offered only as a guide. Student programs are developed on an individual basis, courses being determined by student’s career goals.

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1A, 1B, 1C</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English†</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 16A, 16B, 16C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 | 14 |

† English—8 units to be chosen from: English 1, 2, 3, 4A, 4B, or 5; and/or Rhetoric 1 or 3.
Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 5, 8A, 8B</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 3A, 3B, 3C</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Physiology 101, 101L</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Electives or other requirements</td>
<td>4</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

SAMPLE PROGRAM VIII—Resource Sciences

Major: Atmospheric Science (p. 73), Park and Recreation Administration (p. 85), Range Management (p. 90), Renewable Natural Resources (p. 91), Soil and Water Science (p. 92), Wildlife and Fisheries Biology (p. 94)

The following two-year program is offered only as a guide, and does not necessarily include all requirements for each major (for details see major as noted above).

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1A, 1B</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>English*</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics§†</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Plant Science 1</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Required courses and electives</td>
<td>3</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 2</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chemistry 5 or 8A, 8B</td>
<td>(3-4)</td>
<td>(3)</td>
<td>(3-4)</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C†</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Soil and Water Science 1, 2</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Required courses and electives</td>
<td>(0-4)</td>
<td>(6-9)</td>
<td>(6-9)</td>
</tr>
<tr>
<td>Total</td>
<td>14-19</td>
<td>15-18</td>
<td>14-16</td>
</tr>
</tbody>
</table>

SAMPLE PROGRAM IX—Preforestry

A. Preparation for Major: General Forestry (p. 89)

Suggested two-year program:

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A, 1B</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>English*</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

*English—8 units to be chosen from: English 1, 2, 3, 4A, or 5; and/or Rhetoric 1 or 3; in addition to satisfaction of Subject A requirement.

† Atmospheric Science major recommends Mathematics 21A, 21B, 21C, 22A, 22B, 22C; and Physics 4A, 4B, 4C, 4D. Renewable Natural Resources requires Physics 2A, 2B, 3A, 3B.

‡ Mathematics—9 units chosen from 13, 15, 16A, 16B or 16C, except for Atmospheric Science majors.
<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Botany 2</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Economics 1A, 1B</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Engineering 1</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Geology 1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics 13, 16A, 16B</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

B. Preparation for Major: Wood Science and Technology (p. 89)

Suggested two-year program:

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A, 1B, 1C</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 4A, 4B</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Humanities and social science§</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 8, 9</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 22A, 22B, 22C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physics 4C, 4D, 4E</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Biology 1</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Humanities and social science</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

§ A minimum of 15 units selected by the students from the following courses, including at least two courses from one of the following departments: Anthropology 1, 2, 3; Art 1A, 1B, 1C, 1D; English; History 17A, 17B; Philosophy 6, 12A, 12B; Psychology 1A, 33.
COLLEGE OF ENGINEERING

Engineering is the profession in which a knowledge of the mathematical and natural sciences gained by study, experience and practice is applied with judgment to develop ways to utilize, economically, the materials and forces of nature for the benefit of mankind.

The University's curricula in engineering emphasize design, development, and research. Mathematical analysis, the basic sciences, and design are stressed in preparing the student for a professional engineering career.

Engineering curricula on the Davis campus include aerospace, agricultural, chemical, civil, electrical, materials science, and mechanical engineering. Each curriculum is a four-year undergraduate program leading to the Bachelor of Science degree. Graduate programs leading to the degrees Master of Engineering, Doctor of Engineering, Master of Science, and Doctor of Philosophy are offered.

Admission to Freshman Standing

General requirements for admission to the University are given on page 17.

High School Preparation for Engineering

It is important that students who plan to study engineering at the Davis campus include in their high school programs the following subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra*</td>
<td>2</td>
</tr>
<tr>
<td>Plane geometry*</td>
<td>1</td>
</tr>
<tr>
<td>Trigonometry*</td>
<td>½</td>
</tr>
<tr>
<td>Chemistry or physics (both are desirable)</td>
<td>1</td>
</tr>
</tbody>
</table>

These subjects are prerequisite to certain basic courses in the freshman engineering program. A student who is admitted without all this preparation will be required to make up equivalent work while in college. As a result, he probably will be delayed in advancement to upper division status and in graduation.

Advancement to Upper Division Standing

The student who enters the College of Engineering in lower division standing is eligible for advancement to the upper division when he completes the lower division program with an overall grade-point average of at least 2.0.

Admission to Upper Division Standing

To qualify for admission to the College of Engineering in upper division standing, the applicant must have completed at least 56 semester units (or 84 quarter units), including the following subjects, with an overall C (2.0) average.

Minimum number of semester units

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic geometry and calculus</td>
<td>12</td>
</tr>
<tr>
<td>Chemistry (for engineering and science students)</td>
<td>8</td>
</tr>
</tbody>
</table>

* Or equivalent integrated courses covering the same subject material.
Physics (for engineering and science students) 10
Engineering (subjects such as graphics, properties of materials, surveying, engineering measurements, statics, and circuit theory) ... 10
Humanistic-social studies (must be selected from a list of course groups approved by the Committee on Undergraduate Study) 6
Unspecified subjects (6 units may be in humanistic-social studies; the remaining units should be in engineering, science, and mathematics, and may include units in mathematics, physics, chemistry and engineering in addition to the minimum numbers specified above. Students preparing for the Chemical Engineering curriculum at Davis should take in their sophomore year quantitative analysis and one course in organic chemistry with laboratory. None of these units may be in military science or physical education) .. 10

\[\text{Minimum number of semester units:} \quad 56 \]

The student admitted to upper division standing on this basis will not be required to take additional lower division courses except those which are prerequisite to upper division courses in his curriculum or are specified requirements for the B.S. degree.

Note that the above subject requirements are minimum. Students who enter with only 56 semester units will probably require more than six quarters to complete an upper division engineering curriculum in the University.

With certain minor exceptions noted in the lower division program, students registered in the College of Engineering are not permitted to enroll in upper division engineering courses until they have been admitted to upper division standing.

The Bachelor of Science Degree

GENERAL UNIVERSITY REQUIREMENTS

The degree of Bachelor of Science is awarded to those candidates who satisfy the requirements of the University (pages 32 to 34) in regard to:

- Subject A
- American History and Institutions
- Scholarship
- Residence
- Application for Degree Candidacy

COLLEGE OF ENGINEERING REQUIREMENTS

The candidate for the degree of Bachelor of Science in Engineering must:

1. Satisfactorily complete the subjects and units prescribed in one of the engineering curricula.
2. Attain a grade C average in all courses of upper division level taken in
satisfaction of required technical subjects and technical electives in the curriculum.

HONORS WITH THE BACHELOR’S DEGREE

Honors at graduation may be awarded to students who achieve distinguished scholarship records in all work undertaken in the University, as attested by recommendation of the Committee on Undergraduate Study of the College of Engineering. Students who display marked superiority may be awarded highest honors at graduation.

FACULTY ADVISERS AND STUDY-LIST REQUIREMENTS

Upon admission to the College, each student is assigned to a faculty adviser and is under the guidance of the Dean of the College of Engineering and the Committee on Undergraduate Study. All programs of study are arranged in conference with the adviser and must be approved by him. However, the student is held responsible for planning his program and for the satisfactory completion of graduation requirements. Questions regarding deviations from a regular program of study should be discussed with the adviser and resolved at the earliest possible date.

A student who gives full time to University responsibilities is expected to enroll for the number of units specified in the curriculum in which he intends to graduate. Students may not enroll for more than 19 units or less than 12 units, exclusive of physical education, without the approval of the Dean of the College.

Of the total units required for the Bachelor of Science degree, at least the final 45 units characteristic of the curriculum selected must be completed while the student is registered in the College of Engineering.

HUMANISTIC-SOCIAL STUDIES

The curricula, in conformance with the regulations of the College of Engineering, include a minimum of 31 quarter units of study in the humanities and social sciences (exclusive of military science, physical education, Subject A, and any matriculation subjects). These studies are intended to help the student gain an understanding and appreciation of areas of learning other than engineering and the physical sciences. The 31 units of Humanistic-Social Studies must be selected from a list of courses or course groups approved by the Committee on Undergraduate Study and must include one or more specified courses in English and/or rhetoric as approved by the Faculty of the College of Engineering. At least 8 of the 31 units of Humanistic-Social Studies must be completed after the student has received credit for 84 units of college work.

COURSES TAKEN FOR PASSED OR NOT PASSED GRADE

An engineering student in good standing, including entering students, may enroll in one elective course each quarter for a Passed or Not Passed grade, subject to the following conditions:
1. The study list must total at least 12 units.
2. Courses specified (required) in the curriculum may not be taken for a Passed/Not Passed grade. (English 1, 3, or Rhetoric 1 may not be taken Passed/Not Passed.)
3. Units earned with Passed grade are counted toward the degree, but the P or NP grade is disregarded in computing the grade-point average.
4. A grade of Passed shall be awarded only for work which would otherwise qualify for grade A, B, or C.

To enroll for a course on this basis the Engineering student must file a special application form with the Undergraduate Office, College of Engineering.

CREDIT BY ADVANCED PLACEMENT EXAMINATIONS

University credit allowed for CEEB Advanced Placement Examinations will be counted in partial fulfillment of the requirements for the B.S. degree in Engineering to the extent that the UCD course equivalences (see page 132) satisfy parts of the curriculum.

Students should note carefully that duplicate credit may not be earned in courses for which Advanced Placement Credit has been allowed.

TECHNICAL ELECTIVES

Each upper division program includes a specified number of technical elective units, and lists suggested courses that may be taken as technical electives. With the adviser's approval, other appropriate upper division courses in engineering, science, or mathematics may be taken in partial satisfaction of the technical elective requirement. A student who wishes to combine two or more technical areas may arrange such a program with the help of his adviser. Students who expect to undertake graduate study should elect additional courses in mathematics, the sciences, and basic engineering subjects as early as possible in their undergraduate program. All students should plan their entire upper division program, at least tentatively, early in the junior year. Careful attention should be given to course sequences so that prerequisite courses will be taken at the proper time.

Special Study Courses numbered 198 and 199 may not be taken for credit until the student has completed at least 84 units of credit toward the B.S. degree.

Lower Division Program

The lower division program is substantially the same for all engineering curricula except Chemical Engineering. It provides the beginning student with the fundamentals of science, mathematics, and engineering that are essential as preparation for the engineering sciences and professional studies of the upper division.

Courses required in the lower division program are listed below. Copies of a number of different program arrangements that have been worked out to fit various situations are available to the student through his adviser or in the College office. Students who wish to plan their own programs can do so by utilizing any combination of quarters listed in the last column.
Courses Common to All Curricula

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Quarter Usually Taken*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A–1B–1C (General Chemistry)</td>
<td>15</td>
<td>1–2–3 or 2–3–4</td>
</tr>
<tr>
<td>Engineering 3 (Introduction to Engineering Systems)</td>
<td>3</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Engineering 5A (Engineering Applications of Computers)</td>
<td>3</td>
<td>2, 3, or 5</td>
</tr>
<tr>
<td>Engineering 35 (Statics)</td>
<td>3</td>
<td>4 or 5</td>
</tr>
<tr>
<td>Mathematics 11** (Analytic Geometry)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 21A–21B–21C (Calculus)</td>
<td>9</td>
<td>1–2–3</td>
</tr>
<tr>
<td>Mathematics 22A (Linear Algebra)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics 22B (Differential Equations)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 22C (Vector Analysis)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Physics 4A–4B–4C–4D–4E (General Physics)</td>
<td>20</td>
<td>2–3–4–5–6</td>
</tr>
</tbody>
</table>

Humanities and social sciences:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Quarter Usually Taken*</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 1 (Expository Writing)</td>
<td>4</td>
<td>Varies</td>
</tr>
<tr>
<td>English 3 (Introduction to Literature) or Rhetoric 1</td>
<td>4</td>
<td>Varies</td>
</tr>
<tr>
<td>(Introduction to Public Speaking)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective (in humanities and social sciences)</td>
<td>4</td>
<td>Varies</td>
</tr>
</tbody>
</table>

Total: 76

Additional Courses in Aerospace, Agricultural, Civil, Electrical, Materials Science, and Mechanical Engineering Curricula

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Quarter Usually Taken*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 4 (Engineering Graphics in Design)†</td>
<td>3</td>
<td>1, 2, or 3</td>
</tr>
<tr>
<td>Engineering 17 (Circuits)§</td>
<td>3</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Engineering 45 (Properties of Materials)</td>
<td>4</td>
<td>4 or 6</td>
</tr>
<tr>
<td>Mathematics 24 (Infinite Series)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Elective†</td>
<td>3</td>
<td>Varies</td>
</tr>
</tbody>
</table>

Total: 15

Additional Courses in Chemical Engineering Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Quarter Usually Taken*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 5 (Quantitative Analysis)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 112A (Organic Chemistry)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Engineering 102A (Dynamics)§</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Humanities and social sciences§</td>
<td>4</td>
<td>Varies</td>
</tr>
</tbody>
</table>

Total: 16

* Students majoring in Chemical Engineering generally use the last choice listed for each course.

** Students who have had analytic geometry in high school will substitute 2 units of free electives for Mathematics 11.

† Students majoring in Electrical Engineering take 3 units of humanities and social sciences in place of Engineering 4.

§ Students majoring in Civil Engineering take Civil Engineering 10 in place of 3 units of electives, usually in quarter 3 or 6.

§ These courses are included in the upper division programs of the other curricula.
Upper Division Curricula

The upper division curricula in the several engineering areas (Aerospace, Agricultural, Chemical, Civil, Electrical, Materials Science, and Mechanical) are described in the following pages. Several courses required in the first quarter of the junior year are the same in most of the programs. The total undergraduate curriculum normally requires twelve quarters of study and leads to the Bachelor of Science degree.

AEROSPACE ENGINEERING CURRICULUM (183 Units)

Aerospace engineering is the application of scientific knowledge to flight in the atmosphere and beyond. Specific objectives are the design, development, and manufacture of airplanes, helicopters, missiles, rockets, satellites, and space stations. The undergraduate curriculum combines the study of basic engineering disciplines with courses in aerodynamics, guidance, propulsion, and structures. A broad range of technical elective courses is available from which the student may select subjects of a more specialized nature such as aeronautics, aerospace structures, and astronautics.

The curriculum is organized to develop the student's ability to apply basic engineering principles in the design of engineering systems. This training is intended to prepare him for technical leadership in this rapidly changing field.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 100</td>
<td>2</td>
<td>Engineering 101</td>
<td>2</td>
</tr>
<tr>
<td>Engineering 102A</td>
<td>3</td>
<td>Engineering 102B</td>
<td>3</td>
</tr>
<tr>
<td>Engineering 105A</td>
<td>3</td>
<td>Engineering 103A</td>
<td>3</td>
</tr>
<tr>
<td>Humanities–Social Sciences</td>
<td>4</td>
<td>Engineering 104A</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Engineering 105B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 186</td>
<td>4</td>
<td>Engineering 190</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering 150</td>
<td>3</td>
<td>Mechanical Engineering 123A</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering 127</td>
<td>3</td>
<td>Mechanical Engineering 128</td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities–Social Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

Suggested technical electives are: Applied Science 115, 135A, 144; Civil Engineering 131, 133, 135; Electrical Engineering 110A, 111A, 112A, 130A, 157A, 157B; Engineering 106, 180, 183, 187, 188; Mechanical Engineering 124, 125, 130, 135, 185A, 185B.

AGRICULTURAL ENGINEERING CURRICULUM (180 Units)

Agricultural engineers apply engineering principles to problems of food and fiber production, storage, and processing; animal and plant environment; agri-
cultural wastes management; soil and water control and conservation; and other phases of agriculture and related industries. Agricultural engineering is unique in that it requires a general understanding and appreciation of the biological, soil-management, and environmental aspects of agriculture in addition to a thorough knowledge of basic and applied engineering.

The upper division program includes fundamental engineering courses in mechanics, fluid mechanics, thermodynamics, and electronics. It also contains a substantial number of technical electives, thus permitting the student to choose courses appropriate for specialization in agricultural processing, power and machinery, structures and environment, or soil and water engineering.

Agricultural processing involves the transformation of raw agricultural products into different, more usable, or more valuable forms or materials. The fundamental concepts of drying, sorting, cleaning, handling, storage, size reduction, and heat and energy transfer, as well as the biological and physical characteristics of agricultural materials, are considered as factors in research, development, and design for processing systems and operations.

The power and machinery area includes the design, development, and application of field machines and power units for soil preparation, crop production, and related activities. The economic aspects of mechanization and the effects of machines on soils and crops are considered. Procedures for developing machine components and synthesizing them into an engineering system are studied.

Engineering in structures and environment includes the design of agricultural structures and analysis of their functional effectiveness, efficiency of space and labor utilization, and economic value to an overall enterprise. The structure is considered as a means of providing an optimum environment for animal production, product storage and conditioning, or crop production in greenhouses. Agricultural wastes management, environment modification, and micrometeorology may also be studied.

Soil and water engineering is concerned with those aspects of soil and water that depend upon a blending of agricultural and environmental sciences with engineering. The planned development, use, and management of agricultural land and water resources involves consideration of new concepts in hydraulics, hydrology, irrigation and drainage systems, water and soil quality, and plant-soil-water relations. This area of specialization is administered jointly by the departments of Agricultural Engineering and Water Science and Engineering.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 102A</td>
<td>3</td>
<td>Engineering 100</td>
<td>2</td>
</tr>
<tr>
<td>Engineering 104A</td>
<td>3</td>
<td>Engineering 101</td>
<td>2</td>
</tr>
<tr>
<td>Engineering 105A</td>
<td>3</td>
<td>Engineering 103A</td>
<td>3</td>
</tr>
<tr>
<td>Humanities–Social</td>
<td>3</td>
<td>Engineering 104B</td>
<td>3</td>
</tr>
<tr>
<td>Sciences</td>
<td>3</td>
<td>Technical Electives*</td>
<td>5</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

*The technical electives must include at least 18 units from the courses whose numbers are in heavy type in the list of suggested technical electives. These 18 units must include at least 3 units in each of three of the four areas. In addition, the technical electives must include at least two courses from the list of suggested Agricultural and Biological Sciences electives, one of which must be an upper division course.
Senior Year Fall Winter Spring
Mechanical Engineering 118 or Civil Engineering 131 3 Technical Electives* 8 Humanities-Social 3
Technical Electives* 7 Humanities-Social 4 Sciences 4
Humanities-Social 4
Sciences 14

Suggested technical electives are:

Agricultural Processing—Agricultural Engineering 132, 141; Applied Science 115; Chemistry 109A; Electrical Engineering 150; Engineering 105B, 186; Food Science and Technology 100; Mathematics 105A; Mechanical Engineering 185A, 185B.

Power and Machinery—Agricultural Economics 140; Agricultural Engineering 110, 114, 116, 117, 118, 141; Applied Science 115; Engineering 105B, 184; Mathematics 105A; Mechanical Engineering 114, 115, 121.

Soil and Water—Applied Science 115; Civil Engineering 141, 142, 144; Soil and Water Science 2, 101; Water Science 110A, 110B, 141, 160.

Structures and Environment—Agricultural Engineering 107, 125, 126; Applied Science 115; Atmospheric Science 20, 123, 124; Civil Engineering 132A, 132B, 132C, 133, 134, 142, 148, 171; Engineering 186.

Agricultural and Biological Sciences—Agronomy and Range Science 100; Animal Science 2; Biology 10; Botany 2; Plant Science 2, 112; Physiology 149; Soil and Water Science 2; Vegetable Crops 100, 101.

CHEMICAL ENGINEERING CURRICULUM (182 Units)

Chemical engineering is concerned with application of the principles of chemistry and engineering to the production of useful products. The products of the process industries range from antibiotics to zirconium, from petroleum to plutonium, from agricultural chemicals and foods to synthetic plastics. Chemical engineers are increasingly concerned with chemical and engineering processes in animals and humans. Preparation for careers in chemical engineering requires an understanding of both engineering and chemical principles to develop proficiency in conceiving, designing, and operating new processes.

The chemical engineering curriculum has been planned to give the student a sound knowledge of engineering and chemical sciences so that he may achieve competence in treating not only current technical problems but also those that will arise in the technologies of the future. In the junior year, attention is focused on basic engineering courses, particularly thermodynamics, fluid mechanics, and energy and mass transfer. In the senior year these fundamentals are drawn together and applied in process design and process dynamics. The program is strengthened and broadened with introductory courses in the electrical and mechanical sciences.

* The technical electives must include at least 18 units from the courses whose numbers are in heavy type in the list of suggested technical electives. These 18 units must include at least 3 units in each of three of the four areas. In addition, the technical electives must include at least two courses from the list of suggested Agricultural and Biological Sciences electives, one of which must be an upper division course.
The curriculum includes several technical electives which allow for special training in an area of particular interest. For example, Davis offers a unique opportunity for specialization in biochemical, biomedical and environmental engineering because of the extensive staff and facilities available in the biological and food sciences. By including elective courses from the Bacteriology, Biochemistry, Civil Engineering, and Food Science and Technology Departments, the student can obtain excellent preparation for graduate work or industrial employment in food processing and related biological fields.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 103A ... 3</td>
<td>Engineering 103B ... 3</td>
<td>Engineering 17 ... 3</td>
<td>Engineering 186 ... 4</td>
</tr>
<tr>
<td>Chemical</td>
<td>Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering 151 ... 3</td>
<td>Engineering 152A ... 3</td>
<td>Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Chemistry 110A ... 3</td>
<td>Chemistry 110B ... 3</td>
<td>152B 3</td>
<td>Chemistry 110C ... 3</td>
</tr>
<tr>
<td>Chemistry 112D ... 3</td>
<td>Technical Elective* ... 3</td>
<td></td>
<td>Technical Elective* ... 3</td>
</tr>
<tr>
<td>Humanities–Social Sciences ... 4</td>
<td>Social Sciences ... 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Year</td>
<td>Chemical Engineering ... 3</td>
<td>154B 3</td>
<td>Chemical Engineering ... 2</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Chemical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154A ... 2</td>
<td>Technical Elective* ... 2</td>
<td>155A 2</td>
<td>Chemical Engineering ... 3</td>
</tr>
<tr>
<td>Technical Elective* ... 2</td>
<td>Technical Elective* ... 6</td>
<td></td>
<td>Chemical Engineering ... 3</td>
</tr>
<tr>
<td>Humanities–Social Sciences ... 7</td>
<td></td>
<td></td>
<td>Technical Elective* ... 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CIVIL ENGINEERING CURRICULUM (180 Units)

Civil Engineering is devoted to the improvement of the human environment for the purpose of making the activities of people productive, safe, and enjoyable, and providing aesthetically pleasing surroundings. The profession contributes directly to humanity’s continued health and well-being by the design of systems that provide plentiful supplies of healthful and potable water, freedom from disease-carrying wastes; land-, water-, and air-transportation; housing and other structures; flood control; and large recreational facilities. Civil engineers plan and design all or major portions of these systems that so enhance the quality of human life.

The programs in civil engineering include Environment Engineering, Structural Engineering and Mechanics, and Water Resources Engineering. These options are interrelated, and flexible programs are developed for individual students. Every option is designed to provide educational preparation for real and significant contributions to humanity.

* It is strongly recommended that two of the technical electives be chosen from Chemistry 111A, 112E; Applied Science 115; Mathematics 118A, 118B, 130A, 130B. Other suggested technical electives are Bacteriology 2; Biochemistry 101A, 101B; Biology 1, 4; Chemistry 121, 124, 125, 131, 150A, 150B; Civil Engineering 142, 148; Electrical Engineering 110A, 110B, 112A, 130A, 130B; Food Science and Technology 101, 103, 104A, 104B, 106; Mathematics 119, 127A, 127B, 127C, 128A, 128B, 128C, 131A, 131B, 131C, 132A, 132B, 185A, 185B; Mechanical Engineering 123, 125A, 125B; Physics 113A, 113B, 181, 189A, 129B, 140A, 140B.
Environment Engineering
The programs are concerned with improving and maintaining the qualities of the air, land, and water environment that affect the health and well-being of man in the face of increasing population and expanding industrial activity. The program depends on a firm basic science and civil engineering foundation and emphasizes the design of waterborne, solid, and airborne waste management systems, the design of potable water-supply systems, and environment monitoring.

Structural Engineering and Mechanics
The programs are concerned with the conception, design, and construction of structures. Structural engineering involves buildings, bridges, highways, dams, economics of the construction industry, and construction practices. Consideration is given to the response of structures not only to gravity loading but also to earthquake, wind, and blast loading. Structural mechanics emphasizes the more analytical aspects of structural engineering. Principles of structural analysis applicable to structures of all kinds, from office buildings to space vehicles, are examined. Special topics include the mechanics of deformable bodies and the theory of elasticity.

Water Resources Engineering
The programs include Hydraulics, Irrigation and Drainage, and Water Resources Systems Design. Hydraulics is concerned with flow in pipe and open-channel water-distribution systems and through hydraulic structures, and depends upon a strong foundation in fluid mechanics, systems analysis, and hydrology. Irrigation and Drainage provides a unique program aimed at the solution of water-oriented agricultural problems by emphasizing the application of hydrologic sciences, hydraulic engineering, agricultural sciences, and system analysis to the design and operation of irrigation and drainage projects. Special topics include study of water-soil-plant relations, water rights, land preparation and water application, water quality, and soil and water pollution. Water Resources Systems Design is concerned with the comprehensive development of water resources for multiple use. Emphasis is placed on principles of planning, analysis, and engineering design and operation as related to the water needs and wastes of industry, agriculture, recreation, and other activities. The program may include elective courses in the geography, economics, and politics of water resources.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>100 ... 2</td>
<td>Engineering 102B ... 3</td>
<td>Engineering 103B ... 3</td>
</tr>
<tr>
<td>Engineering</td>
<td>101 ... 2</td>
<td>Engineering 103A ... 3</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Engineering</td>
<td>102A ... 3</td>
<td>Engineering 104B ... 3</td>
<td>131 ... 3</td>
</tr>
<tr>
<td>Engineering</td>
<td>104A ... 3</td>
<td>Engineering 105A ... 3</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Geology</td>
<td>3</td>
<td>Civil Engineering</td>
<td>132B ... 3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>132A ... 3</td>
<td>Civil Engineering 171 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Humanities–Social</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sciences ... 8</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering 142 3</td>
<td>Engineering 106 3</td>
<td>Engineering 190 3</td>
</tr>
<tr>
<td>Civil Engineering 172 2</td>
<td>Civil Engineering 148 3</td>
<td>Technical Electives 8</td>
</tr>
<tr>
<td>Technical Elective 5</td>
<td>Humanities–Social 8</td>
<td>Humanities–Social 4</td>
</tr>
<tr>
<td>Humanities–Social Sciences 4</td>
<td>Sciences 8</td>
<td>Sciences 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Technical Electives:

Because of the direct concern of professional civil engineering for the quality of human life, civil engineering majors are encouraged to include courses such as Economics 125 and 130, Park and Recreation Administration 110, and Political Science 166, 168, and 186 among their technical electives. Other technical electives of possible interest to majors in all three of the programs include Applied Science 115, Engineering 180, Mechanical Engineering 175, and Sociology 141 and 170. Additional suggested courses for students in each of the options are as follows:

Environment Engineering: Agricultural Engineering 106; Bacteriology 2; Biochemistry 101A, 101B; Chemistry 8A, 110A, 110B; Civil Engineering 145, 146, 147, 149; Mechanical Engineering 185A, 185B.

Structural Engineering and Mechanics: Agricultural Engineering 125, 126; Civil Engineering 132C, 133, 134, 135, 137, 138, 160, 173, 174; Engineering 122, 183, 184, 187, 188; Mathematics 185A, 185B.

Water Resources Engineering: Chemistry 5; Civil Engineering 141, 143, 144, 145, 146; Electrical Engineering 112A, 150; Mechanical Engineering 185A, 185B; Soil and Water Science 103; Water Science 10, 110A, 116, 141, 150, 160.

ELECTRICAL ENGINEERING CURRICULUM (180 Units)

Present-day electrical engineering embraces a broad spectrum of disciplines based upon the physical and mathematical sciences. Electrical engineering and electronics are being applied to such diversified fields as automation and control, information processing and computers, micro-miniaturization of circuits and components, biomedical procedures, communications and microwaves, and stimulated energy emission by means of quantum effects (masers and lasers).

The course of study in electrical engineering allows the student maximum freedom to develop himself in special technical areas of his choice, while required courses insure his attainment of a broad background in basic electrical engineering. The common engineering core courses of the lower division provide a strong foundation for the specialized topics to follow. In addition, a specified group of upper division courses in network theory, field theory, systems, electronics, and communications theory prepares the student for the technical electives of his senior year.

Technical electives are a substantial part of the upper division curricula and may be used to develop a specialty within the general catalog program. They may be selected from a wide range of courses in electrical engineering, other
engineering fields, mathematics, and the physical and biological sciences. Typical fields of specialization are information and data processing, control theory, computers, communications, electronics, biomedical engineering, system theory, solid state, and high-frequency phenomena and devices. Students who are particularly interested in specializing in the computer area may take the Computer Science Option detailed below.

The variety of course offerings permits the student to prepare himself for graduate study in electrical engineering, or to stop at the bachelor level with a sound background in his specialty. In the electrical engineering curriculum close correlation between theory and experiment is emphasized.

Computer Science Option

The Computer Science Option in electrical engineering is specifically designed for students who are contemplating work in the area of digital systems design, automata theory, artificial intelligence and programming languages, and the like. It is imperative that the student intending to take the Computer Science Option in electrical engineering consult with his faculty adviser well in advance and prepare a program which will meet his specific interest.

Electrical Engineering Sample Program

A typical upper division program in electrical engineering, including the Computer Science Option, is listed below:

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 100</td>
<td>2</td>
<td>Engineering 103A*</td>
<td>16</td>
</tr>
<tr>
<td>101</td>
<td>2</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>102A</td>
<td>3</td>
<td>Electrical</td>
<td>15</td>
</tr>
<tr>
<td>104A*</td>
<td>3</td>
<td>Engineering 112A</td>
<td>15</td>
</tr>
<tr>
<td>Electrical</td>
<td>3</td>
<td>Electrical</td>
<td>15</td>
</tr>
<tr>
<td>130A</td>
<td>3</td>
<td>Engineering 130B*</td>
<td>15</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Humanities-Social Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering 110B</td>
<td>3</td>
<td>Engineering 146</td>
<td>12</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td>Technical Electives**</td>
<td>15</td>
</tr>
<tr>
<td>Engineering 111B**</td>
<td>2</td>
<td>Mathematics or</td>
<td>12</td>
</tr>
<tr>
<td>Technical Electives**</td>
<td>6</td>
<td>Technical Electives**</td>
<td>15</td>
</tr>
<tr>
<td>Humanities-Social</td>
<td></td>
<td>Sciences</td>
<td></td>
</tr>
<tr>
<td>Sciences</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Students in the Computer Science Option take Electrical Engineering 172, 174 and a choice of Applied Science 115, Electrical Engineering 176, or Mathematics 129, in place of Engineering 103A, 104A, and Electrical Engineering 130B.

** Students in the Computer Science Option take 4 units of technical electives in place of Electrical Engineering 111B and 133.

*** Suggested technical electives for electrical engineering students are: Applied Science 115;
MATERIALS SCIENCE CURRICULUM (181 Units)

Materials science is a new discipline which applies the basic principles of physics and chemistry to the understanding of the structure, properties, and behavior of metals and other materials. The modern engineering demand for materials in supersonic transport, deep submersion vehicles, aerospace equipment and nuclear reactors has broadened the search for new and improved materials with capabilities well beyond those attainable with common metals and alloys. The development of these materials and the understanding of materials presently in use demands a thorough knowledge of the basic engineering and scientific principles such as structure and diffraction, elastic and plastic behavior of solids, thermodynamics, reaction kinetics, and physics of solids.

The undergraduate program provides the materials engineer with the background for activities in research, processing, and utilization of materials and also preparation for graduate work in materials science. The curriculum can lead to challenging work in government and industrial research laboratories, the aeronautical industries, and a wide range of production industries involving use of materials in critical applications such as in corrosive or high vacuum atmospheres, at extreme temperatures, or where subject to neutron irradiation.

The materials science curriculum is based on a common core of courses, basic to engineering, taken during the first two years. The third and fourth years are devoted to the further study of fundamental subjects and the introduction of specific materials courses. Electives are available in the fourth year so that students with broad interests can combine materials science with work in another engineering curriculum.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering 102A ... 3</td>
<td>Engineering 100 ... 2</td>
<td>Engineering 103A ... 3</td>
<td></td>
</tr>
<tr>
<td>Engineering 104A ... 3</td>
<td>Engineering 101 ... 2</td>
<td>Technical Electives ... 6</td>
<td></td>
</tr>
<tr>
<td>Engineering 105A ... 3</td>
<td>Engineering 130 ... 4</td>
<td>Humanities-Social</td>
<td></td>
</tr>
<tr>
<td>Technical Elective ... 3</td>
<td>Technical Elective ... 3</td>
<td>Sciences ... 7</td>
<td></td>
</tr>
<tr>
<td>Elective ... 3</td>
<td>Humanities-Social</td>
<td>Sciences ... 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering 123A ... 2</td>
<td>Mechanical Engineering 123B ... 2</td>
<td>Engineering 188 ... 4</td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering 142 ... 3</td>
<td>Mechanical Engineering 140 ... 4</td>
<td>Technical Electives ... 6</td>
<td></td>
</tr>
<tr>
<td>Physics 104A ... 3</td>
<td>Electrical Engineering</td>
<td>Humanities-Social</td>
<td></td>
</tr>
<tr>
<td>Technical Elective ... 3</td>
<td>150 ... 3</td>
<td>Sciences ... 4</td>
<td></td>
</tr>
<tr>
<td>Humanities-Social</td>
<td>Physics 104B ... 3</td>
<td>Technical Elective ... 3</td>
<td></td>
</tr>
<tr>
<td>Sciences ... 4</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested technical electives for students in the Computer Science Option are the same as those listed above for all electrical engineering students. In addition Engineering 103A, 104A; Electrical Engineering 130B, 133 may be taken as technical electives. Specific programs should be planned in consultation with the student's faculty adviser.

MECHANICAL ENGINEERING CURRICULUM (183 Units)

The modern mechanical engineer uses basic science in the design and manufacture of complex engineering systems. This requires the application of physical and mechanical principles in the development of machines, energy conversion systems, materials, and equipment for guidance and control. Preparation for this broad field of engineering requires a thorough knowledge of mathematics, physics, chemistry, fluid mechanics, thermodynamics, heat transfer, mass transfer, electricity, manufacturing processes, properties of materials, and economics.

The mechanical engineering curriculum is based on a common core of engineering courses taken in the first two years. The third year is spent in further study of fundamental courses, and in the fourth year the student may tailor his studies to his own interests by selecting courses in the fields of heat transfer, fluid mechanics, thermodynamics, mechanical design, or material science. With the range of electives available, the student can prepare himself for graduate study in mechanical engineering, or obtain a broad background for entering engineering practice at the bachelor’s level.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>Engineering</td>
<td>Engineering</td>
<td>Engineering</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>103B</td>
<td></td>
</tr>
<tr>
<td>102A</td>
<td>102B</td>
<td>104B</td>
<td>Mechanical</td>
</tr>
<tr>
<td>105A</td>
<td>103A</td>
<td>111</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Humanities–Social</td>
<td>104A</td>
<td>121</td>
<td>Humanities–Social</td>
</tr>
<tr>
<td>Sciences</td>
<td>105B</td>
<td></td>
<td>Sciences</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>Engineering</td>
<td>Mechanical</td>
<td>Engineering</td>
</tr>
<tr>
<td>186</td>
<td>190</td>
<td>123B</td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td>Mechanical</td>
<td>Technical Electives</td>
<td>Technical Electives</td>
</tr>
<tr>
<td>150</td>
<td>123A</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Technical Electives</td>
<td>Humanities–Social</td>
<td>Humanities–Social</td>
</tr>
<tr>
<td>118</td>
<td>Sciences</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Suggested technical electives are:

Graduate Study

The Departments of Agricultural Engineering, Applied Science (Davis-Livermore), Chemical Engineering, Civil Engineering, Electrical Engineering, and Mechanical Engineering offer courses of study leading to the degrees of Master of Science and Doctor of Philosophy. These programs are particularly appropriate for those wishing to prepare themselves for careers in teaching, research or analytical design. Professional programs emphasizing design and leading to the degrees of Master of Engineering and Doctor of Engineering are offered by the Departments of Agricultural Engineering, Civil Engineering, and Mechanical Engineering.

At both master's and doctoral levels, the student plans his course of study with the help of an adviser or guidance committee. He is permitted wide latitude in the selection of courses and thesis subjects so long as his program is purposeful and well-integrated.

The graduate courses offered in the College of Engineering are described in the departmental listings (pages 227 through 248).

General information on graduate study may be found in the Announcement of the Graduate Division which can be obtained by writing to the Dean of the Graduate Division. Detailed information on graduate engineering programs is contained in the bulletin Graduate Study in Engineering obtainable from the Associate Dean, Graduate Studies, College of Engineering. Students interested in programs in Applied Science should request a copy of the Announcement of the Department of Applied Science from the Department of Applied Science.
COLLEGE OF LETTERS AND SCIENCE

The College of Letters and Science offers curricula that enable the student to pursue fundamental knowledge primarily for its own sake and to learn basic intellectual disciplines. Programs of study in the College expose the student to man's social, aesthetic, and material achievements, as well as to the challenge of his ethical, political, and physical environment. In many cases the pursuit of cultural truths will also lead the student to an appreciation of the individual's capacity for unique creative expression. Such a liberal education has increasing vocational value, since more and more career opportunities presuppose a basic letters and science degree; nevertheless, the main emphasis in the College rests on the ends of living rather than on the means. A well-balanced liberal education, including specialized knowledge in his major field, prepares the graduate for a satisfying life whatever his career.

Graduation from the College of Letters and Science presupposes fulfillment of the general University requirements. In addition, to achieve its educational objectives, the College has established certain specific standards relating to scholarship, senior residence, and unit distribution within the student's program of study. The two most important standards determining the unit-distribution pattern are those which relate to the Breadth Requirements, and to the Departmental Major Requirement. The Breadth Requirements are designed to provide a broad background of knowledge and to promote awareness of the variety of interdependencies of knowledge. The Major Requirement enables the student to gain intellectual depth and competence in his chosen field of specialization. Requirements of the major program are determined and administered by the separate departments, or, in the case of interdepartmental or individual majors, by an interdepartmental committee or group.

The College offers the undergraduate degrees of Bachelor of Arts and Bachelor of Science. These degrees are conferred upon completion of the general University and College requirements, detailed on the succeeding pages. Every student is responsible for seeing that he meets the University, College, and departmental or committee requirements for graduation.

The study program or unit load may be easily changed within the established deadlines. Changes after the deadline must be justified to the satisfaction of the Dean of the College. In all cases, however, the student has the sole responsibility for initiating these changes by contacting his instructor and the Dean of the College. The student also has the full responsibility throughout the academic term to apprise himself of the quality of his performance by means of consultation with his instructors during their designated office hours.

The specific subject requirements for the bachelor's degree may be satisfied only by:

1. Courses in regular sessions of the University of California or University summer session courses identified with the letter "S."

2. Courses for which transfer credit is granted from another college or university.

Under exceptional circumstances, with prior written approval, the Dean of
the College will permit students in residence to enroll in University Extension courses for elective credit only. Such units and courses cannot be applied to fulfillment of the breadth, foreign language, or upper division requirements of the college. No grade points are assigned for courses completed in University Extension.

General University Requirements

All candidates for the bachelor’s degree are obligated to satisfy the University requirements (pages 32 to 34) in regard to:

- Subject A
- American History and Institutions
- Scholarship
- Residence (for additional College stipulations, see page 124)
- Policies governing maximum unit credit from junior colleges (see page 21)
- Application for Degree Candidacy (see filing deadlines, page 6)

College of Letters and Science Requirements

UNIT DISTRIBUTION REQUIREMENTS

Satisfactory completion of a minimum of 180 units is required for graduation from the College of Letters and Science. (Only course work completed at an institution offering instruction beyond the junior college level may be counted toward the final 75 units.)

A. At least 150 units must be completed in courses given by departments in the College of Letters and Science (page 135) so as to provide the following distribution:

1. **English Reading and Composition Requirement, A.B. and B.S. degrees:**
 Satisfied by passing an examination in English composition. The examination, administered by the English Department at announced intervals, may be taken no earlier than the final quarter of the sophomore year (completion of 70 units).

 Prerequisite: Subject A.

2. **Breadth Requirements.**
 a. **Foreign Language** (for details of this requirement, see page 128).
 - **A.B. degree:** 18 units or the equivalent in one language.
 - **B.S. degree:** none (some major programs have specific language requirements, however).
 b. **Area Requirements** (see page 133 for classification of courses).

<table>
<thead>
<tr>
<th>A.B. degree</th>
<th>Units</th>
<th>B.S. degree:</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities</td>
<td>52</td>
<td>Natural Sciences</td>
<td>90</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>(12 units in one area and 20 units in each of the two remaining areas.)</td>
<td>Humanities</td>
<td>22</td>
</tr>
<tr>
<td>Social Sciences</td>
<td></td>
<td>Social Sciences</td>
<td>22</td>
</tr>
</tbody>
</table>

 (a total of 22 units in either area or in combination)

| Total | 112 |
3. Upper Division Distribution Requirement: At least 54 units must be in upper division course work (courses numbered 100–199) in Letters and Science Teaching departments (see page 135). Upper division units taken in non-Letters and Science teaching departments may be counted toward the required 54 if these units satisfy major requirements. A minimum of 12 upper division units outside the major department is required for the A.B. degree (not applicable to interdepartmental or individual majors).

B. A combined total of 30 units may be offered toward the bachelor's degree from the following categories:
1. Units not offered by teaching departments in the College of Letters and Science (see page 135).
2. All military science courses.
3. Physical Education 5 and not more than 6 units in Physical Education 1.
4. Not more than 9 units in 300–400 series courses.

C. Total degree credit in special study courses may not exceed 5 units in any one quarter. Lower division courses in this category are numbered 38 (group study) or 39 (individual study). A student is eligible to take the upper division equivalents, numbered 198 and 199 respectively, after he has accumulated 84 units.

SCHOLARSHIP REQUIREMENTS
In addition to the general University requirement of a C average (2.0) for all University work, the College stipulates separate University averages of at least C for: 1) all courses required in the four-year major program, and 2) all upper division courses required for the major program.

At the option of the department or interdepartmental committee administering the major, students failing to meet the above conditions may be denied the privilege of pursuing that major.

PROBATION AND DISQUALIFICATION
(See page 30.)

READMISSION AFTER DISQUALIFICATION
Disqualified students should contact the Dean of the College well in advance concerning the requirements to be met before their readmission can be considered. Ordinarily, an agreement involving improved performance in a University of California summer session is mandatory.

PASSED OR NOT PASSED PRIVILEGE
New students and continuing students with a minimum University grade-point average of 2.0 (good standing), registered for at least 12 units, may take any one course each quarter on a Passed or Not Passed basis. A part-time student in good standing wishing to take a course on this basis must consult with the Dean’s office. More than one course may be taken each quarter if a student has accumulated unused options (one option for each quarter completed on the Davis campus as of spring 1967 with an overall University grade-point average of at least 2.0).
P grades are awarded for work otherwise qualifying for A, B, or C grades. Passed units are counted toward the degree, but neither a Passed nor a Not Passed grade affects a student’s grade-point average. The unit value of a Passed grade is included in the total units completed on the transcript; it is not reflected in the units attempted column, the figure used for computing the grade-point average.

P/NP Enrollment Procedure: P/NP petitions are available in the Dean’s Office, 160 Mrak Hall, between the dates listed below and must be filed in person. No signature other than the student’s is required on the petition.

With the permission of the dean, a student may change his enrollment in a particular course from the Passed/Not Passed basis to the regular grade, or vice versa up to the end of the fifth week of every quarter.

File Petition in Dean’s Office Between the Following Dates

<table>
<thead>
<tr>
<th>Fall quarter 1970</th>
<th>November 2 through November 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter quarter 1971</td>
<td>February 1 through February 9</td>
</tr>
<tr>
<td>Spring quarter 1971</td>
<td>April 26 through May 4</td>
</tr>
</tbody>
</table>

The last day to file a P/NP petition is also the final day on which the option may be reversed.

Some courses are authorized to be given only on a Passed/Not Passed basis and are identified as such in the course description. These courses may be taken in addition to the courses for which a student exercises his Passed or Not Passed option.

Graduating seniors as well as any other student planning to undertake graduate or professional studies should consult an adviser before enrolling in a course required in the major program on a Passed/Not Passed basis.

RESIDENCE REQUIREMENT

All candidates for the bachelor’s degree must complete 35 of the final 45 quarter units in residence in the College of Letters and Science. While up to ten of the final 45 quarter units may be credited from another college in the University or from another four-year accredited institution, any student planning to take senior-year work elsewhere should secure the approval of the Dean and his major department before undertaking such work. He should realize that a delay in granting the degree may result since credit is not allowed until an official transcript is received from the institution attended.

Students entering the College in advanced standing from another institution or from another college or school within the University, must complete 35 units of which at least 27 quarter units must be in upper division courses offered by departments in Letters and Science, including at least 18 units in the major program.

Three terms is the minimum residence at the University. Each summer session period may be used in satisfaction of one half a term of residence.

Students enrolled in the Education Abroad Program may satisfy the senior residence requirement by completing 35 of their final 90 units, including the
final 12, in residence. This means that Program participants cannot apply more than 55 units taken abroad towards the unit requirement for the degree and, following study abroad, must return and complete 12 units in residence in the College of Letters and Science.

REQUIREMENTS IN THE MAJOR

The number of upper division units a student must complete in the subject of his major varies among departments, the requirement ranging from 36 to 45 units. Major programs are designed by the Faculty of the College to insure that all students pursuing the same major will acquire certain knowledge in common. In addition, advanced students are encouraged to engage in independent study within the major.

A student must declare his major program by the time he has completed 84 units, but he may designate his preference at the beginning of his sophomore year.

A student may change from one major to another with the approval of the Dean of the College and with the consent of the department or committee in charge of the new major. Petitions for Change or Declaration of Major are obtainable in Room 160, Mrak Hall. After the beginning of the senior year, a student may not transfer from one major program to another, or from B.S. to A.B. (or vice versa).

Three types of programs satisfy requirements for the major: departmental, interdepartmental, and individual major programs.

A. Departmental Majors. The requirements for departmental major programs are described in detail under departmental listings. Any student who fulfills the major requirements of two departments in the College of Letters and Science may elect to receive a bachelor’s degree in both fields. Major programs leading to a Bachelor of Arts degree are offered in the following departments; those departments also offering programs leading to a Bachelor of Science degree are indicated by an asterisk (*):

<table>
<thead>
<tr>
<th>Anthropology</th>
<th>Geology</th>
<th>Physical Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>German</td>
<td>Physics*</td>
</tr>
<tr>
<td>Bacteriology*</td>
<td>Greek</td>
<td>Political Science</td>
</tr>
<tr>
<td>Botany*</td>
<td>History</td>
<td>Psychology*</td>
</tr>
<tr>
<td>Chemistry*</td>
<td>Italian</td>
<td>Rhetoric</td>
</tr>
<tr>
<td>Dramatic Art</td>
<td>Latin</td>
<td>Russian</td>
</tr>
<tr>
<td>Economics</td>
<td>Mathematics*</td>
<td>Sociology</td>
</tr>
<tr>
<td>English</td>
<td>Music</td>
<td>Spanish</td>
</tr>
<tr>
<td>French</td>
<td>Oriental Languages</td>
<td>Zoology*</td>
</tr>
<tr>
<td>Geography</td>
<td>Philosophy</td>
<td></td>
</tr>
</tbody>
</table>

A Bachelor of Science degree is offered in Biochemistry (see page 196), Genetics (see page 279), Physiology (see page 348).

B. Interdepartmental Majors. These programs are intended for students inter-
ested in broader scope than that provided by a departmental major. Interdepartmental major programs leading to a Bachelor of Arts degree are offered in:

- Afro-American (Black) Studies (see page 164)
- American Studies (see page 171)
- Biological Sciences (see page 198)
- International Relations (see page 302)
- Linguistics (see page 310)
- Physical Sciences (see page 341)
- Russian and History (see page 382)

The Biological Sciences and the Physical Sciences programs can also lead to a Bachelor of Science degree.

C. Individual Majors. The individual major is a program organized by the student himself in consultation with faculty advisers and the Dean of the College. This major permits students to pursue a specific academic interest which involves two or more departments and, for sound academic reasons, cannot be accommodated within the framework of an existing major program. This major may consist of not fewer than 45 upper division units or more than 54. After preliminary consultation with the Dean of the College about this special program, the student plans his major with members of the departments in which he will do his work. He then submits the proposed program to the Dean with recommendations from faculty members from each department represented in his major for initial review and final approval by the Executive Committee of the College. This proposal must include: (1) a description of the special educational aims of the major and (2) a list of lower division prerequisites for the major and the required upper division courses. An individual major request form and accompanying Petition for Change of Major are available at the Dean’s Office.

A student may not elect an individual major after the beginning of the final quarter of his junior year.

BACHELOR’S DEGREE CANDIDATES

Senior Degree Check. At the beginning of his senior year, each student should request a Degree Check from the Dean’s Office. A statement indicating any unfulfilled University and College degree requirements will be sent to the student. Information about progress in completing requirements in the major should be obtained by conferring with an academic adviser.

Filing for Candidacy. Each candidate for a degree must file an Announcement of Candidacy with the Registrar at the beginning of the quarter in which he plans to graduate. The filing deadlines are published on page 6 of this catalog.

Planning the Program

Before instruction begins each quarter, the student should prepare a tentative program of study and, if in need of academic counsel, meet with a faculty adviser to review his proposed program. The official study list must be filed with the Registrar according to the procedures described in the Schedule and Directory, available at the beginning of each quarter.
Undeclared Status. Entering freshmen and sophomores are officially designated as Undeclared. To insure counseling by an appropriate academic adviser, however, each student is asked to indicate a field of interest or unofficial major while in undeclared status. (Preprofessional students see page 129.)

Declaration of Major. A student may declare his official major at the end of his freshman year; he must do so by the time he has completed 84 units. After obtaining a Petition for Change or Declaration of Major at the Dean’s Office, he should report to the departmental office of his major choice to secure approval for admission to the major program. (Biological and Physical Science majors report to the Dean’s Office.)

Study List Regulations. A study list totaling fewer than 12 units requires the approval of the Dean of the College, and will be allowed only in cases of poor health or regular outside employment. All freshmen, as well as transfer students in their first quarter of residence, may not undertake more than 17 units without special permission from the Dean. For purposes of calculating program load, the total number of units shown on the study list must include the unit value of repeated courses and of any course work not carrying degree credit (for example, Subject A and duplication of advanced standing credit).

No course may be added to the study list after the tenth day of instruction, and, unless the written approval of the dean is secured, the student will receive a grade of F in any course dropped after the fifth week of instruction.

Faculty Advisers. The purpose of the faculty adviser in the College of Letters and Science is to counsel the student on his overall program and to insure that he acquires a meaningful liberal education, makes normal progress toward completion of degree requirements, and undertakes an appropriate program of studies. The student should consult an adviser or the Dean of the College about any additional academic problems.

1. Entering students who participate in one of the summer advising programs are assisted in planning their fall quarter program by a temporarily assigned summer adviser. During the fall or subsequent quarters, students wishing academic advice should request adviser assignment in the department administering the major they intend to pursue. Offices are listed in the Schedule and Directory.
 a. Other entering lowerclassmen are assigned advisers following the Letters and Science Assembly scheduled during Orientation Week at the beginning of each quarter.
 b. Other entering upperclassmen report directly to the departmental office of their major during Orientation Week. (Biological and Physical Science majors report to the Dean’s Office.)

2. Limited students are under the supervision of the Dean of the College. Their study lists must be submitted to the Dean each quarter for approval.

3. All new students are assigned to an adviser. During their first three quarters in residence they are expected to consult their adviser every quarter and receive approval of their proposed programs.

4. Continuing students having completed three quarters in residence in the
College are no longer obligated to consult an adviser; they can elect to see an adviser when in need of counsel.

ENTERING FRESHMEN

Because of the wide choice of subjects open to the Letters and Science student, a sample first-year program is not feasible. The entering freshman should, however, be able to plan his first-year program satisfactorily by keeping in mind the following points.

1. After the Subject A requirement has been met, most students should consider taking English 1 during their first year and English 2, 3, 4A, 4B or 5 their second year in preparation for the English Composition Examination. The Examination may be taken no earlier than the final quarter of the sophomore year, i.e., upon successful completion of at least 70 units.

2. The foreign language requirement should be completed by the end of the first or second year, as program priorities permit. It may be satisfied by examination or by completion of language courses.
 a. Placement Examination: A student with only high school preparation may validate his knowledge of a foreign language by earning a satisfactory score on this examination. (Further information given below.)
 b. Course Completion: A.B. degree—18 units in one language, or in most languages, through the fifth quarter course. B.S. degree—as required in the major program.
 c. Proficiency Examination: A student who has not completed the required level language course, but assumes he has attained equivalent knowledge, may elect to satisfy the language requirement by passing this examination.
 For information consult the appropriate foreign language department.

3. The Area Requirements in the humanities, natural sciences, and social sciences, for students enrolled in an A.B. program, require a total of 52 units; in the B.S. program, 112 (see page 133 for the three Area Lists).
 These area requirements are particularly important for the entering freshman who has not decided on a major. Careful consultation with his adviser and thoughtful selection from each of the three groups will help the student to determine his preference for a major. Entering freshmen who feel certain of their major field should consult the requirements of that major in planning their first-year program, as a first-year course may be a prerequisite for further studies in that field.

FOREIGN LANGUAGE PLACEMENT EXAMINATION

A student electing to continue a language studied in high school must take the Foreign Language Placement Test in that language. The placement test does not yield unit credit; it only determines whether the requirement has been met or whether additional work in the language is required. The examination indicates a student's proficiency in a language and the course in which he should enroll. Full academic credit is allowed for each foreign language course taken without regard to foreign language preparation in high school.
A student with advanced standing in a language does not qualify to take the Placement Examination. He should consult his status card, which is issued by the Dean’s Office prior to admission to the College, for indication of further language study required.

Inquiries about the language requirement or the possibility of credit being withheld for duplication of advanced standing credit should be made at the Dean’s Office, Room 160, Mrak Hall.

Preparation for Admission to Professional Schools

Since preprofessional programs are not major programs, students preparing for admission to a professional school are expected to follow the procedures governing the declaration of majors outlined on page 127 and to select courses which fulfill College requirements as well as their professional needs.

There are no specially designated preprofessional advisers in the College of Letters and Science and students planning to seek admission to a professional school should communicate as early as possible with the deans of the professional schools of their choice for precise admission requirements. Official announcements of admission requirements for the following schools within the University of California may be obtained from the Admissions Office:

- Business Administration
- Dental Hygiene
- Dentistry
- Law (see page 138)
- Medicine (see page 141)
- Nursing
- Optometry
- Pharmacy
- Physical Therapy

Those curricula preparing students for admission as undergraduates to professional schools in the University of California (Bay Area) are described below.

Business Administration

Completion of 90 quarter units, and fulfillment of the following specific requirements:

a. English 1, 3; 4 additional units in the Departments of English, Rhetoric or Dramatic Art.

b. Mathematics: 21A or 16A (may be counted toward the natural science requirement).

d. Foreign Language: 12 units (through 3rd-quarter course) in one language, or the high school equivalent (6 units for the first two years, 6 units for each subsequent year). See additional requirement for B.S. degree in Announcement of the School of Business Administration.

e. Natural Sciences: 4 courses (including Mathematics 21A or 16A; Mathematics 13 or Economics 12).

f. Social Sciences: Economics 1A–1B, 11A–11B; Psychology 1A or Sociology 1, and one additional course in psychology, sociology or cultural anthropology.
Dental Hygiene
Completion of 90 quarter units and fulfillment of the following specific requirements:

a. English 1, 3.
b. Chemistry 1A, 1B; 8A, 8B.
c. Biology 1; Zoology 2.
d. Psychology 1A and one additional psychology course.
e. Social Science, humanities or foreign language: 30 units must be selected from these fields.

Dentistry
Completion of 90* quarter units, and fulfillment of the following specific requirements:

a. English 1, 3.
b. Chemistry: 1A, 1B, 1C; 8A, 8B.
c. Physics: 2A, 2B, 2C; 3A, 3B, 3C.
d. Biology 1; Zoology 2.
e. Psychology 1A and one additional course in psychology.
f. Humanities, Social Science or Foreign Language: 20 units must be selected from these fields (including at least one, one-year sequence in one of these). A maximum of one course of mathematics may be substituted in partial satisfaction of this requirement.

Medicine (University of California, San Francisco campus)
Completion of 135 quarter units, and fulfillment of the following specific requirements:

a. English 1, 3.
b. Chemistry: 1A, 1B, 1C; 5, 8A, 8B.
c. Physics 2A, 2B, 2C; 3A, 3B, 3C.
d. Biology 1; Zoology 2, 100.
e. Foreign Language: 12 units (through third-quarter course) in one language, or three years of one language in high school.
f. Humanities and/or Social Sciences: 18 units.
g. Electives (to complete total of 135 units): recommended are courses satisfying Letters and Science College and departmental major requirements, but not anatomy, physiology, or bacteriology, which are part of the Medical School curriculum.

Nursing
Completion of 90 quarter units, and fulfillment of the following specific requirements:

a. English 1, 3.
b. Chemistry 1A, 1B; 8A, 8B.

*The addition of a required third year, 135 quarter units, of predental curriculum is under consideration, and if approved, will be effective with the class entering in 1971.
d. Foreign Language: 15–16 units (through 4th-quarter course) in one language, or the high school equivalent; or, a group of courses related to a single cultural area.
e. Humanities: 16 units.
f. Social Sciences: 16 units, including Psychology 1A and Sociology 1.

Optometry
Completion of 90 quarter units, and fulfillment of the following specific requirements:
a. English 1, 3.
b. Mathematics 16A–16B.
c. Physics 2A, 2B, 2C; 3A, 3B, 3C.
d. Psychology 1A–1B.
e. Biology 1; Physiology 2, 2L.
f. Chemistry 1A, 1B; 8A, 8B.
g. American History and Institutions.

Pharmacy
Completion of 90 quarter units, and fulfillment of the following specific requirements:
a. English 1, 3.
b. Chemistry 1A, 1B, 1C.
c. Physics 2A, 2B, 2C; 3A, 3B, 3C.
d. Mathematics 16A, 16B, 16C.
e. Biology 1; Zoology 2.
f. Humanities, Social Science or Foreign Language: three quarter courses (or 12 units if preferred) must be selected from these fields.

Physical Therapy
Completion of 135 quarter units, and fulfillment of the following specific requirements:
a. English 1, 3.
b. Chemistry 1A–1B.
c. Physics 10.
d. Psychology 168.
e. Foreign Language: 15–16 units (through 4th-quarter course) in one language or the high school equivalent. (This may be counted from high school at the rate of 4 quarter units per year in the same foreign language.)
g. Humanities: 16 units (may include 4 units of American History and Institutions requirement).
h. Social Sciences: 16 units (may include Psychology 1A and 168).

Preparation for graduate training in Medical Technology can be accomplished by completing the regular undergraduate major programs in Bacteriology and Biological Sciences (see pages 193 and 198).

Students preparing for graduate training in Social Welfare are referred to the introduction of Sociology course offerings (see page 383).
College of Letters and Science

College Entrance Examination Board Advanced Placement Examination Credit

Students earn 10 units credit toward their bachelor's degree for each CEEB Advanced Placement Examination satisfactorily passed during the junior year or senior year in high school. See chart below for details regarding course equivalences and breadth credit allowed toward graduation.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Score</th>
<th>UCD Course Equivalences*</th>
<th>Continuing Course</th>
<th>Breadth Credit Allowed</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>5, 4, 3</td>
<td>English 1 and 3</td>
<td></td>
<td>Humanities 4 units</td>
<td>No exemption from English Composition Examination.</td>
</tr>
<tr>
<td>Foreign Languages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>5, 4, 3</td>
<td>French 6</td>
<td>French 30A or 46A or concurrent enrollment. German 101 strongly recommended.</td>
<td>Humanities 4 units</td>
<td>The Foreign Language Requirement for the College of Letters and Science is satisfied by a score of 5, 4 or 3 on any language examination.</td>
</tr>
<tr>
<td>German</td>
<td>5, 4, 3</td>
<td>German 6A, 6B or 7</td>
<td>Any upper division course; German 101 strongly recommended.</td>
<td>Humanities 4 units</td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>5, 4, 3</td>
<td>Latin 103</td>
<td>Determined by consultation with Classics adviser.</td>
<td>Humanities 4 units</td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>5, 4, 3</td>
<td>Spanish 6</td>
<td>Determined by consultation with Classics adviser. Spanish 27A, 103A may be taken concurrently.</td>
<td>Humanities 4 units</td>
<td></td>
</tr>
<tr>
<td>Humanities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American History</td>
<td>5, 4, 3</td>
<td>History 17A, 17B</td>
<td></td>
<td>Humanities 10 units</td>
<td>Satisfies American History and Institutions Requirement.</td>
</tr>
<tr>
<td>European History</td>
<td>5, 4, 3</td>
<td>History 4B, 4C</td>
<td></td>
<td>Humanities 10 units</td>
<td></td>
</tr>
<tr>
<td>Natural Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>5, 4</td>
<td>Biology 1, Botany 2, Bacteriology 2, Zoology 2</td>
<td>Any upper division course or, by option, any Biological Sciences "3" course.</td>
<td>Natural Sciences 10 units</td>
<td>Student has option of taking Bacteriology 2, Botany 2 and Zoology 2 for full unit credit.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Biology 1</td>
<td>Any Biological Sciences course except "10" series.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>5, 4, 3</td>
<td>Chemistry 1A, 1B</td>
<td>See "Remarks"</td>
<td></td>
<td>Credit for Chemistry 1A and 1B equivalence may serve as pre-requisite to 1C or 7A with instructor's consent; 1A and/or 1B may, however, be taken for full credit.</td>
</tr>
<tr>
<td>Mathematics</td>
<td>5, 4, 3</td>
<td>Mathematics 21A, 21B</td>
<td>Mathematics 21C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>5</td>
<td>Physics 10 or 2A, 2B</td>
<td>Determined by consultation with Physics adviser.</td>
<td></td>
<td>For score of 5 or 4, credit may equate with Physics 6A, 6B or 4A, respectively. Credit for Physics "4" course given only with consent of Physics adviser.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Physics 10 or 2A</td>
<td>Determined by consultation with Physics adviser.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Physics 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Credit may not be earned in the University for courses which duplicate credit already allowed for advanced placement examinations as listed under UCD COURSE EQUIVALENCES. See exceptions for biology and chemistry under REMARKS.
The Teaching Credential

The teacher-training program is administered by the Graduate Division. Certain undergraduate courses, however, are required as preparation for the program. Students interested in obtaining the elementary or general secondary teaching credential should consult the appropriate adviser in the Department of Education as early as possible, preferably by the end of the freshman year (see also page 155).

Honors

THE DEAN'S HONORS LIST

The Dean's Honors List includes the names of students having earned a minimum grade-point average of 3.3 during the preceding term. A study list of at least 12 units, exclusive of units taken on a passed/not passed basis, is required. The list is posted quarterly in the foyer of Mrak Hall.

HONORS PROGRAMS

Special honors programs are available in connection with certain major programs. These are described in the introduction to the department's course offerings. Interested students should consult their major advisers.

BACCALAUREATE HONORS

The awarding of honors at graduation is based on the following minimum criteria: 1) completion of 68 units in this College or 90 units in the University of California; 2) a grade-point average of 3.3 for work taken within this college; 3) an overall grade-point average of 3.3 for all collegiate work undertaken; 4) recommendation by the major department or committee supervising interdepartmental majors and the Honors Committee.

AWARDS FOR ACADEMIC EXCELLENCE

In addition to eligibility for the University Medal (see page 34) graduating seniors with distinguished scholastic records in the College may be recommended by the faculty for the Herbert A. Young Letters and Science Medal. Academic excellence is the primary basis for choosing the recipient of this award.

Area Requirement Lists

The undergraduate courses in the subjects listed below will be accepted in fulfillment of the area requirements of the College. No course applied toward satisfaction of one area requirement may be offered to satisfy another. No courses marked with an "H," or numbered 38, 39, 48, 198, 199 or 300-400 may be counted toward the breadth requirements.

Only units completed in a foreign language above the first 18 (as specified below) may be counted toward satisfaction of the "Humanities" requirement for the A.B. or B.S. degrees.
HUMANITIES
Art.
Classics.
Dramatic Art.
English. All courses except 25 and 26 and first freshman-level course (i.e., English 1, 2, 3, 4A, 4B, or 5) completed. All subsequent courses in English counted toward humanities requirement.
French. All units above course 5.
German. All units above course 5.
Greek. All courses beyond 18 units.

NATURAL SCIENCES
Animal Physiology.
Anthropology. Accepted: 1, 5, 151, 152, 153, 154A, 154B, 155, 156.
Astronomy.
Bacteriology.
Biochemistry and Biophysics.
Biology.
Botany.
Chemistry.
Entomology. Accepted: 1, 10.

SOCIAL SCIENCES
American Studies. (see "Humanities" above).
Anthropology. All courses except 1, 13, 151, 152, 153, 154A, 154B, 155, 156, 195, 196.
Economics. All courses except 12.
Education. All courses except 114.
Geography. All courses except 1, 3, 105, 161.

History. (Including history courses offered in satisfaction of American History and Institutions.)
Italian. All units above course 5.
Latin. All units above course 5.
Linguistics.
Music.
Oriental Languages (Chinese, Japanese, Hebrew). All units above first 18.
Philosophy.
Portuguese. All courses beyond 18 units.
Rhetoric.
Russian. All units above first 18.
Sanskrit.
Spanish. All units above first 18.

Genetics.
Geography. Accepted: 1, 3.
Geology.
Mathematics.
Physics.
Physiology.
Psychology. Accepted: 1B, 108, 131, 150, 180A, 180B, 180G, 180K.
Zoology.

Political Science. (Including political science courses offered in satisfaction of American History and Institutions.)
Sociology. All courses except 46A, 46B, 46C, 106.
TEACHING DEPARTMENTS IN COLLEGE OF LETTERS AND SCIENCE

Animal Physiology Education Philosophy
Anthropology English Physical Education
Art French and Italian Physics
Bacteriology Genetics Political Science
Biochemistry and Biophysics Geography Psychology
Botany Geology Rhetoric
Chemistry German and Russian Sociology
Dramatic Art History Spanish and Classics
Economics Mathematics Zoology
Music

A minimum of 54 upper division units (courses numbered 100-199) must be completed in courses offered by departments listed above. Courses offered in military science are acceptable only in the 30-unit limitation (see page 123).

SUMMARY CHECK LIST OF REQUIREMENTS
A.B. and B.S. DEGREES

Read carefully details of requirements in all sections of the General Catalog

General University Requirements
☐ Subject A ☐ American History ☐ American Institutions

College Breadth Requirements

Bachelor of Arts Degree
☐ English Composition Examination.
☐ Foreign Language: level of 18 units in one language.
☐ Natural Science, Social Science, Humanities: 12 units in one area; 20 in each of the other two areas.

Bachelor of Science Degree
☐ English Composition Examination.
☐ Natural Science: 90 units.
☐ Social Science, Humanities: 22 units in either area or in combination.

Major Requirements
Consult appropriate departmental section of the Catalog and major adviser.

Unit Requirements

Must include at least 150 units in L & S Teaching Depts.
May include a maximum of 5 units of special study courses in any one quarter (38, 39, 198, 199).
May include 30 units in courses outside L & S Teaching Depts.

Must include at least 54 units in upper division courses.
May include a maximum of 9 units in courses numbered 300-499.
May include P.E. 5 and maximum of 6 units of P.E. 1.

For A.B.:
Must include 12 upper division units outside major department.
Scholarship Requirements

An average of at least C (2.00 for all units undertaken in the University of California) in:
- All courses undertaken other than those marked "Passed-Not Passed."
- All courses required for the four-year major program.
- All upper division courses required for the major program.

Residence Requirement

In the University of California: At least three quarters.
In the College of Letters and Science:
1. 35 of the final 45 units.
2. 27 upper division units in courses offered in Letters and Science teaching departments including 18 units in the major program.

SUMMARY OF STUDENT SERVICES
OFFICE OF THE DEAN OF THE COLLEGE, 160 MRAK HALL

The staff in this Office assists students with questions concerning College requirements, scholarship (probation and disqualification) and other academic matters. Problems which cannot be resolved by clerical assistants are referred to academic deans who are regularly available to students by appointment.

The staff also performs a number of regular functions:
1. It maintains a file of each student's academic record.
2. When a student transfers to Letters and Science from another institution, the Admissions Office determines the unit credit to be allowed for previous work; the College determines how the credit applies toward completion of breadth and unit credit for the bachelor's degree. A Status Card outlining this information is sent to each transfer student immediately prior to his enrollment.
3. It prepares a statement of remaining College requirements, on request, for senior students. (A student inquires about completion of major requirements with his faculty adviser or major department.)
4. It acts on petitions requiring Dean's approval; e.g., petitions for Declaration or Change of Major, Individual Majors, Change of Study List (after established deadlines), Withdrawal, Readmission (on probation).
5. At the end of each quarter the deans review the records of all students who are subject to disqualification and recommend a student's dismissal from the College or continuation on probation.
SCHOOL OF LAW

The School of Law offers a three-year professional curriculum leading to the degree of Juris Doctor.

The program of the school is designed to combine the best features of traditional legal education with the development of new interests and approaches necessary for training lawyers to meet the demands of the coming decades. The three-year curriculum includes not only instruction to develop proficient legal practitioners, but also courses that reflect the general interests of the Davis campus in natural resources, agriculture, urban problems, and state government.

At this early stage in the School’s history, it is possible to discern the directions of future endeavor. In general, the School plans to offer students opportunities for in-depth study of an area of law in an individualized program of classroom work, research and writing, and experience in the community. The School also seeks to promote critical evaluation of law and legal institutions in a broad perspective that requires the integration of non-legal disciplines with professional legal education.

The School has received provisional accreditation by the American Bar Association and has been admitted to membership in the Association of American Law Schools.

Preparation for the Study of Law

No specific college major is required for admission to the School of Law, and there is no prescribed prelegal program. Degrees from the Colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science are all acceptable. The individual student’s college record and Law School Admission Test score must, of course, demonstrate that he is qualified for law study.

Prelegal students should plan a course of study that will give them a broad cultural background and include intensive work for a substantial period of time in a selected field of study. It is most important that prelegal students obtain mastery of the English language. They should be able to read rapidly and with comprehension and to express themselves clearly, completely, and concisely, both orally and in writing.

Requirements for Admission to the School of Law

Applicants for admission to the professional curriculum of the School of Law, leading to the degree of Juris Doctor, must have received a bachelor’s degree or an equivalent degree from a college or university of approved standing prior to the time at which they begin their work in the School of Law. The applicant’s college record must be of sufficiently high quality to demonstrate that he is qualified for the study of law. The work of the last two college years will be considered more heavily than that of earlier years.

The applicant must also achieve a satisfactory score on the Law School Admission Test. All applications are reviewed by the Law School Admissions Committee. Students are admitted only on a full-time basis and only in September.
Law School Admission Test

All applicants are required to take the Law School Admission Test administered by the Educational Testing Service. Testing centers have been established for the convenience of applicants in all parts of the United States and in many foreign countries. Applicants are urged to take the test as early as possible, and in any event not later than February in the academic year prior to that in which they seek admission to the School.

Applicants should write to: Law School Admission Test, Educational Testing Service, Princeton, New Jersey 08540, to obtain application forms and information about the test and the location of testing centers.

Admission Procedures

1. Application for admission to the School of Law and to the Graduate Division of the University for the program leading to the degree of Juris Doctor should be made on forms which will be supplied by the School and should be addressed to: Dean, School of Law, University of California, Davis, California 95616. The application must be accompanied by a $10 nonrefundable application fee in the form of a check or money order made payable to The Regents of the University of California. The other schools of law affiliated with the University of California may waive the application fee if notified, at the time of applica-
tion, that the fee has been paid at Davis. The last date for filing completed application forms is April 1 of the year in which admission is sought, but earlier filing is strongly recommended.

2. One copy of transcripts of college work through the first semester or quarter of the applicant’s senior year should accompany or immediately follow his application forms. As soon as they are available, the applicant should submit one copy of supplementary transcripts to cover any work he completes after making application.

3. The applicant must also provide three letters of recommendation.

4. The applicant should take the Law School Admission Test and request that his score be reported to the School of Law.

5. Applicants accepted by the School of Law are simultaneously admitted to the Graduate Division of the University for the program leading to the degree of Juris Doctor. Applicants intending to pursue studies leading to other graduate degrees must make separate application to the Graduate Division of the University prior to commencing such studies.

Professional Curriculum and Degree

The course of study in the professional curriculum requires nine quarters for completion and extends over a period of three years. It is designed for full-time students only—no part-time or evening program is offered. New students are admitted only at the beginning of the fall quarter.

Students who have been admitted to the School as candidates for the professional degree and who have completed satisfactorily the professional curriculum (126 quarter units are required) and the required period of resident study will be recommended for the degree of Juris Doctor.

The work of the first year is prescribed. This work provides the essential foundation for subsequent legal study and the satisfactory completion of the first-year courses is, in all cases, a prerequisite to courses of the second and third years.

The work of the second and third years is elective.

Students who fail to attain satisfactory grades may be required to withdraw from the School at the end of any academic year.

Courses taken in summer sessions in other accredited law schools may, with prior permission, be credited toward the units required for the professional degree but may not be counted as part of the required period of residence.

The courses of the professional curricula are listed on page 305.
SCHOOL OF MEDICINE

The School of Medicine will admit its third class to a course of professional instruction commencing in the fall quarter 1970.

The degree of Doctor of Medicine requires the satisfactory completion of a four-year course of study comprised of 15 quarters. Initially, course work will be conducted in the temporary Medical School facilities on the Davis Surge Campus and in nearby affiliated hospitals. The current main clinical teaching unit is the recently renovated 600-bed Sacramento Medical Center. Permanent facilities will be available in 1974 with the completion of the combined Human Medicine—Veterinary Medicine Health Sciences Complex. Construction of a University hospital will be completed in 1975. An adjoining 740-bed Veterans Administration Hospital is proposed for concurrent construction. This building complex will provide a unique physical expression of the philosophical concept of a closely correlated exposition of health and disease in man as well as other species.

Premedical Requirements

Applicants for admission to the professional curriculum must have satisfactorily completed a minimum of three years (90 semester units; 135 quarter units) of college level work. However, in most instances, completion of a four-year course of study leading to a bachelor's degree is recommended. A maximum of two years (60 semester units; 90 quarter units) of junior college work may be credited toward this requirement. Although a specific major in science is not necessary, the following course content is required:

- One year of English composition or its equivalent
- One year of biological science or its equivalent
- One year of general chemistry or its equivalent
- One year of organic chemistry* or its equivalent
- One year of physics or its equivalent
- Mathematics, through integral calculus

The student is strongly encouraged to fill out his program with course work in the humanities and social sciences.

A prospective student must have completed the Medical College Admission Test (MCAT) at such a time as to permit the availability of MCAT score results when the application is considered. This examination is given twice yearly, in May and October, at many colleges and universities. Further information may be obtained by writing: Medical College Admission Test, Psychological Corporation, 304 East 45th Street, New York, New York 10017.

Application

Application forms will be made available July 1, 1970. All information must be completed and submitted no later than December 31, 1970. Early return of the completed application will enable early processing, which is normally advantageous. Application forms and additional information are available from the

* This course must be the one normally offered for chemistry majors rather than one of a brief, or survey, character.
Admissions Office, School of Medicine, University of California, Davis, California 95616.

Transcripts of all college work should be sent directly from the school of origin to the Admissions Office. For undergraduate applicants not registered at a campus of the University of California, transcript of high school records is required. Final college transcripts should include a statement of good standing or honorable dismissal from the last college attended.

Admission Procedure

The third class, entering fall 1970 will be limited to 52 students selected on the basis of intellectual achievement and personal characteristics which would lead the Admissions Committee to believe there was a reasonable likelihood of satisfactory completion of the requirements of the medical curriculum and subsequent effective discharge of the considerable demands of the profession. Factors taken into consideration include the applicant’s scholastic record to date, MCAT performance, and reports of his teachers and advisers with regard to intellectual capacity, motivation, emotional stability and personal dedication.

A personal interview will normally be required. Prospective students whose applications are rejected during the initial screening procedure will be so notified and will not be called for an interview. Out-of-state interviews may be arranged in occasional cases in which a trip to Davis would be considered an undue hardship; in rare instances the Admissions Committee may waive the requirement for interview entirely.

Applicants may be requested to authorize their student health service or personal physician to send pertinent health information to the Admissions Committee.

In accordance with approved procedures of the Association of American Medical Colleges, applicants will usually be notified of the status of their application as early as September 15 of the year preceding that for which admission is sought. In some instances, a decision may not be made until March 31; however, an effort will be made to reach an early decision and to notify the applicant promptly.

The majority of places in each entering class will be awarded to students who are legal residents of the State of California; however, a certain number will be awarded to out-of-state students. This School of Medicine will also participate in the program of the Western Interstate Commission for Higher Education. In this program are a number of states which do not offer professional graduate medical education within the state. Applicants found eligible by both the School of Medicine and their own states are charged resident, rather than nonresident, tuition. Further information may be obtained by communicating with this Commission, whose address is University East Campus, 30th Street, Boulder, Colorado 80300.

Students from foreign universities will be considered on an individual basis by the Admissions Committee. In general, an applicant will be expected to have completed at least two years of his premedical work in an accredited college in
the United States or Canada. Certain additional requirements apply to such applicants and detailed information is available from the Admissions Office.

Medical Curriculum and Degree

The course of professional study covers a period of 15 consecutive academic quarters extending over four calendar years. Successful completion of the prescribed curriculum will normally result in a recommendation by the faculty and the Dean leading to the award of the degree of Doctor of Medicine.

The faculty of this new school accepts the principle that it is impossible for the student to master in its entirety the rapidly expanding body of knowledge comprising modern medical science and that the gap between developing knowledge and an individual's ability for assimilation will widen each year. Accordingly, the curriculum will be presented in the context of problem solving, based on a foundation in the sciences basic to medicine and the application of the scientific method to diagnosis, therapy and research in health and disease states. Correlation of the basic and clinical sciences will be emphasized during all stages of the professional program. Teaching by the faculty will be carried out by means of integrated exercises utilizing appropriate modern instructional methods and including the facilities of multidiscipline laboratories. To promote a habit of self-education throughout his professional life, the student will be encouraged to seek out individually available source material pertaining to the problems under consideration. Sufficient free time will be scheduled to permit pursuit of such studies in depth.

In general, the curriculum is designed around a core program of instruction in basic, behavioral and clinical sciences during the first three years, with the fourth year consisting of elective courses under faculty guidance. A graduate student orientation will prevail throughout the curriculum. At the same time, individual attention to the student will be emphasized. Elective courses will be offered during the four years, both on the general and medical campuses.

The first academic year (quarters 1, 2, 3) consists of a formal core program designed to equip the student with the vocabulary, tools, techniques and concepts of the Sciences Basic to Medicine, including molecular and cell biology, organ and system biology, and behavioral and environmental biology. Supplementing this is an introduction to clinical medicine designed to introduce the student to the patient, the history and physical examination, and to correlate the basic science with clinical problems at the earliest feasible time. A limited number of electives will be available.

The second academic year (quarters 4, 5, 6, 7) consists of a presentation of representative clinical problems illustrating the correlation of the basic and clinical sciences in understanding both the normal and abnormal states. Instruction stresses the definition of the problem and the steps taken to solve it rather than the presentation of a large body of factual detail. Free time for study in depth is provided as well as an introduction to electives in areas of developing individual interest. There is a general orientation toward the principles of community medicine, including exposure to family practice, with consideration of the impact of psychosocial factors on the individual and his disease.
The third academic year (quarters 8, 9, 10, 11) consists of clinical clerkships oriented toward a problem-solving approach to disease by bringing the student into direct contact with the patient and emphasizing the responsibilities of patient care. The concept of continuity of student-patient relationships is stressed, including follow-up of the patient's course. The student is also introduced to the principles of ambulatory care through the outpatient facilities.

The fourth academic year (quarters 12, 13, 14, 15) presents an opportunity for widely varied electives offered by the Medical School faculty and other schools of the Davis Campus. Faculty guidance (preceptor) is provided for each student in planning his elective program for this year. Emphasis will be placed on rounding out the needs of the individual student in order that he may proceed toward his goal. Where necessary the elective courses may be used to strengthen areas of recognized deficiencies.

By means of the above curriculum, the faculty intends to develop in the student the ability to pursue a plan of postgraduate studies leading to a career in private practice, teaching, research, preventive medicine, administration or any combination of these. It seeks to provide a comprehensive foundation upon which the individual student can more effectively realize his own interests, abilities and personal motivation. It is believed that through this approach the individual patient and the public may best be served.

Detailed information on the curriculum is available through periodic announcements of the School of Medicine issued by the office of the Dean, School of Medicine.
SCHOOL OF VETERINARY MEDICINE*†

The degree Doctor of Veterinary Medicine may be obtained by pursuing a
course of study requiring a minimum of six years. The final four years must be
spent in the professional veterinary medical curriculum.

Students planning a career in veterinary medicine should consider broadening
their educational experience by completing the baccalaureate degree before
applying to the professional school.

Preveterinary Medical Requirements

Students must complete a minimum of 90 quarter units (60 semester units) of
college work including the required courses listed in the preveterinary medical
curriculum (page 146) before they will be admitted to the School of Veterinary
Medicine. Those who have met these requirements with excellent scholastic
achievement may be admitted at the end of two years of study. However, all
preveterinary medical students, in addition to satisfying the preprofessional
course requirements, should plan their program so they can obtain a bacca-
laureate degree in four years. The School of Veterinary Medicine will accept the
passed or not passed option (subject to general campus and individual school
and college requirements) only in courses taken under the restricted electives in
social sciences and humanities and the additional electives in social sciences,
humanities, or agriculture (see page 89).

Many students who enter veterinary medical school as freshmen are already
strongly motivated toward some highly specialized field of veterinary medicine
such as food-animal disease control, public health, laboratory animal medicine,
exotic animal medicine, or biomedical research. To increase their breadth of
preparation for a particular field of endeavor, preveterinary medical students are
strongly urged to include in their elective programs courses that will provide
additional background for the fields in which they may be interested. In order to
obtain more information and guidance as to programs, such students should con-
tact an adviser representing one of these special areas through the Dean’s Office
in the School of Veterinary Medicine. For example, a veterinarian engaged in
food-animal practice will be largely employed as a herd health consultant or
manager and will devote more time to improving the health and productivity
of animals than to treating the sick. Thus, a preveterinary student interested
in this field would be encouraged to include courses that provide an additional
background in nutrition, food-animal production, farm management, and agricul-
tural economics. In the area of zoo and wildlife medicine, the preveterinary
medical student would be urged to select courses in evolution, genetics, animal
ecology, and animal behavior. For the field of space medicine, courses in com-
puter techniques, mathematics, and electronics would be highly desirable.

Application

Students are admitted to the School of Veterinary Medicine in the fall of each
year. Application forms may be obtained after October 1 from the Admissions

* For additional information prospective students should write the Dean, School of Veterinary
Medicine, University of California, Davis 95616.
† For course listings for the School of Veterinary Medicine, refer to page 159.
Officer, University of California, Davis 95616. (Do not write to the School of Veterinary Medicine to request an application form.) The completed application must be filed with the Admissions Officer between January 1 and February 28 in order to be considered for the fall of the year in which application is made. Students may apply before completing all the requirements. However, they must submit a detailed list of courses in progress and a list of all courses to be completed by June 15 of the year they wish to be considered. Applications lacking this information will not be processed.

Admission to the School of Veterinary Medicine

Enrollment is limited, and applicants are selected primarily on the basis of scholarship with particular emphasis placed on achievement in required science courses. In addition, candidates should have sufficient experience with animals and some aspect of the veterinary medical profession to justify their decision to pursue a lifetime career in veterinary medicine.

Personal qualifications also receive consideration. An interview may be required to enable the Committee on Admissions to make the most accurate judgment possible. Applicants will be notified before July 15 of their admission status.

Scholastic achievement, particularly in the required courses, is a very important criteria for admission to the School of Veterinary Medicine. Preveterinary medical students are, therefore, cautioned to use the passed or not passed option as sparingly as possible.

The School of Veterinary Medicine at the University of California participates in the student program administered by the Western Interstate Commission for Higher Education (WICHE). Students residing in western states without a school of veterinary medicine who wish to participate in this program must be certified by their home state. For addresses of state certifying officers, write to the Western Interstate Commission for Higher Education, University East Campus, 30th Street, Boulder, Colorado 80300.

After Admission

After admission to the School of Veterinary Medicine, the student completes a four-year professional curriculum leading to the degree Doctor of Veterinary Medicine. At the end of the first two years of the professional curriculum, students who do not hold a baccalaureate are eligible to receive a Bachelor of Science degree in Veterinary Science.

Preveterinary Medical Curriculum

Applicants for admission to the School of Veterinary Medicine must complete:

1. Mathematics through trigonometry*; Subject A; and American History and Institutions.

2. At least 90 quarter units or 60 semester units of credit in the University of California or other accredited institution, including the prescribed subjects listed below. (Minor shortages may be waived by the Admissions Committee of the School of Veterinary Medicine.)

* Should be completed in high school.
3. Subject Requirements:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry (general, qualitative, organic, and quantitative)</td>
<td>25</td>
</tr>
<tr>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Physics (general)</td>
<td>9</td>
</tr>
<tr>
<td>Biology, zoology, embryology</td>
<td>17</td>
</tr>
<tr>
<td>English composition and additional English or rhetoric</td>
<td>8</td>
</tr>
<tr>
<td>Restricted electives in social sciences and humanities†</td>
<td>17†</td>
</tr>
<tr>
<td>Additional electives in social sciences, humanities or agriculture</td>
<td>11†</td>
</tr>
</tbody>
</table>

Animal science is no longer required but is recommended.

Students completing the preveterinary medical requirements in institutions other than University of California, Davis, are urged to check the catalog of their college carefully to be sure they are taking equivalent courses.

Freshman Year

<table>
<thead>
<tr>
<th>Plan of Study</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1A, 1B, 1C</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>English 1 and additional English or rhetoric</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Biology 1</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Plan of Study</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 8A, 8B, 5</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Genetics 100A</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Zoology 2</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zoology 100 (vertebrate embryology)</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Requirements for the Degree Doctor of Veterinary Medicine

1. The candidate for the degree Doctor of Veterinary Medicine must have completed the general University requirements for a baccalaureate degree (pages 32 to 34).

2. He must possess good moral character.

3. He must have studied veterinary medicine for the equivalent of twelve quarters of twelve weeks each. The last six quarters must have been spent in the University of California School of Veterinary Medicine.

4. He must have completed the required work, satisfactorily fulfilled all special requirements, and received throughout the entire veterinary medical curriculum satisfactory grades as determined by the Faculty of the School and by the Graduate Council.

† Art, anthropology, economics, foreign languages, geography, history, music, philosophy, political science, psychology, sociology, and/or additional English, rhetoric, and mathematics.

† See page 134.
Plan of Study

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy 140</td>
<td>2</td>
<td>Anatomy 155</td>
<td>2</td>
</tr>
<tr>
<td>Anatomy 150</td>
<td>2</td>
<td>Anatomy 156</td>
<td>2</td>
</tr>
<tr>
<td>Anatomy 151</td>
<td>4</td>
<td>Anatomy 157</td>
<td>2</td>
</tr>
<tr>
<td>Physiological Sciences 101A</td>
<td>4</td>
<td>Physiological Sciences 101B</td>
<td>3</td>
</tr>
<tr>
<td>Physiological Sciences 102A</td>
<td>1</td>
<td>Physiological Sciences 102B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physiological Sciences 140A</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physiological Sciences 141A</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 13

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology 122A</td>
<td>5</td>
<td>Epidemiology and Preventive Medicine</td>
<td>5</td>
</tr>
<tr>
<td>Physiological Sciences 124</td>
<td>4</td>
<td>Pathology 122B</td>
<td>5</td>
</tr>
<tr>
<td>Veterinary Microbiology 120</td>
<td>2</td>
<td>Veterinary Microbiology 122</td>
<td>4</td>
</tr>
<tr>
<td>Veterinary Microbiology 121</td>
<td>3</td>
<td>Veterinary Microbiology 123</td>
<td>3</td>
</tr>
<tr>
<td>Animal Nutrition 109</td>
<td>3</td>
<td>Veterinary Microbiology 124</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 17

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Pathology 201</td>
<td>3</td>
<td>Epidemiology and Preventive Medicine</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Sciences 204A</td>
<td>3</td>
<td>Clinical Sciences 208</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Sciences 210A</td>
<td>1</td>
<td>Clinical Sciences 204B</td>
<td>4</td>
</tr>
<tr>
<td>Clinical Sciences 220</td>
<td>4</td>
<td>Clinical Sciences 210B</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Sciences 230</td>
<td>6</td>
<td>Clinical Sciences 221</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical Sciences 260</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Veterinary Microbiology 201</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 17

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology and Preventive Medicine 209</td>
<td>2</td>
<td>Clinical Pathology 295B</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Pathology 295A</td>
<td>1</td>
<td>Clinical Sciences 204E</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Sciences 204D</td>
<td>5</td>
<td>Clinical Sciences 250B</td>
<td>8</td>
</tr>
<tr>
<td>Clinical Sciences 250A</td>
<td>8</td>
<td>Clinical Sciences 270</td>
<td>1</td>
</tr>
<tr>
<td>Pathology 295A</td>
<td>1</td>
<td>Pathology 295B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 17

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Pathology 295C</td>
<td>1</td>
<td>Clinical Sciences 204F</td>
<td>3</td>
</tr>
<tr>
<td>Clinical Sciences 250C</td>
<td>7</td>
<td>Pathology 295C</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electives</td>
<td>5</td>
</tr>
</tbody>
</table>

Total: 17
Requirements for the Degree Bachelor of Science

Upon recommendation of the Faculty of the School of Veterinary Medicine the degree Bachelor of Science with a major in Veterinary Science is granted to students in the School of Veterinary Medicine who do not hold a baccalaureate and who:

1. Satisfy the general University requirements (pages 32 to 34).
2. Complete in the School of Veterinary Medicine all courses prescribed in the first two years of the professional curriculum. Exceptions may be made to students admitted in advanced standing.

Admission in Advanced Standing

An applicant requesting admission to advanced standing in the School of Veterinary Medicine may be accepted under the following conditions:

1. He must furnish evidence that he was eligible for admission to the first quarter of the School of Veterinary Medicine.
2. He must show that he has satisfactorily completed courses equivalent in kind and amount to those given in the School of Veterinary Medicine in the quarter or quarters preceding that in which admission is desired.
3. He may be required to pass examinations in any or all subjects for which credit is asked.

Graduate Study

The graduate study program of the School of Veterinary Medicine provides varied opportunities for advanced professional training and for launching careers in research.

Master of Preventive Veterinary Medicine Program

Applicants must hold the degree Doctor of Veterinary Medicine or equivalent degree from an accredited school of veterinary medicine and be recommended for admission by the faculty committee in charge of the program. The program, consisting of a group of required core courses and optional electives, is scheduled over one full year from September to August. Specific fields of emphasis are Epidemiology, Medical Statistics, Information Retrieval and Analysis, and Disease Control and Eradication.

Plan of Study

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPM 101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103A, 103B, 103C</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Elementary Statistics	4
Perspectives in Veterinary Medicine	NC**
Biomedical Information Retrieval	3
Medical Statistics	3
Advanced Epidemiology	5

* Substitutions may be permitted under special circumstances to provide specialized training in related fields.

** NC—Non credit.
Other graduate degrees offered beyond the D.V.M. are Master of Science and Doctor of Philosophy.

General information regarding these degrees will be found in the Announcement of the Graduate Division which may be obtained from the Dean of the Graduate Division, Davis.

Additional detailed information may be obtained by writing the chairman of the department in which the candidate wishes to study.
GRADUATE DIVISION

Graduate study and research are administered by the Graduate Council, a standing committee of the Academic Senate at Davis, and by the Dean of the Graduate Division. A Universitywide Coordinating Committee on Graduate Affairs determines general policies and establishes common procedures.

Advanced Degrees

On the Davis campus the following advanced degrees are offered: Master of Arts, Master of Fine Arts, Master of Science, Master of Education (in Agricultural Education), Master of Engineering, Juris Doctor, Master of Preventive Veterinary Medicine, Candidate in Philosophy, Doctor of Engineering, Doctor of Veterinary Medicine, Doctor of Medicine, and Doctor of Philosophy.

Majors for graduate study and the advanced degrees offered in each are shown below:

Agricultural Chemistry (Ph.D.)
Agricultural Economics (M.S., Ph.D.)
Agricultural Education (M.Ed.)
Agricultural Science and Management (M.S.)
Agronomy (M.S.)
Anatomy (M.S., Ph.D.)
Animal Science (M.S.)
Anthropology (M.A., Ph.D.)
Art (M.F.A.)
Biochemistry (M.A., Ph.D.)
Biophysics (Ph.D.)
Botany (M.S., Ph.D.)
Chemistry (M.S., Ph.D.)
Classics (M.A.)
Comparative Pathology (M.S., Ph.D.)
Comparative Pharmacology and Toxicology (M.S., Ph.D.)
Dramatic Art (M.A., M.F.A., Ph.D.)
Ecology (M.S., Ph.D.)
Economics (M.A., Ph.D.)
Education (M.A.)
Endocrinology (M.A., Ph.D.)
Engineering (M.Eng., D.Eng., M.S., Ph.D.)
English (M.A., Ph.D.)
Entomology (M.S., Ph.D.)
Food Science (M.S.)
French (M.A., Ph.D.)
Genetics (M.S., Ph.D.)
Geography (M.A., Ph.D.)
Geology (M.S., Ph.D.)
German (M.A., Ph.D.)

History (M.A., Ph.D.)
History of Art (M.A.)
Home Economics (M.S.)
Horticulture (M.S.)
International Agricultural Development (M.S.)
Irrigation (M.S.)
Law (J.D.)
Linguistics (M.A.)
Mathematics (M.A., Ph.D.)
Medicine (M.D.)
Microbiology (M.A., Ph.D.)
Music (M.A.)
Nutrition (M.S., Ph.D.)
Philosophy (M.A., Ph.D.)
Physical Education (M.A.)
Physics (M.A., Ph.D.)
Physiology (M.S., Ph.D.)
Plant Pathology (M.S., Ph.D.)
Plant Physiology (M.S., Ph.D.)
Political Science (M.A., Ph.D.)
Poultry Science (M.S.)
Preventive Veterinary Medicine (M.P.V.M.)
Psychology (M.A., Ph.D.)
Range Management (M.S.)
Russian (M.A.)
Sociology (M.A., Ph.D.)
Soil Science (M.S., Ph.D.)
Spanish (M.A., Ph.D.)
Vegetable Crops (M.S.)
Veterinary Medicine (D.V.M.)
Zoology (M.A., Ph.D.)
This list changes frequently as graduate work expands into new areas of study. Prospective students seeking further information should consult the Graduate Division. General requirements for degrees are published in the *Announcement of the Graduate Division*. The specific requirements are available from the office of the department concerned.

Group majors, those which are sponsored by more than one department, are listed below. If a student is interested in one of these he should write to the group chairman for more information.

Agricultural Chemistry—John R. Whitaker, Ph.D., Chairman, 238A Cruess Hall

Agricultural Science and Management—William C. Weir, Ph.D., Chairman, 162 Animal Science

Anatomy—Walter S. Tyler, D.V.M., Ph.D., Chairman, 1042 Haring Hall

Biochemistry—Jerry L. Hedrick, Ph.D., Chairman, 5206 Storer Hall

Biophysics—Richard S. Criddle, Ph.D., Chairman, 555 Hutchison Hall

Botany—Kenneth Wells, Ph.D., Chairman, 280 Robbins Hall

Comparative Pathology—John W. Kendrick, D.V.M., Ph.D., Chairman, 2301 Haring Hall

Comparative Pharmacology and Toxicology—Stuart A. Peoples, M.D., 2147 Haring Hall

Ecology—Robert S. Loomis, Ph.D., Chairman, 463 Office Building 3

Endocrinology—Irving I. Geschwind, Ph.D., 220 Animal Science

Engineering—John B. Powers, Ph.D., Chairman, 2006 Bainer Hall

Food Science—Lloyd M. Smith, Ph.D., Chairman, 204 Roadhouse Hall

Genetics—Robert W. Allard, Ph.D., Chairman, 201B Hutchison Hall

Horticulture—Dillon S. Brown, Ph.D., Chairman, 1043 Wickson Hall

International Agricultural Development—Lynn D. Whittig, Ph.D., Chairman, 167 Hoagland Hall

Linguistics—Benjamin E. Wallacker, Ph.D., Chairman, 331 Voorhies Hall

Microbiology—Herman J. Phaff, Ph.D., Chairman, 217 Cruess Hall

Nutrition—William C. Weir, Ph.D., Chairman, 162 Animal Science

Physiology—Loren D. Carlson, Ph.D., Chairman, Temporary Building 139

Plant Physiology—Harlan K. Pratt, Ph.D., Chairman, 104 Louis Mann Laboratory

Preventive Veterinary Medicine—Calvin W. Schwebe, D.V.M., Chairman, 2086 Haring Hall

Range Management—R. Merton Love, Ph.D., Chairman, 131 Hunt Hall

Soil Science—Delbert W. Henderson, Ph.D., Chairman, 223 Veihmeyer Hall

Admission Standards

Students seeking admission to graduate status at the University of California must hold a bachelor's degree or its equivalent from an institution of acceptable standing. The program of preparation should be substantially equivalent in both the distribution of academic subject matter and in scholarship achievement to the requirements for a comparable degree at the University of California. Appli-
cations for admission are evaluated in terms of scholastic qualifications and formal preparation for the graduate field of study.

The Dean of the Graduate Division may deny an applicant admission if his scholastic record or his undergraduate program of study is judged inadequate as a foundation for advanced academic or professional study. This procedure applies to all applicants, whether they come from schools or colleges within the University of California or elsewhere. Departments may have special requirements for admission to graduate status, and some departments and schools require an additional application for admission to their advanced-degree program.

Application for Admission

Students seeking admission for graduate work may obtain application forms from the Office of the Graduate Division, University of California, Davis. Applications must be on file no later than July 15 for the fall quarter, November 15 for the winter quarter and February 15 for the spring quarter, but early filing, preferably twelve weeks prior to the date of registration, is recommended. The application must be accompanied by a nonrefundable fee of $10.00. Checks should be made payable to The Regents of the University of California. In cases where complete records are filed later than the above dates, the student may not be allowed to register or he may be allowed to register late upon payment of an additional fee of $10.00.

Official transcripts of record covering all college and university work completed to date, together with official evidence of degrees conferred, must accompany or immediately follow the application. A separate original and official record must be presented from each institution previously attended. Unless all of these are on file in the Graduate Division, registration cannot be permitted. In addition, the student should have in his possession a second copy of his official records for his use in conference with advisers.

A separate application is required for admission to the School of Law, School of Medicine, and the School of Veterinary Medicine. Students are referred to pages 138, 141, and 145 for further details.

Every new student and every student returning to the University after an absence of one or more quarters must satisfy the medical requirements as described under “Medical Evaluation” (see page 45).

Readmission

Persons formerly registered in a regular session as graduate students who wish to return after an absence must apply for readmission at least six weeks before the beginning of the quarter in which they wish to enroll. The Application for Readmission may be obtained from the Graduate Division, and a $10.00 fee is charged.

International Students

Applicants for admission to the Graduate Division on credentials from universities and colleges in foreign countries are advised to make their initial inquiry as early as six months before the date of intended enrollment to permit processing of their records.
Students whose undergraduate preparation has been in a language other than English should furnish positive evidence that their command of both spoken and written English will permit them to profit by the instruction offered. Certificates of proficiency in English by individuals (usually professors) and consular testing at the time the Certificate of Eligibility, I-20 form, is processed is helpful. Prospective students are encouraged, however, to submit scores on the Test of English as a Foreign Language (TOEFL) administered by the Educational Testing Service for the College Board. These tests are given at many testing centers abroad three times a year, and full information is available from the Educational Testing Service, Princeton, New Jersey 08540. A number of other tests given by authorized examiners abroad are acceptable. These include the Michigan Test (English Language Institute Test, University of Michigan), the interview reports supervised by the directors of the Institute of International Education overseas office, and the American University Language Center (AULC) Test.

On arrival all international students take the special University examination in English. Those who do not pass are assigned to remedial courses. Even though the student has been admitted, his registration may be deferred until he acquires an adequate command of English.

Admission Without an Advanced Degree Objective

A student who does not wish to become a candidate for a higher degree may be admitted to a specified field of study for course work only. A program, which requires the approval of the Dean, must have a definite scholarly or professional purpose. The scholastic requirements for admission are the same as for those who are candidates for degrees.

Program of Study

When the student reports to his department or group, he will be assigned to the appropriate adviser, who will plan with him his program of study. This will depend to some degree on the undergraduate training, and the student may be assigned to undergraduate courses to remove deficiencies.

Each student must satisfy the degree requirements as published in the Announcement of the Graduate Division. The program in an area of study, as established by the department or group and approved by the Graduate Council, often includes a core of required courses, but considerable flexibility is permitted to suit the individual student’s needs. Undergraduates at Davis who plan to pursue graduate study should consult with their major adviser early in their senior year to guarantee adequate preparation.

Intercampus Exchange Program

A graduate student registered on any campus of the University may become an Intercampus Exchange Student with the approval of his graduate adviser, the chairman of the department or group in which he wishes to study on the host campus, and the Dean of the Graduate Division on both the home and the host campus. The Intercampus Exchange Student has library, infirmary, and other
student privileges on the host campus but is considered as a graduate student in residence on his home campus. The grades obtained in courses on the host campus are transferred to his home campus and entered on his official record. Forms for application for the intercampus exchange may be obtained at the office of the Dean of the Graduate Division.

Fellowships, Assistantships, and Loans

Fellowships are awarded by the Fellowship Committee of the Graduate Council on the bases of scholarship and promise of outstanding academic and professional contribution. For information on available awards the student may consult the Fellowship announcement published in October for the following academic year. Applications with all the supporting records must be filed by January 15.

Requests for application forms from students in foreign countries will not be honored after December 15 and will not be sent by airmail unless the applicant forwards in advance international postal coupons equivalent to 60 cents U.S. postage. Requests for application materials from students in the U.S. will not be honored after January 1.

Teaching assistantships and research assistantships are available in many departments, and interested students should inquire at the office of the department in which they wish to study.

Certain departments may be authorized to offer a limited number of fellowships under the National Defense Education Act and traineeships under the National Science Foundation or the National Institute of Health. For these the student may write directly to the department or to the Graduate Division. Information regarding Graduate Fellowships supported by various federal agencies and others is also available at the Graduate Division.

Application for loan funds for graduate students should be addressed to the Financial Aids section of the Office of the Dean of Students (see page 39).

Teacher Credential Program

Programs leading to a Standard Teaching Credential with specialization in elementary teaching and in secondary teaching are offered under the jurisdiction of the Graduate Division. Graduate students who are prospective candidates for advanced degrees may take special professional courses and qualify for the junior college teachers credential.

The curricula for teacher education are offered by the Department of Education and the Department of Applied Behavioral Sciences, and interested students should obtain detailed information at either department. The courses in professional education required for the credential are specified in this catalog under the Departments' listing of courses of instruction (see pages 188 and 224). Subject-matter requirements for the teaching major and minor are specified with departmental offerings.

Only students who have completed the bachelor's degree are eligible, and they must be admitted to the program by the Graduate Division. Final filing dates and the application forms may be obtained from the Graduate Division.
The student must maintain a scholarship record of 2.75 or better in all graduate work undertaken. In addition to the Graduate Division application, an application for the Department of Education is necessary for those who wish to be admitted for the credential program. Application for the 1970–71 program should be made in Room 174 Academic Office Building III, before November 1. Exceptions to this rule are made only at the discretion of the Head of Teacher Education.

Since the requirements for the credential are set up both by the State Department of Education and by the University, all students who intend to work for the credential are urged to consult the adviser in one of the departments named above early in their undergraduate career (preferably by the end of their freshman year).

Curricula are offered which lead to the Standard Teaching Credential with a specialization in elementary teaching or in secondary teaching and to the secondary credentials required for teaching classes reimbursed under the National Vocation Acts. Two routes for obtaining each type of credential are available: a student-teaching program (the usual route) and an internship program (limited in enrollment). Application for the intern program should be made to the department early in the senior year.
AN INDEX TO COURSE OFFERINGS BY COLLEGE OR SCHOOL AND BY DEPARTMENTS, COMMITTEES, AND GROUPS

College of Agricultural and Environmental Sciences

AGRICULTURAL ECONOMICS .. 164
Agricultural Economics .. 165, 170
Agricultural Education .. 188
AGRICULTURAL ENGINEERING ... 167
AGRICULTURAL PRACTICES .. 169
AGRICULTURAL SCIENCE AND MANAGEMENT (a Committee) 169
Agronomy and Range Science ... 351
Animal Biochemistry .. 177
Animal Genetics ... 177
ANIMAL SCIENCES (a Committee) ... 174
Animal Science ... 170, 175
APPLIED BEHAVIORAL SCIENCES ... 187
Applied Behavioral Sciences (under FAMILY AND CONSUMER SCIENCES) .. 263
Asian American Studies (under FAMILY AND CONSUMER SCIENCES) 264
Atmospheric Science .. 369
Avian Sciences ... 178
BIOCHEMISTRY AND BIOPHYSICS 196
Consumer Economics (under FAMILY AND CONSUMER SCIENCES) .. 264
Design (under FAMILY AND CONSUMER SCIENCES) 265
ENTOMOLOGY ... 256
Environmental Horticulture ... 352
ENVIRONMENTAL TOXICOLOGY .. 258
FAMILY AND CONSUMER SCIENCES (a Committee) 262
FOOD SCIENCE (a Committee) ... 270
Food Science and Technology .. 170, 271
Foods (under FAMILY AND CONSUMER SCIENCES) 265
GENETICS ... 279
Home Economics Education (under FAMILY AND CONSUMER SCIENCES) 266
Home Management (under FAMILY AND CONSUMER SCIENCES) 266
Human Development (under FAMILY AND CONSUMER SCIENCES) 267
Institution Management (under FAMILY AND CONSUMER SCIENCES) 268
INTERNATIONAL AGRICULTURAL DEVELOPMENT (a Committee) 301
NEMATOLOGY ... 331
Nutrition (Animal) ... 179
Nutrition (under FAMILY AND CONSUMER SCIENCES) 268
Park and Recreation Administration ... 370
Physiology (Animal) .. 180, 348
Plant Pathology ... 353
Plant Science ... 170, 350
PLANT SCIENCES (a Committee) ... 348
Pomology ... 354
Range Management .. 371
Resource Sciences .. 372
<table>
<thead>
<tr>
<th>Course Area</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOURCE SCIENCES (a Committee)</td>
<td>367</td>
</tr>
<tr>
<td>Soil Science</td>
<td>373</td>
</tr>
<tr>
<td>Soil and Water Science</td>
<td>170, 373, 374</td>
</tr>
<tr>
<td>Textiles and Clothing (under FAMILY AND CONSUMER SCIENCES)</td>
<td>269</td>
</tr>
<tr>
<td>Vegetable Crops</td>
<td>355</td>
</tr>
<tr>
<td>Viticulture and Enology (under FOOD SCIENCE and PLANT SCIENCES)</td>
<td>274, 356</td>
</tr>
<tr>
<td>Water Science</td>
<td>374</td>
</tr>
<tr>
<td>Wildlife and Fisheries Biology</td>
<td>376</td>
</tr>
<tr>
<td>College of Engineering</td>
<td></td>
</tr>
<tr>
<td>ENGINEERING (Core Courses)</td>
<td>227</td>
</tr>
<tr>
<td>ENGINEERING: AGRICULTURAL</td>
<td>229</td>
</tr>
<tr>
<td>ENGINEERING: APPLIED SCIENCE</td>
<td>230</td>
</tr>
<tr>
<td>ENGINEERING: CHEMICAL</td>
<td>234</td>
</tr>
<tr>
<td>ENGINEERING: CIVIL</td>
<td>236</td>
</tr>
<tr>
<td>ENGINEERING: ELECTRICAL</td>
<td>241</td>
</tr>
<tr>
<td>ENGINEERING: MECHANICAL</td>
<td>245</td>
</tr>
<tr>
<td>School of Law</td>
<td></td>
</tr>
<tr>
<td>LAW</td>
<td>305</td>
</tr>
<tr>
<td>School of Medicine</td>
<td></td>
</tr>
<tr>
<td>ANESTHESIOLOGY</td>
<td>320</td>
</tr>
<tr>
<td>BEHAVIORAL BIOLOGY</td>
<td>320</td>
</tr>
<tr>
<td>BIOLOGICAL CHEMISTRY</td>
<td>321</td>
</tr>
<tr>
<td>HUMAN ANATOMY</td>
<td>321</td>
</tr>
<tr>
<td>HUMAN PHYSIOLOGY</td>
<td>322</td>
</tr>
<tr>
<td>INTERNAL MEDICINE</td>
<td>322</td>
</tr>
<tr>
<td>MEDICAL EDUCATION</td>
<td>322</td>
</tr>
<tr>
<td>MEDICAL MICROBIOLOGY</td>
<td>322</td>
</tr>
<tr>
<td>MEDICAL SCIENCES</td>
<td>320</td>
</tr>
<tr>
<td>NEUROLOGY</td>
<td>322</td>
</tr>
<tr>
<td>PEDIATRICS</td>
<td>322</td>
</tr>
<tr>
<td>PATHOLOGY</td>
<td>323</td>
</tr>
<tr>
<td>PHARMACOLOGY</td>
<td>323</td>
</tr>
<tr>
<td>PHYSICAL MEDICINE AND REHABILITATION</td>
<td>324</td>
</tr>
<tr>
<td>PSYCHIATRY</td>
<td>325</td>
</tr>
<tr>
<td>College of Letters and Science</td>
<td></td>
</tr>
<tr>
<td>AFRO-AMERICAN (BLACK) STUDIES</td>
<td>164</td>
</tr>
<tr>
<td>AMERICAN STUDIES</td>
<td>171</td>
</tr>
<tr>
<td>ANTHROPOLOGY</td>
<td>183</td>
</tr>
<tr>
<td>ART</td>
<td>188</td>
</tr>
<tr>
<td>Astronomy (under PHYSICS)</td>
<td>343</td>
</tr>
<tr>
<td>BACTERIOLOGY</td>
<td>193</td>
</tr>
<tr>
<td>BIOLOGICAL SCIENCES (a Committee)</td>
<td>198</td>
</tr>
<tr>
<td>Course</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>BIOLOGY</td>
<td>199</td>
</tr>
<tr>
<td>BOTANY</td>
<td>200</td>
</tr>
<tr>
<td>CANTONESE</td>
<td>332</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>204</td>
</tr>
<tr>
<td>Chinese</td>
<td>332</td>
</tr>
<tr>
<td>CLASSICS</td>
<td>208</td>
</tr>
<tr>
<td>DRAMATIC ART</td>
<td>215</td>
</tr>
<tr>
<td>ECONOMICS</td>
<td>220</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>224</td>
</tr>
<tr>
<td>ENGLISH</td>
<td>248</td>
</tr>
<tr>
<td>Foreign Literature in Translation</td>
<td>275</td>
</tr>
<tr>
<td>FRENCH</td>
<td>276</td>
</tr>
<tr>
<td>GEOGRAPHY</td>
<td>281</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td>284</td>
</tr>
<tr>
<td>GERMAN</td>
<td>288</td>
</tr>
<tr>
<td>Greek</td>
<td>209</td>
</tr>
<tr>
<td>Hebrew</td>
<td>332</td>
</tr>
<tr>
<td>HISTORY</td>
<td>293</td>
</tr>
<tr>
<td>INTEGRATED STUDIES (FRESHMAN)</td>
<td>301</td>
</tr>
<tr>
<td>INTERNATIONAL RELATIONS (a Committee)</td>
<td>302</td>
</tr>
<tr>
<td>ITALIAN</td>
<td>303</td>
</tr>
<tr>
<td>Japanese</td>
<td>332</td>
</tr>
<tr>
<td>Latin</td>
<td>210</td>
</tr>
<tr>
<td>LINGUISTICS (a Committee)</td>
<td>310</td>
</tr>
<tr>
<td>MATHEMATICS</td>
<td>312</td>
</tr>
<tr>
<td>Mandarin</td>
<td>332</td>
</tr>
<tr>
<td>MILITARY SCIENCE</td>
<td>326</td>
</tr>
<tr>
<td>MUSIC</td>
<td>328</td>
</tr>
<tr>
<td>ORIENTAL LANGUAGES</td>
<td>332</td>
</tr>
<tr>
<td>PHILOSOPHY</td>
<td>335</td>
</tr>
<tr>
<td>PHYSICAL EDUCATION</td>
<td>338</td>
</tr>
<tr>
<td>PHYSICAL SCIENCES (a Committee)</td>
<td>341</td>
</tr>
<tr>
<td>PHYSICS</td>
<td>342</td>
</tr>
<tr>
<td>PHYSIOLOGY (under ZOOLOGY)</td>
<td>394</td>
</tr>
<tr>
<td>POLITICAL SCIENCE</td>
<td>356</td>
</tr>
<tr>
<td>Portuguese</td>
<td>388</td>
</tr>
<tr>
<td>PSYCHOLOGY</td>
<td>363</td>
</tr>
<tr>
<td>RHETORIC</td>
<td>377</td>
</tr>
<tr>
<td>RUSSIAN</td>
<td>379</td>
</tr>
<tr>
<td>Russian and History and Literature</td>
<td>382</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>211</td>
</tr>
<tr>
<td>SOCIOLOGY</td>
<td>383</td>
</tr>
<tr>
<td>SPANISH</td>
<td>388</td>
</tr>
<tr>
<td>Subject A</td>
<td>391</td>
</tr>
<tr>
<td>ZOOLOGY</td>
<td>393</td>
</tr>
</tbody>
</table>
School of Veterinary Medicine
ANATOMY .. 172
CLINICAL PATHOLOGY 211
CLINICAL SCIENCES 212
EPIDEMIOLOGY AND PREVENTIVE MEDICINE 259
PATHOLOGY 333
PHYSIOLOGICAL SCIENCES 346
VETERINARY MICROBIOLOGY 391

Graduate Groups
AGRICULTURAL CHEMISTRY 164
BIOCHEMISTRY 196
ECOLOGY .. 219
INTERNATIONAL AGRICULTURAL DEVELOPMENT . 302
MICROBIOLOGY 325
Courses of Instruction

Explanatory Note

Academic Credit. Academic work at the University is measured by "units of credit," which determine the amount of time a student has formally devoted to a given subject. In conjunction with the letter grade conferred by the instructor, units of credit give the student and those interested in his career a reasonably accurate evaluation of his progress in various subjects. Units of credit make it possible for a student to assemble a course program for a given term that meets the minimum requirements for a course load while reflecting his special interests. Units of credit also make it possible for students to transfer from one campus or university to another without undue difficulty.

Relation of Units of Credit to Course Procedure. The time-honored rule adopted by most colleges and universities is the so-called "Carnegie unit," which assigns one unit of credit for three hours of work by the student per week. The standard distribution of this work is one hour of lecture or discussion presided over by the instructor and two hours of outside preparation by the student. In laboratory courses, two or three hours of work in the laboratory are assigned for one unit of credit. In most courses at the Davis campus the standard procedure prevails, so that a three-unit course meets for three hours a week, a four-unit course for four hours, and so on. Courses that are an exception to this pattern are authorized for increased credit on the stipulation that more demanding assignments are to be laid down by the instructor. Students should inquire of the instructor, at least by the first class meeting, what the course will involve in the way of outside reading, term papers, problem sets, field trips, and the like, for these are not always spelled out completely in the Catalog (this applies to all courses but is particularly urgent in the case of 4 or 5 unit courses). In this way, the student will be able to plan his work more systematically.

Course Designations. Class hours and room numbers are published each quarter in the Schedule and Directory.

The quarter in which a course is given is shown as follows: I, Fall Quarter (September to December); II, Winter Quarter (January to March); III, Spring Quarter (April to June); IV, Summer Quarter (June to August), for students in the School of Medicine only.

A course number followed by two or three letters from the first part of the alphabet (for example, Mathematics 131A–131B–131C) is continued through three successive quarters, ordinarily from September to June; occasionally, however, a course of two quarters may begin in the Winter Quarter. The first quarter course listed in this way is prerequisite to the second, and the second to the third. On the other hand, where A and B portions of a course are listed separately (for example, Economics 100A and Economics 100B), the A course is not prerequisite to B unless it is specifically mentioned in the listing of the B course.

Prerequisites. Prerequisites for courses should be noted carefully: the responsibility for meeting these prerequisites rests mainly on the student. Certain classes are restricted to a limited number of students, and for these classes it is especially important that the student should have the prerequisite courses by the time the course begins. Otherwise he may find himself displaced by a student who does
have the necessary prerequisites. If a student can demonstrate that his preparation is equivalent to that given by the prerequisites specified, these prerequisites may be waived for this student by consent of the instructor.

Level of Courses. Freshmen and sophomores are not encouraged to take upper division courses (i.e., those numbered 100–199).

Special Study Courses. The regulations of the Academic Senate limit to 5 the number of units of "Special Study" courses that a student may take in a given quarter. On the Davis campus, courses with the following numbers presently fall into this category: 38, 39, 194H, 198, and 199.

A student who finds that he shares with an instructor an academic interest that cannot be accommodated within the formal course structure may find it possible to arrange one of these independent study courses. A special study form may be obtained from the instructor who agrees to give such a course: these proposals must be approved by the Chairman of his department, and are subject to review by the appropriate committees of the Academic Senate. Courses numbered 38 ("Directed Group Study") and 39 ("Special Study for Undergraduates") are for lower division students only. Courses numbered 198 ("Directed Group Study") and 199 ("Special Study for Advanced Undergraduates") are open only to upper division students who have completed 84 or more units toward the bachelor's degree and who are judged to have an adequate background in the subject proposed for special study (in Special Study courses, the subject matter proposed must fall within the instructor's professional competence). It is expected that the amount of effort proposed in Special Study courses will at least equal that required for a regular course of the corresponding unit value.

Some departments offer special Honors courses (194H). Students who are interested in such courses should consult the Chairman of the department concerned.

Tutorials. There are some opportunities for students to tutor in their major subject while currently enrolled as undergraduates. Information concerning these tutorial courses (numbered 197T or 197TC) may be obtained from the office of Departments that offer them.

"Faculty 48" courses offer an opportunity for a professor or lecturer to lead the exploration of a subject with a group of interested students. The subject matter may be broad in scope or relatively narrow and specialized: in either case it need not fall within the instructor's official field. These courses are authorized by the Davis Division Committee on Courses of Instruction for one quarter only; announcements of 48 courses do not, therefore, appear in the Catalog but are given in the Schedule and Directory for each term.

Graduate courses. Graduate courses (numbered 200–299) are open only to students who have adequate preparation; admission is subject to the approval of the instructor in charge.

Professional teacher-training courses in the Department of Education and
courses in other departments that are specially intended for teachers or prospective teachers are numbered 300–399.

Professional courses in departments other than the Department of Education are numbered 400–499.

Extra-session courses. Extra-session courses (laboratory, field, or other individual work done out of session under the direction of a department of instruction) may be accepted upon the recommendation of the department in partial fulfillment of the residence requirement for the bachelor's degree.

University Extension courses. Simultaneous enrollment in resident courses and in extension courses is permitted only upon approval by the appropriate dean or study-list authority.

Summer Session courses. Regularly enrolled students or students planning to enroll for the fall quarter can receive credit toward their degrees in Summer Session courses.

Credit for summer session work at other schools. It is possible for students to gain credit for courses taken during the summer at other institutions, provided the courses parallel those given in the University of California. However, assurance that such credit will be accepted can be given only after the courses have been completed. Students should arrange to have the transcripts of their summer session grades sent to the Registrar for evaluation.

Flexibility. Opportunities for interdisciplinary programs tailored to the individual student's educational objectives are offered by the individual major in the College of Letters and Science (p. 126) and the group major in the College of Agricultural and Environmental Sciences (p. 58).

SYMBOLS

The following numerical footnotes and their accompanying symbols are used throughout the course section:

1 Absent on leave, 1970–71.
2 Absent on leave, fall quarter 1970.
3 Absent on leave, winter quarter 1971.
4 Absent on leave, spring quarter 1971.
* Not to be given, 1970–71.
† Not to be given, fall quarter 1970.
‡ Not to be given, winter quarter 1971.
§ Not to be given, spring quarter 1971.
To be given if a sufficient number of students enroll.
AFRO-AMERICAN (BLACK) STUDIES
Edward D. Turner, Ph.D., Chairman of the Committee
Committee Office, 105 TB-115

Committee in Charge:
Professors:
Martin A. Baumhoff, Ph.D. (Anthropology)
James J. Murphy, Ph.D. (Rhetoric)

Associate Professor:
Edward D. Turner, Ph.D. (Psychology)

Student Representatives:
Clarence Caesar (Black Students Union)
Deitra Moore (Black Students Union)

The Afro-American (Black) Studies Program was initiated in 1966 to provide the opportunity for interested students to pursue a thorough study of Black people. The Program is interdisciplinary and cuts across various departments, especially Anthropology, History, Political Science, and Sociology. However, courses relevant to the Program are also offered in Applied Behavioral Sciences, Dramatic Arts, Economics, Music, Rhetoric, and Psychology. The Program allows and encourages flexibility in order to cater to the interests of the individual student. Each student, however, is required to select an area of emphasis to satisfy the requirements for a major leading to a Bachelor of Arts Degree in Black Studies.

The Major Program
Lower Division Courses.—Required: Anthropology 1, 2; History 4A, 4B, 4C; Political Science 1A, 1B; Sociology 1, 2, 30A-30B-30C. Recommended: Applied Behavioral Sciences 47; Geography 11.

Upper Division Courses.—Required: 36 units of upper division courses to be approved by the Committee. At least 12 of these units must be from the student’s area of emphasis. Upper division courses may be selected in consultation with the Committee, although the following courses may be recommended: Anthropology 102, 103B, 139, 140, 148, 152, 153; Applied Behavioral Sciences 151, 160; Economics 125; History 160, 184; Political Science 103B, 146A-146B, 151, 152, 174, 178; Psychology 145, 147A, 198; Sociology 118, 130, 140, 143, 185.

Teaching Major.—Students planning to teach are advised to check with the Education Department regarding credential requirements.

Subject Representative: Mr. Turner.

AGRICULTURAL CHEMISTRY (A Graduate Group)
John R. Whitaker, Ph.D., Chairman of the Group
Group Office, 238A Cruess Hall

Graduate Courses
290. Seminar (1) I, II.
Seminar.—1 hour. Prerequisite: consent of instructor. The Staff (Chairman in charge)

AGRICULTURAL ECONOMICS
J. Herbert Snyder, Ph.D., Chairman of the Department
Department Office, 117 Voorhies Hall

Professors:
Harold O. Carter, Ph.D.
Gerald W. Dean, Ph.D.
Daniel B. DeLoach, Ph.D., D.Lit.
Jerry Foytik, Ph.D.
Benjamin C. French, Ph.D.
Tramble R. Hedges, Ph.D.
Gordon A. King, Ph.D.
Sylvia Lane, Ph.D.
Elmer W. Learn, Ph.D.
Chester O. McCorkle, Jr., Ph.D.
J. Herbert Snyder, Ph.D.
Stephen H. Sosnick, Ph.D.
James M. Tinley, Ph.D. (Emeritus)

Associate Professors:
Warren E. Johnston, Ph.D.
Samuel H. Logan, Ph.D.
Alexander F. McCalla, Ph.D.

