UC/DAVIS
General Catalog
1978-79

University of California, Davis
Cover Drawing
The view of the Silo Student Center on the cover is a purchase award winner from the "Selected Views of the Davis Campus" open competition sponsored by the Memorial Union Art Gallery. For information about this drawing and other awards winners, contact the gallery, (916) 752-2885.

About the Artist
George Van Dreal, from Bakersfield, California, divides his time between teaching high school science and creating work for entry in juried art shows around the country. Van Dreal is originally from Colorado where he worked as a technical illustrator. While working on his entries for the UC Davis competition, he was impressed by the beauty of the campus and the friendliness of the people he met.
UC/Davis

General Catalog
1978-79
COMPLIANCE STATEMENT

The University of California, in compliance with Titles VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972 (45 CFR 86), and Sections 503 and 504 of the Rehabilitation Act of 1973, does not discriminate on the basis of race, color, national origin, religion, sex, or handicap in any of its policies, procedures, or practices; nor does the University, in compliance with the Age Discrimination in Employment Act of 1967 and Section 402 of the Vietnam Era Veterans Readjustment Act of 1974, discriminate against any employees or applicants for employment on the basis of their age or because they are disabled veterans or veterans of the Vietnam era. This nondiscrimination policy covers admission, access, and treatment in University programs and activities, and application for and treatment in University employment.

In conformance with University policy and pursuant to Executive Orders 11246 and 11375, Section 503 of the Rehabilitation Act of 1973, and Section 402 of the Vietnam Era Veterans Readjustment Act of 1974, the University of California is an affirmative action/equal opportunity employer.

Inquiries regarding the University's equal opportunity policies may be directed to the Vice Chancellor of Academic Affairs and Affirmative Action Officer, 515 Mrak Hall, 752-2070, the Vice Chancellor of Student Affairs and Title IX Compliance Officer, 541 Mrak Hall, 752-2417, the Rehabilitation Act Compliance Coordinator, Office of the Chancellor, 581 Mrak Hall, 752-6550, or the Director, Office of Civil Rights, Department of Health, Education and Welfare, Washington, D.C.
UC/Davis

General Catalog
1978-79
HOW TO USE THIS CATALOG

The General Catalog is meant to be the primary source of information about University policy, procedures, and campus services. While the Catalog attempts to cover all aspects of the University and to answer as many of your questions as possible, you will probably find that there are areas in which you would like more detailed information. Therefore, throughout the book references are made to other publications available from individual offices or departments. There is also a list of major publications, their prices, and where you can get them, on page 336.

You probably will find yourself going back to the Catalog throughout the year, to answer new questions and refer to important policies. If the answer isn’t here, the Catalog usually can direct you to the right place to find it.

The Catalog is divided into four major sections:

- Information about the University, admission, student services, registration, and degree requirements
- Information about individual colleges and schools
- Descriptions of specific courses of study (majors), major requirements, faculty listings, and classes offered
- Appendix and Index

The Correspondence Directory on the inside front cover provides a list of the most frequently used offices and their addresses. For other office or department addresses, refer to the index. A glossary of unfamiliar terms is found on page 334. You may find it helpful to look over the glossary before reading the sections on admission, registration, and degree requirements.

Although every effort has been made to keep the Catalog correct and current, there inevitably will be some changes in courses offered, instructors assigned, etc., each quarter. Students should therefore check supplementary publications (especially the quarterly Class Schedule and Room Directory) for the most up-to-date information.

Perhaps the most important question the Catalog attempts to answer is: What does UCD offer to help me reach my goals? Two problems usually arise in attempting to answer this question: the name of the major best suited to your objectives may not be the name that you have associated with that objective; and the diversity of administrative units within the University may baffle the uninitiated. For example, a person interested in dealing with people in social contexts may think to look under Sociology in the College of Letters and Science, but may completely overlook additional programs and courses under headings such as Applied Behavioral Sciences or Agrarian Studies in the College of Agricultural and Environmental Sciences.

The best way to begin investigating your area of interest is to refer to the Majors and Courses section of the Catalog. This listing provides information about each major, the requirements involved, and the courses offered. If you are still in doubt as to the college, major, or program that best fits your needs, you might choose a course that seems most pertinent to your interests and write for further advice to the instructor listed as teaching that course. Department chairpersons, committee chairpersons, and advisers are other good sources of assistance.

To get a feeling of what the Davis campus is like, and what it can offer you both inside and outside the classroom, you should read the front section of the Catalog. Then, if you choose, request application materials and begin the admissions process.
CONTENTS

Correspondence Directory (inside front cover) 6
 Academic Calendar, 6
 Academic and Administrative Holidays, 6
 Candidates for Degrees, 6
 Admission Deadlines, 7
 Financial Aid Deadlines, 7

Introduction .. 9
 The University of California, 9
 UCD's History, 10
 The Setting, 11
 The City of Davis, 11
 Campus Life, 12
 The Davis Campus Today, 12
 The University Library, 13
 Research and Service Activities, 14
 Additional Academic Resources, 16
 Division of Extended Learning, 16
 Reentry Office, 18
 Program for Part-Time Degree Students, 18
 University Extension, 19
 Summer Sessions, 19
 Committee for Arts and Lectures (CAL), 19
 Conferences and Campus Services, 20
 Work-Learn, 20
 Education Abroad, 20
 University Professors, 21

Student Life .. 23
 Living Accommodations, 23
 The Arts at Davis, 24
 Recreational Facilities and Programs, 26
 Associated Students (ASUCD), 27
 Student Organizations and Activities Center, 28
 Advising and Counseling, 29
 Advising Services, 29
 Counseling Center, 29
 The House, 30
 Intercultural Center/Peer Advising and Counseling Program, 30
 Educational Opportunity Program (EOP) Support Services, 30
 Learning Skills Center (LSC), 31
 Reentry Office, 31
 Student Services, 32
 Student Health, 32
 International Student Services, 32
 Services to Handicapped Students, 33
 Veterans Affairs, 34
 Women's Resources and Research Center (WRRC), 34
 Student Employment, 34
 Career Planning and Placement, 35
 Educational Placement Service, 35
 Cal Aggie Alumni Association, 35

Fees, Expenses and Financial Aid .. 37
 Fees and Expenses, 37
 Fee Refunds, 38
 Financial Aid, 39
 Scholarships and Awards, 43

Admission ... 45
 Applying to UC Davis, 45
 Visiting the Campus, 45
 Application Procedures, 45
 Explanation of Application Categories, 47
 Undergraduate Studies, 48
 Entrance Requirements, 48
 Admission as a Freshman, 48
 Admission to Advanced Standing, 51
 Special Programs and Admissions Categories, 52
 Educational Opportunity Program (EOP), 52
 Nontraditional Students, 52
 Second Baccalaureate, 52
 Limited Status, 52
 Special Status, 53
 Interdepartmental Transfer, 53
 Applicants from Other Countries, 53
 Concurrent Courses, 53
 Additional Information, 54
 High School Proficiency Examination, 54
 Subject A Requirement, 54
 Advanced Placement Examinations, 54
 CLEP, 54
 Credit from Another College, 55
 Redirection, 55
 Admissions Checklist, 55

Academic Information ... 57
 When You Arrive, 57
 Registration Procedures, 57
 Scholastic Requirements, 59
 Grading, 59
 Class Level, 62
 Examinations, 62
 Probation and Disqualification, 64
 Student Responsibility, 65
 Bachelor's Degree Requirements, 65
 Honors and Prizes, 67

College of Agricultural and Environmental Sciences 69

College of Engineering .. 77

College of Letters and Science .. 93

Graduate Division .. 105

Professional School Requirements 113

School of Law .. 121

School of Medicine .. 127

School of Veterinary Medicine .. 131

Majors and Courses .. 135
 Explanatory Note, 135
 Academic Credit, 135
 Course Designations, 135
 Key to Footnote Symbols, 138
 Major Programs and Courses of Instruction, 139

Appendix .. 329
 Statement of Legal Residence, 329
 Disclosure of Student Records, 331
 Salary and Employment Information, 332
 Glossary, 334
 Publications, 336
 Administrative Officers, 337

Index ... 339

Davis Campus Map .. 347

UCD at a Glance (inside back cover)
Calendar

CALENDAR

Academic Calendar*

- Pick up registration and course enrollment materials from the Registrar's Office (all continuing students).
- Advisers available to all students (except Engineering).
- Advisers available to all Engineering students.
- Turn in course enrollment materials (all continuing students).
- Turn in Registration Packets and Fee Payments (all continuing students).
- Turn in Registration Packets, course enrollment materials, and Fee Payments (all continuing students).
- Late Registration for continuing students.
- Quarter begins.
- Orientation and testing.
- In-person registration and payment of fees.
- Instruction begins.
- Last day of late registration.
- Final date to file petitions to change status from part-time to full-time student, or vice versa.
- Final date to petition to add courses to study list.
- Final date to petition to drop courses (thereafter permission may be granted by the dean of your school or college and only under exceptional circumstances).
- Final date for undergraduates to file petitions with the dean of their college or school to take courses on a Passed/Not Passed basis. Exceptions rarely approved.
- Final date for graduate students to file petitions with the Dean of the Graduate Division to take courses on a Satisfactory/Unsatisfactory basis.
- Final date to file Independent Study Program project proposal form (available at the dean's office) either with the student's college dean or directly with Independent Study Committee.
- Instruction ends.
- Final examinations.
- Quarter ends.
- Commencement.

Academic and Administrative Holidays

- Thurs-Fri.
- Mon., Feb. 19
- Mon., May 28
- Wed., July 4
- (Summer)
- Mon., Sept. 3
- Mon.-Tues.
- Dec. 25-26
- Mon.-Tues.
- Jan. 1-2

Candidates for Degrees

Undergraduates
- Candidates who expect to complete work for A.B. and B.S. degrees must file an Announcement of Candidacy with the Registrar on or before this date.

*Dates are subject to change and should be checked with appropriate Class Schedule and Room Directory.
Graduate Students

<table>
<thead>
<tr>
<th>FALL 1978</th>
<th>WINTER 1979</th>
<th>SPRING 1979</th>
<th>FALL 1979</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun., Oct. 1</td>
<td>Sun., Dec. 3</td>
<td>Thurs., Mar. 1</td>
<td>Fri., June 1</td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
<td>(for Sept. '79)</td>
</tr>
<tr>
<td>Wed., Nov. 1</td>
<td>Fri., Feb. 16</td>
<td>Tues., May 15</td>
<td>Aug. 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(for Sept. '79)</td>
</tr>
<tr>
<td>Fri., Dec. 15</td>
<td>Fri., Mar. 23</td>
<td>Fri., June 15</td>
<td>Sept. 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(for Sept. '79)</td>
</tr>
<tr>
<td>Fri., Aug. 18</td>
<td>Fri., Nov. 17</td>
<td>Thurs., Mar. 1</td>
<td>May 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(for Sept. '79)</td>
</tr>
<tr>
<td>Fri., Sept. 29</td>
<td>Fri., Jan. 5</td>
<td>Mon., Apr. 2</td>
<td>July 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(for Sept. '79)</td>
</tr>
<tr>
<td>Fri., Dec. 1</td>
<td>Thurs., Mar. 1</td>
<td>Fri., June 1</td>
<td>Aug. 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(for Sept. '79)</td>
</tr>
</tbody>
</table>

Admission Deadlines

- Applications for admission to undergraduate standing, including applications for intercampus transfer and EOP, must be filed with complete credentials with the Office of Admissions on or before this date.
- Credentials and applications for admission to graduate standing must be filed with the Dean of the Graduate Division on or before this date.
- Applications for admission to the School of Medicine for 1979-80 must be filed with the School on or before this date.
- Applications for admission to the School of Veterinary Medicine for 1979-80 must be filed with the School on or before this date.
- Applications for admission to the School of Law for 1979-80 must be filed with the School on or before this date.
- Applications for readmission to undergraduate status must be filed with the Registrar on or before this date.
- Applications for readmission to graduate status must be filed with the Registrar on or before this date.

<table>
<thead>
<tr>
<th>Wednesday, Nov. 30</th>
<th>Monday, July 31</th>
<th>Tuesday, Oct. 31</th>
<th>Thursday, Nov. 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1</td>
<td>Oct. 1</td>
<td>Jan. 1</td>
<td>June 1</td>
</tr>
<tr>
<td>Nov. 1</td>
<td>Nov. 1</td>
<td>Nov. 1</td>
<td>Nov. 1</td>
</tr>
<tr>
<td>Fri., Sept. 1</td>
<td>Fri., Dec. 15</td>
<td>Sat., Mar. 17</td>
<td>Sat., Sept. 1</td>
</tr>
<tr>
<td>Fri., Thurs. Nov. 16</td>
<td>Fri.,</td>
<td>Fri.,</td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>Aug. 4</td>
<td>Aug. 9</td>
<td>Aug. 3</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>1978</td>
<td>1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The University of California

When the first transcontinental railroad cars steamed into the western terminal in Sacramento, only 40 students—taught by 10 professors—were enrolled in the University of California. A year earlier, in 1868, Governor Henry H. Haigèt signed the Organic Act which provided that a "complete University" be created for the State of California. Classes began in 1869 on the campus of the College of California in Oakland. The first few buildings on the Berkeley campus were completed in 1873, and that year the University took up residence in its new home. The following June, degrees were conferred upon the University's first 12 graduates.

Today the University has nine campuses throughout the State of California—Berkeley, Davis, Irvine, Los Angeles, Riverside, San Diego, San Francisco, Santa Barbara, and Santa Cruz. Each campus has its own distinct atmosphere, features, and character; all are recognized nationally and internationally as distinguished educational institutions. The University also maintains research and field stations, Extension centers, and instructional facilities in more than 80 locations throughout California.

The nine campuses of the University have a current enrollment of about 126,000 students, 90 percent of them residents of California. Nearly one-third of the students are studying at the graduate level.

The University's reputation for excellence has attracted a distinguished faculty of scholars and scientists in all fields of scholarship. The University has 15 Nobel Laureate winners on its faculty, and the total membership from all nine campuses in the National Academy of Sciences is the largest of any college or university system in the country. In 1978, 42 scholars from seven campuses of the University received fellowship grants from the John Simon Guggenheim Foundation. These fellowships are considered by scholars as one of the highest honors they can receive.

President David S. Saxon is the principal officer for the nine-campus system. Organization and governance of the University is entrusted to a corporation called The Board of Regents. Of the individuals comprising the Board, 18 are prominent California citizens appointed by the Governor; seven members of the Board, including the President of the University and the Governor of California, serve ex officio. A Student Regent is selected each year from a list of names submitted to the Board by the Student Body President's Council.

The Regents have delegated authority in academic matters to the Academic Senate of the faculty, which determines the academic policy and governs the instructional activities of the entire University. Members of the Senate include all professors and instructors who are on the permanent faculty, as well as key members of the administration.

A chancellor is the chief administrative officer for each campus. James H. Meyer, Chancellor of UC Davis, presides over a campus of 17,250 students, including about 4,800 who seek graduate and professional degrees, more than 1,400 teaching faculty, and approximately 6,000 staff. The Davis Division of the Academic Senate determines for this campus the conditions for certificates and degrees (subject to the approval of The Regents) and authorizes and supervises all courses of instruction at Davis. The Associated Students of UC Davis (ASUCD) and the Graduate Student Assembly (GSA) represent the undergraduate and graduate students through their elected members.
The Davis campus has undergraduate colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science. The Graduate Division administers graduate study and research at all schools and colleges. Professional studies are carried on at the schools of Law, Medicine, and Veterinary Medicine. The Division of Extended Learning is responsible for additional educational programs including those for part-time degree students.

The University of California, Davis is accredited by the Western Association of Schools and Colleges, the Association of American Law Schools, Association of American Medical Colleges, Council on Education of the American Veterinary Medical Association, Engineers' Council for Professional Development of the American Society of Engineering Education, the American Chemical Society, and the Commission for Teaching Preparation and Licensing.

UCD’s History

In 1906 the University of California acquired 768 acres surrounding the town of Davisville for a University farm. The Farm (as UCD was originally known) was established to serve the rural population of California, offering three years of instruction in the principles and practices of managing soils, crops, and animals. The need for such training was recognized and plans for the farm encouraged by Sacramento Superior Court Judge Peter J. Shields, the “Father of the Davis Campus.”

The demand for greater educational opportunities in the state increased rapidly and in 1922, in conjunction with the UC Berkeley College of Agriculture, the degree of Bachelor of Science in Agriculture was granted those who completed the Davis program. A few years later, the Davis campus had its own College of Agriculture and, in 1946, the School of Veterinary Medicine (still the only one in the state) was established.

The campus’s most rapid expansion began in 1951 when the College of Letters and Science was founded and more varied degree programs became available. In 1959, The Regents declared Davis a general campus of the University. By 1961, graduate programs were so numerous that a Graduate Division was established as a separate administrative unit. The Col-
lege of Engineering came into existence the following year, owing much to the foundation already provided by the curriculum in Agricultural Engineering. The School of Law held its first classes in the fall of 1966, and the School of Medicine admitted its first students in the fall of 1968.

A deserved reputation as a fine agricultural school has belonged to UCD since its beginnings. In recent years, however, the reputation of the Davis campus in many other fields has advanced as Davis has moved into the ranks of the top 40 research universities in the United States. *

The quality of undergraduate instruction is a prime concern of both faculty and students at Davis. Creative teaching and academic innovation are encouraged by several programs, including the Distinguished Teaching Awards (for which students can nominate outstanding faculty members), instructional improvement funds for improving the quality of undergraduate teaching, and the Teaching Resources Center which aids faculty members and teaching assistants with sharpening their teaching skills. Student Viewpoint, a student-written and published evaluation of classes and instructors, is compiled each year from course questionnaires completed by students.

The Setting

The Davis campus lies adjacent to the city of Davis (population 36,000), 15 miles west of Sacramento and 72 miles northeast of San Francisco. Sacramento, and all its resources as the state capital, is only twenty minutes away, yet Davis is surrounded on all sides by open space—including some of the most valuable agricultural land in the state. The total campus comprises approximately 3,800 acres, including a University airport and the teaching hospital for the School of Medicine, the Sacramento Medical Center of the University of California, Davis. About 980 acres are devoted to the central campus, the remainder being used primarily for agricultural research.

Its location makes Davis ideal for access to outdoor recreation. Within a 70-mile radius are Lake Berryessa, Folsom Lake, Clear Lake, the famed Napa Valley, and the historic Mother Lode country. A little more than an hour's drive from Davis along Interstate 80 takes you to the San Francisco Bay Area. The coastal areas of Mendocino and Santa Cruz are about 150 miles from Davis, as are Lake Tahoe and the ski areas of the Sierra Nevada.

Winters in Davis are mild, with the temperatures rarely below freezing. It hardly ever snows in the winter, but you should get good use from your raingear. Average winter temperatures range from 36° to 54°. Summers are sunny, hot, and dry. Although some days the thermometer may exceed 100°, the overnight temperatures can drop into the 50's. Davis weather in the spring and fall is among the most pleasant in the state.

Davis is very much a bicycling town. More than 30 miles of bike paths and 28,000 bicycles have given Davis the title of "City of Bicycles." One study found that bicycles are used for 25 percent of all travel in Davis. (Even the mayor and city manager ride bikes to work.)

The central UCD campus is closed to motor vehicles, and automobile parking lots are located on the perimeter of the main campus. Special parking places are reserved for handicapped drivers (those with special disability license plates) and ramps at most buildings provide easy access for wheelchairs. Sidewalks have inclines to street level at intersections.

The Regional Transit System linking Davis with the nearby cities of Woodland and Sacramento is supplemented by Unitrans, a series of six bus lines operated by the Associated Students. A Greyhound bus terminal and Amtrak station are also located in town, and the Sacramento Metropolitan Airport is a 20-minute drive from Davis.

The City of Davis

The year 1868 marked not only the Act of the Legislature chartering the University of California but also the completion of the California Pacific Rail Road line from Vallejo to a junction located on the former Jerome C. Davis farm, and the city of "Davisville" was founded.

The community is closely tied to the University (over half of the population are University students, faculty members, or staff) yet the city has developed its own recreational, cultural, and community outlets to supplement the University's offerings. The Davis Art Center, adult education programs, community theatre, recreation and parks programs, and civic organizations have strong local support. The new Veterans Memorial Center complex is a focus of community

*According to a report issued to the U.S. government by the National Science Foundation in 1975, UCD received approximately $27 million in federal research dollars, distributed as follows: from the Department of Agriculture, 1.4 million; Health, Education and Welfare, 19.1 million; National Science Foundation, 3.4 million; Department of Energy, 2.3 million.
events and has facilities for concerts and theatre performances, exhibits, meetings, and special events. Since its early years, Davis has recognized the importance of open space, and the seven large and grassy city parks feature tennis courts, playgrounds, swimming pools, and playing fields.

The city of Davis is changing. It still retains many characteristics of the small college town it once was, but the growth of the University has brought a corresponding development within the community. From fewer than 20,000 people only a decade ago, the population of Davis stands today at 36,000.

Despite the pressures of rapid growth, people in Davis are actively concerned with maintaining the quality of life here. The small-town flavor is being preserved in the downtown core area—the city's central business district—and action by the citizens and City Council have emphasized that concern with the quality of life means a commitment to planned, environmentally sound development and limited growth. Davis is possibly the most energy-conscious city in the U.S. Since 1973, average residential electrical consumption has dropped by 18 percent, compared with an 8 percent rise nationally during that same period. A series of energy-savings ordinances passed since 1968 regulates such things as new home insulation and window area and requires all new housing developments to have bicycle paths.

Campus Life

The Davis campus has always been especially noted for its friendliness and informality. To many people, Davis brings to mind Picnic Day (the annual campus open-house in April) and the almost universal use of bicycles within the community. But the Davis campus is, above all, a residential campus. Most students (and faculty) live on or near the campus, and consequently the community life offers many opportunities for developing informal student-faculty relationships. But if you think of Davis as just a place to go to school, you'll be surprised by the variety of activities happening every day on campus. There is rarely a night without at least one movie, a day without a long list of public lectures, or a weekend without a play, concert, or special event.

Because Davis was originally small and isolated, it naturally developed a tradition of close relationships between students and faculty members. Even though the campus has now grown to more than 17,000 students, its style remains friendly, informal, and personal. Along with the casual and informal outlook of Davis students, however, there is an underlying seriousness of purpose and an emphasis on academic excellence.

The Davis Campus Today

Looking around the campus you can see modern concrete and glass buildings contrasting with the older, original wooden structures from the University Farm days. But the newest building on the main campus, set between Sproul Hall, a nine-story concrete office tower, and University House, one of the oldest buildings on campus, is a harmonious blend of redwood, glass, and concrete.
The planned expansion of the Davis campus is nearing completion, and, although many of the buildings are less than a decade old, the spirit of its past as the University Farm gives UCD a sense of tradition. It won't be very long before the vines growing on the new Chemistry building will cover all of its outside walls, and the trees around the Recreation Pool will be as cool and shady as the forty-year-old cork oaks on the Quad.

A University is never static, always changing to meet new needs and new conditions. Looking back, we can see the development of a campus which the founders of the University Farm could never have envisioned. But looking ahead, out of an era in which the role of the University in society is being reexamined, we can predict that the Davis campus will retain its fundamental assumption that academic programs at all levels of the University—undergraduate, graduate, professional, and research—must reinforce and strengthen each other.

The root word of University, the Latin un\textit{iversitas}—entirety, whole, entire—reflects UCD's aim to bring together learning and life, scholarship and relevance, theory and practice, and general and professional education.

THE UNIVERSITY LIBRARY

Information:
Peter J. Shields Library Office
108 Shields Library
752-2110

The library on the Davis campus contains about 1,472,000 volumes and receives 42,100 periodicals, serials, and government publications annually. Its holdings in the natural sciences and agriculture are outstanding. There are strong collections in the humanities, social sciences, fine arts, and engineering. Materials in law and medicine are already substantial and are still growing.

In addition to the main stack collection in the Peter J. Shields Library, there are 1,264,000 items on microcopy, 56,500 maps, more than 463,500 pamphlets, 8,000 rare books, 12,650 sound recordings, and a center containing a bibliographic collection of worldwide scope. The use of most Library materials has been made easier by a new computerized control system which eliminates the need for patrons to fill out charge cards.

The Reference Department provides orientation and assistance in using the various library collections, which operate on an open-stack basis to permit users direct access to the shelved volumes.

Tours and lectures on the uses and resources of the library are part of the Educational Services Program. A 3-credit course, "Introduction to Library Research and Bibliography" (English 28), is given each quarter. A non-credit class called "Library Survival" is also offered.

The Shields Library is an official depository for Federal and State publications, and the Government Documents Department provides services that make it easier for you to use these publications.

The Reserve Book Service has several thousand volumes which are loaned out on a short-term basis. This material is heavily used because of assigned class readings.

Researchers, faculty members, and students have a valuable research tool at their fingertips with the Automated Information Retrieval Service (AIRS) located in the Reference Department of the Shields Library. Through computers located at two off-campus locations, bibliographies and references on a wide range of topics are available from the periodical literature of the last three to eight years. AIRS can provide bibliographies and conduct searches on subjects in agriculture, biology, chemistry, education, engineering, nutrition, and psychology.

Unbound periodical titles—some 5,900—are housed in the Periodicals Room in a closed-stack area. They are for use in the Shields Library only.

The Department of Special Collections provides assistance in the use of rare books, the Hinman collietar, University archives, and the 313,000-item F. Hal Higgins Library of Agricultural Technology.

Other facilities at the Shields Library include a browsing collection for recreational reading, headphones for music listening, audio-visual equipment, a typing room, an outdoor reading area, and copying machines at various locations.

In addition to the collections and facilities of the Shields Library, there are branch libraries for the health sciences, the physical sciences and engineering, and agricultural economics. The Health Sciences Library's approximately 149,200 volumes supports programs in both human and veterinary medicine. The Physical Sciences Library contains over 134,500 volumes and also houses a collection of more than 500,000 Research Reports of the U.S. Department of Energy, the National Aeronautics and Space Administration, and other governmental agencies. An inde-
pended Law Library housing about 156,000 volumes supports the instructional and research programs of the School of Law. There are also a number of specialized departmental libraries located on the campus.

RESEARCH AND SERVICE ACTIVITIES

The following facilities are connected with the Davis campus. Some are designed for the purpose of research, some for research and teaching, others to provide services to Davis students, faculty, or the surrounding community.

University Arboretum
Temporary Building 32
752-2496

The Arboretum occupies an area of about 111 acres, providing materials for teaching and research in the plant sciences departments. Most of the plants are attractive but drought-tolerant trees and shrubs. The acreage also includes paths and picnic tables for recreation.

Outstanding plant collections are represented by the oaks in the Shields Grove, the California native trees and shrubs, and the T. Elliott Weier Redwood Grove. Other collections of great horticultural and botanical interest include plantings of acacia, ceanothus, eucalyptus, hakea, and exotic conifers, as well as various groups in the Heath family (Ericaceae), Legume family (Leguminosae), and Myrtle family (Myrtaceae).

The Arboretum program of seed exchange, initiated in 1961, has provided the University with numerous exotic plant specimens and also serves to distribute California native plants throughout the world.

Work-learn internships for Davis students are available in botany, horticulture, and environmental education.

Center on Administration of Criminal Justice
101 King Hall
752-2893

The Center is a joint law-social science program which works to bring about greater understanding and meaningful reform in the criminal justice system. Current research projects include studies in the area of juvenile delinquency, bail reform, and police practices. In addition to formal projects the Center also assists students, faculty, and citizens who are interested in studying or researching the criminal justice system.

Agricultural History Center
376 Voorhies Hall
752-1827

The Center was founded in 1964 and assumed the responsibility of editing *Agricultural History*, the journal of the Agricultural History Society.

The director of the Center coordinates and administers the research, teaching, and service functions of the Center, with the assistance of an affiliated staff of faculty members and an advisory committee appointed by the Chancellor.

California Primate Research Center
Primate Center
752-0447

The mission of the Center is to investigate selected human diseases and health problems which can best be studied with the nonhuman primate as the animal model. The broad areas of study include perinatal biology, respiratory diseases, infectious diseases and immunology, and behavioral biology. Additionally, there is a continuing program to investigate problems relating to husbandry, breeding, and disease-control of various species of nonhuman primates used in human health-related research programs.

The Center was established in 1962 and its operation is supported by a grant from the National Institutes of Health. The research is sustained by 47 grants and contracts from a wide variety of national and international agencies.

There are currently 66 professional staff members, 36 collaborating investigators, 85 graduate students, and approximately 50 technical and supporting staff members.

Community Services Center
10 Lower Freeborn
752-2026

Community Services is the volunteer center for UCD students who want to extend their education beyond the classroom by becoming involved in community-based projects. Practical experience is gained through contact with persons of diverse ethnic, social, and economic backgrounds in a variety of environments. Through their volunteer efforts, students get a chance to clarify goals, pursue activities related to future career objectives, and seek a creative outlet for their abilities. The projects supported by Community Services involve areas of health, legal needs, education and recreation, as well as serving specialized
interests such as dramatic arts, graphics, and environmental programs.

Computer Center
50-I Hutchison Hall
752-0233

The Computer Center, located in the basement of Hutchison Hall, has a dual processor Burroughs 6700 Computing System. This system services the campus for batch, remote job entry, and interactive timesharing computing. The Center’s top priority is service to students and, therefore, instructional usage has priority over research and administrative usage.

Davis has developed an innovative Easy Access System of Computing for student use. Every student on the Davis campus, upon presentation of a valid registration card at the Computer Center office, may open an Easy Access Account. A specified sum is allotted to each student from instructional funds, and, within general confines, the student may use the funds in any manner.

The Center operates Remote Computing Stations at various locations on campus. Services at these stations include keypunches, limited programming consulting, reference manuals, and a limited number of interactive terminals.

There is a classroom computing facility in Room 208 Storer Hall where the Center maintains 16 Tektronix Graphic Terminals for classes and student use. The facility is open to students any time it is not scheduled for classroom instruction.

Early Childhood Center
Temporary Building 117
752-2828

The Center was established in 1963 by the Department of Applied Behavioral Sciences and serves as a laboratory facility for students majoring in Human Development and for other students interested in young children. There are four programs at the Center: one for infants and toddlers ages six months to two years, one for preschoolers ages two to three years, and two for preschoolers ages two to five years. Students from several classes use the facilities, some doing observational studies and others gaining experience working with the children. The students learn to relate theory and practice, developing their abilities as they explore the profession of early childhood education. Enrollment information may be obtained by calling or writing the Center.

Food Protection and Toxicology Center
111 Environmental Toxicology Building
752-1142

The Center is concerned with the development of tests to detect and measure small amounts of toxic materials in lower aquatic animals, the storage and elimination of toxic chemicals in mammals, and the rate of decomposition of pesticides by temperature, light, and air.

Studies serve medicine, agriculture, the food-processing industry, and the public, through the examination of chemical and microbial hazards in agricultural production and in the processing and preservation of food.

Water Resources Center
475 Kerr Hall
752-1544

The Water Resources Center is a Systemwide organized research unit charged with coordinating water resources research on the UC campuses. Through University research funds and funds from the Office of Water Research and Technology, U.S. Department of the Interior, the Center supports selected research in such areas as agricultural sciences, biological sciences, economics, engineering, history, geography, law, meteorology, physical sciences, and political science.

Research interests include water resources systems engineering, economic evaluation of water development and conservation, political strategy in water resources development, environmental and energy relationships in water resource management, watershed hydrology, ground water use, soil and land use management in relation to water resource use, and maintenance and improvement of water quality.

Facility for Advanced Instrumentation
9 Hutchison Hall
752-0284

Organized in 1959 under a grant from the United States Public Health Service, the Facility provides and maintains sophisticated equipment for campus investigators. Equipment includes transmission electron microscopes, scanning electron microscopes, electron microprobe, mass spectrometers, a programmable spectrophotometer, an image analyzing computer, a fourier transform nuclear magnetic resonance spectrometer, amino acid analyzers and sequencer,
and a variety of instruments for biochemical analysis. The staff trains those members of research groups who have not had experience in preparatory techniques and are also available as consultants and "trouble shooters" for research projects.

Institute of Ecology
2132 Wickson Hall
752-3026

Established in 1966 as an organized research unit, the Institute fosters ecological and environmental research, stimulates and provides intellectual leadership in ecology, administers resources and facilities, provides information on extramural support of ecological research, and maintains liaison with governmental and private organizations interested in funding ecological and environmental research. The Institute has a publication series and sponsors national and international activities, including organizing symposia and conferences. It provides grants to support collaborative research in ecology among faculty members at UCD, and through these grants provides financial assistance to undergraduate students and graduate research assistants.

Cooperating in the Institute's investigations are more than one hundred faculty members from all the schools and colleges on the Davis campus.

Institute of Governmental Affairs
Shields Library
752-2042

The Institute was begun in 1962 to foster research in public affairs and government. The proximity of the Institute to Sacramento has led to a research orientation toward the problems of statewide government.

Institute activities include an active publication program, including editorial services, manuscript processing, publication and distribution of research monographs; the preparation of grant proposals for extramural funding of social science research and the administration of awarded grants; a specialized library of published and fugitive materials which is open to faculty, students, and other users; computer and statistical consulting, maintenance of the Statistical Package for the Social Sciences for the Burroughs B6700 computer, and operation of a data library by the Social Science Data Service, a unit of IGA; the training of graduate and undergraduate students in research methods through participation in faculty-led projects; and organization and conduct of policy workshops and conferences.

Institute of Marine Resources
Cruek Hall
752-2506

This statewide Institute was organized in 1955 with headquarters at La Jolla. That part of its activities dealing with the use of the ocean as a source of food was located at Berkeley in the Department of Nutritional Sciences until July, 1970, when it was transferred and became part of the Department of Food Science and Technology at Davis. The staff is concerned with factors affecting the chemical, biochemical, microbiological, and nutritional properties of fish and other seafoods. Current studies include those dealing with comparative biochemistry of hemoproteins, the use of modified atmospheres for storage of seafood products, crustacea nutrition, and extracellular enzyme production by a hydrocarbon-utilizing yeast.

Art Conservation Laboratory
125-A Art Building
752-0142

The Laboratory provides students with the opportunity and facilities to become familiar with scientific research in the fine arts, conservation of works of art, and museology. Courses under the sponsorship of the Department of Art are offered in museum methods and connoisseurship. The Laboratory provides conservation services to numerous museums and California historic sites.

Bodega Marine Laboratory
Box 247
Bodega Bay, California 94923
(707) 875-3511

The Bodega Marine Laboratory is designed to support research and teaching in the marine sciences. Located on Bodega Head, adjacent to the town of Bodega Bay in Sonoma County, the property consists of 327 acres fronting on both the ocean and Bodega Harbor. The property is treated as a biological refuge and is part of the UC Natural Land and Water Reserve System. Its mile-long ocean frontage is protected as a California Marine Life Refuge.

Comparative Oncology Laboratory
Armstrong Tract
752-2597

The Comparative Oncology Laboratory is a virus research facility funded primarily by the National Cancer Institute. The program was initiated in 1969 to study the relationship between viruses and cancer in ani-
mals. Currently, major emphasis is focused on the study of viruses from tumors in higher primates. The program includes in vivo and in vitro studies to define the role of viruses in the induction of cancer.

Crocker Nuclear Laboratory
Crocker Nuclear Laboratory
752-1460

This facility was established by the University in 1965 as an interdepartmental laboratory for the application of nuclear science to a variety of disciplines and houses a variable energy 76-inch cyclotron. The Laboratory has programs in nuclear physics and chemistry, air pollution analysis, neutron therapy, and neutron structural damage studies. Isotopes produced by the cyclotron are used in clinical and research applications. Teaching activities at the undergraduate, graduate, and postdoctoral levels in biology, medicine, radiochemistry, and physics utilize the facility.

Radiobiology Laboratory
Radiobiology Laboratory
752-1343

The Laboratory performs research on the possible biomedical/health effects of exposure to effluents from fossil fuel and nuclear energy production. Emphasis is on developing models for evaluating these effects on biological systems and on determining the relationships between doses and effects. Funded primarily by the U.S. Department of Energy, the Laboratory program supports a staff of about 100 professional, technical, and support personnel.

Serology Laboratory
2116 Medical Sciences I-A
752-2211

The Serology Laboratory was established in 1955 to acquire blood specimens for research and teaching programs in immunogenetics and to provide largely unique animal blood-typing services on request from registry organizations and private breeders. Its main objective is to pioneer in research on animal blood groups and biochemical polymorphisms, particularly those genetic markers which are effective and efficient in solving problems of questionable parentage arising in the breeding of registered animals.

The Serology Laboratory is a self-supporting activity funded by income generated primarily through agreements with various cattle and horse breed organizations in the U.S. and Canada.

The Laboratory is affiliated with the Department of Reproduction in the School of Veterinary Medicine. Its facilities are available for graduate and postdoctoral trainees.

Carnegie Institution of Washington, Department of Embryology, Davis Division
Temporary Building 160
752-0210

Because of its schools of medicine and veterinary medicine and the presence here of a national primate center, UCD was chosen for relocation of the world's most important embryological collection from the Carnegie Institution. Slides, specimens, case histories, photographs, and reconstructions gathered since 1887 are included in this world-renowned collection of human and other primate developmental material.

The resources of this department are available to qualified investigators studying normal and abnormal primate development, on application to the Director.

Adult Fitness Program
Department of Physical Education
752-0637

The Adult Fitness Program is open to people from the University, the city of Davis, and surrounding communities. It provides members with a comprehensive physical fitness evaluation and an individualized exercise program for improving cardiovascular endurance fitness. The program is sponsored by the Department of Physical Education with considerable support from the Section of Cardiovascular Medicine, School of Medicine. Membership is unrestricted and participants may begin the program at any time during the year.

Emphasis is placed on the evaluation of cardiovascular fitness and health and on the assessment of body fat proportion by under-water weighing. Participants receive individual counseling for exercise training, weight control, and preventive medicine in general. Supervised exercise sessions include walking, jogging, swimming, and cycling. A cardiac rehabilitation program is offered to patients with coronary heart disease and to individuals who have a high risk for developing heart disease.

Special activities of the Adult Fitness Program are offered to University students and employees. These low-cost activities give participants an opportunity to have their body type and fitness determined, with personal counseling on how to achieve a desired
body weight through proper nutrition and exercise. A "Shape-Up" program for students is open at the beginning of each quarter and includes supervised exercise sessions.

Agricultural Alternative Development Program (Student Experimental Farm)

Information:
College of Agricultural and Environmental Sciences
752-7645

This program was initiated in the Summer of 1977 following several years of courses, discussions, and analysis of "alternative agriculture" and its importance to the College of Agricultural and Environmental Sciences. The Student Experimental Farm is an innovative research facility run by the students on 18 acres of University land. Students participate as volunteers, work-study interns, and Research Associates. Its purpose is threefold, as (1) an educational adjunct to the curriculum providing graduate and undergraduate students with the opportunity to design, conduct, and analyze their own field experiments; (2) a research and development program for conducting valid scientific research in small-scale and alternative technologies; and (3) a small farm and urban garden extension service.

Additional Academic Resources

DIVISION OF EXTENDED LEARNING

Information:
376 Mrak Hall
752-2820

The Division of Extended Learning extends the knowledge, teaching, research, and cultural resources of the University to the citizens of northern California through the Academic Reentry Office, Program for Part-Time Degree Students, University Extension, Summer Sessions, Committee for Arts and Lectures, and Conferences and Campus Services.

Academic Reentry Office

Information:
376 Mrak Hall
752-2820

If you are a non-traditional student, you can find help in the Academic Reentry Office. Preadmission counseling, reentry advising, and continuing assistance are offered. The Office's resource area contains information on major programs, and the staff is available to discuss ways of combining past study with future academic and career goals. Quarterly orientation to the campus and study skills workshops are offered. The "Encore" noon groups for reentry students meet weekly and a newsletter, Continuum, is published monthly.

Program for Part-Time Degree Students

Information:
376 Mrak Hall
752-2820

You may be able to pursue a bachelor's or master's degree at UC Davis on a part-time basis if you qualify for the Program for Part-Time Degree Students. If you are employed, retired, or have family responsibilities which preclude full-time study, you may be able to study part-time. Part-time students may change status between full-time and part-time as their circumstances change. To be considered a part-time student, an undergraduate must be enrolled for less than 9 units per quarter. Minimum progress (see page 64) is waived for graduate and undergraduate part-time students.

Fees for Part-Time Students

- Undergraduate quarterly fees are $178.50
- Graduate fees are $242.50
- Nonresidents must pay an additional fee

Part- and full-time students have use of the same facilities and are eligible for the same services, including the Student Health Service. Part-time undergraduate students are also members of the Associated Students, UC Davis.

Application Deadlines

Applicants for admission to the University as part-time students must meet the following quarterly application deadlines (some graduate programs have earlier deadlines):

- Fall Quarter—June 1
- Winter Quarter—October 1
- Spring Quarter—January 1

Students who wish to change status between full-time and part-time should file a petition with the Program for Part-Time Degree Students before the end of the second week of class of the quarter. (See page 6.)
Off-Campus Classes

Part-time students can attend regular classes on campus or at Learning Centers and TV Sites off campus. Off-campus students will find it necessary to attend some classes on campus in order to fulfill their degree requirements.

Learning Centers are located in Sacramento and at Diablo Valley College in Pleasant Hill. TV Sites are located at Diablo Valley College, Cal Trans, Water Resources Agency, and Aerojet in Sacramento; at Lawrence and Sandia Laboratories in Livermore; and at Dow Chemical in Pittsburg.

Master's and Certificate Programs in Civil, Electrical, and Mechanical Engineering as well as in Applied Science and Computing Science are available via microwave TV at off-campus sites.

Reduced Study List

A $50 reduction of the Educational Fee can be authorized for regular undergraduate students who enroll for less than 9 units of course work and who do not qualify for part-time status. This reduction is for one quarter and the student is expected to maintain minimum progress. Petitions for Reduced Educational Fee are filed through the Program for Part-Time Degree Students.

University Employees

Full-time University employees who are qualified for admission can enroll for bachelor's and master's degrees through the Program for Part-Time Degree Students. Employee-students enrolling each quarter in courses totaling no more than 6 units or one course, regardless of the number of units, pay an undergraduate fee of $74.50 or a graduate fee of $81.50. Undergraduate employee-students who enroll for a maximum of 9 units pay $178.50 and graduate employee-students who enroll in more than 6 units pay $239.50.

University Extension

Information and catalogs:
4445 Chemistry Addition
752-0860

The free quarterly University Extension catalog, Venture, contains the current list of continuing education programs offered to individuals in 29 northern California counties. Enrollment is open to the general public. No formal admission to student status is required to take advantage of the wide variety of stimulating programs.

Fields covered by Extension courses, both credit and non-credit, include public administration, business management, environmental studies, criminal justice, labor relations, women's studies, liberal arts, education, nursing and allied health sciences, veterinary medicine, and agricultural sciences.

Programs vary in length and format, from one-day conferences and short lecture series to certificate programs requiring attendance for several quarters. Classes are held both on and off campus. Instructors are drawn from the University, nearby college faculties, and professionals and internationally known experts.

Tuition fees and charges enable University Extension to function as a financially self-supporting enterprise.

Summer Sessions

Information:
376 Mrak Hall
752-1647

Summertime means vacation time. But it can also mean a time for you to accelerate your progress toward a degree (attending both sessions can result in completion of a quarter's work)—or work on a teaching credential—or take advanced special study, research, or group study courses.

Summer Sessions at Davis offer a variety of lower-division, upper-division, and graduate courses that provide full University credit. Admission is open to all University students, high school graduates, and qualified applicants. Please note, however, that admission to a Summer Session does not constitute admission to the University's regular sessions. For the Summer Sessions bulletin and application materials, write to the address above.

In 1979 there will be two six-week Summer Sessions at UC Davis: June 18 through July 27, and July 30 through September 7. All other University campuses, except San Francisco, will also hold Summer Sessions.

Committee for Arts and Lectures (CAL)

Information:
150 Memorial Union
752-2523

The Committee for Arts and Lectures presents cultural events to enrich and supplement the educational experiences of campus and community members.
In 1978–79 CAL will be presenting music and dance concerts, films, plays, poetry readings, lectures, solo recitals, orchestral performances, and free noontime entertainment on the Quad.

Student tickets are available at reduced prices for events for which there is a charge.

The Committee, which is composed of students, faculty, and staff members, welcomes program suggestions and interested volunteers.

Conferences and Campus Services

Information:
Conferences and Campus Services Office
4475 Chemistry Addition
752-2813

Off-campus and non-student campus groups desiring to use campus facilities to sponsor meetings, workshops, conferences, or similar activities should contact Conferences and Campus Services. A one-stop reservation service, this office provides a single location for assistance with arranging all the various components of meetings and conferences.

WORK-LEARN

Information:
Work-Learn and Career Planning and Placement Center
2nd floor, South Hall
752-2855

Where are you going?

That is sometimes hard to answer in today’s complex world. You may need to clarify your personal or educational goals. Or expand your awareness of the “working world.” Or find out if you are really interested in a career in sales or research or teaching.

One way to help yourself make these and other important decisions is to participate in a Work-Learn experience. Closely tied to academic programs, advising, and career guidance, Work-Learn expands your learning beyond the campus and enables you to make better decisions about your future.

A Work-Learn internship can help you in assessing your skills, making more meaningful choices before completing your University education, exploring career opportunities, and securing on-the-job experience.

Here is how it works: Participation may be full-time or part-time, credit or non-credit, voluntary or with monetary compensation—depending on your needs and interests and the availability of opportunities. The Work-Learn experiences must emphasize learning rather than routine activities, and include field supervision by a qualified non-faculty person (where appropriate) or the faculty member responsible for giving credit. Academic credit is awarded only for experiences planned and approved in advance.

You can initiate an internship on your own, or take advantage of the organized programs at Davis which include internships in:

- agricultural, biological, and environmental sciences
- engineering and the physical sciences
- arts, humanities, social and behavioral sciences, business, and pre-law
- education, counseling, and related fields
- health science and related fields

Additional Work-Learn opportunities and courses are available through the Departments of Applied Behavioral Sciences, Art, Dramatic Art, Economics, English, Environmental Horticulture, Family Practice, Geography, History, Political Science, Psychology, Rhetoric, Spanish, and the American Studies Program. The Colleges of Agricultural and Environmental Sciences and Engineering have College-wide courses that provide academic credit.

EDUCATION ABROAD

Information:
Education Abroad Program Office
323 South Hall
752-3014

Academic Advice:
H. J. Ketelhatter, Campus Coordinator
Dean's Office, College of Letters and Science
752-0392

The United Kingdom, Japan, Sweden, Norway, Mexico, Brazil, Hong Kong, Ireland, Egypt, France, Austria, Germany, Italy, Israel, Spain, Kenya, Ghana, and the U.S.S.R.

An around-the-world itinerary for madcap travelers? No. These are the countries and cities where you can study as an undergraduate participating in the University's Education Abroad Program (EAP).

Most EAP experiences are for the academic year. Exceptions are the two-year Hong Kong program, which will accommodate seniors or first-year graduate students interested in Asian or Chinese Studies, the summer program in Tübingen (Germany) for MAT candidates, and the one-semester program in Leningrad (U.S.S.R.).
Graduate students who have completed at least one year of graduate work at the University and have the support of their department and the Graduate Division are also eligible for some EAP programs.

The primary purpose of EAP is to provide an academic experience in a different educational system. For the most part, UC students abroad live as do students at the host university, attend the same classes, take courses from the same professors, and take part in local social and cultural activities. Full unit credit is given for courses satisfactorily completed.

Eligibility requirements include:

- At least 84 quarter units by the time of participation
- At least a 3.0 GPA for coursework completed in the University of California at the time of application and departure
- 2 years of University-level foreign language, or equivalent, with a 3.0 GPA (not applicable where classes are in English)
- An academic plan approved by your major adviser and the campus coordinator
- Endorsement of the Academic Senate Committee on the Education Abroad Program

To help overcome “culture shock” and prepare you for your academic schedule, University of California professors administer intensive language and orientation programs at many overseas campus locations. Moreover, should any personal or scholastic problems arise during your study abroad, the faculty members will be there to assist you.

Estimated minimum costs for the nine-month program range from $3,500 to $5,600.

Application deadlines vary depending on which country you study in. Generally, applications should be submitted during the Fall Quarter for the following academic year. If you intend to study abroad during your senior year, careful advance planning is necessary to make sure that all degree requirements will be met. (See also page 65.) Consult with your major adviser, the Dean’s Office of your college, and the Campus EAP Coordinator. See page 190 for information on EAP centers and study programs.

You can obtain informational brochures on other opportunities for study, travel, and employment abroad from the Education Abroad Program Office, 323 South Hall, 752-3014.

UNIVERSITY PROFESSORS

One of the University's valuable and unique resources is its small roster of University Professors, at present numbering ten, appointed by The Regents upon the recommendation of the President of the University. The title is reserved for certain distinguished faculty members, recognized nationally and internationally as scholars and teachers of exceptional ability. Each University Professor has a home campus but may hold a joint appointment on another campus. All are available to other UC campuses for limited or extended visits, primarily for teaching and lecturing. A University Professor may visit a number of UC campuses during the academic year, holding conferences with students and staff and speaking before general public audiences. Arrangements for a visit by a University Professor are made directly by deans and department chairpersons with the University Professor concerned. A small fund, part of the Intercampus Exchange Program budget, helps defray the University Professor's travel expenses.

At present, the roster includes:
University Professor Melvin Calvin, Director
Laboratory of Chemical Biodynamics
Lawrence Berkeley Laboratory
UC Berkeley
University Professor Murray Krieger
Department of English and Comparative Literature
UC Irvine
University Professor Josephine Miles
Department of English
UC Berkeley
University Professor Glenn Seaborg
Department of Chemistry
UC Berkeley
University Professor Neil Smelser
Department of Sociology
UC Berkeley
University Professor, Emeritus, Edward Teller
Lawrence Livermore Laboratory
Livermore, California
University Professor Charles Townes
Department of Physics
UC Berkeley
University Professor, Emeritus, Harold Urey
Department of Chemistry
UC San Diego
University Professor Sherwood Washburn
Department of Anthropology
UC Berkeley
University Professor, Emeritus, Lynn White, Jr.
Department of History
UC Los Angeles
LIVING ACCOMMODATIONS

Residence Halls

Information:
Housing Office
111 South Hall
752-2033

You can expand your UC Davis experience and add a measure of convenience to your life by living on campus—some 2,900 undergraduates and 180 graduate students do just that. Each of the residence hall complexes is staffed with students and professionals who help create and maintain an environment conducive to personal growth and educational achievement.

The room-and-board rate for 1978–79 is $1,575 for a double-occupancy room. This includes local telephone service and 19 meals per week. Rooms come complete with furniture, study lamps, and private telephone.

The Housing Office automatically receives your name and address if you check “University Operated Housing” when filling out the University Admissions Application. All necessary information and applications are then mailed to you.

Student Family Housing

Information:
Student Family Housing Office
Orchard Park
752-4000

There are 476 apartments on campus for married students and single parents. Both furnished and unfurnished apartments are available. Sorry, cats and dogs are not permitted. (Healthy small pets permanently kept and contained in a small cage or aquarium within the apartment are permitted.)

Considering that apartments in the Davis community generally cost $65 to $145 more per month than student family housing, you can see why on-campus apartments are assigned only from a waiting list. Since a wait of 6-8 months is common, your application may be submitted prior to admission to UCD.

Rents for 1978–79 (including all utilities and trash collection) are:

- 1-bedroom unfurnished, $123/month
- 2-bedroom unfurnished, $139/month
- 2-bedroom furnished (air conditioned), $154/month

Off-Campus Housing

Information:
Community Housing Office
114 South Hall
752-2483

If you choose to live off campus—about 75 percent of UC Davis students do—the Community Housing Office will probably turn out to be a very valuable resource. The Office provides many special programs, including grievance counseling and roommate selection services. Useful publications, such as the Housing Viewpoint and On Living in the Community, leasing information, and the Davis Model Lease, are also available there.
In addition, the Office maintains listings of private rooms, apartments, mobile homes, and houses for rent in the Davis area. Because the listings change from day to day, however, prepared lists are not furnished by mail.

Independent living groups—fraternities or sororities—are among your other housing options. Such groups offer a unique opportunity to participate in a self-governing residential environment where maintenance, food preparation, social planning, and educational activities are shared by the members.

THE ARTS AT DAVIS

Whether you want to participate, be entertained, or be inspired, an abundance of creative, musical, dramatic, dance, and art offerings are happening on campus all year long.

The Department of Music sponsors the University Orchestra, Chorus, Early Music Ensemble, Concert Band, and small ensemble groups. Music majors and other interested students can receive credit for participation in these groups, which perform at concerts and recitals open to the University community. The Music Department also sponsors an artist-in-residence for one quarter each year who gives concerts, recitals, and lectures, and who works with music classes and individual students. Free noon concerts featuring individual performers and ensembles—both professional musicians and music students—are a favorite weekly event during the school year.

Having some of the best theatre facilities in California is one reason why the productions of the Department of Dramatic Art are so successful. The excellent faculty and special guest artists, plus an unusually good stock of scenery, props, costumes, and lighting equipment also contribute to the professional quality of Davis productions. Each year’s dramatic schedule includes the University Theatre Season (five major productions of established plays); one major production of an experimental piece; the Premiere Season (five smaller productions of plays written by students); Studio Season (three smaller productions of established plays); and dozens of class-related projects. These productions are part of the academic program of the Department and serve an important purpose in the study of dramatic art. Participation is open to all students.
A tour of all the UCD art galleries will take you from one corner of the campus to the other. The Memorial Union Gallery (752-2885) has two exhibit spaces and features eighteen exhibits a year. The Gallery shows are organized by part-time student managers and include works by professional artists in solo and group shows. The Richard L. Nelson Gallery (752-0105), named in honor of the first chairperson of the Department of Art, is located on the first floor of the Art Building. The Nelson Gallery includes the Main Gallery, which features sculpture and painting, and the Small Gallery, which features photographs and prints. The Basement Gallery (752-0105) in the Art Building shows work by current UCD students, and is supported by funds from the Art Club.

The Carl N. Gorman Museum (752-6567), established in 1973 in honor of Carl Gorman, an advocate of Native American Studies at UCD, features professional Native American artists. The museum has a permanent collection as well as exhibits that change throughout the year. The Design Galleries on the first floor of Walker Hall, and exhibit spaces in the College of Agricultural and Environmental Sciences Office (228 Mrak Hall), the Faculty Club, and AOI-KV, feature the work of students and faculty members in the Design Department. Exhibits in the Anthropology Museum (138 Young Hall), are oriented toward areas of graduate and faculty research interest. Various collections include artifacts from North America, the South Pacific, and Africa. Exhibits are mainly Department collections with some works on loan from other galleries.

The Committee for Arts and Lectures (CAL) brings a wide variety of performing groups to campus, in addition to sponsoring lectures, film series, and free noon-time events on the Quad. Various other departments, such as English, Medieval Studies, the foreign languages, and History, sponsor lectures, poetry readings, and exhibits open to the University community. The Campus Record, a weekly information sheet published by the Office of Public Affairs (334 Mrak Hall, 752-1930) lists most of the week's activities, but bulletin boards, kiosks, the student radio station KDVS, and the California Aggie also advertise upcoming events.

On the lighter side, the Cal Aggie Marching Band entertains spectators at UCD football and basketball games, and sometimes even shows up at tennis matches. A special group which defies all categorization, the Band is noted for its outrageous performances and is one of the last remaining student-funded and student-run marching bands in the country.

This is one of the few remaining campuses where a student can have a traditional "college experience." It's a restful place, conducive to study, unlike the inner city beehives so prevalent.

—Rhetoric Instructor
RECREATIONAL FACILITIES AND PROGRAMS

No matter what your recreational bent—horseback riding, dancing, music listening, chess, crafts, bowling, woodworking, swimming, or sports—Davis has a place where you can enjoy it.

How about intramural sports? The Intramural Recreation Program is one of the most popular programs on the Davis campus—and a great way to relax and have fun. More than 50 different activities, from coed inner-tube water polo (created on the Davis campus in 1969) to lacrosse, are happening year-round. Whether the action takes place in one of several gymnasiums, the Rec Hall, the track at Toomey Field, Memorial Union Games Area, the tennis courts, or the swimming pool, participation is always lively and informal.

Memorial Union

Information:
Director of Union and Recreational Services
460 Memorial Union
752-2525

The Memorial Union (MU), at the north end of the Quad, is the hub of campus activities. Bring yourself up to date on what's going on by stopping by the Information Desk in the main lounge, or by calling 752-2222. In the MU you'll find the Games Area (with a 16-lane bowling alley and two billiards rooms), Freeborn Hall and the Campus Box Office, and below that, the Student Organizations and Activities Center (SOAC), KDVS radio, the California Aggie newspaper, Associated Students Travel Service, Rabbit Reproductions, Experimental College, Switchboard, Zapple Records, Classical Notes, and the MU Barbershop. Also housed in the MU complex are the Committee for Arts and Lectures, the UCD Bookstore and Corral, the Coffee House, MU Dining Commons, Campbell Recreational Reading Library and Cameron Music Listening Room, lounges, outdoor plazas, Associated Students offices, the MU Art Gallery, and MU Recreation offices.

The Putah Creek Recreation Area and the Arboretum feature picnic areas, bicycle and walking paths, bridle paths, and a small lake with boating facilities. Surrounded by a grassy area suitable for group recreation, the Putah Creek Lodge has outdoor barbecue pits and tables as well as an indoor fireplace, kitchen, and multi-purpose room. The Arboretum along Putah Creek was planted with trees and shrubs from California and many other parts of the world for teaching, research, and general enjoyment.

The Silo Barn Student Center, once billed "The World's Most Modern Dairy Barn," was built in 1908 and renovated in 1970. It now features a snack bar, game facilities, a large multi-purpose room, and offices for Student Special Services. A new addition, the Silo Craft Center, is an ideal place to channel your creative energy. Workshops and classes are offered each quarter in such varied crafts as woodworking, weaving, spinning, jewelry making, batik, ceramics, photography, silkscreening, lapidary, leatherworking, upholstery, and many, many more.

The Equestrian Center, southwest of the Veterinary Medical Teaching Hospital, is popular all year round. Trail rides and instruction in both English and Western riding are available for beginning through advanced riders.

The Outdoor Adventures program is headquartered in Temporary Building 24, just east of Silo Barn. Outdoor Adventures operates a rental outlet, resource center, and provides classes and clinics in backpacking, rock climbing techniques, white water rafting, mountaineering, cross-country skiing, and equipment construction...to name just a few.

The Recreational Swimming Pool Complex includes a very large free-form swimming pool with separate wading pool, bath house, snack bar, and shuffleboard courts. The adjacent lodge is equipped with a kitchen, meeting rooms, and a lounge with a large fireplace.

Freeborn Hall, on the west side of the MU, is a 1,800-seat assembly hall used for dances, banquets, dramatic and musical events, lectures, and conferences.
Recreation Hall

Information:
Rec Hall Office
Main Floor, SE Corner
Recreation Hall
752-6071

The new Recreation Hall on the Davis campus is a multi-use facility which meets the requirements for intramural and informal recreation play, intercollegiate athletics, and special events. The three-level hall has locker rooms; an equipment room; handball, racquetball, and squash courts; a weight room; I.C.A. training and team rooms; an arena area for volleyball, basketball, and badminton courts; areas for wrestling and combative sports, table tennis, gymnastics, dance, and informal recreational play areas.

Students can use Rec Hall facilities by showing their current Registration Card. Faculty, staff, alumni, and community members may purchase privilege cards to use Rec Hall lockers, equipment, and facilities. Copies of the brochure Rec Hall Activities are available from the Rec Hall Office and at the Memorial Union Information Desk.

The Rec Hall is also available to campus affiliated organizations for special events.

ASSOCIATED STUDENTS (ASUCD)

Information:
ASUCD Office
3rd floor, Memorial Union
752-1990

The Associated Students of the University of California, Davis (or ASUCD) is the student organization to which every student belongs if registered as an undergraduate. Out of the $228.50 you pay each quarter $9 goes to ASUCD (graduate and professional students may become members by paying the $9 fee although certain ASUCD services are available to these students from their membership in the Graduate Student Association). The money is spent on activities and services that will make your life as a student a little easier, less expensive or just more fun—such as the Coffee House, the campus newspaper, radio station, record store, note-taking service, the Experimental College, the Academic Grievance Center, and more.

The student government, which controls how and where the money goes, consists of the ASUCD Executive Council. The Executive Council is based on the city council form of government and consists of six elected council members and the Council President (like a mayor). It is the policy-making body for ASUCD and oversees every aspect of the association.

The Council President is the chief administrative officer for ASUCD and is assisted by an appointed Vice President who serves as the executive aide. The President keeps the student body in contact with other universities, the University systemwide administration, The Regents, and the Davis city government.

Four commissions deal with making recommendations to the Executive Council. Members of the commissions are appointed by a subcommittee of the Executive Council. The four commissions are as follows:

External Affairs deals with the off-campus concerns (city of Davis, The Regents, social responsibility, agricultural mechanization impact, etc.).

Internal Affairs is concerned with nominating students to the Chancellor’s Administrative Committees, as well as monitoring campus issues.

Academic Affairs acts as an advocate of student rights in the area of academics, including dealing with the Academic Senate and with issues such as grading policies, tenure, and teacher evaluations.

Business and Finance deals with the allocation of student monies to services and activities as well as the annual ASUCD budget.
The judicial branch consists of the Student Relations Council whose members are appointed by the President of ASUCD.

ASUCD operates over fifty activities and services for UCD students. Information about these services can be found in the ASUCD Student Catalog and Telephone Directory, or by visiting the ASUCD offices in the Memorial Union.

Some of the ASUCD services include the Unitrans bus system, California Aggie newspaper, Student Viewpoint evaluation of professors and classes, and the Coffee House in the Memorial Union. The ASUCD-sponsored Experimental College offers a variety of non-traditional classes each quarter for students interested in diversifying their educational experience. Other ASUCD activities include Radio KDVS stereo FM and AM, the Cal Aggie Marching Band, Student Forums, Entertainment Board, the Bike Barn, Zapple Records, Picnic Day, and free legal services. ASUCD also cooperates with other University of California campuses to operate a full-time Student Lobby in Sacramento to represent student interests to State government.

STUDENT ORGANIZATIONS AND ACTIVITIES CENTER

Information:
SOAC Office
Room 10, Lower Freeborn Hall
752-2027

At UC Davis there are over 250 recognized student organizations, covering political, religious, social, cultural, ethnic, academic, recreational, international, and service interests. Student Organizations and Activities is a resource center staffed by professionals in student development and higher education. The Office provides advising, support services, and organizational management workshops to help campus organizations sharpen their effectiveness. SOAC also assists individual students who want to get involved in new activities or to start new organizations. Members of the campus community can pick up quarterly film calendars and receive information about campus activities by contacting the SOAC Office. To reserve campus facilities (recreation lodges, meeting space, etc), student groups may contact the SOAC Reservations Coordinator at 752-1920.
ADVISING AND COUNSELING

In many ways, good advising is as important as good teaching. Several sources of advising and counseling—both academic and personal—are available to students at Davis. You may never need some of these services, but you'll be missing out on some important opportunities if you don't give them a try.

Advising Services

Information:
South Hall
752-3000

Advising Services coordinates the student service groups listed below. Professional staff and more than 60 student advisers are available to help you with your immediate concerns and with plans and possibilities for your future.

Academic Advising Intern Program (AAIP) places peer advisers in more than twenty departments to help students find the answers to their questions about major requirements and University policies and procedures. The AAIP adviser complements faculty advising by providing a student perspective on the department. AAIP staff are trained to provide information and assistance about graduate schools, career opportunities, and college requirements. For more information contact the AAIP office in South Hall, 752-3000.

The First Resort is a place to go if you are feeling bogged down with University red-tape, registration procedures, or academic problems. The student advisers here can either answer your questions or put you in contact with others who can. The staff can give you advice and assistance from the point of view of someone who has "been there." The First Resort also maintains a tutor listing and referral service for use by all students. If you have a problem, remember—start with The First Resort (TB-115, corner of Peter J. Shields and California Avenues, 752-2807).

The Orientation and Summer Advising Office provides coordination for the Summer Advising and Registration Conference, "O" Week (orientation) activities, Preview Day, and many other student assistance and orientation programs for new students. The staff seeks to help students learn about the campus environment, procedures, and opportunities, and to offer programs relevant to students' changing needs. Your input to orientation programs, through ideas and assistance, is always welcome. The Coordinator's office is located in South Hall, 752-2022.

The Pre-Business School Adviser, 359 Kerr Hall (752-6512 or 752-3000), is a student peer adviser who can assist you in seeking information about graduate schools in business and management. This office also works with students who are in the process of applying to graduate school in business and distributes the Graduate Management Admission Test (GMAT) booklet. There is a useful library of business school catalogs and an informational handbook available.

The Pre-Law Advising Office is where students interested in legal careers can find information, advising, and help with planning and procedures. The staff can advise you about admission requirements and about trends and alternatives in the field of law. The office maintains a reference library of law school bulletins, legal assistant information, admission test materials, career information, and the Pre-Law Handbook. The Pre-Law Adviser and law student intern can be contacted in South Hall, 752-3009.

The Health Sciences Advising Office (1st Floor, South Hall, 752-2672) will be an important place for you if you are exploring or considering a career in a health science area. The professional and student advisers are knowledgeable about a variety of health careers and can provide information and advice about professional prerequisites, application procedures, curricula, and career options. The office includes an extensive library of school catalogs, statistics, and information concerning health care and careers. If you need information or wish assistance with applications, the staff of the Health Sciences Advising Office is ready to listen and to help.

Counseling Center

Information:
219 North Hall
752-0671

The Counseling Center is a place where you can receive individual support and attention with concerns such as choosing an academic major or vocation, your life goals, and interpersonal relationships. It is a place where individuals can explore their feelings, values, and concerns in an atmosphere of understanding and confidentiality.

In addition to individual counseling, the Counseling Center offers group counseling, vocational interest testing, personality testing, and information about graduate school admissions tests. The Center also helps students in the Planned Educational Leave Program clarify their reasons for temporarily leaving the University.
The Counseling Center is staffed with psychologists and counselors who provide services to students directly and work as consultants, trainers, and advisers to other groups and agencies within the campus community.

Students can see counselors immediately through the walk-in service or can make an appointment to fit their schedules.

The House

Information:
TB-16 (across from Regan Hall)
752-2790

The House is a drop-in peer counseling center staffed by trained student volunteers. In a warm, supportive atmosphere you can come and share your feelings and personal concerns, try out new ideas, and meet people who can help you in understanding more about yourself and your goals.

A phone service is available 24 hours a day, and The House also provides training in peer counseling skills, workshops for personal exploration and growth, and referrals to other community sources. During finals week The House sponsors relaxation workshops and study breaks with hot beverages, cookies, and a warm fire.

What you can find here is warmth, trust, and empathy. Stop by or phone.

Intercultural Center/Peer Advising and Counseling Program

Information:
Intercultural Center
3rd Floor North Hall
752-3492/3493
PAC Program
311 North Hall
752-3472

The purpose of the Intercultural Center is to promote understanding, communication, and knowledge of the various needs, concerns, and problems that minority and low-income students face daily. The Center's function is to provide information and assistance for preserving, transmitting, and enriching the important elements of our cultures, including the products of scholarship, research, creative imagination, and human experience. These are dealt with specifically through the following programs: Intercultural, Outreach, Graduate and Professional Opportunity, and Community Relations.

Educational Opportunity Program (EOP) Support Services

In addition to the support services available to all students, the campus provides a number of services specifically designed to assist EOP students (see page 52) succeed in their studies at UCD. These services include orientation, counseling and advising, and tutoring for all EOP students, as well as an academic skill development program for special-action EOP students during their first year.

EOP Orientation (Advising Services, South Hall, 752-3000), a general orientation for all new EOP students, is held during Orientation Week each fall to introduce key support units and EOP staff. Orientation sessions are also offered at the beginning of Winter and Spring Quarters.
EOP Counselors (Counseling Center, 219 North Hall, 752-0871) and Peer Advisers and Counselors (PACs) provide counseling services for students admitted through EOP. You will be assigned a counselor with whom you can maintain contact throughout your years at UC Davis. You may also change your counselor assignment if you wish.

EOP counselors offer general academic advising and personal-social counseling and can make referrals to a wide range of helpful services. The counselors can help you with course scheduling, selecting a major, and determining career goals, as well as provide counseling for coping with and adapting to the University and ways of dealing with personal stress. PACs assist the EOP Counselors by providing peer support and advising to EOP students on a student-to-student basis.

EOP Tutoring (Learning Skills Center, TB-10, 752-2013) is a free service for EOP students. If you are having difficulty with your course work, the Learning Skills Center offers tutoring in several course areas. Tutoring is provided on a one-to-one basis, with primary emphasis on the assignments in classes you are taking. However, tutorial services may also be used to improve study habits and learning skills. The tutoring program is staffed by EOP and non-EOP students, most of whom are undergraduates who have taken the classes in which they tutor.

Special Transitional Enrichment Program (STEP) (Learning Skills Center, TB-10, 752-2013). New EOP students (freshmen and transfers) admitted by special action are required to participate in the Special Transitional Enrichment Program (STEP). The program begins in summer and continues through the student's first academic year, providing preparatory course work and developing academic skills. By supplementing regular academic courses, the program helps students adjust academically and socially to the campus by strengthening their learning skills and study habits, and by providing an extensive orientation to campus life.

Learning Skills Center (LSC)

- General study skills
- Math/Science study skills
- Writing essays and term papers

- Reading efficiency and speed
- English as a second language
- Time-management
- Test-taking
- Test anxiety reduction
- and many more...

Learning specialists can assist you individually, or you may participate in workshops covering specific areas of study. The Learning Laboratory has self-help tapes and films which enable you to work at your own pace. The LSC Library contains a variety of programmed instructional materials, reference books, and preparation materials for the GRE and LSAT exams, many of which may be checked out.

The Learning Skills Center is open Monday through Friday, from 8 a.m. to 5 p.m. Come in and inquire about our services, which are free to all UC Davis students.

Academic Reentry Office

Information:
376 Mrak Hall
752-2820

The Academic Reentry Office offers preadmission counseling, reentry advising, and continuing assistance to non-traditional students. Quarterly orientations to campus life and workshops on academic skills are also sponsored. Weekly noon-group sessions for reentry students provide support through the "Encore" student organization. (See also page 18.)

The most important thing to remember about studying is that to do it well you have to practice. It's a skill, like anything else, and it takes some time to get good at it. NOBODY was born knowing how to do calculus.
—Senior, Mathematics
STUDENT SERVICES

Student Health

Information:
Cowell Hospital and Student Health Center
752-2300

Your health. It is important to you and to the University. Consequently, every new full-time student and every full-time student who returns after an absence must file, in person, a medical history form and the results of a tuberculin skin test at the Health Center as part of registration. A medical evaluation of the information on the form is then made in order to safeguard your health and the health of the University community.

Since it is not intended that the Health Center supplant the medical care of your family physician, you are advised to have a physical examination by your own doctor before coming to UC Davis. Any problems capable of remedial treatment, such as diseased tonsils or imperfect eyesight, should be corrected to prevent loss of study time. Applicants with contagious diseases will be excluded from the classroom.

The services of the Health Center are made possible, for the most part, by your registration fees. As a regularly enrolled student paying full registration fees, you are entitled to such outpatient and inpatient medical care as the Health Center is staffed and equipped to provide from the first day of the quarter through the last day of the quarter or to the date of official withdrawal.

Some of the Health Center services are:

- General outpatient and hospital care
- 24-hour emergency service
- Regularly scheduled clinics
- Major and minor surgery facilities
- An intensive-care unit
- X-ray, laboratory, and pharmacy services
- Physical therapy facilities
- Contraceptive information

The Health Center does not assume the responsibility for treating chronic physical defects, illnesses present at the time you enter the University, dental problems, or non-emergency remediable disorders.

When, in the opinion of the Health Center’s Director, a serious illness or injury obviously prevents you from continuing class work during the current quarter, you will be returned to your community or home for definitive treatment.

If you are not enrolled during a quarter, or if you spend the summer in the Davis area, you can maintain your Health Center eligibility by paying an appropriate fee. Enrollment in this program can be initiated only during the registration period for each quarter or summer session.

The facilities of the Health Center are open to your dependents on a fee-for-service basis. A Dependents’ Health Insurance Plan for your spouse and children can be purchased at the beginning of each quarter in the Health Center.

International Student Services

Information:
Services for International Students and Scholars
3rd floor, South Hall
752-0864

The UC Davis campus currently has a community of international students and scholars from 92 different countries, studying, teaching, and researching in a wide variety of fields. Assistance for international persons on campus is provided by the staff of the Services for International Students and Scholars (SISS) Office.

The primary function of the SISS Office is to assist incoming international persons in obtaining proper visas and then maintaining their status after arrival. The Office also provides financial information, advising and counseling services, orientation, and intercultural activities.

Prior to Fall Quarter registration, a special orientation is held for new international students. All new and transfer international students are urged to attend this annual program which provides assistance with registration, class enrollment, housing, banking, cultural adjustments, and immigration regulations. Introductions to campus services and community resources are also provided.

Careful budgeting is essential for international students. A minimum allowance of $360 per month for a single student and $475 per month for a married student is recommended for living expenses. In addition, international students will require funding for tuition and fees as nonresidents (see page 37) for the duration of their stay at UC Davis.

Additional funding will be required for books, laboratory equipment, surgical instruments, dental and eye care, summer health insurance, and Summer Session fees (approximately $170 per session), as needed.
Specially designed laboratory bench aids physically disabled students.

The international student should be cautioned that there will be numerous additional expenses during the first few months for deposits or cleaning fees for housing, telephone installation costs, and purchase of bedding and cooking utensils.

No financial aid is awarded by the University to international students during their first year of study and no aid can be guaranteed in following years. Prospective graduate students who have been corresponding with an academic department about a research or teaching assistantship should receive a clearly defined offer in writing before departing for Davis.

Students are encouraged to visit Services for International Students and Scholars as soon after their arrival as possible. This office can help with immediate needs and assist in providing friendship by helping to locate fellow countrymen and introducing new students and scholars to Davis's international community.

Services to Handicapped Students
Information:
Services to Handicapped Students (SHS)
101 Silo
752-3184 or MCM 752-3180

If you are physically disabled or blind, you can draw upon the advice, assistance, resources, and experience available from Services to Handicapped Students. This resource program is designed to reduce the barriers that students with disabilities face at UCD. The staff of SHS is committed to working with you to accommodate your individual circumstances—and know the needs and problems you face from their own experience on campus.

Most architectural barriers to participation in campus activities have been removed. There is now accessible on-campus housing, and a campus map showing special facilities is available. The campus is almost completely flat and has a good curb ramp system. This ease of mobility, plus special class scheduling methods, can better guarantee that you'll make it from one class to another on time.

Advising is available to assist with such problems as living options, attendant recruitment and management, and adaptations for maximum independent living. Counselor and student peer support can help you on disability management issues, career choices, and personal development. You can also find assistance in obtaining financial aid to meet special needs.

Educational support includes specialized academic advising, emergency educational equipment loans, tutoring services, a library resource center with specialized equipment, and arrangements for locating
readers, interpreters, and clerical or research assistants. Other resources include:

- Priority registration and enrollment in classes
- VisualTek, Phonic Ear, and VariSpeech equipment
- Orientation tours and mobility advising for maximum independence
- Repair services for wheelchairs and mobility equipment
- Emergency loan of electric carts and wheelchairs
- Transportation services in an adapted van

Preadmission counseling is available to individuals with disabilities. You are encouraged to contact the SHS Office if the circumstances of a permanent physical disability seem to prevent you from demonstrating your ability to do University work or completing the subject or examination requirements for admission.

Veterans Affairs

Information:
Veterans Affairs Office
200 Silo
752-2020

As a veteran or veteran's dependent, you may be entitled to various benefits under state and federal laws. If so, the Veterans Affairs Office can assist you.

To initiate a benefit claim, write the Veterans Affairs Office or drop by 200 Silo with your letter of admissions, preferably before registration. They can give you forms, information, and advice, and will also certify your attendance to the Veterans Administration. Remember to visit the office each quarter (bring your validated registration card for recertification) in order to avoid any delay in receiving benefits. If other delays occur, the office will help resolve the problem.

Other special services veterans and veterans' dependents may be eligible for are coordinated by the office. These include employment, financial aid, VA Work-Study, correcting military records, and tutorial assistance.

Although the draft has lapsed for those not in the medical profession, the rest of the Military Service Act has no expiration date and continues on a "standby" basis.

If you are confused or unsure of your current selective service status, the Office can help by offering information, assistance, alternatives, and support.

Women's Resources and Research Center (WRRC)

Information:
TB-116 and 124
752-3372

The Women's Resources and Research Center is a supportive place for women in all roles, with all kinds of needs and interests. WRRC's services are wide-ranging and include:

- Forums and workshops on subjects related to the status of women and the effects of changing sex roles on both women and men
- Internships in research, writing, legislative work, program planning, graphic arts, and many other areas
- Individual peer counseling
- Resource files and referrals for birth control, marital problems, legal rights, legislation, child care, and sexuality
- Special interest discussion groups and consciousness-raising groups for both women and men
- Speakers Bureau

A library containing books and research materials on subjects related to women and changing sex roles, and a monthly newsletter, Women's Writes, are also part of their services.

The Center is staffed by professionals, student interns, peer counselors, and community volunteers. People are encouraged to drop by and talk with the staff, and volunteers are needed to work with the Women's Center on public forums, Project Outreach, counseling, legislative research, publicity, and on the newsletter.

Student Employment

Information:
Student Employment Center
University House Annex
752-0520

Need a part-time job to get yourself through school? Do you occasionally run short of funds or need a few extra dollars for that special weekend event? If so, the Student Employment Center can probably assist you.

The Center assists regularly enrolled students (including Part-Time Degree students), students on Planned
Educational Leave, students' spouses, and students who have received a letter of acceptance for the following quarter but have not yet registered.

A wide variety of positions on the campus and in Davis and adjacent communities are available. New listings are posted twice daily. Extensive listings of summer opportunities in camps and resorts throughout California are located at the Center and students are encouraged to use the information early to locate summer employment.

The Center is open from 8 a.m. to 12 noon and 1 to 4 p.m.

- Part-time, full-time, school-year jobs
- Vacation employment

Career Planning and Placement

Information:
Work-Learn and Career Planning and Placement Center
2nd floor, South Hall
752-2855

Worried about your career plans? Do you know what kind of a job you want when you graduate? Or are you one of the many students unsure about the career you want after graduation? If so, the advisers in the Work-Learn and Career Planning and Placement Center may be able to help you.

The Center assists undergraduates, graduates, and alumni in skill assessment, development of career or employment goals, and placement into full-time employment. If you are considering dropping out of the University for a term or longer, a placement adviser can also give you information about employment opportunities.

Some of the things you can find at the Center include individual career advising and group seminars, workshops on communication, interviewing and job-seeking skills, and seminars to explore career fields and employment trends. The Career Resources Library has material that can help you learn how your major field of study can be translated into job opportunities. The Center also has information on which majors various companies are currently seeking, as well as descriptions for a variety of positions. A useful manual for job-seekers, prepared by the Center, provides guidelines for preparing a résumé, tips on interviewing, and information on employment in government, business, and education.

To assist students in finding jobs after graduation, the Center solicits and maintains files of vacancy listings, arranges employment interviews, and schedules on-campus recruiting by employers.

So don't wait until you are a senior—about to be thrust into the job market—before thinking about your career interests. Visit the Work-Learn and Career Planning and Placement Center early—you'll be way ahead then. Advisers are available on a drop-in basis or by appointment.

Educational Placement Service

Any student enrolled in the teaching credential program should establish a placement file with the Educational Placement Service. By using the information you provide about your background, training, and professional experience, advisers can match your qualifications with available positions—although the University reserves the right to refer only those persons who are considered to be fully qualified. Advisers counsel candidates, communicate with employers, receive job listings, and arrange interviews. Students not pursuing a credential are encouraged to talk with a career planning and placement adviser to explore education as a potential career field and opportunities for internships.

Cal Aggie Alumni Association

Information:
The Alumni Center
University House
752-0888

In choosing the University of California, Davis as your University, you are making a life-long commitment... you will be identified with the Davis campus for the rest of your life. After graduation many people choose to continue their association with UCD through participation in the Cal Aggie Alumni Association.

The Association and its alumni members have aided the Davis campus through support and sponsorship of many activities and programs including the Alumni Scholarship Program, Alumni Day, Picnic Day, the Recreation Hall Campaign, legislative relations programs, and a student loan fund. In addition, the Association maintains a professional staff dedicated to meeting the needs of UCD's more than 50,000 alumni.

Each graduate of UC Davis is considered important as an alumnus and is given the opportunity to become a sustaining member of the Cal Aggie Alumni Association. For those who become sustaining members, the Association offers special programs and benefits.
FEES AND EXPENSES

It is extremely important to consider carefully the total financing of your University education. If you will need financial assistance beyond those funds that you and your family can provide, you should apply for aid well in advance of enrollment. The deadlines for financial aid, grants, loans, work-study, and scholarships can be found in the following pages.

While the needs and resources of each student are different, the following information will give you an idea of the basic expenses students at UCD will incur. Legal residents of California are not required to pay tuition at the University. Students classified as nonresidents must pay tuition of $635 per quarter. (See page 329 for the nonresident tuition fee statement.)

At the time of registration each quarter, every student must pay the following fees:

<table>
<thead>
<tr>
<th></th>
<th>Undergraduate students</th>
<th>Graduate students (excluding Law)</th>
</tr>
</thead>
<tbody>
<tr>
<td>University registration fee</td>
<td>$116.00</td>
<td>$116.00</td>
</tr>
<tr>
<td>Memorial Union fee</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Associated Students membership fee</td>
<td>9.00</td>
<td>—</td>
</tr>
<tr>
<td>Graduate Student Association fee†</td>
<td>—</td>
<td>3.00</td>
</tr>
<tr>
<td>Educational fee</td>
<td>100.00</td>
<td>120.00</td>
</tr>
<tr>
<td>Total for California residents</td>
<td>$228.50</td>
<td>$242.50</td>
</tr>
<tr>
<td>Tuition for nonresidents</td>
<td>635.00</td>
<td>635.00</td>
</tr>
<tr>
<td>Total for nonresidents</td>
<td>$863.50</td>
<td>$877.50</td>
</tr>
</tbody>
</table>

*Students in the School of Law should refer to the School announcement and under explanation of fees.
†Students in the Schools of Law, Medicine, and Veterinary Medicine are not included (see the explanation of fees following).

Additional Fees and Expenses

Students may be subject to the following fees for optional services:

- **Parking** (per year: $24–36 for cars, depending on the type of permit; $12 for motorcycles)
- **Bicycles** (must have California State License, $1.50; parking allowed in posted areas on campus)
- **Late payment fee** ($10)
- **Changes in class schedule after announced deadline** ($3)
- **Transcripts** ($2 for the first and $1 for each additional copy requested at the same time)
- **Applications for readmission, Planned Educational Leave, or intercampus transfer** ($20)

For details concerning fees and deposits, consult the publication *Student Fees and Deposits 1978-79*, available from the Registrar's Office. Current fees are also published in the *Class Schedule and Room Directory*.

These fees are for the 1978-79 academic year and are subject to change without notice.

Explanation of Fees and Expenses

University Registration Fee: $116 per quarter ($174 per semester for students in the School of Law). Covers student programs including intercollegiate athletics, Recreation Hall, advising and counseling services, career planning and placement, health services, community services, etc. The medical expense portion of this fee can be treated as a deductible for income tax purposes.
Educational Fee: Paid by all undergraduates at $100 per quarter; students in the School of Law at $180 per semester, and all other graduate students at $120 per quarter. Used to support a portion of the cost for the educational program. Undergraduate students enrolling for less than 9 units in any quarter may petition the dean of their college or school to pay the reduced Educational Fee of $50.

Nonresident Tuition: $635 per quarter; $952.50 per semester for students in the School of Law (see the nonresident tuition fee statement on page 329).

Memorial Union Fee: $3.50 per quarter; $5.25 per semester for school students. Paid by all full-time students.

Associated Students Membership Fee: $9 per quarter. All full-time undergraduate students are members of the Associated Students, University of California, Davis (ASUCD). Graduate and professional students may become members by paying the fee (see also GSA fee following).

Graduate Student Association Fee: $3 per quarter. Paid by all graduate students except law, veterinary medical, and medical students. Professional students may become members by paying the fee.

Law Student Association Fee: $2.50 per semester.

Living Expenses

The Financial Aid Office estimates the average 1978-79 expenses of a UCD undergraduate who is single will total $4,100 including $686 for fees, $265 for books and supplies, $1,049 for housing, $1,220 for food, $490 for personal expenses, $230 for transportation, and $160 for medical expenses. Estimated expenses for other single students are: graduate students, $4,350; law, $4,475; veterinary medicine, $4,925; first-year medicine, $4,700; second through fourth-year medicine, $5,475. For married students these categories range from an undergraduate low of $6,250 to a high of $8,650 for students in their last years of medical school.

These costs are average costs, and your own living expenses may differ somewhat from these. More information on living expenses can be found in the section on housing and from the Financial Aid Office.

Transportation

Transportation is included in the cost of living estimates given above. See pages 11 and 37 for an idea of what types of transportation are available. Information on parking and bicycle regulations can be obtained through the Parking Operations Office located in the Police Department on campus (752-0659). Car pools are encouraged and the Car Pool Information Office (752-MILE) can help you find a ride or riders.

FEE REFUNDS

If you have to withdraw before the first day of instruction, you must fill out and return a "Cancellation of Registration" form to the Registrar's Office, along with your validated Registration Card. After the first day of instruction, fill out a "Petition for Withdrawal" and follow the same procedures.

Refund Procedures:

New Undergraduate Students:

Prior to Day 1, Registration Fees paid are refunded except for the $50 Acceptance of Admission Fee, and other fees paid are refunded in full.

Day 1 and After, the $50 Acceptance of Fee is withheld from the Registration Fee and the

*If no credit for courses is received, a full refund of the Registration Fee for the
regular session will be granted to all students entering the armed forces prior
to the sixth week of the quarter. No refund thereafter.
FINANCIAL AID

Information:
Financial Aid Office
1st floor, North Hall
752-2330

The Financial Aid Office provides financial assistance in the form of scholarships, loans, grants, and work-study employment. Budgetary counseling is also available.

With the exception of scholarships, financial need is the major criterion for most sources of aid. Eligibility is determined from a careful assessment of your financial situation which takes into account your family's income, assets, debts, number of children, and the estimated cost of attending the University. If you are eligible, you will be offered a combination of the funds described below.

Applications for loans, grants, and work-study employment are accepted throughout the academic year as long as funds are available. However, to be assured of priority consideration you should file your application for the 1979-80 academic year no later than February 1, 1979. Complete application instructions for prospective undergraduate students are contained in the UC Undergraduate Admissions and Financial Aid Packet. Continuing UCD students and prospective graduate students should obtain application forms and instructions from the Financial Aid Office in December 1978.

Undergraduates with outstanding academic records are encouraged to apply for scholarships. Scholarship applications for the 1979-80 academic year are available in October and must be filed by December 15, 1978. (See the Scholarship section beginning on page 42.)

Graduate students are eligible for most of the same types of financial aid as undergraduates. In addition, graduate scholarships, fellowships, and teaching and research assistantships are administered through the Graduate Division (see page 110).

Types of Financial Aid

Grants: A grant is a gift that does not have to be repaid. Whenever criteria and funding levels permit, a student's financial aid award is partially made up of grants.
Financial Aid Awards

Care has been taken to ensure the accuracy of information in the following entries; however, the regulations are subject to change. Contact the Financial Aid Office for the most up-to-date information.

Basic Educational Opportunity Grants (BEOG) are federally funded awards. All undergraduate financial aid applicants are required to apply for a BEOG each year by following the instructions on the financial aid application packet. Recipients must be enrolled for at least a half-time course load and must maintain good academic standing and satisfactory academic progress.

- $1,400 maximum per year
- Amount depends on financial need

Cal Grants are awarded by the California Student Aid Commission and may be renewed each year. All undergraduate financial aid applicants who are California residents are required to apply for one of these awards by following the instructions on the financial aid application packet.

Cal Grant A (California State Scholarship) awards are based on financial need and academic achievement. Recipients must complete at least 36 units per academic year.

Cal Grant B (College Opportunity Grant) awards are based on financial need and are made to entering undergraduate students, primarily from low-income backgrounds. Recipients are required to complete at least 12 units each quarter, unless the student receives permission to enroll for fewer units.

- $300 to $600 per year for Cal Grant A
- $1,790 maximum per year for Cal Grant B
- Undergraduate California residents only

Supplementary Educational Opportunity Grants are awarded to U.S. citizens or permanent U.S. residents who are at least half-time students in good academic standing.

- $200 to $1,500 per year
- $4,000 maximum for 4-year program
- $5,000 maximum for 5-year program
- Grant cannot exceed 50 percent of total financial aid award

Loans: A financial aid award almost always includes a long-term loan. These loans usually have an annual interest rate of 3 percent. Repayment begins after you graduate or withdraw from school.

Work-Study: The work-study program was designed to expand employment opportunities for college students. If you are awarded work-study, you will be given referrals to part-time work-study jobs on campus or off-campus nonprofit organizations. You may be able to work full time during school vacation periods. Job opportunities range from clerical and janitorial work to highly technical jobs in your own field.

Scholarships: Scholarships are awarded on the basis of academic excellence and scholastic achievement. For some scholarships, financial need is a consideration. (See page 42.)
Educational Fee Grants provide qualified California residents with a grant to pay their Educational Fee for the first three quarters of attendance at a UC campus.
- $300 maximum

Educational Opportunity Program (EOP) Grants assist eligible students who have been admitted to the University under the EOP program.
- Maximum varies each year depending on funds available

University Grants are available to both graduate and undergraduate students.
- Maximum varies each year depending on funds available

Educational Fee Deferment Loans enable California residents to delay payment of all or some of the Educational Fee. Repayment may be deferred for Armed Forces, Peace Corps, and VISTA members.
- $300 maximum per year
- 3 percent interest
- Repayment begins 9 months after graduation or withdrawal

University Loans of up to $10,000 per student are available. If graduate studies are undertaken, payment may be deferred until completion or termination of studies.
- $2,500 undergraduate maximum for first 2 years
- $5,000 undergraduate maximum during 4 years
- $10,000 maximum for graduate students, including loans made as an undergraduate
- 3 percent interest
- Repayment begins 9 months after graduation or withdrawal

National Direct Student Loans are for U.S. citizens or permanent U.S. residents. Students may be limited to a percentage of their need because of heavy demands and limited funds. Repayment starts nine months after graduation or withdrawal from school, and may be extended over 10 years. Deferment is possible for Armed Forces, Peace Corps, and VISTA members and students who transfer to other schools. A portion of the loan may be cancelled for certain veterans. Some teachers of students from low-income families, and full-time teachers of handicapped children, may also qualify for partial loan cancellation.
- $2,500 undergraduate maximum for first 2 years
- $5,000 undergraduate maximum during 4 years
- $10,000 maximum for graduate students, including loans made as an undergraduate
- 3 percent interest

Short-Term and Emergency Loans, provided by UCD alumni, ASUCD, and private donors, are designed to meet temporary, emergency financial needs of registered students. Apply at the Financial Aid Office any time during the academic year.
- $200 maximum
- Interest-free if repaid on time

I liked having our dorm so close to the barn. It's the closest I've ever lived to a cow.
—Freshman, Undeclared
Guaranteed Student Loans are available through banks and other lending institutions. Interest accrued while in school may be paid by the government if you qualify for federal interest benefits. Applications and information are available at the Financial Aid Office.