Assistant Professors:
Hoy F. Carman, Ph.D.
Theodore P. Llanos, Ph.D.
Quirino Paris, Ph.D.

Professor:
Dale M. Hoover, Ph.D.

Assistant Professor:
Gorden C. Rausser, M.S. (Acting)

Lecturer:
Alice R. Taylor, LL.B. (Business Law)

1 Absent on leave, 1970-71.
106B. Quantitative Methods in Agricultural Economics. (3) III.

Lecture—3 hours. Prerequisite: course 106A or equivalent. Statistical methods for analyzing quantitative agricultural economics data: linear and multiple correlation and regression analysis.

Mr. King

112. Fundamentals of Business Organization. (4) I.

Lecture—4 hours. Principles and practices of business organization; goals; financial and personnel requirements; selection of form of organization—single ownership, partnership, corporation, and cooperative— to facilitate attainment of goals; taxation, industry structure; legal, political, and social problems. Mr. DeLoach

113. Fundamentals of Business Management. (4) II.

Lecture—4 hours. Recommended: course 112. Management principles and their application to all forms of business including cooperatives; the planning function; procurement, sales, finance, and personnel; case studies of agriculturally related businesses. Mr. Carman

114. Production Management. (4) III.

Lecture—4 hours. Recommended: course 113. Principles and procedures for the efficient use of resources in processing and handling of agricultural products; plant layout; work scheduling; inventory control; coordination of production and sales; location. Mr. Carman

117. Managerial Accounting. (4) III.

Lecture—4 hours. Prerequisite: Economics 11A-11B; course 112 recommended. Basic concepts of accounting as a managerial tool; procedures for financial reporting; systems and internal control; cost accounting; budgeting; interpretation of administrative reports.

120. Agricultural Policy. (3) I.

Lecture—3 hours. Analytical treatment of recent and current economic problems and governmental policies and programs affecting American agriculture.

125. Comparative Agriculture. (4) II.

Lecture—4 hours. The agriculture of the principal countries of the world, with special reference to the influence of food supply upon the development of man. Mr. Hedges

130. Agricultural Marketing. (4) I.

Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A or equivalent. The nature, function, organizational structure, and operation of agricultural markets; prices, costs, and margins; market information, regulation, and controls; cooperative marketing. Mr. French

140. Farm Management. (5) III.

Lecture—4 hours; laboratory—2 hours. Farm organization and resources; economic and tech-
145. Farm and Rural Resources Appraisal. (3 I).
Lecture—3 hours. Principles of farm and ranch appraisal; land utilization in relation to problems of development and valuation. One field trip is required. Mr. Johnston

Lecture—3 hours. Relation of resources to economic growth, including regional problems; planning economic development with particular emphasis on resource use in agriculture; selected resource development programs in the United States and certain foreign countries, including land reform experiences. Mr. Dean

150. Agricultural Labor. (3 I).
Lecture—2 hours; discussion—1 hour. Problems, attitudes, and characteristics of agricultural employers, employees, and labor contractors. Impact of mechanization; determinants of productivity; wage levels and structures, evolution and efficiency of the labor market; placement and supervision; off-season and in-season unemployment; organization and conflict; relevant legislation.

Lecture—3 hours. Prerequisite: course 106A; Mathematics 16A. Introduction to selected topics in operations research, including mathematical programming, applied decision theory, game theory, and inventory models. Mr. Rausser

160. Advanced Agricultural Marketing. (3 III).
Lecture—3 hours. Recommended: course 155. The marketing firm in its economic context: market structures, pricing and price policies; empirical demand analysis; marketing cost and efficiency; public policies toward marketing.

170. Advanced Farm Management. (3 III).
Lecture—3 hours. Prerequisite: course 155 or equivalent. The farm firm in its economic context: resource and enterprise combinations; size of firm; uncertainty considerations; replacement policies; demand for inputs; nonfarm influences. Mr. Paris

176. Economic Analysis in Resource Use. (3 III).
Lecture—3 hours. An analytical treatment of resource use problems, including public policy issues; economic productivity and natural resources; determinants, principles, and patterns of natural resource use; resource conservation; land tenure problems and policies. Mr. Johnston

190A—190B. Senior Research Project. (2—2) I—II, II—III.
Supervised individual research. The research report begun in 190A will be revised and completed in 190B. (Course 190A to be Passed or not Passed grading only.) I—II. Mr. Snyder; II—III. Mr. Hedges

198. Directed Group Study. (1—5) I, II, III.
Prerequisite: consent of instructor. The Staff (Mr. Snyder in charge)

199. Special Study for Advanced Undergraduates. (1—5) I, II, III.
Prerequisite: junior or senior standing and consent of instructor. Limited to students with adequate preparation in Agricultural Economics. The Staff (Mr. Snyder in charge)

Graduate Courses

200A—200B—200C. Economics of Agricultural Production, Consumption, and Trade. (3—3—3) I—II—III.
Lecture—3 hours. Theory of the firm and industry, with particular reference to production; market structures, single and multiple products, uncertainty; theory of demand and consumption; and location theory and interregional trade. I. Mr. Dean; II. Mr. King; III. Mr. Hoover

Lecture—4 hours. Prerequisite: Mathematics 130B. Statistical models and their use in estimation of economic relationships; single and multiple equation systems. Mr. Rausser

211. Advanced Econometric Methods. (3 I).
Lecture—3 hours. Prerequisite: course 210. Econometric models and their use in estimation of static and dynamic structural relationships. Special problems in the theory and application of econometrics. Mr. Rausser

221. Agricultural Policy in Developed Countries. (3 II).
Lecture—3 hours. Economic policy, its nature, formation and analysis; characteristics of agricultural sectors in developed countries; comparative analysis of policies relating to production, marketing, price, income, rural poverty, and resource adjustment; international trade policies for temperate zone agricultural commodities. Mr. Hoover

222. Agricultural Policy and Planning in Developing Countries. (3 III).
Lecture—3 hours. Agriculture in the structure of developing nations; its role in economic development; historical experience and theoretical models; agriculture and national planning; sectoral policies relating to prices, inputs, productivity, and marketing; international inputs into agricultural development; case studies.
250. Institutional Setting for Agricultural Business. (3) II.
Lecture—3 hours. Study of economic and social influences of the institutional environment on agriculture-related industries; historical development and present structure of the American economy; governmental activities; financial aspects; labor problems. Mr. DeLoach

253. Linear Programming Analysis of Operational Problems. (3) I.
Lecture—3 hours. Linear programming methods with application to production, consumption, transportation, transshipment, and assignment problems; recursive and multiperiod programming, problems of aggregation and planning with limited information. Mr. Carter

254. Quantitative Analysis of Operational Problems. (3) II.
Lecture—3 hours. Selected topics in operation research including nonlinear and dynamic programming, decision theory, inventory, waiting line, and replacement models; simulation of business operations; statistical quality control. Mr. Paris

257. Production Planning and Market Analysis. (3) III.
Lecture—3 hours. Quantitative analysis of production systems by statistical, economic, and engineering methods; sales analysis for the individual firm; problems of investment, location, scale of operations. Mr. Carman

260. Administrative Organization and Policy Formation. (3) III.
Lecture—3 hours. Concepts and techniques of administration in the business firm; formulation and implementation of management goals; planning, procuring, organizing, and controlling physical factors and personnel. Mr. Logan

280. Analysis of Research in Production Economics. (3) I.
Lecture—3 hours. Current problems and methods of analysis in agricultural production economics research. Emphasizes both firm and industry. Mr. Carter

281. Economic Analysis of Demand and Trade. (3) II.
Lecture—3 hours. Models and methods of analysis of demand, interregional trade, and location in the agricultural economy. Mr. Logan

282. Dynamic Economic Models. (3) III.
Lecture—3 hours. Formulation and appraisal of models which simulate dynamic behavior of individual firms, groups of firms, and other economic systems. Mr. French

283. Analysis of Research in Natural Resource Economics. (3) II.
Lecture—3 hours. Scope and disciplinary context of natural resource economics. Recent problems affecting policy and use planning including efficiency and welfare criteria, technological externalities, public goods, extramarket goods, indivisibilities, and intertemporal problems; benefit cost analysis and public and private investment criteria. Mr. Johnston

(Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Snyder in charge)

(Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Snyder in charge)

AGRICULTURAL EDUCATION—See Applied Behavioral Sciences

AGRICULTURAL ENGINEERING—See Applied Engineering: Agricultural

AGRICULTURAL ENGINEERING†
John R. Goss, M.S., Chairman of the Department
Department Office, 2030 Bainer Hall

Professors:
Norman B. Akesson, M.S.
Roy Bainer, M.S., L.L.D. (Agricultural Engineering and Engineering, Emeritus)
Kinsell L. Coulson, Ph.D.
Coby Lorenzen, Jr., M.S., (Emeritus)

† Courses listed here are in the College of Agricultural and Environmental Sciences. For further course offerings, see Engineering, page 229.

Loren W. Neubauer, Ph.D. (Agricultural Engineering and Engineering)
Michael O'Brien, Ph.D.
Herbert B. Schultz, Ph.D. (Agricultural Engineering and Lecturer in Geography)
Wesley E. Yates, M.S.

Associate Professors:
Roger E. Garrett, M.S.
John C. Harper, Sc.D.
Stanton R. Morrison, Ph.D.

Assistant Professor:
Leonard O. Myrup, Ph.D.

Professors:
William J. Chancellor, Ph.D. (Engineering)
Robert B. Fridley, M.S. (Engineering)
John R. Goss, M.S., (Engineering)
Samuel A. Hart, Ph.D. (Engineering)
S. Milton Henderson, M.S. (Engineering)
Clarence F. Kelly, M.S., Sc.D. (Berkeley Campus)
Robert A. Kepner, B.S. (Engineering)

Assistant Professors:
Thomas H. Burkhardt, M.S. (Acting)
John J. Carroll, III, M.A. (Acting)

Lecturers:
PiCtiaw (Paul) Chen, Ph.D. (Agricultural Engineering and Engineering)
John B. Dobie, M.S.
Joe F. Gentry, M.S.

Bachelor of Science Major Program and Graduate Study (College of Engineering). See pages 110 and 151.

Lower Division Course

12. Engineering in Agricultural Operations. (3) II.
Lecture—3 hours. Introduction of engineering principles to tillage, harvesting, application of power, utilization of heat, materials handling, processing, structures, environment control, and systems concept. Mr. Burkhardt, Mr. Dobie

Upper Division Courses

100. Social Implications of Mechanization in Agriculture. (3) II.
Lecture—3 hours. Prerequisite: upper division standing or consent of instructor. The roles of rural manpower and mechanization in the production of food and fiber. Pressures for mechanization and social implications of the resulting developments. Technological considerations in developing machines. Human benefits and stresses resulting from increased levels of mechanization. Mr. O'Brien

101. Machinery Systems in Food Production. (4) I, III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Physics 2B. Planning and operating economic machinery systems for the application of energy to the tasks of agricultural production and processing. Emphasis on overall systems coordination and evaluation, machinery-labor-economics relationships, and energy resource utilization. Mr. Chancellor, Mr. Burkhardt

103. Agricultural Power. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Physics 2A-2B or 4A-4B; open to qualified lower division students with consent of instructor. Principles of operation, construction, and utilization of internal-combustion engines; tractors and electric motors.

104. Agricultural Machinery. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Physics 2A or 4A. Principles of construction, operation, selection, and utilization of equipment for tillage, planting, harvesting, and the application of agricultural chemicals.

105. Farm Structures. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Physics 2A or 4A. Functional and structural design of unified physical plants for livestock production and other enterprises; principles of feed mills, materials conveying, water and electrical systems, feed storage; labor-efficiency studies; materials for and design of beams, columns, trusses, and tanks.
Mr. Neubauer

107. Agricultural Meteorology. (3) I.
Lecture—3 hours. Prerequisite: Geography 1 or 3 or consent of instructor. Daytime radiation intensities, nocturnal heat losses, climatic elements over different ground cover and terrain. Modification of microclimate by sheltering, frost-protection devices, and windbreaks. Probabilities of temperatures, rainfall, and climatic hazards to agriculture (risk figures). Mr. Schultz

110. Principles of Application of Agricultural Chemicals. (3) III.
Mr. Akesson

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Goss in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Goss in charge)

* Not to be given, 1970-71.
2 Absent on leave, fall quarter 1970.
3 Absent on leave, winter quarter 1971.
Graduate Courses

298. Group Study. (1-5) I, II, III.
 The Staff (Mr. Goss in charge)

299. Research. (1-12) I, II, III.
 The Staff (Mr. Goss in charge)

Professional Courses

314A. Agricultural Engineering Problems and Techniques for Teachers. (3) II.
 Laboratory—9 hours. Prerequisite: Agricultural Education major or consent of instructor. The application of engineering and mechanical principles to the construction, maintenance, and repair of agricultural structures, machinery, and utilities. Offered in even-numbered years.
 Mr. Gentry

314B. Agricultural Engineering Problems and Techniques for Teaching. (3) II.
 Laboratory—9 hours. Prerequisite: Agricultural Education major or consent of instructor. The application of engineering and mechanical principles to the construction, maintenance, and repair of agricultural structures, machinery, and utilities. Offered in odd-numbered years.
 Mr. Garrett

317. Problems in Teaching Farm Mechanics. (4) II.
 Lecture—2 hours; laboratory—6 hours. Prerequisite: 12 units in Agricultural Engineering, including courses 314A, 314B; Physics 2A—2B or 4A—4B. Demonstrations of and practice in the methods of teaching farm mechanics in secondary schools. School-shop planning including the selection, arrangement, and management of equipment. Curriculum planning, including the relation of teaching materials, references, and visual aids.
 Mr. O’Brien

AGRICULTURAL GENETICS—See Genetics, pages 177 and 279

AGRICULTURAL PRACTICES

Harry O. Walker, Ed.D., Chairman of the Department
 Department Office, 105 TB–10

Lecturer:
 George F. Hanna, M.Ed.

Agriculturist:
 Harry O. Walker, Ed.D.

Associate Agriculturist:
 Gene E. Rapp, M.Ed.

AGRICULTURAL SCIENCE AND MANAGEMENT

Major Advisers.—See Schedule and Directory Listing.
 Bachelor of Science Major Program and Graduate Study. See pages 58 and 151.

Lower Division Courses

 (Summer Laboratory). (1).

Lecture—2 hours. A survey of major activities of the departments in the College of Agricultural and Environmental Sciences and tours of departmental facilities. Contributions of the natural, physical, and social sciences to agricultural research, education, and management. The importance of agriculture to our society and the opportunities it has to offer.
 Mr. Burau

49. A Field Study in Agricultural Management. (2)
 I, III.
 Lecture—1 hour; laboratory—3 hours. A weekly field trip to 12–14 different farms within Yolo County to observe and discuss with growers their operations and problems. Designed especially for students not acquainted with modern agriculture and its role in society. (Passed/Not Passed grading only.)
 Mr. Hanna

Upper Division Courses

190. Proseminar in Agricultural Science and Management. (1) I, II, III.
 Seminar—1 hour. Prerequisite: senior standing in Agricultural Science and Management or consent of instructor. Reports and discussion of current developments in the agricultural industry. (Passed/Not Passed grading only.)
 The Staff (Mr. Weir in charge)

 Discussion—1–5 hours. Prerequisite: senior
standing. Selected topics relating to application of science and management techniques to problems of the agricultural industry.

The Staff (Mr. Weir in charge)

Graduate Courses

290. Seminar. (1) I.
Seminar—1 hour.
The Staff (Mr. Weir in charge)

298. Group Study. (1–5) II, III.
(Satisfactory/Unsatisfactory grading only.)
The Staff (Mr. Weir in charge)

299. Research. (1–6) I, II, III.
The Staff (Mr. Weir in charge)

Agricultural Economics

Lower Division Course

1. Economic Basis of the Agricultural Industry. (4) II.
Lecture—4 hours. Agriculture and man; the agricultural industry in U. S. and world economies; production and supply, marketing and demand; agricultural land, capital and labor markets; economic and social problems of agriculture in an urban and industrialized economy emphasizing California.
Mr. Snyder

Animal Science

Lower Division Courses

1. Domestic Animals and Man. (3) I.
Lecture—2 hours; laboratory—2 hours. Animal domestication and factors affecting their characteristics and distribution. Animal use by man for food, work, fiber, drugs, research and recreation; projected effects of population expansion and urbanization. Demonstrations of beef and dairy cattle, poultry, sheep, swine and horses.
The Staff (Mr. Ronning in charge)

2. Introductory Animal Science. (3) III.
Lecture—2 hours; laboratory—2 hours. Recommended: course I; Biology 1. Growth, reproduction, lactation, inheritance, nutrition, and disease control in domesticated animals; the application of sciences to animal production.
The Staff (Mr. Heitman in charge)

Plant Science

Lower Division Courses

1. Plants and Man. (3) II.
Lecture—3 hours. Plants as a basic resource for food, fiber, shelter, and recreation; their use and effect on man, past, present, and future.
Mr. Howard

2. Production of Cultivated Plants. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course I. Principles of crop improvement, propagation, production, processing, storage, and marketing; conservation and utilization of land and water resources.
Mr. Flocker, Mr. Lider

Soil and Water Science

Lower Division Courses

1. Soil, Water, and Air Resources. (3) I.
Lecture—3 hours. Prerequisite: Biology 1 or consent of instructor. Interrelationships of major and environmental factors; utilization and development of renewable natural resources; characteristics of soil, water, and air and their relation to management and planning concepts. Open to non-majors.
Mr. D. Henderson

2. Soil, Water, and Air Resources. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course I; Biology 1; Physics 2A recommended. Development and properties of soils; source and properties of water; properties of the atmosphere; soil, water, and air management in relation to crop production; planning concepts related to agricultural development and production.
Mr. Munns

Food Science and Technology

Upper Division Course

*100. Processing Agricultural Products. (5) I.
Lecture—4 hours; laboratory—3 hours. Prerequisite: Biology 1; Chemistry 8B. Processing of foods, feeds, and fibers to provide desirable qualities such as convenience, economy and utility. Principles used in raw product selection, conversion, preservation, and quality control.
Mr. Miller, Mr. Duakley

AGRICULTURAL TOXICOLOGY—See Environmental Toxicology

AGRONOMY AND RANGE SCIENCE—See Plant Sciences

AMERICAN STUDIES

Chairman of the Program
Program Office, 822 Sproul Hall

* Not to be given, 1970–71.
Committee in Charge:

Professors:
- Howard F. Gregor, Ph.D. (Geography)
- Clyde E. Jacobs, Ph.D. (Political Science)
- Wilson Smith, Ph.D. (History)
- Brom Weber, Ph.D. (English and American Studies)

Associate Professors:
- Robert H. Hopkins, Ph.D. (English)
- Douglas McDermott, Ph.D. (Dramatic Art)

Assistant Professor:
- James McEvoy, Ph.D. (Sociology)

Major Adviser.—Chairman of the Program.

American Studies involves the interdisciplinary study of American culture past and present, with attention to foreign culture so as to provide a basis for comparative analysis and evaluation. The major consists of a core of interdisciplinary courses which, taken in conjunction with the equivalent of a major ("disciplinary emphasis") in any department of the College of Letters and Science, as well as additional courses in the humanities and arts, the social sciences, and the natural and applied sciences, will enable students to obtain a coherent understanding of American culture's heritage and problems. The program bridges disciplinary, departmental, and other specialized boundaries of inquiry and knowledge in order to develop an ecological view of American and the complex sociocultural-biophysical environment to which he must adapt as an individual. The major prepares students for professional careers requiring a knowledge of American culture in teaching, industry, business, and government, as well as for graduate study in American Studies or the disciplines in which the students have completed the equivalents of departmental majors. Since each student's program is individually designed for him in accordance with the "disciplinary emphasis" selected in addition to the American Studies core, early consultation with the Chairman of American Studies is required of potential majors with regular advising conferences thereafter.

The Major Program

Lower Division Courses.—Required: American Studies 1A, 1B, 1C; up to 24 units in the department of "disciplinary emphasis"; 8 units in fine arts. Recommended: Anthropology 2; Biology 10; English 30A-30B-30C (not recommended for those choosing English as "disciplinary emphasis"); Geology 2; History 4A-4B-4C; Mathematics 13, 30; Philosophy 6; Physics 10 or 11; Psychology 10.

Upper Division Courses.—Required: American Studies 100, 140A, 140B, 140C, 190A, 190B, 190C; 24 units in the department of "disciplinary emphasis"; 16 units in courses dealing with cultures other than that of the United States; 24 units in relevant courses to be chosen in consultation with the Chairman of American Studies from the following groups:
- Group I. Humanities and the Arts;
- Group II. Social Sciences;
- Group III. Natural and Applied Sciences.

Teaching Major.—The major in American Studies provides a basis for obtaining teaching credentials in elementary and secondary schools; the student's program must be arranged for the purpose in consultation with the Chairman of American Studies.

Subject Representative: Chairman of the Program.

Lower Division Courses

1A. American Culture and Technology. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. A critical examination of industrial and agricultural technology's role in American culture by exploring its ramifications in past and contemporary America, using written and other materials drawn from many fields and synthesizing the disparate cultural elements of the problem.
Mr. Carter

1B. Religion in American Culture. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. A critical examination of religion's role in American culture by exploring its ramifications in past and contemporary America, using written and other materials drawn from many fields and synthesizing the disparate cultural elements of the problem.
Mr. Wilson

1C. Race and Nationality in American Culture. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. A critical examination of the role of race and nationality in American culture by exploring their ramifications in past and contemporary America, using written and other materials drawn from many fields and synthesizing the disparate cultural elements of the problem.
Mr. Wilson

The Staff (Chairman in charge)

The Staff (Chairman in charge)

Upper Division Courses

100. Introduction to American Studies. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. Pre-requisite: courses 1A, 1B, 1C, or consent of Chairman of American Studies. The elements of American Studies, including (1) the background and general nature of American Studies, (2) the methods and philosophies of the academic disciplines which deal with the United States, (3) the problems which face students in interdisciplinary study.
Mr. Weber
ANATOMY

Walter S. Tyler, D.V.M., Ph.D., Chairman of the Department
Department Office, 1042 Haring Hall

Professors:
Logan M. Julian, D.V.M., Ph.D.
Walter S. Tyler, D.V.M., Ph.D.

Associate Professors:
Leslie J. Faulkin, Jr., Ph.D.
Benjamin L. Hart, D.V.M., Ph.D.
Larry Z. McFarland, D.V.M., Ph.D.

Assistant Professor:
Raymond D. Barnes, Ph.D.

Lecturer:
Marjan Meral, Ldo. Vet., M.S. (Medical Bibliography)

Upper Division Courses

100. Systematic Anatomy. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Zoology 2. Lectures and dissections emphasizing the typical structure of the anatomical systems of the dog, rat and monkey. Offered in odd-numbered years.
Mr. McFarland, Mr. Barnes

140A. Events and Institutions in the 1920's. (4) I, II, III.
Lecture—3 hours; evaluation of written reports and conferences with individual students. Prerequisite: course 100, or consent of Chairman of American Studies. A study in range of American culture in the 1920's, focused around diverse events and institutions of the decade as reflected in multidisciplinary areas and integrated for the purpose of comprehending the decade's character and meaning.
Mr. Smith

140B. Value and Meaning in the 1920's. (4) I, II, III.
Lecture—3 hours; evaluation of written reports and conferences with individual students. Prerequisite: course 100, or consent of Chairman of American Studies. A study of American culture approached thematically in depth by means of scrutiny and integration of multidisciplinary materials relating to the theme of the search for value and meaning in the 1920's.
Mr. McEvoy

140C. Frank Lloyd Wright and the 1920's. (4) I, II, III.
Lecture—3 hours; evaluation of written reports and conferences with individual students. Prerequisite: course 100, or consent of Chairman of American Studies. A scrutiny in depth of American culture structured around the life, thought, and practice of Frank Lloyd Wright, a focal cultural figure of the 1920's whose career embraces multidisciplinary aspects of the decade.
Mr. Weber

190A. Senior Preseminar. (4) I, II, III.
Seminar—3 hours. Prerequisite: consent of Chairman of American Studies. Individual research on American Studies topics.
The Staff
(Mr. Weber in charge)

190B. Senior Preseminar. (4) I, II, III.
Seminar—3 hours. Prerequisite: consent of Chairman of American Studies. Individual research on American Studies topics.
The Staff
(Mr. Weber in charge)

190C. Senior Preseminar. (4) I, II, III.
Seminar—3 hours. Prerequisite: consent of Chairman of American Studies. Individual research on American Studies topics.
The Staff
(Mr. Weber in charge)

198. Directed Group Study. (1-4) I, II, III.
Prerequisite: consent of instructor.
The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.
(1-4) I, II, III.
Prerequisite: consent of instructor and Chairman of Program.
The Staff (Chairman in charge)

140. Neuroanatomy of Domestic Animals. (2) I.
Lecture—1 hour; laboratory—3 hours. Prerequisite: freshman standing in School of Veterinary Medicine. A functional, comparative consideration of gross, subgross and microscopic anatomy of the central nervous system and special senses of common domestic animals.
Mr. Hart

150. Functional Comparative Anatomy of the Locomotor System of Domestic Animals. (2) I.
Lecture—2 hours. Prerequisite: freshman standing in School of Veterinary Medicine, or Zoology 100 and consent of instructor. Gross, subgross, light microscopic and electron microscopic anatomy of the locomotor systems of domesticated mammals.
Mr. Julian, Mr. Barnes

Laboratory—12 hours. Prerequisite: course 150 (should be taken concurrently). Dissection of the locomotor system. Microscopic anatomy of the basic tissue types as represented in the locomotor system.
Mr. Julian, Mr. Barnes
155. Functional Comparative Anatomy of Internal Organ Systems: Lecture. (2) II.
Lecture—2 hours. Prerequisite: freshman standing in School of Veterinary Medicine, or embryology and consent of instructors. Functional comparative gross, subgross, light microscopic, and electron microscopic anatomy of the organs in the abdomen and thorax.
Mr. Tyler, Mr. Faulkin

156. Functional Comparative Anatomy of Internal Organ Systems: Gross Laboratory. (2) II.
Laboratory—6 hours. Prerequisite: course 155 (to be taken concurrently). Dissection and demonstration of organ systems in abdomen and thorax.
Mr. Tyler, Mr. Faulkin

157. Functional Comparative Anatomy of Internal Organ Systems: Microscopic Laboratory. (2) II.
Laboratory—6 hours. Prerequisite: course 155 (to be taken concurrently). Laboratory study and demonstration of microscopic and submicroscopic structure of organs of abdomen and thorax.
Mr. Faulkin, Mr. Tyler

160. Functional Comparative Anatomy of Poultry and Experimental Animals. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: freshman standing in School of Veterinary Medicine or consent of instructor. Gross and microscopic anatomy of poultry and conventional laboratory mammals.
Mr. Barnes, Mr. Julian

170. Principles of Normal and Abnormal Animal Behavior. (3) III.
Lecture—3 hours. Prerequisite: course 150 and Physiological Sciences 140B or consent of instructor. An examination of normal behavioral patterns of domestic animals with emphasis on the historical, environmental, and organismic determinants of behavior. Analysis of factors contributing to abnormal behavior in domestic animals.
Mr. Hart

180. Surgical Anatomy. (4) III.
Laboratory—12 hours. Prerequisite: second-year standing in the School of Veterinary Medicine. Topographical, radiological, and regional anatomy as applied to the clinical sciences.
Mr. McFarland

Laboratory—6—15 hours. Prerequisite: consent of instructor.
The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates. (1—5) I, II, III.
Laboratory—3—15 hours. Prerequisite: consent of instructor.
The Staff (Chairman in charge)

Graduate Courses

200. Comparative Neuroanatomy. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: one of the following: course 100, 201; Anthropology 155; Animal Science: Physiology 110A—110B, 120A; Psychology 108; Zoology 106A, 106B, 107, or the equivalent. A comparative gross, sub-gross, and microscopic study of the central nervous system of mammals and birds with emphasis on function.
Mr. Hart

201. Regional Anatomy. (4) II.
Laboratory—12 hours. Prerequisite: course 100 or equivalent. Detailed dissections comparing the regional anatomy of the sheep, cat, rabbit, chicken and man. Offered in even-numbered years.
Mr. Barnes, Mr. McFarland

202. Organology. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 157, and consent of instructor. The comparative development, growth patterns, and composition of selected animal organs: liver, kidney, lung, brain, a viscous and a skeletal muscle. Offered in odd-numbered years.
The Staff (Mr. Julian in charge)

204. Functional Comparative Anatomy of the Reproductive Systems. (3) I.
Lecture—3 hours. Gross, microscopic, and ultramicroscopic structure of the male and female reproductive systems in birds and mammals. Offered in odd-numbered years.
Mr. Barnes, Mr. McFarland

205. Ultramicroscopic Anatomy. (3) I.
Lecture—3 hours. Prerequisite: Zoology 107 or equivalent. The electron microscopic appearance of cells, tissues, and organs of animals emphasizing the structural basis for their physiological functions. Offered in even-numbered years.
Messrs. Tyler, McFarland, Faulkin

210. Principles of Histochernistry. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Zoology 107, Biochemistry 101A. Principles of enzyme histochernistry of animal tissues applicable to light and electron microscopy. Offered in odd-numbered years.
Mr. Tyler

217. Experimental Endocrinology. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Physiology 130 (Animal Science). Gross, microscopic, and ultramicroscopic structure of the endocrine organs, and the applications of basic techniques used to demonstrate the physiological effects of these organs. Offered in even-numbered years.
Mr. McFarland

290. Seminar. (1) I, II, III.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)
297. Advanced Group Study in Surgical Anatomy. (2–4) I, II, III.
Laboratory—6–12 hours. Prerequisite: course 180. Selected topics in topographical, radiological, or regional anatomy as they apply to the clinical sciences. Mr. McFarland

ANESTHESIOLOGY—See Medicine

ANIMAL HUSBANDRY—See Animal Sciences

ANIMAL SCIENCES
Participating Departments:

ANIMAL SCIENCES
Magnar Ronning, Ph.D., Chairman of the Department
Department Office, 126 Animal Science Building

Professors:
1 C. Eric Bradford, Ph.D.
Floyd D. Carroll, Ph.D.
Harold H. Cole, Ph.D., LL.D. (Emeritus)
Perry T. Cupps, Ph.D.
William N. Garrett, Ph.D.
Irving I. Geschwind, Ph.D.
Harold Goss, Ph.D. (Emeritus)
Paul W. Gregory, Sc.D. (Emeritus)
Hubert Heitman, Jr., Ph.D.
Carroll E. Howell, M.S. (Emeritus)
Max Kleiber, LL.D. Sc. D. (Emeritus)
Robert C. Laben, Ph.D.
Glen P. Lofgreen, Ph.D.
Sylvester W. Mead, M.S. (Emeritus)
James H. Meyer, Ph.D.
Wade C. Rollins, Ph.D.
Magnar Ronning, Ph.D.

Associate Professors:
William C. Weir, Ph.D.
James F. Wilson, M.A., LL.D. (Emeritus)

Assistant Professors:
Ransom L. Baldwin, Jr., Ph.D.
James G. Morris, Ph.D.
David W. Robinson, Ph.D.

Assistant Professors:
Charles R. Ashmore, Ph.D.
J. Warren Evans, Ph.D.
Graham A. E. Gall, Ph.D.

Professor:
James M. Boda, Ph.D. (Animal Physiology)

Lecturer:
Verne E. Mendel, Ph.D.

ANIMAL PHYSIOLOGY
James M. Boda, Ph.D., Chairman of the Department
Department Office, TB–30

Professors:
James M. Boda, Ph.D.
Walter E. Howard, Ph.D.
Frederick W. Lorenz, Ph.D.
Arthur H. Smith, Ph.D.
Irving H. Wagman, Ph.D.

Associate Professors:
Harry W. Colvin, Jr., Ph.D.

1 Absent on leave, 1970–71.

Laboratory—6–15 hours. Prerequisite: consent of instructor.
The Staff (Chairman in charge)

Laboratory—6–36 hours. Prerequisite: consent of instructor. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)
Animal Sciences

ASSOCIATE PROFESSORS:
Ransom L. Baldwin, Jr., Ph.D. (Animal Science)
Ronald J. Baskin, Ph.D., (Zoology)
Victor W. Burns, Ph.D. (Physiological Sciences)
Frank X. Ogasawara, Ph.D. (Avian Sciences)
Barry W. Wilson, Ph.D. (Avian Sciences)

ASSISTANT PROFESSOR:
David W. Deamer, Ph.D. (Zoology)

LECTURERS:
Alex J. Calhoun, Ph.D.
Verne E. Mendel, Ph.D., (Animal Science)
Stanton R. Morrison, Ph.D. (Animal Physiology, Agricultural Engineering, Engineering)
Robert G. Schwab, Ph.D.
Charles Winget, Ph.D.

AVIAN SCIENCES
C. Richard Grau, Ph.D., Chairman of the Department
Department Office, 109 Poultry Husbandry Building

PROFESSORS:
Ursula K. Abbott, Ph.D.
Hans Abplanalp, Ph.D.
Vigfus S. Asmundson, Ph.D., LL.D. (Emeritus)
Ray E. Burger, Ph.D.
C. Richard Grau, Ph.D.
F. Howard Kratzer, Ph.D.
Samuel Lepkovsky, Ph.D., LL.D. (Emeritus, Berkeley Campus)
Wilbor O. Wilson, Ph.D.

ASSOCIATE PROFESSORS:
Frank X. Ogasawara, Ph.D.
Daniel W. Peterson, Ph.D.
Barry W. Wilson, Ph.D.

LECTURERS:
A. Wade Brant, Ph.D. (Food Science and Technology)
Leo C. Norris, Ph.D.

NUTRITION
Fredric W. Hill, Ph.D., Chairman of the Department
Department Office, 231 Home Economics Building

PROFESSORS:
Fredric W. Hill, Ph.D.
Lucille S. Hurley, Ph.D.

ASSOCIATE PROFESSOR:
Frances J. Zeman, Ph.D.

ASSISTANT PROFESSOR:
Susan M. Oace, Ph.D.

LECTURERS:
Rocco J. Della Rosa, Ph.D. (Physiological Sciences)
Marvin Goldman, Ph.D. (Physiological Sciences)

Carolyn P. Sugars, B.S.

Major Advisers.—See Schedule and Directory listing.

Bachelor of Science Major Program and Graduate Study.—See pages 58 and 151.

ANIMAL SCIENCE

Lower Division Courses

1. Domestic Animals and Man. (3) I.
Lecture—2 hours; laboratory—2 hours. Animal domestication and factors affecting their characteristics and distribution. Animal use by man for food, work, fiber, drugs, research and recreation; projected effects of population expansion and urbanization. Demonstrations of beef and dairy cattle, poultry, sheep, swine and horses. The Staff (Mr. Ronning in charge)

2. Introductory Animal Science. (3) III.
Lecture—2 hours; laboratory—2 hours. Recommended: course 1; Biology 1. Growth, repro-

1 Absent on leave, 1970–71.
duction, lactation, inheritance, nutrition, and disease control in domesticated animals; the application of sciences to animal production.

The Staff (Mr. Heitman in charge)

21. Livestock and Dairy Cattle Judging. (2) III.
Laboratory—6 hours. Prerequisite: courses 1 and 2. Conformation, finish and quality in relation to ideal type. Relationship of form to function. Change in body proportions with growth and maturity. Correlation between type in live meat animals and carcass quality.
Mr. Cupps, Mr. Mendel

Prerequisite: consent of instructor. Selected topics relating to the animal sciences.
The Staff (Mr. Ronning in charge)

Prerequisite: consent of instructor. Problems in animal (including avian) biology; nutrition, breeding, and physiology of livestock.
The Staff (Mr. Ronning in charge)

Upper Division Courses

111. Type Evaluation in Livestock and Dairy Cattle. (2) I.
Laboratory—6 hours. Prerequisite: course 21. Studies of recognized type evaluation in livestock and dairy cattle. Critical evaluation of the bases for the criteria used in establishing these standards.
Mr. Carroll

114A–114B. Advanced Dairy Cattle Production. (3–3) II–III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Animal Genetics 107; Nutrition 110; Physiology 110B. The principles of milk production and sources of variation in milk yield and composition. Current knowledge in ruminant nutrition, feeds and feeding practices, breeding and genetics, milk secretion, reproductive physiology, and herd management considered in relation to production.
Mr. Laben

115. Horse Production. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Genetics 100B; Nutrition 103 or 110; Physiology 110B. Feeding, breeding, and management of horses; application of the principles of basic animal sciences to problems of production of all classes of horses.
Mr. Evans

Lecture—2 hours; laboratory—3 hours. Prerequisite: Animal Genetics 107; Nutrition 103 or 110; Physiology 110B. Application of the sciences of nutrition, physiology and genetics to the development of efficient management programs for beef, sheep, and swine production. Similarities and differences among these species affecting management practices. Methods of improving carcass and meat quality.
Mr. Bradford, Mr. Garrett

117. Physiological Aspects of Animal Production from Tropical and Arid Areas. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Nutrition 110, Physiology 110B. Comparative aspects of animal production from domesticated and wild species in tropical and arid environments, with emphasis upon the effects of climatic and nutritional environment on basic physiological mechanisms as they relate to the efficiency of animal production.
Mr. Morris, Mr. Robinson

118A. Range Livestock Production. (3) II.
Lecture—3 hours. Prerequisite: Nutrition 103 or 110; Animal Science 1 and 2, Genetics 100B recommended. Not open for credit to Animal Science majors. The application of scientific knowledge to the improvement and production of beef cattle and sheep. Reproduction, including artificial insemination; breeding plans; management; supplementary feeding; marketing.
Mr. Carroll

118B. Intensive Livestock Production. (3) III.
Lecture—3 hours. Prerequisite: Nutrition 103 or 110. Recommended: Animal Science 1, 2 and 118A; Genetics 100B. Not open for credit to Animal Science majors. Principles and practices involved in feedlot, dairy and swine operations. Growth and fattening; lactation; feeding practices; methods of evaluating body composition of meat animals; housing and equipment; waste disposal.
Mr. Carroll, Mr. Heitman

190. Proseminar in Animal Science. (1) I, II, III.
Seminar—1 hour. Prerequisite: senior standing in Animal Science or consent of instructor. Reports and discussions of recent advances in animal science.
Mr. Heitman

194H. Special Study for Honors Students. (1–5) I, II, III.
Prerequisite: open only to animal science majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.
The Staff (Mr. Ronning in charge)

Prerequisite: consent of instructor. Selected topics relating to the animal sciences.
The Staff (Mr. Ronning in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: consent of instructor. Problems in animal biology related to nutrition, breeding, and physiology of large domestic livestock.
The Staff (Mr. Ronning in charge)
Graduate Courses

202. Experimental Incubation and Avian Teratology. (3) II.
Lecture—3 hours. Prerequisite: Chemistry 8B; Zoology 100; Zoology 107 recommended. Problems of embryonic development, causes of embryonic mortality and terata in poultry. Offered in odd-numbered years. Mrs. Abbott

240. Statistical Inference in Animal Experimentation. (4) III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: Mathematics 13; a knowledge of Fortran recommended. A development of hypothesis-testing techniques for specific application to problems involving large animal research and related areas. Particular emphasis on principles of inference and prediction. Laboratory exercises in statistical analysis utilizing computer techniques.
Mr. Gall

290A. Seminar, (1) I, II, III.
Seminar—1 hour. Reports and discussions of topics of interest in genetics, nutrition, and physiology as they apply to animal science.
The Staff (Mr. Ronning in charge)

Prerequisite: consent of instructor. Lectures and discussions of advanced topics in the animal sciences.
The Staff (Mr. Ronning in charge)

The Staff (Mr. Ronning in charge)

Animal Biochemistry

Upper Division Course

102. Animal Biochemistry Laboratory. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biochemistry 101B (may be taken concurrently). Laboratory procedures employed in the study of physiological and biochemical processes.
Mr. Baldwin

Graduate Courses

201. Protein Biochemistry. (3) II.
Lecture—3 hours. Prerequisite: Biochemistry 201C. Chemical, physical, and biological properties of amino acids, peptides, and proteins. The biological aspects include protein function, biosynthetic and biodegradative pathways, and nutritional requirements for amino acids.
Mr. Geschwind

230. Biochemical Aspects of Endocrinology. (3) III.
Mr. Geschwind

Animal Genetics

Upper Division Courses

107. Animal Breeding and Genetics. (3) I.
Lecture—3 hours. Prerequisite: Genetics 100B; Mathematics 13. Qualitative and quantitative inheritance in relation to animal breeding; review of selection and breeding experiments with reference to livestock and poultry improvement.
Mr. Gall, Mr. Laben

107A. Mammalian Genetics Laboratory. (1) I.
Laboratory—3 hours. Prerequisite: Genetics 100B or 115; Mathematics 13 recommended. Experiments in qualitative and quantitative genetics using the laboratory mouse. Segregation; linkage; evaluation of effects of inbreeding, selection and maternal influence on different kinds of traits.
Mr. Bradford

107B. Animal Breeding Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 107. Laboratory exercises in quantitative genetics using computer generated herd records. Selection, progeny testing, and inbreeding experiments with statistical analyses using collected data. Evaluation of environmental effects.
Mr. Gall

107C. Discussion of Animal Breeding Experiments and Methods. (1) III.
Discussion—1 hour. Prerequisite: course 107. Review of literature and discussion relating to animal breeding experiments and programs. Emphasis on cattle, sheep and swine.
Mr. Rollins

107D. Discussion of Poultry Breeding Experiments and Methods. (1) II.
Discussion—1 hour. Prerequisite: course 107. A discussion of genetic experiments and breeding plans specifically related to poultry.
Mr. Abplanalp

108. Methods in Quantitative Animal Breeding. (3) II.
Lecture—3 hours. Prerequisite: course 107. Principles, methods and procedures in quantitative animal breeding; heritability, intrain- and inter-population selection methods, including selection index, family, pedigree and progeny selection; genetic correlation; relationship and inbreeding.
Mr. Rollins

108L. Animal Breeding Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 108 (may be taken concurrently). Estimation of heritabilities, genetic correlations and repeata-
109. Developmental Genetics in Animals. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: Genetics 100B, Zoology 100. Gene and gene action in vertebrates; the gene in relation to genetic background and developmental environment.
Mrs. Rollins

131. Genetics of Animal Adaptation. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Genetics 100B (may be taken concurrently). Genetic principles applied to natural populations; species as plastic elements subject to genetic change through environmental influences and interaction with other species; the role of adaptation in population ecology and development. (Same course as Wildlife and Fisheries Biology 131)
Mr. Gall, Mr. Laben

Graduate Courses

207. Quantitative Genetics and Animal Breeding. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 105B; Mathematics 16A recommended. The genetic theory of selection, population structure, and induced variation, and its implications in the design of animal breeding experiments.
Mr. Abplanalp

The Staff (Mr. Bradford in charge)

Avian Sciences

Lower Division Courses

10. Poultry Production. (4) II.
Mr. Ogawara

11. Laboratory in Poultry Production. (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 10 (may be taken concurrently) or consent of instructor. Laboratory studies in poultry biology; techniques and economics of poultry production.
Mr. Ogawara

12. Survey of Poultry and Allied Industries. (3) III.
Lecture—2 hours; conference—1 hour. A survey of industries concerned with poultry products in the U.S.A. and various regions of the world: hatchery industry, feed industry, egg and meat production, poultry products, specialized enterprises.
Mr. Peterson

Lecture—2 hours. Birds in the world of man: folklore, art, literature, uniqueness, domestication, recreation, game birds, zoos, falconry, endangered species, public health, in research, as food sources. The Staff (Mr. Grau in charge)

13L. Birds, Man, and the Environment: Laboratory. (1) III.
Laboratory—3 hours. Demonstrations and field trips for students enrolled concurrently in course 13. The Staff (Mr. Grau in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Grau in charge)

Prerequisite: consent of instructor. Problems in avian biology; nutrition, breeding, and physiology of poultry and their products.
The Staff (Mr. Grau in charge)

Upper Division Courses

102. Fertility and Hatchability in Birds. (3) III.
Lecture—2 hours; two field trips. Prerequisite: Biology 1, Chemistry 8A. Reproduction in domestic and wild bird species. The influences of genetic, environmental and behavioral factors on embryonic development; special emphasis on the effects of diet, drugs, and pesticides.
Mrs. Abbott

121. Birds and Their Eggs as Food. (3) I.
Lecture—3 hours; demonstrations. Prerequisite: consent of instructor. Recommended: Biochemistry 101B. Avian products as food considered from the physical, chemical and nutritional aspects. Factors affecting processing, preservation and quality.
Mr. Peterson, Mr. Grant

149. Environmental Management of Poultry. (1) III.
Lecture—1 hour. Prerequisite: Physiology 149 (may be taken concurrently). Application of physiological principles to environmental management of poultry.
Mr. W. O. Wilson

150. Comparative Nutrition of Avian Species. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biology 1 and Chemistry 8A or consent of instructor. Comparison of digestive tracts, food habits, effects of nutrients on growth, sexual maturity, egg production, fertility and hatchability of eggs of wild and domestic species of birds. Effects of pesticides and other non-nutrient substances on their life cycles.
Mr. Vohra

190. Proseminar in Avian Science. (1) I, II, III.
Seminar—1 hour. Prerequisite: senior standing in avian sciences or consent of instructor.
Mr. Grau
Prerequisite: consent of instructor.
The Staff (Mr. Grau in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
Prerequisite: consent of instructor. Problems in avian biology related to nutrition, breeding, and physiology of poultry and their products.
The Staff (Mr. Grau in charge)

Graduate Courses

202L. Laboratory in Avian Experimental Embryology
and Teratology. (3) II.
Laboratory—9 hours. Prerequisite: consent of instructor. The causes of abnormalities in avian embryos including genetic, chemical, and physical-environmental factors; the application of transplantation, organ culture, and osteological techniques. Offered in odd-numbered years.
Mrs. Abbott

Seminar—1 hour. Reports and discussions of recent advances and selected topics of current interest in avian genetics, physiology, nutrition, and poultry technology.
The Staff (Mr. Grau in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Grau in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Grau in charge)

Nutrition

Lower Division Course

10. Discoveries and Concepts in Nutrition. (3) II.
Lecture—3 hours. Nutrition as a science; historical development of nutrition concepts; properties of nutrients and foods. Not open for credit to students who have taken an upper division course in nutrition. Mr. Hill

Upper Division Courses

102A–102B. General Nutrition. (4–4) I–II.
Lecture—4 hours. Prerequisite: Chemistry 8E; Physiology 101 or 2; not open for credit to students who have taken Nutrition 110 and 111. Introduction to the principles of nutrition; study of the nutrients and their chemical and physiological roles in metabolism; nutrient requirements of man.
Miss Oace

102L. General Nutrition Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 102A; course 102B (should be taken concurrently); not open for credit to students who have taken 111L. Laboratory study of the principles of nutrition; study of the nutrients and their chemical and physiological roles in metabolism. Miss Oace

103. Animal Nutrition and Feeding. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 8B. The basic principles of animal nutrition as they are applied to livestock feeding; the composition and uses of feedstuffs in their relation to the feeding of farm animals and poultry; the balancing of rations. Not open for credit to animal science majors. Mr. Garrett

Lecture—3 hours. Prerequisite: second-year standing in School of Veterinary Medicine or consent of instructor. The principles of nutrition and their application to the solution of problems in animal feeding. Nutritive requirements for maintenance and productive functions, nutritional disorders, composition and use of feedstuffs. Mr. Morris

110. Principles of Nutrition. (5) II.
Lecture—4 hours; discussion—1 hour. Prerequisite: Biochemistry 101B (may be taken concurrently); a course in physiology or zoology. The fundamental principles of the nutrition of man and other animals. The nutrients in relation to physiological processes of growth, maintenance, and reproduction. Nutritional disorders. Mr. Robinson, Mr. Grau

111. Human Nutrition. (4) III.
Lecture—4 hours. Prerequisite: course 110. Nutrition of man; critical study of nutrient requirements at various phases of the life cycle. Mrs. Hurley

111L. Nutrition Laboratory. (1) III.
Laboratory—3 hours. Prerequisite: course 110. Laboratory study of the chemical and physiological roles of nutrients in metabolism; use of experimental animals in determining the essentiality and function of nutrients. Mrs. Hurley, Mr. Vohra

114. Nutrition and Development. (4) I.
Lecture—4 hours. Prerequisite: course 110 or 102B. The role of nutritional factors in embryonic and postnatal development. Mrs. Hurley

116. Diet Therapy. (5) I.
Lecture—5 hours. Prerequisite: course 111 or 102B; Biochemistry 101B or Physiological Sciences 101B. Biochemical and physiological bases for therapeutic diets. Problems in planning diets for normal and pathological conditions. Miss Zeaman

117. Experimental Nutrition. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 111 or 102B; Biochemistry

* Not to be given, 1970–71.
101B or Physiological Sciences 101B; a laboratory course in nutrition or biochemistry. Methods of assessing nutritional status. Application of chemical, microbiological, chromatographic and enzymatic techniques to current problems in nutrition.

Mr. Baldwin

121. Animal Nutrition Laboratory. (2) III.

Lecture—1 hour; laboratory—3 hours. Prerequisite: course 110. Studies, demonstrations, and exercises in the measurement of nutritional values of feeds, nutrient requirements for physiological functions, and ration formulation. Students who have completed course 122 and/or 123 will have units of credit reduced by one unit per course.

Mr. Ronning

122. Ruminant Nutrition. (3) III.

Lecture—3 hours. Prerequisite: course 110; Bacteriology 2; Physiology 110B. A study of nutrient utilization as influenced by the unique aspects of digestion and fermentation in the ruminant. Students who have completed course 121 may only receive 2 units of credit.

Mr. Morris

123. Nutrition of Non-Ruminant Animals. (3) III.

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 110. Application of nutrition principles to the feeding of non-ruminant species, including swine, poultry and laboratory animals. Students who have completed course 121 may only receive 2 units of credit.

Mr. Robinson, Mr. Kratzer

125. Metabolism and Food Utilization. (3) I.

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 110; Physiology 110B. Bioenergetics; a study of energy expenditures of animals and of factors influencing the utilization of food energy.

Mr. Ronning

194H. Special Study for Honors Students.

(1–5) I, II, III.

Prerequisite: open only to animal science majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.

The Staff (Mr. Hill in charge)

The Staff (Mr. Hill in charge)

199. Special Study for Advanced Undergraduates.

(1–5) I, II, III.

The Staff (Mr. Hill in charge)

Graduate Courses

201A. Advanced General Nutrition. (4) I.

Lecture—4 hours. Prerequisite: Bacteriology 2; Biochemistry 101B; Physiology 110B; a course in nutrition. Advanced studies of protein and amino acid metabolism; animal energetics and energy metabolism. Comparative aspects.

The Staff (——— in charge)

201B. Advanced General Nutrition. (3) II.

Lecture—3 hours. Prerequisite: Bacteriology 2; Biochemistry 101B; Physiology 110B; a course in nutrition. Advanced studies of problems in nutrition with emphasis on minerals; water balance. Comparative aspects. The Staff

201C. Advanced General Nutrition. (3) III.

Lecture—3 hours. Prerequisite: Bacteriology 2; Biochemistry 101B; Physiology 110B; a course in nutrition. Advanced studies of metabolic function and nutritional importance of vitamins; essential fatty acids; deficiency and degenerative diseases. Comparative aspects.

The Staff

250. Concepts of Animal Nutrition. (3) II.

Lecture—3 hours. Prerequisite: courses 201A, 201B, 201C. Dynamic interrelationships between food animals and environment including concepts in food intake, digestion, absorption, and utilization of nutrients.

194H. Special Study for Honors Students.

(1–5) I, II, III.

Discussion—1 hour; seminar—1 hour. Prerequisite: first-year graduate standing. Discussion and critical evaluation of topics in nutrition with emphasis on literature review and evaluation in this field.

The Staff

Seminar—1 hour. Prerequisite: second-year graduate standing. Discussion and critical evaluation of advanced topics in nutrition research. (Satisfactory/Unsatisfactory grading only.)

The Staff (Mr. Hill in charge)

The Staff (Mr. Hill in charge)

The Staff (Mr. Hill in charge)

Physiology

Upper Division Courses

100A–100B. General Physiology. (3–3) I–II.

Lecture—3 hours. Prerequisite: Biology 1; Chemistry 8B; Physics 2C. Chemical, mathematical, and physical characteristics of the life process common to living things, with particular reference to the cell.

Messrs. Colvin, Horowitz, Smith

100L. General Physiology Laboratory. (1) II.

Laboratory—3 hours. Prerequisite: course 100B (may be taken concurrently). Laboratory in the physical and chemical processes of cells and tissues.

Mr. Colvin

* Not to be given, 1970–71.
101. Functions of Organ Systems. (4) III.
Lecture—4 hours. Prerequisite: Biology 1. Physiology of organ systems; concepts of integrative and homeostatic mechanisms, especially in adaptation, growth, and reproduction. Messrs. Colvin, Lorenz, Wagman, Mrs. Woolley

101L. Organ Function Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 101 (should be taken concurrently). Dissections, primarily of domestic animals, and selected experiments to illustrate functional relationships. Messrs. Colvin, Lorenz, Wagman, Mrs. Woolley

102. Physiology of Growth. (3) III.
Lecture—3 hours. Prerequisite: course 101, 101L; or equivalent. Biological, physical, and chemical aspects of the growth of cells, organisms, and populations. Mr. Smith

103. Physiology of Animal Cells. (3) III.
Lecture—3 hours. Prerequisite: course 100B or Zoology 121. Organization of eukaryotic systems at the cellular level. Life cycles of cells; regulation and development of specialized cell functions. Mr. B. W. Wilson

103L. Physiology of Animal Cells Laboratory. (1) III.
Laboratory—3 hours. Prerequisite: course 103 (may be taken concurrently). Laboratory in the growth, division, differentiation, and metabolism of animal cells. Mr. B. W. Wilson

107. Avian Physiology. (3) III.
Lecture—3 hours. Prerequisite: courses 101 and 101L, or Zoology 121. Physiology of the various systems of birds with emphasis on digestion, respiration, excretion, and the nervous system. Mr. Burger

107L. Avian Physiology Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 107 (may be taken concurrently); and consent of instructor. Selected problems in the physiology of birds. Mr. Burger

108. Biodynamics. (4) III.
Lecture—4 hours. Prerequisite: course 110B; Mathematics 16B; Physics 2C. Rates and dynamics of physiological processes. Mr. Morrison

110A–110B. Mammalian Physiology. (3–3) I–II.
Lecture—3 hours. Prerequisite: course 101 and 101L, or Zoology 2; Chemistry 8B. The physiology of the neuromuscular, central nervous, circulatory, respiratory, digestive, endocrine, reproductive, and excretory systems of mammals. Messrs. Horowitz, Burger, Mendel, Boda

111A–111B. Mammalian Physiology Laboratory. (2–2) I–II.
Discussion—1 hour; laboratory—3 hours including independent carrel instruction. Prerequisite: course 110A–110B (may be taken concurrently). Selected experiments in depth on the neural, cardiovascular, respiratory, renal, and endocrine systems. Emphasis on modern conceptual and methodological approaches using several species in demonstrating the physiology of organ systems. Messrs. Horowitz, Burger, Mendel, Boda

120A. Comparative Physiology. (3) I.
Lecture—3 hours. Prerequisite: course 101 or 110A. Comparisons of physiological functions in the animal kingdom: neurophysiological mechanisms of integration including aspects of phylogenetic development at both neuronal and systemic levels. Mrs. Woolley

120B. Comparative Physiology. (3) II.
Lecture—3 hours. Prerequisite: course 101 and 101L. Comparisons of physiological functions in the animal kingdom: respiration and circulation. Mr. Smith, Mr. Rhode

120C. Comparative Physiology. (3) III.
Lecture—3 hours. Prerequisite: course 101 and 101L. Comparisons of physiological functions in the animal kingdom: digestion and excretion. Mr. Colvin, Mr. Boda

120D. Comparative Physiology. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: course 101. Comparisons of physiological functions in the animal kingdom: humoral integrative mechanisms. Mr. Lorenz

121. Physiology of Reproduction. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 110B. The physiological mechanisms related to reproduction, breeding efficiency, and fertility, with special reference to domestic animals. Mr. Cupps

130. Physiology of the Endocrine Glands. (5) I, III.
Lecture—4 hours; discussion—1 hour. Prerequisite: course 110B. Control of endocrine secretion and the physiological effects of the hormones, with emphasis on endocrine problems relating to domestic animals.

148. Principles of Environmental Physiology. (3) II.
Lecture—3 hours. Prerequisite: course 101 or 110B (may be taken concurrently). Intensive treatment of basic aspects of environmental physiology; introduction to physiological control mechanisms; special emphasis on adaptation to the environment. Mr. Evans

149. Environmental Physiology of Domestic Animals. (3) III.
Lecture—3 hours. Prerequisite: courses 101 and 101L, or Zoology 2. The influences of environmental factors on physiological processes related to domestic animals. Mr. W. O. Wilson
190. Proseminar in Physiology. (3) I.
Seminars—3 hours. Prerequisite: upper division standing. Relationships between form and function of living systems from the molecular to the organismal levels, with emphasis upon animal systems. Mr. B. W. Wilson

194H. Special Study for Honors Students. (1–5) I, II, III.
Prerequisite: open only to animal science or physiology majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.
The Staff (Mr. Boda in charge)

197T. Undergraduate Tutorial. (4) III.
Lectures—4 hours; tutorial—1 hour. Prerequisite: course 110B with grade of B or better and consent of instructor. Intensive review of systematic physiology through leading a weekly tutorial session with a small group of students taking course 101. Students will attend all course lectures plus a weekly discussion session with the course 101 instructors.
The Staff (Mr. Boda in charge)

188. Directed Group Study. (1–5) I, II, III.
The Staff (Mr. Boda in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Boda in charge)

Graduate Courses

200A. Advanced General Physiology. (3) I.
Lecture—3 hours. Prerequisite: course 100B or Zoology 15B, Biochemistry 101B and Chemistry 110B; or consent of instructor. Physico-chemical bases of living systems with emphasis on recent investigations in membrane physiology. Offered in odd-numbered years.
Mr. Deamer

200B. Advanced General Physiology. (3) II.
Lecture—3 hours. Prerequisite: course 100B or Zoology 120, Biochemistry 101B and Chemistry 110B; or consent of instructor. Physico-chemical bases of living systems with emphasis on recent investigations in cellular dynamics. Offered in even-numbered years. Mr. B. W. Wilson

211. Advanced Systemic Physiology Laboratory. (5) II.
Lecture—2 hours; laboratory—9 hours. Prerequisite: course 110B. Advanced treatment of systemic physiology, with special emphasis on current developments; laboratory exercises illustrating modern physiological concepts and procedures. The Staff (Mr. Horowitz in charge)

210A–210B. Advanced Systemic Physiology. (4–4)
I–II.
Lecture—3 hours; one paper per week, independent self-study course 110A–110B. Prerequisite: course 110B or consent of instructor. Advanced consideration of the physiology of the neuromuscular, circulatory, respiratory, digestive, endocrine, reproductive, and excretory systems. Messrs. Boda, Burger, Horowitz, Mendel

214. Neurophysiology. (4) II.
Lecture—4 hours. Prerequisite: courses 110B, 111B; course 210B recommended. Electrical activity of neurons and neuroeffector junctions; physiology of the nervous system as studied by its electrical activity.
Mr. Wagman

215. Neurophysiology Laboratory. (6) II.
Discussion—2 hours; laboratory—12 hours. Prerequisite: course 214.
Mr. Wagman

216. Neurophysiology Literature. (2) III.
Discussion—2 hours. Prerequisite: course 214. Critical reading and group discussion of current and classic original papers in neurophysiology.
Mr. Wagman

220. General and Comparative Physiology of Reproduction. (3) I.
Lecture—3 hours. Prerequisite: course 110B; Biochemistry 101B; Genetics 100B. Basic phenomena of sexual and asexual reproduction and comparisons of processes in a wide variety of animals: gamete formation, structure, and metabolism; fertilization; neuroendocrine mechanisms in maturation and reproductive cycles; behavioral aspects.
Mr. Ogawara, Mr. Cupps

225. Physiology of Lactation. (3) III.
Lecture—3 hours. Prerequisite: course 110B; Biochemistry 101B. The physiology and biochemistry of milk formation, with special reference to the metabolic pathways leading to the synthesis of milk in various species of mammals. Offered in even-numbered years.
Mr. Baldwin

231. Selected Topics in Neuroendocrinology. (2) II.
Lecture—1 hour; discussion—1 hour. Prerequisite: course 120A or 130 or consent of instructor. Neural-endocrine interactions; neurosecretion; neural regulation of endocrine systems; hormonal modifications of neural development and activity. May be repeated once for credit.
Mrs. Woolley

242. Physiological Rhythmicity. (1) I.
Lecture—1 hour. General aspects and basic mechanisms of biological rhythms; the importance of rhythm desynchronization in areas of pharmacology and space medicine; telemetry; mathematical methods; chronometry; tidal, lunar, and annual periods; periodic desynchronization.
Mr. Winget
1290. Seminar, (1) I, II, III.
Seminar—1 hour. Discussion and critical evaluation of advanced topics and current trends in research. The Staff (Mr. Boda in charge)

*291. Seminar in General Physiology, (1) III.
Seminar—1 hour. Discussion of selected topics concerning the physical and chemical processes of cells and tissues.
Mr. Colvin, Mr. Burns

The Staff (Mr. Boda in charge)

†299. Research, (1–12) I, II, III.
The Staff (Mr. Boda in charge)

ANTHROPOLOGY

Martin A. Baumann, Ph.D., Chairman of the Department
Department Office, 331 Voorhies Hall

Professors:
Martin A. Baumann, Ph.D.
Daniel J. Crowley, Ph.D. (Anthropology and Art)
Jack D. Forbes, Ph.D. (Anthropology and Applied Behavioral Sciences)
David L. Olmsted, Ph.D.

Assistant Professors:
Kenne H-K Chang, Ph.D.
Edwin A. Cook, Ph.D.
Richard T. Curley, Ph.D.
William G. Davis, Ph.D.
Warren G. Kinsey, Ph.D.
Donald G. Lindburg, Ph.D.
Melvin K. Neville, Ph.D.
Delbert L. True, Ph.D.

Language Requirement.—18 units or the equivalent in one language.

Bachelor of Science List of Courses

Physical Anthropology: courses 151, 152, 153, 154A, 154B, 155, 156.

Upper Division Courses outside the Department: Anatomy 100, 100L; Biochemistry 101A, 101B; Epidemiology 103A, 103B, 103C; Genetics 100A, 100B, 103, 105, 115; Geology 106, 107, 140; Human Anatomy 102; Physiology 110A, 110B, 111A, 111B; Psychology 108, 112, 150, 180; Zoology 106, 106A, 106B, 107, 125L, 134, 147, 148, 155, 156.

Graduate Study.—The department offers a program of study leading to the M.A. and Ph.D. degrees in anthropology. Further information regarding graduate study may be obtained at the department office and at the Graduate Division.

Teaching Major.—Requirements for the teaching major are the same as for the departmental major.

Teaching Minor.—Required: 30 quarter units of anthropology.

Subject Representative: Mr. Davis.

Lower Division Courses

1. Physical Anthropology, (4) I, II, III.
Lecture—3 hours; discussion—1 hour. Human biology and physical anthropology; the relation of man and the animals; the origin and development of man.

Not to be given, 1970–71.
† These courses are offered jointly by the Department of Animal Physiology, College of Agricultural and Environmental Sciences, and the Department of Human Physiology, School of Medicine.

antiquity of man; fossil man; anthropometry, the criteria of race and racial classification; current racial theories; race problems.

Mr. Neville, Mr. Lindburg

Lecture—3 hours; discussion—1 hour. Diversity of cultures considered from the aspects of language, economics, kinship, art, magic, and religion; culture change.

Mr. Davis, Mr. Curley, Miss Wall

3. Introduction to Archaeology. (4) I, III.
Lecture—3 hours; discussion—1 hour. Development of archaeology as an anthropological study; objectives and methods of modern archaeology; prehistory and growth of culture; the origins and early development of civilization in the Old and New World. Mr. True

*5. The Relevance of Human Biology. (4) III.
Lecture—2 hours; discussion—2 hours. Prerequisite: consent of instructor. The interrelation between biological and cultural adaptations to man’s environment. (Passed/Not Passed grading only.)

Mr. Kinsey

13. Quantitative Method in Anthropology. (4) III.
Lecture—3 hours; discussion—1 hour.

Mr. Baumhoff

Upper Division Courses

102. Ethnology. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Major theories of culture; survey of principal culture types and their distribution; discussion of ethnological problems. Mr. Curley

103A. Archaeological Theory and Method. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1, 3, and 13. Theory and method of prehistoric archaeology. Mr. True

*103B. Old World Archaeology. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 103A. Comparative prehistory and archaeology of the Eastern Hemisphere.

Mr. Baumhoff

103C. New World Archaeology. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 103A. Comparative prehistory and archaeology of the Western Hemisphere.

Mr. True

*105A. Indians of North America. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. An introductory survey of the Indians of North America: origins, languages, civilizations, and history.

Mr. Forbes

*105B. The Indians of South America. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. An introductory survey of the Indians of South America: origins, languages, civilizations, and history.

*108. Native Americans in Contemporary Society. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. An introduction to the socio-cultural development of American Indian populations in modern times with emphasis upon North America. Attention will be given to contemporary Indian affairs and problems as well as to the background for present-day conditions.

Mr. Forbes

109. Phonetics. (4) I.
Lecture—2 hours; laboratory—4 hours. Thorough grounding in articulatory phonetics with some attention to the fundamentals of acoustic phonetics.

Miss Wall

110. Elementary Linguistic Analysis. (4) II.
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 109. Phonemic theory and exercises in phonemic analysis.

Miss Wall

111. Intermediate Linguistic Analysis. (4) II.
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 110 (may be taken concurrently). Morphophonemics, morphemics and tactics.

112. Comparative Linguistics. (4) III.
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 109. Linguistic prehistory, historical linguistics and reconstruction; dialect geography.

*119A. Culture and Personality. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Methods and theories in the study of the relationships among culture, society, and personality. The development of culture and personality as a subdiscipline in anthropology. Mr. Cook

*119B. Culture and Personality. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 119A. An examination of empirical investigations of preliterate and contemporary societies in relation to the techniques of culture and personality studies. Mr. Cook

120. Language and Culture. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Language and thought; classification of languages; linguistic aspects of culture; language, nation, and state. Mr. Cook

* Not to be given, 1970–71.
121. Folklore. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or literary preparation acceptable to instructor. Theory and method in the study of folktales, myths, legends, proverbs, riddles, songs, and other forms of verbal tradition.
Mr. Crowley

122. Economic Anthropology. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Economic behavior in nonindustrial societies; its social and cultural setting, and its modern changes.
Mr. Davis

124. Comparative Religion. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. An anthropological analysis of the origins, elements, forms, and symbolism of religion; functional interpretation with stress on ethnographic materials.
Mr. Curley

128A. Kinship and Social Organization. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Theoretical: discussion of theories of social organization with primary emphasis on typology and classification of family and kinship systems.
Mr. Davis

*128B. Kinship and Social Organization. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 128A. Methodological: demonstration of field methods and discussion of analytic models. Primary emphasis will be placed on componental and transformational analysis.
Mr. Curley

139. Peoples of Africa. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Peoples and cultures of Africa: survey and comparative analysis of representative societies and cultures in the area.
Mr. Curley

*140. Peoples of Afroamerica. (4) II.
Lecture—3 hours; discussion—1 hour. A study of the cultural implications of slavery and the contribution of Africans to the national culture of the Americas.
Mr. Crowley

*143. Peoples of India. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Development of Indian cultural traditions; social organization and social trends.

147A. Peoples of the Pacific. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. The aboriginal cultures of Australia and Melanesia in prehistoric and modern times; changes arising from European contact and colonization.
Mr. Cook

147B. Peoples of the Pacific. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. The aboriginal cultures of Polynesia and Micronesia in prehistoric and modern times; changes arising from European contact and civilization.
Mr. Cook

148. Ecological Anthropology. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of theories, methods, and applications of the ecological perspective to cultural and physical attributes of human populations.
Mr. Chang

150. Primate Evolution Laboratory. (3) III.
Lecture—1 hour; laboratory—5 hours. Prerequisite: course 155 or 151 (may be taken concurrently); limited enrollment. Osteological, dental, and neuroanatomical studies of living and fossil primates.
Mr. Kinsey

151. Primate Evolution. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; Zoology 2 recommended. The origin and relationships of the prosimians, monkeys, and apes.
Mr. Neville

152. Human Evolution and Fossil Man. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Nature and results of the evolutionary processes involved in the formation and differentiation of mankind.
Mr. Kinsey

*153. Living Races of Man. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 1; and either course 13, Mathematics 13 or equivalent. Physical characters, distribution, and relationships.
Mr. Neville

154A. Primate Behavior and Ecology. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. The social behavior and ecology of the prosimians, monkeys, and apes, and their relevance to the evolution of human behavior and social groupings.
Mr. Neville

154B. Primate Behavior and Ecology. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 154A and consent of instructor. The intensive study of theoretical problems arising in connection with primate behavior and ecology. Certain primate species will be discussed in depth, and laboratory work will involve individual projects on primate groups or special problems.
Mr. Neville

155. Comparative Primate Anatomy. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Zoology 2. The functional anatomy of the locomotor, digestive, reproductive, and nervous systems of monkeys and apes. Emphasis on the anatomical evidence for their interrelationships.
Mr. Kinsey

* Not to be given, 1970–71.
156. Human Osteology. (4) I.
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 1 or equivalent. Introductory study of the human skeleton, including bone growth, pathology, radiology, microscopy, dentition, and variations in race, sex, and age.
Mr. Kinsey

162. Peasant Society and Culture. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Comparative study of peasant communities, utilizing historical and ethnographic sources; analysis of urban rural relations; problems of economic development and culture change.
Mr. Chang

165. Culture Change. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Introduction to the analysis of socio-cultural stability and change; theories of innovation, diffusion, acculturation, and cultural evolution; problems of social planning.
Mr. Chang

190. Cultures of China and Korea. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Ethnological and comparative treatments of two cultures with emphasis on the village level.
Mr. Chang

*191. Culture of Japan. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Development of Japanese cultural traditions; social structure and social trends.
Mr. Chang

192. Peoples and Cultures of Southeast Asia. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or equivalent or consent of instructor. The development of major cultural traditions, the patterns of ecological relationships, and comparative social organization of ethnic and regional groups in Southeast Asia.
Mr. Davis

194H. Special Study for Honors Students. (1–5) I, II, III.
Prerequisite: open only to majors of senior standing who qualify for honors program. Independent study of an anthropological problem involving the writing of an honors thesis. (Passed/Not Passed grading only.)
The Staff (Mr. Baumhoff in charge)

195. Field Course in Archaeological Method. (3) I.
Laboratory—8 hours. Prerequisite: course 3. Lectures, museum preparation, and weekend excavations. Enrollment limited to twenty students. May be repeated for credit with consent of instructor.
Mr. Baumhoff

196. Archeological Method. (3) II.
Laboratory—6 hours. Prerequisite: course 195 and consent of instructor. Museum preparation, advanced field investigation, and guidance in preparation of museum material for publication. Enrollment limited to eighteen students. May be repeated for credit with consent of instructor.
Mr. Baumhoff

Tutorial—1–5 hours. Prerequisite: upper division standing with major in anthropology and consent of Department Chairman. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. May be repeated for credit.
The Staff (Mr. Baumhoff in charge)

Discussion—3 hours. Prerequisite: consent of instructor. Directed reading and group discussion of selected anthropological problems.
The Staff (Mr. Baumhoff in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Baumhoff in charge)

Graduate Courses

201. History of Anthropological Theory. (4) I.
Lecture—2 hours; discussion—1 hour. The historical development of the various fields of anthropology with emphasis upon their interrelationships. Required of all first-year graduate students in anthropology.
The Staff (Mr. Curley in charge)

*209. Objectives and Methods for College Teaching of Anthropology. (2) I.
Discussion—2 hours. Prerequisite: normally limited to teaching assistants in anthropology. Analysis of the elements of effective teaching, drawing upon the students’ experience in the classroom situation.
Mr. Olmsted

Seminar—3 hours. Analysis of various phases of culture, such as religion, economics, law, and folklore.
The Staff

216. Problems in Archaeological Method. (4) II.
Seminar—3 hours. Techniques for analyzing archaeological data; application to various prehistoric cultures.
Mr. True

*217. Andean Prehistory—Theory and Method. (4) II.
Seminar—3 hours. Prerequisite: consent of instructor. Discussion and evaluation of prehistoric occupations in the Andean Region of South America. Emphasis upon Preceramic and early farming peoples. Discussion will be directed toward the use of the resources of this region to test archaeological theory and to propose problems that will work in this direction.
Mr. True

* Not to be given, 1970-71.
219. Culture and Personality. (4) II.
Seminar—3 hours.
Mr. Cook

220. Field Course in Linguistics. (4) I.
Seminar—2 hours; laboratory—2 hours. Prerequisite: courses 110, 111. Techniques of eliciting, recording, and analyzing; work with a native speaker.

222. Ethnemics. (4) III.
Seminar—3 hours. Prerequisite: course 120 or consent of instructor. Application of linguistic, cognitive psychological, and related analytical models to folk taxa.
Mr. Cook

223. Economic Anthropology. (4) III.
Seminar—3 hours. Prerequisite: course 122, or consent of instructor. Selected current methodological and theoretical problems in the analysis of nonindustrial economic systems.
Mr. Davis

*225. Kinship and Social Structure. (4) II.
Seminar—3 hours. Componental analysis of kinship systems and discussion of descent group and alliance theories.
Mr. Curley

*226. Evolution of Social Organization. (4) II.
Seminar—3 hours. Diachronic and synchronic analyses of social organization.

*239. Problems in African Society and Culture. (4) I.
Seminar—3 hours. Diachronic analyses of traditional institutions in sub-Saharan Africa.
Mr. Curley

Seminar—3 hours.
Mr. Baumhoff

*245. Ethnology of Northern and Central Asia. (4) II.
Seminar—3 hours. Prerequisite: a reading knowledge of German, Russian, Chinese, or Japanese. Lectures on the culture aboriginally found north of the Caucasus-Korea line. Supervised study of the primary and secondary sources. Work with informants when available.
Mr. Olmsted

*247. Peoples and Cultures of Oceania. (4) III.
Seminar—3 hours.
Mr. Cook

Seminar—3 hours. Prerequisite: course 148 or equivalent or consent of instructor. Advanced study of theories, methods, and applications of the ecological perspective to cultural and physical attributes of human population.
Mr. Chang

*250. Theory and Method of Anthropology. (4) II.
Seminar—3 hours.
Mr. Cook

253. Concepts and Problems in Physical Anthropology. (4) II.
Seminar—3 hours.
Mr. Kinzey

254. Primate Social Behavior. (4) III.
Seminar—3 hours. Prerequisite: course 154B or equivalent. Analysis of primate social behavior, with particular emphasis on field studies.
Mr. Lindburg

Seminar—3 hours. Prerequisite: course 165 or equivalent or consent of instructor. Advanced study in culture change; case studies of directed culture change; problems of planning and evaluation; uses of anthropological theory and data in professional fields such as agriculture, public health, administration, and international technical assistance.
Mr. Chang

280. Ethnohistorical Theory and Method. (4) III.
Seminar—3 hours. A discussion of the ethnohistorical method; the utilization of diverse types of data, especially documentary sources, to reconstruct socio-cultural history. Particular attention devoted to the applied uses of ethnohistory in the solution of contemporary social problems.
Mr. Forbes

*292. Seminar in Anthropological Linguistics. (4) II.
Seminar—3 hours.
Mr. Olmsted

The Staff (Mr. Olmsted in charge)

APPLIED BEHAVIORAL SCIENCES (See also Family and Consumer Sciences)
Orville E. Thompson, Ph.D., Chairman of the Department
Department Office, 206 Walker Hall

Professors:
Frederick L. Griffin, M.S. (Emeritus)
Elwood M. Juergenson, Ph.D. (also Coordinator of Vocational Teacher Education)
Sidney S. Sutherland, M.S. (Emeritus)
Orville E. Thompson, Ph.D.

Associate Professor:
Mary C. Regan, Ph.D.

Departmental Major Advisers—See Schedule and Directory Listing.
Counselors: ———.
Secondary Credentials—Agriculture: Mr.

* Not to be given, 1970–71.
Agricultural Education

Upper Division Courses

160. Vocational Education. (3) III.
Lecture—3 hours. Philosophy and organization of vocational education, with particular reference to educational principles for agriculture, commerce, home economics, and industry.
Mr. Thompson

188. Technical Journalism. (4) I.
Lecture—4 hours. Style structure, organization, and presentation of technical information. Includes mass communication theory, mass media analysis, and audience analysis.
Miss Regan

198. Directed Group Study. (1-5) I, II, III.
The Staff (Mr. Thompson in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Thompson in charge)

Graduate Courses

290. Seminar. (2) I, II, III.
Discussion—2 hours. Reports and discussions of topics of interest in the fields of agricultural education, home economics education, agricultural extension, and adult education. (Satisfactory/Unsatisfactory grading only.)
Mr. Thompson, Miss Regan

299. Research. (1-6) I, II, III.
Research in agricultural education, home economics education, vocational education, agricultural extension, or adult education.
The Staff (Mr. Thompson in charge)

Supervised Teaching Courses

320A. Introduction to Teaching. (1) I, II, III.
Lecture—1 hour. Observations and participation in some form of public school work.
Mr. Juergenson

320B. Instructional Materials and Procedures. (3) III.
Lecture—2 hours; laboratory—3 hours. Introduction to the materials and procedures used in teaching. Use of audio-visual, radio and other teaching aids. Preparation of teaching materials; collecting, organizing, processing, and evaluating community resources.
Mr. Juergenson

320C. Supervised Teaching: Sec. 1, Agriculture. (12) I, II, III.
Field work—student teaching—36 hours. Prerequisite: course 320A; course 320E must be taken concurrently. Directed teaching for candidates for the credential in agriculture.
Mr. Juergenson

320C. Supervised Teaching: Sec. 2, Home Economics. (12) I, II, III.
Field work—student teaching—36 hours. Prerequisite: course 320A; course 320E must be taken concurrently. Directed teaching for candidates for the credential in home economics.

320E. Curriculum and Instruction Procedures: Sec. 1, Agriculture. (3) I, II, III.
Discussion—3 hours. Prerequisite: all students enrolled in 320E must enroll in 320C concurrently. Planning and organizing an effective curriculum. Selection, organization, evaluation, and use of resource material for teaching.
Mr. Juergenson

320E. Curriculum and Instruction Procedures: Sec. 2, Home Economics. (3) I, II, III.
Discussion—3 hours. Prerequisite: all students enrolled in 320E must enroll in 320C concurrently. Planning and organizing an effective curriculum. Selection, organization, evaluation, and use of resource material for teaching.

APPLIED SCIENCE—See Engineering

ART

Richard D. Cramer, M.F.A., Chairman of the Department
Department Office, 103 Art

Professors:
Richard D. Cramer, M.F.A. (Acting Director, Laboratory for Research in the Fine Arts and Museology)
Daniel J. Crowley, Ph.D. (Art and Anthropology)

* Not to be given, 1970–71.

Seymour Howard, Ph.D.
Ralph M. Johnson, M.A.
Richard L. Nelson, M.A. (Emeritus)
Daniel Shapiro
Wayne Thiebaut, M.A.

Associate Professors:
Robert C. Arneson, M.F.A.
Art / 189

Tio L. Gambruni, M.A.
Ruth J. Horsting, M.A.
Roland C. Petersen, M.A.
William T. Wiley, M.F.A.

Assistant Professors:
José A. Arguelles, Ph.D.
Roy D. DeForest, M.A.
Susan R. McKillop, Ph.D.
Manuel J. Neri

Assistant Professor:
Sherwood A. Fehm, Jr., M.A. (Acting)

Lecturers:
Jane B. Garritson, M.A.
Charles M. Muskavitch, H.D., F.I.I.C.
(Curator, Laboratory for Research
in the Fine Arts and Museology)

Departmental Major Advisers.—See the
Schedule and Directory.

Preparation for the Major:
Practice of Art: 8 3 courses from the following
list: Art 2, 3, 4, 14A, 16 (see prerequisites for
upper division courses); 8 units chosen from
courses 1A, 1B, 1C, 1D. Entering freshmen who
have studied art in high school may apply for
advanced standing by submitting examples of their
work for faculty review.

History of Art: Courses 1A, 1B, 1C, 1D;
one course in drawing, graphics, or painting;
and one course in sculpture or ceramics.

The Major Program:
Practice of Art: 8 16 units of Group A courses
under three different artists; course 148 or 149;
8 units from Group C; and 8 units chosen from
Group A, B, or C.

History of Art: Two art history courses within
each of two periods (e.g., 154A, 154B, and
178B, 178C); course 189, and 16 units chosen
from Group C. Students planning to do
advanced work in the History of Art should de-
velop their knowledge of foreign languages
(especially German) as early as possible.

Transfer Students.—Before enrolling in Art
courses at Davis, ask your faculty adviser to
evaluate transfer courses in art.

Graduate Study.—The Department of Art
offers programs of study and research leading to
the M.F.A. degree in art practice and the
M.A. degree in art history. Detailed information
regarding graduate study may be obtained from
the Announcement of the Graduate Division.

Teaching Major.—The A.B. degree with a
major in the practice of art or in the history of
art. Depending on the credential, certain other
courses are required. For information see the
subject representative.

Teaching Minor.—30 units in Art. These
must be selected in consultation with the subject
representative.

Subject Representative: Mrs. Garritson.

Lower Division Courses

1A. History of Art: Prehistoric through Early
Christian. (4) I.
Lecture—4 hours. Art from 1500 B.C. to 500
A.D.: Lascaux, Jericho, Ur, Thebes, Knossos,
Troy, Mycenae, Corinth, Athens, Pergamum,
Cerveteri, Rome, and Ravenna; Imhotep,
Phidias, Polykleitus, Praxiteles, Scopous, Lysip-
pus, Agesander, and Apollodoros. Mr. Howard

1B. History of Art: Byzantine through
Renaissance. (4) II.
Lecture—4 hours. European art from the
seventh through the sixteenth centuries: Sutton-
Hoo, Constantinople, Aachen, Hildesheim,
Chartres, Salisbury, Florence, Siena, Rome,
Venice; Ciotto, the van Eycks, Brunelleschi,
Donatello, Piero della Francesca, Botticelli,
Leondardo, Michelangelo, Titian, Dürer, and El
Greco.

1C. History of Art: Post-Renaissance to the
Present. (4) III.
Lecture—4 hours. Development of art in
Europe after the Reformation. In addition to
a consideration of the works of the major mas-
ters—Caravaggio, Rembrandt, Bernini, Goya,
Blake, Gericault, Monet, Seurat, etc., considera-
tion will be given to the ways in which the
various masters have contributed to the de-
velopment of visual perception. Mrs. McKillop

1D. History of Art: Oriental Art. (4) III.
Lecture—4 hours. The art of India, China,
and Japan.

2. Elementary Form and Color. (4) I, II, III.
Laboratory—12 hours. Form in composition
using black and white media. Introduction to
color in composition. The Staff

Laboratory—12 hours. Prerequisite: course
2. Color and form in composition. The Staff

1 Absent on leave, 1970–71.
2 Absent on leave, fall quarter 1970.
3 Absent on leave, winter quarter 1971.
4 Students interested in drawing and painting
should take courses 2, 3, 4; course 14A is rec-
mended.
5 Students interested in sculpture, should take
courses 2, 3, 14A.
6 Students preparing for graduate work in any of
the environmental design professions should take
courses 2, 14A, 16, 121A, 121B, 121C, 149, 168,
184.
4. Introductory Figure Painting. (4) I, II, III.
Laboratory—12 hours. Prerequisite: course 2. Form in composition, with the human figure as subject.

The Staff

10. Introduction to Art: History and Appreciation. (3) II.
Lecture—3 hours. The understanding and appreciation of painting, sculpture, architecture, and industrial art. Illustrated lectures. Intended for students not specializing in art.

The Staff

11. Introduction to Art: Practice. (3) I, II, III.
Lecture—1 hour; laboratory—4 hours; 2 hours to be arranged. Individual explorations in various media. Intended for students not specializing in Art. Not open for credit to students who have had Art 2, 14A, or 16.

The Staff

14A. Elementary Sculpture. (4) I, II, III.
Laboratory—12 hours. Form in space using clay and plaster.

The Staff

*14B. Intermediate Sculpture. (4) II, III.
Laboratory—12 hours. Prerequisite: course 14A. Form in space using clay and plaster.

Mr. Giambruni, Mrs. Horsting

16. Descriptive Drawing and Rendering. (4) I, II.
Lecture—1 hour; laboratory—6 hours. Methods of objective drawing and of space description; rendering in various media.

Mr. Muskavitch

Upper Division Courses

Group A: Practice of Art

101. Painting: Materials and Carriers. (4) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 3. Experimentation in media and their supports.

Mr. Muskavitch

Laboratory—8 hours, 1 hour to be arranged. Prerequisite: courses 3, 4. Drawing and painting in various media including oil and polymers. May be repeated for credit.

The Staff

104. Advanced Form and Figure Composition. (4) I, II, III.
Laboratory—8 hours, 1 hour to be arranged. Prerequisite: course 4. Problems of light, color and space that involve the human figure and its environment. May be repeated for credit.

The Staff

110. Photography. (3) II.
Laboratory—9 hours. Prerequisite: course 3 or 128A. Photography as a creative medium using the view camera and the miniature camera.

112A. Ceramics. (4) I, II, III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 2 or 14A. Ceramics; introduction to ceramic forms and processes.

Mr. Arneson

112B. Ceramics. (4) II, III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 112A. Ceramics; introduction to ceramic color and glaze.

Mr. Arneson

21A. Architectural Design. (4) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: two quarters in art practice or design; or consent of instructor. Studio projects in architectural design.

Mr. Cramer

21B. Architectural Design. (4) II.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 21A. Studio projects in architectural design.

Mr. Cramer

*21C. Architectural Design. (4) III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 21B. Studio projects in architectural design.

Mr. Cramer

28A. Graphic Arts. (4) I, II, III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: 2 courses in art practice. Beginning practice and theory of printmaking, practice in traditional and experimental methods in relief and silk-screen printmaking, related to discussion of aesthetics of graphic form.

Mr. Shapiro

28B. Graphic Arts. (4) II, III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 28A. Practice and theory of traditional and experimental methods of intaglio printmaking; etching, engraving, aquatint, and innovative techniques and materials.

Mr. Shapiro

28C. Graphic Arts. (4) III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 28A. Practice and theory of traditional and experimental methods of lithographic printmaking.

Mr. Shapiro

141. Sculpture: Materials and Methods. (4) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 14B. Influences of material and technique on sculptural form; clay, wood, metal, plastics.

Mrs. Horsting

*142. Figure Sculpture. (4) III.
Lecture—1 hour; laboratory—6 hours; 1 hour to be arranged. Prerequisite: course 141; course 4 recommended. The human figure in sculpture. May be repeated for credit.

The Staff

* Not to be given, 1979–71.
143. Casting Techniques and Theories of Casting Sculpture. (4) II.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 14B. Sculpture in various casting techniques and media. May be repeated for credit.
Mr. Giambruni, Mrs. Horsting

144. Advanced Sculpture. (4) III.
Laboratory—8 hours; 1 hour to be arranged. Prerequisite: course 141. Advanced sculptural projects in various media.
The Staff

*146. Ceramic Sculpture. (4) III.
Laboratory—8 hours; 1 hour to be arranged. Prerequisite: course 112B. Clay as material for sculpture in round and relief. May be repeated for credit.
Mr. Arneson

Group B: Theory and Criticism

147. Visual Symbols. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, 1C, 1D. Nature and function of visual symbols. Origin, development and use in various artistic forms: mandalas, sand-paintings, religious architecture, computer design, etc. Emphasis on transformation of traditional symbols in contemporary usage.
Mr. Aguuelles

148. Theory and Criticism: Painting and Sculpture. (4) II.
Lecture—3 hours. Prerequisite: course 2 or 14A, and one art lecture course. Study of forms and symbols in historic and contemporary masterpieces.
Mr. Thiebaud

149. Theory and Criticism: Architecture. (4) III.
Lecture—3 hours. Prerequisite: course 2 or 14A; one art lecture course, or consent of instructor. Aesthetic theories of design styles, historic and contemporary.
Mr. Cramer

Group C: History of Art

*150. The Arts of Africa, Oceania, and Prehistoric Europe. (4) II.
Lecture—3 hours. The traditional arts of Africa and Oceania and of the prehistoric and folk populations of Europe and Asia in their cultural contexts.
Mr. Crowley

*151. The Arts of the Indians of the Americas. (4) I.
Lecture—3 hours. Arts of the extinct societies of Mexico, Peru, and related regions, and contemporary Indian arts and crafts.
Mr. Crowley

*154A. Greek Art: The Helladic through Archaic Periods. (4) I.
Lecture—3 hours. The art of Classical Greece to the Persian invasions. The Geometric, Odyssey-

talizing, and Archaic styles: the Doric temple, black- and red-figure vase painting, the Kore and Kouroso. Corinth, Selinus, Paeumum, Poly-
medes, Kleitias, Exekias, Epictetus, Euthymides, Kritis, and Kalamis.
Mr. Howard

154B. Greek Art: The Gold and Silver Ages. (4) II.
Lecture—3 hours. Greek art from the time of Pericles to that of Alexander: Olympia, the Athenian, Acropolis, Bassae, Epidauros, Hal-
carnassus; Myron, Phidias, Polykleitos, the Achilleos Painter, Praxiteles, and Scopas.
Mr. Howard

154C. Greek Art: The Hellenistic Age. (4) III.
Lecture—3 hours. Art in the Greek world from 322 B.C. until the time of Imperial Rome: Pergamum, Alexandria, Pirene, and Delos—
Lyktippos, Polykleitus, Boethus, Agesander, Philoxenas, and Nikeratus.
Mr. Howard

155. Roman Art. (4) I.
Mr. Howard

*160. History of Minor Art. (4) I.
Lecture—3 hours. Great periods, masters, and masterworks of minor art, such as Tutankhamen's throne, harp of Ur, Tanagra figurines, Portland vase, Bayeux tapestry, Suger's chalice, Majolica; Pisanello, Cellini, Chippendale, Adam, Wedgwood, Morris, Tiffany, Eames, and others.

162. History of Graphic Media. (4) III.
Lecture—3 hours. The development of multiple copy image processes from the late Medieval Period to the present: book illustration, popular prints, graphics as "High Art," photography, advertising. Emphasis will be placed on understanding the relation between technical and perceptual effect.

168. The History of Urban Form. (4) III.
Mr. Baird

176A. Art of the Middle Ages: Early Christian to Romanesque. (4) I.
Lecture—3 hours. The art of Christian Europe from the founding of Constantinople to the tenth century; the early Christian, Byzantine, Carolingian, and Ottonian periods; the

* Not to be given, 1970-71.
Basilica of St. Peter’s, St. Mark’s in Venice, Hagia Sophia, St. Gall, Sutton-Hoo, and the Lindisfarne Gospels.
Mr. Fehm

178B. Art of the Middle Ages: Romanesque through Gothic. (4) II.
Lecture—3 hours. The arts in Christian Europe from the eleventh to the fifteenth centuries: St. Bernin, Gisbertus, Poitiers, Caen, St. Ambrose, St. Denis, Chartres, Rheims, Salisbury, Cologne, Santa Croce, Strasbourg, Naumburg, Claus Sluter, and Villard de Honnecourt.
Mr. Fehm

177A. Northern Renaissance Art. (4) I.
Lecture—3 hours. Art of the Lowlands in the fifteenth and sixteenth centuries. The van Eycks, Master of Flemalle, Roger van der Weyden, Bouts, Geertgen, Bosch, and Bruegel.

177B. Northern Renaissance Art. (4) III.
Lecture—3 hours. Art between the Rhine and the Danube in the fifteenth and sixteenth centuries: Martins, Riemenschneider, Witz, Schongauer, Dürrer, Cranach, Altdorfer, and Holbein.

178A. Italian Renaissance Art. (4) I.
Lecture—3 hours. Art of the Trecento: Nicola and Giovanni Pisano, Cimabue, Giotto, Duccio, the Lorenzetti, Simone Martini. Emphasis on Assisi, Florence, and Siena.
Mr. Fehm

178B. Italian Renaissance Art. (4) II.
Lecture—3 hours. Art of the fifteenth century: Ghiberti, Brunelleschi, Masaccio, Donatello, Fra Angelico, Piero della Francesca, Botticelli, Mantegna, and the Bellini. Emphasis on Florence, Northern Italy, and Venice.
Mrs. McKillop

178C. Italian Renaissance Art. (4) III.
Mrs. McKillop

179A. Baroque Art. (4) I.
Lecture—3 hours. Architecture, sculpture, and art of the garden, from formative stages of the Baroque in the sixteenth century to creation of the Rococo. Emphasis on Western Europe; prototypes and developments. Bernini, Mansart, and other major artistic personalities.
Mr. Baird

179B. Baroque Art. (4) II.
Lecture—3 hours. Painting from 1590 to 1720. Such Italian, Spanish, Flemish, French, and English masters as Caravaggio, Velasquez, Rubens, Van Dyck, Claude, and Poussin will receive particular attention. Some attention to painting and drawing for the theater and other spectacles.
* Not to be given, 1970–71.

180. Readings in Art Historical Methods. (4) III.
The Staff

Lecture—3 hours. An historical consideration of interrelationships in the development of visual media—painting, photography, and graphics—as they reflect the development of visual perception from the late eighteenth to the mid-nineteenth centuries. The influence of media techniques on visual experience.
Mr. Arguelles

183B. Developmental History of Media and Visual Perception: the Age of Materialism. (4) II.
Lecture—3 hours. Visual media from the Impressionist painters to the First World War: painting, photography, graphics, and advertising art. The influence on art of its mutual development with science in altering the nature of art in the twentieth century.
Mr. Arguelles

183C. Developmental History of Media and Visual Perception: into the Space Age. (4) III.
Lecture—3 hours. Visual media from World War I to the present. The continuing development of interrelationships among the various media and an examination of the changing concept/function of art in terms of perceptual immediacy.
Mr. Arguelles

184. Architecture in the Twentieth Century. (4) II.
Lecture—3 hours. The forms and substyles of modern architecture, with emphasis on the development of organization in the works of Frank Lloyd Wright and of the international style in the work of Le Corbusier and Mies van der Rohe.
Mr. Cramer

188A. The Art of Latin America. (4) I.
Lecture—3 hours. Emphasis on architecture, sculpture, and paintings of Mexico from colonial times to the present; the American Southwest, colonial art in Peru, and eighteenth century to modern architecture in Brazil. European backgrounds and creative originality in the New World.
Mr. Baird

188B. The Art of the United States. (4) II.
Lecture—3 hours. A survey of three centuries of American building arts, with emphasis on colonial, Georgian, nineteenth and twentieth century architecture. Particular attention to California (especially northern California). Field trips.
Mr. Baird

188C. The Art of the United States. (4) III.
Lecture—3 hours. Emphasis on painting and
sculpture. The great eras from colonial to contemporary; notable masters and schools. Special attention to pictorial art since 1850; some attention to the leading figures in California of the later nineteenth and early twentieth centuries. Field trips.

199. Museum Methods and Connoisseurship. (4) II.
Lecture—3 hours; laboratory—2 hours. Prerequisite: basic art history courses; or consent of instructor. The history of collecting; problems of media and connoisseurship, especially in painting, drawing, and graphic arts. Study of iconography, techniques of preservation and restoration, museum registration and storage. Preparation of an exhibition at Davis, with printed catalog. Field trips.

Mr. Baird, Mr. Muskavitch

Special Study Courses

The Staff (Mr. Cramer in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Mr. Cramer in charge)

Graduate Courses

201. Experiments in Art and Visual Communication.
(4) I, II, III.
Lecture—3 hours. Original work produced for class discussion and criticism. May be repeated for credit.

The Staff

Lecture—3 hours. Original work produced for class discussion and criticism. May be repeated for credit.

The Staff

290. Seminar. (4) I, II, III.
Seminar—3 hours. Original works produced for group discussion and criticism; associated topics of a contemporary and historical nature. May be repeated for credit.
The Staff (Graduate Adviser in charge)

Seminar—1 hour. May be repeated for credit. (Satisfactory/Unsatisfactory grading only.)
The Staff (Graduate Adviser in charge)

292. Seminar: Comprehensive Qualifying.
(1) I, II, III.
Seminar—1 hour. A further critical evaluation of the student's work to determine his eligibility to begin the Comprehensive Project. May be repeated for credit. (Satisfactory/Unsatisfactory grading only.)
The Staff (Graduate Adviser in charge)

299. Individual Study. (1–6) I, II, III.
The Staff (Graduate Adviser in charge)

299D. Comprehensive Project. (9) I, II, III.
An original body of work accompanied by a catalog summarizing the artist's aesthetic position. May be repeated for credit. (Satisfactory/Unsatisfactory grading only.)
The Staff (Graduate Adviser in charge)

Professional Course

300. Practice and Principles of Art Education.
(3) I, II, III.
Lecture—2 hours; laboratory—4 hours. Prerequisite: senior or graduate standing; or consent of instructor. Art education and practice of techniques used in elementary and secondary schools.

Mrs. Garrison

ASIAN AMERICAN STUDIES—See Family and Consumer Sciences

ASTRONOMY—See Physics

ATMOSPHERIC SCIENCE—See Resource Sciences

AVIAN MEDICINE—See Epidemiology and Preventive Medicine

AVIAN SCIENCES—See Animal Sciences

BACTERIOLOGY
Herman J. Phaff, Ph.D., Chairman of the Department
Department Office, 156 Hutchison Hall

Professors:
Robert E. Hungate, Ph.D.
John L. Ingraham, Ph.D.
Allen G. Marr, Ph.D.
Herman J. Phaff, Ph.D. (Bacteriology and Food Science and Technology)
Mortimer P. Starr, Ph.D.

Associate Professor:
Donald M. Reynolds, Ph.D.

Assistant Professors:
Donald P. Kessler, Ph.D.
Mark L. Wheelis, Ph.D.
Associate Professor:
Martin W. Miller, Ph.D. (Food Science and Technology)

Major Advisers.—Mr. Hungate, Mr. Kessler.

The Major Program

The undergraduate major programs provide a balance of studies in the biology of bacteria and other microorganisms together with appropriate courses in mathematics and physical science. The Bachelor of Science program offers greater emphasis in mathematics and physical science. Both the Bachelor of Arts program and the Bachelor of Science program are suitable for students who plan to do graduate work in a biological science or who wish a professional career in bacteriology.

Either major is appropriate for students contemplating a career in Medical Technology. Such students are advised to take Veterinary Microbiology 127 and 128 and a year laboratory course in physics in addition to the courses required for a major in bacteriology.

Bachelor of Arts Major Program

Lower Division Courses.—Bacteriology 2; Biology 1; Botany 2, or Zoology 2; Chemistry 1A—1B—1C, 8A—8B; Mathematics 16A—16B and either 13, 16C, or 36A—36B; Physics 2A—2B—2C.

Upper Division Courses.—Bacteriology 110, 130 or 131, 140; Biochemistry and Biophysics 101A—101B—101L; Chemistry 5; Genetics 100A—100B; and one course from the following group: Bacteriology 150; Biology 162; Botany 114, 118, 119A—119B; Zoology 110; and two additional units in bacteriology which may include Veterinary Microbiology 127.

Bachelor of Science Major Program

Lower Division Courses.—Bacteriology 2; Biology 1; Chemistry 1A—1B—1C, 5; Mathematics 21A—21B—21C, 13; Physics 4A—4B—4C. Recommended: elementary courses in French or German.

Upper Division Courses.—Bacteriology 110, 130 or 131, 140, 160 or 170; Biochemistry and Biophysics 101A—101B—101L; Chemistry 110A—110B—110C, 112A—112D—112E; Genetics 100A—100B; and one course from the following group: Bacteriology 150; Biology 162; Botany 114, 118, 119A—119B; Zoology 110.

Honors and Honors Program (see page 133).

Graduate Study (see page 151).—The Graduate Group in Microbiology offers programs of study and research leading to the M.A. and Ph.D. degrees in general microbiology, including bacteriology. The offerings of the Department of Bacteriology are augmented by courses and faculty of the Departments of Biochemistry and Biophysics, Botany, Food Science and Technology, Genetics, Viticulture and Enology, and the Schools of Veterinary Medicine and of Medicine. For detailed information regarding graduate study in microbiology, address the Chairman, Graduate Group in Microbiology, Department of Bacteriology.

Teaching Major.—Requirements for the principal teaching major are the same as those for the departmental major.

Teaching Minor.—30 units selected from the B.A. or B.S. Bacteriology major programs, as approved by the Department Subject Representative.

Subject Representative: Mr. Reynolds

Lower Division Courses

2. Introduction to Microbiology. (5) I, II, III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: Biology 1; Chemistry 1A. A general introduction to the biology of bacteria and of other microorganisms. The Staff

Lecture—1–5 hours. Prerequisite: consent of instructor. The Staff (Mr. Phaff in charge)

Upper Division Courses

101. Microbiology and Society. (4) III.

Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing; introductory courses in biology and chemistry recommended. Microbes and microbiology, with particular attention to human welfare and experience. Nature and classification of microbes. Ways in which microbes aid, harm, and otherwise affect man, including environmental, literary, historical, intellectual, aesthetic, ethical, legal, economic, and political aspects. Mr. Starr

110. Structure and Function of Bacteria. (3) I.

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 2. Analysis of the structure and ultrastructure of bacteria in relationship to physiological function; osmotic behavior of bacterial cells. Mr. Marr

130. Bacterial Physiology. (4) II.

Lecture—2 hours; laboratory—6 hours. Prerequisite: course 2; Biochemistry 101B; Mathematics 16A. Growth of bacteria; biochemical and genetic regulation of metabolism; effects of the physical and chemical environment. Mr. Ingraham

131. Bacterial Metabolism. (3) I.

Lecture—3 hours. Prerequisite: course 2; Biochemistry 101A. Anaerobic and aerobic metabolism of organic and inorganic foods by bacteria, including pathways of synthesis. Mr. Hungate

132. Bacterial Metabolism Laboratory. (3) I.

Discussion—1 hour; laboratory—6 hours. Prerequisite: course 2; Biochemistry 101A. Discussion and quantitative experiments in microbial metabolism, using selected methods of
microchemical analysis, manometry liquid and gas phase chromatography, spectrophotometry, and isotopic tracers. Mr. Hungate

140. Bacterial Diversity and Ecolog. (5) III.
Lecture—2 hours; discussion—1 hour; laboratory—6 hours. Prerequisite: course 2; Chemistry 8b. Principles of bacterial diversity and bacterial ecology. Survey of the major systematic groups of bacteria, with intensive study of selected microorganisms and habitats. Mr. Starr

150. Protistology. (3) II.
Lecture—3 hours. Prerequisite: course 2 and Botany 2; or Zoology 2. A survey of protozoa and yeasts, including selected physiological topics.
Mr. Hungate, Mr. Phaff

151. Protistology Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 150 (may be taken concurrently). Experiments on the taxonomy, physiology, and ecology of selected yeasts and protozoa.
Mr. Hungate, Mr. Phaff

160. Bacterial Viruses. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 130; Biochemistry 101b. Structure of viruses; physiology and biochemistry of viral infections; genetics of viruses; lysogeny.
The Staff

170. Bacterial Genetics. (4) II.
Lecture—4 hours. Prerequisite: course 2; Genetics 100b; Biochemistry 101b. Mutation and genetic recombination in bacteria and bacteriophages, mechanisms of replication, recombination, and gene expression.
Mr. Kessler

171. Bacterial Genetics Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 170 (may be taken concurrently). Selection of mutants and analysis of genetic recombination in bacteria and bacteriophages.
Mr. Kessler

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Phaff in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Phaff in charge)

Graduate Courses

230. Bacterial Physiology. (4) III.
Lecture—4 hours. Prerequisite: course 130; Biochemistry 101b; course 170 recommended. Economics of bacteria growth; biochemical and genetic regulation of metabolism.
Mr. Ingraham, Mr. Marr

240. Bacterial Diversity and Ecology. (2) III.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 140 (preferably taken concurrently). Intensive study of selected microorganisms and habitats in relation to diversification factors.
Mr. Starr

241. Bacterial Taxonomy. (2) III.
Lecture—2 hours. Prerequisite: courses 140 and 240 recommended. Principles and procedures of bacterial taxonomy.
Mr. Starr

250. Yeasts and Related Organisms. (5) I.
Lecture—3 hours; laboratory—6 hours. Prerequisite: a general course in microbiology, botany, biochemistry, and consent of instructor. Recommended: a course in cryptogamic botany. Morphology, development, classification, and distribution of yeasts; relation to other fungi; growth requirements; physiological activities.
Mr. Phaff, Mr. Miller

291. Seminar in General Microbiology. (1) I, II, III.
Seminar—1 hour. A review and discussion of the current literature and developments in the field of Microbiology with presentations by individual students. (Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Phaff in charge)

292. Seminar in Bacterial Physiology. (1) I, II, III.
Seminar—1 hour. A review and discussion of the current literature and developments in bacterial physiology with presentations by individual students. (Satisfactory/Unsatisfactory grading only.)
Mr. Marr, Mr. Ingraham

293. Seminar in Bacterial Genetics. (1) I, II, III.
Seminar—1 hour. A review and discussion of the current literature and developments in bacterial genetics with presentations by individual students. (Satisfactory/Unsatisfactory grading only.)
Mr. Kessler

294. Seminar in Bacterial Virology. (1) I, II, III.
Seminar—1 hour. Prerequisite: consent of instructor. An examination of current topics in the structure, replication, and genetics of bacterial viruses. (Satisfactory/Unsatisfactory grading only.)
The Staff

Seminar—1 hour. Prerequisite: consent of instructor. A review and discussion of the current literature in the ecology of protists and bacteria with presentations by individual students. (Satisfactory/Unsatisfactory grading only.)
Mr. Hungate

298. Group Study. (1-5) I—II—III.
Prerequisite: consent of instructor. (Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

299. Research. (1-12) I, II, III.
(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)
BEHAVIORAL BIOLOGY—See Medicine

BIOCHEMISTRY—See Also Animal Sciences

BIOCHEMISTRY (A Graduate Group)
Jerry L. Hedrick, Ph.D., Chairman of the Group
Group Office, 5206 Storer Hall

Graduate Study.—The Graduate Group in Biochemistry offers programs of study and research leading to the M.A. and Ph.D. degrees. For detailed information regarding graduate study in biochemistry address the chairman of the group.

BIOCHEMISTRY AND BIOPHYSICS
Sterling Chaykin, Ph.D., Chairman of the Department
Department Office, 554 Hutchison Hall

Professors:
Sterling Chaykin, Ph.D.
Eric E. Conn, Ph.D.
Roy H. Doi, Ph.D.
Lloyd L. Ingram, Ph.D.
Jack Freiss, Ph.D.
Paul K. Stumpf, Ph.D.

Associate Professors:
Richard S. Criddle, Ph.D.
Jerry L. Hedrick, Ph.D.

Assistant Professors:
George E. Bruening, Ph.D.
Michael E. Dahmus, Ph.D.
Marilyn E. Etzler, Ph.D.
Irwin H. Segel, Ph.D.
Adolphus P. Toliver, Ph.D.

Graduate Courses
290. Seminar. (1) I, II, III.
Seminar—1 hour. Prerequisite: consent of instructor. (Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Hedrick in charge)

(Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Hedrick in charge)

Lecturers:
Tsune Kosuge, Ph.D. (Plant Pathology)
Frances E. Rudert, M.S.

Departmental Major Advisers.—See Schedule and Directory listing.

Bachelor of Science Major Program and Graduate Study. See pages 58 and 151.

The Major Program (College of Agricultural and Environmental Sciences and Letters and Science).

The department offers two essentially identical undergraduate majors in Biochemistry: Bachelor of Science, College of Letters and Science; and Bachelor of Science, College of Agricultural and Environmental Sciences. This program is suitable for students who plan to pursue a professional career in biochemistry, to do graduate work in biochemistry or another biological science, or who wish to apply to Medical, Dental, Medical Technology or Veterinary School.

Lower Division Courses.—Required: Chemistry 1A–1B–1C and 5, or 1A and 7A–7B; at least 12 units of mathematics (suggested courses: 16A–16B–16C and one additional course or 21A–21B–21C and one additional course; courses 13 or 131 are recommended); at least 12 units of Physics: 2A–2B–2C, 3A–3B–3C, or 4A–4C–4D (4B and 4E are optional); Biology 1; at least one from the following group: Bacteriology 2, Botany 2, Zoology 2, or Physiology 101 and 101L (if one of the "2" courses are taken, then Physiology 101 and 101L may be used to fulfill upper division biology requirement). There is no foreign language requirement, but students are strongly urged to complete at least 12 units of college level foreign language (or place in the appropriate course).

a Absent on leave, fall quarter 1970.
b Absent on leave, winter quarter 1971.
Students electing not to take foreign language should consider devising a one-year foreign culture course sequence.

Upper Division Courses.—Required: Biochemistry 101A–101B, 101L, 190, and at least one additional biochemistry course (100, 122) is recommended; Genetics 100A–100B; Chemistry 110A–110B, 112A–112B; 112C; one additional upper division chemistry course is recommended. The student must also take an additional 15 units of courses (exclusive of 199 and 194H) in biochemistry or related areas (e.g., chemistry, biology, zoology, botany, genetics, bacteriology, food science, nutrition, physics, mathematics, engineering, etc.). Included in the 15 units, must be an upper division lecture or laboratory course in a biological science other than biochemistry. In addition to the courses listed above, the student must also complete those courses satisfying the college and university requirements for English or rhetoric (8 units in the College of Agricultural and Environmental Sciences by examination in Letters and Science), humanities and social sciences (28 units in the College of Agricultural and Environmental Sciences, 22 units in Letters and Science, and American history and institutions by examination or any two courses from the acceptable list). Foreign language units taken at Davis campus may be used to fulfill part of the humanities and social sciences requirement.

Upper Division Courses

101A. General Biochemistry. (3) I, II.
Lecture—3 hours. Prerequisite: Chemistry 8B or 112B. Recommended: introductory course in bacteriology, botany, or zoology. Introduction to the chemistry and metabolism of biologically important compounds; dynamic aspects of biochemistry with examples from animals, plants, and microorganisms.
Mr. Conn, Miss Etzler, Mr. Segel

101B. General Biochemistry. (3) II, III.
Lecture—3 hours. Prerequisite: course 101A. A continuation of 101A.
Mr. Conn, Miss Etzler, Mr. Segel

101L. General Biochemistry Laboratory. (5) I, III.
Lecture—2 hours; laboratory—9 hours. Prerequisite: course 101B (may be taken concurrently); Chemistry 5. Introduction to laboratory methods and procedures employed in studying biochemical processes. Designed for students who require limited experience in the use of biochemical techniques as laboratory tools.
Messrs. Criddle, Freiss, Toller

108. Biochemical Control Mechanisms. (3) III.
Lecture—3 hours. Prerequisite: Biochemistry 101B. The mechanisms by which metabolism is regulated in living cells. The role of variations in the intracellular levels of intermediates, activators, and inhibitors; enzyme induction and repression; and multiple forms of enzymes.
Mr. Doi, Mr. Segel

122. Plant Biochemistry. (3) II.
Lecture—3 hours. Prerequisite: Biochemistry 101B. The chemistry of important plant constituents and processes such as photosynthesis and respiration; carbohydrate, fat, and nitrogen metabolism.
Mr. Stumpf, Mr. Conn

190. Proseminar in Biochemistry. (1) I, II, III.
Seminar—1 hour. Prerequisite: consent of instructor. Discussion of the historical developments of modern biochemistry.
The Staff (Mr. Chaykin in charge)

194H. Special Study for Honors Students. (1–5)
I, II, III.
Prerequisite: open only to majors of senior standing on honors list. Independent study of selected topics under the direction of a member of the staff. Completion will involve the writing of a senior thesis.
The Staff (Mr. Chaykin in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Chaykin in charge)

Graduate Courses

201A–201B. Advanced General Biochemistry. (3–3) I–II–III.
Lecture—3 hours. Prerequisite: course 101B or consent of instructor; Chemistry 109B or 110C, 112C. Physical and chemical properties of amino acids, proteins, lipids, carbohydrates and nucleic acids; methods of isolating proteins; enzymes, including kinetics, cofactors, and type reactions; and the study of organized cell structures. The Staff (Mr. Chaykin in charge)

202A–202B. Advanced Biochemistry Laboratory. (6–6) II–III.
Lecture—1 hour; laboratory—15 hours. Prerequisite: course 201A; Chemistry 5. Laboratory methods and procedures used in biochemical research. Critical evaluation of experimental design and data is stressed.
The Staff (Mr. Hedrick in charge)

203. Carbohydrates. (3) I.
Lecture—3 hours. Prerequisite: course 201C or consent of instructor. The chemistry, metabolism, and biological functions of the various classes of carbohydrates and their polymers. Biosynthesis of simple and complex sugars and polysaccharides. Offered in even-numbered years.
Mr. Priss

204. Nucleic Acids. (3) III.
Lecture—3 hours. Prerequisite: course 201C or consent of instructor. The physical and biological properties of nucleic acids; biosynthetic pathways; metabolism and structure of bases.

* Not to be given, 1970–71.
nucleotides and their occurrence and distribution. The relation of structure and function of RNA and DNA to heredity, coding, and protein synthesis. Offered in even-numbered years.

Messrs. Bruening, Dahms, Doi

205. Biochemical Mechanisms. (3) II.
Lecture—3 hours. Prerequisite: course 101B or consent of instructor; Chemistry 110C, 131. Bond structures of biochemical interest. Application of modern organic and inorganic chemical principles to a study of the mechanisms of biochemical reactions.
Mr. Ingraham

206. Physical Biochemistry of Macromolecules. (3) I.
Lecture—3 hours. Prerequisite: course 201C or consent of instructor; Chemistry 110C. Application of modern physical concepts and experimental methods to the problems of large molecules of biological interest. Offered in even-numbered years.
Mr. Criddle

207. Lipids. (3) I.
Lecture—3 hours. Prerequisite: course 201C or consent of instructor. A discussion of the chemistry, metabolism and experimental methodology unique to fatty acids, triglycerides, phospholipids, plasmalogens, sphingolipids, carotenoids, steroids. Offered in odd-numbered years.
Mr. Stumpf

215. Kinetics of Biological Systems. (2) III.
Lecture—2 hours. Prerequisite: course 201B; Fortran IV (may be taken concurrently). The kinetic behavior of multivariable biological systems; mathematical methods and analysis of typical data with accent on computer use; in particular, the kinetics of multivariant catalysts, pre-steady state systems, perturbed systems, and reactions in a metabolic sequence.
Mr. Ingraham

*240. Selected Topics in Biochemistry. (2) I.
Lecture—2 hours. Prerequisite: course 201C or consent of instructor. (Satisfactory/Unsatisfactory grading only.)
Mr. Chaykin

250. Biochemical Literature. (1) I, II, III.
Seminar—1 hour. Prerequisite: course 201C or consent of instructor. Critical reading and evaluation of the current biochemical literature. Selected papers will be presented and discussed in detail. (Satisfactory/Unsatisfactory grading only.)
The Staff

270. Advanced Research Conference. (1) I, II, III.
Seminar—1 hour. Prerequisite: course 201C or consent of instructor. Presentation and critical discussions of the research activities of various members of the local biochemical community; primarily designed for graduate students. (Satisfactory/Unsatisfactory grading only.)
The Staff

Seminar—1 hour. Prerequisite: course 201C or consent of instructor. Seminars presented by guest lecturers on the subject of their own research activities. (Satisfactory/Unsatisfactory grading only.)
Mr. Criddle

The Staff (Mr. Chaykin in charge)

BIOLOGICAL SCIENCES

Everett W. Jameson, Jr., Ph.D., Chairman of the Committee
Committee Office, 4345 Storer Hall

Major advisers.—See Schedule and Directory.
The Major Program
The major programs in biological sciences provide the opportunity to study a broader area of biology than is possible with most departmental programs. The programs prepare for a career in professions such as teacher, laboratory technician, medical technologist, etc. Both Plan I and Plan II serve as a basis for training in professional schools (Medicine, Dentistry, Pharmacy, etc.) and for graduate study leading to advanced degrees and careers in research. Plan II should be selected by those interested in the study of the chemical and molecular aspects of life. Students who follow Plan I and are interested in a career as laboratory technician, admission to professional schools or graduate work in physiology or chemical biology should consider taking Chemistry 5 and a year laboratory course in physics. For those contemplating medical technology, Veterinary Microbiology 127 and courses such as medical microbiology and parasitology are recommended in addition to the above.

The Committee in Charge has issued a list of upper division courses acceptable in the major. Copies can be obtained from advisers and from the committee office.

Bachelor of Arts Major Program
Lower Division Courses.—Required: Bacteriology 2; Biology 1; Botany 2; Chemistry 1A—1B, 8A—8B; Zoology 2; 6 units of mathematics. Recommended: Chemistry 1C; Geology 3; Physics 2A—2B—2C or equivalent.
Upper Division Courses.—Required: A total of 36 units in biological sciences including Genetics 100A—100B; and at least one course or course sequence from each of the following

* Not to be given, 1970–71.
groups including one course in plant science and one in animal science:

b) Population Biology and Ecology.—Botany 117; Entomology 104; Genetics 105; Zoology 116, 125.

c) Evolutionary Biology.—Botany 116, 140 (same as Geology 140); Genetics 103; Geology 107; Zoology 148.

d) Physiology.—Animal Science (Physiology) 101, 101L; 110A–110B; Bacteriology 110, 130, 131; Botany 111; Entomology 102; Physiological Sciences 140A–140B; Zoology 142.

e) Cell Biology.—Animal Science (Physiology) 100A–100B; Botany 130A (same as Zoology 130A); Zoology 120, 121, 158.

Bachelor of Science Major Program, Plan I

Lower Division Courses.—Required: Bacteriology 2; Biology 1; Botany 2; Chemistry 1A–1B—1C or 1A and 7A–7B, and 8A–8B or 112A–112B–112C or 112A–112D–112E; Mathematics 15, and 16A–16B or 16A–16B–16C, and 13 or 131A; Physics 2A–2B–2C; Zoology 2. Recommended: Chemistry 5; Geology 3; Physics 3A–3B–3C.

Upper Division Courses.—Required: A total of 45 units in biological sciences including Biochemistry 101A–101B and Genetics 100A–100B; and of these 45 units a minimum of 30 units are to include one course or course sequence from each of the following groups including one course in each of animal science, microbial science and plant science:

(Same as a through e under Bachelor of Arts major program above.)

Bachelor of Science Major Program, Plan II

Lower Division Courses.—Required: Bacteriology 2; Biology 1; Botany 2; Chemistry 1A–1B—1C and 5, or 1A and 7A–7B; Mathematics 21A–21B–21C and 13 or 131A; Physics 4A–4B–4C–4D–4E; Zoology 2. Recommended: Geology 3; Mathematics 22A, 22B, 22C.

Upper Division Courses.—Required: A total of 45 units in biological sciences including Biochemistry 101A–101B–101L or Physiological Sciences 101A–101B–102A; Chemistry 109A–109B or 110A–110B–110C and 112A–112B–112C or 112A–112D–112E; Genetics 100A–100B; and of these 45 units a minimum of 15 units are to include one course from groups a, b, and c and one course from group d or e. (Same as a through e under Bachelor of Arts major program above.)

The Honors Program.—Students on the honor list may enroll in an Honors Program of courses leading to honors with the bachelor's degree (see page 133).

A special study course (194H) involving either independent research or reading on an appropriate topic, followed by preparation of an honors thesis (course 195H) based primarily on the work done in the prerequisite course, must be completed.

Teaching Major.—A degree in Biological Sciences satisfies the requirement for a teaching major in the life sciences for both elementary and secondary teaching credentials, except that for the elementary credential Entomology 1 or 10 must be included.

Teaching Minor.—A minimum of 30 units of biology, including the undergraduate core: Biology 1, Botany 2, Zoology 2, and Bacteriology 2.

Subject Representative: ————

Upper Division Courses

189. Integration of Biological Concepts. (3) III.

Lecture—2 hours; discussion—1 hour. Pre-requisite: twenty upper division units in biology. A detailed examination in depth of the coherence of biology through a study of several unifying themes, for example, evolution. Mr. Stebbins

194H. Special Study for Honors Students. (3–6)

I, II, III.

Pre-requisite: enrollment limited to honors students. Independent research and/or reading on selected topics.

The Staff (Mr. Jameson in charge)

195H. Honors Thesis. (2) I, II, III.

Pre-requisite: course 194H. Preparation of comprehensive thesis incorporating studies undertaken in course 194H.

The Staff (Mr. Jameson in charge)

BIOLICAL CHEMISTRY—See Medicine

BIOLOGY (Interdepartmental Courses)

Biology courses offered jointly by two or more departments or groups are listed below. Information concerning instructors is given under the individual departments.

Lower Division Courses

Lecture—4 hours; laboratory—6 hours. Pre-requisite: Chemistry 1B. An interdisciplinary
course designed for majors in the biological sciences. Emphasis on the unity of basic biological principles as related to cell structure and function, reproduction, genetics, growth and differentiation, evolution, ecology, and taxonomy.

I. Mr. Thornton (Botany), II. — (Bacteriology), III. Mr. Barrett (Zoology) (Offered by Bacteriology, Botany, and Zoology)

10. General Biology. (4) I, III.
Lecture—3 hours; discussion—1 hour. Not open for credit to those who have had course I. Consideration of the main features and principles of biology, with emphasis on biological processes and special reference to evolution, heredity, and the bearing of biology on human life. Designed for students not specializing in biology.

I. Mr. Spieth (Zoology), III. Mr. Ketelleppar (Botany) (Offered by Botany and Zoology)

Upper Division Course

162. General Virology. (3) I.
Lecture—3 hours. Prerequisite: course I. An integrated presentation of the nature of animal, bacterial, and plant viruses, including their structure, replication and genetics.

Mr. Bruening (Biochemistry), Mr. Shalla (Plant Pathology)

BOTANY

C. Ralph Stocking, Ph.D., Chairman of the Department
Ernest M. Gifford, Jr., Ph.D., Acting Chairman of the Department
Department Office, 143 Robbins Hall

Professors:
Floyd M. Ashton, Ph.D.
Daniel I. Axelrod, Ph.D.
Alden S. Crafts, Ph.D., LL.D. (Emeritus)
Herbert B. Currier, Ph.D.
Elizabeth G. Cutter, Ph.D., D.Sc.
Ernest M. Gifford, Jr., Ph.D.
Hendrik J. Ketelleppar, Ph.D.
C. Ralph Stocking, Ph.D.
John M. Tucker, Ph.D.
Grady L. Webster, Ph.D.
T. Elliot Weier, Ph.D. (Emeritus)

Associate Professors:
Paul A. Castelfranco, Ph.D.
Donald W. Kyhos, Ph.D.
Norma J. Lang, Ph.D.
Jack Major, Ph.D.
Kenneth Wells, Ph.D.

Assistant Professors:
Michael G. Barbour, Ph.D.
Bruce A. Bonner, Ph.D.
Richard H. Falk, Ph.D.
Robert F. Norris, Ph.D.
Thomas E. Ragland, Ph.D.
Robert M. Thornton, Ph.D.

Lecturers:
David E. Bayer, Ph.D.
Oliver A. Leonard, Ph.D.

Departmental Major Adviser.—Mr. Wells

The Major Programs

The Bachelor of Science major program should be elected by those students who plan advanced study in botany, who wish to obtain general secondary teaching credentials, or who wish training for a position requiring a detailed knowledge of plants. Students who wish a less intensive program in botany, but one that acquaints the students with plant life and its importance, should elect the Bachelor of Arts major program.

Bachelor of Science Major Program

Lower Division Courses.—Required: Bacteriology 2; Biology 1; Botany 2; Zoology 2; Chemistry 1A, 1B, 1C, 8A, 8B; Physics 2A, 2B, 2C; Mathematics 13. German, French or Russian is the recommended language. Recommended: Chemistry 5; Mathematics 16A, 16B, 16C, especially for those students whose major interests are ecological, biochemical or physiological.

Upper Division Courses.—Required: Biochemistry 101A, 101B; Botany 105, 108, 111, 116; Genetics 100A, 100B; in addition, students whose interests are morphological or taxonomic are required to take Botany 118 and 119, students whose interests are ecological are required to take Botany 114 and 117, students whose interests are biochemical or physiological are required to take Botany 114 and 5 additional upper division units in botany or related natural science courses.

Bachelor of Arts Major Program

Lower Division Courses.—Required: Biology 1; Botany 2, Chemistry 1A, 1B, 8A, 8B; Zoology 2. Recommended: Bacteriology 2; Chemistry 1C; Mathematics 13.

Upper Division Courses.—Required: Botany 105, 108, 111, 116; Genetics 100A, 100B; 10 additional units in botany or related natural science courses. Recommended: Botany 114 or 118, 119.

Honors and Honors Program (see page 133).
—Students on the honors list may elect to substitute a maximum 5 units of 194H for 5 upper division units of the regular major; however,
recommendations for high honors and highest honors at graduation are not dependent on the completion of 194H.

Teaching Major.—The requirements for the teaching major are the same as for the departmental major for degree (A.B. or B.S.).

Teaching Minor.—Botany 2; and a minimum of 23 units in botany or closely related subjects. Students must consult with subject representative.

Subject Representative: Mr. Wells

Graduate Study.—Graduate programs leading to M.S., and Ph.D. degrees are offered in cytology, plant physiology, anatomy, morphology, taxonomy, ecology, mycology, and allied areas. The resources of the department are augmented by appropriate courses in related departments.

Lower Division Courses

2. General Botany. (5) I, II, III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: I. Biology 1. Structure, physiology, and taxonomy of plants, with special emphasis on seed plants. Mr. Bonner.

II. Mr. Barbour, III. Mr. Kyhos

Prerequisite: consent of instructor.

The Staff (Mr. Stocking in charge)

Prerequisite: consent of instructor.

The Staff (Mr. Stocking in charge)

Upper Division Courses

105. Plant Anatomy. (5) I.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2. Structure and growth of meristems; development and structure of cells, tissues and tissue systems; comparative anatomy of stem, root, and leaf.

107. Weed Control. (4) III.

Lecture—2 hours; laboratory—6 hours; 2 field trips. Prerequisite: course 2; Chemistry 8B. Introduction to the physiological and chemical principles underlying control of weeds; principles of preventive, cultural, and biological weed control; identification of common weeds.

Mr. Norris

108. Systematic Botany of Flowering Plants. (5) III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2. Laboratory and field studies of the characters and relationships of the principal families and orders of flowering plants. Principles of taxonomy. Practice in identification of species by means of keys.

Mr. Tucker

111. Introduction to Plant Physiology. (5) I.

Lecture—5 hours. Prerequisite: course 2; Chemistry 8B (may be taken concurrently). The fundamental activities of plants such as absorption, transpiration, synthesis of foods, respiration, growth, and reproduction.

Mr. Bagland

114. Biology of Fungi and Algae. (5) III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2. Not open for credit to students having received credit for courses 118, 119A, or 119B. An introduction to the morphology, taxonomy, evolution, and physiology of the fungi and the algae.

Miss Lang

115. Mosses and Liverworts. (3) II.

Lecture—1 hour; laboratory—6 hours. Prerequisite: course 2. Morphology, taxonomy, and ecology of mosses and liverworts. Field trips.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2; course 105 recommended. Structure, reproduction, and phylogeny of the major groups of living and extinct vascular plants; special emphasis given to seed plants.

Mr. Gifford

117. Plant Ecology. (4) III.

Lecture—3 hours; laboratory—3 hours. Prerequisite: course 111. Study of individual plants, species, and vegetation in relation to environment and of modification of the environment by vegetation.

Mr. Barbour, Mr. Major

118. Phycology. (5) II.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2. Morphology, physiology, genetics, evolution, distribution, cultivation, and economic importance of algae; field trip.

Miss Lang

119A. Mycology. (4) I.

Lecture—2 hours; laboratory—6 hours. Prerequisite: course 2. Introduction to structure, relationships, ontogeny, and genetics of selected species of Ascomycetes, Basidiomycetes, Fungi imperfecti, and Protozoa; genetics of mating systems; mycorrhizae.

119B. Mycology. (4) II.

Lecture—2 hours; laboratory—6 hours. Prerequisite: course 119A. Introduction to structure, relationships, ontogeny, and genetics of selected species of Basidiomycetes and Fungi imperfecti, ultrastructure of fungi; genetics of mating systems; mycorrhizae.

120A. Plant Physiology. (3) I.

Lecture—3 hours. Prerequisite: course 111; Biochemistry 101A (may be taken concurrently). Cell physiology, plant water relations; and translocation.

Mr. Currier

* Not to be given, 1970–71.
120B. Plant Physiology. (3) II.
Lecture—3 hours. Prerequisite: course 111; Biochemistry 101A, 101B (may be taken concurrently). Mineral nutrition, photosynthesis, respiration, and general plant metabolism.

Mr. Ragland

120C. Plant Physiology. (3) III.
Lecture—3 hours. Prerequisite: course 111; Biochemistry 101A. Recommended: courses 120A and 120B; Biochemistry 101B. Internal and environmental regulation of plant growth and development.

Mr. Bonner

121A. Plant Physiology Laboratory. (2) I.
Laboratory—6 hours. Prerequisite: course 120A (may be taken concurrently). Laboratory procedures in plant physiology. Experiments selected to follow subject-matter sequence of course 120A.

Mr. Currier

121B. Plant Physiology Laboratory. (2) II.
Laboratory—6 hours. Prerequisite: course 120B (may be taken concurrently); Chemistry 5. Laboratory procedures in plant physiology. Experiments selected to follow subject-matter sequence of course 120B.

Mr. Ragland

121C. Plant Physiology Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 120C (may be taken concurrently). Laboratory procedures in plant physiology. Experiments selected to follow subject-matter sequence of course 120C.

Mr. Bonner

130A. General Cytology. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 2 or Zoology 2; Genetics 100B or Biochemistry 101A. An analysis of the structure and ultrastructure of cells; the relationship between structure and function at cellular and subcellular levels. Consideration of cell particulates, membranes, endoplasmic reticulum, mitochondria, plastids, the golgi zone and their relationship to the metabolic nucleus. (Same course as Zoology 130A.)

Mr. Falk, Mr. Wolfe

130B. General Cytology. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 130A. An analysis of the structure and function of cells during mitosis, meiosis, gametogenesis and fertilization at cellular and subcellular levels. (Same course as Zoology 130B.)

Mr. Falk, Mr. Wolfe

140. Paleobotany. (5) I.
Lecture—2 hours; laboratory—6 hours; two all-day field trips, one 3-day field trip. Guiding principles underlying an analysis of successive floral assemblages in Cenozoic and Cretaceous rocks. Development of modern vegetation with emphasis on centers of origin and radiation, rates of evolution, and community evolution. (Same course as Geology 140.)

Mr. Axelrod

141. Plant Geography. (3) II.
Lecture—3 hours. Prerequisite: course 108 or 116, course 117 recommended; or consent of instructor. Analysis of the distribution patterns of the vascular plant groups, and consideration of the factors which account for the present diversity of flora and vegetation.

Mr. Webster

155. Plant Microtechnique. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 116 or course 105. Introduction to practical laboratory methods in preparing plant materials for microscopic examination; special emphasis on paraffin and chromosome smear techniques; introduction to techniques of tissue culture and photomicroscopy.

Mr. Gifford

180. Biological Evaluation of Herbicides. (3) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 107 and 111 (may be taken concurrently). Principles dealing with the physical, chemical, and physiological aspects of herbicides. Laboratory, greenhouse and field studies illustrating these principles in herbicide evaluation; emphasis upon biological assays and upon the interpretation of biological data.

Mr. Bayer

194H. Special Study for Honors Students. (1-5) I, II, III.
Prerequisite: open only to majors of senior standing on honors list. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.

The Staff (Mr. Stocking in charge)

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.

The Staff (Mr. Stocking in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.

The Staff (Mr. Stocking in charge)

Graduate Courses

201A. Ecological Theory. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: a course in ecology. The course will focus on the ecologic community as a unit. The major generalizations concerning the structure and functioning of the community will be examined together with the generalizations relating both structure and function to the abiotic environment and its fluctuations. (Same course as Ecology, Geology, and Zoology 201A.)

The Staff (Mr. Salt and Mr. Major in charge)

201B. Analysis of a Selected Ecosystem. (3) II.
Lecture—2 hours; discussion—1 hour. Prerequisite: course 201A or consent of instructor. Application of basic ecological principles to the interpretation of biotic and abiotic interrelationships of a particular ecosystem. Recent
advances in theory, technique, and basic information are emphasized. Lectures will be given by specialists from several fields. May be repeated for credit. (Same course as Ecology, Geology, and Zoology 201B)
The Staff (Mr. C. L. Webster in charge)

201C. The Changing Biosphere. (3) III.
Lecture—2 hours; lab—1 assigned problem. Prerequisite: courses 201A, 201B; or consent of instructor. Course deals with changing gas balance and weather in the biosphere and effects on plants and animals, the effects of structural, chemical and physical changes on living systems, changes in species diversity, effects on human population increase, and related topics. (Same course as Ecology, Geology, and Zoology 201C)
The Staff (Mr. Myrup in charge)

210. Cell Physiology-Protoplasmatics. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Selected plant physiological topics treated on the cellular level: water relations, plasmolytic phenomena, cytoplasmic movements, transport mechanisms, vital staining, responses of cells to high and low temperatures, wound reactions, effects of poisons. Microscopic techniques are stressed.
Mr. Currier

211. Plant Cell Metabolism. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: consent of instructor. Plant cell physiology, dealing particularly with the roles of plastids, mitochondria, microsomes, and nuclei in cellular metabolism. Isolation and study of these particulates, using centrifugation, gasometric, chromatographic, and spectrometric methods. Detailed consideration of photosynthesis and respiration.
Mr. Castelfranco

212. Physiology of Herbicidal Action. (3) I.
Lecture—3 hours. Prerequisite: courses 107, 120A, 120B, 120C. A study of the fundamental processes involved in the physiological action of herbicides. Detailed consideration of the fate of herbicides in plants and soils.
Mr. Ashton

215. Light and Plant Growth. (3) II.
Lecture—3 hours. Prerequisite: courses 120A, 120B, 120C; Physics 2B. Mechanisms and phenomena involved in the control of plant growth by light. Photoperiodism, photomorphogenesis, phototropism, and certain aspects of photosynthesis.
Mr. Bonner

216. Advanced Morphology of Vascular Plants. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 116. Evolution of form, structure, and reproduction of fossil and extant types through Cycadophytes.
Mr. Gifford

217. Concept and Measurement of the Plant Community. (3) I.
Seminar-discussion—3 hours; term paper involving the application of some sampling and analytical methods. Prerequisite: course 117 and a course in statistics. Major subject areas are: 1) historical concepts of the plant community and of hierarchical groupings of communities, and 2) a review of sampling and analytical methods employed in the description or measurement of plant communities.
Mr. Barbour

218. Experimental Phycology. (3) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 118. Special problems in development, physiology, and genetics using algae as experimental organisms. Topics to be investigated will be selected according to the interests of individual students.
Miss Lang

220. Plant Morphogenesis. (3) III.
Lecture—3 hours. Prerequisite: course 105 or 116; course 155 recommended. A survey of recent advances in the study of growth and the development of form, with special reference to higher plants, and some emphasis on experimental approaches.
Miss Cutter, Mr. Gifford

220L. Plant Morphogenesis Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 220 (may be taken concurrently) and consent of instructor. Procedures, principally experimental, used to study the development of plant form.
Miss Cutter, Mr. Gifford

221. Selected Topics in Plant Physiology. (2) I, II, III.
Lecture—2 hours. Evaluation of the most recent research in plant physiology. Coverage of the entire field in a three-year period. Lectures and discussions by specialists in the areas of their research interests. May be repeated for credit. (Satisfactory / Unsatisfactory grading only.)
The Staff

231. Advanced Microtechnique. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: one of the following: course 105, 116, 130A; Zoology 107. Recommended: course 155 or Zoology 104. Autoradiography, thin-sectioning, freeze drying, micrurgy, Feulgen staining, cytospectrophotometry, and similar techniques. Laboratory work involving techniques of special interest to the student.

255. Principles of Plant Taxonomy. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 106; Genetics 103 recommended. Principles of plant taxonomy; phylogenetc vs. phenetic classification; examples of the way in which various disciplines—anatomy, embryology, biochemistry, etc.—elucidate prob-

* Not to be given, 1970-71.
lems of taxonomic relationship, mainly of genera and higher categories. Mr. Tucker

*256A. Experimental Plant Taxonomy. (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 108. Recommended: course 117; Genetics 103. The application of experimental techniques to the elucidation of taxonomic problems and evolutionary relationships in higher plants. Mr. Kyhos

*256B. Experimental Plant Taxonomy. (2) III.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 256A. A continuation of course 256A. The study of variation in natural populations in relation to taxonomy; the application of population sample analysis, cytogenetics, transplant studies, etc., to the solution of taxonomic problems and the clarification of relationships. Mr. Kyhos

257. Plant Autecology. (3) I.
Lecture—3 hours. Prerequisite: course 117, Mathematics 13. Evaluation of biotic and abiotic environmental factors in the distribution of plant species. Mr. Major, Mr. Barbour

*258. Plant Synecology. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 108, 117; Soil Science 120A recommended. Theories and techniques involved in the study of structure, composition, boundaries, ecology, and classification of vegetation, with particular emphasis on California plant communities. Mr. Major

290. Seminar. (1) I, II, III.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

291. Seminar in Plant Morphology. (1) I, II, III.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

293. Seminar in Weed Science. (1) II.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

294. Seminar in Cytology and Cytochemistry. (1) III.
Seminar—1 hour. Survey of current research developments in the fields of cytology and biochemistry with special reference to plants. Discussion of the fine structure of cells in relation to biochemical function. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

The Staff (Chairman in charge)

The Staff (Chairman in charge)

CANTONESE—See Oriental Languages

CHEMISTRY

Raymond M. Keefer, Ph.D., Chairman of the Department
Department Office, 108 Chemistry Building

Professors:
*Thomas L. Allen, Ph.D.
Lawrence J. Andrews, Ph.D.
Albert B. Bottini, Ph.D.
Robert K. Brinton, Ph.D.
Raymond M. Keefer, Ph.D.
Richard E. Kepner, Ph.D.
Edgar P. Patzer, Ph.D.
Harold G. Reiber, Ph.D. (Emeritus)
Leo H. Sommer, Ph.D.
David H. Volman, Ph.D.
*George S. Zweifel, Sc.D.

Associate Professors:
Edwin C. Friedrich, Ph.D.
Rodney E. Harrington, Ph.D.

Hakon Hope, Cand. real
Gary E. Maciel, Ph.D.
W. Kenneth Musker, Ph.D.
Charles P. Nash, Ph.D.
James H. Swinehart, Ph.D.

Assistant Professors:
William H. Fink, Ph.D.
Kenneth G. Hancock, Ph.D.
Joel E. Keizer, Ph.D.
R. Bryan Miller, Ph.D.
Peter A. Rock, Ph.D.
John W. Root, Ph.D.
Dino S. Tinti, Ph.D.
James S. Vincent, Ph.D.

Lecturer:
Joyce T. Doi, Ph.D.

Major Subject Advisers.—Mr. Hancock, Mr.

* Not to be given, 1970–71.
-- Absent on leave, winter quarter 1971.
Harrington, Mr. Keppner, Mr. Maciel, Mr. Painter, Mr. Rock, Mr. Vincent.

The Major Programs

Students who are interested in chemistry as a profession should elect the program leading to the Bachelor of Science degree. Certification of the degree by the American Chemical Society requires that in addition the student acquire a reading knowledge of German or Russian. Students desiring a less intensive program in chemistry should elect the program leading to the Bachelor of Arts degree. Students who plan to pursue graduate work in Chemistry or related fields are strongly advised to obtain a reading knowledge of German or Russian. High school students should note that the preparation for either degree is simplified if their high school programs include chemistry and four years of mathematics.

Candidates for the bachelors' degree in chemistry will receive upper division credit for those lower division chemistry courses accepted in lieu of upper division courses required for the major.

Bachelor of Science Major Program

Lower Division Courses.—Required: Chemistry 1A, 1B, 1C, 5 or 1A, 7A, 7B; Physics 4A, 4B, 4C, 4D, 4E; Mathematics 11, 21A, 21B, 21C, 22B, and either 22A or 22C.

Upper Division Courses.—Required: Chemistry 110A, 110B, 110C, 111A, 111B, 112A, 112B, 112C, 124, and 8 units of any additional courses in chemistry (one of which must include laboratory work) except Chemistry 109A or 109B.

Bachelor of Arts Major Program

Lower Division Courses.—Required: Chemistry 1A, 1B, 1C, 5 or 1A, 7A, 7B; Physics 2A, 2B, 2C, 3A, 3B, 3C; Mathematics 11, 21A, 21B, 21C, or 21D, 16A, 16B, 16C.

Upper Division Courses.—Required: 36 units in chemistry, biochemistry, or physics, including Chemistry 110A, 110B, 110C, 112A, 112B, and 112C or 112E.

Honors and Honors Program (see page 133).

The honors program comprises 6 units of course 194H.

Graduate Study.—The Department of Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees in chemistry. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Chemistry.

Teaching Major.—The teaching major is satisfied by either the A.B. or B.S. major in chemistry.

Teaching Minor.—Chemistry 1A, 1B, 1C, 5, 8A, 8B, 9, 109A, 109B. With the approval of the representative some substitution may be permitted.

Subject Representative: Mr. Nash

Lower Division Courses

1A. General Chemistry. (5 I, II.

Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: high school chemistry; or high school physics and three years of high school mathematics (with an average grade of B or higher); or second-quarter standing. Fundamental principles of chemistry. Stoichiometry, properties and theory of gases, first law of thermodynamics, atomic and molecular structure, colligative properties of solutions.

The Staff
(I. Mr. Keefr and Mr. Vincent in charge; II. ——— in charge)

1B. General Chemistry. (5 I, III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 1A. Continuation of course 1A. Chemical equilibria, oxidation-reduction processes, electrochemistry, introduction to qualitative analysis.

The Staff (II. Mr. Brinton and Mr. Volman in charge; III. ——— in charge)

1C. General Chemistry. (5 I, III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 1B. Continuation of course 1B. Chemical kinetics, structures and reactions of complex ions and molecules, application of principles of chemistry to problems of qualitative analysis. The Staff (I. Mr. Maciel in charge, III. Mr. Brinton in charge)

5. Quantitative Analysis. (4) I, III.

Lecture—2 hours; laboratory—6 hours. Prerequisite: course 1C with grade of C or higher. Not open to students who have credit for Chemistry 7B. An introduction to the principles and methods of quantitative chemical analysis, with emphasis on the application of equilibrium theory to analytical problems.

*7A. General Chemistry. (5) II.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 1A, Mathematics 21A or 16A (may be taken concurrently). Admission based on performance in course 1A. The fundamental principles of chemistry with emphasis in the laboratory on quantitative work. Courses 1A—7A—7B are equivalent to the sequence Chemistry 1A—1B—1C—5 as a prerequisite for further courses in chemistry

*7B. General Chemistry. (5) III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 7A. Continuation of course 7A.

8A. Organic Chemistry, Brief Course. (3) I, II.

Lecture—3 hours. Prerequisite: course 1B or 7A with a grade of C or higher. With course 8B an introduction to the nomenclature, structure,

* Not to be given, 1970–71.
chemistry, and reaction mechanisms of organic compounds. Intended for students majoring in areas other than chemistry.

I. Mr. Sommer, II. ———

8B. Organic Chemistry, Brief Course. (3) II, III.

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 9A. Continuation of course 8A. The laboratory is concerned primarily with the study of the properties and chemistry of the common classes of organic compounds.

II. Mr. Sommer, III. Mr. Hancock

*9. Methods of Organic Chemistry. (3) III.

Lecture—1 hour; laboratory—5 hours. Prerequisite: course 8B. Emphasis is placed on a study of the basic experimental techniques of organic synthesis.

Upper Division Courses

109A. Physical Chemistry, Brief Course. (2) I.

Lecture—2 hours. Prerequisite: course 5 or 7B or consent of instructor; Mathematics 21C and 11 or equivalent, or 16C; one year of college physics. Special topics in physical chemistry, with emphasis on spectroscopy, molecular structure, and principles of chemical thermodynamics. Intended for students majoring in areas other than chemistry.

Mr. Harrington

109B. Physical Chemistry, Brief Course. (3) II.

Lecture—3 hours. Prerequisite: course 109A or 110A. Continuation of course 109A, with emphasis on equilibrium, electrochemistry, and chemical kinetics.

Mr. Harrington

110A. Physical Chemistry. (3) I, II.

Lecture—3 hours. Prerequisite: course 5 or 7B; Mathematics 21C and 11 or equivalent, or 16C; one year of college physics. A development of the principles of classical thermodynamics; emphasis on criteria for the existence and maintenance of equilibrium.

I. Mr. Erinton, III. Mr. Volman

110B. Physical Chemistry. (3) I, II.

Lecture—3 hours. Prerequisite: course 110A. Continuation of course 110A. Atomic and molecular structure and spectra; the relation between molecular and thermodynamic properties.

I. ———; II. Mr. Tinti, Mr. Fink

110C. Physical Chemistry. (3) II, III.

Lecture—3 hours. Prerequisite: course 110B. Continuation of course 110B with emphasis on solution thermodynamics, kinetic theory, and chemical kinetics.

II. ———; III. Mr. Harrington

111A. Physical Chemistry: Methods and Applications. (4) I, II.

Lecture—2 hours; laboratory—6 hours. Prerequisite: course 109B or 110C (may be taken concurrently). Lecture topics include statistical analysis and data processing, basic electronics, diffraction methods, and optical systems. Laboratory exercises will involve computer practice, thermodynamic measurements on nonelectrolyte systems, and structural properties of molecules.

I. Mr. Nash, II. ———

111B. Physical Chemistry: Methods and Applications. (4) II, III.

Lecture—1 hour; laboratory—9 hours. Prerequisite: course 111A or consent of instructor. Lecture topics will include distribution equilibria and electroanalytical methods. Laboratory exercises will involve kinetics and mechanism, electrochemistry, distribution equilibria, chromatography, and elective projects.

I. Mr. Hope, II. ———

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 112A or 7B or only 7B with a grade of C or higher. Introduction to the basic concepts of organic chemistry; the chemistry of hydrocarbons. Designed primarily for majors in chemistry.

I. Mr. Bottini, II. ———, III. Mr. Miller

112B. Organic Chemistry. (5) I, II, III.

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 112A or 8B and 9. Continuation of course 112A with emphasis on aromatic and aliphatic substitution reactions, elimination reactions, and the chemistry of carbonyl compounds. Introduction to the application of spectroscopic methods to organic chemistry.

I. Mr. Zweifel, II. Mr. Bottini, III. ———

Lecture—3 hours; laboratory—6 hours. Prerequisite: course 112B. Continuation of course 112B with emphasis on enolate condensations and the chemistry of amines and phenols; selected biologically important compounds.

I. Mr. Kepner, II. Mr. Miller, III. Mr. Bottini

112D. Organic Chemistry. (3) I, II, III.

Lecture—3 hours. Prerequisite: course 112A or 8B and 9; and consent of instructor. Equivalent to the lecture part of 112B. Intended primarily for students in fields other than chemistry.

I. Mr. Zweifel, II. Mr. Bottini, III. ———

112E. Organic Chemistry. (3) I, II, III.

Lecture—3 hours. Prerequisite: course 112B or 112D; and consent of instructor. Equivalent to the lecture part of 112C. Intended primarily for students in fields other than chemistry.

I. Mr. Kepner, II. Mr. Miller, III. Mr. Bottini

121. Introduction to Molecular Structure and Spectra. (4) III.

Lecture—4 hours. Prerequisite: course 110C. Modern theoretical and experimental methods
used to study problems of molecular structure and binding; emphasis on spectroscopic techniques.
Mr. Vincent

124. Advanced Inorganic Chemistry. (4) I.
Lecture—4 hours. Prerequisite: course 109B or 110C; 112C or 112E. Modern interpretations of bonding, structure, and reactivity of inorganic compounds; emphasis on the chemistry of the first- and second-row elements and transition metals.
Mr. Swinehart

124L. Advanced Inorganic Chemistry Laboratory. (2) II.
Laboratory—6 hours. Prerequisite: course 124. Synthesis and characterization of inorganic compounds.

126. Nuclear Chemistry. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 110B (may be taken concurrently with consent of instructor). Introduction to experimental and theoretical nuclear chemistry including nuclear properties, nuclear spectroscopy, radiation effects, radioactive decay, and nuclear reactions. Both the lectures and the laboratory stress applications of nuclear phenomena in chemistry.
Mr. Root

130. Qualitative Organic Analysis. (4) III.
Lecture—one hour; laboratory—9 hours. Prerequisite: course 5 or 7B; 112C or 112E. The application of physical and chemical techniques to the qualitative identification of organic compounds.
Mr. Friedrich

131. Advanced Organic Chemistry. (4) II.
Lecture—4 hours. Prerequisite: course 109B or 110B; 112C or 112E. Application of current knowledge of reaction mechanisms and molecular structure to problems of organic synthesis.
Mr. Friedrich

150A. Chemistry of Natural Products. (3) I.
Lecture—3 hours. Prerequisite: courses 109B and 112C or 112E, or consent of instructor. Chemistry of carbohydrates and lipids: structure proof, stereochemistry, conformation, substitutions, and rearrangements of model systems.
Mr. Painter

150B. Chemistry of Natural Products. (3) II.
Lecture—3 hours. Prerequisite: courses 109B and 112C or 112E, or consent of instructor. Structure, reactions, and physical properties of proteins, amino acids, nucleic acids, and related nitrogen compounds.
Mr. Painter

194H. Undergraduate Research. (2–5) I, II, III.
Prerequisite: course 110C (may be taken concurrently) and honors status. Original research and a written report of the investigation. Unit value to be determined by instructor supervising the research.
The Staff (Mr. Keefer in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics, and physics. The Staff (Mr. Keefer in charge)

Graduate Courses

204. Chemical Kinetics. (3) III.
Lecture—3 hours. Basic theories describing rate processes, with special emphasis on the interpretation of activation parameters. An intensive study of the relationship between rate law and mechanism.
Mr. Keefer

205. Quantum Chemistry I. (3) II.
Lecture—3 hours. Introduction to quantum chemistry, with emphasis on molecular electronic structure.
Mr. Maciel

206. Quantum Chemistry II. (3) III.
Lecture—3 hours. Prerequisite: course 205. A quantum mechanical description of the fundamental nature of the interaction between electromagnetic radiation and matter, emphasizing molecular spectroscopy; consideration of vibrational, rotational, electronic, and magnetic aspects. Offered in even-numbered years.

207. Quantum Chemistry III. (3) III.
Lecture—3 hours. Prerequisite: course 205. An advanced course in the quantum theory of molecular electronic structure. Offered in odd-numbered years.
Mr. Pink

214. Chemical Thermodynamics. (4) I.
Lecture—4 hours. Development of thermodynamic relations; applications to chemical systems.
Mr. Volman

215. Advanced Physical Chemistry—Statistical Methods. (3) III.
Lecture—3 hours. Prerequisite: course 214. Probability and statistical methods; introduction to partition functions and statistical thermodynamics; heat capacities; chemical equilibrium; statistical theory of reaction rates; liquids and solutions; matter in fields.
Mr. Nash

216. Statistical Thermodynamics. (3) I.
Lecture—3 hours. Prerequisite: course 215. Development of the laws of molecular assemblies; ensemble theory; fluctuations; imperfect gases; quantum effects; cooperative phenomena. Offered in even-numbered years.

220. Organic Chemistry. (3) II.
Lecture—3 hours. Selected topics of current interest concerning the structures and syntheses of naturally occurring organic compounds, including both carbocyclic and heterocyclic systems. Offered in even-numbered years.
Mr. Miller
221A–H. Organic Chemistry. (3) II.
Lecture—3 hours. Selected topics of current interest in organic chemistry. Topics will vary each time the course is offered, and in general will emphasize the research interests of the staff member giving the course. The Staff

223. Organometallic Compounds. (3) III.
Lecture—3 hours. Selected topics of current interest concerning the preparation of organometallic compounds and their utilization in organic synthesis. Offered in odd-numbered years. Mr. Swinehart

224. Inorganic Chemistry. (3) III.
Lecture—3 hours. Prerequisite: course 124. A development of the modern theories related to the structural, optical, and magnetic properties of inorganic compounds and complexes. Offered in odd-numbered years. Mr. Musker

225. Inorganic Chemistry. (3) III.
Lecture—3 hours. Prerequisite: course 124. Application of kinetic and thermodynamic principles to the interpretation of inorganic systems. Offered in even-numbered years. Mr. Musker

226. Advanced Nuclear Chemistry. (3) III.
Lecture—3 hours. Prerequisite: courses 126 and 205 or consent of instructor. Detailed discussion of nuclear models, decay processes, nuclear reactions, and interaction of radiations with matter with emphasis on chemical applications. Offered in odd-numbered years. Mr. Root

233. Physical Organic Chemistry. (3) I.
Lecture—3 hours. Modern concepts of substitution, elimination, and addition reactions, rearrangements, and stereochemistry. Mr. Andrews

290. Seminar. (1) I, II, III.
Seminar—1 hour. Prerequisite: consent of instructor. (Satisfactory/Unsatisfactory grading only.) Mr. Miller, Mr. Vincent

The Staff (Chairman in charge)

The laboratory is open to qualified graduate students who wish to pursue original investigations. Students wishing to enroll should communicate with the department well in advance of the quarter in which the work is to be undertaken. The Staff (Chairman in charge)

CHINESE—See Oriental Languages

CLASSICS
Department Office, 615 Sproul Hall

Associate Professors:
Richard E. Grimm, Ph.D.
Wesley E. Thompson, Ph.D.

Assistant Professor:
Frederick H. van Doorninck, Jr., Ph.D.
The Major Program—Greek
Lower Division Courses.—Required: Greek 1, 2, and 3 or their equivalents. Recommended: Latin 1, 2, and 3.
Upper Division Courses.—Required: 36 units of upper division courses of which two may be chosen from department-approved courses in other fields. Students majoring in Greek must maintain at least a C average in upper division courses.
The Major Program—Latin
Lower Division Courses.—Required: Latin 1, 2, 3, 4, and 5 or their equivalents.
Upper Division Courses.—Required: at least 36 units of upper division courses, including 121A–121B–121C.
Honors and Honors Program (see page 133).
The honors program comprises two quarters

* Not to be given, 1970–71.
2 Absent on leave, fall quarter 1970.

of study under course 194H, which will include a research paper and a comprehensive examination.

Graduate Study.—M.A. degree.
Teaching Major.—Requirements for the teaching major are the same as for the departmental major.
Teaching Minor.—Requirements for the teaching minor in Latin: Latin 1, 2, 3, 4, 5 or their equivalents; at least 18 units of upper division work, including Latin 121A–121B–121C. Recommended: History 111C.
Subject Representative: Mr. Grimm

Classics

Lower Division Courses

*10. Greek and Roman Mythology. (3) I.
Lecture—3 hours. Origin and development of myths and legends, their place in the religion, literature, and art of Greece and Rome.

*17A. Greek Archaeology. (3) III.
Lecture—3 hours. Greece, Crete, and the Aegean world during the Bronze Age with em-
phasis on the Minoan and Mycenaean civilizations. Consideration of certain aspects of Homeric civilization in light of the archaeological remains.

Mr. van Doorninck

17B. Greek Archaeology. (3) II.
Lecture—3 hours. The archaeological monuments of Archaic and Classical Greece. Selections from Greek literature are related to the archaeological remains.

Mr. van Doorninck

*17C. Roman Archaeology. (3) III.
Lecture—3 hours. The development of Rome and its Empire as illustrated by the monuments.

Mr. van Doorninck

Upper Division Courses

139A. Greek Literature in Translation. (4) I.
Lecture—3 hours. The Homeric epic and fifth-century drama. Reading of the Iliad, Odyssey, and selected plays of Aeschylus, Sophocles, and Euripides. Lectures on the early Greek epic and classical Athenian drama.

Mr. Grimm

*139B. Greek Literature in Translation. (3) II.
Lecture—3 hours. The development of historical writing in Greece: Herodotus, Thucydides, and selections from the minor historians. Offered in even-numbered years.

Mr. Thompson

*140. Latin Literature in Translation. (4) III.
Lecture—3 hours. Prerequisite: English I. Readings in Lucretius, Roman lyric poets, Vergil, Livy, Seneca, Petronius, Tacitus, and Juvenal. Lectures on Roman literary history from Ennius to the late Empire. Offered in odd-numbered years.

Mr. Grimm

*141. Greek and Roman Comedy. (4) II.
Lecture—3 hours. Readings in Aristophanes, Menander, Plautus, and Terence; lectures on the development of ancient comedy. Offered in odd-numbered years.

Mr. Grimm

*150. Athenian Political and Social Institutions. (3) II.
Lecture—2 hours; discussion—1 hour. Politics and government, marriage and kinship, religious societies, and the demographic and economic basis of Athenian democracy. Offered in odd-numbered years.

Mr. Thompson

*174. Ancient Greek Sanctuaries. (4) II.
Lecture-discussion—4 hours. Prerequisite: course 17B or consent of instructor. The history, cults, and monuments of Olympia, Delphi, and other sanctuaries. Student reports on major monuments. Offered in even-numbered years.

Mr. van Doorninck

175. Topography and Monuments of Ancient Athens. (4) III.
Lecture-discussion—4 hours. Prerequisite: course 17A-17B or consent of instructor. The history of Athens as an urban center from the Bronze Age through the late Roman period. Student reports on major monuments with emphasis placed on restoration, chronology, and on the relating of documentary to excavational evidence. Offered in odd-numbered years.

Mr. van Doorninck

Greek

Departmental Major Adviser.—Mr. Thompson.

Lower Division Courses

1. Elementary Greek. (5) I.
Lecture—4 hours.

2. Elementary Greek. (5) II.
Lecture—4 hours. Prerequisite: course 1. A continuation of course 1.

3. Elementary Greek. (5) III.
Lecture—4 hours. Prerequisite: course 2. A continuation of course 2.

Mr. van Doorninck

Upper Division Courses

*100. Attic Orators. (4) I.
Lecture—3 hours. Prerequisite: course 3.

Mr. Thompson

*101. Plato. (4) I.
Lecture—3 hours. Prerequisite: course 3.

*102. Euripides. (4) II.
Lecture—3 hours. Prerequisite: course 101.

103. Homer. (4) II.
Lecture—3 hours. Prerequisite: course 102.

Mr. van Doorninck

104. Menander. (4) I.
Lecture—3 hours; one contact hour in form of term paper to be graded by instructor. Prerequisite: course 3.

Mr. Thompson

111. Sophocles. (4) III.
Lecture—3 hours. Prerequisite: course 103. Offered in odd-numbered years.

Mr. Grimm

*112. Aristophanes. (4) III.
Lecture—3 hours. Prerequisite: course 103. Offered in even-numbered years.

Mr. Grimm

*113. Thucydides. (4) I.
Lecture—3 hours. Prerequisite: course 103. Offered in even-numbered years.

Mr. Thompson

*114. Lyric Poetry. (4) I.
Lecture—3 hours. Prerequisite: course 103. Offered in even-numbered years.

Mr. Grimm

*115. Aeschylus. (4) II.
Lecture—3 hours. Prerequisite: course 103. Offered in odd-numbered years.

Mr. Grimm

* Not to be given, 1970-71.
116. Herodotus. (4) II.
Lecture—3 hours. Prerequisite: course 103. Offered in odd-numbered years.

Mr. van Doornink

120A–120B. Greek Composition. (2–2) II–III.
Lecture—2 hours. Prerequisite: course 103.

Mr. Thompson

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Mr. Thompson in charge)

Latin

Departmental Major Adviser.—Mr. Grimm.

Lower Division Courses

1. Elementary Latin. (4) I.
Lecture—4 hours. The Staff

2. Elementary Latin. (4) II.
Lecture—4 hours. Prerequisite: course 1. A continuation of course 1.

3. Elementary Latin. (4) III.
Lecture—4 hours. Prerequisite: course 2. A continuation of course 2.

4. Intermediate Latin. (3) I.
Lecture—3 hours. Prerequisite: course 3 or equivalent.

5. Intermediate Latin. (3) II.
Lecture—3 hours. Prerequisite: course 4 or equivalent. Continuation of course 4.

10. The Structure of Latin. (4) III.
Lecture—4 hours. Prerequisite: not open to students who have received credit for any other course in Latin. A survey of the Latin language, with special emphasis on the morphology and syntactical relationships of classical Latin.

Mr. Thompson

Upper Division Courses

101. Livy. (4) I.
Lecture—3 hours. Prerequisite: course 5. Offered in odd-numbered years.

Mr. Thompson

102A. Plautus. (4) I.
Lecture—3 hours. Prerequisite: course 5. Offered in even-numbered years.

Mr. Thompson

102B. Terence. (4) II.
Lecture—3 hours. Prerequisite: course 5. Offered in even-numbered years.

Mr. Thompson

103. Vergil: Aeneid. (4) III.
Lecture—3 hours. Prerequisite: course 5. Offered in even-numbered years.

* Not to be given, 1970–71.

104. Sallust. (4) I.
Lecture—3 hours. Prerequisite: course 5. Offered in even-numbered years.

Mr. Thompson

105. Catullus. (4) II.
Lecture—3 hours. Prerequisite: course 5. Offered in even-numbered years.

Mr. Thompson

106. Horace: Odes and Epodes. (4) I.
Lecture—3 hours. Prerequisite: course 5. Offered in odd-numbered years.

Mr. Grimm

108. Horace: Satires and Epistles. (4) II.
Lecture—3 hours. Prerequisite: course 5. Offered in odd-numbered years.

Mr. Grimm

109. Roman Elegy. (4) III.
Lecture—3 hours. Prerequisite: course 5. Offered in odd-numbered years.

Mr. Grimm

Lecture—3 hours. Prerequisite: course 5. Selections from Tacitus, Pliny, Petronius, Juvenal, Martial, and other writers of the Silver Age. Offered in odd-numbered years.

Mr. Thompson

114. Cicero: Philosophical Works. (4) I.
Lecture—3 hours. Prerequisite: course 5. Offered in odd-numbered years.

115. Lucretius. (4) II.
Lecture—3 hours. Prerequisite: course 5. Offered in even-numbered years.

116. Vergil: Eclogues and Georgics. (4) III.
Lecture—3 hours. Prerequisite: course 5. Offered in even-numbered years.

121A–121B–121C. Latin Composition. (2) I, II, III.
Lecture—2 hours. Prerequisite: course 5. Survey of classical Latin syntax; extensive practice in prose composition. Offered in odd-numbered years.

199. Special Study for Advanced Undergraduates.
(2–5) I, II, III.
The Staff (Mr. Grimm in charge)

Graduate Courses

201. Introduction to Classical Philology. (4) I.
Seminar—3 hours. A survey of major contemporary areas of classical scholarship with special attention devoted to current problems in literary and textual criticism.

Mr. Thompson

202. Lucretius. (4) II.
Seminar—3 hours. Selected topics, with emphasis on the relationship between Lucretius and earlier Epicureans.

203. Vergil. (4) III.
Seminar—3 hours. Reading of selected books of the Bucolics, Georgics, and Aeneid. Emphasis will be placed on the study of Vergilian poetic language.

Mr. Grimm
Sanskrit

Upper Division Courses

"191. Elementary Sanskrit. (4) I.
Discussion—3 hours. Introduction to the study of the Sanskrit language; analysis of its structure and history. Offered in even-numbered years.

CLINICAL PATHOLOGY

Jiro J. Kaneko, D.V.M., Ph.D., Chairman of the Department
Department Office, 1165 Haring Hall

Professors:
Donald E. Jasper, D.V.M., Ph.D.
Jiro J. Kaneko, D.V.M., Ph.D.
Oscar W. Schalm, D.V.M., Ph.D.

Assistant Professor:
Nemi C. Jain, M.V. Sc., Ph.D.

Lecturers:
Edward J. Carroll, Ph.D.
Jerry P. Lewis, M.D. (Clinical Pathology and Professor of Internal Medicine)

Upper Division Courses

101. Comparative Hematology, (3) III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: Physiology 110B (Animal Science), Chemistry 5, introductory biochemistry or consent of instructors. Principles, methods and procedures of clinical hematology; comparative blood cellular morphology and function. Offered in even-numbered years.

Messrs. Schalm, Jain, Kaneko

199. Special Study for Undergraduates, (1-4) I, II, III.
The Staff (Mr. Kaneko in charge)

Graduate Courses

201. Clinical Hematology, (3) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: third-year standing in the School of Veterinary Medicine or consent of instructor. Hematological techniques and interpretation as applied to the study of disease in animals.
Mr. Schalm, Mr. Jain

202. Clinical Biochemistry, (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor.

Biochemical methods in the diagnosis of disease. Special emphasis on electrolyte balance, liver function, kidney function, urinalysis, osteological diseases, thyrotoxicosis, thyroid function, and disorders of carbohydrate, protein, and lipid metabolism.
Mr. Kaneko

203. Biochemistry of Metabolic Diseases, (3) III.
Lecture—3 hours. Prerequisite: biochemistry and physiology or consent of instructor. The biochemistry of inborn and acquired errors of metabolism in animals and man. Offered in even-numbered years. Mr. Kaneko

204. Morphological Hematology, (3) III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: consent of instructor. Morphological and interpretive clinical hematology for graduate students. Offered in odd-numbered years.
Mr. Schalm

205. Physiology and Pathology of Leukocytes, (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 201 or 204, Biochemistry 101A-101B or 101A-101B or consent of instructor. Metabolism, ultrastructure, kinetics, homeostasis, cytochemistry, and function of different leukocytes; physiological, functional, histochemical, and morphological changes in leukocytes in diseases; their role in inflammatory and immunologic processes; cytochemical reactions, spectroscopy, microscopy, electron microscopy. Offered in even-numbered years.
Mr. Jain

206. Immunohematology, (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 201, Veterinary Microbiology 111 or 121, or consent of instructor. Immunologic aspects of hematology; blood cell antigens and antibodies; autoimmune hemolytic diseases; reactions to blood transfusion; transplantation mechanisms. Offered in odd-numbered years.
Messrs. Jain, Carroll, Lewis, Shifrin

* Not to be given, 1970-71.
261. The Bovine Mammary Glands in Health and Disease. (2) II.
Lecture—2 hours; two 2-hour laboratory sessions. Prerequisite: consent of instructor. Ontogeny, embryology, anatomy and physiology of the mammary glands; relationship of mastitis and milk quality; infectious causes and the influence of environment, milking machines and management on mastitis; pathogenesis of mastitis; cellular and humoral defense mechanisms; mastitis diagnosis and control.
Mr. Jasper, Mr. Schalm, Mr. Carroll

CLINICAL SCIENCES
Edward A. Rhode, Jr., D.V.M., Chairman of the Department
Department Office, 1315 Haring Hall

Professors:
Robert M. Cello, D.V.M.
John F. Christensen, D.V.M., Ph.D.
(Emeritus)
Jack A. Howarth, D.V.M., Ph.D.
John P. Hughes, D.V.M.
John W. Kendrick, D.V.M., Ph.D.
Robert L. Leighton, V.M.D.
Blaine McGowan, Jr., D.V.M.
William R. Fritchard, D.V.M., Ph.D., J.D.
Edward A. Rhode, Jr., D.V.M.
John D. Wheat, D.V.M.

Associate Professors:
Murray E. Fowler, D.V.M.
Jerry R. Gillespie, D.V.M., Ph.D. (Clinical Sciences and Human Physiology)
Charles A. Hjerpe, D.V.M.
Terrell A. Holliday, D.V.M., Ph.D.
George H. Stabenfeldt, D.V.M., Ph.D.
Bud C. Tennant, D.V.M.
Gordon H. Theilen, D.V.M.

Assistant Professors:
Alexander A. Ardans, D.V.M.
Maarten Drost, D.V.M.
Gary O. Ewing, D.V.M.
Humphrey D. Knight, D.V.M.
Gerald V. Ling, D.V.M.
Dennis M. Meagher, D.V.M., Ph.D.
Timothy R. O’Brien, D.V.M., Ph.D.
Ronald D. Schechter, V.M.D.
Peter F. Suter, D.V.M., Ph.D.

Associate Professor:
Ira M. Gourley, D.V.M., Ph.D. (Acting)

290. Seminar in Clinical Pathology. (1) I, II, III.
Seminar—1 hour.
The Staff (Mr. Kaneko in charge)

295A—295B—295C. Clinical Pathology Laboratory.
(1—1—1) I—II—III.
Discussion—7 hours; laboratory—16 hours total. Prerequisite: fourth-year standing in School of Veterinary Medicine. Application of laboratory methods to the diagnosis of animal disease. (Satisfactory/Unsatisfactory grading only.)
The Staff

298. Directed Group Study. (1—3) I, II, III.
The Staff

299. Research in Clinical Pathology. (1—12) I, II, III.
The Staff

Assistant Professors:
Anthony A. Stannard, D.V.M. (Acting)
Donald M. Turner, M.V.Sc. (Visiting)

Lecturers:
John C. Bartley, D.V.M., Ph.D.
Alfred G. Edward, D.V.M.
Laurence R. Enos, Pharm.D.
Charles E. Grayson, M.D. (Radiology)
Andrew G. Hendricks, Ph.D.
Peggy L. Horn, D.V.M.
Thomas G. Kawakami, Ph.D.
Sigmund T. Rich, D.V.M.
Alida P. Wind, M.V.D.
Floyd W. Wilcox, M.S. (Radiology)

Lower Division Course
*10. Introduction to Biomedical Terminology. (2) III.
Lecture—1 hour; discussion—1 hour. An introduction to the basic terminology of animal biology and medicine, with practice in term analysis.

Upper Division Courses
102. Recognition and Identification of Poisonous Plants. (1) III.
Lecture-discussion—1 hour. Prerequisite: sophomore standing in School of Veterinary Medicine or consent of instructor. General introduction to plant nomenclature and principles of taxonomy. Poisonous plant species will be discussed systematically according to families. The use of keys and other devices will be used to teach recognition of these species. Mr. Fowler

103. Introductory Medicine. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Pathology 122B and Physiological Sciences 140B. Lectures on the principles of clinical diagnosis of animal diseases, with spe-

* Not to be given, 1970–71.
special emphasis on history taking and identification and interpretation of symptoms. The laboratory will provide practice in physical examination of normal and abnormal animals.

Mr. Ling

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
 The Staff (Mr. Rhode in charge)

Graduate Courses

202. Laboratory Animal Preventive Medicine. (2) I.
 Lecture—2 hours; discussion—optional. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Lectures and discussion of the principles of animal facility design, husbandry, and legal aspects of laboratory animal care.
 Mr. Edward, Mr. Rich, Mr. Bustad

204A. Medicine (3) I.
 Lecture—3 hours. Prerequisite: course 103. A study of the medical diseases of domestic animals. The Staff (Mr. Cello in charge)

204B. Medicine (4) II.
 Lecture—4 hours. Prerequisite: course 204A. A study of the medical diseases of domestic animals. The Staff (Mr. Howard in charge)

204C. Medicine (3) III.
 Lecture—3 hours. Prerequisite: course 204B. A study of the medical diseases of domestic animals. The Staff (Mr. Tennant in charge)

204D. Medicine (5) I.
 Lecture—5 hours. Prerequisite: course 204C. A study of the medical diseases of domestic animals. The Staff (Mr. Stannard in charge)

204E. Medicine (3) II.
 Lecture—3 hours. Prerequisite: course 204D. A study of the medical diseases of domestic animals. The Staff (Mr. Holliday in charge)

204F. Medicine (3) III.
 Lecture—3 hours. Prerequisite: course 204E. A study of the medical diseases of domestic animals. The Staff (Mr. Fowler in charge)

205. Advanced Veterinary Clinical Neurology. (1) III.
 Laboratory—2 hours. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. Extension of neurology portions of courses 204 and 250. Some special techniques of neurological examination, electroencephalography, electromyography, and neuroradiography. Discussions emphasizing the anatomical, physiological, and pathological basis of the techniques and interpretation of the results.
 Mr. Holliday

206. Clinical Oncology. (3) II.
 Lecture—2 hours; laboratory—2 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. A study of neoplastic diseases of animals.
 Mr. Theilen, Mr. Ling

207. Ecological Factors of Animal Disease. (2) III.
 Lecture—1 hour; discussion—1 hour. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Relationship of animal environment to control and prevention of disease. Application of nutrition, genetics, husbandry, and management to disease control.
 Mr. McGowan

208. Advanced Small Animal Surgery. (2) II, III.
 Lecture—1 hour; laboratory—3 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. A comprehensive review of the surgical diseases encountered with particular attention to those of the cat. Illustrated by slides, demonstrations, and current cases from the Veterinary Medical Teaching Hospital.
 Mr. Leighton

209. Reproduction in the Equine. (1) II.
 Lecture—1 hour. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. A discussion of special problems of equine reproduction with emphasis on methods of diagnosis and the interpretation of clinical and laboratory findings.
 Mr. Hughes

210A. Medical Rounds. (1) I.
 Laboratory—2 hours. Prerequisite: course 103. Discussion of selected cases from the clinic. The Staff (Mr. Holliday in charge)

210B. Medical Rounds. (1) II.
 Laboratory—2 hours. Prerequisite: course 204A. Discussion of selected cases from the clinic. The Staff (Mr. Holliday in charge)

210C. Medical Rounds. (1) III.
 Laboratory—2 hours. Prerequisite: course 204B. Discussion of selected cases from the clinic. The Staff (Mr. Holliday in charge)

211A. Medical Rounds in Laboratory Animal Medicine. (1) I.
 Laboratory—2 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Cases from the campus Experimental Animal Resource Facility as well as the Primate Center and Radiobiology Laboratory will be selected for discussion of history, interpretation of symptoms, treatment and disposition.
 The Staff (Mr. Edward in charge)

211B. Medical Rounds in Laboratory Animal Medicine. (1) II.
 Laboratory—2 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Cases from the campus Experimental Animal Resource Facility as well
as the Primate Center and Radiobiology Laboratory will be selected for discussion of history, interpretation of symptoms, treatment and disposition. The Staff (Mr. Edward in charge)

211C. Medical Rounds in Laboratory Animal Medicine. (1) III.
Laboratory—2 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Cases from the campus Experimental Animal Resource Facility as well as the Primate Center and Radiobiology Laboratory will be selected for discussion of history, interpretation of symptoms, treatment and disposition. The Staff (Mr. Edward in charge)

212. Special Problems in Bovine Medicine. (2) II.
Lecture—2 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Economics and husbandry practices of the California cattle feeding industry are outlined. Potential contributions by the practicing veterinarian to the success of the individual cattle feeder are explored, with emphasis on the “herd approach” and disease prevention. Mr. Hjerpe

213. Veterinary Ophthalmology. (2) III.
Lecture—2 hours. Prerequisite: course 204E or consent of instructor. Selected topics relating to the eye and its diseases. Mr. Cello

214. Ophthalmic Surgery. (1) III.
Laboratory—2 hours. Prerequisite: consent of instructor. Technics of eye surgery in domestic animals. Mr. Cello

215. Selected Topics in Zoo Medicine. (2) III.
Lecture—2 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Lectures or selected topics related to the health of zoo animals. These will include nutritional requirements, housing, sanitation, restraint, anesthesia, surgery, and specific disease problems. Mr. Cello

220. Introductory Surgery. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Pathology 122C, Physiological Sciences 140B. Principles of surgery and surgical technique. Mr. Leighton, Miss Wind

221. Large Animal Surgery. (5) II.
Lecture—5 hours. Prerequisite: course 220, Surgical diseases of large animals. Mr. Wheat

222. Small Animal Surgery. (5) III.
Lecture—5 hours. Prerequisite: course 220, Surgical diseases of small animals. Miss Wind, Mr. Gourley

223. Experimental Surgery. (3) III.
Lecture—1 hour, laboratory—2 hours and two 3-hour laboratories. Prerequisite: graduate standing or consent of instructor. A basic course in experimental surgery with emphasis on the principles of surgical technique, experimental animal care, and anesthesia. Mr. Gourley

230. Reproduction, Genital Diseases and Obstetrics. (6) I.
Lecture—5 hours; laboratory—3 hours. Prerequisite: Pathology 122C, Physiological Sciences 140B. A course in the diagnosis, treatment, and control of diseases affecting the reproductive organs; the normal and disturbed physiology of reproduction; and obstetrics. Messrs. Drost, Hughes, Kendrick, Stabenfeldt

231. Pathophysiology of Mammalian Reproductive Processes. (3) III.
Lecture—3 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Physiological and pathological aspects of reproductive failure in mammals concerning gonadal function, fertilization, implantation, prenatal mortality, neonatal mortality, environmental factors, anatomical and hereditary defects, intersexuality and behavior. Mr. Stabenfeldt

232. Teratologic Aspects of Development. (3) II.
Lecture—3 hours. Prerequisite: Anatomy 100, and Zoology 100 or the equivalent, or consent of instructor. Embryological and pharmacological principles of teratogenesis; design and interpretation of teratogenic tests; consideration of congenital malformations and abnormalities induced by environmental and genetic factors. Mr. Hendrick

Diagnosis and treatment of animal diseases. Students are responsible for case records, care of patients, physical examinations, and participation in surgery. Laboratory exercises in restraint, diagnostic and therapeutic procedures and surgical techniques.

The Staff (Mr. Rhode in charge)

250A. Clinics. (8) I.
Laboratory—24 hours. Prerequisite: courses 204C, 220, 230, 260.

The Staff (Mr. Rhode in charge)

250B. Clinics. (8) II.
Laboratory—24 hours. Prerequisite: courses 204C, 220, 230, 260.

The Staff (Mr. Rhode in charge)

250C. Clinics. (7) III.
Laboratory—21 hours. Prerequisite: courses 204C, 220, 230, 260.

The Staff (Mr. Rhode in charge)

260. Radiology. (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: courses 103, 220. The physics and practical operation of x-ray and fluoroscopic
equipment; the development and interpretation of radiographs, radiation therapy, and radiobiology.

Mr. Morgan

261. Special Radiographic Procedures. (3) I, II, III.
Discussio—1 hour; laboratory—6 hours. Prerequisite: course 260 or consent of instructor. The theory of selected radiographic techniques, contrast media, and special radiographic equipment.
Mr. Morgan

262A. Advanced Radiographic Interpretation. (1—3) I.
Discussion—1—3 hours. Prerequisite: course 260 or consent of instructor. Principles of radiographic interpretation in the diagnosis of disease of small and large animals. Current clinic cases will be utilized when possible. Mr. Morgan

262B. Advanced Radiographic Interpretation.
(1—3) II.
Discussion—1—3 hours. Prerequisite: course 260 or consent of instructor. Principles of radiographic interpretation in the diagnosis of disease of small and large animals. Current clinic cases will be utilized when possible. Mr. Morgan

262C. Advanced Radiographic Interpretation.
(1—3) III.
Discussion—1—3 hours. Prerequisite: course 260 or consent of instructor. Principles of radiographic interpretation in the diagnosis of disease of small and large animals. Current clinic cases will be utilized when possible. Mr. Morgan

263. Advanced Radiation Therapy. (3) III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 260 or consent of instructor. Principles of radiation therapy. The application of X-., beta-., and gamma-diagnosis on selected clinic cases. Mr. Morgan

(1) II.
Lecture—1 hour. Prerequisite: senior standing.

ing in the School of Veterinary Medicine or consent of instructor. The student is introduced to the principles of veterinary medical jurisprudence and the legal concepts pertinent to professional activities. Mr. Pritchard

280. Advanced Pulmonary Physiology. (3) II.
Lecture—3 hours. Prerequisite: Comparative Physiology 120B, Physiology 210 or Physiological Sciences 141B. Advanced study of physiology of mammalian respiration with emphasis on mechanisms of ventilation, gas distribution, diffusion and blood perfusion. Mr. Gillespie

280L. Advanced Pulmonary Physiology. (1) II.
Laboratory—4 hours. Prerequisite: Comparative Physiology 120B, Physiology 210 or Physiological Sciences 141B. Advanced study of physiology of mammalian respiration with emphasis on mechanisms of ventilation, gas distribution, diffusion and blood perfusion. Laboratory exercises illustrate modern functional concepts and procedures. Mr. Gillespie

285. Acid-Base Relationships in Mammals. (2) III.
Lecture—2 hours. Prerequisite: Physiological Sciences 101A, 101B, 102A, 102B; or consent of instructor. An examination of the buffer systems in the mammalian body. Effects on the buffer systems and organ functions of adding endogenous or exogenous acid or base products to the body fluids. Control mechanisms and body fluid relationships to the buffer systems. Mr. Gillespie

290. Seminar in Veterinary Medicine. (1) I, II, III.
The Staff (Mr. Rhode in charge)

296. Group Study. (1—2) I, II, III.
The Staff (Mr. Rhode in charge)

299. Research. (1—9) I, II, III.
The Staff (Mr. Rhode in charge)

CONSUMER ECONOMICS—See Family and Consumer Sciences

DESIGN—See Family and Consumer Sciences

DRAMATIC ART

Alan A. Stambusky, Ph.D., Chairman of the Department
Douglas McDermott, Ph.D., Vice Chairman of the Department
Department Office, 222 Dramatic Art

Professor:
Theodore J. Shank, Ph.D.

Associate Professors:
Everard d'Harmont, Ph. D.

Douglas McDermott, Ph.D.
Daniel E. Snyder
Alan A. Stambusky, Ph.D.
Assistant Professors:
Gene A. Chesley, M.A.
Alfred Ross, Ph.D.
Robert K. Sars, Ph.D.

Lecturers:
Phyllis J. Kress, M.F.A.
Howard Boyerow, M.A.
Donald West, B.A.
David F. Wyatt, B.A.

Major Adviser.—Mr. McDermott.

Lower Division Courses.—Twenty-four quarter units in Dramatic Art consisting of the following: 10A, 10B, 10C (Principles of Acting); 20 (Introduction to Dramatic Art); 24 (Visual Aspects of Dramatic Art); and 25 (Technical Aspects of Dramatic Art).

Upper Division Courses.—Thirty-eight quarter units in Dramatic Art including the following: 124A, 124B (Principles of Theatrical Design); 127A (Principles of Directing); 158A, 158B (World Drama); 159 (Contemporary Drama); 160A (Principles of Playwriting); either 127B (Principles of Directing) or 160B (Principles of Playwriting); 190 (Proseminar in Dramatic Art).

In exceptional cases, with the adviser’s consent, the student may petition to substitute up to 8 units from other Dramatic Art courses for any of the above courses.

In addition each major student is required to participate in departmental dramatic productions.

Teaching Major.—The requirements for the teaching major are the same as for the undergraduate major.

Teaching Minor.—At least 30 quarter units, including Dramatic Art 10A, 10B, 20, and 24; and 127A—127B and two courses from the sequence 158A, 158B, 159. Participation in departmental dramatic productions is recommended.

Subject Representative: Mr. Stambusky.

Graduate Study.—The Department of Dramatic Art offers programs of study and research leading to the M.A., M.F.A. and Ph.D. (Theatre Research) degrees. Detailed information may be obtained from the Graduate Adviser.

The University Theatre

Each year the Department of Dramatic Art presents a series of stage productions of outstanding dramas from various periods and countries. These productions are part of the academic program of the Department and serve an important purpose in the study of dramatic art. Participation is open to all students.

Professional Resident Theatre Program

The Department of Dramatic Art regularly engages professional artists-in-residence, particularly actors, to work with students in productions of the UC Davis Professional Resident Theatre and in acting workshops. Davis is the only University of California campus to offer this innovative training opportunity to students.

Lower Division Courses

10A. Principles of Acting. (4) I, II.
Lecture—2 hours; laboratory—4 hours. The physical and psychological resources for acting; fundamentals of creative mime, improvisation, stage speech and movement. Reading and analysis of selected plays to illustrate principles involved. Field trips included.
Mr. Boyerow, Mr. West

10B. Principles of Acting. (4) II, III.
Lecture—2 hours; laboratory—4 hours. Pre-requisite: course 10A. Methods of characterization in the realistic style. Reading and analysis of contemporary plays; theory and practice of acting with emphasis on realistic and naturalistic character analysis and interpretation. Field trips included.
Mr. Boyerow, Mr. West

10C. Principles of Acting. (4) III.
Lecture—2 hours; laboratory—4 hours. Pre-requisite: course 10B or consent of instructor. Methods of characterization in non-realistic styles. Reading and analysis of plays of different types and forms selected from various periods; theory and practice of acting with emphasis on period styles. Field trips included.
Mr. Boyerow

15. The Art of the Cinema. (4) I, III.
Lecture—3 hours; laboratory—2 hours. The cinema as an art form; its relation to other arts; its evolution with emphasis on the significant modern contributions.
Mr. d’Harmoncourt

20. Introduction to Dramatic Art. (4) I, II.
Lecture—3 hours; discussion—1 hour. Understanding and appreciation of plays in their cultural contexts. The plays will be selected from the major periods of dramatic art.
Mr. McDermott

Lecture—3 hours; laboratory—2 hours. Understanding and appreciation of the visual aspects of dramatic art: theatre architecture, scenery, lighting, costume, and makeup.
Mr. Snyder

Lecture—1 hour; laboratory—2 hours. Understanding and appreciation of the technical principles of dramatic production: basic tools and materials, principles of scene construction, scene painting, costume construction, stage rig-

2 Absent on leave, fall quarter 1970.
ging, lighting and sound equipment and control systems. Mr. Wyatt

27. Creative Principles of Dramatic Art. (4) II.
 Lecture—4 hours. Understanding and appreciation of both the distinctive and collaborative contributions of playwright, actor, director, and designer to the total work of dramatic art.

30. Theatre Laboratory. (1–5) I, II, III.
 Prerequisite: course 25 or consent of instructor. Projects in acting, production, scene design, costuming, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit up to a total of 8 units.
 The Staff

 Prerequisite: consent of instructor.
 The Staff (Mr. Stambusky in charge)

Upper Division Courses

110. Advanced Acting. (4) I.
 Lecture—2 hours; laboratory—4 hours. Prerequisite: courses 10A, 10B and 10C, and consent of instructor. Advanced theory and practice of acting with emphasis on special problems. Detailed study of the Stanislavski system of acting and other acting theories. Field trips included.

111. Voice and Speech for the Actor. (1) I, II, III.
 Laboratory—2 hours. Fundamentals of voice production and speech through exercises in relaxation, diaphragmatic breathing, breath control and phrasing, articulation, resonation, and tone placement.
 The Staff

115. Advanced Study of Major Film Makers. (4) II.
 Lecture—3 hours; laboratory—2 hours. Prerequisite: course 15. Analysis of the contribution of some outstanding film creators. Study of diverse aesthetic theories of the cinema and their application to selected films.
 Mr. d'Harmenceourt

124A. Principles of Theatrical Design. (3) I.
 Lecture—2 hours; laboratory—2 hours. Prerequisite: course 24 or consent of instructor. Scene design: drafting methods, working drawings, rendering techniques, scale models, methods and materials of scenery construction.
 Mr. Chesley

124B. Principles of Theatrical Design. (4) II.
 Lecture—3 hours; laboratory—2 hours. Prerequisite: course 124A. Analysis of plays in terms of scene design, elements of design, execution of designs for modern and period plays.
 Mr. Snyder

124C. Principles of Theatrical Design. (3) III.
 Lecture—2 hours; laboratory—2 hours. Prerequisite: course 24 or consent of instructor. Theories of lighting the stage, equipment and control systems, execution of lighting plots.
 Mr. Chesley

124D. Principles of Theatrical Design. (3) III.
 Lecture—2 hours; laboratory—2 hours. Prerequisite: course 24 or consent of instructor. Source materials for theatrical costuming, selecting fabrics, elements of design, analysis of plays in terms of costume design, execution of designs for modern and period plays. Miss Kress

*125. History of Scene Design and Staging
 Methods. (4) II.
 Lecture—4 hours. Study of scenic developments from the Renaissance to the present.
 Mr. Sarlos

127A. Principles of Directing. (5) I.
 Lecture—2 hours; laboratory—4 hours; rehearsal. Prerequisite: courses 10A and 10B. The director's creative approach to the play and to its staging.
 Mr. Stambusky

127B. Principles of Directing. (3) II.
 Lecture—1 hour; laboratory—2 hours; rehearsal. Prerequisite: course 127A. The director's creative approach to the actor.
 Mr. Stambusky

150. American Drama. (4) III.
 Lecture—4 hours. Selected plays and the history of the theatre from Colonial times to the present.
 Mr. McDermott

158A. World Drama. (5) I.
 Lecture—4 hours; papers and conferences. Selected plays and the history of the theatre from ancient Greece to Neoclassicism. Mr. Sarlos

158B. World Drama. (5) II.
 Lecture—4 hours; papers and conferences. Selected plays and the history of the theatre from Neoclassicism to Naturalism. Mr. Sarlos

159. Contemporary Drama. (5) III.
 Lecture—4 hours; papers and conferences. Selected plays and the history of the theatre from Naturalism to the present. Mr. McDermott

160A–160B. Principles of Playwriting. (4–4) I–II.
 Lecture-Seminar—4 hours. Prerequisite: two courses in Dramatic Art or related courses in other departments. Analysis of dramatic structure; preparation of scenarios; the composition of plays.
 Mr. Shank

*165. Dramatic Theory and Criticism. (4) III.
 Lecture-Seminar—4 hours. Changing concepts of drama from Aristotle to the present.
 Mr. McDermott

180. Theatre Laboratory. (1–5) I, II, III.
 Prerequisite: upper division standing and
 * Not to be given, 1970–71.
course 25, or consent of instructor. Projects in acting, production, scene design, costuming, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit. The Staff

190. Proseminar in Dramatic Art. (4) III.
Seminar—3 hours. Prerequisite: senior status
in Dramatic Art. Comprehensive study of Dramatic
Art with emphasis on individual research projects.
The Staff (Mr. Stambusky in charge)

198. Directed Group Study. (1–4) I, II, III.
Lecture—1–4 hours. Prerequisite: consent of
instructor. The Staff (Mr. Stambusky in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Stambusky in charge)

Graduate Courses

(4) I.
Seminar—3 hours. Essential research tools in
theatre and related fields; bibliographies, primary
sources; methods of evaluating and presenting
evidence; delineating research areas in the
field. Mr. Sarlos

210A. Special Problems in Advanced Acting. (4) I.
Seminar—2 hours; laboratory—4 hours. Advanced
acting problems arising from differences in
the type and style of plays selected from
Greece to the Renaissance.

210B. Special Problems in Advanced Acting. (4) II.
Seminar—2 hours; laboratory—4 hours. Advanced
acting problems relating to plays selected from
the Renaissance to Romanticism.

*210C. Special Problems in Advanced Acting. (4) III.
Seminar—2 hours; laboratory—4 hours. Advanced
acting problems in plays drawn from
Romanticism to the present.

211. Advanced Voice and Speech. (1) I, II, III.
Laboratory—2 hours. Voice production and
speech related to specific acting problems in
classical plays, particularly in verse. The Staff

224A. Advanced Principles and Theories of
Theatrical Design. (4) I.
Seminar—3 hours. Selected problems in the
visual and auditory aspects of theatrical production.
Mr. Snyder

224B. Advanced Principles and Theories of
Theatrical Design. (4) II.
Seminar—3 hours. Selected problems in the
design of stage scenery and costumes; practice in
design. Mr. Chesley

224C. Advanced Principles and Theories of
Theatrical Design. (4) III.
Seminar—3 hours. Design of a production for
three different types of theatres: open stage,
arena, and proscenium. Mr. Snyder

*226. History of Directing. (4) II.
Seminar—3 hours. Survey of the theories and
practice of internationally recognized stage di-
rectors from 1874 to the present. The Staff

227. Advanced Directing. (4) III.
Seminar—2 hours; laboratory—2 hours. Advanced
directing techniques; specialized procedures in styles of drama. Projects in directing scenes from dramas of different types and periods. Mr. Stambusky

228A. Seminar in Directing. (4) I.
Seminar—3 hours. Development of directorial conceptions for contemporary productions of selected plays from the Greek to the Renais-
sance.

*228B. Seminar in Directing. (4) II.
Seminar—3 hours. Directorial conceptions for contemporary productions of selected plays from the Renaissance to Romanticism. The Staff (— in charge)

*228C. Seminar in Directing. (4) III.
Seminar—3 hours. Directorial conceptions for contemporary productions of selected plays from Romanticism to the present. The Staff (— in charge)

*229A. Special Problems in Directing. (4) I.
Seminar—2 hours; laboratory—2 hours. Special-
ed directorial procedures in styles of drama. Projects in directing scenes selected from plays of the Greek to Renaissance periods. The Staff (— in charge)

*229B. Special Problems in Directing. (4) II.
Seminar—2 hours; laboratory—2 hours. Projects in directing scenes from plays of the Renaissance to Romanticism. The Staff

*229C. Special Problems in Directing. (4) III.
Seminar—2 hours; laboratory—2 hours. The
direction of a full-length play from a classical
period. The Staff

230. Greek and Roman Theatre. (4) II.
Seminar—3 hours. The classical theatre, with
emphasis on the relationship of the dramas of the period to the physical circumstances under which they were produced.
Mr. Sarlos, Mr. Stambusky

232. Medieval Theatre. (4) III.
Seminar—3 hours. The theatre and drama of the Middle Ages; the significant liturgical and

* Not to be given, 1970–71.
secular influences upon the evolution of dramatic art from the fall of the Roman Empire to the Renaissance, Offered in even-numbered years. Mr. Sarlos, Mr. Stambusky

*234. Theatre of the Italian Renaissance. (4) II.
Seminar—3 hours. The Italian theatre after the rediscovery of classical antiquity, with emphasis on courtly spectacles and the emergence of a theatrical tradition characterized by prosenium Arch, unified perspective setting, and changeable scenery. Offered in odd-numbered years. Mr. Sarlos

*235. Elizabethan-Jacobean Theatre. (4) III.
Seminar—3 hours. The theatre under the Tudors and Stuarts, with emphasis on the dominant dramatic and theatrical traditions and the relationship between the plays and the physical circumstances under which they were performed. Mr. Sarlos

*240. French Seventeenth-Century Theatre. (4) I.
Seminar—3 hours. The theatre under Louis XIII and Louis XIV. The manifestation of the classical ideal. Special study of the dramatic productions of plays by Corneille, Racine, and Molière. Offered in even-numbered years. Mr. d’Harmoncourt

Seminar—3 hours. The history of the British theatre in its attempt to accommodate such changes as the rise of sentiment in the drama, the dominance of the middle-class in the audience, and the introduction of changeable scenery. Offered in odd-numbered years. Mr. McDermott

ECOLOGY (A Graduate Group)
R. S. Loomis, Ph.D., Chairman of the Group
Group Office, 271 Hunt Hall

Graduate Courses

201A. Ecological Theory. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: a course in ecology. The course will focus on the ecological community as a unit. The major generalizations concerning the structure and functioning of the community will be examined together with the generalizations relating both structure and function to the biotic environment and its fluctuations. (Same course as Botany, Geology and Zoology 201A.)
The Staff (Mr. Salt and Mr. Major in charge)

201B. Analysis of A Selected Ecosystem. (3) II.
Lecture—2 hours; discussion—1 hour. Prerequisite: course 201A or consent of instructor. Application of basic ecological principles to the interpretation of biotic and abiotic interrelationships of a particular ecosystem. Recent advances in theory, technique, and basic information are emphasized. Lectures will be given by specialists from several fields. May be repeated for credit. (Same course as Botany, Geology and Zoology 201B.) The Staff (Mr. G. L. Webster in charge)

201C. The Changing Biosphere. (3) III.
Lecture—2 hours; 1 assigned problem. Prerequisite: courses 201A, 201B; or consent of instructor. Course deals with changing gas balance and weather in the biosphere and effects on plants and animals, the effects of structural, chemical and physical changes on living systems, changes in species diversity, effects on human population increase, and related topics. (Same course as Botany, Geology and Zoology 201C.) The Staff (Mr. Knight in charge)

290. Seminar in Ecology. (1) I, II.
Seminar—1 hour. Topics in ecology and resource management.
The Staff (Chairman in charge)

* Not to be given, 1970–71.
ECONOMICS

Frank C. Child, Ph.D., Chairman of the Department
Department Office, 378 Voorhies Hall

Professors:
Frank C. Child, Ph.D.
Bruce Glassburner, Ph.D.
Thomas Mayer, Ph.D.
Tsung-yuen Shen, Ph.D.

Associate Professors:
Andrzej Brzeski, Ph.D.
Hiromitsu Kaneda, Ph.D.
Martin P. Oettinger, Ph.D.
Elias H. Tuma, Ph.D.
Henry Y. Wan, Jr., Ph.D.
Leon L. Wegge, Ph.D.

Assistant Professors:
Kenneth D. Goldin, Ph.D.
W. Eric Gustafson, Ph.D.

Assistant Professor:
Alan L. Olmstead, M.A. (Acting)

Lecturers:
Victor P. Goldberg, Ph.D.
C. Daniel Vencill, M.A.

Departmental Major Advisers.—Mr. Brzeski, Mr. Goldberg, Mr. Goldin, Mr. Gustafson, Mr. Kaneda, Mr. Oettinger, Mr. Vencill.

Graduate Advisers.—Mr. Glassburner, Mr. Mayer, Mr. Oettinger, Mr. Shen, Mr. Tuma, Mr. Wan, Mr. Wegge.

The American History and Institutions requirement may be satisfied in part by Economics 111. (See also page 32.)

The Major Program

Lower Division Courses.—Required: Economics 1A, 1B, or the sequence, Economics 2A–2B–2C; Economics 12; and at least a C average in these courses. Students planning to major in economics should normally complete these courses by the end of the sophomore year.

Students considering graduate study in economics or business are strongly urged to take Mathematics 15, 16A, and 16B.

Upper Division Courses.—Required: A total of 36 units of economics including (1) Economics 100 and 101; (2) either Economics 110A or 110B or 111; and (3) one of the following sequences of courses: 102A–102B; 110A–110B, 110A–111, or 110B–111; 115A–115B; 116–117; 121A–121B; 130A–130B; 135A–135B–135C; 150–151, or 150–152; 160–161.

Economics 100 may be taken before, concurrently with, or after Economics 101. Except under extraordinary circumstances, not more than three economics courses may be taken in any one quarter. In special cases, the department will accept a limited number of related upper division courses from other departments in satisfaction of the economics upper division course requirements. Approval from a departmental adviser is required in all such cases.

Teaching Major and Minor.—Economics is acceptable for the secondary credential.

Teaching Major.—Same as for the undergraduate major for the A.B. degree.

Teaching Minor.—Thirty units in economics including Economics 1A, 1B; or 2A, 2B, 2C; and 12. The student should consult with the subject representative.

Subject Representative: Mr. Brzeski.

For information about admission to graduate study, degree requirements, and financial aid, students should consult the Announcement of the Graduate Division and contact the chairman of the departmental graduate committee.

Lower Division Courses

1A. Principles of Economics. (5) I, III.

Lecture—3 hours; discussion—2 hours. Pre-requisite: courses 1A and 1B may be taken in either order. Analysis of the allocation of resources and the distribution of income through a price system; competition and monopoly; the role of public policy; comparative economic systems.

Mr. Oettinger, Mr. Child

1B. Principles of Economics. (5) II, III.

Lecture—3 hours; discussion—2 hours. Pre-requisite: courses 1A and 1B may be taken in either order. Analysis of the economy as a whole: determinants of the level of income, employment, and prices; money and banking, economic fluctuations, international trade, economic development; the role of public policy.

Mr. Oettinger, Mr. Vencill

I–II–III.

Lecture—3–2–2 hours; discussion—1–1–1 hour. Same as Economics 1A and 1B. Students

1 Absent on leave, 1970–71.
enrolling for a full year of Principles of Economics must complete either 1A–1B or 2A–2B–2C.

Mr. Gustafson

11A. Elementary Accounting. (4) I.
Lecture—3 hours; laboratory—2 hours. The history and basic concepts of accounting; the ledger, journals, income statement, and the balance sheet; inventory valuation; depreciation; introduction to cost accounting; analysis of financial statements; social accounting.

11B. Elementary Accounting. (3) II.
Lecture—2 hours; laboratory—2 hours. Prerequisite: course 11A. Continuation of course 11A.

12. Introduction to Quantitative Methods in Economics. (5) I, III.
Lecture—4 hours; laboratory—2 hours. Prerequisite: two years of high school algebra. Not open to students having credit for Mathematics 13 or Psychology 3. Methods of analyzing quantitative economic data including descriptive statistics; sampling and statistical inference index numbers, correlation, and time series. Emphasis on the logic of procedures, interpretation, and application.

Mr. Brzeski, Mr. Gustafson

Prerequisite: consent of instructor.
The Staff (Mr. Child in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Child in charge)

49. Lower Division Seminar. (1–3) III.
Seminar—1–3 hours. Prerequisite: lower division standing; consent of instructor.
The Staff (Chairman in charge)

Upper Division Courses

100. Intermediate Micro Theory. (5) I, II.
Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C. Price and distribution theory under condition of perfect and imperfect competition. Welfare economics.
The Staff

Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C. Theory of income, employment and prices under static and dynamic conditions.
The Staff

102A. Advanced Micro Theory. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 12, 100; Mathematics 16A–16B. Selected topics in micro-economic theory.

Mr. Wan, Mr. Wegge

102B. Advanced Macro Theory. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 12, 101; Mathematics 16A–16B. Selected topics in macro-economic theory.

Mr. Shen, Mr. Kaneda

103. Theory of Economic Optimization and Dynamic Processes. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100, 101; Mathematics 16A, 16B (may be taken concurrently). Study of the analytical concepts used in characterizing optimal decision for consumers and firms. Elements of activity analysis. Theory of dynamic systems used in business cycle theory, inflation and economic growth.

Mr. Wan

105. History of Economic Thought. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Historical survey of economic doctrine: the Classical School and its antecedents, Neoclassical thought, criticism of classical thought, emergence of modern economic thought.

110A. Economic History. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Survey of economic change in Europe prior to the year 1700; reference to other regions of the Eastern Hemisphere; implications for contemporary economic development.

Mr. Olmstead

110B. Economic History. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Survey of economic change in Europe from the year 1700 to the present; reference to other regions of the Eastern Hemisphere; implications for contemporary economic development.

Mr. Olmstead

111. Economic History. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Survey of economic change in the United States beginning with the Colonial Period; reference to other regions of the Western Hemisphere; implications for contemporary economic problems.

Mr. Olmstead

115A–115B. Economic Development. (4–4) I–II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Theories of economic development and underdevelopment, economic policy for growth and development. Contemporary and historical case studies.

Mr. Kaneda, Mr. Gustafson

Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or con-
sent of instructor. Critical examination of major economic systems, their goals and institutions; capitalism, fascism, and varieties of socialism; problems of economic planning in USSR, India, China, and other industrializing economies.

Mr. Brzeski

117. The Soviet Economy. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Survey of Soviet economic development: economic organization, methods of planning, and performance.

Mr. Brzeski

121A. Industrial Organization. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. An appraisal of the role of competition and monopoly in the American economy; market structure, conduct, and economic performance of a variety of industries.

Mr. Goldberg

121B. Industrial Organization. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 121A. Public policy in a private enterprise economy; antitrust and other policies toward industry; economies of regulated industries.

Mr. Goldberg

125. Urban Economics. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. The structure of the metropolitan economy. The process of urban economic growth. Major problems such as: urban poverty and decay, housing, transportation, land-use planning and financing public services.

Mr. Goldberg

130A–130B. Economics of the Public Sector. (4–4)
I–II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Impact of the public sector on income, employment, prices, allocation of resources, and distribution of income; related topics such as the budgetary process, public debt, revenue and expenditure problems, fiscal institutions.

Mr. Goldin

134. Corporation Finance. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. The corporation as a form of business organization; promotion, organization, operation, expansion, consolidation, failure, and reorganization; the capital market, financial instruments, and institutions; security markets.

Mr. Child

135A. Money, Income, and Monetary Policy. (3) I.
Lecture—3 hours. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Monetary institutions, the banking system, money creation, the Federal Reserve System, the tools of monetary policy.

Mr. Vencill

135B. Money, Income, and Monetary Policy. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 101 and 135A. Monetary theory; the impact of changes in the quantity of money and of liquid assets on money income.

Mr. Vencill

135C. Money, Income, and Monetary Policy. (3) III.
Lecture—3 hours. Prerequisite: course 135B. Evaluation of monetary policy, its impact on the economy and past performance, the problem of inflation.

Mr. Mayer

150. Trade Unions and the Labor Market. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. Theory and philosophy of labor movements in America, Western Europe and the developing world. The structure and government of labor unions. Current labor market issues.

Mr. Oettinger

151. Wage Determination. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100 and 101; or consent of instructor. The theory and practice of wage determination on the micro and macro level. The impact of legal minimum wages. Wage-price and wage-employment relationships. Offered in odd-numbered years.

Mr. Oettinger

152. Labor and Public Policy. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150; or consent of instructor. The economic impact of labor legislation. Collective bargaining, strikes, dispute settlement and government intervention. Manpower and welfare programs. Offered in even-numbered years.

Mr. Oettinger

160. International Trade. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. International trade theory: impact of trade on the domestic and the world economies; public policy toward external trade.

Mr. Child

161. International Finance. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A–1B or 2A–2B–2C, or consent of instructor. International money and capital markets and their impact on the domestic and world economies; international financial institutions and policies.

Mr. Child

190. Senior Seminar. (5) III.
Seminar—4 hours. Prerequisite: open only to economics majors with senior standing; consent of instructor. Selected topics in economic analysis and public policy.

Mr. Child
Prerequisite: consent of instructor; upper division standing.

The Staff (Mr. Child in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, IV.
Prerequisite: consent of instructor; upper division standing.

The Staff (Mr. Child in charge)

Graduate Courses

200A. Economic Theory. (4) II.
Lecture—3 hours; laboratory—2 hours. Prerequisite: Mathematics 16A or consent of instructor. Price and value theory; behavior of firms and households under competitive conditions; price determination, resource allocation, and income distribution; fundamentals of welfare economics. Mr. Kaneda

200B. Economic Theory. (4) III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: courses 103 and 200A; Mathematics 16A, 16B; or consent of instructor. A continuation of course 200A with reference to non-competitive conditions. Mr. Wegge

200C. Economic Theory. (4) I.
Lecture—3 hours; laboratory—2 hours. Microstatic theory of income, employment, and prices. Mr. Mayer

200D. Economic Theory. (4) III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: courses 103 and 200C; Mathematics 16A, 16B; or consent of instructor. Macrodynastic theory of income, employment, and prices. Mr. Shen

201. History of Economic Thought. (4) III.
Lecture—3 hours; discussion—1 hour. Development of economic thought from classical Greece to modern times. Mr. Shen

202. Topics in Economic Theory. (4) I.
Seminar—4 hours. Prerequisite: courses 200A, 200B, 200C, 200D; or consent of instructor. Recent developments in economic theory. Mr. Wegge

203A. Advanced Economic Theory. (4) II.
Seminar—4 hours. Prerequisite: course 200B. Advanced topics in the theory of the firm; distribution theory; welfare economics. Mr. Wan

203B. Advanced Economic Theory. (4) III.
Seminar—4 hours. Prerequisite: courses 200B and 200C. General equilibrium theory; capital theory; growth theory. Mr. Wan

207. Special Topics in Mathematical Economics.
(4) III.
Seminar—3 hours. Prerequisite: courses 203A and 203B or consent of instructor. Advanced topics in mathematical economics. Contents may vary from one year to another. Mr. Wan

210A. Economic History. (4) III.
Seminar—3 hours. Method and theory of economic history. Critical analysis of the methodology of economic history and theories of economic change as illustrated by major economic phenomena drawn from the history of different countries. Mr. Tuma

210B. Economic History. (3) I.
Lecture-discussion—3 hours. Problems in economic history of the eastern hemisphere from the beginning of the Middle Ages up to the end of the eighteenth century; emphasis on Europe. Mr. Tuma

210C. Economic History. (3) II.
Lecture-discussion—3 hours. Problems in economic history of the eastern hemisphere since the eighteenth century; emphasis on England, France, and Germany. Mr. Tuma

210D. Economic History. (3) III.
Lecture-discussion—3 hours. Problems in economic history of the western hemisphere since the eighteenth century; emphasis on United States.

Lecture—3 hours; discussion—1 hour. Theories of economic development, policies for growth, problems from selected areas. Mr. Kaneda

216. Economic Systems. (4) II.
Lecture—4 hours. Comparative study of economic systems, with reference to their organization and institutions, their values and goals, and their economic performance. Mr. Brzeski

217. Economics of Planning. (4) III.
Lecture—4 hours. Theories and principles of economic planning under various economic systems. Mr. Brzeski

218. Development Programming. (4) I.
Seminar—3 hours. Prerequisite: courses 215B and 217; Mathematics 15 and 16B. Analytical formulation of growth and development goals including the optimal growth models; problems and practices in implementing such development policies. Mr. Shen

221A. Industrial Organization. (4) II.
Lecture—2 hours; seminar—2 hours. Analysis of market structure, business behavior, and economic performance under conditions of limited government interference. Mr. Goldberg

221B. Industrial Organization. (4) III.
Lecture—2 hours; seminar—2 hours. Pre-

* Not to be given, 1970–71.
requisite: course 221A. Social standards and public policies toward the business sector of the economy. Mr. Goldberg

230. Public Finance. (4) I.
Lecture—2 hours; seminar—2 hours. Role of the public sector; tax and expenditure theories; related topics. Mr. Goldin

231. Problems of the Public Sector. (4) III.
Lecture—2 hours; seminar—2 hours. Pre-requisite: course 230. Public sector institutions, problems, and policies. Mr. Goldin

235A—235B—235C. Monetary Economics. (3—3—3)
I—II—III.
Lecture—3 hours. Monetary theory, policy, and problems. Mr. Mayer

240A. Econometrics: Principles. (4) III.
Lecture—3 hours; discussion—1 hour. Pre-requisite: course 103; Mathematics 130B or 131C (Mathematics 131C may be taken concurrently). General linear model, autoregression, multicollinearity, heteroscedasticity. Simultaneous equation problems. Mr. Wegge

240B. Econometrics: Advanced Topics. (4) I.
Lecture—3 hours; discussion—1 hour. Pre-requisite: course 240A and Mathematics 131C, or consent of instructor. Special problems in the theory and the applications of econometrics. Mr. Wegge

250A. Labor Economics. (4) I.
Lecture—3 hours; discussion—1 hour. Pre-requisite: courses 150 and 151. Philosophy and theory of the labor movement; union structure and organization under changing labor market conditions; labor market issues. Mr. Oettinger

250B. Labor Economics. (4) II.
Lecture—3 hours; discussion—1 hour. Pre-requisite: courses 150 and 151. Theory of the labor market; analysis of wage-employment, wage-investment, and wage-price relationships. Mr. Oettinger

260A. International Economics. (4) I.
Lecture—3 hours; discussion—1 hour. Economic structure and factors that underlie international trade; policies for regulating external trade. Mr. Wegge

260B. International Economics. (4) II.
Lecture—3 hours; discussion—1 hour. Significance of international transactions for the national income; international monetary mechanisms. Mr. Kaneda

298. Group Study. (1—5) I, II, III.
Discussion—1—5 hours. Prerequisite: graduate standing and consent of instructor. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

299. Individual Study. (1—6) I, II, III.
Prerequisite: consent of instructor and graduate standing. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

EDUCATION
Julius M. Sassenrath, Ph.D., Chairman of the Department
Douglas L. Minnis, Ed.D., Head of Teacher Education
Department Office, 174 Academic Office Building, No. 3

Professors:
Donald G. Armstrong, Ph.D.
Hugh C. Black, Ph.D.
Julius M. Sassenrath, Ph.D.

Associate Professors:
Leroy F. Troutner, Ph.D.
George D. Yonge, Ph.D.

Assistant Professor:
D. Steven Lynch, Ph.D.

Maryann E. Gatheral, B.A.
Robert E. Hapworth, M.A.
Burt Liebert, M.F.A.
Raymond J. Lippincott, M.A.
Jack E. Lowry, M.A.T.
Walter T. Mara, M.S.
Douglas L. Minnis, Ed.D.
Victor A. Perkes, Ed.D.
Shirley J. Skinner, M.A.

CREDENTIALS COUNSELORS:
Elementary.—Mr. Barnett, Mrs. Gatheral, Mr. Hapworth, Mrs. Skinner.
Secondary.—Mr. Davis, Mr. Estes, Mr. Liebert, Mr. Lowry, Mr. Mara, Mr. Perkes.
Junior College.—Mr. Mara.

CURRICULA FOR TEACHER EDUCATION.—(See page 155). For a statement of complete requirements and appointments with credential counselors,
apply to the departmental office. Applicants for
the credential program should consult the de-
partment early in the fall quarter of the senior
year.

Required courses in the “Professional Prepa-
ration” part of the requirements:

For Secondary Teaching: courses 320A (for
student teachers, as early as junior year; for
interns, spring quarter of senior year), 110, 120,
320C, and 320E.

For Elementary Teaching: courses 110, 120,
300, 302, 303, 330A, 330C, and 330E.

Lower Division Courses

20. Field Experiences in Education. (1) I, II, III.

Seminar—1 hour; 3-hour field experience
weekly. A course to improve the field work
of volunteers and teacher candidates who tutor
and counsel educationally disadvantaged chil-
dren in schools and study centers. May be
repeated three times for credit. Mr. Liebert

Lecture—2 hours; discussion—2 hours.
The Staff (Mr. Sassenrath in charge)

Upper Division Courses

110. Introduction to Educational Psychology. (4)

I, II, III.

Lecture—4 hours. Prerequisite: Psychology
1A. The learning process; physical, mental, and
social development; individual differences and
their measurement; mental hygiene; the role of
the teacher in guidance and counseling.
Messrs. Lynch, Sassenrath, Youge

114. Quantitative Methods in Educational
Research. (4) I.

Lecture—2 hours; discussion—2 hours. Prere-
quisite: two years of high school algebra.
Problems and methods in data analysis. Design
of research projects. Emphasis will be on pro-
cedures suited to digital computers. Mr. Yonge

119. Tests and Measurements. (4) II.

Lecture—4 hours. Prerequisite: course 110
(may be taken concurrently). A critical survey
of teacher-made and standardized tests; prin-
ciples and functions of measurement in educa-
tion, current practices in school marks; super-
vised work in test administration, scoring, and
interpretation. Mr. Yonge

120. Educational Sociology. (4) I, II, III.

Lecture—4 hours. Prerequisite: upper divi-
sion or graduate standing. The school as a social
institution; historical development of purposes
and programs of education; the role of the
teacher.
Messrs. Arstine, Black, Troutner

163. Guidance and Counseling. (4) I, III.

Lecture—4 hours. Prerequisite: course 110
* Not to be given, 1970–71.

Graduate Courses

201. History and Philosophy of Education:
Ancient Period. (4) I.

Lecture—2 hours; seminar—2 hours. The
scope, influence, and significance of the major
educational ideas from selected ancient societies
and cultures with emphasis upon the historical
and philosophical contexts. Mr. Black

202. History and Philosophy of Education:
Middle Period. (4) II.

Lecture—2 hours; seminar—2 hours. The
scope, influence, and significance of the major
educational ideas from selected societies and
cultures of the middle period (through the eight-
hundred century) with emphasis upon the his-
torical and philosophical contexts.
Mr. Arstine, Mr. Black

203. History and Philosophy of Education:
Modern Period. (4) III.

Lecture—2 hours; discussion—2 hours. A
critical analysis and study of the contemporary
educational scene from the historical and phil-
osophical perspectives.
Mr. Arstine, Mr. Troutner

210. Learning and Instruction. (3) I.

Seminar—3 hours. Prerequisite: course 110
or equivalent and consent of instructor. Critical
readings and seminar reports of selected prob-
lems and procedures in the experimental study
of learning and instruction. Mr. Sassenrath

211. Thinking and Problem Solving. (3) II.

Seminar—3 hours. Prerequisite: course 110
or equivalent and consent of instructor. Critical
consideration of thinking with special reference
to concept development, problem-solving, home,
school, and personality influences. Mr. Yonge

219. Advanced Educational Measurement. (3) III.

Seminar—3 hours. Prerequisite: course 119
or equivalent and consent of instructor. Critical
study and evaluation of an advanced level of
measurement procedures used in educational re-
search, including such topics as test theory, item
analysis, and factor analysis. Mr. Sassenrath
290. Seminar. (3) I, II, III.
Seminar—3 hours.
The Staff (Chairman in charge)

299. Research. (1–6) I, II, III.
The Staff (Chairman in charge)

Professional Courses

300. Reading and Language Arts in the Elementary School. (4) I, II, III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: consent of instructor. Principles, procedures and curriculum materials for the teaching of reading and the oral and written language arts. Includes phonics and other developmental reading skills.
Mr. Barnett, Mrs. Gatherai, Mrs. Skinner

Lecture—2 hours. Current conceptions of the elementary school curriculum, with emphasis on the contributions from the social sciences and on effective teaching methods. Mr. Minnis

Lecture—2 hours. Current conceptions of the elementary school curriculum with emphasis on the role of science and on effective teaching methods.
Mr. Hapworth

313. Middle Grade School Curriculum: Science and Social Science. (3) I.
Lecture—3 hours. Prerequisite: consent of instructor. Current conception of middle grade school curriculum and effective teaching in science and social science. Mr. Perkes, Mr. Estes

320A. Introduction to Teaching in Secondary Schools. (3) I, II, III.
Lecture—2 hours; laboratory—3 hours. Lectures, conferences, and laboratory work; observation of and participation in classroom activities in the public elementary schools and University experimental classroom. The Staff

* Students must make their own transportation arrangements for observations and student teaching.
†† Open only to interns and student teachers. These 300 series courses are scheduled as extra-session courses, to begin with the opening of the public schools and to end with the closing of the second semester in the public schools. Thus teaching assignments in the fall quarter, 1970, will begin on or about September 2. For the spring quarter, they will end on or about June 4. Students should make arrangements accordingly.

Prerequisite: course 320A; course 320E (must be taken concurrently). Directed teaching for candidates for the secondary credential. May be repeated for credit up to a total of 12 units. The Staff

††320E. Methods of Teaching in Secondary Schools. (2–3) I, II, III.
Seminar—3 hours. Prerequisite: course 320A; course 320C (must be taken concurrently). Methods of teaching in the secondary school: selection, organization, and evaluation of teaching materials including the use of audio-visual aids and the services of counseling and guidance programs. May be repeated for credit up to a total of 8 units. The Staff

323. Secondary School Curriculum: Science. (2) I.
Lecture—2 hours. Current conceptions of secondary school curriculum and effective teaching in the biological and physical sciences. Mr. Perkes

330A. Introduction to Teaching in Elementary Schools. (3) I, II, III.
Lecture—2 hours; laboratory—3 hours. Lectures, conferences, and laboratory work; observation of and participation in classroom activities in the public elementary schools and the University experimental classroom. The Staff

††330C. Supervised Teaching in Elementary Schools. (4–12) I, II, III.
Prerequisite: course 330E must be taken concurrently. Directed teaching for candidates for the elementary credential. The Staff

††330E. Methods of Teaching in Elementary Schools. (1–2) I, II, III.
Lecture—1–2 hours. Prerequisite: course 330C must be taken concurrently. Selection, organization, and evaluation of teaching materials including audio-visual aids. May be repeated for credit up to a total of 3 units. The Staff

Discussion—1 hour. Prerequisite: consent of instructor. Directed teaching for candidates for the standard teaching credential with specialization in junior college teaching. Mr. Mara

341. Teaching in the Junior College. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. The junior college: organization and functions, role in higher education, characteristics of students, trends and issues in curricula, instructional procedures and materials. Mr. Mara
ENGINEERING

John D. Kemper, Ph.D., Dean of the College
Roy Bainer, M.S., LL.D., Dean of the College, Emeritus
Don O. Brush, Ph.D., Associate Dean of the College
John B. Powers, Ph.D., Associate Dean of the College
College Office, 2132 Bainer Hall

Associate Professors:
John R. Beljan, M.D. (School of Medicine)
G. Worden Waring, Ph.D. (School of Medicine)

Assistant Professor:
Phillip R. Yarnell, M.D. (School of Medicine)

LOWER DIVISION COURSES

1. Plane Surveying. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: plane trigonometry. Not open to students in Engineering. Principles of measurement of horizontal distances, horizontal angles, elevations and leveling, including stadia methods. Field problems, including mapping with special reference to agricultural and landscaping applications.
Mr. Goss

3. Introduction to Engineering Systems. (3) I, II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 21A recommended (may be taken concurrently). An introduction to the profession of engineering and to the role of the engineer as a responsible agent for the planning and shaping of the human environment. (Passed/Not Passed grading only.)
Mr. Schroeder

4. Engineering Graphics in Design. (3) I, II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mechanical drawing. Principles of descriptive geometry and of mechanical and freehand drawing; their application in the representation, visualization and solution of engineering problems. Introduction to engineering design.
Mr. J. M. Henderson

5A. Engineering Applications of Computers.
(3) II, III.
Lecture—2 hours; discussion—1 hour. Prerequisite: Mathematics 21B (may be taken concurrently); Physics 4A (may be taken concurrently); not open for credit to students who have completed Mathematics 30. Introduction to digital computer structure, computer languages, and time sharing systems; programming digital computers with applications to engineering problems of both numerical and non-numerical natures.
Mr. Loomis, Mr. Kozdrowicki

17. Circuits. (3) II, III.
Lecture—3 hours. Prerequisite: Mathematics 22B (may be taken concurrently); Physics 4C. Basic circuit analysis techniques; transient and steady-state solutions using differential equations.
Mr. LaPatra, Mr. Owen

35. Statics. (3) I, II, III.
Lecture—3 hours. Prerequisite: Mathematics 21C; Physics 4A. Force systems and equilibrium conditions with emphasis on engineering problems.
The Staff

Prerequisite: consent of instructor.
The Staff (Mr. Brush in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Brush in charge)

45. Properties of Materials. (4) I, III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: sophomore standing in engineering. An introductory course on the properties of engineering materials and their relation to the internal structure of the materials.
Mr. Mukherjee, Mr. Moon

UPPER DIVISION COURSES

100. Electronics. (2) I, II.
Lecture—2 hours. Prerequisite: course 17. Characteristics of vacuum and semiconductor devices; graphical analysis and the development of small signal equivalent circuits.
Mr. LaPatra, Mr. Hsia

101. Electrical Laboratory. (2) I, II.
Laboratory—6 hours. Prerequisite: course 100 (may be taken concurrently). Laboratory use of basic electronic devices and measuring instruments. Problem topics include passive and active circuits, electromechanical devices, signal analysis, and nonlinear components.
Mr. Owen

102A. Dynamics. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 35; Mathematics 22B, 22C. Kinematics and kinetics of particles, of systems of particles, and of rigid bodies applied to engineering problems.
Mr. J. M. Henderson

102B. Dynamics. (3) II, III.
Lecture—3 hours. Prerequisite: course 102A. Topics in rigid body dynamics; elementary dynamics of vibrating systems; introduction to energy methods.
Mr. J. M. Henderson

103A. Elementary Fluid Mechanics. (3) I, II.
Lecture—3 hours. Prerequisite: course 102A (may be taken concurrently). Fluid properties; fluid statics; continuity and linear momentum equations for control volumes; flow of incompressible fluids in pipes; dimensional analysis;
laminar, transition, and turbulent flow regimes.

Mr. Dwyer

103B. Elementary Fluid Mechanics. (3) II, III.
Lecture—3 hours. Prerequisite: course 103A. Potential flow; open channel flow; boundary layer flow; one dimensional compressible flow.

Mr. Dwyer

104A. Mechanics of Materials. (3) I, II.
Lecture—3 hours. Prerequisite: course 35; Mathematics 22A, 22B, 22C (may be taken concurrently). Concepts of stress, strain, elasticity; stress and deformation analysis for axially loaded members, torsion of round shafts, bending and shear of beams; combined stresses.

The Staff

104B. Mechanics of Materials. (3) II, III.
Lecture—3 hours. Prerequisite: course 104A. Beams: unsymmetrical loading, shear center, indeterminate problems, inelastic bending, buckling and lateral instability. Energy methods; failure theories; torsion of thin-walled sections.

The Staff

105A. Thermodynamics. (3) I, II.
Lecture—3 hours. Prerequisite: Mathematics 22B, 22C. Equations of state and thermodynamics of one-component systems; first and second laws; phase equilibria.

Mr. Giedt

105B. Thermodynamics. (3) II.
Lecture—3 hours. Prerequisite: course 105A. Gas mixtures; work-producing and work-absorbing cycles (vapor and gas); measures of performance. Recent developments.

Mr. Giedt

106. Engineering Economics. (3) II.
Lecture—3 hours. Prerequisite: senior standing in engineering. The analysis of problems in engineering economy; the selection of alternatives; replacement decisions. Compounding, tax, origins and cost of capital, economic life, and risk and uncertainty are applied to methods of selecting most economic alternatives.

Mr. Garrett

122. Introduction to Mechanical Vibrations. (3) I.
Lecture—3 hours. Prerequisite: course 102B. Free and forced vibrations in lumped-parameter systems with and without damping; vibrations in coupled systems; electromechanical analogs; use of energy conservation principles.

Mr. Beadle

180. Engineering Analysis. (3) I.
Lecture—3 hours. Prerequisite: senior standing in engineering. The analysis of steady-state and nonsteady-state problems for discrete and continuous systems; analytic and approximate solutions. Typical engineering problems in heat transfer, fluid mechanics, electrical networks, mechanical vibrations, and elasticity.

Mr. McKillop

183. Intermediate Mechanics of Materials. (3) II.
Lecture—3 hours. Prerequisite: course 104B; Mathematics 24. Stresses and deformations of curved beams; beams on elastic foundations; torsion of non-circular bars; introduction to plates and shells; thick-walled cylinders.

Mr. Hutchinson

184. Experimental Stress Analysis. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 104B. Experimental methods for the analysis of stress and strain, including photoelasticity, brittle lacquers, mechanical and electrical strain gages and instrumentation.

Mr. Beadle

186. Heat Transfer. (4) I, III.
Lecture—4 hours. Prerequisite: course 103B (may be taken concurrently). Fundamental concepts of heat transfer: conduction, convection and radiation.

Mr. Whitaker

187. Introduction to Theory of Elasticity. (3) I.
Lecture—3 hours. Prerequisite: course 104B. Fundamental equations of elasticity in three dimensions; plane stress and plane strain; flexure and torsion of bars of various shapes.

Mr. Hutchinson

188. Physical Metallurgy Principles. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 45, 105A; Physics 4B or consent of instructor. The physical principles in metallurgy are outlined. The elementary theory of metals, rate of approach to equilibrium, thermal behavior of metals, structure and free energy of alloy phases, diffusion phenomenon and strengthening mechanisms in solids are discussed.

Mr. Mulherjee

190. Professional Responsibilities of Engineers. (3) II, III.
Lecture—2 hours; discussion—1 hour. Organization of the engineering profession; engineering and management; introduction to contracts, specifications, and business law; oral presentations by class members on the interaction between engineering and society.

Mr. Beadle

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor, upper division standing. The Staff (Mr. Brush in charge)
ENGINEERING: AGRICULTURAL

John R. Goss, M.S., Chairman of the Department
Department Office, 2030 Bainer Hall

Professors:
Roy Bainer, M.S., LL.D. (Emeritus)
William J. Chancellor, Ph.D.
Robert B. Fridley, M.S.
John R. Goss, M.S.
Samuel A. Hart, Ph.D.
S. Milton Henderson, M.S.
Robert A. Kepner, B.S.
Loren W. Neubauer, Ph.D., (Engineering and Agricultural Engineering)

Professors:
Norman B. Akesson, M.S. (Agricultural Engineering)
Coby Lorenzen, Jr., M.S. (Agricultural Engineering, Emeritus)
Michael O’Brien, Ph.D., (Agricultural Engineering)
Wesley E. Yates, M.S. (Agricultural Engineering)

Associate Professors:
Roger E. Garrett, M.S. (Agricultural Engineering)
Stanton R. Morrison, Ph.D. (Agricultural Engineering)

Assistant Professor:
Thomas H. Burkhardt, M.S. (Acting, Agricultural Engineering)

Lecturers:
Pietraw (Paul) Chen, Ph.D.
Joe P. Gentry, M.S.
Henry E. Studer, M.S.

Upper Division Courses

114. Principles of Farm Machinery. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 102B. Functional requirements, basic principles, and performance characteristics of field machines; cost analysis; general design considerations; laboratory studies and tests with specific machines. Mr. Yates

116. Agricultural Power. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 105B. Sources and systems for supplying energy to agricultural operations: internal combustion engines; fuels; electric power; solar energy; power transmission systems; muscle physiology; traction and vehicle mechanics; implement control systems. Mr. Burkhardt

117. Developing and Evaluating Farm Machines. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 114; Mechanical Engineering 118. Design procedures; effects of biological factors, labor requirements, crop values, and annual use upon the design approach; designing a production unit; hydraulic controls and power transmission in farm machines; testing and evaluating machine performance and durability.
Mr. Gentry

118. Development Engineering. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mechanical Engineering 118 (may be taken concurrently). Failure modes; determination of the causes of systems malfunction by analysis of interactions and variations in effects; experiment design; development procedures.
Mr. Studer

125. Agricultural Structures and Sanitation. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 35 and 104A. Functional and material requirements of storage and production structures; lighting, heating, insulating, and ventilating; water supply and sanitation for the farm home and for animal structures; methods and economics of farm waste disposal.
Mr. Neubauer

126. Design of Agricultural Structures. (3) III.
Lecture—3 hours. Prerequisite: course 125; Civil Engineering 131A. Agricultural building loads and codes; design with steel, concrete, and timber; glued-laminated and plywood box beams; pole buildings and connections; lumber rigid frames; arches.
Mr. Neubauer

132. Unit Operations in Agricultural Processing. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 103A and 105A. Thermodynamics and mass transfer principles applied to such processes as drying, dehybridation, refrigeration, size reduction, separation, and materials handling.
Mr. Henderson

141. Engineering Properties of Agricultural Materials. (3) I.
Lecture—2 hours; laboratory—3 hours. Selected topics, with emphasis on mechanical and rheological properties and design applications. Techniques for measuring and recording static and dynamic properties.
Mr. Chen

Prerequisite: consent of instructor.
The Staff (Mr. Goss in charge)
230 / Engineering: Agricultural; Engineering: Applied Science

 The Staff (Mr. Goss in charge)

Graduate Courses

215. Soil-Machine Relations in Tillage and
 Traction. (3) I.
 Lecture—3 hours. Prerequisite: courses 114 and
 116; Civil Engineering 171 and Soil and
 Water Science 101 recommended. Mechanics of
 interactions between agricultural soils and till-
 age and traction devices; determination of rel-
 evant physical properties of soil; analyses of
 stresses and strains in soil due to machine-
 applied loads; experimental and analytical
 methods for synthesizing characteristics of over-
 all systems.
 Mr. Chancellor

225. Advanced Agricultural Structures Design. (3) II.
 Lecture—3 hours. Prerequisite: course 126.
 Recommended: Civil Engineering 132B and
 132C. Critical evaluation of codes as applied
 to agricultural structures; safe design criteria,
 load sharing, and statistical reliability concepts;
 computer analysis of indeterminate wood struc-
 tures; stressed skin construction; ultimate
 strength design in reinforced concrete; appli-
 cations of new materials and methods.

235. Advanced Unit Operations in Agricultural
 Processing. (3) III.
 Lecture—3 hours. Prerequisite: course 132
 or equivalent. Basic engineering procedures ap-
 plicable to agricultural processing; e.g., size
 reduction, fluidization of granular particles, heat
 and mass transfer applications to drying and
 freezing, respiration of biomaterials.
 Mr. Henderson

245. Agricultural Waste Management. (3) III.
 Lecture—2 hours; laboratory—3 hours. Pre-
 requisite: course 125; Civil Engineering 147
 recommended. The wastes problem in agricul-
 ture: types, quantities, and characteristics. Prac-
 tice and procedures for wastes management;
 coordination of agricultural wastes management
 with municipal and industrial wastes manage-
 ment; environment quality considerations.

255. Environmental Engineering in Agriculture.
 (3) III.
 Lecture—3 hours. Prerequisite: Engineering
 186. The description, methods of measurement
 and effect on man, animals and plant physical
 environmental factors, and the design of
 systems for their control.
 Mr. Morrison

290. Seminar. (1) I, II, III.
 Seminar—1 hour. (Satisfactory/Unsatisfac-
 tory grading only.)
 The Staff (Mr. Gentry in charge)

 The Staff (Mr. Henderson in charge)

 (Satisfactory/Unsatisfactory grading only.)
 The Staff (Mr. Henderson in charge)

ENGINEERING: APPLIED SCIENCE

Harold P. Smith, Jr., Ph.D., Chairman of the Department
Carl A. Jensen, Ph.D., Vice-Chairman of the Department
Department Office, 228 Walker Hall

Professors:
Stewart D. Bloom, Ph.D.
Richard J. Borg, Ph.D.
John Killeen, Ph.D.
Edward Teller, Ph.D. (Professor at Large)

Associate Professors:
Harold P. Smith, Jr., Ph.D.
Wilson K. Talley, Ph.D.

Assistant Professors:
John S. DeGroote, Ph.D.
Carl A. Jensen, Ph.D.
George D. Sauter, Ph.D.
Lowell L. Wood, Ph.D.

Professor:
Richard F. Post, Ph.D. (In Residence)

Lecturers:
Berm J. Alder, Ph.D.
Frank M. Chilton, Ph.D.
Sidney S. Fernbach, Ph.D.
Joseph A. Fleck, Ph.D.
John G. Fletcher, Ph.D.
John C. Garrison, Ph.D.
Michael W. Guinan, Ph.D.
Laurence Hall, Ph.D.
William C. Hoover, Ph.D.
Tony Huen, Ph.D.
Montgomery H. Johnson, Ph.D.
Roger N. Keeler, Ph.D.
Ray E. Kidder, Ph.D.
Cecil E. Leith, Ph.D.
Gilbert Leppelmeier, Ph.D.
Hans M. Mark, Ph.D.
Kenneth D. Marx, Ph.D.
Kenneth G. Moses, Ph.D.
Jacques B. J. Read, Ph.D.
Harry L. Sahlin, Ph.D.
John J. Walton, Ph.D.
Frederick O. Wooten, Ph.D.

Davis

Upper Division Courses

115. **Introduction to the Use of Computers.** (3) I, II, III.

Lecture—3 hours. Prerequisite: Engineering 5A; Mathematics 22B. Lectures and laboratory work on electronic computers and their application to engineering problems.

Mr. Talley, Mr. Jensen

135A. **Introductory Nuclear Science and Technology.** (3) II.

Lecture—3 hours. Prerequisite: Physics 121 or equivalent. Interaction of gamma rays, electrons, and heavy particles with matter; energy loss and multiple scattering formulae and their application in various media. Introductory aspects of nuclear phenomena: nuclear masses, size, energies, and decay modes.

Mr. Sauter

144. **Introduction to Nuclear Technology.** (3) III.

Lecture—3 hours. Prerequisite: course 135A. Nuclear reactions and their applications: nuclear energy sources, radiation detection; nuclear instrumentation. Nuclear particle accelerators. High vacuum technology.

Mr. Sauter

Graduate Courses

Lecture—3 hours. Prerequisite: course 110C. Classical properties of matter; introduction of quantum mechanics by the correspondence principle; perturbation theory; electron theory of atoms, molecules and solids; quantum theory of cooperative effects.

Mr. Jensen

Lecture—3 hours. Prerequisite: course 110C. The physical concepts and mathematical techniques used in the analysis of nuclear reactors.

Mr. DeGroot

245A–245B. **Nuclear Reactor Systems.** (3–3) I–II.

Lecture—3 hours. Prerequisite: course 240A. Those aspects of fluid dynamics, thermodynamics, heat transfer, and thermal stress analysis that apply to the engineering design of nuclear reactors. Radiation shielding, fuel cycles, and isotope separation.

Mr. Sauter

246. **Nuclear Explosives: Phenomenology.** (3) II.

Lecture—3 hours. Prerequisite: Mathematics 220A. The phenomenology of nuclear explosives; the theoretical and empirical laws for such effects; the scientific uses of such phenomena. Offered in odd-numbered years.

Mr. Talley

260A–260B. **Statistical Theory of Equilibrium and Transport Phenomena.** (3–3) I–II.

Lecture—3 hours. Prerequisite: courses 110A and 120B. Statistical mechanical formulation of thermodynamics with application to the various states of matter. Statistical foundation of irreversible phenomena; evaluation of the transport coefficients in fluids and metals.

Mr. Talley

271. **Electrodynamics of Continuous Media.** (3) I.

Lecture—3 hours. Prerequisite: course 230A; Electrical Engineering 230A; Chemistry 110A. Solutions of Maxwell's equations in continuous media. Stresses and mechanical potentials of matter in constant and time varying fields. Thermodynamically based phenomenological description of electromagnetic fields in matter. Quantum mechanical interpretation of the properties of conductive and dispersive media.

Mr. Chilton

290. **Seminar.** (1–2) I, II, III.

Seminar—2 hours. The Staff (Chairman in charge)

298. **Group Study.** (1–5) I, II, III.

Lecture—1–5 hours. Such topics as neutron physics, nuclear technology, advanced hydrodynamics, plasma physics, or advanced mathematics.

The Staff (Chairman in charge)

299. **Research.** (1–12) I, II, III.

The Staff (Chairman in charge)

Livermore

Upper Division Courses

105. **Special Topics in Applied Science.** (2) I.

Lecture—2 hours. Use of laws and concepts covered in undergraduate curricula in applied science. The variety of subjects covered will include problems of space physics, a discussion of gravity and capillary waves, and some problems in optics such as lasers.

Mr. Teller

110A. **Vectors and Tensors.** (4) I.

Lecture—4 hours. Prerequisite: ordinary differential equations. Algebra and calculus of finite and infinite dimensional vectors; orthonormal functions; introduction to linear equations.

Mr. Marx

110B. **Complex Variables and Calculus of Variations.** (4) II.

Lecture—4 hours. Prerequisite: course 110A. Analytic functions; contour integrals; power series, conformal mapping; Laplace transform; calculus of variations.

Mr. Marx
110C. Linear Equations. (4) III.
Lecture—4 hours. Prerequisite: course 110B. Solution of linear algebraic, differential, and integral equations by orthonormal expansion and Green's functions; approximation methods.
Mr. Marx

115. Introduction to the Use of Computers. (3) I.
Lecture—3 hours. Prerequisite: Engineering 5A; Mathematics 22B. Lectures and laboratory work on electronic computers and their application to engineering problems.
Mr. Wood

120A–120B. Chemistry for Physicists and Engineers. (3–3) I–II.
Lecture—3 hours. Prerequisite: Chemistry 1C; Mathematics 22B. Concepts of chemistry and physical chemistry, including atomic and molecular structure and the properties of liquids and solids.
Mr. Borg

123A–123B–123C. Structural Chemistry. (1–1–1) I–II–III.
Lecture—1 hour. Prerequisite: freshman chemistry and modern physics. A factual descriptive course relating chemical and physical properties of substances to their molecular or crystal structure. Selected examples of organic compounds, minerals, refractory oxides and carbides, and complex ions. Generalizing correlations between structure, chemical reactivity, solubility, melting temperatures, etc.
Mr. Borg

135A. Introductory Nuclear Science and Technology. (3) I.
Lecture—3 hours. Prerequisite: Physics 121 or equivalent. Interaction of gamma rays, electrons, and heavy particles with matter; energy loss and multiple scattering formula; and their application in various media. Introductory aspects of nuclear phenomena: nuclear masses, size, energy, and decay modes.
Mr. Bloom

135B–135C. Introductory Nuclear Science and Technology. (2–2) II–III.
Lecture—2 hours. Prerequisite: course 135A. Radiation detection, charged particle technology, radiation chemistry, neutron technology, magnetic moment and spin measurement, vacuum technology.
Mr. Bloom

Graduate Courses

Lecture—3 hours. Prerequisite: course 110C. Classification of partial differential equations, elliptic and hyperbolic equations, initial value problems in two or more independent variables, difference and Monte Carlo methods; applications to problems in hydrodynamics, magnetohydrodynamics, shock waves, transport theory, and plasma physics.
Mr. Killeen

211. Computer Mathematics. (3) I.
Lecture—3 hours. Prerequisite: course 110C; course 115 (may be taken concurrently). Review and survey of mathematical fields fundamental to computer science. Theory of sets, Boolean algebra and propositional calculus, predicate calculus, probability and statistics, mathematical programming, general number systems.
Mr. Fletcher

212A–212B. Computer Languages. (3–3) II–III.
Lecture—3 hours. Prerequisite: course 211. The basic tools in the use of computers for processing data are covered. These include common subroutines such as sorting and filing, assemblers and relocatable codes, algorithmic notations and construction of algorithms. Considerations evolving from special hardware are discussed.
Mr. Fletcher

213A. Switching Theory. (3) II.
Lecture—3 hours. Prerequisite: course 211. This course will cover minimization techniques, switching function realization with electronic circuits, trees, storage devices, and elementary sequential machines.
Mr. Fletcher

213B. Computing Machines. (3) III.
Lecture—3 hours. Prerequisite: course 212A. This course will cover computing machine organization, memory systems, arithmetic units and input-output systems.
Mr. Fletcher

214. Computing with Symbolic Expressions. (3) I.
Lecture—3 hours. Prerequisite: course 211. Theory and practice of computing with symbolic expressions. The LISP programming language, function composition, conditional expressions, recursive functions. Writing programs to manipulate symbolic expressions. Interpreters, compilers, proving the equivalence of algorithms. Survey of symbol manipulation languages.
Mr. Fletcher

215. Artificial Intelligence. (3) II.
Lecture—3 hours. Prerequisite: course 211. An organized description of attempts to get computers to behave intelligently. Programs play games, solve problems, prove theorems, and deduce answers to questions from given facts. Programs that learn to make evaluations and to recognize patterns.
Mr. Fletcher

216. Automata Theory. (3) III.
Lecture—3 hours. Prerequisite: course 212A. This course will cover the elements of finite automata including models, graphical and table representation, equivalence, minimization, identification. Time permitting, infinite automata will be introduced and computability discussed.
Mr. Fletcher

220. Physical Chemistry of Solids. (3) III.
Lecture—3 hours. Prerequisite: courses 120B, 260B. Equations of state—heterogeneous
221A-221B-221C. Materials Science. (3-3-3) I-II-III.
Lecture—3 hours. Prerequisite: courses 120B, 260B. The facts and theories of crystal defect physics and their application to such problems as the mechanical properties of solids, radiation damage, phase transformations, etc. Covers thermodynamics of point defects, diffusion, elasticity and dislocation theory.
Mr. Borg, Mr. Guinan

236A-230B-230C. Structure of Matter. (3-3-3) I-II-III.
Lecture—3 hours. Prerequisite: course 110C. Classical properties of matter; introduction of quantum mechanics by the correspondence principle; perturbation theory; electron theory of atoms, molecules and solids; quantum theory of cooperative effects.
Mr. Sahlin

231A-231B-231C. Theory of the Solid State. (3-3-3) I-II-III.
Lecture—3 hours. Prerequisite: course 230C. Structure binding and mechanical properties of crystals; dielectrics, electrons in metals, metals and alloys; magnetism, superconductivity, and semiconductors.
Mr. Leepelmeier

232. Solid-State Electronics. (3) I.
Lecture—3 hours. Prerequisite: course 231C. Theory of semiconductors and semiconductor devices (transport properties, optical properties, p-n junctions, transistor devices, and surface states). An introduction to microwave magnetic devices and superconducting memory devices.
Mr. Wooten

235A-235B. Nuclear Physics. (3-3) II-III.
Lecture—3 hours. Prerequisite: course 230C. Basic properties of nuclei; radioactive decay; nuclear models; low energy nuclear reactions; neutron physics. Interaction of particles and radiation with matter.
Mr. Bloom

237A-237B. Neutron Physics. (3-3) II-III.
Lecture—3 hours. Prerequisite: course 135A. Properties of neutrons, cross-sections and nuclear structure, fast neutrons, neutron resonances, fission process, thermal neutrons, neutron optics, diffraction, applications of neutron diffraction and optics to studies of the structure of matter. Offered in odd-numbered years.
Mr. Sauter

239A-239B. Nuclear Chemistry. (3-3) II-III.
Lecture—3 hours. Prerequisite: course 135A. Radiochemistry as an analytical technique in the study of chemical and nuclear processes: activation analysis, fission, properties of the actinides, current theories of the properties of the trans-actinides, radiation, “hot atom” chemistry, and mechanisms of biological radiation damage. Offered in even-numbered years.
Mr. Read

250A-250B. Continuum Mechanics. (3-3) I-II.
Lecture—3 hours. Prerequisite: course 110C. Tensor notation, algebra, and analysis. Theory of elasticity, stress-strain relation, strain energy, reciprocity laws, elastic waves. Hydrodynamics of incompressible and compressible flows in two and three dimensions.
Mr. Walton

251. Geophysical and Stellar Hydrodynamics. (3) III.
Lecture—3 hours. Prerequisite: course 250B. Hydrodynamics and thermodynamics of fluids in gravitational fields with applications to the atmosphere, the ocean, and stellar models. The role of convection and radiation transport. The use of numerical models. Offered in even-numbered years.
Mr. Wood

252. Turbulence. (3) III.
Mr. Chilton

260A-260B. Statistical Theory of Equilibrium and Transport Phenomena. (3-3) III-I.
Lecture—3 hours. Prerequisite: courses 110A and 120B. Statistical mechanical formulation of thermodynamics with application to the various states of matter. Statistical foundation of irreversible phenomena; evaluation of the transport coefficients in fluids and metals.
Mr. Johnson

262. Advanced Statistical Thermodynamics. (3) II.
Mr. Hoover

263. Material Properties at High Pressures and Temperatures. (3) III.
Lecture—3 hours. Prerequisite: course 262. Theory of the properties of matter at extremely high pressure and temperatures. Terrestrial and astrophysical applications.
Mr. Keeler

264. Material Properties at Low Temperatures. (3) III.
Lecture—3 hours. Prerequisite: course 262. Properties of liquid helium, theoretical explanations. General properties of superfluids and superconductivity, theories and applications. Cryogenic theory.
Mr. Sahlin
266. Quantum Optics. (4) III.
Lecture—4 hours. Prerequisite: course 230C. Quantum theory of radiation; quantum theory of optical coherence, conditions for laser action; laser types; rate equations, density matrices; laser noise theory; parametric amplifiers, nonlinear optics, stimulated Raman and Brillouin scattering. Mr. Fleck

270A–270B–270C. Electromagnetic Theory.
(3–3–3) II–III–I.
Lecture—3 hours. Prerequisite: Electrical Engineering 131B; ordinary differential equations. Electromagnetic field theory; physical properties of dielectrics and conductors; magnetic properties of materials, steady and quasi-steady currents, propagation of electromagnetic waves in vacuum and through matter. Mr. Johnson

Lecture—3 hours. Prerequisite: course 270C. The basic equations governing the behavior of a fully ionized plasma in a magnetic field; simple plasma configurations in controlled fusion research and space applications. Theory of plasma waves and instabilities. Transport coefficients and radiation phenomena. Mr. Moses

276. Classical Mechanics. (3) I.
Lecture—3 hours. Prerequisite: consent of instructor. General principles of analytical mechanics. Variational principles. Lagrange's and Hamilton's equations. Kinematics; collisions. Offered in even-numbered years. Mr. Hall

277. Plasma Kinetic Theory. (3) I.
Lecture—3 hours. Prerequisite: course 275B. The derivation of plasma kinetic equations; turbulence; fluctuations; advanced radiation and transport phenomena.