- $2,500 maximum per year
- 7 percent interest
- Repayment begins 9 months after graduation or withdrawal

Bureau of Indian Affairs (BIA) Grants are awarded to students who are at least one-fourth American Indian, Eskimo, or Aleut, as recognized by a tribal group served by the Bureau of Indian Affairs. Students must submit a regular Financial Aid Application and provide supportive documents by the filing deadlines before making an appointment with a Financial Aid counselor to complete the BIA application.

- Amount depends on need and availability of funds

State Graduate Fellowships are given to students of outstanding ability and achievement. In addition, consideration is given to students from disadvantaged backgrounds who show substantial potential for success in graduate school. Applications are available at graduate and professional school offices, and from the California Student Aid Commission, 1410 Fifth Street, Sacramento 95814.

- $874 maximum per year
- California residents only

The Work-Study Program refers eligible financial aid recipients to part-time jobs on and off campus. Opportunities range from clerical and janitorial work to jobs requiring a high degree of technical skill. (For other student employment opportunities, see page 34.)

- 19 hours maximum per week during school, full time during vacation

Social Security Benefits are available to students whose parents receive Social Security retirement or disability benefits, or whose parents were eligible for these benefits but are deceased.

- Monthly educational benefits
- Apply at Social Security Offices
SCHOLARSHIPS AND AWARDS

Information:
Scholarship Office
12 Mrak Hall
752-2393

At UC Davis a special effort is made to recognize exceptional students. Approximately 100 different undergraduate scholarships are administered by the Scholarship Office, and many more scholarships are handled through outside agencies.

Scholarships are awarded on the basis of academic excellence and exceptional promise. Recipients are chosen by committees made up of both students and faculty. In addition to academic records (a minimum grade-point average of 3.25 is required), selection is based on letters of recommendation and a personal essay in which your University goals and objectives are stated. Some awards may be limited to students in specific majors or colleges, residents of certain geographical areas, students of a particular class standing, or students with demonstrated financial need. Most scholarships are not renewable and you must re-apply each year.

Applications for scholarships are available at the start of each Fall Quarter for the following academic year. Deadline for submission of application materials is December 15. Announcement of winners is usually made beginning in mid-April. The Scholarship Office publication, New Horizons, provides more detailed information on specific scholarships.

Graduate students are also eligible for various scholarships and fellowships. (See also page 110).

Types of Scholarships

Regents' Scholarships, among the highest honors that undergraduates at the University can receive, are granted to exceptionally promising freshmen or juniors enrolling in the Fall Quarter. Awards may be honorary (a $100 one-time award) or may be accompanied by a stipend generally covering the difference between family resources and yearly educational costs (see page 37). The Regents' Scholarship Administrative Committee conducts personal interviews during the final selection process. These scholarships are renewable as long as you maintain a 3.0 grade-point average.

- $'s vary—up to full financial need
- 2-year and 4-year renewable scholarships

Alumni Scholarships, provided by the Cal Aggie Alumni Association in cooperation with the University, are based primarily upon leadership and scholastic achievement. Your financial need and extracurricular activities may also be considered.

- $500 maximum
- New undergraduates only
- Selection by local Alumni Association chapters

Army Scholarships are awarded in limited numbers to outstanding high school seniors planning to enroll in the Reserve Officers' Training Corps (ROTC) at UC Davis. Applications are available in November from the Department of Military Science, 125 Hickey Gymnasium, 752-0541.

- $100 per month
- All educational costs paid
- Full 4-year scholarships

Other Scholarships are made possible by individual donors, private corporations, and various agencies. Many organizations and groups conduct their own scholarship programs. In most cases you apply directly to these sponsoring groups.

- Generally $200 to $500

Special Prizes at UC Davis recognize outstanding performance, achievement, and promise in special programs or majors. The most prestigious prize is the University Medal, presented to the most outstanding graduating senior.

- Plaques or certificates and cash awards
- College and school medals to outstanding graduates
APPLYING TO UC DAVIS

With careful reading you should find most of the answers to your admissions questions in the following sections. The key to preparing a successful application is supplying us with accurate, complete, and timely information.

The first step in applying for admission is to select a major or area of interest within a college that best suits your academic goals. To assist you in this choice you will find an overview of undergraduate studies listed within each College section. (See also Undergraduate Studies entry on page 48.) The second step is to determine the type of application you are submitting. (Admission categories are defined on page 47.) This is a very important step because entrance requirements and filing dates may vary depending on your category of admission. The third step is to obtain and complete the Undergraduate Admissions Packet and return it during the appropriate filing period. In addition, arrange to have all supporting documents (test scores and transcripts) forwarded to the Admissions Office as early as possible.

Application and admission procedures are outlined beginning on this page. A summary of the steps in the application procedure appears on page 55. Use this checklist to follow your application through the admissions process.

If you have a severe physical impairment, you are encouraged to contact the Services to Handicapped Students Office (see page 33) for further information concerning admission.

VISITING THE CAMPUS

You may wish to arrange a visit to UC Davis sometime before you apply. If you have specific questions about application procedures or entrance requirements, it is a good idea to write ahead and make an appointment with the Admissions Office. For scheduled or individual tours of the campus, contact the Visitors Services and Ceremonies Office (129 Mrak Hall, 752-0539). If you would like to visit classes, the Visitors Services and Ceremonies Office can make the appropriate arrangements.

APPLICATION PROCEDURES

Undergraduate application packets may be obtained from any California high school, community college, or University of California Admissions Office. Completed application materials and communications concerning admission to UC Davis should be sent to the Office of Admissions, 175 Mrak Hall, University of California, Davis 95616.

A nonrefundable application fee of $20 must accompany your application. Please make your check payable to The Regents of the University of California. If you have applied previously and were ineligible, or if you were admitted previously and did not register, you are required to file a new application for the quarter for which you seek admission and submit the $20 application fee.

Opening filing dates are the same for all UC campuses and are listed below. All applications filed during the first month of the filing period will be accepted.
for consideration. After the first month, however, some departments and campuses may close to new applicants as enrollment quotas are filled. Once a department or campus has closed, any additional applications which are received will be forwarded to the next open campus preferred by the applicant. Therefore, it is important to give careful consideration to alternative campus preferences when completing the application.

Opening Date of Filing Periods for New Applicants

<table>
<thead>
<tr>
<th>Quarter to be admitted</th>
<th>Filing period opening date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 1979</td>
<td>October 1, 1978</td>
</tr>
<tr>
<td>Fall 1979</td>
<td>November 1, 1978</td>
</tr>
<tr>
<td>Winter 1980</td>
<td>July 1, 1979</td>
</tr>
<tr>
<td>Spring 1980</td>
<td>October 1, 1979</td>
</tr>
</tbody>
</table>

Delays in notification can be avoided if you complete the application accurately, include your essay and filing fee, and arrange for transcripts (including course work in progress) and test scores to be sent to the Admissions Office as soon as they are available. Because advanced standing eligibility depends upon the final outcome of quarter or semester course work in progress, the Office of Admissions must receive a final transcript of all work completed before you may register.

Duplicate Applications

Students should file an application with one campus only, listing alternate campus preferences in the space provided on the application. If you file simultaneously for admission to more than one campus, admissions processing will be suspended until you notify the Director of Admissions (University Hall, University of California, Berkeley 94720) stating your new preference and the reason for your change. Your records will be transferred to the campus of your choice, provided that campus still has openings for admission at the time of your letter. Processing a change of campus preference takes several weeks; however, your admissions priority will be assigned based on the date your request for a change was made.

Transcripts

If you are in high school when you apply, please request that your high school send an official transcript of all work completed through your junior year directly to the Undergraduate Admissions Office. This preliminary transcript should also include a list of work in progress (senior-year courses in which you are currently enrolled or plan to complete before graduation). In addition, you must also submit a final transcript including a statement of graduation or a Certificate of Proficiency.

If you have attended or are attending another college when you apply, you must have final transcripts of all college-level work, as well as your high school transcript, sent directly to the Admissions Office.

Transcripts and other documents submitted during the application process become the property of the University and cannot be returned or forwarded to another institution. Please note that it is your responsibility to arrange for transcripts and to insure that they arrive promptly.

Change of Campus

If, after you have applied to the Davis campus, your plans change and you prefer to be considered for admission on another UC campus, you are required to write the Coordinator of the Office of Academic Services (University Hall, University of California, Berkeley 94720) stating your new preference and the reason for your change. Your records will be transferred to the campus of your choice, provided that campus still has openings for admission at the time of your letter. Processing a change of campus preference takes several weeks; however, your admissions priority will be assigned based on the date your request for a change was made.

Notification

After returning your application materials you may be wondering,

- Has the University received my application forms?
- Will I be considered for admission at my preferred campus?
- Will I be admitted to the University?

Our notification procedures answer these questions in order. First, you will be mailed a card acknowledging receipt of your application; later, you will receive a letter confirming your admission status.

The length of time before admission notification varies, depending upon the completeness of your application. For example, most applicants for Fall Quarter will receive final notification by late spring, provided records have been received promptly.

Included with your letter of acceptance of admission will be the "Statement of Intention to Register" form. Please complete this form and return it with the required nonrefundable $50 deposit. This deposit is applied to your University Registration Fee as long as
you register in the quarter to which you are admitted. Intercampus transfer, EOP, and readmit applicants are not required to submit the $50 deposit.

EXPLANATION OF APPLICATION CATEGORIES

An undergraduate applicant is a student who wishes to complete a program of studies leading to a Bachelor of Arts (A.B.) or Bachelor of Science (B.S.) degree.

A freshman applicant (page 48) is a student who has graduated from high school or who has earned a “Certificate of Proficiency,” but has not enrolled since high school attendance in a regular session of any collegiate-level institution (with the exception of summer session attendance immediately following high school graduation).

An advanced standing (transfer) applicant (page 51) is a high school graduate who has been registered in a regular or extension session of a college or university other than the University of California.

An Intercampus transfer applicant (page 53) is an undergraduate student who is currently, or was previously registered in a regular session at another campus of the University of California and has not since been registered in another collegiate institution.

An Educational Opportunity Program applicant (page 52) is a low-income/minority student who may or may not meet the standard admission requirements for freshman or advanced standing status.

A readmit applicant (page 58) is a student who was formerly registered on the Davis campus, and who has interrupted the completion of consecutive quarters of enrollment and who is not currently participating in the Planned Educational Leave Program.

A limited status applicant (page 52) is a college graduate (or near-graduate) who is not a candidate for an advanced degree, but who has the limited objective of enrolling in certain courses on the Davis campus.

A special status applicant (page 53) is any person 21 years of age or older who is prepared, by reason of special attainment or background, to undertake limited course work toward a specific objective.

A second baccalaureate applicant (page 52) is a college graduate who seeks an additional bachelor's degree. Approval is granted only to students who have completely changed their educational objectives.

An international applicant (page 53) is a student who is not a U.S. citizen or immigrant.

A concurrent enrollment applicant (page 53) is a community member who wishes to fulfill an academic interest or to test academic ability by enrolling in a limited number of regular University courses on a space-available basis. This program is offered through University Extension.

A part-time degree applicant is a person who wishes to complete the bachelor’s degree at UC Davis on a part-time enrollment basis. This program is offered through the Program for Part-Time Degree Students in the Division of Extended Learning. See page 18 for details.

A graduate applicant is a college graduate who wishes to complete a program of studies leading to an advanced degree, i.e., the master's or doctorate. See the section beginning on page 105 for details.

A professional school applicant is a student who has completed the requirements necessary for admission to one of the professional schools on the Davis campus (Law, Medicine, Veterinary Medicine). Please see the appropriate sections in this catalog for specific information.

—I think it’s worth it to go out of your way to talk to professors in their offices—they seem to appreciate knowing students as individuals as much as students like to know professors as individuals.

—Senior, Economics
UNDERGRADUATE STUDIES

Undergraduate studies at the University of California, Davis, are divided into three colleges: Letters and Sciences, Agricultural and Environmental Sciences, and Engineering. When you apply for admission to Davis, you make an application to one of these Colleges. The three Colleges differ in their educational focuses and, hence, in the major programs they offer.

The College of Agricultural and Environmental Sciences focuses on six areas of concentration: animal sciences; plant sciences and pest and disease management; food, nutrition, and consumer sciences; applied economic and behavioral sciences; resource sciences and agricultural engineering; and biological sciences (majors are listed on pages 72-73). The College of Engineering focuses its curricula on the engineering sciences (majors are listed on page 79). The College of Letters and Science curricula encompass the humanities, including the arts, the social, physical, and biological sciences, and enable the student to pursue fundamental knowledge and to learn basic intellectual disciplines which lead to a liberal education (majors are noted on page 95).

ENTRANCE REQUIREMENTS

The University's undergraduate admission requirements are based on two principles:

- The best predictor of success in the University is high scholarship in previous academic work, and
- The study of certain subjects in high school gives you a good preparation for University work and reasonable freedom in choosing a special area of study.

Undergraduate entrance requirements are based upon these general principles but may vary in specific details, depending upon the type of admission you are seeking. If you are planning to apply as an advanced standing student it is important to remember that your high school record will form the basis for our assessment of your qualifications. Listed below are the requirements for all undergraduate admission categories.

ADMISSION AS A FRESHMAN

To be eligible for admission to the University of California as a freshman, you must meet specific Subject, Scholarship, and Examination Requirements. If you have any questions or need assistance in determining your eligibility, please contact your school counselor or the Office of Relations with Schools or Admissions on the nearest UC campus. Final determination of UC eligibility is made by the campus Admissions Office.

Subject Requirement

You must complete certain high school courses in the subject areas listed below with at least a grade of C in each semester of each course. (If your school gives only year-end grades, you must complete each year course with a grade of C or better.) The required course sequence is often referred to as the "A to F" pattern.

Courses taken in the ninth grade and completed with a grade of C or better can satisfy a subject requirement, but will not be used in computing your grade-point average. If you receive a grade of D or lower in a ninth-grade course, you have not satisfactorily completed the subject requirement until you repeat the course (or a more advanced course) with a grade of C or better.

(Note: A year course in high school constitutes one unit.)

A. History—1 year
 One year of United States history, or one-half year of United States history and one-half year of civics or American government.

B. English—3 years (4 years starting Fall 1981)
 Three years of English—composition and literature (university preparatory in nature). Not more than one will be accepted from the ninth grade.

C. Mathematics—2 years
 Two years of mathematics—elementary algebra, geometry, intermediate and advanced algebra, trigonometry, calculus, elementary functions, matrix algebra, probability, statistics, or courses combining these subjects. Nonacademic courses such as arithmetic and business mathematics may not be used.

D. Laboratory Science—1 year
 A year course in one laboratory science, taken in the tenth, eleventh, or twelfth grade.

E. Foreign Language—2 years
 Two years of one foreign language. Any foreign language with a written literature may be used.

F. Advanced Course—1 or 2 years
 This requirement must be satisfied by one of the following:

 - Mathematics: A total of one year of advanced mathematics—intermediate algebra, trig-
onometry, or other comparable mathematics courses.

- **Foreign language**: Either an additional year in the same language used for “E” above or two years of a second foreign language.

- **Science**: A year course in any laboratory science completed subsequent to the laboratory science used for “D” above.

The required courses listed above constitute only 10 or 11 of the total (15) units required for admission to the University. The remaining units provide an opportunity for you to strengthen your preparation for University work. Additional courses in mathematics, especially second-year algebra and trigonometry, are essential in the preparation for all majors except in the fine arts, letters, and some social sciences. A fourth year of English, including composition skills, is also highly recommended for all students, and will be required of applicants starting Fall 1981.

If you are a California high school graduate, the courses used to satisfy the Subject Requirement must appear on a list that your high school principal has certified meet the course descriptions above, and has placed on file with the University’s Coordinator of Academic Services. If you submit courses from an out-of-state school, the Office of Admissions will determine if your courses are acceptable in fulfillment of the Subject Requirement.

Scholarship Requirement

You must earn a minimum grade of C in each of the courses required for admission. The overall grade-point average required for those subjects taken after the ninth year is dependent upon your score on the ACT or SAT test (see the eligibility index on page 50). If you are a nonresident applicant, your grade-point average in the required subjects must be 3.4 or higher.

In determining the required grade-point average, the University will use a semester grade of A in one course
to balance a semester grade of C in another. Grades you received in courses taken in the ninth grade or earlier are not used in determining your grade-point average. (However, these courses may be used to satisfy subject requirements.) The grades that appear on your official high school transcript, including those earned in accelerated and advanced courses, are the grades the University will use in evaluating your record. Grades are counted on a semester basis unless your school gives only year grades.

To meet the Subject and Scholarship Requirements you may repeat up to a total of two semester courses in which you received a grade of D or lower. The grades you earn in repeated courses, however, will not be counted higher than a C in determining your scholarship average. If the courses you repeat were taken before the ninth grade, they will be treated as if you were taking them for the first time; if courses you repeat were taken in the ninth grade, the grade will not be used in computing your grade-point average, but the courses may be used to satisfy subject requirements.

Examination Requirement

All freshman applicants must submit scores from the College Entrance Examination Board (CEEB) or the American College Testing (ACT) Program. If you are applying for admission to the Fall Quarter, you should take the tests no later than January of your senior year. The following tests are required:

- Scholastic Aptitude Test (CEEB)—The verbal and mathematics scores you submit from this test must be from the same sitting

 or

- American College Test

 and

- Three Achievement Tests (CEEB), which must include (a) English Composition, (b) one from among the social studies or one from among the foreign languages, and (c) mathematics

If you are a California resident and your grade-point average in the required high school subjects is over 3.3, the tests are required but your scores will not be used to determine your eligibility.

The accompanying table is an eligibility index. If your grade-point average in the "A to F" requirement is less than 3.3 you should refer to this table to see what examination scores you must have to be eligible for University admission.

<table>
<thead>
<tr>
<th>Grade-Point Averages</th>
<th>ACT Composite Scores</th>
<th>SAT Total Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-F Requirement</td>
<td>35</td>
<td>1600</td>
</tr>
<tr>
<td>2.78</td>
<td>35</td>
<td>1580</td>
</tr>
<tr>
<td>2.79</td>
<td>34</td>
<td>1550</td>
</tr>
<tr>
<td>2.80</td>
<td>34</td>
<td>1530</td>
</tr>
<tr>
<td>2.81</td>
<td>33</td>
<td>1510</td>
</tr>
<tr>
<td>2.82</td>
<td>33</td>
<td>1490</td>
</tr>
<tr>
<td>2.83</td>
<td>33</td>
<td>1480</td>
</tr>
<tr>
<td>2.84</td>
<td>32</td>
<td>1460</td>
</tr>
<tr>
<td>2.85</td>
<td>32</td>
<td>1440</td>
</tr>
<tr>
<td>2.86</td>
<td>32</td>
<td>1410</td>
</tr>
<tr>
<td>2.87</td>
<td>31</td>
<td>1390</td>
</tr>
<tr>
<td>2.88</td>
<td>31</td>
<td>1370</td>
</tr>
<tr>
<td>2.89</td>
<td>31</td>
<td>1340</td>
</tr>
<tr>
<td>2.90</td>
<td>30</td>
<td>1320</td>
</tr>
<tr>
<td>2.91</td>
<td>30</td>
<td>1300</td>
</tr>
<tr>
<td>2.92</td>
<td>29</td>
<td>1280</td>
</tr>
<tr>
<td>2.93</td>
<td>29</td>
<td>1260</td>
</tr>
<tr>
<td>2.94</td>
<td>28</td>
<td>1230</td>
</tr>
<tr>
<td>2.95</td>
<td>28</td>
<td>1200</td>
</tr>
<tr>
<td>2.96</td>
<td>27</td>
<td>1180</td>
</tr>
<tr>
<td>2.97</td>
<td>27</td>
<td>1160</td>
</tr>
<tr>
<td>2.98</td>
<td>26</td>
<td>1130</td>
</tr>
<tr>
<td>2.99</td>
<td>26</td>
<td>1110</td>
</tr>
<tr>
<td>3.00</td>
<td>25</td>
<td>1090</td>
</tr>
<tr>
<td>3.01</td>
<td>25</td>
<td>1070</td>
</tr>
<tr>
<td>3.02</td>
<td>24</td>
<td>1040</td>
</tr>
<tr>
<td>3.03</td>
<td>24</td>
<td>1020</td>
</tr>
<tr>
<td>3.04</td>
<td>23</td>
<td>990</td>
</tr>
<tr>
<td>3.05</td>
<td>22</td>
<td>970</td>
</tr>
<tr>
<td>3.06</td>
<td>21</td>
<td>950</td>
</tr>
<tr>
<td>3.07</td>
<td>21</td>
<td>920</td>
</tr>
<tr>
<td>3.08</td>
<td>20</td>
<td>900</td>
</tr>
<tr>
<td>3.09</td>
<td>19</td>
<td>880</td>
</tr>
<tr>
<td>3.10</td>
<td>18</td>
<td>860</td>
</tr>
<tr>
<td>3.11</td>
<td>18</td>
<td>830</td>
</tr>
<tr>
<td>3.12</td>
<td>17</td>
<td>810</td>
</tr>
<tr>
<td>3.13</td>
<td>16</td>
<td>790</td>
</tr>
<tr>
<td>3.14</td>
<td>15</td>
<td>770</td>
</tr>
<tr>
<td>3.15</td>
<td>14</td>
<td>740</td>
</tr>
<tr>
<td>3.16</td>
<td>14</td>
<td>710</td>
</tr>
<tr>
<td>3.17</td>
<td>13</td>
<td>690</td>
</tr>
<tr>
<td>3.18</td>
<td>12</td>
<td>670</td>
</tr>
<tr>
<td>3.19</td>
<td>11</td>
<td>640</td>
</tr>
<tr>
<td>3.20</td>
<td>10</td>
<td>620</td>
</tr>
<tr>
<td>3.21</td>
<td>9</td>
<td>600</td>
</tr>
<tr>
<td>3.22</td>
<td>9</td>
<td>570</td>
</tr>
<tr>
<td>3.23</td>
<td>8</td>
<td>550</td>
</tr>
<tr>
<td>3.24</td>
<td>8</td>
<td>530</td>
</tr>
<tr>
<td>3.25</td>
<td>7</td>
<td>500</td>
</tr>
<tr>
<td>3.26</td>
<td>7</td>
<td>480</td>
</tr>
<tr>
<td>3.27</td>
<td>6</td>
<td>460</td>
</tr>
<tr>
<td>3.28</td>
<td>6</td>
<td>430</td>
</tr>
<tr>
<td>3.29</td>
<td>5</td>
<td>410</td>
</tr>
<tr>
<td>3.30</td>
<td>5</td>
<td>400</td>
</tr>
</tbody>
</table>

*The American College Test (ACT) is scored in intervals of 1 point from a minimum of 1 to 36 maximum.

†The Scholastic Aptitude Test (SAT) is scored in intervals of 10 points from a minimum of 400 to 1600 maximum.
Admission by Examination Alone

If you do not meet the scholarship and/or subject requirements for admission, you can qualify for admission as a freshman by your examination scores alone. To do so, you must take the same CEEB tests discussed above and receive a total score of at least 1100 on the Scholastic Aptitude Test, and at least 500 on each Achievement Test. If you are a California applicant, your total score on the three Achievement Tests must be 1650 or higher. If you are a nonresident applicant, your total score on the three Achievement Tests must be 1730 or higher. High school graduation is also required for students who qualify for admission by examination alone.

Examination Arrangements: Make arrangements to take the required Scholastic Aptitude Test (SAT) and the Achievement Tests by writing to the Educational Testing Service, P.O. Box 1025, Berkeley, California 94701, or P.O. Box 592, Princeton, New Jersey 08540. For the American College Test (ACT) write to American College Testing Program, Registration Unit, P.O. Box 168, Iowa City, Iowa 52240. (Test fees should be paid to the Testing Service, not the University.) Your test scores will be regarded as official only if they are reported directly to the Admissions Office by a Testing Service. Your final notification of admission cannot be released until your scores from all tests have been received by the Admissions Office.

ADMISSION TO ADVANCED STANDING

An advanced standing (transfer) applicant is a high school graduate who has been registered in a regular or extension session of a college or university other than the University of California. An advanced standing student may not disregard his or her previous college record and apply for admission as a freshman.

Admission Requirements

If you are an advanced standing applicant, the requirements for admission will vary according to your high school record. If you are a nonresident, you need to meet the additional requirements described at the end of this section. No examinations are required for admission purposes if you have completed more than 12 quarter or semester units of transferable college credit. If you have completed less than 12 units since high school graduation, the examination requirements for freshman applicants also apply.

The transcript you submit from the last college you attended must show, as a minimum, that you were in good standing and that you had earned a grade-point average of 2.0 or better. If your grade-point average fell below 2.0 at any one college you attended, you may have to meet additional requirements in order to qualify for admission.

As an advanced standing applicant you must also meet one of the following conditions:

- If you would have been eligible for admission to the University upon high school graduation as a freshman applicant, you may be admitted in advanced standing any time after you have established an overall grade-point average of 2.0 or better in another college or university.

- If you would not have been eligible for admission as a freshman only because you had not studied one or more of the required high school subjects, you may be admitted after you have:
 1. Established an overall grade-point average of 2.0 or better in another college or university,
 2. Completed, with a grade of C or better, appropriate college courses in the high school subjects that you lacked, and
 3. Completed 12 or more quarter or semester units of transferable college credit since high school graduation and have successfully fulfilled the examination requirements for freshman applicants.

- If you would not have been eligible for admission to the University as a freshman because of low scholarship or a combination of low scholarship and a lack of required subjects, you may be admitted after you have earned a grade-point average of 2.4 or better in at least 84 quarter units (56 semester units) of college credit in courses accepted by the University for transfer. All but two Carnegie units of the required subject pattern for freshman admission must be made up. (A Carnegie unit is one year of a high school course.)

*This is a return to the original transfer requirement in effect before the experimental 2.0 admission requirement was instituted in Fall Quarter 1973. The experimental requirement allowed students to transfer to the University with the minimum grade-point average of 2.0 with 84 transferable quarter (or 56 semester) units without regard to high school records. The experiment has been evaluated by the Board of Admissions and Relations with Schools and it is their recommendation that it be discontinued and that the University return to the required 2.4, effective Fall Quarter 1978.
Nonresident Applicants

A nonresident applicant for advanced standing who meets the admission requirements for freshman admission must have a grade-point average of 2.8 or higher in college courses that are accepted by the University for transfer credit.

If you lack any of the required high school subjects, and are a nonresident, you must complete college courses in those subjects with a grade of C or higher. A nonresident applicant who graduated from high school with less than a 3.4 grade-point average in the subjects required for freshman admission must have completed at least 84 quarter units (56 semester units) of transferable work with a grade-point average of 2.8 or higher. Upon successful completion of that work, you may have two Carnegie units of the required high school subjects waived.

SPECIAL PROGRAMS AND ADMISSIONS CATEGORIES

Educational Opportunity Program (EOP)

The Educational Opportunity Program is designed to assist and provide opportunities in higher education for minority and economically disadvantaged students with academic potential who, historically, have been underrepresented at the University of California.

As an EOP applicant you may be admitted in one of two ways: as a freshman or advanced standing student who has met the standard entrance requirements, or as a special-action freshman or advanced standing student who has not met the entrance requirements but who has demonstrated academic potential.

Once enrolled, EOP also provides special assistance in all areas of academic and student life (see page 30).

An application for admission to the Educational Opportunity Program at UC Davis may be obtained by writing to the Office of Admissions, 175 Mrak Hall, University of California, Davis 95616. (The $20 application fee is waived for all qualified EOP applicants.)

Nontraditional Students

The Academic Reentry Office gives assistance in applying to the University to nontraditional students who are older and reentering the University after life and work experience. Preadmission counseling and advis-

ing about academic programs are provided, as well as assistance in reorientation to study and campus life. Flexible study schedules can be developed through the Part-time Degree Program (see page 18).

Second Baccalaureate

If you have a bachelor’s degree substantially equivalent to one that is granted by the University of California, you may be allowed to enroll as an undergraduate seeking a second bachelor’s degree. Admission in this category will depend upon a superior academic record and clear evidence of a change in objective. Admission in this category to the College of Agricultural and Environmental Sciences is extremely limited and requires the approval of the Admissions Officer and the dean of the college. Fees and filing dates are the same as those for new applicants.

Enrollment pressures have necessitated closing this category of admission for the Colleges of Engineering and Letters and Science.

Limited Status

Students in limited status are those whose special attainments qualify them to take certain courses in the University toward a definite and limited objective. To apply for limited status admission you must either have a bachelor’s degree but not be a candidate for an advanced degree, or have completed a substantial amount of college work with a satisfactory grade-point average. You will not be admitted to limited status for the purpose of raising a low scholarship average.

As a limited status student you will be expected to maintain a certain scholarship average during a predetermined time of enrollment.

Admission to the College of Agricultural and Environmental Sciences is extremely limited and requires the approval of the Admissions Officer and the dean of the college. You must also submit transcripts from all schools attended including a final high school transcript. Fees and filing dates are the same as those for new applicants.

Enrollment pressures have necessitated closing this category of admission for the College of Letters and Science and for the College of Engineering (except to those students who enroll exclusively in remote-location television courses).
Special Status
The special status classification is designed for applicants 21 years of age or older who have not had the opportunity to complete a satisfactory high school program or who have not completed a substantial amount of college work, but by reason of special attainment or background may be prepared to undertake certain courses at UC Davis toward a definite and limited objective.

You will not be admitted to special status for the purpose of fulfilling requirements for admission as a regular student. Conditions for admission are determined by the Admissions Officer and are subject to the approval of the dean of the college in which you plan to enroll. Admission is for a specified time only and a prescribed scholarship average must be maintained. Fees and filing dates are the same as those for new applicants.

Intercampus Transfer
If you are currently registered as an undergraduate student or have been registered on another campus of the University of California, and have not subsequently registered at another institution, you may apply for an intercampus transfer to UC Davis. Intercampus transfer applications are available from and must be returned to the Registrar's Office on the UC campus you last attended. A nonrefundable filing fee of $20 must be submitted with your transfer application. Filing dates are the same as those listed for freshman applicants.

Applicants from Other Countries
Applicants from other countries will be admitted in accordance with the general procedures governing nonresident admission. You may request an application by writing the Undergraduate Admissions Office, 175 Mrak Hall, University of California, Davis, California 95616. If you are not a United States citizen or United States immigrant, you must return this application with a financial information form and the nonrefundable $20 application fee. It is very important to file your application during the appropriate filing period for the quarter for which you wish to attend (see page 46). Applications received after the first month of the filing period will be processed as space permits.

If your schooling has not been in English, you are requested to submit the results of the Test of English as a Foreign Language (TOEFL). Write to the Educational Testing Service, P.O. Box 592, Princeton, New Jersey 08540, to arrange a testing date and location in your home country.

International students whose native language is other than English are required to demonstrate that their command of English is sufficient to profit by instruction at the University. A proficiency examination is given at UC Davis during the week before school begins. If you do not pass this examination, you must enroll in English 25 or 26 until you have acquired the necessary language skills.

As part of the application process, you are also required to submit your secondary and college records. These records should include all certificates and transcripts of grades awarded in each subject. You will receive credit for University studies outside the United States if the course work was completed in an approved university and is considered to be academically equivalent to course work offered at the University of California. The Admissions Office will have the final authority for assessing the transferability of credit.

Financial aid information can be obtained from the Financial Aid Office (see page 39). There are no grants, loans, or scholarships awarded by the University of California, Davis campus to undergraduate international students during their first year of study, and at no time after the first year is financial assistance assured. Therefore, you must demonstrate adequate financial resources for your term of enrollment.

For additional information, see page 32.

Concurrent Courses
Concurrent courses are regular University courses open to the community on a space-available basis. The purpose of the program is to allow an individual to fulfill academic interests and to test academic ability at the University.

For information, write the University Extension Office, 4445 Chemistry Addition, University of California, Davis 95616.

For admission to Graduate Status, see page 108.
For admission to the School of Law, see page 121.
For admission to the School of Medicine, see page 127.
For admission to the School of Veterinary Medicine, see page 132.
ADDITIONAL INFORMATION

High School Proficiency Examination

The University of California will accept the Certificate of Proficiency awarded by the State Department of Education upon successful completion of the California High School Proficiency Examination, in lieu of the regular high school diploma. However, you must also meet all other University entrance requirements (subject, scholarship, examination). On University records, the date of graduation will be the date of the certificate. Admission by CEEB scores alone is still an option if you were ineligible on the basis of your high school record.

Subject A Requirement

The University requires every undergraduate student to demonstrate an appropriate level of ability in English composition. This requirement is known as “Subject A” and may be satisfied by:

- Achieving a score of 5, 4, or 3 on the CEEB Advanced Placement Examination in English;
- Achieving a score of 600 or higher on the CEEB Achievement Test in English Composition;
- Successful completion of the California State University and Colleges English Equivalency Test;
- Completing an acceptable 4-quarter unit or 3-quarter unit college course in English composition with a grade of C or higher.

If you do not meet the requirement in one of these ways, you must satisfy this requirement as described on page 65.

Advanced Placement Examinations

The Advanced Placement Examinations of the College Entrance Examination Board are taken in conjunction with courses taken in high school. You can receive 10 quarter units of University credit for each examination (except mathematics) in which you earn a score of 5, 4, or 3. These credits will apply toward the total required for graduation from the University. See the table on page 63 for course work equivalencies and limitations of credit.

CLEP

The University awards credit for certain examinations
units for examinations which cover one semester of work and ten quarter units for examinations which cover two semesters of work. CLEP credit is not given for examinations that duplicate courses you have taken.

Credit from Another College

The University gives unit credit to transfer students for courses they have taken at other accredited colleges and universities, including some extension courses. To be accepted for credit, the courses must be consistent with those at the University as determined by the Admissions Office.

Many students who plan to earn a degree at the University find it to their advantage to complete their freshman and sophomore years at a California community college. Each community college offers a full program of courses approved for transfer credit. You may earn 105 quarter units (70 semester units) toward a University degree at a community college. Subject credit for transferable courses in excess of these units may also be granted.

Applicants who have more than 150 quarter units of credit for transfer must have the approval of the Dean of the College and satisfy University requirements for admission.

Redirection

If at the end of the first month of the application filing period (see page 46) there are more qualified applicants than UC Davis can accommodate within its enrollment quotas, all applications will be reviewed and some applicants will be redirected to alternative campuses, according to the preferences listed in their applications.

When redirection is necessary, special procedures are used to select those students who will be admitted to the over-subscribed campus. Fifty percent of the freshman-applicant space is reserved for students most qualified on the basis of scholastic achievement. The remaining fifty percent of available spaces are filled after an individual review of each application. The review takes into account such matters as academic interests, available campus programs, hardship factors, selective recruitment efforts, and special achievements and awards. For transfer applicants, highest priority is given to students from California community colleges and other UC campuses who have completed the lower-division courses for the major and are at the junior level (see page 62).

ADMISSIONS CHECKLIST

☐ 1. Obtain the undergraduate admissions packet from your high school, a community college, or a campus of the University of California. If you are not a California resident, request an application from the Undergraduate Admissions Office, 175 Mrak Hall, University of California, Davis, California 95616.

☐ 2. Complete the application, listing the college and major you prefer. Include your essay and a check or money order for $20 with your application forms and return them to the Admissions Office during the first month of the filing period for the quarter you wish to enter.

☐ 3. Request that transcripts, including work in progress, be sent from those schools required by your type of application. If test scores are required, please arrange to have these forwarded by the testing agency.

☐ 4. Receive from the Admissions Office a card acknowledging receipt of your application.

☐ 5. Receive from the Admissions Office requests for additional information, such as transcripts, test scores, or confirmation of work in progress. Note: Your eligibility for admission cannot be evaluated until all your application materials are received, i.e., application form, essay, transcript, work in progress, and test scores (if required), so it is important to make these arrangements if you want to avoid delayed notification.

☐ 6. Receive from the Office of Admissions a notification of admission and “Statement of Intention to Register” form.

☐ 7. Return your “Statement of Intention to Register,” with a nonrefundable advance deposit of $50 (if required), as soon as possible so your registration materials can be ordered before the day you register.
Academic Information

WHEN YOU ARRIVE

Summer Advising/Orientation Programs
Advising Services
South Hall
752-3000

Starting off on the right foot at UCD is made a little easier by various programs designed to introduce you to the University.

The Summer Advising and Registration Conference is a chance for entering students, both freshmen and transfers, to visit the campus for two or three days during the summer. If you are a freshman, your parents are also invited to attend, and a special parents' program is planned for them. During the conference you will have a chance to become familiar with the campus, learn about the services available to students such as financial aid and student advising, and complete your registration. You will also be able to meet students, professors, and staff members and get some advice about majors, requirements, social life, and answers to questions you or your parents may have. It’s a good way to start out, and Davis won’t seem like such a strange new place in the fall.

Orientation Week, held at the beginning of each Fall Quarter, offers new and continuing students a variety of activities, special events, and meetings to get the new quarter started. Some of the things that are happening include departmental open houses, tours of the campus, concerts and lectures, registration, and meetings with deans and advisers. Orientation activities are also held for students entering in Winter and Spring Quarters.

REGISTRATION PROCEDURES

Information:
Registrar’s Office
124 Mrak Hall
752-2973

Registration is the means by which you become a student at the University. The registration process includes completion and filing of informational forms, payment of fees, and enrollment in classes. Every UCD student must register each quarter.

Students are normally expected to carry a study load of at least 12 units each quarter. You should be familiar with the maximum unit load for students in your particular college or school, as well as minimum progress scholarship requirements (see page 64).

If you have not satisfied the Subject A requirement, you must enroll in the English A course (see page 211). Consult the current Class Schedule and Room Directory (published about seven weeks before the beginning of the quarter and available in the campus bookstore) for more detailed information. It is the responsibility of each student to be familiar with announcements and regulations printed in official publications.

If you are a new or reentering student you must also:

- Submit a Statement of Residence (see page 329).
- Return the completed Medical History form, results of a tuberculin “skin” test, and the Insurance Information Request form. These forms are mailed to each new student from the Student Health Center.

New graduate students who have been registered previously at Davis as undergraduates are considered to be new students.
Academic Information

Your registration will be complete when you have presented your completed registration forms to the Registrar’s Office by the announced deadline and have received your validated Registration Card. Late registration privileges extend through the tenth day of instruction, but you will be assessed a fee of $10 to defray the extra clerical costs of late registration.

$50 Reduced Fee Program
If you are an undergraduate student enrolled for less than nine units in any quarter (including non-credit courses, e.g., Mathematics B) you may petition for a $50 reduction in the Educational Fee. Petitions are available at the Part-Time Degree Program Office and must be filed with the Registrar’s Office no later than the tenth day of instruction.

Adding or Dropping Courses
You must file a Drop/Add Petition in order to add or drop courses after your initial enrollment in classes. You should file the completed petition at the office of the department offering the course. See the Class Schedule and Room Directory for more information and filing dates.

Changes of Major, College, or School
With the approval of the appropriate dean or deans, a student in good standing can transfer from one area of study to another. Petitions for this purpose may be obtained from the Registrar (Letters and Science major change petitions are obtained from department offices). Petitions for a change of College must be filed in the first five weeks of the quarter. (See College and School sections for more information.)

Change of Name
Petitions for this purpose may be obtained from the Registrar.

Withdrawals
Withdrawals may be granted by the University for emergency reasons or for good cause. Unauthorized withdrawals may jeopardize your registration privileges and result in failing grades. Request the forms for withdrawal and file them at the Registrar’s Office. See page 38 for information on fee refunds.

If you have been receiving veterans’ benefits you must report your change of status immediately, in person or by mail, to the Veterans Affairs Office.

Reentry after an Absence
If you are a former UCD student planning readmission into the University of California on the Davis campus, you must file an Application for Reentry with the Registrar along with the nontransferable, nonrefundable fee of $20. (You are a former student if you have interrupted the completion of consecutive terms of enrollment on the Davis campus.) Official transcripts of all work you may have attempted in the interim must be submitted.

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Deadline Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 1978</td>
<td>September 1, 1978</td>
</tr>
<tr>
<td>Winter 1979</td>
<td>December 15, 1978</td>
</tr>
<tr>
<td>Spring 1979</td>
<td>March 17, 1979</td>
</tr>
<tr>
<td>Fall 1979</td>
<td>September 1, 1979</td>
</tr>
</tbody>
</table>

Planned Educational Leave Program (PELP)
A Planned Educational Leave is defined as a planned interruption or pause in your regular, full-time education during which you temporarily cease formal studies at Davis while pursuing other activities that may assist in clarifying your educational goals. The intent of the program is to make it possible for a student to suspend academic work, leave the campus, and later resume studies with a minimum of procedural difficulties.

Any registered student on the Davis campus, undergraduate or graduate, is eligible to enroll in the Planned Educational Leave Program. Freshmen and transfers who have been admitted but have not yet registered or attended classes are also eligible, providing an opportunity for beginning students to pause between high school or community college and the University.

Each applicant for enrollment in PELP is required to file an application form, including a brief explanation of the reasons for leaving the campus, and must state in writing when he or she intends to resume academic work.

The minimum Planned Educational Leave is one full quarter; the normal maximum is one full academic year. You may, however, request an extension of your leave. For purposes of this program, leave of one full quarter is defined as a leave beginning no later than the second week of instruction in a quarter.

Students enrolled in the program are expected to devote their leave period primarily to non-classroom activities. Students on Planned Educational Leave are not eligible to enroll in concurrent courses on the
Davis campus and may not earn academic credit at Davis during the period of the leave.

At the end of the leave, you are guaranteed re-admission as long as you resume regular academic work at the agreed-upon date. Students who do not return at the prearranged time and do not extend their leave will be considered to have withdrawn.

A fee of $20 is charged, payable when you enroll in the program. This fee is identical to that paid by a student who withdraws and is required to pay a re-admission fee when he or she returns.

You will not be eligible to receive normal University services during the planned leave. Certain limited services, however, such as placement and student employment services, counseling, and faculty advising are available. Students on Planned Educational Leave may purchase a health care card from the Student Health Service and may retain library privileges by purchasing a library card. International students should consult Services for International Students and Scholars to find out what effects the Planned Educational Leave will have on their status. Grants and other financial aid will be discontinued for the period of the leave, but every effort will be made, where legally possible, to allow you to renegotiate loan payment schedules and to insure the availability of financial aid upon your return.

Applications and specific information about the Planned Educational Leave Program are available from the Counseling Center in North Hall. For those students who have been admitted but have not attended classes, applications and information are available from the Office of Admissions, Mrak Hall.

SCHOLASTIC REQUIREMENTS

The 1978-79 academic year will consist of three ten-week quarters. Two six-week summer sessions are also offered. Students normally attend the University three quarters per school year, but you may accelerate your progress by enrolling in one or both summer sessions (see page 19).

Credit for academic work in the University is evaluated as quarter units. One quarter unit represents three hours of work per week by the student, including both class attendance and preparation. Laboratory and discussion sections may or may not be given unit value. (To convert quarter units to semester units, multiply by 2/3; from semester to quarter units, multiply by 3/2.)

GRADING

Every instructor is required to assign a grade for each student registered in his or her course. The following grades are used to report the quality of a student's work at UCD:

- A, excellent
- B, good
- C, fair
- D, barely passing
- F, not passing (work so poor that it must be repeated to receive recognition)
- I, incomplete (work is satisfactory but incomplete for a good cause)
- IP, in progress
- P, passed
- NP, not passed
- S, satisfactory
- U, unsatisfactory

The grades A, B, C, and D may be modified by a plus (+) or minus (−).

Grade Points

Grade points are assigned each letter grade as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>A−</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>C+</td>
<td>2.7</td>
</tr>
<tr>
<td>C</td>
<td>2.3</td>
</tr>
<tr>
<td>C−</td>
<td>2.0</td>
</tr>
<tr>
<td>D+</td>
<td>1.7</td>
</tr>
<tr>
<td>D</td>
<td>1.3</td>
</tr>
<tr>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>P/NP</td>
<td>0.7</td>
</tr>
<tr>
<td>S/U</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Grade-Point Average (GPA)

The grade-point average is computed on courses undertaken in the University of California, with the exception of courses undertaken in University Extension. The value of grade points over units attempted determines your grade-point average. The (grade-point) balance represents the number of grade points above or below a C average. The grades IP, P, S, NP, and U carry no grade points and are not included in grade-point computations. I grades are not included in the GPA at the end of the quarter, but are counted as F in determining if a bachelor's degree candidate has earned the minimum 2.0 GPA required for graduation.

A student at Davis is expected to maintain a C (2.0 GPA) or better in all work undertaken in the University. If you fall below a C average, you are considered "scholastically deficient" (see page 64).
Passed/Not Passed (P/NP) Grading Option

Subject to regulation by the faculties of the various colleges and schools, an undergraduate student in good standing can petition to take specific courses on a Passed/Not Passed basis. Petitions are available in deans' offices at times published in the Class Schedule and Room Directory and must be filed before the end of the fifth week of instruction.

The grade P is assigned for a grade of C- or better. Units thus earned are counted in satisfaction of degree requirements but are disregarded in determining your grade-point average.

The intent of this option is to encourage exploration in areas in which you have little or no previous experience by alleviating grading pressures. The maximum number of units graded P that will be accepted for degree credit is 1/3 of the units completed in residence on the Davis campus. Consequently, at least 2/3 of the units completed in residence at Davis and presented for graduation credit must be in courses taken for a letter grade. Your quarterly transcript will show the total number of units graded P you have accumulated, as well as the number of units graded P that are in courses taken on a P/NP basis at your option. If you are planning to take courses on a P/NP basis, you should also familiarize yourself with the requirements of your particular school or college which may have introduced additional conditions or restrictions.

If you elect the P/NP grading option for courses graded upon completion of a two- or three-quarter sequence (In-Progress grading), a petition submitted by the end of the fifth week of the first term applies to all terms of the course. A petition submitted during the second term but before the end of the fifth week of the second term applies to the second and any remaining terms of the course.

Courses in which a D or F are received may not be repeated with the P/NP option. Students who received an Incomplete in a course they undertook for a letter grade may not complete the course on a Passed/Not Passed basis.

Satisfactory/Unsatisfactory (S/U)

Graduate students, under certain circumstances, may be assigned grades of S or U, but units gained in this way will not be counted in calculating the grade-point average. The grade of S is awarded to graduate students for work in graduate courses which otherwise would receive a grade of B- or better, and in undergraduate courses for work which otherwise would receive a grade of C- or better.

Petitions are available from the Graduate Division and must be signed by your graduate adviser. (See page 137 for Individual Study Courses.) Courses in which a D or F are received may not be repeated with the S/U option.

Passed/Not Passed (P/NP) Grading Only

In specific courses which have been approved by the respective departments and by the appropriate Committees on Courses of Instruction, individual instructors will assign only Passed or Not Passed grades. (See page 136 for Special Study Courses.)

In-Progress (IP) Grading

For a course extending over more than one quarter (designated "deferred grading only, pending completion of sequence" in course descriptions), evaluation of student performance is deferred until the end of the final quarter. Provisional grades of IP are assigned in the intervening quarters and are replaced with the final grade at the completion of the sequence. In order to gain credit toward graduation, a student must successfully complete the entire sequence in successive quarters.

Incomplete Grades

The grade of I may be assigned when a student's work is of passing quality but is incomplete for a good cause. You may replace an I grade with a passing grade and receive unit credit (and grade points if the instructor assigns a letter grade) provided you satisfactorily complete the course work as specified by the instructor. In order to change your records, you must obtain a petition from the Registrar's Office and present it to your instructor for completion and mailing. An I grade must be replaced before the end of the third succeeding term of the student's academic residence. If a student's degree is conferred before the expiration of the time limit for an I-grade conversion, the time limit for conversion for the graduated student will be the end of the third regular term succeeding the term in which the Incomplete was assigned.

Courses for which an I grade has been assigned may not be repeated except on an audit basis. An undergraduate student whose record shows more than 16 units of I grades will be subject to disqualification (see page 64). A graduate student who accumulates more than eight units of I grades will be subject to probation.
Incomplete grades will not be included in your grade-point average at the end of a quarter. At the time of graduation, however, any remaining I grades are included when your grade-point average is computed, in order to determine whether you have achieved the 2.0 average required for the bachelor's degree. An incomplete grade, in these computations, has the same effect as a grade of F. Therefore, it is recommended that students not delay the clearance of incomplete grades so as not to jeopardize graduation.

Changes of Grade

All grades except I and IP are final when filed by an instructor at the end of the term. No final grade except I may be revised by examination or the submission of additional work after the close of the term.

If, however, a "clerical" or "procedural" error in the reporting of a grade can be documented, you may request a change of grade with a petition available from department offices.

Repetition of Courses

An undergraduate student may repeat only those courses taken on a UC campus in which he or she has received a grade of D, F, or NP. In computing the grade-point average of an undergraduate who repeats courses in the University in which a D or F was received, only the most recently earned grades and grade points are used for the first 16 units repeated. Thereafter, you will receive the grade assigned and the corresponding grade points earned for each time you take the class. When a course is repeated, the units completed will be credited toward the degree only once, but the course will appear on the record card each time it is taken. Repetition of a course more than once requires approval by the appropriate dean in all instances. Courses in which a student has received a grade of D or F must be taken for a letter grade if repeated—not on a P/NP basis.

A graduate student may repeat any course in which he or she has received a grade of C, D, F, or U, up to a maximum of nine units. A course in which a C, D, or F grade has been earned may not be repeated on the S or U grading basis. In computing the grade-point average of a graduate student who repeats courses in which a grade of C, D, or F was received, only the most recently earned grade for each course and corresponding grade points shall be used.

Mid-Term Grade Standing

Students wishing to know their grade at the mid-quarter should inquire with the instructor. Those who have deficient grades (D, F, or Not Passed) are urged to confer with their advisers.

Final Grades

Grades for a current term are generally available about three weeks after a quarter has ended. If you wish to have your grades mailed to you, deposit a stamped, self-addressed envelope with the Registrar's Office before the end of the term.

Transcripts

A record of each student's academic work at UCD is prepared and retained permanently by the Registrar's Office. Copies of your official transcript may be obtained from the Registrar's Office for $2 for the first copy and $1 for additional copies requested at the same time. Transcripts of all work done through University Extension or Concurrent Enrollment should be requested directly from the University Extension Office, 4445 Chemistry Addition. Transcripts of work
completed at another campus of the University or at another institution must be requested directly from the campus or institution concerned.

Application for a transcript of record should be made at least one week in advance of the time needed.

Class Level

Undergraduate classification is determined by the number of quarter units you have completed:

<table>
<thead>
<tr>
<th>Class Level</th>
<th>Unit Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0 - 40</td>
</tr>
<tr>
<td>Sophomore</td>
<td>40½ - 83½</td>
</tr>
<tr>
<td>Junior</td>
<td>84 - 134½</td>
</tr>
<tr>
<td>Senior</td>
<td>135</td>
</tr>
</tbody>
</table>

EXAMINATIONS

Final Examinations

The Class Schedule and Room Directory lists the times that final examinations are to be held. These are set up according to the day-and-hour periods in which the classes are given during the quarter. This information is available at the beginning of the term so that you can avoid final examination conflicts.

Except under certain specified circumstances, Academic Senate Regulations require that final examinations be given in all undergraduate courses. Exceptions to the regulation would be independent study courses, courses which consist of laboratory work only, and courses in which the examination has been waived (course descriptions will include the statement, "no final examination").

At the instructor’s option, the final examination may be completely or in part a take-home examination. The writing time of a take-home and an in-class final examination together should not exceed three hours. In each undergraduate course in which a final examination is required, the students have the right to take the final examination (and/or submit the take-home examination) at the time published in the Class Schedule and Room Directory. An examination which is given at a time other than the specified time requires the mutual consent of the instructor and each student enrolled in the course. Any student who does not consent in writing to a different time must be permitted to take an examination (or submit the instructor-opted take-home examination) at the officially scheduled time. A student who consents in writing to a change in the final examination time waives the right to take the examination as originally scheduled. Departures from the published examination schedule should be carried out so as not to disadvantage students who are unable to accept the alternate schedule. A student who is improperly denied the right to take a required final examination on the published date (or submit the take-home examination as opted by the instructor) may file a petition with the Executive Council of his or her college by the end of the next regular term for appropriate action.

Midterms

In undergraduate courses for which a midterm examination is required, each student has the right to take the midterm (or submit the take-home examination as opted by the instructor) during one of the regularly scheduled meetings of the class as published in the Class Schedule and Room Directory. A midterm examination which is not given at the time specified requires mutual consent of the instructor and each student enrolled in the course. A student who does not consent in writing to the different time must be permitted to take the examination (or submit the take-home examination) at the officially scheduled time. Consent in writing to the change of examination time waives the right to take the midterm at the officially scheduled time.

Credit by Examination

Under certain prescribed conditions, currently enrolled students in good standing may receive course credit by taking an examination without formally enrolling in a course. A petition and a copy of the prescribed conditions may be obtained from the Registrar’s Office. The petition is subject to the approval of the instructor giving the examination and the department involved.

The completed petition, accompanied by a fee of $5, must be presented for final approval to the dean of your college or school, or if you are a graduate student, to the Dean of the Graduate Division.

The credit received for the examination may not duplicate any credit you have already applied toward your degree. The final results will be reported to the Registrar who will assign you the appropriate grade and grade points. Since failure to pass the examination will be recorded as an F, you are encouraged to prepare fully for such an examination before attempting it.
College Entrance Examination Board (CEEB) Advanced Placement Examination Credit

You are awarded 10 quarter units of credit toward the 180-unit bachelor's degree requirement for CEEB Advanced Placement Examinations satisfactorily passed, usually during the junior or senior year in high school. (Exception: 5 units are awarded for a score of 5, 4, or 3 earned in the Mathematics AB exam and each Latin exam, and 10 units for one or both of the Physics B and C exams.) You may not earn University credit for courses which duplicate credit already allowed for Advanced Placement Examinations (see UCD Course Equivalencies column below). Exceptions for biology and chemistry are noted below. If you have not received your exam results, carefully avoid enrolling in a UCD course for which credit may not be granted. Exam scores will be posted on the bulletin board opposite Room 175, Mrak Hall as soon as they are made available to the University.

The following information applies to undergraduate students in the Colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science. For further clarification consult the Dean's Office of your college.

<table>
<thead>
<tr>
<th>EXAMINATION</th>
<th>SCORE</th>
<th>UCD COURSE EQUIVALENCIES</th>
<th>CONTINUING COURSE</th>
<th>CREDIT ALLOWED TOWARD SPECIFIC DEGREE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH</td>
<td>5, 4, 3</td>
<td>English 1 and 3</td>
<td></td>
<td>English/Humanities Credit</td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
<td></td>
<td>College of Agricultural & Environmental Sciences:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 units English credit, Four additional units required in English or Rhetoric in consultation with major adviser.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>College of Engineering:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 units English credit, Satisfies English 1 Requirement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>College of Letters & Science:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 units Humanities credit, Partially satisfies English Composition requirement (course route option).</td>
</tr>
</tbody>
</table>

FOREIGN LANGUAGES	5, 4, 3	French 6	French 30A or any upper-division literature course.	Humanities Credit/Unrestricted Electives
French				4 units For each foreign language examination passed.
German	5, 4, 3	German 4, 6A or 6B	Any upper-division course. German 101 strongly recommended.	In the College of Letters & Science, these examinations also satisfy the Foreign Language requirement.
Latin (Virgil)	5, 4, 3	Latin 103	Determined by consultation with Classics adviser. Spanish 28.	
(Lyric)	5, 4, 3	Latin 105	Determined by consultation with Classics adviser.	
Spanish	5, 4, 3	Spanish 5		

HUMANITIES	5, 4, 3	Art 2, 5, 4 Art 2, 3 Art 10, 1A, 1B, 1C, 3 Art 10, 17A, 17B Art 10, 4B, 4C	Art 3, 4,	
Art Studio	5			Humanities Credit/Unrestricted Electives
Art History	5, 4, 3			8 units
	3			4 units
American History	5, 4, 3			4 units
European History	5, 4, 3			8 units
Music	5, 4, 3			4 units

NATURAL SCIENCES	5, 4, 3	Biological Sciences 1 and Botany 2 or Zoology 2-2L	Any appropriate upper-division course in the biological sciences, Botany 2 or Zoology 2-2L.	
Biology	5			Natural Science Credit/Preparatory Courses for Science Majors
Chemistry	5, 4, 3	Biological Sciences 1 3 Chemistry 1A, 1B	Botany 2 or Zoology 2, See right-hand column.	
Mathematics AB	5, 4, 3	Mathematics 11, 21A	Mathematics 21B,	
Mathematics BC	5, 4, 3	Mathematics 11, 21A, 21B	Mathematics 21C,	
Physics B	5	Physics 1A, 1B, 10, 2A, 2B, 3C	Determined by consultation with adviser.	
Physics BC	4, 3	Physics 1A, 2A, 4A		
Physics C	4	Physics 1A or 2A		
Physics CII	4	Physics 1B, 2B, 4C		
Physics CIII	4	Physics 1B or 2B		

63
PROBATION AND DISQUALIFICATION

The following provisions apply to all undergraduate students in the Colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science. Graduate and professional students with scholarship deficiencies are subject to action at the discretion of their respective deans.

A student will be placed on probation for failure to meet qualitative or quantitative standards of scholarship. The qualitative standards of scholarship require that a student maintain a C average (2.0) or better for all work undertaken within the University and for the work undertaken in any one term. The quantitative standards, referred to as "minimal progress requirements," define satisfactory scholarship in terms of the number of units that must be satisfactorily completed. Minimal progress requirements do not apply to students enrolled in the Division of Extended Learning's Part-Time Degree Program or to students who have their dean's approval to carry less than the minimum program load because of medical disability, employment, a serious personal problem, a death in the immediate family, or an accident.

The following courses may be counted toward unit minimums:

- Required non-credit courses, e.g., Mathematics B, will be evaluated according to the "Carnegie unit" rule and counted as units passed (see page 135)
- Repeated courses passed to improve D or F grades
- Courses passed during Summer Session at UCD or at another accredited school and transferred to UCD shall be counted as units passed (applied to quarter of enrollment just preceding the Summer Session)
- Courses passed by examination in accordance with policies established by the Divisional Com-

A student will be placed on probation or become subject to disqualification from further registration at the University:

<table>
<thead>
<tr>
<th>If, at the end of any term, a student's GRADE-POINT AVERAGE is...</th>
<th>Probation</th>
<th>Subject to Disqualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 2.0 (but not less than 1.5) for the term; or less than 2.0 for all courses taken within the University of California.</td>
<td>less than 1.5 for the term; or if the student has more than 16 units graded I (Incomplete); or completed two consecutive quarters on academic probation.</td>
<td></td>
</tr>
</tbody>
</table>

if the total number of units passed at UCD are less than:

36 at the end of the third term of enrollment;
72 at the end of the sixth term;
108 at the end of the ninth term;
144 at the end of the twelfth term;
180 at the end of the fifteenth term. (It is expected that a student will reach 180 units and graduation prior to the fifteenth term.)

First occurrence of not achieving minimum UNIT progress. The Registrar will note on the student's transcript: "Below minimum progress." (Once good standing is achieved, the notation will be removed from the transcript.)

Second consecutive occurrence of not achieving minimum progress...

The Registrar will note on the student's transcript: "Below minimum progress; subject to disqualification. Continued registration will be at the discretion of the dean of your college, and any questions should be directed to the dean." (Once good standing is achieved, the notation will be removed from the transcript.)
mittee on Courses (applied to quarter in which examination is taken)

- Courses graded IP (in progress) will be counted as units passed

The faculty of a college may grant a student a minimum-unit progress variance of one or more quarters for an acceptable reason. A student is given a warning the first time he or she fails to make minimum progress but is not removed from scholastic good standing. The second consecutive time a student fails to complete the required minimum number of units, continued registration will be at the discretion of the student's dean. Students who fail to make minimum progress may continue to take courses using their Passed/Not Passed grading option. Advising assistance should be obtained either through the student's own adviser or in the college Dean's Office.

To transfer from one University campus to another, or from one college or school to another on the same campus, a disqualified or probational student must obtain the approval of the dean whose jurisdiction he or she is seeking. Following the transfer, the student is subject to supervision by the faculty of the new college, school, or campus.

STUDENT RESPONSIBILITY

Each student is responsible for compliance with the announcements and regulations printed in this catalog and in the Class Schedule and Room Directory, with all official notices posted on bulletin boards and published in the campus newspaper, and with all regulations of the University.

You will not receive grades, transcripts of record, teaching credentials, or diplomas until you have met all University obligations. Any past obligations which you have not satisfied or had officially extended may prevent your registration.

Student Conduct and Discipline

Students enrolling or seeking enrollment in the University assume an obligation to act in a manner compatible with the University's function as an educational institution. Rules concerning student conduct, student organizations, use of University facilities, and related matters are set forth in both University policies and campus regulations. The Standard of Conduct is outlined in the booklet, University of California Policies Applying to Campus Activities, Organizations, and Students. The operation of the campus student disciplinary system is outlined in the booklet, UCD Administration of Student Discipline. These policies and regulations are available from the Office of the Vice Chancellor—Student Affairs, 541 Mrak Hall, and the Coordinator of Student Judicial Affairs, 462 Memorial Union.

Misconduct for which students are subject to discipline includes, but is not limited to, cheating, plagiarism, forgery, alteration or misuse of University documents, records, or identification, or knowingly furnishing false information to the University. Disciplinary sanctions which may be involved range from a warning to separation from the University.

Alleged violations of campus or University standards will be investigated by appropriate officials, and may be referred to a hearing before the Student Conduct Committee, Campus Judicial Board, the Coordinator of Student Judicial Affairs, or another appropriate officer. The President of the University, through the Chancellor, has ultimate authority for the administration of student discipline.

BACHELOR'S DEGREE REQUIREMENTS

Three groups of requirements must be satisfied before a student can become eligible for candidacy for the bachelor's degree. They are:

1. University requirements, which are general and apply to all schools and colleges;
2. College or school requirements; and
3. Individual major requirements.

For information on college, school, or major requirements, see the appropriate section of this catalog, the Registrar's Office, or college and school deans' offices.

UNIVERSITY REQUIREMENTS

Subject A: English Composition

The Subject A Requirement is based on the belief that a University student must demonstrate an acceptable level of ability in English composition to succeed in college-level work. Satisfaction of this requirement is a prerequisite to all other undergraduate courses in English.

The requirement may be met in one of the following four ways:

- By achieving a grade of 5, 4, or 3 in the College Entrance Examination Board (CEEB) Advanced Placement Examination in English.
• By achieving a score of 600 or higher in the CEEB Achievement Test in English Composition.

• By passing the California State University and Colleges English Equivalency Examination. (Note: the CSUC English Placement Test may not be used to satisfy the Subject A requirement.)

• By entering the University with credentials showing the completion of an acceptable 3-semester or 4-quarter unit college-level course in English composition with a grade of C or better.

• By writing a superior essay on the Subject A Diagnostic Essay Examination. This examination may be taken only once. The Subject A exam is offered during the Summer Advising sessions and during Orientation Week preceding each quarter. Consult the "Official Notice" posted prior to the beginning of the quarter for times and locations of the Orientation Week examination. Students who score below 450 on the CEEB Achievement Test in English Composition are not eligible to take the Diagnostic Essay Examination.

Satisfaction of the Subject A requirement is determined by the Office of Admissions. If you have not satisfied the requirement in one of the ways described above, you must enroll in the two-unit course in English A during your first quarter of residence at the University, or as soon thereafter as space is available in the course.

International students whose native language is not English cannot meet the Subject A requirement by passing a special examination in English composition and, if necessary, completing English 25 (English for Foreign Students) with a minimum grade of C.

• By completing any one of the following courses:
 Afro-American Studies 10, 100, 120, 121
 Economics 111
 Native American Studies 20, 116, 130A, 130B, 130C, 155

(Students electing to offer one of the above courses are subject to the rules that apply for prerequisites and majors.)

• By presenting evidence that the requirement has been satisfied through courses in the area of American History and Institutions at another collegiate institution whose credits are acceptable for transfer to the Davis campus.

• By successful completion of the Advanced Placement Examination in American History.

International students studying at the University with F class (student) or J class (exchange visitor) visas should contact the Registrar’s Office to secure exemption from this requirement. Bring your passport, visa, and registration card with you.

Further information may be obtained from the Supervisor of the American History and Institutions Requirement, 124 Mrak Hall.

American History and Institutions

The American History and Institutions Requirement insures that every graduating student will have at least a minimum knowledge of the background of this country’s development and an understanding of the political, economic, and social interrelationships of its way of life.

You may meet this requirement in any of the following ways:

• By offering one high school unit in American history, or ½ high school unit in American history and ½ high school unit in civics or American government, with a grade of C or better in each course.

Residence Requirements

The minimum residence requirement for a bachelor’s degree at the University of California is one academic year (three quarters). Each summer session in which a student completes a course of at least 2 quarter units may be counted as half a quarter’s residence. Thirty-five of the final 45 quarter units completed by each candidate must be earned in residence in the college or school in which the degree is to be awarded; no more than 18 of these 35 quarter units may be completed in summer session courses at UCD.

There are additional residence requirements in the College of Letters and Science and College of Engineering. Consult the appropriate section of this cata-
log for details. If you are planning to study abroad during your senior year, you should consult your college dean's office.

With the approval of the dean of a student's college or school, a candidate for the bachelor's degree who was in active service in the armed forces of the United States in the year preceding the award of the degree may be recommended for the degree after only one quarter of University residence in which he or she completes at least 16 units or passes a comprehensive examination in the major or field of concentration.

Scholarship Requirement

To receive a bachelor's degree, you must obtain twice as many grade points as units for all courses you have attempted in the University. An exception to this rule is authorized for those students undertaking certain honors courses. For specific college and school requirements consult the appropriate sections of this catalog.

Unit Requirement

A minimum of 180 quarter units is required for graduation. These must be distributed according to the minimum requirements set forth by the faculty of your college or school (see individual college and school sections of this catalog).

The acceptability of transfer courses for unit credit is determined by the Office of Admissions. The acceptability of such courses toward specific requirements is determined by the individual college or school.

Filing for Degree Candidacy

Each candidate for an undergraduate degree must file an Announcement of Candidacy with the Registrar at the beginning of the quarter in which he or she plans to receive the degree. The dates for filing are published in the calendar on page 6 of this catalog and in the Class Schedule and Room Directory.

HONORS AND PRIZES

Deans' Honors List

The Deans' Honors List, posted quarterly on bulletin boards outside College Offices, lists the names of students who have completed work through the previous quarter at the University with distinction.

Students in the College of Engineering who have completed a minimum of 12 units of work and who have achieved a 3.2 cumulative grade-point average or better in all work undertaken in the University and in their college, will have their names included on the list.

In the College of Letters and Science and the College of Agricultural and Environmental Sciences, undergraduates who have completed a minimum of 12 units of work at the Davis campus, exclusively of units taken on a Passed/Not Passed basis, and who have achieved a minimum grade-point average of 3.3 during the preceding term, will have their names on the Deans' Honors List.

Scholarships

Students with outstanding academic records and who show promise of continued scholarly achievement are encouraged to apply for scholarship recognition and awards. Awards are accompanied by a financial honorarium or stipend (see page 42).

Graduation Honors

Graduating students may qualify for honors, high honors, or highest honors in the College of Agricultural and Environmental Sciences and College of Engineering, and for honors and highest honors in the College of Letters and Science. This notation is made on your diploma and on permanent records in the Registrar's Office.

Prizes

The University Medal is the highest honor awarded to a graduating senior in recognition of superior scholarship and achievement. In addition, a College or School Medal is given to the outstanding graduating student in each of the colleges and professional schools.

Departmental citations, special awards, and prizes are also awarded to students for superior achievement and scholarship.

Honorary Societies

Election to an honorary society is one of the most prestigious awards a student can receive. At UC Davis, the following honorary societies are represented:

- Alpha Epsilon (Agricultural Engineering)
- Alpha Omega Alpha (Medicine)
- Alpha Zeta (Agriculture)
- Omicron Nu (Home Economics)
- Order of the Coif (Law)
- Phi Beta Kappa (Liberal Arts)
- Phi Kappa Phi
- Phi Zeta (Veterinary Medicine)
- Pi Sigma Alpha (Political Science)
- Prytaneian Society (Women)
- Sigma Xi (Research)
- Tau Bets Pi (Engineering)
College of Agricultural and Environmental Sciences

Information:
College Office
228 Mirk Hall
752-0107

Challenges and opportunities arising from social and technological changes characterize these times. Today’s challenges—protecting the environment from man’s diverse activities, improving nutrition in major segments of the population, developing and utilizing human and renewable natural resources—are reflected in the programs and offerings of the College of Agricultural and Environmental Sciences.

Teaching and research in the College now extend far beyond the traditionally important mission of food and fiber production. Activities range from the soil to the home, from the farms to the cities. The best uses of land and forest areas, as well as the control of water for home, agriculture, wildlife, recreation, and industry are studied. These areas, reflected in the more than 35 majors in the College, offer interesting and practical career opportunities.

Social problems as well as technological advances are major College considerations. The goal is to develop concern within people, a concern not only with the technology but with the human problems that such technology might create. Through the application of the biological, physical, and social sciences to resource management, farming, ranching, business, education, conservation, recreation, the family, and the community, College programs are designed to meet today’s challenges and contribute significantly to effective solutions.

Administrative Structure

The College’s administrative structure was designed by students, faculty, and administrators to insure the flexibility, responsiveness, and vigor of programs in the face of continually changing educational needs. An ongoing review and updating of teaching programs is characteristic of faculty and administrative concern with not only providing good teaching, but with student receptiveness to subjects being taught.

The College is organized to help students determine what they want and need to learn—and then to assist them in learning it. Furthermore, the focus of the College’s programs is on activities for which there is a societal demand, and on providing opportunities to explore the usefulness of your education in study-internship situations.

Student Responsibility

In recent years, student point of view has had a significant impact on both educational programs and College governance. Students participate in designing the College’s programs and are included on College, departmental, and general faculty committees that determine a wide spectrum of educational and administrative policies. If you want to take part in the committee system, indicate your interest to the College Office, 228 Mirk Hall.

Teaching excellence depends on constructive help from all students. As full participants in the educational process, students are expected to provide faculty advisers, departmental chairpersons, and the deans with candid appraisals of College programs. The College also evaluates the success of its programs by use of questionnaires to determine immediate student reactions to courses and instructors. You are encouraged to communicate with the College Office at any time, in person or by letter, concerning the impact of College programs on your education or ways in which these programs may be improved. Such information is very important in planning to meet the educational needs of future students.
PROGRAM PLANNING

Your Role

Although many services are provided to assist in program planning, in the last analysis you are the one who determines which program to pursue. The most crucial decision you make in this process is the selection of your educational objectives. These may or may not require enrollment in a university. As part of making this decision, you should investigate the educational opportunities in the College by visiting the campus prior to applying for admission and talking with the deans, faculty members, and students. If the University is to be a means of reaching a career decision, you should examine its potential for meeting your goals.

Once you decide to enroll in the College and have chosen an educational objective, be it specific or exploratory, the advising services can be of assistance. Our advisers know the resources of the College and can help you use them to accomplish specific goals. The advisers can, in fact, be called upon long before you arrive on campus. High school students desiring information about college preparatory programs and college students contemplating transfer are encouraged to seek guidance from our deans and faculty advisers as early as one or two years before coming to the Davis campus. This is best done in person, although information can be provided by letter or phone.

It has been the experience of advisers that much of the inflexibility attributed to College programs exists only in the mind of the student. Recommendations meant to serve as guides are sometimes misunderstood to be hard and fast rules. The phrase “courses normally taken by students” often leads students to believe the courses are specifically required when they are not.

The concept of prerequisite knowledge is particularly misunderstood. Education is a building process. It is difficult or impossible to learn advanced principles without first understanding elementary ones. As a matter of convenience, most students acquire preparatory knowledge through prerequisite courses, but that is not the only route available. If you have acquired the prerequisite knowledge by other means, you need not take the specified prerequisite. Instructors will often indicate on the basis of informal discussions that you are prepared for advanced study without the need for examinations or courses. Courses may also be challenged by examination (see page 62).

Flexibility in planning has also been constrained by the belief that students in one college may not take courses in other colleges. This is not true. Within the boundaries of enrollment limitations—and your ability to acquire useful knowledge as a result of taking a particular course—you may enroll in almost any course listed in this catalog.

College Services

University life is a complicated, sometimes bewildering experience. For example, although you may have the academic side of your existence under control, a small “assist” may be needed to deal with some other area, such as registration. The College offers a variety of ways that you can obtain advice or help in solving such problems. Some of these are described in the sections following.

Faculty Advisers

You will be assigned a faculty adviser to help you plan a program that corresponds to your individual educational interests. The assignments are made by Master Advisers, each of whom is responsible for coordinating advising within a major. If you have not decided on a specific major, you will be assigned to the Exploratory Program. In this case, you will have an adviser especially familiar with the breadth of course offerings available in this and other colleges. On the other hand, if you have well-defined educational objectives, you will be assigned an adviser with the training and experience required to facilitate your program planning.

The function of advisers is to sensitize students to the educational opportunities at Davis, to discuss the implications of one option or another, and generally, on the basis of experience, to help you meet your educational goals. The great potential which an adviser-student relationship can have has long been recognized within the College, and you are strongly urged to consult with your adviser each quarter prior to selecting your courses.

As educational objectives evolve, you may, in consultation with the Master Adviser for your major, choose a new adviser whose area of expertise corresponds more directly to your specific objectives.

Advising Centers

General advising on academic programs is available at the College's Academic Advising Center, 132 Hunt
Hall, where all advising activities in the College are coordinated.

Each of the Subject Matter Areas (SMA) of the College (see page 72) has an Advising Center staffed by persons knowledgeable in all aspects of University and College rules and regulations, courses, specific requirements of majors in that SMA, career opportunities, etc. Peer advisers for the SMA are also available at each location.

Peer Advisers

Student advisers are available in the College’s Academic Advising Center, in other advising centers, and at The First Resort (see page 29). These peer advisers keep themselves up to date on the “how’s,” and “where’s,” and “why’s,” of University operating procedures. They are prepared to answer a variety of questions about courses, requirements, and enrollment procedures, and are both a source of information and a means of referral to the right person or office for action.

Associate Deans of Resident Instruction

The College has Associate Deans responsible for each of the following subject areas: Animal Sciences; Applied Economic and Behavioral Sciences; Biological Sciences; Food, Nutrition and Consumer Sciences; Plant Sciences, and Pest and Disease Management; and Resource Sciences and Engineering. They welcome the opportunity to become acquainted with individual students and talk informally with them. They can also help you with academic problems if you are placed on probation or subject to dismissal.

Orientation Class

Each quarter the College offers an orientation class (see page 281) to introduce students to the University, to aid them in formulating educational objectives, and to help them identify the many educational opportunities at UCD. Although not required, this course is recommended as a useful means for discovering what the Davis campus and the College of Agricultural and Environmental Sciences are all about.

Expanded Course Descriptions

Most of the majors available in the College of Agricultural and Environmental Sciences allow for considerable freedom in the selection of courses. You may find, however, that because of space limitations the descriptions in the Catalog will not include all the information you would like about a course. The faculty of the College has responded to this need by writing the “Expanded Course Descriptions” giving more detailed explanations about each of its course offerings. These descriptions are available each quarter to assist students in selecting their courses. They contain such information as course goals, texts used, preparation required of students, bases for grading, course format, detailing of special assignments (papers, field trips, etc.), and a topical outline of the material to be covered.

Copies of the “Expanded Course Descriptions” are available for on-campus use at the Shields Library Reference and Periodicals desks, College offices, advisers’ offices, departmental offices, The First Resort, and in the dormitories at the head residents’ offices.
Work-Learn Opportunities

It may seem that the career you are preparing for is far removed from the courses you are taking. It is sometimes difficult to see the usefulness and importance of various courses, or to know which of them may lead to potential career possibilities. Work-learn experience may assist in removing doubts about your chosen career, increase your motivation, and add to your value in the job market.

The Bixby Work-Learn Program provides opportunities in many fields for which the College prepares students. This voluntary program provides supervised internships—full-time or part-time—in the summer or in any quarter of the academic year. Visit or write the Bixby Work-Learn Office or the Campus Work-Learn and Career Planning and Placement Center (see page 35).

To facilitate credit for work-learn internships, the College has initiated an internship course, Work-Learn 192 (see page 326). By planning in advance with a sponsoring faculty member, you can take up to 15 units per quarter of work-learn experiences that follow appropriate academic processes and include methods of evaluation. (A maximum of 20 units of Work-Learn 192 and courses numbered 99, 197T, and 199 may be counted toward the 180 units required for graduation.)

Field-work internships are also possible through courses in Applied Behavioral Sciences, Native American Studies, Environmental Planning and Management, and environmental management internships in Environmental Studies.

MAJORS AND SPECIAL PROGRAMS

Choosing a Program

There are several alternatives available to undergraduate students in the College of Agricultural and Environmental Sciences:

- A regularly established major program
- An individually designed major program
- A preprofessional program
- The exploratory program eventually leading to one of the first two alternatives above

The majors and special programs in the College are listed below according to Subject Matter Areas. Questions regarding a major should be addressed to the appropriate associate dean. Complete outlines of these majors and programs are presented in the Majors and Courses section of this catalog.

If you fulfill the requirements for more than one major in the College, that accomplishment is noted on your transcript. Requests for certification of multiple majors should be made to the College Office.

ANIMAL SCIENCES—__________, Associate Dean
College Office, 228 Mrak Hall, 752-6970

Majors in Animal Sciences:
- Animal Science
- Avian Sciences
- Wildlife and Fisheries Biology

Interdisciplinary Major:
- Agricultural Science and Management

APPLIED ECONOMIC AND BEHAVIORAL SCIENCES—G. R. Hawkes, Ph.D., Associate Dean
College Office, 228 Mrak Hall, 752-6360

Majors in Applied Economics:
- Agricultural and Managerial Economics
- Development, Resource and Consumer Economics

Majors in Behavioral Sciences:
- Agricultural Education
- Applied Behavioral Sciences
- Design
- Environmental Planning and Management
- Human Development
- Native American Studies

BIOLOGICAL SCIENCES (an Intercollegiate Division)—J. E. Devay, Ph.D., Associate Dean of the Division
Division Office, 150 Mrak Hall, 752-0391

Majors in Biological Sciences:
- Bacteriology
- Biochemistry
- Biological Sciences
- Botany
- Genetics
- Physiology
- Zoology

FOOD, NUTRITION AND CONSUMER SCIENCES—J. R. Whitaker, Ph.D., Associate Dean
College Office, 228 Mrak Hall, 752-6971

Majors in Food Sciences:
- Fermentation Science
- Food Biochemistry
- Food Science

Don't worry if you change your major six times during the first two years.
—Senior, Ag Econ
Majors in Nutrition:
Community Nutrition
Dietetics
Nutrition Science

Majors in Consumer Sciences:
Consumer Food Science
Home Economics
Textiles and Clothing
Textile Science

Individual or Interdisciplinary Majors:
Exploratory (non-degree program)
Individual Major

PLANT SCIENCES, AND PEST AND DISEASE MANAGEMENT—J. M. Lyons, Ph.D., Associate Dean
College Office, 228 Mrak Hall, 752-0819

Majors and Programs in Plant Sciences:
Plant Science
Forestry (non-degree program)
Range and Wildlands Science

Major in Pest and Disease Management:
Entomology

Interdisciplinary Programs:
Agrarian Studies
International Agricultural Development

RESOURCE SCIENCES AND ENGINEERING—D. R. Nielsen, Ph.D., Associate Dean
College Office, 228 Mrak Hall, 752-0110

Majors in Resource Sciences:
Atmospheric Science
Environmental Toxicology
Renewable Natural Resources
Soil and Water Science

Major in Agricultural Engineering:
(See College of Engineering, page 83)

Exploratory Program
Sometimes you may be undecided about the major you really want to pursue. Or you may want to learn more about the alternatives available to you in the College. The Exploratory Program permits you, with the assistance of selected advisers, to choose courses in order to pinpoint your interests and aptitudes. This is not a degree program, but is an aid in finding the major best suited to meet your needs. You should not expect to stay in the program beyond 120 units, however, as it may delay graduation. For registration purposes, indicate Exploratory on your admissions materials and study list cards. Advising information is available from the College’s Academic Advising Center, 132 Hunt Hall.

Individually Designed Major Programs
You may design an individual major if you have a specific academic interest not represented by an established major. Such a major involves interrelated courses totalling 45 upper-division units from two or more areas of study. After preliminary consultation about this special program with the Master Adviser for the Individual Major, you then plan your major with a faculty adviser or a group of advisers. The proposed program must be submitted to a special committee for review at least four quarters before you plan to graduate. This proposal must include a description of your special educational aims and a list of planned courses.

You may obtain additional information by contacting the College’s Academic Advising Center, 132 Hunt Hall.

Preprofessional Programs
The preprofessional program in forestry is a two-year plan which prepares students for entering a degree program in forestry or conservation. Davis does not offer a bachelor’s degree in forestry; however, advisers in the College can help you prepare a lower-division program that will provide a basis for continuing work at another school. (See also page 114.)

Preprofessional training requirements for application to professional schools, such as the schools of veterinary medicine, law, or medicine, may be satisfied through programs in the College. You should select
an undergraduate major on the basis of individual interest and aptitude; no one major will give you an advantage toward admission. Advisers in the College are well-informed about professional requirements and will help you integrate them into your major program. You can obtain more information by contacting the College Office, 228 Mrak Hall; the Office of the Associate Dean—Student Services, School of Veterinary Medicine, 1024 Haring Hall; the Health Sciences Advising Office, 224 South Hall; or the Pre-Law Advising Office, 216 South Hall.

Teaching Credentials
Inquiries concerning preparation for teaching credentials in agriculture and home economics should be addressed to the Department of Applied Behavioral Sciences, University of California, Davis 95616.

For general information on obtaining the teaching credential, see page 111.

REQUIREMENTS FOR THE BACHELOR'S DEGREE

It is your responsibility to see that all requirements for graduation are fulfilled. In brief, these are:

University Requirements: See page 65.

College Requirements: You must fulfill the Bachelor of Science requirements in a major as prescribed by the faculty. Not more than 6 units of Physical Education 1 and not more than 20 units of Work-Learn 192 and courses numbered 99, 197T, and 199 may be counted toward the required 160-unit total; at least 8 units (which must be earned before you have completed 120 units) must be in English or English and Rhetoric courses* that emphasize written or oral expression; and 54 units must be upper-division work.

Major Requirements: See requirements under specific majors in the Majors and Courses section of this catalog.

Natural Sciences, Social Sciences, and Humanities Requirements (Breadth Requirements): Since the broadening effect of any particular course is dependent on your major and general interests, it is not possible to be specific as to what is desirable and what is not. (For example, natural science courses would add more breadth to an agricultural and managerial economics major than they would to a biochemistry major.) Your faculty adviser has guidelines for each major showing what courses you should consider.

COLLEGE POLICIES AND PROCEDURES

Study List
The study list is a record of the courses in which you enroll during a particular quarter. It should be part of a grand plan for exploration or attainment of specific long-term goals and should allow for (a) the acquisition of prerequisite knowledge for courses to be taken in subsequent quarters, (b) the fulfillment of College and major requirements, (c) a proper balance between the demands of the course and your ability to master the subject matter, and (d) meeting the minimum progress regulation (see page 64).

In conjunction with an adviser, you must prepare a written plan that specifies your goals and shows how your graduation requirements will be met. This plan must be filed with your adviser by the end of the second quarter of your junior year (before completing 120 units in residence or by transfer). Your adviser will then notify the Dean.

You will be denied registration for future quarters if you do not comply with this regulation. However, filing this plan does not preclude a change of major or program modifications.

Probation and Disqualification
Students are expected to make reasonable progress toward the degree requirements. You must pass at least 36 units during each three terms of enrollment on the Davis campus in order to maintain a good standing status. Refer to page 64 for minimum requirements for subsequent quarters of enrollment and regulations on probation and disqualification.

Passed/Not Passed Option
If you are a regular student in good standing, you may elect to take certain courses on a Passed/Not Passed basis. (See page 60 for complete information.)

By using the Passed/Not Passed option, you can take courses in new areas without the pressure of competing with students who are majoring in the subject. This option should be used only for elective courses, however, not for major requirements. When in doubt, check with your adviser before electing to take a course Passed/Not Passed.

*Courses to be selected from an approved list of courses available from your adviser or the College Academic Advising Center.
Credit by Advanced Placement Examinations

(See page 63.)

Transfer Students

If you transfer to the College of Agricultural and Environmental Sciences from another institution, the Admissions Office will determine the unit credit you will be awarded for previous work. The College evaluates the credit awarded by the Admissions Office and determines how many units will be counted as upper-division work. Your faculty adviser then determines how the credit applies toward completion of the major requirements.

In order to make program planning easier for transfer students, the major requirements listed in the Majors and courses section of this catalog have preparatory subject matter set out in a special category. These preparatory courses may be taken at the University of California or elsewhere. You can generally determine the area of knowledge covered by a specific requirement by reading the course descriptions. You need not present identical courses, only those that have substantially similar content. If you are attending a community college, consult your counselor to determine which community college courses are appropriate and acceptable for College of Agricultural and Environmental Sciences requirements.

If you have questions as to the best way to prepare for transfer to the Davis campus, you are encouraged to write directly to the associate dean responsible for your intended major (see page 72) or plan a visit to the campus to discuss your program with a faculty adviser.

Registration Beyond the 195-Unit Limit

A minimum of 180 units is required for a bachelor’s degree. You are normally expected to complete all degree requirements within the range of 180 to 195 units.

Registration beyond 195 units requires permission from the Dean. If you must exceed 195 units before you complete four years of college study, permission is usually automatic. Beyond the fourth year of college study, permission is granted only for unusual circumstances and for a limited time only. Approval must be obtained before course enrollment materials can be made available for the quarter following completion of 195 units. You must adhere to a specific program of courses and minimal academic performance levels agreed upon.

HONORS

Undergraduate Honors

The Dean’s Honors List, published at the end of each quarter, includes the names of all students in the College of Agricultural and Environmental Sciences who have completed at least 12 units on the Davis campus during the preceding quarter (exclusive of units taken on a Passed/Not Passed basis) and who have a minimum grade-point average of 3.3 for that quarter.

Honors at Graduation

Graduating students who are completing their majors with distinction may be recommended for honors, high honors, or highest honors. The names of these students are announced at commencement, and this distinction is noted on their transcripts and diplomas. The minimum grade-point averages required to qualify for these honors are shown in the following table:

<table>
<thead>
<tr>
<th>Total quarter units completed at UC</th>
<th>Grade-Point Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Honors</td>
</tr>
<tr>
<td>135 or more</td>
<td>3.20</td>
</tr>
<tr>
<td>90-134</td>
<td>3.40</td>
</tr>
<tr>
<td>45-89</td>
<td>3.50</td>
</tr>
<tr>
<td>Less than 45</td>
<td>not eligible</td>
</tr>
</tbody>
</table>

College Medal

Each year the outstanding graduating senior in the College is awarded a silver medal, known as the “Agricultural and Environmental Sciences Medal.” Scholastic excellence (in a minimum of six quarters at UC Davis) is the primary basis for choosing the recipient.

Scholarships

To encourage capable young men and women to pursue careers in the agricultural and environmental sciences, many companies and private individuals have established scholarships restricted to students in this College. You are encouraged to apply for these scholarships if you have a high scholastic standing and demonstrate exceptional performance. Certain scholarships also require proof of a financial need. Information is available from the Scholarship Office, 12 Mrak Hall, or from the College Office, 228 Mrak Hall. (See also the Scholarship section, beginning on page 42.)
It takes more than four years of schooling to learn all you need to know about any profession. The objective of the undergraduate programs in engineering, therefore, is to form an appropriate foundation for a lifetime of learning. Extended learning after graduation—on-the-job experience, individual study, extension courses, or formal graduate study—is an essential part of an engineering education. And since practical experience during your undergraduate years is also useful, you are encouraged to participate in engineering internship programs.

For information on graduate programs leading to the Master of Engineering, Doctor of Engineering, Master of Science, and Doctor of Philosophy degrees, or Graduate Certificate Programs, see page 91.

E.C.P.D. Accreditation

The following Engineering curriculum are accredited by the Engineers' Council for Professional Development: Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering and Mechanical Engineering.

ADMISSION TO THE COLLEGE OF ENGINEERING

Admission to Freshman Standing

There are no special requirements for admission to the College of Engineering other than the general University requirements beginning on page 48. It is recommended, however, that you take the following subjects (or integrated courses covering substantially equivalent material) during high school:

<table>
<thead>
<tr>
<th>Subject Areas</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra</td>
<td>2</td>
</tr>
</tbody>
</table>
College of Engineering

Plane geometry .. 1
Trigonometry .. ½
Analytic geometry ½
Chemistry and/or physics 1

These subjects are prerequisite to certain basic courses in the freshman engineering program. You will be required to make up equivalent work if you are admitted without this preparation. As a result, graduation could be delayed. A year of high school mechanical drawing is also recommended, but not required.

Advanced Placement Examination

Credit toward the total unit requirement for the degree is awarded for CEEB Advanced Placement Examinations satisfactorily passed, as indicated in the table on page 63. Except as otherwise noted in the table, these units may be used to satisfy specific graduation requirements in the College of Engineering to the extent that the UCD course equivalencies shown are directly applicable to these requirements.

Admission to Advanced Standing

While it is possible for community college students to transfer to UC Davis after completing only the freshman year, you are urged to take the entire Lower Division Program at the same school. After completing the basic lower-division engineering curriculum at a California community college, it is possible to complete your studies at Davis in two academic years. Questions about community college programs should be directed to your counselor, or you can contact the UC Davis College of Engineering Undergraduate Office directly. (For information on admission to the University in advanced undergraduate standing, refer to the Admissions section of this catalog.)

If you are admitted with less than 84 quarter units of college work (56 semester units), you are classified in lower-division standing, and must complete one of the two Lower Division Programs listed on page 193. You are advanced to upper-division standing after completing 84 units.

If you are admitted with 84 or more quarter units, you are classified in upper-division standing, but you are required to complete the minimum number of quarter units in the subjects specified in the following table before your Lower Division Program is considered complete. You may, however, start your Upper Division Program while completing your Lower Division Program.

<table>
<thead>
<tr>
<th>Subject Areas</th>
<th>Minimum Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics (calculus, differential equations, vector analysis)</td>
<td>18</td>
</tr>
<tr>
<td>Physical and biological sciences (at least 10 units must be in general chemistry and at least 12 units in physics for engineering and science students)</td>
<td>27</td>
</tr>
<tr>
<td>Engineering (lower-division subjects such as graphics, properties of materials, surveying, computer programming, statics, and circuit theory. Chemical Engineering majors may elect to take only 12 units of engineering in their Lower Division Program)</td>
<td>15</td>
</tr>
<tr>
<td>Written and oral expression (courses equivalent to English 1 and either Rhetoric 1 or 3)</td>
<td>8</td>
</tr>
<tr>
<td>Humanities-social sciences (must be selected from a list of course groups approved by the Committee on Undergraduate Study)</td>
<td>8</td>
</tr>
<tr>
<td>Unspecified subjects (Chemical Engineering majors should take quantitative analysis and one course in organic chemistry with laboratory during their sophomore year)</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
</tr>
</tbody>
</table>

Once you have completed the Lower Division Program on this basis, it is not necessary to take additional lower-division courses, except those that are prerequisite to upper-division courses in your curriculum.

The minimum number of required units in the Lower and Upper Division programs varies from 180 to 195.