278. Waves and Radiation in Plasmas. (3) III.
Lecture—3 hours. Prerequisite: course 275B. Theory of propagation of waves in hot and cold magneto-plasmas; relation of wave theory to plasma instabilities; radiation processes, including collective effects, bremsstrahlung, synchrotron radiation and radiation from partially ionized atoms. Mr. Hall

279. High-Temperature Plasmas. (3) I.
Lecture—3 hours. Prerequisite: course 275B. Confinement and stability of high temperature plasmas in open and closed magnetic-field structures. Application to controlled-fusion research and space plasmas. Mr. Hall

290. Seminar. (1–2) I, II, III.
Seminar—1–2 hours. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

Lecture—1–3 hours. Such topics as neutron physics, nuclear technology, advanced hydrodynamics, plasma physics, or advanced mathematics. The Staff (Chairman in charge)

(Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

ENGINEERING: CHEMICAL
J. M. Smith, Sc.D., Chairman of the Department
Department Office, 3094 Bainer Hall

Professor:
J. M. Smith, Sc.D.

Associate Professors:
Richard L. Bell, Ph.D.
Stephen Whitaker, Ph.D.

Assistant Professors:
Neil A. Dougherty, Ph.D.
Benjamin J. McCoy, Ph.D.

Lower Division Courses
Prerequisite: consent of instructor. Group study of selected topics. Students may enroll in more than one section. The Staff (Mr. Smith in charge)

39. Special Study for Undergraduates.
(1–5) I, II, III.
Prerequisite: consent of instructor. The Staff (Mr. Smith in charge)

49. Freshman Chemical Engineers' Seminar: The Scope of Chemical Engineering. (1) II.
Seminar—1 hour. Demonstrations and discussions of the opportunities in chemical engineering for service to society and contributions to basic knowledge, as well as professional development. (Passed/Not Passed grading only.) The Staff (Mr. Bell in charge)

Upper Division Courses
151. Material and Energy Balances. (3) I.
Lecture—3 hours. Prerequisite: Chemistry 110A (may be taken concurrently). Use of principles of conservation of mass and energy in chemical process calculations. Mr. Dougharty

152A. Chemical Engineering Thermodynamics. (3) II.
Lecture—3 hours. Prerequisite: course 151; Chemistry 110A. Application of principles of thermodynamics to chemical processes. Mr. Bell

1 Absent on leave, 1970–71.
152B. Chemical Engineering Thermodynamics.
(3) III.
Lecture—3 hours. Prerequisite: course 152A. Continuation of course 152A.
Mr. Smith

154A. Mass Transfer. (3) I.
Lecture—3 hours. Prerequisite: Engineering 186 (may be taken concurrently); Chemistry 110A. Fundamental concepts of mass transfer in fluids. Problems in pure diffusion and convective mass transfer.
Mr. Bell

154B. Applications of Mass Transfer. (3) II.
Lecture—3 hours. Prerequisite: course 154A. Application of the principles of mass transfer and thermodynamic equilibrium to absorption, extraction, distillation and other separation processes.
Mr. Bell

155A. Chemical Engineering Laboratory. (2) II.
Laboratory—6 hours. Prerequisite: course 154B (may be taken concurrently). Laboratory experiments in heat, mass, and momentum transfer and in chemical kinetics.
The Staff

155B. Chemical Engineering Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 155A. Continuation of course 155A.
The Staff

156A. Chemical Engineering Kinetics. (3) II.
Lecture—3 hours. Prerequisite: course 152B, 154A, and Chemistry 110C (may be taken concurrently). Chemical kinetics and introduction to homogeneous and heterogeneous reactor design.
Mr. Smith

156B. Chemical Engineering Kinetics. (3) III.
Lecture—3 hours. Prerequisite: course 156A. Continuation of course 156A.
Mr. Dougherty

(4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 154B and 156A. A study of stability and the transient state of chemical processing systems.
Mr. Bell

158. Chemical Engineering Process Design. (3) III.
Lecture—3 hours. Prerequisite: courses 154B and 156A. Chemical Engineering process design; optimization and economics.
Mr. Bell

159. Chemical Engineering Analysis. (3) I.
Lecture—3 hours. Chemical engineering applications of partial differential equations, tensors, systems of linear equations, and operational calculus.
Mr. Whitaker

Prerequisite: consent of instructor. Selected topics. Student groups may be organized in instrumentation and design problems. Students may enroll in one or more separate subjects.
The Staff (Mr. Smith in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Smith in charge)

Graduate Courses

252A. Advanced Thermodynamics. (3) I.
Lecture—3 hours. Prerequisite: course 152B or Engineering 106B. A general treatment of the first and second laws; applications of thermodynamic relationships to phase and chemical reaction equilibria; introduction to statistical thermodynamics.
Mr. Smith

252B. Advanced Thermodynamics. (3) II.
Lecture—3 hours. Prerequisite: course 252A. Continuation of 252A with an emphasis on statistical thermodynamics.
Mr. Dougherty

253A. Advanced Transport Phenomena. (4) I.
Lecture—4 hours. Prerequisite: Engineering 186. Tensor and vector methods in the formulation of equations of mass, momentum, energy, and entropy in continuous media with particular emphasis on fluids. Applications to the formulation of rheological equations of state for viscoelastic fluids and fluid interfaces.
Mr. McCoy

253B. Advanced Transport Phenomena. (4) II.
Lecture—4 hours. Prerequisite: course 253A. Continuation of 253A, with application to both differential and integral mass, momentum, and energy balances. Radiant energy transport and heat transfer in reacting systems.
Mr. McCoy

253C. Advanced Transport Phenomena. (3) III.
Lecture—3 hours. Prerequisite: course 253B. Continuation of 253B with special emphasis on multicomponent systems. The laws of molecular diffusion and energy transport, including the effects of concentration, temperature, electric and pressure fields. Convective mass transfer and chemically reacting flows.
Mr. Bell

254. Molecular Theory of Transport Phenomena.
(3) II.
Lecture—3 hours. The transport of mass, momentum, and energy is considered from the molecular point of view. Derivations of the Boltzmann equation are considered, and solutions for special cases are discussed. Methods for calculating transport coefficients are presented.
Mr. McCoy

255A. Equilibrium Stage Processing. (3) I.
Lecture—3 hours. Prerequisite: course 154B; course 252B (may be taken concurrently). The concept of equilibrium stage processing; applications to the design of distillation, absorption, and extraction processes.
Mr. Dougherty

255B. Equilibrium Stage Processing. (3) II.
Lecture—3 hours. Prerequisite: course 255A. Continuation of course 255A.
Mr. Bell
256A. Applied Kinetics and Reactor Design. (3) II.
Lecture—3 hours. Prerequisite: courses 156B and 252B. Application of kinetics and molecular transport rates to the design of chemical reactors, with emphasis on homogeneous systems.
Mr. Dougherty

256B. Applied Kinetics and Reactor Design. (3) III.
Lecture—3 hours. Prerequisite: course 256A. Continuation of 256A, with emphasis on convective transport and heterogeneous catalytic systems.
Mr. Smith

257. Rheology of Fluids. (3) III.
Lecture—3 hours. Prerequisite: course 253A. Non-Newtonian and viscoelastic behavior of polymer materials, suspensions and emulsions. Continuum theories of stress equations for materials with and without memory. Solution of simple boundary value problems and the evaluation of rheological experiments.
Mr. Whitaker

258. Chemical Process Dynamics. (3) I.
Lecture—3 hours. Prerequisite: courses 154B, 156B. Unsteady-state process analysis, examples of first and second order process systems, coupling of mixed order processes including chemical reaction kinetics, mass and heat transfer and fluid mechanics, simulation of chemical processes.
Mr. Bell

290. Seminar. (1) I, II, III.
Seminar—1 hour. (Satisfactory/ Unsatisfactory grading only.)
The Staff (Chairman in charge)

The Staff (Chairman in charge)

(Satisfactory/ Unsatisfactory grading only.)
The Staff (Chairman in charge)

ENGINEERING: CIVIL

Ray B. Krone, Ph.D., Chairman of the Department
Department Office, 2092 Bainer Hall

Professors:
Jaime Amoroco, Ph.D. (Civil Engineering and Water Science and Engineering)
Don O. Brush, Ph.D.
Robert H. Burgy, M.S. (Civil Engineering and Water Science and Engineering)
Leonard R. Herrmann, Ph.D.
James N. Luthin, Ph.D. (Civil Engineering and Water Science and Engineering)
Gerald T. Orlob, Ph.D.
Verne H. Scott, Ph.D. (Civil Engineering and Water Science and Engineering)

Associate Professors:
Kandiah Arulananand, Ph.D.
James A. Cheney, Ph.D.
James R. Hutchinson, Ph.D.
Ray B. Krone, Ph.D.
Theodor S. Strelkoff, Ph.D., (Civil Engineering and Water Science and Engineering)

Assistant Professors:
Bruce E. Larock, Ph.D.
Melvin R. Ramey, Ph.D.
Karl M. Romstad, Ph.D.
Edward D. Schroeder, Ph.D.
Chih-Kang Shen, Ph.D.
Michael A. Taylor, Ph.D.

Lower Division Courses
1. The Civil Engineer in Society. (1) II.
Lecture—1 hour. A description of the field of civil engineering and the function of the professional civil engineer. Discussion of professional practice with respect to application of engineering principles, ethics, and responsibilities. (Passed/Not Passed grading only.)
The Staff (Mr. Romstad in charge)

10. Introduction to Surveying. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: lower division standing in the College. Theory and practice of measurements for distance, elevations, and angles; the analyses and adjustments for systematic and random measurement errors; line directions, traverse computations, horizontal and vertical curves; astronomical observations and calculations for latitude, longitude, azimuth, and time.
Mr. Romstad

Upper Division Courses
131. Structural Analysis. (3) I, III.
Lecture—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Structural analysis of determinate and indeterminate beams, trusses and frames; influence lines, moving loads, deflection analysis.
Mr. Romstad

132A. Structural Design: Metallic Elements. (3)
II, III.
Lecture—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Metallic beams, columns, other members; analysis and design of riveted, bolted, and welded joints; design of simple beam connections, moment resistant connections, and column base plates.
Mr. Ramey
132B. Structural Design: Concrete Elements. (3) I, III.

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 132A (may be taken concurrently). Reinforced concrete beams, columns, slabs, and footings; elastic theory and ultimate design. Introduction to prestressed concrete and plastics.

Mr. Ramey

132C. Structural Design: Timber Elements. (2) III.

Lecture—2 hours, Prerequisite: course 132A. Elements of timber structures and laminated structures, including connection design.

Mr. Ramey

133. Matrix Structural Analysis. (3) II.

Lecture—3 hours. Prerequisite: course 131 or 135. General force and displacement methods of structural analysis using matrix methods. Applications to civil and aerospace structures.

Mr. Romstad

134. Analysis and Design of Buildings. (3) I.

Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 131, 132B. Vertical dead and live loading; earthquake and wind forces. Building code and structural requirements for the use of timber, steel frame, reinforced concrete, and brick. Supervised classroom design.

Mr. Romstad

135. Aerospace Structures. (3) III.

Lecture—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Analysis of stiffened and unstiffened shell structures; analysis of statically indeterminate box beams, rings and arches. Buckling of flat plates and shells.

Mr. Cheney

137. Construction Principles. (3) III.

Lecture—2 hours; laboratory—3 hours. Prerequisite: senior standing in engineering. A study of the construction industry; its form, evolution, and methods of operation; fundamental principles underlying construction practices; economic factors in planning, organizing, and operating a construction force. Field trips and analysis of local construction projects.

Mr. Cheney

138. Dynamic Loads on Stationary Structures. (3) II.

Lecture—3 hours. Prerequisite: course 133; Engineering 102B, 103B. Determination of loads on structures due to base movements (earthquakes), steady and non-steady aerodynamic forces (wind and blast), and impact and vibration forces; comparison of dynamic loads with stationary loads and determination of equivalent load factors.

Mr. Hutchinson

141. Engineering Hydromechanics. (3) I.

Lecture—3 hours. Prerequisite: Engineering 103B. Application of principles of mechanics to flows of heavy, incompressible fluids. Flow visualization, configuration of free surfaces, streamlines, flow nets, separation, cavitation; pressure distribution in non-uniform, unsteady flow; turbulence; surface and form drag; conduit flow. Engineering approximations.

Mr. Strelkoff

142. Water Supply. (3) I, II.

Lecture—3 hours. Prerequisite: Engineering 103B (may be taken concurrently), or consent of instructor. Study of surface and ground water supplies; analysis for prediction of surface and ground water yields; water requirements; water supply and distribution systems including dams, reservoirs, wells, pumping plants, open channels, and pipe lines; water treatment methods and processes.

Mr. Burgy

143. Water Resources Engineering. (3) II.

Lecture—3 hours. Prerequisite: course 142. Basic concepts of water resources planning; water inventories, use, and control; water conservation measures and legislation; multipurpose project planning; domestic and foreign water development projects; simulation, optimization, and dynamic programming studies.

Mr. Scott

144. Drainage Engineering. (3) III.

Lecture—3 hours. Prerequisite: Engineering 103B. Elements of seepage through porous media; theory of drainage; depth and spacing of drains; methods of drainage investigation; project planning for drainage; engineering analysis of surface drainage.

Mr. Luthin

145. Hydraulic System Design. (3) III.

Lecture—3 hours. Prerequisite: Engineering 103B. Principles of project planning; methods of analysis and hydraulic design of storage systems, diversion structures, conveyance and regulation systems, and structures for irrigation, power, and flood control projects.

Mr. Amoroch

146. Hydraulic Engineering Laboratory. (3) III.

Lecture—1 hour; laboratory—6 hours. Prerequisite: Engineering 103B (may be taken concurrently). Experimental analysis of flow about hydraulic structural elements such as gates, weirs, orifices, spillways and energy dissipators; centrifugal pump; open channel wave motion; measurements and instrumentation.

Mr. Larock

147. Solid and Radioactive Waste Management. (3) II.

Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 105B. Characteristics and amounts of solid wastes; collection systems; introduction to waste treatment processes and return of treated wastes to the environment. Origin, nature, and management of radioactive wastes.

Mr. Hart
148. Waterborne Waste Management. (3) II.
Lecture—3 hours. Prerequisite: course 142 (may be taken concurrently). Introduction to industrial and domestic waterborne waste collection and treatment systems; methods of treated waste release. Mr. Schroeder

149. Air Pollution Control. (3) III.
Lecture—3 hours. Prerequisite: Engineering 103B. Origins, characteristics, and amounts of air pollutants; atmospheric reactions and behavior of airborne wastes; methods of control. Mr. Krone

160. Highway Engineering. (3) III.
Lecture—3 hours. Prerequisite: course 171; senior standing in engineering. Highway planning, economy, surveys and plans; highway design to include highway capacity, cross section, vertical and horizontal alignment, intersections and drainage. Highway construction, grading and pavements. Mr. Arulanandan

171. Soil Mechanics. (3) I, III.
Lecture—3 hours. Prerequisite: Engineering 104A (may be taken concurrently). Soil formations, mass-volume relationships, principle of effective stress, soil characteristics (classification and identification) compaction, capillarity and permeability, compressibility and consolidation, strength—state of stress and failure criteria. Mr. Arulanandan

172. Soil Properties, Soil Behavior and Engineering Applications. (2) I, III.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 171 (may be taken concurrently). Detailed study of the physical and mechanical properties of soils, including experimental determination of these properties and their engineering applications. Introduction to physicochemical principles and influence of physicochemical factors on soil behavior. Mr. Shen

173. Soil Mechanics and Foundation Design. (4) II.
Lecture—4 hours. Prerequisite: courses 132B and 171. Site exploration, bearing capacity, footing design, lateral earth pressures, retaining walls, slope stability, theory of consolidation and application of foundation design, methods of minimizing settlements and effect of settlement on structures. Mr. Shen

174. Nuclear Civil Engineering Laboratory. (2) I.
Lecture—1 hour; laboratory—3 hours. Prerequisite: senior standing in engineering. Phenomenology and potentials of nuclear explosives as a construction tool. Hazards associated with underground detonation. Laboratory experiments on radioisotope transport in groundwater, cratering with explosives, and slope stability. Offered in odd-numbered years. Mr. Cheney, Mr. Talley

181. Plastic Analysis of Structures. (3) III.
Lecture—3 hours. Prerequisite: course 133. Structural behavior in the plastic range; methods of predicting strength and deformation in the inelastic range; analysis and design of continuous beams and frames; rules of practice for plastic design of structures. Mr. Romstad

182. Prestressed Concrete. (3) II.
Lecture—3 hours. Prerequisite: course 132B. Analysis and design of prestressed concrete structures; statically determinate and indeterminate structures; principles and applications of ultimate strength; applications to buildings, bridges and tanks. Mr. Ramey

199. Directed Group Study. (1-5) I, II, III.
Lecture—1—5 hours. Prerequisite: consent of instructor. Selected topics. Students may enroll in one or more separate sections.
The Staff (Mr. Krone in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
Lecture—1—5 hours. Prerequisite: senior standing in engineering and at least a B average.
The Staff (Mr. Krone in charge)

Graduate Courses

225. Theory of Elasticity. (3) II.
Lecture—3 hours. Prerequisite: Engineering 187. Tensor formulation of the elastic field equations. Variational principles. Introduction to nonlinear elasticity. Approximate and exact solutions for plane stress and plane strain problems. Introduction to three-dimensional problems. Offered in even-numbered years. Mr. Herrmann

226A. Theory of Elastic Stability. (3) II.
Lecture—3 hours. Prerequisite: Engineering 187. Basic concepts of the stability of elastic systems. Adjacent-equilibrium and minimum potential energy theories of stability. Application to bars, frames, and rings. Mr. Brush

226B. Theory of Elastic Stability. (3) III.
Lecture—3 hours. Prerequisite: courses 226A, 227. Continuation of course 226A. Application to plates and shells. Offered in even-numbered years. Mr. Brush

227. Theory of Plates. (3) II.
Lecture—3 hours. Prerequisite: Engineering 187. Stress and deformation analysis of plates bent by transverse loads; applications to circular, rectangular, and other shapes. Mr. Herrmann

228. Theory of Shells. (3) III.
Lecture—3 hours. Prerequisite: Engineering 187. Direct stresses in shells with axial symmetry. Applications to shell roofs, tanks, cylindrical shells, pipelines; bending stresses in shells. Mr. Brush
229. Theory of Plasticity. (3) I.
Lecture—3 hours. Prerequisite: Engineering 187. Fundamentals of plasticity, the concept of yield and the associated constitutive equations in the theory of elastic-plastic solids. Variational theorems, the piecewise linear loading functions and related minimum principles. Application to earth structures, torsion and plane problems of plasticity. Offered in even-numbered years.
Mr. Hutchinson

230. Theory of Viscoplasticity. (3) I.
Mr. Herrmann

Lecture—4 hours. Prerequisite: course 133, Engineering 187 (may be taken concurrently). Fundamentals of the finite element and related procedures. Application to torsion, plane stress, plane strain, axisymmetric, plate and shell bending, thermal stress and soil mechanics problems. Consideration of inelastic and nonlinear problems.
Mr. Herrmann

240. Water Quality. (3) I.
Lecture—3 hours. Prerequisite: course 141, Chemistry 110A (may be taken concurrently). Water quality requirements for domestic, industrial, agricultural, and recreational and wildlife water uses; properties of natural surface and groundwater; transport and fate of wastewater pollutants; methods of analysis.
Mr. Orlob

241. Land Quality. (3) II.
Lecture—2 hours. Prerequisite: Chemistry 110B (may be taken concurrently). Factors determining land quality for use in man's activities; land modification for temperature control; out-of-doors noise and its control; interrelations of land and vegetation on qualities of air and water.
Mr. Krone

242. Air Quality. (3) III.
Lecture—3 hours. Prerequisite: Engineering 105A; Chemistry 110B. Properties of the air and the atmosphere; atmospheric phenomena; factors determining air quality; origins, transport and degradation of atmospheric pollutants; effects of pollutants on men, plants, soil, and water.
Mr. Krone

243A. Water and Waste Treatment. (3) I.
Lecture—3 hours. Prerequisite: courses 148, 149; Mechanical Engineering 185B. Characteristics of water- and airborne-wastes; treatment processes and process kinetics; treatment system design.
Mr. Schroeder

243B. Water and Waste Treatment. (3) II.
Lecture—3 hours. Prerequisite: course 243A. Continuation of course 243A. Mr. Schroeder

243C. Water and Waste Treatment Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 243B. Operation of model treatment units; measurements of waste and process effluents; characteristics; evaluation of process parameters.
Mr. Schroeder

244. Environment Quality Management. (2) III.
Lecture—2 hours. Prerequisite: course 240, 241, 242 (may be taken concurrently). Fates of pollutants in the overall environment; requirements for environment quality; monitoring methods; environment quality control methods.
Mr. Orlob

247. Nuclear Civil Engineering. (3) III.
Lecture—3 hours. Prerequisite: Applied Science 246. The engineering uses of nuclear explosive; earthmoving for canals, harbors, highways and water resource development; mining, petroleum; desalination. Offered in odd-numbered years.
Mr. Cheney

251. Advanced Topics in Structural Engineering. (3) I.
Lecture—3 hours. Prerequisite: course 133; course 138 or Engineering 122. Analysis of indeterminate structures by force (flexibility) methods and by displacement (stiffness) methods; vibration of multistory buildings and aerospace structures; consideration of dynamic and inelastic effects; emphasis on methods suited for digital computer solution. Offered in odd-numbered years.
Mr. Romstad

252. Advanced Topics in Metal Structures. (3) II.
Lecture—3 hours. Prerequisite: consent of instructor. Residual stresses, recent developments in welded structures and high-strength bolt connections, light gage and alloy steels, aluminum and other metals; aerospace structures, three dimensional space frames. Offered in odd-numbered years.
Mr. Ramey

253. Advanced Topics in Concrete Structures. (3) I.
Lecture—3 hours. Prerequisite: consent of instructor. Advanced analysis and design of concrete folded plates, thin shells and gravity dams; yield line theory; lift slabs; effects of shrinkage and creep upon stress and deflection.
Mr. Ramey

257. Analysis of Structures under Dynamic Loading. (3) I.
Lecture—3 hours. Prerequisite: course 138. Analysis of earthquake and blast resistant struc-
tures; method of lateral forces; current research about earthquake and blast loading and structural effects. Offered in even-numbered years.

Mr. Hutchinson

271. Advanced Topics in Surface Water Hydrology. (2) III.

Lecture—2 hours. Prerequisite: course 142; Water Science 141; consent of instructor. Analysis of hydrologic processes and procedures in water supply investigations including topics in atmospheric relationships, research methods, water balances, and water yield prediction methods. Offered in odd-numbered years. Mr. Burgoyne

272. Groundwater Flow and Seepage. (3) II.

273. Groundwater Hydrology. (3) III.

Lecture—3 hours. Prerequisite: course 275. Analyses and methods of groundwater development; geophysical exploration and analysis; artificial recharge concepts; hydraulics of wells, including analytical treatment of transient flow problems; and problems of well design. Numerical and experimental methods of groundwater flow. Mr. Scott

274. Hydraulics of Pipe Lines. (3) I.

Lecture—3 hours. Prerequisite: course 275 (may be taken concurrently); Engineering 5A or equivalent, or consent of instructor. Mechanics of liquid flow in pipes and pipe network systems. Steady flow, unsteady flow, surge and water hammer problems. Introduction to stability and resonance phenomena. Offered in even-numbered years.

Mr. Larock

276. Hydrologic Systems Analysis. (3) II.

Lecture—3 hours. Prerequisite: course 142 or Water Science 141 or equivalent; Mathematics 22A, 22B, 22C, 24. Theory and application of the methods of modern systems analysis and mathematical statistics to problems of hydrologic prediction. Emphasis on current developments in parametric and stochastic hydrologies.

Mr. Amoroso

277. Mechanics of Open Channel Flow. (3) II.

Lecture—3 hours. Prerequisite: course 141; Mathematics 22B, 22C. Recommended: a short course in FORTRAN programming (may be taken concurrently). Free surface flow; resistance in uniform flows; gradually and rapidly varied flows; critical depth; unsteady flows; supercritical flows; shock waves. Graphical and digital-computer solutions. Offered in odd-numbered years.

Mr. Strelkov

278. Hydrodynamics. (3) II.

Lecture—3 hours. Prerequisite: Mathematics 24, 185A; Mechanical Engineering 185B. Recommended: a short course in FORTRAN programming (may be taken concurrently). General equations of continuity, momentum, and energy. Stream functions; velocity potential; conformal mapping. Direct solution for irrotational flow around bodies and in conduits; gravitational effects. Offered in even-numbered years.

Mr. Larock

279. Advanced Mechanics of Fluids. (4) I.

Lecture—4 hours. Prerequisite: Mathematics 22B, 22C, 24; Mechanical Engineering 185B. Rotational flows. Navier-Stokes equations and solutions for laminar, viscous flows; turbulent flow and Reynolds equations, isotropy simplification, diffusion, phenomenological theories; the boundary layer approximation. Offered in odd-numbered years.

Mr. Larock

281A. Advanced Soil Mechanics. (3) I.

Lecture—3 hours. Prerequisite: course 173. Theories of consolidation, secondary compression, stress distribution, bearing capacity, lateral earth pressures, shear strength, yielding of soils, creep, effect of type of compaction on the behavior of compacted clays.

Mr. Arulananadan

281B. Advanced Soil Mechanics. (3) II.

Mr. Arulananadan

282. Advanced Soil Laboratory. (3) II.

Lecture—1 hour; laboratory—6 hours. Prerequisite: course 281A. Subsurface exploration, advanced laboratory techniques including consolidation, shear strength, pore water pressure measurement, electrical properties measurement, pavement design tests, field strength and load bearing tests.

Mr. Shen

283. Physicochemical Properties of Soils and Soil Behavior. (3) I.

Lecture—3 hours. Prerequisite: course 171. Analysis of the mechanical behavior of soils from consideration of clay mineralogy, colloidal phenomena, ion-exchange and soil-water characteristics. Conduction phenomena, deformation mechanisms, strength, swelling, compaction. Microscopic theories to explain yielding of soils.

Mr. Arulananandan

285. Pavement Design and Soil Stabilization. (3) II.

Lecture—3 hours. Prerequisite: course 171 or equivalent. Principles and methods of pave-
288. Seepage and Earth Dams. (3) II.

Lecture—3 hours. Prerequisite: course 171 or equivalent. Groundwater flow around dams; principles of earth dam design, types of failure, and design and construction procedures. Offered in odd-numbered years. Mr. Arulanandan

290. Seminar. (1) III.

Seminar—1 hour. Discussion of current graduate research, and guest lectures on recent advances. Oral presentation of individual study. (Satisfactory/Unsatisfactory grading only.) Mr. Krone

Lecture—1–5 hours.
The Staff (Mr. Krone in charge)

(Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Krone in charge)

ENGINEERING: ELECTRICAL

Ronald F. Soohoo, Ph.D., Chairman of the Department

Department Office, 3004 Bainer Hall

Professors:
John B. Powers, Ph.D.
Ronald F. Soohoo, Ph.D.

Associate Professors:
Vidal R. Algazi, Ph.D.
Jack W. LaPatra, Ph.D.
Herschel H. Loomis, Jr., Ph.D.
Sanjit K. Mitra, Ph.D.
Earle W. Owen, D.Sc.

Assistant Professors:
John N. Churchill, Ph. D.
Robert B. Green, Ph.D.
Hartley J. Jensen, Ph.D.
Tien C. Hsia, Ph.D.
Edward W. Kozdrowicki, Ph.D.
Paul J. Stoll, Ph.D.
Myron F. Uman, Ph.D.

Upper Division Courses

110A. Electronic Circuits. (3) III.

Lecture—3 hours. Prerequisite: Engineering 100. Analysis of linear amplifiers; single stage and multistage amplifiers, tuned amplifiers, oscillators. Mr. Jensen

110B. Electronic Circuits. (3) I.

Lecture—3 hours. Prerequisite: course 110A. Nonlinear electronic circuits; large signal amplifiers, oscillators, and switching circuits. Mr. Jensen

111A. Electronics Laboratory. (2) II.

Laboratory—6 hours. Prerequisite: course 110A (may be taken concurrently); Engineering 101. Properties of transistors and vacuum tubes. Small-signal analysis of single-stage and multistage resistance-coupled and transformer-coupled class A amplifiers. Mr. Jensen

111B. Electronics Laboratory. (2). I.

Laboratory—6 hours. Prerequisite: courses 110B (may be taken concurrently), 111A. Tuned amplifiers and oscillators. Switching circuits and large signal amplifiers. Mr. Jensen

112A. Linear Systems Analysis. I. (3) III.

112B. Linear Systems Analysis. II. (3) III.

Lecture—3 hours. Prerequisite: course 112A or equivalent. Frequency analysis of linear, electrical, mechanical, and electromechanical systems. System function. Natural response and stability concepts. Introduction to feedback systems and to communication systems. Mr. Kozdrowicki, Mr. Mitra

116. Network Analysis. (3) I.

Lecture—3 hours. Prerequisite: course 112A. Topics in modern network analysis, including two-port networks, matrix methods, graph theory, nonlinear circuits, and computer solutions. Mr. LaPatra

117. Network Synthesis. (3) III.

Lecture—3 hours. Prerequisite: course 112A. An introduction to modern network synthesis techniques. Topics include one- and two-port networks, approximation problems, realization procedures, and filter theory. Mr. LaPatra

130A. Introductory Electromagnetics. (3) I.

Lecture—3 hours. Prerequisite: Mathematics 22B, 22C. Static electric and magnetic fields, properties of materials, time-varying electromagnetic phenomena, Maxwell’s equations. Mr. Uman
130B. Introductory Electromagnetics. (3) II.
Lecture—3 hours. Prerequisite: course 130A. Propagation of plane electromagnetic waves, guided waves, transmission lines, antennas.
Mr. Uman

131A. Electromagnetic Fields and Waves. (3) I.
Lecture—3 hours. Prerequisite: course 130B. Maxwell’s equations and the derivation of high-frequency circuit concepts from these field equations; the skin effect.
Mr. Green, Mr. Uman

131B. Electromagnetic Fields and Waves. (3) II.
Lecture—3 hours. Prerequisite: course 131A. Propagation and reflection of electromagnetic waves and their application to transmission lines and waveguides.
Mr. Green, Mr. Uman

131C. Electromagnetic Fields and Waves. (3) III.
Lecture—3 hours. Prerequisite: course 131B. The behavior of resonant cavities, microwave networks, radiations, and antennas.
Mr. Green, Mr. Uman

133. High-Frequency Laboratory. (2) II.
Laboratory—6 hours. Prerequisite: course 130B. Steady-state and transient transmission line behavior; wave propagation in linear and nonlinear artificial lines; rudimentary experiments with reflex klystrons and wave guides.
Mr. Green, Mr. Uman

145A. Solid-State Electronics. (3) I.
Lecture—3 hours. Prerequisite: Physics 121. Electric and magnetic properties of solids. Topics discussed include electrical conductivity, dielectric constant, and various types of magnetism in solids.
Mr. Churchill, Mr. Soooho

145B. Solid-State Electronics. (3) II.
Lecture—3 hours. Prerequisite: course 145A. Electrical characteristics of dielectric and semiconducting materials, with application to such solid-state electronics devices as transistors, tunnel diodes, parametric amplifiers, and their associated circuits.
Mr. Churchill, Mr. Soooho

145C. Solid-State Electronics. (3) III.
Lecture—3 hours. Prerequisite: course 145A. Characteristics of magnetic materials, with application to such magnetic devices as ferrite cores, thin films, and their associated computer memory and logic circuits.
Mr. Churchill, Mr. Soooho

146. Physical Electronics. (3) II.
Lecture—3 hours. Prerequisite: Physics 121. Motion of charges through vacuum, gases and solids. Topics include discussion of vacuum tubes, gaseous electronic and semiconductor devices, and magnetic materials.
Mr. Soooho

150. Instrumentation Systems. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 100, 101. Analytical and design methods common to all instrumentation systems; dynamic response; transducers; signal conditioning.
Mr. Owen

155A. Electronic Instrumentation for Biology Majors. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 16A, 16B and a freshman physics course. Mathematical description of instruments, static errors, dynamic errors, the external characteristics of amplifiers. Laboratory projects illustrate the use of electronic instruments and the properties of sensors. Not open to engineering majors.
Mr. Owen

155B. Electronic Instrumentation for Biology Majors. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 155A. Amplifiers, the use of feedback, digital instrumentation. Laboratory projects illustrate the properties of amplifiers and the use of analog and digital computers as a component of an instrumentation system. Not open to engineering majors.
Mr. Owen

157A. Control Systems. (3) II.
Lecture—3 hours. Prerequisite: course 112B. Design and analysis of closed loop automatic control systems. Examples are drawn from all engineering fields. The mathematical representation of systems; frequency, s-plane and state space methods; stability criteria.
Mr. Hsia, Mr. Owen

157B. Control Systems. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 157A. Introduction to nonlinear and sampled data systems. Applications of digital and analog computers.
Mr. Hsia, Mr. Owen

172. Switching Circuit Theory. (3) I.
Lecture—3 hours. Prerequisite: Engineering 100. The analysis and design of switching circuits, considering relay, electronic and magnetic realizations. Introduction to sequential machines.
Mr. Mitra

173. Digital Computer Design. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 174. A study of the logic design and hardware implementation of digital computers; a laboratory project involving the design, simulation and realization of a digital computer subsystem.
Mr. Loomis

174. Computer Organization. (3) II.
Lecture—3 hours. Prerequisite: course 172; Engineering 5A. The structure and operation of a simple stored program digital computer; data representations and algorithms for operating on data; digital computer subsystems including processors, control units, memory units; data channels and input/output units; special structures.
Mr. Loomis
175. Computer Devices and Systems. (3) III.
Lecture—3 hours. Prerequisite: course 146. Essential elements of the computer and their interdependence. Characteristics of computer input and output devices, main and auxiliary storage including magnetic cores; films, drums, and discs, and the central processor. Also computer integrated circuits and large scale integration (LSI).
Mr. Soohoo

176. Programming Languages. (3) I.
Lecture—3 hours. Prerequisite: Engineering 5A. Limits of Fortran; display terminal language; job control language; Formac; Cobol and Snobol. Use of languages for maximum computer performance. Emphasis on application of various languages. Symbolic differentiation and integration. Treatment of natural language by machine.
Mr. Kozdrowicki

184A. Principles of Communications. (3) I.
Lecture—3 hours. Prerequisite: course 112A. Mathematical representation of deterministic and random signals; elements of probability and random processes; power spectral density and correlation; application to communications.
Mr. Algazi

184B. Principles of Communications. (3) II.
Lecture—3 hours. Prerequisite: course 184A. Probabilistic analysis of digital and analog communication systems; elements of information theory.
Mr. Algazi

Prerequisite: senior standing in engineering with at least a B average. Group study of selected topics. Students may enroll in one or more separate subjects.
The Staff (Mr. Soohoo in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Soohoo in charge)

Graduate Courses

212A–212B. Systems Analysis. (3–3) I–II.
Lecture—3 hours. Prerequisite: course 112A. Properties of systems and their mathematical characteristics; state space concepts, matrix methods; multivariable systems, time-invariant systems; real time analysis, frequency methods, the identification problem, adaptive systems.
Mr. Hsia, Mr. Owen

216. Network Theory. (3) II.
Lecture—3 hours. Prerequisite: course 112B or equivalent. Foundations of network theory. Generalized network analysis, state-variable approach, energy functions, equivalent networks and normal coordinates, scattering matrices, integral theorems and network limitations.
Mr. Mitra

217. Passive Network Synthesis. (3) III.
Lecture—3 hours. Prerequisite: course 117 or equivalent. Advanced topics in synthesis of passive networks. Driving-point and transfer function realizations, matching networks, n-port realizations, approximation techniques.
Mr. Mitra

218. Advanced Network Theory. (3) I.
Lecture—3 hours. Prerequisite: course 216 or equivalent. Advanced topics in network theory such as linear active networks, theory of network graphs, nonlinear and time-varying networks. Topics change from year to year.
Mr. Mitra

226A. Microwave and Quantum Electronics. (3) I.
Lecture—3 hours. Prerequisite: courses 131C, 133. Interaction between electromagnetic fields and the electron charge and spin. Topics include Lorentz force law, energy levels in matter, Zeeman splitting, magnetic resonance and relaxation, and the absorption and radiation of electromagnetic energy.
Mr. Fink

226B. Microwave and Quantum Electronics. (3) II.
Lecture—3 hours. Prerequisite: course 226A. Theory of interaction between electromagnetic fields and the electronic charge, with applications to microwave tubes and plasmas. Beam formation, velocity, and density modulation, plasma oscillation, space charge wave propagation in klystrons.
Mr. Fink

226C. Microwave and Quantum Electronics. (3) III.
Lecture—3 hours. Prerequisite: course 226A. Theory of interaction between electromagnetic fields and the electron-spin, with applications to quantum oscillators and amplifiers such as masers and lasers.
Mr. Fink

230A. Advanced Electromagnetic Theory. (3) I.
Lecture—3 hours. Prerequisite: course 131C or equivalent. The exact formulation of electromagnetic problems by using vector potentials and Green's functions. Applications of these techniques to radiation and transmission problems.
Mr. Green

230B. Advanced Electromagnetic Theory. (3) II.
Lecture—3 hours. Prerequisite: course 230A. Advanced topics in propagation such as propagation through anisotropic media, duct theory of propagation over the earth, ray tracing through the ionosphere.
Mr. Green

230C. Advanced Electromagnetic Theory. (3) III.
Lecture—3 hours. Prerequisite: course 230A. Advanced topics in radiation and scattering such as reception of statistically varying signals, diffracted ray theory, and quasi static solutions.
Mr. Green
240. Engineering Problems in Plasma Physics. (3) III.
Lecture—3 hours. Prerequisite: courses 130B and 146. Plasma oscillations and sheaths, measurement of plasma parameters, magnetized plasmas, kinetic and fluid descriptions, waves; applications to problems in communications, devices, power generation, propulsion and controlled thermonuclear fusion research. Mr. Uman

245A. Applied Solid-State Physics. (3) I.
Lecture—3 hours. Prerequisite: course 145C or equivalent. The physics of solids relevant to solid-state applications. Topics include classical statistics, band theory of solids, electric polarization, conductivity, and magnetism in solids. Mr. Soochoo, Mr. Churchill

245B. Applied Solid-State Physics. (3) II.
Lecture—3 hours. Prerequisite: course 245A. The theory of semiconductors with application to transistors. Topics include electrons, holes, mobility, and transistor circuitry. Brief discussion of superconductivity and superconducting solenoids. Mr. Soochoo, Mr. Churchill

245C. Applied Solid-State Physics. (3) III.
Lecture—3 hours. Prerequisite: course 245A. The theory of magnetism in solids, with application to ferromagnetic devices and circuits. Topics include paramagnetism, ferromagnetism, magnetic resonance, and switching properties of individual magnetic elements and magnetic arrays. Mr. Soochoo, Mr. Churchill

251. Nonlinear Control Systems. (3) III.
Lecture—3 hours. Prerequisite: course 157B and 212B. Techniques for solving nonlinear control problems; state space methods, stability theorems; Lyapunov's methods; sinusoidal describing function and on-off systems. Mr. Owen

252. Control System Optimization. (3) III.
Lecture—3 hours. Prerequisite: course 157B and 212B. Optimization of systems by the adjustment of parameters; deterministic inputs, stochastic inputs. Optimization of systems by the calculus of variations; Pontryagin's maximum principle, Bellman's principle of optimality. Mr. Hsia

270. Sequential Machines. (3) II.
Lecture—3 hours. Prerequisite: course 172. A study of the algebraic structure theory of sequential machines and the development of sequential machine synthesis techniques. Mr. Loomis

271. Advanced Digital System Design. (3) III.
Lecture—3 hours. Prerequisite: course 173. Advanced topics in the design of digital systems; high speed and high rate arithmetic; the state assignment problem. Mr. Loomis

276. Symbol Manipulation Languages. (3) I.
Lecture—3 hours. Prerequisite: Engineering 5A; Mathematics 129. Use of computers for non-numerical processing or manipulation of symbolic expressions; a comparison of the symbol manipulating capability of SNOBOL, LISP, FORMAC, PL/I, MAP, ALGOL 68; application of these languages for compiler writing and theorem proving; descriptive languages.

Mr. Kozdrowicki

279A-279B. Artificial Intelligence. (3) II-III.
Lecture—3 hours. Prerequisite: course 276. The achievement of artificial intelligence through attempted realization of macroscopic descriptions of intelligent behavior; heuristic programming; game playing; mechanical theorem proving; concept formation by machine; perception of geometrical figures; analogical reasoning; natural language processors; the brain-modeling problem. Mr. Kozdrowicki

284A. Noise, Communication and Information Theory. (3) II.
Lecture—3 hours. Prerequisite: course 184A or equivalent. Fundamentals of the theory of random processes pertinent to communications, control and other physical applications. Review of probability theory. Characterization of random processes. Correlation functions and power spectra. Linear and nonlinear operations on random processes. Mr. Algazi

284B. Noise, Communication and Information Theory. (3) III.
Lecture—3 hours. Prerequisite: course 284A. Application of statistical techniques to the areas of detection, estimation, and modulation theory. Detection problem and application to radar and digital communication. Estimation theory for signals described by finite parameter sets. Linear and nonlinear modulation and efficient demodulators. Mr. Algazi

284C. Noise, Communication and Information Theory. (3) I.
Lecture—3 hours. Prerequisite: course 284A. Information theory and coding. Definition of a measure of information and study of its properties. Introduction to channel capacity and error free communications over noisy channels. Encoding and decoding of data for transmission over noisy channels. Mr. Algazi

290. Seminar. (1) I, II, III.
Seminar—1 hour. Discussion of current research. Written and oral reports will be given. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

298. Group Study. (1-5) I, II, III.
The Staff (Chairman in charge)

299. Research. (1-12) I, II, III.
(Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)
ENGINEERING: MECHANICAL
Harry Brandt, Ph.D., Chairman of the Department
Department Office, 2020 Bainer Hall

Professors:
Harry Brandt, Ph.D.
Clyne F. Garland, M.S. (Emeritus)
Warren H. Giedt, Ph.D.
Myron A. Hoffman, Sc.D.
Dean C. Karnopp, Ph.D.
John D. Kemper, Ph.D.

Associate Professors:
Arthur L. Austin, Ph.D.
Charles W. Beadle, Ph.D.
Jerald M. Henderson, D.Engs.
Allan A. McKillop, Ph.D.
Paul S. Moller, Ph.D.
Amiya K. Mukherjee, D.Phil.
An Tsu Yang, D.E.Sc.

Assistant Professors:
John W. Brewer, Ph. D.
Harry A. Dwyer, Ph.D.
Walter V. Loscutoff, Ph.D.
Donald W. Moon, Ph.D.

Professor:
Shinzo Kikkawa, D.S. (Visiting)

Upper Division Courses

111. Engineering Principles Laboratory. (4) III.
Discussion—2 hours; laboratory—4 hours.
Prerequisite: Engineering 103A, 104A, 105B.
Experimental investigation of the steady-state and transient behavior of thermal, mechanical, structural, and fluid systems.

114. Kinematics of Mechanisms. (3) I.
Lecture—2 hours; laboratory—3 hours.
Prerequisite: Engineering 102B. Classification of kinematic elements and mechanisms; graphical and analytical determination of displacements, velocities, and accelerations within planar mechanisms involving turning, sliding, and higher pairs. Kinematic design ofcams, gears, and gear trains; intermittent-motion mechanisms.

115. Dynamics of Machinery. (3) II.
Lecture—3 hours. Prerequisite: course 114. Analysis of dynamic response of machine elements such ascams, springs, gears, and links, with emphasis on high speed operation; gyroscopic forces in machines; balancing of machinery; introduction to dynamics of feedback control systems.

118. Mechanical Design. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 4, 104A; course 121 recommended. Application of the principles of engineering mechanics in the design of mechanical components, with special emphasis on stress concentration, theories of failure, fatigue, and fluctuating stresses.

120. Advanced Mechanical Design. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 118. Continuation of course 118, with special emphasis on advanced design analysis; application of two-dimensional theory of elasticity to stress analysis; contact stresses; thermal stresses; elastic impact; creep; hydrodynamic lubrication and bearing design.

121. Manufacturing Methods. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 104A. Introduction to the methods employed in modern manufacturing, with particular emphasis on the interrelationships between engineering design and manufacturing methods. Introduction to the theoretical basis of metal forming.

123A–123B. Experimental Engineering.
(2–2) I–II; III–III.
Laboratory—6 hours. Prerequisite: senior standing in engineering. Performance of a two-quarter long project which includes the design, construction, and evaluation of a mechanical engineering system or related experiment intended to give the student experience in theoretical modelling and experimental evaluation.

124. Engineering Systems Design. (3) III.
Lecture—3 hours. Prerequisite: senior standing in engineering. Synthesis of the several fields of engineering, with applications in the design of systems.

125. Mechanics of Compressible Fluids. (3) III.
Lecture—3 hours. Prerequisite: Engineering 103B. Introductory concepts of compressible flow. Isentropic flow; normal shock waves; frictional and diabatic flow; generalized one-dimensional continuous flow.

127. Aerodynamics. (3) I.
Lecture—3 hours. Prerequisite: Engineering 103B. Lift and drag; aerodynamic load distributions; thin aerofoil and slender body theory; boundary layer control; compressibility effects; mutual interference; static and elementary dynamic stability; propulsion.

128. Aerospace Design. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 127; Engineering 104B. Design of aircraft and missile systems; influence of aerodynamic and inertial loading on structural integrity; guidance and control.
129A. Analysis, Simulation, and Design of Dynamic Systems. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: senior standing in engineering. Structural models for dynamic systems. The design of control systems to improve linearity, accuracy, and speed of response of dynamic systems. Design of feedback systems which maintain quality of performance in spite of parameter variation. Analog and digital computer simulation.
Mr. Brewer

129B. Analysis, Simulation, and Design of Dynamic Systems. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 129A. Phenomenological models for dynamic systems. Control system design using frequency domain methods. Stability of nonlinear control systems. Introduction to the theory of state space methods for multivariable control systems. Laboratory demonstrations in automatic control practice.
Mr. Brewer

129L. Laboratory for Analysis, Simulation and Design of Dynamic Systems. (1) III.
Laboratory—3 hours. Prerequisite: course 129B (to be taken concurrently). Analog and digital computer experiments in feedback control theory. Topics are based on content of course 129B.
Mr. Loscutoff

130. Solid-State Thermodynamics. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 105B or consent of instructor. The thermodynamics of the Solid State, relation between thermodynamic and physical properties, free energy of heterogeneous reactions, quasichemical approach to solutions, free energy of binary systems and thermodynamics of interfaces.
Mr. Mukherjee

135. Aircraft and Rocket Propulsion. (4) II.
Lecture—4 hours. Prerequisite: Engineering 103B, 105B. Principles of fluid propulsion and propulsive efficiency of air-breathing systems. Principles of rocket propulsion. Dynamics of launch in gravitational field and with air drag; thrust programming; and multitaging. Satellite orbital mechanics and interplanetary flight.
Mr. Hoffman

140. Materials in Engineering Design. (4) II.
Lecture—3 hours. Prerequisite: senior standing in Engineering, or consent of instructor. Descriptive treatment of common engineering materials. Mechanical properties of typical materials including metals, woods, cements, polymers and glasses. Principles of heat treatment and fabrication as they affect design parameters, and their applications in engineering will be emphasized.
Mr. Moon

142. Crystal Structure and X-Ray Diffraction. (3) I.
Mr. Moon

171. Analysis, Simulation, and Design of Dynamic Systems. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: senior standing in engineering. Structural models for dynamic systems. Design of control systems to improve linearity, accuracy and speed of response. Design of feedback systems which maintain quality of performance in spite of parameter variations. Analog and digital computer simulation.
Mr. Brewer

172. Analysis, Simulation, and Design of Dynamic Systems. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 171. Phenomenological models for dynamic systems. Control system design using frequency domain methods. Stability of nonlinear control systems. Introduction to state space techniques.
Mr. Brewer

175. Introduction to Socio-Technological System Analysis. (3) II.
Lecture—3 hours. Prerequisite: senior standing in engineering. Description of transient and steady-state models of population, pollution and violence. Application of engineering thermodynamics and system theory to the analysis of social and ecological systems. Review of current social criticisms of technology. Interactions of society with technology.
Mr. Brewer

185A. Intermediate Fluid Mechanics. (3) II.
Lecture—3 hours. Prerequisite: Engineering 103B. Formulation of continuity, momentum, and energy equations; applications to control volumes; two-dimensional and axially symmetric potential flows.
Mr. Dwyer

185B. Intermediate Fluid Mechanics. (3) III.
Lecture—3 hours. Prerequisite: course 185A. Incompressible flows of real fluids; Navier-Stokes equations; unsteady flows in conduits and open channels; flow around immersed bodies; one-dimensional compressible flow.
Mr. Dwyer

198. Directed Group Study. (1-5) I, II, III.
Lecture—1—5 hours. Prerequisite: senior standing in engineering with at least a B average. Group study of selected topics.
The Staff (Mr. Brandt in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Brandt in charge)
Graduate Courses

203A–203B. Convective Heat Transfer. (3–3) II–III.
Lecture—3 hours. Prerequisite: course 210A and Engineering 186; or Chemical Engineering 253A. Analysis of heat and momentum transfer by forced and natural convection during laminar and turbulent flows; discussion of allied topics such as boiling and condensation; current topics in heat transfer.
Mr. McIlholl

204. Heat Conduction. (3) I.
Lecture—3 hours. Prerequisite: Engineering 180, 186. Steady-state and transient problems in heat conduction, using both mathematical and numerical methods of solution. Mr. Giedt

205. Thermal Radiation. (3) I.
Lecture—3 hours. Prerequisite: Engineering 186, or consent of instructor. The transfer of radiant energy. Geometrical and spectral characteristics of systems involving thermal radiation. Gaseous radiation. Mr. Brandt

210A. Boundary Layer Theory. (3) I.
Lecture—3 hours. Prerequisite: course 185B or consent of instructor; Mathematics 24. Introduction to boundary layer theory. Boundary layers for two-dimensional flow. Similarity solutions of boundary layer equations. Axially symmetrical and three-dimensional boundary layers. Mr. Brandt

210B. Boundary Layer Theory. (3) II.
Lecture—3 hours. Prerequisite: course 210A, or consent of instructor. Nonsteady-state boundary layers. Approximate methods for solution of boundary layer equations. Boundary layers in compressible flow. Turbulent boundary layers along a flat plate. Turbulent boundary layers with positive and negative pressure gradients. Mr. Brandt

211. Transitional and Turbulent Flows. (3) III.
Lecture—3 hours. Prerequisite: course 210B. Wave motion in fluids; stability of Couette flow, plane Poiseuille flow and boundary layers; description of turbulent flow. Structure of the turbulent energy spectrum; turbulent transport phenomena. Turbulent shear flows and their measurement; new theories in turbulence. Mr. Dwyer

212A. Gas Dynamics. (3) I.
Lecture—3 hours. Prerequisite: course 125 or equivalent. Derivation and analysis of the basic equations of motion of inviscid gases at subsonic and supersonic speeds. Prandtl-Meyer flow and the method of characteristics. Applications to unsteady transonic and hypersonic flow. Shock theory. Mr. Dwyer

212B. Gas Dynamics. (3) II.
Lecture—3 hours. Prerequisite: course 212A. Advanced numerical techniques for solving the differential equations of gas dynamics. Introduction to the gas dynamics of non-equilibrium flow. Shock structure. Free molecular and rarefied gas dynamics. Mr. Dwyer

213. Theory of Jets. (3) III.
Lecture—3 hours. Prerequisite: course 210A or consent of instructor. Turbulent jets of incompressible and compressible fluids; free jets and jets confined to finite spaces; wakes behind bluff bodies; practical applications of turbulent jets. Offered in odd-numbered years. Mr. Brandt

214. Aerodynamics. (3) III.
Lecture—3 hours. Prerequisite: courses 125, 127, 185B. Development and examination of the potential and viscous flow concepts useful in evaluating the aerodynamic loads and performance of flight vehicles. Applications of these concepts will be made through complete system analysis and optimization with particular emphasis on V.T.O.L. aircraft. Mr. Moller

220A–220B. Mechanical Vibrations. (3–3) II–III.
Lecture—3 hours. Prerequisite: Engineering 122. Applications of vibration theory to systems with many degrees of freedom and continuous systems. Oscillations in systems having nonlinear characteristics. Self-excited oscillations. Response curves and stability considerations. Mr. Karnopp

221. Introduction to Random Vibration. (3) II.
Lecture—3 hours. Prerequisite: Engineering 122. Nature and statistical analysis of random vibrations. Response of physical systems to random excitation. Data processing. Mr. Beadle

222. Advanced Dynamics. (3) I.
Lecture—3 hours. Prerequisite: Engineering 102B. Dynamics of particles and of rigid bodies with advanced engineering applications; generalized coordinates; Hamilton's Principles; Lagrange's Equations; Hamilton-Jacobi theory. Mr. Beadle

223. Advanced Kinematic Analysis. (3) I.
Lecture—3 hours. Prerequisite: course 115. Advanced kinematic analysis of planar mechanisms, poles and centroids, Euler-Savary equation, inflection circle, curvature theory, Bohiller's construction, Hartmann's construction. Four-bar coupler-point curves. Mr. Yang

224. Kinematic Synthesis of Mechanisms. (3) II.
Lecture—3 hours. Prerequisite: course 115. Introduction to curve and function synthesis, Chebyshev's theorem, Structure errors. Complex number methods. Geometrical synthesis using poles, pole paths, and center point curves. Burmester's theorem. Mr. Yang
229A. Analysis, Simulation, and Identification of Dynamic Systems. (3) II.
Lecture—3 hours. Prerequisite: course 129B or equivalent; Electrical Engineering 212B (may be taken concurrently). Analysis of distributed parameter systems. Analog and digital simulation of distributed and lumped parameter dynamic systems. Introduction to concepts of transfer state and dynamic state. Experimental determination of transfer function and state space models for dynamic systems. Mr. Brewer

229B. Analysis and Design of Dynamic Systems. (3) III.
Lecture—3 hours. Prerequisite: course 229A; Electrical Engineering 252 recommended (may be taken concurrently). Emphasis on the application of computer technology and numerical analysis theory to the design of control systems. Numerical control systems. Sampled data control systems. Optimal and sub-optimal control. Mr. Brewer

230. MHD Energy Conversion. (4) III.
Lecture—4 hours. Prerequisite: Engineering 103B, 105B. Study of the direct conversion of thermal energy to electrical energy utilizing a magnetohydrodynamic (MHD) generator with chemical and nuclear heat sources. Evaluation of complete MHD power systems for both public utility power and space power supplies. Offered in even-numbered years. Mr. Hoffman

240. Theory of Crystal Dislocations. (3) I.
Lecture—3 hours. Prerequisite: course 142 or Engineering 187, or consent of instructor. Edge, screw and mixed dislocation concepts. The stress field and energy of dislocations. Force on a dislocation. Motion of dislocations and its relation to plastic deformation. Dislocation multiplication and interaction with point, line, and surface defects. Mr. Moon

241. Applications of Dislocation Theory. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240; Engineering 188 or consent of instructor. Concepts of dislocation theory are applied to explain plasticity of crystalline solids. Glide and climb of dislocations, imperfect dislocations, strain hardening, recrystallization, theories of creep processes and interaction of dislocation with solute atoms, precipitates and impurity clouds are discussed. Offered in even-numbered years. Mr. Mukherjee

242. Advanced Mechanical Properties of Materials. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 188, 104B or consent of instructor. Strength and structure of engineering materials. The dependence of their mechanical properties on time, stress and temperature. Generalized concepts of dislocation theory in plastic deformation, including fracture, and creep. Influence of microstructure in optimizing the mechanical strength properties. Mr. Mukherjee

243. Solid-State Phase Transformation. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 188, 105B or consent of instructor. The theory of alloying, kinetics of phase changes, homogeneous and heterogeneous transformation, transformation by shear, order-disorder reactions and the phase changes during the heat treatment of iron-carbon alloys are discussed. Offered in odd-numbered years. Mr. Mukherjee

289. Presentation of Thesis Research. (1) III.
Seminar—1 hour. Prerequisite: substantial progress toward completion of master’s or doctor’s thesis. Presentation of the results obtained in a thesis research project. Critical evaluation of experimental and analytical approaches and critique of presentation. Mr. Giedt

290. Seminar. (1) II, III.
Seminar—1 hour. Discussion of current graduate research with particular attention to validity of experimental procedures, and including oral and written presentation of a term paper. (Satisfactory/Unsatisfactory grading only.) Mr. Giedt

The Staff (Chairman in charge)

(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)
Linda Van Norden, Ph.D.
*Brom Weber, Ph.D.
Robert A. Wiggins, Ph.D.
James L. Woodress, Ph.D.
Celeste T. Wright, Ph.D.

Associate Professors:
William E. Baker, Ph.D.
Wayne C. Harsh, Ph.D., (English and Linguistics)
Elizabeth R. Homann, Ph.D.
*Robert H. Hopkins, Ph.D.

Assistant Professors:
Elliott L. Gilbert, Ph.D.
John O. Hayden, Ph.D.
Peter L. Hays, Ph.D.
Michael J. Hoffman, Ph.D.
*James R. Huford, Ph.D.
Lindsay A. Mann, Ph.D.
*Arthur E. McGuinness, Ph.D.
Diane L. Murray, Ph.D.
Daniel S. Silvia, Jr., Ph.D.
David S. Wilson, Ph.D.

Professor:
Denis W. Johnston, M.A., LL.M. (Visiting)

Assistant Professor:
Thomas P. Campbell, III, B.A. (Acting)

Lecturers:
Mary A. O'Connor, M.A.
W. Georg Isaak, M.A.

Departmental Major Advisers—Mr. Baker, Mr. Gilbert, Mr. Hanzo, Mr. Hayden, Mr. Hays, Mr. Hoffman, Mr. Hogan, Mr. Hopkins, Mr. Huford, Mr. Mann, Mr. McGuinness, Mrs. Murray, Mr. Silvia, Miss Van Norden, Mr. Wilson, Mrs. Wright.

The Major Program
All English majors are required to attend a general meeting for majors at the beginning of each year; all new and transfer English majors are required to attend a general meeting for majors at the beginning of their first quarter in residence; all English majors must see their advisers, individually, in the spring quarters of their sophomore and junior years.

Lower Division Courses. — Required: one course from 1, 2, 3, 4A, or 4B; course 45; 46A—46B—46C (these courses should be taken in order). Recommended: courses in the Freshman offering other than the one chosen to meet the requirements; courses 30A, 30B, 30C; a course in philosophy; and a course in classics.

Upper Division Courses.—Required: Thirty-six units of upper-division courses, which must include at least one in each of the following groups: Period courses, Genre courses, Author courses, Special Subjects, Language courses.

Majors must also take at least one upper-division course in four of the following five periods of British literature: 1) Medieval; 2) Renaissance; 3) Seventeenth and Eighteenth Century; 4) Romantics and Nineteenth Century; 5) Twentieth Century; and at least one upper-division course in the following two periods of American literature: 1) Beginnings to 1860; 2) 1860 to the present.

In addition, the student must choose one of four areas of emphasis: General English and American Literature; Writing; Language and Linguistics; Preparation for Teaching. The student must consult with his adviser for specific requirements of each area of emphasis.

General Major.—Requires a minimum of 32 units of literature.

Teaching Major.—The English teaching major in the teacher-training curriculum requires not only the core requirements but also courses 103, 105A, 105B, and 300 (which counts as 3 units of credit in education). Although these courses may be postponed to the fifth year, course 105A should be taken before course 300.

Teaching Minor.—The teaching minor consists of 32 units, including courses 45, 46A, 46B, 46C, either 30B or 30C, and at least 12 units of upper-division work including English 103, 117A or 117B, and 155B or 155C. Course 300 (which counts as 3 units of credit in education) must be taken in the senior or postgraduate year. Recommended in addition to the required 32 units, especially in preparation for course 300: course 105A.

Writing Major.—Requires English 100A—100B—100C and a 19B seminar in writing techniques.

Linguistics Major.—Requires five courses in linguistics.

Foreign Languages.—Students who contemplate advanced study in English at Davis should prepare for foreign-language requirements for higher degrees, and should consult with the graduate adviser.

Honors and Honors Program.—See page 133.

Graduate Study.—The Department of English offers programs of study and research leading to the M.A. and Ph.D. degrees. Detailed information may be obtained from the Graduate Adviser or from the Chairman of the Department.

Subject A.—Students must have passed Subject A before taking any course in English.

Prerequisites: one course from courses 1, 2, 3, 4A, 4B is required for admission to courses 20, 30A, 30B, 30C, 45, 46A, 46B, 46C, 47 and all upper-division courses. Course 45 is recommended as preparation for the 30 and 46 series.
Lower Division Courses

1. Expository Writing. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: completion of Subject A requirement. Composition, the essay, paragraph structure, dictation, and related topics. Frequent writing assignments will be made.

The Staff (Mr. Isaak in charge)

2. Language and Stylistics. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: completion of Subject A requirement. An introduction to modern inquiries into the nature and forms of the English language. Frequent writing assignments will be made.

Mr. Harsh

3. Introduction to Literature. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: completion of Subject A requirement. Introductory study of several genres of English literature, emphasizing both analysis of particular works and the range of forms and styles in English prose and poetry. Frequent writing assignments will be made.

Mr. Mann

4A, 4B. Backgrounds for English Literature.
(4) A: I, II, III; B: I, II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: completion of Subject A requirement; course 4A is not prerequisite to 4B. This course, designed to introduce English majors to essential background material, will concentrate on such major literary works as The Iliad, The Bible, The Aeneid, and The Divine Comedy. Frequent writing assignments will be made.

Mr. Hayden

5. Introduction to Creative Writing. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: completion of Subject A requirement and consent of instructor. A course in the elementary principles of writing fiction and poetry. Students will be expected to experiment with a variety of forms and will be encouraged to do free and independent work in addition to the restricted assignments of the course.

Mr. Isaak

20. Intermediate Composition. (4) I, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Designed primarily for non-majors who wish to improve their skills in expository writing; the content of the course includes basic principles of rhetoric and rules of usage in present-day English.

Mr. Hays

25. English for Foreign Students. (5) I, II.
Lecture, 2 hours; discussion—2 hours; laboratory—1 hour. For foreign students only. Required of those who do not pass the examination in English.

Mr. Harsh in charge

Lecture—2 hours; discussion—2 hours; laboratory—2 hours. Continuation of course 25; required of those who have taken course 25.

Mr. Harsh in charge

30A. Survey of American Literature. (4) I.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. American literature from its seventeenth-century beginnings to 1830.

Mr. Johnston

30B. Survey of American Literature. (4) II.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Nineteenth-century American literature from 1830 to 1900.

Mr. Wiggins

30C. Survey of American Literature. (4) III.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. American literature in the twentieth century.

Mr. Wiggins

The Staff (Chairman in charge)

39. Special Study for Undergraduates. (1–5)
I, II, III.
The Staff (Chairman in charge)

45. Critical Reading of Poetry. (4) I, II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Close reading of selections from English and American poetry. Frequent written exercises.

The Staff (Mrs. Wright in charge)

46A. Masterpieces of English Literature. (4)
I, II.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Selected works of principal writers to 1640. The history of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms.

Mr. Silva

46B. Masterpieces of English Literature. (4) II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Selected works of principal writers from 1640 to 1800. The history of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms.

Mr. Mann

46C. Masterpieces of English Literature. (4) III.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Selected works of principal writers from 1800 to the present. The history of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms.

Mr. Gilbert
47. Introduction to Modern Literature. (4) II, III.
Lecture—2 hours; discussion—2 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Chief twentieth-century writers of England and America. Mr. Hanzo

Upper Division Courses

Period courses: studies of the major writers, the literary traditions and forms they worked in, and the influencing events of an age.

111. Old English and Early Medieval Literature. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Major types, traditions, and conventions of literature in England from the time of Boeowulf to the late medieval romances, with special emphasis on the heroic strain, courtly love and its impact, and the development of Arthurian literature. Mostly in translation. Mr. Silvia

112. The Age of Chaucer. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The literary, religious, and social movements of the later fourteenth century in England as they are reflected in the writings of Chaucer, Langland, the Gawain poet, and their contemporaries; the fifteenth-century Chaucerians. Mr. Silvia

115. The English Renaissance. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Selected poetry and prose: More, Spenser, Hooker, Bacon, and others. The New Learning; the Reformation; psychological and moral concepts of the age.

116. The Age of Elizabeth. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Poetry of Marlowe, Shakespeare, Sidney and others; fiction of Gaskine, Lyly, Lodge; representative plays.

120. Earlier Seventeenth-Century Poetry and Prose. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Major authors, forms, and styles. Donne, Jonson, Marvell, Bacon, Browne, Hobbes. Tradition and revolution. A term paper, or its equivalent in essay composition, will be required. Mr. Mann

123. Dryden and His Contemporaries. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The Restoration in English Literature; Neoclassicism, Ancients versus Moderns, Pyrrhonism, the New Philosophy. Drama, criticism, and satire. Emphasis on the work of John Dryden.

125. The Age of Swift and Pope: Prose and Poetry. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The Augustan Age: reason and imagination. Readings in Swift, Addison, Steele, Defoe, Pope, Gay, Thomson, and others. A term paper, or its equivalent in essay composition, will be required. Mr. Hopkins, Mr. McGuinness

127. Johnson and His Contemporaries. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Sense and Sensibility in poetry, biography, journals, fiction, comedy, and criticism. Readings in Johnson, Boswell, Goldsmith, Fielding, and others. Mr. McGuinness

Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Sense and Sensibility in criticism, history, philosophy and the novel. Readings in Hume, Burke, Gibbon, Sterne, Cowper, and others. The mysticism of Blake. Mr. McGuinness

130. Early Romantic Literature. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Blake, Burns, Wordsworth, Coleridge, Scott; the eighteenth-century background and the development of Romantic concepts of the imagination. Mr. Hayden

132. Later Romantic Literature. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Byron, Shelley, Keats. Individualism and revolt. Mr. Baker

133. Early Victorian Literature. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Tennyson, Browning, Arnold, and selected prose writers. The Victorian temper; the individual and society; the search for faith. The impact of scientific thought upon creative thinkers. Mrs. Murray

134. Later Victorian Literature. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Ruskin, Hardy, Hopkins, and others. The Oxford movement; the Pre-Raphaelites; art and sociology; aestheticism and decadence; pessimism. Tendencies continuing into the Edwardian period. Mr. Gilbert

136. British Literature from 1880 to 1918. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Yeats, Conrad, Joyce. Aestheticism, naturalism, symbolism, and impressionism. The transition from Victorian to twentieth-century styles and attitudes. Mr. Gilbert

* Not to be given, 1970–71.
137. British Literature from 1918 to 1940. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Lawrence, Eliot, Forster, and others. Post-war attitudes. Modern psychology and the awareness of myth.
Mr. Johnston

*138. British Literature from 1940 to the Present. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Literature of England and Ireland from World War II to the present. Major themes in the novel, poetry, and short story.

*139. Modern Anglo-Irish Writers. (4) I.
Lecture—3 hours. Prerequisite: a lower division English course; term paper. A study of Yeats, Joyce, George Moore, John Synge, James Stephens and others.

140. Origins of American Literature. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Seventeenth-century American literature; special attention to European literary-intellectual traditions, dominant American forms (poems, sermon, history), and major writers (Ann Bradstreet, Edward Taylor, and others).
Mr. Wilson

*141. The American Enlightenment and Its Reaction. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Eighteenth-century American literature; rise of neoclassicism, liberal religion, popular literature, scientific thought, satiric temper; decline of Puritan traditions; major writers, including Franklin, Edwards, Freneau, and Brackenridge.
Mr. Woodress, Mr. Wilson

142. Early Nineteenth-Century American Literature. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Beginnings of American romanticism; sentimentalism. Gothic vogue, cultural nationalism, Southwestern humor; prose and poetry of Brown, Bryant, Irving, Cooper, Poe, and Longstreet.

*143. Transcendentalism and Its Reaction. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Flowering of American romanticism; the metaphysical tradition; Oriental and European antecedents, philosophical idealism, and literary achievement of Transcendentalism (Emerson, Thoreau, Whitman); the critical temper of Hawthorne and Melville; Emily Dickinson.

144. American Literature from 1865 to 1914. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Religion, local color, social criticism, naturalism, fin de siècle aestheticism; Twain, James, Crane, Dreiser, Howells.
Mr. Johnston

*146. Modern American Literature: 1914 to 1940. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The Modernist movement, disillusionment, artistic experimentalism, classical revival, New Criticism, proletarian literature, romantic nationalism, European currents, Pound, Fitzgerald, Eliot, Frost, Hemingway, Crane, Faulkner, and Stevens.
Mr. Hays

*147. Modern American Literature: 1940 to the Present. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Contemporary fiction, poetry, and drama. The impact of World War II on the younger writers; experimentation and formalism in poetry and the drama.
Mr. Weber

Genre courses: studies of major literary forms.

*150A. English Drama to Marlowe. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The development of the drama from its beginnings to the Renaissance. Miracle and mystery plays; the morality tradition. Early comedy, tragedy, and chronicle plays.
Mrs. Homann

150B. English Drama from Marlowe to 1642. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Shakespeare's contemporaries in the drama, including Webster, Jonson, Beaumont and Fletcher, and others. The revenge play and tragicomedy; post-Shakespearean development of dramatic action and blank verse.

*150C. English Drama from 1642 to 1800. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Restoration comedy, eighteenth-century sentimental comedy, and nineteenth-century melodrama, with particular attention to plays of Congreve, Sheridan, and Bouicault.
Mr. Hays

1500. British Drama from 1890 to the Present. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The rise of dramatic realism; the chief reactions against it. Emphasis on Shaw, O'Casey, and Osborne.
Mr. Johnston

* Not to be given, 1970-71.
152. American Drama from Its Beginnings to the Present. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Critical and historical survey of drama in America from its eighteenth-century origins with emphasis on Boucicaut, Rice, O'Neill, Williams, and Miller.

155A. The English Novel: 1700-1770. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Realism and the rise of the modern novel. Defoe, Richardson, Fielding, Sterne, and Smollett. Mr. Hopkins

155B. The English Novel: 1770-1850. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Sense and Sensibility. Walpole, Radcliffe, Austen, Scott, Dickens, Bronte sisters. Mrs. Murray

155C. The English Novel: 1850-1900. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Major Victorian novelists: their theory and practice. Dickens, Thackeray, Trollope, Eliot, Meredith, and Hardy. Mr. Gilbert

155D. The English Novel: 1900 to the Present. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Major figures including Conrad, Joyce, and Lawrence. Impressionism, the revolt against naturalism; the experimental novel; the anti-modernist reaction. Mr. Hoffman

158A. The American Novel to 1900. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The rise and development of the American novel from its eighteenth-century beginnings. Cooper, Hawthorne, Melville, Howells, Twain, James, Crane. Mr. Hoffman

158B. The American Novel from 1900 to Present. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Major American novelists of the twentieth century. Wharton, Dreiser, Faulkner, Hemingway, Fitzgerald, Bellow. Mr. Hays

160. The English Lyric. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The history of poetic style from the sixteenth to the twentieth centuries. Major examples of the short poem in relation to intellectual history, to foreign influences, and to the development of poetic forms. Mrs. Wright

170A. The Epic. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Studies in the development of the epic. Miss Van Norden

113. Chaucer. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Troilus and Criseyde, selected Canterbury Tales; central ideas in the fourteenth century. Mrs. Homann

117A. Shakespeare. (4) I, II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Selected major works. Mrs. Wright, ______

117B. Shakespeare. (4) II, III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Selected major works not included in 117A. Mrs. Wright, ______

122. Milton. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Selected major works, including Paradise Lost. Mr. Mann

189. Study of a Major Writer. (4) I, II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The artistic development of one major writer. May be repeated for credit when a different writer is studied. The Staff (Chairman in charge)

Special subjects: studies in a special problem in literature.

110A. Introduction to Principles of Criticism. (4) I.
Lecture—3 hours. Prerequisite: course 45 or equivalent. Methods and assumptions of critical theory from Aristotle to the present. Emphasis on major contributions to the history of literary criticism. Mr. Hayden

110B. Introduction to Principles of Criticism. (4) II.
Lecture—3 hours. Prerequisite: course 45. Continuation of 110A. Mr. Hayden

170B. European Influences on the English and American Novel. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Studies in the English and American novel, with special reference to continental influences. Mr. Carter

171. English Bible as Literature. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Old Testament poetry and prophecy; the Gospels and certain Epistles. Miss Van Norden

175. American Literary Humor. (4) I.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The American humorous vision as expressed in such modes as comedy, satire, irony, and their combinations from the seventeenth century to the present, * Not to be given, 1970-71.
with attention given to such matters as the nature of humor and the cultural influences affecting its development. Mr. Weber

Writing courses:

100A. Creative Writing. (4) I, II.
Lecture—3 hours; evaluation of written materials and conferences with individual students—1 hour. Prerequisite: one course from courses 1, 2, 3, 4A, 4B; consent of instructor. Writing of poetry and fiction. May be repeated for credit with consent of instructor.

The Staff (Mr. Shapiro in charge)

100B. Creative Writing. (4) II.
Lecture—2 hours; evaluation of written materials and individual student conferences. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Sophomores may enroll with consent of instructor. The writing of poetry and fiction. May be repeated for credit with consent of instructor.

The Staff (Mr. Shapiro in charge)

100C. Creative Writing. (4) III.
Lecture—2 hours; evaluation of written materials and individual student conferences. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Sophomores may enroll with consent of instructor. The writing of poetry and fiction. May be repeated for credit with consent of instructor.

The Staff (Mr. Shapiro in charge)

103. Advanced Composition. (4) I, II, III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Survey of prose styles, the principles of prose rhetoric, and the usage patterns of present-day English grammar. Frequent written composition stressing the principles studied. Required of prospective high school English teachers.

The Staff (Mr. Shapiro in charge)

Language and linguistics:

105A. Language. (4) II.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. Present-day English grammar and pronunciation according to the perspectives of traditional grammar and contemporary linguistics. Preparation for stylistic analysis and historical study of English language and literature. Required of prospective English teachers.

Mr. Harsh, Mr. Hurford

105B. Language. (4) III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. History of the English language. Examination of the language as recorded in literary texts from Old English to present-day English. Relationship of English to other languages; development of vocabulary, phonology, and grammatical patterns. Required of prospective English teachers.

Mr. Harsh, Mr. Hurford

* Not to be given, 1970–71.

Senior Seminars:

189. Study of a Major Writer. (4) I, III.
Lecture—3 hours. Prerequisite: one course from courses 1, 2, 3, 4A, 4B. The artistic development of one major writer and his intellectual and literary milieu. May be repeated for credit when a different writer is studied.

The Staff (Chairman in charge)

194H. Special Study for Honors Students.
(2) I, II, III.
Prerequisite: honors status; one course from courses 1, 2, 3, 4A, 4B. Individual directed study leading to preparation of a long paper. May be repeated once for credit.

The Staff (Chairman in charge)

The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Chairman in charge)

Graduate Courses

200. Techniques of Literary Scholarship. (4) I.
Lecture—3 hours. The elements of bibliography with special attention to literature and discussion of the principal modes of literary investigation—critical, historical, textual, and others.

Miss Van Norden

201. Literary Criticism. (4) II.
Lecture—3 hours. Survey of the major critics from Aristotle to the present, with emphasis on the relationship of critical theory to the history of literature.

Mr. Hayden

205. Introduction to Old English. (4) I.
Lecture—3 hours. The language of Anglo-Saxon England; readings in Old English prose and poetry.

Mr. Campbell

*206. Beowulf. (4) II.
Lecture—3 hours. A study of the poem and the Heroic Age of Germanic literature.

Mr. Silvia

*207. Middle and Early Modern English. (4) III.
Lecture—3 hours. Earlier dialects; the new vocabulary; the later sound shifts and changes to the seventeenth century. Readings in illustrative documents.

210. Readings in English and American Literature.
(4) I, II, III.
Discussion—3 hours. Prerequisite: upper division English course in area to be studied. Offered in multiple sections each quarter. Content varies according to specialty of instructor. Course designed for students preparing for their comprehensive examinations. May be repeated for credit.

The Staff (Chairman in charge)
215. Arthurian Romance. (4) I.
Lecture—3 hours. The sources of Arthurian Romantic literature; Continental and English literary treatment; Malory's synthesis; significant changes of attitudes in post-Malory literature.
Mrs. Homann

225. Topics in Irish Literature. (4) I, II, III.
Seminar—3 hours. Course will vary from quarter to quarter and will include such topics as the nineteenth-century novel, contemporary Irish poetry, rise of the drama, or a study of a major author.
Mr. Hogan

230A. Studies in Major Writers: Chaucer. (4) III.
Seminar—3 hours.
Mr. Silvia

230B. Studies in Major Writers: Milton. (4) II.
Seminar—3 hours.
Miss Van Norden

231. American-European Literary Relations. (4) I.
Lecture—3 hours. The interchange of ideas and forms between America and Europe.
Mr. Carter

(4) III.
Seminar—3 hours. Selected issues in the current study and critical assessment of Romantic literature.
Mr. Hayden

232B. Problems of English Victorian Literature.
(4) II.
Seminar—3 hours. Selected issues in the current study and critical assessment of Victorian literature.
Mr. Gilbert

233. Problems in American Literature. (4) II.
Seminar—3 hours. Selected topics for intensive investigation.
Mr. Carter

234. Drama Literature. (4) III.
Seminar—3 hours. An historical introduction to dramatic theory; the genres of tragedy, comedy, and tragicomedy.

235. Fiction. (4) I.
Seminar—3 hours. Theories of fiction as reflected in the practice of writers from the eighteenth century to the present.
Mrs. Needham

236. Poetics. (4) II, III.
Seminar—3 hours. Metaphor, style, and structure in English poetry from the sixteenth century to the present.
Mr. Shapiro

237. Modern Critical Theory. (4) III.
Seminar—3 hours. Examination of problems in the theory underlying the practice of literary criticism from I. A. Richards and T. S. Eliot to the present.
Mr. Hanzo

240A—240B—240C. Medieval Literature.
(4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Mrs. Homann

(4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)

244A—244B—244C. Shakespeare. (4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)

246A—246B—246C. Seventeenth-Century Literature.
(4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Miss Van Norden

(4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Mrs. Needham

250A—250B—250C. Romantic Literature.
(4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)

252A—252B—252C. Victorian Literature.
(4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)

Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)

256A—256B—256C. Early American Literature.
(4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Mr. Weber

1258A—1258B—1258C. American Literature: 1800 to the Civil War. (4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Mr. Weber

260A—260B—260C. American Literature: Civil War to 1914. (4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Mr. Woodress

1262A—1262B—1262C. American Literature after 1914. (4—4—4) I—II—III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Mr. Woodress

Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.)
Mr. Hanzo

* Not to be given, 1970–71.
† Not to be given, fall quarter, 1970.
‡ Not to be given, spring quarter, 1971.
*289. Study of a Major Writer. (4) I, II, III.
 Seminar—3 hours. The artistic development of one major writer and his intellectual and literary milieu. May be repeated for credit when a different writer is studied.
 The Staff (Chairman in charge)

298. Directed Group Study. (1-5) II, III.
 (Satisfactory/Unsatisfactory grading only.)
 The Staff (Chairman in charge)

299. Individual Study. (1-4) I, II, III.
 (Satisfactory/Unsatisfactory grading only.)
 The Staff (Chairman in charge)

 (1-8) I, II, III.
 (Satisfactory/Unsatisfactory grading only.)
 The Staff (Chairman in charge)

Professional Courses

300. Problems in Teaching English Language,
 Literature and Composition in Secondary
 Schools. (3) III.
 Lecture—2 hours. Prerequisite: senior or
 graduate standing; an English teaching major or
 minor. This course should be completed before
 practice teaching. The course is accepted in
 partial satisfaction of the requirement in education
 for the general secondary credential.
 Mr. Harsh

301. The Teaching of English as a Foreign
 Language. (4) II.
 Lecture—3 hours. Methods for the use of
 applied linguistics in the teaching of English to
 nonnative speakers.
 Mr. Hurford

390A. Teaching English at the College Level. (2) I.
 Lecture-discussion—2 hours; observation of
 freshman English courses—2 hours. Prerequisite:
 graduate standing. A consideration of the
 problems and techniques of teaching English
 composition at the college level. (Satisfactory/Unsatisfactory
 grading only.)
 The Staff

390B. Teaching English at the College Level. (2) I.
 Lecture-discussion—2 hours; observation of
 freshman English courses—2 hours. Prerequisite:
 graduate standing. A consideration of the
 problems and techniques of teaching literature
 at the college level. (Satisfactory/Unsatisfactory
 grading only.)
 The Staff

ENTOMOLOGY

Oscar G. Bacon, Ph.D., Chairman of the Department
Department Office, 124 Robbins Hall

Professors:
 Oscar G. Bacon, Ph.D.
 Stanley F. Bailey, Ph.D. (Emeritus)
 Richard M. Bohart, Ph.D.
 John E. Eckert, Ph.D. (Emeritus)
 Harry H. Laidlaw, Jr., Ph.D.
 William H. Lange, Jr., Ph.D.
 Leslie M. Smith, Ph.D. (Emeritus)
 Eugene M. Stafford, Ph.D.
 Francis M. Summers, Ph.D.

Associate Professors:
 Norman E. Gary, Ph.D.
 Albert A. Grigarick, Jr., Ph.D.
 Charles L. Judson, Ph.D.
 G. A. H. McClelland, Ph.D.
 Donald L. McLean, Ph.D.
 Frank E. Strong, Ph.D.

Assistant Professor:
 Warren R. Cothran, Ph.D.

Professors:
 Merlin W. Allen, Ph.D. (Nematology)
 James R. Douglas, Ph.D. (Veterinary
 Microbiology)

Paul D. Hurd, Jr., Ph.D. (Berkeley
 Campus)
Michel M. J. Lavoipierre, M.B., Ch.B.
 (Veterinary Microbiology)

Assistant Professor:
 Allen W. Knight, Ph.D. (Water Science
 and Engineering)

Lecturers:
 Everett W. Jameson, Jr., Ph.D. (Zoology)
 Wendell W. Kilgore, Ph.D., (Environment-
 mental Toxicology)
 Gary B. Pitman, Ph.D.
 Jerry A. Powell, Ph.D. (Berkeley Campus)
 Robbin W. Thorp, Ph.D.
 Robert K. Washino, Ph.D.

Departmental Major Advisers.—See Schedule
 and Directory Listing.

Bachelor of Science Major Program and Gradu-
 ate Study. See pages 58 and 151.

Lower Division Courses

1. An Introduction to Entomology. (5) III.
 Lecture—3 hours; laboratory—6 hours. A
 basic study of insects: their biology, anatomy,
 classification, and relation to human welfare.
 Mr. Strong

* Not to be given, 1970-71.
10. Natural History of Insects. (3) I, III.
Lecture—3 hours. Designed for students not specializing in entomology. Not open for credit to students who have had course 1 but students who have taken course 10 may take course 1 for credit. Biology, taxonomy and behavior of insects. A cultural and technical course providing an introduction to the insects. Mr. Bacon

Upper Division Courses

101. Introduction to Structure and Function in Insects. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 1. General principles of insect morphology with emphasis on the functional approach. Comparative anatomy of selected insect types. Mr. Summers

102. Insect Physiology. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 1 or equivalent; Chemistry 8B; course 101 recommended. Vital functions of insects and related organisms. Mr. Judson

103. Systematic Entomology. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: introductory course in zoology or entomology. The principles of taxonomy in animals; specialization; introduction to classification and nomenclature. Mr. Bohart

104. Insect Ecology. (4) III.
Lecture—4 hours. Prerequisite: upper division standing in one of the biological sciences. Principles of ecology with examples from the insects; analysis of the insect environment; population dynamics. Mr. Cothran

105. Economic Entomology. (4) III.
Lecture—2 hours; laboratory—6 hours. An introductory course dealing with the identification, biology, and control of economic insects, with emphasis on those attacking agricultural crops. Mr. Grigarick

112. Principles of Agricultural Entomology. (4) II.
Lecture—4 hours. Prerequisite: an introductory course in entomology or consent of instructor. Principles and problems in the control of insects and mites; integrated control, residues, considerations of application equipment, philosophy of sampling. Mr. Lange

116. Biology of Aquatic Insects. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: an introductory course in entomology or consent of instructor. A study of the life histories, ecology, and identification of insects associated with streams, ponds, and lakes. Offered in even-numbered years. Mr. Grigarick

117. Chemistry of Insecticides. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 8B, or consent of instructor. Chemical composition and reactions of insecticides; their physiological effects on plant and animal tissues. Mr. Stafford

118. Apiculture. (3) II.
Lecture—3 hours. Biology and behavior of honeybees; communication, orientation, social organization, foraging activities, honey production, pollination activities. Mr. Laidlaw, Mr. Gary

119. Apiculture Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 119. Biology and behavior of honeybees (especially communicative behavior); fundamentals of colony management necessary for efficient agricultural use; utilization of bees in research and teaching. Mr. Gary, Mr. Laidlaw

121. Insect Behavior. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in one of the biological sciences or consent of instructor. Evolution of behavior, sense organs, specific types and patterns of behavior, comparative behavior, learning, and applied aspects of behavioral phenomena. Analysis of movies on behavior. Mr. Gary

123. Classification of Immature Insects. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: introductory course in entomology. Criteria used to identify the immature forms of the principal orders and families of insects; primary emphasis on economic groups. Offered in even-numbered years. Mr. Lange

125. Insect Vectors of Plant Pathogens. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: one course in entomology or plant pathology, or consent of instructor. The role of insects and mites in the transmission of plant pathogens with emphasis on the biological relationships between insect vectors and plant viruses they transmit. Virus transmission techniques and approaches to control. Mr. McLean

127. Acarology. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 103 or 110. The morphology, taxonomy, and ecology of mites, with emphasis on plant and animal parasites. Offered in odd-numbered years. Mr. Summers

130. Biological Control of Insect and Weed Pests. (4) II.
Lecture—4 hours. Prerequisite: introductory course in entomology or consent of instructor. Theories and practices of biological control;
population phenomena, and the biology of entomophagous insects. Offered in even-numbered years.

Mr. Bacon

153. Medical Entomology. (3) III.
Lecture—3 hours. Prerequisite: one course in entomology or consent of instructor. The worldwide relationships of insects and other arthropods to human health. The biology and basic classification of medically important arthropods with special emphasis on the ecology of arthropod-borne diseases of man and principles of their control.

Mr. McClelland

194H. Special Study for Honors Students.
(1–5) I, II, III.
Prerequisite: open only to majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.

The Staff (Mr. Bacon in charge)

Prerequisite: consent of instructor.

The Staff (Mr. Bacon in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III. (Summer).

The Staff (Mr. Bacon in charge)

Graduate Courses

202. Advanced Insect Physiology. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 102 or Zoology 112, or consent of instructor; Biochemistry 101A or 101B recommended. Selected topics of insect physiology. Intensive study of topics of current interest, which will vary from year to year. The course may be repeated for credit. Offered in odd-numbered years.

Mr. Judson

203. Principles of Systematic Entomology. (3) II.
Lecture—3 hours. Prerequisite: course 103. Theory and philosophy of taxonomy with emphasis on phylogeny, zoogeography, and nomenclature of insects. Offered in even-numbered years.

Mr. Bohart

219. Advanced Apiculture. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 119, or consent of instructor. Advanced topics in bee biology with special consideration of morphology, genetics, caste differentiation, and artificial insemination. Offered in even-numbered years.

Mr. Laidlaw

253. Advanced Medical Entomology. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: one upper division course in entomology other than 153 and one course in microbiology; course 153 is recommended. A study in depth of one or more selected arthropod-borne diseases of man with emphasis on the relationship of the physiology, behavior, and population dynamics of the vector to the ecology of the disease. Emphasis in the laboratory on epidemiologic techniques relating to vectors and taxonomy of a selected group.

Mr. McClelland, Mr. Lavoipierre

275. Principles and Methods of Entomological Research. (4) II.
Lecture—2 hours; laboratory—6 hours. Techniques and purposes of the scientific method as related to the field of entomological research with emphasis on problem selection, methods of attack, and the accompanying collection, evaluation, and presentation of data. Offered in odd-numbered years.

Mr. Strong

290. Seminar. (2) I, II, III.
Seminar—2 hours.

The Staff (Mr. Strong in charge)

291. Seminar in Medical Entomology. (2) I.
Seminar—2 hours. Prerequisite: course 153. Discussions of parasitology, ecology and epidemiology related to vectors of pathogens causing disease in man and animals.

Mr. McClelland

(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

The Staff (Mr. Summers in charge)

ENVIRONMENTAL HORTICULTURE—See Plant Science

ENVIRONMENTAL TOXICOLOGY

George F. Stewart, Ph.D., Chairman of the Department

Department Office, 109 Environmental Toxicology Building

Professors:
Donald G. Crosby, Ph.D.
Wendell W. Kilgore, Ph.D.
George F. Stewart, Ph.D. (Environmental Toxicology and Food Science and Technology)

Associate Professor:
Dorothy E. Woolley, Ph.D. (Animal Physiology)

Lecturers:
T. E. Archer, B.S.
D. P. Hsieh, Sc.D.
James N. Seiber, Ph.D.
Norman E. Walker, Ph.D.

Lower Division Course

10. Protecting the Quality of the Environment. (3) III.
Lecture—3 hours. Prerequisite: open to science and nonscience majors. A discussion of man-made hazards in the world around us, including how they might be minimized. Topics to be covered: air, water and soil pollution; food safety, waste disposal. Included are household, domestic and agricultural chemicals and industrial toxicants.
Mr. Kilgore, Mr. Walker

Upper Division Courses

180. Agricultural Toxicology. (3) I.
Lecture—3 hours. Prerequisite: Chemistry 8B or 112B; Biochemistry 101A recommended. A unified introduction to the principles of agricultural toxicology. Pesticides, food additives, natural toxicants: their legal, commercial, and health significance.
Mr. Crosby, Mr. Kilgore

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Stewart in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Stewart in charge)

Graduate Courses

203. Chemistry of Toxicants. (3) II.
Lecture—3 hours. Prerequisite: Chemistry 112B (or equivalent), or Chemistry 8B and consent of instructor. Toxic substances: selected topics illustrating their occurrence, structure, and reactions indicative of metabolism and environmental transformations.
Mr. Crosby

214. Mechanisms of Toxic Action. (3) II.
Lecture—3 hours. Prerequisite: Biochemistry 101A, 101B and consent of instructor. Biochemical and physiological mechanisms underlying toxicity and detoxification.
Mr. Kilgore

220. Analysis of Toxicants. (3) III.
Lecture—3 hours. Prerequisite: course 180 and consent of instructor; course 203 recommended. Principles of the microanalysis of toxicants. Theoretical considerations regarding separation, detection, and quantitative determination of toxicants using chemical and instrumental techniques.
Mr. Seiber

220L. Analysis of Toxicants Laboratory. (2) III.
Laboratory—4 hours. Prerequisite: course 220 (may be taken concurrently) and consent of instructor. Laboratory techniques for microanalysis of toxicants. Separation, detection, and quantitative determination of toxicants using chemical and instrumental methods.
Mr. Seiber

290. Seminar. (1) I, II, III.
Seminar—1 hour.
The Staff (Mr. Stewart in charge)

298. Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor. Topics such as trace analysis of toxicants, natural toxicants, and new pesticides.
The Staff (Mr. Crosby in charge)

299. Research. (1-12) I, II, III.
The Staff (Mr. Stewart in charge)

EPIDEMIOLGY AND PREVENTIVE MEDICINE

Calvin W. Schwabe, D.V.M., M.P.H., Sc.D., Chairman of the Department
Department Office, 2079 Haring Hall

Professors:
Henry E. Adler, D.V.M., Ph.D.
Raymond A. Bankowski, D.V.M., Ph.D.
John B. Enright, Ph.D.
Livio G. Raggi, D.V.M., Ph.D.
Walter W. Sadler, D.V.M., M.P.H.
Calvin W. Schwabe, D.V.M., M.P.H., Sc.D.

Associate Professors:
Hans P. Riemann, D.V.M., Ph.D.
Richard Yamamoto, Ph.D.

Assistant Professors:
Charles E. Franti, Ph.D.
Joyce E. Coggin, D.V.M., M.P.H.
Dan R. Harlow, Ph.D.
Alvin D. Wiggins, Ph.D.

Professors:
Ralph J. Audy, M.B., Ph.D. (San Francisco Campus)
Nemat O. Borhani, M.D., M.P.H. (Internal Medicine and Community Health)
Stewart H. Madin, D.V.M., Ph.D. (Berkeley Campus)
Nicholas L. Petrakis, M.D. (San Francisco Campus)

Lecturers:
Robert B. Bushnell, D.V.M.
Robert D. Conrad, D.V.M.
Fred N. Cooper, B.S.P.H.
George L. Crenshaw, D.V.M.
Fredric L. Frye, D.V.M.
Murray B. Gardner, M.D.
Constantin Genigeorgis, D.V.M., Ph.D.
Wei Hwa Lee, Ph.D.
Ming-Yu Li, Ph.D., M.L.S.
Bryan Mayeda, D.V.M.
Lloyd J. Neurauter, D.V.M., M.P.H.
Arnold S. Rosenwald, D.V.M., Ph.D.
John C. Sawyer, D.V.M., M.P.V.M.
Charles R. Schroeder, D.V.M.
Herald G. Wixom, D.V.M.
James H. Wommack, D.V.M.
George K. York, Ph.D.

Upper Division Courses

101. Perspectives in Veterinary Medicine. (2) I.
Lecture—2 hours. Consideration of the present-day scope of veterinary medicine and of the role of the veterinary profession in modern society.
Mr. Schwabe

102. Biomedical Information Retrieval. (3) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: enrollment in the School of Veterinary Medicine or consent of instructor. The use of bibliographic tools in the biomedical sciences; the application of manual and machine systems for storage and retrieval of data; and consideration of computerized systems in literature retrieval and clinical data processing.
Miss Goggin, Mr. Li, Mr. Mevala, Mr. Franti

103A. Medical Statistics. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Use of statistics in clinical, laboratory and population medicine; graphical and tabular presentation; biomedical statistical laboratory to accompany introductory course in statistics.
Mr. Franti, Mr. Wiggins

103B. Medical Statistics. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 103A or consent of instructor. Regression, correlation, analysis of variance in biomedical sciences; time-dependent variation and trends; bioassay; introduction to mathematical epidemiology; non-parametric methods.
Mr. Franti, Mr. Wiggins

103C. Medical Statistics. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 103B, or consent of instructor. Continuation of course 103B; additional topics in bioassay; life tables and cohort studies; clinical trials; problems in sampling and surveys.
Mr. Franti, Mr. Wiggins

111. Animal Hygiene. (3) III.
Lecture—3 hours. Prerequisite: Biology 1 or consent of instructor. The causes, prevention, and control of animal diseases important in economic agriculture and in public health, with emphasis upon animal management factors in disease.
Mr. Adler

140. Principles of Epidemiology. (2) II.
Lecture—1 hour; case study—2 hours. Prerequisite: sophomore standing in the School of Veterinary Medicine or consent of instructor. Introduction to medical ecology with special consideration given to modes of disease transmission and to interrelationships between those host, agent, and environmental factors which are responsible for the distributional patterns of diseases in space and time.
Mr. Schwabe

150. Food-borne Infections and Intoxications. (4) II.
Lecture—4 hours. Prerequisite: Bacteriology 2. Prevalence and characteristics of those diseases of man which are derived from food or food sources; access of disease agents to and distribution in food and food sources; exposure of man to those agents; prevention of food-borne diseases.
Messrs. Genigeorgis, Lee, Riemann, York

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Mr. Schwabe in charge)

Graduate Courses

201. Diseases of Laboratory Animals. (3) III.
Lecture—3 hours. Prerequisite: senior standing in veterinary medicine or consent of instructor. A study of infectious and noninfectious diseases of laboratory animals, including diagnostic procedures and treatment.
Messrs. Adler, Bustad, Conrad, Edward, Sadler, Theilen, Yamamoto

205. Physiological and Ecological Bases of Parasitism. (3) III.
Lecture—two 1½-hour lectures per week. Prerequisite: general parasitology and introductory biochemistry or consent of instructor. The physiological adaptations of protozoa and helminths for parasitism with consideration given to those host factors which influence the establishment of host-parasite associations. Offered in even-numbered years.
Mr. Harlow

208. Avian Medicine. (3) III.
Lecture—3 hours. Prerequisite: junior standing in the School of Veterinary Medicine or consent of instructor. Etiology, diagnosis, epidemiology, prevention and control of diseases of poultry, including those important to the public health.
Mr. Raggi (in charge), Mr. Adler, Mr. Bankowski
209. Avian Medicine Laboratory. (2) I.
Lecture—1 hour; laboratory—2 hours. Prerequisite: senior standing in the School of Veterinary Medicine. Diagnosis of avian diseases by necropsy and laboratory procedures. Selected diseases including some of bacterial, viral, and chemical etiology, are experimentally induced for study.
Mr. Yamamoto (in charge), Mr. Adler, Mr. Raggi, Mr. Bankowski

210. Advanced Epidemiology. (5) I.
Lecture—3 hours; laboratory—6 hours. Prerequisite: a doctoral degree (or equivalent) in veterinary medicine, human medicine, or dental medicine, or consent of instructor. Methods for the study of diseases in populations both of lower animals and of man, with critical discussions of illustrative case examples of "classical" and contemporary epidemiological research.
Miss Goggin, Mr. Riemann, Mr. Schwabe

212. Epidemiology of the Zooneses. (3) II.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 210 or consent of instructor. The epidemiological features of infections and infestations shared by man and other animals with particular attention to those perpetuated in nature by wildlife and those which are of greater public health and economic significance.
Mr. Enright, Mr. Cooper

214. Comparative Epidemiology of Noninfectious Diseases. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 210 or consent of instructor. Study of the environmental and host factors which are associated with the occurrence of diseases of noninfectious or unknown etiology. Emphasis will be placed on the comparison of the epidemiologic features of these diseases in man and lower animals.
Miss Goggin

216. Mass Screening for Diseases in Populations. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 210 or consent of instructor; Veterinary Microbiology 270 recommended. Consideration of immunodiagnostic, biochemical, and other techniques for mass screening of human and animal populations for abnormalities and disease; evaluation of their usefulness to study incidence and/or prevalence of such conditions and for application in programs of prevention and control.
Mr. Yamamoto, Mr. Adler

218. Disease Control and Eradication. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 216 or consent of instructor. Studies of various approaches used to control diseases in lower animals and man. Discussions will be concerned with past successes and failures and emphasis placed on future prospects and limitations of these methods. Mr. Bankowski

240. Public Health. (3) III.
Lecture—3 hours. Prerequisite: junior standing in the School of Veterinary Medicine or consent of instructor. Introduction to public health and to the responsibilities of the veterinarian; consideration of the roles of lower animals in the causation and perpetuation of human diseases; consideration of occupational health hazards associated with the practice of veterinary medicine.
Mr. Enright, Mr. Cooper

250. Veterinary Food Hygiene. (2) III.
Lecture—1 hour; discussion—1 hour. Prerequisite: Junior standing in the School of Veterinary Medicine or consent of instructor. Discussion of public health importance of diseases transmitted to man through meat, poultry, and milk; the means and likelihood of preventing their transmission; and the role and responsibility of the veterinary practitioner in preventing human illness from this cause.
Messrs. Sadler, Riemann, Gengeorgis

252. Principles and Practice of Meat and Milk Hygiene. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: senior standing in the veterinary curriculum or consent of instructor. Principles and practice of inspection and sanitary control of meat of mammalian origin and of milk.
Mr. Sadler, Mr. Gengeorgis

254. Public Health Aspects of Meat and Meat Products Technology. (2) III.
Lecture—2 hours. Prerequisite: consent of instructor. Study of the influence of techniques and procedures for processing meats and meat products upon their wholesomeness as food.
Mr. Riemann, Mr. Gengeorgis

290. Seminar in Epidemiology and Preventive Medicine. (1) I, II, III.
Seminar—2 hours. (Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

The Staff (Chairman in charge)

The Staff (Chairman in charge)
FAMILY AND CONSUMER SCIENCES

Participating Departments:

AGRICULTURAL ECONOMICS

J. Herbert Snyder, Ph.D., Chairman of the Department
Department Office, 117 Voorhies Hall

Professors:
Sylvia Lane, Ph.D.
J. Herbert Snyder, Ph.D.

APPLIED BEHAVIORAL SCIENCES

Orville E. Thompson, Ph.D., Chairman of the Department
Department Office, 206 Walker Hall

Professors:
Jack D. Forbes, Ph.D. (Applied Behavioral Sciences and Anthropology)
Frederick L. Griffin, M.S. (Emeritus)
Glenn R. Hawkes, Ph.D.
*Milton Hildebrand, Ph.D. (Applied Behavioral Sciences and Zoology)
Elwood M. Juergenson, Ph.D. (also Coordinator of Vocational Teacher Education)
David B. Lynn, Ph.D.
Sidney S. Sutherland, M.S. (Emeritus)
Orville E. Thompson, Ph.D.
Emmy E. Werner, Ph.D.

Assistant Professors:
Louise M. Bachtold, Ed.D.
Lawrence V. Harper, Ph.D.
Helge B. Olsen

Associate Professors:
James W. Becket, Ph.D.
Glen Burch, Ed.D.
Isao Fujimoto, M.A. (Applied Behavioral Sciences and Sociology)
Helen E. Giambruni, M.A.
JoAnn Stabb, M.A.
Jane N. Welker, M.A.
Thomas J. Witt, M.A.

CONSUMER SCIENCES

Mary Ann Morris, Ph.D., Chairman of the Department
Department Office, 148 Home Economics Building

Professor:
Mary Ann Morris, Ph.D.

Associate Professor:
*Rose Marie Pangborn, M.S. (Consumer Sciences and Food Science and Technology)

Assistant Professors:
Duane E. Heinz, Ph.D.
Howard L. Needles, Ph.D.

Gerald F. Russell, Ph.D.
S. Haig Zeronian, Ph.D.

Lecturers:
Rosalie H. Haines, M.S.
Harold P. Lundgren, Ph.D.
JoAnn Stabb, M.A.

NUTRITION

Fredric W. Hill, Ph.D., Chairman of the Department
Department Office, 231 Home Economics Building

Professors:
Fredric W. Hill, Ph.D.
Lucille S. Hurley, Ph.D.

Associate Professor:
Frances J. Zeman, Ph.D.

Assistant Professor:
Susan M. Oace, Ph.D.

Professors:
Richard A. Freedland, Ph.D. (Physiological Sciences)
Robert E. Hungate, Ph.D. (Bacteriology)
Magnar Ronning, Ph.D. (Animal Science)
Aloys L. Tappel, Ph.D. (Food Science and Technology)

Associate Professor:
Quinton R. Rogers, Ph.D. (Physiological Sciences)

Lecturers:
Rocco J. Della Rosa, Ph.D. (Physiological Sciences)
Marvin Goldman, Ph.D. (Physiological Sciences)
Carolyn P. Sugars, B.S.

Curriculum Major Advisers.—See Schedule and Directory Listing.
Bachelor of Science Major Program and Graduate Study. See pages 58 and 151.

Applied Behavioral Sciences

Lower Division Courses

18. Scientific Bias and Social Myth. (3) II, III.
Lecture—2 hours; discussion—1 hour. (Given between quarters.) Assumptions and biases in different fields of knowledge, taboo topics, and the nature of evidence in the public and academic communities; fit between University education and issues of society.
II. Mr. Fujimoto, III. Miss Regan

38. Directed Group Study. (1-5) I, II, III.
The Staff (Chairman in charge)

39. Special Study for Undergraduates. (1-5) I, II, III.
The Staff (Chairman in charge)

47. Orientation to Community Resources. (1) II, III.
Field trip—3 days; Seminar—two 2 hour sessions. Field trip to educational, social, and welfare agencies in California. Observation and discussion with staff members of different agencies which serve the needs of families and children.
Mr. Hawkes

Upper Division Courses

150. Housing. (4) III.
Lecture—4 hours. Exploration of the shelter aspects of the family environment. Study of technological, social, economic and aesthetic factors affecting the nature and organization of family and community housing.
Mr. Witt

151A. Community Research and Analysis. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Theories on the emergence and structure of contemporary communities. Ethnographic, power structure and comparative approaches to community studies. Ways to incorporate research into programs for community change and development. Lecture and field work.
Mr. Fujimoto

151B. Community Development. (4) II.
Discussion—1 hour; seminar—3 hours. Prerequisite: course 151A or consent of instructor. Principles and strategies of building institutions so community people can effect change. Examination of styles of citizen participation and control and the various roles of change agents in working with communities for their own self-development. Seminar and field work.
Mr. Forbes

151C. Field Experience in Community Development. (3) III.
Field experience. Prerequisite: course 151A and 151B or consent of instructor. Field assignment—internship with community and grass roots groups, analysis of resources and alternatives for resolution of community development needs as defined by citizen groups. May not be repeated for credit.
Mr. Fujimoto, Mr. Forbes

160. The Disadvantaged: Issues and Innovations. (3) I, II.
Seminar—3 hours. Prerequisite: 10 units of psychology, sociology, and/or anthropology. Identification and characteristics of the "invisible" segments of society with emphasis on the socially and culturally disadvantaged. Barriers encountered by these individuals and avenues for change are explored.
I. Mr. Forbes, II. ———

161. The Continuing Learner. (3) II.
Lecture—3 hours. Prerequisite: Education 110 (may be taken concurrently). Principles of
adult education emphasizing barriers to learning, the role of non-verbal communication, the importance of self-concept in teaching adults, and the educator's role in working with non-school populations.

Mr. Beckett

162. Man, Work and Technology. (3) III.
Lecture—3 hours. Critical issues created for man by technology. Employment-unemployment and its effect upon man. Social responsibility of persons and institutions which implement changes in the labor market. Significance of quality in employer-employee relationships.

Mr. Becket

Lecture—3 hours. Prerequisite: Psychology 1A. Application of social sciences research methodology to multidisciplinary problems.
Miss Regan, Mr. Thompson

191. Research Design and Analysis. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 13, course 190 or consent of instructor. Survey of major types of research design in the Behavioral Sciences. Tests of statistical significance, analysis of variance, and related topics. Use of computer in data processing.
Miss Regan

197T. Tutoring in Applied Behavioral Sciences.
(1-5) I, II, III.
Prerequisite: consent of major committee; upper division standing with major in Design or Human Development. Leading of small voluntary discussion groups.
The Staff (Mr. Thompson in charge)

197TC. Community Tutoring in Applied Behavioral Sciences. (1-5) I, II, III.
Prerequisite: consent of major committee; upper division standing with major in Design or Human Development. Supervised tutoring in the community.
The Staff (Mr. Thompson in charge)

198. Directed Group Study. (1-5) I, II, III.
The Staff (Mr. Thompson in charge)

199. Special Study for Advanced Undergraduates.
(1-5) I, II, III.
The Staff (Mr. Thompson in charge)

Asian American Studies

Lower Division Course

33. The Asian Experience in America. (3) I.
Lecture—2 hours; discussion—1 hour. A general consideration of Asians in America, past and present. The Staff (Mr. Fujimoto in charge)

Upper Division Courses

100. Ecology of Asian American Communities. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 33 or consent of instructor. Political and social status, occupation, income, education, health, housing, and civic culture of various Asian American communities in the United States; segregation in interrelations between geographical groups, relations between rich and poor, patronism, exploitation; mobility within each ethnic group.

111. Alienation and the Asian American. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 33 or consent of instructor. An examination of self-awareness, alienation, and life perspective of Asians in America. Emphasis will be placed on the problems of identity formation of Asian Americans.

140. Speech Patterns of Asian Americans. (4) II, I.
Lecture—4 hours. A general introduction to bilingualism as a social issue; survey of bilingual communities, problems of bilingual speakers, linguistic effects of bilingualism, particularly the effects of Asian languages in the speech patterns of Asian Americans.

Consumer Economics

Upper Division Courses

141. Consumers and the Market. (4) II.
Lecture—4 hours. Prerequisite: Economics 1A; Mathematics 13. Social and economic factors affecting consumer expenditures. The structure of the retail market and the effects of its performance on consumers. Agencies aiding and protecting consumers, sources of information available to consumers.
Mrs. Lane

142. Social and Economic Problems of Families. (4) III.
Lecture—4 hours. Prerequisite: Economics 1A; Mathematics 13. The management of income and expenditures by the family. The use of consumer credit, savings, investments, and insurance by families.
Mrs. Lane

198. Directed Group Study. (1-5) I, II, III.
The Staff (Mr. Snyder in charge)

199. Special Study for Advanced Undergraduates.
(1-5) I, II, III.
The Staff (Mr. Snyder in charge)

Graduate Courses

247. Consumption and Standards of Living. (4) III.
Lecture—4 hours. Prerequisite: course 141. An analytical treatment of household consumption behavior. The effects of income, prices, and household characteristics on expenditures. Standards of income and consumption adequacy.
Mrs. Lane
290. Seminar. (1 I, II, III.
 Seminar—1 hour. Mrs. Lane

299. Research. (1-12) I, II, III.
 The Staff (Mr. Snyder in charge)

Design

Lower Division Courses

6. Introduction to Design. (4) I, II.
 Lecture—4 hours. Introduction to various fields of design. Consideration of the social, cultural, and physical needs of man influencing the design of objects. I. Mr. Witt, II. Mrs. Rossbach

38. Directed Group Study. (1-5) I, II, III.
 Prerequisite: consent of instructor.
 The Staff (Mr. Thompson in charge)

39. Special Study for Undergraduates. (1-5) I, II, III.
 Prerequisite: consent of instructor.
 The Staff (Mr. Thompson in charge)

Upper Division Courses

120A. Principles of Design. (3) I.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: Art 2, Psychology 1A. Principles of organization and composition in design. An exploration of the subjective process of awareness. Mr. Olsen, Mrs. Rossbach, Mr. Witt

120B. Principles of Design. (3) II.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 120A. Exploration of the principles of structure; development of approaches to the solution of problems involving multidimensional space and movement. Mr. Olsen

120C. Principles of Design. (3) III.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 120A. Visual perception and organization in the interaction of color phenomena; design problems dealing with the effects and functions of color as sensation, as light and as form. Mr. Witt

140A. History of Design. (3) I.
 Lecture—3 hours. Prerequisite: Art 1A (may be taken concurrently). The history of Western design from Ancient Egypt and the Middle East through the Aegean and Classical civilizations to the waning of the Middle Ages. Mrs. Giambruni

140B. History of Design. (3) II.
 Lecture—3 hours. Prerequisite: Art 1B or consent of instructor. The history of Western design from the Renaissance through the Baroque, the Rococo and Neoclassicism of the eighteenth century, nineteenth century, industrialization to the emergence of modernism. Mrs. Giambruni

143. History of Costume Design. (3) II.
 Lecture—3 hours. Prerequisite: Art 1A. The history of costume design from the earliest times to the present with emphasis on both aesthetic and functional aspects. Mrs. Stabb

144. History of Interior Design. (3) I.
 Lecture—3 hours. Prerequisite: one course in art history. The history of Western interior design from its beginnings in Ancient Egypt through the Classical, Medieval, and Renaissance worlds to modern times. Mrs. Giambruni

160A-160B-160C. Textile Design. (3-3-3) I-II-III.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 120A or consent of instructor. An exploration of the design and appreciation of hand printed textiles; emphasizes the unique qualities of the individual as producer. Mrs. Rossbach

170A-170B-170C. Costume Design. (3-3-3) II-II-III.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 120A or consent of instructor. Studio projects in costume design; consideration of functional and aesthetic factors influencing the historic, contemporary and projected image of man as expressed through costume. Mrs. Stabb

180A-180B-180C. Interior Design. (3-3-3) I-II-III.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 120A or consent of instructor. Studio projects in interior design problems involving the social, cultural, economic and aesthetic needs of man. Consideration of the interrelationship of interior design, architectural and landscape design. I-III. Mr. Olsen, II. Mr. Witt

197. Individual Problems in Design. (3) III.
 Seminar—1 hour; laboratory—6 hours. Prerequisite: design major of senior standing. A seminar in relationship to a senior thesis, a comprehensive design problem pursued under the direction of a member of the faculty. The Staff (Mrs. Rossbach in charge)

198. Directed Group Study. (1-5) I, II, III.
 Prerequisite: upper division standing and consent of instructor.
 The Staff (Mr. Thompson in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
 Prerequisite: consent of instructor.
 The Staff (Mr. Thompson in charge)

Foods

Lower Division Courses

20. Food Habits and Culture. (3) I.
 Lecture—3 hours. Prerequisite: sophomore
standing or above. Cultural, geographical, socioeconomical, religious, and psychological influences on development and maintenance of food habits. Attention is given to past and present subcultural groups in the United States and other countries, with emphasis on the role of foods within the total pattern of living of the social units.

Mrs. Pangborn

Upper Division Courses

100A. Principles of Food Composition and Preparation. (3 I.)

Lecture—3 hours. Prerequisite: Chemistry 8B; one course in physics; Bacteriology 2 (may be taken concurrently). Science, sensory aspects and aesthetics of food preparation with emphasis on the chemical and physical properties of food products. Characteristics and functions of colloids, carbohydrates, lipids, and proteins in food combinations.

Mr. Russell

100B. Principles of Food Composition and Preparation. (3 II.)

Lecture—3 hours. Prerequisite: course 100A. Chemical, physical, microbiological, and sensory aspects related to food. Edible plant tissues, protein foods, pigments, food preservation, packaging and marketing, food regulatory agencies, science and aesthetics of food combinations, food habits, world food problems.

Mr. Russell

101A. Principles of Food Composition and Preparation Laboratory. (1 I.)

Laboratory—3 hours. Prerequisite: course 100A. Laboratory work. Studies of the chemical, physical and sensory properties of foods. Characteristics and functions of basic constituents and of food systems—solutions, colloidal dispersions, gel structures, emulsions and foams.

Mr. Russell

101B. Principles of Food Composition and Preparation Laboratory. (2 II.)

Discussion—1 hour; laboratory—3 hours. Prerequisite: course 100B, should be taken concurrently. Studies of the chemical, physical, microbiological and sensory aspects relating to foods. Plant, meat and flour systems, science and aesthetics of food combinations.

Mr. Russell

134A–134B. Advanced Food Studies. (2–2 I, II.)

Lecture—2 hours. Prerequisite: course 100B or an upper division course in food science and technology. Chemical and physical properties of food materials influencing consumption.

Mr. Russell

135A–135B. Advanced Food Studies Laboratory. (2–2 I, II.)

Laboratory—6 hours. Prerequisite: course 134A, 134B (may be taken concurrently) or consent of instructor. Laboratory methods and theories employed to study changes occurring in foods during consumer usage.

Mr. Russell

194H. Special Study for Honors Students. (1–5 I, II, III.)

Prerequisite: open only to honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.

The Staff (Mr. Russell in charge)

197. Introduction to Research in Foods. (4) III.

Lecture—1 hour; laboratory—9 hours. Prerequisite: food majors of senior standing. Senior thesis on independent problems.

The Staff (Mr. Russell in charge)

The Staff (Mr. Russell in charge)

199. Special Study for Advanced Undergraduates. (1–5 I, II, III.)

The Staff (Mr. Russell in charge)

Graduate Courses

290. Seminar. (1) I, II, III.

Seminar—1 hour.

The Staff (Mr. Russell in charge)

The Staff (Mr. Russell in charge)

The Staff (Mr. Russell in charge)

Home Economics Education

Professional Course

Lecture—3 hours. Prerequisite: senior or graduate standing; a teaching major or minor in home economics. Instructional procedures and materials used in teaching home economics in secondary schools. This course should be completed before student teaching and is accepted as a part of the professional education requirements for the teaching credential.

Home Management

Upper Division Courses

140. Home Management. (4) I.

Lecture—4 hours. Prerequisite: Psychology 1A. Management principles in relation to family resources, goals, and values.

140L. Laboratory in Home Management. (3) II, III.

Lecture—1 hour; laboratory—6 hours. Prerequisite: course 140 and senior or graduate standing. Integrated experiences in the various phases of home management.
Human Development

Lower Division Courses

12. Human Sexuality and Sexual Behavior. (2) I.
Lecture—2 hours. Structure and function of genital system; sexual response; fertility; birth control; pregnancy and childbirth; homosexuality; cross-cultural, social and psychological considerations; sex education; courtship and marriage; communication; attitudes and values; lovemaking. (Passed/Not passed grading only.) Mr. Hildebrand

33. Laboratory Study of Young Children. (2) I, II, III.
Discussion—1 hour; laboratory—3 hours. Observation of individual and cultural differences among 3- to 5-year-old children in the University Laboratory Nursery School.
Mrs. Welker

38. Directed Group Study. (1-5) I, II, III.
The Staff (Mr. Thompson in charge)

39. Special Study for Undergraduates. (1-5) I, II, III.
The Staff (Mr. Thompson in charge)

Upper Division Courses

131. Infancy and Early Childhood. (4) I, II, III.
Lecture—3 hours; discussion—1 hour. Prerequisite: Psychology 1A. Psychological and cultural factors in the development of infants and preschool children.
I-II. Mr. Lynn. III. Mr. Harper

133. Case Study of a Preschool Child. (2) I, II, III.
Lecture—1 hour; observation—3 hours. Prerequisite: course 131 or consent of instructor. Intensive case study of an individual child, age 3 to 5; use of observational techniques, cumulative records, test results.
Mrs. Welker

133L. Laboratory in Early Childhood Education. (3) I, II, III.
Discussion—1½ hours; laboratory—5 hours. Prerequisite: course 133 and consent of instructor. Participation, under supervision, in the University Laboratory Nursery School. Interaction with groups of young children, observation in schools, evaluation and testing of theories of preschool education and child development. Consideration is given to the student's specific interests and skills.
Mrs. Welker

136. Middle Childhood and Adolescence. (4) I, II, III.
Lecture—3 hours; discussion—1 hour. Prerequisite: Psychology 1C. Psychological and cultural factors in the development of school-age children and adolescents.
I. ————, II. Mr. Harper; III. Miss Werner

136L. Laboratory in Child Development. (2) II, III.
Discussion—1 hour; laboratory—3 hours. Prerequisite: courses 133 or 136 or Psychology 112. Laboratory work with school-age children and adolescents including supervised tutorial work with children with special needs. May be repeated for credit. Mrs. Bachtold

137. Contemporary American Family. (4) I, III.
Lecture—4 hours. Sociological and psychological factors influencing marriage and the family in present-day society. Mr. Hawkes

139. Diagnostic Techniques with Children. (4) I, II, III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 131 and 136, or Psychology 112. Evaluation of intelligence, personality, and special abilities of children. Class demonstration of individual tests for infants, preschool, and school-age children. Concepts of environment. Relevant research findings.
I. ————, II-III. Miss Werner

140. Emotionally Disturbed Children. (3) II, III.
Lecture—2 hours; discussion—1 hour. Prerequisite: courses 131 and 136, or Psychology 112. Discussion of psychosis, neurosis, behavior disorders, and learning difficulties in children. Mrs. Bachtold

141. Physically Handicapped and Mentally Retarded Children. (3) I, II.
Lecture—3 hours. Prerequisite: courses 131 and 136 or Psychology 112. Etiology and diagnosis of sensory handicaps, brain damage, and mental retardation in children; education of these children. Miss Werner

142. Gifted Children. (3) I, II.
Lecture—3 hours. Prerequisite: course 136 or Psychology 112 or consent of instructor. Review of research on intellectually gifted; planning appropriate classroom experiences; role of parents and teachers in encouraging creative thinking. Mrs. Bachtold

198. Directed Group Study. (1-5) I, II, III.
The Staff (Mr. Thompson in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Thompson in charge)

Graduate Courses

210. Child Development and Behavior. (3) I.
Lecture—discussion—3 hours. An analysis of the historical, theoretical and empirical issues in child development. Mr. Harper
290. Seminar. (2) I, II, III.
Discussion—2 hours. Discussion and analysis of research in human development. (Satisfactory/Unsatisfactory grading only.)
The Staff (——— in charge)

The Staff (——— in charge)

The Staff (Mr. Thompson in charge)

Institution Management

Upper Division Courses

121. Institution Food Study. (5) I.
Lecture—3 hours; laboratory—6 hours. Prerequisite: Foods 100B. The principles and problems involved in the preparation and service of food in institutions.
Mrs. Sugars

122A. Organization and Management of Institutions. (3) II.
Lecture—3 hours. Prerequisite: Foods 100B; course 121 recommended. Organization and administration of institutional food services; management and training of personnel; work simplification, sanitation.
Miss Zeman

122B. Food Service Planning and Control. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 122A. Design of food service facilities; selection of equipment and furnishings. Procedures employed in financial control.
Miss Zeman

Nutrition

Lower Division Course

10. Discoveries and Concepts in Nutrition. (3) II.
Lecture—3 hours; not open for credit to students who have taken an upper division course in nutrition. Nutrition as a science; historical development of nutrition concepts; properties of nutrients and foods.
Mr. Hill

Upper Division Courses

102A–102B. General Nutrition. (4-4) I–II.
Lecture—4 hours. Prerequisite: Chemistry 8B; Physiology 101 or 2; not open for credit to students who have taken Nutrition 110 and 111. Introduction to the principles of nutrition; study of the nutrients and their chemical and physiological roles in metabolism; nutrient requirements of man.
Miss Oase

102L. General Nutrition Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 102A; course 102B (should be taken concurrently); not open for credit to students who have taken 111L. Laboratory study of the principles of nutrition; study of the nutrients and their chemical and physiological roles in metabolism.
Miss Oase

110. Principles of Nutrition. (5) II.
Lecture—4 hours; discussion—1 hour. Prerequisite: Biochemistry 101B (may be taken concurrently) or a course in physiology or zoology. The fundamental principles of the nutrition of man and other animals. The nutrients in relation to physiological processes of growth, maintenance, and reproduction. Nutritional disorders.
Mr. Robinson, Mr. Grau

111. Human Nutrition. (4) III.
Lecture—4 hours. Prerequisite: course 110. Nutrition of man; critical study of nutrient requirements at various phases of the life cycle.
Mrs. Hurley

111L. Nutrition Laboratory. (1) III.
Laboratory—3 hours. Prerequisite: course 110. Laboratory study of the chemical and physiological roles of nutrients in metabolism; use of experimental animals in determining the essentiality and function of nutrients. Mr. Vohra

114. Nutrition and Development. (4) I.
Lecture—4 hours. Prerequisite: course 110 or 102B. The role of nutritional factors in embryonic and postnatal development.
Mrs. Hurley

116. Diet Therapy. (5) I.
Lecture—5 hours. Prerequisite: course 111 or 102B; Biochemistry 101B or Physiological Sciences 101B. Biochemical and physiological bases for therapeutic diets. Problems in planning diets for normal and pathological conditions.
Miss Zeman

117. Experimental Nutrition. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 111 or 102B; Biochemistry 101B or Physiological Sciences 101B; laboratory course in nutrition or biochemistry. Methods of assessing nutritional status. Application of chemical, microbiological, chromatographic and enzymatic techniques to current problems in nutrition.