ACADEMIC ADVISING

In establishing the College of Engineering's undergraduate programs, every effort has been made to provide for maximum flexibility consistent with rigorous preparation for professional practice or graduate study. The key to successful flexibility is an effective system of advising.

Every engineering undergraduate is assigned to a faculty member for academic and career advising, and every full-time engineering faculty member has 25 to 30 advisees.

Adviser assignments are made and coordinated through the College's Undergraduate Office, which assigns you an adviser prior to your first term on campus. New students who participate in the Summer Ad-
vising Program will have individual appointments scheduled with faculty advisers during the program. Other new students are asked to meet with their faculty advisers during the orientation period that precedes the first week of classes.

Since a close relationship between you and your faculty adviser can be one of the most important factors in a successful educational experience, you are encouraged to come into the Undergraduate Office and select a new faculty adviser whenever you wish.

Faculty advising is complemented by a well-developed peer advising system. Student advisers are available at the Student Center in Bainer Hall and at other locations listed in the index under Advising.

CHOOSING A MAJOR

The majors (curricula) in the College of Engineering are:

Aeronautical Engineering
Agricultural Engineering
 (including Forest Engineering option)
Chemical Engineering
Civil Engineering
Electrical Engineering
Electrical Engineering (Computers)
Electrical Engineering (Electronics, Circuits and Signal Processing)
Materials Science and Engineering
Mechanical Engineering
Agricultural Engineering/Materials Science and Engineering
Chemical Engineering/Materials Science and Engineering
Civil Engineering/Materials Science and Engineering
Electrical Engineering/Materials Science and Engineering
Mechanical Engineering/Aeronautical Engineering
Mechanical Engineering/Materials Science and Engineering
Individual Engineering Major

Note that six of these are double majors. Degree requirements for each of these double majors can be completed in four academic years.

The Individual Engineering major is designed by you with the help of your adviser, and is subject to approval by the Engineering Undergraduate Study Committee.

Many students who enter the College of Engineering have well-defined career objectives. Others do not. All engineering students are formally classified as Engineering—Lower Division until 84 quarter units of college work have been completed. Your official designation of an engineering curriculum does not take place until the end of your sophomore year. If you are planning to graduate under the Chemical Engineering or the Chemical Engineering/Materials Science and Engineering curricula, however, you should make that decision during your freshman year and plan your entire program accordingly.

You are encouraged to make use of the many advising and counseling sources available to students if you are uncertain about your choice of a major. Guidance within the College is available through faculty and student advisers, instructors, and the academic deans. The Career Planning and Placement Office, Student Development Office, and other sources listed in the index under Advising are also good places to seek assistance.

Introductory Courses

A number of freshman engineering courses are designed to describe the engineer's role in society and to show the similarities and differences among various engineering branches. Included are:

- Engineering 3 (Introduction to Engineering Systems)
- Agricultural Engineering 1 (The Agricultural Engineer in Tomorrow's World)
- Chemical Engineering 1 (The Scope of Chemical Engineering)
- Civil Engineering 1 (The Civil Engineer in Society)
- Electrical Engineering 1 (Introduction to Electrical Engineering)
- Mechanical Engineering 1 (Mechanical Engineering)

PLANNING YOUR PROGRAM

You are held responsible for planning your program. But that does not mean you are simply on your own. Your faculty adviser, with whom you are strongly urged to consult prior to registration each quarter, is the primary source of assistance. The Undergraduate Office of the College is willing to assist, as are the many advising offices throughout the campus.

Specific degree requirements for the various engineering curricula are given beginning on page 192.
College of Engineering

The minimum number of required units ranges from 180 to 195, depending on the curriculum. Programs normally require a minimum of 12 quarters of study averaging 15 units per quarter. You cannot enroll for less than 12 units, exclusive of physical education, without special approval from the Dean of the College. Continuing students can enroll for no more than 21 units, and students in their first quarter of residence can enroll for no more than 17 units unless authorized by the Dean. See page 64 for regulations concerning the minimum rate of progress.

Sample arrangements that list the Lower Division and Upper Division Programs in a quarter-by-quarter sequence may be found in the College of Engineering Bulletin, available from the Engineering Undergraduate Office.

Program Flexibility

In the Lower Division Program for all curricula except Chemical Engineering, only mathematics, Physics 4A and 4C (see page 287), and the lower-division engineering courses are prerequisite to required upper-division engineering courses. These courses should be completed during your first two years. The other physics, chemistry, and humanities-social sciences courses in the Lower Division Program are requirements for graduation, and can be scheduled to suit your individual program.

In planning your four-year program, be careful to observe course prerequisites in order to avoid a delay in graduation. Course prerequisites are specified to help you avoid courses for which you are unprepared and help the instructor establish a starting point for a given course. The prerequisites for any course may be waived by the course instructor for good cause for individual students.

Course Priorities for Freshmen

An extensive background in mathematics is a prerequisite to upper-division engineering courses. Therefore, if you are enrolled in engineering or are considering future enrollment, you should include mathematics in your program from the outset. Course priorities for the first quarter of your freshman year are suggested below:

- Mathematics 11 (if not completed in high school)
- Mathematics 21A (if not completed in high school)
- English A (if the Subject A requirement is not yet otherwise satisfied)
- Other (Engineering 3 or 4, English 1, Chemistry 1A or 4A, Rhetoric 1 or 3, or humanities-social sciences electives)

If you plan to graduate, or are considering the possibility of graduating, in the Chemical Engineering or the Chemical Engineering/Materials Science and Engineering major, you should take Chemistry 4A-4B-4C in your freshman year.

Expanded Course Outlines

A file of expanded course outlines for all courses offered by the various engineering departments is available for student use at the Undergraduate Office of the College.

Special Courses

Special-Study Courses: You are limited to five Special-Study units (courses 99 and 199) per quarter. (See page 136.)

Work-Learn Programs: Engineering 92 and 192 courses are designed to provide internship experience under the Work-Learn Program (see page 20). Further information is available from your adviser, the College Undergraduate Office, or the Work-Learn and Career Planning and Placement Center.

University Extension Courses: Appropriate courses taken under University Extension may be used for degree credit. Simultaneous enrollment in resident courses and Extension courses requires prior approval of the Dean of the College. Such approval will be given only for a limited number of credits. No grade points are assigned for courses completed in University Extension.

DEGREE REQUIREMENTS

YOU ARE RESPONSIBLE FOR PLANNING YOUR PROGRAM AND FOR SATISFACTORY COMPLETION OF DEGREE REQUIREMENTS.

Degree Requirement Check Sheets for each of the curricula are made available to students and advisers. The Undergraduate Office will prepare only one unofficial degree check for you (preferably at the beginning of your senior year) if you submit a signed Degree Check Request. Further information and forms concerning this service are available in the Engineering Undergraduate Office.

General University Requirements

University requirements for the bachelor's degree are explained beginning on page 65.
College of Engineering Requirements

Each candidate for the degree of Bachelor of Science in Engineering must satisfactorily complete an approved curriculum in engineering. Each curriculum consists of a specified Lower Division Program (or an approved equivalent program for students who transfer into the College with 84 or more quarter units), and a specified Upper Division Program. Detailed requirements for the approved curricula are given beginning on page 193.

You may, for good cause, request a modification of particular degree requirements by submitting a student petition. These petitions, available in the Undergraduate Office, can be a valuable aid in solving individual program conflicts or other special problems. Such petitions are subject to approval by the Undergraduate Study Committee, a body of five professors and five (non-voting) students. A negative decision by the Committee may be appealed to the College faculty for action at a regular meeting.

Electives

There are four kinds of elective courses in the engineering curricula: basic science and mathematics, humanities-social sciences, technical, and unrestricted.

Basic Science and Mathematics Electives: An engineering education is built on a solid foundation in the basic sciences and mathematics. That foundation provides a strong support for continuing academic and professional growth.

The purpose of the basic science and mathematics electives differs from the purpose of the technical electives. The former develops a fundamental base in the sciences, whereas the technical electives provide a direct opportunity for specialization.

The basic science and mathematics electives allow some selectivity in the choice of fundamental courses. For example, if you are interested in agricultural, biomedical, or environmental engineering, you may wish to select fundamental courses in the life sciences or if you are planning a career related to the earth sciences, you can elect courses in geology. Most other career objectives are best served by courses in chemistry, physics, or mathematics.

The following courses are acceptable as basic science and mathematics electives. They must be taken for a letter grade.

- Bacteriology 2
- Biological Sciences 1
- Botany 2
- Chemistry 1C or 4C, 5, 8A, 8B
- Genetics 100A
- Geology 1, 1L
- Mathematics 22A
- Physics 4B, 4D
- Physiology 2
- Zoology 2

Humanities-Social Sciences Electives: When a wise decision-maker examines an engineering problem, both scientific and humanistic components need to be considered. The humanities-social sciences electives are emphasized within the engineering disciplines to better prepare you for such decision making.

Each engineering program must include at least 23 quarter units from subjects in the areas of humanities and social sciences. A wide latitude is allowed in selecting these units. Subjects that are vocationally oriented, however, such as management and accounting, or which contain a preponderance of scientific or mathematical content, are not considered to be humanities—even though they are offered by a department ordinarily classified as a humanities or social science department.

All courses in the following categories, except courses 98, 99, 198, 199 and additional exceptions noted in parentheses below, are suitable for your humanities-social sciences electives. If you repeat a course which may be repeated for credit, not more than 4 units of that course may be counted toward your humanities-social sciences requirement.

- Afro-American Studies
- Agrarian Studies
- American Studies
- Anthropology (except 13)
- Applied Behavioral Sciences (except 160B)
- Art (except 2, 3, 4, 5, 11, 16, 101-146)
- Asian American Studies
- Classics
- Comparative Literature
- Dramatic Art (except 25, 30, 124A, 124B, 124C, 124D, 180)
- Economics (except 11A, 11B, 12, 103)
- Education (except 100, 114)
- English (except A, 1, 25, 26, 104)
- Foreign languages (except 1)
- Geography (except 1, 3, 4, 102, 105, 106, 107, 108, 110, 111, 112, 162)
- History
- Human Development
- Integrated Studies
- Linguistics
- Music (except 1, 41, 43, 44, 45, 46, 141, 143, 144, 145, 146)
- Native American Studies
- Philosophy (except 12, 112, 133)
- Political Science

81
Psychology (except 103, 108, 129, 131)
Rhetoric (except 1, 3)
Sociology (except 46A, 46B, 106)

Technical Electives permit you to tailor a program to your own academic and career objectives. For some, the technical electives offer the opportunity to prepare for a specific occupation. For others, it is an opportunity to broaden their background in the sciences and engineering.

All upper-division courses in engineering, physics, chemistry, and mathematics (except Mathematics 101) are suitable as technical electives. If you are interested in expanding your knowledge of the basic sciences, you may choose technical electives from the lower-division courses listed under the basic science and mathematics electives. Many upper- and lower-division courses in the agricultural, earth, and life sciences—as well as a few in the humanities—qualify as technical electives.

Technical elective credit is allowed for Special-Study courses (Engineering 199's) up to a maximum of 5 units for each separate and substantially different project, and for internships (Engineering 192), up to a maximum of 5 units per quarter. A total of not more than 3 units of Engineering 192 may be counted toward technical elective credit.

Unrestricted Electives: Any course for which University credit is allowed is acceptable as an unrestricted elective in the engineering curricula.

GRADING

Passed/Not Passed Option

(For general information on Passed/Not Passed grading, see page 60.)

While registered in the College of Engineering, you may enroll in a maximum of one course per quarter in which you choose the Passed/Not Passed (P/NP) grading option. Courses that are graded Passed/Not Passed only may be taken simultaneously with the courses for which you exercise the Passed/Not Passed option.

In the engineering curricula, only those units taken to satisfy the requirements for humanities-social sciences electives, English 1, Rhetoric 1 and 3, technical electives, and unrestricted electives may be taken on a Passed/Not Passed basis. All others (including required courses and basic science and mathematics electives) must be taken for a letter grade.

You must meet the following conditions to exercise the Passed/Not Passed option:

- Be in good academic standing (not on probation or subject to dismissal)
- Carry at least 12 units, including the course to be taken P/NP
- Have a P/NP petition approved by the Dean or a designated representative

ENGINEERING UNDERGRADUATE CURRICULUM

Aeronautical Engineering

Aeronautical engineering is the application of scientific knowledge to flight or movement in the atmosphere. Specific objectives are the design, development, and manufacture of airplanes, V.T.O.L. aircraft, and high-speed ground transportation systems. Within this context aeronautics becomes an essential branch of mechanical engineering in which knowledge in areas related to transportation is strengthened. For example, the aerodynamics and structural design of a high-speed train and a low-speed airplane have much in common. The undergraduate curriculum is intended to combine the fundamentals of basic engineering disciplines with those in the areas of aerodynamics, propulsion, controls, and aeronautical structures. This training is intended to prepare the student for technical leadership in this rapidly changing field.

A broad range of technical elective courses is available. You are encouraged to select these courses from among the several areas of specialization listed below.

AREAS OF SPECIALIZATION

Aeronautics and Transportation: Effective transportation requires vehicle operation under conditions which introduce many of the design problems that in the past have been considered unique to aeronautics. This area of specialization endeavors to provide students with the necessary background to work effectively in this expanding area of high-speed transport vehicle design and development.

Suggested technical electives:

- Mechanical Engineering 110, 150A, 161, 162, 163, 172
Civil Engineering 131A, 131B
Electrical Engineering 157A, 157B
Applied Science 115
Engineering 106, 160, 190
Environmental Studies 160

Low-Speed Aerodynamics: This area of specialization is intended for students who have an interest in the dynamics and aerodynamics of flight and should provide them with the necessary background in aerodynamics, structures, and propulsion to engage in design of low-speed aerodynamic vehicles.

Suggested technical electives:
 - Mechanical Engineering 110, 150A, 161, 162, 163, 165, 172
 - Civil Engineering 131A, 131B, 138
 - Electrical Engineering 150, 157A, 157B
 - Applied Science 115
 - Engineering 148, 190

Agricultural Engineering

Agricultural engineers apply engineering principles to problems of food and fiber production, storage, and processing; animal and plant environments; agricultural wastes management; irrigation and drainage; and other phases of agriculture and related industries. Agricultural engineering is unique in that it requires a general understanding and appreciation of the biological and agricultural sciences, plus a thorough knowledge of basic and applied engineering.

The curriculum includes a substantial number of technical electives that make it possible for you to develop a broad program of study or specialize in one or more of the areas described below. The suggested technical electives listed for each area of specialization include courses that would enhance your knowledge in that particular area. The lists are not intended to be restrictive or all-inclusive.

Lower-division students planning to follow the Agricultural Engineering curriculum are advised to select their basic science and mathematics electives from courses such as Biological Sciences 1, Bacteriology 2, Botany 2, Physiology 2, and Chemistry 8A and 8B. Bacteriology 2 and Chemistry 8B are prerequisite to several of the suggested upper-division technical electives for the food engineering and agricultural processing area of specialization.

AREAS OF SPECIALIZATION

Food Engineering and Agricultural Processing is concerned with the conversion of agricultural products into food, feed, or fiber. The engineering sciences of fluid mechanics, heat and mass transfer, and an understanding of biological materials, are applied in the analysis, design, and development of operations and systems for food manufacturing and agricultural processing. Concepts of sorting, cleaning, size reduction, handling, storage, refrigeration, drying, food manufacturing, and others are studied.

Suggested technical electives:
 - Agricultural Engineering 133, 134
 - Biochemistry 101A, 101B
 - Chemistry 5, 8A, 8B, 107A, 107B
 - Chemical Engineering 151
 - Electrical Engineering 150
 - Engineering 103B, 105B, 111
 - Food Science and Technology 104, 108, 111, 131, 150
 - Mechanical Engineering 165

Irrigation and Drainage applies engineering and scientific principles in the design and operation of irrigation and drainage systems. Emphasis is placed on use of water in agriculture, water quality, on-farm irrigation and drainage system design, water law, hydrology, and hydraulics.

Suggested technical electives:
 - Agricultural Engineering 140, 141, 142
 - Atmospheric Science 105
 - Civil Engineering 141, 141L, 142, 144
 - Engineering 111
 - Water Science 103, 104, 110A, 110B, 141, 150, 154, 160, 172

Packaging and Handling concerns the study of the design of systems and packages to preserve product quality during handling, shipment, and storage, from origin to point of use. The properties of foods, environmental conditions, and packaging materials are studied, as well as the behavior of products and packages under dynamic, static, and long-term loading. The economic use of materials and of shipping and storage volumes are considered in the analysis and design of systems.

Suggested technical electives:
 - Agricultural Economics 114
 - Agricultural Engineering 125, 133, 134
 - Civil Engineering 161
 - Engineering 111, 122, 140
 - Food Science and Technology 111, 113, 131
 - Mathematics 133
 - Mechanical Engineering 152, 155

Power and Machinery involves the design, development, and application of field machines and power
units for crop production. The economic aspects of mechanization and the effects of machines on soils, crops, and people are considered. Procedures for developing machine components and synthesizing them into engineering systems are studied.

Suggested technical electives:

Agricultural Economics 140
Agricultural Engineering 112, 114, 117, 118, 119
Agricultural Engineering Technology 133
Civil Engineering 131A, 132A
Engineering 102B, 104B, 111, 122, 140
Mechanical Engineering 150A, 150B, 151, 152, 155

Structures and Environment emphasizes the design of agricultural structures. Various structures are analyzed for their functional effectiveness, efficiency of space and labor utilization, and economic value to an overall enterprise. The structure is considered as a means of providing an optimum environment for animal production, product storage and conditioning, or crop production in greenhouses. Environmental modification, micro-meteorology, and agricultural wastes management are studied.

Suggested technical electives:

Agricultural Engineering 125
Atmospheric Science 20, 105, 123, 124, 131, 133
Civil Engineering 131A, 131B, 132A, 132B, 132C, 134, 147, 148A
Mechanical Engineering 165
Physiology 100A, 100B, 149

FOREST ENGINEERING OPTION

Forest Engineering is the application of engineering principles and silvicultural knowledge in the management of forests and forest land. Ecological, aesthetic, and recreational aspects of this renewable natural resource are integrated into systems for the production of wood products. Students study systems and equipment for timber harvesting, forest residue management, reforestation, forest recreational facilities, soil and water control and conservation, forest road development, materials handling, and other phases of forestry. This option is administered in cooperation with the Department of Forestry and Conservation at UC Berkeley. Two or three quarters of your junior year are spent on the Berkeley campus, following a ten-week summer field course sequence at the UC Forestry Camp near Quincy.

Suggested technical electives:

Atmospheric Science 105
Geography 161

Resource Sciences 100
Water Science 141
Forestry 105 (at Berkeley)
Any elective listed under Upper-Division Program for Forest Engineering Option and not used to fulfill a specific requirement

Chemical Engineering

Chemical Engineering is concerned with application of the principles of chemistry and engineering to the production of useful products. The products of the process industries range from antibiotics to zirconium, from petroleum to plutonium, from agricultural chemicals and foods to synthetic plastics. Chemical engineers are increasingly concerned with chemical and engineering processes related to the environment, food production, and medicine. Preparation for careers in chemical engineering requires an understanding of both engineering and chemical principles to develop proficiency in conceiving, designing, and operating new processes.

The Chemical Engineering curriculum has been planned to provide a sound knowledge of engineering and chemical sciences so that you may achieve competence in treating not only current technical problems but also those that will arise in the technologies of the future. In the junior year attention is focused on basic engineering courses, particularly thermodynamics, fluid mechanics, and energy transfer. In the senior year these fundamentals are drawn together and applied in a study of mass transfer phenomena and processes, process design, and process dynamics. The program is strengthened and broadened with introductory courses in the electrical and mechanical sciences.

TECHNICAL ELECTIVES AND AREAS OF SPECIALIZATION

The curriculum includes 18 units of technical electives, which allows you to strengthen specific areas in Chemical Engineering, to explore new areas, or pursue areas of specialization. You are free to choose your own technical electives, but for those pursuing a normal Chemical Engineering program, Chemistry 111A and 128C are especially recommended and selections from the following list should be considered for the remaining units: Applied Science 115; Chemical Engineering 159; and Mathematics 118A, 118B, 120, 130A, 130B. The most popular areas of specialization, together with lists of suggested technical electives, are identified and discussed in the following paragraphs.
The premedical and prebiomedical engineering areas of specialization have been specifically designed so that you may prepare for graduate work in biomedical engineering or meet the undergraduate requirements for entrance into medical school. Because of the emphasis on the natural sciences and their application to fluid mechanics, mass transport, heat transfer, thermodynamics, reaction kinetics, and process dynamics, you are well-prepared to understand similar problems in living systems. Many biological phenomena such as blood flow, passive solute transport, and energy exchange can be dealt with using the theoretical tools learned as an undergraduate.

Applied Chemistry: The Chemical Engineering curriculum includes an important core of chemistry courses. Students can take advantage of this background to build a strong program in chemistry by choosing electives from among advanced undergraduate chemistry courses.

Suggested technical electives:

Chemistry 111A, 121, 124, 128C, 129B, 129C, 130, 131, 150

Applied Mathematics: The mathematics specialization is designed both to strengthen the student's understanding of the foundations of engineering science and to improve the ability to handle complex engineering problems. Courses in abstract algebra, advanced calculus, and the theory of differential equations provide a sound theoretical background, while courses in analytical and numerical analysis provide the techniques for solving a wide range of engineering problems.

Suggested technical electives:

Applied Science 115
Chemical Engineering 159
Engineering 180

Biochemical Engineering: This area of specialization prepares students to do graduate work in enzyme engineering or biochemical engineering and for employment in the fermentation, drug, and food industries.

Suggested technical electives:

Bacteriology 2, 102
Biochemistry 101A, 101B, 101L, 123, 123L
Food Science and Technology 106

Energy Engineering: This area of specialization is designed to introduce you to the various energy sources and energy conversion methods.

Suggested technical electives:

Engineering 111, 160, 162
Agricultural Engineering 112
Mechanical Engineering 161, 162, 163

Environment Engineering: The environment engineering area of specialization prepares the student to deal with problems of environmental quality by developing knowledge of fundamental chemical and transport phenomena, that is, chemical reaction processes coupled with fluid mechanics, heat transfer, and mass transfer. Such a foundation is basic chemical engineering science, plus the usual chemical engineering analysis and design courses, along with other courses involved specifically with environmental topics, and prepares the student to seek employment with industry or government. For this specialization six courses should be selected from the following list:

Suggested technical electives:

(Air Environment)
Atmospheric Science 121A, 121B, 122, 123
Civil Engineering 149, 242, 244
Environmental Toxicology 131

(Water Environment)
Bacteriology 2
Biochemistry 101A, 101B
Civil Engineering 147, 148A, 240, 243A, 243B, 246A, 246B
Water Science 120

Food Process Engineering: This area of specialization prepares students to do graduate work in food science and technology and to work in the food processing industry.

Suggested technical electives:

Bacteriology 2
Biochemistry 123
Food Science and Technology 104, 104L, 106, 113, 130, 198

Prebiomedical Engineering: This area of specialization is designed to prepare you for graduate work in biomedical engineering. Early planning of a complete course schedule in consultation with a Chemical Engineering adviser is important to provide space for Biological Sciences 1.

Suggested technical electives:

Four to six courses from Anatomy 100; Biochemistry 101A, 101B; Biological Sciences 1; Biological Sciences 1A, 101A, 101B; Physiology 111A, 111B, 112, 113.
Premedical: Inclusion of both organic and physical chemistry in the curriculum allows you to complete the premedical requirements while satisfying the requirements of the Chemical Engineering major. Those electing the premedical (including preveterinary) area of specialization should verify the specific preparation requirements with a pre-med adviser before making a final decision on electives. In order to insure that room is provided in your program for the biology courses, it is important to prepare a course schedule (with a Chemical Engineering adviser) as early in your freshman year as possible.

Suggested technical electives:
Chemistry 128C
Three to five biology or biochemistry courses such as Biochemistry 101A, 101B; Biological Sciences 1; Genetics 100A, 115; Physiology 112, 113, 114; Zoology 2-2L, 100

Civil Engineering
Civil engineering is devoted to the improvement of the human environment for the purposes of making our activities productive, safe, and enjoyable, and providing aesthetically pleasing surroundings. The profession contributes directly to humanity’s continued health and well-being by the planning and design of systems that provide plentiful supplies of potable water, freedom from disease-carrying wastes, land-, water-, and air-transportation, housing and other structures, flood control, and large recreational facilities.

Areas of specialization within civil engineering include (1) Civil Engineering Planning, (2) Environment Engineering, (3) Structural Engineering, Structural Mechanics and Geotechnical Engineering, (4) Transportation Planning and Engineering, and (5) Water Resources Engineering. You may specialize in one or more of these areas by selecting appropriate technical electives; such specialization is not required. You are urged to consult a faculty adviser when developing your individual program.

Because of the direct concern of professional civil engineers for the quality of human life, civil engineering majors are encouraged to include courses such as Economics 125A and 125B; Environmental Studies 145, 160, and 166; Political Science 108, 109, and 186; and Sociology 143 among their technical electives. Other technical electives of possible interest to majors in all five of the areas of specialization include Applied Science 115, Engineering 160 and 180. Additional information concerning the areas of specialization and suggested courses are given in the following paragraphs.

AREAS OF SPECIALIZATION

Civil Engineering Planning: Specialization in this area is directed toward planning of resources utilization and development of projects on an urban or regional scale. Civil engineering planning requires an understanding of the basic principles of engineering, economics, law, planning concepts and techniques, environmental sciences, public administration, and politics. You are encouraged to plan your program early with the aid of a faculty adviser and to complement the suggested technical electives with courses in the humanities and social sciences.

Suggested technical electives:
Agricultural Economics 147, 148, 176
Civil Engineering 137, 143A, 146, 152, 153, 160, 161, 162
Economics 125A, 125B, 130, 131
Engineering 106, 118
Environmental Studies 145, 160, 161, 166, 168A, 168B, 172
Geography 106, 155, 162
Geology 134
Mathematics 130A, 130B
Political Science 181
Water Science 150

Environment Engineering: Specialization in this area is concerned with improving and maintaining the qualities of the air, land, and water environments that affect our health and well-being in the face of increasing population and expanding industrial activity. The program is based on a firm basic science and civil engineering foundation and emphasizes the design of waterborne, solid, and airborne waste management systems, the design of potable water-supply systems, and environment monitoring.

Suggested technical electives:
Applied Science 115
Atmospheric Science 120, 121A, 121B, 122, 123
Bacteriology 102, 130A
Biochemistry 101A, 101B
Chemical Engineering 154A, 154B, 156A, 156B
Chemistry 8A, 107A, 107B, 110A
Civil Engineering 143A, 145, 146, 147, 148B, 149, 152
Engineering 118, 160
Environmental Studies 150A, 150B, 150C, 151, 162, 166
Mathematics 130A, 130B
Structural Engineering, Structural Mechanics, and Geotechnical Engineering: This area is concerned with the conception, design, analysis, economics, and construction of man-made structures such as buildings, bridges, highways, and dams. The principles of structural engineering are applicable to all types of structures and all sources of loadings. Structural mechanics emphasizes the more analytical aspects of structural engineering. Geotechnical engineering emphasizes the application of the laws of solid and fluid mechanics and hydraulics to predict the performance of foundations, and earth structures.

Suggested technical electives:

- Applied Science 115
- Art 121A, 121B, 121C
- Civil Engineering 131A, 132A, 132C, 134, 135, 137, 138, 139, 162, 173, 175
- Engineering 104C, 122, 148, 180
- Mathematics 128A, 128B, 128C

Transportation Planning and Engineering: Specialization in this area is concerned with the development, coordination, operation, and maintenance of transportation systems for the movement of people and goods in a manner compatible with societal demands. Transportation planning blends knowledge of the basic concepts of engineering, economics, and planning in the development of policies, programs, and projects. Transportation engineering blends knowledge of many engineering disciplines in the design, construction, operation, and maintenance of transportation facilities from the systems point of view. You are urged to acquire an awareness of the social sciences and environmental sciences through courses in these areas.

Suggested technical electives:

- Agricultural Economics 148
- Civil Engineering 137, 149, 152, 153, 160, 161, 162
- Engineering 118, 160
- Environmental Studies 168A, 168B, 172, 173, 179

Water Resources Engineering: This area includes hydraulics, irrigation and drainage, and water resources systems design. Hydraulics is concerned with flow in pipe and open-channel water-distribution systems and through hydraulic structures. Water resources systems design is concerned with the comprehensive development of water resources for multiple use. Emphasis is placed on principles of planning, analysis and engineering design and operation as related to the water needs of industry, agriculture, recreation, and other activities.

Suggested technical electives:

- Agricultural Economics 148, 176
- Chemistry 5
- Civil Engineering 143A, 144, 145, 146, 148B, 152, 153
- Electrical Engineering 112, 150, 151
- Environmental Studies 128, 150A, 151
- Geography 162
- Political Science 172
- Water Science 103, 110A, 150, 160

Electrical Engineering

Present-day Electrical Engineering embraces a broad spectrum of disciplines based on the physical and mathematical sciences. Electrical Engineering encompasses diverse fields such as automation and control, instrumentation, communications, information processing, micro-miniaturization of integrated circuits, and solid-state electronic devices. Work in these fields is being applied in a variety of industries, such as communications and transportation, and in medicine, education, and business.

The Department of Electrical Engineering offers three broad programs: (1) the General Electrical Engineering curriculum, (2) the Electrical Engineering curriculum with emphasis on Computers, and (3) the Electrical Engineering curriculum with emphasis on Electronics, Circuits and Signal Processing. All three curricula share the same core of required courses in the fundamentals of Electrical Engineering. The General curriculum provides maximum flexibility for students who want to design their own package of upper-division, technical elective courses. For example, a student can plan a program that provides depth in one or more areas of specialization, or as an alternative, a program that provides breadth in the overall field of Electrical Engineering. The curriculum with emphasis on Computers and the curriculum with emphasis on Electronics, Circuits and Signal Processing are designed to guide students who specifically want emphasis in one of these two general areas. However, students who elect either of these latter two curricula still have considerable flexibility in the choice of upper-division technical electives. As in the General Electrical Engineering curriculum, this flexibility can be used to obtain either depth in these areas of specialization, or breadth.

All three curricula enable students to prepare for a career as a practicing engineer or for graduate study in Electrical Engineering (or both). Close correlation between theory and practice is emphasized in each of the three curricula, which are described more fully.
The name of the particular curriculum selected will appear on the Student Record (academic transcript).

Electrical Engineering (General) Curriculum. All upper-division, required courses for the general Electrical Engineering curriculum are listed on page 195. These requirements include a core of nine courses:

- Engineering 100;
- Electrical Engineering 110, 111, 112, 130A-130B, 140A-140B and 170;
- and 30 units of technical electives to be chosen by the student, subject to two constraints:
 - at least three units must be from an upper-division Electrical Engineering course with a laboratory (excluding Engineering 100 and Electrical Engineering 111), and
 - at least nine units must be from courses included in the group of Design technical elective courses listed in the upper-division major requirements.

The core of nine courses, which is common to all three curricula, provides a foundation in electromagnetics, physical electronics, electrical and electronic circuits, and computer structure and language.

Two suggested groups of technical electives are given below. The first provides emphasis on breadth and the second on depth in a particular area of specialization.

Example A, Breadth in Electrical Engineering: The following group of technical electives would maximize a student's breadth of exposure to the entire field of Electrical Engineering.

Example B, Electromagnetics and Physical Electronics: The following technical electives would be appropriate for students who want to specialize in Electromagnetics and Physical Electronics.

Among the subjects treated by these courses are (1) techniques and devices for generation, transmission, and reception of electromagnetic energy at high frequencies (e.g., microwaves); and (2) physics and electrical properties of devices, such as diodes, transistors, vacuum tubes, traveling wave tubes, masers, lasers, and superconductors.

Electrical Engineering (Computers) Curriculum. All upper-division required courses in the Electrical Engineering curriculum, with emphasis on Computers, are listed on page 195. These requirements include the common core of nine courses described under the General Electrical Engineering curriculum, four computer courses plus specialization courses (Electrical Engineering 171, 180 and two courses to be chosen by the student from the group of computers elective courses specified on page 195), and 16 units of technical electives subject to the laboratory requirement described under the general Electrical Engineering curriculum. The Computers courses treat the theory, design, and application of computing systems, and include a variety of areas of sub-specialization such as, computer organization, digital systems design, software systems, automata theory, formal languages, and artificial intelligence.

Electrical Engineering (Electronics, Circuits and Signal Processing) Curriculum. All upper-division required courses in the Electrical Engineering curriculum, with emphasis on Electronics, Circuits and Signal Processing, are listed on page 195. These requirements include the common core of nine courses described under the general Electrical Engineering curriculum plus four specialization courses (Electrical Engineering 151, 160 and two courses to be chosen by the student from the group of Electronics, Circuits and Signal Processing Elective courses specified on page 195), and 18 units of technical electives subject to the laboratory requirement described under the general Electrical Engineering curriculum. The specialization courses treat the theory, design, and application of electronics, circuits, and signal processing systems, and include a variety of areas of sub-specialization, such as analog waveform, sampled data, and digital circuits, and systems including solid-state and integrated circuits; control systems, automation, and instrumentation; and communications systems, data transmission, and information processing.

Materials Science and Engineering

Materials Engineering is directed towards an understanding of the structure, properties, and behavior of materials.

Modern society demands new and improved materials with capabilities far superior to common metals, alloys, and ceramics. New materials are needed for high-speed transportation systems, surgical and dental implants, new generations of power plants, and
solid-state electronic devices in computer and communication technology.

The development of new materials and the understanding of present-day materials demand a thorough knowledge of basic engineering and scientific principles including crystal structure, elastic and plastic behavior, thermodynamics, phase equilibria and reaction rates, and physical and chemical behavior of engineering materials.

The undergraduate program in materials science and engineering provides you with the background for activities in research, processing, and the design of materials. The services of materials engineers are required in many different engineering operations, from fracture behavior in automobiles to fatigue behavior in aircraft frames, from corrosion behavior in petrochemical refineries to radiation-induced damage in nuclear power plants, and from fabrication of steel to design of semiconductors.

Materials engineers are also increasingly involved in developing the new materials needed to attain higher efficiencies in existing and proposed energy conversion schemes.

The Materials Science and Engineering curriculum is based on a common core of courses that is basic to engineering. These courses, taken during your first two years, provide you with a strong foundation in fundamental engineering concepts. Your third and fourth years are primarily devoted to studying subjects in the materials sciences.

Technical electives, selected from various other engineering, physical, and natural science disciplines, give some degree of specialization at the bachelor's degree level. They also prepare you for research in a selected area at the graduate level.

AREAS OF SPECIALIZATION

Twenty-nine technical elective units may be selected to complete the undergraduate Materials Science and Engineering program. By selecting the appropriate technical electives and humanities and social science electives, you may orient the program to suit your interests and career objectives. Examples include production and development, applied research, basic research, teaching, and management.

Upper-division courses in engineering, chemistry, physics, mathematics, and biological sciences are generally acceptable as technical electives.

The following technical elective courses and the suggested areas of specialization are guidelines to assist you and your adviser in the preparation of study lists. You may elect to take courses from a number of these areas of specialization, or you may wish to concentrate on one or two areas.

Suggested technical electives:

Automatic Control and Systems Analysis:
- Mechanical Engineering 155, 171, 172
- Electrical Engineering 150, 157A, 157B
- Engineering 118

Biomedical Engineering:
- Chemistry 107A, 107B
- Biological Sciences 1
- Engineering 134
- Zoology 2
- Physiology 111A, 111B, 112, 113
- Physical Education 104A, 104B

Chemical Corrosion:
- Chemistry 110A, 110B, 110C or 107A, 107B
- Chemical Engineering 151, 152A, 152B
- Engineering 134

Computers:
- Applied Science 115
- Electrical Engineering 171, 173, 175, 177, 181
- Mathematics 129A, 129B, 130A, 130B, 168

Electronic Materials:
- Physics 121
- Geology 180

Environmental Engineering:
- Engineering 134, 160
- Atmospheric Science 120, 122, 123
- Biochemistry 101A, 101B
- Water Science 120
- Chemistry 8A, 8B
- Civil Engineering 149

Heat Transfer:
- Engineering 105B
- Mechanical Engineering 165
- Chemical Engineering 150A, 153

Materials Design and Processing:
- Engineering 104B, 104C, 106, 134
- Mechanical Engineering 150A, 150B, 151, 152, 155
- Civil Engineering 137

Physics of Solids:
- Physics 115A, 115B, 140A, 140B
- Engineering 145
- Geology 180
Mechanical Engineering

The modern mechanical engineer uses basic science in the design and manufacture of complex engineering systems. This requires the application of physical and mechanical principles in the development of machines, energy conversion systems, materials, and equipment for guidance and control.

Preparation for this broad field of engineering requires a thorough knowledge of mathematics, physics, chemistry, fluid mechanics, thermodynamics, heat transfer, mass transfer, electricity, manufacturing processes, properties of materials, and economics.

The Mechanical Engineering curriculum is based on a common core of engineering courses taken in the first two years. The third year is spent in further study of fundamental courses, and in the fourth year you may tailor your studies to your own interests by selecting courses in controls and systems analysis, fluid mechanics, heat transfer, thermodynamics, mechanical design, and materials science. You can prepare either for graduate study in Mechanical Engineering or obtain a broad background for entering engineering practice at the bachelor’s level.

A broad range of technical elective courses is available. Students are encouraged to select these courses from among the areas of specialization listed below.

AREAS OF SPECIALIZATION

Creative Design: The creation and improvement of products, processes, or systems which are mechanical in nature are the primary goals of a professional mechanical engineer. This is a challenge now more than ever, because the solutions to such major social concerns as environmental pollution, mass transportation, raw material shortages, and energy concerns will depend heavily on the engineer’s ability to create new types of machinery and mechanical systems.

The engineer-designer must have a solid and relatively broad background in the basic physical and engineering sciences and have the ability to organize and solve a variety of problems. In addition to having technical competence, the designer must be able to consider the socioeconomic consequences of the design and its possible impact on the environment. Product safety, reliability, and economics are other considerations.

Suggested technical electives:

Mechanical Engineering 128A, 128B, 151, 152, 155, 162, 163, 165, 172
Applied Science 115

Civil Engineering 131A, 132A
Agricultural Engineering 118, 119, 133, 134
Engineering 104C, 111, 118, 122, 140, 142, 160

Energy Systems: This area is specifically designed for those who would like to work in the fields of power generation, propulsion for transportation, and energy conversion. It is in these fields that the increased efficiency of systems and the impact of potential environmental pollution are assuming more importance in the design stage.

The program of study is based on the fundamentals of fluid mechanics, thermodynamics, and heat transfer. These fundamentals are applied to such diverse topics as combustion engines, gas turbines, heat exchangers, nuclear reactors, MHD power generators, solar energy systems, and others.

Suggested technical electives:

Engineering 160
Mechanical Engineering 110, 161, 162, 163, 165

Environmental Technological Systems: The objective of this area of specialization is to provide you with the background necessary for developing mathematical models of man’s impact on the environment. Geophysical, living systems, and social environments are the subjects of study. It is expected that you will become a competent specialist in dynamic system analysis while gaining breadth in ecology and social system analysis. Examples of specific topics of study are: (1) generation, transport, and effects of pollution, (2) interspecies and intraspecies conflict and cooperation, (3) urban dynamics.

Suggested technical electives:

Mechanical Engineering 165, 172
Engineering 144, 145, 160
Civil Engineering 147, 149
Electrical Engineering 112, 151, 160, 165
Environmental Studies 100
Zoology 116, 155

Systems Dynamics and Control: Modern engineers are increasingly concerned with the performance of integrated dynamic systems in which it is not possible to optimize component parts without considering the overall system.

Systems Dynamics and Control is concerned with the modeling, analysis, and simulation of all types of dynamic systems and with the use of automatic control techniques to change the dynamic characteristics of systems in useful ways. The emphasis in this program is on the physical systems that are closely related to
mechanical engineering, but the techniques for studying these systems apply equally well to social, economic, and other dynamic systems.

Suggested technical electives:

- Mechanical Engineering 134, 152, 165, 172
- Electrical Engineering 112, 151
- Engineering 122, 140, 160

Transportation Systems: An important aspect of Mechanical Engineering has traditionally involved the planning, design, and operation of transportation systems. As society recognizes the increasing importance of optimizing transportation systems to minimize environmental degradation and energy expenditure, engineers will need to consider major innovations in the way people and goods are moved. This will require competence in vehicle dynamics, propulsion, and control, and an understanding of the problems caused by present-day modes of transportation.

Suggested technical electives:

- Engineering 122, 160
- Mechanical Engineering 127, 128A, 128B, 134, 152, 161, 162, 172
- Civil Engineering 131A, 149, 160

Graduate students in engineering are permitted a wide latitude in selecting courses and research or design subjects at both the master's and doctoral levels. A purposeful and well-integrated course of study is planned with the help of an adviser or guidance committee.

More general information may be found in the Announcement of the Graduate Division, obtainable from the Dean of the Graduate Division. Detailed information on graduate study in engineering is contained in the College of Engineering Bulletin, available from the College Undergraduate Office.

Off-Campus Learning

Many courses in engineering are available on the campus television network at receiving sites in Livermore, Sacramento, Marysville-Yuba City, and the Diablo Valley. See the Class Schedule and Room Directory for quarterly off-campus course offerings.

Graduate Certificate Program

For engineers who already have a degree, the College of Engineering offers a Graduate Certificate Program. This program consists only of course work in selected engineering subjects, and requires fewer units than the degree programs. The purpose of the Graduate Certificate Program is to provide practicing engineers with an opportunity to develop additional expertise in specific areas, and to explore new fields of technical interest.

General requirements for the program are:

- 15 units from courses not specifically required of UC Davis undergraduate engineering majors
- At least 9 of these 15 units must be from formal graduate courses
- Graduate Division acceptance

Further information on the Graduate Certificate Program may be found in the College of Engineering Bulletin.
The College of Letters and Science offers programs of study that expose a student to the worlds of human experience, of ideas and artistic accomplishments, and of matter and things. These three worlds are the domains of the social sciences, the humanities, and the natural sciences, respectively. Although separate and distinct to the casual observer, these areas are interconnected and may be studied in a coherent curriculum. It is within this curriculum that you will be able to explore a variety of disciplines, engage in the pursuit of fundamental knowledge primarily for its own sake, and gain the capacity for independent study and thought.

A well-balanced liberal education, including specialization in a major field, should prepare you for a satisfying life, whatever your career. And since more and more career opportunities depend on the completion of a basic letters and science curriculum, such an education will also have a vocational value.

The main emphasis in the College remains, however, on the ends of living rather than on the means. Undergraduate education in the College stresses breadth rather than specialization.

Within the specific standards of scholarship and unit distribution that the College has established for its programs of study, there are three requirements crucial to the realization of the College's educational goals: the English Composition Requirement, the Breadth Requirements, and the Major Requirement.

The **English Composition Requirement** is designed to insure that you are well-versed in the skills of written communication.

The **Breadth Requirements** provide you with a broad background of knowledge, help you to explore the interdependencies of knowledge, and acquaint you with other cultures.

The **Major Requirements** enable you to gain intellectual depth and competence in a selected field of specialization.

Bachelor of Arts (A.B.) and Bachelor of Science (B.S.) degrees are offered by the College. These degrees are conferred upon your completion of the University's requirements and the College's general education and major requirements detailed on the following pages.

Every student is personally responsible for seeing that these graduation requirements are met. (Changes in graduation requirements other than those in the major, adopted after publication of the General Catalog are posted on the Letters and Science bulletin board opposite Room 175, Mrak Hall.)

STUDENT SERVICES

Information:
Office of the Dean of the College
150 Mrak Hall
752-0392

The staff in this office can assist you with questions concerning College requirements, scholarship (probability and disqualification), and other academic matters. Problems which cannot be resolved by staff assistants are referred to academic deans or counselors who are regularly available to students by appointment.

The Dean's Office also performs a number of regular functions:

- Maintains a file of your academic record
ADVISING

Faculty Advising

Good advising often means the difference between an exciting and an indifferent educational experience. Given the range of programs and courses offered within the College of Letters and Science, good advice is essential if students are to design an educational program that will best fit their needs and individual goals.

In the College of Letters and Science, the relationship between student and faculty adviser is largely a voluntary bond. Thus, the effectiveness of advising depends both on the perceptive ness of the adviser and the initiative of the student.

An adviser can assist you not only in meeting minimal degree requirements, but also in taking maximum advantage of the resources available in the University. You are encouraged to talk to faculty advisers in different fields to enable you to make educational decisions on the basis of the broadest possible body of information and ideas. Although degree requirements may appear many and complex, they leave substantial room for individualization of study programs. With the help of faculty advisers, you can keep open as many options as possible while still progressing toward your major degree objectives.

Remember, it is your responsibility to maintain regular contact with your faculty adviser. A good relationship is developed by meeting frequently and discussing honestly and thoughtfully your problems and expectations. A conference at least once a quarter is especially desirable for new students during their first year in the College and for seniors during the final quarters preceding graduation.

Feel free to go to the Dean's Office for consultation on any academic matter.

New students who participate in the Summer Advising and Registration Conference are assisted in planning their Fall Quarter program by a temporarily assigned summer adviser. During the fall or subsequent quarters, students wishing academic advice should request adviser assignment in the department administering the major they intend to pursue. Offices are listed in the Class Schedule and Room Directory.

Other entering lowerclassmen are assigned advisers following the Letters and Science Assembly, which is scheduled during the Orientation period at the beginning of each quarter.

Other entering upperclassmen report directly to the departmental office of their major during Orientation Week. (Biological Sciences majors report to the Division of Biological Sciences located in the Dean's Office.)

All new students are encouraged to contact an adviser. During the first three quarters of residence, students are expected to consult an adviser frequently and discuss their proposed program. If you encounter difficulties in finding an adviser, please contact the Dean's Office for assistance.

Continuing students who have completed three quarters in residence in the College are no longer obligated to consult an adviser; they are urged, however, to maintain regular contact with an adviser in their major to avoid program errors which may delay graduation.

Undeclared students who are reasonably certain of their immediate educational goals should contact the department or program of their main interest and request assignment to an adviser. Undeclared students who are as yet uncertain of their goals, and especially students lacking a clearly identifiable interest, are urged to make an appointment with one of the deans or academic counselors.

Seniors should maintain close contact with their adviser in order to insure that they are meeting the major requirements.
Peer Advising

Student-to-student advising is an important part of the University advising services. Refer to the index under "Advising" for information on the various peer advising programs.

Preprofessional Advising

The College of Letters and Science does not offer special preprofessional programs. Students who plan to prepare for a professional school undertake a normal program leading to an A.B. or B.S. degree. Most courses required by a professional school are included in the requirements for the bachelor’s degree, and additional courses you need may be taken as electives. You should become aware of the requirements for prospective professional schools early in your career in order to plan a suitable program. You may obtain further assistance from the Health Sciences Advising Office, the Pre-Law Advising Office, Pre-Business Advising Office, or the Work-Learn and Career Development Center.

TEACHING CREDENTIAL

The teacher education program is administered by the Graduate Division. See page 111 for more complete information.

THE MAJOR

There are three types of programs which satisfy requirements for the major: departmental majors, interdepartmental majors (formal majors built around courses from two or more departments in the College of Letters and Science), and individual majors.

Major Programs Offered by the College of Letters and Science

(These are also teaching departments or programs in the College of Letters and Science.)*

- Afro-American Studies
- American Studies
- Anthropology*
- Art History
- Art Studio
- Bacteriology*
- Biochemistry*
- Biological Sciences*
- Botany*
- Chemistry*
- Classical Civilization
- Comparative Literature
- Dramatic Art
- East Asian Studies
- Economics
- English
- French
- Genetics*
- Geography
- Geology*
- German
- Greek
- History
- Individual*
- International Relations
- Italian
- Latin
- Linguistics
- Mass Communication
- Mathematics*
- Medieval Studies
- Mexican-American (Chicano) Studies
- Music
- Philosophy
- Physical Education
- Physics*
- Physiology*
- Political Science
- Political Science: Public Service
- Psychology*
- Religious Studies
- Rhetoric
- Russian
- Russian Literature and History
- Sociology
- Spanish*
- Zoology*

Declaration of Major

All new students, regardless of class level, are admitted to the College in Undeclared major status. Once registered, any student may, but is not required to, officially declare a major. A new transfer student with 88 or more units must do so by the end of the first quarter in residence. A continuing student must declare a major by the time 100 units have been completed.

If you fail to declare a major according to the above schedule, a hold will be placed on your further regis-

*Offers the Bachelor of Science degree only.

All other programs offer the Bachelor of Arts degree only.
Approval is subject to the following conditions:

1. In each major program, at least half of the upper-division units used to satisfy unit and course requirements must be unique to that program and may not be applied to the satisfaction of requirements in the other major, or majors, involved in the request.

2. It must be possible to complete all degree requirements within the 195-unit limit on registration (see page 102).

Approval of a multiple major neither implies nor guarantees approval to register beyond the 195-unit limit.

Requests for multiple majors must be based on sound academic and educational considerations. Frequently, when an individual major, a departmental major, or an interdepartmental major is supplemented with a carefully selected program that supports and amplifies your special interest, your educational goals are better served than when two or more major programs are studied in their entirety.

Cross-College Major

You may pursue simultaneously major programs in two undergraduate colleges on the Davis campus. The same conditions and criteria apply as for multiple majors (see above). The requirement for a substantial and significant difference between the disciplines involved is enforced strictly in the case of proposals for cross-college majors. In addition, cross-college programs will not be approved if the majors involved are available within a single college as well. For example, cross-college programs between the Colleges of Letters and Science and Agricultural and Environmental Sciences will not be approved if one of the majors is a B.S. degree in Bacteriology, Biochemistry, Biological Sciences, Botany, Genetics, Physiology, or Zoology.

Change of Major Within the College

You may change from one major to another within the College with the Dean’s approval. Consent of the department or committee in charge of your new major is also required. Admission into a major program may be denied if your grade-point average in courses required for the proposed major is less than 2.000.

Procedures for change of major within the College are the same as for declaration of major (see page 95), and the same conditions apply.

Except under unusual circumstances, no change of major will be permitted after you attain senior standing.
(135 units). Requests for exceptions will be checked to see if degree requirements can be met within the 195-unit limit (see page 102).

Change of Major Accompanied by Change of College

In order to change from one college to another, you must be in good standing (not on probation or subject to disqualification).

If you are in good academic standing and want to transfer into the College of Letters and Science, you must petition to do so within the first five weeks of the quarter. Petitions, which are available at the Registrar's Office and the Dean's Office, must be endorsed by your new faculty adviser and signed by your former College Dean before being submitted to the Letters and Science Dean for consideration and approval.

A 2.000 grade-point average in the courses required for the new major is usually necessary at the time of transfer. Moreover, your ability to complete all degree requirements close to the 195-unit limit is an important prerequisite for approval. Requests for changes of major from students in senior standing may be approved only under unusual circumstances. Students who have already completed 160 or more units will meet special problems, since the senior residence requirement demands completion of 35 units after transfer to the new college.

Grade-Point Averages in the Major

In addition to the general University requirement of a C average (2.000) for all University work, the College stipulates the following additional criteria:

You must have an average of at least 2.000 for all courses required for the major; you must also have at least a 2.000 average for all upper-division courses required for the major. To obtain these minimal averages in the major, you may, with approval of your adviser, repeat courses that were graded D or F. If you have to repeat a course more than once, you need the Dean's approval.

A department or curriculum committee may refuse to accept you into a major they administer if you do not have at least a 2.000 average in the courses required for the major.

If you have declared a major program, you may be required to withdraw from that major by the Dean, upon written recommendation from the chairperson of the department or the curriculum committee that administers the major, if your performance in the major is unsatisfactory (less than 2.000).
REQUIREMENTS FOR THE BACHELOR'S DEGREE

UNIVERSITY REQUIREMENTS

University requirements for the bachelor's degree are described beginning on page 65.

COLLEGE OF LETTERS AND SCIENCE REQUIREMENTS

College requirements for the bachelor's degree consist of:

- Unit Requirements
- English Composition Requirement
- Breadth Requirements (Foreign Language and Area Requirements)
- Residence Requirement
- Scholarship Requirement
- Major Program Requirements

Unit Requirements (A.B. and B.S.)

1. **Total number of units** ... 180-unit minimum
 (Note 195-unit limit on registration, page 102.) 195-unit maximum
 a. Total number of units in upper-division courses (100-199) 64-unit minimum
 (Included in the 180 units above)
 b. Total number of units in upper-division courses (100-199) offered by teaching departments
 and programs in Letters and Science (see list, page 95) 48-unit minimum
 (Included in the 64 upper-division units in "a" above).

2. The 180-195 units are subject to the following distribution requirements and restrictions:
 a. Courses transferred from community colleges (2-year institutions) 105-unit maximum
 b. Units graded P (taken at student's option) 1/4 of UCD units offered toward degree (maximum)
 c. Physical Education 1 and similar activity courses 6-unit maximum
 d. 300 and 400 series courses ... 9-unit maximum
 (See "h" and "i" below for additional restrictions.)
 e. Tutoring courses, such as those numbered 97T, 97TC, 197T, 197TC 10-unit maximum
 f. University Extension courses .. 9-unit maximum
 (Dean's approval required prior to enrollment. See page 100.)
 g. Special Study courses (99, 194H, 199) in any one quarter 5-unit maximum
 (Exception: Units earned in Independent Study Program. See page 136.)
 h. Graduate and professional Special Study courses, such as those numbered 299,
 399, 499, 699 ...no credit
 (See page 101.)
 i. Graduate and professional courses ...variable credit
 (Credit for graduate courses [200-298], post-graduate professional courses [400-498] offered by professional schools,
 and courses in the 300 series [300-398] offered outside of the College of Letters and Science, may be given by
 petition only. See page 94.)

English Composition Requirement (A.B. and B.S.)

(Prerequisite: Completion of the Subject A requirement)

The requirement may be satisfied in two ways:

1. By passing the examination in English composition. This examination is taken after 70 units of degree credit have been
 accumulated, or as soon as possible thereafter. It may not be taken earlier.

2. By completing (with at least a C- or the equivalent) two courses in English composition, as shown:
 a. One course from the following—English 1, 2, 3, 20; Comparative Literature 1, 2, or 3 (effective Spring 1978).
 b. English 103, which must be taken after 84 units have been completed
 (See page 101 for further details.)
Breadth Requirements

1. Foreign Language Requirement
 A.B.: 12-unit level .. 12
 (See page 101 for details.)
 B.S.: None ... 0
 (Note requirements or recommendations in major programs.)
 All language units may be counted toward the Social Sciences/Humanities Area Requirements.

2. Area Requirements
 A.B.: Units in the Humanities, Social Sciences, and Natural Sciences/Mathematics 52
 (You must take a minimum of 12 units in each of the three areas. A maximum of 20 units may be counted toward any one area. See the list on page 100 for classification of courses.)
 Upper-division units in Letters and Science teaching departments or programs in courses not offered by your major department or program .. 12
 (Included in 48 upper-division units required.)
 B.S.: Units in Natural Sciences/Mathematics 90
 Units in Social Sciences and/or Humanities 20
 (See the list on page 100 for classification of courses.)

 Note: Applicability of courses to the Area Requirements:
 a. Only those courses shown in the list on page 100 may be counted toward these requirements.
 b. Number of units in Special Study courses (99, 194H, 199) counted toward Breadth Requirements 10-unit maximum
 c. Courses numbered 48, 98, 198, 97T, 97TC, 197T, 197TC, and from 200 through 498, are not counted toward satisfaction of breadth requirements no breadth credit
 d. College Entrance Examination Board Advanced Placement Examination credit toward satisfaction of the Area Requirements is assigned according to the table on page 63.
 e. Foreign Language courses.
 A.B.: Except for the first six units of course work in the language offered in satisfaction of the Foreign Language Requirement (course 1 or the equivalent in most languages offered on the Davis campus), all courses in foreign language departments may be counted toward completion of the Humanities Requirement.
 B.S.: All language courses, including literature courses in foreign language departments, may be counted toward satisfaction of the Social Sciences/Humanities Requirement.

Residence Requirement (A.B. and B.S.)

1. Upper-division unit requirements:
 a. Upper-division units completed while registered in the College of Letters and Science 27-unit minimum
 b. Upper-division units in the major completed while registered in the College of Letters and Science 18-unit minimum

2. See the University requirements, page 66.

Scholarship Requirement (A.B. and B.S.)

1. Grade-point average requirements in the major:
 a. Grade-point average for all courses required in the major program .. 2.000
 b. Grade-point average for all upper-division courses required in the major program (see page 97) 2.000

2. See the University requirement, page 67.

Major Program Requirements (A.B. and B.S.)

Requirements for major programs are described in the Majors and Courses section of this catalog, beginning on page 139.

You may fulfill major program requirements by completing:

1. A major program offered by a teaching department or curriculum committee in the College of Letters and Science (see page 95 for a list of majors offered in the College); or
2. An Individual Major program approved by the College’s Committee on Individual Majors (see page 96 for details).
COLLEGE POLICIES AND PROCEDURES

Inquiries concerning the policies and procedures listed in this section should be directed to the Dean’s Office, College of Letters and Science, 150 Mrak Hall. See also the section on Registration, beginning on page 57.

Area Requirement List

Subject to restrictions listed below, courses acceptable for breadth are classified as follows:

HUMANITIES

Afro-American Studies 10.
American Studies. A.B.: Equally divide a maximum of 16 units between humanities and social sciences. B.S.: 12 units allowed toward social sciences/humanities requirement.
Art.
Asian American Studies 1C-6C, 30, 150A.
Classics.
Comparative Literature. All courses except first course taken from either 1, 2, 3 (or English 1, 2, 3, 5F, 5P) (effective Spring 1978).
Dramatic Art.
English. All courses except A, 25, 26, 28 and first course taken from either 1, 2, 3, 5F, 5P (or Comparative Literature 1, 2, or 3). All subsequent courses in English counted toward humanities requirement.
Foreign language (see page 101).
History.
Linguistics 1, 105, 106, 107, 196.
Medieval Studies.
Music.
Philosophy.
Religious Studies.
Rhetoric.

SOCIAL SCIENCES

Afro-American Studies 100, 101B, 107, 110, 120, 121.
American Studies. (See "Humanities" above.)
Anthropology. All courses except 1, 5, 13, 150, 151, 152, 153, 154A, 154B, 155, 156, 195, 196.
Asian American Studies 31, 100, 110, 111, 150B.

Chicano Studies 10.
Economics. All courses except 12.
Education. All courses except 114.
Geography. All courses except 1, 3, 105, 110, 161.
Linguistics. All courses except 1, 105, 106, 107, 196.
Political Science.
Sociology. All courses except 46A, 46B, 106.

NATURAL SCIENCES AND MATHEMATICS

Astronomy.
Bacteriology. All courses except 101.
Biochemistry and Biophysics.
Biological Sciences. All courses except 12.
Botany.
Chemistry.
Entomology 10, 100.
Genetics.
Geography 1, 3.
Geology.
Human Anatomy 101.
Mathematics.
Physical Education 103, 104A, 104B, 115.
Physics.
Physiology.
Zoology.

Credit For Courses

Credit for Advanced Placement Examinations (see page 63)

Education Abroad Program

Full University credit may be awarded for courses taken through the Education Abroad Program. See pages 20 and 190 for further information.

Extension Courses

Students in residence may apply credit earned in University Extension courses toward the 180-unit requirement, provided written approval has been ob-
tained from the Dean prior to enrollment. The degree credit allowed by the Dean for Extension courses is usually less than the unit value listed in the course description. A maximum of 9 units may be offered for elective credit only. Such units and courses may not be applied toward fulfillment of the Breadth, Foreign Language, Upper-Division, or Senior Residence Requirements of the College. No grade-points are assigned for courses completed in University Extension.

Graduate and Professional Courses
You must obtain the recommendation of the instructor in charge and the department chairperson—in addition to approval from the Dean—prior to enrollment in order to receive elective credit toward the degree for the following kinds of courses:

- Graduate courses 200-298
- Professional courses for teachers 300-398 (variable-unit courses or courses offered outside of the College of Letters and Science)
- Postgraduate professional courses 400-498 offered by professional schools (Courses in this series which are offered by teaching departments and programs in the College of Letters and Science do not require the Dean's approval.)
- All variable-unit courses in the 200, 300, and 400 series

You must also meet certain minimal conditions before you can enroll in courses listed above. You must have an overall UC grade-point average of 3.3 and 18 units of upper-division instruction in subject matter basic to the course. Exceptions may be considered if your preparation warrants.

Special-Study courses in the graduate and professional series, such as courses 299, 399, and 499 do not satisfy degree requirements. Undergraduate students in the College cannot receive credit for such courses.

Work-Learn

For information on work-learn internships, see page 20.

Examination in English Composition
(A.B. and B.S. degrees)

This academic year, the examination will be offered on the following Saturday mornings:
November 18, 1978
March 3, 1979
May 19, 1979

You may not take the examination during the last quarter before your graduation, nor may you take it on the May date if you plan to graduate in September. Sign-up rosters will be posted in the Department of English, 114 Sproul Hall, Monday through Thursday of the week prior to each examination date. Blue books are required. (Students in the College of Engineering may sign up in 2132 Bainer Hall.) There are no examinations administered during the summer.

Transfer Courses in English Composition
Transfer courses considered by the Dean to be equivalent or comparable to English 1, 2, 3, 20, 103A-F, or Comparative Literature 1, 2, 3 will be accepted toward satisfaction of the requirement. If you wish to fulfill the composition requirement with two courses completed at another college, university, or campus of the University of California, you should file a request with the Dean's Office. Note that the second composition course (English 103) must have been taken after you have completed 84 units of transferable degree credit.

If your transfer work does not include an acceptable English composition course taken after you had accumulated 84 units, you may take such a course at Davis or fulfill the requirement by examination (see above).

Foreign Language Requirement
(A.B. degree)

Acceptable Languages

The Foreign Language Requirement may be satisfied in any language offered at Davis, or for which transfer credit is allowed from another academic institution.

You may also satisfy the Foreign Language Requirement by examination in a language not offered on the Davis campus. In this case, the Dean's Office will assist you in making arrangements to take an examination on another University of California campus, with a faculty member who teaches the language in question.

Satisfaction of the Requirement

The Foreign Language Requirement should be completed by the end of your first or second year, as program priorities permit. This is particularly important if you plan to apply for the University's Education Abroad Program (junior year abroad).

The Foreign Language Requirement may be satisfied by examination or completion of language courses as follows:
1. **Foreign Language Placement Test**

This test does not yield unit credit—it only determines whether the Foreign Language Requirement has been met, or at which point in the language sequence you should enroll.

If you are a transfer student, you may validate your knowledge of a language learned in high school by taking this test. A test may not be taken, however, in a language for which you have already received degree credit. Consult your Status Card, which is issued by the Dean's Office prior to admission to the College.

2. **College Entrance Examination Board (CEEB) Achievement Test**

Earn a qualifying score of at least 500 on a CEEB Foreign Language Achievement Test. This test may be taken at any time during your high school career. Once your score is on file at the Admissions Office, you should petition for satisfaction of the Foreign Language Requirement at the Letters and Science Dean's Office.

3. **College Entrance Examination Board (CEEB) Advanced Placement Examination**

A score of 5, 4, or 3 on any foreign language Advanced Placement Examination taken in high school will satisfy the Foreign Language Requirement.

4. **Course Completion in College (or the equivalent)**

A.B.: 12-unit level in one language (e.g., Spanish 2 or Latin 3).

B.S.: as required in the major program.

5. **Proficiency Examination**

If you have not completed the required level language course, but assume you have attained equivalent knowledge, you may satisfy the language requirement by passing a proficiency examination. For more information consult the appropriate foreign language department.

PASSED/NOT PASSED GRADING

Filing Procedures

Passed/Not Passed petitions are available for students in good academic standing in the Dean's Office, 150 Mrak Hall, on the dates listed in the Class Schedule and Room Directory, and must be filed in person.

No signature other than yours is required on the petition. For detailed information, see page 60.

Graduating seniors, as well as any student planning to undertake graduate or professional studies, should consult an adviser before enrolling Passed/Not Passed in courses required for the major program.

Limitation on Degree Credit for Units Graded Passed (P)

Excluding courses which are graded on a Passed/Not Passed basis only, the number of units graded P that may be accepted towards a degree in the College of Letters and Science is limited to not more than one-fourth of the units completed in residence on the Davis campus.

The Academic Senate limits the total number of courses graded P, including units earned in courses graded "P/NP only," to one-third of the units completed on the Davis campus. This limitation applies to all Davis undergraduates, including Letters and Science students (see page 60).

REGISTRATION BEYOND THE 195-UNIT LIMIT

Once you have completed 195 units, you may register only with the permission of the Dean.

A minimum of 180 units is required for a bachelor's degree, and you are expected to complete all degree requirements within the range of 180 to 195 units.

Under unusual circumstances, permission to register after accumulation of 195 units may be granted, but for a limited time only. Approval must be obtained before course enrollment materials can be made available for the quarter following completion of 195 units. You are expected to adhere to the specific program of courses agreed upon and to meet other conditions that may have been set, e.g., minimal academic performance levels.

If you exceed 195 units before you complete four years of college study, you will usually receive permission to continue.

The desire to complete a multiple or cross-college major alone is not sufficient justification for enrollment beyond 195 units. Students who wish to change their major or who enter as transfer students in fairly advanced standing must realize there is no guarantee of continued registration once they reach 195 units.
SENIOR DEGREE CHECK

During the final quarter of your junior year, or no later than the first quarter of your senior year, you should request a Degree Check from the Dean's Office. A statement indicating any unfulfilled University and College degree requirements will be sent to you. To insure receipt of this statement before the beginning of the succeeding term, you must file the request during the first five weeks of a quarter. Information about your progress toward completing requirements in the major should be obtained by conferring with a faculty advisor for your major program.

UNIT LIMITATIONS

Ordinarily, a full-time student is expected to take an average of no fewer than 12 units a quarter. (Note the Minimal Progress Requirements on page 84.)

Students in their freshman year and transfer students in their first quarter of residence may not take more than 17 units each quarter. For all other Letters and Science students, the study list may not exceed 21 units each quarter.

These unit limitations include non-credit remedial courses and repeated courses, but make-up work to remove incomplete grades is not included.

HONORS

The Dean's Honors List

All students who complete at least 12 units of course work (exclusive of units graded Passed/Not Passed) with a grade-point average of 3.3 or better will have their names placed on the Dean's Honors List. This list is posted quarterly on the Letters and Science bulletin board in the foyer of Mrak Hall.

Honors with the Bachelor's Degree

Two categories of honors may be awarded at graduation, based on the following minimum grade-point requirements:

<table>
<thead>
<tr>
<th>Total Units Completed at UC</th>
<th>Average of UC Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Honors</td>
</tr>
<tr>
<td>45-89</td>
<td>3.5</td>
</tr>
<tr>
<td>90-134</td>
<td>3.4</td>
</tr>
<tr>
<td>135 and over</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Recommendation from the major department, requested by the Dean's Office, is also required if you are eligible for highest honors. In some departments and programs completion of an honors program or thesis is an additional requirement for "highest honors."

You will not be awarded honors with the bachelor's degree if more than eight units of grade I (Incomplete) appear on your transcript. The College Committee on Honors may consider exceptions to this condition. Petitions should be submitted to the Dean's Office.

University and College Medals

Graduating seniors with a distinguished academic record in the College of Letters and Science may be recommended by the faculty as nominees for the College's Herbert A. Young Medal. Each June, one medalist is selected from among the graduates of the current academic year. Academic excellence is the primary basis for selecting the recipient of this award.

The College also nominates graduates with distinguished academic records for the University Medal.
The Graduate Division

The Graduate Division is the academic home of approximately 3,000 post-baccalaureate students who are seeking advanced degrees in one of the 71 graduate programs on the Davis campus.

Graduate study and research are administered by the Graduate Council, a standing committee of the Davis Division of the Academic Senate, and by the Dean of the Graduate Division. A Universitywide Coordinating Committee on Graduate Affairs determines general policies and establishes common procedures.

In developing its graduate programs, the Davis campus has taken advantage of a special pattern of organization allowing great flexibility; the creation of graduate "groups" which cut across the usual lines of faculty division into departments and colleges. A "group" is a graduate faculty whose membership is determined by research interest, not by department affiliation. Groups may be organized to offer an interdisciplinary program or to augment the faculty of a department, permitting participation in that discipline by faculty members who hold appointments in other departments.

Research is, of course, an integral part of graduate education. The Office of Research Development in the Graduate Division has as its primary purpose the administration of extramural grants and contracts. A portion of the total function has been decentralized to the several colleges, which review research proposals with regard to their consistency with the campus academic plan and resources of the colleges. Current emphasis in research development is on broad programs relating to the environment, programs in which faculty and students from a wide spectrum of formal disciplines may participate.

ADVANCED DEGREE PROGRAMS AT DAVIS

The following advanced degrees are offered at UC Davis: Master of Arts, Master of Science, Master of Fine Arts, Master of Arts in Teaching, Master of Engineering, Master of Health Services, Master of Education (in Agricultural Education), Master of Preventive Veterinary Medicine, Candidate in Philosophy, Doctor of Engineering, and Doctor of Philosophy. Those departments or groups offering programs for the degree of Doctor of Philosophy may, if they choose to do so, recommend the degree Candidate in Philosophy for all students formally advanced to candidacy. In addition to these graduate degrees, professional degrees are offered in the Schools of Law, Medicine, and Veterinary Medicine.

Majors for graduate study and the advanced degrees offered in each are shown below. General requirements for degrees are published in the Announcement of the Graduate Division. Specific requirements are available from the office of the department concerned.

Majors and Degrees

- Agricultural Chemistry (M.S., Ph.D.)
- Agricultural Economics (M.S., Ph.D.)
- Agricultural Education (M.Ed.)
- Agronomy (M.S.)
- Anatomy (M.S., Ph.D.)
- Animal Behavior (Ph.D.)
- Animal Science (M.S.)
- Anthropology (M.A., Ph.D.)
- Art (M.F.A.)
- Atmospheric Science (M.S., Ph.D.)
- Avian Sciences (M.S.)
- Biochemistry (M.S., Ph.D.)
Graduate
Division
Biomedical Engineering (Ph.D.)
Biophysics (Ph.D.)
Botany (M.S., Ph.D.)
Chemistry (M.S., Ph.D.)
Child Development (M.S.)
Classics (M.A.)
Clinical Psychology (Ph.D.)
Community Development (M.S.)
Comparative Pathology (M.S., Ph.D.)
Computing Science (M.S., Ph.D.)
Dramatic Art (M.A., M.F.A., Ph.D.)
Ecology (M.S., Ph.D.)
Economics (M.A., Ph.D.)
Education (M.A.)
Endocrinology (M.A., Ph.D.)
Engineering (M. Engr., D. Engr., M.S., Ph.D.)
English (M.A., Ph.D.)
Entomology (M.S., Ph.D.)
Family Nurse Practice (M.H.S.)
Food Science (M.S.)
French (M.A., Ph.D.)
Genetics (M.S., Ph.D.)
Geography (M.A., Ph.D.)
Geology (M.S., Ph.D.)
German (M.A., Ph.D.)
History (M.A., M.A.T., Ph.D.)
History of Art (M.A.)
Horticulture (M.S.)
Immunology (M.S., Ph.D.)
International Agricultural Development (M.S.)
Law (J.D.)—refer to School of Law
Linguistics (M.A.)
Mathematics (M.A., M.A.T., Ph.D.)
Medicine (M.D.)—refer to School of Medicine
Microbiology (M.A., Ph.D.)
Music (M.A., M.A.T.)
Nutrition (M.S., Ph.D.)
Pharmacology and Toxicology (M.S., Ph.D.)
Philosophy (M.A., Ph.D.)
Physical Education (M.A.)
Physics (M.S., Ph.D.)
Physiology (M.S., Ph.D.)
Plant Pathology (M.S., Ph.D.)
Plant Physiology (M.S., Ph.D.)
Plant Protection and Pest Management (M.S.)
Political Science (M.A., Ph.D.)
Preventive Veterinary Medicine (M.P.V.M.)—refer to
School of Veterinary Medicine
Psychology (M.A., Ph.D.)
Range Management (M.S.)
Rhetoric (M.A.)
Russian (M.A.)
Sociology (M.A., Ph.D.)
Soil Science (M.S., Ph.D.)
Spanish (M.A., Ph.D.)
Textiles (M.S.)
Vegetable Crops (M.S.)
Veterinary Medicine (D.V.M.)—refer to School of Vet-
erinary Medicine
Water Science (M.S.)
Zoology (M.A., Ph.D.)

Graduate Groups

Programs sponsored by graduate groups with faculty
drawn from more than one department are listed be-
low. If you are interested in one of these areas, write
to the chairperson for more information.

Agricultural Chemistry
Lloyd L. Ingraham, Ph.D.
115 Briggs Hall
Anatomy
Leslie J. Faulkin, Jr., Ph.D.
1055 Haring Hall
Animal Behavior
Benjamin L. Hart D.V.M., Ph.D.
(Veterinary Anatomy)
1093 Haring Hall
Atmospheric Science
Kinsell L. Coulson, Ph.D.
247 Hoagland Hall
Avian Sciences
Frank X. Ogasawara, Ph.D.
205 Asmundson Hall
Biochemistry
Michael E. Dahms, Ph.D.
116B Briggs Hall
Biomedical Engineering
Melvin R. Ramey, Ph.D.
2098 Bainer Hall
Biophysics
Lloyd L. Ingraham, Ph.D.
115 Briggs Hall
Botany
Bruce A Bonner, Ph.D.
153 Robbins Hall
Child Development
David B. Lynn, Ph.D.
130 AOB-IV
Clinical Psychology
Daniel W. Edwards, Ph.D.
Sacramento Medical Center
4430 V Street (453-2540)
Community Development
Bruce Hackett, Ph.D.
(Sociology)
143 Young Hall
Comparative Pathology
David R. Strombeck, D.V.M., Ph.D.
3121 Medical Science 1A
Computing Science
Richard F. Walters
Human Physiology (School of Medicine)
Consumer Science
S. Haig Zeronian, Ph.D.
Division of Textiles and Clothing
Ecology
R. Merton Love, Ph.D.
Ecology Graduate Group
2148 Wickson Hall
Endocrinology
Howard A. Bern, Ph.D.
4079 Life Sciences Building, UC Berkeley
Engineering
Warren H. Giedt, Ph.D.
2006 Bainer Hall

Food Science
Gerald F. Russell, Ph.D.
(Food Science and Technology)
4440 Chemistry Annex
Genetics
Paul E. Hansche, Ph.D.
349 A Briggs Hall
Horticulture
Harry C. Kohl, Jr., Ph.D.
100A Environmental Horticulture
Immunology
Eli Benjamini, Ph.D.
Medical Microbiology Department
(School of Medicine)
International Agricultural Development
James F. Harrington, Ph.D.
175 Hunt Hall (752-1729)
Linguistics
Wilbur A. Benware, Ph.D.
303 Sproul Hall
Microbiology
JaRue S. Manning, Ph.D.
(Bacteriology)
203 Hutchinson Hall
Nutrition
Hubert Heitman, Jr., Ph.D.
210 Animal Science
Pharmacology and Toxicology
Larry G. Stark, Ph.D.
(Pharmacology)
4445 Medical Science 1A
Physiology
James M. Boda, Ph.D.
(Animal Physiology)
192 Briggs Hall
Plant Protection and Pest Management
Albert A. Grigarick, Jr., Ph.D.
316 Briggs Hall
Plant Physiology
Harry C. Kohl, Jr., Ph.D.
100A Environmental Horticulture
Preventive Veterinary Medicine
Walter W. Sadler, D.V.M., M.P.H.
2079 Haring Hall
Range Management
R. Merton Love, Ph.D.
227 Hunt Hall
Soil Science
C. C. Delwiche, Ph.D.
(Land, Air and Water Resources)
273 Hoagland Hall
Textiles
S. Haig Zeronian, Ph.D.
Division of Textiles and Clothing
ADMISSION STANDARDS

Students admitted to graduate status at the University of California must hold a bachelor's degree or the equivalent from an institution of acceptable standing and must have evidence of high scholastic ability. Generally, a minimum grade-point average of B in upper-division course work in the applicant's final two years of undergraduate study, or evidence of comparable scholarship, is required. Meeting the minimum requirements does not assure admission; students who are admitted are selected from among those applicants meeting the minimum standards.

Applications for admission are evaluated in terms of scholastic qualifications and formal preparation for the graduate field of study. An applicant may be denied admission if his or her scholastic record or undergraduate program of study is judged inadequate as a foundation for advanced academic or professional study. This procedure applies to all applicants, whether they come from schools or colleges within the University of California or elsewhere. Departments may have special requirements for admission to graduate status, and some departments and schools require an additional application for admission to their advanced degree program.

Application for Admission

Application forms may be obtained by writing to the Dean of the Graduate Division, University of California, Davis, California 95616. APPLICATIONS FROM U.S. CITIZENS MUST BE ON FILE NO LATER THAN JUNE 1 FOR THE FALL QUARTER, OCTOBER 1 FOR THE WINTER QUARTER, AND JANUARY 1 FOR THE SPRING QUARTER. APPLICATIONS FROM NON-CITIZENS MUST BE FILED ONE MONTH PRIOR TO THESE DATES. HOWEVER, SINCE MANY DEPARTMENTS EFFECTIVELY CLOSE APPLICATIONS WELL IN ADVANCE OF THESE DEADLINES, EARLY FILING (PREFERABLY EIGHT TO TWELVE MONTHS PRIOR TO THE DATE OF REGISTRATION) IS STRONGLY RECOMMENDED.

The application must be accompanied by a money order or bank check for $20 made payable to The Regents of the University of California. This fee is not refunded under any circumstances. In cases where complete records are filed later than the above dates, registration may be delayed, thus making you liable for a late registration fee of $10, or you may not be allowed to register at all. A student whose registration is delayed must obtain a Permit to Attend Classes from the Office of the Registrar.
Official transcripts of record covering all college and university work completed to date, together with official evidence of degrees conferred, should accompany or immediately follow your application. A separate original and official record must be presented from each institution previously attended. Your transcripts and all other official credentials are retained in the files of the Office of the Dean of the Graduate Division. In addition to having your records sent to this office, you must have in your possession an official record for use in conferences with departments and for other purposes here. The Graduate Division office copy may not be borrowed.

Applications for programs leading to a Ryan teaching credential or specialist credential, and for the degrees of Juris Doctor, Doctor of Medicine, Doctor of Veterinary Medicine, and Master of Preventive Veterinary Medicine must be filed directly with the appropriate department or professional school.

Reentry

If you were formerly enrolled in a regular session as a graduate student and wish to return, you must apply for reentry and pay the Reentry Application Fee of $20 at least six weeks before the beginning of the quarter in which you wish to enroll. The Reentry Application may be obtained from the Graduate Division. Transcripts of all work undertaken since you were last registered in graduate status at Davis must be presented with the Reentry Application. (There is no assurance of reentry, as applicants for reentry will be considered in competition with other applicants for the program.)

International Students

Applicants for admission to the Graduate Division with credentials from universities and colleges in foreign countries are advised to make their initial inquiry at least eight months before the date of intended enrollment to permit processing of records.

If your undergraduate preparation has been in a language other than English, you must furnish positive evidence that your command of both spoken and written English will permit you to profit from the instruction offered. A report from the Test of English as a Foreign Language (TOEFL), which is administered by the Educational Testing Service for the College Board, is recommended for meeting this requirement. The TOEFL is given three times a year at many testing centers abroad, and full information is available from the Educational Testing Service, Princeton, N.J. 08540.

A number of other tests given by authorized examiners abroad are also acceptable. These include the Michigan Test (English Language Institute Test, University of Michigan), the interview reports supervised by the Institute of International Education overseas office, and the American University Language Center (AULC) Test.

On arrival, international students take the special University examination in English. Those who do not pass are assigned to remedial courses. Even though you have been admitted, registration may be deferred until you acquire an adequate command of English.

Graduate Study Without an Advanced Degree Objective

If you do not wish to become a candidate for a higher degree, you may be admitted to a specified field of study for course work only. Such a program, which requires the approval of the Dean of the Graduate Division, must have a definite scholarly or professional purpose. The scholastic requirements for admission are the same as those for degree programs.

GENERAL REQUIREMENTS FOR ADVANCED DEGREES

A graduate degree is awarded to recognize a student's command of a wide range of knowledge in an academic field. It is not awarded merely for the fulfillment of technical requirements, such as residence, or the completion of specific courses.

Master's Degree

Students working toward a master's degree must be registered in residence for at least three quarters. Two regular six-week Summer Sessions may count as the equivalent of one quarter. Usually, all work for the master's degree is done in residence on the Davis campus. With the consent of the graduate adviser and the Dean of the Graduate Division, however, some work taken elsewhere may be credited toward your degree. The normal limit for such transfer credit is 6 units from another institution or up to one-half of the unit requirement in courses from another campus of the University—if the units were not used to satisfy the requirements for another degree.

A master's degree may be awarded upon completion of one of two basic plans in which either a thesis or a comprehensive examination is required.
Doctor’s Degree

The degree Doctor of Philosophy as granted at the University of California is not merely certification of having fulfilled technical requirements such as residence and the completion of fundamental courses. It means that the recipient possesses knowledge of a broad field of learning and has given evidence of distinguished attainment in that field; it is a warrant of critical ability and powers of imagination and synthesis. It means, too, that the candidate has presented a dissertation containing an original contribution to the knowledge of his or her chosen field of study.

Students working toward a doctorate must be registered and in University residence for a minimum of six regular quarters. Experience indicates that it takes considerably longer than this to complete a degree program. Two consecutive regular Summer Sessions may count as the equivalent of one regular quarter.

There is no University unit requirement for the doctoral degree. However, individual programs have course requirements which must be completed prior to your admission to the Qualifying Examination.

The Qualifying Examination is administered by a committee appointed by the Dean of the Graduate Division. The Examination is intended to demonstrate your critical ability, powers of imagination and synthesis, and broad knowledge of the field of study. Upon recommendation of the Qualifying Examination Committee, and with the approval of the Graduate Council, you may repeat the Examination one time.

After successful completion of the Qualifying Examination, you are advanced to Candidacy for the degree. At this time, a committee is appointed to direct you in your research problem and guide you in the preparation of the dissertation.

PROGRAM OF STUDY

New students are assigned an adviser within the appropriate department or graduate group who assists them in planning a program of study. The program will depend to some degree on the student’s undergraduate training, and may include undergraduate courses to remove deficiencies. Each student must satisfy the degree requirements as published in the Announcement of the Graduate Division. Additional requirements for study may be established by the department or group and approved by the Graduate Council. These requirements often include a core of required courses, but considerable flexibility is permitted to suit individual needs. Undergraduates at Davis who plan to pursue graduate study should consult with their major adviser early in their senior year to guarantee adequate preparation.

Intercampus Exchange Program

As a graduate student registered on any campus of the University, you may become an Intercampus Exchange Student with the approval of your graduate adviser, the chairperson of the department or group in which you wish to study on the host campus, and the Dean of the Graduate Division on both the home and the host campus.

Although as an Intercampus Exchange Student you have library, health service, and other student privileges on the host campus, you are considered a graduate student in residence on your home campus. The grades obtained in courses on the host campus are transferred to your home campus and entered on your official record.

Application forms may be obtained at the office of the Dean of the Graduate Division. In order to avoid a $10 late fee, these forms should be filed with the home campus Graduate Division six weeks prior to the beginning of the quarter in which you wish to participate in the program.

FELLOWSHIPS, ASSISTANTSHIPS, AND LOANS

Fellowships are awarded by the Fellowship Committee of the Graduate Council on the basis of scholarship and promise of outstanding academic and professional contribution. Applicants who plan to enter in a Fall Quarter and wish to be considered for a fellowship or graduate scholarship must file the combined application for Admission and Fellowship no later than January 15 preceding the Fall Quarter to be attended. These applications are considered only once a year. If you are continuing in graduate status at Davis you must file an application for fellowship and graduate scholarship for continuing students with your major department or graduate group chairperson on or before January 15. Applications for both new and continuing students may be obtained from the Graduate Admission/Fellowship Office, 252 Mrak Hall.

Teaching assistantships and research assistantships are available in many departments. Interested students should inquire at the office of the department in which they wish to study.
Information regarding Graduate Fellowships that are supported by various Federal and outside agencies is available at the Graduate Division.

The Financial Aid Office has information about loans for graduate students (see page 39).

TEACHER CREDENTIAL PROGRAM
The teacher education program is administered by the Graduate Division. Recent legislation, however, makes this program also available to upper-division students. With careful planning it is possible for some students to complete requirements for a preliminary credential as undergraduates. This credential allows you to teach for five years while finishing the fifth year of academic work required for the clear credential. Specific requirements may be obtained from the Department of Education.

Acceptance into the multiple-subject teaching credential (elementary) program does not require any specific campus major. If you are accepted to this program, you can meet the State requirements for a diversified major through one of the following alternatives:

1. by completing a regular University major and the additional requirements for the newly approved UC Davis Diversified Waiver Program;
2. by completing a regular University major and the additional requirements for the newly-approved Mexican-American (Chicano) Studies Diversified Waiver Program;
3. by completing the State-approved diversified major in American Studies (contact the Department of Education for information on this major);
4. by completing a regular University major and achieving a passing score on the National Teachers Examination (Common Section).

California State single-subject teaching majors (secondary) for which Davis students can qualify are: agriculture, art, English (including drama and speech), foreign languages, government, history, home economics, life science, mathematics, music, physical education, physical science, and social science. For information concerning University majors and campus waiver programs which satisfy these single-subject majors, or State-approved examinations available to test competence in these single-subject majors, consult the appropriate adviser in the Departments of Education or Applied Behavioral Sciences.

Admission to the teacher education program is by the Graduate Division. Eligibility requires a scholarship record of B (3.0) or better in all upper-division work undertaken in the last two years of undergraduate study. Applications for the 1979-80 program should be made in 174 Kerr Hall for the Department of Education, and in 106 AOB-IV for the Department of Applied Behavioral Sciences (home economics and agricultural education). Information on filing deadlines should be obtained from these two departments.

Students considering teaching as a career should consult the Department of Education, 174 Kerr Hall, or the Department of Applied Behavioral Sciences, 106 AOB-IV, as early as their freshman year. Because of the complexity of the Teacher Preparation and Licensing and the requirements of Davis campus programs, students are encouraged to maintain close contact with their advisers throughout their undergraduate years.
Professional Schools

Requirements and Preparation
Eligibility for admission to one of the University of California professional schools or curricula is contingent upon the successful completion of an undergraduate program of preprofessional training of 2 to 4 years, depending upon requirements for specific schools. Announcements and information describing admission and course requirements for a particular school are available by writing to the school of your choice in care of the appropriate University campus.

Legend and addresses:

(B) University of California, Berkeley 94720
(D) University of California, Davis 95616
(I) University of California, Irvine 92717
(LA) University of California, Los Angeles 90024
(R) University of California, Riverside 92502
(SD) University of California, San Diego, La Jolla 92093
(SF) University of California, San Francisco 94143
(SB) University of California, Santa Barbara 93106
(SC) University of California, Santa Cruz 95064

Direct inquiries about schools and curricula in San Francisco (except Hastings College of the Law) in care of: Office of Student Admission.

Professional schools and curricula requiring 2 to 3 years of undergraduate preparation:

School of Business Administration (B)
School of Criminology (B)
Curriculum in Cytotechnology (SF)
Curriculum in Dental Hygiene (SF)
Schools of Dentistry (LA, SF)
Curricula in Education (B, D, I, LA, R, SB, SC)

School of Engineering (I)
School of Engineering and Applied Science (LA)
School of Forestry and Conservation (B)
School of Journalism (B)
Curriculum in Medical Illustration (SF)
Curriculum in Medical Technology (SF)
Schools of Medicine (D, I, LA, SD, SF)
Schools of Nursing (LA, SF)
School of Optometry (B)
School of Pharmacy (SF)
Curriculum in Physical Therapy (SF)
Schools of Public Health (LA, B)
School of Veterinary Medicine (D)

Professional schools requiring a bachelor's degree in appropriate field of study for admission:

Graduate Schools of Administration (I, R)
School of Architecture and Urban Planning (LA)
Graduate Schools of Business Administration (B, LA)
Schools (or Departments) of Education (B, D, I, LA, R, SB, SC)

Preparation for teaching credentials is available as follows:

Kindergarten—Primary (LA, SB)
Elementary Teaching (B, D, I, LA, R, SB, SC)
Secondary Teaching (B, D, I, LA, R, SB, SC)
Special Education (R)
Special Secondary (D, SB)
Junior College Teaching (B, LA, R, SB)
Pupil Personnel Services (B, SB)
School Librarianship (B, LA)
Special Services (LA, SB)
Supervision (B, LA)
Administration (B, LA)
Graduate School of Journalism (B)
Professional Schools

Schools of Law (B, D, LA)
Hastings College of the Law (SF)
School of Librarianship (B)
School of Library and Information Science (LA)
Graduate School of Public Policy (B)
Schools of Public Health (LA, B)
Schools of Social Welfare (B, LA)
Scripps Institution of Oceanography (SD)

PREPROFESSIONAL TRAINING

Preprofessional programs do not—in and of themselves—lead to a bachelor’s degree. Since professional schools cannot accommodate all qualified applicants, students should prepare themselves for alternate careers and are expected to pursue a major program while completing their preprofessional requirements.

With careful planning it is possible for students to undertake any one of a variety of majors. While most students interested in the health sciences will elect a major within the biological sciences, majors as varied as psychology, engineering, and art can be equally acceptable. Law schools, in particular, do not prescribe any specific major program. They give equal consideration to all qualified applicants completing a course of study which gives them a broad cultural background and includes intensive work for a substantial period of time in a selected field of study.

REFERRAL INFORMATION

Although the Davis campus offers course work in preparation for admission to most of the schools listed above, the referral information which follows relates to the types of preprofessional training in greatest demand at Davis.

Students are strongly urged to read this catalog and the appropriate professional school announcement carefully before consulting faculty and staff about admission requirements. Communicate directly with personnel at the professional school to which you expect to apply if you need more detailed information. A list of general reference books which may be of interest is presented at the conclusion of this section.

BUSINESS ADMINISTRATION AND PUBLIC POLICY

Preparation for study: See published announcements of schools of business administration and public policy. For advice and counsel, see the departmental advisers in the Department of Economics (380 Kerr Hall, 752-0741) or Agricultural Economics (118 Voorhies Hall, 752-1517); or see the Pre-Business School (Peer) Adviser located in 359 Kerr Hall, 752-6512.

FORESTRY

Preparation for Study: Consult this catalog (pages 73, 84, 299) and the announcement of the Department of Forestry and Conservation, UC Berkeley.

Preforestry advisers: Jack Major (Botany Department, 7 Robbins Annex, 752-0621 or 752-0617) or C.C. Delwiche (Land, Air and Water Resources, 273 Hoagland Hall, 752-1511 or 752-1409).

LAW

Advising: Students interested in legal careers should consult the Pre-Law Advising Office, 216 South Hall. Information is available about career possibilities in law, law school admission procedures, and academic program planning (see also page 29). Pre-law advisers for counseling about general law admission requirements are Naomi Sakai, coordinator, Pre-Law Advising Office, 752-3009; C. E. Jacobs, Department of Political Science, 271 Voorhies Hall, 752-2637 or 752-0966; Victor P. Goldberg, Department of Economics, 380 Kerr Hall, 752-0741.

School of Law, UC Davis: Consult this catalog (page 121), the Announcement of the School of Law, or the Dean’s Office, 1011 King Hall, 752-0243.