194H. Special Study for Honors Students.
(1–5) I, II, III.
Prerequisite: open only to honors students of senior standing. Independent study of selected topics under the direction of a staff member or the writing of a senior thesis.
The Staff (Mr. Hill in charge)

The Staff (Mr. Hill in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Mr. Hill in charge)
Graduate Courses

201A. Advanced General Nutrition. (4) I.
Lecture—4 hours. Prerequisite: Bacteriology 2; Biochemistry 101B; Physiology 110B; a course in nutrition. Advanced studies of protein and amino acid metabolism; animal energetics and energy metabolism. Comparative aspects. The Staff

201B. Advanced General Nutrition. (3) II.
Lecture—3 hours. Prerequisite: Bacteriology 2; Biochemistry 101B; Physiology 110B; a course in nutrition. Advanced studies of problems in nutrition with emphasis on minerals; water balance. Comparative aspects. The Staff

201C. Advanced General Nutrition. (3) III.
Lecture—3 hours. Prerequisite: Bacteriology 2; Biochemistry 101B; Physiology 110B; a course in nutrition. Advanced studies of metabolic function and nutritional importance of vitamins; essential fatty acids; deficiency and degenerative diseases. Comparative aspects. The Staff

250. Concepts of Animal Nutrition. (3) II.
Lecture—3 hours. Prerequisite: courses 201A, 201B, 201C. Dynamic interrelationships between food, animal, and environment, including concepts in food intake, digestion, absorption, and utilization of nutrients. The Staff

Discussion—1 hour; seminar—1 hour. Prerequisite: first-year graduate standing. Discussion and critical evaluation of topics in nutrition with emphasis on literature review and evaluation in this field. The Staff (Mr. Hill in charge)

Seminar—1 hour. Prerequisite: second-year graduate standing. Discussion and critical evaluation of advanced topics in nutrition research. (Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Hill in charge)

298. Group Study. (1-5) I, II, III.
The Staff (Mr. Hill in charge)

299. Research. (1-12) I, II, III.
The Staff (Mr. Hill in charge)

Textiles and Clothing

Lower Division Courses

6. Introduction to Textiles. (3) III.
Lecture—2 hours; laboratory—3 hours. Introduction to the structure and properties of textiles. Consumer use and fabric characteristics are emphasized. Miss Morris

7. Clothing and the Individual. (2) I, III.
Lecture—2 hours. Prerequisite: Psychology 1A or 10. The relation of the self-concept and of the human form to elements of design as expressed through clothing. Mrs. Stabb

17A. Clothing Structure. (3) I, II, III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 7 (may be taken concurrently). The principles of clothing design through the medium of drafting and flat pattern. Construction principles are applied. Mrs. Haines

17B. Clothing Structure. (3) I, II, III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 17A. The principles of clothing design through the medium of draping in various textile fabrics. Mrs. Haines

47. Field Study. (1) III.
Seminar—three 2-hour sessions; field trip—2 days. To observe commercial aspects of the design, production, development, distribution and maintenance of textiles and clothing. Mr. Zeronian

Upper Division Courses

160. Textile Fibers and Finishes. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 6 and Chemistry 8B. Properties of textile fibers in relation to performance and end-use; dyeing and finishing of fabrics; textile maintenance. Mr. Needles

161. Textile Chemistry. (3) III.
Lecture—3 hours. Prerequisite: course 160. The theory of fiber structure; the relation between chemical structure and physical properties of fibers. The principles of the application of dyes and finishes to textiles. Mr. Zeronian

161L. Textile Chemistry Laboratory. (2) III.
Laboratory—6 hours. Prerequisite: course 161 (may be taken concurrently). Laboratory methods and procedures employed in studying chemical and physical properties of textile fibers. Mr. Zeronian

162. Textile Fabrics. (3) II.
Lecture—3 hours. Prerequisite: course 6. The properties of fabrics as related to serviceability, comfort, and appearance. Miss Morris

162L. Textile Fabrics Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 162 (may be taken concurrently). Laboratory methods and procedures employed in studying properties of textile fabrics as related to serviceability, comfort, and appearance. Miss Morris

170. Experimental Problems in Clothing Structure. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 6 and 17B; Design 170B. De-
sign and construction of body coverings utilizing technological innovations in fabrics and new techniques such as fusing and molding.

The Staff (Mrs. Haines in charge)

172. Clothing and Society. (3) II.
Lecture—3 hours. Prerequisite: Economics 1A; Psychology 1A or 10; and a course in sociology or cultural anthropology. The relation of clothing and textiles to social, psychological and economic patterns of families and cultures.
Mrs. Stabb

194H. Special Study for Honors Students.
(1–5) I, II, III.
Prerequisite: open only to honors students of senior standing. Independent study of selected topics under the direction of a member, or members of the staff. Completion will involve the writing of a senior thesis.
The Staff (Miss Morris in charge)

197. Introduction to Research in Textiles and Clothing. (4) III.
Lecture—1 hour; laboratory—9 hours. Prerequisite: Textile Science major of senior standing. Senior thesis on independent problems.
Mr. Zeronian

The Staff (Miss Morris in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Miss Morris in charge)

Graduate Courses

292. Seminar in Textiles. (2) I, II, III.
Seminar—2 hours. Selected topics related to the chemical and physical properties of fibers and fabrics.
The Staff (Miss Morris in charge)

The Staff (Miss Morris in charge)

The Staff (Miss Morris in charge)

FOOD SCIENCE
Participating Departments:

FOOD SCIENCE AND TECHNOLOGY

———, Chairman of the Department
Department Office, 126A Cruess Hall

Professors:
1Clinton O. Chichester, Ph.D.
Edwin B. Collins, Ph.D.
Walter L. Dunkley, Ph.D.
Robert E. Feeney, Ph.D.
Eugene L. Jack, Ph.D. (Emeritus)
Walter G. Jennings, Ph.D.
George L. Marsh, M.S. (Emeritus)
Emil M. Mrak, Ph.D., LL.D. (Emeritus)
Thomas A. Nickerson, Ph.D.
Herman J. Phaff, Ph.D. (Food Science and Technology and Bacteriology)
Lloyd M. Smith, Ph.D.
Clarence Sterling, Ph.D.
George F. Stewart, Ph.D.
Aloys L. Tappel, Ph.D.
Nikita P. Tarassuk, Ph.D. (Emeritus)
Reese H. Vaughn, Ph.D.
John R. Whitaker, Ph.D.

Associate Professors:
Richard A. Bernhard, Ph.D.

1Absent on leave, 1970–71.

Jerald M. Henderson, D.Eng. (Food Science and Technology and Mechanical Engineering)
Michael J. Lewis, Ph.D.
Mendel Mazelis, Ph.D.
Martin W. Miller, Ph.D.
Rose Marie Pangborn, M.S. (Food Science and Technology and Consumer Sciences)

Assistant Professors:
Eli V. Crisan, Ph.D.
Dieter W. Grunwedel, Ph.D.
R. Larry Merson, Ph.D.

Professors:
Maynard A. Amerine, Ph.D. (Viticulture and Enology)
James F. Guymon, Ph.D. (Viticulture and Enology)
Samuel B. Lepkovsky, Ph.D. (Avian Sciences, Berkeley Campus, Emeritus)
Edward B. Roessler, Ph.D. (Mathematics)
J. M. Smith, Sc.D. (Chemical Engineering)
Associate Professors:
Ralph E. Kunkee, Ph.D. (Viticulture and Enology)
Daniel W. Peterson, Ph.D. (Avian Sciences)

Lecturers:
A. Wade Brant, Ph.D.
Sherman J. Leonard, B.S.
Bor S. Luh, Ph.D.

VITICULTURE AND ENOLOGY
Harold W. Berg, M.S., Chairman of the Department
Department Office, 1023 Wickers Hall

Professors:
Maynard A. Amerine, Ph.D.
Harold W. Berg, M.S.
James A. Cook, Ph.D.
James F. Guymon, Ph.D.
Klayton E. Nelson, Ph.D.
Harold P. Olmo, Ph.D.
Vernon L. Singleton, Ph.D.
Robert J. Weaver, Ph.D.
A. Dinsmoo Webb, Ph.D.
Albert J. Winkler, Ph.D., LL.D. (Emeritus)

Associate Professors:
Ralph E. Kunkee, Ph.D.
Lloyd A. Lider, Ph.D.

Professor:
Frederick T. Addicott, Ph.D. (Agronomy and Range Science)

Lecturers:
W. Mark Klewes, Ph.D.
Cornelius S. Ough, B.S.

Departmental Major Advisers.—See Schedule and Directory Listing.

Bachelor of Science Major Program and Graduate Study. See pages 58 and 151.

Food Science and Technology

Lower Division Courses

1. Introduction to Food Science. (3) I.
Lecture—3 hours. Open to nonmajors. Development and maintenance of an adequate food supply; food quality and its measurement; scientific and technological aspects of converting raw animal and plant products into a large variety of processed and preserved foods; maintenance and improvement of the acceptability and nutritional value of foods.

38. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Chairman in charge)

39. Special Study for Undergraduates. (1-5) I, II, III.
The Staff (Chairman in charge)

49. Processing Plant Studies. (1) I.
Prerequisite: course 1. Field trips to observe processing, distribution, quality control and regulatory control of foods and related materials.
Mr. Leonard

Upper Division Courses

*100. Processing Agricultural Products. (5) I.
Lecture—4 hours; laboratory—3 hours. Prerequisite: Biology 1; Chemistry 8B. Processing of foods, seeds, and fibres to provide desirable qualities, such as convenience, economy and utility. Principles used in raw product selection, conversion, preservation, and quality control.
Mr. Miller, Mr. Dunkley

101. Biochemistry and Food Science. (3) III.
Lecture—3 hours. Prerequisite: Biochemistry 101B. Topics on enzymes, proteins, lipids and vitamins. Biochemical principles related to food composition, preservation and processing.
Mr. Tappel

*102. Malting and Brewing Technology. (3) I.
Lecture—3 hours; field trips and pilot-scale brewing by arrangement. Prerequisite: Biochemistry 101A. The technology of the malting, brewing, and fermentation processes is integrated with the chemistry, biochemistry, and microbiology that determines industrial practices and product quality.
Mr. Lewis

103. Physical and Chemical Methods for Food Analysis. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biochemistry 101B; Chemistry 5; Chemistry 8B (may be taken concurrently). Theory and application of physical and chemical methods for analyzing foods.
Mr. Whitaker, Mr. Bernhard

* Not to be given, 1970-71.
104A. Food and Industrial Microbiology. (2) I.
Lecture—2 hours. Prerequisite: Bacteriology 2; Chemistry 8B. Taxonomy, physiology, ecology, and control of microorganisms important in manufacturing and ripening foods, producing defects, and spoilage; disposing of wastes and protecting public health; bacteriophage action and control.
Mr. Collins

104B. Food and Industrial Microbiology. (2) II.
Lecture—2 hours. Prerequisite: course 104A. Continuation of course 104A with emphasis on destruction of microorganisms, and food-borne infections and intoxications.
Mr. Collins

105A–105B. Food and Industrial Microbiology Laboratory. (2–2) I–II.
Laboratory—6 hours. Prerequisite: courses 104A–104B (should be taken concurrently); Bacteriology 2; Chemistry 8B. Laboratory procedures selected to follow subject matter sequence of course 104A–104B.
Mr. Crisan, Mr. Vaughn

*106. Industrial Fermentations. (3) I.
Lecture—3 hours. Prerequisite: Bacteriology 2. Microorganisms and their activity in relation to industrial processes such as baking, brewing, and the production of industrial solvents, vitamins, enzymes, drugs, and other chemicals. For laboratory experience in this field, students may register in course 106L.
Messrs. Lewis, Phaff, Kunkee

*106 (Summer).
Laboratory—90 hours total. Prerequisite: A course in industrial fermentation. Microorganisms and their activities in relation to industrial processes such as baking; brewing; production of industrial alcohol, yeasts, solvents, vitamins, enzymes, antibiotics, and other drugs.
Mr. Lewis

*107A. Analysis of Variance as Applied to Sensory Evaluation Problems. (1) II.
Lecture, discussion and laboratory—2 hours a week. Prerequisite: Mathematics 13 or its equivalent. Intensive review of hypothesis testing and the analysis of variance.
Mr. Roessler, Mrs. Pangborn

*107B. Principles of Sensory Evaluation of Foods. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 107A or the ability to use analysis of variance. Nature of sensory response with emphasis on taste and smell as related to foods; design and methodology of small panel and consumer panel testing; and application of appropriate mathematical procedures.
Mr. Amerine, Mrs. Pangborn

108A. Food Plant Sanitation. (2) I.
Lecture—2 hours. Prerequisite: Chemistry 1A. Principles of water conditioning and water treatment, chemical sanitizing agents, metallic corrosion, fundamental concepts in the disposal of wastes, and discussion of other factors relating to food plant sanitation.
Mr. Jennings

108B. Food Plant Sanitation. (2) II.
Lecture—2 hours. Prerequisite: Chemistry 8B. Principles of hard-surface detergency; detergent classification and formulations, soil and substrate considerations, energy relationships in detergency, and theories and mechanisms of detergency.
Mr. Jennings

110A. Engineering Principles of Food Processing. (3) I.
Lecture—3 hours. Prerequisite: Mathematics 16C; Physics 2B, 3B. Application of the conservation of mass and energy to food processing. Elements of engineering thermodynamics, fluid mechanics, and heat transfer.
Mr. Merson

110B. Engineering Principles of Food Processing. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 110A. Introduction to process principles, including counter-current operation and equilibrium stage processing. Treatment of heat exchanger, evaporation, and refrigeration unit operations. Field trips to processing plants.
Messrs. Merson, Harper, Guymon

110C. Engineering Principles of Food Processing. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 110B. Principles of psychrometry and the unit operations of dehydration and distillation; process control and economic considerations. Field trips to selected processing plants.
Messrs. Merson, Harper, Guymon

111A. Preservation Technology. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Bacteriology 2; Chemistry 8B. Technology of the preservation of foods by pasteurization, sterilization, and radiation. Laboratories and field trips.
Mr. Nickerson, Mr. Leonard

111B. Preservation Technology. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 111A. Technology of the preservation of foods by concentration, drying, refrigeration, freezing, fermentation and chemical additives. Laboratories and field trips.
Mr. Miller, Mr. Nickerson

* Not to be given, 1970–71.
113. Structure of Food Materials. (3) I.
Lecture—2 hours; laboratory—3 hours. Anatomical features and structural properties of foods; histological tests of food tissues; rheological characteristics; food texture.
Mr. Sterling

119. Principles of Dairy Processing. (3) III.
Lecture—3 hours. Prerequisite: Bacteriology 2; Chemistry 8B. Technical principles related to the commercial processing of milk and its products including ice cream, butter and cheese; theory and practical applications.
Mr. Nickerson

122. An Introduction to Enzymology. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biochemistry 101B. Principles of purification, physicochemical and enzymatic properties, and utilization with emphasis on enzymes which are used, or have potential use, in the food and beverage industries.
Mr. Whitaker

125. Metals and Metal Complexes in Foods. (4) II.
Lecture—4 hours. Prerequisite: Biochemistry 101B; Chemistry 109B. Structure, reactions, and physical properties of metal complexes, particularly those of importance to food science. The biochemistry of metal ions in foods.
Mr. Gruwedel

130. Chemistry of Milk and Dairy Products. (3) III.
Lecture—3 hours. Prerequisite: Biochemistry 101A. The chemistry of milk constituents; physical and chemical properties of milk; and the changes that occur during the processing and storage of dairy products, with emphasis on quality.
Mr. Nickerson, Mr. Smith

131. Packaging Processed Foods. (3) II.
Mr. Stewart

190. Recent Advances in Food Technology. (1) I.
Lecture—1 hour. Prerequisite: two courses in Food Science and Technology. Assigned topics, reports, and discussions concerning recent advances in food technology.

194H. Special Study for Honors Students. (1-5) I, II, III.
Prerequisite: open only to majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.
The Staff (Chairman in charge)

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Chairman in charge)

Graduate Courses

210A. Proteins: Functional Activities and Interactions. (3) II.
Lecture—3 hours. Prerequisite: Biochemistry 101B. The relationships of structure of proteins to their biological functions. Structural proteins, complexing proteins, and catalytic proteins in plant and animal materials and products.
Mr. Feeney

210B. Proteins: Functional Activities and Interactions. (2) III.
Lecture—2 hours. Prerequisite: course 210A or Biochemistry 201A. The relationships of structure of proteins to their biological functions. Structural proteins, complexing proteins, and catalytic proteins in plant and animal materials and products.
Mr. Feeney

211. Chemistry of the Food Lipids. (3) III.
Lecture—3 hours. Prerequisite: Biochemistry 101A. Chemical constitution, molecular structure, and stereo chemistry of the fats, phospholipids, and related compounds. Methods of isolation, characterization, and synthesis. Relation of molecular structure to physical properties.
Mr. Smith

213. Macromolecular Gels. (2) I.
Lecture—2 hours. Prerequisite: Biochemistry 101A. Structural interrelationship of water with typical biological polymers in gels; xerogels; gel properties and methods of study.
Mr. Sterling

220. The Natural Coloring Matters. (2) I.
Lecture—1 hour; laboratory—3 hours. Prerequisite: 3 units of biochemistry or plant biochemistry; 3 units of upper division organic chemistry. Chemistry of natural pigments and related compounds; spectrophotometric and chromatographic techniques; special emphasis on pigments in relation to foods.

230. Principles of Comparative Biochemistry. (3) I.
Lecture—3 hours. Prerequisite: Biochemistry 201C or consent of instructor. An advanced treatment of comparative biochemistry. Comparisons of living systems, their structures and functions on a molecular basis, biochemical unity and diversity; protein structures and organized enzyme systems. Comparison of biochemical processes related to photobiology, metabolism and excretion.
Mr. Feeney
250A–250B. Isolation and Characterization of Trace Volatiles. (2) I, II.
Lecture—2 hours. Prerequisite: consent of instructor. Preparation of volatile concentrates suitable for gas chromatographic separations; influence of the design and type of chromatograph on the efficiency of separation; techniques of trapping and reinjecting chromatographic fractions; and spectrometric characterization of the separated compounds. Mr. Jennings

251A–251B. Isolation and Identification of Trace Volatiles. (1) I, II.
Laboratory—3 hours. Prerequisite: course 250A–250B must be taken concurrently. Preparation of volatile concentrates for gas chromatographic separations; construction of gas chromatographic columns and determination of their efficiencies; trapping techniques; infrared and mass spectrometric characterization of isolated compounds. Mr. Jennings

290. Seminar. (1) I, II, III.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.) Mr. Mazelis

Seminar—1 hour. Prerequisite: graduate standing. Critical reading, evaluation, and presentation of papers from the literature as well as results of own research with emphasis on those dealing with all aspects of proteins, enzymes and nucleic acids.
The Staff (Chairman in charge)

Directed study on food chemistry, food microbiology, food processing or sensory evaluation.
The Staff (Chairman in charge)

Prerequisite: graduate standing.
The Staff (Chairman in charge)

Viticulture and Enology†
Lower Division Course
Lecture—3 hours. An introduction to wine technology, including history, fermentation, production practices, wine types, and the wine industry of California and other wine producing areas. Mr. Singleton, Mr. Amerine

Upper Division Courses
124. Enology: Wine Production. (3) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: Bacteriology 2; Chemistry 5, 8B. Recommended: Chemistry 9, 109B; Food Science and Technology 107; Plant Science 2; and course 3. The principles and practice of making the various standard types of wines, with special reference to the grape varieties used and the methods of vinification required for each. Mr. Webb

125. Principles of Sensory and Chemical Analysis of Wines; Wine Types. (3) II.
Lecture—1 hour; laboratory—6 hours. Prerequisite: Bacteriology 2; Chemistry 5, 8B. Recommended: Chemistry 9, 109B; Food Science and Technology 107; Plant Science 2; and courses 3, 124. Principles of sensory and chemical examination of wines; wine regions of the world; principles of production of sparkling wines and vermouth. Mr. Amerine

126. Enology: Wine Processing. (3) III.
Lecture—1 hour; laboratory—6 hours. Prerequisite: Bacteriology 2; Chemistry 5, 8B. Recommended: Chemistry 9, 109B; Food Science and Technology 107A–107B; Plant Science 2; and courses 3, 124, 125. Principles and theory of nonbacterial disorders: metal, tartrate, protein, color, oxidative and their control by clarification, refrigeration, filtration and ion-exchange. Mr. Berg

140. Distillation Principles and Brandy Technology. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 5, 8B. Recommended: Chemistry 109B; Food Science and Technology 110A. Principles of distillation including engineering aspects and problems with emphasis upon the alcohol-water system and distillation of wines; brandy types, sensory and chemical analysis and production factors. Offered in odd-numbered years. Mr. Guymon

191. Proseminar in Enology. (1) I, II, III.
Lecture—1 hour. Prerequisite: consent of instructor. Reports and discussion of recent advances in enology. Messrs. Amerine, Berg, Webb

Prerequisite: consent of instructor.
The Staff (Mr. Berg in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III. The Staff (Mr. Berg in charge)

Graduate Courses

217. Microbiology of Wine Production. (3) II.
Lecture—1 hour; laboratory—6 hours. Prerequisite: Bacteriology 2; Biochemistry 101A; Chemistry 5, 8B. Recommended: course 3 or 124, 125, 126, and an upper division course in Bacteriology. Nature, development, physiology, biochemistry, and control of yeasts and bacteria involved in the making, aging, and spoilage of wines. Mr. Kunkee

* Not to be given, 1970-71.
219. Plant Phenolics. (3) III.

Lecture—3 hours. Prerequisite: Biochemistry 101B or equivalent and consent of instructor. Flavonoids and other natural phenolic substances of plants; their chemistry, natural occurrence, biochemistry, relation to animal diets, and relation to properties of foods and other products. Mr. Singleton

290. Seminar. (1) I, II, III.

Seminar—1 hour. Prerequisite: consent of instructor. Mr. Webb

298. Group Study. (1-5) I, II, III.

(Satisfactory/Unsatisfactory grading only.) The Staff (Mr. Berg in charge)

299. Research. (1-12) I, II, III.

The Staff (Mr. Berg in charge)

FOODS—See Family and Consumer Sciences

FOREIGN LITERATURE IN TRANSLATION

The following courses are open to students throughout the campus. The readings are in English. Refer to departmental listing for descriptions of courses.

Classics
139A and 139B. Greek Literature in Translation.
140. Latin Literature in Translation.
141. Greek and Roman Comedy.

Dramatic Art
20. Introduction to Dramatic Art.
158A, 158B. World Drama.
159. Contemporary Drama.

English
170A. The Epic.
170B. European Influences on the English and American Novel.
171. English Bible as Literature.

French
39B. French Literature in English Translation: to the Nineteenth Century.
39C. French Literature in English Translation: the Contemporary Period.
*141. Gide and Proust.
142. French Novel from Malraux to the Nouveau Roman.
150. Masterpieces of French Literature.
*151. The French Novel.

German
15. The Development of German Literature.
110. Masterpieces of German Prose from Goethe to Kafka.

* Not to be given, 1970–71.

111. Masterpieces of German Drama from Lessing to Brecht.
112. Masterpieces of German Poetry from Walther von der Vogelweide to Rilke.
114. Goethe's Faust.
115. German Literature of the Twentieth Century up to the Second World War.
116. German Literature of the Twentieth Century since the Second World War.
117. Kafka and Dada.
118. Brecht.

Oriental Languages
132A–132B. History of Japanese Literature
150A. Ancient Israel.
150B. Ancient Israel.
*151A. Ancient Jewish Civilization.
*151B. Ancient Jewish Civilization.

Russian
30. Great Russian Writers.
40. Survey of Russian Literature to 1800.
41. Survey of Russian Literature: Nineteenth Century.
42. Survey of Russian Literature: Twentieth Century.
121. The Nineteenth-Century Russian Novel.
123. The Twentieth-Century Russian Novel.
128. Modern Russian Poets.
140. Dostoevsky.
141. Tolstoy.

Spanish
150. Masterpieces of Spanish Literature.
FORESTRY—See Resource Sciences

FRENCH

Max Bach, Ph.D., Chairman of the Department
Department Office, 515 Sproul Hall

Professor:
Max Bach, Ph.D.

Associate Professor:
Marshall Lindsay, Ph.D.

Assistant Professors:
*Edward M. Bloomberg, Ph.D.
Gerald Herman, Ph.D.
George H. Keith, Ph.D.
Ruth B. York, Ph.D.
Emily Zants, Ph.D.

Professor:
Jean Hytier, Docteur és Lettres (Visiting)

Associate Professor:
Nicole Marzac, Docteur és Lettres
(Visiting)

Assistant Professor:
Jurate Izokaitis, M.A. (Acting)

Departmental Major Advisers.—Mr. Herman,
Miss York.

Graduate Advisers.—Mr. Bach, Mr. Bloomberg,
Miss York.

The Major Program

Lower Division Courses.—Required: French
1, 2, 3, 4, 5, and 6 or their equivalents; French
30A, 30B. Recommended: French 46A, 46B,
and 46C; one year of college Latin or the
equivalent.

Upper Division Courses.—Required: at least
36 units including one quarter of course 110,
one of the following: 130, 131, 132, and a
separate course in each of the following periods:
sixteenth century, seventeenth century, eight-
teenth century, nineteenth century. Recommended:
Classics 139A, 139B, 140.

Courses 107A, 107B, 160 and either course
104 or 105 are required for the General Sec-
condary Teaching Credential in French.

Honors and Honors Program (see page 133).
The honors program comprises two quarters of
study under course 194H, which will include a
research paper and a comprehensive examina-
tion.

Graduate Study.—The Department offers pro-
grams of study and research leading to the
M.A. and Ph.D. degrees in French. Detailed
information regarding graduate study may be
obtained by writing to the Graduate Adviser,
Department of French and Italian.

Teaching Minor.—A minimum of 30 units in
French including courses 30A, 30B, 104, 105,
and 107A–107B. Recommended: courses 46A,
46B, 46C.

Lower Division Courses

A course may not ordinarily be taken for
credit if it is a prerequisite to a course already
completed. Students offering high school lan-
guage preparation as a prerequisite must take a
placement test.

Course Placement.—Students with two years
of high school French normally take French 3,
those with three years take French 4 and those
with four years take French 5.

1. Elementary French. (4) I, II, III.
 Discussion—5 hours. The Staff

*16. French for Graduate Students. No Credit. III.
 Recitation—3 hours. A course designed to
 prepare students for the graduate reading ex-
 amination. Mr. Herman

*1R. Elementary French—Reading. (4) I.
 Lecture—3 hours; laboratory—1 hour. Ele-
 mentary French with emphasis on reading.
 The Staff

2. Elementary French. (4) I, II, III.
 Discussion—5 hours. Prerequisite: course 1
 or equivalent. A continuation of course 1. The Staff

*2R. Elementary French—Reading. (4) II.
 Lecture—3 hours; laboratory—1 hour. Pre-
 requisite: course 1R or equivalent. Elementary
 French with emphasis on reading. The Staff

 Discussion—5 hours. Prerequisite: course 2 or
 equivalent. A continuation of course 2. The Staff

*3R. Elementary French—Reading. (4) III.
 Lecture—3 hours; laboratory—1 hour. Pre-
 requisite: course 2R or equivalent. Elementary
 French with emphasis on reading. The Staff

 Recitation—3 hours. Prerequisite: course 3 or
 equivalent. The Staff

*4R. Intermediate French—Reading. (4) I, II,
 Laboratory—2 hours; recitation—3 hours.
 Prerequisite: course 3R or equivalent. This
 variant of course 4 places greater emphasis on
 reading than the regular course. The Staff

* Not to be given, 1970–71.
* Absent on leave, winter quarter 1971.
 Lecture—5 hours. Prerequisite: course 3.
 Intensive course combining present courses 4 and 5.

5. Intermediate French. (3) I, II, III.
 Recitation—3 hours. Prerequisite: course 4 or equivalent. Continuation of course 4. The Staff

*5R. Intermediate French—Reading. (4) II.
 Laboratory—2 hours; recitation—4 hours.
 Prerequisite: course 4R or equivalent. This variant of course 5 places greater emphasis on reading than the regular course. The Staff

6. Reading and Conversation. (4) I, II, III.
 Recitation—4 hours. Prerequisite: course 5 or equivalent. Class discussion; reading of selected works; oral reports; analysis of texts. The Staff

30A. Grammar, Composition, and Conversation.
 (4) I, II, III.
 Lecture—3 hours. Prerequisite: course 6.

30B. Grammar, Composition, and Conversation.
 (4) I, II, III.
 Lecture—3 hours. Prerequisite: course 30A.

*39A. French Literature in English Translation: to the End of the Eighteenth Century. (4) II.
 Lecture—3 hours. An introduction to French literature for non-French majors. Knowledge of French not required. Miss Zantz

*39B. French Literature in English Translation: the Nineteenth Century. (4) III.
 Lecture—3 hours. An introduction to French literature for non-French majors. Knowledge of French not required. Miss Zantz

39C. French Literature in English Translation: the Contemporary Period. (4) II.
 Lecture—3 hours. An introduction to French literature for non-French majors. Knowledge of French not required. Miss Zantz

46A. Survey of French Literature: Middle Ages and Renaissance. (3) III.
 Lecture—3 hours. Prerequisite: course 6.
 Readings from major works; discussion of literary history and theory. Mr. Keith

46B. Survey of French Literature from 1600 to 1800. (3) II.
 Lecture—3 hours. Prerequisite: course 6.
 Readings from major works; discussion of literary history and theory.

* Not to be given, 1970–71.

46C. Survey of French Literature from 1800 to the Present. (3) I.
 Lecture—3 hours. Prerequisite: course 6.
 Readings from major works; discussion of literary history and criticism. Miss York

Upper Division Courses

104. Advanced Grammar and Composition. (3) I.
 Lecture—3 hours. Prerequisite: course 30B.
 Mr. Bach

105. Advanced Grammar and Composition. (3) II.
 Lecture—3 hours. Prerequisite: course 104.
 Mr. Bach

107A–107B. Survey of French Culture and Institutions. (3–3) II–III.
 Lecture—3 hours. Prerequisite: course 6.
 107A—From the origins of French civilization through the Renaissance. 107B—From the seventeenth century to the present. The Staff

110. Advanced Composition and Translation. (3) III.
 Lecture—2 hours. Prerequisite: course 30B.
 This course may be repeated for credit. The Staff

*115A. Medieval Literature: Epic and Romance. (4) III.
 Lecture—3 hours. Prerequisite: course 6. La Chanson de Roland, Tristan et Iseut, and selected works of Chrétien de Troyes. Mr. Herman

115B. Medieval Literature: Poetry, Drama and Satire. (4) III.
 Lecture—3 hours. Prerequisite: course 6.
 "Chansonniers" Roman de la Rose, Fabliaux, Renart, Villon.
 Mr. Herman

116A. Literature of the Sixteenth Century. (4) II.
 Lecture—3 hours. Prerequisite: course 6.
 A study of the lyric poetry of the sixteenth century, from Marot to d'Aubigné, with emphasis on the Pléiade.

116B. Literature of the Sixteenth Century. (4) I.
 Lecture—3 hours. Prerequisite: course 6.
 Rabelais and Montaigne. A critical study of the works in relationship to the period.

*117A. Theater of the Seventeenth Century. (4) I.
 Lecture—3 hours. Prerequisite: course 6.
 Offered in even-numbered years. Mr. Bloomer

117B. Novelists and Moralists of the Seventeenth Century. (4) III.
 Lecture—3 hours. Prerequisite: course 6.
 Mr. Bloomer
117C. Classicism and Baroque. (4) I.
Lecture—3 hours. Prerequisite: course 6.

118A. The Enlightenment. (4) II.
Lecture—3 hours. Prerequisite: course 6.
Readings from Bayle, Fontenelle, Montesquieu, Voltaire, Diderot, Rousseau, and others.
Miss Izokaitis

118B. Drama and Novel in the Eighteenth Century.
(4) III.
Lecture—3 hours. Prerequisite: course 6.
Plays of Marivaux and Beaumarchais; novels of Lesage, Prevost, Diderot, Voltaire, Rousseau.
Miss Zants

*118C. Diderot and the Encyclopédie. (4) I.
Lecture—3 hours. Prerequisite: course 6.
Miss Zants

*119A. The Nineteenth Century. (4) III.
Lecture—3 hours. Prerequisite: course 6.
Romanticism in the drama and novel: Hugo, Stendhal, Vigny, Musset, etc.
Mr. Bach

119B. The Nineteenth Century. (4) III.
Lecture—3 hours. Prerequisite: course 6.
Realism: Balzac and Flaubert.
Miss Zants

119C. The Nineteenth Century. (4) I.
Lecture—3 hours. Prerequisite: course 6.
Naturalism and Symbolism: Zola, Maupassant, Mallarmé.
Miss Izokaitis

120A. Twentieth Century Drama. (4) II.
Lecture—3 hours. Prerequisite: course 6.
Representative plays from Jarry to Giaudoux.
Miss York

120B. Twentieth Century Drama. (4) III.
Lecture—3 hours. Prerequisite: course 6.
Representative plays from Anouilh to Ionesco.
Miss York

*130. Critical Reading of Poetry. (4) I.
Lecture—3 hours. Prerequisite: course 6 or its equivalent. Analysis and evaluation of works representing main types of French poetry. Study of poetic conventions and versification.
Mr. Lindsay

131. Critical Reading of Fiction. (4) II.
Lecture—3 hours. Prerequisite: course 6 or its equivalent. Analysis and evaluation of short stories and novels representing the main types of French fiction, with emphasis on narrative structure and techniques.
Miss Zants

132. Critical Reading of Drama. (4) III.
Lecture—3 hours. Prerequisite: course 6 or its equivalent. Analysis and evaluation of plays representing main types of French drama, with emphasis on dramatic structure and techniques.
Miss Zants

*138A. French Poetry from the Pre-Romantics to Baudelaire. (4) II.
Lecture—3 hours. Prerequisite: course 6 or equivalent. Offered in even-numbered years.
The Staff

*138B. French Poetry from Baudelaire to the Surrealists. (4) III.
Lecture—3 hours. Prerequisite: course 6 or equivalent. Offered in even-numbered years.
The Staff

*140. Study of a Major Writer. (4) I.
Lecture—3 hours. Prerequisite: course 6.
May be repeated for credit with consent of instructor.
Miss Zants

141. Gide and Proust. (4) I.
Lecture—3 hours. Prerequisite: course 6 for those reading in French. Lectures and discussion in English; reading in French or English.
Mr. Lindsay

142. French Novel from Malraux to the Nouveau Roman. (4) II.
Lecture—3 hours. Reading in French and English.
Mr. Lindsay

*145. Reading of Philosophical Texts. (4) III.
Lecture—3 hours. Prerequisite: course 6.
Style and content of representative texts from the Renaissance to the present.
Mr. Lindsay

150. Masterpieces of French Literature. (4) I.
Lecture—3 hours. Prerequisite: English 1. Reading, lectures, and discussion in English. May not be counted as part of the major in French. Offered in even-numbered years.
Mr. Lindsay

*151. The French Novel. (4) III.
Lecture—3 hours. Reading, lectures, and discussion in English. May not be counted as part of major in French.
Mr. Lindsay

*155. Criticism. (4) III.
Lecture—3 hours. Prerequisite: course 6. The study of various critical approaches to literature (thematic, structural, linguistic, psychoanalytic, etc.) together with their application to selected French works.
Mr. Wilson

160. Structure of the French Language. (4) II.
Lecture—3 hours. Prerequisite: course 6 or consent of instructor. Linguistic analysis of modern French.
Mr. Keith

194H. Special Study for Honors Students.
(5) I, II, III.
Prerequisite: open only to honors students. Guided research leading to an honors paper.
The Staff (Chairman in charge)
199. Special Study for Advanced Undergraduates. (1-5) I, II, III.

The Staff (Chairman in charge)

Graduate Courses

*200. Seminar in French Linguistics. (4) III.

Seminar—3 hours. Prerequisite: graduate standing and consent of instructor. Study of substrata influences, dialect geography, homonymic conflict, jargons and argots, French contributions to linguistic theory. Mr. Keith

201A. History of the French Language. (4) I.

Seminar—3 hours. Mr. Keith

201B. History of the French Language. (4) II.

Seminar—3 hours. Prerequisite: course 201A. Mr. Keith

202. Medieval French Literature. (4) III.

Seminar—3 hours. May be repeated for credit with consent of instructor. Mr. Herman

203. Reading of Old French Texts. (4) III.

Seminar—3 hours. Prerequisite: course 201A-201B or equivalent. Mr. Keith

Seminar—3 hours. May be repeated for credit with consent of instructor. Miss Marzac

Seminar—3 hours. May be repeated for credit with consent of instructor. Messrs. Bloomberg, Hytier, ———

*208. Eighteenth-Century French Literature. (4) II.

Seminar—3 hours. May be repeated for credit with consent of instructor. Mr. Hytier

Seminar—3 hours. May be repeated for credit with consent of instructor.

Miss Zants, Mr. Hytier, Mr. Lindsay

Seminar—3 hours. May be repeated for credit with consent of instructor.

Miss York, Mr. Lindsay

*225. Problems in French Criticism. (4) II, III.

Seminar—3 hours. May be repeated for credit with consent of instructor. Selected topics in criticism for intensive investigation. Mr. Lindsay

230. Old Provençal. (4) III.

Seminar—3 hours. Prerequisite: course 201A, 201B or equivalent. An introduction to Old Provençal phonology and morphology, with reading and interpretation of texts. Mr. Keith

235. Explication de Textes. (4) III.

Seminar — 3 hours. Prerequisite: graduate standing in French. Theory of the explication de textes method and exercises according to this method. Mr. Bloomberg

298. Group Study. (1-4) I, II, III.

Seminar—1—3 hours. May be repeated for credit with consent of instructor.

The Staff (Chairman in charge)

299. Research. (2-5) I, II, III.

The Staff (Chairman in charge)

GENETICS—See also Agricultural Genetics, page 177, and Animal Science

GENETICS

Robert W. Allard, Ph.D., Chairman of the Department
Department Office, 201 Hutchison Hall

Professors:
Robert W. Allard, Ph.D. (Genetics and Agronomy and Range Science)
Melvin M. Green, Ph.D.
S. Richard Snow, Ph.D.
G. Ledyard Stebbins, Ph.D.

Associate Professor:
Gordon J. Edlin, Ph.D.

Assistant Professors:
James B. Boyd, Ph.D.
Leslie D. Gottlieb, Ph.D.

Professors:
*Royce S. Brinthurst, Ph.D. (Pomology)
Harry H. Laidlaw, Jr., Ph.D. (Entomology)

Associate Professors:
*Paul E. Hansche, Ph.D. (Pomology)
Stephen L. Wolfe, Ph.D. (Zoology)

* Not to be given, 1970-71.
* Absent on leave, winter quarter 1971.
Assistant Professor:
Robert K. Webster, Ph.D. (Plant Pathology)

Departmental Major Adviser.—Mr. Edlin.

The department offers two undergraduate majors in Genetics: Bachelor of Science (Genetics), College of Letters and Science; and Bachelor of Science, Agricultural Genetics College of Agricultural and Environmental Sciences. These majors are designed to provide a broad background in the biological, mathematical and physical sciences basic to the study of heredity and evolution. The Agricultural Genetics major provides opportunity for greater emphasis in applied genetics. Either major is suitable for students who plan graduate work in biology.

The Major Program (College of Agricultural and Environmental Sciences) See page 68.

The Major Program (Letters and Science)

Lower Division Courses.—Required: 18 units in one language in high school or 12 units in one language in college; Bacteriology 2; Biology 1; Botany 2; Chemistry 1A—1B—1C, 8A—8B; Mathematics 13; and Mathematics 15, 16A—16B or 10A—16B—16C or 21A—21B—21C; Physics 2A—2B—2C; Zoology 2.

Upper Division Courses.—Required: Biochemistry 101A—101B or Mathematics 105A—105B (both sequences recommended); Genetics 100A—100B, 100L; one course in animal, microbial or plant physiology; three courses from the following group: Genetics 101, 102, 103, 104, 105; Bacteriology 170; 28 additional upper division units in biological sciences.

In addition to the courses listed above, the student must also complete those courses satisfying the College and University requirements summarized on page 61.

Graduate Study.—The Graduate Group in Genetics offers programs of study and research leading to the M.S. and Ph.D. degrees. For detailed information regarding graduate study in genetics, write the Chairman of the Genetics Graduate Group, Department of Genetics. (Also see page 151.)

Lower Division Course

10. Heredity and Evolution. (4) I, II.

Lecture—3 hours; discussion—1 hour. The general principles of the laws of heredity and evolution for students not specializing in biology. No credit to students who have had or are taking upper division genetics courses.

I. Mr. Stebbins, II. Mr. Gottlieb

Upper Division Courses

100A. Principles of Genetics. (3) I, II.

Lecture—3 hours; discussion—1 hour. Prerequisite: introductory course in biology, botany, microbiology, or zoology; not open for credit to students who have received credit for course 115. Introduction to genetics with some consideration of its applications in agriculture and biology.

I. Mr. Boyd, II. Mr. Snow

100B. Principles of Genetics. (3) II, III.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A; Mathematics 13 or equivalent recommended. Continuation of course 100A.

II. Mr. Green, III. Mr. Allard

100L. Principles of Genetics Laboratory. (1) II, III.

Laboratory—3 hours. Prerequisite: course 100A. Laboratory work in basic genetics to supplement courses 100A, 100B, and 115.

Mr. Green

101. Cytogenetics. (3) III.

Lecture—3 hours. Prerequisite: course 100B or 115. Gross and fine structure of chromosomes and associated cell organelles; chromosome reproduction; behavior of chromosomes as related to genetics and evolution in polyplody, aneuploids, and structural heterozygotes.

Mr. Snow, Mr. Wolfe

101L. Cytogenetics Laboratory. (2) III.

Laboratory—6 hours. Prerequisite: course 101 (may be taken concurrently). Laboratory study of chromosome structure and behavior.

Mr. Snow, Mr. Wolfe

102. Molecular and Biochemical Genetics. (3) I.

Lecture—3 hours. Prerequisite: course 100B, Biochemistry 101B. Study of gene structure, mutation and the biochemical basis of gene function.

Mr. Edlin

103. Organic Evolution. (3) III.

Lecture—3 hours. Prerequisite: course 100B or 115. Evolutionary processes in higher organisms.

Mr. Stebbins

104. Developmental Genetics. (4) II.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 100B or 115; Biochemistry 101B. The action of genes in development at the levels of the enzyme molecule, cellular organelle, tissue and organ, with examples from microorganisms, plants, and animals.

Mr. Boyd

105. Population Genetics. (3) I.

Lecture—2 hours; discussion—2 hours. Prerequisite: course 100B or 115; Mathematics 13, 16B recommended. An introductory course in the analysis and interpretation of quantitative genetic systems.

Mr. Allard

115. Human Genetics. (5) III.

Lecture—4 hours; discussion—1 hour. Prerequisite: introductory course in zoology, botany, or biology; Mathematics 13, or equivalent; upper division standing; not open for credit to students who have received credit in courses
100A–100B. Introduction to genetics with special emphasis on man. This course will fulfill the needs of preprofessional students and those in other areas of human biology. Mr. Green

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: Consent of instructor based on adequate preparation or the student in allied fields.
The Staff (Mr. Allard in charge)

Graduate Courses

203. Advanced Organic Evolution. (3) III.
Lecture—discussion—2 hours; discussion or laboratory—3 hours. Prerequisite: courses 103 and 105 or consent of instructor. Analysis of evolutionary processes. Mr. Gottlieb

205. Advanced Population Genetics. (3) II.
Lecture—3 hours. Prerequisite: course 105, Mathematics 131A. Analysis of the genetic structure and evolution of populations. Offered in odd-numbered years. Mr. Hansche

206. Current Topics in Genetics. (3) I, II, III.
Lecture—2 hours; laboratory or discussion—2 hours. Prerequisite: course 100B or 115, consent of instructor. Selected topics of current interest in advanced genetics. May be repeated for credit.

291. Seminar in History of Genetics. (2) II.
Seminar—2 hours. Prerequisite: course 100B or 115. The development of modern genetic theories beginning with Mendel. (Satisfactory/Unsatisfactory grading only.) Mr. Laidlaw

292. Seminar in Gene Structure and Action. (1–3) I.
Seminar—1 hour. Prerequisite: course 102 or 206; Bacteriology 170. Topics of current interest related to the structure of genes, mutation, and the mechanism of gene action. Offered in even-numbered years. (Satisfactory/Unsatisfactory grading only.) Mr. Edlin

293. Seminar in Cytogenetics and Evolution. (1–3) II.
Seminar—1–3 hours. Prerequisite: course 291 (may be taken concurrently). Topics of current interest related to chromosomal changes, mutation and other genetic changes in natural populations, and the application of genetics to study of organic evolution. (Satisfactory/Unsatisfactory grading only.) Mr. Brinohurst

294. Seminar in Breeding Systems. (1–3) III.
Seminar—1–3 hours. Prerequisite: course 291. Topics of current interest relating genetics to problems of animal and plant breeding. (Satisfactory/Unsatisfactory grading only.) Mr. Webster

Prerequisite: consent of instructor. Directed group study of special topics in genetics. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

GEOGRAPHY

Howard F. Gregor, Ph.D., Chairman of the Department
Department Office, 280 AOB–3

Professors:
Howard F. Gregor, Ph.D.
Frederick J. Simoons, Ph.D.
Kenneth Thompson, Ph.D.

Assistant Professors:
Stephen C. Jett, Ph.D.
David R. Lee, Ph.D.
David S. McArthur, Ph.D.
Roy J. Shlemon, Ph.D.

Lecturers:
Karl M. Kriesel, M.A.
Herbert B. Schultz, Ph.D. (Professor in Agricultural Engineering)

Departmental Major Advisers.—Mr. Jett, Mr. Kriesel.

* Not to be given, 1970–71.

Graduate Adviser: Mr. Lee.

The Major Program

Lower Division Courses.—Required: Geography 1, 2, 3, 5; Anthropology 2.
Upper Division Courses.—Required: 36 upper division units in geography. Each program should normally include Geography 105 and 151.

Students who wish to prepare for further training or employment in the field of Urban and Regional Planning may do so by completing certain additional courses, while fulfilling the requirements for the major, in consultation with the departmental adviser.

Teaching Major.—Requirements for the teaching major are the same as for the undergraduate major for degree, with the addition of Geography 300.

Teaching Minor.—A minimum of 30 quarter units in Geography, including course 300.

Subject Representative: Mr. Lee.
Graduate Study.—The department offers programs of graduate study leading to the M.A. and Ph.D. degrees. Information concerning these programs may be obtained from the Graduate Adviser, Department of Geography.

Lower Division Courses

1. Physical Geography. (4) I, II, III.
 Lecture—4 hours. Basic physical elements of the human habitat, especially climate, landforms, soils, and natural vegetation.
 Mr. McArthur

2. Cultural Geography. (4) I, II, III.
 Mr. Simoons, Mr. Jett

3. Climate and Weather. (3) II.
 Lecture—3 hours. Composition and structure of atmosphere, weather elements, pressure, wind, temperature, moisture, fog, and clouds; weather maps; regional climates and world climate classification; instruments for obtaining climatological data; installation and maintenance of weather stations; evaluation of records.
 Mr. Schultz

4. Introduction to Maps. (3) I.
 Lecture—3 hours. History and principles of cartography; great map-makers; national surveys; modern trends in mapping.
 Mr. Lee

5. Economic Geography. (4) II.
 Lecture—3 hours; discussion—1 hour. Geographic aspects of the production, exchange, and consumption of goods.
 Mr. Gregor

11. Cultural Geography of Black America. (4) II.
 Lecture—4 hours. Geographic origins, dispersal, and adaptations of Blacks in the New World.

38. Directed Group Study. (1-5) I, II, III.
 The Staff (Mr. Gregor in charge)

39. Independent Study. (1-5) I, II, III.
 The Staff (Mr. Gregor in charge)

Upper Division Courses

102. Field Course in Physical Geography. (4) III.
 Lecture and Field trip—one day per week. Prerequisite: courses 1 and 2 and consent of instructor. Research methodology and field study. Systematic mapping and analysis of elements of the natural landscape.
 Mr. Shlemon

103. Field Course in Human Geography. (4) I.
 Lecture and Field trip—one day per week. Prerequisite: courses 1 and 2 and consent of instructor. Research methodology and field study. Systematic mapping and analysis of elements of the cultural landscape.
 Mr. Lee

*104. Field Course in Urban Geography. (4) I.
 Lecture—1 hour; four 2-day field trips. Field analysis of selected urban problems in northern California. Special attention to regional interrelationships, functional structure, and land use changes as specifically related to the core of the city, changing residential and retail patterns, and urban encroachment on agricultural lands.

105. Cartography. (4) II.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 4 or consent of instructor. Theory and construction of map projections; interpretation of maps; compilation and generalization of base-map data; symbolization and processing of map data; cartographic design and lettering techniques; map reproduction.
 Mr. Lee

106. Interpretation of Aerial Photographs. (4) III.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 1 or consent of instructor. Analysis of landscape from aerial photographs: land forms; vegetation; land use; settlements; transport and communications. Preparation of contour and planimetric maps, and construction of aerial photo mosaics.

107. Advanced Cartography. (4) III.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 105 and 106. Advanced cartographic representation of field and aerial photographic data.
 Mr. Lee

108. Analysis of Landforms. (4) II.
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Origin of land forms. Review of varied interpretations of processes involved, with emphasis on recent views.
 Mr. McArthur

119. Arid Lands. (4) II.
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Physical characteristics and human utilization of rainfall deficiency regions.
 Mr. Jett

*121. North America. (4) I.
 Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Natural and economic regions of the United States and Canada.
 Mr. Gregor

122A. Middle America. (4) II.
 Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Environment, culture, and economy from Mexico to Panama and in the Caribbean.

122B. South America. (4) III.
 Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Environment, culture, and economy in the South American countries.
123A. Western Europe. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Geographic conditions and their relation to the economic, social and political problems of the countries of Western Europe.
Mr. Thompson

*123B. Eastern Europe. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Geographic conditions and their relation to the economic, social and political problems of the countries of Eastern Europe.

124. The Soviet Union. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Physical landscapes and cultural regions of the U.S.S.R.
Mr. Kriesel

125A. North Africa and the Near East. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Physical, cultural, and historical geography of the Arab World and its neighbors.
Mr. Lee

125B. Sub-Saharan Africa. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Physical, cultural, and historical geography of Africa south of the Sahara.
Mr. Simoons

*126. Southern Asia. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2, or consent of instructor. Physical, cultural, and historical geography of Southern Asia.
Mr. Shlemon, Mr. Gregor

131. California. (4) I, III.
Lecture—3 hours; discussion—1 hour. Regions of California: landforms, climate, and other physical characteristics; agricultural, mineral, and other resources; and patterns of settlement, population, transportation, and economy.
Mr. Shlemon, Mr. Gregor

141A. Economic Geography. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 5 or consent of instructor. Factors in economic regionalism. Analysis of major agricultural regions of the earth.

141B. Economic Geography. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 5 or consent of instructor. Factors in economic regionalism. Analysis of major industrial regions of the earth.

143. Political Geography. (4) III.
Lecture—3 hours; discussion—1 hour. Areal differentiation of major natural and cultural phenomena affecting the world’s political organization.
Mr. Thompson

151. History of Geographic Thought. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: three upper division courses in geography. The literature of geography: objectives, subdivisions, and development of the subject.
Mr. Kriesel

152. Geographical Discovery and Exploration. (4) I.
Lecture—3 hours; discussion—1 hour. Expansion of western world’s geographical horizons from ancient through modern times.
Mr. Thompson

*155. Urban Geography. (4) I.
Lecture—3 hours; discussion—1 hour. Origin, development, distribution, and regional variation of the world’s cities, with emphasis on an analysis of the functions and patterns of American cities.
Mr. Kriesel

156. Regional Structure. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 2. Concepts of regional structure and their application to geographic problems; nodes, linkages, circulation, and regions. Quantitative and cartographic methods of regional research.
Mr. Kriesel

161. Conservation of Natural Resources. (4) III.
Lecture—3 hours; discussion—1 hour. Principles of the conservation of renewable and non-renewable resources: the conservation movement. Land-use conflicts between forestry, agricultural, mining, and recreational interests, especially in the United States.
Mr. Jett

162. Geography of Water Resources. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Geographical survey of water on the land; needs and opportunities for water-resource development and conservation. Historical solutions to water needs of specific areas, and geographical problems associated with current and future water requirements.

170. Cultural Ecology. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2; or Anthropology 2. Theories of environment-man relations. Ecologic relations of gatherers, fisherman, hunters, swidden cultivators, peasants; their impact on environment; their domestic plants and animals.
Mr. Jett

198. Directed Group Study. (1-5) I, II, III.
The Staff (Mr. Gregor in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Gregor in charge)
Graduate Courses

201. Sources and General Literature of Geography. (4) I, II, III.
Seminar—3 hours. Prerequisite: graduate status in geography. Designed for students preparing for higher degrees in geography. May be repeated for credit in one or more of the following subfields: physical, cultural, economic, urban, historical, political, conservation, and regional geography.

250. Theory and Method in Geography. (4) III.
Lecture—2 hours; discussion—1 hour. Mr. Kriesel

256. Regional Economic Organization. (4) III.
Seminar—3 hours. Analysis of theories of spatial organization and examination of their applicability to selected examples of regional economic development.

290. Seminar: Selected Regions. (4) III.
Seminar—3 hours. Region to be announced annually. Mr. Thompson

291. Seminar in Cultural Geography. (4) II, III.
Seminar—3 hours. Mr. Jett, Mr. Simoons

292. Seminar in Landform Analysis. (4) I, III.
Seminar—3 hours. Mr. Shlemen, Mr. McArthur

294. Seminar in Climatology. (4) II.
Seminar—3 hours. Mr. Schultz

295. Seminar in Urban Geography. (4) II.
Seminar—3 hours. Mr. Kriesel

296. Seminar in Agricultural Geography. (4) I.
Seminar—3 hours. Mr. Gregor

297. Seminar in Industrial Geography. (4) II.
Seminar—3 hours.

298. Group Study. (2-5) I, II, III.
Prerequisite: consent of instructor. The Staff

299. Research. (2-9) I, II, III.
The Staff (Chairman in charge)

Professional Course

300. Problems in Teaching Geography. (2) II.
Lecture—2 hours. Prerequisite: course 1 or 2. Establishing, organizing, and conducting courses in geography and regional study. Designed primarily for prospective elementary and secondary school teachers of the social sciences.
Mr. Thompson

GEOLoGY

Ian D. MacGregor, Ph.D., Chairman of the Department
Department Office, 306A Young Hall

Professors:
Daniel I. Axelrod, Ph.D.
Cordell Durrell, Ph.D.
Charles G. Higgins, Ph.D.
Ian D. MacGregor, Ph.D.
James W. Valentine, Ph.D.

Assistant Professors:
Richard Cowen, Ph.D.
Jere H. Lipps, Ph.D.
Eldridge M. Moores, Ph.D.

Assistant Professor:
David H. Chipping, M.S. (Acting)

Departmental Major Advisers.—B.S. Degree: Mr. Cowen, Mr. Durrell. A.B. Degree: Mr. Higgins.

The Major Programs
Students interested in becoming professional geologists and continuing their geological studies at the graduate level should elect the program

Leading to the Bachelor of Science degree. Students desiring a less intensive program in geology as part of their general education or as preparation for nonprofessional careers in geology should select the program leading to the Bachelor of Arts degree. High school students should note that the preparation for either degree is simplified if their high school programs include chemistry and four years of mathematics.

Bachelor of Science Major Program

Lower Division Courses.—Biology 1; Chemistry 1A–1B–1C or preferably 1A–7A–7B; Geology 1, 1L, 2, 2L, 3, 3L, 51; Mathematics 11, 21A–21B–21C; Physics 4A–4B. In addition, for emphasis in physical geology, Mathematics 22A or 22B or 22C and Physics 4C; for emphasis in paleobiology, Mathematics 15 and Zoology 2.

Upper Division Courses.—Geology 101A–101B–101C, 102A–102B, 105, 106, 107, 118, and 190 repeated at least once. Additional courses in cognate sciences, mathematics, and geology, required for specialization within physical geology or paleobiology, must be selected on recommendation of the major adviser.
Bachelor of Arts Major Program

Lower Division Courses.—Biology 1; Chemistry 1A–1B or 1A–7A; Geology 1, 1L, 2L, 3, 3L, 51; Physics 2A, 3A, 2B, 3B. Recommended: Chemistry 1G or 7B; Mathematics 13, 15, 16A; Physics 2C, 3C; Zoology 2.

Upper Division Courses.—Geology 101A–101B–101C, 102A, 105, 106, 107, and other upper division courses in geology and related fields to total not less than 36 units selected in accordance with a plan approved by the major adviser.

Graduate Study.—The Department of Geology offers a program of study and research leading to the M.S. and Ph.D. degrees. For information regarding graduate study in geology, address the Graduate Adviser, Department of Geology.

Teaching Major.—Requirements for the teaching major are the same as for undergraduate major for degree (A.B. or B.S.).

Teaching Minor.—Thirty units (quarter units) to be selected with the advice of the subject representative. Eighteen of the 30 units must be at the upper division or graduate level.

Subject Representative: Mr. Higgins

Lower Division Courses

1. General Geology. (3) I.
 Lecture—3 hours. Recommended: high school chemistry course 1L (may be taken concurrently). Physical geology: rocks, minerals, geologic structures, and internal constitution and processes of the Earth.

2. General Geology. (3) II.
 Lecture—3 hours. Prerequisite: course 1. Recommended: course 2L taken concurrently. Physical geology and geomorphology: the Earth as a planet; processes which affect its erosional and depositional landforms.

2L. General Geology Laboratory. (1) II.
 Laboratory—3 hours. Prerequisite: courses 1, 2 (preferably taken concurrently). Recommended: stereoscopic vision. Introduction to landforms and geologic features as depicted on topographic and geologic maps, structure sections, and aerial photographs.

3. General Geology. (3) III.
 Lecture—3 hours. Prerequisite: course 1. Recommended: course 3L taken concurrently. Historical geology: paleobiology, the fossil record, and stratigraphy; an introduction to Earth history.

3L. General Geology Laboratory. (1) III.
 Laboratory—3 hours. Prerequisite: courses 1, 3 (preferably taken concurrently). Study of important fossils; problems in paleobiology and stratigraphy.

51. Map Interpretation. (2) 4H.
 Laboratory—6 hours. Prerequisite: course 2L. Study of topographic and geologic maps and geologic structure sections. Mr. Durrell

Upper Division Courses

 Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 1, 1L; Chemistry 1A (may be taken concurrently). Integrated sequence comprising fundamentals of physical and optical mineralogy, crystallography, crystal chemistry, petrography, and petrology. The Staff

102A. Field Geology. (3) I.
 Field—eight 9-hour days; orientation-discussion—eight 1-hour sessions; 10-hours report preparation. Prerequisite: courses 51, 101C, 106 (may be taken concurrently). Introduction to geologic field study. The Staff

102B. Field Geology. (3) III.
 Field—eight 9-hour days; discussion—eight 1-hour sessions; 10-hours report preparation. Prerequisite: courses 102A, 105. Recommended: course 152A. Continuation of course 102A. The Staff

105. Structural Geology. (4) II.
 Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 1, 1L, 101A; Physics 4A (may be taken concurrently). Recommended: courses 51 and 102A. Behavior of deformed rocks in the laboratory and in the field; tectonic features and processes of the Earth. Graphic solutions to structural problems; analysis of deformed areas. Mr. Moore

106. Stratigraphy. (3) I.
 Lecture—3 hours. Prerequisite: courses 2, 2L, 3, 3L. Lithologic and biologic aspects of stratified rocks and their interrelationships. Introduction to synthesis of Earth history. Mr. Chipping

107. Paleobiology. (5) III.
 Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 1, 1L, 3, 3L; Biology 1. The origin, history, and morphology of the major phyla; principles and methods of interpreting ancient biotic systems. Mr. Lipps, Mr. Cowen

111A. Paleobiology of Invertebrates. (4) I.
 Lecture—2 hours; laboratory—6 hours. Prerequisite: course 107. Morphology, systematics, evolution, and ecology of the major phyla of invertebrates. Mr. Cowen
111B. Paleobiology of Protista. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 107. Morphology, systematics, evolution, and ecology of single-celled organisms.
Mr. Lipps

Six weeks in field. Prerequisite: course 102B. Preparation of a geologic map and report on a selected field area.
Mr. Moores

124. Advanced Mineralogy. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 101C. Consideration of special topics in mineralogy by means of optical and x-ray diffraction studies. Offered in odd-numbered years.
Mr. MacGregor

*125. Advanced Petrology. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 101C. Paragenesis of mineral assemblages as controlled by pressure, temperature, and composition. Laboratory study of selected petrologic problems. Offered in even-numbered years.
Mr. MacGregor

126. Sedimentation. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 101C. Characteristics of sedimentary materials; principles of sediment transport and deposition. Laboratory analyses of sediment texture and composition.
Mr. Chipping

140. Paleobotany. (4) I.
Lecture—2 hours; laboratory—6 hours; one mandatory field trip. Prerequisite: senior standing. Development of modern vegetation, with emphasis on centers of origin and radiation, rates of evolution, and community evolution. Guiding principles underlying analyses of succeeding floral assemblages recorded in Cretaceous and Cenozoic fossil floras. (Same course as Botany 140.)
Mr. Axelrod

*152A. Introduction to Aerial Photographs. (1) II.
Lecture—½ hour; laboratory—½ hour. Prerequisite: stereoscopic vision. Recommended: course 2L. Types and availability of aerial photographs; stereoscopic viewing; geometry of the single vertical photograph and of the stereoscopic model; planimetric plotting, data transfer, and quantitative measurements from photographs.
Mr. Higgins

*152B. Photogeology. (3) III.
Lecture—1 hour; laboratory-workshop—6 hours. Prerequisite: stereoscopic vision; courses 1 and 2 (or Geography 1) and course 152A (or Geography 106). Recommended: courses 2L, 102A, 105. Group-learning experience in interpretation of geologic structures, rock types, and regional geologic history by analysis of landforms, drainage, vegetation, and outcrop patterns, tone, texture, and other elements visible on aerial photographs. Workshop sections limited to 15 students.
Mr. Higgins

*153. Studies in Geomorphology. (3) I.
Lecture—3 hours. Prerequisite: course 2. Recommended: course 2L and Geography 108. Methods of analysis of geomorphic problems. Offered in even-numbered years.
Mr. Higgins

190. Seminar in Geology. (1) I, II, III.
Seminar—1 hour; discussion 1 hour. Prerequisite: senior standing in geology. Presentation and discussion of current topics in geology by visiting lecturers, staff, and students. May be repeated for credit. (Passed/Not Passed grading only.)
The Staff (Chairman in charge)

Prerequisite: senior standing in geology or consent of instructor.
The Staff (Mr. MacGregor in charge)

199. Special Study for Advanced Undergraduates. (1–4) I, II, III.
The Staff (Mr. MacGregor in charge)

Graduate Courses

201A. Ecological Theory. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: a course in ecology. The course will focus on the ecological community as a unit. The major generalizations concerning the structure and functioning of the community will be examined together with the generalizations relating both structure and function to the abiotic environment and its fluctuations. (Same course as Botany, Ecology and Zoology 201A.)
Ecology Group Staff

201B. Analysis of A Selected Ecosystem. (3) II.
Lecture—2 hours; discussion—1 hour. Prerequisite: course 201A or consent of instructor. Application of basic ecological principles to the interpretation of biotic and abiotic interrelationships of a particular ecosystem. Recent advances in theory, technique, and basic information are emphasized. Lectures will be given by specialists from several fields. May be repeated for credit. (Same course as Botany, Ecology and Zoology 201B.)
Ecology Group Staff

201C. The Changing Biosphere. (3) III.
Lecture—2 hours. Prerequisite: courses 201A, 201B, or consent of instructor. Course deals with changing gas balance and weather in the biosphere and effects on plants and animals, the effects of structural, chemical and physical changes on living systems, changes in species diversity, effects of human population increase, and related topics. (Same course as Botany, Ecology and Zoology 201C.)
Ecology Group Staff

* Not to be given, 1970–71.
213. Geomorphology. (3) L.
Seminar—two 1½ hour sessions per week. Prerequisite: course 153 or Geography 108. Selected geomorphic studies of surficial processes and the evolution of landforms. Offered in odd-numbered years. Mr. Higgins

216. Tectonics. (3) L.
Seminar—3 hours. Prerequisite: course 105. Tectonic features of the Earth; structural histories of selected deformed belts in relation to theories of orogenesis. Offered in odd-numbered years.

Mr. Moores

218. Advanced Structural Analysis. (3) L.
Lecture—2 hours; seminar—1 hour. Prerequisite: course 105. Analysis of stress and strain. Theoretical and experimental investigations of rock deformation. Principles of fracture, folding, and flow of rocks and their application to field occurrences. Offered in even-numbered years.

Mr. Moores

236. Physical Geology of California. (2) I, II, III.
Seminar—2 hours.

Mr. Durrell

254. Phase Equilibria. (3) II.
Seminar—3 hours. Prerequisite: Chemistry 1C; Mathematics 22A; physical chemistry recommended. Physiochemical aspects of the phase relations in silicate systems and their application to the petrogenesis of igneous and metamorphic rocks. Offered in odd-numbered years.

Mr. Valentine

255. Genesis of Metamorphic Rocks. (3) II.
Seminar—3 hours. Prerequisite: course 101C; courses 125, 254 recommended. Physiochemical principles of metamorphic mineral assemblages and methods of interpreting the petrogenesis of metamorphic rocks. Offered in even-numbered years.

Mr. Valentine

257. Sedimentary Petrology: Terrigenous Rocks. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 126. Origin of land-derived non-carbonate clastic rocks. Textural and compositional analyses in thin section. Offered in odd-numbered years.

Mr. Chipping

258. Sedimentary Petrology: Carbonate Rocks. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 126. Origin of biological, biochemical, and chemical sedimentary carbonate rocks. Textural and compositional analyses in thin section. Offered in even-numbered years.

Mr. Chipping

260. Paleontology. (3) III.
Seminar—3 hours. Prerequisite: courses 111A or 111B, or graduate standing in a biological science. Selected problems in paleontology. Subject to be studied will be decided at an organizational meeting.

Mesrs. Axelrod, Cowen, Lipps, Valentine

261. Paleocenology. (3) I.
Lecture—2 hours; seminar—1 hour. Prerequisite: course 107; Mathematics 15. Recommended: Mathematics 13. Theoretical and operational analyses of the structure and evolution of ancient and modern biotic associations, chiefly marine. Offered in odd-numbered years.

Mr. Valentine

262. Paleosystematics. (3) I.
Lecture—1 hour; seminar—2 hours. Prerequisite: course 107, Mathematics 15. Recommended: Genetics 100B, Mathematics 13. Principles and methods of taxonomy of fossil organisms. Offered in even-numbered years.

Mr. Valentine

263. Functional Morphology of Fossil Invertebrates. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 111A. Principles and methods of functional analysis of fossils, with special reference to selected problems in invertebrate phyyla.

Mr. Cowen

280. Igneous Petrology. (3) I.
Seminar—2 hours; laboratory—3 hours. Prerequisite: course 101C. Integrated laboratory, field study, and seminar on igneous processes and products.

Mr. Chipping

290. Seminar in Geology. (1) I, II, III.
Seminar—1 hour; discussion—1 hour. Presentation and discussion of current topics in geology by visiting lecturers, staff, and students. (Satisfactory/Unsatisfactory grading only.)

The Staff (Chairman in charge)

The Staff (Chairman in charge)

299. Research. (1–6) I, II, III.

The Staff (Chairman in charge)

* Not to be given, 1970–71.
GERMAN

Clifford A. Bernd, Ph.D., Chairman of the Department
Department Office, 418 Sproul Hall

Professor:
Clifford A. Bernd, Ph.D.

Associate Professors:
Wolfgang F. Bender, Ph.D.
Roland W. Hoermann, Ph.D.
Wolfgang W. Moelleken, Ph.D.
H. Guenthner Nerjes, Ph.D.

Assistant Professors:
John F. Fetzer, Ph.D.
A. Cornelius Sommer, Ph.D.

Professors:
Ernest L. Stahl, Ph.D. (Visiting)
Benno von Wiese, Ph.D. (Visiting)

Assistant Professor:
Wilbur A. Benware, B.D. (Acting)

Lecturer:
William M. Estabrook, Ph.D.

Departmental Major Adviser.—Mr. Estabrook.

Graduate Advisers.—Mr. Nerjes, Mr. Sommer.

The Major Program
Lower Division Courses.—German 1, 2, 3, 6A—6B or 7.

Upper Division Courses.—36 units in upper division courses, including German 101, 102, 103; 119A and 119B. Majors can take not more than two courses in translation for credit.

Honors and Honors Program (see page 133).
The honors program provides two quarters of study under course 194H, which will include a research paper and a comprehensive examination.

The Masters of Arts Degree
The Department offers programs of study leading to the M.A. degree. A minimum of 36 units is required. In addition, candidates for the M.A. will be expected to acquire a reading knowledge of French. Further information may be obtained by writing to the Graduate Adviser.

The Degree of Doctor of Philosophy
The Department offers programs of study and research leading to the Ph.D. degree. Detailed information may be obtained by writing to the Graduate Adviser.

Teaching Major.—Requirements are the same as for the departmental major.

Teaching Minor.—A minimum of 30 units in German, including 101, 102, 103.

Subject Representative: Mr. Estabrook.

Lower Division Courses

Course Placement.—Students with two years of high school German normally continue in German 2; those with three years, German 3; those with four years, German 6A, 6B, or 7.

1. Elementary German. (6) I, II, III.
Discussion—5 hours; laboratory—two ½ hour sessions.
Mr. Estabrook

*1G. German for Graduate Students. (3) I.
Lecture—3 hours; open to graduate students only. A course designed to prepare students for the graduate reading examination. (Satisfactory/Unsatisfactory grading only.)

The Staff

2. Elementary German. (6) I, II, III.
Discussion—5 hours; laboratory—two ½ hour sessions. Prerequisite: course 1. Mr. Estabrook

*2G. German for Graduate Students. (3) II.
Lecture—3 hours. Continuation of course 1G. (Satisfactory/Unsatisfactory grading only.)

The Staff

3. Intermediate German. (6) I, II, III.
Discussion—5 hours; laboratory—two ½ hour sessions. Prerequisite: course 2. Class discussions of events and life in Germany—present and past. Reading of modern short stories with inductive review of grammar. Mr. Estabrook

*4. Intermediate German. (3) I, II, III.
Recitation—3 hours. Prerequisite: course 3. Spoken German stressed; class discussion of modern short stories, with inductive review of grammar. Mr. Estabrook

*4R. Intermediate German Reading. (3) I.
Lecture—3 hours. Prerequisite: course 3. Intensive emphasis on reading and translation of materials taken primarily from the natural and social sciences. A continuation of course 3.

The Staff

5. Intermediate German. (3) I.
Recitation—3 hours. Prerequisite: course 4. Spoken German stressed through class discussion of a variety of selected readings. A continuation of course 4. Mr. Estabrook

*5R. Intermediate German—Reading. (3) I.
Lecture—3 hours. Prerequisite: course 4R. A continuation of course 4R.

The Staff

6A. Spoken German. (2) I, II, III.
Discussion—2 hours. Prerequisite: course 3. (Course 6A may be taken concurrently with 6B.

* Not to be given, 1970–71.
and/or 7.) Intensive conversational practice based on the everyday vocabulary of reading assignments in German newspapers and contemporary literature. The Staff

68. Spoken German. (2) I, II, III.
Discussion—2 hours. Prerequisite: course 3. (Course 58 may be taken concurrently with 68A and/or 7.) Intensive conversational practice and discussions on selected literary texts; oral interpretation of dramatic roles in representative dramas and one-act plays. The Staff

7. Advanced German. (4) I, II, III.
Recitation—3 hours. Prerequisite: course 3. (Course 7 may be taken concurrently with 6A and/or 6B.) Review of grammatical and stylistic principles by means of written exercises; expanding of comprehension vocabulary through rapid and extensive readings of modern prose, dramatic and verse texts. The Staff

15. The Development of German Literature. (4) I, II, III.
Lecture—3 hours. Characteristic themes, problems, and genres in the mainstream of German literature, from medieval epics and love poetry to the modern period. Study of masterworks in English translation demonstrating problem continuity and relevance to contemporary values within the total intellectual framework. The Staff

Mr. Hoermann

Mr. Hoermann

49. Freshman Seminar. (2) II.
Discussion—2 hours. Prerequisite: knowledge of German not required. Inquiry into the intellectual roots of problems confronting today's students, particularly as illustrated in translation by such modern German literary figures as Nietzsche, Kafka, Hesse, Brecht, and Günter Grass. Enrollment limited to 15 freshmen. (Passed/Not Passed grading only.) The Staff

Upper Division Courses

101. Composition and Conversation. (4) I, II, III.
Lecture—3 hours. Prerequisite: course 7 or courses 6A–6B, or their equivalents. The Staff

102. Composition and Conversation. (4) I, II, III.
Lecture—3 hours. Prerequisite: course 101 or consent of instructor. Intermediate essay-writing; analysis of literary and journalistic styles; extension of active writing and speaking vocabulary. The Staff

103. Advanced Composition. (4) I, II, III.
Lecture—3 hours. Prerequisite: course 102 or consent of instructor. Advanced prose style and original composition. The Staff

104. German Grammar and Stylistics. (4) I.
Lecture—3 hours. Prerequisite: course 103 or consent of instructor. The grammar and stylistics of modern written usage. Mr. Moelleken

105. History of the German Language. (4) I.
Lecture—3 hours. Prerequisite: course 102. Survey of the linguistic development from the Germanic and Old High German sound shifts; Middle High diphthongization and monophthongization, Ablaut and Umkehr phenomena; "Kanzleisprache" and Luther; origins of modern comparative philology with the Grimm; elementary phonetics. Mr. Moelleken

106. Linguistic Structure of German. (4) I.
Lecture—3 hours. A linguistic analysis of modern standard German including phonetics, phonemics, morphology and syntax. Mr. Moelleken

108. Contrastive Structures of English and German. (4) II.
Lecture—3 hours; other—1 hour. Prerequisite: course 106. A contrastive study of the linguistic structures of English and German. Mr. Moelleken

109. Development of German Culture. (4) II.
Lecture—3 hours. Prerequisite: course 7 or courses 6A and 6B, or their equivalents. The evolution of ideas, science, and the arts as dimensions of German society and national thought. Mr. Fetzer

110. Masterpieces of German Prose from Goethe to Kafka. (4) I.
Lecture—3 hours. Study in translation of works which have helped shape the European tradition in the novel and short story or were crucial in the development of German literature. Knowledge of German not required; may not be counted as part of the major in German. Mr. Fetzer

111. Masterpieces of German Drama from Lessing to Brecht. (4) II.
Lecture—3 hours. Study in translation of works which have helped shape the European drama or were crucial in the development of German literature. Knowledge of German not required; may not be counted as part of the major in German. Mr. Stahl

112. Masterpieces of German Poetry from Walther von der Vogelweide to Rilke. (4) III.
Lecture—3 hours. Study in translation of the German Lyric genius from medieval love poetry through the classicism of Goethe and Hölderlin to the mysticism of Rilke. Knowledge of German not required; may not be counted as part of the major in German. Mr. Sommer
114. Goethe’s Faust. (4) II.
Lecture—3 hours. A detailed analysis and aesthetic critique in English of both “Parts,” together with the first-draft Urfaust. Knowledge of German not required; German majors fulfill readings in German.

Mr. Nerjes

115. German Literature of the Twentieth Century
Up to the Second World War. (4) I.
Lecture—3 hours. Knowledge of German not required. The sublimation of tradition and the exploration of new forms from Nietzsche’s death until the Second World War, including readings in translation from Hofmannsthal, Hesse, Rilke, Kafka and Thomas Mann.

Mr. Hoermann

116. German Literature of the Twentieth Century
Since the Second World War. (4) II.
Lecture—3 hours. Knowledge of German not required. The period of reawakening since 1945, the search for identity and meaning within the European community East and West, and the German political-moral dilemma as reflected in translated works by Brecht, Frisch, Dürenmatt, Grass, and other “Gruppe 47” writers.

Mr. Hoermann

117. Kafka and Dada. (4) II.
Lecture—3 hours. Knowledge of German not required. Two contemporaneous confrontations with Nietzsche’s legacy of cultural nihilism: Kafka’s paradoxical dissection, and Dada’s paradoxical sublimation of the twentieth-century’s continuing encounter with the absurd in literature and art.

Mr. Hoermann

118. Brecht. (4) II.
Lecture—3 hours. Knowledge of German not required. A study of Brecht’s Epic Theater and his doctrine of aesthetic alienation.

Mr. Hoermann

119A. Survey of Literary Periods Through
Classicism. (4) I.
Lecture—3 hours. Prerequisite: course 7 or courses 6A and 6B, or their equivalents. An integrated view of the philosophical, historical, and stylistic components in the development of the German literary tradition up to German Romanticism.

Mr. Fetzer

119B. Survey of Literary Periods from
Romanticism to the Present. (4) II.
Lecture—3 hours. Prerequisite: course 119A. Romanticism to the present. Continuation of course 119A.

Mr. Fetzer

120. The Medieval Period in German
Literature. (4) III.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent. The literary-philosophical profile of the “Mittelhochdeutsche Blütezeit” in terms of the significant courtly and folk epics and the “Minnesang.” Readings in modern German translation.

Mr. Moelleken

121. The Renaissance and Reformation Period in
German Literature. (4) II.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent. The distinctive thought and literary values of the period from Der-Ackermann-aus-Böhmen through the “Meistergesang” and “Fastnachtspiel” of Hans Sachs.

Mr. Bender

122. The Baroque Period. (4) I.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent. The stylistic and philosophical predication of the Thirty Years War era as documented in the works of Opitz and the Silesian Schools to Grimmelshausen and Gryphius.

Mr. Bender

123. Enlightenment, Sentimentality and Rococo
in German Literature. (4) I.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent (may be taken concurrently), or consent of instructor. From the rationalism of Gottsched to the humanism of Lessing, from the bombastic verse of Klopstock, the anacreontic of Gellert, the rococo of Wieland to the beginnings of “Sturm und Drang” with Herder.

Mr. Sommer

125A. Goethe. (4) I.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent (may be taken concurrently), or consent of instructor. Goethe’s development from his anacreontic period to the Italian Journey, with particular emphasis on Werther, Götz and his early lyrics.

Mr. Stahl

125B. Goethe. (4) II.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent (may be taken concurrently), or consent of instructor. From the Italian Journey to his death. Study and discussion of the master works of his later period.

Mr. Stahl

126A. Young Schiller. (4) II.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent (may be taken concurrently), or consent of instructor. A study of the poetry and dramas of his “Sturm und Drang” period to the beginning of the classical era: from Die Räuber to Don Carlos.

Mr. Nerjes

126B. Classical Schiller. (4) III.
Lecture—3 hours; written reports. Prerequisite: course 119A or equivalent (may be taken concurrently), or consent of instructor. Schiller’s historical dramas in conjunction with his critical essays and “Ideenleibung.”

Mr. Nerjes
127. Romanticism. (4) III.
Lecture—3 hours; written reports. Prerequisite: course 119B or equivalent (may be taken concurrently), or consent of instructor. The Napoleonic era from the Jena school of the Schlegels and Novalis, through the Anrım-Brentano group in Heidelberg, to the Berlin circle including Tieck, Eichendorff, and Hoffmann.
Mr. Fetzner

128. Early Nineteenth-Century German Realism. (4) II.
Lecture—3 hours; written reports. Prerequisite: course 119B or equivalent (may be taken concurrently), or consent of instructor. An examination of the work of such important literary figures as Kleist, Hebbel, Büchner, and Grillparzer.
Mr. Bernd

129. Naturalism to Neo-Classicism in German Literature. (4) I.
Lecture—3 hours; written reports. Prerequisite: course 119B or equivalent (may be taken concurrently), or consent of instructor. From Hauptmann and the social protest of north-German naturalism, through the Viennese psychological impressionism of Schnitzler and the neo-romanticism of Hofmannsthal and Hesse, to Rilke and the collective mysticism of the "George-Kreis."
Mr. Fetzner

130. The Modern Period from Expressionism to the Present. (4) III.
Lecture—3 hours; written reports. Prerequisite: course 119B or equivalent (may be taken concurrently), or consent of instructor. The moral and existential quandary from Nietzsche, Wedekind, and the wartime generation of dramatists, through the poetry of Trakl, Loerke, and Benn; novelistic mastery in Thomas Mann and Kafka, and the new theater of Brecht, Frisch, and Dürenmatt.
Mr. Fetzner

132. The German "Novelle." (4) II.
Lecture—3 hours; written reports. Prerequisite: course 119B or equivalent (may be taken concurrently), or consent of instructor. An inquiry into the art of the "Novelle" through analysis of the materials and formal devices of representative authors from Goethe to Kafka.
Mr. Bernd

134. German Poetry. (4) III.
Lecture—3 hours; language laboratory. Prerequisite: courses 101, 102; or consent of instructor. Analysis and study of representative lyric modes as deduced from the master specimens of verse throughout German literature. Offered in odd-numbered years.
Mr. Sommer

190. Proseminar in a Major Writer. (4) I, II, III.
Lecture—3 hours; term paper. Prerequisite: courses 119A and 119B or their equivalent, and consent of instructor. Introduction to techniques of independent research and seminar reporting and rebuttal. May be repeated for credit with consent of instructor.

194H. Special Study for Honors Students. (5) I, II, III.
Prerequisite: open only to honors students. Guided research leading to an honors paper.
The Staff

The Staff (Mr. Hoermann in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Hoermann in charge)

Graduate Courses

200. Gothic. (4) I.
Seminar—3 hours. Phonology, grammar and reading of Gothic texts. Special topics including the relationship of Gothic to Indo-European and to the other Germanic languages. Knowledge of Modern German not required. Offered in even-numbered years.
Mr. Moelleken

201. Old High German. (4) II.
Seminar—3 hours. A study of the beginnings of German as a written language through the reading of selected texts from the eighth through the eleventh centuries. A linguistic analysis of the dialects. Offered in even-numbered years.
Mr. Moelleken

202. Middle High German. (4) III.
Seminar—3 hours. Outline of grammar; selections from Middle High German epic and lyric poetry. Offered in odd-numbered years.
Mr. Moelleken

203. Old Saxon. (4) III.
Seminar—3 hours. A study of the linguistic structure and the literary significance of the language of the Old Saxon Helian. Knowledge of Modern German not required. Offered in even-numbered years.
Mr. Moelleken

210. Techniques of Literary Scholarship. (4) I.
Seminar—3 hours. The bibliographical, organizational, and methodological tools and resources for advanced, independent research.
Mr. Bender

211. The Rise of German Literary Criticism. (4) I.
Seminar—3 hours. The history of criticism in Germany, with some attention to classical sources. The course proceeds chronologically until the modern period, then by a study of special topics broadens to a consideration of recent approaches to German literature.
Mr. Bernd

240. Forms of German Verse. (4) II.
Seminar—3 hours. The development of German verse from the Middle Ages to Gottfried
Benn, with special emphasis on different techniques of text analysis and interpretation. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Sommer

241. The German Drama. (4) III.
Seminar—3 hours. The major forms of German drama from the origins to the middle of the twentieth century. May be repeated for credit with consent of instructor. Mr. Nerjes

242. The German "Novelle." (4) III.
Seminar—3 hours. The major German Novellenlisten, with particular emphasis on the flowering of this genre in the nineteenth century. May be repeated for credit with consent of instructor. Mr. Bernd

250. Walther von der Vogelweide and the "Minnesang." (4) II.
Seminar—3 hours. A critical study of the greatest lyric poet of medieval Germany. Offered in even-numbered years. Mr. Moelleken

251. Studies in the Works of Andreas Gryphius. (4) II.
Seminar—3 hours. A study of Gryphius' literary legacy, his lyrics, his tragedies and his comedies, with the purpose of showing his place in the world of seventeenth-century thought, artistic, religious and humanistic. Offered in even-numbered years. Mr. Bender

252. The Writings of Lessing. (4) I.
Seminar—3 hours. A study of Lessing's theory of literature with particular emphasis upon his critical attacks on French drama. Offered in odd-numbered years. Mr. Bender

253. Goethe. (4) II.
Seminar—3 hours. A study of the origins of Goethe's thought in German Pietism, and his principal artistic, autobiographical, scientific and philosophical works. Offered in even-numbered years. Mr. Stahl

254. Schiller. (4) I.
Seminar—3 hours. A critical analysis of Schiller's major works and his impact on the intellectual climate in Germany during the late eighteenth and early nineteenth centuries. Offered in odd-numbered years. Mr. Nerjes

257. Heinrich von Kleist. (4) II.
Seminar—3 hours. Kleist's important dramatic and prose works; special attention will be given to the peculiar hermeneutic problems in modern German, French and Anglo-American Kleist criticism. Offered in even-numbered years. Mr. Stahl

258. The Novels of Thomas Mann. (4) II.
Seminar—3 hours. Reading of selected novels with emphasis on aesthetic techniques, originality, ethical and political views, and influence on the contemporary literary scene in Germany. Offered in odd-numbered years. Mr. Bernd

259. Studies in Kafka. (4) I.
Seminar—3 hours. Study of Kafka's nuclear fables. Offered in odd-numbered years. Mr. Hoermann

260. The Poetry of Rilke. (4) I.
Seminar—3 hours. A study of the principal motifs, myths, images and problems in the poetry of Rainer Maria Rilke. Offered in even-numbered years. Mr. Hoermann

261. Brecht and the Epic Theater. (4) III.
Seminar—3 hours. A reading of all works with emphasis on the ideas which impelled the development of new literary forms and concepts. Offered in odd-numbered years. Mr. Hoermann

285. Middle High German Literature. (4) II.
Seminar—3 hours. An extensive reading of Middle High German texts with emphasis upon bellettristic and cultural values; also examines linguistic problems. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Moelleken

288. The Renaissance and Reformation in German Literature. (4) I.
Seminar—3 hours. The parabolic and didactic style in Germany's literature during the sixteenth century. Offered in odd-numbered years. May be repeated for credit with consent of instructor. Mr. Bender

289. German Literature of the Baroque. (4) III.
Seminar—3 hours. The "Elegantiaideal" and the varying methods used to portray it in seventeenth-century German literature. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Bender

290. The Enlightenment in German Literature. (4) II.
Seminar—3 hours. The revolt against the excesses of the "Elegantiaideal," and the evolution of a new literature based on reason and wit. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Sommer

291. Rococo in German Literature. (4) II.
Seminar—3 hours. The essential novels of Christoph Martin Wieland and those contemporaries of his whose literary style mirrors the euphony that is characteristic of Mozart's music. Offered in odd-numbered years. May be repeated for credit with consent of instructor. Mr. Sommer
292. Sentimentality and “Sturm und Drang” in German Literature. (4) III.
Seminar—3 hours. The German liberal authors of the eighteenth century, such as Johann Georg Hamann and Johann Gottfried Herder, who lived in complete disagreement with the rationalistic tenets of their age. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Sommer

293. The Classical Age of German Literature. (4) I.
Seminar—3 hours. An inquiry into the aesthetic and humanistic qualities of Germany’s greatest literary epoch. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Nerjes

294. The Romantic Period in German Literature. (4) III.
Seminar—3 hours. Survey of the works of early nineteenth-century authors in reaction against the age of classicism. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Fetzer

295. Poetic Realism in German Literature. (4) I.
Seminar—3 hours. Outstanding figures in German literature between 1840 and 1890. Important phases in their developments will be treated. Offered in odd-numbered years. May be repeated for credit with consent of instructor. Mr. Bernd

296. Twentieth Century German Literature. (4) II.
Seminar—3 hours. Considers the revolt of the Hauptmann generation, symbolism, expressionism, and the chief currents of the contemporary scene. Offered in even-numbered years. May be repeated for credit with consent of instructor. Mr. Hoermann

The Staff (Chairman in charge)

The Staff (Chairman in charge)

Professional Course

390. The Teaching of German. (3) I.
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Theoretical instruction in modern teaching methods and demonstration of their practical application. Intended primarily for graduate teaching assistants. Mr. Estabrook

GREEK—See Classics

HEBREW—See Oriental Languages

HISTORY
Walter L. Woodfill, Ph.D., Chairman of the Department
Department Office, 167 Voorhies Hall

Professors:
William M. Bowsky, Ph.D.
David Brody, Ph.D.
Daniel Calhoun, Ph.D.
W. Turrentine Jackson, Ph.D.
*Kwang-Ching Liu, Ph.D.
Jung-Pang Lo, Ph.D.
C. Bickford O’Brien, Ph.D.
Rollie E. Poppino, Ph.D.
Richard N. Schwab, Ph.D.
James H. Shideker, Ph.D.
F. Wilson Smith, Ph.D.
F. Roy Willis, Ph.D.
Walter L. Woodfill, Ph.D.

Associate Professors:
Paul Goodman, Ph.D.
David L. Jacobson, Ph.D.
Morgan B. Sherwood, Ph.D.
Donald C. Swain, Ph.D.

Assistant Professors:
Daniel Brower, Ph.D.
Peter K. Cline, Ph.D.
Manfred P. Fleischer, Ph.D.
Eugene Lunn, Ph.D.
C. Roland Marchand, Ph.D.
Stylianos Spyridakis, Ph.D.

Assistant Professor:
Ted W. Margadant, B.A. (Acting)

Departmental Advisers.—Mr. Brower, Mr. Cline, Mr. Fleischer, Mr. Jacobson, Mr. Marchand, Mr. Margadant, Mr. O’Brien, Mr. Schwab, Mr. Sherwood, Mr. Spyridakis.

1 Absent on leave, 1970–71.
2 Absent on leave, fall quarter 1970.
3 Absent on leave, winter quarter 1971.
4 Absent on leave, spring quarter, 1971.
Graduate Advisers.—Mr. Bowsky, Mr. Brody, Mr. Calhoun, Mr. Goodman, Mr. Liu, Mr. Lo, Mr. Poppino, Mr. Shideler, Mr. Swain, Mr. Willis.

Introductory Courses.—Courses 4A, 4B, 4C, 17A, 17B, 27A, and 27B are open to all students.

The Major Program

Lower Division Courses.—Required: Courses 4A, 4B, 4C, 17A, 17B. It is recommended that students, in consultation with their advisers, also take at least 6 or 8 units (normally a two-quarter sequence of courses) in one of the following fields: cultural anthropology, cultural geography, principles of economics, English literature, literature of the United States, philosophy, political science, psychology, or sociology.

Upper Division Courses.—Required: Students majoring in history must complete at least 36 upper division units in history, including:

(a) A minimum of 12 units (including a two-quarter sequence of courses) in a field of concentration (for “field” see below).
(b) A minimum of 8 units each in two other fields of history. (The fields referred to are Great Britain, Europe, Russia, East Asia, Latin America, and the United States.)

Honors and Honors Program (see page 133).

—a student may become eligible for graduation with high honors or highest honors in history by completing the department’s honors program. The program consists of the following work: History 101A, usually taken during the junior year; at least one undergraduate proseminar (History 102 or equivalent); an honors essay, to be written in 6 to 8 units of History 199, and completed during the two quarters before the beginning of the student’s last quarter as an undergraduate. Units earned in History 102 and History 199 may be counted toward the appropriate fields for the major. Any history major who has a departmental grade-point average of 3.2 in a total of at least 20 units of history may enter the program by registering in the departmental office. Those with special interests or qualifications may apply through their advisers.

Graduate Study.—The Department of History offers programs of study and research leading to the M.A. and Ph.D. degrees in history. Detailed information may be obtained by writing to the Graduate Adviser, Department of History.

Teaching Major.—Requirements are the same as for the departmental major plus course 300.

Teaching Minor.—Thirty-two units of history, including 4A–4B–4C, 17A–17B, and 12 units of upper division course work. The 12 units of upper division work should include a two-quarter sequence.

Subject Representative: Mr. Jacobson

Lower Division Courses

4A. History of Western Civilization. (4) I.
Lecture—3 hours; discussion—1 hour. The growth of western civilization from ancient times through the middle ages. The Staff

4B. History of Western Civilization. (4) II.
Lecture—3 hours; discussion—1 hour. The development of western civilization from the Renaissance through 1815. The Staff

4C. History of Western Civilization. (4) III.
Lecture—3 hours; discussion—1 hour. The development of western civilization in the nineteenth and twentieth centuries. The Staff

17A. History of the United States. (4) I.
Lecture—3 hours; discussion—1 hour. The history of the American people from colonial times through the Civil War. The Staff

17B. History of the United States. (4) II, III.
Lecture—3 hours; discussion—1 hour. The history of the American people from Reconstruction to the present. The Staff

27A. Afro-American History. (4) I.
Lecture—3 hours; discussion—1 hour. The history of black people in the United States from the African background to Reconstruction. The Staff

27B. Afro-American History. (4) II.
Lecture—3 hours; discussion—1 hour. The history of black people in the United States from Reconstruction to the Present. The Staff

The Staff (Chairman in charge)

The Staff (Chairman in charge)

49. Freshman Seminar. (2) I, II, III.
Seminar—2 hours. Prerequisite: consent of instructor. Reports, discussion and elementary research in the several fields of history designed for the beginning student. The Staff

Upper Division Courses

101A. Introduction to Historical Thought and Writing. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Study of the history of historical thought and writing; analysis of critical and speculative philosophies of history, and evaluation of modes of organization, interpretation, and style in historical writing. Mr. Marchand
101B. Introduction to Historical Methods. (4) I, II.
Discussion—4 hours. Prerequisite: consent of instructor. The development of skills in historical research and composition through individual, guided research. An extensive paper is required.

The Staff

102. Preseminar in History. (4) I, II, III.
Seminars—3 hours. Prerequisite: consent of instructor. Designed primarily for history majors. Intensive reading, discussion, and writing in selected topics in the various fields of history, in classes with limited enrollment. May be repeated for credit. A. Ancient; B. Medieval; C. Renaissance and Reformation; D. Modern Europe to 1815; E. Europe since 1815; F. Russia; G. China to 1600; H. China since 1600; I. Britain; J. Latin America since 1810; K. American History to 1787; L. United States, 1787–1896; M. United States, since 1896; N. Japan.

The Staff

111A. Ancient History. (4) I.
Lecture—3 hours. History of the ancient empires of the Near East and of the Greek city-states to the fifth century B.C. Mr. Spyridakis

111B. Ancient History. (4) II.
Lecture—3 hours. History of Greece, the Hellenistic kingdoms, and Rome from the fifth century B.C. to the Punic Wars. Mr. Spyridakis

111C. Ancient History. (4) III.
Lecture—3 hours. History of Rome and its empire from the Punic Wars to Constantine. Mr. Spyridakis

121A. Medieval History. (4) II.
Lecture—3 hours. Western European history from the "fall of the Roman Empire" to the crusades. Mr. Bowsky

121B. Medieval History. (4) III.
Lecture—3 hours. Western European history from the crusades to the Renaissance. Mr. Bowsky

131A. Early Modern European History. (4) I.
Lecture—3 hours. Recommended: courses 4A, 4B. Western European history from about 1500 to about 1550. Mr. Fleischer

131B. Early Modern European History. (4) II.
Lecture—3 hours. Recommended: courses 4A, 4B, 131A. Western European history from about 1500 to about 1650. Mr. Fleischer

131C. Early Modern European History. (4) III.
Lecture—3 hours. Recommended: courses 4A, 4B, 131B. Western European history from about 1650 to about 1789. Mr. Fleischer

* Not to be given, 1970–71.

133. The Age of Ideas. (4) II.
Lecture—3 hours. The Enlightenment and its background in the seventeenth century. Mr. Schwab

134A. The Age of Revolution. (4) III.
Lecture—3 hours. Ideas and Institutions during the French Revolution and the Napoleonic era. Mr. Schwab

134B. The Age of Revolution. (4) III.
Lecture—3 hours. Ideas and revolution after 1815. Mr. Schwab

137A. Russian History: Kievan and Muscovite Russia. (4) I.
Lecture—3 hours. Russian civilization from earliest times to the reign of Peter the Great. Mr. O’Brien

137B. Russian History: The Empire to 1856. (4) II.
Lecture—3 hours. Russian civilization from the Age of Peter the Great through the Crimean War. Mr. O’Brien

137C. Russian History: The Empire, 1856–1917. (4) II.
Lecture—3 hours. Russian civilization from the Crimean War to the Revolution of 1917. Mr. O’Brien

137D. Russian History: Soviet Russia. (4) III.
Lecture—3 hours. Russia from the Revolution of 1917 to the Age of Stalin. Mr. O’Brien

141. France since 1815. (4) I.
Lecture—3 hours. Mr. Margadant, Mr. Willis

142. History of Italy since the French Revolution. (4) III.
Lecture—3 hours. Prerequisite: courses 4A, 4B, 4C.

144A. History of Germany to 1815. (4) I.
Lecture—3 hours. Prerequisite: courses 4A and 4B. A history of the Germanies through the Congress of Vienna.

144B. History of Germany since 1815. (4) II.
Lecture—3 hours. Prerequisite: courses 4C and 144A. The German national unification, the age of Bismarck and William II, and the wars and revolutions of the twentieth century.

145A. Europe in the Nineteenth Century. (4) II.
Lecture—3 hours. A survey of the history of Europe from 1815 to 1870. Mr. Margadant

145B. Europe in the Nineteenth Century. (4) III.
Lecture—3 hours. A survey of the history of Europe from 1870 to 1918. Mr. Margadant
148A. Europe in the Twentieth Century. (4) I.
Lecture—3 hours. A survey of the history of Europe from 1919 to 1939. Mr. Willis

148B. Europe in the Twentieth Century. (4) II.
Lecture—3 hours. A survey of the history of Europe since 1939. Mr. Willis

*147. Ideas and Politics in Twentieth-Century Europe. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 4A, 4B, and 4C; or consent of instructor. Political, military, and intellectual history of Europe from the turn of the century to the present. Extensive source readings.

*148A. Diplomatic History of Modern Europe. (4) I.
Lecture—3 hours. A survey of the diplomatic relations of the European powers from the eighteenth century to the middle of the nineteenth century.

*148B. Diplomatic History of Modern Europe. (4) II.
Lecture—3 hours. A survey of the diplomatic relations of the European powers from the Crimean War to 1890.

*148C. Diplomatic History of Modern Europe. (4) III.
Lecture—3 hours. A survey of the diplomatic relations of the European powers from 1890 to the 1930's.

*149. History of Military Thought and Policy from Machiavelli to the Present. (4) I.
Lecture—3 hours. Prerequisite: courses 4A, 4B, 4C. Recommended: additional background in history, political theory, or sociology. An analysis of military affairs and of their interaction with intellectual, social, economic, and political history since the Renaissance.

151A. History of England. (4) I.
Lecture—3 hours. Recommended: course 4A. A survey of English history to the latter part of the fifteenth century. Mr. Woodfill

151B. History of England. (4) II.
Lecture—3 hours. Recommended: courses 4A, 4B, and 151A. A survey of English history from the latter part of the fifteenth century to the latter part of the eighteenth century. Mr. Woodfill

151C. History of England. (4) III.
Lecture—3 hours. Recommended: courses 4B, 4C, 151A, and 151B. A survey of English history from the latter part of the eighteenth century to the present. Mr. Cline

*152A. English Constitutional History. (4) II.
Lecture—2 hours; discussion—2 hours. Recommended: course 151A. From Anglo-Saxon times to the reign of Edward IV. Mr. Woodfill

*152B. English Constitutional History. (4) III.
Lecture—2 hours; discussion—2 hours. Recommended: courses 151B or 154, 151C, and 152A. From the reign of Edward IV to the present. Mr. Woodfill

154. Tudor and Stuart England. (4) III.
Lecture and discussion—3 hours. Prerequisite: consent of instructor. Recommended: courses 151A and 151B. Mr. Woodfill

156. Social and Economic History of Britain since 1760. (4) I.
Lecture—2 hours; discussion—2 hours. Prerequisite: course 151C or consent of instructor. Integration of the history of industrial, commercial and agricultural development with the nature and course of change in demography, social organization and urbanization from preindustrial to postindustrial Britain. Mr. Cline

*158A. The British Empire in the Nineteenth Century. (4) II.
Lecture—3 hours. Prerequisite: course 4C; courses 151B, 151C recommended. The development of Britain's overseas empire, and the evolution of colonial policies, to the Boer War.

*158B. The British Empire in the Twentieth Century. (4) III.
Lecture—3 hours. Prerequisite: course 4C. Recommended: courses 151B, 151C. The evolution and decline of the British Empire from the Boer War to the 1950's.

*160. History of the West Indies, 1492-1850. (4) III.
Seminar—3 hours; reports and research papers. Prerequisite: consent of instructor. Study of selected topics on European expansion in the West Indies, with special emphasis on social and economic developments. (Passed/Not Passed grading only.) Mr. Jacobson

161A. Latin American History. (4) I.
Lecture—3 hours. Colonial history of Latin America.

161B. Latin American History. (4) II.
Lecture—3 hours. The national period of Latin American history.

*162. History of Cuba and the Spanish Caribbean. (4) III.
Lecture—3 hours. Prerequisite: courses 161A and 161B or consent of instructor. The history of Cuba and the Spanish Caribbean since 1492, including discovery and settlement, slavery and the plantation economy, independence movements, and United States relations with the island republics. Emphasis on the period since 1898. Offered in odd-numbered years.

* Not to be given, 1970-71.
163A. History of Brazil. (4) I.
Lecture—3 hours. The history of colonial and imperial Brazil from 1500 to 1889. Mr. Poppino

163B. History of Brazil. (4) II.
Lecture—3 hours. Prerequisite: course 163A or consent of instructor. The history of the Brazilian republic from 1889 to the present. Mr. Poppino

164. History of Argentina. (4) III.
Lecture—3 hours. Prerequisite: courses 161A and 161B or consent of instructor. The history of Argentina from about 1800 to the present, stressing the contributions of the colonial heritage and nineteenth-century political, economic, and social developments to the rise of Argentine nationalism. Offered in even-numbered years.

165. Latin American Social Revolutions. (4) III.
Lecture—3 hours. Prerequisite: a reading knowledge of Spanish is recommended. Major social upheavals since 1900 in Mexico, Argentina, Brazil, Bolivia, Guatemala, and Cuba, examined as to similarities and differences in causes, course, and consequences. Offered in odd-numbered years. Mr. Poppino

166. History of Mexico. (4) III.
Lecture—3 hours. The colonial origin and development of the Mexican nation; its political, economic, and social institutions. Emphasis on the period since 1910.

168. History of Inter-American Relations. (4) III.
Lecture—3 hours. Prerequisite: a reading knowledge of Spanish or Portuguese is recommended. Diplomatic history of Latin America since independence, intra-Latin American relations, relations with the United States, participation in international organizations, and communism in Latin America. Offered in even-numbered years. Mr. Poppino

170A. Colonial America. (4) I.
Lecture—3 hours; discussion—1 hour. Colonial society from 1507 to the American Revolution, with emphasis on European expansion, political, social, and economic foundations, colonial thought and culture, and imperial rivalry. Mr. Jacobson

170B. The American Revolution. (4) II.
Lecture—3 hours. An analysis of the Revolutionary epoch with emphasis on the structure of British colonial policy, the rise of revolutionary movements, the War for Independence and its consequences, and the Confederation period. Mr. Jacobson, Mr. Goodman

170C. The Early National Period. 1789–1815. (4) III.
Lecture—3 hours. The political and social history of the American republic from the adoption of the Constitution through the War of 1812 and its consequences. Mr. Goodman

171A. The Jacksonian Era. (4) I.
Lecture—3 hours. The political and social history of the American Republic from the end of the War of 1812 to the Compromise of 1850. Mr. Calhoun

171B. American Civil War. (4) II.
Lecture—3 hours. Major developments in American history from 1848 to 1865: slavery and antislavery, immigration, sectional conflict, emergence of the Republican party, the Civil War. Mr. Calhoun

171C. The Emergence of Modern America. (4) III.
Lecture—3 hours. From Reconstruction to the twentieth century, including political and intellectual change, the advent of big business, the rise of organized labor, ethnic adjustments, urbanization, and movements of social unrest. Mr. Brody

174A. Recent History of the United States. (4) I.
Lecture—3 hours; discussion—1 hour. Study of political, economic, and cultural aspects of American democracy from 1900 to 1930's. Mr. Shideler, Mr. Swain

174B. Recent History of the United States. (4) II.
Lecture—3 hours; discussion—1 hour. Study of political, economic, and cultural aspects of American democracy from the 1930's to the present. Mr. Brody, Mr. Swain

174C. Selected Themes in Twentieth-Century American History. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 174A or 174B, or consent of instructor. Selected topical themes of the period from the 1890's to the present. Emphasis will be on analysis, synthesis and interpretive overview rather than a chronological narrative of events. Messrs. Brody, Shideler, Swain

175A. Intellectual History of the United States. (4) II.
Lecture—3 hours. Prerequisite: course 17A or its equivalent; or a course in philosophy since the Renaissance, political theory, American literature, or sociological theory. American social thought from colonial times to the 1860's. Emphasis upon Puritanism, the American Enlightenment, Transcendentalism, Jacksonian democracy, in the context of ideas about the nature of man and his freedom and the idea of progress. Mr. Smith

175B. Intellectual History of the United States. (4) III.
Lecture—3 hours. Prerequisite: courses 17A and 17B; or a course in philosophy since the Renaissance, political theory, American literature, or sociological theory. American social thought from the 1860's to the present. Emphasis upon the social relevance of philosophical and religious idealism, naturalism, and pragmatism. Mr. Smith
176A. Social and Cultural History of the United States. (4) I.
Lecture—3 hours. A study of social and cultural forces in American society from colonial times through reconstruction and the post-Civil War industrial expansion, with emphasis on class structure, religious movements, labor systems, racial and national groups, social reform movements, changes in social values.
Mr. Marchand

176B. Social and Cultural History of the United States. (4) III.
Lecture—3 hours. A study of social and cultural forces in American society from 1880 to the present with emphasis on class structure, religious movements, labor systems, racial and national groups, social reform movements, and changes in social values. Offered in even-numbered years.
Mr. Marchand

*178A. Great Issues in United States History: Ideas and Interpretations. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: junior standing or consent of instructor. Selected topics in the political, economic, social and intellectual history of the United States. A study in historical thought and interpretation concerning the main currents of national development to 1865.
Mr. Jackson

178B. Great Issues in United States History: Ideas and Interpretations. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: junior standing or consent of instructor. Selected topics in the political, economic, social and intellectual history of the United States. A study in historical thought and interpretation concerning the main currents of national development since 1865.
Mr. Jackson

*179A. Economic Growth of the United States. (4) II.
Lecture—3 hours. Development of the American economy from colonial agriculture and mercantilism to the emergence of industrial capitalism.

*179B. Economic Growth of the United States. (4) III.
Lecture—3 hours. The changing nature of industrial capitalism and its effects on agriculture, labor, business, and government in the late nineteenth and twentieth centuries.
Mr. Brody

183A. The Frontier Experience: Trans-Mississippi West. (4) I.
Lecture—3 hours; discussion—1 hour. The fur trade, western exploration and transportation, the Oregon Country, the Greater South, west and the Mexican War, the Mormons, mining discovery, and the West during the Civil War.
Mr. Jackson

183B. The Frontier Experience: Trans-Mississippi West. (4) II.
Lecture—3 hours; discussion—1 hour. Spread of the mining kingdom, the range cattle industry, Indian-military affairs, settlement of the Great Plains and Rocky Mountain Regions and political organization of the West.
Mr. Jackson

184. Race and Nationality in American History. (4) III.
Lecture—3 hours; reports. An historical examination of the source and development of American nationality and its relationship to racial, religious and ethnic minorities. Will focus on the experiences of American Indians, Negroes, Orientals, Jews, Catholics, Irish and others.
Mr. Goodman

*185A. History of Science and Technology in America. (4) II.
Lecture—3 hours. A study of science and technology in America, emphasizing the development of scientific ideas and institutions to 1890.
Mr. Sherwood, Mr. Swain

*185B. History of Science and Technology in America. (4) III.
Lecture—3 hours. A study of science and technology in America, emphasizing the development of scientific ideas and institutions since 1890.
Mr. Sherwood, Mr. Swain

187. Issues in American Educational History. (4) III.
Lecture—3 hours; discussion—1 hour. An exploration of the patterns by which educational institutions have developed, with emphasis on the ways in which Americans have used the transmission of culture between generations as a focus for general social criticism. Offered in odd-numbered years.
Mr. Calhoun

188A. History of Agriculture in the United States. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: junior or senior standing. History of agricultural development to 1900 with emphasis on social and economic institutions.
Mr. Shideler

188B. History of Agriculture in the United States. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: junior or senior standing. History of agricultural changes from 1900 to the present with emphasis on the background and evolution of government policy.
Mr. Shideler

189A. History of California. (4) III.
Lecture—3 hours; discussion—1 hour. History of California to 1865. Offered in odd-numbered years.
Mr. Jackson

* Not to be given, 1970-71.
Lecture—3 hours; discussion—1 hour. History of California since 1865. Offered in even-numbered years.
Mr. Jackson

190A. East Asian Civilization. (4) I.
Lecture—3 hours. The culture and history of East Asia to 1600. Emphasis on China and Japan; attention also to Southeast Asia. Offered in odd-numbered years.
Mr. Liu

190B. East Asian Civilization. (4) II.
Lecture—3 hours. The culture, history, and problems of East Asia since 1600. Emphasis on China and Japan; attention also to Southeast Asia. Offered in even-numbered years.
Mr. Liu

191A. Early Imperial China. (4) I.
Lecture—3 hours; discussion—1 hour. Chinese history to 960 with emphasis on the basic ideas and institutions which have molded the culture and society of China.
Mr. Lo

191B. Late Imperial China. (4) II.
Lecture—3 hours; discussion—1 hour. China, 960 to 1800, with attention to the growth of autocracy, economic and intellectual development, and problems of foreign relations. Offered in even-numbered years.
Mr. Lo

191C. Modern China. (4) III.
Lecture—3 hours; discussion—1 hour. The revolutionary transformation of China from the nineteenth century to the present.
Mr. Lo

192A. Modern China and the West. (4) I.
Lecture—3 hours. A survey of China’s relations with the West since 1800, with emphasis on the impact of imperialism, the profound effects of Western technology and ideas, and the changes in the Chinese worldview and foreign policy.
Mr. Liu

192B. Modern China and the West. (4) II.
Lecture—1 hour; discussion—2 hours. Prerequisite: course 192A or consent of instructor. Intensive study of topics in the history of China’s relations with the West.
Mr. Liu

193. China’s Relations with Southeast Asia. (4) I.
Lecture—3 hours; discussion—1 hour. China’s historical relations with Southeast Asia—military, political, cultural, and economic. Offered in odd-numbered years.
Mr. Lo

194A. History of Japan, I. (4) I.
Lecture—3 hours. A survey of Japanese history to the end of the Tokugawa period.

194B. History of Japan, II. (4) II.
Lecture—3 hours. Prerequisite: course 194A or consent of instructor. A survey of Japanese history from the late Tokugawa period to the present.

Discussion—1 hour; laboratory—3 hours. Prerequisite: enrolled as a history major with senior standing and consent of Department Chairman. Tutoring of students in lower division courses. Weekly meeting with instructors in charge of courses. Written reports on methods and materials required. May be repeated once for credit. (Passed/Not Passed grading only.)
The Staff (Mr. Woodfill in charge)

Prerequisite: consent of instructor; upper division standing.
The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Chairman in charge)

Graduate Courses

201. Sources and General Literature of History. (4) I, II, III.
Seminar—3 hours. Designed primarily for students preparing for higher degrees in history. A. Ancient; B. Medieval; C. Renaissance and Reformation; D. Modern Europe to 1815; E. Europe since 1815; F. Russia; G. China to 1600; H. China since 1600; I. Britain, J. Latin America since 1810; K. American history to 1787; L. United States, 1787–1896; M. United States since 1896; N. Japan.
The Staff

202. Social Science in Historical Practice. (4) III.
Seminar—4 hours. Explores sociological and economical ideas that have actually been used by working historians, especially in United States history, and develops ways to evaluate and plan such efforts.
Mr. Calhoun

211. Ancient History. (4) II.
Seminar—3 hours. Prerequisite: course 111A, 111B, 111C. A seminar dealing with the various aspects of Near Eastern and Greco-Roman civilization.
Mr. Spyridakis

221. Medieval History. (4) III.
Seminar—3 hours. Recommended: courses 121A, 121B. Topics in the history of medieval Europe.
Mr. Bowsky

237. Russian History. (4) I.
Seminar—3 hours. Prerequisite: a reading knowledge of Russian. Topics relating to the history of Muscovite and Imperial Russia before 1856.
Mr. O’Brien

* Not to be given, 1970–71.
242. History of the Enlightenment. (4) III.
Seminar—3 hours. Prerequisite: a reading knowledge of French. Intellectual and social history of Europe during the Enlightenment. May be repeated for credit. Mr. Schwab

*245. History of the Napoleonic Era. (4) I, II.
Seminar—3 hours. Prerequisite: reading knowledge of French or German and consent of instructor. Political, intellectual, social, and military history of Europe from the Consulate to the Congress of Vienna.

246. Europe in the Twentieth Century. (4) III.
Seminar—3 hours. Political history of Europe since 1919, with particular emphasis on the post-1939 period. Mr. Willis

*248A–248B. Modern European Diplomatic History.
(4–4) II–III.
Seminar—3 hours. Prerequisite: reading knowledge of French or German; courses 148B and 148C; or consent of instructor. Bibliography and topics in the diplomatic history of Europe from the French Revolution to the 1930's, with emphasis on the nineteenth century.

*249. Military Theory, Institutions, and Policy since the Renaissance. (4) II, III.
Seminar—3 hours.

251. English History. (4) I, II, III.
Seminar—3 hours. Recommended: courses 151A, 151B, and 151C; 152A and 152B; 154. Mr. Woodfill

Seminar—3 hours. Prerequisite: two courses in Latin American history; reading knowledge of Spanish or Portuguese. Mr. Foppino

270. Early American History. (4) III.
Seminar—3 hours. Mr. Jacobson

(4) II.
Seminar—3 hours. Mr. Goodman

(4) II.
Seminar—3 hours. Mr. Calhoun

(4) I, II.
Seminar—3 hours.

274. Recent History of the United States. (4) II.
Seminar—3 hours. Topics in twentieth-century American history. Mr. Swain
* Not to be given, 1970–71.

(4) II, III.
Seminar—3 hours. Prerequisite: courses 175A, 175B or their equivalent; or consent of instructor. Studies in the recent historiography of, or research in, American social and intellectual history. May be repeated for credit. Mr. Smith

(4) II.
Seminar—3 hours. Churches, schools, professions, urban growth, and social mobility in nineteenth century America. Mr. Smith

Seminar—3 hours. Emphasis on social and economic developments. Mr. Brody

Seminar—3 hours. Mr. Jackson

*288. History of the United States. (4) II, III.
Seminar—3 hours. Prerequisite: graduate standing. Emphasis on agricultural history and closely related topics such as exports, transportation and politics. Mr. Shideler

291A–291B. Chinese History. (4–4) I–II.
Seminar—3 hours. Prerequisite: consent of instructor. Research on topics to be chosen by the student for the purpose of writing article-length papers. Mr. Liu, Mr. Lo

291C. Chinese History. (4) III.
Seminar—3 hours. Prerequisite: reading knowledge of Chinese. Readings in Chinese historical materials. Training in the techniques of using Chinese reference works will be provided. Mr. Lo

The Staff (Chairman in charge)

299. Research. (1–6) I, II, III.
The Staff (Chairman in charge)

299D. Individual Study. (1–6) I, II, III.
(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

Professional Course

300. The Teaching of History in the Secondary School and the Junior College. (3) II, III.
Lecture—3 hours. Prerequisite: junior or senior standing with a teaching major or minor in social studies. Methods for the presentation of history at the secondary and junior college level.
HOME ECONOMICS EDUCATION—See Family and Consumer Sciences

HOME MANAGEMENT—See Family and Consumer Sciences

HUMAN ANATOMY—See Medicine

HUMAN DEVELOPMENT—See Family and Consumer Sciences

INSTITUTION MANAGEMENT—See Family and Consumer Sciences

INTERNAL MEDICINE—See Medicine

(FRESHMAN) INTEGRATED STUDIES

———, Chairman of the Group
Group Office, ———

1A. Major Figures in the Seventeenth and Twentieth Centuries. (5) I.
Lecture—3 hours; discussion—1 hour. An interdisciplinary core course for a limited number of freshmen. Concentrates on science and culture in two related centuries. Emphasis is on seventeenth-century literature and political theory, and twentieth-century theology, physics, and art. Tutorials and regular papers will be required.

Mrs. McKillop, Mr. Swift, Mrs. Greene, Mr. Greider, Mr. Hanzo

1B. Major Figures in the Seventeenth and Twentieth Centuries. (5) II.
Lecture—3 hours; discussion—1 hour. An interdisciplinary core course for a limited number of freshmen. Concentrates on exploring science and culture in two related centuries. Emphasis is on seventeenth-century literature and political theory, and twentieth-century theology, physics, and art. Tutorials and regular papers will be required.

Mrs. McKillop, Mr. Swift, Mrs. Greene, Mr. Greider, Mr. Hanzo

1C. Major Figures in the Seventeenth and Twentieth Centuries. (5) III.
Lecture—3 hours; discussion—1 hour. An interdisciplinary core course for a limited number of freshmen. Concentrates on science and culture in two related centuries. Emphasis is on twentieth-century literature, philosophy, and music. Tutorials and regular papers will be required.

Mrs. Greene, Mr. Swift

INTERNATIONAL AGRICULTURAL DEVELOPMENT

Participating Departments:

AGRICULTURAL ECONOMICS
Professor:
Trimble R. Hedges, Ph.D.

AGRICULTURAL ENGINEERING
Professor:
Norman B. Akesson, M.S.

AGRONOMY AND RANGE SCIENCE
Professor:
William A. Williams, Ph.D.
ANIMAL SCIENCE
Professor:
Floyd D. Carroll, Ph.D.

Associate Professor:
Pran N. Vohra, Ph.D. (Acting; Avian Sciences)

Departmental Major Adviser.—See Schedule and Directory Listing.

Bachelor of Science major program and Graduate Study. See pages 58 and 151.

Lower Division Course

10. Population, Food, and Life; Quality or Subsistence? (3) I.
Lecture—3 hours. Food requirements versus self-realization as the limiting force in population growth; the interaction of changing human goals and new technology through successive stages in economic development; agriculture's contributions to development.

Upper Division Courses

101. Crop Production under Tropical Conditions. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: Plant Science 2 or Botany 2. Climatic and soil adaptation; varieties and varietal improvement in annual and perennial crops; pests, diseases, and their control; fertilization and other management practices. Mr. Williams

102. Livestock and Poultry Production in Developing Areas. (4) I.
Lecture—4 hours. Prerequisite: Animal Science 10, Nutrition 103. Kinds of livestock and poultry suited to developing areas; feed-stuff resources and their utilization; ecological problems including pests, diseases and their control; management practices. Mr. Carroll, Mr. Vohra

190. Proseminar in International Agricultural Development. (2) III.
Lecture—1 hour; discussion—1 hour. Prerequisite: consent of instructor. Problems of coordinating principles and information from technical agriculture and the social sciences in the context of economic development. Mr. Hedges

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Akesson in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Hedges in charge)

INTERNATIONAL AGRICULTURAL DEVELOPMENT (A Graduate Group)

Lynn D. Whittig, Ph.D., Chairman of the Group
Group Office, 167 Hoagland Hall

Graduate Courses

280A-280B. Social, Technological, and Economic Factors; Strategies, Planning Procedures and Case Studies. (3-5) II-III.
Seminar—3 hours. Prerequisite: consent of instructor. Problems and analysis in agricultural development; cultural, political, social, and economic organization; human factors in relation to resource use and technology; strategies and planning procedures in agricultural development; case studies of development programs in individual countries.

II. Mr. Hedges, Mr. Peterson
III. Mr. Hedges, Mr. Akesson

299. Research. (1-9) I, II, III.
The Staff (Mr. Whittig in charge)

INTERNATIONAL RELATIONS

Robert J. Lieber, Ph.D., Chairman of the Committee
Committee Office, 257 Voorhies Hall

Committee in Charge:

Andrzej Brzeski, Ph.D. (Economics)
Howard F. Gregor, Ph.D. (Geography)

Robert J. Lieber. Ph.D. (Political Science)
H. Guenther Nerjes, Ph.D. (German and Russian)

Rollie E. Poppino, Ph.D. (History)
International Relations; Italian / 303

Major Adviser: See Schedule and Directory.

International relations embraces the social relationships which transcend the boundaries of national states. The major in international relations is devised to meet the needs of students interested in acquiring an understanding of the forces and influences conditioning present-day world politics and economics, as well as the main problems and policies of organized states in their relations with one another. Because these problems and policies must be dealt with and determined by governments, the major is built around courses dealing with intergovernmental diplomatic and economic relations. However, it cuts across departmental lines, for foreign policies are made in relation to political, geographic, economic, and social conditions, and in the light of historical precedents.

The Major Program

Language requirement: approximately 28 quarter units in one modern foreign language.

Lower Division Courses.—Required: Economics 1A–1B or 2A–2B–2C; History 4B, 4C, or 17A, 17B; Political Science 2, 3; one course in sociology; one course to be selected from the following: anthropology, geography, art or philosophy.

Upper Division Courses.—Economics, 12 quarter units (select from 110B, 115A, 115B, 116, 117, 160, 161); political science, 12 quarter units (select from 123, 124, 128A, 128B, 131, 132, 134, 137, 139, 149); history, 12 quarter units (from 102, 137D, 146A, 146B, 151C, 158B, 161B, 168, 174A, 174B, 190B, 191C, 192A, 192B); sociology, 12 quarter units (from 118, 125, 130, 141); 2 quarter courses to be selected from the following: anthropology, geography, literature, art, philosophy; and an interdisciplinary seminar (required of all students, junior or senior year) 2 quarters of 4 units each.

Teaching Major.—For the secondary credential: In addition to the departmental major, one (three or four unit) course in history, economics, political science, or sociology is required. This course is to be selected from the recommended courses listed above.

For the elementary credential: The teaching major is the same as the departmental major.

Subject Representative: Mr. Lieber

ITALIAN

Department Office, 515 Sproul Hall

Assistant Professors:
Jonathan L. Butler, Ph.D.
Alfonso De Petris, Dottore in Lettere.
Enrico Marelli, Dottore in Lettere.

Associate:
Julijana Janich, M.A.

Departmental Major Adviser.—Mr. Marelli.

The Major Program

Lower Division Courses.—Required: Italian 1, 2, 3, 4, 5, and 6 or their equivalents. Recommended: one year of college Latin or a Romance Language.

Upper Division Courses.—Required: at least 36 units of upper division courses of which two may be chosen from department-approved courses in related fields.

Honors and Honors Program (see page 133). The honors program comprises two quarters of study under course 194H, which will include a research paper and a comprehensive examination.

Teaching Major.—Requirements for the teaching major are the same as for the departmental major.

Teaching Minor.—A minimum of at least 30 units in Italian of which 12 are upper division units including Italian 101 and 102.

Lower Division Courses

A course may not ordinarily be taken for credit if it is a prerequisite to a course already completed. Students offering high school language preparation as a prerequisite must take a placement test.

1. Elementary Italian. (4) I, II, III.
 Laboratory—2 hours; recitation—3 hours. The Staff

2. Elementary Italian. (4) I, II, III.
 Laboratory—2 hours; recitation—3 hours. Prerequisite: course 1. Continuation of course 1. The Staff

 Laboratory—2 hours; recitation—3 hours. Prerequisite: course 2 or equivalent. Continuation of course 2. The Staff
4. Intermediate Italian. (3) I, II, III.
 Laboratory—1 hour; recitation—3 hours. Prerequisite: course 3 or equivalent. The Staff

5. Intermediate Italian. (3) II, III.
 Laboratory—1 hour; recitation—3 hours. Prerequisite: course 4 or equivalent. Continuation of course 4. The Staff

6. Reading and Conversation. (4) I, II, III.
 Recitation—4 hours. Prerequisite: course 5 or equivalent. Class discussion; reading of selected works; oral reports; analysis of texts. The Staff

Upper Division Courses

101. Advanced Conversation, Composition, and Grammar. (4) I.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. Mr. De Petris

102. Advanced Conversation, Composition, and Grammar. (4) II.
 Lecture—3 hours. Prerequisite: course 101 or consent of instructor. Offered in odd-numbered years. Mr. De Petris

113A. Italian Literature before the Renaissance: from St. Francis to Petrarch. (4) II.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. A study of the origins of lyrical forms of Italian literature of the thirteenth and fourteenth centuries. The development of an Italian standard of poetry, with emphasis on the Sicilian school of Poetry, "The Sweet New Style," and Petrarch. Mr. Butler

113B. Italian Literature before the Renaissance
 Dante's Divine Comedy and Boccaccio. (4) III.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. A study of the origins of non-lyrical forms of Italian literature of the thirteenth and fourteenth centuries. The Divine Comedy and the development of a prose style with emphasis on Boccaccio's Decameron. Mr. Butler

115A. Italian Literature of the Renaissance and the Baroque: from Humanism to Machiavelli. (4) III.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. A detailed examination of the development of the baroque ideal of man and the subsequent loss of faith in this ideal as evidenced in the work of Lorenzo de' Medici, Poliziano, Ariosto and Machiavelli. Mr. De Petris

*115B. Italian Literature of the Renaissance and the Baroque: from Callimico to Marino. (4) III.
 Lecture—3 hours. Prerequisite: course 115A. A continued examination into the loss of an ideal. Emphasis on the conflicts in Michelangelo and Tasso leading to Marino, with an excursus on Calile's role in the formation of a modern literary standard. Mr. De Petris

118. Italian Literature of the Eighteenth Century. (4) I.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. An examination of the struggle for the establishment of a modern Italian literature. Emphasis on the work of Goldoni, Bettinelli, Baretto, Parrini, Alferi and Vico. Offered in odd-numbered years. Mr. Marelli

119. Italian Literature of the Nineteenth Century. (4) II.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. The various aspects of romanticism in Italy: Manzoni, Verga and Verismo. Offered in even-numbered years. Mr. Marelli

120A. Italian Literature of the Twentieth Century: The Novel. (4) III.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. A study into the development of the novel from Svevo to the present. Emphasis on the work of Svevo, Levi, Moravia, Pavese and Vittorini. Offered in odd-numbered years. Mr. Marelli

*120B. Italian Literature of the Twentieth Century: Poetry and Drama. (4) III.
 Lecture—3 hours. Prerequisite: course 6 or consent of instructor. The main trends in Italian poetry with emphasis on hermeticism, the theater of Luigi Pirandello and its role in the development of contemporary Italian drama. Offered in even-numbered years. Mr. Marelli

194H. Special Study for Honors Students. (5) I, II, III.
 Prerequisite: open only to honors students. Guided research leading to an honors paper. The Staff (Mr. Bach in charge)

199. Special Study for Advanced Undergraduates. (1-4) I, II, III.
 Prerequisite: consent of instructor. Directed individual study for advanced undergraduate students. The Staff (Mr. Bach in charge)

* Not to be given, 1970-71.
JAPANESE—See Oriental Languages
LANDSCAPE HORTICULTURE—See Environmental Horticulture Under Plant Science
LATIN—See Classics

LAW
Edward L. Barrett, Jr., J.D., Dean of the School and Chairman of the Department
Richard D. Lee, LL.B., Assistant Dean of the School
*Department Office, 1011 Law Building

Professors:
*Homer G. Angelo, J.D., LL.M.
Edward L. Barrett, Jr., J.D.
Edgar Bodenheimer, J.D., LL.B.
Daniel J. Dykstra, LL.B., S.J.D.
James E. Hogan, LL.B.
Edward H. Rubin, LL.B.
Mortimer D. Schwartz, LL.B., LL.M., M.S.
(Law Librarian)
John W. Whelan, LL.B.
Donald H. Wollett, LL.B.

Assistant Professors:
(Acting)
John D. Ayer, J.D. (Acting)
Charles Davenport, LL.B. (Acting)
Harrison C. Dunning, LL.B. (Acting)
Floyd F. Feeney, LL.B. (Acting)
Dov M. Grunschlag, LL.B. (Acting)
Kennis E. Parker, J.D. (Acting)
Raymond I. Parnas, J.D., LL.M. (Acting)
John W. Poulos, J.D. (Acting)
Paul N. Savoy, LL.B. (Acting)

Lecturer:
Richard D. Lee, LL.B.

Admission Requirements and Curriculum:
For details consult the Announcement of the School of Law.

Professional Curriculum
First Year
200A-200B. Introduction to Law and Equity. (3-2)
I-II.
Lecture—3-2 hours. The basic concepts and classifications of the law, the operation of the case law system, the use of language and the techniques of legal reasoning, and the art of statutory interpretation. The second part acquaints the student with the historical information necessary for an understanding of the modern legal system and with the

201A-201B-201C. Property. (3-2-3) I-II-III.
Lecture—3-2-3 hours. The development of the law of property, including estates and other interests in land, real property marketing and conveyancing, land-use control, and landlord-tenant problems.

202A-202B. Contracts. (4-3) I-II.
Lecture—4-3 hours. The law of contracts, including problems of formation, interpretation, performance, enforcement, and termination.

203A-203B. Pleading and Procedures in Civil Cases. (3-3) II-III.
Lecture—3-3 hours. A study of the methodology by which a civil suit is initiated and carried through the courts (excluding, however, the rules and tactics relating to the proof of disputed facts, which are the subject matter of Evidence and Trial Practice, respectively). The course studies in depth the decision on the proper court in which to litigate; the steps necessary to perfect that court’s jurisdiction over the individual suit; the extent to which pleadings are used to frame the issues for trial; when and how a case may be disposed of without trial; the discovery devices available to learn the details of the opponent’s case; various motions that may or should be made during and after trial; and the procedures related to appealing the result of the trial. At all stages, the code pleading system in use in California State courts is contrasted with that used by the Federal court system.

204A-204B. Torts. (4-4) I-II.
Lecture—4-4 hours. The course in torts is designed to familiarize students with the legal concepts which apply to actions brought by litigants who seek relief for injury. It is thus concerned with intentional invasions of personality and property and with the unintentional invasion of these same interests. More specifically, the course seeks to analyze civil actions based upon wrongs carrying labels such as: assault, battery, false imprisonment, negligence, defamation, invasion of privacy, misrepresentation and nuisance.

1 Absent on leave, 1970-71.
2 Absent on leave, spring quarter 1971.

Mr. Ayer, Mr. Whelan

Mr. Hogan, Mr. Poulos

Mr. Adler, Mr. Dykstra
207A–207B–207C. Legal Research and Writing.
(1–1–2) I–II–III.
Seminar—1–1–2 hours. Small group instruction in the techniques of legal research and writing. (Satisfactory/Unsatisfactory grading only.)
Mr. Schwartz

208. Criminal Law Administration. (5) III.
Lecture—5 hours. An introduction to the administration of the criminal process, with an emphasis upon the constitutional and administrative problems raised by various police investigative procedures such as: temporary detention and arrest; "frisks" and searches; the use of informers and decoys; electronic surveillance; interrogation; fingerprinting; blood tests; and line-ups. The course will also consider the following pre-trial stages of the criminal process: bail; the preliminary examination; the motion to suppress; plea bargaining and discovery.
Mr. Savoy, Mr. Parnas

(2) III.
Lecture—2 hours. This course is designed to provide a view of some of the major problems facing the members of the legal profession in private practice and government service. Guest lecturers and collateral readings will be used. A paper will be required rather than an examination.
Mr. Whelan, Mr. Wollett

Second and Third Year Courses

213. Business Associations I. (2) I.
Lecture—2 hours. The principles of agency and partnership.
Mr. Schwartz

214. Constitutional Law I. (3) II.
Lecture—3 hours. An introductory analysis of the judicial process in constitutional cases; division of powers between the national government and the states.
Mr. Barrett

215A–215B. Business Associations II. (2–3) II–III.
Lecture—2–3 hours. An introduction to the legal rules and concepts applicable to corporations, including materials related to: the process of incorporation; the financing of corporations; the role of management; the role of shareholders and the means by which corporate structure is changed.
Mr. Dykstra

216. Commercial Law I. (3) I.
Lecture—3 hours. Chieflly secured transactions and negotiable instruments under the Uniform Commercial Code. Some attention is given to consumer protection under retail installment sales acts and the like.
Mr. Ayer

217. Constitutional Law II. (4) III.
Lecture—4 hours. Constitutional limitations on governmental power; civil rights and civil liberties.
Mr. Barrett

218. Criminal Law. (3) I.
Lecture—3 hours. A study of the elements and policies of selected criminal offenses.
Mr. Poulos

Lecture—2–2–2 hours. The rules regulating the admissibility of testimonial and documentary proof during the trial of civil and criminal cases, including the concept of relevancy, the hearsay rule, the examination and impeachment of witnesses, the opinion rule, constitutional and statutory privileges, presumptions, and burden of proof.
Mr. Hogan

Lecture—3–2 hours. A study of the statutory, judicial, and administrative material concerning federal income taxes.

221A–221B. Introduction to Estate Planning I.
(2–1) II–III.
Lecture—3 hours. The basic estate planning devices, with emphasis in this part on wills and trusts.
Mr. Adler

223. Introduction to Estate Planning II. (4) I.
Lecture—4 hours. Prerequisite: course 221B; open to third-year students only. This course will stress implementation as well as conception of a modern estate plan and is a prerequisite for course 245. Substantive legal subjects will include future interests and community property.

230. The Family and the Law. (4) I.
Lecture—4 hours. An introduction to the role of the law in regulating the family process. Emphasis will be placed not on the development of legal doctrine but on an experiential and interdisciplinary perception of the dynamics of family life and the role of the lawyer in helping people to organize, maintain, and dissolve husband-wife and parent-child relationships.
Mr. Savoy

231. Legislation. (3) III.
Lecture—3 hours. Organization and operation of the legislature under constitution and rules; relationship among the legislative, executive and judicial branches; statutory interpretation and drafting; executive administration.
Mr. Whelan

232. Land Financing. (3) II.
Lecture—3 hours. A study of the history and principles of real estate mortgages and deeds of trust as security devices for financing land and other transactions.
Mr. Schwartz

233. Philosophy of Responsibility and Punishment.
(3) III.
Lecture—3 hours. Prerequisite: consent of instructor. Freedom of will and responsibility in

* Not to be given, 1970–71.

* Recommended for second-year students.
the light of recent developments in philosophy and psychology; the significance of the concept of responsibility in the administration of criminal justice; modern approaches to the problems of punishment and rehabilitation.

Mr. Bodenheimer

*234. Agricultural Law Seminar, (3) II.
Seminar—3 hours. Selected legal problems related to agricultural industries. Mr. Dunning

235. Administrative Law, (3) III.
Seminar—3 hours. Prerequisite: concurrent enrollment in course 277 recommended. An examination of the powers and procedures of federal and state administrative agencies, with an emphasis on case studies of the handling of several recent controversies in the administrative and judicial processes. Mr. Grunschlag

236. Securities Regulation, (3) III.
Lecture—3 hours. Prerequisite: course 215B. The primary purpose of this course is to familiarize students with laws and regulations, federal and state, relating to the issuance of and trading in corporate securities. It includes materials pertaining to the scope of the term "securities," the registration of securities, interstate and private offerings, broker-dealer regulations, and civil liability under the Securities Act of 1933 and the Securities Exchange Act of 1934. Mr. Grunschlag

237. Commercial Law II, (3) II.
Lecture—3 hours. Legal problems stemming from the distribution of goods. Mr. Ayer

238. Selected Problems in Comparative Law, (2) II.
Seminar—2 hours. Introduction to different legal systems and the comparative method in research and practice; examination of actual cases from foreign law practice; in-depth study of files in recent cases from a civil law country, comparing substantive and procedural aspects with American law and practice. Mr. Angelo

242A—242B. Conflict of Laws, (3—2) I—II.
Lecture—3—2 hours. A study of the decisions in cases in which some of the operative facts are connected with some other state or country than the one in which suit is brought, and of the jurisdiction of courts and the recognition and enforcement of judgments of sister states and foreign countries. Special attention will be given to the constitutional aspects of multi-state problems and the judicial techniques used in making choice of law decisions. Mr. Angelo

243. Creditors' Remedies and Debtors' Protections, (4) III.
Lecture—4 hours. Bankruptcy and other matters affecting debtor-creditor relations. Mr. Ayer

244. Criminal Procedure, (3) I.
Lecture—3 hours. Selected problems in procedure in criminal cases. Mr. Parish

245A—245B. Estate Planning and Taxation, (2—3) II—III.
Lecture—2—3 hours. Prerequisite: courses 221B, 223. Federal estate and gift taxes; federal income taxation as it affects trusts, estates and their beneficiaries. Mr. Grunschlag

246A—246B. Federal Jurisdiction, (2—2) I—II.
Lecture—2—2 hours. Prerequisite: course 214. Congressional power over the jurisdiction of the federal courts; Supreme Court review of state court decisions; federal post-conviction review; the federal-question jurisdiction of the federal district courts; the choice of law applicable in federal litigation; the role of state courts in enforcing federal law. Mr. Grunschlag

247. Federal Taxation II, (4) I.
Lecture—4 hours. Prerequisite: course 220B. Emphasis on income tax problems of corporations and their shareholders. Mr. Grunschlag

248. International Business Transactions, (4) II.
Lecture—4 hours. A basic introduction to legal rules and techniques in doing business with and in foreign countries. Foreign and U.S. law materials will be examined. Students will be presented with actual recent transactions which have arisen in the representation of U.S. interests in Europe, Africa, and Latin America, involving sales of goods (including agricultural products), establishing foreign corporations, taxation in more than one country, anti-trust, and regulation by international organizations such as the GATT, and the European Common Market. Mr. Angelo

249. Introduction to Transnational Legal Problems, (4) I.
Lecture—4 hours. An analysis of the functions and shortcomings of law in international relations. Basic and emerging concepts and terminology in public international law and in the relations between national legal systems and efforts to establish regional (e.g., E.E.C., O.A.S.) and universal (U.N. and other organizations) legal systems will be examined. Students will undertake case studies of key problems in current efforts to regulate and limit the use of armed force and to peacefully settle transnational disputes. This course is recommended for completion prior to courses 238, 248, 268. Mr. Angelo

250. Jurisprudence, (3) I.
Lecture—3 hours. The course will, among other things, explore the relationship between power and law, the impact of individual and social psy-
chology upon the law, the goals of legal order-igung, and the problems engendered by conflicts between moral conscience and legal command. The last part of the course will focus on the relation between the formal and nonformal sources of adjudication in the context of an analysis of the judicial function.

251A–251B. Labor Relations Law. (3–3) I–II.
Lecture—3–3 hours. Prerequisite: 251A may be taken independently of 251B, but only those who have taken 251A may enroll for 251B. The subject matter of this course is collective bargaining, that is, the participation by employees through organizational representatives of their own choosing, in the making of decisions which determine their wages, hours, and other terms and conditions of employment. I. Concerns itself with the basic functions and purposes of collective bargaining, its aspirations and limitations. Consideration is then given to the establishment and maintenance of collective bargaining systems, the dimensions of the bargaining unit, designation of the bargaining representative, employer unfair labor practices and union unfair labor practices bearing on the selection process and the relationship of the parties at the bargaining table, with emphasis on the scope of bargaining and the role of the strike. II. Covers the interpretation and application of the collective bargaining agreement, the interrelationship between the administrative, judicial, and arbitral forms in this process.
Mr. Wollett

256. Land Use Planning. (3) II.
Lecture—3 hours. Zoning, subdivision controls, housing, and urban development will be studied in the context of the "population explosion" and the "urban crisis."

257. Law and Social Science. (2) II.
Seminar—2 hours. A study of the methodology of social science and its application to law.
Mr. Feeney

258. Legal Profession. (3) II.
Lecture—3 hours. Legal ethics; the responsibility of the organized bar. (Satisfactory/Unsatisfactory grading only.)
Mr. Parnas

259. Problems in Modern Social Legislation. (2) I.
Lecture—2 hours. An examination of selected problems in welfare and other recent legislation. An additional 2 units credit either as research or as clinical experience will be available to students by permission of the instructor.
Mr. Feeney

260A–260B. Remedies. (2–2) I–II.
Lecture—2–2 hours. Alternative remedies available for the redress of substantive wrongs: equitable remedies, restitution, damages.
Mr. Parker

261. Local Government. (3) III.
Lecture—3 hours. Current problems of local governments and alternative solutions to these problems. The ability of various governmental entities to respond to problems such as transportation, education, and air and water control will be examined in detail with the help of guest participants.
Mr. Adler

262A–262B. Trade Regulation. (2–3) I–II.
Lecture—2–3 hours. Federal antitrust laws governing collaboration among competitors, restraints in supplier-distributor relations, monopolization, and mergers.
Mr. Grunschlag

263A–263B–263C. Trial Practice. (1–1–1) I–II–III.
Lecture—1–1–1 hour. Prerequisite: course 203B and 219C. This course exposes the student to the steps the lawyer takes in preparing for and conducting the trial of a case and is tactical and practical in emphasis. Students will examine the work product of the attorneys who actually tried the cases to be studied. They will evaluate the work of the lawyer in assembling the facts of the case, in making full use of the tools of discovery, and in conducting the trial of these cases. Transcripts of the trial testimony in a variety of cases will be read and evaluated. This course involves primarily the demonstration of the skills of the trial lawyers, rather than the training of each individual student in his own development of those skills.
Mr. Hogan

264. Natural Resources. (4) III.
Lecture—4 hours. The law governing natural resources, with emphasis upon the law relating to water.
Mr. Dunning

265. Government Contracts. (2) II.
Lecture—2 hours. A study of the organization and operation of the Federal Government with respect to acquisition and disposal of public property; expenditure of public funds; federal contracts as vehicles for carrying public policies into effect; making, administering, and terminating contracts; subcontracts; state power and federal contractors; remedies. Mr. Whelan

*266. Law and Medicine. (3) III.
Lecture—3 hours. Selected problems in law and medicine.

*269. Problems in International and Transnational Law. (3) III.
Seminar—3 hours. Prerequisite: Prior international law study is recommended. Application of the international legal process to recent and current problems of international force, including war and other armed conflicts; world order, including alternatives to the use of force; utilization of non-national resources, including the oceans and seabed; and human rights in international law, including human relations and enforcement of individual rights.
Mr. Adler

* Not to be given, 1970–71.
270. Selected Problems in Jurisprudence, Legal Sociology, and Legal History. (2) III.
Seminar—2 hours. Prerequisite: course in Jurisprudence strongly recommended but not required. Individual research performed in collaboration with the instructor.
Mr. Bodenheimer

271. Selected Problems in Tax Policy. (2) III.
Seminar—2 hours. A study of selected problems of public policy in relation to the tax laws.
Mr. Davenport

272. Readings Concerning the Political, Economic, and Legal Aspects of Business. (2) I.
Lecture—2 hours. This is an introductory course recommended for second-year students planning to concentrate in the law governing business activities. Readings will be selected from major works in economics, political science, philosophy, business and law, and will be designed to examine the social and economic impact of business activity. It will seek to emphasize the nonlegal aspects of the business lawyer's role and intellectual equipment.
Mr. Dykstra, Mr. Grunschlag

273. The Law and the Police. (3) III.
Seminar—3 hours. A study of all aspects of legal control of police practice and behavior. In addition to constitutional problems such as arrest, search and seizure, line-ups and confessions, attention will be given to state legislation, municipal codes, basic authorizing statutes, administrative practices, and informal controls. (An additional 2 units credit either as research or as clinical experience will be available to students by permission of the instructor.)
Mr. Feeney

274. Unfair Trade Practice. (3) III.
Lecture—3 hours. Business torts, including interferences with contractual relations, commercial disparagements, and appropriation of values created by another (trade secrets, trademarks, copyrights); the privilege to compete as a defense.
Mr. Grunschlag

275A–275B. Advanced Civil Procedure. (1–1) I–II.
Lecture—1–1 1/2 hours. This course builds on course 203 to develop skill in handling the procedural problems which arise as the case is being moved toward trial, other than those related to preparation and presentation of facts. Students will be required to decide upon and pursue the proper procedural course in fact patterns based upon litigated cases with the opportunity to compare their own work with that of the attorneys who conducted the real litigation.
Mr. Hogan

276. Juvenile Justice. (3) I.
Lecture—3 hours. A study of the problems arising in the administration of the laws dealing with juvenile offenders.
Mr. Parnas

277. Public Administration. (2) III.
Lecture—2 hours. A study of the administration of law by the principal executive departments; the function of the nonlitigant lawyer in public administration; interdepartmental relationships. Guest lecturers will be featured.
Mr. Whelan

278. Seminar in Public Employee Bargaining. (4) III.
Seminar—4 hours. The emphasis in this seminar is on the development of structured collective bargaining by public employees at the federal, state, and local levels. The principal focus is on developments at the local level, which is where most of the action thus far has taken place. The subjects covered will largely parallel the matters covered in the basic course on Labor Relations Law, with appropriate consideration of the similarities and dissimilarities between bargaining in the public sector and bargaining in the private sector. The methodological focus will be on actual problems of public employee bargaining. There will be no examination, however, each student will be required to submit a written report in respect to some problem or aspect of a problem. The course in Labor Law is not a prerequisite.
Mr. Wollett

279. Manpower Planning. (4) II.
Lecture—4 hours. This course deals with the problems which arise in developing and using the capacities of human beings as actual or potential members of the labor force. The thesis of the course is that poverty and the problems which it creates may be alleviated and diminished by creating jobs and educating, training, and upgrading disadvantaged persons and bringing them into the labor market in a meaningful and productive way. Particular attention will be given to the barriers which prevent the disadvantaged from finding and holding decent jobs; deficiencies in education and skill, poor location, discrimination in hiring and employment, etc. It is anticipated that a substantial part of the course work will involve exposure to some of the federal manpower programs which operate in this area. The course in Labor Relations Law is not a prerequisite.
Mr. Wollett

280A–280B. Seminar on Legal Problems of the Disadvantaged. (1–2) I–II.
Seminar—1–2 hours. This course surveys the private and public law of housing for the poor. It begins with a brief consideration of the economics of slum housing, the scope of the housing problem, the economics of slum ownership, and the economic and social status of the slum tenant. It then proceeds to an examination of the current assault on traditional concepts of land-

* Not to be given, 1970–71.
lord-tenant law: the lease as contract or conveyance; implied warranties and dependent covenants; constructive eviction; adhesion contracts; and retaliatory eviction—all in the context of public housing as well as private. The course turns next to the various means by which government has intervened in the landlord-tenant relationship: housing codes and their enforcement; rent withholding; receivership statutes; and statutory leases. A major component of the course will be an exploration of government programs designed to increase the housing supply, both urban and rural: FHA mortgage programs and the newer approaches such as "turnkey" and rent supplements; problems of urban renewal and relocation and the allocation of decision-making power among state, local and federal agencies in the administration of these programs, and a look at some recent proposals for involving private capital along with ghetto manpower in the upgrading of slum housing. This phase of the course will conclude with an exploration of some contemporary efforts to alter fundamentally the landlord-tenant relation in the slums through such devices as cooperatives, collective bargained leases, and lease enforcement by tenant councils.

Mr. Parker

281. Obscenity and Censorship: The Legal Regulation of Sex in Literature. (3) I.

Lecture—3 hours. An interdisciplinary examination of the legal concept of obscenity. We will explore the hypothesis that judicial opinions on obscenity are not just about "dirty books," but, like dreams, provide valuable keys to the dynamics of our culture and the operation of our laws.

Mr. Savoy

LINGUISTICS

Benjamin E. Wallacker, Ph.D., Chairman of the Committee
Committee Office, 331 Voorities Hall

Committee in Charge:

Professors:
Mertin A. Baumhoff, Ph.D. (Anthropology)
David L. Olmsted, Ph.D. (Anthropology)

Associate Professors:
Jarvis R. Bastian, Ph.D. (Psychology)
Wayne C. Harsh, Ph.D. (English and Linguistics)
Edward J. Tully, Jr., Ph.D. (Mathematics)
Benjamin E. Wallacker, Ph.D. (Oriental Languages)

Assistant Professors:
Ronald A. Arbini, Ph.D. (Philosophy)
Jonathan L. Butler, Ph.D. (French and Italian)

Edwin A. Cook, Ph.D. (Anthropology)
James R. Hurford, Ph.D. (English)
George H. Keith, Ph.D. (French and Italian)
J. Rolf Kjolseth, Ph.D. (Sociology)
Eric S. Liu, Ph.D. (Oriental Languages)
Benjamin K. Tsou, M.A. (Acting, Applied Behavioral Sciences)

Lecturers:
William M. Estabrook, Ph.D. (German and Russian)
H. Phelps Gates, Jr., M.A. (Spanish and Classics)

Major Adviser.—Mr. Wallacker
Graduate Adviser.—Mr. Wallacker
The Major Program

The required courses include the one-year introductory sequence Phonetics (Anthropology 109), Elementary Linguistic Analysis (Anthropology 110), Intermediate Linguistic Analysis (Anthropology 111), Comparative Linguistics (Anthropology 112); Grammatical Analysis (Linguistics 140); Elementary Sanskrit (Classics 191, 192, 193); and two courses from the following: Language and Culture (Anthropology 120); Language (English 105A, 105B); Structure of the French Language (French 160); History of German Language (German 105); Linguistic Structure of German (German 106); Contrastive Structures of English and German (German 108); Phonological Analysis (Linguistics 139); Languages of Eastern Asia (Oriental Languages 100); Chinese Phonology (Oriental Languages 123A); Chinese Morphology (Oriental Languages 123B); Chinese Syntax (Oriental Languages 123C); Philosophy of Language (Philosophy 237); Language and Cognition (Psychology 132); Sociology of Language (Sociology 174); Modern Spanish Syntax (Spanish 131A, 131B); Introduction to Spanish Linguistics (Spanish 132). The student is required also to complete one year's study of the equivalent, of a non-Indo-European language.

Graduate Study.—Requirements for the M.A. degree are 30 units in addition to a thesis. The courses must be graduate courses or upper division undergraduate courses. At least 12 of the 30 units must be strictly graduate work in the major subject. The following courses, or their equivalent, are specifically required: Grammatical Analysis (Linguistics 140); Modern Linguistic Theory (Linguistics 225); Principles of Historical Linguistics (Linguistics 202). Other graduate courses offered are: Field Course in Linguistics (Anthropology 220); Seminar in French Linguistics (French 220); History of the French Language (French 201A, 201B); Gothic (German 200); Old High German (German 201); Middle High German (German 202); Old Saxon (German 203); Psycholinguistics (Psychology 294); Sociolinguistics (Sociology 274); History of Spanish Language (Spanish 230A, 230B); Teaching of English as a Foreign Language (English 301).

35. Introduction to Linguistics. (4) III.

Lecture—3 hours; laboratory—2 hours. Introduction to the study of language: its nature, diversity, and structure. Mr. Butler

Upper Division Courses

139. Phonological Analysis. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: Anthropology 111. Introduction to and application of phonological theory. Mr. Hurford

140. Grammatical Analysis. (3) II.
Lecture—3 hours. Prerequisite: Anthropology 111. Introduction to the theory of grammatical analysis; practice in solving exercise problems. Mr. Liu

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Wallacker in charge)

Graduate Courses

Lecture—3 hours. Prerequisite: Anthropology 112. Advanced treatment of the theory and method of historical linguistics.

210. Historical Germanic Linguistics. (4) II.
Seminar—3 hours. The principles and techniques of historical linguistics will be used to study the development of the Germanic languages from Proto-Indo-European through Proto-Germanic and into early Germanic dialects such as Old Norse, Gothic, Old Saxon, and Old English.

215. Computational Linguistics. (2) III.
Lecture—2 hours. Prerequisite: consent of instructor. The use of electronic computers and other computational devices in linguistic analysis, mechanical translation, and lexicography. Mr. Liu

220. Romance Linguistics. (4) II.
Seminar—3 hours. Prerequisite: consent of instructor. Phonology, morphology, and lexicography of the major Romance languages. Mr. Keith

225. Modern Linguistic Theory. (3) III.
Lecture—3 hours. Prerequisite: course 140 and Anthropology 111. Survey of leading contributions to linguistic theory from de Saussure to the present.

The Staff (Mr. Wallacker in charge)

MANDARIN—See Oriental Languages
MATHMATICS

Kurt Kreith, Ph.D., Chairman of the Department
Department Office, 824 Sprout Hall

Professors:
Henry L. Alder, Ph.D.
George A. Baker, Ph.D.
Donald C. Benson, Ph.D.
Gulbank D. Chakerian, Ph.D.
Curtis M. Fulton, Ph.D.
Charles A. Hayes, Jr., Ph.D.
Kurt Kreith, Ph.D.
Edward B. Roessler, Ph.D.
Sherman K. Stein, Ph.D.
Takayuki Tamura, D.Sc.

Associate Professors:
*Hubert A. Arnold, Ph.D.
Dallas O. Banks, Ph.D.
Carlos Borges, Ph.D.
Albert C. Burdette, Ph.D.
Melven R. Krom, Ph.D.
Gary J. Kurowski, Ph.D.
David G. Mead, Ph.D.
Donald A. Norton, Ph.D.
Washek F. Pfeffer, Ph.D.
Edward J. Tully, Jr., Ph.D.
Howard J. Weiner, Ph.D.

Assistant Professors:
David W. Barnette, Ph.D.
Robert J. Buck, Ph.D.
Doyle O. Cutler, Ph.D.
Steven A. Douglass, Ph.D.
Allan L. Edelson, Ph.D.
*Lawrence S. Kroll, Ph.D.
Maxwell W. J. Layard, Ph.D.
E. O. Milton, Ph.D.
*George T. Salle, Ph.D.
Raymond N. Sproule, Ph.D.
Robert W. Stringall, Ph.D.

Professor:
Robert D. Glazu, Ph.D. (Acting)

Assistant Professor:
Charles E. Franti, Ph.D. (Biostatistics)

Lecturer:
Shirley A. Goldman, M.S.

Major Subject Advisers.—Mr. Alder, Mr. Baker, Mr. Barnette, Mr. Benson, Mr. Borges, Mr. Buck, Mr. Chakerian, Mr. Douglass, Mr. Krom, Mr. Layard, Mr. Mead, Mr. Norton, Mr. Salle, Mr. Stringall, and Mr. Tully.

Students seeking advice in special areas of mathematics, for example, numerical analysis, statistics, and mathematics applicable to special areas, should contact the Mathematics Department to obtain the name of a specialist in this field. Students interested in preparing for graduate work may obtain special advice by contacting one of the graduate advisers.

The Major Program

There are three programs: Bachelor of Arts, Plan I; Bachelor of Arts, Plan II (for prospective teachers); and Bachelor of Science (for students who expect to continue the study of mathematics at the graduate level). Common to all three is the following:

First Two Years
Freshman Year
Mathematics 21A, 21B, 21C 3 3 3
Mathematics 11 (or its equivalent in high school) 2 – –
Mathematics 23 – – – 2

Sophomore Year
Mathematics 22A, 22B, 22C 3 3 3
Mathematics 108A – – –
Mathematics 24 – – – 2

Under Bachelor of Arts, Plan II described below, 108B should be taken immediately after 108A.

Bachelor of Arts, Plan I
First Two Years: described above and Physics 4A.

Upper Division Courses. Required: 40 units, including courses 127A, 127B, 151A, one course in each of three areas listed below, at least 9 units in one area:
c) Geometry—courses 112, 113, 114, 116, 141.

Those interested in applied mathematics (including computers), are advised to take 30, 128A, 128B, and 128C, as well as 127C, 151B, 151C; those interested in statistics, 105A, 105B, 131A, 131B, 131C, 132A, 132B.

Bachelor of Arts, Plan II
First two years: as described above, plus Physics 4A and Mathematics 30. Recom-
recommended: Physics 4B and courses in other departments that use mathematics.

Bachelor of Science

First two years: as described above.

In addition to the courses specified below, the student is required to take a course in another department which applies mathematics, such as Physics 105A; Engineering 102A; Agricultural Economics 106A. (A list of other acceptable courses may be obtained from the mathematics department.) B.S. candidates must fulfill a foreign language requirement for graduation. This will consist of 18 units of a single foreign language if it is begun in high school, or 12 units of one of the three languages, French, German or Russian, if it is begun in college. Part or all of this requirement may be satisfied by passing a placement examination administered by the appropriate foreign language department.

Upper Division Courses. Required: 42 units including:

a) 108A.
b) 127A, 127B, 127C, and 151A, 151B, 151C. (It is recommended that the student initiate, and if possible complete, these two sequences in the junior year.)
c) at least one of the following sequences: 185A, 185B; 128A, 128B, 128C; 118A, 118B, 119; 115A, either 115B or 115C; 126, 147, 187; 112 or 113, 116, 147; 131A, 131B, 131C; 132A, 132B; 125, 225A, 225B; 201A, 201B, 201C; 205A, 205B, 205C; 220A, 220B, 220C; 250A, 250B, 250C.

Those interested in applied mathematics (including computers) are advised to take courses 30, 128A, 128B, 128C; those interested in statistics, courses 105A, 105B, 131A, 131B, 131C, 132A, 132B; Students in any of the baccalaureate programs will not be permitted to offer more than 12 units of Mathematics 199 courses toward the upper division course requirements for graduation.

Graduate Study.—The Department of Mathematics offers programs of study and research leading to the M.A. and Ph.D. degrees in mathematics. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Mathematics.

Qualifying Examinations.—A student entering from high school who believes that he has had the equivalent of a course offered by the Department of Mathematics (e.g., analytic geometry and calculus) may demonstrate his proficiency in this course by examination. If, in the opinion of the department, his level of achievement is sufficiently high, he will be permitted to enter the next course in the sequence. No University credit is earned by passing such an examination. Arrangements for an examination must be made with the department secretary in 822 Sproul Hall on or before the Monday of registration week.

Teaching Major.—Requirements for the teaching major are described for the B.A., Plan II.

Teaching Minor.—Thirty units of mathematics which must include: 4 units of fundamentals of mathematics (course 36A); 8 units of calculus (courses 11, 21A, 21B or 16A–16B–16C); 3 units of probability and/or statistics (courses 13, 15, or 131A); 3 units of geometry (course 37 especially recommended, 112, 113, 114, 116, or 141).

The remainder of the 30 units are elective, except that students with a non-academic major must include 18 units in mathematics at the upper division or graduate level.

Subject Representative: Mr. Burdette.

Lower Division Courses

7. Topics in Algebra. (4) II.

Lecture—4 hours. Prerequisite: two years of high school algebra, plane trigonometry. Natural numbers; integers; rational, real, and complex numbers; permutations; combinations; theory of equations; matrices; determinants. The Staff

11. Analytic Geometry. (2) I, II, III.

Lecture—2 hours. Prerequisite: two years high school algebra, plane geometry, plane trigonometry. Analytic geometry in two and three dimensions. Not open to students who have received credit for course 16A. The Staff

Lecture—4 hours. Prerequisite: two years of high school algebra. Measures of central tendency and dispersion; binomial, normal, Student-t, and chi-square distributions; testing hypotheses; non-parametric statistics; regression and correlation theory. (Junior standing mathematics majors or students having had courses 130A or 131A may not take course 13 for credit.) The Staff

15. Discrete Mathematics. (3) I, II.

Lecture—3 hours. Courses 15, 16A, and 16B constitute a year sequence recommended for students in the biological, management, and social sciences. Introduction to probability, vectors, and matrices. Applications to elementary Markov chains. Mr. Arnold, Mr. Mead

16A. Analytic Geometry and Calculus. (3) I, II, III.

Lecture—3 hours. Prerequisite: one and one-half years of high school algebra, plane geometry, plane trigonometry. Not open for credit to students who have received credit in course
21A. Only 2 units of credit allowed students who have received credit for course 11. A short course in analytic geometry and differential and integral calculus. Not recommended for students who may wish to major in the mathematical sciences. Courses 15, 16A, and 16B constitute a year sequence recommended for students in the biological, management, and social sciences.

The Staff

16B. Analytic Geometry and Calculus. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 16A or 21A. Not open for credit to students who have received credit in course 21B. Continuation of course 16A.

The Staff

16C. Analytic Geometry and Calculus. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 16B or 21B. Only 1 unit of credit will be allowed to students who have received credit for course 21B. Continuation of course 16B with special emphasis on the calculus of three dimensions including partial differentiation and total differentials; designed for students desiring to take physical chemistry.

The Staff

21A. Calculus. (3) I, II, III.
Lecture—3 hours. Prerequisite: two years high school algebra, plane geometry, plane trigonometry, and analytic geometry. Basic concepts of the calculus, derivatives, definite integral, fundamental theorem of calculus. If analytic geometry has not been completed, course 11 must be taken concurrently. Only 2 units of credit will be allowed in course 21A for students who have received credit for 16A.

The Staff

21B. Calculus. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 21A. Continuation of course 21A. Multiple integrals, improper integrals, partial derivatives. Only 2 units of credit will be allowed students who have received credit for 21B.

The Staff

21C. Calculus. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 21B or 16C. Continuation of course 21B. Infinite series, calculus of vector functions, Green's Theorem in the plane.

The Staff

22A. Linear Algebra. (3) I, II, III.
Lecture—3 hours. Prerequisite: nine units of college mathematics. Matrices and linear transformations, determinants, complex numbers, quadratic forms. (Courses 22A, 22B, 22C may be taken in any order. Students enrolled in the Physics 4 sequence should take them in reverse order, 22C, 22B, 22A with Physics 4C, 4D, and 4E.)

The Staff

22B. Differential Equations. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 21C. Solutions of elementary differential equations.

The Staff

22C. Vector Analysis. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 21C. Green's theorem, Stoke's theorem, divergence theorem.

The Staff

23. Applications of the Calculus. (2) II, III.
Lecture—2 hours. Prerequisite: course 21C (may be taken concurrently). Significant applications of the calculus in various sciences.

The Staff

24. Infinite Series. (2) II, III.
Lecture—2 hours. Prerequisite: course 21C. Elements of infinite series including Fourier series and series with complex terms.

The Staff

30. Introduction to Computer Science. (3) I, II.
Lecture—2 hours; laboratory—2 hours. Prerequisite: two years of high school algebra. Introduction to the digital computer and its organization, coding and programming, use of compilers, flow charts, solutions of typical problems, code checking. (Course 30 may not be taken for credit by students who have completed Engineering 5A.)

Mr. Norton

31. Algorithms for Computer Mathematics. (3) II.
Lecture—3 hours. Prerequisite: course 30, 21B (may be taken concurrently). Introduction to assembly languages. The development and description of mathematical algorithms in computer dependent languages.

Mr. Norton

Lecture—4 hours. Introduction to fundamental mathematical ideas selected from the principal areas of modern mathematics. Properties of the primes, the fundamental theorem of arithmetic, properties of the rationals and irrationals, binary and other number systems.

The Staff

36B. Fundamentals of Mathematics. (2) II.
Lecture—2 hours. Prerequisite: course 36A. The content will be selected from the following topics: number systems, set theory, number theory, the axiomatic method, topology, and combinatorics.

The Staff

37. Topics in Geometry. (4) III.
Lecture—4 hours. Topics in Euclidean geometry selected from the theory of geometric transformations, the area and dissection of plane figures, convex polyhedra, foundations of geometry.

Mr. Barnett

Upper Division Courses

105A. Applied Statistical Methods: Analysis of Variance. (4) II, III.
Lecture—4 hours. Prerequisite: course 13. Design of experiments including randomized complete block designs, Latin squares, split-plot designs, factorial designs, and incomplete block designs.

Mr. Baker
105B. Applied Statistical Methods: Multiple Regression. (3 III).
Lecture—3 hours. Prerequisite: course 105A. Continuation of course 105A. Multiple regression and analysis of covariance. Mr. Baker

108A. Introduction to Abstract Algebra and Analysis. (3 I, III).
Lecture—3 hours. Prerequisite: course 21C. Introduction to abstract mathematics, including the real number system, sets, mappings, mathematical induction, and algebraic structures. The Staff

108B. Introduction to Abstract Algebra and Analysis. (3 I, II).
Lecture—3 hours. Prerequisite: course 108A. Unique factorization, Gaussian integers and applications. Introduction to integration theory. Course 108B may not be taken for credit after students have completed courses 127A or 151A, and may not be taken concurrently with 127A or 151A. The Staff

112. Higher Geometry. (3 I).
Lecture—3 hours. Prerequisite: course 108A or consent of instructor. Homogeneous point and line coordinates, cross ratio, one- and two-dimensional projective geometry, point and line conics. Offered in even-numbered years. Mr. Fulton

Lecture—4 hours. Prerequisite: course 108A or consent of instructor. Duality, perspectivity, harmonic sets, projectivity, definition of conics, theorems on conics, pole and polar. Offered in even-numbered years. Mr. Fulton

Lecture—3 hours. Prerequisite: courses 21C, 22A, 108A; or consent of instructor. Topics selected from the theory of convex bodies, convex functions, geometric inequalities, combinatorial geometry, and integral geometry. Offered in even-numbered years. Mr. Sallee

115A. The Theory of Numbers. (3 I).
Lecture—3 hours. Prerequisite: course 108A. Divisibility and related topics, diophantine equations, selected topics from the theory of prime numbers. Offered in odd-numbered years. Mr. Alder

115B. The Theory of Numbers. (3 II).
Lecture—3 hours. Prerequisite: course 108A. Euler-function, Moebius function, congruences, primitive roots, quadratic reciprocity law. Offered in even-numbered years. Mr. Alder

115C. The Theory of Numbers. (3 III).
Lecture—3 hours. Prerequisite: course 108A. Continued fractions, partitions. Offered in even-numbered years. Mr. Alder

Lecture—4 hours. Prerequisite: courses 22A, 22C; or consent of instructor. Vector analysis, curves and surfaces in three dimensions. Offered in odd-numbered years. Mr. Chakerian

118A—118B. Introduction to Partial Differential Equations. (3—3) II—III.
Lecture—3 hours. Prerequisite: courses 22A, 22B, 22C. Solutions of partial differential equations of mathematical physics by separation of variables, series of orthogonal functions. Applications to boundary value problems. Mr. Kreith

Lecture—3 hours. Prerequisite: courses 22A, 22B. Existence and uniqueness theorems, theory of linear equations of the second and higher orders, regular singular points, Sturm-Liouville systems, Laplace transforms. Mr. Kreith

125. Introduction to Mathematical Logic. (3 I).
Lecture—3 hours. Prerequisite: course 108A or consent of instructor. Propositional calculus, predicate calculus, normal forms, completeness. Offered in even-numbered years. Mr. Krom

126. Introduction to the Theory of Sets. (3 I).
Lecture—3 hours. Prerequisite: course 21C or consent of instructor. Fundamental concepts including cardinal numbers, order types, ordinal numbers. Offered in even-numbered years. Mr. Stringall

Lecture—4 hours. Prerequisite: courses 22A, 22C. The real number system, continuity, differentiation and integration on the real line, vector calculus and functions of several variables, theory of convergence. Mr. Cutler, Mr. Banks

127B. Advanced Calculus. (4 II, III).
Lecture—4 hours. Prerequisite: course 127A. Continuation of course 127A. Mr. Cutler, Mr. Banks

Lecture—4 hours. Prerequisite: course 127B. Continuation of course 127B. Mr. Beason

Lecture—3 hours; laboratory—1 hour. Prerequisite: courses 22A, 22B, and 30 or a knowledge of Fortran. Finite differences, interpolation, polynomial approximation, numerical integration and differentiation, non-linear equations, systems of linear equations, matrices and eigenvalue problems, solution of ordinary and partial differential equations. Mr. Glaus

* Not to be given, 1970—71.
129. Theory of Compilers. (4) III.
Lecture—4 hours. Prerequisite: course 31. Theory of compilers; structure of computer languages, their limitations and ambiguities; study of a particular language. Mr. Norton

130A-130B. Mathematical Statistics, Brief Course. (4-4) I-II.
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 16B. A course in mathematical statistics for non-majors. Concepts of probability and sampling, principles of estimation, properties of estimators, sampling distributions, bivariate normal and principles of testing. Mr. Layard

131A-131B-131C. Introduction to Mathematical Statistics. (4-4-4) I-II-III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 21C or 16C. An introduction to the mathematical theory of probability and statistics. Mr. Layard

132A-132B. Introduction to Stochastic Processes. (3-3) II-III.
Lecture—3 hours. Prerequisite: course 131A. Random walks, recurrent events, Markov chains, birth-and-death processes.

136A-136B. Development of Mathematical Ideas. (3-3) II.
Lecture—3 hours. Prerequisite: course 21C. Topics and mathematicians studied with an emphasis on the origin of modern mathematics. Offered in even-numbered years. Mr. Chakerian, Mr. Krom

139A-139B-139C. Introduction to Algebra. (3-3-3) I-II-III.
Lecture—3 hours. Prerequisite: courses 22A, 108A; or consent of instructor. Not open for credit to students who have received credit in course 151A without consent of Department, and may not be taken concurrently with 151A. Theory of equations, symmetric functions, vector space aspects of Galois theory, Euclidean rings, integers in quadratic fields. Mr. Hayes

140. Applications of Mathematics. (3) III.
Lecture—3 hours. Prerequisite: course 108A. Applications of algebra, geometry and analysis in the natural, social and physical sciences. Offered in odd-numbered years. Mr. Sallee

141. Euclidean Geometry. (3) II.
Lecture—3 hours. Prerequisite: course 108A. An axiomatic and analytic examination of Euclidean geometry from an advanced point of view. In particular, a discussion of its relation to other geometries. Mr. Barnette

147. Topology. (3) II.
Lecture—3 hours. Prerequisite: course 127C, and 151A or 139A-139B. The basic notions of point-set and combinatorial topology. Mr. Edelson

151A. Algebra. (4) I, II.
Lecture—4 hours. Prerequisite: course 108A. Introduction to groups, rings, fields and linear transformations. Mr. Stein, Mr. Stringall

151B. Algebra. (4) II, III.
Lecture—4 hours. Prerequisite: course 151A. Continuation of course 151A.

151C. Algebra. (4) I, III.
Lecture—4 hours. Prerequisite: course 151B. Continuation of course 151B.

168. Linear Programming and Game Theory. (3) I.
Lecture—3 hours. Prerequisite: course 21C, 7 or 15. Introduction to zero-sum, two-person games; the fundamental theory for matrix games; basic concepts of linear inequalities; the duality theorem; the simplex method. Offered in even-numbered years. Mr. Sallee

165A. Geometry of Functions of a Complex Variable. (3) I, III.
Lecture—3 hours. Prerequisite: course 22C. Complex number system, Cauchy-Riemann equations, elementary functions, conformal mapping. Mr. Chakerian

185B. Analysis of Functions of a Complex Variable. (3) I, II.
Lecture—3 hours. Prerequisite: course 185A. Cauchy’s integral theorem, power series, Laurent series, residue theorem, special topics. Mr. Burdette

187. Lebesgue Measure and Integration. (3) III.
Lecture—3 hours. Prerequisite: course 127C. Theory of Lebesgue measure and integration on the real line. Mr. Hayes

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor. The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Chairman in charge)

Graduate Courses
201A-201B-201C. Real Analysis. (3-3-3) I-II-III.
Lecture—3 hours. Prerequisite: course 127C. Point set topology; Lebesgue measure and integration on the real line; abstract spaces; general measure and integration. Mr. Buck
Mr. Douglass

Lecture—3 hours. Prerequisite: course 127C. Theory of analytic functions, Cauchy integral theorem, power series, analytic continuation, conformal mapping, special functions.
Mr. Milton

Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. Topics selected from point-set topology and homotopy theory.
Mr. Borges

216. Integral Equations. (3) I.
Lecture—3 hours. Prerequisite: courses 22A, 127C. Volterra equations, Fredholm equations, symmetric kernels. Offered in even-numbered years.
Mr. Keith

Lecture—3 hours. Prerequisite: courses 22A, 127C; 216 recommended. Topics from the theory of first order, hyperbolic and elliptic partial differential equations. Offered in odd-numbered years.
Mr. Chakerian

219. Ordinary Differential Equations. (3) I.
Lecture—3 hours. Prerequisite: courses 22A, 127C. Ordinary differential equations in the real and complex domains; existence and uniqueness theorems; linear systems; analysis of singular points; Sturm-Liouville theory; asymptotic expansions. Offered in odd-numbered years.
Mr. Benson

Lecture—3 hours. Prerequisite: course 185A, 185B (may be taken concurrently). Topics in ordinary and partial differential equations, boundary value problems, functions of a complex variable, matrices and calculus of variations.
Mr. Banks

225A–225B. Metamathematics. (3–3) II–III.
Lecture—3 hours. Prerequisite: courses 151A and either 125 or Philosophy 15A–12B; or consent of instructor. Axiomatizability, consistency, and completeness of the formalized mathematical theories; definability in formal languages; topics from the theory of models. Offered in odd-numbered years.
Mr. Krom

Lecture—3 hours. Prerequisite: course 128C. Numerical solutions of initial and boundary value problems for systems of ordinary differential equations; error analysis and stability. Offered in even-numbered years. Mr. Kurowski

Lecture—3 hours. Prerequisite: course 128C. Computational methods and theoretical aspects in the solution of simultaneous algebraic equations and matrix eigenvalue problems. Numerical analysis in optimization, data analysis, Monte Carlo, etc. Offered in odd-numbered years.
Mr. Glaz

Lecture—3 hours. Prerequisite: courses 22C and 131C, or consent of instructor. A first year graduate course in theoretical statistics. Offered in even-numbered years.
Mr. Baker

232. Analysis of Variance. (3) I.
Lecture—3 hours. Prerequisite: course 131C. Estimation and testing for the general linear hypothesis, components of variance, multiple comparisons. Offered in odd-numbered years.
Mr. Sproule

233A–233B. Design of Experiments. (3–3) II–III.
Lecture—3 hours. Prerequisite: course 232. Topics from balanced and partially balanced incomplete block designs, fractional factorials, and response surfaces.
Mr. Sproule

Lecture—3 hours. Prerequisite: course 187 or equivalent. Measure-theoretic foundations of probability, distribution functions and characteristic functions, law of large numbers and central limit theorems, conditional probabilities, martingales.
Mr. Sproule

Lecture—3 hours. Prerequisite: courses 127C and 131C. Distribution theory, parametric and nonparametric estimation, principles of statistical tests, sequential analysis, statistical decision functions.
Mr. Layard

237A–237B. Nonparametric Inference. (3–3) II–III.
Lecture—3 hours. Prerequisite: course 131C. A survey of nonparametric methods in estimation and hypothesis testing. Offered in odd-numbered years.
Mr. Sproule

* Not to be given, 1970–71.
*238A—238B—238C. Analysis of Stochastic Processes. (3—3—3) I—II—III.
Lecture—3 hours. Prerequisite: course 132B. The analytical theory of second-order stochastic processes, Poisson processes, birth-and-death processes, and Markov processes, including a study of statistical inference for these processes. Offered in odd-numbered years. Mr. Weiner

*240A—240B—240C. Differential Geometry. (3—3—3) I—II—III.
Lecture—3 hours. Prerequisite: course 116. Transformation of coordinates, tensor analysis, intrinsic geometry of surfaces, parallel displacement, Riemannian manifolds, the geometry of subspaces, subspaces of a flat space, application of tensor analysis to the theory of relativity. Offered in odd-numbered years. Mr. Fulton

245A—245B—245C. Algebraic Topology. (3—3—3) I—II—III.
Lecture—3 hours. Prerequisite: course 215C. Algebraic invariants of spaces and their behavior with respect to continuous functions. Offered in even-numbered years. Mr. Pfeifer

250A—250B—250C. Algebra. (3—3—3) I—II—III.
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. The theory of groups, rings, and fields. Mr. Stein

251A—251B. Theory of Groups. (3—3) I—II.
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. Normal subgroups, composition series, Sylow subgroups, nilpotent groups, solvable groups, group representations, groups with operators, group extensions, free groups, ordered groups.

252. Linear Algebra. (3) I.
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. Vector spaces. Offered in even-numbered years. Mr. Mead

253. Theory of Binary Systems. (3) III.
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. Elements of semigroups, quasigroups, and groupoids. Mr. Tamura

290. Seminar. (1—6) I, II, III.
Advanced study in various fields of mathematics as follows: (a) algebra; (b) analysis; (c) geometry; (d) mathematical logic; (e) number theory; (f) topology; (g) theoretical statistics; (h) applied statistics; (i) applied mathematics. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

299. Research. (2—6) I, II, III.
(Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

Professional Courses

300A. The Teaching of Mathematics. (3) I, II.
Lecture—3 hours. Prerequisite: senior or graduate standing. Methods of teaching mathematics in grades K-6. Mrs. Goldman

300B. The Teaching of Mathematics. (3) II.
Lecture—3 hours. Prerequisite: senior or graduate standing. Methods of teaching mathematics in grades 7-12. Mrs. Goldman

MEDICAL EDUCATION—See Medicine
MEDICAL MICROBIOLOGY—See Medicine
MEDICAL SCIENCES—See Medicine

MEDICINE

C. John Tupper, M.D., Dean of the School
Alexander Barry, Ph.D., Associate Dean
Loren D. Carlson, Ph.D., Associate Dean
Earl F. Wolfman, Jr., M.D., Associate Dean
Robert E. Stowell, M.D., Ph.D., Assistant Dean

Professors:
Charles F. Abildgaard, M.D. (Pediatrics)
Alexander Barry, Ph.D. (Human Anatomy)
Robert J. Bolt, M.D. (Internal Medicine)
Nemat O. Borhani, M.D. (Internal Medicine, Community Health)
Robert H. Brownson, Ph.D. (Human Anatomy)

Loren D. Carlson, Ph.D. (Human Physiology)
Robert S. Chang, M.D., D.Sc. (Medical Microbiology)
Loring F. Chapman, Ph.D. (Behavioral Biology)
Hamilton S. Davis, M.D. (Anesthesiology)
Pierre M. Dreyfus, M.D. (Neurology)
Paul D. Hoeprich, M.D. (Internal Medicine, Pathology)

* Not to be given, 1970–71.
Robert L. Hunter, Ph.D. (Human Anatomy)
Gordon D. Jensen, M.D. (Psychiatry and Pediatrics)
Keith F. Killam, Jr., Ph.D. (Pharmacology)
Edwin G. Krebs, M.D. (Biological Chemistry)
Donald G. Langley, M.D. (Psychiatry)
Jerry P. Lewis, M.D. (Internal Medicine and Clinical Pathology)
Paul R. Lipscomb, M.D. (Orthopedic Surgery)
George H. Lowrey, M.D. (Postgraduate Medicine and Pediatrics)
Dean T. Mason, M.D. (Internal Medicine, Human Physiology)
Arnold Meadow, Ph.D. (Psychiatry)
Kenneth R. Niswander, M.D. (Obstetrics and Gynecology)
Demosthenes Pappagianis, M.D., Ph.D. (Medical Microbiology)
Boris H. Ruebner, M.D. (Pathology)
Calvin W. Schwabe, D.V.M., D.Sc. (Community Health)
Makepeace U. Tsao, Ph.D. (Surgery)
Robert S. Stempfel, Jr., M.D. (Pediatrics)
Harold M. Sterling, M.D. (Physical Medicine and Rehabilitation)
Robert E. Stowell, M.D., Ph.D. (Pathology)
C. John Tupper, M.D. (Internal Medicine)
Irving H. Wagman, Ph.D. (Human Physiology)
Sefton R. Wellings, M.D., Ph.D. (Pathology)
Theodore C. West, Ph.D. (Medical Education, Pharmacology)
Earl P. Wolfman, Jr., M.D. (Surgery)
Julian R. Youmans, M.D., Ph.D. (Neurosurgery)

Associate Professors:
John R. Beljan, M.D. (Surgery)
E. Jack Benner, M.D. (Internal Medicine)
Louis W. Conway, M.D. (Neurosurgery)
William M. Fowler, Jr., M.D. (Physical Medicine and Rehabilitation)
Jerry R. Gillespie, D.V.M., Ph.D. (Human Physiology and Clinical Sciences)
Anthony J. Hance, Ph.D. (Pharmacology)
Arnold C. L. Hsieh, M.D., D.Sc. (Human Physiology)
Edward J. Hurley, M.D. (Surgery)
Albert B. Iben, M.D. (Surgery)
Lindy F. Kumagai, M.D. (Internal Medicine)
Malcolm R. Mackenzie, M.D. (Internal Medicine)
Edwin S. Munson, M.D. (Anesthesiology)
John M. Palmer, M.D. (Urology)
V. J. Polidora, Ph.D. (Behavioral Biology)
James F. Spahn, Jr., M.D. (Internal Medicine, Human Physiology)
Robert R. Traut, Ph.D. (Biological Chemistry)
Joe P. Tupin, M.D. (Psychiatry)
G. Worden Waring, Ph.D. (Physical Medicine and Rehabilitation)
Antonio Zappala, M.D. (Human Anatomy)

Assistant Professors:
Ezra A. Amsterdam, M.D. (Internal Medicine and Pharmacology)
Costas A. Assimacopoulos, M.D. (Surgery)
William F. Benisek, Ph.D. (Biological Chemistry)
Willard J. Blankenship, M.D. (Pediatrics)
Bernard J. Bryant, Ph.D. (Medical Microbiology)
Nanine S. Clark, Ph.D. (Human Anatomy)
Carroll E. Cross, M.D. (Internal Medicine and Human Physiology)
John H. Eisele, M.D. (Anesthesiology and Human Physiology)
Larry C. Fried, M.D. (Neurosurgery)
Andrew J. Gabor, M.D., Ph.D. (Neurology)
James G. Garrick, M.D. (Orthopedic Surgery)
Andrew M. Goldner, Ph.D. (Human Physiology)
Elliot Goldstein, M.D. (Internal Medicine)
John W. B. Hershey, Ph.D. (Biological Chemistry)
Mannfred A. Hollinger, Ph.D. (Pharmacology)
Julian J. A. Irias, M.D. (Pediatrics)
Thomas C. Lee, Ph.D. (Human Physiology)
Larry W. McDonald, M.D. (Pathology)
Stanley Meizel, Ph.D. (Human Anatomy)
Lois F. O'Grady, M.D. (Internal Medicine)
Mark P. Owens, M.D. (Surgery)
Lawrence Rabinowitz, Ph.D. (Human Physiology)
Richard S. Riggins, M.D. (Orthopedic Surgery)
G. Henry Schmitt, M.D. (Pharmacology)
Robert P. Scobery, Ph.D. (Behavioral Biology)
Bagher Sheikholeslam, M.D. (Pediatrics)
Robert El. Smith, Ph.D. (Human Physiology)
Larry G. Stark, Ph.D. (Pharmacology)

*Absent on leave, fall quarter 1970.
Frederic A. Troy, II, Ph.D. (Biological Chemistry)
Thomas L. Volk, M.D. (Pathology)
Donal A. Walsh, Ph.D. (Biological Chemistry)
Richard F. Walters, Ph.D. (Medical Education and Human Physiology)
Lowell D. Wilson, M.D., Ph.D. (Internal Medicine and Biological Chemistry)
Phillip R. Yarnell, M.D. (Neurology)
Robert F. Zells, M.D. (Internal Medicine, Human Physiology)

Professors in Residence:
Neil C. Andrews, M.D. (Surgery, and Regional Medical Program)
Marvin Goldman, Ph.D. (Human Physiology)
Eva K. Killam, Ph.D. (Human Physiology)

Associate Professors in Residence:
Paul G. Hattersley, M.D. (Internal Medicine, Pathology)
Paul R. Miller, M.D. (Psychiatry)

Assistant Professors in Residence:
Jess K. Kraus, Ph.D. (Community Health)
Hanne M. Jensen, M.D. (Pathology)

Lecturers:
Arthur L. Barry, Ph.D. (Internal Medicine)
Reed M. Nesbit, M.D. (Surgery)
Ethelda N. Sassenrath, Ph.D. (Behavioral Biology)
Jimmy P. Scott, Ph.D. (Behavioral Biology and Psychiatry)
Vijaya K. Vijayan, M.B.B.S. (Human Anatomy)
Charles H. White, Ph.D. (Medical Education and Regional Medical Program)
Jean A. Zellé, M.A. (Physical Medicine and Rehabilitation)

Instructor:
James J. Donaldson, A.B. (Psychiatry and Behavioral Biology; Acting)

Admission Requirements and Professional Curriculum.—For details consult the Bulletin of the School of Medicine.

Medical Sciences

151. Biomedical Applications of Computers. (2) III.
Lecture—1 hour; computer demonstrations or lecture—1 hour. Prerequisite: consent of instructor. Survey of computer applications in patient monitoring, simulation of biological systems, data acquisition and reduction systems, interpretation of electrocardiograms, and the use of analytical programs for research purposes.

Mr. Walters

Departmental Courses

Anesthesiology

Graduate Courses

201. Principles of Anesthesiology. (1) III.
Lecture—1 hour. Prerequisite: senior standing in the Schools of Medicine or Veterinary Medicine or consent of instructor. Application of physiologic and pharmacologic principles for the proper management of the anesthetized subject, with consideration of comparative aspects where appropriate. Resuscitation and monitoring are included. The Staff (Mr. Davis in charge)

298. Group Study. (1-5) I, II, III, IV.
Discussion and/or laboratory—0–5 and/or 0–15 hours. Prerequisite: advanced standing in medical or veterinary medical curriculum or graduate students in biomedical sciences. Directed reading and discussion on selected topics related to anesthesia.

The Staff (Mr. Davis in charge)

Behavioral Biology

Upper Division Courses

Discussion—1–3 hours. Prerequisite: consent of instructor. Extended evaluative and critical discussions of selected topics relating to the physiological and biochemical bases of behavior. Primary emphasis within any topic will be on the methodology, theory and concepts of current research.

The Staff (Mr. Chapman in charge)

199. Special Study for Advanced Undergraduates.
(1–3) I, II, III.
Discussion—1 hour; laboratory—2–4 hours. Prerequisite: consent of instructor. Laboratory research on selected topics relating to the biochemical bases of behavior. Participation in ongoing research projects or planning, initiation and execution of individual research problem.

The Staff (Mr. Chapman in charge)

Graduate Courses

235. Mood, Motivation, Arousal and Sleep. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: consent of instructor. A critical examination of the current concepts and research on the physiological and biochemical correlates of these behavior processes. Mr. Polidora

290. Seminar. (2) III.
Seminar—2 hours. Prerequisite: consent of instructor. Group discussion and critique of current topics of importance and relevance to Behavioral Biology.

The Staff (Mr. Chapman in charge)
Prerequisite: consent of instructor. Extended evaluative and critical discussions of selected topics relating to the physiological and biochemical bases of behavior. Primary emphasis within any topic will be on the methodology, theory and concepts of current research. The Staff (Mr. Chapman in charge)

Prerequisite: consent of instructor. Laboratory research on selected topics relating to the physiological and biochemical bases of behavior. Participation in ongoing research projects or planning, initiation and execution of individual research problem.
The Staff (Mr. Chapman in charge)

Biological Chemistry

Upper Division Course

199. Special Study for Advanced Undergraduates. (1–5) I, II, III, IV.
Prerequisite: consent of instructor.
The Staff (Mr. Krebs in charge)

Graduate Courses

215. Structure and Metabolic Functions of Proteins. (3) I.
Discussion—1 hour; laboratory—7 hours. Prerequisite: Biochemistry 101B or consent of instructor. Introduction to the laboratory investigation of protein structure, enzyme mechanism and the metabolic roles that these molecules play in the intact animal. Emphasis will be placed on aspects of these topics that can be correlated with phenomena of medical interest.
Messrs. Benisek, Troy, Walsh

Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved. The Staff (Chairman in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Krebs in charge)

Human Anatomy

Upper Division Courses

102. General Human Anatomy. (5) II.
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biology 1 or 10; Physiology 2, 2L or Zoology 2 recommended. The development and structure of the human body. Not open to pre-dental or pre-medical students.
The Staff (Mrs. Vijayan in charge)

198. Directed Group Study. (2–4) I, II, III, IV.
Discussion—2 hours; laboratory—0–6 hours. Prerequisite: consent of instructor. Directed reading and group discussion and/or laboratory experience on selected topics.
The Staff (Mr. Hunter in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III, IV.
Prerequisite: consent of instructor.
The Staff (Mr. Hunter in charge)

Graduate Courses

205. Biochemical and Morphological Aspects of Animal Gametogenesis and Fertilization. (2) II.
Seminar—2 hours. Prerequisite: consent of instructor. Critical reading and discussion of current and background papers. Emphasis on macromolecular and ultrastructural mechanisms of normal and abnormal gamete development, gamete maturation and fertilization. Faculty/student discussion of assigned papers. Mr. Meizel

206. Brain Reconstruction and Neuroanatomy. (4) III.
Lecture—1 hour; discussion—3 hours; laboratory—3 hours. Prerequisite: consent of instructor. Building a human brain model in three dimension using wire, wood, plastics and precut forms as the basis for teaching clinical neuroanatomy and neurophysiology to all qualified students. The course will also include human wet specimens and slides.
Mr. Brownson

280. Human Surgical Anatomy. (4) III.
Discussion—2 hours; laboratory—4 hours. Prerequisite: human gross anatomy or completion of second-year medical curriculum, and consent of instructor. Regional and radiological anatomy as applied to the clinical sciences. Offered in odd-numbered years.
Mr. Zappala

285. Anatomy of the Neonate. (3) III.
Discussion—2 hours; laboratory—4 hours. Prerequisite: Anatomy 100, or Human Gross Anatomy, or completion of Core B, and consent of instructor. Regional and radiological anatomy of the newborn, and comparison with adult morphology. Offered in odd-numbered years.
Mr. Zappala

290. Seminar. (2) I, II, III, IV.
Seminar—2 hours. Prerequisite: consent of instructor.
The Staff (Mr. Hunter in charge)

The Staff (Mr. Hunter in charge)

299. Research. (2–12) I, II, III, IV.
Laboratory 6–36 hours.
The Staff (Mr. Hunter in charge)
Human Physiology

Upper Division Course

151. Information Systems: Design and Analysis of Computerized Information Systems. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: programming desirable; consent of instructor. Basic storage devices; organization of information; design of information systems, on-line, off-line and multilevel; relation of systems design to retrieval requirements and storage elements. Laboratory in preparation of modest information system.
Mr. Walters

Graduate Courses

260. Physiological Systems Analysis. (5) I.
Lecture—4 hours; discussion—1 hour. Prerequisite: Mathematics 16B and Physiology 110B and 108; or consent of instructor. The quantitative analysis of physiological control systems; mathematical models and analytic methods appropriate for the study of different types of physiological control; the application of these techniques to investigations of homeostasis.
Mr. R. El. Smith

Lecture—3 hours; laboratory—3 hours. Prerequisite: Medical Sciences 102B or Physiological Sciences 140A, 140B. Clinical laboratory, physiological evaluations of pulmonary function.
The Staff (Mr. Cross in charge)

282. Comparative Pulmonary Physiology. (3) I, II, III.
Laboratory—8 hours. Prerequisite: Medical Sciences 102B or Physiological Sciences 140A, 140B. Comparative studies of pulmonary function.
The Staff (Mr. Cross in charge)

298. Group Study. (1-5) I, II, III, IV.
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth, lectures and conferences may be involved.
The Staff (Chairman in charge)

299. Research. (1-12) I, II, III, IV.
Prerequisite: consent of instructor.
The Staff (Mr. Carlson in charge)

Internal Medicine

Graduate Course

298. Topics in Hematology. (2-4) I, II, III, IV.
Discussion—2 hours. Prerequisite: one year of postgraduate work and consent of instructors. Basic concepts of the pathology of the hematopoietic organ, the pathophysiology of hematopoietic disease, and concepts of therapeutics will be offered for study. The specific topics to be dictated by the interest and background of the students.
The Staff (Mr. Bolt in charge)

Medical Education

Upper Division Course

160. Instructional Media in Biomedical Education. (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: Medical Sciences 101, 102A or equivalent; consent of instructor. A didactic and practical experience in the variety, operation and uses of instructional aids in the presentation of instruction in biology and medicine.
Mr. West, Mr. Walters

Medical Microbiology

Graduate Courses

291. Seminar in Developmental Immunobiology. (1) II, III.
Seminar—1 hour. Prerequisite: second-year medical student status, Veterinary Microbiology 121, or consent of instructor. Mechanisms of host defense in primitive and advanced species, including man; correlation of ontogenetic and phylogenetic data with theories of the genesis of immunity and tolerance.
Mr. Bryant

298. Group Study in Medical Microbiology and Immunology. (1-5) I, II, III, IV.
Prerequisite: consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics.
The Staff (Chairman in charge)

299. Research. (1-12) I, II, III, IV.
Prerequisite: consent of instructor. Laboratory investigation contributing to the dissertation for a graduate degree.
The Staff (Chairman in charge)

Neurology

Professional Course

Seminar—1 hour. Prerequisite: Medical Sciences 102B and 402D or interested engineering students. Students will participate in both seminars and experimental work dealing with current problems in biomedical engineering as it applies to the field of neurology.
Mr. Yarnell

Pathology

Graduate Courses

210. Introduction to Human Pathology. (6) IV.
Lecture—2 hours; discussion—2 hours; laboratory—4 hours. Prerequisite: Open to graduate students and advanced undergraduates with an adequate background in gross anatomy, histology, physiology and biochemistry. Study
of the processes, causes and effects of disease, including inflammation, neoplasia, immunology, parasitism, degeneration, abnormalities of growth, injuries due to environmental and toxic agents. The Staff (Mr. Wellings in charge)

220. Ultrastructure of Disease. (3) III.
Lecture—2 hours; discussion—1 hour. Pre-requisite: consent of instructor. The contribution of ultrastructure to the understanding of disease processes.
The Staff (Mr. Wellings in charge)

230. Autopsy Case Studies. (1-12) I, II, III, IV.
Discussion—1-4 hours; laboratory 3-24 hours. Pre-requisite: consent of instructor. Participation and performance under supervision of complete autopsies with correlative studies of clinical material, gross, microscopic and laboratory findings. The Staff (Mr. Wellings in charge)

290. Seminar in Pathology. (2) I, II, III.
Seminar—2 hours. Pre-requisite: consent of instructor. Student participation course in the mechanisms of disease.
The Staff (Mr. Wellings in charge)

Discussion—1 hour. Pre-requisite: graduate standing and consent of instructor. Discussion of selected topics in primate pathology based on currently available material. Given jointly by the Departments of Pathology in the Medical and Veterinary Schools, and the National Center for Primate Biology. (Satisfactory/Unsatisfactory grading only.)
The Staff (Mr. Riehmer in charge)

298. Advanced Group Study. (1-5) I, II, III, IV.
Lecture—1-2 hours; discussion—1-2 hours; laboratory—2 hours. Pre-requisite: consent of instructor. Group study in a variety of advanced topics in general and special pathology.
The Staff (Mr. Wellings in charge)

299. Research. (2-12) I, II, III, IV.
Research in the mechanisms of disease, the effects and causes of injury, neoplasia, neuropathology and comparative pathology.
The Staff (Mr. Wellings in charge)

Professional Courses

422B. Gross Autopsy Review. (1) IV, I, II, III.
Discussion—1 hour. Pre-requisite: medical students, veterinary students, interns, residents, and graduate students; consent of instructor. Autopsies of the preceding week are reviewed in detail as a basis for discussions of the biology and natural history of disease.
The Staff (Mr. Wellings in charge)

423. Histopathologic Diagnosis. (1) IV, I, II, III.
Seminar—1 hour. Pre-requisite: medical students, veterinary students, interns, residents, and graduate students; consent of instructor. Intensive and detailed histopathologic diagnosis. Material covered varies from quarter to quarter.
The Staff (Mr. Wellings in charge)

Seminar—1 hour. Prerequisite: medical students, veterinary students, interns, residents, graduate students, and other interested persons; consent of instructor. Electron micrograph and methodology workshop. Participants are encouraged to bring their own material and problems for discussion. The Staff (Mr. Jensen in charge)

Pediatrics

Professional Course

499. Research Topics in Pediatrics. (1-4)
I, II, III, IV.
Discussion—1-2 hours; laboratory—2-8 hours. Prerequisite: consent of instructor. Individual research projects in pediatric subspecialty areas (cardiology, endocrinology, hematology, metabolism, newborn physiology, and others) may be arranged with faculty. Independent research by student will be emphasized and long-term projects are possible.
The Staff (Mr. Stempfel in charge)

Pharmacology

Upper Division Courses

101. Principles of Pharmacology. (2) III.
Lecture—1 hour; discussion—1 hour. Pre-requisite: Medical Sciences 101 or equivalent. Drug-enzyme interactions; receptor sites and characteristics; absorption, distribution, metabolism and excretion of drugs; drug tolerance, dependence, addiction and abuse; special toxicities; allergy, behavioral toxicity and teratology, and drug alteration of subcellular function.
Mr. Hollinger, Mr. Stark

102. Pharmacodynamics A. (2) I.
Lecture—1 hour; discussion—1 hour. Pre-requisite: Medical Sciences 101 and 102 or equivalent. Pharmacology of the autonomic system; pharmacology of the cardiovascular system; renal pharmacology and pharmacology of nerve and neuromuscular junction.
Messrs. Hance, Schmitt, West

103. Pharmacodynamics B. (2) II.
Lecture—1 hour; discussion—1 hour. Pre-requisite: Medical Sciences 101, 102, and 104 or equivalent. Pharmacology of general anesthetics, hypnotics, sedatives, analgesics and anti-pyretics; narcotic analgesics; convulsants and stimulants, anticonvulsants and drug altering behavior.
Mrs. E. K. Killam, Mr. K. F. Killam
104. Pharmacology Laboratory A: Pharmacodynamics. (2) I.
Discussion—1 hour; laboratory—4 hours. Prerequisite: courses 102 and 103 or equivalent. Laboratory techniques used to evaluate the action of drugs. Offered in even-numbered years.
Mornes. Hollinger, Schmitt, West

105. Pharmacology Laboratory B: Neuropharmacology. (2) II.
Discussion—1 hour; laboratory—4 hours. Prerequisite: Medical Sciences 101, 102 and 104 or equivalent. Specialized laboratory techniques used to evaluate centrally acting drugs. Offered in odd-numbered years.
Mr. Hance, Mrs. Killam

106. Pharmacology Laboratory C: Psychopharmacology. (2) III.
Discussion—1 hour; laboratory—4 hours. Prerequisite: Medical Sciences 101, 102B and 104 or equivalent. Specialized laboratory techniques used to evaluate drugs altering behavior. Offered in odd-numbered years.
Mr. Killam, Mr. Stark

Graduate Courses

201. Pharmacology of the Nervous System I: Transmitter. (1-3) I.
Lecture—1 hour; discussion—1 hour. Prerequisite: courses 101, 102 and 103 or Medical Sciences 101, 102B and 104 or equivalent. Pharmacology of substances affecting nervous transmission. Offered in odd-numbered years.
Mr. Hance

202. Pharmacology of the Nervous System II: Hypnotics. (1-3) I.
Lecture—1 hour; discussion—1 hour. Prerequisite: courses 101, 102, 103 or Medical Sciences 101, 102B, 104 or equivalent. Pharmacology of centrally acting sedative, hypnotic and anesthetic agents with emphasis on alterations in brain function. Offered in even-numbered years.
Mrs. Killam

203. Pharmacology of the Nervous System III: Stimulants and Anticonvulsants. (1-3) II.
Lecture—1 hour; discussion—1 hour. Prerequisite: courses 101, 102, 103 or Medical Sciences 101, 102B or equivalent. Pharmacology of stimulant and convulsant agents, anticonvulstant agents and their evaluation in animal models. Offered in even-numbered years.
Mr. Stark

204. Pharmacology of the Nervous System IV: Drug Alteration of Behavior. (1-3) II.
Lecture—1 hour; discussion—1 hour. Prerequisite: courses 101, 102, 103 or Medical Sciences 101, 102B, 104 or equivalent. Activity of drugs altering mood and behavior: psycho-pharmacologic agents, hallucinogens, antidepressants. Offered in odd-numbered years.
Mr. Killam

205. Drug Distribution and Metabolism. (1-3) III.
Lecture—1 hour; discussion—1 hour. Prerequisite: course 101 or Medical Sciences 101, 102B or equivalent. Evaluation of problems of drug distribution and metabolism with special reference to autoradiographic techniques. Offered in even-numbered years.
Mr. Stark

206. Pharmacology of Salt and Water Balance. (1-3) I.
Lecture—1 hour; discussion—1 hour. Prerequisite: courses 101, 102 or Medical Sciences 101, 102B or equivalent. Drug alterations of mechanisms regulating salt and water balance. Offered in even-numbered years.
Mr. Schmitt

207. Drug Alteration of Subcellular Function. (1-3) II.
Lecture—1 hour; discussion—1 hour. Prerequisite: course 101 or Medical Sciences 101 or equivalent. The interaction of drugs and subcellular components with special emphasis on mechanism of action. Offered in odd-numbered years.
Mr. Hollinger

Lecture—1 hour. Prerequisite: consent of instructor. Presentation of basic concepts and problems.
Mr. Stark

Lecture—1 hour. Prerequisite: course 208. Use of laboratory based devices employed in data reduction.
Mr. Killam

Lecture—1 hour. Prerequisite: course 209. Advanced applications and programming.
Mr. Hance

298. Group Study. (1-5) I, II, III, IV.
Prerequisite: consent of instructor. Directed reading and discussion of topics in modern pharmacology. The Staff (Mr. Killam in charge)

299. Research. (1-12) I, II, III, IV.
Prerequisite: consent of instructor.
The Staff (Mr. Killam in charge)

Physical Medicine and Rehabilitation

Professional Courses

452. Physical Modality Laboratory and Seminar. (2) I.
Lecture—1 hour; laboratory—3 hours. Prerequisite: completion of third year of Medical
School and physical therapy students. Designed to acquaint the resident with the physiology, biophysics and methodology of the various physical modalities. In the laboratory, instruction is given in the technical use, contraindications and indications for these modalities. Mr. Waring

470. Rehabilitation Medicine for Allied Health Sciences. (2) IV, I, II, III.
Lecture—1 hour; laboratory—3 hours. Prerequisite: limited to students in the allied health sciences. Designed to acquaint the allied health science student in the clinical application of the physical modalities and the principles of medical and vocational rehabilitation including the physical, psychosocial and occupational aspects. Mr. Zelle

Psychiatry

Graduate Courses

220. Interdisciplinary Research Seminar in Family Psychology. (3) I, II, III.
Seminar—3 hours. Prerequisite: medical, law, or social sciences graduate student; consent of instructor. Participation in research project designed to study the relationship between family structures and communication processes and normal and abnormal behavior. Families will be selected from patient and “normal” populations, ethnic groups, and a variety of socioeconomic classes. The Staff (Mr. Langsley in charge)

221. Clinical Psychopharmacology. (2) II, IV.
Lecture—1 hour; discussion—1 hour; laboratory—1 hour. Prerequisite: pharmacology elective on pharmacodynamics of drugs affecting behavior, or consent of instructor. Open to medical students and graduate students in basic medical sciences. Presentation of patients to relate basic psychopharmacological data to clinical behavioral disorders. Principals of drug selection, combinations and action will be discussed along with side effects, toxicity and drug incompatibilities. The Staff (Mr. Tupin in charge)

Professional Course

420. Grand Rounds for Department of Psychiatry.
(1) I, II, III, IV.
Prerequisite: student or staff School of Medicine or other qualified mental health professionals with consent of instructor. One and one-half hour weekly conference at Sacramento Medical Center for presentation of selected clinical cases, presentation of lecture and research reports. Mr. Langsley

MICROBIOLOGY—See Also Veterinary Microbiology

MICROBIOLOGY

(A Graduate Group)

Herman J. Phaff, Ph.D., Chairman of the Group
Group Office, 156 Hutchison Hall

Graduate Courses

299. Research. (1-12) I, II, III.
Laboratory—variable. Research under the guidance of dissertation committee. (Satisfactory/Unsatisfactory grading only.) The Staff

MICRONESIAN LANGUAGES—See Oriental Languages

MILITARY SCIENCE

Max V. Kirkbride, Colonel, Chairman of the Department
Department Office, 125 Gymnasium

Professor:
Max V. Kirkbride, Colonel

Assistant Professors:
Thomas J. Ford, Jr., Captain
Arthur R. Hotop, Captain
Gary R. Prisk, Captain

Associate Professor:
William R. Henson, Jr., Major
The Military Science Department offers instruction and training which, combined with a baccalaureate degree, qualifies a student for a commission in the Army Reserves. The objective of the ROTC program is to produce junior officers who by their education, training and inherent qualities are suitable for continued development. The program assists qualified men in all academic fields to prepare for positions of leadership in a military or civilian career. A continuing effort is made to assign graduates to military career fields aligned with their major field of study, individual capabilities and preferences. Active duty obligation for upper division ROTC is two years.

Department Programs

Students are enrolled in military science under one of two programs.

Four-Year Program.—Students are enrolled in lower division for the first two years on a voluntary basis. No military obligation is accrued during completion of the lower division courses. Admission to the upper division is by application from those second-year lower division students who meet the academic, physical, and military aptitude requirements.

Upper division students receive $50 subsistence per month after executing a contract agreeing to complete the course and accept a commission if offered. The commission must be obtained prior to the student's 26th birthday. During the course all military science textbooks, uniforms and equipment are provided without cost to the student. Students are trained at summer camp between their third and fourth years of the course. Camp training stresses the evaluation and practical application of tactical, technical and administrative procedures with particular emphasis on individual participation, leadership development and the capability to function effectively in positions of significant responsibility. Each cadet is paid half of a Second Lieutenant's pay during the period of the camp, plus travel expenses. Academic credit of five units for the six weeks of field training is granted by the University.

Two-Year Program.—This program is primarily designed for the student who has not had the opportunity to pursue lower division ROTC. Applications are accepted during the winter term of the year preceding enrollment in the two-year program. In lieu of lower division courses the applicant must successfully complete a six-week summer camp conducted during the summer preceding enrollment in the upper division program. All other provisions explained above regarding upper division apply to the two-year program.

Scholarship Program.—Four-year scholarship students are selected by nationwide competitive examination. Successful candidates receive all tuition, fees, books, uniforms and $50 subsistence per month. One-, two- and three-year scholarships with similar benefits are awarded by the department to outstanding students enrolled in the ROTC program.

Academic Credit

College of Letters and Science.—The Bachelor of Arts degree requires the completion of 180 units, of which at least 150 units shall be in courses given by teaching departments in the College of Letters and Science. Military Science courses do not fall within this category and must be counted in the 30-unit allowance indicated above.

College of Agricultural and Environmental Sciences.—The Bachelor of Science degree in agriculture requires the completion of 180 units. All units of upper and lower division military science courses combined may be accredited toward this requirement.

College of Engineering.—Six units of military science may be accredited toward the requirement of the College of Engineering for the Bachelor of Science degree.

School of Veterinary Medicine.—The number of Military Science units acceptable toward the Bachelor of Science degree in Veterinary Medicine is on an individual program basis approved by the Dean of the School. Graduates with the D.V.M. degree may apply for direct commission in the United States Army Veterinary Corps.

Lower Division Courses

1A. Basic General Military Science (First Year). (1) I.
Lecture—1 hour; laboratory—1 hour. Individual weapons and marksmanship, assembly, disassembly, and functioning of the standard United States Army rifle; preliminary training in marksmanship and good shooting habits. Leadership laboratory. The Staff

1B. Basic General Military Science (First Year). (1) II.
Lecture—1 hour; laboratory—1 hour. Prerequisite: course 1A or the equivalent. The theory of organization of the Army; history and organization of the ROTC. United States Army and national security; organization for national defense. Leadership laboratory. The Staff

1C. Basic General Military Science (First Year). (1) III.
Lecture—1 hour; laboratory—1 hour. Prerequisite, course 1B. United States Army and national security (continued): missions and responsibilities of the Army as a part of the National Defense Team. Leadership laboratory. The Staff
20A. Basic General Military Science
(Second Year). (2) 1.
Lecture—2 hours; laboratory—1 hour. Pre-requisite: course 1C American military history: survey from origins of American Army to World War II; emphasis on factors which led to organizational, logistical, operational, and other patterns in our present Army; analysis based on the principles of war. Leadership laboratory.
Mr. Hotop

20B. Basic General Military Science
(Second Year). (2) II.
Lecture—2 hours; laboratory—1 hour. Pre-requisite: course 20A. American military history (continued): World War II until the present. Counterinsurgency operations: orientation. Map and aerial photograph reading: basic principles to include terrain evaluation, marginal information, map symbols, methods of orientation, and grid references. Leadership laboratory.
Mr. Hotop

20C. Basic General Military Science
(Second Year). (2) III.
Lecture—2 hours; laboratory—1 hour. Pre-requisite: course 20B. Map and aerial photograph reading (continued): review of military maps; elementary aerial photograph reading. Introduction to operations and basic tactics: basic military team; combat formations and patrolling; field fortifications; concealment and cover; techniques of fire; principles of combat. Leadership laboratory.
Mr. Hotop

Upper Division Courses

130A. Advanced General Military Science
(First Year). (2) I.
Lecture—2 hours; laboratory—1 hour. Leadership: responsibilities and basic qualities of a leader; leadership objectives, traits, technique, principles; special problems of military leadership. Counterinsurgency operations: analysis of nature of the insurgency problem; role of the United States Government agencies. Leadership laboratory.
Mr. Kirkbride

130B. Advanced General Military Science
(First Year). (3) II.
Lecture—3 hours; laboratory—1 hour. Pre-requisite: course 130A. Military teaching principles: techniques used in planning and presenting instruction; use of training aids; methods of instruction; student presentations. Branches of the Army: familiarization with their missions, functions, and career patterns. Leadership laboratory.
Mr. Henson

130C. Advanced General Military Science
(First Year). (3) III.
Lecture—3 hours; laboratory—1 hour. Pre-requisite: course 130B. Communications: means and principles of signal communications; characteristics, operation, and maintenance of communications equipment. Small unit tactics; infantry organization; fundamentals of offensive and defensive combat and their application. Summer camp orientation. Leadership laboratory.
Mr. Henson

140A. Advanced General Military Science
(Second Year). (3) I.
Lecture—3 hours; laboratory—1 hour. Pre-requisite: course 130C. Analysis of leadership, military administrative procedures, and personnel management, including the military occupational structure. Military law and the fundamental concepts of military judicial procedures. Customs of the service. Comparative survey of United States and other world powers. Leadership laboratory.
Mr. Ford

140B. Advanced General Military Science
(Second Year). (3) II.
Lecture—3 hours; laboratory—1 hour. Pre-requisite: course 140A. Fundamentals and dynamics of the military team, to include command and staff structures, functions and operations at division and lower levels. Analysis of intelligence collection and correlation procedures. Leadership laboratory.
Mr. Ford

140C. Advanced General Military Science
(Second Year). (2) III.
Lecture—2 hours; laboratory—1 hour. Pre-requisite: course 140B. Logistical procedures encompassing unit supply operations, tactical troop movements, medical evacuation, maintenance operations, accountability for property, and supply forms and records. Principles of internal defense development. Leadership laboratory.
Mr. Ford

MUSIC
Richard G. Swift, M.A., Chairman of the Department
Department Office, Music Building
Professors:
Jerome W. Rosen, M.A.
Richard G. Swift, M.A.

Associate Professors:
Larry D. Austin, M.M.
Sydney R. Charles, Ph.D.
Theodore C. Karp, Ph.D.
Albert J. McNeil, M.S.

Assistant Professors:
Duyong Chung, M.M.
Sven H. Hansell, Ph.D.

Lecturer:
Charles W. Rosen, Ph.D.
Arthur N. Woodbury, M.M.

Major Subject Advisers. Mr. Hansell, Mr. Swift.

The Major Program

Preparation for the major—required: first year, Music 4A–4B–4C; second year, 5A–5B–5C and 21A–21B–21C; one year of Music 30. Beginning and transfer students must take an examination in piano playing. Those showing deficiencies will be required to take Music 405. Sufficient pianistic ability to perform four-part chorales and compositions comparable in difficulty with The Little Preludes of Bach is prerequisite to upper division courses in the major. Students transferring from other colleges should take the Placement Examination and consult with departmental major advisers before enrolling in any music course.

The major—required: Music 104A–104B–104C, one year of Music 130, and at least twenty units selected from the following courses: 165A–165B, 106, 107, 108, 111, 112, 114, 115, 116, 117, 118, 119, 198, and 199. In addition, a total of at least 14 units in performance courses is required of all music majors. These courses include Music 41, 42, 43, 44, 46, 141, 142, 143, 144, 146.

Attention is called to the requirements in foreign languages for higher degrees in music: a reading knowledge of French or German for the M.A. degree in both composition and musicology. Undergraduates contemplating advanced study in music should prepare to satisfy these requirements as they proceed to the bachelor’s degree.

Individual Group Major.—Individual group majors may be established by combining the work offered in this department with courses in allied fields. The major subject adviser should be consulted for details.

Graduate Study.—The Department of Music offers programs of study and research leading to the M.A. degree in composition or musicology. Detailed information regarding graduate study may be obtained from the Graduate Adviser for Music, Mrs. Charles.

Teaching Major.—Requirements for the teaching major are the same as for the depart-mental major. In addition, teaching methods courses (Music 321, 322, 323) are required.

Teaching Minor.—Required: courses 4A–4B–4C, 5A–5B–5C, 108, 405A–405B–405C or equivalent, and either 111 or 112. In addition, students are advised to enroll in at least two quarters of performance courses. Music 300 is recommended. Students must consult with the subject representative.

Subject Representative: Mr. McNeil.

Lower Division Courses

Lecture—5 hours. The development of writing and listening techniques through the study of music fundamentals; ear training; beginning tonal counterpoint and harmony; keyboard harmony, score reading; analysis of repertory.
Mr. Chung.

Lecture—4 hours. Prerequisite: course 4C. Intermediate tonal counterpoint and harmony.
Mr. Swift

10. Basic Musicianship. (2) I, II, III.
Lecture—3 hours. Fundamentals of music, singing, ear-training, and conducting for the general student.
The Staff (Mr. Woodbury in charge)

Lecture—3 hours; listening section—1 hour. Prerequisite: course 4C.
Mr. Hansell

Lecture—3 hours; discussion—1 hour. Lectures, guided listening and readings designed to furnish the student with an understanding of basic music concepts. Intended primarily for non-majors. Messrs. Austin, McNeil, Woodbury

27B. Introduction to Musical Literature. (4) II, III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 27A or consent of instructor. A survey of the history of musical styles from antiquity to the present. Lectures, guided listening and readings. Intended primarily for non-majors.
Mr. Austin, Mr. Chung

Class instruction in performance—2 hours. Prerequisite: consent of instructor; student must demonstrate ability to perform scales and small compositions. Non-majors and auditors not accepted. Class instruction in individual wind, brass, string or keyboard instruments. May not be repeated for credit.
The Staff (Mr. Swift in charge)
41. University Symphony. (2) I, II, III.
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal and performance of music from the orchestra literature.
Mr. Chung

42. Repertory Band. (2) I, III.
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music for wind ensembles.
Mr. Austin, Mr. Woodbury

43. University Concert Band. (2) II.
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music for band.
Mr. Austin, Mr. Woodbury

44. University Chorus. (2) I, II, III.
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University. Rehearsal and performance of choral music.
Mr. McNeil, Mr. J. Rosen

46. Chamber Music Ensemble. (2) I, II, III.
Rehearsal—3 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, piano, harpsichord, and organ.
Mr. Hansell

Upper Division Courses
104A—104B—104C. Advanced Theory.
(4-4-4) 1—II—III.
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 5C. Continuation of Music 5.

*105A—105B. Principles of Composition. (3—3) I—II.
Lecture—3 hours. Prerequisite: course 104C. Elementary assignments in free composition.
Mr. Swift

*106. Fugue. (3) III.
Lecture—3 hours. Prerequisite: course 104C.
Mr. Karp

107. Elements of Electronic Composition. (3) III.
Lecture—1 hour; laboratory—4 hours. Prerequisite: course 105B or consent of instructor.

Introduction to composition utilizing Buchla and Moog synthesizers.
Mr. Rosen

108. Instrumentation. (2) II.
Lecture—2 hours. Prerequisite: course 5C or consent of instructor. A study of instruments of the orchestra, analysis of scores, and scoring for various instrumental combinations.
Mr. Austin

*112. Instrumental Conducting. (2) III.
Lecture—2 hours. Prerequisite: course 108. A study of the principles and techniques of conducting instrumental ensembles.
Mr. Woodbury

114. Music of the Middle Ages. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the middle ages.
Mrs. Charles

*115. Music of the Renaissance. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the period from 1430—1600.
Mrs. Charles

*116. Music of the Baroque Period. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the period from Monteverdi to Handel and J. S. Bach.
Mr. Karp

*117. Music of the Classic Period. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the eighteenth century.
Mr. Swift

118. Music of the Romantic Period. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the nineteenth century.
Mr. C. Rosen

119. Music of the Twentieth Century. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the twentieth century.
Mr. Swift

127A. Musical Literature: The Opera. (3) I.
Lecture—3 hours. Prerequisite: course 27B or consent of instructor. A study of selected operas such as Monteverdi’s Orfeo, Mozart’s Don Giovanni, Wagner’s Tristan und Isolde, Verdi’s Otello, Debussy’s Pelleas et Mélisande, and Berg’s Wozzeck. Intended primarily for non-majors.

* Not to be given, 1970—71.
127B. Musical Literature: The Symphony. (3) III.
Lecture—3 hours. Prerequisite: course 27B or consent of instructor. A study of selected symphonies by composers such as Haydn, Mozart, Beethoven, Schubert, Brahms, and Stravinsky, emphasizing form and style. Intended primarily for non-majors.

130A—130B—130C. Applied Study of Music Literature: Advanced. (1—1—2) I—II—III.
Class instruction in performance—2 hours. Prerequisite: course 30C, consent of instructor. Advanced class instruction in individual wind, brass, string or keyboard instruments. To complete the course students must perform in public concert or before faculty examination board. Non-majors and auditors not accepted. May not be repeated for credit.

141. University Symphony. (2) I, II, III.
Rehearsal—4 hours. Prerequisite: audition subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal and performance of music from the orchestra literature.

142. Repertory Band. (2) I, III.
Rehearsal—4 hours. Prerequisite: audition subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music for wind ensembles.

143. University Concert Band. (2) II.
Rehearsal—4 hours. Prerequisite: audition subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music for band.

144. University Chorus. (2) I, II, III.
Rehearsal—4 hours. Prerequisite: audition subject to audition before first class meeting. Open to any student in the University. Rehearsal and performance of choral music.

146. Chamber Music Ensemble. (2) I, II, III.
Rehearsal—3 hours. Prerequisite: audition subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, piano, harpsichord, and organ.

198. Directed Group Study. (1—5) I, II, III.
Prerequisite: consent of instructor.

199. Special Study for Advanced Undergraduates. (2—4) I, II, III.
The Staff (Mr. Swift in charge)

Graduate Courses

200A—200B—200C. Introduction to Musicology. (4—4—4) I—II—III.
Seminar—3 hours. Bibliography, individual research problems, and a class problem.

203A—203B—203C. Composition. (4—4—4) I—II—III.
Seminar—3 hours. Prerequisite: course 105B. Technical projects and free composition.

210A—210B—210C. History of Notation. (4—4—4) I—II—III.
Seminar—3 hours.

Seminar—3 hours. Analysis and analytical techniques as applied to music of all historical style periods.

Seminar—3 hours. Studies in selected areas of music history and theory.

299. Individual Study. (2—5) I, II, III.
Special studies and projects in musical composition or music history.
The Staff (Mr. Swift in charge)

Teaching Methods Courses

Instrumental Methods
The courses in this series consider methods of teaching orchestra and band instruments, and include repertory and program planning for secondary schools.

300. The Teaching of Music. (3) II, III.
Lecture—3 hours. Prerequisite: course 10 or equivalent. Methods of teaching music in grades K-6.

321A—321B. Stringed Instruments. (1—1) I—II.
Discussion—2 hours. Prerequisite: course 4C.

* Not to be given, 1970—71.
*322. Brass Instruments. (2) L.
Discussion—2 hours. Prerequisite: course 4C.
Mr. Austin

*323A–323B. Woodwind Instruments. (1-1) I–II.
Discussion—2 hours. Prerequisite: course 4C.
Mr. Woodbury

NEMATOLOGY
Dewey J. Raski, Ph.D., Chairman of the Department
Department Office, 223 Hoagland Hall

Professors:
Merlin W. Allen, Ph.D.
Bert Lear, Ph.D.
Dewey J. Raski, Ph.D.

Lecturers:
Benjamin F. Lownsbury, Ph.D.
Armand R. Maggenti, Ph.D.
David R. Viglervchio, Ph.D.

Upper Division Courses
100. General Plant Nematology. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biology 1 or 10. An introduction to the classification, morphology, biology, and control of the nematodes attacking cultivated crops.
Mr. Lownsbury

110. Introduction to Nematology. (2) II.
Lecture—2 hours. The relationship of nematodes to man’s environment. Classification, morphology, ecology, distribution, and importance of nematodes occurring in water and soil and as parasites of plants and invertebrate animals.
Mr. Allen

130. Principles of Nematode Control. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 100. Recommended: Chemistry 8B; Mathematics 13. Principles and techniques used for derivation of data and their interpretation as the basis for control of plant parasitic nematodes. The biological, physical, and chemical factors influencing nematodes and their control are studied in laboratory and greenhouse. Some field trips required.
Mr. Lear

Graduate Courses
*220. Principles and Techniques of Nematode Taxonomy and Morphology. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 100. Analysis and evaluation of the techniques used in the collection, extraction, and preparation of specimens, free-hand and histologic sections; presentation of illustrative material.
Mr. Maggenti

222. Nematode Pathogenicity to Plants. (3) II.
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 100. Investigations of problems in proving nematode pathogenicity; the role of nematodes in plant disease.
Mr. Lownsbury

*225. Nematode Taxonomy and Comparative Morphology. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 220. The taxonomy, morphology, and comparative morphology of soil, freshwater, and marine nematodes.
Mr. Allen

290. Seminar. (1) II.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.)
The Staff (Mr. Raski in charge)

The Staff (Mr. Raski in charge)

NEUROLOGY—See Medicine

NEUROSURGERY—See Medicine

NUTRITION—See Animal Sciences and Family and Consumer Sciences; for major requirements, see page 58

Professional Course
405A–405B–405C. Elementary Piano.
(1–1–1) I–II–III.
Laboratory—2 hours. Prerequisite: open to music majors and candidates for the general secondary credential with a minor in music. ————
ORIENTAL LANGUAGES
(Department of Anthropology)

Department Office, 331 Voorhies Hall

Associate Professors:
Bezalel Porten, Ph.D.
Benjamin E. Wallacker, Ph.D.

Assistant Professors:
Olof G. Lidin, Ph.D.
Eric S. Liu, Ph.D.

Lecturers:
Marian B. Ury, M.A.
Key H. Kim, B.A.

The Major Program
Emphasis in Chinese.

Lower Division Courses.—Required: Oriental Languages 1M—2M—3M, 4M—5M—6M. Recommended: elementary Japanese; Art 1D.

Upper Division Courses.—Required: Courses 100, 112, 123A, 123B, 123C; at least 12 units of courses 101—102; courses from the following list to bring the total upper division units to 45: Anthropology 190; History 190A, 190B, 191A, 191B, 191C, 192A, 192B, 193; Political Science 148A, 148B.

Lower Division Courses
1C—2C—3C. Elementary Standard Cantonese.
(4—4—4) I—II—III.
Lecture—3 hours; laboratory—2 hours.
Mr. Tsou

1H—2H—3H. Elementary Hebrew.
(4—4—4) I—II—III.
Lecture—3 hours; laboratory—2 hours.
Grammar, translation, composition, and conversation; introduction to Biblical Hebrew. Student may concentrate on any aspect or phase of the language.
Mr. Porten

1H—2H—3H. Elementary Hebrew.
(4—4—4) I—II—III.
Laboratory—2 hours. Prerequisite: course 1H—2H—3H (may be taken concurrently); and consent of instructor. Composition and grammatical drill.
Mr. Porten

4H—5H—6H. Intermediate Hebrew.
(4—4—4) I—II—III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 3H. Selected study of texts from different periods of the Hebrew language; grammar review; composition; conversation. Student may concentrate on any aspect or phase of the language.
Mr. Porten

4HL—5HL—6HL. Intermediate Hebrew.
(1) I—II—III.
Laboratory—2 hours. Prerequisite: course 4H—5H—6H concurrently and consent of instructor. Composition and grammatical drill.
Mr. Porten

1J—2J—3J. Elementary Modern Japanese.
(4—4—4) I—II—III.
Lecture—3 hours; laboratory—2 hours.
Mr. Lidin

(4—4—4) I—II—III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 3J. A continuation of 3J.
Mr. Lidin

1M—2M—3M. Elementary Modern Mandarin.
(4—4—4) I—II—III.
Lecture—3 hours; laboratory—2 hours. Introduction to the "National Language" (Kuo Yu) of China.
Mr. Liu

4M—5M—6M. Intermediate Modern Mandarin.
(4—4—4) I—II—III.
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 3M. A continuation of 3M.
Mr. Liu

38. Directed Group Study. (1—5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Chairman in charge)

39. Special Study for Undergraduates. (1—5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Chairman in charge)

Upper Division Courses

100. Languages of Eastern Asia. (4) II.
Lecture—3 hours; discussion—1 hour. A survey course on the nature and distribution of the main languages of Eastern Asia.
Mr. Wallacker

Lecture—3 hours; discussion—1 hour. Prerequisite: course 6C. Readings in selected texts. May be repeated twice for credit.
Mr. Wallacker

Lecture—3 hours; discussion—1 hour. Prerequisite: course 6C. Readings in selected texts. May be repeated twice for credit. Offered in quarters when course 101 is not being given.
Mr. Wallacker

1 Absent on leave, 1970–71.
112. Chinese Literature in Translation. (4) I.
Lecture—3 hours; discussion—1 hour. No knowledge of Chinese is required. Representative works—including classics, histories, belles lettres, and fiction—in English translation.
Mr. Wallacker

Lecture—3 hours; discussion—1 hour. Prerequisite: course 6J. Selected readings in pre-modern literature. May be repeated twice for credit.
Mr. Lidin

123A. Chinese Phonology. (4) I.
Lecture—3 hours. Prerequisite: consent of instructor. Offered if sufficient number of students enroll.
Mr. Liu

123B. Chinese Morphology. (4) II.
Lecture—3 hours. Prerequisite: consent of instructor. Offered if sufficient number of students enroll.
Mr. Liu

123C. Chinese Syntax. (4) III.
Lecture—3 hours. Prerequisite: consent of instructor. Offered if sufficient number of students enroll.
Mr. Liu

Lecture—3 hours; discussion—1 hour. From the beginning to modern times, with emphasis on Chinese, Buddhist, and Western influences. Knowledge of Japanese not required.
Mr. Lidin

142. Civilization of Eastern Asia: Japan. (4) I.
Lecture—3 hours; discussion—1 hour. A broad survey of Japanese civilization dealing with cultural, literary, religious, and social developments.
Mr. Lidin

150A. Ancient Israel. (4) I.
Lecture—3 hours; discussion—1 hour. The culture of Israel as reflected in the Bible and archaeological discoveries. Patriarchal period to the Judges.
Mr. Porten

150B. Ancient Israel. (4) II.
Lecture—3 hours; discussion—1 hour. The culture of Israel as reflected in the Bible and archaeological discoveries. Monarchy to Restoration.
Mr. Porten

*151A. Ancient Jewish Civilization. (4) II.
Lecture—3 hours; discussion—1 hour. The culture of the Jews in Palestine and the Diaspora as reflected in the Apocrypha and Pseudepigrapha; Josephus; Dead Sea Scrolls; Philo; Tannaitic and classical sources; archaeological discoveries. Alexander to Herod.
Mr. Porten

*151B. Ancient Jewish Civilization. (4) III.
Lecture—3 hours; discussion—1 hour. The culture of the Jews in Palestine and the Diaspora as reflected in the Apocrypha and Pseudepigrapha; Josephus; Dead Sea Scrolls; Philo; Tannaitic and classical sources; archaeological discoveries. Procurators to demise of Patriarchate.
Mr. Porten

Prerequisite: consent of instructor.
The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.
(1–3) I, II, III.
The Staff (Chairman in charge)

Mr. Wallacker

ORTHOPEDIC SURGERY—See Medicine

PARK AND RECREATION ADMINISTRATION—See Resource Sciences

PATHOLOGY—Veterinary Medicine, this page; Medicine, see page 322

PATHOLOGY

Donald L. Dungworth, B.V.Sc., Ph.D., Chairman of the Department
Department Office, 1226 Haring Hall

Professors:
Donald R. Cordy, D.V.M., Ph.D.
Peter C. Kennedy, D.V.M., Ph.D.
Jack E. Moulton, D.V.M., Ph.D.
Sefton R. Wellings, M.D., Ph.D.

Associate Professor:
Donald L. Dungworth, B.V.Sc., Ph.D.

Assistant Professors:
R. R. Pool, Jr., D.V.M., Ph.D.
W. Peter C. Richards, M.V.Sc., Ph.D.

Associate Professors:
Leslie J. Faulkin, Jr., Ph.D. (Anatomy)
Gordon H. Theilen, D.V.M. (Clinical Sciences)

* Not to be given, 1970–71.
Assistant Professor:
Anthony A. Stemars, D.V.M. (Acting, Clinical Sciences)

Lecturers:
David H. Gribble, D.V.M.
Lynn A. Griner, Ph.D.

Upper Division Courses

122A. Veterinary Pathology. (5) I.
Lecture—3 hours; laboratory—6 hours. Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. The fundamental degenerative, vascular, and inflammatory processes, disturbances of cell growth, including oncology. Mr. Cordy, Mr. Pool

122B. Veterinary Pathology. (5) II.
Lecture—4 hours; laboratory—3 hours. Prerequisite: course 122A. Special pathology of organ systems and related communicable diseases. Mr. Dungworth, Mr. Kennedy

122C. Veterinary Pathology. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 122A. Special pathology of organ systems and related communicable diseases. Mr. Cordy, Mr. Gribble

Graduate Courses

282. Tumor Pathology. (3) II.
Lecture—2 hours; laboratory—2 hours. Prerequisite: course 122A–122B–122C. The histogenesis, incidence, geographical distribution, etiology, transmission, immunity, host response, gross and microscopic structure, and metastasis of the neoplasms of domestic animals. Offered in even-numbered years. Mr. Moulton, Mr. Dungworth

283. Tumor Biology. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Growth, invasion and metastasis of tumors; mechanisms of carcinogenesis; intrinsic and extrinsic etiologic factors. Offered in odd-numbered years. Mr. Dungworth, Mr. Faulkin, Mr. Theilen

284. Pathology of Reproductive Failure. (2) III.
Lecture—1 hour; discussion—1 hour. Prerequisite: course 122A–122B–122C. Selected topics on cause and effects of fetal disease. Offered in odd-numbered years. Mr. Kennedy

285. Neuropathology. (3) II.
Lecture—2 hours; discussion—1 hour. Prerequisite: courses 122C and 295C. Patterns of nervous tissue reaction in disease. Offered in odd-numbered years. Mr. Cordy

299. Seminar in Veterinary Pathology. (1) I, II, III.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

291. Histopathology Conference. (1) I, II, III.
Discussion—1 hour. Prerequisite: course 295C. Discussion of selected cases based on records and slides. Defense of diagnosis. (Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

292. Surgical Pathology Conference. (1) I, II, III.
Discussion—1 hour. Prerequisite: course 295C. Diagnosis and discussion of current surgical pathology cases based on clinical records and microscopic study. (Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

293. Necropsy and Surgical Pathology.
(1–4) I, II, III.
Discussion—1 hour; laboratory—32 hours. Prerequisite: course 295C. Responsible diagnostic casework. Performance of necropsies, slide reading and case reporting. (Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

294. Primate Pathology Conference. (1) I, II, III.
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Discussion of selected topics in primate pathology based on currently available material. Given jointly by Departments of Pathology in the Medical and Veterinary Schools, and the National Center for Primate Biology. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

295A–295C. Necropsy Laboratory. (1) I–II–III.
Laboratory—33 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine. Supervised experience in necropsy diagnosis, including techniques and interpretation. The Staff

298. Group Study. (1–4) I, II, III.
Prerequisite: course 122A–122B–122C. Group Study of advanced topics in pathology. The Staff (Chairman in charge)

299. Research in Veterinary Pathology.
(1–9) I, II, III (Summer).
(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

PEDIATRICS—See Medicine
PHILOSOPHY
Marjorie Grene, Ph.D., Chairman of the Department
Department Office, 922 Sproul Hall

Professors:
Arthur Child, Ph.D.
Neal W. Gilbert, Ph.D.
Marjorie Grene, Ph.D.

Associate Professors:
William H. Bossart, Ph.D.
John F. Malcolm, Ph.D.

Assistant Professors:
Ronald A. Arbin, Ph.D.
Melvin W. Beal, Ph.D.
Fred R. Berger, Ph.D.
Joel I. Friedman, Ph.D.

The Major Program
Lower Division Courses.—Required: courses 12A and 20A–20B–20C.

Upper Division Courses.—Required: 36 units of upper division courses in philosophy, selected with the approval of the departmental major adviser.

Graduate Study.—The Department of Philosophy offers programs of study leading to the M.A. and Ph.D. Degrees. Detailed information may be obtained by writing to the Graduate Adviser.

Lower Division Courses
6. Introduction to Philosophy. (4) I, II, III.
Lecture—3 hours; discussion—1 hour. Political, aesthetic, religious, metaphysical, and other concerns of philosophy, as exemplified in major works from various periods. The Staff

6F. Freshman Seminar in Philosophy. (4) III.
Seminar—4 hours. Prerequisite: consent of instructor. An intensive introduction to philosophical inquiry. Open only to freshmen with strong interest or background in philosophy. Mr. Child

12A. Introduction to Logic. (4) I.
Lecture—3 hours; discussion—1 hour. Theorems and principles of inference of formal deductive systems; propositional calculus and predicate calculus; translation of English into symbolic formulas. Mr. Friedman

12B. Introduction to Logic. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 12A or consent of instructor. Development of the full predicate calculus; identity and description calculus; decision procedures; more advanced translation of English; elementary theory of classes and relations. Mr. Friedman

20A. History of Philosophy. (4) I, III.
Lecture—3 hours; discussion—1 hour. A survey of Greek philosophy with special attention to the Pre-Socratics, Plato and Aristotle. Mr. Malcolm, Mr. Gilbert

20B. History of Philosophy. (4) I, II.
Lecture—3 hours; discussion—1 hour. The seventeenth century and its background. Mrs. Grene, Mr. Berger

20C. History of Philosophy. (4) II, III.
Lecture—3 hours; discussion—1 hour. Eighteenth-century Philosophy. Mr. Arbin, Mr. Beal

Upper Division Courses
101. Metaphysics. (4) II.
Lecture—3 hours. Prerequisite: two courses in philosophy to be chosen from the 20A, 20B, 20C sequence and the upper division course list with the exception of 105, 114, 117, 123. Theories of being. Such topics as reality, substance, universals, space, time, causality, becoming, body, experience, persons, freedom and determinism. Views of the nature and method of metaphysics. Anti-metaphysical arguments. Mr. Child

102. Theory of Knowledge. (4) III.
Lecture-discussion—3 hours. Prerequisite: two courses in philosophy to be chosen from the 20A, 20B, 20C sequence and the upper division course list with the exception of 105, 114, 117, 123. Philosophical problems of perception and thought, memory and preconception, imagination, truth and error, belief and knowledge. Types of epistemology. Mr. Beal

103. Philosophy of Mind. (4) II.
Lecture-discussion—3 hours. The relation between mind and body, our knowledge of other minds, and the explanation of mental acts. Discussion of such concepts as action, intention, and causation. Offered in even-numbered years. Mr. Arbin
105. Philosophy of Religion. (4) I, II.
Lecture—3 hours. Prerequisite: two courses in philosophy. Logical, metaphysical, epistemological and existential aspects of selected religious concepts and problems.

Mr. Gilbert, Mr. Child

107A. Philosophy of the Physical Sciences. (4) I.
Lecture-discussion—3 hours. Prerequisite: one philosophy course or a major in science. Introduction to the nature of scientific laws, theories, explanations, and models. Problems of causality, determinism and indeterminism, induction and probability.

Mr. Friedman

107B. Philosophy of the Biological Sciences. (4) II.
Lecture-discussion—3 hours. Prerequisite: one philosophy course or a major in science. The relation of the biological to the physical sciences; the nature of theories, explanations, and models in biology and psychology. Problems of taxonomy, ethology, and evolutionary theory.

Mrs. Green

107C. Philosophy of the Social Sciences. (4) III.
Lecture-discussion—3 hours. Prerequisite: one philosophy course or a major in social science. The nature of laws and explanations in the social sciences; their relation to mathematics and the physical sciences; the role of value judgments in the social sciences; theories of historical knowledge; theoretical problems of data-processing.

Mr. Berger

114. Ethics. (4) III.
Lecture-discussion—3 hours. Prerequisite: one course in philosophy. Major attempts of philosophers to deal with central problems of moral conduct; principles of obligation, right and wrong, responsibility, the meaning of the basic terms of ethical language, criteria of moral behavior.

Mr. Berger

117. Political Philosophy. (4) II.
Lecture-discussion—3 hours. Recommended: course 6 or 6F. Intensive examination of some central concepts of political thought such as the state, sovereignty, rights, obligation, freedom, law, authority, and responsibility. Offered in even-numbered years.

Mr. Berger

118. Philosophy of History. (4) II.
Lecture-discussion—3 hours; term paper. A survey of philosophical theories of history and an analysis of contemporary problems of historical explanation. Offered in odd-numbered years.

Mr. Berger

123. Aesthetics. (4) II.
Lecture—3 hours. Prerequisite: one course in philosophy; one course in music, the plastic arts, or literature. Nature of art, of artistic creation, of the work of art, and of aesthetic experience; nature and validity of criticism; relations of art to its environment.

Mr. Beal

131. Philosophy of Logic. (4) III.
Lecture-discussion—4 hours. Prerequisite: course 12A; or Mathematics 125. Discussion of such topics as identity, descriptions, meaning, and denotation. The nature and development of axiomatic systems; philosophical discussion of certain results in mathematical logic such as the Löwenheim-Skolem Theorem; and consideration of non-standard logics, such as modal logic.

Mr. Friedman

132. History of Logic. (4) III.
Lecture-discussion—3 hours; term paper or conferences. Study of special problems or authors in the history of logic. Offered in odd-numbered years.

Mr. Malcolm

133. Philosophy of Mathematics. (4) III.
Lecture-discussion—3 hours. Prerequisite: course 12A or a major in mathematics. The nature of mathematical theories; set theory and type theory as foundations for mathematics; logicism, intuitionism, and formalism; philosophical discussion of Gödel's theorems; and relations between pure and applied mathematics. Offered in even-numbered years.

Mr. Friedman

*134. Metalogic. (4) II.
Lecture-discussion—3 hours. Prerequisite: course 12B or consent of instructor. Systematic treatment of formal languages and metalanguages; theorems about theorems of logic; consistency and completeness of formal systems; theory of models of formal systems. Offered in odd-numbered years.

Mr. Friedman

137. Philosophy of Language. (4) I.

Mr. Arbin

*143. Hellenistic Philosophy. (4) III.
Lecture-discussion—3 hours; term paper. Prerequisite: course 20A. Offered in even-numbered years.

Mr. Malcolm

*145. Medieval Philosophy. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 20A. A study of major philosophers in the medieval period.

Mr. Gilbert

*Not to be given, 1970–71.
*146. Renaissance Philosophy. (4) III.
Lecture-discussion—3 hours. Renaissance conceptions of man, as found in the writings of Valla, Fichino, Pico, Pomponazzi, Erasmus, Vives, and Montaigne. Some reference to current religious and social developments. Offered in even-numbered years. Mr. Gilbert

151. Philosophy of the Nineteenth Century. (4) II.
Lecture-discussion—3 hours. Recommended: courses 20A, 20B, or 20C. The idealism of Hegel, his contemporaries and his successors; Marxism; the positivism of Comte and Mill; the irrationalism of Kierkegaard and Nietzsche. Offered in even-numbered years. Mr. Bossart

155. American Philosophy. (4) II.
Lecture-discussion—3 hours. Recommended: course 6 or 6F. Study of such American thinkers as Peirce, James, Royce, Dewey, Santayana, Whitehead, and G. I. Lewis. Offered in odd-numbered years. Mr. Berger

156. Contemporary British Philosophy. (4) III.
Lecture-discussion—3 hours. Recommended: course 20C or 151. Interpretation and analysis of the most influential work of Bertrand Russell, G. E. Moore, Wittgenstein, J. L. Austin, and G. Ryle. Offered in odd-numbered years. Mr. Arbini

157A. Contemporary European Philosophy. (4) I.
Lecture-discussion—3 hours. Recommended: course 20C, 151, or 175A, 175B. A study of contemporary directions in European philosophy, with particular attention to the development of phenomenology and Existenzphilosophie in Germany. Readings in Husserl, Heidegger, Jaspers, and related philosophers. Offered in odd-numbered years. Mr. Bossart

157B. Contemporary European Philosophy. (4) II.
Lecture-discussion—3 hours. A study of contemporary directions in European philosophy, paying particular attention to the development of phenomenology and existentialism in France. Readings in Sartre, Marcel, Merleau-Ponty, and related philosophers. Offered in even-numbered years. Mrs. Grene

161. Plato. (4) I.
Lecture-discussion—3 hours. Prerequisite: course 20A. Offered in odd-numbered years. Mr. Malcolm

162. Aristotle. (4) I.
Lecture-discussion—3 hours. Prerequisite: course 20A or consent of instructor. Offered in even-numbered years. Mr. Malcolm

168. Descartes. (4) I.
Lecture-discussion—3 hours; term paper. Prerequisite: course 20B. Offered in even-numbered years. Mr. Arbini

169. Spinoza. (4) III.
Lecture-discussion—3 hours; term paper. Prerequisite: course 20B. Offered in odd-numbered years. Mr. Gilbert

170. Leibniz. (4) I.
Lecture-discussion—3 hours; term paper. Prerequisite: course 20B. Offered in odd-numbered years. Mr. Gilbert

171. Hobbes. (4) II.
Lecture-discussion—3 hours; term paper. Recommended: course 20B. Offered in even-numbered years. Mr. Arbini

172. Locke. (4) III.
Lecture-discussion—3 hours. Offered in odd-numbered years. Mr. Child

173. Berkeley. (4) II.
Lecture-discussion—3 hours; term paper. Prerequisite: course 20C. Offered in even-numbered years. Mr. Real

174. Hume. (4) III.
Lecture-discussion—3 hours. Offered in even-numbered years. Mr. Child

175A. Kant. (4) I.
Lecture-discussion—3 hours. Prerequisite: course 20C. Offered in even-numbered years. Mr. Bossart

175B. Kant. (4) II.
Lecture-discussion—3 hours. Prerequisite: course 20C. Offered in odd-numbered years. Mr. Bossart

176. Hegel. (4) I.
Lecture-discussion—3 hours. Recommended: courses 20C, 175A, 175B. Offered in odd-numbered years. Mr. Bossart

178. Kierkegaard. (4) III.
Lecture—3 hours. Prerequisite: course 20A; course 20C or 185. Offered in even-numbered years. Mr. Child

183. Russell. (4) II.
Lecture-discussion—3 hours. Recommended: course 12A or Mathematics 125. Offered in odd-numbered years. Mr. Friedman

185. Founders of Modern Thought. (4) II.
Lecture-discussion—3 hours; term paper. Not open to philosophy majors or students who have had course 20B or 20C. A survey of modern philosophy from Descartes to Kant. Major emphasis upon problems still current today. Mr. Bossart

188. Directed Group Study. (1–5) I, II, III.
The Staff (Mrs. Grene in charge)
199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mrs. Grene in charge)

Graduate Courses

Graduate courses 201, 202, 207, 214, and 290 are offered every year by different instructors and may be repeated for credit with permission of the Graduate Adviser. The other graduate courses will be varied from year to year.

201. Metaphysics. (4) III.
Seminar—3 hours. Mr. Bossart

202. Theory of Knowledge. (4) II.
Seminar—3 hours. Mr. Arbini

207. Philosophy of Science. (4) I.
Seminar—3 hours. Mrs. Grene

*209. Theory of History. (4) II.
Seminar—3 hours. Offered in odd-numbered years.

214. Ethics. (4) I.
Seminar—3 hours. Mr. Child

223. Aesthetics. (4) II.
Seminar—3 hours. Offered in even-numbered years.

261A. Plato. (4) I.
Lecture-discussion—3 hours. Offered in odd-numbered years. Mr. Malcolm

261B. Plato. (4) II.
Seminar—3 hours. Offered in odd-numbered years. Mr. Malcolm

262A. Aristotle. (4) I.
Lecture-discussion—3 hours. Offered in even-numbered years. Mr. Malcolm

262B. Aristotle. (4) II.
Seminar—3 hours. Offered in even-numbered years. Mr. Malcolm

274. Hume. (4) III.
Lecture-discussion—3 hours. Offered in even-numbered years. Mr. Child

275A. Kant. (4) I.
Lecture-discussion—3 hours. Offered in even-numbered years. Mr. Bossart

275B. Kant. (4) II.
Lecture-discussion—3 hours. Prerequisite: course 275A. Offered in odd-numbered years. Mr. Bossart

Seminar—3 hours. Special topics in the history of philosophy. Messrs. Berger, Gilbert, Malcolm

The Staff (Mrs. Grene in charge)

The Staff (Mrs. Grene in charge)

PHYSICAL EDUCATION

Charles R. Kovacic, Ed.D., Chairman of the Department
Department Office, 264 Gymnasium

Professors:
Charles R. Kovacic, Ed.D.
E. Dean Ryan, Ed.D.

Associate Professors:
Edmund M. Bernauer, Ph.D.
William L. Lakie, Ed.D.
Willard S. Lotter, Ed. D.
Marya Welch, Ed.D.

Assistant Professor:
William C. Adams, Ph.D.

--

Lecturer and Supervisor of Physical Education:
George A. Stromgren, M.S.

Lecturer:
Joe L. Singleton, M.A.

Supervisor:
Herbert A. Schmalenberger, M.A.