MEDICINE

Preparation for Study: Students interested in career opportunities in the health sciences should visit the Health Sciences Advising Office, 103 South Hall. Professional and peer staff are available to advise in the preparation for these careers and assist with application procedures for entry into professional schools and training programs (see also page 29).

School of Medicine, UC Davis: Consult this catalog, (page 127), the School of Medicine Bulletin, or the Office of Student Affairs, School of Medicine, 752-3170.
ALLIED HEALTH SCIENCES

Preparatory course work only is offered at the Davis campus, so that professional training for all fields must be completed elsewhere. Degree work is offered at Davis for dietetics, but students must apply elsewhere for the required postgraduate internship. Contact the Health Sciences Advising Office, South Hall (phone 752-2672) regarding curricula and schools for all allied health fields.

Suggested Curricula. As specific school requirements vary, students should contact either the schools directly, or the Health Sciences Advising Office for more detailed information. Elective units for all programs must include course work in the social sciences and humanities; a foreign language is recommended. Students transferring into a professional program offered at the undergraduate level must complete that school's general education requirements.

Students are advised that in California most professional programs are unable to accommodate all applicants so that students may wish to consider applying also to out-of-state programs. Professional school admissions committees evaluate applicants on the basis of their course work and grades, work experience in health care and community activities, and letters of recommendation.

Courses listed under each of the following allied health fields are general requirements.

Clinical Laboratory Technology

To qualify for the required twelve-month medical technology internship in California, students need to complete a baccalaureate degree, which includes the following minimum coursework requirements as specified by the State Department of Health.

Biological sciences: 27 units, including instruction in hematology (Clinical Pathology 101), immunology (Veterinary Microbiology 126 or Medical Microbiology 107), and medical microbiology (Veterinary Microbiology 127).

Chemistry: 24 units, including Chemistry 1A, 1B, 1C, 5 and Biochemistry 101A-101B or Physiological Sciences 101A-101B.

Physics 2A, 2B, 2C.

Mathematics: at least one term of statistics or calculus.

Recommended courses include: medical parasitology (Veterinary Microbiology 132, Entomology 156, 156L, Medical Microbiology 215); virology (Veterinary Microbiology 128, Biological Sciences 162); Physiology 101, 101L, or 2, 2L; histology (Zoology 107); Chemistry 8A-8B; biochemistry laboratory (Biochemistry 101L or Clinical Pathology 102); medical microbiology laboratory (Veterinary Microbiology 127L); computer science; Electrical Engineering 195A; Agricultural Economics 112; Physics 3A, 3B, 3C.

Requirements vary among training programs. Students should check the individual program for additional required courses.
Dental Hygiene

A minimum of two years' preparation is required prior to transfer into a professional curriculum offering a baccalaureate degree. Professional training is also available in community colleges. Students should take the Dental Hygiene Aptitude Test in November, one year prior to projected date of admission. Some schools may require tests of manual dexterity. Check individual catalogs for exact requirements.

Biological sciences (one year with laboratory). Recommended: Zoology 2-2L, 106; Bacteriology 2, 3; Human Anatomy 101; Physiology 2-2L or 110-110L; Biological Sciences 1; Genetics 100A-100B or 115.
Chemistry 1A, 1B, 8A, 8B. Required by UCSF: Chemistry 1C; Physics 2A, 2B, 2C, 3A, 3B, 3C; Biochemistry 101A also recommended.
English 1, 3.
Psychology: two courses.
Rhetoric 1.
Suggested electives: Nutrition 10 or 101; Zoology 100; Pharmacology 100, 101; Sociology 1; additional humanities.

Dentistry

Students complete three to four years of preprofessional course work prior to admission to the three- or four-year dental curriculum. Students must take the Dental Admission Test in April, one year prior to projected date of admission. Check individual catalogs for exact prerequisites.

Biological sciences (at least one year with laboratory). Strongly recommended: Biological Sciences 1; Zoology 2-2L; Physiology 110, 110L; Zoology 100-100L; Biochemistry 101A-101B. Recommended: Zoology 105 or 106, Bacteriology 2, 3 or 102.
Chemistry 1A-1B-1C, and 8 to 12 units of organic chemistry with laboratory (e.g., courses 128A-128B-128C and 129A are usually taken, but in some schools, courses 8A-8B, and 128A and 129A may be substituted.
English: one year.
Physics 2A, 2B, 2C, 3A, 3B, 3C.
Psychology: two courses. Recommended: Psychology 16, 112, or 168.
Suggested electives: Mathematics 13 or Agricultural Science and Management 150; Mathematics 16; Genetics 100A-100B or 115; sculpture course, art practice (Art 11).

Health Care Administration

A public administration or business management orientation is recommended for the baccalaureate and master's degree work. Schools of public health and graduate school programs in administration offer professional training. Elective courses may be selected from the following:

Agricultural Economics (e.g., courses 18, 112, 117, 171A, 171B).
Applied Behavioral Sciences (e.g., courses 151, 152, 153, 154, 155, 160A, 160B, 162, 163, 164, 172).
Community Health 101, 121, 126, 204.
Engineering 5, 10, 15.
Epidemiology and Preventive Medicine 102, 103A, 103B, 103C.
Food Service Management 123.
History (e.g., courses 171C, 174A-174B, 185B).
Mathematics 13 or Agricultural Science and Management 150; Mathematics 19.
Medical Learning Resources 155.
Political Science (e.g., courses 100, 101, 102, 156, 180, 181, 182, 183, 187, 188).
Psychology 1, 112, 115, 168.
Rhetoric 1, 3.
Sociology (e.g., courses 154, 180).
Students may wish to major in a social science, biological science, or physical science; students may also wish to develop their own major. Whatever choice is made, general requirements for graduate school must be fulfilled.

Nursing

Two years are usually required to complete prerequisites prior to transferring into two- or three-year baccalaureate nursing programs. General requirements include:

Bacteriology 2, 3.
Chemistry 1A, 1B, 8A, 8B.
English 1, 3.
Human Anatomy 101.
Physiology 2-2L or 110-110L.
Psychology 1.
Sociology 1.

Recommended courses include: Nutrition 10; Human Development 100A, 100B; Psychology 112; Anthropology 2; Rhetoric 1, 3; Physics 3A, 10; Zoology 2, 2L; Family Practice 127; Community Health 101; Psychiatry 223, 224; Pharmacology 100, 102.

Specific requirements are subject to change; students are advised to contact specific schools regarding additional requirements. An R.N. license may also be earned through Associate of Arts (A.A.) degree program offered by community colleges.

Occupational Therapy

Basic professional training may be taken either at the undergraduate or graduate level. Students must transfer to another school. Applicants are expected to be proficient in some arts and crafts activities and preferably knowledgeable also in some industrial arts and recreational skills.

Biology Sciences 1.
English 1 or 3.
Human Anatomy 101.
Human Development 100A-100B or Psychology 112.
Physiology 2-2L or 110-110L.
Psychology 1, 16, 168.
Rhetoric 1 or 3.
Sociology: one course, or Anthropology 1 and 2.
Suggested electives: Human Development 100C, 102, 130, 131, 141; additional psychology; Physics 2A-2B-2C, 3A-3B-3C, 10; Physiology 111A-111B, 112-113; Community Health 101; Genetics 10; Nutrition 10; art and design courses; Physical Education 103, 105, 110, 115, 125; Behavioral Biology 451, 468; Family Practice 127, 406A, 406B, 406C.

Optometry

Two years minimum preparation is required prior to transfer into a four-year Doctor of Optometry degree curriculum. Students must take the Optometry College Admission Test, one year prior to projected date of admission. Test is usually given in November, January and March. Check individual catalogs for exact prerequisites.

Biological sciences (one year with laboratory).
Recommended: Biological Sciences 1; Bacteriology 2 or 102 and 3; Zoology 2-2L or 105 or 106 or Human Anatomy 101 or Anatomy 100; Physiology 2-2L or 110-110L.
Chemistry: one year of general and one year of organic with laboratory, Chemistry 1A, 1B, 1C, 8A, 8B. Required by a few schools: 9 units of organic chemistry.
English: one year (may include rhetoric).
Mathematics 13, 16A-16B. Required by some schools: 16C. Agricultural Science and Management 150 may be substituted for Mathematics 13.
Physics 2A, 2B, 2C, 3A, 3B, 3C.
Psychology: two courses.
Suggested electives: economics, sociology, biochemistry, additional biological sciences.
Pharmacy

One to two years minimum preprofessional course work is required prior to transfer to a three- or four-year clinical pharmacy program. Students may be required to take the Pharmacy College Admission Test in May or November, one year prior to projected date of admission. Each school has its own requirements: USC requires its own examination. Check individual catalogs.

Biological sciences (one year with laboratory).
Recommended: Zoology 2-2L, 100; Bacteriology 2 or 102, 3; Biological Sciences 1.
Chemistry: one year of inorganic chemistry with laboratory (Chemistry 1A-1B-1C), one year of organic with laboratory (Chemistry 8A-8B, 128A-129A or 128A-128B-128C-129A). UCSF requires Chemistry 5.
Economics: one introductory course recommended. A few schools require Economics 1A-1B.
English: one year, composition plus two additional English courses.
Mathematics 16A, 16B, 16C.
Psychology: one course.
Suggested electives: Rhetoric 1; sociology or cultural anthropology; Economics 11A-11B; Physiology 100A or Zoology 121A or Botany 130; introductory courses in sociology, history, and political science.

Physical Therapy

Basic professional training is available at both the undergraduate and graduate levels; students must transfer to another school. Each physical therapy program has its own specific requirements.

Biological Sciences 1.
Chemistry: 1A, 1B. Recommended: 8A, 8B.
English 1, 3.
Human Anatomy 101, 101L.
Mathematics 13.
Physics 2A, 3A. Many schools require also Physics 2B, 2C, 3B, 3C.
Physiology 2-2L or 110-110L.
Psychology 16 and 168.
Rhetoric 1, 3.
Suggested electives: Human Development 100A-100B or Psychology 112 and Human Development 100C, 131, 141; Bacteriology 2 and 3; Sociology 1, 3; Zoology 2-2L, 106, 143; Anatomy 215; Physical Education 103, 104A-104B, 105, 110, 115, 125; Chemistry 1C; Behavioral Biology 451; Community Health 101; Family Practice 127; additional psychology.

Physician Assisting

Physician Assistant programs often require courses in biology and chemistry, and up to two years of college. One-to-two years of direct patient care (nurse, orderly, corpsman) are advisable to meet minimum prerequisites. The majority of the programs are for training
people who are interested in assisting the primary care physician in a rural setting, but training in a specialty and employment in urban settings are also available.

Recreational Therapy

Students may elect to transfer for optional professional training, offered through both baccalaureate and master's degree programs. An undergraduate major such as physical education, social sciences, art, drama, or a related field may qualify. Elective courses may include:

- Dramatic Art.
- Environmental Planning and Management (e.g., courses 116, 134).
- Human Anatomy 101.
- Human Development (e.g., courses 100A-100B-100C, 101, 102, 103, 130, 131, 132, 141).
- Music (e.g., course 1, 300).
- Physical Education (e.g., courses 5, 45, 103, 105, 110, 115, 125, 140, 171; activity including dance).
- Physiology 2-2L or 110-110L.
- Psychiatry 222, 223.
- Psychology (e.g., courses 1, 15, 108, 112, 129, 144, 145, 168).
- Rhetoric 1, 3.
- Zoology (e.g., 2, 2L, 100, 106, 143).

Speech Therapy

Students must transfer to another school by the graduate level for professional training through a master's degree or special teaching credential program. Electives may be selected from the following courses. Check with individual programs.

- Anthropology (e.g., courses 109, 110, 111, 112, 114; courses 109 and 110 are fundamental to speech therapy).
- Behavioral Biology 451, 468.
- Education (e.g., courses 110A, 110B, 110C, 117A, 151, 163, 164).
- Foreign language.
- Human Anatomy 101.
- Human Development (e.g., courses 100A-100B-100C, 101, 102, 121, 130, 131, 140A, 141).
- Linguistics (e.g., courses 1, 109, 114, 138, 150).
- Physiology 2-2L or 110-110L.
- Psychology (e.g., courses 108, 112, 129, 132, 150, 168).
- Rhetoric 1, 3.
- Zoology 106, 143.
School of Law

The School of Law offers a three-year professional curriculum leading to the degree of Juris Doctor. The fall of 1978 will see the School enroll its thirteenth class.

The program of the School is designed to combine the best features of traditional legal education with the development of new interests and approaches necessary for training lawyers to meet the demands of the future. In addition to the traditional professional curriculum, the School offers opportunities for practical experience through clinical programs and for in-depth study of an area of law in an individualized program of classroom work, research, writing, and experience in the community. It also seeks to promote critical evaluation of law and legal institutions in a broad perspective, integrating non-legal disciplines with professional legal education.

The School is fully accredited by the American Bar Association, is a member of the Association of American Law Schools, and has a chapter of the Order of the Coif.

Preparation for the Study of Law

No specific college major is required for admission to the School of Law, and there is no prescribed pre-legal program. Your college record and Law School Admission Test (LSAT) score must, of course, demonstrate that you are highly qualified for the study of law.

As a pre-law student, you should plan a course of study that will give you a broad cultural background and include intensive work for a substantial period of time in a selected field of study. Pre-law students should develop the ability to communicate easily, persuasively, and accurately; to understand people and institutions; to gather and weigh facts; and to solve problems and think creatively. You should be able to read rapidly with comprehension, and express yourself clearly, completely, and concisely, both orally and in writing—in short, it is most important that you obtain mastery of the English language.

Assistance in program planning may be obtained from the Pre-Law Advising Office, 216 South Hall (see page 29 or 114).

For additional information, see the official Pre-Law Handbook, published annually and prepared by the Law School Admission Council and the Association of American Law Schools. This book includes material on the law and lawyers, pre-law preparation, applying to law school, and the study of law, together with individualized information on most American law schools. It may be found at college bookstores or ordered from Educational Testing Service, Princeton, N.J. 08540.

ADMISSION

Requirements for Admission

Your application for admission to the School of Law's professional curriculum must show a record of sufficiently high caliber to demonstrate qualification for the study of law. A bachelor's degree or an equivalent degree from an approved college or university must be earned prior to the time you begin work in the School.
Your application will be reviewed by the School of Law Admissions Committee, which seeks students of demonstrated academic ability, as evidenced by LSAT scores and the undergraduate grade-point average (GPA). Applicants with LSAT scores below 400 will not be considered. Applicants with LSAT scores between 400 and 450 and undergraduate GPAs below 3.0 are rarely admitted. The Committee seeks students of diverse backgrounds. Pending the resolution of present litigation, the Committee considers ethnic and economic factors, advanced degrees or other advanced studies, significant work experience, and extracurricular and community activities during and after the college years. An applicant’s growth, maturity, and commitment to the study of law are major concerns.

Students are admitted only on a full-time basis and only in August.

Law School Admission Test (LSAT)

All applicants are required to take the Law School Admission Test administered by the Educational Testing Service. Testing centers have been established for the convenience of applicants in all parts of the United States and in many foreign countries. Tests are given five times a year: February, April, July, October, and December. If at all possible, you should take the test by October, and in any event not later than December, for admission the following fall. The completed test application blank, accompanied by the fee, must be postmarked at least 30 days before the date of the test to insure being registered.

To obtain application forms, information about the test, specific test dates, and the location of testing centers, write to: Law School Admission Test, Educational Testing Service, Princeton, N.J. 08540.

Admission Procedures

Complete details of admission procedures are included in the *Official Announcement of the School of Law*.

1. Application for admission to the School of Law and to the Graduate Division of the University for the program leading to the degree of Juris Doctor should be made on forms supplied by the School. Admission forms and the School of Law bulletin may be requested from the Office of Admissions, School of Law, University of California, Davis 95616. The completed application must be returned to that same office, accompanied by a $20 nonrefundable application fee in the form of a check or money order made payable to The Regents of the University of California.

The last date for filing completed application forms, together with all supporting documents, including LSAT scores, Law School Data Assembly Service (LSDAS) reports, and letters of recommendation, is February 15 of the year in which admission is sought. Early filing of all application materials is strongly recommended and will materially assist the School of Law Admissions Committee in its considerations. No application will be considered if received after February 15 of the year in which admission is sought.

2. You should register with the LSDAS no later than December 15 by completing and mailing the registration form supplied with each LSAT/LSDAS information packet. A transcript from each college or university attended should then be sent directly to the Law School Data Assembly Service, Educational Testing Service, Box 944, Princeton, N.J. 08540, not to the School of Law.

3. An official transcript of college work completed during the first semester or quarter of the applicant’s senior year must be submitted directly to the School of Law as soon as it is available. Failure to do so may delay consideration of your application materials. Successful applicants are required to submit directly to the School of Law a final transcript showing the award of a bachelor’s degree.

4. Two letters of recommendation from objective and responsible persons to whom you are well known must be provided. At least one of these letters should come from a faculty member under whom you recently studied while in college. These letters of recommendation should be sent directly to the Office of Admissions before the Law School Admissions Committee can seriously consider your application.

5. Applicants must take the Law School Admission Test and request that the score be reported to the School. You are urged to take the test as early as possible, and in no event later than December preceding the year in which admission is sought.

6. When accepted by the School of Law, you are simultaneously admitted to the Graduate Division of the University for the program leading to the degree of Juris Doctor. If you intend to pursue studies leading to other graduate degrees, or wish to become a candidate for a Combined Degree Program (see page 124), you must make separate application to the Graduate Division of the University prior to commencing such studies.
Admission to Advanced Standing

If you have completed at least one year of work in another approved law school, you may be admitted to advanced standing with credit for not more than one year of such work. No application for advanced standing will be considered until the Office of Admissions has received transcripts for all prior law school work.

Application procedures for advanced standing are the same as described above with the addition of (1) a letter from the dean of any law school previously attended indicating that you are in good standing; (2) at least one letter of recommendation from a law professor; and (3) transcripts of all law school work. The deadline for transfer applications is July 5 of the year for which transfer is sought. Committee decisions on advanced standing are normally made in late July or August of the year in which admission is sought.

Students who have been disqualified at another law school will not be admitted to this school of law.

Minority Recruitment

The students and faculty of the UCD School of Law recognize the desperate need for minority lawyers. The School, therefore, actively solicits applications from Native American, Black, Filipino, Asian, and Chicano students. Obviously, a legal career is neither the only nor, in many instances, the most desirable way to deal with racism, poverty, and the myriad social, political, and economic problems which besiege this country—but it is one way to approach their solutions.

The School of Law, in cooperation with the Association of American Law Schools (AALS) and the Council on Legal Education Opportunity (CLEO), participates in programs designed to increase the number of minority law students. CLEO applications may be obtained by writing to: Council on Legal Education Opportunity, 818 19th Street N.W., Suite 940, Washington, D.C. 20006.

Applications for the special summer program for Native American students may be obtained from the
PROFESSIONAL CURRICULUM
AND DEGREE

The course of study in the professional curriculum requires six semesters for completion and extends over a period of three years. It is designed for full-time students only; no part-time or evening program is offered. New students are admitted only at the beginning of the Fall Semester.

When you satisfactorily complete the professional curriculum of 84 semester units, and the required period of resident study, you will be recommended for the degree of Juris Doctor.

The first year's work is prescribed and provides the essential foundation for subsequent legal study. Satisfactory completion of the first-year courses is, in all cases, a prerequisite to second- and third-year courses. The work of the second and third years is elective. Students who fail to attain satisfactory grades may be required to withdraw from the School at the end of any academic year.

Courses taken in summer sessions at other accredited law schools may, with prior permission, be credited toward the units required for the professional degree.

The courses of the professional curriculum are listed beginning on page 250.

Combined Degree Programs

Students with interests in areas such as anti-trust, business, labor law, criminal law, or ecology, may find a combined degree involving law and another discipline such as economics, business, sociology, or science advantageous. In order to encourage this kind of study, the School, in conjunction with other schools and University departments, has established Combined Degree Programs. Under these programs, a student may work toward a J.D. degree and a master's degree in another discipline at the same time. In some instances it may be possible to work on a Ph.D. degree as well.

Normally, a Combined Degree Program will take at least 3½ to 4 years. You will usually be able to earn up to 8 semester-hours of law school credit for work in the related discipline and normally can complete the combined degrees in less time than it would take to earn the two degrees separately. The first year of the Combined Degree Program is usually taken entirely in the School of Law. During the remaining years, course work may be divided between the law school and the related discipline. You must satisfy the admission requirements for both programs and file applications with both units.

Degree programs are presently available in combination with the UC Berkeley School of Business for the M.B.A. degree, and with UCD departments for the M.A. degree in economics and sociology. The law school will attempt to work out an additional program if you are interested in other disciplines. You may enroll in the Combined Degree Program any time prior
to the beginning of your third year in law school. If you are interested in pursuing a Combined Degree Program, and have made a separate application to another school or department, you should indicate this on the School of Law admission form.

Semester System

The School of Law operates on a semester system rather than the quarter system used on the remainder of the Davis campus.

Academic Calendar 1978-79

<table>
<thead>
<tr>
<th>Fall Semester 1978</th>
<th>Spring Semester 1979</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-year Introductory Pro-</td>
<td>Sun. Aug. 20</td>
</tr>
<tr>
<td>gram begins</td>
<td>Mon. Aug. 28</td>
</tr>
<tr>
<td>Law School Instruction</td>
<td>Mon. Jan. 8</td>
</tr>
<tr>
<td>begins</td>
<td>Mon. Sept. 4</td>
</tr>
<tr>
<td>Labor Day holiday*</td>
<td>Sat. Sept. 9</td>
</tr>
<tr>
<td>Working Saturday (Thursday</td>
<td>Nov. 23-24</td>
</tr>
</tbody>
</table>
| classes) | Thanksgiving holiday period* | Mon. Feb. 19
| | Spring vacation | Sat.-Sun.,
| | period | Mar. 17-25
| | Spring Semester instruction | Mon. Mar. 26
| | resumes | Fri. Dec. 8
| Law School Instruction | Fri. Apr. 27 |
| ends | Reading period | Sat.-Sun.,
| | Dec. 9-10 | Apr. 28-May 6
| | Law School examination | Mon.-Fri.,
| | period | May 7-18
| | Last day of semester | Fri. May 18
| Law School Commencement | Sat. May 19 |

*Academic and administrative holiday.

APPLICATION MATERIALS

The Announcement of the School of Law and application materials may be obtained by writing to the Office of Admissions, School of Law, 115 King Hall, University of California, Davis, California 95616.
School of Medicine

The Doctor of Medicine degree requires the satisfactory completion of a four-year course of study comprised of 15 consecutive quarters. Course work is conducted on the Davis campus, at the University of California, Davis, Medical Center, Sacramento, and in nearby affiliated hospitals.

With the start of the new academic term in June 1977, the Medical Sciences-I (MS-I) Complex opened. The new MS-I Complex provides two lecture halls each with a capacity of 170, smaller conference rooms, the Health Sciences Library, the Health Sciences Bookstore, and student lounges. A four-story, 200,000 square foot structure is primarily devoted to student laboratories, research quarters, and faculty offices.

ADMISSION POLICIES

The class entering in the fall of 1978 will be limited to 100 students selected on the basis of academic achievement and promise, as well as personal characteristics that lead the Admissions Committee to feel the candidates will be able to complete satisfactorily the requirements of the medical curriculum and become excellent medical practitioners. Factors taken into consideration include scholastic records, Medical College Admission Test performance, and reports of teachers, advisers, and interviewers with regard to intellectual capacity, motivation, emotional stability, and personal dedication.

The vast majority of openings in the entering class will be awarded to students who are legal residents of the State of California. However, a few out-of-state students may be accepted. The School of Medicine also participates in the program of the Western Interstate Commission for Higher Education (WICHE). In this program are several states which do not offer professional graduate medical education. Applicants from such states found eligible by both the School of Medicine and their own states are charged resident rather than nonresident tuition. Further information may be obtained by communicating with this Commission at Post Office Drawer P, Boulder, Col. 80302.

The School of Medicine is fully cognizant of the need for increased opportunities in medical education for individuals from disadvantaged educational and socioeconomic backgrounds. A special subcommittee of the Admissions Committee, comprised of faculty and assisted by students, has been appointed to identify and advise men and women from such backgrounds, to review applications from self-identified disadvantaged individuals, and to interview those whose applications indicate strong potential. The regular School of Medicine application procedures should be followed by these applicants.

Transfer with Advanced Standing

A few openings may be available for students from other medical schools who wish to transfer into the third year of the curriculum. Students are not considered for transfer into the second or fourth years of the curriculum. If you wish to apply for transfer, write directly to the Chairperson of the Admissions Committee for an application. Applications must be submitted by January 1. The third-year class commences its work early in July.

If you are applying from a foreign medical school, you are required to submit the results of Part I of the examination given by the National Board of Medical Examiners.
Application Procedures

The School of Medicine participates in the centralized American Medical College Application Service (AMCAS). Application request forms are available from the School's Admissions Office after March 15 of each year. You may also secure this form from other AMCAS-participating medical schools or from your premedical adviser. You need to submit only one application and one set of official transcripts to AMCAS, regardless of the number of member schools to which you are applying.

Upon receipt of the application request form, AMCAS will send you an application for admission, together with descriptive material and instructions. The completed application and other required credentials should be submitted directly to AMCAS for verification, reproduction, and immediate distribution to the medical schools you have indicated.

After the AMCAS application has been received by the School of Medicine, the Admissions Office will notify you and may request letters of recommendation and a nonrefundable fee of $20. These items should be sent directly to the Chairperson of the Admissions Committee, School of Medicine, University of California, Davis, Ca. 95616, and not to the AMCAS. Recommendations can be in the form of a report by a premedical advisory committee at the college or university where you are enrolled or letters from two faculty members who are familiar enough with you and your abilities to make a meaningful evaluation. It is required that one such letter be from a science instructor and the other from a non-science instructor. In addition, you may be requested to authorize your physician to furnish health information to the Admissions Committee.

Applications will be accepted by the Admissions Committee between June 15 and November 1. It is strongly recommended that you make an early request for application materials from AMCAS and see that the necessary supporting items reach the Committee as soon as possible after the School of Medicine notifies you of receipt of your completed application from AMCAS. The Committee reviews only complete application files and schedules interviews for highly qualified applicants throughout the application period and beyond. Early processing is normally advantageous to an applicant.

A personal interview is required before a place in the first-year class can be offered. However, because of the large number of applicants, it is not possible to interview each one, and for this reason interviews are held only at the invitation of the Admissions Committee. It is highly desirable that interviews take place at the medical school in order to provide you with first-hand knowledge of programs and facilities and give you the opportunity to meet some of the students. Where circumstances warrant, interviews may be arranged by the Admissions Committee at other locations.

You will be notified of the status of your application for admission as early as possible. The majority of accepted applicants will be notified December 15, January 15, February 15, or March 15.

Premedical Requirements

Arrangements for taking the New Medical College Admission Test should be made at the institution at which you are presently enrolled, and the Examining Board should be requested to forward the results to the Chairperson of the Admissions Committee, UC Davis School of Medicine. Information about the test can be obtained at your undergraduate college or directly from MCAT Registration, Box 414, Iowa City, Iowa 52240. It is desirable that the results of the test be available at the time your qualifications are reviewed. The Admissions Committee recommends that, if feasible, tests be taken in the spring prior to application.

Applicants for admission to the professional curriculum must have satisfactorily completed a minimum of three years (90 semester units; 135 quarter units) of college-level work in an accredited school in the United States or Canada. In most instances, however, completion of a four-year course of study leading to a bachelor's degree is recommended.

Although a specific major in science is not necessary, the following course content at college level is required:

a. English, one year or the equivalent
b. Biological science, one year (including laboratory) or the equivalent
c. General chemistry, one year (including laboratory) or the equivalent
d. Organic chemistry, one year or the equivalent (If two or more undergraduate organic courses are offered, it is recommended that you elect the more rigorous option.)
e. Physics, one year or the equivalent
f. Mathematics, through integral calculus

Upon matriculation, each applicant must have both an overall grade-point average and science grade-point average of at least 3.0 (on a scale where one credit
hour of $A = 4$ points). In calculating grade-point averages, such courses as physical education, military science, and courses taken for graduate degrees will be excluded. Grades of D in any of the required courses cannot be accepted. Required courses may not be taken on a Passed/Not Passed basis unless all courses at your undergraduate institution are graded this way.

While the minimal overall and science GPA requirements at the UCD School of Medicine have been established at 3.0, in exceptional cases a special waiver may be granted by the Faculty of the School of Medicine through the action of the Executive Committee and at the recommendation of the Chairperson of the Admissions Committee.

Applications may be submitted on the basis of work completed plus work in progress. However, all academic requirements must be completed by June 30 of the year for which admission is sought.

Although the minimum scholastic requirements are stated in some detail, it should not be inferred that admission is assured each applicant who meets these requirements. In addition to a high level of academic competence, many other factors which determine success in pursuing a career in medicine are given full weight by the Admissions Committee before it reaches a final decision.

For additional information, contact the School of Medicine Admissions Office or request the School of Medicine Bulletin from the medical school Admissions Office.
The Doctor of Veterinary Medicine (D.V.M.) degree is granted upon completion of a course of study that usually requires eight years. The final four years must be spent in the professional veterinary medical curriculum. Most students planning a career in veterinary medicine broaden their educational experience by completing the baccalaureate degree before applying to the professional school.

PREPROFESSIONAL TRAINING AND REQUIREMENTS

Applicants must complete the equivalent of at least three full academic years in an accredited college or university before entering the School of Veterinary Medicine. At the time of application, this work must include at least 45 of the 58 quarter units of required science courses listed below.

You should plan your preveterinary medical education carefully. The required courses should be spaced to permit maximum scholastic achievement. The undergraduate program should include plans for obtaining a baccalaureate degree. An undergraduate major should be selected on the basis of individual interest and aptitude; there is no advantage gained toward admission by selecting one major over another.

Many students planning to enter veterinary school have definite areas of interest within the general field of veterinary medicine. These individuals are encouraged to take courses which will broaden their background in these areas. Some specialized areas include laboratory animal medicine, exotic animal medicine, public health, food animal diseases, and biomedical research. Animal experience is considered an important part of your preprofessional training.

Subject Requirements

<table>
<thead>
<tr>
<th>Subject</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry (general, qualitative, organic,</td>
<td>24</td>
</tr>
<tr>
<td>and biochemistry)</td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Physics (general)</td>
<td>9</td>
</tr>
<tr>
<td>Physiology (systemic)</td>
<td>5</td>
</tr>
<tr>
<td>Biology, zoology, embryology (including</td>
<td>17</td>
</tr>
<tr>
<td>laboratories)</td>
<td></td>
</tr>
<tr>
<td>English composition and additional</td>
<td></td>
</tr>
<tr>
<td>English or rhetoric</td>
<td>8</td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
</tr>
</tbody>
</table>

Following is a list of courses taught on the UC Davis campus which fulfill the preceding subject requirements.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1</td>
<td>(5)</td>
</tr>
<tr>
<td>Physiological Sciences 101A or</td>
<td></td>
</tr>
<tr>
<td>Biochemistry 101A</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 1A, 1B, 1C, 8A, 8B</td>
<td>(5,5,3,3)</td>
</tr>
<tr>
<td>English 1 and additional English</td>
<td>(4,4)</td>
</tr>
<tr>
<td>or rhetoric</td>
<td></td>
</tr>
<tr>
<td>Genetics 100A or 120</td>
<td>(3)</td>
</tr>
<tr>
<td>Mathematics 13 or Agricultural Science</td>
<td></td>
</tr>
<tr>
<td>and Management 150</td>
<td>(4,3)</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>(3,3,3)</td>
</tr>
<tr>
<td>Physiology 101 or 110A-110B-110C</td>
<td>(5)</td>
</tr>
<tr>
<td>Zoology 2-2L, 100-100L</td>
<td>(4-2, 4-2)</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
</tr>
</tbody>
</table>

If you complete the requirements in an institution other than the University of California, Davis, you are urged
to check carefully the catalog of your college to be sure you are taking courses comparable in content.

Application Procedures

Students are admitted to the School of Veterinary Medicine only in the fall. Completed applications must be filed with the School by November 1 in order to be considered for the beginning class in the fall of the following year. All required courses must be completed prior to the time you plan to begin the professional curriculum. Application forms may be obtained any time after August 15 from the Associate Dean—Student Services, School of Veterinary Medicine, University of California, Davis 95616.

Admission to the School of Veterinary Medicine

Evaluation is based on academic and nonacademic records. The academic record is divided into required science grade-point average, accumulative grade-point average, and the grade-point average for the last year of undergraduate studies. The scores from the Graduate Record Examination are included in the evaluation of your academic record. The principal nonacademic criteria are animal experience, your narrative statement, and letters of evaluation. Other criteria considered helpful by the Faculty Committee and Dean of the School of Veterinary Medicine may be used in the selection process. The minimum acceptable grade-point average for an applicant to be considered for admission to the School is 2.5.

Since scholastic achievement, particularly in the required courses, is a very important criterion for admission to the School of Veterinary Medicine, you are cautioned to use the Passed/Not Passed option sparingly.

Work-experience with animals and a familiarity with the veterinary medical profession are considered significant factors in demonstrating motivation and a sincere interest in the profession. Comprehensive letters of evaluation are an important consideration in the review of an application.

In view of the demand from California residents for admission to the School of Veterinary Medicine—each year there are 5 to 6 applications from Californians for each of the 128 first-year openings—and since it is virtually impossible for a California resident to gain admission to a veterinary school elsewhere, it is the stated policy of the University that with only rare exceptions admission to the School is limited to California residents. The criteria for determining residency are explained on page 329. Specific questions should be addressed to the Attorney-in-Residence Matters, 590 University Hall, University of California, Berkeley 94720. No other persons are qualified to give rulings on residency. In cases where exceptions are made, first preference is given to residents of states participating in the Western Interstate Commission for Higher Education (WICHE). For this reason, an application form will be available only to California residents and individuals from WICHE states. Students residing in WICHE states that do not have a school of veterinary medicine and who wish to participate in this program must be certified by their home state. For the address of state certifying officers, write to the Western Interstate Commission for Higher Education, Post Office Drawer P, Boulder, Colorado 80302.

Men and women are considered on an equal basis. Socially and economically disadvantaged students are encouraged to apply. Applicants will be notified about April 15 regarding their admission status.

DEGREES

Requirements for the Bachelor of Science Degree

Any student in the School of Veterinary Medicine who does not hold a baccalaureate degree, but has satisfactorily completed the first two years of the professional curriculum and has satisfied the general University requirements (see page 65), is eligible to receive a Bachelor of Science degree in Veterinary Science.

Requirements for the Doctor of Veterinary Medicine Degree

A candidate for the Doctor of Veterinary Medicine degree must comply with the following requirements:

- Fulfill the academic standards set forth by the Faculty of the School of Veterinary Medicine
- Possess good moral character
- Study veterinary medicine for the equivalent of 12 quarters of 12 weeks each (the last six quarters must have been spent in the School of Veterinary Medicine, University of California, Davis)
- Maintain a grade-point average of 2.0 (C), computed on all courses taken in School
- Satisfactorily complete all required work as determined by the Faculty of the School
The Master of Preventive Veterinary Medicine Degree

Applicants must hold the Doctor of Veterinary Medicine degree or equivalent degree from an accredited school of veterinary medicine, and be recommended for admission by the faculty committee in charge of the program. Candidates for the degree must satisfactorily complete in residence a minimum of 45 quarter units of approved course work. The program, consisting of a group of required core courses and optional electives, is scheduled over a 12-month period beginning in August. Admission is limited to the beginning date of the program each year.

Specific fields of emphasis are epidemiology, medical statistics, and disease control and eradication. Program options are available for specialization in food hygiene, avian medical practice, and in other areas of preventive veterinary medicine. The program commences with five weeks of instruction in Elementary Statistics prior to the beginning of the Fall Quarter, and is completed after a 10-week period of research and field studies subsequent to the completion of the Spring Quarter.

Inquiries regarding the program should be directed to the Office of the Dean, School of Veterinary Medicine, University of California, Davis, California 95616.

The Master of Science and Doctor of Philosophy Degrees

General information regarding these degrees will be found in the Announcement of the Graduate Division, which may be obtained from the Graduate Division at Davis. Additional detailed information may be obtained by writing the chairperson of the department in which you wish to study.
Majors and Courses

Explanatory Note

ACADEMIC CREDIT

Academic work at the University is measured by "units of credit." In conjunction with the letter grade you receive from the course instructor, units of credit give a fairly accurate evaluation of the amount of time you have devoted to a given subject. Units of credit also make it possible to anticipate the amount of work involved in a particular course, as well as enabling you to transfer from one campus or university to another without undue difficulty.

The way units of credit are assigned to courses is based on the "Carnegie unit" which assigns one unit of credit for three hours of work by the student per week. Usually this means one hour of lecture or discussion led by the instructor and two hours of outside preparation by the student. In laboratory courses, two or three hours of work in the laboratory are normally assigned for one unit of credit.

In most courses at Davis the standard procedure prevails, so that a three-unit course meets for three hours a week, a four-unit course for four hours, and so on. Courses that are an exception to this pattern may require additional class time or give more demanding assignments. If you have questions about the number of units assigned to a course you should check the "Expanded Course Descriptions" (if your college or department provides them) or inquire from the instructor about what the course will require in the way of outside reading, term papers, problem sets, field trips, and the like. These are not always spelled out completely in the General Catalog. By knowing the amount of work which will be required, you can plan your course-load more systematically and realistically.

COURSE DESIGNATIONS

The Class Schedule and Room Directory, available several weeks before the beginning of each quarter, gives class hours and room numbers, as well as the most up-to-date information on registration and enrollment procedures. A supplement with changes to the General Catalog and Class Schedule is available near the time of enrollment each quarter.

In the course listings which follow, the quarter in which a course is intended to be given is shown as follows:

I. Fall Quarter (September to December)
II. Winter Quarter (January to March)
III. Spring Quarter (April to June)
IV. Summer Quarter (July to September) for students in the School of Medicine only

When a course is listed to be offered in even-numbered years or odd-numbered years only, the year involved would be that in which the quarter occurs: e.g., Fall Quarter 1978 would be an even-numbered year and Winter and Spring Quarters 1979 would be odd-numbered years.

A series of course numbers followed by two or three letters (for example, Spanish 101A-101B-101C) is continued through three successive quarters, ordinarily from September to June. The first quarter course listed this way is generally prerequisite to the second, and the second to the third. On the other hand, where A and B portions of a course are listed separately (for

*Courses in the School of Law:
I. refers to Fall Semester (August - December)
II. refers to Spring Semester (January - May)
example, Economics 102A and 102B), the A course is not a prerequisite to B, unless it is specifically mentioned in the listing of prerequisites.

PREREQUISITES
Prerequisites for courses should be noted carefully; the responsibility for meeting these requirements rests mainly on the student. Certain classes are restricted to a limited number of students, and therefore it is especially important that you fulfill the prerequisites by the time the class begins. Otherwise, you may be displaced by a student who does have the necessary prerequisites. If you can demonstrate that your preparation is equivalent to that specified by the prerequisites, the instructor may waive these requirements for you.

UNDERGRADUATE COURSES

Lower-Division Courses
These courses, numbered 1-99, are open to all students for lower-division credit, but are designed primarily for freshmen and sophomores.

Variable-Unit Courses (see below for enrollment procedures) are primarily student-designed and the amount of credit given varies:

- 97T (Tutoring) and 97TC (Tutoring in the Community) are courses for students desiring to tutor in a subject in which they are proficient—generally in their major field—while enrolled as an undergraduate.

- 98 (Directed Group Study) courses are set up on a one-time basis for a group of students in a subject for which no regular courses have been established.

- 99 (Special Study for Undergraduates) is a course arranged for an individual student who shares with an instructor an academic interest which cannot be accommodated within the formal course structure.

Autotutorial Courses are courses in which students instruct themselves at their own pace. These courses can be identified by the letters AT on their course numbers, e.g., 1ATA-1ATB-1ATC, 31ATA, 31ATB.

Upper-Division Courses
These courses, numbered 100-199, are open to all students who have met the necessary prerequisites as indicated in the Catalog course description. Preparation should generally include completion of one lower-division course in the given subject or completion of two years of college work.

Variable-Unit Courses (see below for enrollment procedures) for upper-division credit include:

- 194H (Special Study for Honors Students) courses are for individual students with honor status, as determined by the department offering the course, and who have completed 84 units.

- 197T (Tutoring) and 197TC (Tutoring in the Community) are the upper-division counterparts of 97T and 97TC.

- 198 (Directed Group Study) courses are the upper-division counterparts of course 98, and are for students judged to have adequate background in the subject proposed for study.

- 199 (Special Study for Advanced Undergraduates) courses are the upper-division counterparts of course 99, and involve supervised independent study and research courses requiring adequate background in the subject proposed for study as well as prior completion of 84 units.

Autotutorial Courses are courses in which students instruct themselves at their own pace. These courses can be identified by the letters AT on their course numbers.

Registration for Variable-Unit Courses
Registration in the above variable-unit courses (numbered 97T, 97TC, 98, 99, 194H, 197T, 197TC, 198, 199) must be approved by the chairperson of the department concerned based on a proposal submitted by the instructor in charge. The subject matter in these courses must fall within the instructor's professional competence. These courses, unless otherwise noted, are graded on a Passed/Not Passed basis only. Under special circumstances, an instructor may request from the appropriate college or school Committee on Courses of Instruction approval to award letter grades (except 99, 199 courses). The request must be submitted by the instructor within the first ten days of instruction of the quarter in which the course is offered. Such requests, however, are not automatically approved.

In Special Study Courses (numbered 99, 194H, 199), credit is limited to a total of five units per term.
GRADUATE COURSES

Courses numbered 200–299 are open to students who have completed 18 units of upper-division work basic to the subject matter of the course. However, admission is subject to the approval of the instructor in charge of the course. Grading in variable-unit 299 and 299D courses is Satisfactory/Unsatisfactory.

PROFESSIONAL COURSES FOR TEACHERS

Courses numbered 300–399 are teacher-training courses in the Department of Education and in other departments and are especially intended for teachers or prospective teachers.

OTHER PROFESSIONAL COURSES

Courses numbered 400–499 are in departments and schools other than the Department of Education.

Note: Undergraduates should refer to their college's section regarding any restrictions on degree credit for courses in 200, 300, and 400 series.

INDEPENDENT STUDY PROGRAM

Information:
Independent Study Program
314 Sproul Hall
752-1977/2257

The Independent Study Program is intended to provide an opportunity for upper-division students to design and pursue a full quarter (12–15 units) of individual study in an area of their special interest.

Under the current system of numbering courses, a program qualifying as Independent Study will consist of one or more courses in the 190–199 series, adding up to a quarter's work. While the theme of such a program may be reasonably broad, a recognizable common thread should unite all the academic work you undertake during an independent study quarter. Regularly offered formal courses will therefore only be acceptable as a part of such a program if they clearly fit its theme and contribute something essential toward the realization of its objectives. The program is definitely not to be considered merely a way to take more variable-unit courses than normally permitted.

The procedure for enrolling in an Independent Study Program is as follows:

1. Develop in general terms a plan of study;
2. Locate a faculty sponsor or panel of sponsors, and with their help and approval develop a detailed plan;
3. Complete a project proposal form (obtained from the dean of your college) and submit it to the Independent Study Committee either directly or through the dean's office.

Deadlines will be about two weeks prior to the final enrollment date in the quarter preceding the proposed independent study quarter (see the Calendar on page 6).

You must report the completion or termination of the project to the Independent Study Committee, which may request additional materials if they were provided for in the project proposal.

For further information contact the chairperson of the Independent Study Committee, A. E. McGuinness, (English Department), in person or by phone.

INDIVIDUAL MAJOR PROGRAMS

Opportunities for interdisciplinary programs tailored to your own educational objectives are offered by the "Individual Major" in the Colleges of Agricultural and Environmental Sciences, Engineering and Letters and Science (see page 246).

WORK-LEARN PROGRAMS

Students may undertake a work-learn internship under courses in the College of Agricultural and Environmental Sciences (Work-Learn 192) and College of Engineering (Engineering 92 and 192). Other courses are found under departmental listings (see, for example, Applied Behavioral Sciences, Art, American Studies, Education, English, Family Practice, Geography, History, Political Science, Psychology, Rhetoric, and Spanish). Some 198 and 199 courses can be adapted to work-learn experiences by arrangement with a faculty member. For further information consult your adviser or the campus Work-Learn and Career Planning and Placement Center (see page 35).

EXTRA-SESSION COURSES

Regularly approved courses (laboratory, field, or other individual work) done outside of a regular session but under the direction of a department of instruction may be accepted upon the recommendation of the department in partial fulfillment of the residence requirement for the bachelor's degree. Enrollment is with the consent of the instructor only.
SUMMER SESSIONS

If you are a regularly enrolled student or are planning to enroll for the Fall Quarter, you can receive credit toward the degree in Summer Sessions courses (see page 19 for more information).

It is also possible for students to gain credit for courses taken during the summer at other institutions, provided the courses parallel those given in the University of California. Assurance that such credit will be accepted, however, can be given only after the courses have been completed. You should arrange to have the transcripts of your summer session grades sent to the Registrar for evaluation.

CONCURRENT COURSES

Where classroom space permits and the instructor gives permission, enrollment may be granted to members of the community in regular courses offered on the Davis campus. Such work may be used for admission consideration and for degree recognition. See page 53 for more information.

UNIVERSITY EXTENSION COURSES

Simultaneous enrollment in resident courses and in Extension courses is permitted only with the approval of the dean of your college or school. Credits may also be earned, but previous authorization is necessary.

KEY TO FOOTNOTE SYMBOLS

The following symbols are used throughout the Majors and Courses section to indicate:

- Not to be given 1978-79
- 1 Absent on leave, 1978-79
- 2 Absent on leave, Fall Quarter 1978
- 3 Absent on leave, Winter Quarter 1979
- 4 Absent on leave, Spring Quarter 1979
- 5 In residence at President's Office (Systemwide Administration)
- 6 In residence at Irvine campus

The course offerings listed in this catalog are subject to change without notice. For more current information, refer to the quarterly Class Schedule and Room Directory available in the UCD Bookstore.
A coordinated program of upper-division courses, selected and approved in consultation with the major adviser to include:

Consist of: Afro-American Studies 101A, 101B, 105 or 120, 110 16
Additional upper-division units chosen to reflect the student's major emphasis 24
Total Units for the Major 78

Major Program Emphasis
The following areas of emphasis are offered as a guideline for students interested in majoring in Afro-American Studies.

Culture of Afro-Americans emphasis:
Anthropology 140; Afro-American Studies 107, 120, 121; History 177; Political Sciences 167.

African emphasis: Anthropology 139A, 139B; Afro-American Studies 105, 106, 107; History 115A, 116; Political Science 134, 146.

The above areas of emphasis are not the only areas students may choose for the Afro-American Studies major. However, it should be noted that the major program must (a) be developed in consultation with an Afro-American Studies faculty member, and (b) approved by the Program's major adviser. Information regarding the above areas of emphasis may be obtained from the Afro-American Studies Office (752-1548).

Related Upper Division Courses
Students who contemplate majoring in Afro-American Studies are advised that the following courses are offered by faculty members in other disciplines and focus on African and Afro-American people and their culture.

Major Adviser: J. R. King (752-1886). Teaching Credential Subject Representative. See page 111 for the Teacher Education Program.

American History and Institutions. This University requirement can be satisfied by completion of Afro-American Studies 10, 100, 120, 121. (See also page 66.)

Courses in Afro-American Studies

Lower Division Courses
10. Introduction to Afro-American Studies (4) I, II, King.
Lecture—4 hours. Introduction to a range of Afro-American Studies materials dealing with black social, religious, economic, migratory, and political movements of the late nineteenth through the twentieth century.

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge).
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses
100. Ethnic Studies (3) I, II. The Staff.
Lecture—3 hours. The history, culture, philosophy, and current problems of groups considered ethnic minorities in the United States as viewed by the groups themselves.

101A. Introduction to Research in the Afro-American Community (4) I, Mack.
Lecture—4 hours. Prerequisite: course 10 or consent of instructor. Introductory survey of Afro-American Studies methods and techniques; problems and methodology in Afro-American Studies.

101B. Methodologies and Modes in Afro-American Studies (4) II, Mack.
Seminar—4 hours. Prerequisite: course 101A. A seminar which provides an opportunity to develop academic skills through research methods, using data applicable to Afro-American Studies. Problem solving approaches utilizing the Black experience will be examined.

101C. Contemporary Research in Afro-American Studies (4) III, Mack.

106. From Africa to the Americas (4) II, The Staff.
Lecture—4 hours. An exploration of the dimensions of slave trade in the Americas.

Lecture—4 hours. Prerequisite: course 106 or 110 or consent of instructor. Analysis of African cultural systems as they adapted to slavery system after they transferred to the Americas.

110. West African Social Organization (4) I, King.
Prerequisite: course 101 or consent of instructor. Ecology, population, social organization, and survival culture of West Africa in the pre-colonial, colonial, and post-colonial periods.

120. Afro-America: Pre-Emancipation (4) II, King.
Lecture—4 hours. Prerequisite: course 10 or consent of instructor. Ecology, social organization, and survival culture of Afro-America. Historical and comparative study of Afro-American populations in relation to other groups.

121. Afro-America: Post-Emancipation (4) III, King.
Lecture—4 hours. Prerequisite: course 10 or 120 or consent of instructor. Analysis of contemporary Afro-American cultural adaptations and social organizations within the United States.

197T. Tutoring in Afro-American Studies (1-5) I, II, III. The Staff (Chairperson in charge).
Prerequisite: consent of major committee. Upper division standing with major in Afro-American Studies. Leading small voluntary discussion groups affiliated with one of the department's regular courses. Course may be repeated for credit up to a total of 6 units. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge).
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge).
Prerequisite: consent of instructor. Directed reading and discussion of selected topics in Afro-American Studies. (P/NP grading only.)

Professional Course

300. Afro-American Studies for Teachers (4) III, Mack.
Lecture—4 hours. Prerequisite: consent of instructor. Methods of establishing, organizing, and teaching Afro-American Studies. Designed for professional and pre-professional students who will be teaching black and/or ethnic studies in elementary and secondary schools.
Agrarian Studies; Agricultural and Home Economics Education

Agrarian Studies

(College of Agricultural and Environmental Sciences)

The Major Program

Agrarian Studies is a multi-disciplinary program designed for students who seek the "broader-view" and are challenged by the scientific, philosophical, and cultural concepts important to an understanding of agriculture and its relationship to man. Through a purposeful integration of science and the humanities the major provides a sound general education important for effective leadership in agriculture and in many agriculturally or environmentally related aspects of business, government, international services, or teaching. Depth of understanding in your field of agricultural interest is achieved by the selection of specialized courses and in work experience that can be gained in programs offered by Bixby Work-Learn or the campus Work-Learn Center.

With appropriate selections of a field of emphasis and electives, you may also prepare for admission to graduate study or a professional school.

Agrarian Studies

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Units</th>
<th>Social Sciences and Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Courses selected in consultation with an adviser and designed to develop an understanding of agriculture in the context of man and his cultural evolution. To include, but not limited to, courses in agricultural history, linguistics, and the communicative arts, philosophy of science, anthropology and/or geography, political and/or economic principles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Natural Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Courses selected in consultation with an adviser to specify the student's understanding of the scientific disciplines and biological systems important to modern, evolving agriculture. The program is to include, but is not limited to, courses in chemistry, biochemistry, and related fields in agriculture, mathematics (statistics and/or calculus), biological sciences (general biology and/or botany, genetics, microbiology or zoology), ecology, and the earth sciences.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Agricultural Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Agrarian studies (Agrarian Studies 2, 188). Courses chosen to provide a depth of understanding in one of the following or closely allied fields: agricultural economics, animal sciences, food sciences, plant sciences, resource sciences.</td>
</tr>
</tbody>
</table>

Agricultural and Home Economics Education

(College of Agricultural and Environmental Sciences)

Faculty

See under the Department of Applied Behavioral Sciences.

Major Programs and Graduate Study. See majors in Home Economics (page 244) and Agricultural Education (page 144) and page 105 for graduate study.

Courses in Agricultural and Home Economics Education

Questions pertaining to the following courses should be directed to the instructor or the Department of Applied Behavioral Sciences, 119 AOB-4.

Upper Division Courses

180. Vocational Education (3) J. G. Leising Lecture—3 hours. Philosophy and organization of vocational education, with particular reference to educational principles for agriculture commerce, home economics and industry.

161. Multi-Media Communication (2) IL Discussion—2 hours. Prerequisite: upper division or graduate standing and consent of instructor. Study of materials and procedures used in instructional presentations. Includes collecting, organizing, presenting, and evaluating community resources.

199. Directed Group Study (1-5) II, III, III. The Staff (Thompson in charge). (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) II, III. The Staff (Thompson in charge). (P/NP grading only.)

Professional Courses

300. Curriculum and Instruction: Home Economics (9) J. G. Leising Lecture—2 hours. Prerequisite: Applied Behavioral Sciences 191A. Examination of basic concepts underlying the determination of objectives, selection, and organization of home economics instruction, materials and resources, and the evaluation process.

306A. Instruction in Secondary Schools: Agriculture (3) J. G. Leising Lecture—1 hour; discussion—1 hour; laboratory—2 hours. Prerequisite: acceptance into the Teacher Education Program; course 306B (concurrently). Planning and organizing an effective curriculum for teaching agriculture. Selection, evaluation and evaluation of instructional materials. Use of audio-visual aids and appropriateness of methods of teaching.

306B. Teaching in Secondary Schools: Agriculture (5-15) I, II, Leising Lecture—1 hour; discussion—1 hour; laboratory—2 hours. Prerequisite: Applied Behavioral Sciences 191C or the equivalent; acceptance into the Teacher Education Program; course 306A (concurrently). Directed teaching including supervision of occupational experience programs, and youth activities in secondary schools or community colleges.

307A. Instruction in Secondary Schools: Home Economics (3) J. G. Leising Seminar—3 hours. Prerequisite: acceptance into the Teacher Education Program; course 307B (concurrently). Techniques for developing, implementing, and evaluating classroom teaching strategies and curriculum directions. (Deferred grading only, pending completion of sequence.)

307B. Teaching in Secondary Schools: Home Economics (5-15) I, II, Leising Seminar—3 hours. Prerequisite: Applied Behavioral Sciences 191C or the equivalent; course 306B, acceptance into the Teacher Education Program; course 307A (concurrently). Directed teaching in home economics programs in secondary schools or community colleges. (Deferred grading only, pending completion of sequence.)

320A. Instructional Materials and Procedures (1) I, II, III Discussion—laboratory—3 hours. Prerequisite: upper division or graduate standing and consent of instructor. Directed study of selected materials and procedures used in instructional presentations. Use of audio-visual aids. (P/NP grading only.)

320B. Instructional Materials and Procedures (1) I, II, III Discussion—laboratory—3 hours. Prerequisite: course 320A or consent of instructor. Directed study of materials and procedures used in presentations. (P/NP grading only.)

Agricultural and Managerial Economics

(College of Agricultural and Environmental Sciences)

The Major Program

Agricultural and Managerial Economics focuses on the student's understanding of the total economic and social environment through study of the agricultural, biological, physical, and social sciences. The major offers an option of two areas of specialization: (a) Agricultural Economics and (b) Managerial Economics.

The Agricultural Economics options is preprofessional, essentially preparation for continued study at the graduate level. The emphasis is on the theoretical aspects which lie behind decisions concerning production, marketing, use of resources, prices, and policy. Supplemental courses are offered in statistics, effects of governmental policy, rural appraisal, and related topics.

The Managerial Economics option, while considering the theoretical, deals more with the practical managerial problems. Emphasis is on the decision-making function of management, use of scientific management controls and organization, personnel policies, and procurement and marketing methods.

Both options prepare graduates for professional management positions in financial and research institutions not necessarily limited to agriculture.

Agricultural and Managerial Economics

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (usually 1, 2, 3, 4A, 4B, 5, or 5P)</td>
<td>4</td>
</tr>
<tr>
<td>Rhetoric (usually 1 or 2)</td>
<td>4</td>
</tr>
<tr>
<td>American History and Institutions</td>
<td>8</td>
</tr>
<tr>
<td>Economic Principles (Economics 1A-1B)</td>
<td>10</td>
</tr>
<tr>
<td>Accounting (Economics 11A-11B)</td>
<td>7</td>
</tr>
</tbody>
</table>

Students meeting the American History and Institutions requirement may substitute social sciences as interpreted under the Social Sciences Breadth Subject Matter requirement.

Students graduating with this major are required to maintain at least a C average (2.0) in all Agricultural Economics, Consumer Economics, and Economics courses taken at the University.

Agricultural Economics 190A-190B is required for students seeking Departmental Honors at graduation. Consult adviser for details.

Statistics (Mathematics 13 or Economics 12) 4-5
Mathematics including calculus 6

Depth Subject Matter† 47-49
Theory: Agricultural Economics 100A, 100B 8
Statistics: choose two from Agricultural Economics 106A, 106B, and 155 7-8
One of two options:

(a) Agricultural Economics (Preprofessional) 33
Mathematics 168
Agricultural Economics 108 11
Economics 101 11
Additional upper division agricultural economics and economics 12

(b) Managerial Economics 32
Agricultural Economics 18
Restricted electives: choose 12 units from Agricultural Economics 112, 117, 136, 157, 171A, 171B 16

Breadth Subject Matter 32
Agriculture (excluding agricultural economics and consumer economics) 12
Natural sciences (including mathematics beyond preparatory subject matter) 10
Social sciences (excluding economics, history, and philosophy) 10
Required: 8 units in one area and 12 units in each of the other two.

Unrestricted Electives 55-58
Total Units for the Major 180

Recommended Courses
Students should contact departmental advisers for up-to-date lists of courses which are acceptable for the breadth subject matter requirement.

Graduate Study. See page 105.

Agricultural Chemistry (A Graduate Group)

Lloyd L. Ingraham, Ph.D., Chairperson of the Group
Group Office, 115 Briggs Hall

Faculty
Includes members from various departments in the College of Agricultural and Environmental Sciences.

Graduate Study The Graduate Group in Agricultural Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees. Detailed information regarding graduate study may be obtained by writing the Group Chairperson.

Graduate Advisers. See Class Schedule and Room Directory.

Related Courses. See Biochemistry 205; Environmental Toxicology 203, 220, 220L; Food Science and Technology 211, 250, 251; Soil Science 215; Viticulture and Enology 219.

Courses in Agricultural Chemistry

Graduate Courses

290. Seminar (1) I, II, III. The Staff (Ingraham in charge) Seminar—1 hour. Selected topics in Agricultural Chemistry, presented by students. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Ingraham in charge)
Prerequisite: consent of instructor. The chemistry and biochemistry of foods, nutritional chemicals, pesticides, and other special topics as they apply to agricultural chemistry.

299. Research (1-12) I, II, III, Summer. The Staff (Ingraham in charge)
Arrangements should be made well in advance with a member of the Group in Agricultural Chemistry. (SU grading only.)

Agricultural Economics

(College of Agricultural and Environmental Sciences)

Benjamin C. French, Ph.D., Chairperson of the Department
Department Office, 118 Voorhees Hall (752-1517)

Faculty
Bayford D. Butler, M.S., Lecturer
Hoy F. Carman, Ph.D., Professor
Harold O. Carter, Ph.D., Professor
Robert A. Collins, Ph.D., Assistant Professor
James H. Cohern, Ph.D., Lecturer
D. Barton DeLoach, Ph.D., Professor Emeritus
Jerry Foytik, Ph.D., Professor
Benjamin C. French, Ph.D., Professor
Varden Fuller, Ph.D., Professor Emeritus
B. Delworth Gardner, Ph.D., Professor
Leon Garoyan, Ph.D., Lecturer
Richard D. Green, Ph.D., Assistant Professor
David E. Hansen, Ph.D., Associate Professor
James L. Hedge, Ph.D., Professor Emeritus
Gerald L. Horner, Ph.D., Lecturer
Richard E. Howitt, Ph.D., Assistant Professor
Edward V. Jesse, Ph.D., Lecturer
Stanley S. Johnson, Ph.D., Lecturer
Warren E. Johnston, Ph.D., Professor
Desmond A. Jolly, Ph.D., Lecturer
Gordon A. King, Ph.D., Professor
*John E. Kushman, Ph.D., Assistant Professor
Sylvia Lane, Ph.D., Professor
Elmer W. Learn, Ph.D., Professor
Samuel H. Logan, Ph.D., Professor
Philip L. Martin, Ph.D., Assistant Professor
Alexander F. McCaffa, Ph.D., Professor
Chester O. McCorkle, Jr., Ph.D., Professor
Charles McGahan, LL.B., J.D., Lecturer
Charles V. Moore, Ph.D., Lecturer
Quirino Paris, Ph.D., Associate Professor
Rulon D. Pope, Ph.D., Assistant Professor
A. Doyle Reed, Ph.D., Lecturer

NOTE: For key to footnote symbols, see page 138.
Courses in Agricultural Economics

106A. Quantitative Methods in Agricultural Economics (4) I, Zilch; II, Green

Lecture—4 hours discussion—1 hour. Prerequisite: Mathematics 13. Statistical methods for analyzing quantitative agricultural economics data; descriptive statistics, probability, hypothesis testing, statistical inference, and sampling analysis.

106B. Quantitative Methods in Agricultural Economics (4) II, King; III, Kushner

Lecture—3 hours discussion—1 hour. Prerequisite: course 106A. Statistical methods for analyzing qualitative agricultural economics data: linear and multiple correlation and regression analysis.

108. Regional Analysis: Location and Trade (3) III, Kushner

Lecture—3 hours, prerequisite: course 100B. Theory of regional specialization, location, and trade for agricultural products; general economic equilibrium.

112. Fundamentals of Business Organization (4) I, II, Logan

Lecture—2 hours discussion—2 hours. Prerequisites: upper division standing or consent of instructor. The role of organizational structure, management, and public agencies. Principles of planning, decision making, individual behavior, motivation, leadership, informal groups, conflict and change in the organization.

113. Fundamentals of Marketing Management (4) I, II, Carman

Lecture—4 hours. Prerequisite: Economics 1A. Intended for non-majors. Nature of marketing, product and service design, pricing and demand; new product development and marketing strategy; promotion and advertising; product life cycles; the distribution system; manufacturing, wholesaling, retailing, government regulation and restraints. Students having had course 156 may not receive credit for this course.

114. Production Management (4) III, Carman

Lecture—4 hours. Prerequisite: Economics 1A, course 112 recommended. Concepts of accounting as a managerial tool; procedures for financial reporting; systems and internal controls; cost accounting; budgeting; interpretation of administrative reports.

120. Agricultural Policy (3) III, Carter

Lecture—4 hours. An introduction to current and recent economic problems and governmental policies and programs affecting American agriculture.

125. Comparative Agriculture (4) I, Hansen

Lecture—4 hours. Agriculture on all continents and in the principal countries: resources, organization, and operation; productivity and earnings in the farm versus the non-farm sector, and development economics.

130. Agricultural Marketing (4) II, Jesse

Lecture—3 hours discussion—1 hour. Prerequisite: Economics 1A or the equivalent. The nature, function, organization, and operation of agricultural and public markets; prices, costs, and margins; market information, regulation, and controls: cooperative marketing.

136. Managerial Marketing (4) II, Carman

Lecture—4 hours. Prerequisite: course 100A, Mathematics 13. Application of economic theory and statistics in the study of marketing. Marketing measurement and forecasting, market planning, market segmentation, determination of optimal product-market mix, sales and cost analysis, conduct of marketing research, marketing models and systems.

140. Farm Management (5) III, Reed

Lecture—5 hours, field trip. Farm organization and economics; economic and technological principles in decision making; analytical techniques and management control; problems in organization and management of the farm business.

145. Farm and Rural Resources Appraisal (4) I, Johnston

Lecture—3 hours, laboratory—3 hours, field trip. Principles of farm and rural appraisal; land utilization in relation to problems of development and valuation. Real estate instruments and elements of real estate finance.

147. Natural Resource Economics (4) I, Johnston

Lecture—3 hours, discussion—1 hour. Natural resource use problems with emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; economic and public resource use problems; and public policy issues. Students who have had or are taking course 100A, Economics 100, or the equivalent, may receive only 2 units of credit, so must enroll in course 147M instead.

147M. Natural Resource Economics (2) I, Johnston

Lecture—3 hours, discussion—1 hour. Natural resource use problems with emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; economic and public resource use problems; and public policy issues. Students who have had or are taking course 100A, Economics 100, or the equivalent, must enroll in this course (2 units) rather than course 147.

148. Economic Planning for Regional and Resource Development (3) II, Howitt

Lecture—2 hours, discussion—1 hour. Field trip. Problems, attitudes, and characteristics of agricultural employers, employees, and labor contractors. Impact of mechanization, determinants of productivity, wage levels and productivity, evolutions and efficiency of the labor market; placement and supervision; off-season and in-season unemployment; organization and conflict; relevant legislation.

151. Economics of Poverty (3) III, Rochin

Lecture—3 hours, prerequisite: Economics 1A or 1B or consent of instructor. Economic theories of mean distribution; causes of poverty; poverty analysis; evaluation of and political prospects of policies to minimize economic insecurity, maximize equality of opportunity, and establish minimum income levels.

155. Quantitative Analysis for Business Decisions (3) III, Green

Lecture—3 hours. Prerequisite: Mathematics 13 and 16A. Introduction to selected topics in operations research, including mathematical programming, applied decision theory, game theory, and inventory models.

157. Analysis for Production Management (4) III, Pope

Lecture—4 hours. Prerequisite: courses 100A, 106A. Application of economic theory and quantitative methods in analyzing production management problems including inventory control, production scheduling, quality control, simulation, systems approach, and work measurement.

171A. Financial Management of the Firm (3) I, Stroopmosp

Lecture—3 hours. Prerequisite: Economics 11A, 11B. Financial analysis at the firm level: methods of depreciation, influence of the tax structure, inventory, cash, and accounts receivable management; sources of short-term and long-term financing. Students having had Economics 134 may not receive credit for this course.

171B. Financial Management of the Firm (3) II, Sionnik

Lecture—3 hours. Prerequisite: course 171A, Economics 11A, 11B. Financial analysis at the firm level: methods of capital budgeting; calculating the cost of capital; dividend policies; mergers and acquisitions, and current topics in finance.

176. Economic Analysis in Resource Use (3) III, Gardner

Lecture—3 hours. Prerequisite: Economics 1A, 1B; course 100B or the equivalent recommended. An analytic treatment of resource use problems, including public policy is-
Agricultural Economics

254. Quantitative Analysis of Operational Problems (3) I. Howitt Lecture—3 hours. Nonlinear and dynamic programming methods with application to production, consumption, inventory, replacement market equilibrium, and competitive decision problems.

255. Systems Analysis and Simulation (3) III. Pope Lecture—3 hours. Dynamic model formulation and computer simulation of economic systems.

257. Production Planning and Market Analysis (3) II. Kuzhman Lecture—3 hours. Quantitative analysis of production systems by statistical, economic, and engineering methods; sales analysis for the individual firm; problems of investment, location, scale of operations.

261. Case Problems in Management (3) III. Carman Lecture—1 hour; discussion—2 hours. Case problem analysis and discussion of management functions including budget, strategy, management evaluation, financing, marketing, and production, with emphasis on application of theory to problem definition and solution. (SU grading only.)

262. Field Research Project (3) Extra-session Offered: The Staff Field study—9 hours; research paper or case study. Student will function as an individual or as a member of a team solving an economic planning or operation problem of a firm or governmental agency. (SU grading only.)

271. Financial Management (3) III. Sosnick Lecture—3 hours. Prerequisite: course 171A or the equivalent. Sources and costs of capital; optimal capital structure; project evaluation; investment policy; risk management; dividend policy; management of working capital; mergers and reorganizations.

281. Economic Analysis of Demand and Trade (3) II. King Lecture—3 hours. Models and methods of analysis of demand, interregional trade, and location in the agricultural economy.

283. Analysis of Research in Natural Resource Economics (3) II. Johnston Lecture—3 hours. Scope and disciplinary context of natural resource economics. Recent problems affecting policy and use planning including efficiency and welfare criteria, technological externalities, public goods, business mergers, indivisibilities, and intertemporal problems; benefit cost analysis and public and private investment criteria.

298. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Hours and days vary depending upon the course being studied. Prerequisite: senior standing in Agricultural Economics and consent of Department Chairperson. Tutor work may be small group or one-on-one with one of the department's regular courses, under the supervision of, and at the option of the instructor in charge of the course. (PINP grading only.)

NOTE: For key to footnote symbols, see page 138.
Agricultural Education

See Agricultural Education (below); and Agricultural and Home Economics Education

Agricultural Education (College of Agricultural and Environmental Sciences)

The Major Program

The Agricultural Education major serves those interested in teaching agricultural sciences in high schools or junior colleges as well as those preparing for a service-type career in agriculture. It prepares graduates whose function will be to supervise youth and adult groups and to direct programs requiring preparation in both agricultural and human resources. State and federal requirements for instructors participating in federally funded vocational programs are also met. The need for scientists, technicians, and creative educators to assist in domestic and international agricultural programs has created a continuing demand for qualified instructors and supervisory personnel. This major also provides general preparation which is appropriate for work in banking, sales and service, rural recreation, and related agricultural industries. Students interested in obtaining breadth in both agricultural and environmental sciences will appreciate the scope and flexibility which this program provides.

Agricultural Education

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td></td>
</tr>
<tr>
<td>Biological sciences (including genetics)</td>
<td>21</td>
</tr>
<tr>
<td>Chemistry (including organic)</td>
<td>15</td>
</tr>
<tr>
<td>Physics (choose from: Physics 2A, 2B, or 2C)</td>
<td>6</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>65</td>
</tr>
<tr>
<td>Agricultural economics</td>
<td>9</td>
</tr>
<tr>
<td>Agricultural and Home Economics Education</td>
<td>160</td>
</tr>
<tr>
<td>Agricultural engineering</td>
<td>11</td>
</tr>
<tr>
<td>Animal sciences</td>
<td>16</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 191A-191B</td>
<td>2</td>
</tr>
</tbody>
</table>

Environmental sciences (includes offerings in environmental horticulture, environmental studies, environmental toxicology, renewable natural resources, and wildlife and fisheries biology) 8

Breadth Subject Matter 33

- English 1, 2, 3 12
- Economics 'A' or 'B' 5
- Social sciences and humanities elective 16

Restricted Electives to supplement or expand any of the above areas 14

Choose from the following: Entomology 110; Environmental Planning and Management 250; Nutrition 103; Plant Pathology 100; Water Science 110A, 110B.

Unrestricted Electives 26

Total Units for the Major 180

Major Adviser: J. G. Leising (Applied Behavioral Sciences)

Teaching Credential Subject Representative: You may make an appointment with a credential counselor and obtain a statement of the complete requirements for the credential in the Applied Behavioral Sciences departmental office, 106 AOB-4. Since many majors in the College do not offer the minimum preparation necessary for entering the Agriculture Credential Program, you are encouraged to seek counseling as early as possible. See also page 111 for the Teacher Education Program.

Graduate Study: The Department of Applied Behavioral Sciences offers a program of study leading to the M.Ed. degree. See also page 105. Further information may be obtained from the department and the Announcer of the Graduate Division.

Graduate Adviser: M. C. Regan.

Courses: See course listings under Agricultural and Home Economics Education (page 149) and Applied Behavioral Sciences (page 156).

Agricultural Engineering

See Agricultural Engineering (below); Agricultural Engineering Technology; Consumer Technology; and Engineering: Agricultural

Agricultural Engineering

(College of Agricultural and Environmental Sciences)

Roger E. Garrett, Ph.D., Chairperson of the Department
Department Office, 2030 Bainer Hall (752-0102)

Faculty

- Norman B. Akesson, M.S., Professor
- Roy Bainer, M.S., L.L.D., Professor Emeritus
- Paul A. Carroad, Ph.D., Assistant Professor
- William J. Chancellor, Ph.D., Professor
- Pidkaw (Paul) Chen, Ph.D., Lecturer
- John B. Dobie, M.S., Lecturer
- Roger E. Garrett, Ph.D., Professor
- John R. Goss, M.S., Professor
- George F. Hanna, M.Ed., Lecturer
- S. Milton Henderson, M.S., Professor Emeritus
- David J. Hills, Ph.D., Assistant Professor
- M. Stephen Kaminaka, Ph.D., Assistant Professor
- Robert A. Kepner, B.S., Professor
- Coby Lorenzen, Jr., M.S., Professor Emeritus
- John A. Mills, Ph.D., Assistant Professor
- George E. Miller, M.S., Lecturer
- Stanion R. Morrison, Ph.D., Professor
- Loren W. Neubauer, Ph.D., Professor Emeritus
- Michael O'Brien, Ph.D., Professor
- Thomas R. Rumsey, Ph.D., Assistant Professor
- Herbert B. Schultz, Ph.D., Professor Emeritus
- R. Paul Singh, Ph.D., Assistant Professor
- Henry E. Studer, M.S., Associate Professor
- James F. Thompson, M.S., Lecturer
- Wesley E. Yates, M.S., Professor

Courses: See course listings under Agricultural Engineering Technology (this page), Consumer Technology (page 179), and Engineering: Agricultural (page 197).
Agricultural Practices; Agricultural Science and Management

Courses in Agricultural Practices

Questions pertaining to the following courses should be directed to the instructor or to the Office of the Department of Agricultural Engineering, 2030 Bainer Hall.

Lower Division Courses

48A. Field Equipment Operation (1) I, II, III. Hanna (Agricultural Engineering) Laboratory—3 hours. Prerequisite: course 132. Theory and operation of the major types of field equipment, ranging and track types used in agriculture, forage, and natural resource management. Essentials of safe equipment operation, the fundamentals of preventive maintenance, and adjustment of trouble shooting are presented. (P/P grading only.)

48B. Field Equipment Maintenance (1) I, II, III. Hanna (Agricultural Engineering) Laboratory—3 hours. Prerequisite: course 132. Theory and operation of maintenance principles for internal combustion engines, power trains, hydraulics, and pneumatic controls. Introduction to arc and acetylene welding, the care and use of basic hand and shop tools. (P/P grading only.)

Agricultural Science and Management

(Open College of Agricultural and Environmental Sciences)

The Major Program

The Agricultural Science and Management major is designed to provide the training required by business or industry to function in the management of the larger, more diverse agricultural operations. Students may specialize in one of three areas: animal science, food science, or plant science. Course work in biological, physical, social, and agricultural sciences with supporting courses in economics, business, and management permits individual flexibility.

Agricultural Science and Management

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirement are shown in parentheses. Equal or more comprehensive courses are acceptable.)

Preparatory Subject Matter

UNITs

Biological sciences (including Biological Sciences 1, and two from Botany 2, 3, 5, 13-16)

Chemistry (Chemistry 1A, 1B, 8A, 8B) 9

Mathematics (Agricultural Science and Management, 150, Mathematics 16A, 16B) 16

Economics (Economics 1A, 1B) 10

Physics (Physics 1A and 1B) 6

Depth Subject Matter

Area of specialization: Animal Science, Food Science, or Plant Science (choose recommended courses from one of these three areas, listed below) 18

Agricultural Sciences 20

Agricultural Practices

(College of Agricultural and Environmental Sciences)
Agronomy

Must include at least 3 units from each of the three specialization areas (and other than the 18 units used above); and courses chosen from Animal Science 1, 2; Food Science and Technology 1, 111; Plant Science 1, 2; upper division courses in Agronomy, Environmental Horticulture, Pomology, Vegetable Crops, Viticulture and Enology, Soil Science 2 and Water Science 119A, Agricultural Engineering and Technology 101, 102, 104, 105, 113, 114.

Agricultural economics (including Agricultural Economics 100A and two courses from 112, 113, 114, 117, and 140) 15

Breadth Subject Matter 26

Written expression (See College requirement) 4

Oral expression (See College requirement) 4

Social Sciences and humanities electives 18

Restricted Electives 20

Courses to supplement or expand area of specialization. May be selected from agricultural engineering, animal science, food sciences, plant sciences: and may include courses such as Biochemistry 101A, 101B, Botany 111A, 111B, 120A, 1201, Genetics 100A, 100B, 120, Nematology 110, Plant Pathology 120, Physiological Sciences 101A, 101B, or courses prerequisite to courses in area of specialization.

Unrestricted Electives 24-27

Total Units for the Major 180

Recommended Courses in Specializations

Animal Science:
Animal Genetics 106, 107 (prerequisite for some Animal Science courses)
Animal Science 111, 114, 115, 116, 117, 118, 119, 123, 124, 125, 140
Epidemiology and Preventive Medicine 111
Nutrition 103 (prerequisite for some Animal Science courses)
Physiology 121, 121L

Food Science:
Food Science and Technology 103, 104, 104L or 160, 161
Food Science and Technology 105, 108, 110A

Plant Science:
Agronomy 100, 100L, 111, 112, 112L, 113
Biochemistry and Biophysics 101A, 101B
Botany 111A, 111B, 120, 121
Entomology 110, 112
Environmental Horticulture 105, 107, 120, 125, 130A, 130B, 133
Environmental Planning and Management 154A
Genetics 120
Nematology 110
Plant Pathology 120
Plant Science 101, 102, 109, 112, 112L, 131, Pomology 101, 102
Soil Science 100, 100C, Vegetable Crops 100, 105, 118; Viticulture and Enology 100, 105, 116A, 116B
Water Science 110A

Agronomy

(Faculty of Agricultural and Environmental Sciences)

Faculty
See under Department of Agronomy and Range Science.

Major Programs and Graduate Study. See majors in Plant Science (page 293) and Range and Wildlands Science (page 303); and page 105 for graduate study.

Related Courses. See Plant Science and Range Management.

Courses in Agronomy

Questions pertaining to the following courses should be directed to the instructor or to the Agricultural Advising Center, 132 Hunt Hall.

Lower Division Course

21. Agricultural Science and the Food Crisis (2) III. Rains
Lecture—2 hours. An interdisciplinary approach to the food issue. Lecturer will be drawn from several departments to discuss such areas as agronomy, nutrition, economics, water science, agricultural engineering, political science, and anthropology. Both agricultural and nonagricultural majors are encouraged to enroll.

Upper Division Courses

100. Principles of Agronomy (3) I, II. Travis
Lecture—3 hours. Prerequisite: course in general botany and/or Plant Science 2 or consent of instructor. Fundamentals of field crop production and agronomic problem solving using ecological, physiological, and genetic principles.

100L. Principles of Agronomy Laboratory (1) I, II. Teuber, Travis
Laboratory—3 hours. Prerequisite: completion of or current enrollment in course 100. Field-oriented introduction to principles of agronomic crop production.

111. Cereal Crops of the World (4) II. Schaller
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 100, 100L. Botany 2. Contribution of cereal crops to man's development; adaptation, production, utilization, and factors determining quality of wheat, oats, barley, rice, corn, and sorghum. Emphasis is on recent developments and scientific improvements.

112. Forage Crop Ecology (3) III. Rague
Lecture—3 hours. Prerequisite: Botany 2 or consent of instructor. Forages as a world resource in food production. Ecological principles governing the adaptation, establishment, growth and management of perennial and annual forages, including pastures, rangelands and hay; aspects of forage quality which affect feeding value to livestock.

112L. Forage Crops Ecology Laboratory (1) III. Rague Laboratory—3 hours (includes four half-day field trips). Prerequisite: course 112. Greenhouse experiments and problem sets to supplement course 112. Field trips related to forage plant breeding, management, and utilization.

113. Fiber, Oil and Sugar Crops in a Changing World (4) I. Mikkelsen
Lecture—3 hours. Laboratory—3 hours. Prerequisite: courses 100, 100L. Botany 2. Industrial crops as world resources of food, feed, fiber, and consumer goods. The relationship of crops to their physical and biotic environment, technological changes, socioeconomic and political forces that shape crop production, and utilization practices.

197T. Tutoring in Agronomy (1-5) I, II, III. The Staff
Prerequisite: course to be tutored or the equivalent. Upper division standing and consent of tutor. Designed for undergraduate students who desire teaching experience. Student will assist in courses under the direction of the faculty. May be repeated for credit up to a total of 5 units. Same course may not be tutored more than once time. (PI NP grading only)

198. Directed Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. (PI NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Prerequisite: 6 upper division units of agronomy. (PI NP grading only)

Graduate Courses

205A-205B. Design, Analysis and Interpretation of Experiments (3-3) III-IV. Eng. Williams
Lecture—2 hours; discussion—1-2 hours. Prerequisite: graduate standing in Plant Science, Agronomy and Range Science and knowledge of elementary FERTRAN or ALGOL recommended. Planning and analysis of field and laboratory experiments with emphasis on the biological interpretation of results.

210. Agricultural Research Planning and Management (3) II. Peterson
Lecture—2 hours; discussion—2 hours; two full-day field trips. Prerequisite: graduate standing in any agricultural field of study and consent of instructor. Analysis of the planning, managing, evaluating, and utilizing agricultural research to promote agricultural development.

221. Advanced Plant Breeding (4) III. Quaile
Lecture—3 hours; laboratory—3 hours. Prerequisite: Plant Science 113. Advanced topics in plant breeding. Genetic diversity and centers of origin of cultivated plants; mating systems in plants; polyploidy, host-pathogen relationships, role of mutants in plant breeding, and other topics of current interest.

222. Quantitative Genetics and Plant Improvement (4) II. Allard
Lecture—4 hours. Prerequisite: Plant Science 113; Genetics 100, 100C; consent of instructor. Genetic forces affecting populations. Formulation of breeding plans based on principles of population and quantitative genetics. Offered in even-numbered years.

223. Selection Theory in Plant Breeding (3) II. Jian
Lecture—2 hours; discussion—1 hour. Prerequisite: course 222 or consent of instructor. Theory and application of selection to plant populations for improvement of quantitative characters. Statistical genetic analysis of quantita-
Agronomy and Range Science

(College of Agricultural and Environmental Sciences)

Calvin O. Quatset, Ph.D., Chairperson of the Department
Department Office, 131 Hunt Hall (752-1703)

Faculty
Robert W. Allard, Ph.D., Professor (Agronomy and Range Science, Genetics)
Benjamin H. Beard, Ph.D., Lecturer
William M. Longhurst, Ph.D., Professor
Robert S. Loomis, Ph.D., Professor
R. Merton Love, Ph.D., Professor Emeritus
Duane S. Mikkelsen, Ph.D., Professor
Lawrence P. Peterson, Ph.D., Professor
Donald A. Phillips, Ph.D., Associate Professor
Calvin O. Quatset, Ph.D., Professor
Charles A. Raguse, Ph.D., Professor
William Rains, Ph.D., Professor
Paul L. Rowell, Ph.D., Lecturer
J. Neil Rutger, Ph.D., Lecturer
Charles W. Schaller, Ph.D., Professor
Donald E. Seamen, Ph.D., Lecturer
Ernest H. Stanford, Ph.D., Professor Emeritus
Larry R. Teuber, Ph.D., Assistant Professor
Robert N. Travis, Ph.D., Assistant Professor
Carl L. Tucker, M.S., Lecturer
Ray C. Valentine, Ph.D., Professor
Barbara D. Webster, Ph.D., Lecturer
William A. Williams, Ph.D., Professor
Frederick P. Zscheile, Jr., Ph.D., Professor Emeritus

Courses. See course listings under Agronomy (page 148) and Range Management (page 303).

American Studies

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one course from American Studies 1A, 1B, 1C, 1E, 1F, 30</td>
<td>4</td>
</tr>
</tbody>
</table>

American Studies 45 | 4

Courses which provide an understanding of American history and culture: the arts, science and culture, religion and culture, education.

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper division course work from one of the following three emphases</td>
<td>20</td>
</tr>
<tr>
<td>(a) 20 units of coursework in a single department, concentrating on American culture (e.g., anthropology)</td>
<td></td>
</tr>
<tr>
<td>(b) 20 units of coursework focusing on a single cultural problem or theme (e.g., art, science and culture, religion and culture, education)</td>
<td></td>
</tr>
<tr>
<td>(c) 8 units of coursework in a culture or subculture selected as the subject of a major course study</td>
<td></td>
</tr>
</tbody>
</table>

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28

American Studies 110, 140A, 140B, 140C, 190A, 190B, 190C | 28
American Studies

Course work from two of the following three options
(a) 12 units of cross-cultural study beyond American Studies 110.
(b) 12 units of supplementary theory and methods courses chosen from a list available in the American Studies Office.
(c) 16 units of courses in the data of American culture chosen from a list available in the American Studies Office.

Total Units for the Major 84-98

Recommended

Lower division: courses chosen in consultation with a major advisor in preparation for (a) the upper division emphasis and (b) upper division cross-cultural study, as well as (c) courses in the natural sciences, social sciences, and humanities which meet the College Area Requirement and at the same time contribute clearly to the study of American culture (e., Biological Sciences 10, English 30A, 30B, 30C, Psychology 1).

Upper division: courses in the unused option from above.

Since the core of interdisciplinary courses, i.e., American Studies 45, 110, 140A, 140B, 140C, 190A, 190B, 190C, is taken in sequence during the junior and senior years, integration of courses satisfying the above, requires careful and advanced planning. Students pursuing a teaching credential especially need to plan early in order to meet program, College, and State requirements.

Teaching Credential Subject Representative: See page 111 for the Teacher Education Program.

Courses in American Studies

Lower Division Courses

19A. Technology, Science and American Culture (4)
II. Mechling
Lecture—2 hours; discussion—2 hours. Critical examination of American science and technology as cultural systems, which define and mold man's natural and social life. Emphasis on the influence of science and technology on modern American culture. (Prerequisite: 1 or 2.)

18. Magic and Religion in American Culture (4)
II. Wilson
Lecture—3 hours; discussion—1 hour. An introduction to the history of American magic and religion. (Prerequisite: 2.)

10. Tradition and Revolution in American Culture (4)
III. Meredith
Lecture—3 hours; discussion—1 hour. Critical examination of the characteristics of traditions and revolution in American culture, past and present. Emphasis on the continuity and relationships in the arts, communities, ideologies, literature, politics, radical movements, religion, etc.

1E. Nature and Culture in America (4)
I. Wilson
Lecture—3 hours; discussion—1 hour, tutorial conferences, short projects, field exercises. Introduction to the problems of nature and culture in America. Consideration of the relationship between art and nature. (Prerequisite: 2.)

1F. The Popular Image of Women in America (4)
II. Williams
Lecture—2 hours; discussion—1 hour, directed analysis of popular media. (Prerequisite: 2.)

Upper Division Courses

10DA-10DB-10CC. Issues in American Schooling (2-2-2)
II. The Staff (Chairperson in charge)
Lecture—2 hours. (Prerequisites: 3 or 4 or 5, or consent of instructor. Enrollment in American Studies or Education/Teacher Education program.)

101A-H. Special Topics (4-4-4)
II. The Staff (Chairperson in charge)
Lecture—3 hours; intensive reading, writing, and special projects. Interdisciplinary group study of special topics in American Culture Studies. (Prerequisite: 2 or 3.)

110-110A. Introduction to Cross-Cultural Studies (4)
II. Mechling
Lecture—3 hours; short papers, tutorial conferences, archival exercises. (Prerequisite: 2.)

140A. Events and Institutions in American Culture (4)
II. Mechling
Lecture—3 hours; reports and tutorial conferences. (Prerequisite: 2 or 3.)

140B. Value and Meaning in American Culture (4)
III. Wilson
Lecture—3 hours; reports and tutorial conferences. (Prerequisite: 2 or 3.)

140C. Problems in American Culture (4)
I. Williams
Lecture—3 hours; reports and tutorial conferences. (Prerequisite: 2 or 3.)

190A-190B-190C. Senior Seminar (4)
II-III. The Staff (Chairperson in charge)
Lecture—2 hours; discussion—2 hours. (Prerequisite: consent of instructor. Open to American Studies majors only.)

197T. Tutoring in American Studies (1-5)
II. The Staff (Chairperson in charge)
Tutor—1 hour. (Prerequisite: consent of Chairperson of American Studies Program. Tutoring in lower division American Studies courses, usually in small discussion groups. Periodic meetings with the instructor in charge, reports and readings. May be repeated for credit if the student is in a different course.)

199. Special Study for Advanced Undergraduates (1-5)
II. The Staff (Chairperson in charge)
Prerequisite: consent of instructor and Chairperson of American Studies Program.

Graduate Courses

298. Group Study (1-5)
II. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (S/U grading only)

299. Individual Study (1-12)
II. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (S/U grading only)

Anatomy

See Anatomy (page 149); and Human Anatomy (under Medicine, School of)
Anatomy
(School of Veterinary Medicine)

Leslie J. Faulkin, Jr., Ph.D., Chairperson of the Department
Department Office, 1321 Haring Hall

Faculty
George H. Cardinet III, D.V.M., Ph.D., Professor
Leslie J. Faulkin, Jr., Ph.D., Associate Professor
Benjamin L. Hart, D.V.M., Ph.D., Professor
Logan M. Julian, D.V.M., Ph.D., Professor
Ralph L. Ketchell, D.V.M., Ph.D., Professor
Carleton L. Lohse, D.V.M., Ph.D., Associate Professor
Walter S. Tyler, D.V.M., Ph.D., Professor

Courses in Anatomy

Upper Division Courses

130. Systematic Anatomy (4) I, II, Julian
Lecture—2 hours; laboratory—6 hours. Prerequisite: Zoology 2, 2L. Lectures, dissections, and demonstrations emphasizing the typical structure of the anatomical systems of the dog, chicken, and subhuman primate.

170. Principles of Normal and Abnormal Animal Behavior (3) III, Hart
Lecture—3 hours. Prerequisite: Veterinary Medicine 121 or Psychology 1 or the equivalent. Examination of normal behavioral patterns of domestic animals with emphasis on the historical, environmental, and organismic determinants of behavior. An analysis of factors contributing to abnormal behavior in domestic animals. Opposite.
190. Directed Group Study (1-5) I, II, III, The Staff (Chairperson in charge)
Lecture—15 hours. Prerequisite: consent of instructor. (PDP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PDP grading only.)

Graduate Courses

201. Advanced Systematic Anatomy (5) II, Julian
Lecture—2 hours; laboratory—9 hours. Prerequisite: course 100 or consent of instructor. Detailed dissections comparing the anatomy of the dog, sheep, chicken and primate. Emphasis placed on the unique aspects of each species and their use in research.

202. Organography (2) III. The Staff (Julian in charge)
Lecture—2 hours. Prerequisite: course 100 or the equivalent and consent of instructor. Comparative development, growth patterns, and composition of selected organs. Iver, kidney, lung, mammary gland, brain, and a skeletal muscle. Offered in even-numbered years.

205. Ultramicroscopic Anatomy (3) II, Tyler, Faulkin
Lecture—2 hours. Prerequisite: histology. The electron microscopic appearance of cells, tissues, and organs of animals emphasizing the structural basis for their physiologic functions.

206. Morphology of Body Surfaces (2) III. Tyler
Lecture—1 hour; discussion—1 hour. Information concerning the three-dimensional morphology of internal and external body surfaces, both normal and abnormal, as revealed by scanning electron microscopy of cells, tissues, organs, and replicates will be compared and correlated with that derived from other techniques. Offered in even-numbered years.

NOTE: For key to footnote symbols, see page 138.

Anesthesiology
See Medicine, School of

Animal Behavior (A Graduate Group)

Benjamin L. Hart, D.V.M., Ph.D., Chairperson of the Group
Group Office, 2163 Haring Hall

Faculty
The Group includes faculty from eight departments in three schools and colleges.

Graduate Study
The Graduate Group in Animal Behavior offers the Ph.D. degree with a specialization in one of three areas: (1) ethology and the evolutionary basis of animal behavior, (2) physiological basis of animal behavior, and (3) behavior of domestic animals. All specializations will emphasize the adaptive and evolutionary basis of animal behavior.

Preparation
Appropriate preparation is a bachelor's or master's degree in one of the following disciplines relevant to behavior such as psychology, zoology, anthropology, physiology, wildlife biology, ecology, veterinary science, genetics, or animal behavior. In addition, at least one course from each of the following four areas must be taken before admission into the program or before the end of the first year in the program:

- General genetics (Genetics 100A, 100B, or the equivalent)
- Statistics (Mathematics 13, or the equivalent)
- Evolution (Genetics 103 or Zoology 148, or the equivalent)
- Animal behavior (Zoology 150 or Zoology 155, or the equivalent)

Breadth Requirement
The following core courses or their equivalents are required of all students:
- Systemic physiology: Physiology 110-110L or Zoology 142-142L (7 units)
- Statistical analysis: Psychology 207 or Agronomy 205A-205B (4-6 units)

Scientific approaches to animal behavior research: Animal Behavior 201 (3 units)
Seminar in animal behavior: Animal Behavior 290 (I-3 units)
Ecology: Entomology 104, Environmental Studies 100, or Zoology 150 (3-4 units)
College teaching: Biological Sciences 210 or Education 341 (2 units)
Comparative psychology: Psychology 250 (4 units)

Specialization
In addition to the requirements listed above, students must also take several courses in one of the three areas of specialization with substitution as approved by the adviser.

Graduate Advisor: B.L. Hart (Physiological Sciences)

Courses in Animal Behavior

Graduate Courses

201. Scientific Approaches to Animal Behavior (3) I, II, Loi (Wildlife and Fisheries Biology) in charge
Lecture—3 hours. Prerequisite: graduate standing and consent of instructor in charge. Philosophical issues, goals, strategies and tools in field and laboratory research. Offered in odd-numbered years.

208. Behavioral Aspects of Animal Domestication (3) III, Price (Animal Science) in charge, Hart (Physiological Sciences), Loi (Wildlife and Fisheries Biology)
Lecture—3 hours. Prerequisite: graduate standing and a course in animal behavior or consent of instructor. History of animal domestication, the role of natural and artificial selection in domestication, the influence of environment and experience on domestic animal behavior and human-animal interrelations. Offered in even-numbered years.

209. Seminar in Animal Behavior (1-3) I, II, III, The Staff (Chairperson in charge)
Seminar—1-3 hours. Prerequisite: consent of instructor. Selected topics in animal behavior. (SU grading only.)

208. Group Study (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: graduate standing or consent of instructor. (SU grading only.)
Animal Genetics

(College of Agricultural and Environmental Sciences)

Faculty
See under Department of Animal Science.

Major Program. See major in Genetics (page 230).

Related Courses. See Agronomy 221, 222, 223; Plant Pathology 215; Plant Science 113; Vegetable Crops 220.

Courses in Animal Genetics
Questions pertaining to the following courses should be directed to the instructor or to the Animal Science Advising Center, 182 Animal Science Building.

Upper Division Courses

105. Population Genetics and Animal Breeding (3) II. Gall
Lecture—3 hours. Prerequisite: Genetics 120; one course in statistics recommended. Treatment of the principles of population genetics as they apply to artificial and natural populations. Stress on the application of single-gene Mendelian theory to animal breeding and genetics. Lectures will develop an appreciation of the utility of the theory and prepare students for more advanced study.

107. Genetics and Animal Breeding (4) III. Gall
Lecture—3 hours; discussion—1 hour. Prerequisite: course 106 or the equivalent. Integrated view of population and quantitative genetics as they pertain to animal breeding. Course content restricted to basic principles defining mating systems and selection methods with current examples presented whenever possible. Emphasis given to those characters important to the production of food and the expression of those characters in livestock and poultry.

108. Methods in Quantitative Animal Breeding (3) II. The Staff
Lecture—3 hours. Prerequisite: course 107. Methods and procedures in quantitative animal breeding: heritability, in- and inter-population selection methods, including selection index, family, pedigree and progeny selection; genetic correlation; relationship and inbreeding.

109. Mammalian Genetics Laboratory (2) I. Bradford
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 107 (may be taken concurrently). Consent of instructor. Experiments in qualitative and quantitative genetics using the laboratory mouse. Segregation; linkage; evaluation of effects of inbreeding, selection and maternal influence on different kinds of traits.

110. Animal Breeding Laboratory (2) II. Laben
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 107. Practice in application of principles of selection to livestock improvement, using computer generated herd records. Each student has a herd of animals in which selection is practiced for several generations and the effects on phenotypic and genetic trends are computed.

112. Seminar on Animal Breeding Experiments and Methods (1) III. Seminar—1 hour. Prerequisite: course 107. Review and discussion of literature relating to breeding experiments and programs for livestock and companion animals.

198. Directed Group Study (1-5) I, II, III. The Staff (Gal in charge)
Prerequisite: consent of instructor. Selected topics relating to animal genetics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Gal in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

208. Advanced Domestic Animal Breeding (3) III. Pollak

207. Quantitative Genetics and Animal Breeding Theory (3) I. Abplanalp (Avian Sciences)
Lecture—2 hours; laboratory—2 hours. Prerequisite: Mathematics 105A-105B or 130A-130B. Quantitative genetic theory. relating to inbreeding and crossbreeding systems, selection for cross performance, major quantitative genes, control populations, is developed and applied to the planning of breeding programs.

298. Group Study (1-5) I, II, III. The Staff (Gal in charge)
Prerequisite: consent of instructor. Lectures and discussions of advanced topics in animal genetics. (SU grading only.)

299. Research in Animal Genetics (1-12) I, II, III. The Staff (Gal in charge)
(SU grading only.)

Animal Nutrition

See Nutrition

Animal Physiology

(College of Agricultural and Environmental Sciences)

Dorothy E. Woolley, Ph.D., Acting Chairperson of the Department
Department Office, 192 Briggs Hall (752-0203)

Faculty
James M. Boda, Ph.D., Professor
Ray E. Burger, Ph.D., Professor
Harry W. Colvin, Jr., Ph.D., Professor
Jack M. Goldberg, Ph.D., Assistant Professor
John M. Horowitz, Jr., Ph.D., Professor
Barbara A. Horowitz, Ph.D., Associate Professor
Frederick W. Lorenz, Ph.D., Professor Emeritus
Verne E. Mendel, Ph.D., Professor (Animal Physiology, Animal Science)

Gary P. Moberg, Ph.D., Associate Professor (Animal Science)
Edward A. Rhode, Ph.D., Professor
Arnold J. Silman, Ph.D., Associate Professor
Arthur H. Smith, Ph.D., Professor
W. Jeffrey Weidner, Ph.D., Assistant Professor
Charles M. Winget, Ph.D., Lecturer
Dorothy E. Woolley, Ph.D., Professor

Courses. See course listing under Physiology (Animal), page 286.

Animal Science

(College of Agricultural and Environmental Sciences)

R. Leland Baldwin, Jr., Ph.D., Chairperson of the Department
Department Office, 130 Animal Science (752-1250)

Faculty
Gary B. Anderson, Ph.D., Associate Professor
C. Robert Ashmore, Ph.D., Associate Professor
R. Leland Baldwin, Jr., Ph.D., Professor
Donald L. Barth, Ph.D., Lecturer
G. Eric Bradford, Ph.D., Professor
Anthony C. Bywater, Ph.D., Assistant Professor
William N. Garrett, Ph.D., Professor
Irving I. Geschwind, Ph.D., Professor
Paul W. Gregory, Sc.D., Professor Emeritus
Hubert Heitman, Jr., Ph.D., Professor
J. L. Hull, M.S., Lecturer
Ling-Jung Koong, Ph.D., Associate Professor, (Animal Science, Agronomy and Range Science)
Robert C. Laben, Ph.D., Professor
Oskar Lang, Dip., Vet. Med. Vienna, Lecturer
Glen P. Lottridge, Ph.D., Professor Emeritus
Joan M. Mac, Ph.D., Assistant Professor
Verne E. Mendel, Ph.D., Professor (Animal Science, Animal Physiology)
James H. Meyer, Ph.D., Professor
Gary P. Moberg, Ph.D., Associate Professor
James G. Morris, Ph.D., Professor
E. John Pollak, Ph.D., Assistant Professor
Edward O. Price, Ph.D., Associate Professor
Michael J. Prokop, Ph.D., Assistant Professor
David W. Robinson, Ph.D., Professor
William A. Rollins, Ph.D., Professor Emeritus
Nathan E. Smith, Ph.D., Associate Professor
Donald T. Torelli, M.S., Lecturer
James W. Weir, Ph.D., Professor (Animal Science, Nutrition)

The Major Program
Animal Science is the study of man's domestic animal resources through the integration of genetics, biochemistry, physiology, nutrition, eco-
nomics, and other social sciences for improvement and expansion of these resources for food and recreation. Emphasis may be placed on scientific, production, or management aspects and may focus on animals for milk, meat, fiber, work, or recreation. This major leads to a variety of career opportunities in management and production including positions in feed and food processing, financial institutions, chemical industries, private and public extension services, education, and government service. Pre-veterinary medicine and other professional and graduate study requirements are also readily met.

Animal Science

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable.)

Preparatory Subject Matter

General biological sciences (including Biological Sciences 1, Zoology 2-2L, plus one course from Botany-2 or Entomology 100) .. 15-16

Physical sciences, 16 units of chemistry (including 8A-8B) and 9 units of mathematics, including statistics .. 25

Animal science (Animal Science 2) .. 3

Depth Subject Matter

Biochemistry 101A-101B or Biological Sciences 101A-101B .. 6-7

Nutrition (Nutrition 110 and 121; or 103 and 122 or 123) .. 7

Physiology (Physiology 110, 110L) .. 7

Genetics (Genetics 120, Animal Genetics 108) .. 6-7

Animal science .. 28-36

Choose two courses from Animal Science 114, 115, 116, 117, 140.

Choose five courses from Animal Science 104, 105, 111, 123, 124, 127, 129, 141; Animal Genetics 107, 108, 109, 110; Physiology 121; Nutrition 122, 123; Epidemiology and Preventive Medicine 111.

Three courses, selected with advisor's approval, from Anatomy 100, Physiology 130, 148, 149; or courses in Agricultural Economics, Agronomy, and Range Management, or Avian Sciences.

Breadth Subject Matter .. 20

Social sciences and humanities including at least 8 units of English and/or rhetoric (see College requirement).

Unrestricted Electives .. 64-67

Selected by the student according to individual interests and objectives. Advisers will provide lists of recommended courses and will assist in the selection therefor.

Total Units for the Major .. 180

Major Adviser: R. C. Laben

Departmental Advising Center, 162 Animal Science Building.

Graduate Study. The Department of Animal Science offers a program of study and research leading to the M.S. degree. Detailed information may be obtained by contacting the graduate adviser. See also page 105.

Graduate Adviser: G. A. E. Gall

Related Courses. See Food Science and Technology 120.

Courses in Animal Science

Lower Division Courses

1. Domestic Animals and Man (3) I, Smith

Lecture—2 hours; laboratory—2 hours. Animal domestication and factors affecting their characteristics and distribution. Animal use by man for food, work, fiber, drugs, research and recreation; projected effects of population expansion and urbanization. Demonstrations of beef and dairy cattle, poultry, sheep, swine, and horses.

2. Introductory Animal Science (3) III, Anderson

Lecture—2 hours; laboratory—2 hours. Recommended preparation: course 1 and Biological Sciences 1. Growth, reproduction, lactation, inheritance, nutrition, and disease control in domesticated animals; the application of science to animals production.

21. Livestock and Dairy Cattle Judging (2) II, III, The Staff

Laboratory—6 hours. Prerequisite: course 2 or 1 recommended. Evaluation of type as presently applied to show horses, meat animals and dairy cattle. Relationship between form and function, form and carcass quality and form and milk production.

31A. Perspectives in Animal Science (1) I, The Staff

Lecture—1 hour; occasional discussion. Consideration of the present-day scope of the broad field of animal science and its role in modern society. Course of special interest to students new to the campus. (P/NP grading only.)

31B. Current Topics in Animal Science (1) II, The Staff

Lecture—1 hour; occasional discussion. Lectures, assigned reading and discussion of topics of current concern in the broad area of animal science. Topics may include land utilization, livestock, poultry and game production; nutritional, physiological and health management. (P/NP grading only.)

31C. Prospects in Animal Science (1) III, The Staff

Lecture—1 hour; occasional discussion. Examinations of factors which may influence future relationships between man and other animals; competition for food, space and environment; animal and animal product analogs. (P/NP grading only.)

The Staff (Heitman in charge)

Discussion—1 hour; laboratory—3 hours. The application of the principles of elementary biology, the art and science of management of beef and dairy cattle, horses, sheep, swine, and laboratory animals. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III, The Staff (Baldwin in charge)

Prerequisite: consent of instructor. Problems in animal biology; nutrition, breeding, and physiology of livestock. (P/NP grading only.)

Upper Division Courses

104. Principles of Domestic Animal Behavior (3) I, Price

Lecture—3 hours. Prerequisite: Biological Sciences 1 or Zoology 2. Examination of the basic principles of animal behavior as applied to domesticated species. Emphasis will be placed on the development of behavior, activity, rhythms and social behavior. External (exogenous) and physiological mechanisms influencing behavior will be discussed.

105. Behavioral Adaptations of Domestic Animals (2) II, Price

Lecture—2 hours. Prerequisite: course 104 or the equivalent. To provide an in-depth examination of the behavior of domestic animals and the role of behavior in management.

105L. Behavioral Adaptations of Domestic Animals Laboratory (2) II, Price

Laboratory—3 hours. Prerequisite: course 104 or the equivalent. To provide research experience investigating the behavior of selected domestic animal species. Methods of data collection and analysis will be discussed.

111. Meats and Meat Animal Evaluation (2) I, Carroll

Laboratory—6 hours. Prerequisite: course 2 or 21. Correlation of meat animal conformation and degree of finish with carcass traits, yield of red meat, criteria for grading carcasses and indicators of meat palatability.

114. Dairy Cattle Production (4) III, Smith

Lecture—3 hours; laboratory—3 hours. Prerequisite: Animal Genetics 107. Recommended: Nutrition 103 or 110 and course 124, or the equivalent. Scientific principles from genetics, nutrition, physiology and related fields applied to conversion of animal feed to human food through dairy animals. Genetic, environmental, and managerial sources of variation in milk composition and yield; economic and energetic efficiency of milk production.

115. Horse Production (4) I, Evans

Lecture—3 hours; laboratory—3 hours. Prerequisite: General Biology 108; Nutrition 103 or 110; Physiology 110. Feeding, breeding, and management of horses; application of the principles of basic animal science to problems of production of all classes of horses.

116. Meat Animal Production (4) II, Garrett, Pollak

Laboratory—3 hours; laboratory—3 hours. Prerequisite: Animal Genetics 107; Nutrition 103 or 110; Physiology 110. Application of the sciences of nutrition, physiology, and genetics to the development of efficient management programs for beef, sheep, and swine production. Similarities and differences among these species affecting management practices. Methods of improving carcass and meat quality.

117. Physiological Aspects of Animal Production from Tropical and Arid Areas (3) II, Morris

Lecture—2 hours; laboratory—3 hours. Prerequisite: a course in nutrition, Physiology 110. Comparative aspects of animal production from domesticated and wild species in tropical and arid environments, with emphasis upon the effects of the climatic and nutritional environment on basic physiological mechanisms as they relate to the efficiency of animal production.

118A. Range Livestock Production (3) I, Carroll, Torell

Lecture—3 hours. Prerequisite: Nutrition 103 or 110. Recommended: courses 1, 2, and Genetics 100B or Animal Genetics 106. The application of scientific knowledge to the improvement and production of beef cattle and sheep. Reproduction including artificial insemination; breeding plans; management; supplementary feeding; marketing.

118B. Intensive Livestock Production (3) II, Heitman, Laben, Prokop

Lecture—3 hours. Prerequisite: Nutrition 103 or 110. Recommended: courses 1, 2, and 118A; Genetics 100B or Animal Genetics 106. Principles and practices involved in

NOTE: For key to footnote symbols, see page 138.
123. Animal Growth (4) J. Garrett, Ashmore, Polk. Lecture—4 hours, special reports and discussions—2 hours. Prerequisite: upper division course in genetics. Physiology and nutrition of large domestic livestock. (P/NP grading only.)

124. Lactation (4) J. Baldwin. Lecture—3 hours, laboratory—3 hours. Prerequisite: Physiology 110 and Nutrition 110 or the equivalent background knowledge. Consideration of the biochemical, genetic, physiological, and structural factors relating to mammary gland development. The initiation of lactation, the composition of milk, and lactational performance.

125. Application of Mathematical Concepts to Animal Science (3) J. Koon. Lecture—2 hours, laboratory—3 hours. Prerequisite: Mathematics 110 and consent of instructor. Application of mathematical concepts to problems in animal science. (P/NP grading only.)

126. Animal Laboratory (4) J. Ashmore. Lecture—2 hours, laboratory—6 hours. Prerequisite: one course each in biochemistry, physiology, and nutrition. Introduction and opportunity for experience in laboratory methods commonly applied in animal research. (P/NP grading only.)

127. Management of Laboratory Animals (3) J. Moberg, Lang. Lecture—2 hours, laboratory—3 hours. Prerequisite: Genetics 100B or Animal Genetics 106, Nutrition 103 or 110, Physiology 110. Application of the concepts of nutrition, physiology, and genetics to the maintenance of experimental animals. (P/NP grading only.)

128. Nonhuman Primates (3) J. Moberg. Lecture—2 hours, laboratory—3 hours. Prerequisite: course 140. Examination of current husbandry practices used to maintain primates in zoos, breeding colonies, and laboratories. The application of concepts of physiology, nutrition, and genetics to problems in reproduction, behavior, environmental stress, and health will be discussed. Offered in odd-numbered years.

129. Metabolism of Anaerobic Bacteria (3) J. Macy. Lecture—3 hours. Prerequisite: Course 20 or 102. Biochemistry 101B may be taken concurrently. Consider the various groups of anaerobic and facultatively anaerobic bacteria and their natural environments and their metabolic characteristics, with emphasis on energy yielding anaerobic pathways. (Same course as Bacteriology 177.)

130. Laboratory in Metabolism of Anaerobic Bacteria (3) J. Macy. Laboratory—6 hours. Prerequisite: course 177. (May be taken concurrently.) Consideration of bacteria from a number of different natural environments, experiments dealing with some characteristic physiological and metabolic aspects of anaerobic bacteria. (Same course as Bacteriology 177.)

131. Proseminal in Animal Science (1) J. Roberts. Seminar—1 hour. Prerequisite: senior standing in Animal Science or consent of instructor. Reports and discussions of recent advances in animal science.
Courses in Anthropology

Lower Division Courses

1. Physical Anthropology (4) I. McHenry, II. Rodman, III. Smith
 Lecture—3 hours; discussion—1 hour. Introduction to human evolution. The processes and course of human evolution; man's place in nature and the study of primates; the biological variability of living man and the genetic background.

2. Cultural Anthropology (4) I, Davis, II, Curley, III, Boyd
 Lecture—3 hours; discussion—1 hour. Diversity of cultures considered from the aspects of language, economics, kinship, art, magic, and religion; culture change.

3. Introduction to Archaeology (4) I, True
 Lecture—3 hours; discussion—1 hour. Development of archaeology as an anthropological study; objectives and methods of modern archaeology.

4. Introduction to Linguistic Anthropology (4) III, Wall
 Lecture—3 hours; discussion—1 hour. Language in its interrelationships with biology, culture, and society.

5. Prerequisite in Biological Anthropology (4) II, Rodman
 Seminar—4 hours; research paper. Prerequisite: course 1 and consent of instructor. Course primarily for majors. Integration of related disciplines in the study of biological anthropology through discussion and research projects. Principal emphasis on the evolution of man's adaptations to the environment. (P[NP grading only)

6. Directed Group Study (1-5) I, II, III, The Staff (Chairperson in charge)
 Primarily intended for lower division students. (P[NP grading only)

7. Special Study for Undergraduates (1-3) I, II, III, The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. (P[NP grading only)

Upper Division Courses

101. Principles of Human Ecology (4) II, Otrope, Richenson (Environmental Studies)
 Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1 or 10 and Sociology 1 or Anthropology 2 recommended. An examination of the critical variables in the processes that relate man to his environment. Emphasis on the biological, cultural, social, and psychological forces which encourage stability or change in human ecological relationships. (Same course as Environmental Studies 101)

102. Theory in Social and Cultural Anthropology (4) I, Boyd
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. An introduction to varieties of explanation in anthropology; discussion of controversies surrounding relations between the designations of problem areas, choice of concepts, and selection of facts in the construction of anthropological theory.

103A. Archaeological Theory and Method (4) II, True
 Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1, 3, and 13. Theory and method of prehistoric archaeology.

103C. New World Prehistory: The First Arrivals (4) III, True
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Early man in the New World. Culture adaptation and development of early hunting and gathering peoples in North and South America.

103D. New World Prehistory: Archaic Adaptations in New World Prehistory (4) III, True
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. The collectors: cultural diversification in post-Paleoindian times.

103E. New World Prehistory: Formative Lifeways in North and South America (4) II, Baumhoff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. The farmers: the transition from a hunting and gathering subsistence to sedentary farming in the American Southwest, Mississippi Valley, and Andean South America.

103F. New World Prehistory: The High Cultures: Mesoamerican and Andean South America (4) II, Baumhoff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Urban developments and the rise of civilization in Mexico and Peru.

104. Race and Sex: Race Mixture and Mixed Populations (4) I, Forbes
 Lecture—3 hours; discussion—1 hour. A study of the phenomena of race mixture (miscegenation), internal race mixture, and mixed (hybrid) human populations. Emphasis will be placed upon the social and cultural effects of race mixture and of the interaction of racism and sexual behavior.

105A. Indians of North America (4) I, II
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. An introductory survey of the Indians of North America: origins, languages, civilizations, and history.

105B. Indians of South America (4) I, II
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. An introductory survey of the Indians of South America: origins, languages, civilizations, and history.

105C. Complex Societies of South America (4) I, Otrope
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. An introductory survey of the history and contemporary structure of South American society. Social, economic and political organization in the pre-Columbian and modern periods. Patterns of national integration and conflict.

106. Native Peoples of California and the Great Basin (4) I, Forbes
 Lecture—3 hours; discussion—1 hour. An introduction to the traditional and recent cultures of the American Indian peoples of the California-Great Basin area. Considerable emphasis will be placed upon the changes in those cultures taking place during the past 400 years.

107A. Old World Prehistory (4) II, The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. The beginnings and development of cultural phenomena during the Pleistocene epoch. A critical and comprehensive survey of known cultural phenomena beginning some 2 million years ago and extending through the terminal stages of the last glacial period. Will include material from Asia, Africa, and Europe.

107B. Old World Prehistory (4) II, Baumhoff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. The development of civilization. Bronze and iron age cultures in Africa, Asia, and Europe. A survey of the archaeological evidence underlying currently accepted models relating to urban developments and the growth of civilization.

108. Native Americans in Contemporary Society (4) I, Forbes
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. An introduction to the sociocultural development of American Indian populations in modern times with emphasis upon North America. Attention will be given to contemporary Indian affairs and problems as well as to the background for present-day conditions.

109. Phonetics (4) I, Wall
 Lecture—3 hours; discussion—1 hour. Thorough grounding in articulatory phonetics with some attention to the fundamentals of acoustic phonetics. (Same course as Linguistics 109)

110. Elementary Linguistic Analysis (4) II, Olmsted
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 109. An introduction to phonemic theory, morphophonemics, morphemics, and syntax. (Same course as Linguistics 110)

111. Intermediate Linguistic Analysis (4) II, Olmsted
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Continuation of course 110. Advanced work in phonemics, morphophonemics, morphemics, and syntax. (Same course as Linguistics 111)

112. Comparative Linguistics (4) I, Olmsted
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Linguistic prehistory, historical linguistics, and reconstruction. (Same course as Linguistics 112)
Anthropology

114. The Ethnography of Speaking (4) II. Wall Lecture—3 hours; discussion—1 hour. Prerequisite: course 2, course 4 or Linguistics 1. The social and linguistic aspects of human behavior. Participants, situations, and functions of communication. Speech communities, language and social stratification, bilingualism. (Same course as Linguistics 114.)

*116. Introduction to Ethnographic Research (4) III. Moiles Lecture—3 hours; discussion—1 hour. Prerequisite: course 102. Guidelines for the proper conduct of ethnographic research; standards for evaluating ethnographic literature.

*118. Ethnosemantics (4) II. Moiles Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or the equivalent. An examination of the uses of linguistic, cognitive psychological, and mathematical analyses in the study of meaning of folk classification systems. Emphasis will be placed upon the development of skills in the collection and analysis of field data.

119A. Psychological Anthropology (4) I. Joseph Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. The individual in primitive societies. Methods and theories in the study of culture, society, and the individual. Explorations of evolutionary and adaptive approaches to problems posed in the study of the individual in past and contemporary primitive societies.

119B. Psychological Anthropology (4) II. Joseph Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of the instructor. The individual in complex societies. Methods and theories in the study of culture, society, and the individual. Explorations of evolutionary and adaptive approaches to problems posed in the study of the individual in rural and urban areas, in the labor process, under conditions of poverty and warfare, in developing countries.

120. Language and Culture (4) III. Wall Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or course 4 in Linguistics 1. Language and thought; systems of classification; linguistic aspects of culture and society.

*121. Folklore (4) II. Crowley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or literary preparation acceptable to instructor. Theory and method in the study of folktales, myths, legends, proverbs, riddles, songs, and other forms of verbal tradition.

122. Economic Anthropology (4) II. Davis Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. A survey of functional, structural, organizational, and decision-making approaches to primitive, tribal, and peasant political organization. Some attention will be given to political modernization within the setting of the colonial situation.

123. Political Anthropology (4) II. Mollen Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. A survey of functional, structural, organizational, and decision-making approaches to primitive, tribal, and peasant political organization. Some attention will be given to political modernization within the setting of the colonial situation.

124. Comparative Religion (4) II. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. A survey of functional, structural, organizational, and decision-making approaches to primitive, tribal, and peasant political organization. Some attention will be given to political modernization within the setting of the colonial situation.

*125. Comparative Educational Anthropology (4) III. Lecture—3 hours; discussion—1 hour. A comparative analysis of educational systems in terms of the embodiment and communication of basic cultural values. Examination of the context, content of instruction, and social relationships within educational institutions in several different cultures.

126. Anthropology of Development (4) III. Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of theories of social and economic change. Social and economic consequences of technological innovation. Application of anthropological theory to case studies of rural economy and society.

127. Urban Anthropology (4) II. Joseph Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of approaches to urban living: political structures, organization of labor, class relations, world views. The evolution of urban life and its contemporary dilemmas. Cross-cultural comparisons discussed through case studies.

128. Kinship and Social Organization (4) II. Davis Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Theoretical: discussion of theories of social organization with particular emphasis on the impact of typology and classification of kinship and family types.

*130. Sex Roles: An Anthropological Perspective (4) II. Joseph Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Study of sex roles in primitive and complex societies. Impact of different political and economic systems on male and female activities and identities in evolutionary perspective. Issues from the contemporary women's movement around the world.

139A. Peoples of Africa (4) III. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of West Africa and the Congo Basin with analyses of representative societies which illustrate problems of general theoretical concern. A case study consideration of the continuities and discontinuities between periods prior to European contact and the present.

139B. Peoples of Africa (4) II. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of Eastern, Central, and Southern Africa with analyses of representative societies which illustrate problems of general theoretical concern. Major consideration will be the continuities and discontinuities between periods prior to European contact and the present.

140. Peoples of Afroamerica (4) II. Crowley Lecture—3 hours; discussion—1 hour. A study of the cultural implications of slavery and the contribution of Africans to the national cultures of the Americas.

141. Cultural Ecology (4) III. Orlove Lecture—3 hours; discussion—1 hour. A comparative survey of the interaction between human cultural systems and the environment of the peoples that practice them. Primary emphasis is given to people living in rural and contemporary underdeveloped environments as a basis for interpreting more complex environments. (Same course as Environmental Studies 141.)

142. Cultural and Environmental Perception (4) I. Moiles Lecture—3 hours; individual research project. An examination of man's relationship to the environment through the study of culture. The nature of subjective models and their impact upon environmentally oriented behavior. Focuses upon classification and decision-making. (Same course as Environmental Studies 142.)

146. Ethnology of Europe (4) III. Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or Sociology 1 or the equivalent. Ethnographic survey of selected areas of Europe as examples that illustrate issues of general theoretical concern. Special attention will be given to problems rising from the urbanization process and to relationships between national governments and rural populations.

*147A. Peoples of the Pacific (4) II. Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Aboriginal cultures of Micronesia, Melanesia, and Polynesia in prehistoric and modern times. Primary emphasis will be given to comparative social organization.

147B. Peoples of the Pacific (4) I. Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. The effects of European colonization of the Pacific upon the cultures of Micronesia, Melanesia, and Polynesia.

*148A. Peoples of the Middle East (4) III. Joseph Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of the Arab peoples of the Eastern Mediterranean. Topics include class relations, kinship organization, sex roles, religious behavior, political behavior, ethnic identities, systems of politics. Impact of European colonizations, contemporary political movements and social change.

*148B. Peoples of the Middle East (4) II. Joseph Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of the Arab peoples of the Eastern Mediterranean. Topics include class relations, kinship organization, sex roles, religious behavior, political behavior, ethnic identities, systems of politics. Impact of European colonizations, contemporary political movements and social change.

150. Primate Evolution Laboratory (3) III. Lecture—1 hour; laboratory—5 hours. Prerequisite: course 155 or 151 (may be taken concurrently). Osteological, dental and neuroanatomical studies of living and fossil primates. Limited enrollment.

151. Primate Evolution (4) III. Lecture—3 hours; discussion—1 hour. Prerequisite: course 151; Zoology 2 recommended. The origin and relationships of the prosimians, monkeys, and apes.

152. Human Evolution and Fossil Man (4) II. McHenry Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; Zoology 2 recommended. The origin and relationships of the prosimians, monkeys, and apes.

153A. Human Variation (4) I. Smith Lecture—3 hours; laboratory—3 hours. Prerequisite: course 13, Mathematics 13 or the equivalent; Biological Sciences 1 or 10 recommended. The origin, meaning and methods of analysis of differences among human populations. Special attention will be given to groups of organisms, defining differences and the differences between men and women. Special attention will be given to the geographical distributions of genetic polymorphisms among human populations with special reference to disease as a selective mechanism.

153B. Human Biology (4) II. Smith Lecture—3 hours; laboratory—3 hours. Prerequisite: course 153A, Genetics 120 or the equivalent. The processes of human micro-evolution responsible for biological differences among human populations. Special attention will be given to the geographical distributions of genetic polymorphisms among human populations with special reference to disease as a selective mechanism.

154A. Primate Behavior and Ecology (4) III. Rodman Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; The social behavior and ecology of the prosimians, monkeys, and apes. Emphasis on the relationship of social organization to evolutionary and social changes.

154B. Primate Behavior and Ecology (4) III. Rodman Lecture—3 hours; laboratory—6 hours. Prerequisite: course 154A, Mathematics 13 or the equivalent knowledge of statistics, and consent of instructor. Continuation of course 154A for students interested in practical methods of studying, describing and analyzing the behavior and ecology of primates. Laboratories will consist of direct observation of captive primates and local birds with appropriate quantitative analysis of observations.

156. Human Osteology (4) III. McHenry Lecture—2 hours; laboratory—4 hours. Prerequisite: course 1 or the equivalent. Introductory study of the human skeleton, including bone growth, pathology, radiology, evolution, dentition, and variations in race, sex, and age.

157. Anthropological Genetics (4) III. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 153B. The application principles and methods and their use in the study of human populations. Genetics to the study of the origin and meaning of evolutionary and geographic patterns of both discrete and continuous human racial variation.
219. Special Study for Advanced Undergraduates (1-3) I, II, III. The Staff (True in charge) (P/NP grading only.)

Graduate Courses

201. History of Anthropological Theory (4) I, Curley Lecture—2 hours; discussion—1 hour. The historical development of the various fields of anthropology with emphasis upon their interrelationships.

202. History and Theory of Physical Anthropology (4) I. The Staff Seminar—3 hours. The history of thought in physical anthropology and an analysis of the major theoretical problems in the field. Suggested for all first-year graduate students lacking intensive preparation in biological anthropology.

203. History and Theory of Archaeology (3) I. Baumann Seminar—3 hours. The history and growth in archaeology and analysis of research methods.

204. Contemporary Issues in Anthropological Theory (3) II. Boyd Seminar—3 hours; one unit for paper required. Prerequisite: course 2, 102 or consent of instructor. An advanced consideration of fundamental issues in anthropological theory. Emphasis on critical examination of major contemporary debates among proponents of competing theories.

205. Objectives and Methods for College Teaching of Anthropology (2) I. The Staff Discussion—2 hours; assignments and reports. Prerequisite: normally limited to teaching assistants in anthropology. Analysis of the elements of effective teaching, drawing upon the students' experiences in the classroom situation.

210. Aspects of Culture Structure (4) I, II, III. The Staff Seminar—3 hours. Analysis of various phases of culture, such as religion, economics, law, and folklore. May be repeated for credit with consent of instructor.

211. Advanced Topics in Cultural Ecology (3) I, Orlove Lecture—3 hours. Prerequisite: graduate standing; Anthropology/Environmental Studies 141 or the equivalent or consent of instructor. Discussion and evaluation of prehistoric occupations of the Ancestral Region of South America. Emphasis upon Preceramic and early farming peoples.

220. Field Courses in Linguistics (4) II. Olmsted Seminar—2 hours; laboratory—2 hours. Prerequisite: courses 110, 111. Techniques of eliciting, recording, and analyzing; work with a native speaker.

221. Rural Transformation in Postcolonial Societies (4) II. Seminar—3 hours. Prerequisite: courses 223, 265, or consent of instructor. Problems of rural transformation arising out of political and economic interaction between national elites and rural and local populations under varying conditions of induced change in postcolonial societies. Attention will be given to the implications of this interaction for rapid economic growth. May be repeated for credit.

222. Problems in Urban Anthropology (4) II. Joseph Seminar—3 hours; one paper. Prerequisite: graduate status or consent of instructor. Study of selected critical problems in urban anthropology. Each quarter focuses on some of the following topics: class, kinship, religion, politics, kinship, community, sex roles, communication, ideology, consciousness, urban context. May be repeated for credit.

223. Economic Anthropology (4) III. Davis Seminar—3 hours; one paper. Prerequisite: course 122 or consent of instructor. Selected current methodological and theoretical problems in the analysis of nonindustrial economic systems.

224. Problems in Comparative Religion (4) II. Curley Seminar—3 hours. Advanced study of current problems in the anthropological study of religion.

239. Problems in African Society and Culture (4) I, Curley Seminar—3 hours. Diachronic analyses of traditional institutions in sub-Saharan Africa.

240. Problems in Afro-American Studies (4) III. Crowley

NOTE: For key to footnote symbols, see page 138.

Applied Behavioral Sciences

Seminar—3 hours. Comparative studies of selected Black communities in the New World.

245. Ethnology of Northern and Central Asia (4) II. Olmsted Seminar—3 hours. Prerequisite: a reading knowledge of German, Russian, Chinese, or Japanese. Lectures on the culture aboriginally found north of the Caucasus-Korea line. Supervised study of the primary and secondary sources. Work with informants when available.

246. Ethnology of Europe (4) II. Olmsted Seminar—3 hours. Prerequisite: reading knowledge of a European language other than English. Supervised study of the primary and secondary sources dealing with the ethnography and ethology of the peoples of Europe. Emphasis upon folk, peasant, and minority groups.

250A. Theory and Method of Anthropology (4) I. Moles Seminar—3 hours. Measurement, research design, field methods, data analysis, and theory construction in anthropological research.

250B. Theory and Method of Anthropology (4) II. Moles Seminar—3 hours. Prerequisite: course 250A. The application of symbolic analysis to anthropological materials.

250C. Theory and Method of Anthropology (4) I. Baumann Seminar—3 hours. Prerequisite: course 250B. Continuation of course 250B.

252. Human Evolution Seminar (4) II. McHenry Seminar—3 hours. Prerequisite: course 152 or the equivalent; consent of instructor. Study of selected topics in human evolution. Each year course will focus on one or more of the following: molecular evolution; primate evolution; biological diversity; hominid evolution; Homo erectus, Archaic Homo sapiens, brain evolution. May be repeated for credit.

254. Primate Behavior (4) I. Redman Seminar—3 hours. Prerequisite: course 154B or the equivalent. Analysis of primate behavior, with particular emphasis on primate interactions.

255. Concepts and Problems in Applied Anthropology (4) II. Seminar—3 hours. Prerequisite: consent of instructor. Advanced study in culture change: case studies of directed culture change; problems of planning and evaluation; uses of anthropological theory and data in professional fields such as agriculture, public health, urbanization, and international technical assistance.

258. Ethnological Theory and Method (4) III. Forbes Seminar—3 hours. A discussion of the anthropological method; the utilization of diverse types of data, especially documentary sources to reconstruct cultural history. Particular attention devoted to the applied uses of ethnography in the solution of contemporary social problems.

282. Seminar in Anthropological Linguistics (4) II. Wali Seminar—3 hours.

288. Group Study (1-4) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

289. Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

2990. Dissertation Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)
Applied Behavioral Sciences

(College of Agricultural and Environmental Sciences)

Marc Pilsuk, Ph.D., Chairperson of the Department
Department Office, 106 AOB-4 (752-0770)

Faculty
J. Howard Adams, Ph.D., Associate Professor
Louise M. Bachtold, Ed.D., Associate Professor
Keith Barton, Ph.D., Associate Professor
Richard Berteau, M.S., Assistant Professor
Edward J. Blakely, Ed.D., Associate Professor
Brenda K. Bryant, Ph.D., Associate Professor
Glen Burch, Ed.D., Lecturer, Emeritus
Frances Butler, M.A., Associate Professor
L. Clair Christiansen, M.A., Lecturer
Susan Crockenberg, Ph.D., Assistant Professor
Noreen G. Dilling, Ph.D., Lecturer
Jack D. Forbes, Ph.D., Professor (Applied Behavioral Sciences, Anthropology)
Issa Fujimoto, M.A., Lecturer
Barbara G. Goldman, Ph.D., Lecturer and Supervisor of Teacher Education
Dolph E. Gotelli, M.A., Associate Professor
James Grieshop, Ph.D., Lecturer
Rebecca Hager, M.Ed., Lecturer
Lawrence V. Harper, Ph.D., Associate Professor
Glenn R. Hawkes, Ph.D., Professor
Sarah H. Hutchison, M.Ed., Assistant Professor
Elwood M. Juergenson, Ph.D., Professor
Emeritus
George Kagiwada, Ph.D., Associate Professor
Rosemarie Kraft, Ph.D., Assistant Professor
Peter C.Y. Leung, M.S., Lecturer
James G. Lesing, Ph.D., Lecturer and Supervisor of Teacher Education
George C. Longfish, M.F.A., Assistant Professor
David B. Lynn, Ph.D., Professor
E. Dean MacCannell, Ph.D., Associate Professor
Helge B. Olsen, Lecturer
Marc Pilsuk, Ph.D., Professor
Mary C. Regan, Ph.D., Associate Professor
David Rising, M.A., Lecturer
Katherine W. Rossbach, M.A., Professor
JoAnn A. Stabb, M.A., Lecturer
Orrville E. Thompson, Ph.D., Professor
Jane N. Wilker, M.A., Lecturer
Miriam J. Wells, Ph.D., Assistant Professor
Emmy E. Werner, Ph.D., Professor

The Major Program
Applied Behavioral Sciences focuses on human and community development and prepares you for creative work in helping others improve their social and physical environments. The study of human social behavior is emphasized together with study of the processes and strategies of social change. Knowledge of the behavioral and environmental sciences is integrated with development of the skills necessary to using this knowledge in solving social problems. The curriculum is intended primarily if your career goals are oriented toward public, community, and institutional involvement. Examples of employment opportunities in a wide variety of settings include community development, community education, institutional development, and inter-group relations. The breadth subject matter is designed to provide foundations of knowledge in the natural and social sciences and the humanities and to develop skills of inquiry and creative endeavor. You and your adviser select course sequences, in Applied Behavioral Sciences and other areas, that are most appropriate to your educational and career goals. The Applied Behavioral Sciences major is a student-designed program and is available upon special application after admission to the College through an entry major or program such as Exploratory.

Applied Behavioral Sciences

B.S. Major Requirements:

All courses must be upper-division and two-thirds of the units must be in behavioral sciences.

Depth Subject Matter Units

Individualized program, including senior project, to be determined by student and advisory committee. A minimum of 20 units in Applied Behavioral Sciences courses is required.

Breadth Subject Matter Units

A minimum of 12 units in each of the following areas of study:
(a) Inquiry: intellectual skills of inquiry and critical analysis.
(b) Environmental studies: understanding the dynamics of interaction of people and their environment.
(c) Personal and social behavior: understanding the dynamics of human relationships extending from the individual to the international level.
(d) Creative expressions: exploration and development of the student's own creative powers, intellectual and aesthetic.
(e) Basic communication: skill in oral and written communication.

Unrestricted Electives

Total Units for the Major

Breadth Subject Matter

A list of suggested courses in each of the study areas, (a) through (e), may be obtained from the department office, 119 AOB-4.

Other Requirements

Admission: develop in consultation with an adviser, a statement of academic and career objectives and a plan for attaining stated goals.
Graduation: minimum of one year in residence in the major after completion of major proposal and satisfactory completion of supervised field experience, internship, thesis, or other creative activity.

Major Adviser: E. D. MacCannell.

Graduate Study. See page 105 or the Announcement of the Graduate Division.

Related Courses. See Environmental Planning and Management 1, Environmental Studies 10, 101, 141.

Courses in Applied Behavioral Sciences

Lower Division Courses

17. Population Problems: Issues in Human Ecology

Lecture—2 hours. An interdisciplinary orientation to the critical issues of human ecology and the numerous crises that bear upon the world community. Special emphasis is placed on the interrelationships of the natural ecosystem, population growth, and control, availability of resources, social development, and economic stability.

18. Scientific Myth and Social Bias (3) III. Fujimoto, Regan

Lecture—2 hours; discussion—1 hour. Assumptions and biases in different fields of knowledge, taboo topics, and the nature of evidence in the public and academic communities; fit between University education and issues of society.

19. The Community (3) I, II. MacCannell

Lecture—2 hours; discussion—1 hour. Exploration of ways in which the community comes together, and how this is reflected in the expression of community, examination of the dynamics of community change.

47. Orientation to Community Resources (2) I, II. The Staff

Field trip—3 days; seminar—three 2-hour sessions. Course given between quarters. Prerequisite: consent of instructor. Field trip to educational, social, and welfare agencies in California. Observation and discussion with staff members of different agencies which serve the needs of families and children. Advance reservations required (PIN grading only).

99. Special Study for Undergraduates (1-5) I, II. The Staff (Pilsuk in charge)

(PIN grading only.)

Upper Division Courses

151. Community Research and Analysis (4) I. Fujimoto

Lecture—4 hours. Prerequisite: consent of instructor. Apples of the emergence and structure of contemporary communities. Ethnographic, power structure and comparative approaches to community studies. Ways to incorporate research into programs for community change and development.

152. Community Development (4) II. Fujimoto

Lecture—4 hours. Prerequisite: course 151 recommended. Introduction to principles and strategies of building institutions so community people can affect change. Examination of roles of citizens in participation and control and the various roles of change agents in working with communities for their own self-development.

153. Community Organizations, Institutions and Resources (4) II. Christiansen

Lecture—4 hours. Prerequisite: course 151 or 152. Analysis of resources, organizations, institutions, agencies, and groups in the community, and how each affects the development process.

154. Theories in Community Change (4) II. MacCannell

Lecture—4 hours. Prerequisite: course 151, plus one other course in Applied Behavioral Sciences. Consideration of the concepts and theories of the social change process pertinent to community development.

155. Communication Skills for Community Development (4) III. The Staff (Pilsuk in charge)

Lecture—4 hours. Prerequisite: course 151 or 152. Communication skills and techniques in community development programs, to include group process and human relations methods useful in community development.

159A. Field Experience in Community Development (12) II. Fujimoto

Lecture—4 hours. Prerequisite: course 153 or consent of instructor. Field assignment—internship with community and grassroots groups, analysis of resources and alternatives for resolution of community development needs.

159B. Field Problems (3) III. Fujimoto

Seminar—3 hours. Prerequisite: course 159A and consent of instructor. Developing, implementing and evaluating field research and problems.

160A. Institutional Research Methods in Applied Behavioral Sciences (4) II. MacCannell

Lecture—4 hours. Prerequisite: upper division status; courses 162 and 163 highly recommended. Application of behavioral science research methodology to multidisciplinary problems confronting organizations. Students elect-
ing this course may not receive credit for Native American Studies 140.

*1608. Research Design and Analysis for Institutions (4) Ill. Regan
Lecture—3 hours; discussion—1 hour. Prerequisite: course 160A and both Education 114, Mathematics 13, or consent of instructor. Applied behavioral science research design and analysis for organization. Methods of data analysis, tests of significance, and use of computer in data processing.

*162. People, Work and Technology (4) Ill. The Staff (Pilisuk in charge)
Lecture—3 hours; discussion—1 hour. Use of human resources in all types of work. Emphasis is on the motivation to work, structure of organizations, and the impact of technology on human beings in work situations. The transition from college to the work force is considered.

163. Behavior of Community Organizations (4) Ill. Regan
Lecture—4 hours. Prerequisite: course 162 or consent of instructor. How community organizations function and how members of organizations interact to each other, the organization, and those people who are clients of the organization. Effects of leadership, motivation, group dynamics, communications, and power are considered.

164. Theories in Institutional Change (4) Ill. Pilisuk
Lecture—2 hours; discussion—2 hours. Prerequisite: course 162. The institution as an open system which changes in response to the internal and external environment. Emphasis on structural, technological and humanistic approaches to change.

171. Housing (4) Ill. Wells
Lecture—4 hours. Exploration of the shelter aspects of family environment. Study of technological, social, economic, and aesthetic factors affecting the nature and organization of family and community housing.

172. Social Inequality: Issues and Innovations (4) Ill. Wells
Lecture—4 hours. Prerequisite: upper division standing; 8 units of sociology or anthropological study. The study of the phenomenon of inequality in the U.S. Emphasis on social structures in inequality will be examined, including structural and biological explanations, prejudice and discrimination, the 'culture of poverty,' and arguments concerning race, sex and genetic potential.

173. The Continuing Learner (4) Ill. Dowling
Lecture—4 hours. Prerequisite: upper division standing. Theories of adult learning and teaching emphasizing the role of adult education in the community. Designing of adult education programs.

Lecture—4 hours. Prerequisite: course 157 or 152 recommended, consent of instructor. Historical background, curriculum, governance and finance for the segments of post-secondary education in California. Role of post-secondary education in the community.

175. Education in the Community (4) Ill. Grieshop
Lecture—4 hours. Prerequisite: upper division standing. Philosophical consideration of the function of education in society. Relationships of community and formal education to formal education, and schooling to individual, community, and national development. Study of planning, design and role of education in institutional and social settings.

178. Comparative Ethnicity (4) Ill. Wells
Lecture—4 hours. Prerequisite: upper division standing, 8 units of sociology or anthropology or human geography. Exploration of the role of ethnicity in shaping social systems and interaction. Examination of analytical approaches to data and issues arising from the study of ethnicity, through utilization of data from a range of different societies.

190. Proseminar in Applied Behavioral Sciences (1-3) Ill, III. The Staff (Pilisuk in charge)
Seminar—1 hour. Prerequisite: consent of instructor. Discussion of selected critical issues in the applied behavioral sciences. Required of seniors in the Applied Behavioral Sciences major. May be repeated for credit. (P/NP grading only.)

191A-191B. Introduction to Teaching (1-1) Ill. The Staff
Lecture—1 hour; field observations in public schools. Observations of programs and classes in agriculture, home economics, and related specialty areas in public school, community colleges and public agencies. Observations begun in 191A will be continued in 191B. (Deferred grading only, pending completion of sequence.)

191C. Field Experience in Teaching (1-3) Ill. Leising, Goldman
Discipline—1 hour; teacher assistant assignments in public schools. Prerequisite: course 191A. Field experience for students working as teacher assistants in agriculture or home economics programs in public schools. (P/NP grading only.)

196. Senior Project in Applied Behavioral Sciences (1-5) Ill, II, III. The Staff (Pilisuk in charge)
Prerequisite: major in Applied Behavioral Sciences and consent of instructor. Guided research leading to completion of senior thesis. May be repeated for credit. (P/NP grading only.)

197. Tutoring in Applied Behavioral Sciences (1-5) Ill, II, III. The Staff (Pilisuk in charge)
Prerequisite: consent of instructor. Leading of small voluntary discussion groups. (P/NP grading only.)

197C. Community Tutoring in Applied Behavioral Sciences (1-5) Ill, II, III. The Staff (Pilisuk in charge)
Prerequisite: consent of instructor. Supervised tutoring in the community. (P/NP grading only.)

198. Directed Group Study (1-5) Ill, II, III. The Staff (Pilisuk in charge)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) Ill, II, III. The Staff (Pilisuk in charge)
(P/NP grading only.)

Graduate Courses

201. Planning Processes in Applied Behavioral Sciences (3) Ill. Thompson
Lecture—3 hours. Prerequisite: consent of instructor; course 201L (must be taken concurrently). Systematic approach to planning, including new concepts and tools, and methods for planning with application to educational institutions, agencies and the community at large.

201L. Laboratory in Planning Processes (1-3) Ill. Thompson
Seminar—1 hour; laboratory 3-9 hours. Prerequisite: course 201 (must be taken concurrently). Supervised practice in planning.

202. Systems for Change (3) Ill. Regan
Lecture—3 hours. Prerequisite: courses 201, 201L, and 225C (concurrently). Study of institutional processes, resource allocation, communication network, program priorities and destructive mechanisms needed for change.

202L. Laboratory in Systems for Change (1-3) Ill. Regan
Seminar—1 hour; laboratory 3-9 hours. Prerequisite: course 202 (must be taken concurrently). Supervised practice in an institution or agency studying the process of change.

203. Evaluation and Decision Making (3) Ill. Goldman
Lecture—3 hours. Prerequisite: courses 202, 202L, and 225C (must be taken concurrently). Study of decision-making behavior, theoretical formulations of evaluation and decision making, value conflicts, multiple information requirements at different organizational levels, research techniques, and the role of evaluation in programs of change.

203L. Laboratory in Evaluation and Decision Making (1-3) Ill. Goldman
Seminar—1 hour; laboratory 3-9 hours. Prerequisite: course 203 (must be taken concurrently). Supervised practice in evaluation and decision making.

240. Community Development: Research and Analysis (4) Ill. MacCannell
Seminar—4 hours. Prerequisite: course 160A or Sociology 48A or the equivalent and a course in statistics. Methods of analyzing institutional, community, and regional social structure, as preparation for planned change. Research design and the management of large-scale data files.

241. Community Development: Intervention Strategies (4) Ill. Rockin (Agricultural Economics)
Seminar—4 hours. Prerequisite: course 240 and Agricultural Economics 100A. Economic theory and intervention strategies affecting nonmetropolitan communities. Human resources, community services and infrastructure, industrialization and technological change, policies and plans for mobilizing resources for community development.

242. Community Development: Program Management (4) Ill
Seminar—4 hours. Prerequisite: course 241. Planning, organization, financing and administration of social change projects or programs at the community or city level.

280. Seminar (1-5) Ill, III. Thomson
Seminar—1 hour. Analysis of research in applied behavioral sciences. (StU grading only.)

289. Group Study (1-5) Ill, II, III. The Staff (Pilisuk in charge)

299. Research (1-6) Ill, II, III. The Staff (Pilisuk in charge)
(SU grading only.)

Art
(College of Letters and Science)

Richard D. Cramer, M.F.A., Chairperson of the Department
Department Office, 101 Art Building

Faculty

L. Price Amerson, Jr., Ph.D., Assistant Professor
Robert C. Arneson, M.F.A., Professor
Joseph A. Baird, Ph.D., Senior Lecturer
Richard D. Cramer, M.F.A., Professor (Acting Director, Laboratory for Research in the Fine Arts and Museology)
Daniel J. Crowley, Ph.D., Professor (Art, Anthropology)
Roy R. DeForest, M.A., Professor
Mary Fong, Ph.D., Assistant Professor
Robert J. Grigg, Ph.D., Assistant Professor
William Henderson, M.F.A., Associate Professor
Harvey Hinefield, M.A., Associate Professor
Seymour Howard, Ph.D., Professor
Ralph M. Johnson, M.A., Professor
Myron Mattison, Ph.D., Assistant Professor
Maurice J. Neid, Professor
Roland C. Petersen, M.A., Professor
Cornelia Schulz, M.F.A., Assistant Professor
Daniel Shapiro, Professor
Wayne Thibaud, M.A., Professor
Gardner H. Tulis, M.A., Assistant Professor

The Major Programs

The Department of Art offers undergraduate majors in Art Studio and in the History of Art, each leading to the Bachelor of Arts degree. Both programs provide general education and preparation for further training. Some degree candidates work toward a teaching credential—some enter graduate programs here or elsewhere.

In general, members of the Studio faculty are active in research as painters, sculptors, ceramists,
printmakers, photographers, and filmmakers; members of the History faculty are actively engaged in historical scholarship. Each of these activities is precisely associated with subject matters taught in the classroom, both undergraduate and graduate. Some members of the department work in the Laboratory for the Fine Arts and Museology. Because of this association, limited undergraduate offerings in museum methods and connoisseurship are given, more extensive graduate work in these fields is anticipated.

Portfolios. Entering freshmen who have studied art in high school should apply for advanced standing by submitting examples of their work for faculty review. Lower division students at Davis and transfer students will be required to keep a continuing portfolio of their work which is subject to faculty review at such times as the student is declaring the major, enrolling in overflow courses, requesting independent study courses, etc.

Transfer Students. Before enrolling in Art, courses at Davis, ask your faculty adviser to evaluate transfer courses in art.

Art History

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory</td>
<td>24</td>
</tr>
<tr>
<td>Art 1A, 1B, 1C, 1D</td>
<td>16</td>
</tr>
<tr>
<td>One course in drawing, graphics or painting</td>
<td>4</td>
</tr>
<tr>
<td>One course in sculpture or ceramics</td>
<td>4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36</td>
</tr>
<tr>
<td>Four courses from Group C, History of Art</td>
<td>16</td>
</tr>
<tr>
<td>Select 2 courses each from two separate periods (e.g., 154A, 154B and 156B, 176C)</td>
<td>16</td>
</tr>
<tr>
<td>Two additional courses from Groups C, History of Art, or D, Special Study Courses</td>
<td>20</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>80</td>
</tr>
</tbody>
</table>

Recommen ded

See recommended courses following the Art Studio major requirements below.

Art Studio

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory</td>
<td>20</td>
</tr>
<tr>
<td>Three courses from Art 2, 3, 4, 5, 6 (see prerequisites required for upper division courses)</td>
<td>12</td>
</tr>
<tr>
<td>Two courses from Art 1A, 1B, 1C, 1D</td>
<td>8</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36</td>
</tr>
<tr>
<td>Six courses, under three different areas, from Group A, Practice of Art, or D, Special Study Courses</td>
<td>24</td>
</tr>
<tr>
<td>One course from Group B, Theory and Criticism</td>
<td>4</td>
</tr>
<tr>
<td>Two courses from Group C, History of Art</td>
<td>8</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>56</td>
</tr>
</tbody>
</table>

Recommended

Both Art History and Art Studio Majors

(a) students preparing for graduate work in any of the environmental design professions should take Art 2, 3, 4, 5, 6, 12A, 12B, 12C, 149, 166, 184.

(b) students interested in sculpture should take Art 2, 3, 4, 5 (course 5 is recommended); and

(c) students preparing for graduate work in any of the environmental design professions should take Art 2, 3, 4, 5, 6, 12A, 12B, 12C, 149, 166, 184.

Major Advisers. See the Class Schedule and Room Directory.

Teaching Credential Subject Representative. Department Chairperson. See page 111 for the Teacher Education Program.

Graduate Study. The Department of Art offers programs of study and research leading to the M.F.A. degree in the practice of art and the M.A. degree in the history of art. Detailed information regarding graduate study may be obtained from the Announcement of the Graduate Division.

Art History

Lower Division Courses

1A. Ancient Art (4) I, Howard Lecture—3 hours, discussion—1 hour. Art of the pagan Mediterranean world from the prehistoric caves to the fall of the Roman Empire.

1B. Medieval and Renaissance Art (4) II, Gigg Lecture—3 hours, discussion—1 hour. Christian, barbarian, Moslem, and Classical traditions in European Art from the fourth through the sixteenth centuries.

1C. Baroque and Modern Art (4) III, Matteson Lecture—3 hours, discussion—1 hour. Major styles and masters of the Western world after the Counter Reformation.

1D. Asian Art (4) I, Fong Lecture—3 hours, discussion—1 hour. An introduction to the arts of Asia through a study of Oriental ink painting and architecture, Buddhist sculpture, Indian temples, Chinese ceramics, Japanese prints, and art in Japan.

2. Drawing I (4) I, II, III, The Staff Laboratory—6 hours; to be arranged—4 hours. Form and composition in black and white.

3. Drawing II (4) II, III, The Staff Laboratory—6 hours; to be arranged—4 hours. Course 2. Form and composition in color as subject.

4. Life Drawing (4) I, II, III, The Staff Laboratory—6 hours; to be arranged—4 hours. Course 2. Form and composition using the human figure as subject.

5. Sculpture (4) I, II, III, The Staff Laboratory—6 hours; to be arranged—4 hours. Form in space using plaster and other media.

6. Introduction to Art: History and Appreciation (4) I, II, III, Lecture—4 hours. The understanding and appreciation of painting, sculpture, architecture, and industrial art. Illustrated lectures. Intended for students not specializing in art. (P/NP grading only.)

7. Introduction to Art: Practice (4) I, II, III, The Staff Lecture—2 hours, laboratory—4 hours. Projects. Individual explorations in various media. Intended for students not specializing in Art. Not open for credit to students who have had Art 2, 3, 5, or 6.

8. Descriptive Drawing (4) I, II, III, The Staff Laboratory—6 hours; to be arranged—4 hours. Objective drawing and rendering, representations of space.

20. Myths and Symbols in Chinese Art (4) III, Fong Lecture—3 hours, discussion—1 hour. The heritage of China as seen in the artistic expressions of its mythology and symbolism as exemplified in folk arts, ancestral worship, Confucian lores, Taoist legends, and Buddhist beliefs. Intended for non-majors.

98. Directed Group Study (1-5) I, II, III, The Staff (Cramer in charge) Prerequisite: consent of instructor. Restricted to lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III, The Staff (Cramer in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

Group A: Practice of Art

101. Painting: Materials and Colors (4) I, III, Schildkraut Laboratory—8 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Experimentation in media and their supports.

102. Painting (4) I, II, III, The Staff (Chairperson in charge) Laboratory—6 hours; to be arranged—4 hours. Prerequisite: course 101 or consent of instructor. Advanced painting in various media including oil and polymers. May be repeated twice for credit.

103. Advanced Drawing (4) I, II, III, The Staff (Chairperson in charge) Laboratory—8 hours; 4 hours to be arranged. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Advanced drawing, composition, and form in black and white and color.

104. Figure Painting (4) I, II, III, The Staff Laboratory—6 hours; to be arranged—1 hour. Prerequisite: course 101 or consent of instructor. Advanced figure drawing, painting using the human figure as subject. May be repeated once for credit.

110. Photography I (4) I, II, III, Himmelblau, Peterson Laboratory—6 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, or consent of instructor. Photography as an art form. Experiments with the camera and light sensitive materials.

111. Photography II (4) II, III, Himmelblau Laboratory—6 hours; to be arranged—1 hour. Prerequisite: course 110 or consent of instructor. The art of the camera and light sensitive materials; tonal control, multiple exposure, synthetic negatives, etc. May be repeated twice for credit.

112. Ceramics I (4) I, II, Ameson Laboratory—6 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Ceramic forms and processes.

113. Ceramics II (4) I, II, Ameson Laboratory—6 hours; to be arranged—1 hour. Prerequisite: course 112 or consent of instructor. Ceramic color and glaze, kiln firing. May be repeated twice for credit.

115. Film-making I (4) I, II, III, Henderson Laboratory—6 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, or consent of instructor. Film-making as an art form; 8 and 16 mm. cameras and sound track.

116. Film-making II (4) III, Henderson Laboratory—6 hours; to be arranged—1 hour. Prerequisite: course 115 or consent of instructor. The art of film-making, shooting, editing, and sound. Emphasis on the 16 mm. camera. May be repeated twice for credit.

121A. Architectural Design (4) I, Cramer Laboratory—6 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or compensating backgrounds in the design or engineering. Small buildings as an art form, visualized in cardboard, balsa, or plaster models.

121B. Architectural Design (4) II, Cramer Laboratory—6 hours; to be arranged—1 hour. Prerequisite: course 121A or consent of instructor. Small buildings as an art form, visualized in cardboard, balsa, or plaster models.

121C. Architectural Design (4) II, Cramer Laboratory—6 hours; to be arranged—1 hour. Prerequisite: course 121A or consent of instructor. Buildings as an art form, visualized in cardboard, balsa, or plaster models.

125. Printmaking: Relief (4) II, Ill, Tullis Laboratory—6 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Woodcut, linocut, metal-plate relief and experimental uses of other materials. May be repeated twice for credit.

126. Printmaking: Intaglio (4) I, III, Shapiro, Peterson Laboratory—8 hours; to be arranged—1 hour. Prerequisite:
site courses 2, 3, 4, 5, or consent of instructor. Metal plate
etching, aquatint, hard and soft-ground, burn engraving
and related methods. May be repeated twice for credit.

127. Printmaking: Lithography (4) II. Shapiro, Thiebaud
Laboratory—8 hours; to be arranged—1 hour. Prerequisi
tive courses 2, 3, 4, 5, or consent of instructor. Lithographic
methods using traditional methods and other modern graphi
c methods. May be repeated twice for credit.

128. Printmaking: Serigraphy (4) II. Shapiro, Himelhart
Laboratory—8 hours; to be arranged—1 hour. Prerequisi
tive courses 2, 3, 4, 5, or consent of instructor. Serigraphic
printmaking methods using photographically derived im
ages: photolithography, photo-alkiscreen, photo-etching,
etc. May be repeated once for credit.

141. Sculpture: Non-Metal Materials (4) II. Tuillis
Laboratory—8 hours; to be arranged—1 hour. Prerequisi
tive courses 2, 3, 4, 5, or consent of instructor. Sculpture in
compliant materials, e.g., wood, plaster, plastics, etc.
May be repeated twice for credit.

142. Sculpture: Metal Materials (4) III. Wolfe
Laboratory—8 hours; to be arranged—1 hour. Prerequisi
tive courses 2, 3, 4, 5, or consent of instructor. Metal works
made from welding processes. May be repeated once for
credit.

143. Sculpture: Materials (4) II. Wolfe
Laboratory—8 hours; to be arranged—1 hour. Prerequisi
tive courses 2, 3, 4, 5, or consent of instructor. Materials
used in making sculpture. May be repeated twice for
credit.

144. Figure Sculpture (4) I. Neimark
Laboratory—8 hours; to be arranged—1 hour. Prerequisi
tive course 113 or one of the following courses: 141, 142,
143, or 144. Clay sculpture in relief and round. May be
repeated twice for credit.

Group B: Theory and Criticism

147. Theory and Criticism of Photography (4) II. Himelhart
Lecture—3 hours; term paper. Prerequisite: course 2 or 5 and
one art lecture course. The development of camera
vision, ideas, and aesthetics and their relationship to the
fine arts from 1839 to the present.

148. Theory and Criticism: Painting and Sculpture (4) III. Thiebaud
Lecture—3 hours; term paper required. Prerequisite:
course 2 or 5, and one art lecture course. Study of forms
and symbols in historic and contemporary masterpieces.

149. Theory and Criticism: Architecture (4) II. Cramer
Lecture—3 hours; seminar paper. Prerequisite: course 2
or 5, one art lecture course. Aesthetic theories of design
styles, historic and contemporary.

Group C: History of Art

150. Arts of Subsaharan Africa (4) II. Crowley
Lecture—3 hours; term paper or gallery studies and re
view. Traditional arts and crafts of Subsaharan Africa,
particular attention to the relationships between sculpture
and culture in West and Central Africa.

151. Arts of the Indians of the Americas (4) III. Crowley
Lecture—3 hours; term paper or gallery studies and re
view. Development of art in North America, emphasizing
ancient Mexico. South American relationships and paral
lels. Recent and contemporary Indian arts and crafts from
Alaska to Chile.

152. Arts of Oceania and Prehistoric Europe (4) III. Crowley
Lecture—3 hours; term paper. Traditional arts of aboriginal
Australia, Melanesia, Polynesia, and Micronesia, as seen
in their cultural contexts. Prehistoric art of Europe and the
Near East.

154A. Archaic Greek Art (4) II. Howard
Lecture—3 hours; term paper or gallery studies and re
view. The art of Greece from the Protogeometric through
Archaic periods.

154B. Classical Greek Art (4) II. Howard
Lecture—3 hours; term paper or gallery studies and re
view. Greek Art of the Gold and Silver Ages.

156C. Hellenistic Art (4) II. Howard
Lecture—3 hours; term paper or gallery studies and re
view. Greek Art from Alexander to Julius Caesar.

156. Roman Art (4) III. Grigg
Lecture—3 hours; term paper or gallery studies and re
view. The art of Rome and Imperial Rome.

156. History of Printmaking (4) I. Amerson
Lecture—3 hours; term paper or gallery studies and re
view. The development of graphic media in the Western
World from the fifteenth century to the present.

156A. Chinese Art (4) I. Fong
Lecture—3 hours; term paper or gallery studies and re
view. The art of China, focusing on the major art forms that are traditionally known as well as newly discovered through research in China.

156B. Chinese Painting (4) III. Fong
Lecture—3 hours; term paper or gallery studies and re
view. The unique form of ink painting, with or without colors, depicting human and animal figures, flowers-and
birds, and landscape—the favorite and enduring theme of
the Chinese scholar-painter.

156C. Japanese Art (4) II. Fong
Lecture—3 hours; term paper or gallery studies and re
view. The development of Japanese art, focusing on the
relationship of architecture, painting, sculpture, and the
minor arts from the beginning to the present.

156G. Japanese Painting (4) II. Fong
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in Japan,
from prehistoric times to the present.

157B. Art of the Middle Ages: Early Christian and Byzantine Art (4) II. Grigg
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

157B. Art of the Middle Ages: Early Medieval and Romanesque Art (4) III. Grigg
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

157C. Art of the Middle Ages: Gothic (4) III. Grigg
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

157B. Northern European Art (4) I. Grigg
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

157C. Italian Renaissance Art (4) I.
Lecture—3 hours; term paper or gallery studies and re
view. The art of Italy from the fifteenth century to the
present.

157D. Italian Renaissance Architecture (4) I.
Lecture—3 hours; term paper or gallery studies and re
view. The art of Italy from the fifteenth century to the
present.

157E. Italian Renaissance Sculpture (4) I.
Lecture—3 hours; term paper or gallery studies and re
view. The art of Italy from the fifteenth century to the
present.

157F. Baroque Art (4) III. Baird
Lecture—3 hours; term paper or gallery studies and re
view. The art of Italy from the sixteenth century to the
present.

157G. Baroque Art (4) II. Amerson
Lecture—3 hours; term paper or gallery studies and re
view. The art of Italy from the sixteenth century to the
present.

157H. Art in the Age of Revolution (4) II. Matteossi
Lecture—3 hours; discussion—1 hour. Term paper or
gallery studies and review. The art of Europe from the
nineteenth century to the present.

157J. Modern Sculpture (4) II. Howard
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

157K. Modern Sculpture (4) II. Howard
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

157L. Modern Sculpture (4) II. Howard
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

158. Art since 1945 (4) III. Matteossi
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

159. Architecture in the Twentieth Century (4) III. Cramer
Lecture—3 hours; term paper or field trip. Substyles of
modern architecture, with emphasis on the development of
gothic by Frank Lloyd Wright and the interna
tional style by Le Corbusier and Mies van der Rohe, etc.
A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

159B. Art of Latin America (4) I. Baird
Lecture—3 hours; term paper or gallery studies and re
view. A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.

159C. Architecture in the Twentieth Century (4) III. Cramer
Lecture—3 hours; term paper or field trip. Substyles of
modern architecture, with emphasis on the development of
gothic by Frank Lloyd Wright and the interna
tional style by Le Corbusier and Mies van der Rohe, etc.
A survey study of the significant art forms in the
churches of the early medieval period, focusing on the
Christian art from the time of Constantine to the present.
Asian American Studies

view. American building, with emphasis on early colonial, Georgian, nineteenth and twentieth century developments. Particular attention to Northern California in the latter part of the course.

**188C. Painting of the United States (4) I. Lecture—3 hours. Discussion—1 hour. Term paper or gallery study and review. American: pictorial development from 1650 to the present, with emphasis on twentieth-century developments.

**190. Proseminar in the History of Art (4) I, II, III. Staff (Chairperson in charge). Lecture—3 hours. Term paper. Prerequisite: consent of instructor. Intended primarily for senior and junior students in the history of art. Assigned readings, discussions, and a substantial paper in a particular area of art history will introduce the student to methodology and techniques of art historical research. May be repeated once for credit. Limited enrollment.

Group D: Special Study Courses

192. Internship in Museums (2-5) I, II, III. Staff (Chairperson in charge). Term paper; catalog. Supervised program of student internship in a public museum or private organization with major art collection. May be taken as part of the museum methods program, usually following course 401 or 402. May be repeated for credit. (PINP grading only.)

198. Directed Group Study (1-5) I, II, III. Staff (Cramer in charge). (PINP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. Staff (Cramer in charge). (PINP grading only.)

Graduate Courses

**201. Experiments in Art and Visual Communication (4) I. Staff. Lecture—3 hours. Original work produced for class discussion and criticism. May be repeated for credit.

**246. Problems in Representation and Iconology (4) II. Howard. Seminar—3 hours. Term paper. Research into the symbolic meanings of historic motifs in art, and their visual representations.

**251. Seminar in Primitive Art (4) I. Crowley. Seminar—3 hours. Selection of areas of special study in the arts of Africa, Oceania, and Prehistoric Europe; in certain years, study of the Indians of the Americas, pre-Conquest to contemporary times.

**254. Seminar in Ancient Art: Greece (4) II. Howard. Seminar—3 hours. Selected areas of special study in Greek art from Hellenistic to later Hellenistic.

**255. Seminar in Ancient Art: Rome (4) II. Howard. Seminar—3 hours. Selected areas of special study in Roman art from Republican to late Imperial.

276. Seminar in Medieval Art (4) I. Grigg. Seminar—3 hours. Selected areas of special study in medieval art from Early Christian to late Gothic.

**277. Seminar in Northern Renaissance Art (4) III. Grigg. Seminar—3 hours. Selected areas of special study in Netherlandish and German art of the sixteenth and seventeenth centuries.

**278. Seminar in Italian Renaissance Art (4) III. Amerison. Seminar—3 hours. Selected areas of special study in Italian art from trecento to cinquecento.

279. Seminar in Baroque Art (4) III. Baird. Seminar—3 hours. Selected areas of special study in Baroque art from late sixteenth to late eighteenth centuries.

283. Seminar in Modern European Art (4) II. Matheson. Seminar—3 hours. Selected areas of special study in art since 1800 in Europe.

**285. Seminar in American Art (4) III. Baird. Seminar—3 hours. Selected areas of special study in art in the United States from colonial times to the present.

290. Seminar (4) I, II, III. Staff (Graduate Advisor in charge). Seminar—3 hours. Original works produced for group discussion and criticism; associated topics of a contemporary and historical nature. May be repeated for credit.

291. Seminar: Critical Evaluation (1) I, II, III. Staff (Graduate Advisor in charge). Seminar—1 hour. May be repeated for credit. (S/U grading only.)

292. Seminar: Comprehensive Qualifying (1) I, II, III. Staff (Graduate Advisor in charge). Seminar—1 hour. A further critical evaluation of the student's work to determine his eligibility to begin the Comprehensive Project. May be repeated for credit. (S/U grading only.)

299. Individual Study (1-6) I, II, III. Staff (Chairperson in charge). (SG grading only.)

2990. Comprehensive Project (4) I, II, III. Staff (Graduate Advisor in charge). An original body of work compiled by a catalog summarizing the student's aesthetic position. May be repeated for credit. (S/U grading only.)

Professional Courses

403. Museum Training: Historic Materials and Techniques (4) II. The Staff. Seminar—3 hours. Examination of works of art with emphasis on materials and methods of construction: wall paintings, panel paintings, patinas on cloth, drawings, ceramics, metals, etc. Experimentation in constructing works of art from historical materials. Seminar and exhibition.

Notes: Various of the above courses are not offered each year; please check quarterly schedules.

Asian American Studies (College of Agricultural and Environmental Sciences)

Faculty

See under Department of Applied Behavioral Sciences.

The Major Program

Concentration in Asian American Studies is available through the Applied Behavioral Sciences major (page 156).

Related Courses

For other Asian languages, see Oriental Languages.

Courses in Asian American Studies

Lower Division Courses

1C-2C-3C. Elementary Cantonese (3-5-5) I-II-III. Leung. Lecture—3 hours. Discussion—2 hours. Laboratory—1 hour. Study of Cantonese, stressing accurate pronunciation, verbal fluency, grammar and composition.

4C-5C-6C. Intermediate Standard Cantonese (3-3-3) I-II-III. Leung. Lecture—3 hours. Laboratory—1 hour. Prerequisite: course 1C-2C-3C. Continuation of course 1C-2C-3C.

20. Asian Calligraphy (3) I. Leung. Lecture—2 hours. Laboratory—3 hours. Prerequisite: knowledge of Cantonese, Mandarin or Japanese helpful. Introduction to Asian calligraphy stressing the technique of writing.

30. Race, Nationality, and the Asian American (4) II. The Staff (Kagiwada in charge). Lecture—3 hours. Discussion—1 hour. Prerequisite: course 1C. Study of Asian American experiences, 1850 to the present with focus on Chinese, Japanese, and Filipinos.

31. Contemporary Asian Experience in America (4) III. The Staff (Kagiwada in charge). Lecture—2 hours. Discussion—2 hours. Prerequisite: course 30 recommended. Analysis of ethnicity, race, and culture as it relates to the identity and growth of the Asian American.

Upper Division Courses

100. Asian American Communities (4) II. Kagiwada. Lecture—3 hours. Discussion—1 hour. Prerequisite: course 30 or consent of instructor. Political and social status, occupation, income, education, health, housing, and civic culture of various Asian American communities in the United States; segregation in interrelations between geographical groups; relations between rich and poor, majority and minority, redefinition of each, group.

Asian Studies

See Asian American Studies (above); and East Asian Studies

Astronomy

See Physics

Atmospheric Science

(College of Agricultural and Environmental Sciences)

Faculty

See under Department of Land, Air and Water Resources (Atmospheric Science).

The Major Program

Atmospheric Science is the study of the physics of meteorological processes, including general circulation of the atmosphere and weather systems; mass and energy transfers at the planetary surface and within the atmosphere; solar and terrestrial radiation; turbulence and diffusion; atmospheric interaction with the biosphere; cloud physics and climate feedbacks; and weather and climate change.

Atmospheric Science

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable.)

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>71</td>
</tr>
<tr>
<td>Physics</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry</td>
<td>21</td>
</tr>
<tr>
<td>Biological Science</td>
<td>31</td>
</tr>
<tr>
<td>English and/or Rhetoric (see College requirement)</td>
<td>10</td>
</tr>
<tr>
<td>Meteorology (Atmospheric Science)</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social sciences and humanities electives</td>
<td>25</td>
</tr>
<tr>
<td>Resource and environmental science electives</td>
<td>21</td>
</tr>
<tr>
<td>Coordinated group of courses (minor area) to be chosen with advisor's approval from: mathematics, computer science, environmental studies, and physical science</td>
<td>30</td>
</tr>
</tbody>
</table>

Units earned in satisfaction of the American History and institutions requirement may be used in partial satisfaction of the Social Sciences and Humanities requirements.

Graduate Studies

You can specialize in particular areas of atmospheric science through graduate study and research leading to the M.S. and Ph.D. degrees. Detailed information can be obtained from the graduate adviser and the Announcement of the Graduate Division.

Graduate Adviser: L. O. Myrup (Land, Air and Water Resources).

Related Courses: See Engineering: Civil 149, 245; Environmental Studies 161A; Environmental Toxicology 131; Geography 3, Physics 105C; Water Science 202.

Courses in Atmospheric Science

Questions pertaining to the following courses should be directed to the instructor or to the College Office, 228 Marck Hall.

Lower Division Courses

20. Introduction to Meteorology (3)

Lecture—3 hours. Prerequisite: an introductory course in calculus. Basic concepts of modern meteorology: weather and climate feedbacks, energy transfer, and local circulation; cloud physics and climate change.

20L. Introduction to Meteorology Laboratory (1)

Lecture—3 hours. Prerequisite: course 20 (preferably taken concurrently). Introduction to meteorological instruments and observations; weather station visits; weather maps and charts; special films on weather modification, air pollution, and atmospheric circulation; physical processes illustrating atmospheric phenomena.

98. Directed Group Study (1-5)

Lecture—3 hours. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only)

99. Special Study for Undergraduates (1-5)

Lecture—3 hours. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only)

Upper Division Courses

105. Microclimate of Agricultural Systems (3)

Lecture—3 hours. Prerequisite: upper division standing in biological or physical sciences. Energy balance, air and soil temperature, wind, water vapor, carbon dioxide patterns within the microclimate structure. Microclimate modification by windbreaks, frost protection, and other methods of energy balance manipulation.

110A. Weather Analysis and Forecasting (3)

Lecture—4 hours, laboratory—6 hours. Prerequisite: course 121A (may be taken concurrently). Treatment of thermodynamic variables and processes as an integral part of atmospheric dynamics. Introductory cloud and precipitation physics. Analysis of weather systems using vertical cross sections and thermodynamic diagrams.

110B. Weather Analysis and Forecasting (3)

Lecture—4 hours, laboratory—6 hours. Prerequisite: courses 121A, 121B; knowledge of Fortran (Engineering 5). Application of dynamic theory to weather systems, graphical, and numerical techniques for the analysis of weather systems.

110C. Weather Analysis and Forecasting (3)

Lecture—4 hours, laboratory—6 hours. Prerequisite: courses 121A, 121B; knowledge of Fortran (Engineering 5). Application of dynamic theory to weather systems, graphical, and numerical techniques for the analysis of weather systems.

120. Atmospheric Thermodynamics and Statics (3)

Lecture—3 hours. Prerequisite: Mathematics 222, Physics 48B, course 48A (may be taken concurrently). The atmosphere at rest: atmospheric pressure and density, thermodynamics of atmospheric gases, thermal properties of the atmosphere, and the effects of temperature and pressure on atmospheric behavior.

Atmospheric Science

See Atmospheric Science (above); and East Asian Studies

For key to footnote symbols, see page 138.
Avian Sciences

dry and moist air, hydrostatic equilibrium and stability criteria, and thermodynamic diagrams in meteorology.

121A. Atmospheric Dynamics (3) II. Fitzjarrell
Lecture—3 hours. Prerequisite: course 120. The atmosphere in motion: the equations of motion for rotating atmospheres; pressure and density fields and their relations to atmospheric circulation; wave motion in the atmosphere; vertical motion. The physical basis of modern numerical methods in meteorology.

121B. Atmospheric Dynamics (3) III. Fitzjarrell
Lecture—3 hours. Prerequisite: course 121A. The dynamics of fluid motion in geophysical and laboratory systems: Rossby waves; Helmholtz waves; the effect of turbulence; boundary layers; the Ekman layer. The dynamics of convection motion: the Rayleigh problem; penetrative convection; convective plumes; cumulus models.

122. Atmospheric Radiation (3) III. Coulsen
Lecture—3 hours. Prerequisite: Mathematics 22C, Physics 4C. Basic laws of radiation; properties of solar radiation; absorption, reflection and scattering in the atmosphere; planetary albedo; absorption and emission by atmospheric gases and aerosols; atmospheric energy budget. Offered in even-numbered years.

123. Micrometeorology (3) III. Hatfield
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 30 or the equivalent. Modern meteorological instruments and their use in meteorological observations and measurements. Both standard and micrometeorological evaluation techniques are included.

131. Air Pollution Meteorology (3) III. Coulsen
Lecture—3 hours. Prerequisite: Physics 2C, Mathematics 168, Chemistry 18B, or consent of instructor. Comprehensive overview of the relationship of meteorology to air pollution. Topics include: types and sources of pollutants; photochemistry; diffusion and transport, monitoring and air quality standards, inadvertent weather modification, and air pollution climatology.

132. Cloud Physics (3) III. Weare
Lecture—3 hours. Prerequisite: Chemistry 18B; course 120. The processes of cloud formation and precipitation, including water vapor condensation, cloud droplet growth, evaporation and growth of ice crystals, formation of rain, hail and snow. Radar detection of clouds and precipitation. Evaluation of weather modification practices.

133. Biometeorology (3) I. Hatfield
Lecture—3 hours. Prerequisite: Biological Sciences 1 and an additional course in botany or zoology; course 20 or 123 recommended. An introduction to biometeorology and the survey of atmospheric and biological interactions. Effects of weather parameters on plant, animal and human functions. Urban-rural climatic differences and associated biological responses.

150. Numerical Weather Prediction (4) I. Wagner
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 120, 121A, 121B; computer programming capability; or consent of instructor. Numerical weather prediction with the quasi-geostrophic system. Technical aspects of numerical analysis, topographic effects, and computational stability of prediction equations.

188. Directed Group Study (1-5) I, II, III. The Staff (Myrup in charge)
Prerequisite: three upper division units in Atmospheric Science. (PINP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Myrup in charge)
Prerequisite: three upper division units in Atmospheric Science and at least an overall B average. (PINP grading only.)

Graduate Courses

221. Advanced Atmospheric Dynamics (3) III. Carroll
Lecture—3 hours. Prerequisite: courses 120, 121A, 121B, or the equivalent. The energetics of atmospheric flows will be examined. Particular emphasis will be placed on the interactions of various space and time scale phenomena on energy transfers and transformations. Offered in odd-numbered years.

222. Radiation in Planetary Atmospheres (3) II. Coulsen
Lecture—3 hours. Prerequisite: course 122 or the equivalent. Theory and observations of radiation in planetary atmospheres. Absorption, transmission, scattering by atmospheric gases, aerosols, and clouds; gaseous emission; effects of surface reflection; radiative energy budget of the atmosphere of the planet as a whole; methods of measurement. Offered in even-numbered years.

223. Advanced Micrometeorology (3) I. Myrup

230. Atmospheric Turbulence (3) I. Myrup
Lecture—3 hours. Prerequisite: course 222 or the equivalent. Dynamics and energetics of turbulent motion; transition to turbulence, energy dissipation, kinematic energy and thermal variance equations, convective and mechanical turbulence, integral methods. Statistical methods: probability density function, moments, spectral analysis. The Kolmogorov theory; spectrum, structure function and diffusion predictions.

233. Topics in Advanced Biometeorology (3) III. Hatfield
Lecture—2 hours; discussion—1 hour. Prerequisite: course 133 or consent of instructor. The study of advanced topics in the biosphere-atmosphere interaction. Plant, animal and human energy budgets and the organisms' adaptation to changes in the energy budget. Human and other biological responses to the weather. Quantification of weather parameters for optimum biological responses.

240. Physical Climatology (3) III. Carroll
Lecture—3 hours. Prerequisite: course 123 or the equivalent. Physical causes of climatic phenomena, local energy balances and their direct and indirect effects on climate. Offered in odd-numbered years.

241. Climate Dynamics (3) II. Weare
Lecture—3 hours. Prerequisite: courses 120, 121A, 121B or the equivalent. Engineering—Applied Science 115 or the equivalent. Computer programming experience; course 150 recommended. Dynamics of climatic variations. Global and zonal average energy balance models. Parameterizations of radiative transfer, convection, and ocean circulation. Introduction to primitive equation climate models.

250. Mesoscale Meteorology (3) II. Wagner
Lecture—3 hours; practical work—150 hours. Prerequisite: standing at Atmospheric Science or related field. Current developments in selected areas of atmospheric research. Topics will vary according to student and faculty interests. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Myrup in charge)
Prerequisite: graduate standing and consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Myrup in charge)
Prerequisite: graduate standing and consent of instructor. (SU grading only.)

Avian Medicine

See Epidemiology and Preventive Medicine

Avian Sciences

(Prognosis of Agri-Surgical and Environmental Sciences)

F. Howard Kratzer, Ph.D., Chairperson of the Department
Department Office, 109 Asmundson Hall (752-1300)

Faculty
Ursula K. Abbott, Ph.D., Professor
Hans (Johannes) Abplanalp, Ph.D., Professor
Arthur A. Bickford, V.M.D., Ph.D., Lecturer
Ray E. Burger, Ph.D., Professor
Ralph A. Ernst, Ph.D., Lecturer
C. Richard Grau, Ph.D., Professor
F. Howard Kratzer, Ph.D., Professor
Dorothy C. Lowrey, M.A., Lecturer
Frank X. Ogasawara, Ph.D., Professor
Leo C. Norris, Ph.D., Lecturer
Daniel W. Peterson, Ph.D., Professor
Fran N. Vohra, Ph.D., Professor
Wesley W. Weathers, Ph.D., Associate Professor
Barry W. Wilson, Ph.D., Professor
Wilton O. Wilson, Ph.D., Professor Emeritus
Allen E. Woodward, M.S., Lecturer

The Major Program

Avian Sciences is the study of birds and the ways in which they relate to and are useful to man. The major provides a balanced program if your interest is in basic—including the study of avian wildlife and their environments, production and marketing of domestic birds and eggs, and basic and applied laboratory research on birds—and a broad knowledge of biological science. You may seek a career in health-oriented research, the teaching of biology, avian husbandry, extension, and other fields. In independent study, undergraduate research, and work-study experiences are features emphasized in the program.

Avian Sciences

B.S. Major Requirements:

For convenience in program planning, the following courses taken to satisfy the requirements are

162
Lecture—2 hours; discussion—1 hour; project requiring minimum 20 hours; field trip. Prerequisite: course in biology recommended. Birds of the world in man: folklore, art, literature, uniqueness, domestication, recreation, game birds, zoos, falconry, endangered species; public health, in research, as food sources.

13L. Birds, Man, and the Environment: Laboratory (1) Ill. Grau
Laboratory—3 hours. Demonstrations and field trips for students enrolled concurrently in course 13.

15. Biology of Birds of Prey (3) Ill. Weathers
Lecture—2 hours; 4 weekend field trips optional. Prerequisite: some familiarity with raptor species and course 13 recommended. Introduction to birds of prey with emphasis on anatomy, physiology, behavior, handling, and husbandry.

99. Special Study for Undergraduates (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Problems in avian biology, nutrition, breeding, and physiology of poultry and their products. (P/NP grading only.)

Upper Division Courses

100. The Biology of Birds (3) Ill. Weathers
Lecture—2 hours; discussion—1 hour. Prerequisite: background in general biology recommended. Aspects of biology (anatomy, physiology, behavior, nutrition, reproduction, and adaptation) that govern the life of birds. Emphasis on those features of birds, domestic, wild and experimental, which are distinctive and unique for animals with feathers.

100L. Biology of Birds: Laboratory (1) Ill. Weathers
Laboratory—3 hours. Prerequisite: course 100 concurrently. Laboratory exercises in production, incubation, nutrition, and physiology of domestic and wild birds.

102. Fertility and Hatchability in Birds (3) Ill. Abbott
Lecture—2 hours; two field trips. Prerequisite: Biological Sciences 1 and Chemistry 8A. Reproduction in domestic and wild bird species. The influences of genetic, environmental, and behavioral factors on embryonic development, special emphasis on the effects of diet, drugs, and pesticides.

110. Comparative Avian Micronutrition (4) Ill. Bigelow
Lecture—2 hours; laboratory—6 hours. Prerequisite: Zoology 27L, and Physiology 10. Development and aging of specific organs and tissues unique to avian species will be studied in chickens, quail, turkeys and raptors, as well as mutants available at Davis. Comparisons will be made to reptiles and mammals in many cases.

120. Game Bird Production (3) J. Woodard
Lecture—2 hours; laboratory—3 hours. Prerequisite: Animal Science 1; 2 course 11. Introduction to husbandry of popular game bird species kept in captivity. Course will cover such basic factors as game bird identification, incubation, housing, brooding and rearing, nutrition, diseases, sanitation and marketing.

149. Environmental Management of Poultry (3) Ill. W. O. Wilson
Lecture—1 hour. Prerequisite: Physiology 149 (may be taken concurrently). Application of physiological principles to environmental management of poultry.

150. Comparative Nutrition of Avian Species (3) Ill. Vohra
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1 and Chemistry 8A or consent of instructor. Comparison of digestive tracts, food habits, effects of nutrients on growth, sexual maturity, egg production, fertility and hatchability of eggs of wild and domestic species of birds. Effects of pesticides and other non-nutrient substances on their life cycles.

199. ProSeminars in Avian Sciences (1-5) I, II, III, Katzer, Weathers, Woodard
Seminar—1 hour. Prerequisite: upper division standing in avian sciences or consent of instructor.

Avian Sciences; Bacteriology

195. Topics in Current Research (1-3) I, II, III, The Staff (Chairperson in charge)
Lecture-discussion—variable. Hours will depend on instructor with the number of units being commensurate with time in class. Prerequisite: consent of instructor. Discussion of topics of current interest in avian sciences. May not be taken for credit more than four times.

197. Tutoring in Avian Sciences (1-3) I, II, III, The Staff (Chairperson in charge)
Hours and duties vary depending upon course being tutored. Prerequisite: Avian Sciences or related major; approval of instructor. Tutoring of subjects in lower division avian sciences courses, weekly conferences with instructors in charge of course; written critiques of teaching procedures. (P/NP grading only.)

198. Directed Study (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Problems in avian biology related to nutrition, breeding, and physiology of poultry and their products. (P/NP grading only.)

Graduate Courses

215L. Laboratory in Avian Experimental Embryology and Teratology (3) Ill. Abbott
Laboratory—6 hours. Prerequisite: consent of instructor. The causes of abnormal morphogenesis in avian embryos including genetic, chemical, and physical-environmental factors; the application of transplantation, organ culture, and other experimental techniques. Offered in odd-numbered years.

290. Seminar (1) I, II, III, The Staff (Chairperson in charge)
Seminar—1 hour. Reports and discussions of recent advances and selected topics of current interest in avian genetics, physiology, nutrition, and poultry technology.

2977 Supervised Teaching in Avian Sciences (1-4) I, II, III, The Staff (Chairperson in charge)
Prerequisite: graduate standing and consent of instructor. Education 461 recommended. Tutoring of students in lower, upper-division and graduate courses in Avian Sciences; weekly conferences with instructor in charge of course; written critiques of teaching methods in lectures and laboratories. (P/NP grading only.)