Associate Supervisors:
Robert R. Brooks, M.A.
Joseph E. Carlson, M.A.
Robert I. Hamilton, M.S.
Barbara J. Heller, Ed.D.
Jerry W. Hinsdale, A.B.
John W. Pappa, M.A.
Phillip S. Swinley, M.A.

Assistant Supervisors:
June M. Breda, M.S.
Jere H. Curry, M.A.
Judith L. Meyers, M.A.
James L. Sochor, Ed.D.

* Not to be given, 1970–71.
The incidental fee payable by all students at the time of registration, entitles students to the use of gymnasium, shower, towels, lockers, tennis courts, and the athletic fields. Certain equipment for games and sports is available for exercise and recreation, either with or without instruction. Courses may be elected with or without academic credit. Lockers will be turned in on the last day of class, before the final examination period.

Fines are imposed for each formal transaction necessitated by failure of the student to comply with the regulations of the department.

Major Advisers.—Mr. Bernauer, Miss Heller, Mr. Kovacic, Mr. Lakie, Mr. Ryan, Miss Welch.
Minor Adviser.—Mr. Adams.

The Major Program

Students will specialize in one of two areas: biological aspects or psychosocial aspects of physical education.

Lower Division Courses.—Required of all students: Biology 1, Chemistry 1A, Mathematics 13, Physical Education 45, Physics 2A or 10, Physiology 2, Psychology 1A. Students interested in the biological aspects of physical education will be required to take Chemistry 8A, 8B and Zoology 2.

Upper Division Courses.—Required of all students: Human Anatomy 102, Physical Education 103, 104A–104B, 110, 120, and 135. Required of students in the biological area: Physiology 110A–110B and a minimum of 6 units selected from the following: Zoology 100, 106A, 106B, and Physiology 102. Required of students in the psychosocial area: Psychology 112 and three upper division psychology or sociology courses selected in consultation with the major adviser.

Teaching Major.—The teacher-training curriculum in physical education requires not only the departmental major, but also courses 130, 180, 380A and 380B.

Teaching Minor.—The teaching minor consists of 34 quarter units of course work, including 12 lower division units, 16 upper division units, and 6 units for teacher certification. Course selection must be made in consultation with the minor adviser.

Graduate Study.—A program of study and research leading to the M.A. degree is available in physical education. For detailed information regarding graduate study, write to the Graduate Adviser, Department of Physical Education.

Lower Division Courses

1. Physical Education for Men and Women. (1/2)
 I, II, III.
 Laboratory—2 hours. Sections in archery, badminton, dance (modern, social, folk and square), baseball, basketball, football, golf, trampolining, tumbling, wrestling, volleyball, handball, soccer, tennis, touch football, track, swimming. (Men qualified for athletics may enroll in any sport pursued at Davis, such as baseball, basketball, football and receive credit.) This course may be repeated for credit not to exceed a total of 6 units.

 The Staff (Mr. Kovacic in charge)

5. First Aid. (2) I, II, III.
 Lecture—2 hours. Standard course. Upon successful completion of the course the Red Cross Certificate is awarded.
 Messrs. Stromgren, Pappa, Sochor, Swimley

10. Professional Physical Education Activities
 (Men). (1) I, II, III.
 Lecture—1 hour; laboratory—2 hours. Fundamental knowledge and skills in swimming, basketball, football, track, baseball, tennis, golf, combative sports, developmental activities, court sports, tumbling and gymnastics.
 The Staff (Mr. Kovacic in charge)

22. Professional Physical Education Activities
 (Women). (1) I, II, III.
 Lecture—1 hour; laboratory—2 hours. Fundamental skills in aquatics (swimming—beginning, intermediate, advanced, synchronized; diving; lifesaving; water safety); archery; badminton; basketball; dance (folk and square, modern, social); tennis; track; tumbling; gymnastics; volleyball.
 The Staff (Mr. Kovacic in charge)

 (1) I, II, III.
 Lecture—1 hour; laboratory—2 hours. Pre-requisite: course 1 and a course in intermediate swimming. Basic skills in swimming and small craft safety. Life saving procedures and techniques for which Red Cross Senior Lifesaving Certificates will be awarded upon successful completion of necessary requirements.
 Mr. Hinsdale

27. Organization and Teaching of Recreational and Competitive Swimming and Diving Skills.
 (1) I, II, III.
 Lecture—1 hour; laboratory—2 hours. Pre-requisite: Red Cross Lifesaving Certificate and Advanced Swimming and Diving. Organization and teaching of swimming and lifesaving skills. (Red Cross Water Safety instructors certificate awarded upon successful completion of necessary requirements.) Organization of competitive swimming and diving programs and coaching techniques.
 Mr. Hinsdale

35A–35B. Dance Composition. (2–2) I–II.
 Discussion-demonstration—three 3-hour sessions. Prerequisite: intermediate dance. Principles of choreography for solo and group compositions.
 Mr. Curry
36A–36B. History of Dance. (3–3) I–II.
Lecture—3 hours. A study of dance and its relation to culture from the primitive to the Renaissance periods. The development of dance as an art form from the Baroque period to the twentieth century.
Mr. Curry

44. Principles of Healthful Living. (2) II.
Lecture—2 hours. Use of scientific information, proper attitudes, knowledge, and health practices in daily living.
Miss Heller

45. Foundations of Physical Education. (4) I.
Lecture—4 hours. An introduction to the historical, biological, psychological, sociological and philosophical foundations of physical education.
Mr. Adams

Upper Division Courses

103. Analysis of Human Movement. (5) I.
Lecture—4 hours; laboratory—3 hours. Prerequisite: Physics 2A; Human Anatomy 102. Anatomical and physiological concepts and physical laws as applied to human movement.
Mr. Kovacic

104A–104B. Physiology of Muscular Activity. (3) II–III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biology 1, Physiology 2. Circulatory-respiratory and metabolic response to exercise in man under various physiological and ambient conditions.
Mr. Bernauer

110. Psychosocial Factors in Motor Performance. (4) I, III.
Lecture—3 hours. Prerequisite: Psychology 1A. Analysis of various psychological and social factors affecting the development and use of motor skills.
Mr. Ryan

120. Sports in American Society. (4) III.
Lecture—4 hours. Prerequisite: History 17A. The interrelationships of sports with other aspects of society, including the family, church, school and government; consideration of the manner in which sports may be used to contribute to human welfare in our advanced technologically society.
Mr. Lakie

130. Principles and Theory of Physical Education. (4) II.
Lecture—4 hours. A critical analysis of the assumptions underlying the physical education program.
Miss Welch

135. Research Design and Instrumentation in Physical Education. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 13. Methods, techniques, and design of experimental research in physical education.
Mr. Bernauer

140. Recreation in the Community. (3) III.
Lecture—3 hours. The nature, scope and significance of recreation with its implications for leisure. The development, organization, and purpose of public and voluntary agencies which serve the recreational needs of the community.
Miss Welch

145. School Health Education. (3) III.
Lecture—3 hours. Prerequisite: course 44 or consent of instructor. A study of the school health program as an integral part of the school curriculum: the underlying principles and functions of health instruction, health service, healthful school living and the contributing community health agencies.
Miss Heller

171. Conditioning of Athletes and Care of Injuries (Men). (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 5; Human Anatomy 102; Physiology 2. Modern principles and practices in conditioning and care of athletes. Prevention and care of athletic injuries; therapeutic exercises applied to athletic injuries; training room equipment, protective devices, and supplies.
Mr. Stromgren

180. Physical Education in the Secondary School. (3) I.
Lecture—3 hours. An analysis and study of the principles and methods basic to physical education in the secondary school.
Miss Meyers, Mr. Schmalenberger

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: consent of department.
The Staff (Mr. Kovacic in charge)

Graduate Courses

200. Proseminar in Physical Education. (3) I.
Seminar—3 hours. Prerequisite: course 135. The meaning, methods, and techniques of research procedure as applied to physical education; a critical review of selected studies, literature, practices, and procedures in the field; application to a particular problem in the field.
Mr. Adams

210. Historical and Cultural Bases of Physical Education. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: course 120. An examination of political, economic, social, and religious factors which have influenced sports in various countries and cultures.
Mr. Lakie

220. Kinesiology. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 103. Critical review of current literature and research in kinesiology; neurophysiological concepts and physical laws.
Mr. Kovacic
221. Anthropometry in Relation to Physical Performance. (4) II.
 Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: courses 104 and 135. Consideration of growth, physical constitution, body proportions and body composition in man as they affect physical performance; measurement of selected structural and functional changes accompanying prolonged, systematic physical conditioning. Mr. Adams

222. Metabolic Functions in Exercise. (4) III.
 Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 104, Physiology 110B. A review of the current research literature on the metabolic responses to exercise in man; a laboratory survey of respiratory response, metabolic and water balances, blood gas adjustments and acid-base balance with particular reference to the effect of environmental conditions. Mr. Bernauer

230. Motor Performance: Psychological Aspects. (4) II.
 Lecture—2 hours; discussion—2 hours. Prerequisite: course 110. Critical review of current literature on motor learning; coordination; kinesiology; and reaction time; consideration of sensory-motor perception, motivation, and personality factors in relation to physical activities. Mr. Ryan

290. Physiological Basis of Physical Fitness. (2) II.
 Seminar—2 hours. Prerequisite: graduate standing. Review and critical discussion of current research topics concerned with the physiological aspects of physical fitness. Mr. Bernauer

 The Staff (Chairman in charge)

Professional Courses

300. Physical Education Activities and Methods in the Elementary School. (2) II, III.
 Lecture—1 hour; laboratory—3 hours. Prerequisite: senior standing. Principles, theories, materials, and practices of the elementary school physical education program. Mr. Curry, Mr. Adams

 Lecture—2 hours; laboratory—3 hours. Prerequisite: course 180 and demonstrated competence in selected skills. The methods of teaching group and individual activities in the secondary school; program planning; class management; organization of the intramural and extramural programs. Miss Meyers, Mr. Schmalenberger

PHYSICAL MEDICINE AND REHABILITATION—See Medicine

PHYSICAL SCIENCES

James S. Vincent, Ph.D., Chairman of the Committee
 Committee Office, 128 Chemistry

Committee in Charge:
 Olaf S. Leison, Ph.D. (Physics)
 Eldridge M. Moores, Ph.D. (Geology)
 James S. Vincent, Ph.D. (Chemistry)

Major Adviser: See Schedule and Directory.

The major in physical sciences is designed primarily for students who wish to obtain a general secondary credential. The lower division course requirements are similar to those of the major in chemistry or physics. This major may lead to the Bachelor of Arts or the Bachelor of Science degree.

Preparation for the Major
 Required: Chemistry 1A, 1B, 1C or 1A, 7A, 7B; Physics 4A, 4C, 4D, 4E; Geology 1, 1L; Mathematics 21A, 21B, 21C. Recommended:

 Chemistry 5; Physics 4B; Geology 101A; Mathematics 22A, 22B. The choice of recommended courses will be governed by the field of specialization within the major.

The Major Program

A total of 36 units of upper division courses in the physical sciences, of which not less than 23 units must be taken in a single subject, e.g., chemistry, physics, or geology.

Teaching Major.—Requirements for the teaching major are the same as for the undergraduate major.

Teaching Minor.—The teaching minor must take at least 30 quarter units in two of the physical science fields with at least 18 units in one of these two fields. The program must have the approval of the subject representative.

Subject Representative: Mr. Vincent.
PHYSICS

James E. Draper, Ph.D., Chairman of the Department
Department Office, 141 Young Hall

Professors:
James E. Draper, Ph.D.
Milton E. Gardner, Ph.D. (Emeritus)
Kenneth R. Greider, Ph.D.
John A. Jungeiman, Ph.D.
William J. Knox, Ph.D.
Charles G. Patten, Ph.D.
William W. True, Ph.D.

Associate Professors:
Franklin P. Brady, Ph.D.
Glen W. Erickson, Ph.D.
Claude Garrod, Ph.D.
James P. Hurley, Ph.D.
Richard L. Lander, Ph.D.
Douglas W. McColm, Ph.D.

Assistant Professors:
Thomas A. Cahill, Ph.D.
Ching-Yao Fong, Ph.D.
Olaf S. Leifson, Ph.D.
David E. Pellett, Ph.D.
Roderick V. Reid, Jr., Ph.D.

Assistant Professor:
Philip M. Yager, M.S. (Acting)

Lecturers:
Natalie R. Leonard, A.B. (Astronomy)
Neal Peek, Ph.D.

Major Subject Advisers.—Mr. Leifson, Mr. Pellett, Mr. Patten.

The Major Programs

Lower Division Courses.—Required: Physics 4A, 4B, 4C, 4D, 4E; Chemistry 1A, and either 1B–1C or 7A–7B; Mathematics 21A, 21B, 21C, 22A, 22B, 22C. Recommended: a reading knowledge of French, German, or Russian.

Upper Division Courses.—Both Bachelor of Arts and Bachelor of Science programs require the completion of the core program consisting of: Physics 104A–104B, 105A–105B, 115A, 110A–110B–110C, one quarter of an upper division lab, Physics 112A. Additional upper division units are required to add up to the following requirement totals: Bachelor of Arts—36 upper division units total. Bachelor of Science—51 upper division units total. Any upper division physics courses open to majors satisfy the additional units requirement. Substitutions from other departments for these upper division units, as well as the core, may be made by written permission of the Undergraduate Curriculum Committee Chairman as approved by the Department Chairman. Upper division lab requirement satisfied by any one of the following: Physics 108, 116A, 116B, 122, or approved substitution. Recommended: Mathematics 24, 118, 119, 185; Mathematics 128 or Applied Science 115. Physics 10 is recommended to give an historical and philosophical overview of the subject.

Honors and Honors Program.—The honors program in physics consists of 4 units of course 194H, open to seniors who qualify for the honors program. Students may be graduated with honors in physics on completion of the required major and this program.

Graduate Study.—The Department of Physics offers programs of study and research leading to the M.A. and Ph.D. degrees.

Lower Division Courses

Physics 4A, 4B, 4C, 4D, and 4E are for students whose major is physics and for students preparing for applications of physics in Engineering and Chemistry.

All students planning to take lower division courses (except course 10 and 11) should have completed trigonometry.

The Physics 2 series may be started in any quarter and completed without interruption since either sequence, 2A, 2B, 2C or 2A, 2C, 2B, is satisfactory. Also, 2B and 2C may be taken concurrently.

The Physics 4 series may be started in either winter or spring quarter and completed without interruption since either sequence, 4A, 4B, 4C, 4D, 4E or 4A, 4C, 4D, 4B, 4E, is satisfactory.

Upper Division Courses

Courses 4A, 4B, 4C, 4D, 4E, or their equivalent, and Mathematics 21A, 21B, and 21C are prerequisite to all upper division courses except course 107; in addition, Mathematics 22A, 22B, 22C or their equivalents are recommended. Some prerequisites may be waived with consent of the instructor.

Teaching Major.—Requirements for the teaching major are the same as for the departmental major for degree (A.B. or B.S.).

Teaching Minor.—The teaching minor must take Physics 4A, 4B, 4C, 4D, 4E, and any other upper division physics courses necessary to complete 30 quarter units.

Subject Representative: Mr. Patten.
Astronomy

Lower Division Courses

1A. Introduction to General Astronomy: The Solar System. (4) II.
Lecture—4 hours. Introduction to the celestial sphere, constellations of the seasons, effects of diurnal and annual motions of the Earth; planetary motions, phases and configurations, including study of Earth as planet. Not intended for advanced physical science majors. (Courses 1A and 1B may be taken in either order.)

Mrs. Leonard

1B. Introduction to General Astronomy: Stars and the Universe. (4) III.
Lecture—4 hours. Introduction to stellar motions, magnitudes and distances; distribution of stars in space; the sun; the galaxy. Not intended for advanced physical science majors. (Courses 1A and 1B may be taken in either order.)

Mrs. Leonard

Physics

Lower Division Courses

2A. General Physics Lecture. (3) I, II, III.
Lecture—3 hours. Mechanics; introduction to electricity and magnetism.
I. Mr. Erickson, Mr. Peek, III. Mr. Patten

2B. General Physics Lecture. (3) II, III.
Lecture—3 hours. Prerequisite: course 2A. Electricity and magnetism, heat, kinetic theory, and thermodynamics.
II. Mr. Erickson, Mr. Patten, III. Mr. Peek

2C. General Physics Lecture. (3) I, III.
Lecture—3 hours. Prerequisite: course 2A. Wave motion, optics, modern physics.
I. Mr. Pellett, III. Mr. Erickson

3A. General Physics Laboratory. (1) I, II, III.
Laboratory—3 hours. Prerequisite: course 2A (may be taken concurrently). Mechanics, introduction to electricity and magnetism. Experimental work planned to accompany the lectures in course 2A. Recommended for all students who elect course 2A.
I. Mr. Erickson, Mr. Peek, III. Mr. Patten

3B. General Physics Laboratory. (1) II, III.
Laboratory—3 hours. Prerequisite: course 2B (may be taken concurrently). Electricity and magnetism, heat, kinetic theory, and thermodynamics. Experimental work planned to accompany the lectures in course 2B. Recommended for all students who elect course 2B.
II. Mr. Erickson, Mr. Patten, III. Mr. Peek

3C. General Physics Laboratory. (1) I, III.
Laboratory—3 hours. Prerequisite: course 2C (may be taken concurrently). Wave motion, optics, modern physics. Experimental work planned to accompany the lectures in course 2C. Recommended for all students who elect course 2C.
I. Mr. Pellett, III. Mr. Erickson

4A. General Physics. (4) II, III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 21B (may be taken concurrently). Mechanics.
II. Mr. Greider, III. Mr. Knox

4B. General Physics. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4A; Mathematics 21C (may be taken concurrently). Properties of many body systems; rigid body motion, hydrodynamics, kinetic theory, thermodynamics and statistical physics.
Mr. Leifson

4C. General Physics. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4A; Mathematics 21C; Mathematics 22A and 22C recommended. Fundamentals of electromagnetic theory; Maxwell's equations.
Mr. Greider

4D. General Physics. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4C; Mathematics 22B recommended. Application of electromagnetic; A.C. circuitry, electromagnetic waves, optics, electric and magnetic fields in matter.
Mr. McCollm

4E. General Physics. (4) I, III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4D; Mathematics 22A recommended. Physics since 1900: special relativity, quantum mechanics and particle physics.
Mr. Reid

10. Basic Concepts of Physics. (4) I, III.
Lecture—3 hours; discussion—1 hour. Prerequisite: high school algebra. Survey of the basic principles of physics and how they have evolved since the time of Copernicus. Includes lecture-demonstrations and problem solving using elementary algebra.
I. Mr. Greider, III. Mr. Knox

11. The Relevance of Physics. (4) III.
Lecture—2 hours; discussion—2 hours. Prerequisite: consent of instructor. The mutual relations between physics and other disciplines in the humanities, natural sciences, social sciences and technology.
Mr. Greider

Upper Division Courses

104A–104B. Introduction to Methods of Mathematical Physics. (3–3) I–II.
Lecture—3 hours. Prerequisite: course 4C; Mathematics 22C. Elements of vector and tensor
(3–3–3) I–II–III.
Lecture—3 hours. Prerequisite: course 4A; Mathematics 22C. Principles and applications of
Newtonian mechanics. Mr. Patten

107. Introduction to Electronics. (3) I.
Lecture—3 hours. Prerequisite: course 2B and calculus. Elementary principles of single-phase alternating-current circuits, characteristics of thermionic tubes and a study of simple electronic circuits. Not primarily intended for physics majors. Mr. Cahill

108. Physical Optics. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4E; Mathematics 22C. The phenomena of diffraction, interference, and polarization of light, and their applications. Mr. Fong

110A–110B–110C. Electricity and Magnetism.
(3–3–3) I–II–III.
Lecture—3 hours. Prerequisite: course 4D; Mathematics 22C. Theory of electrostatics, electromagnetism, Maxwell’s equations, electromagnetic waves. I. Mr. Reid, II. Mr. Yager, III. Mr. Yager

112A–112B. Thermodynamics and Statistical Physics. (3–3) I–II.
Lecture—3 hours. Prerequisite: course 4; Mathematics 22C. Thermodynamics, kinetic theory, and introduction to statistical mechanics. Mr. Knox

115A–115B. Introduction to Quantum Mechanics.
(3–3) III, I.
Lecture—3 hours. Prerequisite: courses 4E, 104B, 105B. The classical background, basic ideas, and methods of quantum mechanics, with applications to atomic physics. Mr. Yager

116A. Electronic Instrumentation. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4D; Mathematics 22C. Recommended: course 104B, partial differential equations and Laplace transforms. An experimental and theoretical study of important electronic circuits commonly used in physics. Mr. Cahill

116B. Electronic Instrumentation. (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 116A. Continuation of course 116A with special emphasis on recent developments in semiconductor circuitry. Mr. Cahill

121. Foundations of Atomic and Molecular Physics. (3) III.
Lecture—3 hours. Prerequisite: course 4E; Mathematics 21C. The phenomena of atomic physics; introduction to quantum phenomena and quantum mechanics; selected topics dealing with atoms, molecules, nuclei, and the solid state. Mr. McColm

122. Advanced Physics Laboratory. (1–2) II, III.
Laboratory—3–6 hours. Prerequisite: course 4. Experimental techniques and measurements in atomic, nuclear, and solid-state physics. May be repeated for credit not to exceed a total of 4 units. II. Mr. Pellett, III. Mr. Brady

129A. Nuclear Physics. (3) II.
Lecture—3 hours. Prerequisite: course 4E; Mathematics 22C. Survey of basic nuclear properties and concepts requiring only rudimentary knowledge of quantum mechanics. Mr. Brady

129B. Nuclear Physics. (3) III.
Lecture—3 hours. Prerequisite: courses 115B, 129A. Continuation of course 129A. Mr. Brady

140A. Introduction to Solid State Physics. (3) II.
Lecture—3 hours. Prerequisite: course 115A. A survey of basic concepts and classification of experimental phenomena in solids. Introduction to band theory. Mr. Fong, Mr. Leifson

140B. Introduction to Solid State Physics. (2) III.
Lecture—2 hours. Prerequisite: course 140A. A thorough treatment of one or more of the following: energy bands and fermi surfaces, transport phenomena, cooperative phenomena, magnetic resonance. Mr. Fong, Mr. Leifson

150. Topics in Current Physics Research. (1)
I, II, III.
Discussion—1 hour. Prerequisite: consent of instructor. Discussion of topics of current interest in physics. May be taken for credit not more than four times. The Staff

194H. Special Study for Honors Students.
(4) I, II, III.
Prerequisite: open only to seniors who qualify for the honors program. Independent research and/or reading on selected topics. The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Chairman in charge)

Graduate Courses

205A–205B. Theoretical Mechanics. (3–3) I, II.
Lecture—3 hours. Prerequisite: course 105C. I. The generalized methods of Lagrange and Hamilton. II. Hamilton and Jacobi theory; the formulation of quantum mechanics. Mr. Pellett
210A. Theory of Electricity and Magnetism. (3) III.
Lecture—3 hours. Prerequisite: course 110C; a course in differential equations. Classical description of static electromagnetic fields with emphasis on boundary value problems.
Mr. Fong

210B. Theory of Electricity and Magnetism. (3) I.
Lecture—3 hours. Prerequisite: course 210A. Maxwell's equations, conservation laws, plane waves.
Mr. Jungerman

210C. Theory of Electricity and Magnetism. (3) II.
Lecture—3 hours. Prerequisite: course 210B. Special theory of relativity, covariant formulation of electromagnetic theory, radiating systems, and electron theory.
Mr. Garrod

215A. Quantum Mechanics. (3) I.
Lecture—3 hours. Prerequisite: course 115B. Non-relativistic quantum mechanics. Formal development and interpretation of quantum mechanics, including the Schrödinger wave equation, matrix mechanics, and use of state vectors in describing a dynamical system.
Mr. True

215B. Quantum Mechanics. (3) II.
Lecture—3 hours. Prerequisite: course 215A. Wave packets, Wentzel-Kramers-Brillouin approximation, and perturbation methods applied to atomic, nuclear, molecular, and solid-state problems.
Mr. True

215C. Quantum Mechanics. (3) III.
Lecture—3 hours. Prerequisite: course 215B. Scattering theory, radiation theory, and a brief introduction to relativistic quantum mechanics and the Dirac equation.
Mr. True

219A. Statistical Mechanics. (3) I.
Lecture—3 hours. Prerequisite: courses 112B and 115B. Foundations of classical and quantum statistical mechanics.
Mr. Hurley

219B. Statistical Mechanics. (3) II.
Lecture—3 hours. Prerequisite: course 219A. Applications to properties of solids, real gases, nuclear matter, fluctuations about the equilibrium state.
Mr. Hurley

221A–221B–221C. Atomic Physics. (3–3–3) I–II–III.
Lecture—3 hours. Prerequisite: course 215C. Term structure of atoms using the angular momentum formalism; methods of computing wave functions and radial integrals; splitting in external fields; term structure in crystals; scattering and collisions.
I. Mr. Leifson, II. Mr. McCollom, III. ———

224A. Nuclear Physics. (3) I.
Lecture—3 hours. Prerequisite: course 215B. Comprehensive study of the nucleon-nucleon interaction including the deuteron, nucleon-nucleon scattering, polarization, determination of real parameters of S-matrix, and related topics.
Mr. Draper

224B. Nuclear Physics. (3) II.
Lecture—3 hours. Prerequisite: course 224A. Study of nuclear models, including shell model, collective model, unified model. Energy level spectra, static momenta, and electromagnetic transition rates.
Mr. Draper

224C. Nuclear Physics. (3) III.
Lecture—3 hours. Prerequisite: course 224B. Study of nuclear scattering and reactions including the optical model and direct interactions. Beta decay and an introduction to weak interactions.
Mr. Draper

229A. Advanced Nuclear Theory. (3) I.
Lecture—3 hours. Prerequisite: course 224C. Advanced topics in nuclear theory; theory of quantum-mechanical scattering processes. Exact formal theory and models for two-body scattering.
Mr. Greider

229B. Advanced Nuclear Theory. (3) II.
Lecture—3 hours. Prerequisite: course 229A. Advanced topics in nuclear theory; theory of quantum-mechanical scattering processes. Exact formal theory and models for three-body scattering.
Mr. Greider

230A. Quantum Theory of Fields. (3) I.
Lecture—3 hours. Prerequisite: course 215C. Relativistic quantum mechanics of particles; techniques and applications of second quantization; Feynman diagrams; renormalization.
Mr. Erickson

230B. Quantum Theory of Fields. (3) II.
Lecture—3 hours. Prerequisite: course 230A. Continuation of 230B, with selected advanced topics, such as S-matrix theory, dispersion relations, axiomatic formulations.
Mr. Erickson

239A. Quantum Many-Body Systems. (3) III.
Lecture—3 hours. Prerequisite: courses 215C and 219B. The quantum theory of many-particle systems. Theoretical analysis of superfluids, superconductors, and nuclear matter.
Mr. Garrod

239B. Quantum Many-Body Systems. (3) I.
Lecture—3 hours. Prerequisite: course 239A. Perturbation and variation techniques in many-particle systems. Band theory of solids, electron-phonon interactions, and other topics.
Mr. Garrod

Mr. Garrod

242A. Plasma Physics. (3) III.
Lecture—3 hours. Prerequisite: course 210C;
course 219B recommended. Motion of charged particles in electromagnetic fields, macroscopic equations, and plasma oscillations. Offered in odd-numbered years. Mr. Hurley

242B. Plasma Physics. (3) I.
Lecture—3 hours. Prerequisite: course 242A. Boundary layer problems, diffusion and stability. Offered in odd-numbered years. Mr. Hurley

245A-245B. High Energy Physics. (3-3) I–II.
Lecture—3 hours. Prerequisite: course 215A. Systematics of elementary particle interactions; determination of quantum numbers; interpretation of experiments; selected special topics in second quarter. Mr. Lander

PHYSIOLOGICAL SCIENCES

Arthur L. Black, Ph.D., Chairman of the Department
Department Office, 2163 Haring Hall

Professors:
- Arthur L. Black, Ph.D.
- Leo K. Bustad, D.V.M., Ph.D.
- Richard A. Freedland, Ph.D.
- Stuart A. Peoples, M.D.
- Robert E. Smith, Ph.D.

Associate Professors:
- Victor W. Burns, Ph.D.
- Alfred A. Heusner, Ph.D.
- Harold R. Parker, D.V.M., Ph.D.
- Quinton R. Rogers, Ph.D.

Assistant Professors:
- Gaylord M. Conzelman, Jr., Ph.D.
- Donald L. Curry, Ph.D.
- Shri N. Giri, Ph.D.
- Mary F. Guest, Ph.D.
- Robert J. Hansen, Ph.D.

Associate Professor:
- Richard L. Bell, Ph.D. (Chemical Engineering)

Lecturers:
- Allen C. Andersen, V.M.D., Ph.D.
- Rocco J. Della Rosa, Ph.D.
- Marvin Goldman, Ph.D.
- Sally Huff, Ph.D.

Upper Division Courses

101A–101B. Physiological Chemistry. (4–3) I, II.
Lecture—4–3 hours. Prerequisite: quantitative and organic chemistry. Recommended: a course in physiology (may be taken concurrently). Chemical and physical properties of substances comprising the animal body, with major emphasis on the changes during metabolism and factors influencing these reactions. Biochemistry of the endocrine glands and other specialized tissues and body fluids; energy metabolism and nutrition.

Messrs. Black, Freedland

102A–102B. Physiological Chemistry Laboratory. (1–2) I–II.
Laboratory—3 hours. Prerequisite: course 101A–101B (should be taken concurrently). Laboratory practice to illustrate the chemical and physical properties of important constituents of animal cells including enzymes; blood and urine analysis; animal experiments on intermediary metabolism using isotopes.

Sec. 1: Mr. Rogers, Sec. 2: Mr. Hansen

123. Comparative Pharmacology. (5) III.
Lecture—4 hours; laboratory—3 hours. Prerequisite: regular standing in the School of Veterinary Medicine or consent of instructor. The action of drugs on the physiological mechanisms of domestic animals.

Messrs. Peoples, Giri, Conzelman

124. Comparative Pharmacology. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 123 or consent of instructor. The effect of drugs on organ systems of domestic animals and their application to the treatment of disease. Laboratory exercises to illustrate the principles of therapeutics and toxicology.

Messrs. Peoples, Giri, Conzelman

140A. Mammalian Physiology. (5) II.
Lecture—5 hours. Prerequisite: good standing in the School of Veterinary Medicine or consent of instructor, based upon evidence of adequate preparation in mathematics and the physical and biological disciplines. A general
survey of comparative mammalian physiology with emphasis on systemic mechanisms.

Mr. Heusner, Mr. Bustad, Mr. Curry, Miss Guest, Mr. Parker

140B. Mammalian Physiology (5) III.

Lecture—5 hours. Prerequisite: course 140A and good standing in the School of Veterinary Medicine or consent of instructor, based upon evidence of adequate preparation in mathematics and the physical and biological disciplines. A general survey of comparative mammalian physiology with emphasis on systemic mechanisms.

Mr. Heusner, Mr. Bustad, Mr. Curry, Miss Guest, Mr. Parker

141A–141B. Laboratory in Mammalian Physiology.

(1–2) II–III.

Laboratory—3–6 hours. Prerequisite: courses 140A–140B (may be taken concurrently). Non-veterinary students must obtain consent of instructor. Laboratory exercises designed to illustrate physiological interactions among systems in different animal species.

Mr. Parker

199. Special Study for Advanced Undergraduates.

(1–5) I, II, III.

The Staff (Chairman in charge)

Graduate Courses

200. Cell Physiology: Biophysical Aspects. (2) III.

Lecture—2 hours. Prerequisite: consent of instructor. Recommended: Physiology 100B or Bacteriology 130; Biochemistry 101B and Chemistry 109 or 110. Discussion of modern approaches to understanding the cell as an organized system. Topics include: analysis of regulation and coordination in the cell; energetic and statistical relations in the cell; tracer kinetics applied to cells; fluorescence of cells and constituents. Offered in even-numbered years.

Mr. Burns

205A. Intermediary Metabolism of Animals. (3) I.

Lecture—3 hours. Prerequisite: biochemistry and physiology or consent of instructor. General considerations in use of biochemical data as related to metabolism of intact animals. Pathways and control in biosynthesis and degradation of carbohydrates and lipids; including hormonal, nutritional, and genetic effects. Dynamics of animal metabolism including pools and turnover rates.

Mr. Black, Mr. Hansen

205B. Intermediary Metabolism of Animals. (3) II.

Lecture—3 hours. Prerequisite: 205A or consent of instructor. Pathways and control in animals of the biosynthesis and degradation of amino acids, proteins, nucleotides and porphyrins; including hormonal, nutritional, and genetic effects.

Mr. Freedland, Mr. Rogers

225. Fundamentals of Radiation Biology. (5) I.

Lecture—5 hours. Prerequisite: one year of physics, introductory biochemistry, introductory physiology. Recommended: first course in analytical geometry and calculus. Course emphasizes mechanisms and effects of ionizing radiation at atomic, molecular, cellular, tissue, and organism levels. Subjects covered also include cytogeneration, immune response, aging, carcinogenesis, radiobiology, space radiation, effects of fallout, radiation protection, radiation therapy, and effects of non-ionizing radiation.

Mr. Bustad, Mr. Goldman

243A–243B. Use of Isotopes as Tracers in Biological Research. (2–3) I–II.

Lecture—2 hours. Prerequisite: biochemistry or physiological chemistry, elementary physics and calculus or consent of instructor. Discussion of the properties of isotopes and their use as tracers in biological systems.

Mr. Burns

243L. Laboratory in Use of Isotopes as Tracers in Biological Research. (2) II.

Laboratory—6 hours. Prerequisite: courses 243A and 243B. Study of radioisotope properties, uses, measurement methods relevant to the biological sciences.

Mr. Burns

253. Drug Metabolism. (2) II.

Lecture—2 hours. Prerequisite: courses 101A–101B, 140A, 140B or Physiology 110A–110B; consent of instructor. General pathways of drug metabolism; and factors influencing the drug metabolism. Emphasis will be laid upon the species, age, and genetic differences affecting the biological disposition of the drugs. Offered in even-numbered years.

Mr. Giri

255. Pharmacogenetics. (2) II.

Lecture—1 hour; laboratory—3 hours. Prerequisite: consent of instructors. The genetic basis of interspecific and intraspecific differences in animals to the action of drugs. The laboratory exercises are designed to illustrate these differences and their biological basis.

Mr. Peoples, Mr. Stormont

265. Experimental Physiology. (3) I.

Lecture—1 hour; laboratory—6 hours. Prerequisite: consent of instructor. Selected lectures and experiments on cardiovascular, renal and pulmonary mechanisms with emphasis on chronically maintained preparations and perinatal problems. Offered in odd-numbered years.

Mr. Parker

290. Seminar. (1) I, II, III.

Seminar—1 hour.

The Staff (Chairman in charge)

298. Group Study. (1–4) I, II, III.

The Staff (Chairman in charge)

The Staff (Chairman in charge)

* Not to be given, 1970–71.
PHYSIOLOGY—See Animal Sciences, and Zoology

The Department of Animal Physiology offers two undergraduate majors in Physiology: Bachelor of Science, College of Letters and Science, and Bachelor of Science, College of Agricultural and Environmental Sciences. These majors are designed to provide a broad background in the biological, mathematical and physical sciences, and are suitable for students who plan to do graduate work in a biological science or who wish to pursue a professional career in physiology.

Major Adviser.—Mr. Boda

The Major Program (College of Agricultural and Environmental Sciences). See page 86.

The Major Program (Letters and Science)

Lower Division Courses.—Required: Biology 1; Chemistry 1A–1B–1C, 5, and 8A–8B, or Chemistry 1A, 7A–7B, and 8A–8B; Mathematics 13 and one year of calculus; Physics 2A–2B–2C, and 3B or 4A and two of the following: 4B, 4C, 4D, 4E; Zoology 2.

Upper Division Courses.—Required: Biochemistry 101A–101B or Physiological Sciences 101A–101B; Biochemistry 101L or Animal Biochemistry 102; Physiology 100A–100B, 100L, 110A–110B, 111A–111B; 16 additional units of Physiology or closely related courses; 14 additional units of biological science courses other than physiology and including one of the following: Anatomy 100, Zoology 100, 106A or 107. Recommended: Chemistry 109A–109B, Genetics 100A–100B or 115, Nutrition 110.

In addition to the courses listed above, the student must also complete those courses satisfying the College and University requirements summarized on page 61.

PLANT NUTRITION—See Resource Sciences and Plant Sciences

PLANT PATHOLOGY—See Plant Sciences

PLANT PROTECTION—For major requirements, see page 87.

PLANT SCIENCES

Participating Departments:

AGRONOMY AND RANGE SCIENCE

----------, Chairman of the Department
Department Office, 131 Hunt Hall

Professors:
Fredrick T. Addicott, Ph.D.
Robert W. Allard, Ph.D.
John P. Conrad, Ph.D. (Emeritus)
Paulden F. Knowles, Ph.D.
Horton M. Laude, Ph.D.
Robert S. Loomis, Ph.D.
R. Merton Love, Ph.D.
Ben A. Madson, B.S.A., LL.D. (Emeritus)
Duane S. Mikkelsen, Ph.D.
Maurice L. Peterson, Ph.D.
Charles W. Schaller, Ph.D.
Francis L. Smith, Ph.D. (Emeritus)
Ernest H. Stanford, Ph.D.
William A. Williams, Ph.D.
Frederick P. Zscheile, Jr., Ph.D.

Associate Professors:
Ray C. Huffaker, Ph.D.
Calvin O. Qualet, Ph.D.

Assistant Professor:
Charles A. Raguse, Ph.D.

Lecturers:
R. William Breidenbach, Ph.D.
Beeccher Crampton, M.A.
Subhod K. Jain, Ph.D.
Milton B. Jones, Ph.D.
Donald W. Rains, Ph.D.
Donald E. Seaman, Ph.D.
Barbara D. Webster, Ph.D.

ENVIRONMENTAL HORTICULTURE

Harry C. Kohl, Jr., Ph.D., Chairman of the Department
Department Office, 140 Environmental Horticulture

Professors:
*Richard W. Harris, Ph.D.

Anton M. Kofranek, Ph.D.
Harry C. Kohl, Jr., Ph.D
Roy M. Sachs, Ph.D.
PLANT PATHOLOGY
Raymond G. Grogan, Ph.D., Chairman of the Department
Department Office, 334 Hutchison Hall

Professors:
Edward E. Butler, Ph.D.
James E. DeVay, Ph.D.
W. Harley English, Ph.D.
Raymond G. Grogan, Ph.D.
William B. Hewitt, Ph.D.
Byron R. Houston, Ph.D.
Lysle D. Leach, Ph.D. (Emeritus)
George Nyland, Ph.D.
Joseph M. Ogawa, Ph.D.
Edward E. Wilson, Ph.D. (Emeritus)

Assistant Professors:
James A. Harding, Ph.D.
Jack L. Paul, Ph.D.

Lecturers:
Larry J. Carducci, M.L.A.
William B. Davis, M.S.

POMOLOGY
Dillon S. Brown, Ph.D., Chairman of the Department
Department Office, 1043 Wickson Hall

Professors:
Frank W. Allen, M.S. (Emeritus)
Royce S. Brinshurst, Ph.D.
Dillon S. Brown, Ph.D.
Lawrence L. Claypool, Ph.D.
Julian C. Crane, Ph.D.
Luther D. Davis, Ph.D., LL.D. (Emeritus)
William H. Griggs, Ph.D.
Carl J. Hansen, M.S. (Emeritus)
Hudson T. Hartmann, Ph.D.
Claron O. Hesse, Ph.D.
Dale E. Kester, Ph.D.
Edward C. Maxie, Ph.D.
E. Louis Proebsting, Ph.D. (Emeritus)

Associate Professor:
Paul E. Hansche, Ph.D.

Lecturers:
Muriel V. Bradley, Ph.D.
Patrick J. Breen, Ph.D.
Robert M. Carlson, Ph.D.
Peter B. Catlin, Ph.D.
Omund Lilleland, Ph.D. (Emeritus)
George C. Martin, Ph.D.
Roger J. Romani, Ph.D.
Kay Ryugo, Ph.D.
Noel F. Sommer, Ph.D.
Kiyoto Uriu, Ph.D.

VEGETABLE CROPS
—, Ph.D., Chairman of the Department
Department Office, 150 Hunt Hall

Professors:
William J. Flocker, Ph.D.
James F. Harrington, Ph.D.
James E. Knott, Ph.D., Sc.D., (hon.c.) (Emeritus)
Oscar A. Lorenz, Ph.D.
John H. MacGillivray, Ph.D. (Emeritus)
Leonard L. Morris, Ph.D.

Associate Professor:
Arthur R. Spurr, Ph.D.

Lecturers:
Frederick D. Howard, Ph.D.
Kenneth N. Paulsen, Ph.D.
Masatoshi Yamaguchi, Ph.D.
Shang Fa Yang, Ph.D.
VITICULTURE AND ENOLOGY
Harold W. Berg, M.S., Chairman of the Department
Department Office, 1023 Wickson Hall

Professors:
Maynard A. Amerine, Ph.D.
Harold W. Berg, M.S.
James A. Cook, Ph.D.
James F. Guymon, Ph.D.
Klayton E. Nelson, Ph.D.
Harold P. Olmo, Ph.D.
Vernon L. Singleton, Ph.D.
Robert J. Weaver, Ph.D.
A. Dinmoor Webb, Ph.D.
Albert J. Winkler, Ph.D., LL.D. (Emeritus)

Associate Professors:
1 Ralph E. Kunke, Ph.D.
Lloyd A. Lider, Ph.D.

Professor:
Frederick T. Addicotth, Ph.D. (Agriculture and Range Science)

Lecturers:
W. Mark Kliwer, Ph.D.
Cornellius S. Ough, B.S.

Major Advisers.—See Schedule and Directory Listing.

Bachelor of Science Major Program and Graduate Study. See pages 58 and 151.

Plant Science

Lower Division Courses

1. Plants and Man. (3) I, II.
Lecture—3 hours. Plants as a basic resource for food, fiber, shelter, and recreation; their use and effect on man, past, present, and future.
Mr. Howard

2. Production of Cultivated Plants. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 1. Principles of crop improvement, propagation, production, processing, storage, and marketing; conservation and utilization of land and water resources.
Mr. Flocker, Mr. Lider

12. Production of Cultivated Plants. (4) I, III.
Lecture—1 hour; discussion—1/2 hour; laboratory—3 hours; visual-audio-self-tutorial laboratory—2½ hours. Principles of plant production, improvement, propagation, harvesting, preserving, processing, and marketing. This course will proceed by the video-audio-self-tutorial method, with students making use of the learning facilities at their own convenience. Mr. Flocker

The Staff (Chairman in charge)

Upper Division Courses

101. Ecology of Cultivated Plants. (3) II.
Lecture—3 hours. Prerequisite: course 2 or consent of instructor. Plant population dynamics in cultivated ecosystems; the response of plant communities to light, temperature, soil, water, and air-pollution. Mr. Loomis, Mr. Kohl

101D. Ecology of Cultivated Plants Discussion. (1) II.
Discussion—1 hour. Prerequisite: course 101 (must be taken concurrently). Discussion of the subject matter of course 101.
Mr. Loomis, Mr. Kohl

102. Physiology of Cultivated Plants. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. The plant as a dynamic unit; physiological processes in the vegetative growth, development, flowering and fruiting of cultivated plants.
Mr. Sachs, Mr. Rappaport

109. Principles of Plant Propagation. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Botany 2; consent of instructor. Principles of propagating horticultural plants with emphasis on anatomical and physiological relationships.
Mr. Hartmann

112. Postharvest Physiology and Handling of Horticultural Commodities. (3) I.
Lecture—3 hours. Prerequisite: Botany 111 or consent of instructor. Course 112L is recommended to be taken concurrently. Physiological processes related to the maturation and senescence of fruits and vegetables; fundamentals involved in handling, transportation, storage, and marketing practices, e.g., temperature and humidity control, protective treatments, controlled atmospheres.
Messrs. Claypool, Morriss, Nelson

112L. Postharvest Physiology and Handling Laboratory. (2) I.
Discussion—1 hour; laboratory—3 hours. Prerequisite: course 112 (may be taken concurrently). Demonstrations and exercises following the subject matter of course 112. One or more field trips to observe commercial practices.
Messrs. Claypool, Morriss, Nelson

113. Plant Breeding. (3) II.
Lecture—3 hours. Prerequisite: Genetics 100B. The principles of plant breeding.
Mr. Knowles, Mr. Hansche

1 Absent on leave, 1970–71.
Lecture—3 hours; laboratory—6 hours. Prerequisite: Botany 111; Chemistry 5. Evolution and scope of plant nutrition; essential and other elements; mechanisms of absorption and translocation; mineral metabolism; deficiencies and toxicities; genetic and ecological aspects of plant nutrition; relation to animal nutrition; experimental techniques, including solution culture and radioactive tracing.
Mr. Epstein

120. Introduction to Weed Science. (2) II.
Lecture—2 hours. Prerequisite: Botany 2; Chemistry 8B. A general course covering the principles underlying the control of weeds.
Mr. Ashton

Agronomy and Range Science

Lower Division Course

2. Forage Crops. (3) III.
Lecture—2 hours; laboratory—3 hours. Adaptation, establishment, management, and utilization of forage plants as irrigated pasture, range, hay, and silage; aspects of forage quality which affect feeding value to livestock. Field trips will be arranged to observe developments in irrigated pasture management and range improvement.
Mr. Jones, Mr. Love

Upper Division Courses

160. Science and Technology of Field Crop Production. (3) I.
Lecture—3 hours. Prerequisite: six units of plant science, botany, and/or biology, or consent of instructor. The use of science, technology and agricultural organizations to solve agronomic problems and advance the economic development of agriculture.
Mr. Peterson

111. Cereal Crops of the World. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: 6 units of plant science, botany, and/or biology, or consent of instructor. Contribution of cereal crops to man's development; adaptation, production, utilization, and factors determining quality of wheat, oats, barley, rice, corn, and sorghum. Emphasis is on recent developments and scientific improvements.
Mr. Schaller

112. Forage Crop Ecology. (3) III.
Lecture—3 hours. Prerequisite: Botany 2 or consent of instructor. Forages as a world resource in food production. Ecological principles governing the adaptation, establishment, growth and management of perennial and annual forages, including pastures, rangelands and hay; aspects of forage quality which affect feeding value to livestock.
Mr. Raguse

112L. Forage Crops Ecology Laboratory. (1) III.
Laboratory—3 hours. Prerequisite: course

112. Laboratory work in forage crop ecology to supplement course 112.
Mr. Raguse

Lecture—3 hours; laboratory—3 hours. Prerequisite: 6 units of plant science, botany and/or biology, or consent of instructor. Industrial crops as world resources of food, feed, fiber, and consumer goods. The relationship of crops to their physical and biotic environment, technological changes, socioeconomic and political forces that shape crop production, and utilization practices.
Mr. Mikkelsen

194H. Special Study for Honors Students.
(1–5) I, II, III.
Prerequisite: open only to majors who are honors students of senior standing. Independent study, research and/or reading on selected topics under the direction of a member of the staff. Completion will involve the writing of a senior thesis.
The Staff (Chairman in charge)

Prerequisite: consent of instructor.
The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
Prerequisite: 6 upper division units of agronomy.
The Staff (Chairman in charge)

Graduate Courses

205. Design, Analysis, and Interpretation of Experiments. (3) I.
Lecture—2 hours; discussion—3 hours. Prerequisite: Mathematics 105A. The planning and analysis of field and laboratory experiments with emphasis on the biological interpretation of results.
Mr. Qualset

206. Chemical and Physical Methods in Biological Research. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Chemistry 5 and 9. Advanced laboratory techniques and instrumental methods of analytical chemistry in biological research. Includes an introduction to laboratory research methods, preparation of samples, principles and operation of research instruments, and laboratory practice in methods of plant analysis.
Mr. Zechele, Mr. Huffaker

221. Advanced Plant Breeding. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Plant Science 113. Advanced topics in plant breeding. Genetic diversity and centers of origin of cultivated plants, mating systems in plants, polyploidy, host-pathogen relationships, role of mutagens in plant breeding, and other topics of current interest.
Mr. Stanford
222. Quantitative Genetics and Plant Improvement.
(4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Plant Science 113; Genetics 105; or consent of instructor. The genetic forces affecting populations. Formulation of breeding plans based on principles of population and quantitative genetics. Offered in even-numbered years.
Mr. Allard

230. Advanced Population Biology. (3) II.
Lecture—2 hours; discussion—1 hour. Prerequisite: Genetics 103; recommended—a basic course in ecology (Botany 117, Zoology 125, etc.). The dynamics of growth and evolution of populations. Genetic and ecological aspects of population regulation and integration. Natural selection within and among populations. Intra- and interspecific competition. Community structure and diversity.
Mr. Jain

231. Advanced Topics in the Ecology of Crop Plant Communities. (3) II.
Lecture—3 hours. Prerequisite: Plant Science 101 or consent of instructor. Analytical models and quantitative description of the structure and dynamics of field crop communities in relation to interplant competition, population functions and environmental adaptation.
Mr. Laude

232. Advanced Topics in the Physiology of Crop Plants. (3) I.
Lecture—3 hours. Prerequisite: Plant Science 102 or consent of instructor. Physiological aspects of vegetative and reproductive growth of field crop plants in relation to their field behavior.
Mr. Huffaker

290. Seminar. (1) I, II, III.
Seminar—1 hour.
The Staff (Chairman in charge)

298. Group Study. (1—3) I, II, III.
Directed study in the areas of plant physiology, plant genetics, plant biochemistry, agricultural chemistry, or soil-plant relationships of field crops or range and pasture plants.
The Staff (Chairman in charge)

299. Research. (1—9) I, II, III.
Original research involving plant physiology, plant genetics, plant biochemistry, agricultural chemistry, or soil-plant relationships of field crops or range and pasture plants.
The Staff (Chairman in charge)

Environmental Horticulture

Lower Division Courses

1. Introduction to Landscape Design. (3) II.
Lecture—3 hours. Recommended for non-majors. Design principles and criteria used in analyzing, evaluating, and developing the visual and functional aspects of landscaped areas.
Mr. Carducci

11. Introduction to Landscape Design Laboratory.
(2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: courses 1 (may be taken concurrently); recommended for non-majors. Practice in analysis and design with reference to landscape problems.
Mr. Carducci

5. Introduction to Environmental Plants. (2) I, III.
Lecture—1 hour; laboratory—3 hours. Recommended for non-majors. The course introduces plants commonly used in the landscape. The origin, domestication and breeding of cultivated plants is discussed. Students learn to identify the more important environmental plants of California.
Mr. Harding

10. Landscape Horticulture for the Home and Community. (3) III.
Lecture—2 hours; discussion—1 hour. Recommended for non-majors. The influences of climate, soil, and cultural practices on the growing of turf, flowers, and herbaceous and woody plants in the landscape.
Mr. Kofranek, Mr. Hackett

47. Introduction to Environmental Horticulture.
(1) III. §§
Field Study—30 hours. Prerequisite: consent of Instructor. An introduction to environmental horticulture including parks and recreation; landscape architecture; urban and resource planning; landscape construction and contracting; nursery production; commercial floriculture; arboretum; sales and services; teaching, research and extension. Offered in odd-numbered years.
Mr. Harris

Upper Division Courses

104. Landscape Construction. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 1, II; Engineering 1 recommended. Analysis of the physical, mechanical, functional and aesthetic properties of materials used in landscape development with emphasis on construction techniques, methods and specifications.
Mr. Madison

105. Taxonomy and Ecology of Environmental Plants.
(4) II.
Lecture—2 hours; laboratory—6 hours; field trips. Prerequisite: course 5 or one course in taxonomy. Taxonomy of the important plants used in the western landscape. Emphasis will be placed on the identification, nomenclature, characteristics and uses of woody plants in man's environment.
Mr. Leiser

107. Herbaceous Environmental Plants. (3) III.
Lecture—2 hours; laboratory—3 hours. Pre-

§§ To be given between the winter and spring quarters. Considered a spring quarter course for preenrollment.
require: course 5 or one course in taxonomy. The identification, ecology, and use of herbaceous environmental plants, with emphasis on floriculture and foliage plants, garden animals, and perennials. Mr. Madison

115. Advanced Taxonomy and Ecology of Environmental Plants. (4) III.
Lecture—2 hours; laboratory—6 hours; field trips. Prerequisite: course 105 or consent of instructor. Identification, nomenclature and classification of plants for man’s environment are studied in relation to extensive variations and ecological modification. Emphasis is placed on the use of plants in western climatic zones. Nomenclatural codes are discussed. Mr. Leiser

125. Floriculture and Nursery Management. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Plant Science 2 or Botany 2. Practices and principles in planning, establishing and maintaining container grown crops with special consideration of green house production. Several field trips during scheduled laboratory hours and one all-day Saturday field trip required. Mr. Hackett, Mr. Kofranek

128A. Landscape Horticulture. (3) I.
Lecture—2 hours; laboratory—2 hours. Prerequisite: Plant Science 2 or Botany 2. Practices and principles of planning, establishing, and maintaining plantings in the landscape with emphasis on turf. Laboratory methods are used to analyze problems related to soil, salinity and water quality. Mr. Madison, Mr. Paul

128B. Landscape Horticulture. (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: Plant Science 2 or Botany 2. Practices and principles of the development and management of plants in urban and natural landscapes with emphasis on trees and shrubs. Mr. Harris

194H. Special Study for Honors Students. (1-5) I, II, III.
Prerequisite: open only to majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis. The Staff (Mr. Kohl in charge)

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: 3 units of upper division work in environmental horticulture; consent of instructor. Selected problems in floriculture, nursery management, and landscape horticulture. The Staff (Mr. Kohl in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
Prerequisite: 3 units of upper division work in environmental horticulture; consent of instructor. The Staff (Mr. Kohl in charge)

* Not to be given, 1970-71.

Graduate Courses

290. Seminar. (1) I, II, III.
Seminar—1 hour. Selected topics in floriculture, nursery management, and environmental horticulture. The Staff (Chairman in charge)

298. Group Study. (1-5) I, II, III.
Group study on advanced topics in floriculture, nursery management, and environmental horticulture. The Staff (Mr. Paul in charge)

299. Research. (1-6) I, II, III.
Prerequisite: graduate standing. Research in floriculture, nursery management, and landscape horticulture. The Staff (Mr. Paul in charge)

Plant Pathology

Upper Division Courses

120. Introduction to Plant Pathology. (4) I, III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Botany 2; Botany 2 recommended. The nature, cause, and control of plant diseases. I. Mr. Campbell, III. Mr. English

125. Diagnosis and Control of Plant Diseases. (4) III.
Lecture—2 hours; laboratory—6 hours; field trips. Prerequisite: course 120. Clinical plant pathology with emphasis on diagnosis, epidemiology, and control of diseases of economic plants. Students may specialize in diseases of fruits, vegetables, field crops, or ornamentals in the laboratory exercises. Mr. Nyland

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Chairman in charge)

Graduate Courses

210A-210B. Physiology and Biochemistry of Plant Pathogens and Diseases. (3-3) I-II.
Lecture—3 hours. Prerequisite: Biochemistry 101B or equivalent. A clinical study of plant diseases with emphasis on etiology, epidemiology, diagnosis, and control. The Staff (Mr. Ogawa in charge)

212. Physiology of Plant Pathogens Laboratory. (4) II.
Lecture—1 hour; discussion—1 hour; laboratory—6 hours. Prerequisite: Biochemistry 101L or equivalent. Advanced laboratory methods and techniques applicable to the study of physiology and biochemistry of plant pathogens and host-parasite relationships. I. Mr. DeVay, II. Mr. Kosuge
215. Genetics of Plant Pathogens. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 120; Genetics 100B; Botany 119B. Study of fundamental concepts, research techniques and current information on the genetics of plant pathogenic microorganisms; origin and determination of physiologic specialization, host resistance and virulence in the pathogen as related to the host-parasite interaction. Special emphasis on the fungi. Mr. Webster

224. Pathogenic Fungi. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Botany 119B. Morphology and taxonomy of plant pathogenic fungi. Mr. Butler

226. Plant Virology. (5) II.
Lecture—2 hours; laboratory—9 hours. Prerequisite: consent of instructor. Viruses as causal agents of plant diseases; chemical and physical properties of viruses; methods of transmission; procedures for assay and diagnosis; multiplication of viruses; pathological cytology and anatomy; application of equipment and techniques used in research. Mr. Shalla, Mr. Shepherd

228. Bacterial Plant Diseases. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 120; Bacteriology 2 or equivalent; general biochemistry recommended. Study of plant diseases caused by bacteria. Fundamentals on the mechanisms of disease development and the biology of plant bacteria. Mr. Kado

230. Advanced Plant Virology. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 226; Biochemistry 101B, 101L. Advanced study for research specialists in plant virology with emphasis on the physical-chemical nature of virus components and their role in the biology of viruses. Mr. Shepherd

235A–235B. Advanced Plant Pathology. (4–4) I–II.
Lecture—3 hours; discussion—3 hours. Prerequisite: consent of instructor. A study of the factors influencing pathogenicity and of the reaction of host plants to disease. I. Mr. Webster, II. Mr. Grogan

290. Seminar. (1) I, II, III.
Seminar—1 hour. (Satisfactory/Unsatisfactory grading only.) I. Mr. Shalla, II. Mr. Butler, III. Mr. DeVay

291. Seminar in Host-Parasite Physiology.
(1) I, II, III.
Seminar—1 hour. Prerequisite: course 120. (Satisfactory/Unsatisfactory grading only.) I. Mr. Kado, II. Mr. DeVay, III. Mr. Kosuge

298. Special Group Study. (1–4) I, II, III.
(Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)

(Satisfactory/Unsatisfactory grading only.) The Staff

Pomology

Lower Division Course

3. Citrus and Other Subtropical Fruits. (3) III.
Lecture—3 hours. The production of the subtropical fruits including avocados, dates, olives, and citrus with special emphasis on citrus. A study of the fundamental information relating to orchard management as applied to these fruits. Mr. Bringhamut

Upper Division Courses

100A. Principles of Pomology. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Botany 2. Origin, history, distribution, and adaptation of fruit and nut plants; their structure and function in relation to environment and cultural practices. Mr. Kester

100B. Principles of Pomology. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Botany 2. Development of the vegetative structure of fruit and nut plants; the physiological responses to environment and cultural modification. Mr. Crane

100C. Principles of Pomology. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Botany 2. Flowering and fruiting; the nature and development of buds, flowers, and fruits in relation to the culture of fruit and nut plants and to their environment. Mr. Griggs

Prerequisite: consent of instructor. The Staff (Mr. Brown in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Chairman in charge)

Graduate Courses

201. Biochemistry and Physiology of Fruits. (3) III.
Lecture—3 hours. Prerequisite: Biochemistry 101B; Botany 111; or consent of instructor. Biochemical and physiological phenomena of growth, maturation, ripening, and senescence of fruit. (Open to qualified undergraduates.) Mr. Maxie

210. Fruit Morphology. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Botany 2. The development of flower, fruit, and seed structures of representative fruit types. Miss Bradley

216. Physiology of Fruit Plants. (4) II.
Lecture—4 hours. Prerequisite: courses 100A, 100B, 100C; Botany 111. Physiological processes in the growth and development of
fruit plants; metabolic relationships; influence of environment and culture.

The Staff (Mr. Uriu in charge)

290. Seminar. (1) I, II, III.
Seminar—1 hour.

The Staff (Mr. Catlin in charge)

*291. Seminar in Postharvest Physiology.
(1) I, II, III.
Seminar—1 hour. Prerequisite: consent of instructor. Selected topics in the field of postharvest physiology of fruits and vegetables. Conducted jointly with Vegetable Crops 291.

Mr. Maxie

The Staff (Chairman in charge)

Graduate Courses

100. Principles of Vegetable Crops. (3) I.
Lecture—3 hours. Prerequisite: Plant Science 1 and 2 or consent of instructor. The vegetable industry. Fundamentals of vegetable crop production, handling, processing and utilization. Demonstrations will supplement the lecture.

Mr. Lorenz

101. Major: Vegetable Crops. (4) II.
Lecture—4 hours. Prerequisite: Plant Science 1 and 2 or consent of instructor. Adaptation, growth habits and methods of culture and handling of the principal vegetable crops. The application of experimental evidence to production problems is stressed.

Mr. Smith

105. Systematic Olericulture. (2) I.
Laboratory—6 hours. Prerequisite: Botany 2. Origin, history, types, classification, nomenclature, and adaptation of the more important American vegetable varieties; minor vegetable crops; trends in development of new varieties.

Mr. Smith

118. Seed Physiology and Production. (3) II.
Lecture—3 hours. Prerequisite: Botany 111. Physiological factors affecting induction of seedling, seed development, viability and longevity of seed. Principles of seed production. One or more field trips.

Mr. Harrington

150. Vegetables as World Food Crops. (3) II.
Lecture—3 hours. Prerequisite: upper division standing or consent of instructor. A technical course concerned with historical and current aspects of production and use of vegetables as human food; ecology, economics, geography, human cultural patterns, dietary preferences, nutritional values, and use of microclimates related to commercial and subsistence production.

Mr. Yamaguchi

197. Field Study of Vegetable Industry. (1) III.
Lecture—1 hour; field study—56 hours (given between winter and spring quarters). Prerequisite: consent of instructor; limited to 25 students. A field study illustrating different aspects of California agriculture, including research institutions, farm operations, field stations, extension service, marketing, processors, equipment, etc. (Passed/Not Passed grading only.)

Mr. Flocker

The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Chairman in charge)

*220. Vegetable Genetics and Improvement. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Genetics 100B; course 105 and Plant Science 113 recommended. Breeding systems of vegetable species as affected by self-incompatibility, flower structure, pollen vectors, and other reproductive factors. Problems of chromosome number and structure, heterosty, pest resistance, and species hybrids peculiar to vegetable improvement.

Mr. Rick

*221. Vegetable Physiology. (4) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Botany 111 and consent of instructor. Physiological principles involved in the production of vegetable crop species.

Mr. Pratt, Mr. Rappaport

290. Seminar. (1) I, II, III.
Discussion—1 hour. (Satisfactory/Unsatisfactory grading only.)
The Staff (Mr. Sparr in charge)

291. Seminar in Postharvest Physiology. (1) I, II, III.
Discussion—1 hour. Prerequisite: consent of instructor. An intensive study of selected topics in the field of postharvest physiology of fruits and vegetables. This seminar will be conducted jointly with Pomology 291. (Satisfactory/Unsatisfactory grading only.)
The Staff (Mr. Pratt in charge)

Prerequisite: consent of instructor. Current
concepts, techniques, and procedures applicable to research and to the production of vegetables.

The Staff (Mr. Yamaguchi in charge)

(Satisfactory/Unsatisfactory grading only.)
The Staff (Mr. Lorenz in charge)

Viticulture and Enology†

Lower Division Course

Lecture—3 hours. An introduction to wine technology, including history, fermentation, production practices, wine types, and the wine industry of California and other wine producing areas.
Mr. Singleton, Mr. Amerine

Upper Division Courses

105. Systematic Viticulture Including Fruit Maturation and Handling. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Science 2 or consent of instructor. Botanical classification of the grape—the principal varieties, rootstocks, and species; environmental factors affecting maturity and quality of the fruit for raisins, wine and table grapes; raisin making; costs and returns.
Mr. Nelson, Mr. Lider

116A. General Viticulture. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Science 2 or consent of instructor. Principles underlying pruning, training, grafting, and propagation of vines; environmental and economic factors affecting choice of vineyard type and location; establishment of vineyards.
Mr. Cook

116B. General Viticulture. (3) III.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Course 116A. Economics and scientific principles of recommended vineyard management practices including irrigation, mineral and carbohydrate nutrition, flower development and fruit set, virus and fungal diseases, and insect control.
Mr. Cook

190. Proseminar in Viticulture. (1) I.
Lecture—1 hour. Prerequisite: consent of instructor. Reports and discussions of recent advances in viticulture.
Mr. Olmo

Prerequisite: consent of instructor.
The Staff (Mr. Berg in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Berg in charge)

Graduate Courses

208. Plant Hormones and Regulators. (3) I.
Lecture—3 hours. Prerequisite: Botany 111; Chemistry 8B, or consent of instructor. Open to qualified upper division students. History, occurrence, extraction, measurement, chemical nature, developmental and physiological effects, role, and theories of action of plant hormones and growth regulators; methods of application of growth regulators and factors altering effectiveness; application in control of plant and fruit responses.
Mr. Weaver, Mr. Advocott

208L. Plant Hormones and Regulators Laboratory. (2) I.
Laboratory—6 hours. Prerequisite: course 208 may be taken concurrently) or consent of instructor. Experiments in plant hormones and regulators using various bioassay methods for auxins, gibberellins, and kinins; preparation and testing of gibberellic acid; extraction and identification of naturally occurring plant hormones.
Mr. Weaver

219. Plant Phenolics. (3) III.
Lecture—3 hours. Prerequisite: Biochemistry 101B or equivalent and consent of instructor. Flavonoids and other natural phenolic substances of plants; their chemistry, natural occurrence, biochemistry, relation to animal diets, and relation to properties of foods and other products.
Mr. Singleton

290. Seminar. (1) I, II, III.
Seminar—1 hour. Prerequisite: consent of instructor.
Mr. Webb

(Satisfactory/Unsatisfactory grading only.)
The Staff (Mr. Berg in charge)

The Staff (Chairman in charge)

POLITICAL SCIENCE

Richard W. Gable, Ph.D., Chairman of the Department
Department Office, 227 Voorhis Hall

Professors:

Richard W. Gable, Ph.D.
Charles M. Hardin, Ph.D.

† Additional Viticulture and Enology courses listed under Plant Science, page 274.

Clyde E. Jacobs, Ph.D.
Lloyd D. Musolf, Ph.D.
Vernon J. Furyear, Ph.D. (Emeritus)
Donald S. Rothchild, Ph.D.
P. E. Zinner, Ph.D.
Associate Professors:
Alexander J. Groth, Ph.D.
John R. Owens, Ph.D.
Larry L. Wade, Ph.D.
Marvin Zetterbaum, Ph.D.

Assistant Professors:
Stanley B. Bernstein, Ph.D.
Edmond Costantini, Ph.D.
Kenneth I. Hanf, Ph.D.
Joyce K. Kallgren, Ph.D.
Robert J. Lieber, Ph.D.
Larry P. Peterman, Ph.D.
Alvin D. Sokolow, Ph.D.
William S. Tuohy, Ph.D.
Louis F. Weschler, Ph.D.

Lecturers:
Hyman R. Shevelev, M.A.

Department Major Advisers.—Consult Department Office.

Graduate Adviser.—Mr. Hanf.

The American History and Institutions Requirement may be satisfied by any two of the following courses: 1A, 1B, 100, 102, 103A, 103B, 104, 105, 106, 113, 128A, 128B, 163, 164, 166. See also page 32.

The Major Program

Lower Division Courses.—Required: choose three from courses 1A, 1B, 2, 3, and two from History 4A, 4B, 4C.

Upper Division Courses.—Required: 40 units as follows:
(a) 28 units in Political Science with a minimum of two courses in each of three fields, which must be selected from at least two of the following groups:

Group A
Political Theory (courses 110–119).

Group B
Political Parties (courses 160–169).
Public Law (courses 150–159).
Public Administration (courses 180–189).

Group C
Comparative Government (courses 140–149, 170–179).
International Relations (courses 120–139).

(b) 12 additional units in Political Science or related subjects.
Political Science students must maintain at least a grade C average in the major.

Graduate Study.—The Department offers programs of graduate study leading to the M.A. and Ph.D. degrees. Information concerning admission to these programs and requirements for completion is available in the department office.

Teaching Major.—Requirements for the teaching major are the same as for the departmental major.

Teaching Minor.—Thirty units of political science to be selected in consultation with the subject representative.

Subject Representative: Mr. Sokolow

Lower Division Courses

1A. American Government. (4) I, II.
Lecture—3 hours; discussion—1 hour. National, state and local government in the United States. The Staff

1B. American Government. (4) II, III.
Lecture—2 hours; discussion—2 hours. National, state, and local government in the United States. The Staff

2. Introduction to Comparative Politics. (4) I, II.
Lecture—3 hours; discussion—1 hour. Introduction to various methods of political analysis and their application to the study of politics in selected foreign countries. Psychological and cultural dimensions of the political process as well as more formal structures and institutions of government. The Staff

3. International Relations. (4) I, II.
Lecture—3 hours; discussion—1 hour. Rise and development of the Western State systems; problems of nationalism and imperialism, particularly in connection with the peace settlement following World War II. The Staff

Directed group study for lower division students in research problems in political science. The Staff (Mr. Gable in charge)

Upper Division Courses

100. American National Government. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: not open to students having credit for course 1A or 1B. Presidential leadership; executive-legislative relationships; the development of effective and accountable administration; defense and foreign policy; and government and science. The Staff

102. Comparative State Government and Politics (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: not open to students who have credit in course 104. The comparative study of the government and politics of American states, including their constitutional frameworks, their participation in the federal system, the dynamics of governmental institutions, and the behavior of parties and interest groups. Mr. Sokolow
103A. Local Government and Politics. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1A or consent of instructor. The politics and government of local communities in the United States, including cities, counties, and special districts. The expression and resolution of political conflict in communities, local government structure and functions, municipal reform, and community power structures.
Mr. Sokolow

103B. Local Government and Politics: Urban Problems. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 103A or consent of instructor. The politics and government of urban communities in the United States. Special attention to the problems of metropolitan and regional areas.
Mr. Sokolow

104. California State and Local Government. (3) III.
Lecture-discussion—3 hours. California's constitution, party system, legislature, executive agencies, administration, courts, major public programs and problems; state-local relations; county, city, school and special district governments. Offered in odd-numbered years.
Mr. Sokolow

105. The Legislative Process. (4) I.
Lecture—3 hours; discussion—1 hour. An analysis of the legislative process with emphasis on the United States Congress; legislative organization and procedures, legislative leadership and policy making, legislators and constituents, relations between Congress and other agencies.
Mr. Owens

*106. The Presidency. (4) III.
Lecture—3 hours; discussion—1 hour. The office, powers, and role of the President of the United States.
Mr. Hardin

110. Contemporary Political Science. (4) I.
Lecture-discussion—4 hours. History, nature, and methodology of the discipline; the problems, schools of thought, and trends within the field at present. To be offered in even-numbered years.

*111. Systematic Political Science. (4) II.
Lecture-discussion—4 hours. Philosophical basis of modern political science; major specific approaches; selected concepts relevant to modern political concerns; and research design and execution.

112. Contemporary Democratic Theory. (4) I.
Lecture—3 hours; discussion—1 hour. The major contemporary attempts to reformulate traditional democratic theory; attempts to replace traditional theory by conceptual models derived from modern social science findings.
Mr. Zetterbaum

* Not to be given, 1970–71.

113. The American Political Experience. (4) I.
Lecture-discussion—4 hours. Origins and nature of American political thought and practice from medieval background to the present. Study of America in comparative context to develop a comprehensive understanding of the unique character and limits of our heritage.
Mr. Peterman

*114. Politics and Political Man in Political Theory. (4) II.
Lecture—3 hours; discussion—1 hour. The defense and criticism of political life: an investigation of those political writers who have defended political life and political man against its critics. Offered in odd-numbered years.
Mr. Peterman

115. Medieval Political Thought. (4) III.
Lecture—3 hours; discussion—1 hour. An analysis of the political thought of the Middle Ages—St. Thomas, Maimonides, Marsilius, Dante, Pico della Mirandola. Offered in even-numbered years.
Mr. Peterman

*117A. Marxism. (4) I.
Lecture-discussion—4 hours. Historical background and context of Marxism. Exploration of Marx's writing toward understanding his significance in the nineteenth century and his relevance today. Offered in odd-numbered years.

*117B. Contemporary Marxism. (4) II.
Lecture-discussion—4 hours. Marxism after Marx to the present, with reference to Engels, Kautsky, Bernstein, Lenin, and contemporary figures and movements. Special attention to Marxism in America. Communism and democratic socialism as legacies of Marx related to contemporary problems. To be offered in even-numbered years.

118A. History of Political Theory. (4) I.
Lecture—3 hours. Critical analyses of the works of major political philosophers. Classical and medieval political philosophy—Plato, Aristotle, Cicero, St. Thomas.
Mr. Zetterbaum

118B. History of Political Theory. (4) II.
Lecture—3 hours. Critical analyses of the works of major political philosophers. Modern political philosophy—Machiavelli, Hobbes, Locke, Rousseau, Burke, Nietzsche.
Mr. Peterman

*119. Modern Political Thought. (4) III.
Lecture-discussion—4 hours. The search for community from Marx to the present. Communism, fascism, capitalism, socialism, irrationalism, immoralism, and existentialism as responses to the decline of liberalism and the nature of modern problems. Offered in odd-numbered years.
*120. Science and International Relations. (4) II.
Lecture—4 hours. The impact of science and technology upon the international legal and political order.

*122A. International Law. (4) II.
Lecture—4 hours. Sources and theories of international law. The relation of international law to municipal law. Territory, sovereign immunity, responsibility, recognition, and succession in the law of nations.

*122B. International Law. (4) III.
Lecture—4 hours. Neutrality, belligerency, and war in the international community. Pacific settlement of disputes.

123. Theories of International Politics. (4) II.
Lecture—4 hours. Major contemporary approaches to the study of international politics, including balance of power, national interest, Marxist-Leninist theory, systems theory, and decision-making analysis.

124. International Organization. (4) I.
Lecture—4 hours. The preservation of world peace through collective security arrangements. Analysis of the conditions under which international organizations can or cannot preserve peace, through examination of the record of the United Nations, League of Nations, and more restricted security organizations.

128A. Recent American Foreign Policy. (4) I.
Lecture—4 hours. Abandonment of isolation and assumption of leadership during the First World War. Return to isolationist policies in the twenties. The neutrality acts of the thirties. The second World War and reversal of the policy of isolation.

128B. The Conduct of American Foreign Relations. (4) II.
Lecture—3 hours; discussion—1 hour. Diplomacy and the conduct and control of foreign relations. The Department of State and the Foreign Service. Case studies in recent diplomacy to illustrate policy formation and execution. Some comparative materials will be introduced but emphasis will be placed upon the United States.

*131. Soviet Foreign Policy. (4) II.
Lecture—3 hours; discussion—1 hour. The conduct of Soviet foreign relations in contemporary world affairs; ideology and power as mainsprings of policy; foreign policy as an instrument of revolution; the role of diplomacy, economic aid and nuclear armaments. To be offered in odd-numbered years.

*132. The Role of the United States in the Far East. (4) I.
Lecture—4 hours. Recommended: course 3. A survey of the role the United States has played in the Far East through an examination of such topics as America's participation in Asiatic westernization, United States Far Eastern policy, Oriental attitudes toward the United States. An evaluation of present problems. To be offered in odd-numbered years. Mrs. Kallgren

134. International Relations in Africa. (4) III.
Lecture—3 hours; discussion—1 hour. Inter-African state relations, pan-Africanism, regional integration, policies toward South Africa, and relations between African and major non-African powers.

137. Nationalism and Imperialism. (4) III.
Lecture—4 hours. Recommended: course 3. The theory of nation building illustrated by Western and non-Western experience. To be offered in even-numbered years. Mrs. Kallgren

139. International Relations in Western Europe. (4) II.
Lecture—4 hours. Study of the emerging unity in Western Europe and its implications for the North Atlantic area.

*141. Communist Political Systems. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Systematic comparative analysis of the origin, structure and performance of communist political systems with emphasis on the Soviet Union and the states of Eastern Europe.

142. Revolution and Political Change. (4) II.
Lecture—4 hours. The attributes, problems, means, and impact of political change through evolution and revolution in the twentieth century. Emphasis upon movements and systems representative of communism, fascism, and nationalism.

143. Politics and Processes of Foreign Aid. (4) II.
Lecture—3 hours; discussion—1 hour. Comparative analysis of multilateral and bilateral assistance to developing nations; perspectives of donor and recipients; politics, types, and instruments of aid.

144. Government in Great Britain and the British Commonwealth. (4) III.
Lecture—3 hours; discussion—1 hour. The democratic process in Britain; party politics; the cabinet system; the colonies; the evolution of the British Commonwealth.

145. Government and Politics in Emergent Nations. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Conceptual study of problems of political organization and procedure in the context of rapid change engendered by social revolution in "emergent countries" and liberation from colonial oppression. To be offered in even-numbered years.

* Not to be given, 1970-71.
146A. African Governments and Politics. (4) I.
Lecture—4 hours. An analysis of political systems in Africa south of the Sahara.
Mr. Rothchild

146B. African Governments and Politics. (4) II.
Lecture—4 hours. A continuation of course 146A.
Mr. Rothchild

147A. Western European Governments: France and Italy. (4) I.
Lecture—4 hours. The evolution and contemporary nature of French and Italian political institutions.
Mr. Groth

147B. Western European Government: Germany. (4) II.
Lecture—4 hours. Comparative study of the politics and institutions of constitutional and totalitarian government in Germany since 1930. Current problems of a divided Germany.
Mr. Hanf

*148A. Government and Politics in East Asia. (4) I.
Lecture—4 hours. The structure and evolution of political institutions in China, Japan, and Korea. Emphasis upon such topics as nationalism, political modernization, and ideology up to World War II.
Mrs. Kallgren

148B. Government and Politics in East Asia. (4) II.
Lecture—4 hours. The structure and evolution of political institutions in China, Japan, and Korea since World War II, with emphasis upon political modernization, ideology, and nationalism.
Mrs. Kallgren

*148. International Communism. (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or 3 or consent of instructor. The international communist movement: ideology, organization, strategy. Relations among communist parties; problems of leadership and social composition; the Sino-Soviet conflict and its effects on revolutionary struggle. To be offered in even-numbered years.
Mr. Zinner

150. Jurisprudence. (4) II.
Lecture—4 hours. An analysis of the nature and functions of law. Particular attention will be directed to law as an instrument of social control and the relationship between law and morality. To be offered in even-numbered years.
Mr. Bernstein

151. Civil Rights and the Constitution. (4) I.
Lecture—4 hours. Prerequisite: course 1A. The constitutional rights and political possibilities of minority groups. Citizenship in the American federal system. Offered in even-numbered years.
Mr. Bernstein

152. The Administration of Justice. (4) I.
Lecture—4 hours. Prerequisite: course 1A, 1B, or 100, or consent of instructor. The evolution of judicial machinery; present arrangements and plans for reorganization; justice and social classes; the revolution in the constitutional law for the criminally accused; problems in welfare and family law. To be offered in odd-numbered years.
Mr. Bernstein

156. Administrative Law. (4) I.
Lecture—3 hours; discussion—1 hour. The political-legal factors in the decision-making processes of administrative legislation, adjudication and discretion; legal controls as an aspect of administrative responsibility; relationship of substance and procedure in regulatory action.
Mr. Bernstein

157A. American Constitutional Law. (4) II.
Lecture—1 hour; discussion—3 hours. Prerequisite: courses 1A and 1B or consent of instructor. Judicial review, jurisdiction of the federal courts, interstate and foreign commerce, and taxation.
Mr. Jacobs

157B. American Constitutional Law. (5) III.
Lecture—1 hour; discussion—3 hours. Prerequisite: course 157A. The Bill of Rights of the Federal Constitution.
Mr. Jacobs

159. American Legal Thought and Institutions. (4) III.
Lecture—4 hours. Prerequisite: course 1A, 1B, or 100, or consent of instructor. Topics in the development of American legal thought and institutions: reception of the common law; church-state controversies; the role of judge and jury; federalism and individual rights; natural law and economic regulation; law and the frontier. To be offered in odd-numbered years.
Mr. Bernstein

159. Judicial Behavior. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1A. Analysis of the behavior of judges and courts in the political process. Techniques of judicial decision-making. Relationships among courts and other decision-making bodies. Offered in even-numbered years.
Mr. Bernstein

161. Political Behavior. (4) III.
Lecture—3 hours; conference—1 hour. Prerequisite: course 1A. The individual and group aspects of partisan behavior; political socialization, partisanship and political participation, voting behavior and group influence processes.
Mr. Owens

162. The Black Man in American Politics. (4) III.
Lecture—3 hours; term paper required. Prerequisite: junior, senior, or graduate status; or consent of instructor. A critical review of the role of the black man in American politics; the rise of the black politician in the South; his role in the civil rights revolution; campaign techniques in the urban ghetto.
163. Political Parties. (4) II.
Lecture—3 hours; discussion—1 hour. An analysis of the structure and operations of the party system in the United States; party functions and organization, nomination processes, campaigns and elections, party trends and reforms.
Mr. Owens

*164. Group Politics. (4) II.
Lecture—3 hours; discussion—1 hour. An analysis of class, sectional, ethnic, religious, economic, and other interests in relation to constitutional government. The problem of balancing liberty and order and of reconciling claims of diversity with those of uniformity.
Mr. Hardin

(4–4) I–II.
Lecture—3 hours; discussion—2 hour. The nature of public opinion in America, as it is and as it should be; the distribution of opinions among different publics with emphasis on elites; opinion formation with emphasis on the role of mass media.
Mr. Costanzo

(4) I.
Lecture—3 hours; discussion—1 hour. An examination of the processes of formulating public policy. Methods of policy making by executive, legislative, judicial, and party agencies illustrated with case studies from agriculture, labor, civil rights, and other areas.
Mr. Wade

*167. Government and the Economy. (4) I.
Lecture—3 hours; discussion—1 hour. The legal and political environment of economic controls; types and techniques of regulating and assisting various sectors of the economy; policy alternatives and administrative processes; the search for the public interest.
Mr. Gable

*168. Policy and Politics in Agriculture and Water.
(4) III.
Lecture—3 hours; discussion—1 hour. Agricultural and water policies and their political implications, with chief emphasis upon the United States and with special attention to water policies in California.
Mr. Hardin

171. Politics Through the Novel. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or its equivalent or consent of instructor. A comparative analysis of the use of literature as a means of sociopolitical expression, perception, and portrayal of purposes in political action. European literature, especially British, French and Italian, from the Napoleonic to the present time.

172. Latin American Politics. (4) I.
Lecture—4 hours. Prerequisite: course 2 and a basic economics course, or consent of instruc-

174. Political Culture and Politics. (4) III.
Lecture—4 hours. Prerequisite: courses 1A, 1B, or 2, or consent of instructor. Examination of the relationships between politically relevant attitudes, beliefs, and values, on the one hand, and political behavior and governmental performance. To be offered in odd-numbered years.
Mr. Tuohy

178. Community Politics: Power and Influence.
(4) III.
Lecture—4 hours. Prerequisite: courses 1A, 1B or 2, or consent of instructor. Consideration of political power in local communities; emphasis on empirical bases for making judgments on the nature and location of such power, as well as ideological assumptions reflected in the literature. To be offered in even-numbered years.
Mr. Tuohy

181. Elements of Public Administration. (4) I.
Lecture—3 hours; discussion—1 hour. The role of public administration in modern government; the nature of administrative agencies; human behavior in the administrative process, executive leadership and decision making; bureaucracy and bureaucratic accountability in a democratic society.
Mr. Hanf

183. Administrative Behavior. (4) II.
Lecture—4 hours. The implications for American public administration of evolving concepts about behavior in organizations.
Mr. Musolf

185. Comparative Administration. (4) III.
Lecture—3 hours; discussion—1 hour. Theories and models of comparison; the ecology of administrative systems; functional processes of administration in developed and developing nations; role of bureaucracy in development and nation-building.
Mr. Gable

186. Urban Administration. (4) III.
Lecture—3 hours; discussion—1 hour. Role of the professional administrator in the urban political and social environment; application of modern management concepts to urban governmental organizations; and examination of persistent and emerging problems and issues.

187. Administrative Theory. (4) III.
Lecture—3 hours; discussion—1 hour. An historical and critical analysis of the principal theories of organization and management of public agencies in the light of such concepts as decision-making, bureaucracy, authority and

* Not to be given, 1970–71.
power, communication and control; and examination of the role of government bureaucracies in the total society. Mr. Hanf

190. Selected Problems in State and Local Government. (4) II.
Seminar—4 hours. An undergraduate seminar for students enrolled in the Sacramento Seminar Program. Guests and staff members will conduct seminar sessions on contemporary problems in California government and politics. Students will have the opportunity to share in the experiences of actual practitioners. The Staff

192A–192B. International Relations. (4-4) II–III.
Seminar—4 hours. Prerequisite: consent of instructor. Selected problems of international relations evaluated in an interdisciplinary context. Readings, discussion, papers. Required of all international relations majors in their senior year. The Staff (Mr. Zinner in charge)

194H. Special Study for Honors Students.
(1-5) I, II, III.
Prerequisite: honors status. A program of research, culminating in the writing of a senior honors thesis, under the direction of a faculty adviser. Mr. Bernstein

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Gable in charge)

199. Special Study for Advanced Undergraduates.
(1-5) I, II, III.
The Staff (Mr. Gable in charge)

Graduate Courses:

Lecture—2 hours; discussion—2 hours. Prerequisite: courses 102, 103A, 103B or consent of instructor. The analysis of American state and local government and politics. Special emphasis on community power structure, federalism, state legislatures, and state administration. Mr. Sokolow

213. Modern Political Thought. (4) II.
Seminar—3 hours. Mr. Peterman

215. Basic Problems of Political Theory. (4) III.
Lecture—3 hours. Prerequisite: 4 units of political theory or consent of instructor. An examination of the fundamental assumptions underlying various approaches to an understanding of politics, emphasizing the scientific or value-free school, the historical school, and the contributions of analytic philosophy. Mr. Zetterbaum

218. Political Theory. (4) I.
Seminar—3 hours. Mr. Zetterbaum

* Not to be given, 1970–71.

223. International Relations. (4) II.
Seminar—3 hours. Mr. Lieber

224. International Organization. (4) I.
Seminar—3 hours.

230. American Foreign Policy. (4) I.
Seminar—3 hours. Mr. Lieber

*240. Democracy and Dictatorship. (4) III.
Lecture—3 hours. Prerequisite: one upper division course in comparative government, or consent of instructor. Analytical study of differences and similarities in the political process under democratic and dictatorial government. To be offered in odd-numbered years. Mr. Zinner

*241A–241B. Soviet and East European Governments. (4–4) I–II.
Seminar—3 hours. Mr. Zinner

242. Seminar in Comparative Politics. (4) III.
Seminar—3 hours. Prerequisite: graduate status or consent of instructor. Systematic survey of theories and methods used in the study of Comparative Politics. The Staff

246. Government in Africa. (4) II.
Seminar—3 hours. Mr. Rothchild

247A. Western European Governments. (4) I.
Seminar—3 hours. Contemporary problems, with emphasis on France and Italy. Mr. Groth

247B. Western European Governments. (4) III.
Seminar—3 hours. Prerequisite: consent of instructor. Contemporary problems, with emphasis on Germany. The Staff

248. The Far East. (4) III.
Seminar—3 hours. Selected contemporary problems of government and international relations in the Far East. Mrs. Kaligren

261. Political Behavior. (4) III.
Seminar—3 hours. Mr. Owens

266. The American Political System. (4) II.
Seminar—3 hours. Analysis of selected theoretical and empirical issues posed by contemporary research in American government and politics. Mr. Wade

270. National and Regional Integration. (4) I.
Lecture—3 hours. Prerequisite: one upper division course in comparative government or international relations, or consent of instructor. An examination of the means and motives of regional integration as well as the problems involved in operating and maintaining federations. Classical federal experience and experiments in developing countries will be considered. Mr. Rothchild
272. Latin American Political Problems. (4) II.
Seminar—3 hours. Prerequisite: course 172 or consent of instructor. Selected contemporary problems of government and international relations in Latin America. Mr. Tuohy

282. Concepts and Problems in Public Administration. (4) III.
Discussion—3 hours. The nature of administrative processes in modern society; analysis of complex organizations; contemporary management practices and processes; and means of controlling bureaucracy. Offered in even-numbered years. Mr. Gable

285. Modernization and Administration in Transitional Societies. (4) II.
Seminar—3 hours. Nature of traditional and transitional societies; theories and processes of modernization; role of bureaucracy in development; problems of national integration and maintaining stability. Offered in odd-numbered years. Mr. Musolf

286. Public Administration. (4) III.
Seminar—3 hours. An examination of American administrative values. Offered in odd-numbered years. Mr. Musolf

291. Seminar in American Constitutional Law. (4) III.
Seminar—3 hours. Prerequisite: course 157B or consent of instructor. Mr. Bernstein, Mr. Jacobs

295. Political Parties. (4) I.
Seminar—3 hours. Mr. Hardin

296. Selected Problems in State and Local Government. (4) II.
Seminar—3 hours. Prerequisite: course 202 or consent of instructor. Selected topics in state and local government and politics. Mr. Sokolow

297. Internships in Political Science. (2) I, II, III.
Seminar—2 hours. Prerequisite: open only to persons who have internships or other positions in governmental agencies, political parties, etc., including participants in the State and Local Government Internship Program. Deals with the application and evaluation of theoretical concepts through work experience or systematic observation in public and political agencies. May be repeated for credit. The Staff

298. Group Study. (1-4) I, II, III.
The Staff (Chairman in charge)

299. Research. (1-12) I, II, III.
(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

299D. Directed Reading. (1-6) I, II, III.
(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

Professional Course

400. Field Work in Political Science. (1-4) I, II, III.
Directed study and internship in a government agency, office, or political party. May be repeated twice for credit. The Staff

POMOLOGY—See Plant Sciences
PORTUGUESE—See Spanish
PSYCHIATRY—See Medicine
PSYCHOLOGY

Robert Sommer, Ph.D., Chairman of the Department
Department Office, 149 Young Hall

Professors:
William F. Dukes, Ph.D.
Joseph Lyons, Ph.D.
Robert Sommer, Ph.D.

Associate Professors:
Jarvis R. Bastian, Ph.D.
Stanley Coopersmith, Ph.D.
Dale F. Lott, Ph.D.
Thomas Natsoulas, Ph.D.
Charles T. Tart, Ph.D.
Edward D. Turner, Ph.D.

Assistant Professors:
John J. Bintz, Ph.D.
Alan C. Elms, Ph.D.
Albert A. Harrison, Ph.D.
Neal A. Kroll, Ph.D.
Gary D. Mitchell, Ph.D.
Robert M. Murphey, Ph.D.
Theodore E. Parks, Ph.D.

Assistant Professor:
Carl C. Jorgensen, B.A. (Psychology and Sociology; Acting)
Lecturers:
Paul A. Akin, Ph.D.
Frederick A. Eigenbrod, Ph.D.
Benjamin L. Hart, Ph.D., D.V.M.
Rosalie Lynn, Ph.D.
Sumner B. Morris, Ed.D.
Jack C. Pfugrath, Ph.D.
V. J. Polidora, Ph.D.

Departmental Major Advisers.—Mr. Bastian, Mr. Bintz, Mr. Cooper-Smith, Mr. Elms, Mr. Harrison, Mr. Kroll, Mr. Lotz, Mr. Lyons, Mr. Mitchell, Mr. Murchey, Mr. Natsoulas, Mr. Parks, Mr. Sommer, Mr. Tart, Mr. Turner.

The Major Program
All Majors
Lower Division Courses.—Required: Psychology 1A, 1B, 1C.

Upper Division Courses.—Required: 36 units of advanced work in psychology (courses numbered above 99).

Bachelor of Arts Degree
Lower Division Courses.—Required: Mathematics 13 (must be taken prior to the junior year unless departmental permission obtained) and Mathematics 15, either Biology 1 or a combination of Biology 10 and any one of the following: Anthropology 1, Physiology 10, Genetics 10.

Upper Division Courses.—Required: Two courses from one of the following groups and three courses from the other:
(1) Group A) Psychology 108, 130, 131, 134, 150.
(2) Group B) Psychology 112, 145, 147A, 168.

Before graduation, the student must complete one course in sociology or cultural anthropology and one course in philosophy. These may be taken at any time during the four years and may be either lower or upper division courses.

Bachelor of Science Degree
Lower Division Courses.—Required: Mathematics 13 (must be taken prior to the junior year unless departmental permission obtained) and Mathematics 15, 16A, 16B; Chemistry 1A, 1B; Biology 1; Physiology 2, 2L; Physics 2A, 2B, 2C.

Upper Division Courses.—Required: Genetics 100A; Zoology 106A; Psychology 108, 150; any two of the following: Psychology 112, 145, 147A, 168.

Before graduation, the student must complete 8 units of philosophy and 8 units of sociology and/or cultural anthropology. These may be taken at any time during the four years and may be either lower or upper division courses.

Honors and Honors Program (see page 133).
—The honors program comprises course 194H, which includes an honors thesis, to be taken normally during the senior year.

Teaching Major.—Requirements for the teaching major are the same as for the departmental major.

Teaching Minor.—Any thirty units in psychology.

Subject Representative: Mr. Turner.

Lower Division Courses
1A. Introduction to Psychology: General Processes. (4) I, II, III.
Lecture—4 hours. Sensation, perception, learning, memory, motivation, and emotion.

The Staff

1B. Introduction to Psychology: Biological Bases of Behavior. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 1A. An analysis of behavior in terms of its evolutionary, genetic, and physiological determinants.

The Staff

1C. Introduction to Psychology: Personality and Social Psychology. (3) I, II, III.
Lecture—3 hours. Prerequisite: course 1A. The normal and abnormal personality. The influence of social factors on the individual.

The Staff

10. General Psychology. (4) I, II, III.
Lecture—4 hours. Survey of the basic principles of psychology and their empirical foundations. For students who do not plan to major in psychology.

The Staff

23. Personal and Social Adjustment. (4) I, II, III.
Lecture—4 hours. Prerequisite: course 1A. The dynamics of normal personality development. Family relationships, social adjustment, and self-evaluation are emphasized. Primarily for students who will not major in psychology.

Messrs. Pfugrath, Morris, Akin.

The Staff (Chairman in charge)

The Staff (Chairman in charge)

Upper Division Courses

107. Advanced Statistical Methods in Psychology. (4) I.
Lecture—4 hours. Prerequisite: course 3. Application of hypothesis-testing techniques to specific problems of psychological research and related behavioral research areas.

Mr. Turner

108. Physiological Psychology. (3) I, II, III.
Lecture—5 hours. Prerequisite: course 1B; or course 1A and upper division standing in a
112. Developmental Psychology. (4) I, II, III.

Lecture—4 hours. Prerequisite: course 1A; not open for credit to students who have received credit for Human Development 137. An ontogenetic account of human behavior through adolescence with emphasis on motor skills, mental abilities, motivation, and social interaction. Mr. Polidora

120. History of Psychology. (4) II.

Lecture—4 hours. Prerequisite: course 1A and upper division standing. The historical development of psychological theories and research. Mr. Bastian

129. Sensory Processes. (4) III.

Lecture—4 hours. Prerequisite: course 1B; upper division standing in psychology, or consent of instructor. The sensory capabilities of man and animals. Behavioral evidence for sensory capacity and relationships to the structure and function of the sense organs. Mr. Bastian

130. Learning. (4) I, III.

Lecture—4 hours. Prerequisite: Psychology 1A and Mathematics 15, or consent of instructor. Consideration of major theories of learning and memory with critical examination of relevant experimental data. Mr. Kroll, Mr. Parks

131. Perception. (3) I, III.

Lecture—3 hours. Prerequisite: course 1A. The cognitive organizations related to measurable physical energy changes mediated through sensory channels. The perception of objects, space, motion, events. Mr. Natsoulas, Mr. Turner

132. Language and Cognition. (4) I.

Lecture—4 hours. Prerequisite: course 1A and 6 units of upper division work in psychology. Psychological examination of linguistic actions, their development and role in human conduct; analysis of their contribution to perception and thought. Mr. Bastian

134. Motivation. (4) I, II.

Lecture—4 hours. Prerequisite: course 1A. Factors activating and directing behavior; contemporary theories of motives; pertinent data from laboratory, clinic, and field observation. Mr. Bintz

135. Psychology of Consciousness. (3) I, II, III.

Lecture—3 hours. Prerequisite: course 1A. Consideration of major theories of consciousness, with critical examination of relevant experimental, clinical, and field data. Mr. Tart

Lecture—4 hours. Prerequisite: course 1A. Behavior of the individual in the group. Examination of basic psychological processes in social situations, surveying various problems of social interaction: group tensions, norm-development, attitudes, values, public opinion, status. Mr. Harrison, Mr. Elms

147A. Personality Theory and Assessment. (4) I, II, III.

Lecture—4 hours. Prerequisite: course 1A and 6 units upper division work in psychology. A systematic consideration of contemporary theories of personality. Mrs. Lynn, Mr. Elms

147B. Personality Theory and Assessment. (4) II.

Lecture—4 hours. Prerequisite: course 3 or equivalent; course 147A. An exploration and evaluation of the principal methods in personality assessment and research. Mr. Harrison

150. Comparative Psychology. (4) I, II, III.

Lecture—4 hours. Prerequisite: course 1B or appropriate biological training. Perspectives in animal behavior: zoological, physiological, psychological. Functional behavior categories: orientation and locomotion, feeding, reproduction, communication, learning. Behavioral theory as derived from psychological and ethological contexts. Mr. Lott

165. Introduction to Clinical Psychology. (4) II, III.

Lecture—4 hours. Prerequisite: course 1C; 145 or 168; and 112, 134, or 147A. Psychological assessment procedures in clinical psychology; psychological methods for modifying disordered behavior—rational, process, and outcome. Mrs. Lynn, Mr. Lyons

168. Abnormal Psychology. (4) I, II, III.

Lecture—4 hours. Prerequisite: course 1A. A descriptive and functional account of behavioral disorders, with primary considerations given to neurotic and psychotic behavior. Mr. Murphy, Mr. Sommer

171. Humanistic Psychology. (4) I, II, III.

Lecture—4 hours. Prerequisite: course 165 or equivalent and consent of instructor. A survey, including lectures and demonstrations of humanistic, existential, or “third-force” movements in contemporary psychology. Theory, data, and techniques in the work of Maslow, Rogers, and others who emphasize creativity and self-actualization. Mr. Tart, Mr. Lyons

180. Experimental Psychology. (4) I, II, III.

Lecture—2 hours; laboratory—4 hours. Prerequisite: four upper division psychology courses or consent of instructor. Laboratory investigation of selected problems. Content area will rotate among major fields of psychology from quarter to quarter. (180A. General
Methodology; 180B. Physiological; 180C. Developmental; 180D. Sensory Processes; 180E. Learning; 180F. Perception; 180G. Psycholinguistics; 180H. Motivation; 180I. Social; 180J. Personality; 180K. Comparative.) May be repeated for credit in different subject areas.

The Staff

181. Field Work in Psychology. (2) I, II, III.
Laboratory—4 hours. Directed field experience under the supervision of a faculty member in some area of psychology. (Passed/Not Passed grading only.)

The Staff

194H. Special Study for Honors Students.
(1-5) I, II, III.
Prerequisite: 20 units in psychology and honors status. Independent investigation of an empirical problem.

The Staff

196. Advanced General Psychology. (4) II, III.
Lecture—4 hours. Prerequisite: 18 units upper division work in psychology. Exploration of the present status of systematic psychology. An integrative treatment of the major areas, problems, and methodologies.

Messrs. Bastian, Dukes, Lyons

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor. Directed small group study on psychological topics of special interest and relevance to instructor and students.

The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.
(1-5) I, II, III.

The Staff (Chairman in charge)

Graduate Courses

200. Current Research Topics in Psychology. (1) I.
Seminar—1 hour. Prerequisite: consent of instructor. A seminar designed to introduce students entering graduate work in the department to its ongoing research activities.

(Satisfactory/Unsatisfactory grading only.)

The Staff

*201A. Psychobiology. (4) I.
Seminar—4 hours. An intensive consideration of behavior studies in physiological and comparative psychology, and other biological sciences.

The Staff

*201B. General Experimental Psychology. (4) II.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. An intensive consideration of major areas and problems in general experimental psychology.

The Staff

*201C. Personality-Social Psychology. (4) III.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. An intensive consideration of basic psychological processes in social situations including the study of variables characterizing the individual personality.

The Staff

206. Advanced Research Methods. (4) II.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. A survey of research methods in various areas of psychology, including naturalistic observation, correlational studies, systematic assessment, and experimental studies, and an examination of the basic assumptions underlying the use of these methods.

Mr. Kroll

208. Physiological Psychology. (4) II.
Seminar—4 hours. A conceptual analysis of the contributions of neuroanatomy, neurophysiology and neurochemistry to an understanding of animal and human behavior.

212. Developmental Psychology. (4) II.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. The original behavioral repertoire of the child and its subsequent development.

Mr. Coopersmith

230. Learning. (4) I.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theories of learning and memory as applied to the experimental study of simple and complex behavioral processes.

Mr. Parks, Mr. Kroll

231. Perception. (4) II.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. An analysis of the role of perception in experience and its effects on behavior.

Mr. Natsoulas

234. Motivation. (4) II.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. The origin and function of basic motivational systems as they influence behavior.

Mr. Lott

245. Social Psychology. (5) II.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and research in social psychology.

Mr. Harrison, Mr. Elms

247. Personality. (4) III.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and research in human personality.

Mr. Coopersmith, Mr. Lyons

250. Comparative Psychology. (4) III.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. The study of animal behavior in an evolutionary and comparative framework.

Mr. Lott

* Not to be given, 1970-71.
281. Genetic Correlates of Behavior. (4) I.
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and experiment in the genetic determination of animal and human behavior.

Mr. Murphey

Laboratory-discussion—6–9 hours. Prerequisite: consent of instructor. (Satisfactory/Unsatisfactory grading only.)

The Staff

290. Seminar. (4) I, II, III.
Seminar—4 hours. Prerequisite: consent of instructor. A seminar devoted to a highly specific research topic in any area of basic psychology. Special topic selected for a quarter will vary depending on interests of instructor and students.

The Staff

Seminar—4 hours.

The Staff

*292. Experimental Study of Personality.
(4) I, III.
Seminar—4 hours.

Mr. Coopersmith, Mr. Lyons

293. Environment and Behavior. (4) II.
Seminar—4 hours. The social psychology of the environment. Research into the use of space and its design implications.

Mr. Sommer

294. Psycholinguistics. (4) I.
Seminar—4 hours.

Mr. Bastian

*295. Comparative and Physiological Psychology of Reproductive Behavior. (4) III.
Seminar—4 hours. Biological bases of reproductive behavior; neural, hormonal, and environmental controls.

The Staff

298. Group Study. (1–4) I, II, III.
(Satisfactory/Unsatisfactory grading only.)

The Staff

299. Research. (2–9) I, II, III.
(Satisfactory/Unsatisfactory grading only.)

Professional Course

390. The Teaching of Psychology. (4) III.
Seminar—4 hours; practical experience in teaching. The methods and problems of teaching psychology at the undergraduate and graduate levels; curriculum design and evaluation. Practical experience in the preparation and presentation of material.

The Staff

RANGE MANAGEMENT—See Resource Sciences

RESOURCE SCIENCES

Participating Departments:

AGRICULTURAL ECONOMICS
J. Herbert Snyder, Ph.D., Chairman of the Department
Department Office, 119 Voorhees Hall

Professor:
J. Herbert Snyder, Ph.D.

Associate Professor:
Warren E. Johnston, Ph.D.

AGRICULTURAL ENGINEERING
John R. Goss, M.S., Chairman of the Department
Department Office, 2030B Engineering

Professor:
Kinsell L. Coulson, Ph.D.

Assistant Professor:
Leonard O. Myrup, Ph.D.

AGRONOMY AND RANGE SCIENCE
Chairman of the Department
Department Office, 131 Hunt Hall

Professors:
Horton M. Laude, Ph.D.
R. Merton Love, Ph.D.
William A. Williams, Ph.D.

Assistant Professor:
Charles A. Raguse, Ph.D.

Lecturers: — — —
Beecher Crampton, M.A.
Subodh K. Jain, Ph.D.
M. B. Jones, Ph.D.
ANIMAL PHYSIOLOGY
James M. Boda, Ph.D., Chairman of the Department
Department Office, TB-30
Professors:
 James M. Boda, Ph.D.
 Walter E. Howard, Ph.D.
Associate Professor:
 Harry W. Colvin, Jr., Ph.D.

ANIMAL SCIENCE
Magnar Ro ready, Ph.D., Chairman of the Department
Department Office, 126 Animal Science
Professors:
 Floyd D. Carroll, Ph.D.
 William C. Weir, Ph.D.
Assistant Professor:
 Graham A. E. Gall, Ph.D.

ENVIRONMENTAL HORTICULTURE
Harry C. Kohl, Jr., Ph.D., Chairman of the Department
Department Office, 140 Environmental Horticulture
Professor:
 Richard W. Harris, Ph.D.
Associate Professor:
 Seymour M. Gold, Ph.D.

PHYSICAL EDUCATION
Charles R. Kovacic, Ed.D., Chairman of the Department
Department Office, 264 Gymnasium
Associate Professor:
 Willard S. Lotter, Ed.D.

SOILS AND PLANT NUTRITION
Victor V. Rendig, Ph.D., Chairman of the Department
Department Office, 139 Hoagland Hall
Professors:
 Daniel G. Aldrich, Ph.D. (Irvine Campus)
 Francis E. Broadbent, Ph.D.
 C. C. Deiwiche, Ph.D.
 Emanuel Epstein, Ph.D.
 Frank F. Harradine, Ph.D.
 Victor V. Rendig, Ph.D.
 Perry R. Stout, Ph.D.
 Lyman D. Whittig, Ph.D.
Associate Professor:
 Donald N. Munns, Ph.D.
Assistant Professor:
 Richard G. Burau, Ph.D.
Lecturers:
 Eugene L. Begg, B.S.
 Arthur L. Brown, Ph.D.
 Gordon L. Huntington, M.S.
 Donald W. Rains, Ph.D.
 H. Michael Reisenauer, Ph.D.
WATER SCIENCE AND ENGINEERING

Verne H. Scott, Ph.D., Chairman of the Department
Department Office, 121 Veihmeyer Hall

Professors:
 Jane Amerocho, Ph.D. (Water Science and Engineering and Civil Engineering)
 James W. Biggar, Ph.D.
 Robert H. Burgy, M.S. (Water Science and Engineering and Civil Engineering)
 Lloyd D. Doneen, Ph.D.
 Robert M. Hagan, Ph.D.
 Delbert W. Henderson, Ph.D.
 James N. Luthin, Ph.D. (Water Science and Engineering and Civil Engineering)
 Donald R. Nielsen, Ph.D.
 Verne H. Scott, Ph.D. (Water Science and Engineering and Civil Engineering)
 Frank J. Veihmeyer, Ph.D., LL.D. (Water Science and Engineering, Emeritus)

Associate Professors:
 Theodore C. Hsiao, Ph.D.
 Theodor S. Strelkoff, Ph.D. (Water Science and Engineering and Civil Engineering)

Assistant Professor:
 Allen W. Knight, Ph.D.

Lecturers:
 William E. Hart, M.S.
 Donald L. Morgan, M.S.
 William O. Pruitt, Jr., M.S.

Departmental Major Advisers—See Schedule and Directory Listing.

Bachelor of Science Major Programs and Graduate Study. See pages 58 and 151.

Atmospheric Science

Lower Division Courses

20. Introduction to Meteorology. (3) III.
 Lecture—3 hours. Prerequisite: Mathematics 21B or equivalent. Basic concepts of modern meteorology; weather and weather elements, atmospheric circulations, clouds, precipitation, radiation, instruments and observations, meteorological satellites.
 Mr. Morgan

20L. Introduction to Meteorology Laboratory. (1) III.
 Laboratory—3 hours. Prerequisite: course 20 (preferably taken concurrently). Introduction to meteorological instruments and observations; weather station visits; weather maps and charts;

special films on weather modification, air pollution, and atmospheric circulation; physical experiments illustrating atmospheric phenomena.

Mr. Morgan

Upper Division Courses

110A. Weather Analysis and Forecasting. (3) II.
 Lecture—2 hours; laboratory—3 hours. Prerequisite: course 121A (may be taken concurrently). Theory and practice of three-dimensional scalar and vector analysis as applied to atmospheric circulations. Physics, structure, and evolution of large-scale weather systems. Techniques of drawing weather maps.
 Mr. Carroll

110B. Weather Analysis and Forecasting. (3) III.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 110A. Application of dynamic theory to atmospheric weather systems. Graphical integration techniques applied to weather maps. Beginning of numerical forecasting techniques.
 Mr. Myrup

110C. Weather Analysis and Forecasting. (3) I.
 Lecture—1 hour; laboratory—6 hours. Prerequisite: course 110B. Numerical forecasting techniques applied to the general circulation of the atmosphere. The World Weather Watch and its requirements. Use and limitations of satellite data. Long-range forecasting.
 Mr. Coulson

120. Atmospheric Thermodynamics and Statics. (3) I.
 Lecture—3 hours. Prerequisite: Mathematics 22C, Physics 4B. The atmosphere at rest: atmospheric composition and structure, thermodynamics of atmospheric gases, thermal properties of dry and moist air, hydrostatic equilibrium and stability criteria, and thermodynamic diagrams in meteorology.
 Mr. Myrup

121A. Atmospheric Dynamics. (3) II.
 Lecture—3 hours. Prerequisite: course 120. The atmosphere in motion: the equations of motion for rotating atmospheres; pressure and density fields and their relations to atmospheric circulations; wave motion in the atmosphere; vorticity. The physical basis of modern numerical methods in meteorology.
 Mr. Myrup

121B. Atmospheric Dynamics. (3) III.
 Lecture—3 hours. Prerequisite: course 121A. The dynamics of fluid motion in geophysical and laboratory systems: Rossby waves; Helmholtz waves; the effect of turbulence; boundary layers; the Ekman layer. The dynamics of convective motion: the Rayleigh problem; penetrative convection; convective plumes; cumulus models.
 Mr. Myrup
122. Atmospheric Radiation. (3) I.
Lecture—3 hours. Prerequisite: Mathematics 22C, Physics 4C. Basic laws of radiation; properties of solar radiation; absorption, reflection and scattering in atmosphere; planetary albedo; absorption and emission by atmospheric gases and aerosols; atmospheric energy budget.
Mr. Coulson

123. Micrometeorology. (3) III.
Lecture—3 hours. Prerequisite: Mathematics 16B or equivalent. Properties of the atmosphere near the earth's surface: frictional effects, mass and energy transfers across the surface-atmosphere interface, and the effect of these in modifying the localized environment. Mr. Coulson

124. Meteorological Instruments and Observations. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 20 or equivalent. Modern meteorological instruments and their use in meteorological observations and measurements. Both standard and micrometeorological instruments are included. Mr. Coulson

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: three upper division units in Atmospheric Science.
The Staff (Mr. Coulson in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
Prerequisite: three upper division units in Atmospheric Science and at least an overall B average.
The Staff (Mr. Coulson in charge)

Graduate Courses

215. Atmospheric Processes. (3) III.
Lecture—3 hours. Prerequisite: graduate standing in atmospheric science or consent of instructor. Dynamics of the general circulation of the atmosphere, structure of weather systems, atmospheric energy budgets, mass momentum and radiative transfers, observational network and methods of measurement. Mr. Coulson

221. Advanced Atmospheric Dynamics. (3) I.
Lecture—3 hours. Prerequisite: course 110C, Mathematics 22B. Dynamics of sub-synoptic scale atmospheric flows with emphasis on: the effect of vertical density gradients on shear flow stability, wave generation and gravity waves; circulations in response to local horizontal density gradients; cumulus cloud dynamics and local severe weather.
Mr. Carroll

222. Radiation in Planetary Atmospheres. (3) II.
Lecture—3 hours. Prerequisite: course 122 or equivalent. Theory and observations of radiation in planetary atmospheres. Absorption, transmission, scattering by atmospheric gases, aerosols, and clouds; gaseous emission; effects of surface reflection; radiative energy budget of the atmosphere and of the planet as a whole; methods of measurement. Mr. Coulson

223. Advanced Micrometeorology. (3) I.
Mr. Myrup

230. Atmospheric Turbulence. (3) II.
Lecture—3 hours. Prerequisite: course 223 or equivalent. Dynamics and energetics of turbulent motion: transition to turbulence, energy dissipation, kinetic energy and thermal variance equations, convective and mechanical turbulence, integral methods. Statistical methods: probability density function, moments, spectral analysis. The Kolmogoroff theory: spectrum, structure function and diffusion predictions.
Mr. Myrup

240. Physical Climatology. (3) I.
Lecture—3 hours. Prerequisite: course 123 or equivalent. Causes of climatic phenomena including the heat and water balance of the earth-atmosphere system and application of the physical principles involved to general climatology. Mr. Morgan

Ecology
See Ecology (A Graduate Group), Page 219 for course offerings.

Park and Recreation Administration

Lower Division Courses

1. Environmental Quality. (3) I.
Lecture—3 hours; one Saturday field trip. Components of environmental quality, significant issues, relationships and implications for planning, design, management and interpretation of urban and natural environments.
Mr. Gold

Upper Division Courses

110. Urban and Regional Planning. (3) II.
Lecture—3 hours; one Saturday field trip. The history, nature, scope, and significance of planning in America including definitions and concepts, the planning process, significant problems, policy issues and the future.
Mr. Gold

116. Outdoor Recreation. (3) III.
Lecture—3 hours; one Saturday field trip. The history, nature, scope, and significance of outdoor recreation in American life, with em-
phasis on user-resource relationships, special problems, policy issues, and innovation.

Mr. Gold

122. Recreation Policy. (3) II.
Lecture—3 hours. Prerequisite: course 116. Development of public policy and the decision process of recreation resource allocation, development and management at the national, state, and local levels. Offered in odd-numbered years.
Mr. Gold

124. Leisure Systems. (3) III.
Lecture—3 hours; one Saturday field trip. Prerequisite: course 116 may be taken concurrently). Analysis of public and private means used to provide leisure opportunities in urban and natural areas emphasizing outdoor recreation as one component of a social service system including means-ends relationships, policy, planning, and development of social indicators. Offered in odd-numbered years.
Mr. Gold

134. Planning of Recreation Environments. (3) I.
Lecture—3 hours; laboratory—2 hours; two field trips. Prerequisite: course 116; recommended 124. Concepts, principles, techniques, and methods used in the planning, analysis, and evaluation of leisure environments with emphasis on urban outdoor recreation resources, landscape analysis, resource allocation, rationalization, and the decision process. Offered in odd-numbered years.
Mr. Gold

*160. Environmental Interpretation. (3) III.
Lecture—2 hours; laboratory—2 hours; two field trips. Prerequisite: course 1 recommended. Principles and analysis of interpretative techniques; media, materials and programs of public parks and recreation agencies, museums, botanical and zoological gardens, schools and organizations, including the planning, construction and use of interpretive devices and facilities.
Mr. Gold

194H. Special Study for Honors Students. (1–5) I, II, III.
Prerequisite: open only to majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.
The Staff (Mr. Gold in charge)

196. Outdoor Recreation Field Studies. (1–6)
(Summer)
Field study. Prerequisite: course 116; course 124 recommended. Survey, analysis and evaluation of the planning, design, management, and program of public and private recreation environments with emphasis on field observation of administrative practices, user behavior, environmental design and program innovations. Offered in odd-numbered years.
The Staff (Mr. Gold in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Gold in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: 3 units of upper division work in park administration; consent of instructor.
The Staff (Mr. Gold in charge)

Graduate Courses

222. Recreation Policy. (3) II.
Lecture—3 hours. Prerequisite: course 122 or consent of instructor. Analysis of the development and application of public policy of recreation resource allocation, development and management. Offered in even-numbered years.
Mr. Gold

234. Planning Recreation Environments. (3) III.
Lecture—2 hours; laboratory—2 hours; weekend field trip. Prerequisite: course 134 or consent of instructor. Application of concepts, techniques, and methods to the analysis, evaluation, and planning of recreation environments. A multidisciplinary, team approach to actual situations. Offered in even-numbered years.
Mr. Gold

290. Seminar. (1–2) I, II, III.
Seminar—1–2 hours. An interdisciplinary seminar on selected current topics related to environmental planning, leisure behavior and environmental quality.
The Staff (Mr. Gold in charge)

299. Research. (1–6) I, II, III.
Research—3–18 hours.
The Staff (Mr. Gold in charge)

Range Management

Lower Division Course

1. Introduction to Range Management. (4) II.
Lecture—3 hours; discussion—1 hour. Basic principles of range management and their relationships to the management of rangelands for livestock production, wildlife, water, recreation, and timber.
Mr. Laude

Upper Division Courses

100. Range Plants. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Botany 2. Systematic relationships and identification of range grasses; legumes, forbs, and shrubs; their distribution, environmental requirements, and use. One Saturday field trip.
Mr. Crampton

103. Grassland Inventory, Analysis and Planning. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 100 or consent of instructor. Sampling grasslands and other vegetational types

* Not to be given, 1976–71.
to determine species composition, forage production and utilization, carrying capacity, and changes in the plant community. Range inventory analysis and planning range use. Offered in odd-numbered years. Mr. Raguse

Lecture—10 hours total; laboratory—30 hours total. Prerequisite: consent of instructor. Field studies of range conditions and methods of utilization in various parts of the state.

Mr. Love

133. Grassland Ecology. (4) II.

Lecture—3 hours; laboratory—3 hours. Prerequisite: course in plant ecology or consent of instructor. Composition, structure, development, and habitat factors of native North American grasslands. Concepts used in vegetative measurements. Principles of grassland management for forage production. Offered in even-numbered years.

Mr. Raguse

194H. Special Study for Honors Students.

(1–5) I, II, III.

Prerequisite: open only to majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.

The Staff (Chairman in charge)

Prerequisite: consent of instructor.

The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates.

(1–5) I, II, III.

Prerequisite: senior standing and consent of instructor.

The Staff (Chairman in charge)

Graduate Courses

290. Seminar. (1–2) I, II, III.

Seminar—1–2 hours.

The Staff (Chairman in charge)

The Staff (Chairman in charge)

Resource Sciences

Lower Division Courses

2. Concepts in Forestry. (2) II.

Lecture—2 hours. An introduction to the concepts of forestry as illustrated by current issues in the Western United States.

Mr. Zivnuska

10. California and the West. (2) III.

Lecture—2 hours. How population, agricultural, and industrial centers and their conflicts in environmental pollution and overcrowding develop in relation to the West's physical features. Weekly guest lectures in geology, physical geography, water, and the atmospheric plant, and animal sciences.

Mr. Walker

10L. Aerial Study of California and the West. (1) III.

Laboratory—1 hour. Prerequisite: course 10 (must be taken concurrently). Aerial study of the natural resources of California and adjacent states. Flight route includes the Sierra, Cascade, and Coast ranges; observation of major forest, valley, and river systems and their relationship to man's living, working, and leisure. (Flight fee approximately $50.)

Mr. Walker

The Staff (Mr. Love in charge)

The Staff (Mr. Love in charge)

Upper Division Courses

100. Concepts in Renewable Natural Resources.

(3) I.

Lecture—3 hours. Prerequisite: junior standing or consent of instructor. Survey of renewable natural resources, interrelationships of climate, air, soil, water, plants, animals and their impact on society. Role of man in their management, preservation, and improvement for man's environment, his recreation, and the production of food and fiber.

100L. Discussion of Resource Concepts. (1) I.

Discussion—1 hour. Prerequisite: course 100 (may be taken concurrently). Discussion of current problems and concepts in renewable natural resources, development, and conservation. An in-depth consideration of the topics surveyed in course 100. (Passed/Not Passed grading only.)

Mr. Snyder

101. Agriculture and Wildlife. (3) II.

Lecture—3 hours; one Saturday field trip. Prerequisite: upper division standing or consent of instructor. A study of the central California Valley and the Delta region as an example of utilization for production agriculture and outdoor recreation—the conflicts and harmonies; lectures by distinguished biologists of the University, and the State Department of Fish and Game.

Mr. Love

190. Proseminar in Renewable Natural Resources.

(1) I, II, III.

Seminar—1 hour. Prerequisite: senior standing in resource sciences curriculum. Selected topics in renewable natural resources.

The Staff (Mr. Love in charge)

The Staff (Mr. Love in charge)
Soil and Water Science, Plant Nutrition

Plant Science†

Upper Division Course

Lecture—3 hours; laboratory—6 hours. Prerequisite: Botany 111; Chemistry 5. Evolution and scope of plant nutrition; essential and other elements; mechanisms of absorption and translocation; mineral metabolism; deficiencies and toxicities; genetic and ecological aspects of plant nutrition; relation to animal nutrition; experimental techniques, including solution culture and radioactive tracing.
Mr. Epstein

Soil Science

Lower Division Course

88. Land and Life. (2) I.
Lecture—2 hours. Earth as our life support system. Knowledge and a better understanding of the relationships between land and life are necessary if the greater demands being made upon our land resources are to be met.
Mr. Mumns

Upper Division Courses

Lecture—8 hours; field study—48 hours. Prerequisite: course 120B or consent of instructor. Field study of soils, in situ, with special emphasis on their characteristics, morphology, and genesis. Field exercises in classifying and mapping soils, and preparation of soil survey reports. Practice in identifying and evaluating soils for agricultural, range, forest, and other use.
Mr. Begg, Mr. Huntington

109. Soil Fertility and Fertilizers. (4) I.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Soil and Water Science 2. The forms and availability of plant nutrient elements in soils; composition and use of fertilizers and soil amendments; laboratory exercises in fertility analyses and their interpretation.
Mr. Reisenauer

120A. Soil Genesis and Morphology. (2) II.
Lecture—2 hours. Prerequisite: Soil and Water Science 2; Geology 1 or 2. Basic principles of geomorphology; soil forming factors and processes as they influence the genesis and characteristics of soil properties.
Mr. Harradine

120B. Soil Classification, Mapping, and Evaluation. (3) III.
Lecture—2 hours; laboratory or field—3 hours. Prerequisite: course 120A. Basic principles underlying various systems of soil classification and mapping; methods of evaluating and rating soils for land use.
Mr. Harradine

† Additional Plant Science courses are listed under Plant Sciences, page 350.

123. Chemistry of Arid Soils. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Chemistry 5; Soil and Water Science 102. Diagnostic procedures for assessing features of soil chemistry related to plant growth, with emphasis on soils of arid regions and problems of salinity. Theoretical basis of the procedures and its bearing on the interpretation of results.
Mr. Brown

144. Advanced Instrumentation in Biology. (3) I.
Lecture—1 hour; laboratory—6 hours. Prerequisite: consent of instructor. The application of electronic and mechanical devices to solution of problems of measurement and control in biological research; emphasis given to the synthesis and application of low current or low potential measurement equipment, vacuum techniques, optical processes, and electromagnetic transduction.
Mr. Delwiche

194H. Special Study for Honors Students. (1–5) I, II, III.
Prerequisite: open only to majors who are honors students of senior standing. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis.
The Staff (Mr. Rendig in charge)

Directed group study in soil science for advanced undergraduates.
The Staff (Mr. Rendig in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Rendig in charge)

Graduate Courses

207. Soil Physics. (3) III.
Lecture—3 hours. Prerequisite: Soil and Water Science 101; Mathematics 22C recommended. Physical processes occurring in soils; selected topics in the soil-plant relationship.