298. Group Study (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor.

299. Research (1-12) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (SU grading only.)

Bacteriology

(College of Letters and Sciences)

John L. Ingram, Ph.D., Chairperson of the Department
Department Office, 156 Hutchinson Hall

Faculty

Stanley W. Artz, Ph.D., Assistant Professor
Paul Baumann, Ph.D., Associate Professor
Robert E. Hungerford, Ph.D., Professor Emeritus
John L. Ingram, Ph.D., Professor
Sydney G. Kustu, Ph.D., Assistant Professor
JaRue S. Manning, Ph.D., Associate Professor
Allen G. Merrill, Ph.D., Professor
John C. Meeke, Ph.D., Assistant Professor
Bacteriology

Herman J. Pratt, Ph.D., Professor (Bacteriology, Food Science and Technology)
David Pratt, Ph.D., Professor
Donald M. Reynolds, Ph.D., Associate Professor Emeritus
Wilfrid Segel, Ph.D., Lecturer
Moritomer P. Stahl, Ph.D., Professor
Mark L. Wheeles, Ph.D., Associate Professor

The Major Programs

The undergraduate major programs provide a balance of studies in the biology of bacteria and other microorganisms, together with appropriate courses in mathematics and physical science.

Both the Bachelor of Arts program and the Bachelor of Science program are suitable for students who plan to do graduate work in a biological science or who wish to have a professional career in bacteriology.

Either major is appropriate for students contemplating a career in Medical Technology. Such students are advised to take Veterinary Microbiology 126 and 127, Clinical Pathology 101 and a one-year laboratory course in physics in addition to the courses required for a major in bacteriology.

Choice of College. The Bachelor of Arts degree is offered only in the College of Letters and Science. The Bachelor of Science degree is offered in both the College of Letters and Science and the College of Agricultural and Environmental Sciences.

Bacteriology

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 2 or 102, 3</td>
<td>4-5</td>
</tr>
<tr>
<td>Biological Sciences 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A, 1B, 1C, 5, 6A, 8B</td>
<td>25</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
<tr>
<td>Physics</td>
<td>6</td>
</tr>
<tr>
<td>Recommended: Physics 2A, 2B, 2C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 105, 130A, 106-106, or 103B, 153, or 177</td>
<td>14-15</td>
</tr>
<tr>
<td>Biochemistry 101A, 101B, 101L</td>
<td>11</td>
</tr>
<tr>
<td>Genetics 100A-100B or 120</td>
<td>4-6</td>
</tr>
<tr>
<td>Additional units from Bacteriology 106, 106L, 130B, 130L, 155, 177, 177L, Biological Sciences 162, Botany 114, 118, 119</td>
<td>11</td>
</tr>
<tr>
<td>Veterinary Microbiology 127, 127L, 128</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Units for the Major 86-52

Bacteriology

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 2 or 103, 3</td>
<td>4-5</td>
</tr>
<tr>
<td>Biological Sciences 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 1A, 1B, 1C, 5</td>
<td>19</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 16A, 16B, 16C, or 21A, 21B, 21C</td>
<td>9-12</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 105, 130A, 106-106, or 103B, 153, or 177</td>
<td>14-15</td>
</tr>
<tr>
<td>Biochemistry 101A, 101B, 101L</td>
<td>11</td>
</tr>
<tr>
<td>Chemistry 107A, 107B, 126A, 126B, 126C, 126D</td>
<td>17</td>
</tr>
<tr>
<td>Genetics 100A-100B or 120</td>
<td>4-6</td>
</tr>
<tr>
<td>Biological Sciences 162 or Veterinary Microbiology 128</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Additional units from Bacteriology 106, 106L, 130B, 130L, 155, 177, 177L | 5

Recommended: Chemistry 108: a course in computer programming

Total Units for the Major 104-112

Breadth Subject Matter

| College of Agricultural and Environmental Sciences Students | 24 |

| English and/or rhetoric | 8 |

| Social sciences and/or humanities | 16 |

Additional requirements as described on page 74

College of Letters and Science students:

Refer to page 98 for a description of requirements to be completed in addition to the major

Major Advisers:

S. W. Artz, P. Baumann, W. P. Segel

Honor and Honors Program. See major advisers listed above.

Teaching Credential Subject Representative:

W. P. Segel. See page 111 for the Teacher Education Program.

Graduate Study. The Graduate Group in Microbiology offers programs of study and research leading to the M.A. and Ph.D. degrees in general microbiology, including bacteriology. The offerings of the Department of Bacteriology are augmented by courses and faculty of the Departments of Biochemistry and Biophysics, Botany, Food Science and Technology, Genetics, Virology, and the Schools of Medicine and of Veterinary Medicine. For detailed information regarding graduate study in microbiology, address the Chairperson, Graduate Group in Microbiology, Department of Bacteriology.

Related Courses. For other courses related to Bacteriology see course offerings in the Departments of Biological Sciences, Botany, Epidemiology and Preventive Medicine, Food Science and Technology, Medical Microbiology, Plant Pathology, and Veterinary Microbiology.

Faculty of the Department of Bacteriology also teach in the following courses: Biological Sciences 1, 182, and 189; Food Science and Technology 106; Veterinary Microbiology 128.

Courses in Bacteriology

Lower Division Courses

2. General Bacteriology (3) I, II, III. The Staff

Lecture—3 hours. Prerequisite: Biological Sciences 1. The biology of bacteria with some of its applications.

Laboratory—3 hours. Prerequisite: Biological Sciences 1. Designed to acquaint the student with the basic techniques of bacteriology, with the major responsibility for organizing and accomplishing the work resting with the student. (PINP grading only.)

98. Directed Group Study (1-3) I, II, III. The Staff (engr and in charge)

Prerequisite: consent of instructor. Primarily for lower division students. (PINP grading only.)

Upper Division Courses

NOTE: Bacteriology 105 and 106 are designed for declared majors in Bacteriology and allied fields. Bacteriology 102 is primarily designed for Biological Sciences majors and other upper division and graduate students.

101. Microbiology and Society (4) I. Starr

Lecture—3 hours. Prerequisite: Upper division standing and consent of instructor. Introductory courses in biology and chemistry recommended. Microbes and microbiology, with particular attention to human well-being and the occurrence and significance of infections. Ways in which microbes aid, harm, and otherwise affect man, including environmental, literary, historical, intellectual, aesthetic, ethical, legal, economic, and political aspects. Limited enrollment.

102. General Bacteriology (4) I. Kuster, Baumann

Lecture—4 hours. Prerequisite: Biological Sciences 1 and Chemistry 8B; Mathematics 16A recommended. The biology of bacteria and bacterial viruses. A survey course dealing with the physiology, genetics, and taxonomy of bacteria and their relation to man. Students who have had course 3 may receive only 2 units of credit for this course.

105. Bacterial Diversity: Morphology, Systematics, Habitats (5) I. Wheels, Segel

Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 2 or 102, and, Chemistry 8B and/or 120A and 120A. The major groups of prokaryotic organisms, with particular emphasis on morphology and natural history. Isolation of bacteria from various habitats by enrichment culture methods.

106. Bacterial Diversity, Metabolism, Physiology (5) II, Baumann

Lecture—3 hours. Prerequisite: course 105, Biochemistry 101B (may be taken concurrently). Metabolic and physiological bases of prokaryotic diversity with particular emphasis on aerobic and anaerobic energy-yielding metabolism and the utilization of comparative biochemistry for classification of prokaryotes.

106L. Laboratory in Physiological Basis of Bacterial Diversity (2) J. Baumann

Laboratory—6 hours. Prerequisite: course 105 (may be taken concurrently). Practical experience in isolation and characterization of prokaryotes using a number of different analytical methods.

129. Microbial Ecology (3) III. Marks

Lecture—3 hours. Prerequisite: course 125, Biochemistry 101A. The interactions between non-pathogenic microorganisms and their environment, emphasizing the physiological and metabolic characteristics of various groups and their adaptation to and modification of specific habitats.

129L. Microbial Ecology Laboratory (2) III. Marks

Laboratory—6 hours. One optional weekend field trip. Prerequisite: course 120 (may be taken concurrently); consent of instructor. Study of prokaryotic microorganisms from certain habitats. One-half of the laboratory effort will consist of field trips, and one-half of the effort will consist of ecologically important microbial activities. For the remaining one-half, research projects will be done on student selected specific habitats of microorganisms. Limited enrollment.

130A. Bacterial Physiology and Genetics (4) II. Ingraham, Artz

Lecture—4 hours. Prerequisite: course 2 or 102, Biochemistry 101B (may be taken concurrently); Genetics 100A, Mathematics 16A. The physiology and regulation of bacterial growth including the effect of the environment. Mapping techniques and the use of mutants in problem solving.

130B. Bacterial Physiology and Genetics (3) III. Kuster, Artz

Lecture—3 hours. Prerequisite: course 130A, Prokaryotic nitrogen metabolism. Structure and function of the bacterial cell envelope, synthesis of peptides and lipopolysaccharides and role of these materials in DNA replication. Structure and function of the prokaryotic ribosome.

130L. Bacterial Physiology Laboratory (3) III. Kuster, Artz

Laboratory—6 hours. Prerequisite: courses 3, 130A. Physiology and genetics of bacteria and bacterial viruses. Characteristics and characterization of mutant strains. Mapping of mutations by conjugation and transduction. Studies of control of enzyme synthesis by induction, repression and catabolic repression.

164
Behavioral Biology

See Medicine

Biochemistry

(College of Agricultural and Environmental Sciences)

The Major Program

The Biochemistry major is suitable for students who plan to pursue a professional career in biochemistry, to do graduate work in biochemistry or another biological science, or if you intend to apply to schools of medicine, dentistry, medical technology, or veterinary medicine.

Choice of College. The Bachelor of Science degree is offered in both the College of Agricultural and Environmental Sciences and College of Letters and Science.

Biochemistry

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)
Biochemistry and Biophysics

Graduate Study. The Graduate Group in Biochemistry offers programs of study and research leading to the M.S. and Ph.D. degrees. For detailed information regarding graduate study, address the chairperson of the group.

Graduate Advisers. See Class Schedule and Room Directory.

Courses in Biochemistry
Graduate Courses

290. Seminar (1) I, II, III. The Staff (Dahmus in charge) Seminar—1 hour. Prerequisite: consent of instructor. (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Dahmus in charge) (S/U grading only.)

Biochemistry and Biophysics

(College of Agricultural and Environmental Sciences)

Jack Preiss, Ph.D., Chairperson of the Department Department Office, 149 Briggs Hall (752-3611)

Faculty
Robert L. Benson, Ph.D., Lecturer
George E. Bruening, Ph.D., Professor
Sterling Chaykin, Ph.D., Professor
Eric C. Conn, Ph.D., Professor
Richard S. Crichton, Ph.D., Professor
Michael D. Dahms, Ph.D., Associate Professor
Roy D. Doi, Ph.D., Professor
Maureen E. Etzel, Ph.D., Associate Professor
Darryl L. Hedrick, Ph.D., Professor
Lloyd L. Ingraham, Ph.D., Professor
Mark G. McNamee, Ph.D., Assistant Professor
Jack Preiss, Ph.D., Professor
Irwin H. Segel, Ph.D., Professor
Paul K. Stumpf, Ph.D., Professor
Merna R. Villarejo, Ph.D., Assistant Professor

Major Programs and Graduate Study. See the major in Biochemistry (page 165); and for graduate study see page 105, and under Biochemistry (A Graduate Group), this page.

Related Courses. See Food Science and Technology 210, 250, 251.

Courses in Biochemistry and Biophysics

Questions pertaining to the following courses should be directed to the instructor or to the Division of Biological Sciences, 150 Mirk Hall.

Upper Division Courses

101A. General Biochemistry (3) I, II, III. Segel, Etzel, McNamee, Villarejo, Benson Lecture—3 hours. Prerequisite: Chemistry 8B or 128B. Introduction to the chemistry and metabolism of biologically important compounds; dynamic aspects of biochemistry with examples from animals, plants, and microorganisms.

101B. General Biochemistry (3) I, II, III. Stumpf, Doi, Segel, Conn Lecture—3 hours. Prerequisite: course 101A. A continuation of 101A.

101L. General Biochemistry Laboratory (5) I, II, III. Cridde, Hedrick, Press, Brueing, Benson Lecture—2 hours; laboratory—9 hours. Prerequisite: course 101B (may be taken concurrently). Chemistry 5. Introduction to laboratory methods and procedures employed in studying biochemical processes. Designed for students who require limited experience in the use of biochemical techniques as laboratory tools.

122. Plant Biochemistry (3) I. Conn, Stumpf Lecture—3 hours. Prerequisite: course 101B. The chemistry of important plant constituents and processes such as photosynthesis and respiration; carbohydrate, fat, and nitrogen metabolism.

123. An Introduction to Enzymology (3) III. Whittaker (Food Science and Technology) Lecture—3 hours. Prerequisite: course 101B. Principles of the physical, chemical, and catalytic properties of enzymes and their utilization. Experimental determination and quantitative evaluation of influence of reaction conditions on activity are stressed. Specificity and mechanism of action illustrated by consideration of selected enzymes.

123L. Enzymology Laboratory (2) III. Whittaker (Food Science and Technology) Lecture—1 hour; laboratory—2 hours. Prerequisite: course 101B. Exercise 123 (concurrently). Laboratory procedures involved in the separation and study of enzymes.

133. Behavior and Analysis of Enzyme Systems (3) III. Segel Lecture—2 hours; discussion—1 hour. Prerequisite: course 101B. Analysis and behavior of allosteric enzymes; kinetic, thermodynamic, and regulatory properties of enzyme systems. Topics include enzyme inhibition, feedback control, and enzyme kinetics.

143. Structure-Function Relations of Proteins (3) I. Hedrick Lecture—2 hours; discussion—1 hour. Prerequisite: course 101A, 101B, and 101L (may be taken concurrently). Correlation of structure and biological function of molecules in proteins. Molecular models of enzymes that explain their physiological function. Details of various methods used in determining protein structure, function as measured by kinetic and binding studies, and methods of analysis of protein structure.

153. Biosynthesis of Informational Macromolecules, Mechanisms and Regulation (3) I. Dahms Lecture—3 hours, discussion—1½ hour. Prerequisite: course 101B. Genetics 100C. Classical mechanisms of information transfer and protein synthesis with special emphasis on regulation of the cellular level: development, immune system, and cancerogenesis.

190. Undergraduate Seminar in Biochemistry (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: courses 101A, 101B (may be taken concurrently). Discussion of the historical developments of modern biochemistry.

197T. Tutoring in Biochemistry (1-5) I, II, III. The Staff (Chairperson in charge) Discussion—1–5 hours. Prerequisite: upper division standing and consent of instructor. To assist the instructor by tutoring students in one of the department's regular courses. (F/P grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (F/P grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (F/P grading only.)

Graduate Courses

201A-201B. Advanced General Biochemistry (3-3) I-III. The Staff Lecture—3 hours. Prerequisite: course 101B or consent of instructor. Chemistry 107B-108 or 110C, 128C, 128C. Physical and chemical properties of amino acids, proteins, lipids, carbohydrates and nucleic acids; methods of isolation of proteins; enzymes, including kinases, coenzymes, and structure; and the study of organized cell structures.

202A-202B. Advanced Biochemistry Laboratory (6-6) I-III. The Staff Lecture—1 hour; laboratory—12 hours. Prerequisite: course 201A (may be taken concurrently). Chemistry 5. Laboratory methods and procedures used in biochemical research. Critical evaluation of experimental design and data is stressed. (S/U grading only.)

203. Carbohydrates (3) III. Preiss Lecture—3 hours. Prerequisite: course 201C or consent of instructor. The chemistry, metabolism, and biological functions of the various classes of carbohydrates and their polymers. Biosynthesis of simple and complex sugars and polysaccharides. Offered in odd-numbered years.

204. Nucleic Acids (3) I. Brueing, Dahms, Doi Lecture—3 hours. Prerequisite: course 201C or consent of instructor. The physical and biological properties of nucleic acids; biosynthesis and metabolism; structure and function of DNA and RNA; heredity, coding, and protein synthesis. Offered in even-numbered years.

205. Biochemical Mechanisms (3) II. Ingraham Lecture—3 hours. Prerequisite: course 201B or consent of instructor. Chemistry 110C, 131. Bond structure of biochemical interest. Application of modern organic and inorganic chemical principles to a study of the mechanisms of biochemical reactions.

208. Physical Biochemistry of Macromolecules (3) II. Crichton, McNamee Lecture—3 hours. Prerequisite: course 201C or consent of instructor. The physical chemistry of macromolecules. Application of modern physical concepts and experimental methods to the problems of large molecules of biological interest. Offered in even-numbered years.

207. Lipids (3) I. Stumpf Lecture—3 hours. Prerequisite: course 201C or consent of instructor. A discussion of the chemistry, metabolism, and experimental methodology unique to fatty acids, triglycerides, phospholipids, glycolipids, sphingolipids, carbohydrates, and steroids. Offered in even-numbered years.

208. Membrane Biochemistry (3) II. McNamee, Crichton Lecture—3 hours. Prerequisite: course 201C or consent of instructor. Membranes will be described initially in terms of their chemical composition and physical structures. Membrane biochemistry will be discussed and the membrane structure and function will then be considered. Finally many of the biological functions of membranes will be analyzed. Offered in odd-numbered years.

210. Protein Biochemistry (3) II. Geschwind (Animal Sciences) Lecture—3 hours. Prerequisite: course 201C. Chemical, physical, and biological properties of amino acids, peptides, and proteins. The biological aspects include protein function, biosynthesis and biodegradative pathways, and nutritional requirements for amino acids.

212. Chemical Modifications of Proteins (3) III. Feeney (Food Science and Technology) Lecture—3 hours. Prerequisite: course 101B, Chemistry 128C. Chemical approaches for studying proteins, emphasizing the use of chemical modifications as a tool in the study of active sites, particularly of enzymes, and relating the structure of proteins to their functions.

213. Principles of Comparative Biochemistry (3) III. Bates (School of Medicine), Feeney (Food Science and Technology) Lecture—3 hours. Prerequisite: course 201C or consent of instructor. Advanced treatment of comparative biochemistry. Comparisons of living systems, their structures and functions on a molecular basis, biochemical unity and diversity; protein structures and organized enzyme systems. Comparison of biochemical processes related to photosynthesis, metabolism, and excretion. Offered in odd-numbered years. (Same course as Biological Chemistry 213.)
215. Kinetics of Biological Systems (2) - I. Ingram. Lecture... 2 hours. Prerequisite: course 104B; Offered fall. This course takes up the principles of chemical equilibrium and concentration, and studies the behavior of reaction rates in biological systems.

225. Science, the Scientist, and Society (2) - A. Hedrick. Lecture... 2 hours. Prerequisite: two years of college credit in science and mathematics. This course explores the role of science in society and the ethical and social implications of scientific research.

230. Biochemical Aspects of Endocrinology (3) - K. Hoch. Lecture... 3 hours. Prerequisite: course 104B; Offered fall. This course covers the biochemical aspects of endocrinology, including the structure and function of hormones and their role in the regulation of metabolic processes.

240. Selected Topics in Biochemistry (2) - J. Smith. Seminar... 1 hour. Prerequisite: course 104B; Offered fall. This seminar covers selected topics in biochemistry, focusing on current research and developments in the field.

250. Biochemical Literature (1) - J. Smith. Seminar... 1 hour. Prerequisite: course 104B; Offered fall. This seminar focuses on critical reading and evaluation of current research literature in biochemistry.

270. Advanced Research Conference (1) - J. Smith. Seminar... 1 hour. Prerequisite: course 104B; Offered fall. This conference provides an opportunity for advanced research and discussion in biochemistry.

291. Current Progress in Biochemistry (1) - J. Smith. Seminar... 1 hour. Prerequisite: course 104B; Offered fall. This seminar covers current research and developments in biochemistry.

299. Research (1-12) - J. Smith. Seminar... 1 hour. Prerequisite: consent of instructor. This course provides an opportunity for students to conduct research in biochemistry.

Biological Sciences

Faculty

Faculty includes members from departments of Animal Physiology, Bacteriology, Biochemistry, Botany, Genetics, and Zoology. The major areas of research are divided into five major areas, each covering different aspects of biological sciences.

Kathleen M. Fisher, Ph.D., Associate Professor

Programs of Study

The Division of Biological Sciences is an interdepartmental unit that integrates the teaching and research of the departments of Animal Physiology, Bacteriology, Biochemistry, Botany, Genetics, and Zoology.

Four majors leading to a B.S. degree are offered in Biological Sciences, Bacteriology, Botany, and Zoology. Seven majors are offered within the Division leading to a B.S. degree in disciplines of the six above-named departments, and in Biological Sciences. The major programs are described under the respective departmental listings, except for majors in Biological Sciences (outlined below).

Biological Sciences Major Programs

The major programs in Biological Sciences provide an opportunity for broader study of basic biology than is possible with most departmental majors. The programs provide suitable undergraduate preparation for a wide variety of careers, including teaching, research, work with various governmental agencies, or with private companies, and all the health sciences. Students interested in a major within the Division may choose one of the following concentrations, which is meant to help them decide on the general area of their major.

Choice of College

The Bachelor of Science degree is offered only in the College of Letters and Science. The Bachelor of Science degree is offered only in both the College of Letters and Science and the College of Agricultural and Environmental Sciences.

Biological Sciences

A.B. Major Requirements:

Preparatory Subject Matter:

- Bacteriology 2 or 102, 3: 4-5
- Botany 2: 5
- Zoology 2-2L: 6
- Chemistry 1A, 1B: 10
- Mathematics: 6
- Recommended: Chemistry 1C, Physics 2A, 2B, 2C

Depth Subject Matter:

- Genetics 100A-103B or 120: 36

Restricted Electives:

- to achieve a total of 36 upper-division units in the biological sciences, and include at least one course from two of the three Area lists (animal biology, botany, microbiology) shown below, and at least one course from each of the five Group Requirement lists, a through e, shown below. (A course that appears on both

Area and Group Requirement lists may be used to satisfy both requirements. Both halves of sequential courses connected by a hyphen must be taken.)

Total Units for the Major:

70-84

B.S. Major Requirements:

- **Preparatory Subject Matter:**
 - Bacteriology 2 or 102, 3: 4-5
 - Biological Sciences 1: 5
 - Botany 2: 5
 - Chemistry 1A-1B/1C or 4A-4B/4C: 15
 - Chemistry 3A-3B/128A-128B: 12
 - Mathematics 13A-130A: 16, 16B: 13
 - Physics 2A, 2R, 2C: 9
 - Zoology 2-2L: 6

- **Recommended:**
 - Chemistry 5, Physics 3A, 3B, 3C

Total Units for the Major:

108-114

Biological Chemistry

See Medicine

Biological Sciences

(Intercollegiate Division)

James E. DeYoe, Ph.D., Associate Dean; Division of Biological Sciences

Wittraud P. Segel, Ph.D., Assistant Dean

Division Office, 150 Mak Hall

NOTE: For key to footnote symbols, see page 136.
Biomedical Engineering: Botany

Note: Botany 114, 118, or 119 may be used for either microbiology or plant biology (but both).

Courses List for Group Requirement
(a) Organismal Biology: Bacteriology 105, 150; Biological Sciences 162; Botany 102, 105, 108, 114, 119; Entomology 101A, 103; Veterinary Microbiology 127; Zoology 100, 105, 112A, 112B, 123A, 133B, 136, 137.
(b) Population Biology and Ecology: Anthropology 154A, Botany 117, 141; Entomology 104; Environmental Studies 120, 121; Genetics 105; Geology 116, 150C, Water Science 120; Wildlife and Fisheries Biology 110, 111, Zoology 116, 117, 148.
(c) Evolutionary Biology: Anthropology 151, 152; Botany 116, 140; Genetics 103; Geology 137; Plant Science 103, Zoology 148.
(d) Physiology: Bacteriology 130A-130B; Botany 111A-111B; Entomology 101B; Physiology 110, Plant Pathology 130, Zoology 142, 143, 144. Bachelor of Arts majors may satisfy the Physiology group requirement with Biochemistry 101A-101B.
(e) Molecular and Cell Biology: Biochemistry 133, 143, 152; Botany 130; Genetics 105; Medical Microbiology 107; Physiology 100A-100B, 103; Veterinary Microbiology 125; Zoology 121A, 121B, 156.

Other Upper Division Courses
A list of courses which will be accepted in satisfaction of the upper division major requirement, without petitioning, is available in the Division of Biological Sciences Office, Room 150, McK Hall. There is a limitation of variable-unit courses which may be counted towards the major: 2 units of 197T, 5 units of 199 (including the 2 units of 197T).

Major Advisor. Contact Division Office for advisor assignments.

Teaching Credential Subject Representative, K. M. Fisher (Teaching Resources Center). See page 111 for the Teacher Education Program.

Courses in Biological Sciences

Lower Division Courses

1. Principles of Biology (5 I) Murph (Botany); II, Pratt (Botany); III, Wolfe (Zoology)
Lecture-discussion—4 hours; laboratory—3 hours. Prerequisite: Chemistry 1B or a passing score on a qualifying examination in Chemistry. An interdisciplinary course designed for majors in the biological sciences. The emphasis is on the unity of basic biological principles as related to cell structure and function, reproduction, genetics, evolution, and ecology.

2. General Biology (4 I) Grey (Zoology); II, Ketelap (Botany)
Lecture—3 hours; discussion—1 hour. Not open for credit to those who have had course 1. Consideration of the main features and principles of biology, with emphasis on biological processes and special reference to evolution, heredity, and the bearing of biology on human life. Designed for students not specializing in biology.

3. Human Sexuality (2 I) Hildebrand (Zoology)
Lecture—2 hours; vocabulary; structure and function of genital system; sexual desire; menstruation; fertility; birth control; pregnancy and childbirth; sex in religion and law; sex education, homosexuality, masturbation, establishing and maintaining intimacy, intimate communication, attitudes and values; sexual dysfunctions; homosexuality. (Pr NP grading only.)

98. Directed Group Study (1-5 I, II, III. The Staff)
Prerequisite: consent of instructor. Primarily for lower division students. (Pr NP grading only.)

Upper Division Courses

115. Problems in Marine Biology (15 III) Phillips (Zoology)
Full-time study at Bodega Marine Laboratory. Prerequisite: consent of instructor based on adequate preparation for the topic under consideration, i.e., appropriate laboratory courses in invertebrate zoology (normally Zoology 112A or 112B), microbiology (narrowly Bacteriology 105), paleontology, geology, or botany; junior standing. Lecture, laboratory, and field work, and directed study of a selected focal topic in marine biology, stressing experience in original research. Offered depending upon availability of instructors. Limited enrollment.

162. General Virology (4 I) Pratt (Bacteriology); Shalla (Plant Pathology); Bier (Biochemistry)
Lecture—4 hours. Prerequisite: course 1; Genetics 104A and Biochemistry 101B recommended. An integrated presentation of the nature of animal, bacterial, and plant viruses, including their structure, replication, and genetics.

189. Integration of Biological Concepts (3 III) Sager (Zoology)
Lecture—2 hours; discussion—1 hour. Prerequisite: twenty upper division units in biology. A detailed examination in depth of the coherence of biology through a study of several unifying themes, for example, evolution.

197T. Tutoring in Biological Sciences (1-5, 1, II, III. The Staff)
Prerequisite: upper division standing with major in biological sciences. Assists in courses under the direction of the faculty. (Pr NP grading only.)

198. Directed Group Study (1-5 I, II, III. The Staff)
Prerequisite: consent of instructor. (Pr NP grading only.)

Graduate Courses

210. Effective Teaching of College Biology (2 II) Fisher
Informal lecture-discussion—2 hours. The teaching function of an academic career: objectives, nature, and methods of effective teaching; design of curricula and courses; lecturing and leading discussions; examinations and grading; evaluation; counseling; innovation. (Pr NP grading only.)

211. Designing Instruction in the Biological Sciences (3 II) Fisher
Lecture—1 hour; laboratory—6 hours. Prerequisite: graduate standing. Students will each develop a unit of original biological instruction (such as lecture, laboratory experiment, syllabus, test, textbook module). Will consider goals; objectives; selection of appropriate pedagogical strategies, methods, and source materials; organization; development; and evaluation.

298. Group Study (1-5 I, II, III. The Staff)
Prerequisite: consent of instructor. Division of Biological Sciences staff members may offer group study courses under this number.

Biomedical Engineering (A Graduate Group)

Melvin R. Ramey, Ph.D., Chairperson of the Group
Group Office, 206 Walker Hall (Civil Engineering)

Faculty

Robert E. Smith, Ph.D. (Human Physiology)
Richard F. Walters, Ph.D., Associate Professor (Human Physiology)

Warden Waing, Ph.D., Professor (Medical Medicine and Rehabilitation, Human Physiology)

Graduate Study: The Graduate Group in Biomedical Engineering offers a program of study and research leading to the Ph.D. degree. For detailed information regarding graduate study in biomedical engineering address the chairperson or advisor of the group.

Graduate Adviser. W. Waing.

Courses in Biomedical Engineering

Graduate Courses

252. Advanced Information Systems (3 II) Walters
Lecture—1 hour; seminar—2 hours. Prerequisite: Human Physiology 151; consent of instructor. Course studies of information systems; development of system components through projects; analysis of online file structures; strategies for system performance optimization. (Same course as Human Physiology 252.)

298S. Seminar (1-5 I, II, III. The Staff (Chairperson in charge)
Seminar—2 hours. Special topics in biomedical research and applications. Includes such topics as instrumentation, simulation and modeling, physiological and computer applications, artificial organs and assistive devices. (S/U grading only.)

299. Research (1-12 I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

Botany

(College of Letters and Science)

Kenneth Wells, Ph.D., Chairperson of the Department
Ernest M. Gifford, Jr., Ph.D., Acting Chairperson of the Department
David E. Beyer, Ph.D., Vice Chairperson of the Department
Agricultural Botany
Department Office, 143 Robbins Hall

Faculty

Fredrick T. Addicott, Ph.D., Professor Emeritus
Floyd M. Ashton, Ph.D., Professor Emeritus
Daniel I. Axialr, Ph.D., Professor Emeritus
Michael S. Barbour, Ph.D., Professor
David E. Beyer, Ph.D., Professor
Bruce A. Bonner, Ph.D., Associate Professor
Paul A. Castelfranco, Ph.D., Professor
Alden S. Crafts, Ph.D., L.L.D., Professor Emeritus
Herbert S. Currier, Ph.D., Professor Emeritus
James A. Doyle, Ph.D., Associate Professor
Emanuel Epstein, Ph.D., Professor (Botany, Soils and Plant Nutrition)
Richard H. Falk, Ph.D., Associate Professor
Ernest M. Gifford, Jr., Ph.D., Professor
F. Dana Hays, Ph.D., Assistant Professor
Hendrik J. Ketelap, Ph.D., Professor
Donald W. Kyhos, Ph.D., Professor
Norma J. Lang, Ph.D., Professor
William J. Lucas, Ph.D., Assistant Professor
Jack Major, Ph.D., Professor
Teresa M. Murphy, Ph.D., Associate Professor
Robert F. Norris, Ph.D., Associate Professor
Robert W. Peary, Ph.D., Associate Professor
Steven R. Radosnich, Ph.D., Assistant Professor
Thomas L. Rost, Ph.D., Associate Professor
Alain J. Stettner, Ph.D., Assistant Professor
C. Ralph Stocking, Ph.D., Professor Emeritus
Robert M. Thornton, Ph.D., Associate Professor
Johanna Tucker, Ph.D., Professor
Grady L. Webster, Ph.D., Professor
T. Elliott Weir, Ph.D., Professor Emeritus
Kenneth Wells, Ph.D., Professor
The Bachelor of Arts and Bachelor of Science programs are designed to introduce students to the disciplines dealing with the physiology, cytology, ecology, taxonomy, and morphology of seed plants and to provide an awareness of the diversities of other plant and plant-like groups. Students who plan advanced study in botany, or a related applied discipline, and who wish to obtain a general secondary teaching credential or training for a position requiring a detailed knowledge of plants should elect the Bachelor of Science major program. Students who wish a less intensive program in botany, but one that acquaints a student with plant life and its importance, should elect the Bachelor of Arts major program.

Choice of College. The Bachelor of Arts degree is offered only in the College of Letters and Science. The Bachelor of Science degree is offered in both the College of Letters and Science and the College of Agricultural and Environmental Sciences.

Botany

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences 1</td>
<td>32-37</td>
</tr>
<tr>
<td>Botany 2</td>
<td>5</td>
</tr>
<tr>
<td>Zoology 2-2L</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1A, 1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 128A-128B-128C-129A</td>
<td>6-11</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36</td>
</tr>
<tr>
<td>Botany 105, 106, 111A, 111B, 112B</td>
<td>21</td>
</tr>
<tr>
<td>Genetics 100A-100B or 120</td>
<td>4-6</td>
</tr>
<tr>
<td>Additional upper division units in Botany or related natural science courses</td>
<td>9-11</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>68-73</td>
</tr>
</tbody>
</table>

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences 2 or 102, 3</td>
<td>57-63</td>
</tr>
<tr>
<td>Botany 2 or 102, 3 (Students who have completed Botany 105 and 106 are not required to take courses 2 and 3)</td>
<td>4-5</td>
</tr>
<tr>
<td>Biological Sciences 1</td>
<td>5</td>
</tr>
<tr>
<td>Botany 2</td>
<td>6</td>
</tr>
<tr>
<td>Zoology 2-2L</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1A, 1B, 1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 128A-128B-128C-129A</td>
<td>6-11</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics 13A, 16A</td>
<td>7</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>45-47</td>
</tr>
<tr>
<td>Biochemistry 101A, 101B</td>
<td>6</td>
</tr>
<tr>
<td>Genetics 100A-100B or 120</td>
<td>4-6</td>
</tr>
<tr>
<td>Choose one from the following two options</td>
<td>10</td>
</tr>
<tr>
<td>(a) Botany 118, 119</td>
<td></td>
</tr>
<tr>
<td>(b) Botany 114, plus 5 additional upper division units in Botany or related natural sciences.</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>102-110</td>
</tr>
</tbody>
</table>

Lower Division Courses

2. Introductory Survey of Botany (5) I, Kiyos, Lang; II, Babour, Sterner, III, Thornon, Doyle
 Lecture—3 hours, laboratory—6 hours. Prerequisite: Biological Sciences 1, especially for mitosis, meiosis, cell structure, enzyme action, DNA, respiration, and photosynthesis. Broad survey of diversity in plant structure, function and classification. Special emphasis on flowering plants.

98. Freshman Seminar in Plant Biology (2) I, II, III. The Staff Seminar—2 hours. Prerequisite: consent of instructor. Selected topics on questions of current interest chosen to illustrate the nature and achievements of research in plant biology. (PINP grading only.)

91. Current Issues in Plant Biology (2) I, Babour, Bayer Seminar—2 hours. Prerequisite: consent of instructor. Basic concepts and methods of plant biology. Fundamental problems, recent trends in research, relationships with other fields of study. Topics to be announced quarterly. May be repeated for credit. (PINP grading only.)

99. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Primarily for lower division students. (PINP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (PINP grading only.)

Upper Division Courses

101. Survey of Plant Communities of California (3) III. Babour, Raudovich
 Lecture—2 hours, weekend field trips—4 to 6 days. Prerequisite: upper division standing and consent of instructor. course 2 recommended. The structure of selected plant communities and the relationship of the component species to the environment. Recommended for non-majors.

102. California Floristics (4) III. Wenster
 Lecture—2 hours, laboratory—6 hours or field trips. Prerequisite: course 2 or an equivalent plant science course. Survey of the flora of California, with emphasis on practical identification of the important plant families, genera, and species characterizing the major floras. Lectures emphasize the historical and ecological factors influencing the development of the California flora.

105. Plant Anatomy (5) I, Rost
 Lecture—2 hours, discussion—1 hour, laboratory—6 hours. Prerequisite: course 2. Structure in relation to function of cells, tissues, and organs of higher plants; discussion of current experimental literature.

106. Systematic Botany of Flowering Plants (5) III
 Lecture—3 hours, laboratory—6 hours. Prerequisite: course 2. Laboratory field studies of the characters and relationships of the principal families and orders of flowering plants. Principles of taxonomy. Practice in identification of species by means of keys.

11A. Introduction to Plant Physiology (3) I, Sterner, II, Lucas
 Lecture—3 hours. Prerequisite: course 2; Chemistry BB (may be taken concurrently). The fundamental activities of plants; the plant cell as a functioning unit. The processes of absorption, movement, and utilization of water and minerals. Water loss, translocation, photosynthesis.

11B. Introduction to Plant Physiology (3) II, Bonner, III, Murphy
 Lecture—3 hours. Prerequisite: course 111A; Biochemistry 101A recommended. Continuation of course 111A. Respiration; metabolism. The dynamics and control of growth and development.

111L. Introductory Plant Physiology Laboratory (3) III, Thornon, III, Hess
 Discussion—1 hour; laboratory—6 hours. Prerequisite: course 111B. An introduction into basic instrumentation and techniques used in the investigation of plant physiological processes such as water and solute absorption, movement, and utilization; translocation; transpiration; metabolism; and respiration; growth; development and reproduction.

114. Biology of Fungi and Algae (5) III, Lang
 Lecture—3 hours, laboratory—6 hours. Prerequisite: course 2. Not open for credit to students having received credit for courses 118 or 119. An introduction to the morphology, taxonomy, and physiology of the fungi and algae.

116. Biology of Vascular Plants (5) II, Gertox
 Lecture—3 hours, laboratory—6 hours. Prerequisite: course 2. Not open for credit to students having received credit for courses 118 or 119. An introduction to the morphology, taxonomy, and physiology of the fungi and algae.

117. Plant Ecology (4) I, Babour, Pearsley, III, Major
 Lecture—3 hours; several Friday or Saturday field trips. Prerequisite: plant physiology (course 111B) and plant identification (course 102 or 108) recommended. The study of interactions between plant populations or vegetation types and their environment. Special emphasis on California. Students taking course 117 may not receive credit for course 101.

118. Phycology (5) II, Lang
 Lecture—3 hours; laboratory—6 hours, one field trip. Prerequisite: course 2. Comparative morphology, physiology and development of major phyla (including blue-green algae) with emphasis on phycology in Chrysophyta. Laboratory exercises stress identification and culture. Environmental significance and exploitation of freshwater and marine forms considered.

119. Introductory Mycology (5) I
 Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2. Not open for credit to students having received credit for course 118 or 119. An introduction to the morphology, taxonomy, and physiology of the fungi and algae.
Botany

129. Introduction to Weed Science (3) I. Bayer Lecture—2 hours; demonstration-discussion—3 hours. Prerequisite: course 2; Chemistry 8A, 8B. Principles of weed science including mechanical, biological, and chemical control methods. Weed control in conifer, pasture, range, brush, forests, aquatic, and non-crop situations. Types of herbicides. Application of herbicides. Study of common weeds and demonstrations to illustrate principles.

121. Biology of Weeds (3) I. Radosevich Lecture—2 hours; laboratory—3 hours. Prerequisite: course 2. Origin and evolution, beneficial and harmful aspects, reproduction and dispersal, seed germination and dormancy, growth and development, ecology, interaction of weeds and crops, natural succession, and herbicide induced succession. Laboratories will emphasize taxonomy of weeds and demonstrate principles discussed in lectures.

122. Action of Herbicides (3) III. Ashton Lecture—2 hours; laboratory—3 hours. Prerequisite: course 120; Soil Science 2; courses 111A, 111B recommended. The influence of plants and soils on the action of herbicides: absorption, translocation, fate, mechanism of action and symptoms of herbicides in plants. The effects of herbicides on plant populations. Physical and molecular fate of herbicides in soils.

130. General Cytology (4) I. Falk Lecture—4 hours; discussion—1 hour. Prerequisite: course 2 or Zoology 101A. Genetics 100B or Biochemistry 101A. An analysis of the structure and ultrastructure of cells; the relationship between structure and function at cellular and subcellular levels. Consideration of cell parts, membranes, endoplasmic reticulum, mitochondria, plastids, Golgi apparatus, and their relation both to the metabolic nucleus and the dividing nucleus. Should not be taken by Biological Sciences majors to satisfy the Biological Sciences requirement in Plant Biology.

130L General Cytology Laboratory (2) I. Falk Laboratory—6 hours. Prerequisite: course 130 (may be taken concurrently). Introduction to the laboratory methods of cytology, introduction to the interpretation of electron micrographs.

140. Introduction to Forest History (5) I. Lecture—2 hours; laboratory—6 hours; one-day or two-day weekend field trips. Prerequisite: course 101, 140, or 141 recommended. Development of modern vegetation, with emphasis on factors of origin and radiation; rates of evolution; and the factors controlling them.

141. Plant Geography (4) II. Webster Lecture—3 hours; laboratory-discussion—3 hours. Prerequisite: course 102, 108, or 116, or consent of instructor; course 107 recommended. Analysis of the distribution patterns of the vascular plant groups, and consideration of the factors which account for the present diversity of flora and vegetation.

142. Evolution of Plant Ecosystems (4) II. Doyle Lecture—2 hours; one-day or two-day weekend field trips. Prerequisite: courses 101, 140, or 141 recommended. Evolutionary history of mixed mesophytic forest, conifer-hardwood forest, boreal forest, rainforest, and others.

155. Plant Microtechnique (4) III. Rost Lecture—1 hour; discussion—1 hour; laboratory—6 hours. Prerequisite: course 105 or 116. Practical laboratory methods in preparing plant materials for microscopic examination; special emphasis given to paraffin and chromosome squash techniques; introduction to cryostat sectioning, histotechnology and photomicrography.

190. Proseminar in Plant Biology (2) I. Wells Seminar—2 hours. Prerequisite: upper division standing. Integration of concepts in plant biology. Selected topics include current research trends, relations with other disciplines, and topics of current interest in the theory, philosophy, history, and sociology of science. Topics to be announced quarterly. May be repeated for credit. (P/NP grading only.)

194H. Special Study for Honors Students (1-5) I, II, III. The Chairperson in charge. Prerequisite: open only to majors of senior standing on honors list. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis. (P/NP grading only.)

197T. Tutoring in Botany (1-5) I, II, III. The Staff. Prerequisite: upper division standing and consent of instructor. Designed for undergraduate students who desire teaching experience. Student contact will be primarily in laboratory or discussion sections. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Advanced Biological Ecology (4) II. Salt (Zoology). Major Lecture—3 hours; discussion—1 hour. Prerequisite: an upper division course in either plant or animal ecology (recommended both) and graduate standing. An examination of major topics in theoretical ecology. (Same course as Ecology 201, Zoology 201, and Ecology 201.)

202. Plant Ecophysiology (3) III. Peary Lecture—3 hours. Prerequisite: courses 111A, 111B, 117, and consent of instructor. Study of the mechanisms of physiological adaptation of plants to their environment.

203. Ecophysiological Methods (2) III. Peary Laboratory—3 hours; one 8-hour field trip to be arranged. Prerequisite: courses 111A, 117, and consent of instructor. A laboratory course covering research concepts useful in plant ecophysiology.

205A. Advanced Plant Physiology (3) I. Lucas Lecture—3 hours. Prerequisite: course 111B, Biochemistry 101A (may be taken concurrently). Cellular physiology, plant water relations, translocation, and mineral nutrition.

205B. Advanced Plant Physiology (3) II. Castelfranco Lecture—3 hours. Prerequisite: course 111B, Biochemistry 101B. Photosynthesis, respiration, and general plant metabolism.

205C. Advanced Plant Physiology (3) III. Bonner Lecture—3 hours. Prerequisite: course 111B, Biochemistry 101A; courses 205A and 205B, Biochemistry 101B recommended. Internal and environmental regulation of plant growth and development.

206A. Advanced Plant Physiology Laboratory (2) I. Lucas Laboratory—6 hours. Prerequisite: course 205A (may be taken concurrently); Biochemistry 101L. Laboratory procedures in advanced plant physiology. Experiments designed to follow subject-matter sequence of course 205A.

206B. Advanced Plant Physiology Laboratory (2) II. Castelfranco Laboratory—6 hours. Prerequisite: course 205B (may be taken concurrently); Biochemistry 101L. Laboratory procedures in plant physiology. Experiments selected to follow subject-matter sequence of course 205C.

211. Plant Cell Metabolism (4) II. Lecture—2 hours; laboratory—6 hours. Prerequisite: consent of instructor. Plant cell physiology, dealing particularly with the roles of plastids, mitochondria, microsomes, and nucleic acid in cell metabolism. Isolation and study of these particulates, using centrifugation, gasometric, chromatographic, and spectrophotometric methods.

212. Physiology of Herbaceous Plants (3) III. Ashton Lecture—3 hours. Prerequisite: courses 111B, 112. Study of the elemental processes involved in the physiological activity of herbaceous plants. Detailed consideration of the fate of herbicides in plants.

216. Advanced Morphology of Vascular Plants (3) III. Gifford Lecture—2 hours; laboratory—3 hours. Prerequisite: course 116. Evolution of form, structure, and reproduction of fossil and extant groups of angiosperms, and selected extant groups of gymnosperms.

217. Concept and Measurement of the Plant Community (3) I. Barbour Seminar-discussion—3 hours. Prerequisite: course 117 and a course in statistics. Major subject areas are: (1) historical concepts of the plant community and of hierarchical groupings of communities, and (2) a review of sampling and analytical methods employed in the description or measurement of plant communities.

220. Plant Morphogenesis (3) III. Rost Lecture—3 hours. Prerequisite: course 105 or 116. Survey of recent advances in the study of growth and the development of form, with emphasis on reference to higher plants, and some emphasis on experimental approaches.

220L. Plant Morphogenesis Laboratory (3) III. Rost Laboratory—6 hours. Prerequisite: course 220 (may be taken concurrently) and consent of instructor. Procedures, principles, and experimental aspects of the study of plant form.

221. Special Topics in Plant Physiology (3) I, II. Castelfranco, II, III. Thornton Seminar—2 hours. Analysis in depth of recent advances in plant physiology. Lectures and discussions by research specialists. Students prepare an abstract/survey in the area of one or more lectures. May be repeated for credit. (S/U grading only.)

231. Biological Electron Microscopy (1) I. Falk Lecture—1 hour. Prerequisite: consent of instructor. An introduction to biological microscopic areas covered are: electron optics, electron specimen interactions, and vacuum systems.

231L. Biological Electron Microscopy Laboratory (1) I. Falk Laboratory—9 hours. Prerequisite: consent of instructor, course 231 (may be taken concurrently). An introduction to biological electron microscopy. Areas covered are: specimen preparation and microscope operation. Limited enrollment.

245. Pollination Ecology (4) III. Thorp (Entomology). Lecture—2 hours; laboratory—6 hours; field trips. Prerequisite: consent of instructors. Theory of ecological relationships between plants and their pollinators with emphasis on insect pollination. Review of adaptations of both flowers and insects, and survey of the coevolution of pollination relationships. Offered in even-numbered years. (Same course as Entomology 245.)

255. Principles of Plant Taxonomy (4) I. Tucker Lecture—2 hours; laboratory—6 hours. Prerequisite: course 108. Genetics 103 recommended. Principles of plant taxonomy: phylogenetic, phylogenetic classification; examples of the way in which various disciplines—anatomy, embryology, biochemistry, etc.—interact problems of taxonomic relationship, mainly of genera and higher categories.

256A. Experimental Plant Taxonomy (2) II. Kyhos Lecture—1 hour; laboratory—3 hours. Prerequisite: course 108, course 117 and Genetics 103 recommended. Application of experimental techniques to the elucidation of taxonomic problems and evolutionary relationships in higher plants.

256B. Experimental Plant Taxonomy (2) II. Kyhos Lecture—1 hour; laboratory—3 hours. Prerequisite: course 256A. A continuation of course 256A. The study of variation in natural populations in relation to taxonomy: the application of population sample analysis, cytogenetics, transplants studies, to the solution of taxonomic problems and the clarification of relationships.
257. Plant Autecology (3) I. Major

258. Plant Synecology (3) III. Major
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 106, 117, Soil Science 120 recommended. Theories and techniques involved in the study of structure, composition, boundaries, ecology, and classification of vegetation, with particular emphasis on California plant communities.

296. Seminar (1) I, Bonner III. Peary: III, Castelfranco Seminar—1 hour. (SU grading only.)

297. Seminar in Plant Morphology (1) II, Murphy III, Felt Seminar—1 hour. (SU grading only.)

298. Seminar in Plant Physiology (1) I, Sunset Seminar—1 hour. (SU grading only.)

299. Seminar in Weed Science (1) I, Norte Seminar—1 hour. (SU grading only.)

304. Seminar in Cytology and Cytobiology (1) II, Felt Seminar—1 hour. Survey of current research developments in the fields of cytology and cytochemistry with special reference to plants. Discussion of the fine structure of cells in relation to chemical function. (SU grading only.)

295. Seminar in Mycology (1) I, III, Butler (Plant Pathology) Seminar—1 hour. Review and evaluation of current literature and research in mycology. (Same course as Plant Pathology 295. (SU grading only.)

297T. Tutoring in Botany (1-5) I, II, III. The Staff Prerequisite: graduate standing and consent of instructor. Designed for graduate students who desire teaching experience, but are not teaching assistants. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)

300. Thesis (1-12) I, II, III. The Staff (Chairperson in charge)

301. Dissertation (1-12) I, II, III. The Staff (Chairperson in charge)

Chemistry

(College of Letters and Science)

David H. Volman, Ph.D., Chairperson of the Department
Richard E. Kepner, Ph.D., Vice-Chairperson of the Department
Department Office, 108 Chemistry Building

Faculty

*Thomas L. Allen, Ph.D., Professor
Lawrence J. Andrews, Ph.D., Professor
Alan L. Balch, Ph.D., Professor
Donald E. Bergstrom, Ph.D., Assistant Professor
Albert T. Bottini, Ph.D., Professor
Robert K. Brinton, Ph.D., Professor Emeritus
David A. Case, Assistant Professor
Joyce T. Doi, Ph.D., Lecturer
William H. Fink, Ph.D., Associate Professor
Edwin C. Friedrich, Ph.D., Professor
Seygi S. Friedrich, Ph.D., Lecturer
Daniel C. Harris, Ph.D., Assistant Professor

Makon Hope, Cand. real, Professor
Raymond M. Keeler, Ph.D., Professor
Joel E. Keizer, Ph.D., Professor
Richard E. Kepner, Ph.D., Professor
Gord N. LaMar, Ph.D., Professor
August H. Maki, Ph.D., Professor
Donald A. McQuarrie, Ph.D., Professor
Claude F. Meares, Ph.D., Associate Professor
Bryan Miller, Ph.D., Associate Professor
W. Kenneth Muir, Ph.D., Professor
Charles P. Nash, Ph.D., Professor
Edgar P. Painter, Ph.D., Professor Emeritus
Harold G. Reiber, Ph.D., Professor Emeritus
Peter A. Rock, Ph.D., Professor
John W. Root, Ph.D., Professor
Carl W. Schmid, Ph.D., Associate Professor
Neil E. Schoke, Ph.D., Assistant Professor
Kevin M. Smith, Ph.D., Professor
Leo H. Sommer, Ph.D., Professor
James H. Swihart, Ph.D., Professor
Dino S. Tinelli, Ph.D., Associate Professor
David H. Volman, Ph.D., Professor
George S. Zweifel, Sc.D., Professor

The Major Programs

Students who are interested in chemistry as a profession should elect the program leading to the Bachelor of Science degree. Those desiring a less intensive program in chemistry should elect the program leading to the Bachelor of Arts degree. Students who plan to pursue graduate work in Chemistry or related fields are strongly advised to obtain a reading knowledge of German or Russian. High school students should note that the preparation for either degree is simplified if their high school programs include chemistry and four years of mathematics.

Candidates for the bachelors' degree in chemistry will receive upper division credit for those lower division chemistry courses accepted in lieu of upper division courses required for the major.

Chemistry

A.B. Major Requirements:

Preparatory Subject Matter: 3-43

Chemistry 1A-1B-1C-5 or 4A-4B-4C: 15-19
Physics 2A, 2B, 2C, 3A, 3B, 3C: 12
Mathematics 21A-21B-21C or 16A-16B-16C: 9-12

Depth Subject Matter: 36

Chemistry 110A, 110B, 110C, 120A, 120B
126A, 129A, 129B: 22
At least 14 additional upper division units in chemistry, biochemistry, or physics: 14

Total Units for the Major: 72-79

Chemistry

B.S. Major Requirements:

Preparatory Subject Matter: 30-47

Chemistry 1A-1B-1C-5 or 4A-4B-4C: 15-19

Physics 4A, 4B, 4C, 4D, 4E: 20
Mathematics 21A, 21B, 21C, 22A, 22B, or 22C: 18

Depth Subject Matter: 45

At least 9 additional upper division units in chemistry (except Chemistry 107A, 107B), including one course with laboratory work: 9

Total Units for the Major: 98-102

Chemistry

Honors and Honors Program. The honors program comprises 6 units of course 194H.

Teaching Credential Subject Representative: C. P. Nash. See page 111 for the Teacher Education Program.

Graduate Study. The Department of Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees in chemistry. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Chemistry.

Courses in Chemistry

Lower Division Courses

1A. General Chemistry (5) I, Allen, Keeler, Tinelli, II, McQuarrie
Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: high school chemistry or high school physics and three years of high school mathematics (with an average grade of B or higher); or second-quarter standing in fundamental principles of chemistry. Stoichiometry, properties and theory of gases, first law of thermodynamics, atomic and molecular structure, colligative properties of solutions.

1B. General Chemistry (5) II, Allen, Balch, III, Keefer, Meares
Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 1A or 4A. Continuation of course 1A. Chemical equilibria, oxidation-reduction processes, electrochemistry, introduction to qualitative analysis.

1C. General Chemistry (5) I, Musker, III, Case, Fink
Lecture—3 hours; discussion —1 hour; laboratory—3 hours. Prerequisite: course 1B or 4B. Continuation of course 1B. Chemical kinetics, structures and reactions of complexes and molecules, application of principles of chemistry to problems of qualitative analysis. Students who have had course 4B may receive only 4 units of credit for course 1C.

4A. General Chemistry (5) I, Mak
Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Mathematics 21A or 16A (may be taken concurrently); high school chemistry or consent of instructor. An introduction to atomic and molecular structure and binding, states of matter, thermodynamics and chemical equilibria. Courses 4A-4B-4C are equivalent to course sequence 1A-1B-1C-5. The sequence 4A-4B-4C is primarily for students majoring in the physical sciences.

4B. General Chemistry (5) I, Harris
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 4A. Continuation of course 4A. A quantitative treatment of chemical equilibria with applications to precipitation reactions, acid-base reactions, complexation reactions, and oxidation-reduction reactions. Elementary electrochemistry and chemical kinetics. The laboratory will emphasize quantitative techniques.

4C. General Chemistry (5) III, Nash
Lecture—3 hours; laboratory—8 hours. Prerequisite: course 4B. Continuation of course 4B. Topics in systematic inorganic chemistry, nuclear chemistry, introduction to organic chemistry and the functional group concept, biological applications. Laboratory will emphasize qualitative analysis and preparative techniques.

5. Quantitative Analysis (4) I, Harris, III, Harris
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 1C with a grade of C or higher. An introduction to the principles and methods of quantitative chemical anal-
Chemistry

ysis with emphasis on the application of equilibrium theory to analytical problems. Students who have received credit for the 4A-4B-4C sequence may enroll in course 5 for 2 units only; not open to students who have received credit for 4A-4B-4C.

Lecture—3 hours. Prerequisite: course 1B with a grade of C or higher. With course 8B an introduction to the nomenclature, structure, chemistry, and reaction mechanisms of organic compounds, intended for students majoring in areas other than chemistry.

8B. Organic Chemistry: Brief Course (3) I, Dori, II, Sommers; III, Bottini.
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 8A. Continuation of course 8A. The laboratory is concerned primarily with the study of the properties and chemistry of the common classes of organic compounds.

Lecture—4 hours. A survey of basic concepts and contemporary applications of chemistry. Designed for non-science majors and not as preparation for Chemistry 1A. Not open to students who have had course 1A, but students with credit for course 10 may take course 1A for full credit.

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Volman in charge).
Prerequisite: consent of instructor. Directed study of a special topic. (PINP grading only.)

Upper Division Courses

107A. Physical Chemistry for the Life Sciences (3) I, Meares, Schmid.
Lecture—3 hours. Prerequisite: course 4C or 5 or consent of instructor; Mathematics 16C or 21C; one year college level physics. A basic course in physical chemistry intended for majors in life science areas. Introductory development of classical and statistical thermodynamics including equilibrium processes and solutions of nonelectrolytes. Kinetic theory of gases and liquids. Transport processes in liquids and solutions.

107B. Physical Chemistry for the Life Sciences (3) II, Meares, Schmid.
Lecture—3 hours. Prerequisite: course 107A or 110A. Continuation of course 107A. Electrochemistry and the thermodynamics of simple electrolyte solutions. Chemical rate processes. Introduction to spectroscopy, atomic and molecular structure, x-ray crystallography, radiation and nuclear chemistry, and to surface chemistry and colloidal systems. Considerations on bioscience processes.

108. Physical Chemistry of Macromolecules (3) III, Schmid.
Lecture—3 hours. Prerequisite: course 107B or 110C. Physical properties and characterization of macromolecules with emphasis upon those of biological interest. Structural, thermodynamic, optical and transport properties of polymers in bulk and in solution. Physical characterization methods. Special topics on the properties of polymeric systems.

110A. Physical Chemistry (3) I, Fink, Volman, III, Volman.
Lecture—3 hours. Prerequisite: course 5; Mathematics 21C or the equivalent or 16C; one year of college physics. Development of the principles of classical thermodynamics, emphasis on criteria for the existence and maintenance of equilibrium.

110B. Physical Chemistry (3) I, Case; II, Maki.
Lecture—3 hours. Prerequisite: course 110A. Continuation of course 110A. Atomic and molecular structure and spectra; the relation between molecular and thermodynamic properties.

110C. Physical Chemistry (3) II, Nash, III, McQuarrie.
Lecture—3 hours. Prerequisite: course 110B. Continuation of course 110B with emphasis on solution thermodynamics, kinetic theory, and chemical kinetics.

111A. Physical Chemistry: Methods and Applications (4) I, Nash; II, Rock.
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 107B or 110C (may be taken concurrently). Lecture topics include statistical analysis and data processing, basic electronics, diffraction methods, and optical systems. Laboratory exercises will involve computer practice, thermodynamic measurements on nonelectrolyte systems, and structural properties of molecules.

111B. Physical Chemistry: Methods and Applications (4) II, Rock; III, Maki.
Lecture—2 hours; laboratory—9 hours. Prerequisite: course 111A or consent of instructor. Lecture topics will include distribution equilibria and electroanalytical methods. Laboratory exercises will involve kinetics and mechanism, electrochemistry, distribution equilibria, chromatography, and electrophoretic techniques.

121. Introduction to Molecular Structure and Spectra (4) III, LaMar.
Lecture—4 hours. Prerequisite: course 110C. Modern theoretical and experimental methods used to study problems of molecular structure and bonding; emphasis on spectroscopic techniques.

124. Inorganic Chemistry (4) II, Musker.
Lecture—4 hours. Prerequisite: course 107B or 110B. 128B (any of which may be taken concurrently). Bonding, structure, and reactivity of inorganic compounds, including organometallic complexes and inorganic aspects of biological chemistry.

125. Methods of Inorganic Chemistry (4) III, Swinehart.
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 124. Discussion and application of the chemical and physical methods used to synthesize and characterize inorganic compounds and to study their reactivity.

126. Nuclear Chemistry (4) I, Root.
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 110B (may be taken concurrently with consent of instructor). Introduction to experimental and theoretical nuclear chemistry including nuclear properties, nuclear spectroscopy, nuclear reactions, radioactive decay, and nuclear reactions. Both the lectures and the laboratory stress applications of nuclear phenomena in chemistry.

Lecture—3 hours. Prerequisite: course 1C or 4C with a grade of C or higher. Chemistry majors should enroll in course 128A concurrently. Introduction to the basic concepts of organic chemistry with emphasis on stereochemistry and the chemistry of hydrocarbons. Designed primarily for majors in chemistry. Only two units of credit allowed students having had course 88B.

128B. Organic Chemistry (3) I, E. Fried; II, Smith; III, Sommer.
Lecture—3 hours. Prerequisite: course 128A or consent of instructor; course 129A strongly recommended. Chemistry majors should enroll in course 129B concurrently. Continuation of course 128A with emphasis on aromatic and aliphatic substitution reactions, elimination reactions, and the chemistry of carbonyl compounds. Introduction to the application of spectroscopic methods to organic chemistry.

128C. Organic Chemistry (3) I, Kepner, II, Schore; III, Sommer.
Lecture—3 hours. Prerequisite: course 128B; chemistry majors should enroll in course 129C concurrently. Continuation of course 128B with emphasis on enolate conjugations and the chemistry of amines, phenols, and sugars; selected biologically important compounds.

129A. Organic Chemistry Laboratory (2) I, Bergstrom; II, Miller; III, S. Fried.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 1C or 4C with a grade of C or higher. 128A (may be taken concurrently). Introduction to laboratory techniques of organic chemistry. Techniques or methods used for separation and purification of organic compounds. Only one unit credit allowed students having had course 88B.

129B. Organic Chemistry Laboratory (2) I, Zweelf; II, Kepner; III, Schore.
Lecture—2 hours; laboratory—6 hours. Prerequisite courses 128B (may be taken concurrently) and 129A. Continuation of course 129A. Emphasis is on methods used for synthesis and isolation of organic compounds.

129C. Organic Chemistry Laboratory (2) I, Kepner; II, Schore; III, Do.
Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 129B (may be taken concurrently) and 129B. Continuation of course 129B.

130. Qualitative Organic Chemistry (4) III, Zweiwel.
Lecture—1 hour; laboratory—9 hours. Prerequisite: courses 5, 128B, 129B. The application of physical and chemical techniques to the qualitative identification of organic compounds.

Lecture—4 hours. Prerequisite: courses 107B or 110B, 128B, or consent of instructor. Introduction to modern synthetic methodology in organic chemistry with emphasis on stereoselective reactions and application to multistep syntheses of organic molecules containing multifunctionality.

150. Chemistry of Natural Products (3) I, Smith.
Lecture—3 hours. Prerequisite: course 128C. Chemistry of terpenes, steroids, alkaloids, and antibiotics. Isolation, structure determination, biosynthesis, chemical transformations, and total synthesis.

194H. Undergraduate Research (2-5) I, II, III. The Staff (Volman in charge).
Prerequisite: course 110C (may be taken concurrently) and honors status. Original research and a written report of the investigation. Unit value to be determined by instructor supervising the research. (PINP grading only.)

197. Projects in Chemical Education (1-4) I, II, III. The Staff (Volman in charge).
Discussion and/or laboratory. Prerequisite: consent of instructor. Participation may include development of laboratory experiments, lecture demonstrations, auto-tutorial modules, or assistance with laboratory sessions. May be repeated for credit for a total of 12 units. (PINP grading only.)

199. Directed Group Study (1-5) I, II, III. The Staff (Volman in charge).
Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics, and physics. (PINP grading only.)

Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Volman in charge).
Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics, and physics. (PINP grading only.)

Graduate Courses

210A. Advanced Physical Chemistry: Thermodynamics (4) I, Rock.
Lecture—3 hours; discussion—1 hour or paper at discretion of instructor. Principles and applications of statistical mechanics: ensemble theory; statistical thermodynamics of gases, liquids, and solutions; surface effects; chemical equilibrium. Thermodynamics of gravitational, electric, and magnetic fields. The Third Law. Applications to biophysical problems.

210B. Advanced Physical Chemistry: Quantum Chemistry (4) II, Fink.
Lecture—3 hours; discussion—1 hour or paper at discretion of instructor. Principles of quantum chemistry and their applications to atomic and molecular structure and spectroscopy, and to chemical bonding.

210C. Advanced Physical Chemistry: Kinetics (4) III, Root.
Lecture—3 hours; discussion—1 hour or paper at discretion of instructor. Principles of quantum chemistry and their applications to atomic and molecular structure and spectroscopy, and to chemical bonding.

Lecture—4 hours. Use of spectroscopy in organic chem-
Chicano Studies

See Mexican-American (Chicano) Studies

Child Development

See Human Development

Chinese

See Asian American Studies, and Oriental Languages

Classics

(College of Letters and Science)

Department Office (Spanish and Classics), 622 Sproul Hall

Faculty

Richard E. Grimm, Ph.D., Associate Professor
Rynell E. Roller, Ph.D., Assistant Professor
Wesley E. Thompson, Ph.D., Professor
David A. Traill, Ph.D., Associate Professor

The Major Programs

The Classics Department offers three major programs: Latin, Greek, and Classical Civilization. The major programs in Greek and Latin consist of the detailed study of the great works of Greek or Latin literature in the original language, including epic, lyric, drama, philosophy, history, and oratory. Both majors emphasize the study of language and literature. The major program in Classical Civilization offers an interdisciplinary approach to the ancient world. Students choosing this major supplement a core of courses in Greek or Latin (or both) with courses on ancient art, archaeology, history, philosophy, etc. All three majors provide the opportunity to study in depth a civilization that has profoundly influenced the western world.

The programs in Latin and Greek and, with careful planning, the program in Classical Civilization offer excellent preparation for graduate study in Classics, ancient history, comparative literature, and archaeology. In addition, the major in Greek provides suitable background for diocese school or for graduate work in philosophy.

The majors in Latin and Classical Civilization may lead to careers in teaching (Latin, history, general humanities) or museum work (Classical Civilization). All three majors can lead to careers in librarianship, journalism, and civil service. The professional schools, particularly law schools, have traditionally looked with favor on highly qualified students with training in Latin or Greek.

Classical Civilization

A.B. Major Requirements:

Preparatory Subject Matter .. 21-24
Greek 1, 2, 3 or Latin 1, 2, 3 or the equivalent 12-15
Three courses from the following, including at least one from Group (a) 9
(b) Classics 4A, 10, 40, 41.

Total Units for the Major .. 61-64

Recommended
Art 1A; History 2; Philosophy 21; Comparative Literature 1, Religious Studies 40.

Greek

A.B. Major Requirements:

Preparatory Subject Matter .. UNITS
Greek 1, 2, 3 (or the equivalent) .. 15

Depth Subject Matter .. 36
Upper division units in Greek (two courses may be chosen from department-approved courses in related fields)

Total Units for the Major .. 36-51

Recommended
Latin 1, 2, 3.

Latin

A.B. Major Requirements:

Preparatory Subject Matter .. UNITS
Latin 1, 2, 3 (or the equivalent) .. 12

Depth Subject Matter .. 36
Latin 121 ... 5
At least 31 additional upper division units in Latin 31

Total Units for the Major .. 36-48

Major Advisers. D. A. Traill (Classical Civilization); W. E. Thompson (Greek); and R. E. Grimm (Latin).

Teaching Credential Subject Representative. R. E. Grimm. See page 111 for the Teacher Education Program.

Graduate Study. A program of study and research leading to the M.A. degree in Classics is offered. Detailed information regarding graduate study may be obtained from the Graduate Adviser.

Graduate Adviser. W. E. Thompson
Courses in Classics

Lower Division Courses

4A. Classical Civilization (3) Ill. The Staff Lecture—3 hours. An introduction to the literature, art, and institutions of classical Greece.

10. Greek and Roman Mythology (3) I., Thompson Lecture—3 hours. Origin and development of myths and legends, their place in the religion, literature, and art of Greece and Rome.

17A. Greek Archaeology (3) I. The Staff Lecture—3 hours. Greece, Crete, and the Aegean world during the Bronze Age with emphasis on the Minoan and Mycenaean civilizations. Consideration of certain aspects of Homeric civilization in light of the archaeological remains.

17B. Greek Archaeology (3) II. The Staff Lecture—3 hours. The archaeological monuments of Archaic and Classical Greece. Selections from Greek literature are related to the archaeological remains.

*17C. Roman Archaeology (3) III. Trail Lecture—3 hours. The development of Rome and its Empire as illustrated by the monuments.

20. Pontoppidan AD 79 (3) III. Trail Lecture—3 hours. Roman life in an urban community at the time of the eruption of Vesuvius. Slide presentations of the archaeological evidence will be supplemented by selected readings from Petronius' Satyricon and other ancient authors.

30. The Latin Element in Current English (3) II. Thompson, Grimm Lecture—3 hours. Prerequisite: knowledge of Latin is not required. The study of the derivation and usage of English words of Latin origin: analysis into their component elements directed toward understanding of form and meaning.

31. The Greek Element in Current English (3) III. Thompson, Trail Lecture—3 hours. Prerequisite: knowledge of Greek not required. Study of the derivation and usage of English words of Greek origin: analysis into their component elements directed toward understanding of form and meaning.

40. Homer and the Tradition of Ancient Epic (3) II. Thompson Lecture—3 hours. Reading in translation of selected plays of Aeschylus, Sophocles, and Euripides. Lectures on the development and influence of Athenian tragedy.

Upper Division Courses

*193B. Greek Literature in Translation (3) II. Thompson Lecture—3 hours. Development of historical writing in Greece. Herodotus, Thucydides, and dependencies from the minor historians. Offered in even-numbered years.

141. Greek and Roman Comedy (4) II. Grimm Lecture—3 hours; conference—1 hour. Readings in Aristophanes, Menander, Plautus, and Terence; lectures on the development of ancient comedy. Offered in odd-numbered years.

*142. Greek and Roman Novel (4) I. Trail Lecture—3 hours. Examination of the ancient Greek romances and their development into the grotesque realism of Petronius' Satyricon, and the religious mysticism of Apuleius: The Golden Ass.

*150. Athenian Political and Social Institutions (3) III. Thompson Lecture—2 hours; discussion—1 hour. Politics and government, marriage and kinship, religious societies, and the demographic and economic basis of Athenian democracy. Offered in odd-numbered years.

*174. Ancient Greek Sanctuaries (4) III. The Staff Lecture-discussion—4 hours. Prerequisite: course 17B or consent of instructor. The history, cults, and monuments of Olympia, Delphi, and other sanctuaries. Student reports on major monuments. Offered in even-numbered years.

*175. Topography and Monuments of Ancient Athens (4) III. The Staff Lecture-discussion—4 hours. Prerequisite: course 17A-17B or consent of instructor. The history of Athens as an urban center from the Bronze Age through the late Roman period. Student reports on major monuments with emphasis placed on restoration, chronology, and on the relating of documentary to excavational evidence. Offered in odd-numbered years.

197C. Community Tutoring in Classical Languages (1-5) I., II., III. Grimm Prerequisite: consent of instructor. Supervised instruction of Greek or Latin in nearby schools by qualified students in department. May be repeated for credit up to 5 units. (P/NP grading only.)

Graduate Courses

201. Introduction to Classical Philology (4) I. Thompson Seminar—3 hours. Survey of major contemporary areas of classical scholarship with special attention devoted to current problems in literary and textual criticism.

282. Homer (4) III. The Staff Seminar—3 hours. Historical and critical problems in the Homeric volumes. May be repeated for credit.

283. Vergil (4) II. Grimm Seminar—3 hours. Reading of selected books of the Aeneid. Emphasis will be placed on the study of Vergil's poetic language.

284. Greek and Roman Comedy (4) I. Thompson Seminar—3 hours. Readings in the Iliad and Odyssey. The origins and transmission of the poems.

285. Latin Lyric and Epic (4) I. Trail Seminar—3 hours. Historical and critical problems in Arisotepheus and New Comedy. May be repeated for credit.

286. Greek Historiography (4) III. Thompson Seminar—3 hours. Development of historical writing in Greece. May be repeated for credit.

287. Greek Drama (4) II. Grimm Seminar—3 hours. Literary and philosophical analysis of the plays of Euripides, Sophocles, or Aeschylus. May be repeated for credit.

Greek Lower Division Courses

1. Elementary Greek (5) I. The Staff Lecture—4 hours. Students who have successfully completed Greek 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.

2. Elementary Greek (5) V. The Staff Lecture—4 hours. Prerequisite: course 1. A continuation of course 1.

3. Elementary Greek (5) III. The Staff Lecture—4 hours. Prerequisite: course 2. A continuation of course 2.

96. Directed Group Study (1-5) I., II., III. The Staff Prerequisite: consent of instructor. Group study of selected topics. Primarily for lower division students. (P/NP grading only.)

Upper Division Courses

*100. Attic Orators (4) II. Thompson Lecture—3 hours. Prerequisite: course 3.

Latin Lower Division Courses

1. Elementary Latin (4) I. The Staff Lecture—4 hours. Students who have successfully completed Latin 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.

1X. Intensive Latin (5) II. Trail Lecture—5 hours. An intensive course designed primarily for graduate students and advanced undergraduates wishing to acquire rapidly a rudimentary knowledge of Latin. Covers the same material as Latin 1 and 2.

2. Elementary Latin (4) II. The Staff Lecture—4 hours. Prerequisite: course 1. A continuation of course 1.

3. Elementary Latin (4) III. The Staff Lecture—4 hours. Prerequisite: course 2. A continuation of course 2.

*10. The Structure of Latin (4) III. Thompson Lecture—4 hours. Prerequisite: not open to students who have received credit for any other course in Latin. Survey of the Latin language with special emphasis on the morphology and syntactical relationships of classical Latin.

98. Directed Group Study (1-5) I., II., III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only.)
Upper Division Courses

100. Ovid (4) I, Traill
Lecture—3 hours; paper. Prerequisite: course 3. Translation and discussion of selected readings from the works of Ovid.

*101. Litry (4) III, Thompson
Lecture—3 hours; prerequisite: course 3. Offered in odd-numbered years.

102. Roman Comedy (5) I, Thompson
Lecture—4 hours; term paper. Prerequisite: course 3. Offered in even-numbered years.

103. Vergil: Aeneid (4) I, J.
Lecture—3 hours; prerequisite: course 3. Offered in even-numbered years.

104. Sallust (4) I, Thompson
Lecture—3 hours; prerequisite: course 3. Offered in even-numbered years.

105. Catullus (4) I, Grimm
Lecture—3 hours; prerequisite: course 3. Offered in odd-numbered years.

106. Horace: Odes and Epodes (4) I, Grimm
Lecture—3 hours; prerequisite: course 3. Offered in odd-numbered years.

107. Horace: Satires and Epistles (4) II, Grimm
Lecture—3 hours; prerequisite: course 3. Offered in odd-numbered years.

108. Roman Elegy (4) III, Grimm
Lecture—3 hours; prerequisite: course 3. Offered in odd-numbered years.

111A-111B-111C, Silver Age Latin (4) I-H-III. The Staff
Lecture—3 hours; prerequisite: course 3. Selections from Tacitus, Pliny, Petronius, Juvenal, Martial, and other writers of the Silver Age. Offered in odd-numbered years.

112. Cicero: Political Writings (4) I, Thompson
Reclamation—3 hours; term paper. Prerequisite: course 3.

114. Cicero: Philosophical Works (4) II.
Lecture—3 hours; prerequisite: course 3. Offered in odd-numbered years.

115. Lucretius (4) II, Traill
Lecture—3 hours; prerequisite: course 3. Offered in even-numbered years.

116. Vergil: Eclogues and Georgics (4) III.
Lecture—3 hours; prerequisite: course 3. Offered in even-numbered years.

121. Prose Composition (5) III, Traill
Lecture—4 hours; term paper.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(PINP grading only.)

199. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(PINP grading only.)

Graduate Course

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Clinical Pathology
(School of Veterinary Medicine)

Jiro J. Kaneko, D.V.M., Ph.D., Chairperson of the Department

Department Office, 13192 Haring Hall

Faculty
Edward J. Carroll, D.V.M., Lecturer
Bernard F. Feldman, D.V.M., Ph.D., Assistant Professor
Nemi C. Jain, M.V.Sc., Ph.D., Professor
Donald E. Jasper, D.V.M., Ph.D., Professor
Jiro J. Kaneko, D.V.M., Ph.D., Professor
Oscar W. Schalm, D.V.M., Ph.D., Professor Emeritus
Joseph G. Zinkl, D.V.M., Ph.D., Assistant Professor

Courses in Clinical Pathology

Upper Division Courses

101. Comparative Hematology (2) II. Kaneko, Jain, Zinkl, Feldman
Lecture—2 hours; prerequisite: Biological Sciences 1, Physiology 110, Biochemistry 101A-101B or Physiological Sciences 101A-101B or consent of instructor. Principles, interpretation and applications of clinical hematology; comparative blood cellular morphology and function.

101L. Comparative Hematology Laboratory (2) II. Kaneko, Jain, Feldman
Laboratory—8 hours. Prerequisite: course 101 should be taken concurrently and consent of instructor. Introduction to laboratory methods and procedures of clinical hematology. Limited enrollment.

102. Clinical Biochemistry (3) II. Kaneko
Lecture—2 hours; laboratory—2 hours. Prerequisite: Physiology 112, 113, Physiological Sciences 101A-101B or Biochemistry 101A-101B or consent of instructor. Principles and methods of clinical biochemistry; determination and interpretation of the biochemical constituents of the blood, urine and other body fluids. Offered in even-numbered years.

199. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(PINP grading only.)

Graduate Courses

204. Normal and Abnormal Bone Marrow Cytology (1)
II. Feldman, Zinkl
Lecture—laboratory—2 hours. Prerequisite: Veterinary Medicine 135 or course 101. Normal maturation of hematopoietic cells followed by a study of the cytology of blood and bone marrow in selected diseases of domestic animals including infections, anemias, myeloproliferative disorders and leukemias.

205. Physiology and Pathology of Leukocytes (2) II. Jain
Lecture—2 hours; prerequisite: course 101, Biochemistry 101A-101B, or consent of instructor. Metabolism, ultrastructure, kinetics, homostasis, cytotoxicity, and functions of different leukocytes; physiological, functional, histological and morphological changes in leukocytes in disease; their role in inflammatory and immunologic processes. Offered in even-numbered years.

206. Immunohematology (2) II. Jain, Carroll, J. Lewis (Medicine), Mackenzie (Medicine)
Lecture—2 hours; prerequisite: course 101, Veterinary Microbiology 126, or consent of instructor. Immunologic aspects of hematology; blood cell antigens and antibodies; autoimmune hematologic diseases; reactions to blood transfusions; transplantation mechanisms. Offered in odd-numbered years.

Clinical Pathology; Community Nutrition

267. Clinical Cytology (2) II. Zinkl, Feldman
Lecture—1 hour, laboratory—2 hours. Prerequisite: third-year standing in the School of Veterinary Medicine or consent of instructor. Cytology of serous effusions (benign and malignant, inflammatory and noninflammatory), joint fluids, cerebrospinal fluids and other body fluids; impressions and aspiration smears of various tissues and organs. Methodology, interpretation, and their applications in disease.

268. The Bovine Mammary Glands in Health and Disease (1) II. Jasp, Carroll
Lecture—1 hour. Prerequisite: consent of instructor. Relationship of mastitis and milk quality; infectious causes and the influence of environment, milking machines and management on mastitis; pathogenesis of mastitis; cellular and humoral defense mechanisms; mastitis diagnosis and control.

290. Seminar in Clinical Pathology (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour.

298. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research in Clinical Pathology (1-12) I, II, III. The Staff (SU grading only.)

Clinical Psychology
See Medicine

Community Health
See Medicine

Community Nutrition
(College of Agricultural and Environmental Sciences)

The Major Program
Community Nutrition focuses on the biological, economic, environmental, and socio-cultural factors which influence dietary practices and the nutritional status of individuals and groups. The aim of Community Nutrition is the application of this knowledge in the development and implementation of programs to improve the availability and use of food in the community. The major is designed for students who seek to combine a foundation in the biological and nutritional sciences with concentrated study in a social science discipline. All students in the major are required to complete a common core of preparatory and depth subject matter courses. Students select one of three subject matter options emphasizing the socio-cultural, psychological, or economic aspects of food, diet, and nutrition.

Graduates are prepared for entry-level positions in health and social service agencies in the United...
Comparative Literature

States and abroad. Job possibilities include nutrition specialists in community programs for ethnic minorities, in the United States or nutrition research and education programs abroad (Socio-Cultural option); nutrition counselors in behavioral modification programs for weight control, cardiovascular disease, child development, and community mental health programs (Psychological option); staff analysts or administrative assistants or nutrition specialists in agriculture, health and welfare agencies having food assistance or nutrition education components (Economics option).

Advancement to positions of professional responsibility in each field will require additional training and experience. The major is unique in that it provides opportunities for graduate study in either Nutrition or in the selected Social Science discipline.

Community Nutrition

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology with laboratory (Bacteriology 2, 3)</td>
<td>50-53</td>
</tr>
<tr>
<td>Biology (Biology Sciences 1)</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry, general and organic (Chemistry 1A, 1B, 18A, 18B)</td>
<td>16</td>
</tr>
<tr>
<td>Computer logic or programming (Computer Technology 31 or Mathematics 19)</td>
<td>1-3</td>
</tr>
<tr>
<td>Cultural social science (Anthropology 2, Geography 2 or Sociology 3)</td>
<td>4</td>
</tr>
<tr>
<td>Cultural food habits (Nutrition 20)</td>
<td>4</td>
</tr>
<tr>
<td>Oral and written expression (see College requirement)</td>
<td>8</td>
</tr>
<tr>
<td>Social research methods (Sociology 46A or Psychology 41)</td>
<td>4</td>
</tr>
<tr>
<td>Social statistics (Economics 12, Mathematics 13, or Sociology 46B)</td>
<td>4-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 101A-101B or Physiological Sciences 101A-101B</td>
<td>50-51</td>
</tr>
<tr>
<td>Food Science and Technology 100A, 100AL, 100B, 100BL</td>
<td>6-7</td>
</tr>
<tr>
<td>Nutrition 110, 111, 111L, 116A, 116B, 118, 119</td>
<td>120</td>
</tr>
<tr>
<td>Physiology 110, 110L</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology 101, 128</td>
<td>8</td>
</tr>
<tr>
<td>Anthropology 141 or Geography 170</td>
<td>4</td>
</tr>
<tr>
<td>Foreign language (French 1 and 2, Spanish 1 and 2)</td>
<td>12</td>
</tr>
<tr>
<td>Geography 175</td>
<td>4</td>
</tr>
<tr>
<td>Restricted electives (selected with consultation of adviser)</td>
<td>20</td>
</tr>
</tbody>
</table>

Behavioral-Psychological Option:

Education 110A or Psychology 130	4
Human Development 100A, 100B, 100C	12
Psychology 1, 108, 145	13
Restricted electives (selected with consultation of adviser)	20

Economics Option:

Agricultural Economics 100A and 100B	6
Consumer Economics 141, 142	8
Economics 1A, 1B	10
Mathematics 16A and 16B	6
Restricted electives (selected with consultation of adviser)	20

Unrestricted Electives | 27-31 |

Total Units for Degree | 180 |

Major Advisor: F. J. Zeman (Nutrition).
Graduate Study. See page 105 and the Announcement of the Graduate Division.

Comparative Literature

(1) Great Books of Western Civilization: From Myth to Faith (4). Director in charge
Lecture—2 hours; discussion—1 hour. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from The Epic of Gilgamesh to St. Augustine’s Confessions.

(2) Great Books of Western Civilization: From Faith to Reason (3). Director in charge
Lecture—2 hours; discussion—1 hour; term paper. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Dante’s Inferno to Swift’s Gulliver’s Travels.

(3) Great Books of Western Civilization: The Modern Crisis (3). Director in charge
Lecture—2 hours; discussion—1 hour. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Goethe’s Faust to Beckett’s Waiting for Godot.

(4) The Short Story and Novel (3). Staff (Director in charge)
Lecture—1 hour; discussion—2 hours; term paper. An introduction to the shorter forms of prose fiction by major authors of different countries, with special emphasis on the modern period.

(5) Fairy Tales, Fables, and Parables (3). Professor Ury
Lecture—2 hours; discussion—1 hour. An introduction to fairy tales, fables, and parables as recurrent forms and motifs in literature, with readings from such diverse writers as Aesop and Grimm, Chaucer, and Shakespeare, Kafka and Borges.

Courses in Comparative Literature

Lower Division Courses

1. Great Books of Western Civilization: From Myth to Faith (4). Director in charge
Lecture—2 hours; discussion—1 hour. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from The Epic of Gilgamesh to St. Augustine’s Confessions.

2. Great Books of Western Civilization: From Faith to Reason (3). Director in charge
Lecture—2 hours; discussion—1 hour; term paper. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Dante’s Inferno to Swift’s Gulliver’s Travels.

3. Great Books of Western Civilization: The Modern Crisis (3). Director in charge
Lecture—2 hours; discussion—1 hour. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Goethe’s Faust to Beckett’s Waiting for Godot.

4. The Short Story and Novel (3). Staff (Director in charge)
Lecture—1 hour; discussion—2 hours; term paper. An introduction to the shorter forms of prose fiction by major authors of different countries, with special emphasis on the modern period.

5. Fairy Tales, Fables, and Parables (3). Professor Ury
Lecture—2 hours; discussion—1 hour. An introduction to fairy tales, fables, and parables as recurrent forms and motifs in literature, with readings from such diverse writers as Aesop and Grimm, Chaucer and Shakespeare, Kafka and Borges.

7. Literature of Fantasy and the Supernatural (3) III. Hoermann Lecture—2 hours; discussion—1 hour. An inquiry into the interrelations between the fantastic and the real in the literature of dream and hallucination, fabulous landscapes and voyages, utopian vision, grotesque satire, and gothic horror.

10A-L. Masterpieces of World Literature (2) I, II, III. The Staff (Director in charge) Lecture-discussion—one 2-hour session. A representative series of courses designed primarily to acquaint the non-literature major with a cross-section of the world's most important literature; readings in English translation. Content will alternate among the following segments: (A) Gilgamesh, Ramayana, Brow, Nibelungenlied, (B) Metamorphoses, Decameron, Arabian Nights, Canterbury Tales; (C) Camus, de Kogel, I, Goy, Ignor's Campaign, Moby Dick, (D) Sakuntala, Tristan and Iseult, Aucassin and Nicolette, Gawain and the Green Knight, (E) Swift, Rabelais, La Celestina, Simplicissimus, (F) Cervantes, Saikaku, Fielding, Voltaire, (G) Machiavel, Shakespeare, Lopez de Vega/CaldCreon, Molien/Racine, Lessing/Schiller, (H) Goethe, Byron, Stendhal, Pushkin, Lermontov, Hoffmann, Gogol, Poe, Hawthorne, Maupassant, Chekhov, Melville; (I) Flaubert, Tennyson, Gaddo, Ibsen, (K) Balzac, Dostoievsky/Tolstoi, Hardy, Shaw, Strindberg, (L) Unamuno, Svevo, Conrad, Gide, Kafka, Faulkner. May be repeated for credit in different subject area. Limited enrollment (P/NP grading only).

13. Dramatic Literature (4) I, II. Conn Lecture—3 hours; discussion—1 hour. An introduction, through careful reading of selected plays, to some of the major forms of drama from the earliest tragedies of ancient Greece to the contemporary theater of the absurd.

40. Introduction to Comparative Literature (4) I. Torrance Lecture—2 hours; discussion—1 hour; term paper. An introduction to reading different kinds of works, including poetry, plays, short fiction, and a novel drawn from several literatures.

49. freshman Seminar: General Topics in Comparative Literature (2) I. Staff (Director in charge) Seminar—2 hours. Introductory comparative studies dealing with such topics as Utopia, childhood and adolescence, sense and nonsense, and the voyage as recurrent themes in literature. (P/NP grading only).

50. Intermediate Seminar: Myths and Mitoirs (2) II. The Staff (Director in charge) Seminar—2 hours. Comparative studies dealing with the persistence and transformation of myths and mythological models in literary works of all ages. (P/NP grading only).

51. Intermediate Seminar: Reality and Fantasy (3) III. The Staff (Director in charge) Seminar—2 hours. Comparative studies of the relationships between truth and fiction, reality and fantasy, in works of romance, visionary literature, and science fiction. (P/NP grading only).

52A-52B. Intermediate Seminar: The Orient and the West (2) II. Ury Seminar—2 hours; seminar reports. Knowledge of an Oriental language not required. Seminar lectures and discussion will focus on a few selected longer works of literature and explore their meaning for both East and West. Content will alternate among the following segments: A. The Tale of Genji as English literature; B. "Family Novels," such as The Dream of the Red Chamber and Budutnbrooks. May be repeated for credit in different subject area. (P/NP grading only).

53A-C. Literature of the Eastern World (3) I, II, III. Ury Lecture—1 hour; discussion—2 hours. A discussion course in English translation for non-literature majors, dealing with the most important and representative works of the epic, drama and poetry generated by such cultures as the Buddhist, Hindu, Islamic and Zoroastrian. Readings will include for (A) China and Japan: Chuang Tsu, Water Margin, Pillow Book of Sei Shnhagon, Essays in Idleness, the I Ching and kabuki drama; for (B) India and South-East Asia: the Vedas, the Mahabharatas, the Ramayana, and the Tancapani; for (C) The Near East: Ibn Kaldun, Thousand and One Nights, the Shahnamah, Turkish folk tales, and Suf myst poetry.

98. Directed Group Study (1-5) I, II, III. The Staff (Director in charge) Restricted to lower division students. (P/NP grading only).

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Director in charge) (P/NP grading only).

Upper Division Courses

100. Majors Colloquium (2) III. The Staff (Director in charge) Seminar—1 hour; term project. Weekly presentations and discussions of topics appropriate to the comparative study of literature. Enrollment required for at least one quarter of all majors and no later than their junior year. May be repeated for credit for a total of 6 units. Intended primarily for majors. (P/NP grading only).

104. Thematic and Structural Study of Literature (4) II. The Staff (Director in charge) Lecture—2 hours; discussion—1 hour; term paper. Interpretation of selected works illustrating the historical evolution of themes, as well as of formal and structural elements.

141. Literary Theory and Criticism (4) III. Torrance Lecture—2 hours; discussion—1 hour; term paper. Exploration of literary theories with emphasis on specific objectives and possibilities of comparative literature.

142. Critical Reading and Analysis (4) I. The Staff (Director in charge) Lecture—2 hours; discussion—1 hour; term paper. Pre-requisite: consent of instructor. Close reading of selected texts; scrutiny of very limited material, with attention to the problems of texts in translation.

159A. Special Topics in Comparative Literature (4) I, II, III. The Staff (Director in charge) Lecture—2 hours; discussion—1 hour; term paper. Intensive study of selected subjects: (A) The Play Within the Play, (B) The Lyrical Novel, (C) Woman in Literature, (D) The Role of Philosophy in Literature, (E) The Role of Psychology in Literature, (F) The Religious Experience in Literature, (G) Literary Attitudes and Judgment. May be repeated for credit in different subject area.

160A. The Modern Novel (4) II. The Staff Lecture—2 hours; discussion—1 hour; term paper. The changing image of man and his world as seen in novels by such writers as Dostoievsky, Svevo, Kafka, Faulkner, and Robbe-Grillet.

160B. The Modern Drama (4) III. Cohn Lecture—2 hours; discussion—1 hour; term paper. Readings in both English and other languages, on such authors as Ibsen, Strindberg, Chekhov, Pirandello, and Brecht.

161A. Tragedy (4) I. Cohn Lecture—2 hours; discussion—1 hour; term paper. Persistent and changing aspects of the tragic vision in literature from ancient times to the present.

161B. Comedy (4) II. Cohn Lecture—2 hours; discussion—1 hour; term paper. Comic attitudes towards life in literary works of different ages.

161C. Tragicomedy (4) III. Cohn Lecture—2 hours; discussion—1 hour; term paper. A survey of works in the mixed mode from ancient times to the present.

182. The Theory and Practice of Literary Translation (4) I. The Staff (Director in charge) Lecture—2 hours; discussion—1 hour; term translation project. Prerequisite: competence in "source" language and consent of instructor. Theories and problems of rendering texts in foreign languages into English.

184A. The Middle Ages (4) I. Torrance Lecture—2 hours; discussion—1 hour; term paper. Readings in heroic epic, Arthurian romances, and such major authors as Dante and Chaucer, with emphasis on shared assumptions concerning man's place in the world.

184B. The Renaissance (4) II. Torrance Lecture—2 hours; discussion—1 hour; term paper. Readings in major authors such as Petrarch, Machiavelli, Erasmus, Montaigne, Rabelais, Cervantes, and Shakespeare, with particular emphasis on changing conceptions of the possibilities and limitations of man.