208. Soil-Plant Interrelationships. (3) III.
Lecture—3 hours. Prerequisite: Botany 111; Soil and Water Science 104; or consent of instructor. An advanced course on the effects of soil factors on plant development; the influence of soil conditions, processes, and reactions on metabolic reactions in plants; effects of plant root activity on the nature of the rhizosphere.
Mr. Rendig

211. Soil Microbiology. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 8B; Soil and Water Science 102. Soil microorganisms and their biochemical activities; plant residue decomposition; soil organic matter and its properties.
Mr. Broadbent
214. Soil Mineralogy. (5) I.
Lecture—2 hours; discussion—1 hour; laboratory—6 hours. Prerequisite: Chemistry 109B or 110B; Soil and Water Science 102. Nature, properties, and occurrence of the more common minerals in soils and rocks. Application of mineral analysis methods in the study of the formation and properties of soils and of weathering of minerals. X-ray, thermal, and chemical analyses of mineral fractions.
Mr. Whitig

215. Physical Chemistry of Soils. (3) I.
Lecture—3 hours. Prerequisite: Chemistry 109B or 110B, or consent of instructor. Physical-chemical, colloidal, and surface aspects of the soil system. Offered in even-numbered years.
Mr. Burau

222. Salt-affected Soils. (3) II.
Lecture—3 hours. Prerequisite: Soil and Water Science 102 or consent of instructor. Scope of soil problems in salt-pan arid zone climates; origin and encroachment of salt; chemical interactions with alumino silicates under alkaline conditions; physiological characteristics of native and crop plant species governing salt tolerance and sensitivity.
Mr. Whitig

290. Seminar. (1) I, II, III.
Seminar—1 hour. Prerequisite: graduate standing in soil science, plant physiology, or related subjects. Topics of current interest in soil science, including research recently carried out by students, will be discussed. Each student will prepare and present reports to the seminar. (Satisfactory/Unsatisfactory grading only.)
Mr. Delwiche, Mr. Rahs

298. Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Chairman in charge)

299. Research. (1-12) I, II, III.
(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

Soil and Water Science

Lower Division Courses

1. Soil, Water, and Air Resources. (3) I.
Lecture—3 hours. Prerequisite: Biology 1 or consent of instructor. Interrelationships of man and environmental factors; utilization and development of renewable natural resources; characteristics of soil, water, and air and their relation to management and planning concepts. Open to non-majors.
Mr. D. Henderson

2. Soil, Water, and Air Resources. (3) II.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 1, Biology 1; or consent of instructor. Physics 2A recommended. Development and properties of soils; source and properties of water; properties of the atmosphere; soil, water, and air management in relation to crop production; planning concepts related to agricultural development and production.
Mr. Munns

Upper Division Courses

101. Physics of Soil and Water Systems. (5) II.
Lecture—3 hours; discussion-laboratory—4 hours. Prerequisite: course 2; Physics 2B; Mathematics 16B; or consent of instructor. Factors affecting soil physical condition and irrigation; soil texture, structure, aeration, and strength. Principles of soil management; basic concepts of hydraulics, soil water storage and movement, infiltration, water potential, irrigation and drainage. Principles of irrigation practices.

102. Soil and Water Chemistry. (5) II.
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2 or consent of instructor. Chemical nature of the mineral and organic constituents of soil and of the soil solution; ion exchange and other colloidal phenomena including the effect of soil amendments and fertilizers; microbiological processes in soils.
Mr. Burau

103. Water Quality, Salt Control, and Reclamation. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 102 or consent of instructor. Water quality, water analysis, salinity, salt and plant relations, reclamation of water and soil, infiltration problems, and soil amendments.

104. Soil-Water-Plant Relationships. (4) III.
Lecture—4 hours. Prerequisite: courses 101, 102; Botany 2. Influence of soil properties—physical, chemical, and biological—and of soil water supply on plant growth; availability, uptake, and use of nutrients and water by plants; principles of soil structure, irrigation, and fertilizer management for crop production.
Mr. Hsiao

198. Directed Group Study. (1-5) I, II, III.
Prerequisite: consent of instructor.
The Staff (Mr. Rendig in charge)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Rendig in charge)

Water Science

Lower Division Course

10. Water and Man. (3) III.
Lecture—3 hours. Water as a factor in civilization and man’s environment. Water supply and utilization problems of agricultural, domestic, industrial, and other water users in developed and developing nations. A cultural and technical course providing an introduction to water science and engineering.
Mr. Hagan
Upper Division Courses

106. Principles of Soil Water Movement. (3) I.
Lecture—2 hours; laboratory—3 hours. Prerequisite: Soil and Water Science 101 (may be taken concurrently or with consent of instructor). An introduction to basic mechanisms of soil water movement with emphasis on infiltration, evaporation, and redistribution within the soil profile. Laboratory measurements of the forces involved in soil water movement.
Mr. Nielsen

110A. Irrigation Principles and Practices. (3) II.
Lecture—3 hours. Prerequisite: Physics 2B. A general course for engineering and agricultural students. Principles for relating water, soil, plant and atmospheric conditions to irrigation planning and practices. Selecting lands for irrigation, water-soil-plant relations, irrigation requirements for principal crops, irrigation scheduling for maximum efficiency.
Mr. Henderson

110B. Irrigation Principles and Practices. (3) III.
Lecture—3 hours. Prerequisite: Physics 2B. A general course for engineering and agricultural students. Farm irrigation distribution systems, water measurement, farm water supply including wells and pumping plants, land preparation for irrigation, water application, and drainage requirements.
Mr. Henderson

116. Processes of Water and Soil Pollution. (3) I.
Lecture—2 hours; discussion—1 hour. Prerequisite: junior standing in the Resource Science Curriculum or consent of instructor. Physical, chemical and biological processes, natural and man-made, that cause pollution of water and soil; nature of pollutants, persistence, and control.
Mr. Biggar

118. Hydraulics. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 21C or 16C; Physics 2B and 2C. Principles of incompressible fluid mechanics and hydraulics. Applications to the analysis of water conveyance, control and measurement systems; laboratory practice on selected hydraulic problems.
Mr. Amorocho

120. Ecology of Polluted Waters. (3) II.
Lecture—3 hours. Prerequisite: Biology 1 and junior standing. The causes and nature of various types of pollution and their effects upon the aquatic biota. Particular emphasis on biological effects of toxic compounds, inorganic compounds, suspended matter, salts and heated water on aquatic life.
Mr. Knight

140. Farm Drainage Systems. (2) III.
Lecture—2 hours. Prerequisite: Soil and Water Science 101. Drainage principles and methods including investigation of drainage problems, types of drainage systems and layout of farm drains, and drainage requirements for land reclamation and irrigated agriculture.
Mr. Luthin

141. Hydrology. (3) II.
Lecture—3 hours. Prerequisite: course 118 or Engineering 103A. Principles of hydlogic analysis including consideration of precipitation, stream flow and ground water phenomena.
Mr. Burgy

150. Water Law and Water Institutions. (3) I.
Mr. Malakoff

160. Water Application Systems. (4) III.
Lecture—3 hours; laboratory—3 hours. Prerequisite: senior standing in Soil and Water Science or Civil Engineering, or consent of instructor. Design construction and operation of water-application systems (with emphasis on farm irrigation methods) and appurtenant structures. Preparation of land for irrigation. Problem solving and field and laboratory exercises.
Mr. Pruitt

194H. Special Study for Honors Students.
(1-5) I, II, III.
Prerequisite: open to majors in Soil and Water Science who are honors students of senior standing. Independent study of selected topics under direction of a member of the staff. Completion will involve writing of a paper.
The Staff (Mr. Scott in charge)

198. Directed Group Study. (1-5) I, II, III.
The Staff (Mr. Scott in charge)

199. Special Study for Advanced Undergraduates.
(1-5) I, II, III.
Prerequisite: senior standing.
The Staff (Mr. Scott in charge)

Graduate Courses

200. Water-Soil-Plant Relationships in Irrigation Programming. (3) III.
Lecture—3 hours. Prerequisite: Soil and Water Science 104 or consent of instructor. Selected topics including prediction of crop responses to irrigation, evapotranspiration and water requirements, production functions, strategy for using limited water supplies, and irrigation planning and operations for optimizing water use and crop production under conditions of developed and developing nations.
Mr. Hagan
201. Water in Physiology and Biochemistry of Plants. (3 II).
Lecture—3 hours. Prerequisite: Botany 111; Chemistry 5. Recommended: Biochemistry 101B; Botany 120A and a course in physical chemistry. Solute-water interactions; water and the structure of biological macromolecules; cell-water relations; physiology and biophysics of water uptake, transport and dissipation by plants; physiology and biochemistry of stomata; water stress and plant metabolism. Mr. Hsiao

Lecture—18 hours total; laboratory—9 hours total. Prerequisite: Atmospheric Science 20 and 20L or Agricultural Engineering 107 or consent of instructor. Radiation and energy balances of water, soil, and vegetative surfaces of the effects of wind, temperature, humidity, and leaf temperature. Lysimeter and other measurement techniques. Prediction of evapotranspiration from aerodynamic, energy balance, and empirical approaches. Field study involving profiles and related fluxes.
Mr. Pruitt

215. Advanced Topics in Water Chemistry. (3 II).
Lecture—3 hours. Prerequisite: Soil and Water Science 102; Chemistry 110C; Soil and Water Science 103 recommended. An advanced course in water chemistry emphasizing principles governing interactions of ionic constituents in water with soils and plants. Topics include electro-kinetic properties of clays, diffusion mechanisms, hydrodynamic dispersion during leaching, and irreversible thermodynamics in soil-salt systems. Mr. Biggar

215L. Advanced Topics in Water Chemistry Laboratory. (1 II).
Laboratory—3 hours. Prerequisite: course 215 concurrently or consent of instructor. Laboratory techniques for studying the physical and chemical interactions of soil and water.
Mr. Biggar

Lecture—3 hours. Prerequisite: Mathematics 22C or consent of instructor; course 106 recommended. The physics of fluid flow through porous media; miscible and immiscible displacement theories; theory of capillary pressure and pore size distribution with emphasis on unsaturated flow problems; physical aspects of permeability, porosity, specific surface, and pore structure.
Mr. Nielsen

290. Seminar. (1 II).
Seminar—1 hour. Required of all graduate students in Irrigation Science. Discussion of advanced problems in irrigation. Mr. Knight

The Staff (Chairman in charge)

(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

Wildlife and Fisheries Biology

Lecture—4 hours. Prerequisite: Biology 1. Principles underlying the biology and effective management and conservation of fish, waterfowl, small mammals, upland game species. Included are effects of man-related activities on wild game species and the biological, social, economical, and political considerations involved.
Mr. Brocksen, Mr. Schwab

Management. (5 III). (Summer).
Lecture—2 hours; laboratory—24 hours. Prerequisite: course 2. A traveling field study program into the various key wildlife resource areas of the state managed under County, State, Federal, and private jurisdiction.
The Staff (Mr. Boda in charge)

*108. Comparative Nutrition of Wildlife and Fish. (4 II).
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 8B. The principles of nutrition and their application to feeding problems related to wild animals (ruminants and non-ruminants), birds and fish in their natural habitats and in captivity.
Mr. Weir

Lecture—3 hours. Prerequisite: course 2; Zoology 2; or consent of instructor. History of game management; properties of game populations and their environment, principles of game populations control, wildlife husbandry methods, wildlife resource economics and aesthetics.
Mr. Schwab

110B. Principles of Fish Management. (3 II).
Lecture—3 hours. Prerequisite: course 2; Zoology 2; or consent of instructor. History of fish management; properties of fish populations and their environment; principles of fish population control; fish husbandry methods; fish resource economics and aesthetics. Primary emphasis upon fish of inland waters.
Mr. Calhoun

130. Biology of Fish. (5 III).
Lecture—4 hours; laboratory—3 hours. Prerequisite: upper division courses in genetics, nutrition, and physiology or consent of instructor. Introductory morphology, phylogeny, physiology, growth, reproduction, behavior, adaptation, and energy relations of fish with special emphasis on Salmonid species. Mr. Brocksen

* Not to be given, 1970-71.
131. Genetics of Animal Adaptation. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: Genetics 100B (may be taken concurrently). Genetic principles applied to natural populations; species as plastic elements subject to genetic change through environmental influences and interactions with other species; the role of adaptation in population ecology and development. (Same course as Animal Genetics 131.)
Mr. Gall, Mr. Laben

151. Wildlife Ecology. (3) II.
Lecture—3 hours. Recommended: course 2. Consideration of the ecology of wildlife species in man-disturbed environments, including ecological aspects of wild vertebrates in relation to reforestation, range management, and pollution; the relationship of wildlife to recreation and wildlands; and resource conservation in the human ecosystem.
Mr. Howard

151L. Wildlife Laboratory. (1) II.
Laboratory—3 hours. Prerequisite: course 151 to be taken concurrently. Field trips to various man-altered ecosystems to complement theoretical considerations presented in course 151 on the ecology of wildlife species in man-disturbed environments.
Mr. Howard

RHETORIC

James J. Murphy, Ph.D., Chairman of the Department
Department Office, 207 North Hall

Professor:
James J. Murphy, Ph.D.

Associate Professors:
Gerald P. Mohrmann, Ph.D.
Ralph S. Pomeroys, Ph.D.

Assistant Professor:
Harry W. Sharp, Jr., Ph.D.

Assistant Professors:
Cary G. Collier, M.A. (Acting)
Michael C. Leff, M.A. (Acting)

Lecturer:
John L. Vohs, M.A.

The Major Program

Departmental Advisers.—Mr. Collier, Mr. Mohrmann, Mr. Murphy, Mr. Sharp, and Mr. Vohs.

Lower Division Courses.—Required are courses 1, 3, 15. Recommended: courses in classical languages.

Upper Division Courses.—Thirty-six units in rhetoric, including: (1) courses 110, 120 in the first quarter of upper division work; (2) at least one additional course from each of the following series: 110, 120, and 150; (3) course 190 in the senior year.

Required courses outside the Department of Rhetoric.—A coherent program of twelve quarter units selected in consultation with the departmental adviser from appropriate courses outside the Department of Rhetoric. This program will ordinarily be chosen from a designated set of courses related to one of the four course series in the Department of Rhetoric (Series 110, 120, 150, or 160).

The Department will certify completion of a major program only on the basis of at least a C average in the upper division courses taken in the Department.

Teaching Major.—Same as major.

Teaching Minor.—Thirty quarter units, including Rhetoric 1, 3, 15, 41, and eighteen upper division units including either course 110 or 120.

Optional Minor.—Twenty or more quarter units, at least one course from each of the following sets:

a. Lower division (Rhetoric 1, 3, 15, 41).
b. History of rhetorical theory (Rhetoric 110, 111, 112, 113).
c. History of public speaking (Rhetoric 120, 121, 122, 123, 125).
d. Rhetorical theory (Rhetoric 150, 151, 152, 153).
Lower Division Courses

1. Introduction to Public Speaking. (4) I, II, III.
 Lecture—4 hours. Practice in the preparation and delivery of speeches with an introduction to rhetorical theory and criticism as applied to public address. The Staff

2. Oral Interpretation. (4) I, II, III.
 Lecture—4 hours. Theory and practice in the oral reading of literature. The Staff

 Lecture—4 hours. Prerequisite: consent of instructor or course 1. Study of the rhetorical process in informal situations. Topics include interaction, leadership techniques, and decision making in groups. Regular participation in discussions. (Passed/Not Passed grading only.) Mr. Vohs

15. Introduction to Rhetorical Studies. (4) III.
 Lecture—4 hours. Illustration of various means available for the study of oral communication processes. Survey of the rhetorical tradition leading to exercises in rhetorical criticism and audience analysis, with extensive use of television and small-group methods. Mr. Murphy

38. Directed Group Study. (1–2) I, II, III.
 Lecture—1 hour; discussion—1 hour. The Staff (Mr. Murphy in charge)

 Prerequisite: consent of instructor. The Staff (Mr. Murphy in charge)

41. Introduction to Advocacy. (4) I, II.
 Lecture—4 hours. Introduction to the rhetoric of controversy, with emphasis upon the nature of public debate, the analysis of issues, and the logical presentation of evidence in support of arguments. Provision for practice in intercollegiate debate. Mr. Sharp

Upper Division Courses

110. Classical Rhetorical Theory. (4) I.
 Lecture—4 hours. Origins of Greek and Roman rhetorical theory, with emphasis upon the contributions of Isocrates, Plato, Aristotle, Cicero, and Quintilian. Mr. Murphy

111. Medieval and Renaissance Rhetorical Theory. (4) II.
 Lecture—4 hours. Development of the European rhetorical tradition to 1700 through the contributions of such writers as Augustine, Alcuin, Wilson, and other Ciceronians, with attention to the anti-Ciceronian reaction represented by Ramus, Francis Bacon, and Fenelon. Mr. Murphy

112. Early Modern Rhetorical Theory. (4) II.
 Lecture—4 hours. English and continental theories of rhetoric to 1900, with reference to developments in psychology, philosophy, and belles lettres. Emphasis upon the works of Ward, Priestley, Campbell, Blair, and Whatley. Mr. Pomeroy

113. Contemporary Rhetorical Theory. (4) III.
 Lecture—4 hours. Current approaches to rhetorical theory, from the James-Winans theory of attention to the Hovland, Janis, Kelley studies of persuasion. Mr. Sharp

120. Classical Public Address. (4) I.
 Lecture—4 hours. Public address as a force in the development of Greek and Roman civilizations, with special attention to Demosthenes, the Attic Orators, and Cicero. Mr. Jeff

121. British Public Address to 1914. (4) II.
 Lecture—4 hours. British public address in the eighteenth and nineteenth centuries, with special attention to the parliamentary speaking of Burke, Fox, Pitt, Grattan, Peel, Disraeli, and Gladstone. Mr. Pomeroy

122. American Public Address from Edwards to Lincoln. (4) II.
 Lecture—4 hours. A survey of major speakers from the colonial period to the era of the Civil War. Mr. Mohrmann

123. American Public Address from Grady to Wilson. (4) III.
 Lecture—4 hours. A survey of major speakers from the Reconstruction Period to the founding of the League of Nations. Mr. Mohrmann

125. Contemporary Public Address. (4) III.
 Lecture—4 hours. Public address in the twentieth century, with special attention to the speeches of Churchill, Roosevelt, Hitler, and Gandhi. Mr. Sharp

150. Modes of Discourse. (4) III.
 Lecture—4 hours. Examination of elements of the communication process, including sources, messages, media, and receivers. Study of the role of these elements as they are influenced by various communicative situations. Mr. Vohs

151. Methods of Advocacy. (4) I.
 Lecture—4 hours. Study of problems inherent in securing acceptance of ideas; consideration of logical and nonlogical means of persuasion. Mr. Vohs

152. Study of a Major Rhetician. (4) II.
 Lecture—4 hours. Prerequisite: consent of instructor. Intensive study of a major theorist, such as Aristotle, Cicero, Whately, or Toulmin, with emphasis upon the relation of his theory to the cultural environment of his time. May be repeated for credit. Mr. Murphy

* Not to be given, 1970–71.
Lecture—4 hours. Prerequisite: consent of instructor. Consideration of contributions derived from sociometric and psychometric approaches to analysis of rhetorical process.
Mr. Vohs

154. Forensics Laboratory. (1) I, II, III.
Laboratory—2 hours. Prerequisite: consent of instructor. Practice in the principles of forensics, including argumentation and debate. Intercollegiate and tournament forensics. May be repeated for credit up to a total of six units.
Mr. Sharp

160. Rhetorical Criticism. (4 I.)
Lecture—4 hours. Prerequisite: course 15 or consent of instructor. Methods of evaluating public address, with emphasis on such factors as structure, language, and effectiveness.
Mr. Mohrmann

190. Senior Proseminar. (4 II, III.)
Lecture—2 hours; seminar—2 hours. Prerequisite: required of majors with senior standing. Individual research on a rhetorical topic approved by a committee of the faculty.
The Staff (Chairman in charge)

RUSSIAN

Department Office, 416 Sproul Hall

Associate Professors:
Alex M. Shane, Ph.D.
Valerie A. Tuminis, Ph.D.

Assistant Professors:
Jiri Marvin, Ph.D.
Rodney L. Patterson, Ph.D.

Lecturer:
Anita Charters, B.Sc.Ag.

Departmental Major Adviser.—Mr. Shane.
Graduate Adviser.—Miss Tuminis.

The Major Program
The requirements are Russian 1 through 6 (or the equivalent); Russian 40, 41, 42, and a minimum of 36 units of upper division course work including Russian 101A, 101B, 101C, 102 or 103, and 190.

Honors and Honors Program (see page 133).
—The honors program comprises two quarters of study under course 194H, which will include a research paper.

The Master of Arts Degree
The Department offers two programs of study (one with emphasis on language and culture, the other with emphasis on literature) leading to the M.A. degree. Detailed information may be obtained by writing to the Graduate Adviser.

192. Internship in Rhetoric. (3–5) I, II, III.
Laboratory—3–5 hours. Prerequisite: 12 upper division units in rhetoric and consent of instructor. Work-research projects at off-campus sites under departmental supervision. (Passed/Not passed grading only.)
Mr. Sharp

197T. Tutoring in Rhetoric. (2–4) I, II, III.
Seminar—1–2 hours; laboratory—1–2 hours. Prerequisite: upper division major standing and consent of Department Chairman. Tutoring in undergraduate rhetoric courses, including leadership in small voluntary discussion groups affiliated with departmental courses.
The Staff (Mr. Murphy in charge)

198. Directed Group Study. (1–4) I, II, III.
Prerequisite: consent of instructor
The Staff (Mr. Murphy in charge)

199. Special Study for Advanced Undergraduates.
(1–5) I, II, III.
The Staff (Mr. Murphy in charge)

Graduate Course

The Staff (Chairman in charge)

Teaching Major.—Requirements for the teaching major are the same as those for the departmental major with the addition of course 300.

Teaching Minor.—Six quarter courses in the lower division or their equivalents. Usually these will consist of Russian 1, 2, 3, 4, 5, 6. A total of 20 upper division units is required, including courses 101A, 101B, 101C.

Subject Representative: Mr. Shane.

Lower Division Courses

Course Placement.—Students with two years of Russian in high school normally continue in Russian 2, those with three years, Russian 3; those with four years, Russian 4.

1. Elementary Russian. (5) I.
Recitation—5 hours; supplementary language laboratory practice.
Mr. Patterson

2. Elementary Russian. (5) II.
Recitation—5 hours; supplementary language laboratory practice. Prerequisite: course 1.
The Staff

2X. Intensive Elementary Russian. (15) II.
Recitation—13 hours; supplementary laboratory and group practice. Prerequisite: course 1. An intensive course using contemporary materials, stressing modern spoken Russian, and covering grammar fundamentals. Completion
of course 2X satisfies the Letters and Science language requirement. Students continuing in Russian would normally enroll in course 6 the following quarter. Mrs. Charters

3. Elementary Russian. (5) III.
Recitation—5 hours; supplementary language laboratory practice. Prerequisite: course 2. Mr. Shane

4. Intermediate Russian. (5) I.
Recitation—5 hours. Prerequisite: course 3. Grammar review based on a selected literary text and conversational practice with everyday topics and situations. Mr. Patterson

4X. Intensive Intermediate Russian. (15) I.
Recitation—13 hours; supplementary laboratory and group study. Prerequisite: course 3 or placement in course 4. An intensive course emphasizing spoken Russian. Contemporary linguistic and literary materials will be used to increase the students' conversational skills and to broaden their knowledge of Russian grammar. Students completing course 4X would normally enroll in course 101B the following quarter. Mrs. Charters

5. Intermediate Russian. (5) II.
Recitation—5 hours. Prerequisite: course 4. Composition, grammar review, and conversation on literary texts and everyday topics and situations. Mr. Patterson

6. Intermediate Russian. (5) III.
Recitation—5 hours. Prerequisite: course 5. Composition, grammar review, and conversation on literary texts and everyday topics and situations. Mr. Shane

30. Great Russian Writers. (3) I.
Lecture—3 hours. Knowledge of Russian not required. An introduction to the important prose and dramatic works of such writers as Gogol, Turgenev, Dostoevsky, Tolstoy, Chekhov, Sholokov, and Pasternak. Offered in even-numbered years. Miss Tumins

40. Survey of Russian Literature to 1800. (4) II.
Lecture—3 hours. Knowledge of Russian not required. An introduction to the philosophic, historic, and stylistic elements of Russian literature from the early period up to Russian Sentimentalism with a discussion of the major writings and major literary figures. Offered in odd-numbered years. Miss Tumins

41. Survey of Russian Literature: Nineteenth Century. (4) I.
Lecture—3 hours. Knowledge of Russian not required. An introduction to the dominant literary trends, the major literary figures and landmarks of Russian prose and poetry from the period of Sentimentalism through Romanticism and Realism to the beginnings of Modernism. Offered in odd-numbered years. Mr. Patterson

42. Survey of Russian Literature: Twentieth Century. (4) II.
Lecture—3 hours. Knowledge of Russian not required. An introduction to major literary trends such as Symbolism, Acmeism, Futurism, Neorealism, and Socialist Realism. Readings from representative writers such as Gorky, Bely, Pasternak, Solzhenitsyn, and Tertz. Offered in even-numbered years. Mr. Patterson

“16. Russian for Graduate Students. No Credit. II.
Lecture—3 hours. A course designed to prepare students for the graduate reading examination.

Upper Division Courses

101A. Advanced Grammar and Reading. (4) I.
Recitation—3 hours. Prerequisite: course 6. The study of advanced grammar with reading and discussion of literary and cultural texts. Mr. Patterson

101B. Advanced Grammar and Reading. (4) II.
Recitation—3 hours. Prerequisite: course 6. The study of advanced grammar with reading and discussion of literary and cultural texts. Mr. Patterson

101C. Advanced Grammar and Reading. (4) III.
Recitation—3 hours. Prerequisite: course 6. The study of advanced grammar with reading and discussion of literary and cultural texts. Miss Tumins

102. Russian Composition. (4) II.
Recitation—3 hours. Prerequisite: course 6. Offered in even-numbered years. Miss Tumins

103. Literary Translation. (4) II.
Discussion—3 hours. Prerequisite: course 6. Translation of Russian literary texts into stylistically equivalent idiomatic English. Offered in odd-numbered years. Mr. Shane

105. Advanced Russian Conversation. (2) III.
Conversation—2 hours. Prerequisite: course 6. Intensive conversational practice and discussion based on current events and contemporary texts. May be repeated for credit. Miss Charters

121. The Nineteenth-Century Russian Novel. (4) II.
Lecture—3 hours. Knowledge of Russian not required. The origin and development of the novelistic tradition beginning with Pushkin, Lermontov, Gogol, and continuing with such writers as Goncharov, Turgenev, and Saltykov (excluding Tolstoy and Dostoevsky). Offered in even-numbered years. Mr. Patterson

* Not to be given, 1970–71.
123. The Twentieth-Century Russian Novel. (4) II.
Lecture—3 hours. Knowledge of Russian not required. The examination of various trends including Critical Realism, Symbolism, Neorealism, and Socialist Realism in the development of the novel. Readings from such writers as Corky, Zamiatin, Sholokhov, and Pasternak. Offered in odd-numbered years.
Mr. Shane

127. The Golden Age of Russian Poetry. (4) II.
Lecture—3 hours. Prerequisite: course 6. The rise and development of Russian drama. Reading and analysis of Fousvizin and nineteenth-century dramatic works by authors such as Griboedov, Pushkin, Ostrovsky, A. K. Tolstoy, Leo Tolstoy, Chekhov, and Corky. Offered in odd-numbered years.
Miss Tumins

127. The Golden Age of Russian Poetry. (4) II.
Lecture—3 hours. Prerequisite: course 101A. A study of Russian versification, the historical background to the Golden Age, and readings from Derzhavin, Batishkov, Gnedich, Pushkin, Delvig, Batyaysky, Lermontov, and other poets of the first half of the nineteenth century. Offered in even-numbered years.
Mr. Patterson

128. Modern Russian Poets. (4) III.
Lecture—3 hours. Knowledge of Russian not required; Russian majors fulfill readings in Russian. Readings in translation of modern poetry belonging to various “schools” (e.g., Symbolism, Acmeism, Futurism) including such poets as Blok, Esenin, Akhmatova, Malekovsky, Pasternak, and Evtushenko. Offered in odd-numbered years.
Mr. Patterson

140. Dostoevsky. (4) I.
Lecture—3 hours. Knowledge of Russian not required. Reading and analysis of Dostoevsky’s principal works such as Crime and Punishment, The Idiot, The Brothers Karamazov, and The Diary. Study of social and political views as reflected in Dostoevsky’s works. Offered in even-numbered years.
Miss Tumins

141. Tolstoy. (4) I.
Lecture—3 hours. Knowledge of Russian not required. A study of Leo Tolstoy’s literary evolution and moral quest. Readings include his Confession, a major novel such as War and Peace or Anna Karenina, and representative shorter fiction. Offered in odd-numbered years.
Mr. Shane

190. Senior Proseminar. (4) III.
Group conference and assigned reading in preparation for graduate study.
Mr. Patterson

Prerequisite: concurrent enrollment or previous completion of a course in Russian literature. A research essay, based on primary and secondary sources, dealing in depth with a

Topic arising from or related to the prerequisite literature course. May be repeated for credit.
The Staff

194H. Special Study for Honors Students. (5) I, II, III.
Prerequisite: open only to honors students. Guided research leading to an honors paper.
The Staff (Chairman in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
The Staff (Mr. Bernd in charge)

Graduate Courses

*200. Old Church Slavic. (4) I.
Lecture—3 hours. Morphology and syntax of Old Church Slavic.

*201. Reading in Old Church Slavic. (4) II.
Discussion—3 hours. Prerequisite: course 200. Reading and linguistic analysis of Old Church Slavic texts.
Miss Tumins

202. Descriptive Russian Grammar. (4) II.
Lecture—3 hours. An introduction to modern Russian phonology and morphology.

*204. Historical Russian Grammar. (4) III.
Seminar—3 hours. The evolution of the Russian phonological and grammatical systems from the eleventh to the twentieth centuries.

210A. Style and Syntax. (4) I.
Discussion—3 hours. An examination of stylistic differences between spoken and written Russian.
Mr. Patterson

210B. Style and Syntax. (4) II.
Discussion—3 hours. Prerequisite: course 210A. An examination of stylistic differences between spoken and written Russian.
Mr. Shane

210C. Style and Syntax. (4) III.
Discussion—3 hours. Prerequisite: course 210B. An examination of stylistic differences between spoken and written Russian.
Miss Tumins

*220. Old Russian Literature. (4) III.
Seminar—3 hours. Prerequisite: course 201. Advanced study of intellectual movements and literary styles of works such as The Song of Igor’s Campaign, “Zadonschina,” Epifany’s “Lives,” Ivan IV’s cycle of epistles. May be repeated for credit.
Miss Tumins

*221. Eighteenth Century Russian Literature. (4) III.
Seminar—3 hours. Advanced study of literary

* Not to be given, 1970–71.
movements and styles in prose or poetry. The works of writers such as Kantemir, Lomonosov, Sumarokov, Radishchev and Karamzin will be analyzed. May be repeated for credit.

Miss Tumins

222. Nineteenth Century Russian Literature. (4) I.
Seminar—3 hours. Advanced study in literary movements such as Romanticism, Naturalism, and Realism; or of a major writer such as Pushkin, Gogol, Dostoevsky, or Tolstoy. May be repeated for credit.

Mr. Shane, Miss Tumins, Mr. Patterson

*223. Early Twentieth Century Russian Literature. (4) I.
Seminar—3 hours. Reading and analysis of the achievements selected from the literary renascence beginning with the Russian Symbolists and continued by such diverse groups as the Acmeists, the Futurists and the Serapion Brotherhood. May be repeated for credit.

Mr. Shane

224. Soviet Russian Literature. (4) III.
Seminar—3 hours. Analysis of selected works of Russian prose and poetry with particular emphasis on works of extraordinary literary merit or of unusual importance in the development of genres, school, styles, techniques, and various formal elements. May be repeated for credit.

Mr. Shane

The Staff (Chairman, in charge)

Professional Course

*300 The Teaching of Russian. (3) III.
Lecture—3 hours. Prerequisite: senior or graduate standing; a major or minor in a modern foreign language.

The Staff

RUSSIAN AND HISTORY AND LITERATURE
Valerie A. Tumins, Ph.D., Chairman of the Committee
Department Office, 404 Sproul Hall

Committee in Charge:
C. Bickford O'Brien, Ph.D. (History)
Andrzej Brzeski, Ph.D. (Economics)
Valerie A. Tumins, Ph.D. (Russian)

This major is designed to give the student a better understanding of Russia through the study of its history and literature, two fields closely linked in its intellectual development.

This combined major is planned in such a way that the student will be prepared for graduate studies in either field—Russian History, Russian Literature or in a similar combined program. In either case the knowledge of Russian is a prerequisite.

Required courses for the joint Bachelor of Arts degree in Russian Language, Literature and History:

History
4A–4B–4C. History of Western Civilization. (4)
A minimum of 12 units from the following courses:
102H. Pr easeinar in Russian History. (4)
137A. Russian History: Kievian and Muscovite Russia. (4)
137B. Russian History: The Empire to 1856. (4)
137C. Russian History: The Empire, 1856–1914. (4)
137D. Russian History: Soviet Russia. (4)
A minimum of 8 units in another field of history (preferably Europe or East Asia).

* Not to be given, 1970–71.

Russian
1–2–3. Elementary Russian. (5)
4–5–6. Intermediate Russian. (5)
40. Survey of Russian Literature to 1800. (4)
41. Survey of Russian Literature: Nineteenth Century. (4)
42. Survey of Russian Literature: Twentieth Century. (4)
A minimum of 12 units from the following courses:
101A–101B–101C. Advanced Grammar and Reading. (4)
102. Russian Composition. (4)
103. Russian Literary Translation. (4)
A minimum of 8 units from the following courses:
121. The Russian Novel: Pushkin to Turgenev. (4)
123. The Russian Novel: Saltykov to Pasternak. (4)
125. Russian Drama to 1917. (4)
127. The Golden Age of Russian Poetry. (4)
128. Modern Russian Poets. (4)
140. Dostoevsky (4)
141. Tolstoy. (4)
SANSKRIT—See Classics

SOCIOLOGY

Leon H. Mayhew, Ph.D., Chairman of the Department
Department Office, 308 Voorhis Hall

Professors:
Bennett M. Berger, Ph.D.
Edwin M. Lemert, Ph. D.
Leon H. Mayhew, Ph.D.
Guenther Roth, Ph.D.
Julius Roth, Ph.D.

Associate Professor:
John F. Scott, Ph.D.

Assistant Professors:
Bruce Hackett, Ph.D.
J. Rolf Kjolseth, Ph.D.
Robert H. Maisel, Ph.D.
James McEvoy, Ph.D.
Abraham H. Miller, Ph.D.
Joseph Zelan, Ph.D.

Lecturers:
Isao Fujimoto, M.A. (Sociology and Applied Behavioral Sciences)
Arthur Lipow, Ph.D.

Departmental Major Advisers.—(a) Undergraduate: Mr. Maisel, Mr. Miller, Mr. Scott, (b) Graduate: The Staff.

The Major Program

Lower Division Courses.—Required: Sociology 1, 2, 12, 46A, 46B or their equivalent; 8 units selected from Anthropology 2, Economics 1A, 1B, and Psychology 1A, 1B and 1C. Recommended: Anthropology 1 and Philosophy 12A, 12B, 20A–20B–20C.

Upper Division Courses.—Required: 36 units of Sociology including 165A and 165B. Recommended: Anthropology 102, 119A, 119B, 124, 128A, 128B; History 101A, 101B; Philosophy 107C, 151, 156; Political Science 150, 161; Psychology 145; Mathematics 105A, 105B.

Pre-Social Welfare Students

Lower Division Courses.—Required: Sociology 1, 3, 46A, 46B or their equivalent, and Psychology 1A, 1B and 1C. Recommended: Anthropology 2, Sociology 2, Economics 1A, 1B, Philosophy 12A–12B, Political Science 1A, 1B.

Graduate Study.—The Department offers a program of study leading to the M.A. and Ph.D. degrees in sociology. Further information regarding graduate study may be obtained at the department office.

Teaching Major.—Requirements for the teaching major are the same as for the departmental degree plus Sociology 122 or 124, 130 and 140.

Teaching Minor.—Thirty units of sociology taken in consultation with the subject representative.

Subject Representative: Mr. J. Roth.

Lower Division Courses

1. Introduction to Sociology. (4) I, II, III.
Lecture—3 hours; discussion—1 hour. Principles and basic concepts of sociology. The study of groups, culture, collective behavior, classes and caste, community and ecology, role, status, and personality.

2. Introduction to Sociology: Social Organization. (4) II, III.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. A study of social organization and institutions, with attention to the application of concepts and related research findings.

Lecture—3 hours; discussion—1 hour. A general sociological consideration of contemporary social problems in relation to sociocultural change and programs for improvement.

12. Introduction to Sociological Theory. (4) III.
Lecture—4 hours. An introduction to classic texts and problems in the tradition of sociological inquiry. Representative works of important figures, such as Marx, Comte, Weber, and Durkheim; the relevance of these materials for contemporary sociology.

Mr. Maisel

25. Sociology of Popular Culture. (4) II.
Lecture—4 hours. The historical emergence of popular culture. "High" culture, "folk" culture and "mass" culture; the democratization of culture values; the organization of popular tastes; characteristic art forms of popular culture: literature, music, the graphic arts. The social structure of audiences.
Lecture—4 hours. An historical consideration of ideological and institutional forces affecting the social status of black people in America. Among the topics considered will be the African backgrounds, slavery, racism, the Civil War, "Jim Crow," black reconstruction, and recent protest movements.

Prerequisite: consent of instructor.
The Staff (Mr. Mayhew in charge)

Prerequisite: consent of instructor.
The Staff (Mr. Mayhew in charge)

46A. Introduction to Social Research. (4) I.
Lecture—4 hours. Prerequisite: 8 units of Sociology. Examination of the methodological problems of social research. Selection and definition of problems of investigation, data-gathering techniques, and sampling.

46B. Introduction to Social Research. (4) II.
Lecture—4 hours. Prerequisite: course 46A. Data-analysis techniques, measurement, scaling, multivariate analysis, and quantitative measures of association.

46C. Introduction to Social Research. (4) III.
Lecture—4 hours. Prerequisite: course 46B. An introduction to the statistical analysis of social data, emphasizing the logic and use of statistical measures and procedures especially relevant to sociological analysis.

Upper Division Courses

104. Empirical Social Research and Social Theory. (4) III.
Lecture—4 hours. Prerequisite: upper division standing and 8 units of sociology, or consent of instructor. An examination of important works in sociology, in the light of the ways in which theory informs and shapes actual research operations, and the ways in which the results of empirical research mold social theory.

Lecture—4 hours; laboratory—3 hours. Prerequisite: one course in sociological research methods or Mathematics 13 or 15 or 30. Study design, drawing a sample from the city of Sacramento, and analysis of the data collected. Provides an introduction to survey methods, non-experimental research, and data collection and analysis.

106. Quantitative Methods of Research. (4) II.
Lecture—4 hours. Prerequisite: course 46C or equivalent. Logical and technical features of multiple and partial correlation and regression analysis. Scaling theory and factor analysis. Introduction to mathematical models in sociology.

107. Modes of Sociological Analysis. (4) I.
Lecture—4 hours. Prerequisite: junior or senior standing and 9 units of sociology. The place of sociology among the sciences and the humanities; generalization and explanation in sociology. Styles of sociological inquiry, functional analysis, historical sociology, social criticism.

108. Advanced General Sociology. (4) III.
Lecture—4 hours. Prerequisite: junior or senior standing and 9 units of sociology. Critical analysis of basic concepts in sociology; social organization, culture, socialization, stratification, and their application to specific problems. The bearing of such analysis on problems of social order and social change.

118. Political Sociology. (4) II.
Lecture—4 hours. Prerequisite: course 1 or consent of instructor. The relation of social cleavages and social cohesion to the functioning of political institutions; the social bases of local and national power structures; social sources of political movements; analysis of concepts of alienation, revolution, ideology, ruling class, and elite.

120. Deviance and Society. (5) I.
Lecture—4 hours. Prerequisite: course 2. Theory and studies of deviance in relation to societal reaction, group processes and social roles. Stigma and incapacity; cosmetic defect. Deviation theory applied to selected crimes, prostitution, drugs, alcohol use, and mental disorders. Creativity and society.

122. Sociology of Adolescence. (4) III.
Lecture—4 hours. Prerequisite: 8 units of sociology. Chronological age and social status; analysis of social processes bearing upon the socialization of children and adolescents. The emergence of "youth cultures." Generational succession as a cultural problem.

123. American Society. (4) III.
Lecture—4 hours. Prerequisite: 8 units of social science or consent of instructor. The institutional structure and social organization of the United States.

124. Sociology of Educational Institutions. (4) II.
Lecture—4 hours. Prerequisite: 4 units of sociology. Public schools as arenas of intergroup conflict and as instruments of social mobility. The meaning of local autonomy in the context of prevailing arrangements for certification and
public support. The relevance of public education to the ethos and myths of American society.

Mr. Scott

125. Sociology of Intellectual Life. (4) I.
Lecture—4 hours. Prerequisite: upper division standing and consent of instructor. Sociological analysis of the intelligentsia; types of intellectuals, theories concerning their social role; research on the social sources of intellectual work in politics, literature, art, and science; historical considerations of intellectual milieu; international comparisons of intellectuals.

Mr. Berger

126. Social Structure and Personality. (4) I.
Lecture—4 hours. Prerequisite: course 2. Exposition of concepts, theories, and research relating the disciplines of sociology and psychology. Mechanisms of social influence on behavior. Complementarity of personality and learned roles; processes of internalization of roles and norms.

130. Race Relations and Minority Groups. (4) I, III.
Lecture—4 hours. Prerequisite: 8 units of social science or consent of instructor. A study of contacts and interaction between racial and ethnic groups; sources and effects of prejudice and discrimination; programs for reducing intergroup tensions.

Mr. Lipow

131. The Family. (5) I.
Lecture—4 hours. Prerequisite: course 2. Social implications of primate reproductive physiology; the nuclear family; major familial roles; normative controls on sex and reproduction; inheritance groups; status ascription; the family and stratification; marital selection; relations between the family and industrial social change.

Mr. Scott

140. Social Stratification. (4) III.
Lecture—4 hours. Prerequisite: course 1. Systems of social ranking; theories of stratification; power, prestige, culture, and styles of life of various social classes; social mobility and its consequences for social structure.

Mr. Hackett

141. Industrialization and Social Change. (4) II.
Lecture—4 hours. Prerequisite: 4 units of sociology. The interrelations between technological and social change, the social conditions of economic development, and the social implications of automation in highly industrialized countries.

Mr. G. Roth

142. Comparative Institutions and Social Structures. (4) I.
Lecture—4 hours. Prerequisite: 8 units of sociology. The central institutions and cultural legacies of the principal complex societies. Western nations will be compared with the U.S.S.R. and newly developing states with respect to their patterns of institutional persistence and change.

Mr. G. Roth

143. Urban Society. (4) I.
Lecture—4 hours. Prerequisite: 8 units of sociology. Urbanization as a social process; comparison of urban, suburban, metropolitan and rural phenomena; types of cities; the subcultures of cities; the urban future.

Mr. Hackett

144. Rural Society. (4) II.
Lecture—4 hours. The characteristics of rural social systems in contrast to urban; the nature of peasant and folk societies; the impact of social change upon rural community life considered from the standpoint of regional differences in the United States and selected world areas.

Mr. Fujimoto

145. Social Structure of the U.S.S.R. (4) II.
Lecture—4 hours. A survey of the major institutions of Soviet society, including the family, education, work, health and welfare, the arts, ethnic and national groups.

146. Sociology of Religion. (4) II.
Lecture—4 hours. Prerequisite: 8 units of sociology or consent of instructor. The relationship between social structure and religious life. Social class, political behavior, and religious affiliation. The passage from "sacred" to "secular" ways of life. Religion and social change in advanced societies. Churches as social organizations. "Established" churches and religious "cults."

Mr. G. Roth

148. Collective Dynamics and Social Movements. (4) III.
Lecture—4 hours. Prerequisite: course 1 or consent of instructor. Non-institutionalized forms of group behavior; social contagion, fashion movements, public opinion formation, reform and revolutionary movements. Their relations to social change in mass societies.

150. Criminology. (4) III.
Lecture—4 hours. Prerequisite: 8 units of social science or consent of instructor. The sociological analysis of criminal behavior in relation to social structure and the criminalization process.

152. Juvenile Delinquency. (4) II.
Lecture—4 hours. Prerequisite: 8 units of sociology or psychology. Study of juvenile delinquency in relation to the family, peer groups, community, and institutional structures. Consideration of processing of the delinquent by formal agencies of control, with special attention given to the juvenile court.

Mr. Lerner

154. Sociology of Medicine. (4) I.
Lecture—4 hours. Prerequisite: 4 units of sociology. An overview of sociological research in medicine and health care, with emphasis on the organizational and institutional aspects.

Mr. J. Roth
155. Sociology of Law. (4) III.
Lecture—4 hours. Prerequisite: 8 units of social science. Law considered as social control; relation of legal institutions to society as affecting judicial decision-making and administration of justice. Lawyers as an occupational group. Legal reform. Mr. Lemert

159. Sociology of Occupations. (4) II.
Lecture—4 hours. Prerequisite: 8 units of sociology or consent of instructor. The natural history of occupations; the institutional matrix of occupations; colleague and client relationships; occupational social controls; career lines, and occupational-related self-definitions; occupational politics. Mr. J. Roth

160. Work and Leisure. (4) II.
Lecture—4 hours. Prerequisite: course 1. Historical and comparative analysis of problems associated with quality of work and quality of leisure; impact of cultural and social change on occupational pattern and leisure activity. Mr. Berger

165A. Sociological Theory. (4) I.
Lecture—4 hours. Prerequisite: 8 units of sociology. Major sociological theorists of the twentieth century. Progressive, liberal, and radical traditions of sociological thought. Thinkers discussed include Comte, Saint-Simon, Marx, Spencer, and Toennies. Mr. Mayhew

165B. Sociological Theory. (4) II.
Lecture—4 hours. Prerequisite: 8 units of sociology. Sociological theorists of the late nineteenth and early twentieth centuries. Theorists discussed include Weber, Durkheim, Pareto, and Simmel. Mr. Mayhew

165C. Sociological Theory. (4) III.
Lecture—4 hours. Prerequisite: 8 units of sociology. The development of the American sociological tradition, with emphasis on major contemporary theorists. Theorists discussed include Mead, Cooley, Park, Merton, and Parsons. Mr. Mayhew

170. Population. (4) I.
Lecture—4 hours. Prerequisite: 8 units of social science or consent of instructor. Introduction to the study of human population, including theories and statistical measures; social causes and consequences of population trends; changes in population structure; geographical distribution; migration; socio-psychological factors affecting fertility. Mr. Scott

172. Art and the Egalitarian Society. (4) III.
Lecture—4 hours. Art as a product of aristocratic societies. Democratization of aristocratic traditions in contemporary society. Museums and collectors: the preservation of aristocratic art in capitalist and socialist societies. Industrial money and preindustrial tastes. Can there be a democratic art?

173. Sociology through Literature. (4) II.
Lecture—4 hours. Prerequisite: 4 units of sociology. Introduction to analysis of literature as sociological data. Reading of numerous works on American and other societies by authors such as Steinbeck, Lewis, Dreiser, Schulberg, Orwell, etc. Mr. McEvoy

174. Sociology of Language. (4) III.
Lecture—4 hours. Prerequisite: 6 units of sociology. The relation of language patterns to social patterns; "talk" as a multi-level social phenomenon; relationship of dialects to social groups; sociological analyses of stability and change in language; problems of learning and unlearning languages. Mr. Kjolseth

176. Sociology of Knowledge. (4) III.
Lecture—4 hours. A critical analysis of the social foundations of knowledge in society. The history, problems, and dilemmas in classical sociology of knowledge. Contemporary applications. Natural and social sciences as social systems. The sociology of personal knowledge in everyday life. Mr. Kjolseth

180. Complex Social Organization. (4) II.
Lecture—4 hours. Prerequisite: course 1 or consent of instructor. Institutional analysis of administrative structures and voluntary associations; consideration of informal organization, ideologies, bureaucracy, decision-making, and morale in selected areas of government, industry, religion, and education. Mr. Hackett

Lecture—4 hours. Prerequisite: course 3 and upper division standing. A sociological analysis of the evolution and current organization of welfare functions in modern societies.

Prerequisite: consent of instructor. The Staff (Mr. Mayhew in charge)

199. Special Study for Advanced Undergraduates. (1–5) I, II, III.
Prerequisite: open to seniors only. The Staff (Mr. Mayhew in charge)

Graduate Courses

205. Methodological Critique of Research. (4) III.
Lecture and discussion—3 hours. Prerequisite: course 46C or consent of instructor. Methodological analysis and criticism of empirical research exemplifying different types of research design. Examination of surveys, experiments, historical and comparative studies, and studies using biographical and demographic data.

* Not to be given, 1970–71.
207. Methods of Survey Analysis. (4) I.
Lecture—3 hours. Principles and procedures in the analysis of survey data. Forms of multivariate relations; typologies; scaling; panel analysis; contextual analysis.

219A–219B. Behavioral Political Sociology.
(4-4) I–II.
Seminar—4 hours. Prerequisite: graduate status in sociology, political science or psychology. The development of behavioral and empirical political sociology; study of conflict, discontent, community politics, the international system, game theory and coalition formation. Empirically grounded theories. Mr. McEvoy

220. Deviance, Law, and Social Control. (4) I.
Seminar—3 hours. Prerequisite: course 120 or consent of instructor. Report and discussions of literature on selected forms of deviance in relation to law and formal social control. Agency contacts and exploratory research projects. Mr. Lemert

222. Sociology of Youth. (4) I.
Seminar—3 hours. Adolescence as a social category which "juvenileizes" the young; its prolongation in industrial societies; adolescence and "identity"; age-graded subcultures and their relation to other minority subcultures; youth and popular culture. Mr. Berger

224. Sociology of Education. (4) II.

226. Social Interaction and Personality. (4) II.
Lecture and discussion—3 hours. Prerequisite: course 126 or consent of instructor. The influence of social structure, personality, and social interaction in face-to-face social situations; the relations of role-taking and personal autonomy to the development of the self; social-psychological processes in intimate and small-group situations.

242. Comparative Method in Historical Sociology.
(4) III.
Lecture and discussion—3 hours. Prerequisite: course 142 or consent of instructor. Comparative approaches to major historical phenomena such as nationalism, bureaucratization, feudalism, and capitalism; the relevance of psychological and sociological theories to historical interpretation; the verifiability of historically grounded hypotheses; the meaning of analogy, correspondence, and causality. Mr. G. Roth

(4) II.
Lecture-discussion—4 hours. Prerequisite: graduate standing, undergraduate consent of instructor. Mass movements, urban politics, and ethnic conflicts are analyzed from the vantage point of the interaction between mass political actions and the system components constraining political responses at the mass and elite level. Mr. Miller

252. Sociology of Art. (4) III.
Lecture and discussion—3 hours. Prerequisite: course 25 and 125, or consent of instructor. The relationship of social class, institutions, and value system to art. The art of primitive, aristocratic, and democratic societies. Art and political ideology. The question of art as "representative" of social values. Artists as a social type.

265. Sociological Theory. (4) II.
Lecture and discussion—3 hours. Prerequisite: courses 165A, 165B, and 165C; or consent of instructor. The emergence of sociological thinking as part of the history of ideas; the application of sociological analysis to sociological ideas. The French sociological tradition from Saint-Simon to Durkheim; the influence of Marxist thinking on subsequent sociological ideas.

274. Sociolinguistics: Contemporary Research.
(4) I.
Seminar—3 hours. Prerequisite: course 174 or consent of instructor. Evaluation of recent investigations and research in progress: position papers, variables in speech communities (ethnography of communication), development of communicative competence(s), role repertoires and the management of consciousness in interaction, language and stratification, stylistics in social control, multilingualism, language planning and nationhood. Mr. Kjolseth

280. Organizations and Institutions. (4) II.
Seminar—3 hours. Prerequisite: course 180 or consent of instructor. Theory of formal organizations and bureaucracy. Methods of research in organizational and institutional studies. Historical and comparative analysis of political, religious, educational, military and economic structure. Mr. Hackett

Prerequisite: consent of instructor. The Staff

290. Seminar. (4) I, II, III.
Seminar—3 hours. (Satisfactory/Unsatisfactory grading only.) The Staff (Chairman in charge)
Seminar—3 hours. Prerequisite: consent of instructor. Through reading, research exercises, discussion, and field work projects developed and conducted by each student, the student will examine the work of social scientists as a process of sociological and psychological continuity. (Satisfactory/Unsatisfactory grading only.) Mr. J. Roth

298. Group Study. (1—5) I, II, III.
The Staff (Chairman in charge)

299. Individual Study. (1—9) I, II, III.
(Satisfactory/Unsatisfactory grading only.)
The Staff (Chairman in charge)

SOIL AND PLANT NUTRITION—See Resource Sciences

SOIL SCIENCE—See Resource Sciences

SOIL AND WATER SCIENCE—See Resource Sciences

SPANISH
Donald G. Castanien, Ph.D., Chairman of the Department
Department Office, 615 Sproul Hall

Professors:
*Donald G. Castanien, Ph.D.
Homero Castillo, Ph.D.
Iver N. Nelson, Ph.D. (Emeritus)

Associate Professor:
Daniel S. Keller, Ph.D.

Assistant Professors:
M. Roberto Assardo, Ph.D.
Didier T. Jaén, Ph.D.
Robert M. Scari, Ph.D.

Assistant Professors:
Reed Anderson, M.A. (Acting)
Glenn E. Lipskey, M.A. (Acting)
Guillermo Rojas, M.A. (Acting)

Lecturers:
David H. Allen, Jr., Ph.D.
Fabian A. Samaniego, M.A.

Associates:
Earl L. Rees, M.A.
Paula K. Rodgers, M.A.
Santiago Rojas, M.A.
Ronald R. Senft, M.A.

The Major Program
Lower Division Courses.—Required: Spanish 1, 2, 3, 4, 5 and 6 or their equivalents; 27A—27B—27C. Recommended: one year of college Latin or the equivalent.
Upper Division Courses.—Required: 36 units of upper division courses including 101A—101B—101C, 180 or 181, one course in each of the following areas: literature of the Golden Age (109, 111, or 115), twentieth-century Spanish literature (120A, 120B, or 120C), twentieth-century Spanish American literature (108A, 108B, 125A, 125B, 127, or 128).

Students are urged to consult with a departmental adviser, especially in regard to work done or work to be done at other institutions.

The Master of Arts Degree
The Department offers courses leading to the M.A. degree in Spanish to students who have completed with distinction the A.B. degree in Spanish, or its equivalent. Candidates will be recommended for admission to graduate studies in Spanish provided they meet the requirements of the Graduate Division and the Department of Spanish. Detailed information may be obtained by writing to the Graduate Adviser, Department of Spanish.

The Degree of Doctor of Philosophy
The Department offers programs of study and research leading to the Ph.D. degree. Detailed information may be obtained by writing to the Graduate Adviser.

Teaching Major.—Requirements for the teaching major are the same as for the departmental major.

Teaching Minor.—Spanish 1, 2, 3, 4, 5, 6, 27A—27B—27C, or their equivalents. At least 16 units of upper division work, including Spanish 101A—101B, 134 or 135 and one of the following courses: Spanish 131A, 120A, 108A, or 108B.

Subject Representative: Mr. Keller.

Portuguese
Lower Division Courses
1. Elementary Portuguese. (4) I.
Laboratory—2 hours; recitation—3 hours. Portuguese grammar, conversation, and reading. Mr. Assardo

* Absent on leave, spring quarter 1971.
2. Elementary Portuguese. (4) II.
 Laboratory—2 hours; recitation—3 hours.
 Prerequisite: course 1. A continuation of
 course 1.
 Mr. Assardo

3. Elementary Portuguese. (4) III.
 Laboratory—2 hours; recitation—3 hours.
 Prerequisite: course 2. A continuation of
 course 2.
 Mr. Assardo

Upper Division Courses

104. Survey of Brazilian Literature: Prose Fiction.
 (4) I.
 Lecture—3 hours. Prerequisite: course 3.
 Mr. Assardo

105. Survey of Brazilian Literature: Poetry. (4) II.
 Lecture—3 hours. Prerequisite: course 3.
 Mr. Assardo

106. Survey of Brazilian Literature: Drama and
 Essay. (4) III.
 Lecture—3 hours. Prerequisite: course 3.
 Mr. Assardo

Spanish

Departmental Major Advisers.—Mr. Assardo,
Mr. Enwall, Mr. Jaén, Mr. Keller, Mr. Scari.
Graduate Adviser.—Mr. Castanien.

Lower Division Courses

1. Elementary Spanish. (4) I, II, III.
 Laboratory—2 hours; recitation—3 hours.
 The Staff

2. Elementary Spanish. (4) I, II, III.
 Laboratory—2 hours; recitation—3 hours.
 Prerequisite: course 1. A continuation of
 course 1.
 The Staff

 Laboratory—2 hours; recitation—3 hours.
 Prerequisite: course 2. A continuation of course
 2.
 The Staff

3X. Elementary Spanish. (6) II, III.
 Recitation—5 hours; two 3/4 hour laboratory
 sessions per week. Prerequisite: course 3. The
 equivalent of courses 4 and 5.
 The Staff

 Recitation—3 hours. Prerequisite: course 3.
 The Staff

5. Intermediate Spanish. (3) I, II, III.
 Recitation—3 hours. Prerequisite: course 4.
 Continuation of course 4.
 The Staff

 (3) I, II, III.
 Recitation—3 hours. Prerequisite: course 5.
 Spoken Spanish stressed through class discus-
 sion of a variety of selected readings.
 The Staff

27A–27B–27C. Introduction to the Forms of
 Hispanic Literature. (3–3–3) I–II–III;
 II–III–I; III–I–II.
 Lecture—3 hours. Prerequisite: course 6.
 Introductory study of the forms of Spanish and
 Spanish-American prose and poetry; analysis of
 particular works.
 The Staff

Upper Division Courses

 (4–4–4) I–II; II–III; I–III.
 Lecture—3 hours. Prerequisite: course 6.
 The Staff

106. Literature of Colonial Spanish America. (4) I.
 Lecture—3 hours; conferences and reports.
 Prerequisite: course 27C. A study of the most
 important authors and movements in the various
 regions of Spanish America to 1810.
 Mr. Castanien

107. Spanish-American Literature of the Nineteenth Century. (4) II.
 Lecture—3 hours; conferences and reports.
 Prerequisite: course 27C. The literary develop-
 ment of Spanish America between Independence and
 Modernismo.
 Mr. Jaén

108A. Spanish-American Prose of the Twentieth Century. (4) III.
 Lecture—3 hours; conferences and reports.
 Prerequisite: course 27C. Emphasis on the de-
 velopment of the novel. Offered in odd-num-
 bered years.
 Mr. Assardo

108B. Spanish-American Prose of the Twentieth Century. (4) III.
 Lecture—3 hours; conferences and reports.
 Prerequisite: course 27C. Emphasis on the essay.
 Offered in even-numbered years.
 Mr. Assardo

109. Spanish Drama of the Golden Age. (4) III.
 Lecture—3 hours; conferences and reports.
 Prerequisite: course 27C. Offered in even-
 number.
 Mr. Assardo

111. Don Quijote. (4) II.
 Lecture—3 hours. Prerequisite: course 27C.
 Mr. Castanien

114. Spanish Romantic Literature. (4) II.
 Lecture—3 hours; conferences and reports.
 Prerequisite: course 27C. Readings and lectures
 on romantic writers of the first half of the nine-
 teenth century with emphasis on drama and
 poetry. Offered in odd-numbered years.
 Mr. Scari

115. Lyric Poetry of the Golden Age. (4) III.
 Lecture—3 hours. Prerequisite: course 27C.
 Offered in odd-numbered years.
119. Spanish Novel of the Nineteenth Century. (4) III.
Lecture—3 hours. Prerequisite: course 27C. Offered in odd-numbered years. Mr. Scari

120A. Twentieth-Century Spanish Prose. (4) I.
Lecture—3 hours. Prerequisite: course 27C. Mr. Anderson

120B. Twentieth-Century Spanish Drama. (4) III.
Lecture—3 hours. Prerequisite: course 27C. Offered in odd-numbered years. Mr. Anderson

120C. Twentieth-Century Spanish Poetry. (4) III.
Lecture—3 hours. Prerequisite: course 27C. Offered in even-numbered years. Mr. Enwall

125A. Modernism: The Precursors. (4) I.
Lecture—3 hours. Prerequisite: course 27C. Offered in even-numbered years. Mr. Castillo

125B. Modernism: The Major Poets. (4) II.
Lecture—3 hours. Prerequisite: course 27C. Offered in even-numbered years. Mr. Castillo

127. Poetry of Post-Modernism and Vanguardism. (4) III.
Lecture—3 hours. Prerequisite: course 27C. Offered in even-numbered years. Mr. Castillo

128. Contemporary Spanish-American Short Story Writers. (4) II.
Lecture—3 hours; conferences and reports. Prerequisite: course 27C. Literary trends in the development of the short story in Spanish America as seen in the representative works of major contemporary authors. Offered in even-numbered years. Mr. Castillo

131A. Modern Spanish Syntax. (4) I.
Lecture—3 hours. Prerequisite: course 101B. Mr. Keller

131B. Modern Spanish Syntax. (4) II.
Lecture—3 hours. Prerequisite: course 101B. Mr. Keller

132. Introduction to Spanish Linguistics. (3) III.
Lecture—3 hours. Prerequisite: course 101B. Principles of classical phonemics and morphemics together with more recent developments; descriptive analysis of modern Spanish sounds and forms. Theoretical and practical comparison with English and other Romance Languages.

134. Survey of Spanish Culture. (4) I.
Lecture—3 hours. Prerequisite: course 27C. Mr. Enwall

135. Survey of Spanish-American Culture. (4) III.
Lecture—3 hours. Prerequisite: course 27C. Mr. Rojas

150. Masterpieces of Spanish Literature. (4) I.
Lecture—3 hours. Reading, lectures, and discussion in English. May not be counted as part of the major in Spanish. Mr. Scari

151. Study of a Major Writer. (4) I, II, III.
Lecture—3 hours. Prerequisite: course 27C. May be repeated for credit with consent of instructor. The Staff

175. Introduction to Literary Theory and Criticism. (4) II.
Lecture—3 hours. Prerequisite: course 27C. Basic concepts for the analysis of literature with emphasis on Spanish literary and critical theory applied to Spanish literature. Offered in odd-numbered years. Mr. Jaén

180. History of Spanish Literature. (4) III.
Lecture—3 hours. Prerequisite: open only to majors in their senior year; consent of instructor. Mr. Scari

181. History of Spanish-American Literature. (4) II.
Lecture—3 hours; conferences and reports. Prerequisite: open only to majors with senior standing; consent of instructor. Mr. Keller

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Castanien in charge)

Graduate Courses

200. Techniques of Literary Scholarship. (4) III.
Lecture—3 hours. The elements of bibliography and fundamental methods of literary research. Mr. Castanien

210. Literary Criticism: Poetry. (4) I.
Seminars—3 hours. Offered in odd-numbered years. Mr. Castillo

230A. History of the Spanish Language. (4) I.
Seminars—3 hours. Prerequisite: Latin 1. Mr. Lipskey

230B. History of the Spanish Language. (4) II.
Seminars—3 hours. Prerequisite: Latin 1. Mr. Lipskey

231A. Spanish Literature of the Golden Age: Lyric Poetry. (4) I.
Seminars—3 hours. Offered in even-numbered years.

231B. Spanish Literature of the Golden Age: The Drama. (4) II.
Seminars—3 hours. Offered in odd-numbered years.

231C. Spanish Literature of the Golden Age: Prose. (4) III.
Seminars—3 hours. Offered in odd-numbered years.

232. Cervantes. (4) III.
Seminars—3 hours. The major works of Cervantes and of the principal Cervantine critics. Offered in odd-numbered years. Mr. Castanien
234. Twentieth-Century Spanish Poetry. (4) I.
Seminar—3 hours. Offered in even-numbered years.
Mr. Enwall

235A. Twentieth-Century Spanish Prose. (4) I.
Seminar—3 hours. Offered in odd-numbered years.
Mr. Anderson

235B. Twentieth-Century Spanish Prose. (4) II.
Seminar—3 hours. Offered in even-numbered years.
Mr. Anderson

237. Spanish Romanticism. (4) I.
Seminar—3 hours. Sources and development of Romanticism in Spain, particularly in poetry and drama. Offered in odd-numbered years.
Mr. Scari

238A. Spanish-American Drama: 1880—1930. (4) III.
Seminar—3 hours. Offered in odd-numbered years.
Mr. Keller

238B. Spanish-American Drama: 1930 to Present. (4) III.
Seminar—3 hours. Offered in even-numbered years.
Mr. Keller

239. Post-Romantic Spanish Literature of the Nineteenth Century. (4) II.
Seminar—3 hours. Offered in even-numbered years.
Mr. Scari

241A. Spanish-American Novel, 1900—1920. (4) I.
Seminar—3 hours. Offered in even-numbered years.
Mr. Castillo

241B. Spanish-American Novel, 1920—1940. (4) II.
Seminar—3 hours. Offered in odd-numbered years.
Mr. Castillo

Seminar—3 hours. Offered in odd-numbered years.
Mr. Castillo

245. Darío and His Contemporaries. (4) II.
Seminar—3 hours. Offered in even-numbered years.
Mr. Castillo

247. New Directions in Spanish-American Poetry. (4) III.
Seminar—3 hours. Offered in even-numbered years.
Mr. Castillo

248. The Spanish-American Essay. (4) II.
Seminar—3 hours. Major Spanish-American essayists from Sarmiento to Octavio Paz. Offered in even-numbered years.
Mr. Jaén

299. Research. (2—5) I, II, III.
The Staff (Chairman in charge)

SUBJECT A
Department Office, TB-123, Room 105—106

Instruction Supervisor:
Leonard G. Homann, B.A.

TEXTILES AND CLOTHING—See Family and Consumer Sciences

VEGETABLE CROPS—See Plant Sciences

VETERINARY MEDICINE, School of—See page 159 for course listings

VETERINARY MICROBIOLOGY

Ernst L. Biberstein, D.V.M., Ph.D., Chairman of the Department
Department Office, 2004 Haring Hall

Professors:
Norman F. Baker, D.V.M., Ph.D.
Ernst L. Biberstein, D.V.M., Ph.D.
Hugh S. Cameron, D.V.M., Ph.D., LL.D. (Emeritus)
James R. Douglas, Ph.D.
Michel M. J. Lavoipierre, M.B., Ch.B.
Delbert G. McKercher, D.V.M., Ph.D.

John W. Osebold, D.V.M., Ph.D.
Clyde Stormont, Jr., Ph.D.

Associate Professor:
Yuan C. Zee, D.V.M., Ph.D.

Assistant Professors:
Audria Matheson, Ph.D.
John B. Smith, B.V.Sc., Ph.D.
Professor in Residence:
Moshe Shifrine, Ph.D.

Lecturer:
Margaret E. Meyer, Ph.D.

Upper Division Courses

111. Immunogenetic and Electrophoretic Techniques. (2) I.
Lecture—1 hour; laboratory—3 hours. Prerequisite: Animal Genetics 107 (may be taken concurrently) or consent of instructor. Immunologic and electrophoretic techniques used in the exploration of heritable differences in red cell antigens, serum proteins and enzymes of domestic animals.
Mr. Stormont

120. Principles and Techniques of Bacteriology. (2) I.
Lecture—3 hours; laboratory—6 hours (completed in 4 weeks). Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. The course deals with the structure and internal organization of microorganisms, nutrition, cultivation and physiology of bacteria, effects of chemical and physical agents on growth and death of bacteria and mechanisms of antibiotic sensitivity and resistance.
Miss Matheson

121. Immunity and Serology. (3) I.
Lecture—3 hours; laboratory—6 hours (completed in 5 weeks). Prerequisite: course 120 or consent of instructor. The principles of immunity and serology. Mr. Osebold, Mr. Stormont

122. Bacterial and Mycotic Pathogens of Domestic Animals. (4) II.
Lecture—4 hours; laboratory—8 hours (completed in 5½ weeks). Prerequisite: course 121 or consent of instructor. The biology of infectious animal diseases caused by bacteria and fungi.
Mr. Biberstein, Miss Matheson, Mr. Smith

123. Viral Pathogens of Animals. (3) II.
Lecture—4 hours; laboratory—8 hours (completed in 4½ weeks). Prerequisite: course 122 or consent of instructor. The biology of infectious diseases caused by viruses. Virus-host relationship with emphasis on pathogenesis, immunity and diagnosis.
Mr. Zee

124. Veterinary Protozoology. (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. The protozoan parasites of domestic animals with emphasis on biology, life history, identification, and control.
Mr. Baker

125. Veterinary Helminthology and Entomology. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. The helminth and arthropod parasites of domestic animals with emphasis on biology, life history, identification, and control.
Mr. Baker, Mr. Douglas, Mr. Lavoipierre

127. Medical Microbiology. (5) I.
Lecture—3 hours; laboratory—6 hours. Prerequisite: Bacteriology 2. Principles of infection and resistance; nature and manifestations of immunity and allergy; the bacterial and mycotic pathogens of man.
Mr. Biberstein, Miss Matheson, Mr. Shifrine

128. Biology of Animal Viruses. (3) II.
Lecture—3 hours. Prerequisite: Biochemistry 101A or the equivalent. Fundamental physical and chemical properties of animal viruses; methods of propagation, purification and assay. Mechanisms of viral replication and pathogenesis of virus infections in man and animals. Immunity to virus diseases and oncogenic properties of animal viruses.
Mr. Zee

199. Special Study for Advanced Undergraduates. (1-5) I, II, III.
The Staff (Mr. Biberstein in charge)

Graduate Courses

201. Clinical Microbiology. (2) II.
Laboratory—6 hours. Prerequisite: course 122, junior standing in School of Veterinary Medicine. Principles and methods of etiological diagnosis of bacterial, mycotic, viral, protozoan, helminthic, and ectoparasitic infections affecting domestic animals.
The Staff

270. Advanced Immunology. (6) III.
Lecture—3 hours; laboratory—9 hours. Prerequisite: courses 120-123 or 127 or consent of instructor. Dynamics of infection and resistance: antibody production and manifestations of antigen-antibody reactions, immune-chemistry, hypersensitivity. Immunological considerations of the groups of disease agents. Offered in even-numbered years.
Mr. Osebold, Miss Matheson, Mr. Shifrine,

290. Seminar. (1) I, II, III.
Seminar—1 hour.
The Staff (Mr. Biberstein in charge)

298. Group Study. (1-5) I, II, III.
The Staff (Mr. Biberstein in charge)

299. Research. (1-12) I, II, III.
The Staff (Mr. Biberstein in charge)
VITICULTURE AND ENOLOGY—See Food Science and Plant Sciences

WATER SCIENCE AND ENGINEERING—See Resource Sciences

WILDLIFE AND FISHERIES BIOLOGY—See Resource Sciences

ZOLOGY

Herman T. Spieth, Ph.D., Chairman of the Department
Everett W. Jameson, Jr., Ph.D., Vice-Chairman of the Department

Department Office, 2320 Storer Hall

Professors:
- Charles R. Goldman, Ph.D.
- Milton Hildebrand, Ph.D. (Zoology and Applied Behavioral Sciences)
- Everett W. Jameson, Jr., Ph.D.
- Loye H. Miller, Ph.D., LL.D. (Emeritus)
- Milton A. Miller, Ph.D.
- Lauren E. Rosenberg, Ph.D.
- Robert L. Rudd, Ph.D.
- George W. Salt, Ph.D.
- Herman T. Spieth, Ph.D.
- Tracy I. Storer, Ph.D., LL.D. (Emeritus)
- Kenneth E. F. Watt, Ph.D.

Associate Professors:
- Ronald J. Baskin, Ph.D. (Zoology and Animal Physiology)
- William J. Hamilton, III, Ph.D.
- Stephen L. Wolfe, Ph.D. (Zoology and Genetics)

Assistant Professors:
- Peter B. Armstrong, Ph.D.
- Dennis Barrett, Ph.D.
- David W. Deamer, Ph.D.
- Robert D. Grey, Ph.D.
- William M. Hamner, III, Ph.D.
- Ann E. Kammer, Ph.D.

Professors:
- Norman F. Baker, D.V.M., Ph.D. (Veterinary Microbiology)
- James R. Douglas, Ph.D. (Veterinary Microbiology)

Lecturer:
- William M. Longhurst, Ph.D.

Bachelor of Arts Major Program

Upper Division Courses.—Required: 1) 36 units in zoology (not more than 5 units of courses in the 190 series may be counted in this requirement), 2) Genetics 100A–100B, 3) one course or course sequence selected from each of the four following core areas:

1) Morphology: Zoology 100, 106A, 106B, 107, 110, 112, 130A.

2) Physiology with laboratory, Zoology 121 and 121L, 142 and 142L, 160, 224, Animal Physiology 110A, 110B, 111A, and 111B (all four courses).

Cross-listed courses may be used to satisfy only one core area requirement. Any course taken outside the department in partial satisfaction of the core course requirement will be counted toward the satisfaction of the 36-unit requirement.

Recommended: Biochemistry 101A, 101B.

Bachelor of Science Major Program

Lower Division Courses.—Required: Biology 1, Zoology 2, Botany 2, Bacteriology 2, Chemistry 1A, 1B, and 8A–8B, Physics 2A, 2B, 2C, Mathematics 13 or 16A and 16B.

Upper Division Courses.—Required: 1) 36 units, of which a minimum of 18 must be upper division units in zoology. The other 18 units must be in biological sciences. Not more than 5 units of courses in the 190 series nor Biochemistry 101A–101B, Genetics 100A–100B may be counted in the 36-unit requirement. 2) Zoology 148 or Genetics 103. 3) One course or course sequence in each of two of the three remaining core areas listed under the description of the Bachelor of Arts program. 4) Biochemistry 101A–101B, Genetics 100A–100B.

Cross-listed courses may be used to satisfy only one core area requirement. Any course taken outside the department in partial satisfaction of a core area requirement will be counted toward the satisfaction of the 36-unit requirement.
Graduate Study.—The Department of Zoology offers programs of study and research leading to the M.A. and Ph.D. degrees. For detailed information regarding graduate study write to the Graduate Adviser, Department of Zoology.

Teaching Major.—Requirement for students planning to be primary or secondary teachers, with a major in zoology, are the same as for the Bachelor of Arts degree in zoology.

Teaching Minor.—Required: 30 units in biological sciences, including Biology 1, Zoology 2, and 18 units of upper division courses in zoology or closely related fields chosen in consultation with the subject representative. Recommended: an upper division course in invertebrate zoology and an upper division course in each of as many other areas of zoology as possible (e.g., cell biology, physiology, ecology, genetics, morphology, evolution).

Students who plan to be teachers should consult the Department of Education in regard to further preparation for certification.

Subject Representative: Mr. Wolfe.

Physiology

Lower Division Courses

2. Introductory Physiology. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: Biology 1. The physiology of muscular contraction, nervous integration, sensation, circulation, respiration, excretion, and digestion.
Miss Kammer

2L. Introductory Physiology Laboratory. (3) I.
Laboratory—6 hours. Prerequisite: course 2, completed or in progress. 1 credit for reading and report writing done outside the laboratory.
Miss Kammer

10. Elementary Physiology. (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: not open for credit to students who have had Biology 1. An introductory course in physiology for non-science majors. Mr. Deamer

Zoology

Lower Division Courses

Lecture—3 hours; discussion—1 hour; laboratory—6 hours. Prerequisite: Biology 1 or consent of instructor. A survey of the diversity of animal life and the basic principles of adaptation, evolution, and integration in animals.
I. Mr. Hamner; II. Mr. Miller; III. Mr. Jameson

39. Special Study for Lower Division Students.
(1–5) I, II, III.
Directed study of a specific topic selected by the student and the instructor.
The Staff (Mr. Spieth in charge)

Upper Division Courses

100. Embryology. (5) I, III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biology 1; Zoology 2 recommended. The events and mechanisms of embryonic development, including fertilization, morphogenesis, cell differentiation and organogenesis, with emphasis on vertebrates.
I. Mr. Grey; III. Mr. Armstrong

*106A. Analysis of Vertebrate Structure. (5) II.
Lecture—2 hours; laboratory—demonstration—6 hours. Prerequisite: course 2. The interpretation of vertebrate structure with emphasis on phylogeny.
Mr. Hildebrand

*106B. Analysis of Vertebrate Structure. (4) III.
Lecture—2 hours; laboratory—demonstration—4 hours. Prerequisite: course 2. The interpretation of vertebrate structure with emphasis on function. The application of basic concepts of mechanics to supportive, locomotor, and feeding mechanisms.
Mr. Hildebrand

107. Microanatomy. (5) II.
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2. The finer structure and activities of organs, tissues, and cells of vertebrates, with emphasis on those of mammals.
Mr. Rosenberg

110. Protozoology. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biology 1. Structure, life history, and ecology of the groups of protozoa with emphasis on relationships to biological problems.
Mr. Rosenberg

112. Invertebrate Zoology. (5) I.
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2. Comparative anatomy, classification, and phylogeny of the invertebrate metazoa.
Mr. Miller

114. Invertebrate Physiological Ecology. (5) III.
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 112. Physiology, behavior, and ecology of the invertebrate metazoa.
Mr. Hamner

Lecture—3 hours; laboratory—3 hours; special projects. Prerequisite: Biology 1; Mathematics 13 and 16A. Population dynamics and management of marine, freshwater, and terrestrial animal resources; analysis and solution of problems in maximization of animal resource production.
Mr. Watt

* Not to be given, 1970–71.
120. Introduction to Cell Biology. (4) I.
Lecture—3 hours; discussion—1 hour. Prerequisite: Biochemistry 101A and 101B. The physicochemical aspects of cellular organization and function. Mr. Baskia

121. Cell Biology. (4) II.
Lecture—4 hours. Prerequisite: Biochemistry 101A, 101B. Structure and function of living systems at the molecular and subcellular level, including such topics as molecular organization of membranes, photosynthesis and respiration, and ion transport as related to nerve impulse transmission and contractility. Mr. Deamer

121L. Cell Biology Laboratory. (2) II.
Laboratory—6 hours. Prerequisite: course 121. Exercises illustrating principles of cell biology; individual programs of research, employing one or more advanced techniques. Mr. Deamer

125. Animal Ecology. (3) II.
Lecture—3 hours. Prerequisite: course 2 and one course in biological science having at least part of the studies conducted in the field (e.g., courses 112, 133L, 136, 137, 140L, Botany 108 or Botany 117). Theory of relationships between animals and their environments. Mr. Salt

*125L. Field Ecology. (3) III.
Laboratory—9 hours. Prerequisite: course 125. Laboratory and field investigations of ecological phenomena. Mr. Salt

130A. General Cytology. (4) I.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 2 or Botany 2; Genetics 100B or Biochemistry 101A. An analysis of the structure and ultrastructure of cells; the relationship between structure and function at cellular and subcellular levels. Consideration of cell pinocytosis, membranes, endoplasmic reticulum, mitochondria, plastids, the golgi zone and their relationship to the metabolic nucleus. (Same course as Botany 130A.) Mr. Weier, Mr. Wolfe

130B. General Cytology. (4) II.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 130A. An analysis of the structure and function of cells during mitosis; meiosis, gametogenesis and fertilization at cellular and subcellular levels. (Same course as Botany 130B.) Mr. Weier, Mr. Wolfe

133. Biology of Cold-blooded Vertebrates. (5) III.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 2. Environmental and geographical distribution, identification, and biology of cold-blooded vertebrates. Emphasis on species in Western North America. Mr. Jameson

*133L. Laboratory of Cold-Blooded Vertebrates.
(2) III.
Laboratory—6 hours. Prerequisite: course 133. Field and laboratory studies of reptiles and amphibians, with emphasis on western North America. Mr. Jameson

135. Ecology of Large Mammals. (4) III.
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 125; Wildlife and Fisheries Biology 110A or consent of instructor. Emphasis on ecology and management principles of North American ungulates with other selected examples. Includes nutrition, reproduction, parasites, diseases, and population dynamics. Mr. Longhurst

136. Mammalogy. (5) III.
Lecture—2 hours; laboratory—6 hours; field trips, including weekends. Prerequisite: course 125 or consent of instructor. Systematics, ecology and life history of mammals with emphasis on Western North America. Offered in even-numbered years. Mr. Rudd

137. Ornithology. (5) III.
Lecture—2 hours; laboratory—6 hours; field trips, including weekends. Prerequisite: course 125 or consent of instructor. Systematics, ecology and life history of birds with emphasis on Western North America. Offered in odd-numbered years. Mr. Rudd

140. Limnology. (4) III.
Lecture—3 hours; special projects. Prerequisite: Biology 1 and junior standing. The biology and productivity of inland waters with emphasis on the biological and chemical environment. Mr. Goldman

140L. Limnology Laboratory. (3) III.
Laboratory—6 hours. Prerequisite: course 140 (may be taken concurrently). Limnological studies of lakes, streams, and reservoirs with interpretation of aquatic ecology. Mr. Goldman

142. Invertebrate Physiology. (4) III.
Lecture—3 hours. Prerequisite: course 112, Chemistry 1A, 1B, Physics 2B. Comparative physiology of invertebrate organ systems. Extensive reading and written projects required. Miss Kammer

142L. Invertebrate Physiology Laboratory. (3) III.
Laboratory—8 hours. Prerequisite: course 142 (may be taken concurrently). Experiments on the physiological mechanisms of invertebrate organ systems. Miss Kammer

144. Oceanography. (4) II.
Lecture—3 hours; discussion—1½ hours; demonstration; term paper. Prerequisite: Biology 1. Biological, chemical, physical, and geographical aspects of the marine environment. Con-
sideration of biological communities, productivity, the distribution of currents and tides, the origin of ocean basins, and marine sedimentation.

Mr. Goldman

147. Zoogeography. (4) II.

Lecture—3 hours. Prerequisite: course 2 or Entomology 1. Movements of terrestrial animals. The role of geologic, climatic, and biologic changes in the geographic distribution of animals.

Mr. Jameson

Lecture—5 hours. Prerequisite: course 2 or Entomology 1. Recommended: course 147 and Genetics 100B. The origins and relationships of the major groups of animals, with emphasis on the analysis of variation and the mechanics of evolutionary change.

Mr. Rudd

155. Animal Social Systems. (4) II.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. The behavioral basis, organization, and evolution of animal societies.

Mr. Hamilton

156. Dynamics of Animal Coloration. (5) II.

Lecture—3 hours; discussion—1 hour; special project or term paper. Prerequisite: course 2. The role of animal coloration with respect to animal behavior; predator-prey relationships, and solar and animal radiation. Particular emphasis is given to the evolution of behavior and population dynamics as exemplified by coloration. Offered in even-numbered years.

Mr. Hamilton

*160. Invertebrate Neurophysiology. (5) III.

Lecture—2 hours; discussion—1 hour; laboratory—6 hours. Prerequisite: an upper division course in physiology or physicochemical biology or invertebrate zoology. Comparisons of the nervous systems of invertebrates with emphasis on nervous processes related to behavior.

Miss Kammer

197. Senior Colloquium in Zoology. (2) III.

Lecture-discussion—2 hours. Prerequisite: senior standing. The consideration of innovation and synthesis in broad areas of zoology. (Passed/Not Passed grading only.)

The Staff

199. Special Study for Advanced Undergraduates.

(1–5) I, II, III.

Directed study of a specific topic selected by the student and the instructor.

The Staff (Mr. Spieth in charge)

Graduate Courses

201A. Ecological Theory. (3) I.

Lecture—2 hours; discussion—1 hour. Prerequisite: a course in ecology. The course will focus on the ecologic community as a unit. The major generalizations concerning structure and functioning of the community will be examined together with the generalizations relating both structure and function to the abiotic environment and its fluctuations. (Same course as Botany, Ecology and Geology 201A.)

The Staff (Mr. Salt and Mr. Major in charge)

201B. Analysis of A Selected Ecosystem. (3) II.

Lecture—2 hours; discussion—1 hour. Prerequisite: course 201A or consent of instructor. Application of basic ecological principles to the interpretation of biotic and abiotic interrelationships of a particular ecosystem. Recent advances in theory, technique, and basic information are emphasized. Lectures will be given by specialists from several fields. May be repeated for credit. (Same course as Botany, Ecology and Geology 201B.)

The Staff (Mr. G. L. Webster in charge)

201C. The Changing Biosphere. (3) III.

Lecture—2 hours; 1 assigned problem. Prerequisite: courses 201A, 201B; or consent of instructor. Course deals with changing gas balance and weather in the biosphere and effects on plants and animals, the effects of structural, chemical and physical changes on living systems, changes in species diversity, effects of human population increase, and related topics. (Same course as Botany, Ecology and Geology 201C.) The Staff (Mr. Myrup in charge)

202. Biostatistics (6) II.

Lecture—4 hours; laboratory—6 hours. Prerequisite: two courses in calculus; three courses in statistics. Mathematical aspects of physiology, ecology, and epidemiology; development and testing of models, mathematical description of biological systems; measurement, analysis, optimization and application in biology.

Mr. Watt

210. Analysis of the Elements of Effective Teaching of College Biology. (3) I.

Lecture—1 hour; discussion—1 hour; assignments and reports. Undergraduate enrollment limited. Offered in even-numbered years. (Satisfactory/Unsatisfactory grading only.)

Mr. Hildebrand

222. Mathematical Models of Ecosystems. (4) III.

Lecture—1 hour; laboratory—3 hours. Prerequisite: Mathematics 21B or 16B; Mathematics 105B or 231C; course 116 or 125. Use of mathematical models and computer simulation to discover effect of varying behavioral, physiological, population, and community parameters on energy flow in ecosystems. Offered in odd-numbered years.

Mr. Watt

223. Seminar in Fisheries Management. (4) III.

Seminar—4 hours. Prerequisite: course 116; Mathematics 16B, 105B. Analysis of fish popu-
loration problems, including review of recent research. Offered in even-numbered years.

Mr. Watt

224. Developmental Biology Laboratory. (4) I.
Discussion—1 hour; laboratory—6 hours; Bodega Marine Laboratory—1 weekend. Prerequisite: course 100 and consent of instructor, open to qualified undergraduates; Biochemistry 101 recommended. Introduction to research in development. Observations and experiments involving a variety of developing systems and experimental methods, with critical interpretation of the results.

Mr. Barrett

225A. Advanced Developmental Biology: Morphogenesis. (4) II.
Lecture—4 hours. Prerequisite: course 100. Development of form and structure; morphogenetic movement, differential growth, pattern formation; interaction of cells and tissues during development.

Mr. Armstrong

225B. Advanced Developmental Biology: Cell Differentiation. (5) III.
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: Zoology 100, Biochemistry 101B; Zoology 121 recommended. Current concepts of cell differentiation, principally in animal systems. Topics include properties of major differentiated cell types, and principal mechanisms of control.

Mr. Grey, Mr. Barrett

230. Advanced Cytology. (2) II.
Seminar—2 hours. Prerequisite: consent of instructor. Topics of current interest in the ultrastructure of cells. Offered in odd-numbered years.

Mr. Wolfe

*231. The Ultrastructure of Self-Replicating Systems. (3) III.
Lecture—3 hours. Recommended: courses in cytology, cell biology or cytogenerics and Genetics 100B. Structure and function of self-replicating subcellular organelles illustrated primarily in metazoan animals. Offered in even-numbered years.

Mr. Wolfe

*240. Muscle Physiology. (4) II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: an upper division course in animal physiology; Mathematics 21B or 16B; or consent of instructor. The physical and chemical aspects of muscle function.

Mr. Baskin

250. Recent Developments in Zoology. (1) II.
Seminar—1 hour. Prerequisite: graduate standing in Zoology.

The Staff

287. Seminar in Animal Behavior. (2) II.
Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on the principles and recent developments in invertebrate and vertebrate animal behavior.

Mr. Hamilton, Mr. Spieth

288. Seminar in Physicochemical Biology. (2) III.
Seminar—2 hours. Prerequisite: consent of instructor. Discussion of recent literature on the physicochemical aspects of the organization and function of living systems. Physicochemical properties on the molecular and cellular levels will be considered.

Mr. Baskin

289. Seminar in Analysis of Vertebrate Structure. (1) I.
Seminar—1 hour. Prerequisite: course 106A; course 106B recommended. Offered in odd-numbered years. (Satisfactory/Unsatisfactory grading only.)

Mr. Hildebrand

291. Seminar in Protozoology. (2) I.
Seminar—2 hours. Prerequisite: course 110 or consent of instructor.

Mr. Rosenberg

292. Seminar in Development. (2) II.
Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on embryology, morphogenesis, and developmental mechanisms.

Messrs. Barrett, Armstrong, Grey

293. Seminar in Invertebrate Zoology. (2) II.
Seminar—2 hours. Prerequisite: course 112 or consent of instructor. Critical review of the literature in selected topics and taxa in the invertebrata. Open to qualified undergraduates.

Mr. Hammer, Mr. Miller, Miss Kammer

294. Seminar in Animal Ecology. (3) I.
Seminar—3 hours. Prerequisite: course 125 or consent of instructor. Readings and discussions of advanced topics in the population and community ecology of animals.

Mr. Rudd, Mr. Salt

295. Seminar in Limnology. (3) III.
Seminar—3 hours. Prerequisite: course 140 or consent of instructor. Recent developments in limnology and related advances in oceanography.

Mr. Goldman

297. Seminar in Systematic Zoology and Evolution. (2) III.
Seminar—2 hours. Prerequisite: consent of instructor. Principles of animal classification, specialization, and the evolution of higher categories; emphasis on modern concepts and pertinent contributions from the fields of genetics and paleontology.

Mr. Rudd

298. Group Study. (1-5) I, II, III.
The Staff (Chairman in charge)

299. Research. (1-9) I, II, III.
The Staff (Chairman in charge)
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

Regents ex Officio

RONALD REAGAN
Governor of California and President of The Regents

ED REINECKE
Lieutenant Governor of California

ROBERT T. MONAGAN
Speaker of the Assembly

MAX RAFFERTY
State Superintendent of Public Instruction

Appointed Regents

EDWIN W. PAULEY
EDWARD W. CARTER
MRS. RANDOLPH A. HEARST
JOHN E. CANADAY
PHILIP L. BOYD (Resignation effective as of March 31, 1970)
NORTON SIMON
WILLIAM E. FORBES
WILLIAM M. ROTH

Principal Officers of The Regents

RONALD REAGAN
Governor of California, President

DeWITT A. HIGGS
Chairman

WILLIAM FRENCH SMITH
Vice Chairman

ADMINISTRATIVE OFFICERS—UNIVERSITYWIDE

President of the University:
Charles J. Hitch

Executive Vice President:
John W. Oswald (resignation effective as of June 30, 1970)

Vice President—Academic Affairs:
Angus E. Taylor

Vice President—Administration:

Vice President—Agricultural Sciences:
James B. Kendrick, Jr.

Vice President—Business and Finance:
Graeme C. Bannerman

Vice President—Educational Relations:
Frank L. Kidner

Vice President—Physical Planning and Construction:
Elmo R. Morgan

Vice President—Planning and Analysis:
Frederick E. Balderston

Vice President—University Relations:
Travis Cross

Dean of University Extension:
Edward B. Roessler

ALLAN GRANT
President of the State Board of Agriculture

JOSEPH A. MOORE, JR.
President of the Mechanics’ Institute

WENDELL W. WITTER
President of the Alumni Association of the University of California

CHARLES J. HITCH
President of the University

MRS. EDWARD H. HELLER
FREDERICK G. DUTTON
WILLIAM K. COBLENTZ
DeWITT A. HIGGS
GLENN CAMPBELL
WILLIAM FRENCH SMITH
ROBERT O. REYNOLDS
DEAN A. WATKINS

THOMAS J. CUNNINGHAM
General Counsel
OWSLEY B. HAMMOND
Treasurer
MISS MARJORIE J. WOOLMAN
Secretary
UNIVERSITYWIDE OFFICERS EMERITI

President of the University, Emeritus:
Robert Gordon Sproul
Vice President of the University,
Emeritus, and Dean of the College
of Agriculture, Emeritus:
Claude B. Hutchison
Vice President of the University, Emeritus:
Harry R. Wellman

Vice President, Emeritus and Secretary
and Treasurer of the Regents,
Emeritus:
Robert M. Underhill
Vice President—Governmental Relations
and Projects, Emeritus:
James H. Corley

UNIVERSITY CHANCELLORS

Chancellor at Berkeley:
Roger W. Heyns

Chancellor at Davis:
James H. Meyer

Chancellor at Irvine:
Daniel G. Aldrich, Jr.

Chancellor at Los Angeles:
Charles E. Young

Chancellor at Riverside:
Ivan H. Hinderaker

Chancellor at San Diego:
William J. McGill

Chancellor at San Francisco:
Philip R. Lee

Chancellor at Santa Barbara:
Vernon I. Cheadle

Chancellor at Santa Cruz:
Dean E. McHenry

GENERAL ADMINISTRATIVE OFFICERS—DAVIS

Chancellor:
James H. Meyer, Ph.D.

Chancellor Emeritus:
Emil M. Mrak, Ph.D.

Vice Chancellors:
Elmer W. Learn, Ph.D., Executive Vice
Chancellor
William F. Dukes, Ph.D., Vice
Chancellor—Academic Affairs
Arthur C. Small, M.B.A., Vice
Chancellor—Business and Finance
Joseph Lyons, Ph.D., Vice Chancellor
—Student Affairs (Resignation
effective as of March 1, 1970)

Executive Assistant to the Chancellor:
Lorena Herrig

Academic Assistant to the Chancellor:
John W. Mamer, Ph.D.

Special Assistant to the Vice Chancellor:
Fred N. Cooper, Jr., B.S.

Assistant Chancellors:
Robert S. Downie, B.S., Assistant
Chancellor—Student Administrative
Affairs
Robert W. Glock, M.B.A., Assistant
Chancellor—Planning
F. Edwin Spafford, M.Ed., Assistant
Chancellor—Physical Construction
and Maintenance

University Librarian:
J. Richard Blanchard, M.S.

Dean of Students:
Van Richards, Ed.D., Dean of Students
John L. Bukey, A.B., Associate Dean
of Students and Dean of Men
Ruth E. Anderson, M.A., Associate
Dean of Students and Dean of
Women
Directors:

William L. Lakie, Ed.D., Director,
Intercollegiate Athletics

Thomas Y. Cooper, M.D., Director,
Student Health Service

Walter L. Woodfill, Ph.D., Director,
Summer Sessions

Glen Burch, Ed.D., Director,
University Extension

David H. Allen, Ph.D., Associate
Director of Relations with Schools

Clyde Houston, B.S., Assistant State
Director, Agricultural Extension
Service

Officers:

Robert E. Padden, M.B.A., Budget
Officer

John L. Hardie, B.A., Development
Officer

Dennis W. Shimek, B.S., Personnel
Officer

Robert C. Bynum, B.S., Public
Information Officer

Elmer Wagner, Ed.D., Registrar and
Admissions Officer

Purchasing Agent

Bruce P. Moore, M.B.A.

Administrator of the Physical Plant

Robert C. Pfeil, M.S.

Deans

College of Agricultural and Environmental Sciences
Chester O. McCorkle, Ph.D., Dean
G. Eric Bradford, Ph.D., Associate Dean
Glenn R. Hawkes, Ph.D., Associate Dean

College of Engineering
John D. Kemper, Ph.D., Dean
Don O. Brush, Ph.D., Associate Dean
Clyne F. Garland, M.S., Associate Dean, Emeritus
John B. Powers, Ph.D., Associate Dean

College of Letters and Science
Lawrence J. Andrews, Ph.D., Dean
Ronald J. Baskin, Ph.D., Associate Dean
Roland W. Hoermann, Ph.D., Associate Dean
Hendrick J. Ketellapper, Ph.D., Associate Dean
Elias H. Tuma, Ph.D., Associate Dean

School of Law
Edward L. Barrett, Jr., J.D., Dean
Richard D. Lee, LL.B., Assistant Dean

School of Medicine
Charles John Tupper, M.D., Dean
Alexander Barry, Ph.D., Associate Dean
Loren D. Carlson, Ph.D., Associate Dean
Earl F. Wolfman, Jr., M.D., Associate Dean

School of Veterinary Medicine
William R. Pritchard, D.V.M., Ph.D., J.D., Dean
James R. Douglas, Ph.D., Associate Dean
Blaine McCowan, Jr., D.V.M., Associate Dean

The Graduate Division
Allen G. Marr, Ph.D., Dean
David L. Jacobson, Ph.D., Associate Dean
E. Dean Ryan, Ed.D., Associate Dean
Absence, leave of (see Withdrawal)
Academic Senate, 9
Adding or dropping courses, 26
in Letters and Science, 127
Administration, University, 9
Administrative officers, general, 399
at Davis, 400
of the colleges and schools, 401
Admission to the University, 17–25
application procedures, 22
by examination, 19
change of campus, 24
eligibility, notification of, 24
failure to register, 24
in advanced undergraduate standing, 24
in freshman standing, 17
in graduate standing, 21
in limited status, 22
in special status, 22
intention to register, statement of, 24
intercampus transfer, 25
of applicants for second bachelor’s degree, 22
of applicants from other countries, 21
of out-of-state applicants, 19
preparatory high school subjects, 20
reaplication, 24
transcript of record for, 23
vaccination certificate, 24
Admission requirements in the
College of Engineering, 105
Graduate Division, 152
Professional schools, 129, 131
School of Law, 137
School of Medicine, 141
School of Veterinary Medicine, 145
Advanced undergraduate standing, requirements for admission, 24
Advanced placement tests, 132
Advisers, faculty (see also under various departments), 11
College of Agricultural and Environmental Sciences, 66–96
College of Engineering, 107
College of Letters and Science, 127
for international students, 48
Aerospace Engineering, curriculum, 110
Afro-American (Black) Studies, 164
Agricultural
Biosciences, curriculum in, 58
Business Management, requirements for the major, 65
Chemistry, graduate group, 164
Economics, Department of, 164, 262, 301, 367
courses in, 165, 170
requirements for the major, 66, 97
Economics and Business Management, curriculum in, 58, 97
Education, courses in, 188
requirements for the major, 67, 98
Education and Development, curriculum in, 58–98
Engineering, Department of, 167, 229
courses in, 168, 229
curriculum, 110
Genetics, 68, 279
History Center, 13
Placement Service, 38, 63
Policy, 59
Practices, Department of, 169
program, 63
Science and Management committee
courses in, 169
curriculum in, 58, 98
major in, 68
Science and Management, graduate group, 152
Toxicology, see Environmental Toxicology
Agricultural and Environmental Sciences, College of, 57–103
college requirements, 61
curricula and majors, 58
disqualification and probation rules, 30
fields of study, 59–60
graduate instruction and degrees, 64, 70
honors, 63
passed or not passed option, 62
requirements for Bachelor of Science degree, 65–96
scholarships, 64
study-list requirements, 61
teaching credentials, 65
Agronomy and Range Science, Department of, 348
courses in, 351
field of interest, 59
American History and Institutions, 32, 220, 294, 357
American History and Literature, committee, see American Studies
American Studies
courses in, 171
major program, 171
Anatomy, Department of, 172
courses in, 172
graduate group, 152
Anesthesiology, 320
Animal Biochemistry, courses in, 177
Animal Genetics, courses in, 177
Animal Husbandry, Department of (see Animal Sciences)
field of interest, 59
Animal Physiology, Department of, 174
courses in, 180
Animal Science, Department of, 174
courses in, 170, 175
requirements for the major, 71
specialization in, 59, 70, 96
Animal Sciences, committee, 174
Anthropology, Department of, 183
courses in, 183
major program, 183
Application for admission, procedures, 23–25
Graduate Division, 153
Law, 138
Medicine, 141
Veterinary Medicine, 145
Applied Behavioral Sciences, Department of, 187, 262
courses in, 263
Applied Science, Engineering, Department of, 230
courses, 231
graduate study, 119
Approved living quarters, 41
Arboretum, 13
Archaeology, courses in (see Anthropology)
Architecture, courses in (see Art)
Area requirements, Letters and Science, 133
Art, Department of, 188
courses in, 189
major program, 189
Asian American Studies, courses in, 264
Assistantships, teaching and research, 155
Associated Students, 51
Astronomy, courses in, 343
Athletics (see Physical Education)
Atmospheric Science, committee courses in, 369
major requirements, 73, 102
Attorney in Residence Matters, 27
Avian Medicine (see Epidemiology and Preventive Medicine)
Avian Sciences, 71
Awards (see Honors and Prizes)

Bachelor of Arts degree, requirements (see also under various departments)
College of Letters and Science, 121
general University, 32
Bachelor of Science degree, requirements
College of Agricultural and Environmental Sciences, 61, 65–96
College of Engineering, 106
College of Letters and Science, 121
general University, 32
School of Veterinary Medicine, 149
Bachelor's degree, applicants for a second, 22
Bacteriology, Department of, 193
courses in, 194
major programs, 194
Bee Biology, 59
Behavioral Biology, 320
Biochemistry
Animal, courses in, 177
graduate group, 196
major requirements, 74, 196
Biochemistry and Biophysics, Department of, 196
courses in, 197
major program, 196
Biochemistry, graduate group, 196
Biological Chemistry, 321
Biological Control, 59
Biological Sciences, committee, 198
courses in, 199
major programs, 198
Biology, courses in, 199
curriculum in, 58–59
fields of interest, 59
Quantitative, 101, 58, 100
Biometeorology, 59
Biophysics (see Biochemistry and Biophysics)
field of interest, 59
graduate groups, 152
Biosciences, Agricultural (see Agricultural Biosciences)
(Black), Afro-American Studies, 164
Board and room, 35
Botany, Department of, 200
courses in, 201
graduate group, 152
major programs, 200
Breadth requirements, Letters and Science, 121
Brewing technology specialization, 81
Business Administration, School of, preprofessional requirements, 129
Business Management (see Agricultural Economics and Business Management)

Calendar, 5
Campuses of the University, 9
Candidacy for degrees, filing of announcement, 34
Bachelors' degrees, Letters and Science, 126
Cantonese, courses in (see Oriental Languages)
Chancellors, University, 400
Change of
 campus before registration, 25
 college, school, or major, 27
 major in Letters and Science, 125
 name, 27
Chemical Engineering, Department of, 234
 courses in, 234
 curriculum, 112
Chemistry, Department of, 204
 courses in, 205
 major programs, 205
Chemistry, Agricultural, graduate group, 164
Child Development, requirements for the
 major, 75
Chinese, courses in (see Oriental Languages)
City Planning, 59
Civil Engineering, Department of, 236
 courses in, 236
 curriculum, 113
Classics, Department of, 208
 courses in, 208
Clinical Pathology, Department of, 211
 courses in, 211
 major program, 208
Clinical Sciences, Department of, 212
 courses in, 212
Clothing, 59
Comparative Biochemistry (see Biochemistry
 graduate group)
Comparative Pathology, graduate group, 152
Comparative Pharmacology, graduate group,
 152
Composition, English, required, 32
Community Development, 59, 72
Computer Center, 13
Conduct and discipline, 49
Consumer Economics, courses in, 264
Consumer Sciences, Department of, 262
Costume design, 59
Counseling Service, 47
Courses, classification and numbering, 161
Credentials, teaching, 65, 133, 155
Credit
 and scholarship, 29
 by examination, 31, 33, 132
 for work taken in other colleges, 20, 163
 upon repetition of a course, 29
 value of courses, explained, 161
Criminal Justice, Center for Administration
 of, 13
Crocker Nuclear Laboratory, 13
Curricula (see also various Colleges and
 Schools)
 preparation for University, 20
 preprofessional, 129–131
 Dairy husbandry specialization, 71
Davis
 campus, 10
 community, 11
Deans of the colleges, schools, and graduate
division, 401
Defense Language Institute, 49
Deficiencies
 disciplinary action, 30
 of transfer students, 20
 removal of grade deficiencies, 30
Degree candidacy, filing for, 34
Bachelors' degrees, Letters and Science, 126
Degree requirements
Bachelor of Arts
 College of Letters and Science (see also
 various departments), 121
 general University, 32
Bachelor of Science
 College of Agricultural and
 Environmental Sciences, 61
 College of Engineering, 106
 College of Letters and Science, 122
 general University, 32
 School of Veterinary Medicine, 149
Graduate degrees (see Graduate Division,
 also various Colleges and Schools)
Dental Hygiene, 130
Dentistry, School of, preprofessional
 requirements, 130
Departmental majors, Letters and Science, 125
Design
 courses in, 265
 requirements for the major, 76
Dietetics and Nutrition, requirements for the
 major, 77
Dining Commons, 42, 52
Discipline
 for scholastic deficiencies, 30
 degrees of, 49
Discontinuance without notice (see Withdrawal)
Dismissal (see Disqualification)
Disqualification for scholastic deficiency, 30
Dramatic Art, Department of, 215
 courses in, 216
 major program, 216
 University Theatre, 216
Dropping courses
 general regulations, 26
 Letters and Science, 127
Ecology
 courses in, 202, 219, 286, 396
 graduate group, 152
Institute of, 13
Economics, Department of, 220
 courses in, 220
 major program, 220
Economics, Agricultural (see Agricultural Economics)
 Consumer, courses in, 264
Education, Department of, 224
 Agricultural (see Agricultural Education)
 courses in, 225
Education Abroad Program, 48
Educational Placement Service, 47
Electrical Engineering, Department of, 241
 courses in, 241
 curriculum, 115
Eligibility for admission, notification of, 24
Employment, student, 46
 College Work-Study program, 38, 63
Endocrinology, graduate group, 152
Engineering, College of, 105, 227
 courses in, 227
 admission to, 105
 applied science, 119
 college requirements, 106
 dismissal and probation rules, 30
 graduate study, 119
 honors with bachelor's degree, 107
 humanistic-social studies, 107
 lower division program, 108
 minimum scholarship requirements, 33, 106
 passed or not passed grading, 107
 requirements for Bachelor of Science degree, 106
 study-list requirements, 107
 technical electives, 108
 upper division curricula, 110
Engineering
 aerospace, curriculum, 110
Agricultural, Department of, 167, 229
 courses in, 168, 229
 curriculum, 110
Applied Science, Department of, 230
 courses in, 231
Chemical, Department of, 234
 courses in, 234
 curriculum, 112
Civil, Department of, 236
 courses in, 236
 curriculum, 113
 core courses, 227
Electrical, Department of, 241
 courses in, 241
 curriculum, 114
Material Sciences
 curriculum, 117
Mechanical, Department of, 245
 courses in, 245
 curriculum, 118
English, Department of, 248
 courses in, 250
 major program, 249
English Examination, Subject A, 32
 for foreign students, 21, 32
English requirement
 for admission to the University, 17
 in the College of Engineering, 109
 in the College of Letters and Science, 122
Enology (see Viticulture and Enology)
 specialization, 81
Enrollment
 Davis campus, 10
 School of Veterinary Medicine
Entomology, Department of, 256
 courses in, 256
 requirements for the major, 79
Entrance examinations
 for California residents, 19
 for nonresidents, 19
Entrance requirements (see Admission)
Environment engineering specialization, 113
Environmental horticulture,
 major requirements, 59
 turf management, 60
Environmental Toxicology, Department of, 258
 courses in, 259
Epidemiology and Preventive Medicine, 259
 courses in, 260
Examinations
 advanced placement, 132
 American History and Institutions, 32, 220
 credit by, 31, 32, 33, 132
 English composition, Subject A, 32
 entrance, 19
 final, 31
 foreign language placement, 26, 128
 in English for foreign students, 21
 Law School admission, 137
 medical required, 26, 45
 Medical School admission, 141
 regulations concerning, 31
Expenses of students (see also Fees), 35
Extension courses, acceptability of
 approval required, 163
 in the College of Letters and Science, 122
 taken at another institution, 21
Extension, University, 14
Extra-session courses defined, 163
Fabrics, 59
Faculty advisers (see Advisers, faculty)
Faculty 48 courses, 162
Family and Consumer Sciences, committee, 262
courses in, 263
curriculum in, 58
Farm management (see Agricultural Economics)
Fees and deposits
application for admission, 23
Education, 35
Subject A course, 32
health insurance, 35
incidental (see University Registration)
intention to register, 24
late registration, 26
Memorial Union, 35
nonresident tuition, 28, 35
parking, 36
reapplication, 24
registration, 35
residence hall contract, 42
student body membership, 35
tuition, 28, 35
transcript of record, 31
University registration, 35
Fellowships, assistantships, and loans, 155
Final examinations, regulations concerning, 31
Finance, 59
Financial aids, 35
application for, 36
Fine Arts and Museology, Laboratory for Research in, 13
Fish and game management, 59
Flexibility, 163
Floriculture, 59
Food Protection and Toxicology Center, 13
Food science
Committee, 270
curriculum in, 58
graduate group, 152
requirements for major, 81
Food Science and Technology, Department of, 270
courses in, 170, 271
Food technology specialization in, 80, 81
Foods, courses in, 265
requirements for the major, 80
Foreign language
Letters and Science requirement, 122
placement test, 26, 128
professional courses in teaching (see under various departments)
requirement for admission, 17
training at Defense Language Institute, 49
Foreign literature in translation, courses in, 275
Foreign students (see International)
Forestry (see Preforestry)
Fraternities, 43
French (Department of French and Italian),
courses in, 276
major program, 276
(Freshman) Integrated Studies, 301
Freshman standing, admission to, 17
Fruit and Vegetable Technology, 81, 88
Genetics, Department of, 279
courses in, 280
courses in animal genetics, 177
courses in plant genetics (see Plant Sciences)
graduate group, 152
major program, 68, 88, 279
Geography, Department of, 281
courses in, 282
major program, 281
Geology, Department of, 284
courses in, 285
major programs, 284
German and Russian, Department of, 288, 379
courses in, 288, 379
major program, 288, 379
Government of the University, 9
Governmental Affairs, Institute of, 13
Grade points defined, 29
computation of grade-point average, 29
Grades defined, 29
passed or not passed, 29, 62, 107, 123
Grades, midterm, 31
Graduate degrees offered, 151
Graduate Division, 151
courses, 162
fellowships, assistantships and loans, 155
graduate groups, list of, 152
majors and degrees, 151
program of study, 154
requirements for admission, 152
requirements for foreign students, 153
teacher credential program, 155
Graduate students
financial aids, 155
grades of Satisfactory or Unsatisfactory, 29
readmission, 153
scholarship deficiencies, 30
Graduate study
College of Agricultural and Environmental Sciences, 64
College of Engineering, 119
Engineering, Applied Science, 119
School of Veterinary Medicine, 149
without degree objective, 154
Graduation, University requirements for, 32–34
Grants, 38
Greek, courses in, 209
major program, 208
Group majors in
College of Agricultural and Environmental Sciences, 58
College of Letters and Science, 126
Graduate Division, 152
Gymnasium, use of, 339
Health insurance, supplementary, 45
fee, 35
required for international students, 45
Health Service, Student, 45
Hebrew, courses in (see Oriental Languages)
High School
preparation for engineering, 105
preparatory subjects for University curricula, 20
requirements for admission, 17
History, Department of, 293
courses in, 294
major program, 294
History and government of the University, 9
of the Davis campus, 9
History requirement for admission, 17
Home Economics, requirements for the major, 82
Home Economics Education, courses in, 266
Home Management, courses in, 266
Honor Spirit, 11
Honors
at entrance, 34
at graduation, 34
College of Agricultural and Environmental Sciences, 63
College of Engineering, 107
College of Letters and Science, 133
deans lists, 34
prizes, 34
Honors courses defined, 133, 162
Honors programs, Letters and Science, 133
Honors students
credit by examination, 34
passed or not passed grades, 29, 62, 107, 123
privileges, Letters and Science, 133
Horticulture (see Environmental Horticulture)
graduate group, 152
field of interest, 59
Housing, information, 41
Human anatomy, courses in, 321
Human development, courses in, 267
Human Physiology
courses in, 322
Humanistic-social studies, College of Engineering, 107
Humanities, Letters and Science breadth requirement, 122
list of courses, 134
Incomplete, grade of, 29
Index, departments by college and school, 157
Individual group majors, Letters and Science, 126
Institution Management, courses in, 268
Insurance, health (see Health Insurance)
Integrated Studies, (Freshman), 301
Intention to register form, 24
Intercampus transfer, 25
Intercampus exchange program for graduate students, 154
Interdepartmental majors, Letters and Science, 125
Interior decoration, 59
Internal Medicine, courses in, 322
International Agricultural Center, 13
International Agricultural Development committee, 301
courses in, 302
graduate group, 152, 302
requirements for the major, 83
International Relations, committee, 302
major program, 303
International students
admission to the Graduate Division, 153
adviser for, 48
American History and Institutions, 33
courses in English for, 250
examination in English for, 21
health insurance required, 45
requirements for admission, 21
rules governing residence, 27
Subject A examination, 32
Irrigation, 59
Italian (Department of French and Italian),
courses in, 303
major program, 303
Japanese, courses in (see Oriental Languages)
Kearney Research Foundation, 13
Laboratory science, requirement for admission, 17
Landscape Horticulture (see Environmental Horticulture)
Language requirement for admission, 17
Late admission and registration, 26
Latin, courses in, 210
major program, 208
Law, School of, 137
 Department of, 137, 305
courses in, 305
residence rules for LL.B. candidates, 33
Leave of absence (see Withdrawal)
Letters and Science, College of, 121
advanced placement examinations, 132
area requirement lists of courses, 133
breadth requirements, 121, 122
check list of requirements, 135
college requirements, 122
faculty advisers, 127
honors, 133
interdepartmental majors, 125
majors available, 125, 126
minimum scholarship requirements, 123
planning the program, 126
preprofessional study, 129
probation and dismissal rules, 30
requirements for the bachelor's degree, 122
student services, 136
teaching departments, 135
Library, University, 13
Limited status, requirements for, 22
Linguistics
 committee, 310
courses in, 311
 graduate group, 152
 major program, 311
Livermore, courses in Engineering, Applied Science, 231
Living accommodations, 41
Loans, 38
 for graduate students, 155
Lower division courses defined, 162
Lower division requirements (see under various Colleges and Schools)
Major, change of, 27, 125
Management, Business (see Agricultural Economics and Business Management)
Management, Home, courses in, 266
Management, Institution, courses in, 268
Mandarin, 332
Marketing, 60
Married students, housing for, 42
Materials science
curriculum in, 117
Mathematics, Department of, 312
courses in, 313
 major programs, 312
Mathematics requirement for admission, 17
Meat and poultry products technology specialization, 69
Meat science, 60
Mechanical Engineering, Department of, 245
courses in, 245
curriculum, 118
Medical Education, courses in, 322
Medical examination, required, 26, 45
Medicine, School of, 141, 318
courses in, 320
 Preprofessional requirements, 130, 141
Medical Microbiology, 322
Medical Technology, preparation for postgraduate training in, 131
Memorial Union
 Dining Commons, 42, 52
 fee, 35
Merchandising, 60
Meteorology, 60
Microbiology, graduate group, 325
courses in, 325
Microbiology, Veterinary (see Veterinary Microbiology)
Mid-term grade standing, 31
Military Science, Department of, 325
courses in, 326
Military training
 Army ROTC program, 47, 326
 scholarships, 41, 326
Minimum undergraduate scholarship requirements, 32
Molecular Biology, 60
Music, Department of, 327
courses in, 328
 major program, 328
Name change, 27
Natural sciences, Letters and Science breadth requirement, 122-134
 list of courses, 134
Nematology, Department of, 331
courses in, 331
 field of interest, 60
Neurology, courses in, 322
Nonresident students
 admission requirements, 19
 rules governing residence, 27
 tuition fee for, 28, 35
Nursery production, 60
Nursing, School of, preprofessional requirements, 130
Nutrition (see also Dietetics and Nutrition), courses in (Family and Consumer Sciences), 179, 268
 field of interest, 60
 graduate group, 152
 major requirements, Dietetics and Nutrition, 71, 77
 major requirements, 84
Off-campus living accommodations, 42
Officers, administrative, 399
Optometry, School of, preprofessional requirements, 131
Oriental languages, courses in, 332
major programs, 332
Ornamental Horticulture, 60
Out-of-state applicants
admission requirement, 19
rules governing residence, 27
Park and Recreation Administration
courses in, 370
major requirements, 85
Parking fee, 36
Pass or not passed grades, 29, 62, 107, 123
Pathology, Clinical (see Clinical Pathology)
Pathology (Medicine), courses in, 322
Pathology (Veterinary Medicine),
Department of, 333
courses in, 334
Pediatrics, courses in, 323
Pharmacology, 323
Pharmacy, School of, preprofessional requirements, 131
Philosophy, Department of, 335
courses in, 335
major program, 335
Physical Education, Department of, 338
courses in, 339
major program, 339
Physical Medicine and Rehabilitation, 324
Physical examination required, 26, 45
Physical Sciences committee, 341
major program, 341
Physical Therapy, School of, preprofessional requirements, 131
Physics, Department of, 342
courses in, 343
major programs, 342
Physiological Sciences, Department of, 346
courses in, 346
Physiology
courses in (Animal Sciences), 180
courses in (Zoology), 394
graduate group, 152
major requirements, 71, 86, 348
Placement examination in foreign languages,
26, 128
Placement Services, Students and Alumni, 46
Plant genetics, courses in (see Plant Sciences)
Plant Pathology, Department of, 349
courses in, 353
Plant Physiology, graduate group, 152
Plant Protection, requirements for the major, 87
Plant Science
courses in (Agricultural Science and Management), 170
courses in (Plant Science), 350
requirements for the major, 88
Plant Sciences, committee, 348
Political Science, Department of, 356
courses in, 357
major program, 357
Pomology, Department of, 349
courses in, 354
Portuguese, courses in, 388
Poultry Husbandry (see Avian Sciences)
field of interest, 60, 71
Preforestry
major requirement, 89
Preparation for
College of Engineering, 105
professional schools not at Davis, 129
School of Law, 137
University curricula, 20
Prerequisites, 161
Preventive Veterinary Medicine, graduate group, 152
Preveterinary medicine curriculum 89, 149
Primate Biology, National Center for, 13
Prizes, 34
medals, 34
Probation, rules governing, 30
Professional courses
defined, 163
in foreign language teaching (see under various departments)
preprofessional, curriculum in, 58, 129
Professional schools, preparation for admission, 129
Business Administration, 129
Dental Hygiene, 130
Dentistry, 130
Forestry, 89
Law, 137
Medicine, 141
Nursing, 130
Optometry, 131
Pharmacy, 131
Physical Therapy, 131
Veterinary Medicine, 89, 146
Psychiatry, courses in, 325
Psychology, Department of, 363
courses in, 364
major program, 364
Public Health (see Epidemiology and Preventive Medicine)
Quantitative Biology, curriculum in, 58
Quarter system, explanatory note, 29, 161
Quarter units, how to convert, 29
Index / 413

Radiobiology Laboratory, 13
Ranching, 60
Range Management
courses in, 371
graduate group, 152
requirements for the major, 90
Readmission
after an absence, 27
after disqualification, 30
health requirement, 26, 45
Letters and Science, 123
of graduate students, 153
Reapplication for admission, 24
Reexaminations, 29
Regents of the University, 399
Registration procedures, 25
Renewable Natural Resources
major requirements, 91
Reports of student grades, 29
Requirements
for admission, 17–25
for graduation, 32–34
Research
assistantships, 155
facilities on campus, 13
Reserve Officers' Training Corps, 47, 326
Residence
costs, 35, 42
halls, 41
requirement for graduation, 33
requirement in Letters and Science, 121
rules governing, 27
statement of, 27
Resource Sciences, committee, 367
courses in, 372
curriculum in, 58
Rhetoric, Department of, 377
courses in, 378
major program, 377
ROTC Army program, 47, 326
scholarship program, 41, 326
Russian (Department of German and
Russian) 379
courses in, 379
major program, 379
Russian and History and Literature,
committee in, 382
Sanskrit, courses in, 211
Satisfactory and Unsatisfactory, grades of, 29
Scholarship
deficiencies, 30
grades of, 29
honors and prizes, 34
mid-term grade standing, 31
requirements for admission, 17
requirements for graduation, 32
Scholarships, 37
in the College of Agricultural and
Environmental Sciences, 64
President's, 37
Regents, 37
ROTC program, 41, 326
Science requirement for admission, 17
Sculpture, courses in (see Art)
Second bachelor's degree, applicants for, 22
Selective Service, 47
Social sciences, Letters and Science
breadth requirement, 122
list of courses, 134
Social Welfare, preparation for postgraduate
training in, 131, 383
Sociology, Department of, 383
courses in, 383
major program, 383
Soil Science
courses in, 373
graduate group, 152
Soil and Water Science, 373
courses in, 170, 373, 374
major requirements, 92
Soils and Plant Nutrition, Department of, 368
Spanish, Department of, 388
courses in, 389
major program, 388
Special admission categories, 22
Special-study courses defined, 162
Speech (see Rhetoric)
Statement of
intention to register, 24
residence, 27
Structural engineering and mechanics
specialization, 113
Student
activities, 45
conduct and discipline, 49
employment, 46
expenses, 35
Health Service, 45
Honor Council, 51
housing, 41
publications, 51
Recreational facilities, 52
Student Body membership fee, 35
Student Honor Council, 51
Study-list regulations
at registration, 26
College of Agricultural and Environmental
Sciences, 61
College of Engineering, 107
College of Letters and Science, 127
Subject A
 at registration, 26
department of, 391
fee, 32
requirements for graduation, 32

Summer Sessions, 14
 course acceptability in Letters and Science, 121
courses and residence requirement, 33
credit from other institutions, 163

Symbols, footnotes, 163

Teacher education
courses, 162
credentials, 65, 133, 155
credentials in College of Agricultural and Environmental Sciences, 65
curricula in College of Agricultural and Environmental Sciences, 60
in College of Letters and Science, 133
requirement (see under various departments)
Teaching assistantships, 155
Tests (see Examinations)

Textile Science, requirements for the major, 93

Textiles and Clothing, courses in, 269
Theatre, University, 52, 216
Wyatt Pavilion, 52

Toxicology, Agricultural (see Agricultural Toxicology)

Transcripts of record, 23, 31
 for admission, 23
 for transfer students, 24
 for intercampus transfer, 25
from the University, 31

Transfer students
 application for admission, 24
 American History and Institutions requirement, 32
 requirements for admission, 17
Subject A, 32
Transfer credits, 62, 121
Transfer to another campus, 25
 regulations for students dismissed or on probation, 30

Transportation, 12

Truck crops, 60

Tuition, for nonresidents, 28, 35
Turf management, 60

Tutorials, 162

Undeclared status, Letters and Science, 125, 127

Units of credit, 161
 computation of grade-point average, 29
 maximum and minimum limitations, 26

Agricultural and Environmental Sciences, 61
Engineering, 106
Letters and Science, 122
University requirement for graduation, 32-34

University Extension, 14
course acceptability, 21, 122, 163

University of California, history and government
doing Davis campus, 9
doing statewide University, 9

University Theatre, 52, 216

Upper division courses defined, 162

Vaccination certificate required, 24, 45

Vegetable Crops, Department of, 349
courses in, 355
field of interest, 60, 88

Veterans benefits, 40

Veterinary Medicine, School of, 145, 159
admission to, 145
graduate study, 149
minimum scholarship requirements, 30, 149
plan of study, 148
requirements for D.V.M., 147
requirements for the Bachelor of Science, 149
selection of applicants for, 146

Veterinary Microbiology, Department of, 391
courses in, 392

Viticulture and Enology, Department of, 271, 350
courses in, 274, 350
field of interest, 59, 60

Vocational agriculture, 60

Warning notices, mid-term, 31

Water resources engineering specialization, 113

Water Science and Engineering, Department of, 369

Water Science, courses in, 374

Weed Science, 60

Welfare Council (see Student Honor Council), 51

Wildlife and Fisheries Biology
courses in, 376
 major requirements, 94

Wine making, 60
Withdrawals, 27

Work-Study Program, 46, 63

Wyatt Pavilion Theatre, 52

Zoology, Department of, 393
courses in, 394
 major programs, 393
campus map