184C. Baroque and Neoclassicism (4) III. Torrance Lecture—2 hours; discussion—1 hour; term paper. Readings in major authors such as Calemon, Cornelle, Pascal, Racine, Milton, and Goethe, with consideration of the tension between the expansive energies of the "baroque" and the restraints of dogma and reason.

184D. The Enlightenment (4) I. Kusch Lecture—2 hours; discussion—1 hour; term paper. Readings in major authors such as Swift, Voltaire, Rousseau, Leibniz, and Kant, with emphasis on philosophical ideas and literary forms.

186A. The Epic (4) I. The Staff (Director in charge) Lecture—2 hours; discussion—1 hour; term paper. Study of various forms of epic poetry in both the oral and literary traditions. May be repeated for credit in different subject area.

186B. The Novel (4) II. Kusch Lecture—2 hours; discussion—1 hour; term paper. Pre-requisite: consent of instructor. Pivotal works of artists in the Western mainstream, such as Dante, Shakespeare, Cervantes, Goethe, Tolstoi, Proust, and Joyce.

186A-C. Modern Literary Movements and Styles (4) I. The Staff (Director in charge) Lecture—2 hours; discussion—1 hour; term paper. Pre-requisite: consent of instructor. Studies in major literary movements of the modern period: (A) Romanticism; (B) Symbolism; (C) Realism and Naturalism. May be repeated for credit in different subject area.

189. The Avant-Garde (4) II. Kusch Lecture—2 hours; discussion—1 hour; term paper. Studies in movements such as surrealism, expressionism and the absurd.

1977. Tutoring in Comparative Literature (2-4) I, II, III. Hoermann Discussion—2-4 hours. Prerequisite: upper division standing with declared major in Comparative Literature. Tutoring in undergraduate courses including leadership in small voluntary discussion groups affiliated with current courses offered by Comparative Literature (e.g., sophomore seminar, course 49). May be repeated for credit for a total of 6 units. (P/NP grading only).

198. Directed Group Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge) (P/NP grading only).

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge) (P/NP grading only).
Consumer Economics

(Section of Agricultural and Environmental Sciences)

Faculty
See under Department of Agricultural Economics.

Major Program and Graduate Study
See the major in Development, Resource, and Consumer Economics (page 181); and see pages 106 and 144.

Related Courses. See Agricultural Economics.

Courses in Consumer Economics

Questions pertaining to the following courses should be directed to the instructor or to the Department of Agricultural Economics, 208 Voorhis Hall.

Upper Division Courses

141. Consumers and the Market (4) I, II, III. Zoloth; II, Lane Lecture—4 hours. Prerequisite: Economics 1A. Factors affecting consumer expenditures: The factors of the market and the effects of its performance on consumers. Agencies aiding and protecting consumers, sources of information available to consumers. Students who have had or are taking Agricultural Economics 100A, Economics 100, or the equivalent may receive only 3 units of credit, so must enroll in course 141M.

141M. Consumers and the Market (3) I, II, III. Zoloth; II, Lane Lecture—4 hours. Prerequisite: Economics 1A. Factors affecting consumer expenditures: The factors of the market and the effects of its performance on consumers. Agencies aiding and protecting consumers, sources of information available to consumers. Students who have had or are taking Agricultural Economics 100A, Economics 100, or the equivalent must enroll in this course (for 3 units) rather than course 141.

189. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

189. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

220. Economics of Consumer Policy (3) II. Shepard Lecture—3 hours. Prerequisite: one graduate course in economics theory and one course in economics or the equivalent. Policy criteria; sources of market failure; consumer policy, alternatives; empirical evaluation of selected economic policies.

258. Economics of Consumption (3) II. Zoloth Lecture—3 hours. Prerequisite: one graduate course in microeconomic theory. Advanced analysis of individual and aggregate consumption models; empirical determinants of consumer behavior; application of consumption economics to selected issues.

299. Research (0-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

At least one course from two different areas: agricultural economics, applied behavioral sciences, consumer sciences, cultural anthropology, psychology, or sociology. Remainder in social sciences and humanities electives

Restricted Electives
Food related courses selected in accordance with student's educational goals with approval of adviser

Unrestricted Electives

Total Units for the Major

180

Recommended
It is recommended that students interested in graduate work take Chemistry 5, English 104, Mathematics 16A, 16B, 16C and Physics 2A-2B-2C.

Major Adviser. (Food Science and Technology). Graduate Study. Related graduate study and research leading to the M.S. degrees in Food Science or Nutrition is available. See page 105 and the Announcement of the Graduate Division for details on graduate study.

Consumer Food Science

(Section of Agricultural and Environmental Sciences)

The Major Program

The Consumer Food Science major emphasizes both the biological properties of foods and the socioeconomic and cultural aspects of foods as they relate to consumer acceptability and use. Students are provided with a sufficient range in study of the biological, natural, and social sciences to prepare them for careers such as food product development, quality assurance, marketing and sensory analysis, extension service, creative writing, and community service. The major provides academic preparation for those who plan to pursue similar careers or to undertake graduate study in Food Science or Nutrition.

Consumer Food Science

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

UNITs

Biochemistry (Biochemistry 101A-101B) 6
Botany with laboratory (Botany 100A-100B) 6
Chemistry, general and organic (Chemistry 1A-1B) 6
Mathematics and physics (Mathematics 19, Physics 10) 7
Microbiology with laboratory (Bacteriology 2, 3) 4
Statistics (Agricultural Science and Management 100) 3
Written and oral expression (see College Requirement) 8

Depth Subject Matter

UNITs

Community nutrition (Nutrition 118) 3
Consumer economics (Consumer Economics 141, 142) 8
Food Science and Technology including 100A, 100AL, 100BL, 100B, 101, 107, Nutrition 110, or 120, and one additional course (Food chemistry, food microbiology, and food processing) 26
Human nutrition with laboratory (Nutrition 111, 111L) 10
Breadth Subject Matter

UNITs

Principles of economics (Economics 1A-1B) 10
Consumer behavior (Consumer Science 100) 3

Consumer Science

(Section of Agricultural and Environmental Sciences)

Faculty
See under the Division of Textiles and Clothing, and the Departments of Agricultural Economics and Food Science and Technology.

Major Programs and Graduate Study

Consumer Food Science (this page) and Home Economics (page 244) are related majors; for graduate study, see page 105.

Related Courses. See Consumer Economics, Food Science and Technology, Nutrition, and Textiles and Clothing.

Courses in Consumer Science

Questions pertaining to the following courses should be directed to the instructor or to the Division of Textiles and Clothing, 129 Everson Hall.

Lower Division Course

147. Food Product Development Field Study (1) I. Sheriff Discussion—three hour sessions; field trip—2 days. To observe commercial aspects of the large-scale development, distribution and evaluation of food products intended for human consumption. Course given between Winter and Spring Quarters and considered a Spring course for preenrollment. Advance enrollment with instructor required. (P/NP grading only.)

99. Challenges and Opportunities in Home Economics (1-6) I. Morris in charge Seminar—1 hour. Prerequisite: intended as an introduction for new students in Home Economics. Special topics in selected areas of home economics address current issues facing today's professionals including challenges, opportunities, and prospects for appropriately trained University graduates. (P/NP grading only.)
Upper Division Courses

100. Consumer Behavior (3) I. Schultz
Lecture—3 hours. Prerequisite: preparation in areas of psychology or sociology and economics recommended. Provides a set of behavioral concepts and theories useful in understanding consumer behavior on the part of the individual, business, and social organizations. Conceptual model to help guide and understand consumer research will be presented.

135. Principles of Food Product Development (3) I, Schultz
Lecture—3 hours. Prerequisite: one course in introductory food science. Presents basic concepts of product research and development. Organization, activities, new product development, project management. Role of food regulations, consumerism, marketing, advertising, consumer research.

140. Management for the Consumer (4) III
Lecture—4 hours. Prerequisite: Psychology 1; Consumer Economics 142, senior or graduate status recommended. Application of the theories of management and decision making for the consumer. Emphasis on the effect of consumer decisions on the home, community, and society.

145. Concepts and Problems in Management for the Consumer (3) III
Lecture—1 hour; laboratory—2 hours. Prerequisite: senior or graduate status, course 140 may be taken concurrently. An in-depth study of a management problem encountered by the consumer with emphasis on management issues related to the home, community or society. Emphasis is on the application of theory to problem definition and solution. Students will complete an independent project in management.

186. Directed Group Study (1-5) I, II, III. The Staff (Lundgren in charge)
Group study or experimentation on consumer related topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Lundgren in charge)
Individual student reading, library research or experimentation. (P/NP grading only.)

Graduate Courses

200. Consumer Research Methods (3) II. Schultz
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Topics will include consumer laboratory and field attitude research, consumer sampling, measurement techniques, scales, and methods of analysis.

201A. Consumer Product Quality, Standards, and Labeling: Basic Principles (2) I, II. The Staff
Lecture—2 hours. Prerequisite: graduate standing or consent of instructor. An overview of consumer product quality, standards for consumer products, informative product labeling, and the relationships of quality, standards and labeling are presented.

201C. Consumer Product Quality, Standards, and Labeling: Food and Nutrition Practices and Problems (2) III
Lecture—1 hour; discussion—1 hour. Prerequisite: course 201A and upper division courses in foods (Food Science and Technology 100A, 100B or the equivalent) and Nutrition (102A, 102B or the equivalent) recommended. Review of consumer problems in nutrition and food use to regulations and practices involving quality, standards, and labeling of food products. Topics include food grades and standards; identity standards; labeling for regulation and for information; fortification and enrichment of foods; nutritional supplements and substitutes; food additives.

202. Consumer Protection (4) III. Shepard
Lecture—3 hours; discussion—1 hour. Prerequisite: knowledge equivalent to Consumer Economics 141, 142. Consumer protective agencies and programs: federal, state, and local government programs; private consumer protective agencies and programs; federal consumer regulatory legislation and enforcement of consumer protective regulation and legislation.

290. Seminar in Consumer Science (1) I, III, III. The Staff (Zeronian in charge)
Seminar—1 hour. Prerequisite: graduate standing. Selected topics related to the consumer, consumer problems, and consumer-oriented research will be presented. A broad spectrum of consumer topics will be presented over the three-quarter sequence.

298. Group Study (1-5) I, II, III. The Staff (Zeronian in charge)
Prerequisite: graduate standing.

299. Research (1-12) I, II, III. The Staff (Zeronian in charge)
Prerequisite: graduate standing. (S/U grading only.)

Upper Division Courses

222. Characteristics of Land Vehicles (1) I. Goss
Lecture—1 hour. Comparative study of the stability, control, performance and safety of various vehicles including automobiles, bicycles, and motorcycles.

222L. Land Vehicles Laboratory (1) I. Goss
Laboratory—2 hours. Prerequisite: course 22 concurrently. Directed laboratory exercises, field trips, and special projects to augment the study of course 22. (P/NP grading only.)

Discussion—lab—2 hours. Directed exercises in using computers and calculating for solving selected agricultural, management, and production problems. Batch and time sharing computing methods, and programming desk calculators. (P/NP grading only.)

90. Directed Group Study (1-5) I, II, III. The Staff (Garrett in charge)
Prerequisite: consent of instructor. Group study of selected topics. Restricted to lower division students. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Garrett in charge)
(P/NP grading only.)

Consumer Technology

College of Agricultural and Environmental Sciences

Faculty
See under Department of Agricultural Engineering.

Courses in Consumer Technology

Questions pertaining to the following courses should be directed to the instructor or the Department of Agricultural Engineering, 2030 Bainer Hall.

Lower Division Courses

15. Experiments in Creative Woodworking (1) I, II. O’Brien
Laboratory—2 hours, demonstration—1 hour. Prerequisite: Chemistry 14 and Physics 2A recommended. Experiments in techniques for creating objects and structures of wood. Physical principles and properties of wood as related to structural stability, selection and use of tools, and aesthetics in design: finish; preserves, enhance, or create effects

16. Experiments in Creative Metalworking (1) III. Garrett
Laboratory—2 hours, demonstration—1 hour. Prerequisite: Chemistry 14 and Physics recommended. Experiments in techniques for creating objects and structures of metal. Physical principles; design considerations; effects of techniques on quality and appearance; bases for self-evaluation of skills. Layout, cutting, forming, welding, and finishing. (P/NP grading only.)

17. Electrical Appliances and Systems (1) III. Dobbie
Lecture—1 hour. Characteristics and principles of electrical appliances and systems for lighting, heating, and power. Principles of electricity, loads, distribution, and control; safety; planning systems and selecting appliances.

17L. Laboratory Exercises for Electrical Appliances and Systems (1) III. Dobbie
Laboratory—2 hours. Prerequisite: course 17 concurrently. Directed laboratory exercises, field trips, and special projects to augment the study of course 17. (P/NP grading only.)

Lecture—1 hour. Prerequisite: upper division standing; Physics 2A and Chemistry 1B recommended. Sources of domestic water at remote locations; sanitary precautions; methods and equipment for sanitary disposal of domestic wastes.

113L. Laboratory Studies in Sanitation and Water Supply for Remote Locations (1) I. Hills
Laboratory—3 hours. Prerequisite: course 113 concurrently. Directed laboratory exercises, field trips, and special projects to augment the study of course 113. (P/NP grading only.)

Prerequisite: consent of instructor. Directed exercise in planning and executing independent projects consistent with the student’s abilities. (P/NP grading only.)

199. Directed Group Study (1-5) I, II, III. The Staff (Garrett in charge)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Garrett in charge)
(P/NP grading only.)
Design

(College of Agricultural and Environmental Sciences)

Faculty
See under the Department of Applied Behavioral Sciences.

The Major Program

The Design program challenges students whose professions will involve them in constructing the future shape of our everyday lives. Through visual and aesthetic communication you will build a real time-space environment. The primary factor in a designer’s relationship to the community or environment is a knowledgeable, sound background in design. Without such expertise, the relationship is meaningless. The designer must have the skill to be imaginative, yet practical.

At the present time, the curriculum in Design offers emphasis in costume, textiles and environments with supporting graphics courses. This is not a static program, but changing in content and size to reflect the needs of the students and faculty. Through individual planning, the program offers flexibility to allow for (1) concentration on specialization, (2) preparation for graduate design programs in universities and professional schools, (3) general education in design stimulating the creativity of the individual, and (4) techniques for self-education throughout an entire life span.

Through the Design program you will be encouraged to transmit your knowledge of skill to one person or many whenever the need arises in the community.

Design

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual communication through design, Design</td>
<td>12</td>
</tr>
<tr>
<td>Drawing, Design 20A</td>
<td>4</td>
</tr>
<tr>
<td>Media, Design 20B</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individualized program of 48 units in Design courses to include at least 36 upper division units, determined by the student and faculty advisor</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breadth Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural sciences</td>
<td>27</td>
</tr>
<tr>
<td>Humanities</td>
<td>27</td>
</tr>
<tr>
<td>Social sciences</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units for the Major</td>
<td>160</td>
</tr>
</tbody>
</table>

Additional Requirement
Development of a course of study, in consultation with an advisor, to be reviewed by a committee of Design faculty no later than the second quarter of the junior year.

Depth Subject Matter
Examples of programs in each area of emphasis may be obtained from the Department of Applied Behavioral Sciences.

Major Adviser
F. Butler (Applied Behavioral Sciences)

Related Courses
See Environmental Planning and Management 20, 22, 136.

Courses in Design

Questions pertaining to the following courses should be directed to the instructor or to the Department of Applied Behavioral Sciences, 119 AOB-4.

Lower Division Courses

(4-4-4) A1, G01; II, III, The Staff; C11, G01
Lecture - 3 hours; discussion - 1 hour. Consideration of the social, cultural and physical means of man influencing design: (A) Environmental; (B) Personal Expression; (C) Communicative Design. May be taken in any order. (PRNP grading only)

20A. Drawing
(4) I, II, III, Berteaux, Rossbach
Studio - 8 hours. Drawing for the designer as an aid to perception and communication of ideas, objects, and plans. May be repeated with a different instructor for a total of 8 units.

20B. Media
(4) I, II, III, Olsen, Butler
Studio - 8 hours. Introduction to the tools, materials, and techniques used in the designer's studio. May be repeated with a different instructor for a total of 8 units.

20C. Photographic Media
(4) I, II, III, Butler
Studio - 8 hours.

21. Drafting and Perspective
(4) I, II, III, Olsen
Studio - 8 hours. Prerequisite: course in drawing recommended. Creation of three-dimensional designs on two-dimensional surfaces.

22. Lettering and Type Design
(4) I, II, Butler
Studio - 8 hours. Understanding of the forms and spacing of the Latin alphabet; hand-lettering, constructed letters, basic type styles, type measures, and layout.

23. Personal Adornment
(4) III, Stubb
Studio - 8 hours. Exploration of man's image altered through ornament and its relation to the human structure.

24. Non-loom Textiles
(4) I, II, Studio - 8 hours. Contemporary approach to non-loom textile techniques; netting, plaiting, knotting, and basketry. May be repeated once for credit with different instructor.

25. Reproduction Graphics
(4) II, Butler
Studio - 8 hours. Basic studio and photographic skills for the designer; continuous tone, line and halftone filters, mechanical and four-color screen separations.

26. Visual Presentation
(4) III, G01
Studio - 8 hours. Exploration of communication through display and exhibition design.

99. Special Study for Undergraduates
(1-5) I, II, III, The Staff
Prerequisite: consent of instructor. (PRNP grading only)

Upper Division Courses

130. Model Construction
(4) III, Olsen
Studio - 8 hours. Prerequisite: preparation in drafting and printmaking recommended. Construction and presentation of working models from drawings of furniture, interiors, exteriors, and playground equipment.

131. Layered Textiles
(4) II, Rossbach
Studio - 8 hours. Prerequisite: background in drawing, personal adornment and non-loom textiles recommended. Exploration of multi-layered paper and multi-layered textiles: applique, patchwork, quilting, stump work. The individualized influences of materials and techniques on contemporary textiles.

132. Loomed Textiles
(4) I, II, III, Olsen
Studio - 8 hours. Prerequisite: course 24 recommended. Influences of material and techniques of the woven form of tapestry weaving and frame loom weaving, natural dyeing and simple loom construction. May be repeated once for credit with different instructor.

133. Graphic Communication Design
(4) III, Butler
Studio - 8 hours. Prerequisite: course 22 recommended. Study and practice of layout skills in poster, book, magazine, and TV design. Exploration of the social impact and application of communication media.

134. Environmental Design
(4) I, Berteaux, III, Olsen
Studio - 8 hours. Prerequisite: courses 21, 130 recommended. Exploration of specific problems in interior and exterior space such as: design for the disabled; and contemporary urban problems.

135. Furniture Design
(4) II, Olsen
Studio - 8 hours. Prerequisite: course 21; course 180A recommended. Development of furniture for interior and exterior spaces. Includes behavioral and physical requirements; cultural and historical expression; structural and aesthetic considerations.

140A. History of Design
(3) I. The Staff
Lecture - 3 hours. Prerequisite: Art 1A (may be taken concurrently). The history of Western design from Ancient Egypt and the Middle East through the Aegaean and Classical civilizations to the waning of the Middle Ages.

140B. History of Design
(3) II. The Staff
Lecture - 3 hours. Prerequisite: Art 1B or consent of instructor. The history of Western design from the Renaissance through the Baroque, the Rococo and Neoclassicism of the eighteenth century, nineteenth century industrialization to the emergence of modernism.

142A. World Textiles: Far East and Pacific
(4) I, Rossbach
Lecture - 3 hours; discussion - 1 hour. Prerequisite: Art 1A. Exploration through lectures and visual material of the textile arts of Japan, China, Korea, India, Indonesia, and the Pacific Islands with emphasis on the aesthetic and stylistic qualities of these cultures.

142B. World Textiles: Middle East, Europe and United States
(4) II, Rossbach
Lecture - 3 hours; discussion - 1 hour. Prerequisite: Art 1A. Exploration through lectures and visual material of the textile arts of the Middle East, Europe, and the United States with emphasis on aesthetic and stylistic qualities. The influences of Eastern textiles on textiles of Europe and the United States.

143. History of Costume Design
(4) II, Stubb
Lecture - 3 hours; discussion - 1 hour. Prerequisite: one course in art history. The history of costume design from the earliest times to the present with emphasis on both aesthetic and functional aspects.

144. History of Interior Design
(3) I. The Staff
Lecture - 3 hours. Prerequisite: one course in art history. The history of Western interior design from its beginnings in Ancient Egypt through the Classical, Medieval, and Renaissance worlds to modern times.

160A-160B-160C. Textile Design
(4-4-4) I-II-III, Rossbach
Studio - 8 hours. Prerequisite: courses 20A and 20B recommended. Exploration of the design and appreciation of hand printed textiles; emphasis on the unique qualities of the individual as producer.

170A-170B-170C. Costume Design
(4-4-4) I-II-III, Stubb
Studio - 8 hours. Prerequisite: courses 20A and 23 recommended. Studio projects in costume design: consideration of functional and aesthetic factors influencing the historic, contemporary, and projected image of man as expressed through costume.

180A-180B-180C. Interior Design
(4-4-4) I, Olsen; II, Berteaux; III, G01
Studio - 8 hours. Prerequisite: Design 21 recommended. Analysis, organization, and solution of interior design problems involving the social, cultural, economic, and aesthetic needs of man. Consideration of the interrelationship of interior design, architectural and landscape design.
Development, Resource, and Consumer Economics

(College of Agricultural and Environmental Sciences)

The Major Program

The major in Development, Resource, and Consumer Economics is designed to prepare you for a career in one or more of the following areas: the economics of community, regional and international development; the economics of human resources; the economics of natural resources; and consumer economics. This major enables you to prepare for further studies at the graduate level as well as to pursue career opportunities in government agencies on all levels, non-profit organizations, social agencies, research organizations, and with firms employing economists with this background. New directions of economic application of theory and research to social problems are reflected in this major. Flexibility is provided by options which allow you to focus either on the natural and agricultural sciences or on the social sciences.

Development, Resource, and Consumer Economics

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English (see College requirement)</td>
<td>4</td>
</tr>
<tr>
<td>English (see College requirement)</td>
<td>4</td>
</tr>
<tr>
<td>American History and Institutions†</td>
<td>8</td>
</tr>
<tr>
<td>Economic principles (Economics 1A-1B)</td>
<td>10</td>
</tr>
<tr>
<td>Statistics (Mathematics 13; Economics 12)</td>
<td>4-5</td>
</tr>
<tr>
<td>Mathematics, including calculus</td>
<td>6</td>
</tr>
<tr>
<td>Depth Subject Matter†</td>
<td></td>
</tr>
<tr>
<td>Theory: Agricultural Economics 100A-100B, Economics 1</td>
<td>13</td>
</tr>
<tr>
<td>Statistics: choose two courses from Agricultural Economics 106A, 106B, 155</td>
<td>7-8</td>
</tr>
<tr>
<td>Policy and Planning: choose four courses from Agricultural Economics 120, 148; Economics 125A, 125B, 130, 131, 150B, Applied Behavioral Sciences 151, 152; Political Science 100, 174; Environmental Studies 160, 162, 168A, 168B, or the equivalent</td>
<td>12</td>
</tr>
<tr>
<td>Breadth Subject Matter†</td>
<td></td>
</tr>
<tr>
<td>Natural sciences (excluding mathematics beyond Preparatory Subject Matter above) and agriculture (excluding agricultural economics and consumer economics)</td>
<td>12 units minimum</td>
</tr>
<tr>
<td>Social sciences (excluding economics), history, and philosophy</td>
<td>20 units minimum</td>
</tr>
<tr>
<td>Restricted Electives†</td>
<td></td>
</tr>
<tr>
<td>Specialization requirement</td>
<td></td>
</tr>
<tr>
<td>(a) Select one or more from the following in the area of specialization: Development economics: Agricultural Economics 106, 148, Natural resource economics: Agricultural Economics 106, 176; Consumer economics: Consumer Economics 141, 142, 146; (b) 4 units of Agricultural Economics 190-1908 (required of students seeking departmental honors at graduation) or 4 upper division units of restricted electives.</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives†</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>150</td>
</tr>
</tbody>
</table>

Major Adviser: L.E. Shepard (Agricultural Economics)

Dietetics

(College of Agricultural and Environmental Sciences)

The Major Program

The Dietetics major provides you with training in normal and therapeutic nutrition, biological and social sciences, food science, communication, and management. This major fulfills the academic requirements for admission into a dietetics internship or the equivalent which must be completed before qualifying for registration as a dietitian. Dietitians are sought for administrative, therapeutic, teaching, research, and public service positions in hospitals, schools, clinics, and other institutions. You will be qualified for admission to graduate programs in dietetics, nutrition science, public health nutrition, and food service management. Clinical Dietetics, Community Nutrition, and Food Service Management are the three options available with the Dietetics major.

It may be necessary to limit enrollment in this major due to limitation of UCD resources.

Dietetics

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written and oral expression (see College requirement)</td>
<td>8</td>
</tr>
<tr>
<td>Statistics (Mathematics 13 or Economics 12)</td>
<td>4-5</td>
</tr>
<tr>
<td>Physics (Physics 2A-2B-2C or 1A-1B or 10 or Agricultural Engineering Technology 121, 122, Consumer Technology 17, 17H)</td>
<td>1-2</td>
</tr>
<tr>
<td>Chemistry, general and organic (Chemistry 1A, 1B, 8A, 8B)</td>
<td>4</td>
</tr>
<tr>
<td>Biology (Biological Sciences 1)</td>
<td>5</td>
</tr>
<tr>
<td>Botany (Botany 2, 3, Botany 4)</td>
<td>4</td>
</tr>
<tr>
<td>Computer logic or programming (Consumer Technology 31 or Mathematics 19)</td>
<td>1-3</td>
</tr>
<tr>
<td>Depth Subject Matter†</td>
<td></td>
</tr>
<tr>
<td>Biochemistry (Biochemistry 101A, 101B)</td>
<td>6</td>
</tr>
<tr>
<td>Physiology (Physiology 110, 110L)</td>
<td>7</td>
</tr>
<tr>
<td>Food Science and Technology 100A, 100AL, 100B, 100BL</td>
<td>10</td>
</tr>
<tr>
<td>Food Service Management 120, 120L, 121, 122, 123</td>
<td>14</td>
</tr>
<tr>
<td>Agricultural Economics 112</td>
<td>4</td>
</tr>
<tr>
<td>Breadth Subject Matter†</td>
<td></td>
</tr>
<tr>
<td>Principles of economics (Economics 1A)</td>
<td>5</td>
</tr>
<tr>
<td>Sociology or cultural anthropology</td>
<td>4</td>
</tr>
<tr>
<td>General psychology, Psychology 1</td>
<td>4</td>
</tr>
<tr>
<td>Principles of learning or methods of teaching (Applied Behavioral Sciences 173 or Education 110A)</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTE: For key to footnote symbols, see page 138.
Dramatic Art

Electives .. 50-60
Students wishing to complete an advanced specialization in Dietetics may elect one of the series of courses indicated below.

Clinical Dietetics specialization, include the following courses:
Biochemistry laboratory (Biochemistry 101L) 5
Chemistry, qualitative and quantitative analysis (Chemistry 1C, 5) 9
Human Anatomy (Medicine) 101 5
Community Nutrition specialization, include the following courses:
Nutrition 116A, 116BL, 118, 119 10
Anthropology 2 ... 4
Sociology 3, 130, 143 .. 12
Food Service Management specialization, include the following courses:
Agricultural Economics 117 4
Economics 1B, 11A, 11B, and 150A 16
Additional recommended courses may be chosen according to the student's specific career goals: Epidemiology and Preventive Medicine 150; Food Science and Technology 1, 20, 104, 104L, 107, 109; Consumer Science 100, 135; Plant Science 2; Wicart and Ecology 5; Applied Behavioral Sciences 151, 152, Work-Learn 192.

Total Units for the Major 180

Major Adviser. F. J. Zeman (Nutrition).
Graduate Study. See page 105.

Dramatic Art

(College of Letters and Science)

Robert A. Fehner, Ph.D., Chairperson of the Department
Department Office, 222 Dramatic Art Building

Faculty
Gene A. Chesley, M.A., Lecturer
Ruby Cohn, Ph.D., Professor (Dramatic Art, Comparative Literature)
Everard d'Harmoncourt, Ph.D., Professor
Robert A. Fehner, Ph.D., Professor
Harry C. Johnson, M.A., Associate Professor
William E. Kleb, D.F.A., Assistant Professor
Phyllis J. Kress, M.F.A., Lecturer
Alfred Rossi, Ph.D., Professor
Robert K. Sartle, Ph.D., Associate Professor
Theodore J. Shank, Ph.D., Professor
Daniel E. Snyder, Professor
Alan A. Stambusky, Ph.D., Professor
Darrell F. Winn, M.A., Lecturer

The Major Program

Dramatic Art, with its classroom courses in each of the scholarly and artistic areas of the discipline, and with its University Theatre Season and its Premiere Season, has the following objectives: to form intelligent theatre-goers as part of a liberal arts education (in both lower division and upper division work); to provide a foundation for potential specialists (primarily in upper division work); and to train specialists for careers in theatre, film, video, education, or related fields (graduate work).

The University Theatre.
Each year the Department of Dramatic Art presents a series of stage productions of outstanding drama from various periods and countries. These productions are part of the academic program of the Department and serve an important purpose in the study of dramatic art. Participation is open to all students.

Guest Artists' Program. The Department of Dramatic Art periodically engages professional guest artists to work with students in productions and in creative workshops.

Dramatic Art

A.B. Major Requirements:

Preparatory Subject Matter 22

UNITS
Dramatic Art 20, 21A, 24, 25 14
Dramatic Art 218 or 27 3-4

Additional units to achieve a total of 22 lower division units in Dramatic Art 4-5

Depth Subject Matter 39

UNITS
Dramatic Art 127B or 160B 4

In exceptional cases, with the adviser's consent, the student may petition to substitute up to 8 units from other Drama Art courses for any of the above courses.

Additional Requirements
During the undergraduate career majors are to participate in at least eight dramatic productions (exclusive of student or classroom projects). Participation must include work in acting, scene construction, costume construction, lighting, and stage managing or directing. Majors are also expected to attend theatre performances.

Total Units for the Major 81

Transfer Students. If you are a transfer student you should see the major adviser for an evaluation of your experience.

Teaching Credential Subject Representative. G. A. Chesley, T. J. Shank. See page 111 for the Teacher Education Program.

Graduate Study. The Department of Dramatic Art offers programs of study and research leading to the M.A., M.F.A. (Acting, Design, Directing, Playwriting, or any combination of these), and Ph.D. (Theatre Research) degrees. Detailed information may be obtained from the Graduate Adviser.

Courses in Dramatic Art

Lower Division Courses

15. The Art of the Cinema (4) I, II, III. d'Harmoncourt Lecture—3 hours; laboratory—2 hours. The cinema as an art form, its relation to other arts; its evolution with emphasis on the significant modern contributions.

15L. Introduction to Filmmaking (2) I, II, III. d'Harmoncourt Lecture-demonstration—1 hour; laboratory—3 hours. Prerequisite: to be taken in conjunction with course 15 or by consent of instructor. Students in small groups will write, shoot, and edit 8 mm films, and prepare sound tracks for them.

20. Introduction to Dramatic Art (4) I, II, III. Kleb Lecture—3 hours; discussion—1 hour. Understanding and appreciation of both the distinctive and collaborative contributions of playwright, actors, director, and designer to the total work of dramatic art. Study of plays from the major periods of dramatic art in their cultural contexts.

21A. Fundamentals of Acting (4) I. The Staff Lecture—2 hours; laboratory—4 hours. Prerequisite: course 20. Physical and psychological resources of the actor. Experience in individual and group contact and communication, theatre games, advanced improvisation, sound and movement dynamics. Viewing of theatre productions. Limited to those planning to major in Dramatic Art.

218. Fundamentals of Acting (4) III. The Staff Lecture—2 hours; laboratory—4 hours. Prerequisite: course 21A and consent of instructor. Theory and practice of acting with emphasis on character analysis, interpretation, and development. Acting in a student-directed project. Viewing of theatre productions. Limited to those planning to major in Dramatic Art.

25. Technical Aspects of Dramatic Art (4) I, II, III. Winn Lecture—1 hour; laboratory—2 hours. Understanding and appreciation of the technical principles of dramatic production: basic tools and materials, principles of scene construction; scene painting, costume construction, stage rigging, lighting and sound equipment and control systems.

27. Fundamentals of Playwriting and Directing (4) III. Kleb Discussion—2 hours; workshop—2 hours; reading of selected texts in the theory of directing and playwriting. Prerequisite: consent of instructor. Exercises in conceiving and developing theatre pieces with emphasis upon the creative collaboration of playwright and director.

30. Theatre Laboratory (1-5) I, II, III. The Staff Prerequisite: course 25 or consent of instructor. Projects in acting, production, scene design, costuming, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit up to a total of 8 units.

70. Theatre in Performance (4) I. Kleb Lecture-seminar—4 hours. Theatre attendance and appreciation: traditional and experimental. Field trips, readings, discussions. Intended for students not specializing in Dramatic Art as well as for prospective majors.

Upper Division Courses

115. Advanced Study of Major Film Makers (4) II. d'Harmoncourt Lecture—3 hours; laboratory—2 hours. Prerequisite: course 15. Analysis of the contribution of some outstanding film creators. Study of diverse aesthetic theories of the cinema and their application to selected films. May be repeated for credit when different film creator studied.

121A. Advanced Acting (4) I, II, III. Johnson Lecture—3 hours; laboratory—4 hours. Prerequisite: course 21B and consent of instructor. Theory and practice of acting focusing on performance problems and the maximization of individual resources.

121B. Advanced Acting (4) II. Johnson Lecture—3 hours; laboratory—4 hours. Prerequisite: course 121A and consent of instructor. Theory and practice of acting focusing on performance problems and the maximization of individual resources.

124A. Principles of Theatrical Design (3) I, Chesley Lecture—2 hours; laboratory—2 hours. Prerequisite: course 24 or consent of instructor. Scene design: drafting methods, working drawings, rendering techniques, scale models, methods and materials of scenery construction.
124B. Principles of Theatrical Design (4) II. Snyder Lecture—3 hours; laboratory—2 hours. Prerequisite: Course 124A. Analysis of plays in terms of scene design, elements of design, execution of designs for modern and periodic plays.

124C. Principles of Theatrical Design (3) II. Wynn Lecture—2 hours; laboratory—2 hours. Prerequisite: course 24 or consent of instructor. Theories of lighting the stage, equipment and control systems, execution of lighting plots.

124D. Principles of Theatrical Design (3) II. Kress Lecture—2 hours; laboratory—2 hours. Prerequisite: course 24 or consent of instructor. Source materials for theatrical costume, selecting fabrics, elements of design, analysis of plays in terms of costume design, execution of designs for modern and periodic plays.

126. Production Management (3) II. Chesley Lecture—3 hours. Prerequisite: course 25. Theoretical study of backstage operation from audition through performance: techniques of stage management, technical direction, stage procedures and audience control.

127A. Principles of Directing (4) I, Stambusky Lecture—2 hours; laboratory—4 hours; rehearsal. Prerequisite: courses 21A, 21B, 156, 157, 158, and senior standing or consent of instructor. The director's creative approach to the play and to the staging.

127B. Principles of Directing (4) II. Stambusky Lecture—2 hours; laboratory—4 hours; rehearsal. Prerequisite: course 127A and consent of instructor for non-majors. The director's creative approach to the actor.

150. American Theatre and Drama (4) II. Sarris Lecture—4 hours. The history of the theatre from Colonial times to the present. Readings of selected plays. Offered in odd-numbered years.

155. Black Theatre and Drama (4) II. Johnson Lecture—4 hours. Black Theatre and drama today: the history, impact and current direction of the work of Blacks in the theatre. Offered in even-numbered years.

156. Theatre and Drama: Aeschylus to Machiavelli (4) I, Sarris Lecture—4 hours. Selected plays and the history of the theatre from ancient Greece through the Italian and Spanish Renaissance.

157. Theatre and Drama: Shakespeare to Schiller (4) II. Sarris Lecture—4 hours. Selected plays and the history of the theatre from the English Renaissance through German and French Romanticism.

158. Theatre and Drama: Ibsen to Albee (4) III. Fahnen Lecture—4 hours. Selected plays and the history of the theatre from English Romanticism to the present.

159. Contemporary Experimental Theatre and Drama (4) III. Kleb Lecture—4 hours. Examination and evaluation of the "New Theatre." Course includes attending theatre events.

160A-160B. Principles of Playwriting (4-4) I-II. Shank Lecture—seminar—4 hours. Two prerequisites in courses in Dramatic Art or related courses in other departments. Analysis of dramatic structure; preparation of scenarios; the composition of plays.

161. Collective Theatre (4) III. Shank Workshop—4 hours. Prerequisite: experience in at least two of the following areas: playwriting, directing, design, acting, kinetic or environmental sculpture; consent of instructor. Participation in the collective creation of a theatre piece. May be repeated twice for credit.

180. Theatre Laboratory (1-5) I, II, III. The Staff Prerequisite: upper division standing and course 25, or consent of instructor. Projects in acting, production, scene design, costume, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit.

190. Senior Projects in Dramatic Art (4) II, III. Fahnen Seminar—3 hours; consultation, seminar, rehearsal, laboratory, research papers. Prerequisite: senior standing in Dramatic Art, study of specific areas of dramatic art culminating in independent creative and scholarly research projects.

192. Internship in Dramatic Art (1-12) I, II, III. The Staff (Chairperson in charge)

Furnuks, Director, Prerequisite: upper division or graduate standing with major in Dramatic Art and Individual Major with Dramatic Art as an area; upper division course related to the project; consent of instructor and Department Chairperson. Internship outside the University enabling students to practice their skills. May be repeated for credit for a total of 12 units. (P/N grading only.)

197T. Tutoring in Dramatic Art (1-4) I, II, III. The Staff (Chairperson in charge)

Furnuks, Director, Prerequisite: upper division or graduate standing with major in dramatic art; consent of department chairperson. Leading of small voluntary groups affiliated with one of the department's regular courses. May be repeated for credit. (P/N grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Lecture—1 hour. Prerequisite: consent of instructor. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (P/N grading only.)

Graduate Courses

200. Methods and Materials in Theatre Research (4) I, Sarris Seminar—3 hours. Essential research tools in theatre and related fields: bibliographies, primary sources; methods of evaluating and presenting evidence; delineating research areas in the field.

211. Advanced Voice and Speech (21) I, II, III. The Staff Laboratory—4 hours. Open to advanced undergraduates with consent of instructor. Voice production and speech related to specific acting problems in classical plays, particularly in verse.

212. Advanced Stage Movement (21) I, II, III. The Staff Laboratory—4 hours. Prerequisite: open to advanced undergraduates with consent of instructor. Movement patterns relating to acting problems in classic and modern plays.

212A. Special Problems in Advanced Acting (4) I, Johnson Seminar—2 hours; laboratory—4 hours. Prerequisite: consent of instructor. Advanced acting problems arising from differences in the style and role of plays selected from the Renaissance to the Romanticism.

212B. Special Problems in Advanced Acting (4) II. Rossi Seminar—2 hours. Prerequisite: consent of instructor. Advanced acting problems relating to plays selected from the Renaissance to Romanticism.

212C. Special Problems in Advanced Acting (4) III. Rossi Seminar—2 hours. Laboratory—4 hours. Prerequisite: consent of instructor. Advanced acting problems in plays drawn from Romanticism to the present.

224. Advanced Principles and Theories of Theatrical Design (4) I, Snyder Seminar—3 hours. Selected problems in the visual and auditory aspects of theatrical production.

224B. Advanced Principles and Theories of Theatrical Design (4) II, Chalisey Seminar—3 hours. Selected problems in the design of stage scenery and costumes; practice in design.

224C. Advanced Principles and Theories of Theatrical Design (4) III. Chesley Seminar—3 hours. Design of a production for three different types of theatres: open stage, arena, and proscenium.

228. Seminar in Directing Theory (4) I, Klink Seminar—3 hours. Development of directorial conceptions for contemporary productions of selected plays from the Greek to the present.

229A. Special Problems in Directing (5) I. Stambusky Seminar—2 hours; laboratory—2 hours. Prerequisite: consent of instructor. Specialized directorial procedures in style of drama. Projects in directing scenes selected from plays of the Greek to Renaissance periods.

229B. Special Problems in Directing (5) II. Rossi Seminar—2 hours; laboratory—2 hours. Prerequisite: consent of instructor. Projects in directing scenes selected from plays of the Renaissance to the Romantic periods.

229C. Special Problems in Directing (5) III. Rossi Seminar—2 hours; laboratory—2 hours. Prerequisite: consent of instructor. Projects in directing scenes selected from plays of the Renaissance to the Romantic periods.

229D-230B. Classical and Medieval Theatre (4-4) I, II. Fahnen, Saris Seminar—3 hours. The theatre of Greece, Rome and Middle Ages; emphasis on relationships of dramas of the period to physical circumstances of production. Course 230A (to be taken separately) includes readings and discussion of dramatists. Course 230B emphasizes research culminating in a substantial scholarly paper. (Deferred grading only, pending completion of sequence, can be in effect.)

229A-230B. Renaissance and Baroque Theatre (4-4) I, II. Fahnen, Saris Seminar—3 hours. The theatre of Italy, Spain, England, and France, 1500-1660; emphasis on relationship of dramas of the period to physical circumstances of production. Course 230A (to be taken separately) includes readings and discussion; course 230B emphasizes research culminating in a scholarly paper. (Deferred grading only, pending completion of sequence, can be in effect.)

229A-240A. Neoclassical and Romantic Theatre (4-4) I, II. Fahnen, Saris Seminar—3 hours. The theatre of Europe and America, 1800-1940, with emphasis on the relationship of the dramas of the period to the physical circumstances under which they were produced. Offered in even-numbered years.

229A. Contemporary Theatre (4-4) I, II. Cohn Seminar—3 hours; term paper. Selected aspects of contemporary Western theatre, with attention to their modes of production.

229D. Contemporary Avent-garde Theatre (4) III. Shank Seminar—3 hours. Present-day experimental concepts and practice. Scholarly paper using publication format. Offered in even-numbered years.

229E. Theatre Laboratory (1-12) I, II, III. The Staff Seminar—3 hours. Advanced practice in acting, designing, directing, playwriting, and technical theatre.

229F. Contemporary Theatre Practice (2) I. The Staff Seminar—2 hours. Seminar in the techniques and requirements for pursuit of a career as a theatre professional. Includes survey of Broadway, Off-Broadway, Regional, University, and Community theatres. Offered in even-numbered years.

NOTE: For key to footnote symbols, see page 138.
East Asian Studies; Ecology

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Seminar—1-4 hours. Prerequisite: consent of instructor.

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only)

2990. Dissertation Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only)

Professional Courses

413. Stage Make-up (1-2) I, II. The Staff Lecture—6 hours. Prerequisite: consent of instructor. Lectures, demonstrations, and practical work in aspects of theatrical make-up.

421. Dance for Actors (2) J. Curry (Physical Education) Lecture—6 hours. Prerequisite: consent of instructor. Principles of choreography and dance for the stage performer.

East Asian Studies

(College of Letters and Science)

Program Office, 303 Young Hall

Committee in Charge

Donald Gibbs, Ph.D. (Oriental Languages), Committee Chairperson
Mary Pont, Ph.D., (Art)
Gary G. Hamilton, Ph.D. (Sociology)
Evelyn M. Kinmonth, Ph.D. (History)
Wai-Lam Lai, Ph.D., (Religious Studies)
Marian B. O'Nye, Ph.D. (Comparative Literature)

The Major Program

The East Asian Studies major is designed to give the student an understanding of East Asia (especially China and Japan) through interdisciplinary studies, combining sustained work in an oriental language with courses on East Asian countries. The program provides preparation either for a career that involves working with East Asian affairs and people (e.g., journalism, business, government service, teaching, and counseling), or as preparation for graduate studies in the East Asian field.

Each student is required to develop a special field (e.g., anthropology, history, oriental languages) within the major to be chosen in consultation with his or her adviser.

Since six quarters of language work are required, students normally should apply to this program in their sophomore year.

East Asian Studies

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>48</td>
</tr>
<tr>
<td>History 9A, 9B</td>
<td>8</td>
</tr>
<tr>
<td>One course from Art 1D, Comparative Literature</td>
<td>53A, History 90A, 90B Oriental Languages</td>
</tr>
<tr>
<td>32A, 32B, Political Science 9C, Religious Studies 4A, 7D</td>
<td>4</td>
</tr>
</tbody>
</table>

Two years (or the equivalent) of Chinese or Japanese language study (Chinese 1-2, 3-4, 5-6; Japanese 1-2, 3-4, 5-6)...

6 Depth Subject Matter | 36 |
History 1928-1929, 1930-1934	8
Political Science 149A or 149B	4
Anthropology 190 or 191 or Sociology 147	4
At least 20 units from the following courses as approved by the Committee in charge	20
Agricultural Economics 125; Anthropology 109, 110, 111, 112, 120, 122, 123, 124, 128, 162, 190, 191, 192; Art 154A-F	12

Total Units for the Major | 84 |

Recommended: Students are urged to take a substantial number of courses in Euro-American civilization as a basis for comparison with a deeper understanding of America's relations with East Asia.

Major Advisers: China—D. Gibbs (Oriental Languages); Japan—E. H. Kinmonth (History)

Ecology (A Graduate Group)

R. Merton Love, Ph.D., Chairperson of the Group
Group Office, 2148 Wicken Hall

Faculty

The Group includes faculty from 39 departments in five schools and colleges.

Graduate Study. The Graduate Group in Ecology offers the M.S. and Ph.D. degrees in three broad areas of study: (1) biological, (2) human, and (3) physical and chemical ecology. Several areas of specialization are possible in each of the three. Details of the program may be obtained from the Chairperson of the Group.

Preparation. Appropriate preparation is undergraduate work in any of the biological, social or behavioral, and physical sciences, mathematics or engineering. But note that all applicants to the (1) biological and (2) physical-chemical areas will normally be expected to have completed a one-year sequence in basic biology, in elementary chemistry, in elementary physics; a course in statistics, calculus and computer programming or other suitable mathematical training; and a course in ecology. Applicants to the (2) human ecology area will normally be expected to have completed a one-year sequence in basic biology; a course in evolution or genetics; two courses in chemistry; one course in physics; one course in calculus, one in statistics; and a course in ecology. Each of the three broad areas requires certain advanced preparation appropriate to the area.

Breadth Requirement. All degree candidates are required to take a course from each of the following three study areas. Recommended:

a. Biological Ecology courses: Environmental Studies 100 (general ecology), Zoology 125 (animal ecology), Entomology 104 (insect ecology), or Botany 117 (plant ecology).

b. Human Ecology courses: Environmental Studies 101 (principles of human ecology), Environmental Studies/Anthropology 141 (cultural ecology), Psychology 114 (environmental awareness), or Geography 170 (cultural ecology).

c. Physical and Chemical Ecology courses: Environmental Studies 151 (limnology), 151T (limnology laboratory), Environmental Studies/Geology 150A (physical and chemical oceanography), or Atmospheric Science 123 (micrometeorology).

Graduate Advisor: R. M. Love

Related Courses. Many departments offer such courses. A list of these courses is available at the Group Office.

Courses in Ecology

Graduate Courses

201. Advanced Biological Ecology (4) II. Salt (Zoology), Major or Botany, Wilson (Environmental Studies) Lecture—3 hours, discussion—1 hour. Prerequisite: upper division course in either plant or animal ecology (Recommended) both (graduate and undergraduate) standing. An examination of major topics in theoretical ecology. (Same course as Botany 201, Zoology 201, and Zoology 210.)

210. Advanced Topics in Human Ecology (4) III. Orlove (Environmental Studies) Lecture—2 hours, discussion—1 hour. Prerequisite: graduate standing. This course stresses the commonalities that human ecologists have with social scientists who specialize in problems relating human populations and environments to other human populations. General epistemological issues and theoretical models are reviewed. Similarities and differences of human and animal biology and ecology are examined.

211. Advanced Topics in Cultural Ecology (4) I. Orlove (Environmental Studies) Lecture—3 hours, Prerequisite: graduate standing. This course will discuss and evaluate theories which relate environment, culture, and society. The works of several major theorists will be examined with regard to analytical models, empirical data, research methodologies, and modes of explanation. (Same course as Anthropology 211.)

212. Environmental Policy Analysis (4) III. Sabatier and Schwartz (Environmental Studies) Lecture—4 hours. Prerequisite: Economics 1A, Political Science 107, Environmental Studies 160 (or the equivalent); administrative policy-making (e.g., Environmental Studies 166, Political Science 180, 180, 163); resource economics or policy analysis (e.g., Agricultural Economics 147, one course from Environmental Studies 168, 168B, Political Science 106, 119); graduate standing. A survey of decision-making theory, focusing on the development of formal evaluative techniques and their limitations within the area of public policy. The course deals primarily with the implementation of environmental policy rather than its general formulation. Offered in odd-numbered years.

213. Advanced Demography (4) III. Cramer (Sociology) Lecture—3 hours, discussion—1 hour. Prerequisite: Environmental Studies 145, Sociology 170, and Ecology 210 or consent of instructor; graduate standing. An analysis of the social and economic determinants of mortality, fertility, and population size, of selected consequences of demo-
graphic trends; and of how demography is related to
human ecology. Special emphasis on methods of analysis
and on contemporary societies. Offered in even-numbered
years.

220. Transport Processes in the Biosphere (3) II. Myrup
(Land, Air and Water Resources)
Lecture—2 hours; discussion—1 hour. Prerequisite:
undergraduate training in integral and differential calculus,
college physics and general biology, graduate standing,
and Atmospheric Science 123. A unified approach to the
study of transport processes in biological systems;
conservation laws and their mathematical representation;
similarity principles; the phenomenon of turbulence; role of
 turbulent and molecular transport in specific ecosystems.

230. Analysis of a Selected Ecosystem (4) J. Goodman
(Environmental Studies) and Love (Agronomy and Range
Science)
Lecture—3 hours; discussion—1 hour; field trip. Prerequisite:
graduate standing. Application of basic ecological
principles to the quantification of specific ecosystems.
Recent advances in theory, technique, and basic
information will be emphasized. Lectures will be given
by specialists from several fields. May be repeated for
credit.

290. Seminar in Ecology (1-3) I, II, III. The Staff (Chair-
person in charge)
Seminar—1-3 hours. Prerequisite: consent of instructor.
Topics in biological, human, physical, and chemical
ecology. Students are expected to present a seminar
on a particular aspect of the general topics under con-
consideration. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chair-
person in charge)
Prerequisite: graduate standing and consent of instructor.
Perception, definition, and attack on a selected ecological
problem, drawing on the expertise of faculty from different
departments in the Graduate Group in Ecology. (Sec. 1
letter grading; all other sessions, SU grading only.)

Economics

(College of Letters and Science)
Frank C. Child, Ph.D., Chairperson; of the Department
Department Office, 380 Kerr Hall

Faculty
Andrzej Brzeski, Ph.D., Professor
Frank C. Child, Ph.D., Professor
Bruce Glassburner, Ph.D., Professor
Victor P. Goldberg, Ph.D., Professor
E. Eric Gustafson, Ph.D., Lecturer
L. Jay Helms, B.A., Acting Assistant Professor
Hiroshi Kaneda, Ph.D., Professor
Peter H. Lindert, Ph.D., Professor
Thomas Mayer, Ph.D., Professor
William G. Moss, Ph.D., Assistant Professor
Martin P. Oettinger, Ph.D., Associate Professor
Alan L. Ormstead, Ph.D., Associate Professor
John E. Roemer, Ph.D., Assistant Professor
Linda Shaffer, M.A., Acting Assistant Professor
Steven Shrefflin, Ph.D., Assistant Professor
Tsung-yuen Shen, Ph.D., Professor
Ross M. Stair, Ph.D., Professor
Elias H. Tuma, Ph.D., Professor
Leon L. Wegge, Ph.D., Professor

NOTE: For key to footnote symbols, see page 138.

The Major Program
Economics is the study of human social arrange-
ments and institutions used in mankind's efforts to
satisfy material wants. The economic problem is
to maximize satisfaction of society's material
wants within the limits established by the avail-
ability of resources and the state of our knowledge,
with due allowance for non-economic values. To
maximize the economy's economic welfare, a so-
ciety must utilize scarce resources fully and effi-
ciently in the production of goods of highest social
value and then distribute that output equitably
among its members.

A major in economics will assist the student to
learn how economists examine these questions,
and is an appropriate major for undergraduates
contemplating graduate study in business admin-
istration, law, regional planning or public affairs.

Economics

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
</tr>
<tr>
<td>Economics 1A-1B</td>
</tr>
<tr>
<td>Economics 12</td>
</tr>
<tr>
<td>(At least a C average in the above courses.)</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 100 or 101</td>
</tr>
<tr>
<td>Additional economics courses to achieve a minimum of 36 upper division units</td>
</tr>
</tbody>
</table>

Total Units for the Major | 51 |

Recommended
Students considering graduate study in economics
or business administration are strongly urged to take
Mathematics 16A, 16B.

It is highly recommended, but not required, that students
take Economics 100 prior to 101; and the Department also
suggests that these courses be taken as soon as possible
after the introductory course. Except under extraordinary
circumstances, not more than three economics courses
may be taken in any one quarter. In special cases, the
department will accept a limited number of related upper
division courses from other departments in satisfaction of
the economics upper division course requirement. Ap-
proval from a departmental advisor is required in all such
cases.

Major Advisers.

American History and Institutions.

This University requirement can be satisfied by completion of Economics 111. (See also page 66.)

Teaching Credential Subject Representative.

A. Brzeski. See page 111 for the Teacher Education Program.

Graduate Study.

Students who meet the admis-
sion requirements of the Graduate Division and the
Department of Economics may pursue studies
leading to the M.A. and Ph.D. degrees. Fields of
emphasis for graduate study include: Economic Theory, Monetary Economics, Economic Development, Economic History, International Econom-
Econmics

101. Intermediate Macroe Theory (5) I, II, III. The Staff Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Theory of income, employment, and prices under static and dynamic conditions.

103. Theory of Economic Optimization (4) I. Roemer Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100 or 100M, 101; Mathematics 16A-16B. Analyticals of economic optimizing behavior for consumers and firms, using linear algebra, partial differentiation, quasi-concave functions, and the Kuhn-Tucker theorems. (Same course as Agricultural Economics 103.)

105. History of Economic Thought (4) III. Shen Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Historical survey of economic doctrine: the Classical School and its antecedents. Neoclassical thought, criticism of classical thought, emergence of modern economic thought.

110A. Economic History (4) I. Tuma Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Survey of economic change in Europe prior to the year 1700; reference to other regions of the Eastern Hemisphere; implications for contemporary economic development.

110B. Economic History (4) II. Tuma Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Survey of economic change in Europe from the year 1700 to the present; reference to other regions of the Eastern Hemisphere; implications for contemporary economic development.

111A. Economic History (4) II. Omstead Lecture—3 hours; discussion—1 hour. Prerequisite: course 1A, 1B or consent of instructor. Survey of economic change in the United States from Colonial times to 1865; reference to other regions in the Western Hemisphere.

111B. Economic History (4) III. Omstead Lecture—3 hours; discussion—1 hour. Prerequisite: course 111A. Survey of economic change in the United States from 1865 to the post World War II era.

115A-115B. Economic Development (4-4) I-II. Glassburner, Kaneda Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Theories of economic development and underdevelopment, economic policy for growth and development. Contemporary and historical case studies.

116. Economic Systems (4) II. Brzeski Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Critical examination of major economic systems: their goals and institutions, capitalism, fascism, and varieties of socialism; problems of economic planning in USSR, India, China, and other industrializing economies.

117. The Soviet Economy (4) III. Brzeski Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Survey of Soviet economic development; economic organization, methods of planning, and performance.

118. Political Economy of Agrarian Reform (4) II. Tuma Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, 100, 100M, 16A-16B. Marxian economic theories, including theories of value, surplus value and exploitation, accumulation, the business cycle and crisis, the role of the State and its relation to classes; imperialism; Writings of Marx and economists in the Marxian tradition will be studied.

121A. Industrial Organization (4) II. Shen Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, 100 (or 100M), or consent of instructor. An appraisal of the role of competition and monopoly in the American economy; market structure, conduct, and economic behavior of a variety of industries.

121B. Industrial Organization (4) III. Lecture—3 hours; to be arranged—1 hour. Prerequisite: course 121A. Analysis of productive enterprises: firm, market structure, conduct, and economic behavior of a variety of industries.

123. Ecology and Economics (4) I. Gustautis Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Economies and populations as self-regulating systems; economic regulation of man's interaction with his environment. Topics: population growth and economic determinants; optimal rates of increase of exhaustible and renewable resources; implications of common property in resources; prospects for agricultural growth.

125A-125B. Urban Economics (4-4) I-II. Moss, Shader Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A, 1B, 100 (or 100M), or consent of instructor. Analysis of the structure and growth of the urban economy. Topics: land use, residential and business growth, housing markets, transportation, metropolitan fiscal problems, urban decay and renewal, poverty, discrimination, public policy.

130. Public Microeconomics (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100, 100M, or consent of instructor. Public expenditures: theory and applications. Efficiency and equity of competitive markets; externalities, public goods, and market failure. The normative aspects of economic theory and the design of public policies for expenditure. Income and wealth distribution, the allocation of resources. Income distribution, labor market, and unemployment. Policies to address income and wealth distribution, labor market, and unemployment.

131. Public Finance (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100, 100M, or consent of instructor. Public expenditures: theory and applications. Efficiency and equity of competitive markets; externalities, public goods, and market failure. The normative aspects of economic theory and the design of public policies for expenditure. Income and wealth distribution, the allocation of resources. Income distribution, labor market, and unemployment. Policies to address income and wealth distribution, labor market, and unemployment.

135A. Money, Income, and Monetary Policy (3) I. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. The role of money in the economy, inflation, recession, monetary policy, the Federal Reserve System, the tools of monetary policy.

135B. Money, Income, and Monetary Policy (3) II. Mayer Lecture—3 hours; discussion—1 hour. Prerequisite: course 101. Monetary theory; the impact of changes in the quantity of money and of liquid assets on money income.

135C. Money, Income, and Monetary Policy (3) III. Shefliner Lecture—3 hours; discussion—1 hour. Prerequisite: course 135B. Evaluation of monetary policy, its impact on the economy and past performance, and the problem of inflation.

140. Introduction to Econometrics (4) III. The Staff (Chairperson in charge) Lecture—2 hours; laboratory—2 hours. Prerequisite: course 12 or the equivalent; 100 or 100M, 101; Mathematics 16A-16B or 21A. Introduction to problems of estimation and hypothesis testing in economics through study of the theory and application of linear regression models, critical evaluation of selected empirical studies of technical and applied economics.

150A. Economics of Trade Unionism (4) II. Oettinger Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, 1B, 100 (or 100M), or consent of instructor. The theory and practice of collective bargaining. The nature and practice of collective bargaining. The nature and practice of collective bargaining. The nature and practice of collective bargaining. Off-
Graduate Courses

200A. Microeconomic Theory (4) I. Paris (Agricultural Economics)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16A or consent of instructor. Theory of the firm under perfect competition; programming and dynamic models of the firm. (Same course as Agricultural Economics 200A.)

200B. Microeconomic Theory (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A and Mathematics 16B or consent of instructor. Static and dynamic consumer behavior, imperfect competition, market and multi-market equilibrium, introduction to welfare economics and externalities. (Same course as Agricultural Economics 200B.)

200C. Microeconomic Theory (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200 and 200B. Linear economic systems, the static Leontief system, competitive general equilibrium, welfare economics, comparative statics, and risk. (Same course as Agricultural Economics 200C.)

200D. Macroeconomic Theory (4) I. Sheffrin
Lecture—3 hours. Macro static theory of income, employment, and prices.

200E. Macroeconomic Theory (4) II. Wegge
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200 and 200C, and Mathematics 16A-16B, or consent of instructor. Macroeconomic theory of income, employment, and prices.

201A. History of Economic Thought (4) III. Shen
Lecture—3 hours; discussion—1 hour. Economic thought from the classical Greece era to Modern Times.

201B. History of Economic Thought II (4) III. Shen
Lecture—3 hours; discussion—1 hour. Origins and emergence of modern economic analysis. Offered in even-numbered years.

202. Topics in Economic Theory (4) I.
Seminar—4 hours. Prerequisite: courses 200A-200E or consent of instructor. Recent developments in economic theory.

203A. Advanced Economic Theory (4) III. Starr
Seminar—4 hours. Prerequisite: course 200C. Advanced topics in the theory of the firm; distribution theory; welfare economics.

203B. Advanced Economic Theory (4) I. The Staff
Seminar—4 hours. Prerequisite: courses 200C and 200E. General equilibrium theory; capital theory; growth theory.

204. Microeconomic Analysis (5) I. Moss
Lecture—4 hours; discussion—1 hour. Prerequisite: course 100 (or 100M) or Agricultural Economics 100A, 100B and Mathematics 16A, 16B. Open to advanced undergraduates with consent of instructor. Economic reasoning and social choice; behavior of firms and households; theory of markets, partial and general equilibrium analysis; welfare economics, illustrations and applications. (Same course as Agricultural Economics 204.)

205. Macroeconomic Analysis (5) I. The Staff
Lecture—4 hours; discussion—1 hour. Prerequisite: course 101, Mathematics 16A, 16B, or the equivalent. Income, employment and the price level; money, income distribution; inflation, growth, policy, empirical models and methods.

207. Special Topics in Mathematical Economics (4) II. The Staff
Seminar—3 hours. Prerequisite: courses 203A and 203B or consent of instructor. Advanced topics in mathematical economics. Contents may vary from one year to another.

210A. Economic History (4) I. Tuma
Seminar—3 hours. Methodology and theory of economic history. Critical analysis of the methodology of economic history and theories of economic change as illustrated by major economic phenomena drawn from the history of different countries.

210B. Economic History (4) II. Tuma
Lecture-discussion—4 hours. Economic history of the eastern hemisphere in the modern period. Medieval Europe or other regions may be studied, depending on student interest.

210C. Economic History (4) III. Omstead
Lecture-discussion—4 hours. The United States from colonial times to the present. Other areas of the western hemisphere may be studied, according to student interest.

210D. Economic History (4) III. Tuma
Seminar—4 hours. Prerequisite: a graduate course in economic history. Selected topics and issues, emphasis on current research.

215A. Economic Development (4) II. Glassbuner
Seminar—3 hours; discussion—1 hour. Prerequisite: bachelor's degree in Economics or the equivalent, or consent of instructor. Theory of economic development as it relates to developing nations; demographic problems; distribution issues in economic development. (Same course as Agricultural Economics 215A.)

215B. Macroeconomic Development (4) III. Kaneda
Seminar—3 hours; discussion—1 hour. Prerequisite: course 215A. The macroeconomics of economic development; monetary policy problems; fiscal problems, international trade, specific country studies. (Same course as Agricultural Economics 215B.)

215C. Economic Development in Agriculture: Policy and Planning (3) III. McCalls
Lecture—3 hours. Prerequisite: course 215A. Agriculture in the structure of developing nations; its role in economic development; agriculture and national planning; sectoral policies relating to prices, inputs, productivity, and marketing; international aspects of trade, aid, and technical assistance, country case studies. (Same course as Agricultural Economics 215C.)

215D. Development Programming (4) I. Kaneda
Seminar—3 hours; discussion—1 hour. Prerequisite: courses 215A, 215B, or 215C, 200B, 200E. Development plans, programs and policies. Application of input-output, programming, and operations research techniques to project evaluation. (Same course as Agricultural Economics 215D.)

216. Economic Systems (4) I. Brzeski
Lecture—4 hours. Comparative study of economic systems, with reference to their organization and institutions, their aims and goals, and their economic performance.

217. Economics of Planning (4) III. Brzeski
Lecture—4 hours. Principles and policies of economic planning under various economic systems.

219. Marzian Economics Theory (4) III. Roemer
Lecture—4 hours. Prerequisite: course 103 or Mathematics 16A-16B or linear algebra. Marx's dialectical approach to economics, labor theory of value and exploitation; the transformation problem; schemes of production and reproduction; capital accumulation; falling rate of profit; theories of intervention, crisis and growth; labor process under capitalism.

221A. Industrial Organization (4) II. Goldberg
Lecture—3 hours; to be arranged—1 hour. Analysis of market structure, business behavior, and economic performance under conditions of limited governmental interference.

221B. Industrial Organization (4) III. Goldberg
Lecture—3 hours; to be arranged—1 hour. Prerequisite: course 211A. Social standards and public policy toward the business sector of the economy.

222. Law and Economics (4) III. Goldberg
Lecture—2 hours; seminar—2 hours. Prerequisite: one year of law school; course 200A or consent of instructor. Studies the effects of legal rules on resource allocation and applies economic analysis to explicate problems in torts, property, and contracts.

NOTE: For key to footnote symbols, see page 138.

Economics

225A. Urban Economics (4) II. Moss
Lecture—2 hours; discussion—2 hours. Prerequisite: course 200A or 204. Application of economic theory and quantitative methods to the urban economy: location, structure and growth.

225B. Urban Economics (4) III. Moss
Lecture—2 hours; seminar—2 hours. Prerequisite: course 225A. Urban problems and urban public economics: housing, transportation, discrimination, local public goods and urban fiscal problems.

230A. Public Finance (4) I.
Lecture—2 hours; seminar—2 hours. Welfare economics, externalities, public and merit goods, local public goods, transaction costs and market failure, benefit-cost analysis, politics of collective choice, topics (e.g., economics of education, transfers in income and in-kind, consumer protection, pollution, transportation and congestion).

230B. Public Finance (4) II.
Lecture—2 hours; seminar—2 hours. Taxation and stabilization; distributional equity, shifting and incidence, theory of optimal taxation, analysis of personal income tax, corporation income tax and other taxes, tax reform, revenue sharing, monetary and fiscal policy, debt management, burden of debt.

235A-235B. Monetary Theory (3-3) III. Mayer
Lecture—3 hours. Prerequisite: course 200D (may be taken concurrently) or the equivalent. The quantity theory, post-Keynesian monetary theory, the portfolio approach. The main focus is on the conflict between monetarism and Keynesianism.

235C. Monetary Policy (3) III. Starr
Lecture—3 hours. Goals and problems of implementation of monetary policy; impact of monetary changes on income, resource allocation effects, and lags. The problem of rules vs. authorities; monetary aspects of the Great Depression.

240A. Econometric Methods (4) I.
Lecture—2 hours, term paper. Prerequisite: Mathematics 130B and course in linear algebra. Statistical models and their use in estimation of economic relationships; single and multiple equation systems. (Same course as Agricultural Economics 240A.)

240B. Advanced Econometrics: Theory (4) I. Wegge
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240A, Mathematics 131A, 131B-131C recommended. Multivariate analysis, specification analysis, simultaneous equation models, identification, estimating methods, small sample properties. (Same course as Agricultural Economics 240B.)

240C. Advanced Econometrics: Applications (3) II.
Lecture—3 hours. Prerequisite: course 240A. Time series analysis and distributed lags, pooling of time series and cross-section data, Bayesian analysis, applications for prediction and policy. (Same course as Agricultural Economics 240C.)

250A. Labor Economics (4) III. Oettinger
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 150 and 151 or the equivalent. Philosophy, theory and history of American and foreign labor movements; union structure and organization under changing labor market conditions; human resources, manpower policy and other labor market issues.

250B. Labor Economics (4) II.
Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 150 and 151. Theory of the labor market, analysis of wage-employment, wage-investment, and wage-price relationships.

260A. International Economics (4) I. Child
Lecture—3 hours; discussion—1 hour. Theory of trade determinants; gains from trade; tariffs and effective protection; economic unions.

260B. International Economics (4) I. Kaneda
Lecture—3 hours; discussion—1 hour. Balance of payments, open systems, foreign exchange markets; theories of balance of payments policy and international monetary mechanisms.
Curricula for Teacher Education
For a statement of complete requirements and appointments with credential counselors, apply to the departmental office. Applicants for the credential program should consult the department early in the Fall Quarter of the senior year. (See also page 111.)

CREDENTIALS COUNSELORS: MULTIPLE SUBJECT
Bilingual Education: B. J. Mier, J. A. Rojas.

Courses in Education
Upper Division Courses

Lecture—4 hours. Prerequisite: Psychology 1; upper division standing. Learning processes, intellectual development; individual differences and testing.

Lecture—4 hours. Prerequisite: Psychology 1; upper division standing. Introduction to an experimental-phenomenological approach to the psychological aspects of the educational situation in general and to the use of tests in particular.

110C. Educational Psychology: Classroom Problems (4) I, II, III. Spring Lecture—4 hours. Prerequisite: Psychology 1; upper division standing. Psychological theory and techniques for instructing children, in regular classrooms, who need special attention due to behavioral or learning problems. Includes practice in tutoring a child off campus.

Lecture—2 hours; discussion—2 hours. Prerequisite: two years of high school algebra. Problems and methods in data analysis. Design of research projects. Some considerations of procedures suited to digital computers.

Lecture—2 hours; discussion—2 hours. Prerequisite: courses 110 and 120. Examination of psychoeducational literature on Chicano children within the framework of Erik Erikson's theories towards development of an intervention capability.

117A. Psychology of Reading (3) I, Spring Lecture—2 hours; discussion—1 hour. Prerequisite: Psychology 1, and Mathematics 13 or Education 114 or the equivalent; upper division or graduate standing. Application of verbal learning and motivational principles to the design of a curriculum for the word-identification stage of beginning reading.

117B. Psychology of Reading (3) II. Enri Lecture—2 hours; discussion—1 hour. Prerequisite: Psychology 1 or the equivalent; upper division or graduate standing. Consideration of theory and research on the psychological structures and processes involved in achieving reading proficiency. Emphasis on comprehension and a psycholinguistic approach to reading.

120. Philosophical and Social Foundations of Education (4) I, II, III. Armstrong, Black, Trounser Lecture—4 hours. Prerequisite: upper division or graduate standing. Philosophical, historical, and sociological study of education and the school in our society.

122. The Politics of the Schools (4) I. Crockenberg Lecture—4 hours. Prerequisite: upper division or graduate standing. The school as a social and political institution; the structure of school government, the role of teachers' organizations, the civil rights and responsibilities of teachers and students, and the processes of institutional change.

123. John Dewey and the Foundations of Education (4) II. Arnstine Lecture—4 hours. Prerequisite: upper division or graduate standing. The philosophical and social foundations of education as interpreted by Dewey. While focusing on his critique of American education and his systematic proposals for reform, attention will also be given to criticisms of Dewey.

130. Issues in Higher Education (4) II. Crockenberg, Arnstine, Milton (Mathematics) Lecture—3 hours, field work—3 hours. Prerequisite: upper division standing or consent of instructor. Analysis of current issues in higher education and some practical implications of varying philosophical approaches to the role of the university.

140. Ivan Illich: Deschooling Society (4) III. Trounser Lecture—2 hours; discussion—2 hours. Discussion and analysis of the ideas of Ivan Illich particularly on schooling, deschooling, medicine, and energy.

150A. Educating and Tutoring Minority Children and Youth (2) I, Davis Lecture—1 hour, field work—3 hours. Poverty as it affects a person's performance in the school with emphasis on how to deal with it in the school and community. (P/NP grading only)

150B. Educating and Tutoring Minority Children and Youth (2) II. Davis Lecture—1 hour, field work—3 hours. Racism as it affects a person's performance in the school with emphasis on how to deal with it in the school and community. (P/NP grading only)

150C. Educating and Tutoring Minority Children and Youth (2) III. Davis Lecture—1 hour, field work—3 hours. Youth cultures as they affect a person's performance in the school with emphasis on how to deal with it in the school and community. (P/NP grading only)

152. Communication Skills for Bilingual Teachers (3) I. Merino Lecture—2 hours; field work—3 hours. Prerequisite: course 151; Spanish 101C. The development of communication skills of prospective educators with an emphasis on the study and use of standard Spanish and Southwest Spanish dialects in teaching science, mathematics, social science, music, art, and language arts to bilingual elementary school pupils.

163. Guidance and Counseling (4) I, II, III. Sandoval Lecture—4 hours. Prerequisite: course 110A or 110B or 110C (may be taken concurrently). Nature and scope of pupil personnel services; basic tools and techniques of guidance; theory and practice of counseling, psychology, with emphasis on educational and vocational adjustment.

164. Practicum and Seminar in Counseling (2) I, II, III. Seminar—2 hours. Prerequisite: course 163 and consent of instructor. Practicum and seminar in counseling youth and adults. May be repeated twice for credit. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III. The staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)
Graduate Courses

201. History and Philosophy of Education: Ancient Pe-
riods (4) I. Black Lecture—2 hours, seminar—2 hours. Prerequisite: consent of instructor. Scope, influence, and significance of the major educational ideas from selected ancient societies and cultures with emphasis on the historical and philosophical contexts.

203. Twentieth-Century Issues Over the Schools (4) III. Black Lecture—2 hours; discussion—2 hours. A study of John Dewey and contrasting theories of education in relation to contemporary controversies over the aims, organization, curriculum and instructional practices in schools.

204. Existential Thought and Education (4) I. Trounler Lecture—1 hour; discussion—1 hour; seminar—2 hours. A study and critical analysis of the implications of existential thought for education.

205. The Concept of Mind in Teaching (4) I. Arnstein Seminar—4 hours. A philosophical analysis of the problems of educational practice which are created, aggravated, and sometimes solved by varying conceptualizations of mind and thinking.

206. Social Theory and the American School (3) II. Crockerberg Seminar—3 hours. Prerequisite: consent of instructor. A study of social institutions from the perspective of modern social theories: Weber, Durkheim, Marx, Dewey, Sorokin, Pareto, Parsons, and others. Focus on social change and the role of educational institutions in promoting or hindering change.

207. Concepts of the Curriculum (3) III. Arnstein, Crockerberg Seminar—3 hours. Prerequisite: graduate standing or consent of instructor. Development of the skills of philosophical analysis in the examination of curriculum theory and practice, including the conceptual analyses of purpose, organization of subject matters, and the methods of instruction.

210. Cognitive Learning (3) I. Sassenrath Seminar—3 hours. Prerequisite: consent of instructor. A critical analysis of selected problems and procedures in the study of cognitive learning processes.

211. Thinking and Problem Solving (4) II. Yonge Seminar—4 hours. Prerequisite: consent of instructor. Critical consideration of thinking with special reference to conceptual behavior, problem solving, creativity, home, school, and personality influences.

212. Language and Intellectual Development (4) III. Enri Seminar—4 hours. Prerequisite: consent of instructor. Theory and research on the development of language and thought in children; emergence of grammatical, semantic systems and operational thought; implications for education.

213A. Individual Assessment (3) II. Sandolov Lecture—3 hours. Prerequisite: courses 114 and 219, admission to school psychology program. Theories of intellectual functioning and the measurement of cognitive abilities in school-aged children. History and techniques of mental testing. Supervised practice in administration and scoring of contemporary tests including the WISC, the WAIS and the Stanford Binet with children. Offered in even-numbered years.

213B. Individual Assessment (3) II. Figueroa Lecture—3 hours. Prerequisite: course 213A, admission to school psychology program. Theories of affective functioning in school-aged children including adaptive behavior, personality development and interpersonal compe-

tence. Supervised appraisal of the child, integrating the methods of observation, mental testing and interviewing. Offered in odd-numbered years.

215. Social Learning (3) III. Spring Seminar—3 hours. Prerequisite: consent of instructor. Theory and research on behavior modification; analyses of modeling, reinforcement, punishment, and extinction; implications for education.

219. Educational Testing, Evaluation, and Differences (3) III. Sassenrath Seminar—3 hours. Prerequisite: course 114 or consent of instructor. A study of test theory as it applies to research, evaluation, and human differences in education.

270A. Reading Diagnosis and Prescription (3) I. Gatherer Lecture—2 hours; discussion—1 hour. Prerequisite: course 270 or the equivalent. The diagnosis and treatment of reading disabilities and the recognition of reading abilities. Analysis of clinical techniques, testing, use of materials and teaching procedures.

270B. Reading Instruction in Secondary Education (3) II. Liebert Seminar—3 hours. Prerequisite: course 301 or the equivalent. Causal factors and diagnosis of reading disabilities. Principles of reading instruction in secondary education, including phonics, whole word, and other approaches.

270C. Research in Reading Instruction (3) III. Bacon Seminar—3 hours. Prerequisite: course 270A or the equivalent. Examination of pertinent research in phonetic analysis, comprehension, testing, oral fluency, and dialect.

270D. Clinical Laboratory and Seminar in Reading Problems (5) Extra-session summer. Bacon, Gatherer Seminar—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Development and application of diagnostic and prescriptive techniques in a reading clinic.

271. Recent Developments in Social Studies Education (3) II. Lowry Lecture—2 hours; field work—2 hours. Prerequisite: consent of instructor. An analysis of social studies, goals, objectives, and assumptions about learning and teaching strategies, and evaluation techniques in selected social studies curriculum projects.

272. Recent Developments in Science Education (3) III. Perks Lecture—3 hours. Prerequisite: consent of instructor. Analysis of contemporary science curricula with emphasis upon philosophical, psychological and pedagogical attributes of design, trends, issues, and research in science curriculum and instruction.

273. Modern Mathematics Curriculum (4) III. Mara, Ostroff Lecture—3 hours; laboratory—2 hours. Prerequisite: consent of instructor. Survey of modern mathematics curricula; analyzing goals, defining objectives, and structuring content of a mathematics program; design and use of manipulative materials and media to promote mathematical insight and discovery; evaluating curriculum effectiveness.

274. Analysis of Teacher Behavior (3) II. Minnis Lecture—3 hours. Prerequisite: consent of instructor. Study of major systems used to describe classroom behavior of pupils and teachers. Review of research on teachers behavior and effective student learning. Use of descriptive systems in developing teaching strategies.

276. Instructional Strategies (3) II. Minnios Seminar—2 hours. Prerequisite: consent of instructor. Analysis of instructional variables as they relate to diverse types of learning strategies. Problems in instructional decision-making.

280. Seminar (2) I, II, III. The Staff (Chairperson in charge) Seminar—2 hours. Prerequisite: graduate standing.

289. Research (1-12) I, II, III. The Staff (Chairperson in charge) Individual research for graduate students. (SU/SG grading only.)

Professional Courses

300. Reading and Language Arts in the Elementary School (4) I, II, III. Bacon, Gatherer Lecture—2 hours; field work—2 hours. Prerequisite: consent of instructor. Principles, procedures and curriculum materials for teaching reading and the oral and written language arts. Includes phonics and other developmental reading skills.

301. Reading in the Secondary School (4) I, II. Liebert Discussion—3 hours. Prerequisite: must be teaching or student teaching. Principles, procedures, and materials to help secondary school teachers improve the reading competence of their students. The teaching of phonics, structural analysis, and alternative methods of coping with the problem reader in the classroom.

303. Art Education (3) I, II, III. Garrison Lecture—1 hour; discussion—1 hour; laboratory—2 hours. Prerequisite: admission to multiple subject credential program. Understanding the principles of education in the arts through participation in development of concepts, introduction to media and techniques suitable for the elementary school with emphasis on cross-discipline exploration.

304A. Teaching in the Elementary Schools (5-8) I. The Staff Seminar—3 hours; discussion—2 hours; student teaching—15-30 hours. Prerequisite: course 304A. Supervised teaching in preschool or elementary schools. Selection and organization of teaching materials. Introduction to techniques of diagnosing school achievement of children.

304B. Teaching in the Elementary Schools (5-8) II. The Staff Seminar—3 hours; discussion—2 hours; student teaching—15-30 hours. Prerequisite: course 304A. Supervised teaching in preschool or elementary schools. Current conceptions of elementary school curriculum with emphasis on contributions of fine arts and humanities.

305A. Teaching in the Middle Grades (5-8) I. The Staff Lecture—3 hours; discussion—2 hours; student teaching—15-30 hours. Prerequisite: acceptance into a Teacher Education Program. Supervised teaching in the middle grades with emphasis on the role of the classroom teacher with the curriculum with emphasis on social, biological, and physical sciences. Effective teaching methods.

305B. Teaching in the Middle Grades (5-8) II. The Staff Lecture—3 hours; discussion—2 hours; student teaching—15-30 hours. Prerequisite: course 305A. Supervised teaching in intermediate grades. Selection, organization, and evaluation of teaching materials including audio-visual aids. Effective teaching methods in grades 4-9.

305C. Teaching in the Middle Grades (5-8) III. The Staff Lecture—3 hours; discussion—2 hours, student teaching 15-30 hours. Prerequisite: course 305B. Supervised teaching in a departmentalized junior high school. Current conceptions of the junior high school with emphasis on effective teaching methods, and selection of curriculum materials. Alternative programs.

*Students must make their own transportation arrangements for observations and student teaching.

*Open only to student teachers. These 300 series courses are scheduled as extra-session electives to begin with the opening of the public schools and to end with the closing of the second semester in the public schools. Thus teaching assignments in the Fall Quarter, 1978, will begin on or about September 27. For the Spring Quarter, 1979, they will end on or about June 2. Students should make arrangements accordingly.
Education Abroad Program

 I, II, III. The Staff
 Lecture—1 hour; discussion—1 hour; student teaching—
 10-21 hours. Prerequisite: acceptance into Teacher Education Program. Supervised teaching in secondary
 schools. Skills and techniques for developing and analyzing classroom communications; identifying and construct-
 ing goals and objectives of instruction; assessment of learning; special problems of adolescents; audio-visual
 materials and techniques. Must be repeated for credit for a total of 15 units by undergraduates, and 21 units by
 graduates.

309. Early Childhood and Kindergarten Education (2)
 III. Skinner
 Lecture—2 hours. Prerequisite: consent of instructor.
 Methods, materials, and history of nursery school and kind-
 garden education.

322. Methods in Secondary Social Studies (3)
 II, I. Lowry
 Lecture—2 hours; field work—3 hours. Prerequisite: ac-
 ceptance into credential program with a social science
 major or minor. Recent developments in secondary social
 studies teaching strategies and curriculum materials with
 an emphasis on inquiry approaches.

323. Secondary School Curriculum: Science (3)
 I, Perkes
 Lecture—2 hours; field work—3 hours. Conceptions of sci-
 ence curriculum and instruction. Scientific knowledge and
 methods as applied to course design and teaching, ra-
 tionale and objectives of science programs, laboratory as
 an environment for learning. Lecture, laboratory, obser-
 vation, and participation in public schools.

324A-324B-324C. Teaching Methods in Mathematics
 (1-1-1) I-III. Mara
 Lecture—1 hour. Prerequisite: admission to a teacher edu-
 cation program, simultaneous teaching experience and a
 strong mathematics background; consent of instruc-
 tor. Instructional styles for teaching mathematics; curricu-
 lum materials and their appropriate use; learning objec-
 tives and design of effective mathematics programs.
 (Deferred grading only, pending completion of course at
 end of public school session.)

340. Supervised Teaching in Junior Colleges (5, 2)
 I, II, III. Mara
 Discussion—1 hour; supervised teaching—minimum 45
 clock hours. Prerequisite: consent of instructor. Directed
 teaching for candidates for the standard teaching creden-
 tial with specialization in junior college teaching. (SU
 grading only.)

341. Teaching in the College and University (2)
 I, Minns
 Lecture—2 hours; laboratory—1 hour. Prerequisite: grad-
 uate or faculty standing and consent of instructor. Analysis
 of course aims and objectives. Teaching techniques for
 college-level instruction with emphasis on lecture and dis-
 cussion. Evaluation of instruction and student performance.
 Designed for teaching assistants and graduate students.
 Taught by a team of faculty from a variety of disciplines.

361A-361B-361C. School Psychology: Introduction
 (2-2-2) I-II-III. Sandoval and Staff
 Seminar—2 hours; field work—16 school day per week.
 Prerequisite: admission to school psychology credential
 program. School applications of learning and develop-
 mental theory, institutional organizational theory, psy-
 chological theory and curriculum development, psychology of
 exceptional children in the schools. Field work in the school
 and other institutions serving children. (SU grading only.)

*Students must make their own transportation arrange-
ments for observations and student teaching.

Open only to student teachers. These 300 series courses are
scheduled as extra-session courses, to begin with the
opening of the public schools and to end with the closing
of the second semester in the public schools. Thus
the assignments in the Fall Quarter, 1978, will begin
on or about September 2. For the Spring Quarter, 1979,
they will end on or about June 2. Students should make
arrangements accordingly.

382A-382B-382C. School Psychology: Advanced
 (2-2-2) I-II-III. Sandoval, Figureiro
 Seminar—2 hours; field work—16 school day per week.
 Prerequisite: course 361C and admission to school psy-
 chology credential program. Theories and techniques in
 school-based consultation, advanced individual and group
 counseling, crisis counseling, educational program
 evaluation, legal issues in school psychology. (SU grading
 only.)

383. School Psychology: Internship (4-4)
 I-II, III, Sandoval, Figureiro
 Seminar—2 hours; internship—6-18 hours per week. Pre-
 requisite: admission to school psychology credential
 program. Individual assessment and program evaluation,
 mental health consultation, intervention strategies to pro-
 mote the school learning and adjustment of children. Se-
 lected topics in school psychology. (SU grading only.)

370A. Advanced Fieldwork in Reading: Elementary
 I, I. Bacon, Gathler
 Fieldwork plus conference with supervisor—4 hours. Pre-
 requisite: acceptance into reading credential program.
 Supervised advanced practice in reading instruction in an
 elementary school. Emphasis on development and use of
 diagnostic-prescriptive techniques. (SU grading only.)

370B. Advanced Fieldwork in Reading: Secondary
 I, I. Liebert
 Fieldwork plus conference with supervisor—4 hours. Pre-
 requisite: acceptance into reading credential program.
 Advanced study of methods and materials in secondary
 reading instruction, including experience in diagnosis,
 prescription, remediation, and evaluation in a reading la-
 boratory. (SU grading only.)

370C. Fieldwork in Reading Supervision
 I, II. Bacon, Gathler, Liebert
 Fieldwork plus conference with supervisor—4 hours. Pre-
 requisite: acceptance into reading credential program.
 Field experience in developing and supervising reading
 programs. Planning and implementing teacher in-service
 education at school and district levels. (SU grading only.)

Education Abroad Program

Hendrik J. Ketelapper, Ph.D., Campus Coordinator
Campus Coordinator's Office, 150 Marik Hall (752-0392)
EAP Office, 323 South Hall (752-3014)

Programs of Study

The Education Abroad Program (EAP) of the University of California offers upper division students who meet the minimal admission requirements (see page 51) the opportunity to experience a different culture while making progress toward degree objectives. Students interested in the language, literature, art, culture, history, or governmental or social institutions of the countries or areas where study centers are located will gain substantially from first-hand academic and practi-

cial experience. The same is true for students of foreign affairs. All students, whatever their field of study, will broaden their outlook and gain new skills as the result of study in a foreign country. The academic—and non-academic—debts and credits of participation in the EAP should be weighed carefully prior to departure, however.

Application

Normally, students participate in the program during their junior year, but a limited number of stu-
dents may be selected for participation as seniors. A few programs are open to graduate students as well. Students considering study abroad with the EAP should contact the EAP Office or the Coor-
dinator's Office early in the fall quarter concerning application and filing deadlines. This is important, as deadlines for some centers, including the United Kingdom and Ireland are in early November.

Application forms are available from the EAP Office. A provisional academic planning form, pre-
pared in consultation with the coordinator or academic counselor and the major adviser, must be submitted along with the completed application to the EAP Office prior to the appropriate deadline. Application received after the official deadline cannot be considered.

Students who do not meet the minimal require-
ments for acceptance (page 21) should consult the Campus Coordinator. Students who will have accumulated more than 145 units prior to the be-
ingning of their planned year of study abroad should also consult the Campus Coordinator be-
fore submitting an application; the probability of such students being accepted is rather low.

Selection

The Academic Senate Committee on the Educa-

tion Abroad Program has the final authority to de-
cide which applicants will be nominated as can-
didates for EAP participation by the Davis campus. This committee strongly recommends that prospective participants take appropriate courses dealing with the country of their interest in preparation for the year abroad. Applicants who are taking or have completed such courses at the time of the campus selection process tend to have an increased probability of receiving the endorse-
ment of the Committee, other factors being equal. Lists of suggested courses and reading materials are available in the EAP Office and the Office of the Coordinator.

Once the completed application materials have been filed, an applicant will be interviewed by a selection committee consisting of Faculty and EAP returnees. Among other things, knowledge of the host country and the United States and proficiency in the language of the host country, when applicable, will receive considerable attention during the interviews.

Files of applicants receiving the endorsement of the Senate Committee on EAP are forwarded to the University Office of the EAP on the Santa Barbara campus, where final selection decisions will be made.

Academic Program

In most cases, the students from the University of California live as the students of the host country do and attend the same courses, taught by faculty of the host country in their own language. Thus, language skills are very important. To aid adjust-
ment of UC students to different, often unfamiliar educational practices, tutorials are a part of the academic program at host centers. Tutors also assist in overcoming language problems and provide cultural background information presup-
posed in the courses. Tutors are taught by graduate students or junior staff of the host university and are offered in association with courses in which a sufficient number of UC students has enrolled.
To assist in the adjustment and the academic work of the students, faculty members of the University of California serve as Directors and/or Associate Directors at most of the study centers abroad.

The academic program of each student includes: (1) an intensive preparatory course in the language of the host country (except for the programs in the United Kingdom, Ireland, Egypt, Ghana, Kenya, and Hong Kong); (2) a full year of academic courses; (3) broad opportunity to audit courses within the host university. It is expected that students will complete a minimum of 36 units during the academic year in addition to units earned in the intensive language program. Lower unit minima may be set for centers with an exceptionally short academic year.

Graduation Requirements

All prospective applicants, but particularly students who intend to study abroad during their senior year, should plan their course programs for Davis and abroad carefully in order to satisfy University, College, and major requirements for the degree. The provisional planning form is intended to take care of this, but a few potential problems deserve emphasis.

Although units and grade points earned in the EAP are incorporated into the University transcript and GPA, the major departments and programs retain the right to determine which EAP courses will be accepted in satisfaction of major requirements. Several major programs have identified key upper-division courses which must be completed in residence at Davis. Major advisers should be consulted early so that the pre-departure program at Davis will be planned appropriately.

All degree candidates must meet the University residence requirement (page 66). Students planning to graduate immediately upon completion of participation in the EAP may satisfy residence requirements within the final 45 units preceding entrance into the EAP. Otherwise, subject to prior approval of the major department or program concerned, the requirement may be satisfied as follows: Within the final 90 units earned toward the degree, 35 units must be completed in residence in the student's College or School, 12 units of which must be completed after returning from EAP participation. The applicant's College or School Dean is the source for information on the University residence requirement and additional residence requirements imposed by the College.

Participants who satisfy all degree requirements while abroad and expect to graduate upon completion of the year abroad should file for candidacy to receive the degree in September. Unfortunately, transcripts from abroad take a long time to get to the home campus and are not received in time for EAP returnees to be included on the June degree list. Such returning students may participate in the June commencement, however.

Study Centers

At any one center, the courses and fields of study open to UC students may be limited. Moreover, each of the host institutions has special areas of excellence and strength. The listing of centers below incorporates selected information concerning these points. More detailed information is available in the flyers describing each of the centers and from the academic counselor in the Coordinator's Office.

Europe

Austria. The program is small and is designed to offer an opportunity to pursue a specialized interest to a limited number of highly qualified students. A compulsory intensive language course at Georg August University in Göttingen, Germany, precedes the beginning of the academic year. All courses are taught in German.

University of Vienna. Eastern European studies (Balkans, Soviet Union), fine arts (history of art, music, theatre arts), folklore, history. (This is a cooperative program with Stanford University.)

France. A compulsory intensive language course precedes the beginning of the academic year. All courses in the universities are taught in French. UC faculty directors are in residence at Bordeaux, Grenoble, and Paris.

University of Bordeaux. Broad areas of the humanities and social sciences. The Institute of Political Science and the Institute of Prehistory (Anthropology) are well known.

University of Grenoble. Mainly in the social sciences through the Université des Sciences Sociales (Grenoble II); some humanities; mathematics and computer science. Offerings in anthropology, psychology, and history are severely limited. Not suitable for life and physical sciences.

University of Marseilles. Biological sciences and environmental marine biology. The Marseilles program is open only to students in the biological sciences. Students who have completed one year of French are eligible for participation, but they must take part in the three-month summer Intensive Scientific French program at the University of Montpellier.

University of Montpellier. Humanities and literature, primarily through Paul Valéry University.

University of Paris. Film studies and some theatre studies. Graduate programs in history and literature.

Pau-Paris. The participants spend the first semester at the University of Pau and then, at the end of January, move to Paris to study at the University of the New Sorbonne (Paris III). In addition to required core courses in French civilization, students are able to take courses in humanities and social sciences, with emphasis on comparative cultural studies, French civilization and language.

University of Poitiers. Humanities, with major emphasis in history and medieval studies; mathematics; physics.

Germany. A compulsory intensive language program precedes the beginning of the academic year. All courses are taught in German.

Georg August University, Göttingen. Broad curriculum covering most majors. Excellent science programs, with substantial strength in biology, chemistry, and physics. Space in laboratory courses in biology and psychology may be limited.

University of Padua. History of Art (including archaeology), Italian Literature (including linguistics), and Political Science (which includes history, social sciences, geography, and demography, as well as political science in the American sense). Sciences are not available for UC students.

Academia delle Belle Arti di Venezia, Venice. Art studio and some art history. Colored slides of portfolio of artistic work must be submitted for admission.

Cini Foundation, Venice. Independent study projects for graduate students in art history.

Norway. Knowledge of Norwegian is not required, but a compulsory intensive course in Norwegian (mid-June to mid-August) precedes the beginning of the academic year. Intensive language study is continued during the fall semester. All courses are taught in Norwegian.

University of Bergen. Humanities, social sciences, natural sciences, and mathematics are available, but space in the sciences may be limited. The usual pattern is study of a single subject, usually the major or a closely allied field, for the entire year.

Spain. A compulsory intensive language program precedes the beginning of the academic year. All instruction is in Spanish.

University of Barcelona. Humanities (with emphasis on Spanish art, history, literature, linguistics) and some social sciences. A study program consists entirely of core courses developed for the Center and taught by the University of Barcelona. (This is a cooperative program with the University of Illinois.)

University of Madrid. Humanities and some social sciences. The core program, developed for the UC Study Center and other American programs concentrates on Spanish studies in the broadest sense. Core and Study Center courses are taught by Spanish faculty.

Sweden. Compulsory intensive language course during the summer for students who are not already fluent in Swedish. Language study continues during the fall semester for all students until the student has gained the equivalent of two years of Swedish. Most courses are taught in Swedish, but a few courses offered in English may be available.

Education Abroad Program

Eberhart Karl University, Tübingen. An 8-week summer program in German Language for graduate students only.

Italy. A compulsory intensive program in language and history precedes the beginning of the academic year. Students who have completed only one year of Italian are eligible for participation in the EAP in Italy, but they must take part in a special two-month summer language program at the University of Perugia, followed by the normal, compulsory intensive language program in Padua. A UC faculty director resident in Padua administers all EAP programs in Italy. All courses are taught in Italian.

University of Padua. History of Art (including archaeology), Italian Literature (including linguistics), and Political Science (which includes history, social sciences, geography, and demography, as well as political science in the American sense). Sciences are not available for UC students.

Academia delle Belle Arti di Venezia, Venice. Art studio and some art history. Colored slides of portfolio of artistic work must be submitted for admission.

Cini Foundation, Venice. Independent study projects for graduate students in art history.

Norway. Knowledge of Norwegian is not required, but a compulsory intensive course in Norwegian (mid-June to mid-August) precedes the beginning of the academic year. Intensive language study is continued during the fall semester. All courses are taught in Norwegian.

University of Bergen. Humanities, social sciences, natural sciences, and mathematics are available, but space in the sciences may be limited. The usual pattern is study of a single subject, usually the major or a closely allied field, for the entire year.

Spain. A compulsory intensive language program precedes the beginning of the academic year. All instruction is in Spanish.

University of Barcelona. Humanities (with emphasis on Spanish art, history, literature, linguistics) and some social sciences. A study program consists entirely of core courses developed for the Center and taught by the University of Barcelona. (This is a cooperative program with the University of Illinois.)

University of Madrid. Humanities and some social sciences. The core program, developed for the UC Study Center and other American programs concentrates on Spanish studies in the broadest sense. Core and Study Center courses are taught by Spanish faculty.

Sweden. Compulsory intensive language course during the summer for students who are not already fluent in Swedish. Language study continues during the fall semester for all students until the student has gained the equivalent of two years of Swedish. Most courses are taught in Swedish, but a few courses offered in English may be available.
Education Abroad Program: Engineering

University of Lund. Broad curriculum. Excellent science program.

United Kingdom and Ireland. The program, which includes 14 institutions, is administered by a director and associate director located in London. The UK program is highly competitive, largely due to its popularity with students. After a student has been selected for participation by the EAP administration, he or she must still be accepted by a specific department in one of the host institutions. In many host institutions, the student can pursue studies in that department only. Participating institutions are:

England: University of Birmingham, University of Exeter, University of Kent, University of Leeds, Westfield College (University of London). Occasionally, students may be placed on an ad hoc basis at such institutions as University of Bath, London School of Economics, Oxford University, Polytechnic of Central London, University of Warwick, Wimbeldon School of Art (London).

Ireland: Trinity College of the University of Dublin.

Scotland: University of Edinburgh, University of St. Andrews, University of Stirling.

Generally, the host universities offer a broad curriculum that includes most liberal arts majors. Life sciences and physical sciences are available. Polytechnic of Central London is open to students in architecture; and Wimbeldon offers art studio, art history, and three-dimensional design, including theatre design.

USSR. The Russian program is a one-semester program organized by a consortium of American universities. Three years of Russian at the university level is a firm prerequisite. The program is primarily intended for language majors, but it is open to students of literature, history, area studies, etc.

Leningrad State University. Russian language and civilization only.

Middle East

Egypt. All courses are taught in English, except courses in Arabic language and literature.

The American University, Cairo. A broad curriculum offered by the Faculty of Arts and Sciences. All students are required to take at least one year-long course in Arabic.

Israel. First priority is given to students who have completed at least one year of Hebrew. A compulsory language course precedes the beginning of the academic year. Study centers in Israel are administered by a UC faculty director located in Jerusalem.

University of Haifa. Humanities and social sciences, with special emphasis on contemporary Israel and Arab-Israeli studies. Limited opportunity in the sciences. Special program in Underwater Archaeology. Courses are taught in Hebrew. The Department of Study Programs for Overseas Students offers a core curriculum in Jewish, Middle East and Israel studies, social sciences, and history of modern Israel in English.

Hebrew University, Jerusalem. Broad curriculum: emphasis on Israel and Middle Eastern Studies. UC students enroll in a special program for foreign students, taught in English. The program offers courses in Judaica, Israel, Middle Eastern studies, and a few courses in the general social sciences and humanities. In addition, the School for Overseas Students in cooperation with the mathematics and science faculty offers an extensive program in the sciences based mainly on laboratory courses. Students with command of Hebrew have access to a broader curriculum throughout the Hebrew University.

Far East

Hong Kong. A limited selection of courses is offered in English. Knowledge of Chinese is not required for acceptance, but all students are required to include 18 units of Mandarin or Cantonese in their annual program.

Chinese University, Hong Kong. Humanities and social sciences, with emphasis on Chinese studies. Art studio and music performance courses are available. Information about courses to be offered in English is announced only one week before instruction begins.

A special two-year program, including at least one year of graduate study, is available to students pursuing graduate degrees in Chinese studies and related fields.

Japan. Completion of one year of Japanese at the university level or the equivalent is required for acceptance. (A compulsory intensive-language course precedes the academic year.) Students are expected to complete an additional 18 units of Japanese language during their year in Japan. Limited number of courses taught in English is available.

International Christian University, Mitaka (Tokyo). Humanities and social sciences, emphasis on Japanese language and problems of the Orient.

University of Tsukuba. Open to graduate students only. Admission requires completion of at least two years of college-level Japanese. Major fields of graduate study are available, most UC students will be accepted in the Areli Studies program.

Africa

Ghana. Open to undergraduate and graduate students. As in the British system, students take a year-long program of study in their major or area of specialization. Examinations are given only once, at the end of the academic year, and are mandatory for receiving credit.

University of Ghana, Legon-Accra. Humanities and social sciences, with emphasis on African studies. The Ghana program has been suspended for the 1978-79 academic year. Its future is uncertain at this time.

Kenya. Open to undergraduate and graduate students. As in the British system, students take a year-long program of study in their major or area of specialization. Examinations are given once, at the end of the academic year, and are mandatory for receiving credit.

University of Nairobi. Humanities and social sciences, with emphasis on African studies. Limited opportunities in the sciences and in veterinary science. Graduate students in History, Political Science, Sociology, Architecture, and Design are associated with the Institute for Developmental Studies, Institute for African Studies, or the Housing and Research Development Unit.

Latin America

Brazil. Language requirements for admission to this program are: two years of college-level Portuguese or the equivalent; or one year of college Spanish and one year of college Portuguese; or two years of college Spanish and completion of an intensive course in Portuguese prior to departure. Since courses are taught in Portuguese, the equivalent of one year of college-level Portuguese is the absolute minimum. A compulsory intensive language course precedes the beginning of regular course work.

University of Sao Paulo. Brazilian literature, Portuguese language, arts, humanities, social sciences. (This is a cooperative program with the University of Indiana.)

Mexico. A compulsory intensive language program precedes the beginning of the academic year. Students usually enroll in courses offered by the School for Foreign Students. Those who are qualified have access to the full curricular offerings of the host university.

National Autonomous University of Mexico (UAM), Mexico City. Humanities, social sciences, art practice. The School for Foreign Students offers Latin American art, literature, and history; Mexican and Central American studies; and Spanish language and literature.

Peru. A compulsory intensive language course precedes the beginning of the academic year. All courses are taught in Spanish.

Universidad Catolica, Lima. Humanities, social sciences. Anthropology, archaeology, and ethnohistory are of special interest. (This is a program of the Peru Consortium, which is composed of the University of Indiana and a number of California universities.)

Engineering

(College of Engineering)

John D. Kemper, Ph.D., Dean of the College
Roy Bainer, M.S., LL.D., Dean Emeritus of the College

Don O. Brush, Ph.D., Associate Dean—Undergraduate Study
Warren H. Giedt, Ph.D., Associate Dean—Graduate Study
Ray B. Krone, Ph.D., Associate Dean—Research

College Office, 2132 Bainer Hall

Faculty

G. Worden Waring, Ph.D., Professor (School of Medicine)

The Major Programs

Sixteen undergraduate engineering curricula, including six formal double-major programs, are offered. Each of these is a four-year program leading to the degree of Bachelor of Science in
Engineering, The Agricultural, Chemical, Civil, Electrical, and Mechanical Engineering curricula are five programs which have been accredited by the Engineers' Council for Professional Development, the nationally recognized accrediting body for engineering curricula.

Major Advisers. For adviser assignment or change of adviser contact the College Undergraduate Office.

Graduate Study. See pages 85 and 99. For additional information refer to the College of Engineering Bulletin, obtainable from the College Undergraduate Office.

B.S. Major Requirements:

Except for the individual major, the four-year undergraduate program is divided into two parts, namely the appropriate Lower Division Program and the Upper Division Program of your choice.

Curricula

See pages 82-91 for general descriptions of the majors in engineering and for lists of suggested technical electives; and page 81 for lists of acceptable Basic Science and Mathematics electives and acceptable Humanities-Social Sciences electives.

Students who enter the College of Engineering with less than 84 quarter units of credit follow one of the two common Lower Division Programs outlined below. One program is for students who plan to major in either Chemical Engineering or the double major, Chemical Engineering and Materials Science and Engineering. The other program is for students planning study in the other Engineering majors. The Lower Division Program for students who enter the College of Engineering with 84 or more quarter units of credit is listed under "Admission to Advanced Undergraduate Standing" on page 78.

Engineering—Lower Division Program

Requirements common to all Engineering majors except Chemical Engineering and the double major, Chemical Engineering/Materials Science and Engineering

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
<th>Quarter Usually Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus—Mathematics 21A-21B-21C</td>
<td>12</td>
<td>1-2-3</td>
</tr>
<tr>
<td>Linear algebra—Mathematics 22A</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Differential equations—Mathematics 22B</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Vector analysis—Mathematics 22C</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>General physics—Physics 4A-4B-4C-4D</td>
<td>12</td>
<td>2-4-6</td>
</tr>
<tr>
<td>General chemistry—Chemistry 1A-1B or 4A-4B</td>
<td>10</td>
<td>4-5</td>
</tr>
</tbody>
</table>

The Physics 4 sequence may be replaced with a proposed Physics 8 sequence. Questions arising from this change should be discussed with your academic advisor.

NOTE: For key to footnote symbols, see page 138.

Chemical Engineering—Lower Division Program

Requirements for Chemical Engineering and the double major, Chemical Engineering/Materials Science and Engineering Majors Only

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
<th>Quarter Usually Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus—Mathematics 21A-21B-21C</td>
<td>12</td>
<td>1-2-3</td>
</tr>
<tr>
<td>Linear algebra—Mathematics 22A</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Differential equations—Mathematics 22B</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Vector analysis—Mathematics 22C</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>General physics—Physics 4A-4B-4C-4D</td>
<td>20</td>
<td>2-3-4-5-6</td>
</tr>
<tr>
<td>General Chemistry—Chemistry 4A-4B-4C</td>
<td>15</td>
<td>1-2-3</td>
</tr>
<tr>
<td>Organic chemistry—Chemistry 128A</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Organic Chemistry laboratory—Chemistry 128A</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Introduction to engineering systems or properties of materials Engineering 3 or 45 | 3-4 (Chemical Engineering majors take Engineering 3, Chemical Engineering/Materials Science and Engineering majors take Engineering 45. Engineering 3 is designed for freshmen students. More advanced Chemical Engineering students may choose to substitute Engineering 45 or 3 units of technical electives for Engineering 3.)

Total Units 90

Aeronautical Engineering

Minimum units required: 180.

Upper Division Program

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Areas and Courses</td>
<td></td>
</tr>
<tr>
<td>Electronic circuits—Engineering 100</td>
<td>4</td>
</tr>
<tr>
<td>Applied mechanics—Engineering 102A, 102B, 104A, 104B</td>
<td>12</td>
</tr>
<tr>
<td>Fluid mechanics—Engineering 102A, 102B</td>
<td>6</td>
</tr>
<tr>
<td>Applied thermodynamics—Engineering 105A, 105B</td>
<td>6</td>
</tr>
<tr>
<td>Vehicle aerodynamics—Mechanical Engineering 127</td>
<td>3</td>
</tr>
<tr>
<td>Controls and systems analysis—Mechanical Engineering 171</td>
<td>4</td>
</tr>
<tr>
<td>Structures—Civil Engineering 135</td>
<td>3</td>
</tr>
<tr>
<td>Vehicle stability—Mechanical Engineering 134</td>
<td>4</td>
</tr>
<tr>
<td>Vehicle design—Mechanical Engineering 128A, 128B</td>
<td>4</td>
</tr>
<tr>
<td>Measurements and laboratory—Engineering 102L, 103L, 105L</td>
<td>8</td>
</tr>
<tr>
<td>Applied mathematics—Engineering 180</td>
<td>3</td>
</tr>
<tr>
<td>Humanities-Social Sciences Electives</td>
<td>15</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>16</td>
</tr>
</tbody>
</table>

Choose at least 12 of the 16 units from the following: Mechanical Engineering 150A, 161, 162, 163, 165, 172, Engineering 106, 148, 190, Civil Engineering 131B; Electrical Engineering 150.

Unrestricted Elective | 2 | Total Units 90

Agricultural Engineering (Except Forest Engineering Option)

(Accredited by Engineers' Council for Professional Development).

Minimum units required: 180.

Upper Division Program

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Areas and Courses</td>
<td></td>
</tr>
<tr>
<td>Applied mechanics and thermodynamics—Engineering 102A, 103A, 104A, 105A, and two courses from Engineering 102B, 103B (or Civil Engineering 141), 104B, 105B</td>
<td>18</td>
</tr>
<tr>
<td>Electronic circuits—Engineering 100</td>
<td>4</td>
</tr>
<tr>
<td>Design—Agricultural Engineering 150 plus one of the following courses: Civil Engineering 132A or 145 or Mechanical Engineering 150A</td>
<td>5</td>
</tr>
<tr>
<td>Engineering economics—Engineering 106</td>
<td>3</td>
</tr>
<tr>
<td>Professional responsibilities—Engineering 190</td>
<td>3</td>
</tr>
</tbody>
</table>
Engineering

Mathematics electives ... 3

Agricultural engineering electives 12
Select from the following: (a) Agricultural Engineering 112, 114; (b) Agricultural Engineering 125; (c) Agricultural Engineering 133, 134; (d) Water Science 110A, 110B. Must include one course from each of three of the four groups.

Agricultural and biological sciences electives 6
Select from Agronomy 100, Animal Science 2, Bacteriology 2, Biochemistry and Biophysics 101A, 101B, Biological Sciences 1, Botany 2, Entomology 112, Nutrition 103, Physiology 100A, 100B, 149, Plant Pathology 120, Plant Science 2, 112, Soil Science 2, 107, Vegetable Crops 100, 101, Wildlife and Fisheries Biology 120. Must include one upper division course.

Technical Electives ... 17
At least 8 units must be upper division engineering courses.

Humanities-Social Sciences Electives 15

Unrestricted Electives 4

Total Units 90

Agricultural Engineering (Forest Engineering Option)

(Accredited by Engineers' Council for Professional Development)

Minimum units required: 195.

Upper Division Program

Subject Areas and Courses

Applied mechanics—Engineering 102A, 103A, 104A (or Mechanical Engineering 105A) Berkeley campus

Agricultural and biological sciences electives

Select from Agronomy 100, Animal Science 2, Bacteriology 2, Biochemistry and Biophysics 101A, 101B, Biological Sciences 1, Botany 2, Entomology 112, Nutrition 103, Physiology 100A, 100B, 149, Plant Pathology 120, Plant Science 2, 112, Soil Science 2, 107, Vegetable Crops 100, 101, Wildlife and Fisheries Biology 120. Must include one course from each of three of the four groups.

Technical Electives ... 3

Humanities-Social Sciences Electives 15

Total Units 90

Chemical Engineering

(Accredited by Engineers' Council for Professional Development)

Minimum units required: 187.

Upper Division Program

Subject Areas and Courses

Engineering—Engineering 100, 102A

Chemistry—Chemistry 110A, 110B, 110C, 128B

Technical Electives ... 12

Humanities-Social Sciences Electives 18

Total Units 95

Chemical Engineering/Materials Science and Engineering

Minimum units required: 192

Upper Division Program

Subject Areas and Courses

Engineering—Engineering 100, 102A

Chemistry—Chemistry 110A, 110B, 110C, 128B

Materials science—Engineering 130, 140, 142, 144, 145, 148

Humanities-Social Sciences Electives 12

Total Units 99

Civil Engineering

(Accredited by Engineers' Council for Professional Development)

Minimum units required: 180.

Upper Division Program

Subject Areas and Courses

Electronic circuits—Engineering 100

Applied mechanics—Engineering 102A, 103A, 104A

Applied thermodynamics—Engineering 105A or Chemistry 110A

Structures—Engineering 104B, Civil Engineering 131A

Soil mechanics—Civil Engineering 171, 172

Hydraulics and water resources—Civil Engineering 141, 141L, 142, 148A

Civil engineering design—Civil Engineering 133B plus any two courses from Civil Engineering 132A, 132C, 134, 139, 144, 145, 146, 148B, 152, 162, 173

Economics—Engineering 106 or Agricultural Economics 148

Technical Electives ... 17

9 of these units must be selected from engineering courses.

Humanities-Social Sciences Electives 15

Unrestricted Electives 4

Transfer students not having credit for Civil Engineering 10 (or the equivalent) must take in place of 3 units of unrestricted electives.

Total Units 90

Civil Engineering/Materials Science and Engineering

Minimum units required: 180.

Upper Division Program

Subject Areas and Courses

Electronic circuits—Engineering 100

Applied mechanics—Engineering 102A, 103A, 104A

Applied thermodynamics—Engineering 105A or Chemistry 110A, Engineering 130
Structures—Engineering 104B; Civil Engineering 131A.................. 6
Soil mechanics—Civil Engineering 171, 172.................. 5
Hydraulics and water resources—Civil Engineering 141, 141L, 142, 148A.................. 10
Civil engineering design—Civil Engineering 132B, plus any two courses from Civil Engineering 132A, 130C, 134, 138, 144, 145, 146, 146B, 152, 162, 173.................. 9
Economics—Engineering 106 or Agricultural Economics 148.................. 3
Materials science electives—choose from four courses from Engineering 140, 142, 144, 145, 148.................. 14
Technical Elective.................. 3
Civil Engineering 137 recommended.................. 15
Humanities-Social Sciences Electives.................. 15

Total Units 90

Electrical Engineering
(Accredited by Engineers’ Council for Professional Development)
Minimum units required: 180.

Upper Division Program

Subject Areas and Courses
Mathematics—Mathematics 22A (if this course is taken to satisfy the Basic Science and Mathematics requirement, substitute any mathematics course with a number higher than 20, except 101).................. 3
Professional responsibilities—Engineering 190.................. 3
Engineering science—Engineering 102A, 105A.................. 6
Circuits, systems and electronics—Engineering 100, Electrical Engineering 110, 111, 112.................. 15
Computers—Electrical Engineering 170.................. 4
Electromagnetic fields and physical electronics—Electrical Engineering 130A, 130B, 140A, 140B.................. 12
Laboratory elective—one upper-division elective engineering course with laboratory (except Engineering 100, Electrical Engineering 111; but may include Electrical Engineering 199).................. 3
Additional Technical Electives.................. 18
Humanities-Social Sciences Electives.................. 15
Unrestricted Elective.................. 2

Total Units 90

Electrical Engineering: Computers
(Accredited by Engineers’ Council for Professional Development)
Minimum units required: 180.

Upper Division Program

Subject Areas and Courses
Mathematics—Mathematics 22A (if this course is taken to satisfy the Basic Science and Mathematics requirement, substitute any mathematics course with a number higher than 20, except 101).................. 3
Professional responsibilities—Engineering 190.................. 3
Engineering science—Engineering 102A, 105A.................. 6
Circuits, systems and electronics—Engineering 100, Electrical Engineering 110, 111, 112.................. 21
Computers—Electrical Engineering 170.................. 4
Electromagnetic fields and physical electronics—Electrical Engineering 130A, 130B, 140A, 140B.................. 12
Laboratory elective—one upper-division elective engineering course with laboratory (except Engineering 100, Electrical Engineering 111; but may include Electrical Engineering 199).................. 3
Electronics, circuits and signal processing electives—select two courses from Electrical Engineering 114A, 114B, 120, 121, 150, 157A, 157B, 165, 173.................. 6
Additional Technical Electives.................. 15
Humanities—Social Sciences Electives.................. 15
Unrestricted Electives.................. 2

Total Units 90

Electrical Engineering: Electronics, Circuits and Signal Processing
(Accredited by Engineers’ Council for Professional Development)
Minimum units required: 180.

Upper Division Program

Subject Areas and Courses
Mathematics—Mathematics 22A (if this course is taken to satisfy the Basic Science and Mathematics requirement, substitute any mathematics course with a number higher than 20, except 101).................. 3
Professional responsibilities—Engineering 190.................. 3
Engineering science—Engineering 102A, 105A.................. 6
Circuits, systems and electronics—Engineering 100, Electrical Engineering 110, 111, 112.................. 21
Computers—Electrical Engineering 170.................. 4
Electromagnetic fields and physical electronics—Electrical Engineering 130A, 130B, 140A, 140B.................. 12
Laboratory elective—one upper-division elective engineering course with laboratory (except Engineering 100, Electrical Engineering 111; but may include Electrical Engineering 199).................. 3
Materials science—Engineering 142, 148; and two courses chosen from Engineering 140, 144, 145.................. 14
Technical Electives.................. 3
Humanities—Social Sciences Electives.................. 15

Total Units 90

Materials Science and Engineering
Minimum units required: 180.

Upper Division Program

Subject Areas and Courses
Electrical circuits—Engineering 100.................. 4
Applied mechanics—Engineering 102A, 102A, 104A.................. 6
Fluid mechanics—Engineering 103A.................. 3
Materials in design—Engineering 140.................. 4
Measurements and laboratory—Mechanical Engineering 124, 176.................. 5
Materials science—Engineering 142, 144, 145, 148.................. 15
Applied mathematics—Engineering 180.................. 3
Technical Electives.................. 29
Humanities—Social Sciences Electives.................. 14

Total Units 90

Mechanical Engineering
(Accredited by Engineers’ Council for Professional Development)
Minimum units required: 180.

Upper Division Program

Subject Areas and Courses
Electronic circuits—Engineering 100.................. 4
Applied mechanics—Engineering 102A, 102B, 104A, 104B.................. 12
Applied thermodynamics—Engineering 105A, 105B.................. 6

NOTE: For key to footnote symbols, see page 138.
Engineering

Fluid mechanics—Engineering 103A, 103B 6
Mechanical design—Mechanical Engineering 150A, 150B 6
Controls and systems analysis—Mechanical Engineering 171 4
Measurements and laboratory—Engineering 124, 176; Engineering 103L, 103L, 105L 8
Professional responsibilities—Engineering 190 3
Technical Electives 2
Three of the 21 units must be selected from Engineering prel or Mechanical Engineering courses.

Humanities-Social Sciences Electives 15
Unrestricted Elective

Total Units 90

Individual (Engineering) Major

Minimum units required: 180.

An engineering student who has a definitive career objective that is not compatible with one of the named curricula may propose an Individual Engineering major.

Courses In Engineering

Lower Division Courses

1. Plane Surveying (3) I, III, Goss
 Lecture—2 hours; laboratory—3 hours. Prerequisite: plane trigonometry. Consumer Technology 31 recommended. Not open to students in Engineering. Principles of measurement of horizontal distances, horizontal and vertical angles, elevations and differential levels, including stadia methods. Field problems with special reference to agricultural, forestry, and landscaping applications.

2. Introduction to Engineering Systems (3) I, II, Herrmann
 Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 21A recommended (may be taken concurrently).
 An introduction to the engineering profession. A general view of the engineering process as obtained by participation in laboratory experiments illustrative of the solution of representative, but greatly simplified, engineering problems. (P/NP grading only.)

 Lecture—2 hours; laboratory—3 hours. Principles of descriptive geometry and of mechanical and free-hand drawing; their application in the representation, visualization, and solution of engineering problems. Computer-aided graphics. Introduction to engineering design.

4. Applications of Computers (3) II, III, The Staff (Schroeder in charge)
 Lecture—2 hours; discussion—1 hour. Types of technology—communication, computation, defense technology, information development, and transportation. World energy resources and society's energy needs. Effects of technology on society; population control, personality development, technology and the economy. (P/NP grading only.)

5. College Physics (3) I, II, III, Duff

6. Circuits (3) I, II, III, The Staff
 Lecture—2 hours. Prerequisite: Mathematics 228 (may be taken concurrently); Physics 4C. Basic circuit analysis techniques; transient and steady-state solutions using differential equations.

7. Statics (3) I, II, III, The Staff (Schroeder in charge)
 Lecture—3 hours. Prerequisite: Mathematics 22C (may be taken concurrently); Physics 4A. Force systems and equilibrium conditions with emphasis on engineering problems.

 Lecture—3 hours; laboratory—3 hours. Prerequisite: sophomore standing in engineering. Introductory course on the properties of engineering materials and their relation to the internal structure of materials.

9. Internship in Engineering (1-5) I, II, III, The Staff (Brush in charge)
 Work-experience prerequisite. Lower division standing; approval of project prior to period of internship. Supervised work-study experience in engineering. May be repeated for credit. (P/NP grading only.)

10. Directed Group Study (1-5) I, II, III, The Staff (Brush in charge)
 Prerequisite: consent of instructor; restricted to lower division students. Group study of selected topics. (P/NP grading only.)

Upper Division Courses

100. Electronic Circuits and Systems (4) I, II, The Staff
 Lecture—3 hours; laboratory—3 hours. Prerequisite: course 17. Introduction to the theory and applications of analog and digital circuits and systems.

102A. Dynamics (3) I, II, III, The Staff (Kampfp in charge)
 Lecture—3 hours. Prerequisite: course 25; Mathematics 228, 22C. Kinematics and kinetics of particles, of systems of particles, and of rigid bodies applied to engineering problems.

102B. Dynamics (3) II, III, Kampf
 Lecture—3 hours. Prerequisite: course 102A. Topics in rigid body dynamics; elementary dynamics of vibrating systems; introduction to energy methods.

102L. Dynamics Laboratory (1) II, Hubbard
 Laboratory—3 hours. Prerequisite: course 102B (may be taken concurrently). Experimental laboratory to demonstrate fundamental principles of dynamics and their application to engineering problems. Introduction to instrumentation for dynamic motion measurement.

103A. Elementary Fluid Mechanics (3) I, II, III, The Staff (Dwyer in charge)
 Lecture—3 hours. Prerequisite: course 102A (may be taken concurrently). Fluid properties; fluid statics; continuity and momentum equations for control volumes; flow of incompressible fluids in pipes; dimensional analysis.

103B. Elementary Fluid Mechanics Laboratory (3) II, III, Gedt, Launder
 Laboratory—3 hours. Prerequisite: course 103A. Potential flow; incompressible viscous flow; boundary layer flow; one dimensional compressible flow. Students having had Civil Engineering 141 may not receive credit for this course.

103L. Fluids Mechanics Laboratory (1) II, III, White
 Laboratory—3 hours. Prerequisite: course 103B (may be taken concurrently). The basic principles and devices which are common in fluid mechanics are illustrated with a series of experimental demonstrations. The experiments are concerned with flow, pressure and viscosity measurement.

104A. Mechanics of Materials (3) I, II, The Staff (Schroeder in charge)
 Lecture—3 hours. Prerequisite: course 35; Mathematics 228, 22C (may be taken concurrently). Concepts of stress, strain, elasticity, strain and deformation formulas for axially loaded members, torsion of round shafts, bending, deflection, and shear of beams; combined stresses.

104B. Mechanics of Materials (3) II, III, The Staff (Schroeder in charge)
 Lecture—3 hours. Prerequisite: course 104A. Beams: unsymmetrical loading, shear center, indeterminate prob-
lems, inelastic bending, buckling and lateral instability. Energy methods, failure theories; torsion of thin-walled sections.

140. Materials in Engineering Design (3) [II] Shackleford Lecture—3 hours; discussion—1 hour. Prerequisite: senior standing. Descriptive treatment of common engineering materials. Mechanical properties of typical materials including metals, woods, cements, polymers and glasses. Principles of heat treatment and fabrication as they affect design parameters, and applications in engineering will be emphasized.

142. Principles of Nondestructive Testing (4) [II] Shackleford Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Basic principles of nondestructive testing including radiological, ultrasonic, electrical, magnetic, penetrant methods, etc., are discussed. Typical results expected from each test and their application in material characterization, flaw detection, crystallographic information, chemical inhomogeneity, residual stress analysis, etc., are emphasized.

144. Corrosion and Oxidation of Engineering Materials (3) [I] Shackleford Lecture—3 hours. Prerequisite: upper division standing in Engineering Principles. Governing the interaction between engineering materials and their environment; corrosion in aqueous media, soils and biological systems. Oxidation of structural materials in high temperature applications; design and selection criteria for the prevention and control of corrosion.

145. Recycling of Materials (3) [II] Shackleford Lecture—2 hours; discussion—1 hour. Prerequisite: courses 45 and 105A or consent of instructor. Discussion and analysis of the recycling of metallic, ceramic, and polymeric materials from an energy and material conservation point of view. Case studies emphasizing energy limitations and technical feasibilities of the recycling of common solid wastes.

146. Engineering Applications of Materials Principles (4) [III] Mukerjee Lecture—3 hours; discussion—1 hour. Prerequisite: courses 45 and 105A or the equivalent. The physical principles in metallic, polymeric and ceramic materials are discussed with emphasis on microstructure and engineering applications. The strengthening processes, mechanical failure modes and service stability of materials systems are outlined.

160. Energy, Society, and the Environment (4) [I] Baughn Lecture—3 hours; discussion—1 hour. Overview of energy use, resources, energy conversion, technology and environmental problems. Interactions of society with technology, politics and economics are considered. Current and future energy systems are studied: nuclear, fossil fuel, geothermal, solar and others. For engineering and nonengineering students. (Lower division students are referred to Environmental Studies 20.)

162. Advanced Energy Technology (3) [II] Wooten Lecture—3 hours. Prerequisite: Course 105A. Broad coverage of the basic features of the new energy technologies. Recovery of oil from oil shale, coal conversion, gasification, hydrogen production, solar power, fusion power, controlled thermonuclear reactors, laser fusion, synthetic fuels, geothermal power, energy from hydropower. (PINP grading only.)

180. Engineering Analysis (3) [III] Brandt Lecture—3 hours. Prerequisite: Mathematics 22B. Analysis of steady-state and nonsteady-state problems for discrete and continuous systems, analytic and approximate solution techniques. Typical engineering problems in heat transfer, fluid mechanics, electrical networks, mechanical vibrations, and elasticity.

190. Professional Responsibilities of Engineers (3) [II], [III] Brandt Lecture—2 hours; discussion—1 hour. Organization of the engineering profession; engineering and management; introduction to contracts, specifications, and business law; technical writing; oral presentations on the interactions between engineering and society.

192. Internship in Engineering (1-5) [II], [III] The Staff (Brush in charge) Work-learn experience. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work-study experience in engineering. May be repeated for credit. (PINP grading only.)

198. Directed Group Study (1-5) [I], [II], [III] The Staff (Brush in charge) Prerequisite: consent of instructor. Group study of selected topics. (PINP grading only.)

Graduate Courses

291. Seminar in Teaching (1) [I], [II] J. Henderson, Baughn Seminar—1 hour. Discussion of personal experience as a student and actual practice as a teacher. (SU grading only.)

Engineering: Agricultural

(College of Engineering)

Roger E. Garrett, Ph.D., Chairperson of the Department
Department Office, 2030 Bainer Hall

Faculty

Norman B. Akeson, M.S., Professor
Jaime Amorocito, Ph.D., Professor
Roy Baine, M.S., L.L.D., Professor Emeritus
Robert H. Burg, M.S., Professor
Paul A. Carnio, Ph.D., Assistant Professor
William J. Chancellor, Ph.D., Professor
Piclau (Paul) Chen, Ph.D., Lecturer
Roger E. Garrett, Ph.D., Professor
John R. Goss, M.S., Professor
Deidre V. Hendersen, Ph.D., Professor
S. Milton Henderson, M.S., Professor Emeritus
David J. Hills, Ph.D., Assistant Professor
Stephen Kaminska, Ph.D., Assistant Professor
Coby Lorenzen, Jr., M.S., Professor Emeritus
James N. Lutkin, Ph.D., Professor
Miguel A. Mariano, Ph.D., Associate Professor
R. Larry Merson, Ph.D., Professor
John A. Miles, Ph.D., Assistant Professor
Shannon J. Morrison, Ph.D., Professor
Loren W. Neubauer, Ph.D., Professor Emeritus
Michael O'Brien, Ph.D., Professor
William O. Pruitt, M.S., Lecturer
Thomas R. Rumsy, Ph.D., Assistant Professor
Verne H. Scott, Ph.D., Professor
R. Paul Singh, Ph.D., Assistant Professor
Theodor S. Strelkoff, Ph.D., Professor
Henry E. Studer, M.S., Associate Professor
Wesley E. Yates, M.S., Professor

Courses in Engineering: Agricultural

Lower Division Courses
1. The Agricultural Engineer in Tomorrow's World (1) II, Garrett
Discussion—2 hours. Exploration of opportunities in Agricultural Engineering as they relate to society, environment, and biological systems, including interdisciplinary approaches. Discussions and demonstrations of agricultural engineering projects illustrating design, development, testing, and evaluation methods. (P/NP grading only.)

2. Introduction to Forest Engineering (1) III, Miles
Discussion—laboratory—3 hours. Introduction to the engineering aspects of forestry problems, including nursery operations, reforestation, harvesting, logging transport, milling and residue utilization. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III, The Staff
(3) Garrett in charge
Prerequisite: consent of instructor. Group study of selected topics; restricted to lower division students. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III, The Staff
(3) Garrett in charge
(P/NP grading only.)

Upper Division Courses

112. Engines for Agriculture, Industry and Transportation (3) II, Goss
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 105A. Operational and performance characteristics of internal combustion engines with emphasis on combustion and emission control. Engineering comparison of alternative power units with conventional engines. Design criteria for engines used in agriculture, industry, and transportation.

114. Principles of Field Machinery Design (3) III, Yates
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 102A. Functional requirements and basic operating principles of field machines; elements of field machine design; use of instrumentation and computer techniques for analysis of specific machines.

115. Forest Engineering (3) II, Miles
Lecture—3 hours. Prerequisite: Civil Engineering 10, Engineering 102A and 104A, Forestry 100A, 100B, 100C (Berkeley campus) strongly recommended. Applications of engineering principles to problems in the forest industry including consideration of nursery operations, reforestation, harvesting, road layout, log transport and milling operations.

116. Forest Engineering Field Problems (2) III, Miles
Lecture—1 hour; three weekend field trips to Blodgett Forest. Prerequisites: course 114 or 115. A field study and critical analysis of operations, techniques, and equipment common in forest management with particular consideration to measurements, data analysis, safety of operations, and maintenance practices.

117. Stability and Traction of Off-Road Vehicles (2) I, Chancellor
Lecture—2 hours. Prerequisite: Engineering 102A and 104A. Mechanics of interactions between power or soil surfaces and tires or tracks. Vehicle response to external and dynamic forces during pulling, turning, lifting and transport. Effects of design parameters and component characteristics on vehicle performance and safety.

118. Testing and Evaluation of Engineering Designs (3) III, Chen
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 150 (preferred) or Civil Engineering 120A or 145, or Mechanical Engineering 150A, or Water Science 110B. Methods and procedures for evaluating functional adequacy, reliability, maintainability and safety of designs. Failure modes, test design, data analysis, accelerated testing, field testing; case studies.

119. Hydraulic and Pneumatic Systems (3) I, Studebaker
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 103A. Design of hydraulic and pneumatic systems for power transmission and controlling machine functions. Characteristics of pumps, motors, control valves, fluidic devices, servo-mechanisms, and hydraulic fluid. Testing of component and system performance.

125. Agricultural Structures: Environmental Aspects (3) I, Morrison
Lecture—3 hours. Prerequisite: Engineering 105A. Environmental and functional design of agricultural storage and production facilities: plans and systems, ventilation, heating, lighting, insulation; psychrometrics, energy balances, vapor transmission; solar heat loads, sol-air concept; methods of waste management.

133. Mechanical Unit Operations and Processes (3) II, Rumsey
Lecture—2 hours; laboratory—2 hours. Prerequisite: Engineering 103A. Mechanical unit operations applied to such processes as non-Newtonian flow, size reduction, sorting and mixing of granular materials, materials handling, storage, plant layout, work efficiency, etc.

134. Thermal Unit Operations and Processes (3) III, Singh
Lecture—2 hours; laboratory—2 hours. Prerequisite: Engineering 105A. Thermal unit operations related to drying, refrigeration, freezing, cold storage, evaporation, boiling, distillation, etc.

140. Seepage and Drainage (3) III, Luthin
Lecture—3 hours. Prerequisite: Engineering 103A. Flow through porous media; measurement of hydraulic conductivity; seepage through hydraulic structures; anisotropy flow nets; drainage design for water table and salt control. Offered in odd-numbered years.

141. Sprinkler Irrigation System Design (2) II
Lecture—1 hour; laboratory-discussion—3 hours. Prerequisite: Engineering 103A. Design, operation, and maintenance of sprinkler irrigation systems, including case studies.

142. Drip Irrigation System Design (2) III
Lecture—1 hour; laboratory-discussion—3 hours. Prerequisite: Engineering 103A. Design, operation, and maintenance of drip irrigation systems, including case studies.

150. Engineering Design Projects for Agriculture and Forestry (2) II, Kepner
Laboratory-discussion—2-hour sessions. Prerequisite: any two of the following (one may be taken concurrently): courses 114, 115, 125, 133; Civil Engineering 145; Mechanical Engineering 150A; Water Science 110A, 110B. 160. Individual or group projects involving the design of devices, structures, or systems to solve specific problems in agriculture or forestry. Students may select their projects subject to approval of the instructor.

198. Directed Group Study (1-5) I, II, III, The Staff
(3) Garrett in charge
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, The Staff
(3) Garrett in charge
(P/NP grading only.)

Graduate Courses

215. Soil-Machine Relations in Tillage and Tractor (3) I, Chancellor
Lecture—3 hours. Prerequisite: course 114 or 117. Mechanics of interactions between agricultural soils and tillage and traction devices; determination of relevant physical properties of soil and the effects of machine applied loads; experimental and analytical methods for synthesizing characteristics of overall systems.

235. Advanced Unit Operations in Process and Food Engineering (3) III, Singh
Lecture—3 hours. Prerequisite: an upper division course in process or food engineering. Basic principles applicable to process and food engineering. Heat and mass transfer applications to drying, dehydration and freezing; flow of food and semi-fluid materials; size reduction; respiration of bio-materials.

242. Hydraulics of Surface Irrigation (3) III, Streifkoff
Lecture—3 hours. Prerequisite: a course in differential and integral calculus; a course in hydraulics or fluid mechanics including fluid optics; plans and systems; ventilation principles. Mathematical models for surface-irrigation systems for prediction of the ultimate disposition of water flowing onto a field. Quantity of runoff and distribution of utili-
Engineering: Applied Science

Chemical Physics; (C) Computational Physics; (D) Geophysics; (E) Materials Science; (F) Nuclear Science; (G) Nonlinear Optics; (H) Plasma Physics; (I) Quantum Electronics; (J) Solid State. (SU grading only.)

290. Seminar (1-2) I, II, III. The Staff (Chairperson in charge)
Seminar—1-2 hours. (SU grading only.)

296. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Such topics as neutron physics, nuclear technology, advanced hydraulics, plasma physics, or advanced mathematics.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Levermore

Upper Division Courses

112A-112B. Introduction to Computing Science (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: some knowledge of programming or consent of instructor. Topics cover range of computing science, including computer architecture, assembly and higher-level programming languages, algorithm development and design, use of computer systems, applications of computers, construction of systems from micro-computer elements. Heavy emphasis on independent student programming projects. Several programming languages learned by usage. Guest lecturers provide much course material. Basic computer.

115. Introduction to Numerical Methods for Computers (3) I, II. Tailey
Lecture—3 hours. Prerequisite: Engineering 5, Mathematics 22B. Introduction to the use of computers in solving engineering problems. Elements of numerical analysis and computational methods.

121A. Chemical Physics (3) I, II. Hoover
Lecture—3 hours. Prerequisite: course 121A. Chemical kinetics including mechanisms of chemical reactions; transition state theory, catalysis, chemical surfaces, and reactivity relations. Quantum theory of atoms; atomic spectra; Zeeman and Stark effects; transitions and selection rules; hyperfine interactions; periodic table.

121C. Chemical Physics (3) III. Hoover
Lecture—3 hours. Prerequisite: course 121B. Molecular structure; molecular orbital and valence bond theories; molecular spectra; electronic, rotational and vibrational transitions; magnetic effects; Liouville field theory; the chemical bond.

134. Introduction to Electromagnetic Theory (3) I, II, III. Hooper
Lecture—3 hours. Prerequisite: ordinary differential equations and elementary classical mechanics. Electrostatic and magnetic fields; properties of materials; electromagnetic waves in vacuum, dielectric media, and at interfaces; radiative effects from moving particles; charged particles in electromagnetic fields.

135A. Introductory Nuclear Science and Technology (3) I, II, III. Sauer
Lecture—3 hours. Prerequisite: Physics 121 or the equivalent. Introduction to the study of nuclear phenomena, nuclear reactions, nuclear energy, and decay modes. Interaction of particles and electromagnetic radiation with matter. Instrumentation and theory of measurement; neutron technology. Nuclear chemistry.

135B. Introductory Nuclear Science and Technology (3) II. Bloom
Lecture—3 hours. Prerequisite: course 135A or the equivalent. Techniques of radiation and particle detection; nuclear instrumentation techniques; pulse height analysis, coincidence measurement; technology of charged particles and neutrons.
198. Group Study (1-3) I, II, III. The Staff (Chairperson in charge).
Prerequisite: consent of instructor. Group study of selected topics. Students may enroll in one or more separate sections. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge).
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201A-201B. Complexity of Computer Computations (3-3) II-III. Fletcher.

202A-202B. Formal Languages and Automata Theory (3-3) II-III. Wehrenbell.
Lecture—3 hours. Prerequisite: Electrical Engineering 191 (or the equivalent). A survey of automata and language theory; particular emphasis on finite automata, context-free languages and Turing machines. Introduction to computability and computational complexity. Decidability of language questions. Structure theorems for languages and machines. Introduction to parsing theory.

Lecture—3 hours. Prerequisite: course 112A-112B or the equivalent. Hardware knowledge for software designers. Students learn how hardware works, what elements compose it, how to read prints and logic diagrams. Course survey simple machine architecture, hardware design alternatives, input-output methods and peripherals. A programming project will be performed.

204. Data Structures (3-2) I, Y. Yeh.
Lecture—3 hours. Prerequisite: Electrical Engineering 191 or the equivalent. Data structures and algorithms; linear data structures and their representations; stack and search with the linear data structures; non-linear data structures and their representations, tree traversing, searching, sorting, and balancing; graph applications; list processing and pure LISP: garbage collection and the dynamic storage allocation: file structures and the data management systems.

205A. Mathematical Methods (3) I. Killean.
Lecture—3 hours. Prerequisite: introductory courses in ordinary differential equations, vector analysis, infinite series, and functions of a complex variable. Calculus of finite and infinite dimensional vector spaces; orthonormal functions; linear equations. Applications of these analytical techniques to physical systems.

205B. Mathematical Methods (3) II. Killean.
Lecture—3 hours. Prerequisite: course 205A or the equivalent. Differential equations in the complex plane; contour integration; conformal mapping; Fourier and Laplace transforms; calculus of variations; applications of these techniques to physical systems.

Lecture—3 hours. Prerequisite: Courses 205A-205B or the equivalent. Eigenvalue problems; solution of linear differential and integral equations by expansions in orthogonal functions; Green's functions; approximation methods; applications to physical systems.

Lecture—3 hours. Prerequisite: courses 201A, 201B (or the equivalent). Organization and design of operating systems and computer networks, including hardware requirements, interfacing, communication, buffering, processes, scheduling, resource control, file structure, and user interaction. The design of a computer network as an example. Programming practice provided.

209A-209B. Numerical Solutions of Partial Differential Equations (3-3) II-III. Minn.
Lecture—3 hours. Prerequisite: course 115, 205A, 205B, 206. Techniques applicable to the solution of partial differential equations will be discussed. The emphasis will be on finite difference methods for hyperbolic, parabolic and elliptic systems. Material covering characteristic methods, finite element methods, and Monte-Carlo methods will also be included.

210A-210B-210C. Advanced Methods of Computational Physics (3-3) II-III. Marx.
Lecture—3 hours. Prerequisite: course 209A-209B or advanced mathematics. Computational methods in various fields including: hydrodynamics, plasma physics, magnetohydrodynamics, Vlasov and Fokker-Planck equations, particle codes, neutron and radiation transport, chaos, kinetics, and atmospheric modeling.

211. Computer Mathematics (3) I. The Staff.
Lecture—3 hours. Prerequisite: course 115 (may be taken concurrently). Review and survey of mathematical tools fundamental to computer science. Theory of sets, Boolean algebra and programming, calculus, predicate calculus, probability and statistics, mathematical programming, general number system, information theory and coding. Offered in odd-numbered years.

Lecture—3 hours. Prerequisite: courses 112A-112B and Electrical Engineering 119 (or the equivalent). The theory and practice involved in designing and implementing a programming language and its software support system. Course projects will include implementation of a macro processor, a compiler, a relocating loader, and a computer simulator. The theoretical background needed will be developed during the course.

213. Switching Theory (3) I. The Staff.
Lecture—3 hours. Prerequisite: course 211. Minimization techniques, switching function realization with electrical circuits, trees, storage devices, and sequential machines. Offered in odd-numbered years.

214. Computing with Symbolic Expressions (3) II.
Lecture—3 hours. Prerequisite: courses 201A and 211 or the equivalent. Theory and practice of computing with symbolic expressions. The LISP and Symbolics programming languages, programs to manipulate symbolic expressions. Algebraic manipulation. Proving the equivalence of algorithms. Survey of symbol manipulation languages. Offered in even-numbered years.

215. Computer Languages (3) I. The Staff.
Lecture—3 hours. Prerequisite: courses 212A-212B or the equivalent. Survey of several types of computer languages, with an example of each: assembly, macro, numerical, string, list, simulation.

216. Infinite Automata (3) III. Fletter.
Lecture—3 hours. Prerequisite: courses 201A-201B and 211 or the equivalent. Ideal computing machines, including Turing machines. Limitations of finite machines; regular sets. Computability and decidability. Godel’s proof. Offered in odd-numbered years.

217. The Theory of Parsing (3) III. The Staff.
Lecture—3 hours. Prerequisite: courses 202A-202B. Discussion of basic techniques now available for parsing context-free languages. Detailed description of various parsing algorithms and proofs of their correctness. Particular interest in the construction and use of these techniques in compiler-compilers and translator writing systems. Offered in even-numbered years.

Lecture—3 hours. Prerequisite: courses 201A-201B and 211 or the equivalent. The solution of (chiefly non-numerical) problems by computer. One or more such problems will be chosen (based on the interests of instructor and students) from such areas as artificial intelligence, language translation, process control, image analysis, etc. Offered as needs arise.

220A-220B-220C. Solid-State Chemistry (3-3-3) I-II-III.
The Staff.
Lecture—3 hours. Prerequisite: course 121B or 260B. Crystallography, equations of state, potential functions, phase transformations, thermodynamics of surfaces, order-disorder, thermodynamics of point defects in metals, semi-conductors and insulators, diffusion in solids, solid state reactions, mineralogy. Applications of foregoing concepts and facts to materials and geoscience and semiconductor technology.

221. Materials Science (3) II. Guinan.
Lecture—3 hours. Prerequisite: course 205C. Facts and theories of crystal defect physics and their application to such problems as the mechanical properties of solids, radiation damage, phase transformations, etc. Covers thermodynamics of point defects, diffusion, elasticity, dislocation theory.

228A-228B-228C. Properties of Matter (3-3-3) I-II-III.
Hoover.
Lecture—3 hours. Prerequisite: Mathematics 22B and Physics 112B. Microscopic and macroscopic descriptions of the thermodynamics of matter; kinetic, constituent, electrical, mechanical and thermal properties.

230A-230B-230C. Structure of Matter (3-3-3) II-III-III.
Goldberg.
Lecture—3 hours. Prerequisite: course 205C. Classical properties of matter; introduction of quantum mechanics by the correspondence principle; perturbation theory; electron theory of atoms, molecules and solids; quantum theory of cooperative effects.

233A-233B-233C. Theory and Applications of Solid-State Physics (3-3-3) I-II-III.
The Staff.
Lecture—3 hours. Prerequisite: course 230C or the equivalent. Structure and properties of crystals, theory of defects, metals and alloys, magnetism, superconductivity, and semiconductors. Applications to various solid-state devices.

234A-234B-234C. Electromagnetic Theory (3-3-3) I-II-III.
Talley.

235A-235B. Nuclear Physics (3-3-3) II-III. Bloom.
Lecture—3 hours. Prerequisite: course 230C. Basic properties of nuclear; radioactive decay; nuclear models; low energy nuclear reactions; neutron physics. Interaction of particles and radiation with matter.

236. Theory of Particle Reactions (3) I. Bloom.
Lecture—3 hours. Prerequisite: courses 125A, 230C, 234B. General theory of atomic and nuclear reactions; cross-sections for the collision of electrons, photons, and nuclear particles with atoms and/or nuclei. Decay properties by particles emission of unstable atoms or nuclei.

237A-237B. Neutron Physics (3-3-3) I-II-III.
The Staff.
Lecture—3 hours. Prerequisite: course 125A. Properties of neutrons, cross-sections and nuclear structure, fast neutrons, neutron resonances, fission process, thermal neutrons, neutron optics, diffraction, applications of neutron diffraction, and optics to studies of the structure of matter. Offered in odd-numbered years.

239A-239B. Nuclear Chemistry (3-3-3) II-III.
The Staff.
Lecture—3 hours. Prerequisite: course 135A. Radiochemistry as an analytical technique in the study of chemical and nuclear processes: activation analysis, fission products, the activation analysis of nuclear processes and mechanisms, the detection and analysis of the spin states of the radiotracers, radionuclides, "hot atom" chemistry, and mechanisms of biological radiation damage. Offered in even-numbered years.
Engineering: Chemical

(College of Engineering)

Richard L. Bell, Ph.D., Chairperson of the Department
Department Office, 3092 Bainer Hall

Faculty

Richard L. Bell, Ph.D., Professor
Ruben G. Carbonell, Ph.D., Assistant Professor
Alan P. Jackman, Ph.D., Associate Professor
Benjamin J. McCoy, Ph.D., Associate Professor
Frank R. McLarnon, Ph.D., Assistant Professor
J. M. Smith, Sc.D., Professor
Stephen Whitaker, Ph.D., Professor

Courses in Engineering: Chemical

Lower Division Courses

1. The Scope of Chemical Engineering (1) I, II, Smith
 Lecture—1 hour, discussion—1 hour. Demonstrations and discussions of the opportunities in chemical engineering for professional development, contributions to basic knowledge, and service to society. (P/NP grading only.)

2. Directed Group Study (1-5) I, II, III
 The Staff (Bell in charge)
 Prerequisite: consent of instructor; restricted to lower division students. Group study of selected topics. Students may enroll in more than one section. (P/NP grading only.)

3. Special Study for Undergraduates (1-9) I, II, III
 The Staff (Bell in charge)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

150A. Chemical Engineering Fluid Mechanics (3) I, II, III
 Whitaker
 Lecture—3 hours. Prerequisite: course 102A. Fluid statics and one-dimensional laminar flows. Kinematics of point and integral functions. The stress-velocity-tensor relation. Newton's law of viscosity and application of the Navier-Stokes equations to laminar flow and dimensional analysis. Flow of non-Newtonian fluids. Students electing this course may not receive credit for Engineering 103B.

150B. Chemical Engineering Fluid Mechanics (3) III
 Whitaker
 Lecture—3 hours. Prerequisite: course 150A. Turbulent flows and time averaging. Application of Bernoulli's equation and the macroscopic mass, momentum, and mechanical energy balances to a variety of practical problems. Introduction to compressible flow. The entropy equation and isentropic processes. Shock waves and chole flow. Students electing this course may not receive credit for Engineering 103B.

151. Material and Energy Balances (3) I, II, III
 Lecture—3 hours. Prerequisite: Chemistry 110A (may be taken concurrently). Use of principles of conservation of mass, momentum, and energy in chemical process calculations.

152A. Chemical Engineering Thermodynamics (3) I, II
 McCoy
 Lecture—3 hours. Prerequisite: course 151; Chemistry 110A. Application of principles of thermodynamics to chemical processes.

152B. Chemical Engineering Thermodynamics (3) III
 Jackman
 Lecture—3 hours. Prerequisite: course 152A. Continuation of course 152A.

153. Chemical Engineering Heat Transfer (4) III
 McLarnon
 Lecture—4 hours. Prerequisite: course 150A. Steady and transient heat conduction. The thermal energy equation, boundary conditions and free-convective heat transfer. Turbulence, macroscopic balances, and heat transfer coefficients. The photon transport equation and radiant energy exchange. The design of heat exchangers.

154A. Mass Transfer (3) I, II
 Lecture—3 hours. Prerequisite: course 153. Chemistry 110A. Fundamental concepts of mass transfer in fluids. Problems in pure diffusion and convective mass transfer.

154B. Applications of Mass Transfer (3) III
 McLarnon
 Lecture—3 hours. Prerequisite: course 154A. Application of the principles of mass transfer and thermodynamic equilibrium to absorption, extraction, and separation processes.

155A. Chemical Engineering Laboratory (4) I, II
 Jackman, Bell
 Laboratory—12 hours. Prerequisite: course 154A. Laboratory experiments in heat, mass, and momentum transfer and in chemical kinetics.

155B. Chemical Engineering Laboratory (4) I, II
 Jackman, Bell
 Laboratory—12 hours. Prerequisite: courses 154B, 155A. Continuation of 155A.

156A. Chemical Engineering Kinetics (3) I, II
 Lecture—3 hours. Prerequisite: course 155A, 156A. A study of stability and the transient state of chemical processing systems.

156B. Chemical Engineering Process Dynamics (4) I, II
 McLarnon, Jackman
 Lecture—3 hours. Laboratory—3 hours. Prerequisite: courses 152B and 153A. A study of stability and the transient state of chemical processing systems.

158. Chemical Engineering Process Design (3) III
 McCoy
 Lecture—3 hours. Prerequisite: courses 154B and 156A. Chemical Engineering process design: optimization and economics.

159. Chemical Engineering Analysis (3) I, Carbone
 Lecture—3 hours. Chemical engineering applications of partial differential equations, tensors, systems of linear equations, and operational calculus.

160. Design of Piping Systems and Heat Exchangers (2) II, Jackman
 Lecture—2 hours. Prerequisite: course 150B and 153D. The design of piping systems including pumps, compressors, and valves. Shortcut methods for approximating pressure drop in piping. Design of shell and tube heat exchangers.

190. Group Study (1-5) I, II, III
 The Staff (Bell in charge)
 Prerequisite: consent of instructor. Group study of selected topics. Students may enroll in one or more separate subjects. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III
 The Staff (Bell in charge)
 Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

252. Advanced Thermodynamics (3) I, Smith
 Lecture—3 hours. Prerequisite: course 152B or Engineering 105B. A general treatment of the first and second laws; applications of thermodynamic relationships to phase and chemical reaction problems. Prerequisite: probability of thermodynamics to chemical processes.

253A. Advanced Transport Phenomena (4) I, Whitaker
 Lecture—4 hours. Prerequisite: course 153. Tensor and vector methods in the formulation of equations of mass, momentum, energy, and entropy in continuous media with
Engineering: Civil

particular emphasis on fluids. Applications to the formulation of meological equations of state for viscoelastic fluids and fluid interfaces.

253B. Advanced Transport Phenomena (4) II. McFarland Lecture—4 hours. Prerequisite: course 253A. Application to both differential and integral mass, momentum, and energy balances. Radiant energy transport and heat transfer in reacting systems.

253C. Advanced Transport Phenomena (3) III. Whittaker Lecture—3 hours. Prerequisite: course 253B. Continuation of course 253B with special emphasis on multicomponent systems. The laws of molecular diffusion and energy transport, including the effects of concentration, temperature, electric, and pressure fields. Convection mass transfer and chemically reacting flows.

254. Molecular Theory of Transport Phenomena (3) II. The Staff Lecture—3 hours. The transport of mass, momentum, and energy is considered from the molecular point of view. Derivations of the Boltzmann equation are considered, and solutions for special cases are discussed. Methods for calculating transport coefficients are presented.

256. Applied Kinetics and Reactor Design (3) II. Carbonell Lecture—3 hours. Prerequisite: courses 156B and 252. Application of kinetics and molecular transport rates to the design of chemical reactors with emphasis on homogeneous systems.

258. Chemical Process Dynamics (3) I. The Staff Lecture—3 hours. Prerequisite: courses 154B, 158B. Unsteady-state process analysis, examples of first and second order processes, coupling of mixed order processes including chemical reaction kinetics, mass and heat transfer and fluid mechanics, simulation of chemical processes.

261. Separation Processes: Column Operations (3) III. McCoy Lecture—3 hours. Prerequisite: course 154B. Analysis and design of chemical separation processes: distillation, extraction, chromatography, adsorption. Finite difference equations, unified design methods, axial dispersion models, probability and random walk methods, method of characteristics, moment analysis, optimization.

290. Seminar (1, 2, 3) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

299. Research. (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

Engineering: Civil

Faculty
Jaime Amoroso, Ph.D., Professor (Civil Engineering; Land, Air and Water Resources)
Kandiah Anandanan, Ph.D., Professor
Don O. Brush, Ph.D., Professor
Robert H. By, M.S., Professor (Civil Engineering; Land, Air and Water Resources)
Daniel P. Chang, Ph.D., Assistant Professor
James A. Cheney, Ph.D., Associate Professor
Yannis F. Dafalias, Ph.D., Assistant Professor
Ott J. Helweg, Ph.D., Associate Professor
Leonard R. Herrmann, Ph.D., Professor
James H. Hutchinson, Ph.D., Professor
William K. Johnson, M.S., Lecturer
Ray B. Krone, Ph.D., Professor
Tenny N. Lam, D.Eng., Associate Professor
Bruce E. Larock, Ph.D., Associate Professor
James N. Luhrs, Ph.D., Professor (Civil Engineering; Land, Air and Water Resources)
Miguel A. Marfino, Ph.D., Associate Professor
(Government Engineering; Land, Air and Water Resources)
Gerald T. Orlor, Ph.D., Professor
Otto G. Raahe, Ph.D., Adjunct Associate Professor
(Civil Engineering; Radiobiology Laboratory)
Melvin R. Ramey, Ph.D., Professor
Karl M. Romstad, Ph.D., Associate Professor
Edward D. Schroeder, Ph.D., Professor
Verne H. Scott, Ph.D., Professor (Civil Engineering; Land, Air and Water Resources)
Chih-Kang Shen, Ph.D., Associate Professor
Theodore S. Stelkoff, Ph.D., Professor (Civil Engineering; Environmental Studies)
Michael A. Taylor, Ph.D., Associate Professor
George Tchobanoglous, Ph.D., Professor

Courses in Engineering: Civil

Lower Division Courses

1. The Civil Engineer in Society (1) I. The Staff (Romstad in charge) Lecture—1 hour. A description of the field of civil engineering and the function of the professional civil engineer. Discussion of professional practice with respect to application of engineering principles, ethics, and responsibilities. (PR grading only.)

10. Introduction to Surveying (3) I. Tchobanoglous Lecture—2 hours, laboratory—2 hours. Prerequisite: lower division standing in the College. Theory and practice of measurements for distance, elevations, and angles; the analyses and adjustments for systematic and random measurement errors; line directions, traverse computations, horizontal and vertical curves; astronomical observations and calculations for latitude, longitude, azimuth, and time.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor; restricted to lower division students. Group study of selected topics. (PIN grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor; lower division standing. (PIN grading only.)

Upper Division Courses

131B. Structural Analysis: Inelastic (3) II. Romstad Lecture—3 hours. Prerequisite: course 131A. Moment distribution, matrix formulation and computer solution of statically indeterminate structures in the elastic and plastic ranges; influence lines.

132A. Structural Design: Metallic Elements (3) II, III. Rameny Lecture—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Metallic beams, columns, other members; analysis and design of riveted, bolted, and welded joints; design of simple beam connections, moment resistant connections, and column base plates.

132B. Structural Design: Concrete Elements (3) I, III. Taylor Lecture—3 hours. Laboratory—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Elastic and ultimate strength design procedures for columns and rectangular beams, T-beams and beams of general cross-section. Building code requirements for bending, shear, axial load, combined stresses and bond.

132C. Structural Design: Timber Elements (3) II. Rameny Lecture—3 hours. Prerequisite: course 132A. Elements of timber structures and laminated structures, including connection design.

135. Aerospace Structures (3) III. Cherry Lecture—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Analysis of stiffened and unstiffened shell structures. Analysis of statically indeterminate box beams, rings and arches. Buckling of flat plates and shells.

137. Construction Principles (3) III. The Staff Lecture—2 hours. Laboratory—3 hours. Prerequisite: senior standing in Engineering. A study of the construction industry: its form, evolution, and methods of operation; fundamental principles underlying construction practices; economic factors in planning, organizing, and operating a construction force. Field trips and analysis of local construction projects.

138. Earthquake Loads on Structures (3) III. Romstad Lecture—3 hours. Prerequisite: course 131A; Engineering 102A. Determination of loads on structures due to base motion for models of static lateral forces, approximate dynamic response spectrum, and time history. Concepts of mass, damping, and stiffness for typical structures. Design for inelastic behavior. Consideration of wind and blast loading.

139. Prestressed Concrete (3) II. Taylor Lecture—3 hours. Prerequisite: course 132B. Prestressing systems. Analysis and design of prestressed concrete structures, statically determinate and indeterminate structures, principles and applications of ultimate strength; applications to buildings, bridges, and tanks.

141. Engineering Hydraulics (3) III. Larock Lecture—3 hours. Prerequisite: Engineering 103A. The nature of flow of a real fluid: boundary layer, separation, compressibility effects. Flow in pipes. Turbomachinery. Open channel flow. Student theories. Grad Engineering 103B may not receive credit for this course.

141L. Engineering Hydraulics Laboratory (1) I, III. Larock Laboratory—3 hours. Prerequisite: course 141 (may be taken concurrently). Laboratory experiments and demonstrations on flow measurement, sluice gates, hydraulic jump, flow characteristics, and centrifugal pumps.

142. Engineering Hydrology (3) II, III. Orlor Lecture—3 hours. Prerequisite: course 141 (may be taken concurrently). Study of the hydrologic cycle. Analysis of precipitation processes. Hydrologic mechanisms. Stream-

143A. Water Resources Planning and Development (3) I. Scott Lecture—3 hours. Prerequisite: course 142 recommended. Concepts and technical aspects affecting water supply planning, development, design, and operation of multipurpose projects. Consideration of policies; legislation; institutions; laws; public participation; water sources, quality data, and uses; economics; environmental concerns; and methodology.

145. Hydraulic Systems Design (3) III. Amoroco Lecture—3 hours. Prerequisite: courses 141, 141L, 142. Principles of project planning. Methods of analysis and hydraulic design of storage systems; diversion structures; conveyance and regulation systems; structures for irrigation, power, and flood control projects; pipeline networks; water connection systems.

146. Water Resources Systems Engineering (3) III. Helweg Lecture—3 hours. Prerequisite: course 142; course 153 and either 144 or 145 recommended. Introduction to systems analysis. Application of systems analysis techniques in the design of large-scale water projects. Use of computer simulation and optimization in real-world applications.

147. Solid-Waste Management (3) I. Tchobanoglous Lecture—2 hours; laboratory—3 hours. Characteristics and amounts of solid wastes; collection systems; introduction to waste treatment processes and return of treated wastes to the environment.

148B. Water Quality Management Systems Design (3) III. Tchobanoglous Lecture—2 hours; laboratory—3 hours. Prerequisite: course 148A (may be taken concurrently). Introduction to the design of wastewater treatment processes.

149. Air Pollution Control (3) II. Chang Lecture—3 hours. Prerequisite: Engineering 103A and 105A, or the equivalent. Sources of pollutants. Elements of meteorology and plume dispersion. Principles of particulate, gas, and vapor control devices. Internal combustion engine and alternatives. Basic photochemistry.

149L Air Pollution Measurements: Fundamentals and Applications (2) II. Chang Lecture—1 hour; laboratory—3 hours. Prerequisite: course 149 (may be taken concurrently). Introduction to the principles and methods employed in ambient air quality measurements and source sampling.

150. Aerosol Science and Applied Health Considerations (3) III. Raabe Lecture—3 hours. Prerequisite: Chemistry 1B, Mathematics 52B, and Physics 4C, or the equivalent. Recommended: Engineering 103A and 105A. Aerosol behavior, small-particle technology, and related inhalation toxicology are presented with emphasis on aerosol research and applied problems with small particles and droplets. Topics include aerosol mechanics, particle diffusion, aerosol generation, sampling, characterization and particle size analysis.

150L. Aerosol Science Laboratory (1) III. Raabe Laboratory—3 hours. Prerequisite: course 150 (may be taken concurrently). This laboratory course provides practical application of principles and methods studied in course 150.

152. Introduction to Civil Engineering Planning (3) II. Helweg Lecture—3 hours. Prerequisite: consent of instructor for non-engineering students. Basic planning concepts; role of engineers; environmental and social information; institutional, political and legal aspects. Case studies will illustrate planning of water distribution systems, waste treatment and disposal systems, land and water transportation systems.

153. Analytical Methods in Planning (3) III. Helweg Lecture—3 hours. Prerequisites: Mathematics 22B, introduction to operations research. Optimization techniques such as linear programming, dynamic programming, and non-linear programming. Introduction to multiple linear regression, time series analysis, and simulation. Applications in water resources planning, transportation planning, systems engineering, and other civil engineering disciplines.

158. Introduction to Transportation Planning (3) II. Taus Lecture—3 hours. Prerequisite: course 152 or consent of the instructor. Study of the transportation planning process. Topics include the nature and history of transportation problems, transportation information systems, models, and evaluation methods. Alternative solutions to transportation problems are considered.

162. Transportation Facilities Design (3) III. Lam Lecture—2 hours; laboratory—3 hours. Prerequisites: courses 10 and 171. Geometric and structural design of transportation facilities. Alignment design of travelways. Capacity and functional design of travelways and terminals. Pavement design and construction. Economic and other design considerations.

171. Soil Mechanics (3) I, II, III. Arulanandan Lecture—3 hours. Prerequisite: Engineering 104A (may be taken concurrently). Soil formations, mass-volume relationships, principles of effective stress, soil characteristics (classification and identification), compaction, shear strength, permeability, compressibility and consolidation, stress—state of stress and failure criteria.

173. Foundation Design (4) II. Shen Lecture—4 hours. Prerequisite: courses 132B and 171. Theory of consolidation and its practical application; design of foundations; application of ground improvement techniques; soil exploration; retaining wall design; pile and pile foundation.

175. Introduction to Geological Engineering (3) III. Shen, Matthews Lecture—2 hours; laboratory—3 hours. Prerequisite: junior standing in civil engineering, geology, and related fields with consent of instructor. Introduction to the principles of geology, and the study of geologic features affecting engineering structures. Discussion of geological aspects of engineering construction problems by means of case history study. (Lab course env. Geoengy 175.)

177. Soil-Water Dynamics Laboratory (2) II, III. Cheney Lecture—laboratory—3 hours. Laboratory experiments in current research areas in soil dynamics. Topics to vary from year to year. Examples: evaporation by explosives, impact penetration in soft soils, simulated earthquakes in centrifuge models, seepage erosion in soils.

189A-J. Selected Topics in Civil Engineering (1-5) I, II, III. The Staff (Chairperson in charge) Instruction may be carried out by lecture or laboratory, or by a combination of these two. Prerequisite: consent of instructor. Directed group study of selected topics with separate sections in (A) Environmental Engineering; (B) Hydraulic and Hydrologic Engineering; (C) Engineering Planning; (D) Geotechnical Engineering; (E) Structural Engineering; (F) Transportation Engineering; (G) Transportation Planning; (H) Water Resources Engineering; (I) Water Resources Planning.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Instruction in this variable-unit course may be carried out by lecture or by laboratory, or by a combination of these two. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: senior standing in engineering and at least a B average. (P/NP grading only.)

Graduate Courses

201. Introduction to Theory of Elasticity (3) I. Hutchison Lecture—3 hours. Prerequisite: Engineering 104B. Fundamental equations of elasticity in three dimensions, strain and stress, plane strain; flexure and torsion of bars of various shapes. Introduction to variational and approximate methods.

202. Buckling of Bars and Plates (3) II. Brush Lecture—4 hours. Prerequisite: course 201. Analysis of the buckling behavior of structural members: flexural and torsional buckling of columns, lateral buckling of beams, non-linear bending and lateral-torsional buckling of beam-columns, stability of structural frames, buckling strength and ultimate stability of plates.

203. Inelastic Behavior of Solids: Plasticity (3) III. Dafalias Lecture—3 hours. Prerequisite: course 201. Fundamentals of plasticity, the concept of yield, strain-hardening and the associated constitutive equations for elastic-plastic solids. Solution of selected practical problems involving plastic strain-hardening materials. Slip line field theory and limit analysis. Offered in odd-numbered years.

204. Inelastic Behavior of Solids: Viscoelasticity (3) III. Dafalias Lecture—3 hours. Prerequisite: course 201. Fundamentals of the theory of viscoelasticity for solids, representation of linear viscoelastic behavior in integral operators and in complex moduli; characterization of engineering materials, e.g., metals, cement, concrete, soil, asphalt, rubbers, etc. General analysis procedures for problems in viscoelasticity, solution of selected problems. Offered in even-numbered years.

205. Continuum Mechanics (3) III. Dafalias Lecture—3 hours. Prerequisite: course 201 or 204. Tensor formulation of the field equations for continuum mechanics, including large deformation effects. Introduction to nonlinear elasticity and viscoelasticity. Solution of three-dimensional problems. Offered in even-numbered years.

206. Buckling of Shells (3) I. Brush Lecture—3 hours. Prerequisite: courses 202 and 221. Continuation of course 202. Initial-instability and postbuckling analysis of cylindrical shells and of shells of revolution. Examination of the influence of initial imperfections. Offered in odd-numbered years.

211. Advanced Matrix Structural Analysis (3) I. Romsdahl Lecture—3 hours. Prerequisite: course 131A. Analysis of indeterminate structures by displacement and force methods; development of large-capacity computer program for frames, trusses, braced and unbraced frames, and curved members and semi-elastic connections; emphasis on efficient digital computer solutions; introduction to matrix stability analysis and structural optimization.
212A. Finite Element Procedures in Applied Mechanics (II) I. Herrmann Lecture—2 hours. Prerequisite: Applied Science 115 or Mathematics 128A-128B (128B may be taken concurrently), or consent of instructor. Approach to analysis procedures; Galerkin and stationary principle methods; construction of approximate solutions by the finite element method. Applications to one- and two-dimensional problems in engineering. Introduction to time dependent, nonlinear and 3-D problems, and other approximation procedures.

212B. Finite Elements: Application to Structural Mechanics Problems (II) I. Herrmann Lecture—2 hours. Prerequisite: course 212A. Application of the finite element method to problems with shear, bending, and torsion loading. Three-dimensional problems in continuum mechanics, soil mechanics, and to plate and shell problems.

212C. Finite Elements: Application to Fluid Problems (II) I. Herrmann Lecture—2 hours. Prerequisite: courses 141, 212A, or the equivalent. Application of the finite element method to two- and three-dimensional fluid flow problems, including incompressible and viscous flow, convection-diffusion problems, the shallow water equations, and flow through porous media.

213. Analysis of Structures Subjected to Dynamic Loads (III) I. Rosten Lecture—3 hours. Prerequisite: courses 138, 211. Analysis of earthquake, blast and wind resistant structures. Distributed, consistent, and lumped mass methods. Solution by direct numerical integration and normal modes. Solution of complex systems using the computer. Current research on earthquake effects. Offered in even-numbered years.

221. Theory of Plates and Shells (IV) I. Herrmann Lecture—4 hours. Prerequisite: course 201 (may be taken concurrently). Development of plate bending theory, including orthotropic behavior; application to transversely loaded, circular, and rectangular plates. Equivalent orthotropic properties for reinforced concrete, rib and waffle slabs. Introduction to folded plate theory. Development of general shell membrane theory and cylindrical shell bending theory. Discussion of approximate analysis procedures.

222. Design of Concrete Foilated Plates and Shells (III) I. Ramey Lecture—3 hours. Prerequisite: course 221. Current methods used in the design of folded plate and thin shell concrete structures. Topics include the design of spherical domes, conical shells, shells of translation, cylindrical shells and folded plate roofs. Offered in odd-numbered years.

223. Advanced Analysis of Plates and Shells (III) I. Ramey Lecture—3 hours. Prerequisite: course 221. Theory of thin elastic shells of general shape. Application to static, dynamic, and stability analyses of plates, cylindrical shells, and shells of revolution. Offered in odd-numbered years.

233. Advanced Design of Steel and Concrete Structures (III) I. Ramey Lecture—3 hours. Prerequisite: courses 132A, 132B, 202. Design considerations for column and frame buckling, design for combined bi-axial bending and axial loading of cold-formed members, steel-plate girder design, steel-concrete composite design.

240. Water Quality (III) I. Ortol Lecture—3 hours. Prerequisite: course 141. Water quality requirements for domestic, industrial, and recreational use of water; properties of natural surface and groundwater systems; transport and fate of waterborne pollutants; methods of analysis.

241. Land Quality (III) I. Krone Lecture—3 hours. Prerequisite: consent of instructor. Factors determining land quality for use in man's activities: land modification for temperature control; out-of-doors noise and its control; interrelations of land and vegetation on qualities of air and water.

243. Water and Waste Treatment (III) I. Schroeder Lecture—3 hours. Prerequisite: course 148A. Characteristics of water and airborne wastes; treatment processes and process kinetics; treatment system design.

244. Water and Waste Treatment (III) I. Schroeder Lecture—3 hours. Prerequisite: course 243A or consent of instructor. Completion of course 243A.

245. Applied Aqueous-Solution Chemistry Laboratory (III) I. Chang Lecture—2 hours. Prerequisite: course 115A, Chemistry 1A, 1B or the equivalent; Chemistry 5 and/or Chemistry 107A recommended. Principles of chemical mechanisms underlying current practices in the examination and treatment of aqueous systems. Topics include chemical equilibrium, redox reactions, surface chemistry. Offered in odd-numbered years.

246. Applied Aqueous-Solution Chemistry Laboratory (III) I. Chang Lecture—2 hours. Prerequisite: course 243A or consent of instructor. Laboratory investigation of physical and chemical processes for water and wastewater treatment.

250. Transportation Planning (III) I. Lam Lecture—3 hours. Prerequisite: course 152 or consent of instructor. Study of urban travel demand characteristics and trends. Transportation study design, including surveys, inventories and use studies. Case studies of previous planning efforts.

251. Transportation Planning Models (III) I. Lam Lecture—3 hours. Prerequisite: courses 153 and 250. Detailed study and application of mathematical models of urban transportation including trip generation, trip distribution, modal split, network assignment, and direct demand models. Brief discussion of land-use models.

252. Transportation Systems Analysis (III) I. Lam Lecture—3 hours. Prerequisite: course 250. Readings and discussion of topics of special interest in transportation planning, including evaluation techniques, citizen participation, social and environment problems in system design, and technology of transportation.

253. Advanced Urban and Regional Planning (III) I. Taylor Lecture—3 hours. Prerequisite: consent of instructor. The city and regional planning process including land use inventories, plan formulation, evaluation, marketing and implementation. Mathematical models of urban growth.

254. Urban Transportation Attitudes and Behavior (III) I. Taylor Lecture—3 hours. Prerequisite: course 251 or consent of instructor. Recent studies of individual or household travel decisions. The role of attitudes in these decisions will be of major importance in travel demand analysis. Specific topics include transportation attitude studies and behavioral modeling. Appropriate statistical techniques. Offered in odd-numbered years.

255. Characteristics of Urban Transportation Systems (III) I. Lam Lecture—3 hours. Prerequisite: course 161 or consent of instructor. Technological, service performance, and operational aspects of urban transportation systems. Systems considered include: private automobiles, taxis, demand-responsive transit, bus and bus rapid transit, rail transit, personal rapid transit, high-speed ground transportation, elevators, ferries, STOOL, and others. Offered in even-numbered years.

261. Cohesive Particle Transportation (III) I. Krone Lecture—3 hours. Prerequisite: course 141; Cohesive, cohesive particulate materials; processes of aggregation and dispersion. Aggregation properties; depositional and scour; channel and harbor design and maintenance. Offered in even-numbered years.

268. Economics of Water Resources Planning (I) I. Helweg Lecture—3 hours. Prerequisite: course 108 or Agricultural Economics 148; course 152 and Economics 1A recommended. The value of water and evaluation of project alternatives. The uniqueness of water in microeconomics theory. The relation of traditional methods such as benefit cost analysis to multidisciplinary optimization and utility theory in evaluating non-compensable objectives.

270. Advanced Water Resources Planning (III) I. Helweg Lecture—3 hours. Prerequisite: courses 142, 152, and 158 (may be taken concurrently) or consent of instructor. Photographic and historical study of public works. Descriptive structures of plans and procedures to formulate plans. Advanced topics in institutional analysis, decision theory, data management, value theory and mathematical modeling.

271. Topics in Surface Water Hydrology (II) I. Burgoyne Lecture—2 hours. Prerequisite: course 142 or Water Science 106 recommended. Theoretical foundations of hydrologic principles in analysis of watershed processes, evaluation of watershed responses to management and hydrologic-environmental relationships. Offered in odd-numbered years.

274. Hydraulics of Pipe Lines (I) I. Ramey Lecture—3 hours. Prerequisite: course 141; Engineering 5 or the equivalent. Mechanics of liquid flow in pipes and pipe network systems. Steady state, unsteady flow, surge and water-hammer problems. Introduction to stability and resonance phenomena. Offered in odd-numbered years.
275. Stochastic Hydrology (3) III. Amrocho
Lecture—3 hours. Prerequisite: course 142 or Water Science 141 or the equivalent. Application of modern statistical analysis in hydrology: time series analysis, stochastic models, simulation by Monte Carlo methods, statistical assessment of predictive capacity of models.

276. Hydrologic Systems Analysis (3) III. Amrocho
Lecture—3 hours. Prerequisite: course 142 or Water Science 141 or the equivalent; Mathematics 222, 228, 22C, 24. Theory and application of the methods of modern systems analysis and mathematical statistics to problems of hydrologic prediction. Emphasis on current developments in parametric and stochastic hydrologies.

277. Unsteady Flow in Open Channels (3) III. Strelkov
Lecture—3 hours. Prerequisite: course 141. Long waves in open-channel systems; Saint-Venant equations; method of characteristics; explicit and implicit finite-difference solutions, stability of numerical schemes, double-sweep method; influence of hydraulic structures; flood routing; bores; dam break; long waves in two-space dimensions.

277L. Computer Laboratory in Water Waves (1) III.
Strelkov
Laboratory—1 hour. Prerequisite: course 277 (may be taken concurrently); a short course in Fortran programming. Development of computer programming for computing long waves in open channels. Explicit and implicit schemes, hydraulic bores, computation of catastrophic, dam-break floods.

278. Hydrodynamics (3) II. Larock
Lecture—3 hours. Prerequisite: Mathematics 120 or 168A; course 141 or the equivalent. Equations for conservation of mass, momentum, energy; Vorticity, circulation. Stream function, velocity potential. Flows of superposition and conformal mapping. Free streamline applications. Gravity effects, introduction to wave motion. Offered in even-numbered years.

279. Advanced Mechanics of Fluids (4) I. Larock
Lecture—4 hours. Prerequisite: course 141 and Mathematics 24. Rotational flow; Navier-Stokes equations; solutions for laminar, viscous flow; boundary layer equations and solution techniques. Nature of turbulence, statistical and phenomenological characterizations. Reynolds equations; isotropy simplification. Offered in even-numbered years.

280. Advanced Soil Mechanics (3) I. Cheney
Lecture—3 hours. Prerequisite: course 171. Unified theory of stress-strain behavior of soil, consolidation and rate of settlement, interpretation of laboratory tests, drained and undrained stress of soil, anisotropy, and time dependent behavior.

281. Advanced Soil Mechanics (3) II. Anuradhanand
Lecture—3 hours. Prerequisite: course 281A. Theories of slope stability. Analysis of slope stability problems for static and dynamic loading conditions. Model laws for centrifuge testing. Theories of limit equilibrium. Applied to earth pressure problems.

281C. Advanced Soil Mechanics: Soil-Structure Interaction Problems (3) III. Shen
Lecture—3 hours. Prerequisite: courses 173 and 281A. Design and analysis of bulkheads; deep excavation; tieback systems; tunneling in soft ground; loads on buried conduits; lateral pile loading capacity; pier foundations; additional topics of footing and root design.

282. Advanced Soil Laboratory (3) II. Shen
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 281A. Subsurface exploration, advanced laboratory techniques including consolidation, shear strength, pore water pressure measurement, electrical properties measurement, pavement design tests, field strength and load bearing tests.

283. Physicochemical Properties of Soils and Soil Behavior (3) I. Anuradhanand
Lecture—3 hours. Prerequisite: course 171. Analysis of the mechanical behavior of soils from consideration of clay mineralogy, colloidal phenomena, ion-exchange and soil-water characteristics. Conduction phenomena, deformation mechanisms, strength, swelling, compaction and erosion. Microscopic theories to explain yielding of soils.

284. Pavement Design and Soil Stabilization (3) I.
Shen
Lecture—3 hours. Prerequisite: course 171 or the equivalent. Principles and methods of pavement design for highway and airport pavements; purposes, principles, and methods of soil stabilization and design of stabilized pavement layers and structures.

287A. Soil Dynamics (3) II. Shen
Lecture—3 hours. Simple damped oscillator, elastic wave propagation, seismic survey, dynamic soil properties, site amplification, liquefaction, foundation vibration, impact penetration of pile structures.

288. Earthquake Response of Soil Structures (3) III.
Anuradhanand
Lecture—3 hours. Prerequisite: course 281A; Engineering 122 or course 138 or course 287A. Analysis of the behavior of soils under earthquake conditions, applications to liquefaction, seismic response of soil deposits; earth dams and other structures.

289A-J. Selected Topics in Civil Engineering (1-3)
I, II, III. The Staff (Chairperson in charge)
Instruction in these variable-unit courses may be carried out by lecture or by laboratory or by a combination of these two. Prerequisite: consent of instructor. Directed group study of special topics with sections in (A) Environmental Engineering; (B) Hydraulics and Hydrologic Engineering; (D) Geotechnical Engineering; (D) Structural Engineering; (F) Structural Mechanics; (G) Transportation Engineering; (I) Transportation Planning; (J) Water Resources Engineering. (A) Water Resources Planning. May be repeated for credit.

290. Seminar (5) I, II, III. Chairperson in charge
Seminar—2 hours. Discussion of current graduate research, and guest lectures on recent advances. Oral presentation of individual study. Course required of graduate degree candidates. (SU grading only.)

296. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Instruction in these variable-unit courses may be carried out by lecture or by laboratory or by a combination of these two. Prerequisite: consent of instructor. Group study of selected topics. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
Research—2 hours. A course for students engaged in research. (SU grading only.)

Engineering: Electrical

(College of Engineering)

V. Ralph Alagzi, Ph.D., Chairperson of the Department

Department Office, 3118 Bainter Hall

Faculty

V. Ralph Alagzi, Ph.D., Professor
**George R. Bannen, Ph.D., Associate Professor
John N. Churchill, Ph.D., Associate Professor
Richard W. Conn, Ph.D., Assistant Professor
K. Wayne Current, Ph.D., Assistant Professor
Andrew J. Dienes, Ph.D., Professor

Richard C. Dorf, Ph.D., Professor
Herman J. Fink, Ph.D., Professor
Leonard Forbes, Ph.D., Associate Professor
Gary E. Ford, Ph.D., Assistant Professor
William A. Gardner, Ph.D., Associate Professor
Tien C. Hsia, Ph.D., Professor
A. J. Jain, Ph.D., Visiting Associate Professor
William G. Lane, Ph.D., Lecturer
Herschel L. Loonis, Jr., Ph.D., Professor
Earle W. Owen, D.Eng. Sci., Associate Professor
John B. Powers, Ph.D., Professor Emeritus
Anne Louise Radisky, Ph.D., Assistant Professor
Robert J. Smith II, Ph.D., Lecturer
Michael A. Soderstrand, Ph.D., Adjunct Assistant Professor
Ronald F. Soohoo, Ph.D., Professor

Courses in Engineering: Electrical

Lower Division Courses

1. Introduction to Electrical Engineering (1) III. The Staff (Alagzi in charge)
Lecture—1 hour. Electrical Engineering as a professional activity. What Electrical Engineers know and how they use their knowledge. Problems they are concerned with and how they go about solving them. A presentation of basic ideas and their applications. Examination of some case studies. (P/N grade only.)

96. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; restricted to lower division students. Group study of selected topics. (P/N grade only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge) (P/N grade only.)

Upper Division Courses

110. Electronic Circuits (4) III. Churchill, Current
Lecture—4 hours. Prerequisite: course 112, Engineering 102, Large Signal and Small Signal Device Models; analysis and design of linear circuits, both discrete and integrated forms; analysis and design of nonlinear, digital and pulse circuits.

111. Electronic Circuits Laboratory (3) III. Forbes, Churchill, Current
Laboratory—9 hours. Prerequisite: course 110 (may be taken concurrently). Projects on the design, analysis and performance of electrical transistor circuits, amplifiers, operational amplifiers, feedback circuits and digital circuits.

112. Linear Systems and Circuits (4) IV. Ford, Alagzi
Lecture—4 hours. Prerequisite: Engineering 17, Characterization and analysis of linear systems and circuits. Time domain analysis by convolution techniques. Emphasis on frequency domain techniques, including Laplace transform, Fourier transform and Fourier series, with applications to electrical circuits.

111A. Bipolar Integrated Circuit Applications (3) III.
Forbes, Churchill
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 110. Analysis and design of bipolar monolithic integrated circuits emphasizing circuit and system aspects rather than fabrication.

111B. MOS Integrated Circuit Applications (3) III.
Forbes, Churchill
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 110 and 114A. Metal-oxide semiconductor (MOS) integrated circuits and applications, dynamic and static memory and logic circuits, large-scale integrated random logic, read-only memory (ROM), programmable read-only memory (PROM), random-access memory (RAM), and shift registers.
115A. Bipolar Integrated Circuits Design and Fabrication Laboratory (3) II. Churchill, Forbes Discussion—1 hour; laboratory—6 hours. Prerequisite: course 140B. Projects in the design and fabrication of integrated photolithography, diffusion, process design and testing. (PPNP grading only.)

115B. MOS Integrated Circuits Laboratory (3) III. Churchill, Forbes Discussion—1 hour; laboratory—6 hours. Prerequisite: course 115A. Design and fabrication of metal-oxide-semiconductor devices and circuits. Projects in design, semiconductor process design, testing and evaluation of MOS integrated circuits. (PPNP grading only.)

118. Linear Electronic Circuits (3) II. Current Lecture—3 hours. Prerequisite: course 110, in-depth dc and frequency domain analysis of linear electronic circuits, especially amplifiers. Designs are undertaken using bode analysis, lag and lead compensation and root locus techniques. Computer aided design is used extensively.

120. Network Analysis (3) I. The Staff Lecture—3 hours. Prerequisite: course 112. Topics in modern network analysis, including two-port networks, matrix methods, graph theory, nonlinear circuits, and computer solutions.

121. Network Synthesis (3) II. The Staff Lecture—3 hours. Prerequisite: course 112. An introduction to modern network synthesis techniques. Topics include one- and two-port networks, approximation problems, realization procedures, and filter theory. Emphasis is on modern techniques which lead to uniformly terminated networks of two-port synthesis.

130A. Introductory Electromagnetics (3) I. Branner, Finkel Lecture—3 hours. Prerequisite: Mathematics 222 and 222C, Physics 14C strongly recommended. Static electric and magnetic fields, properties of materials.

131A. Electromagnetic Fields and Waves (3) I. Finkel, Dienes Lecture—3 hours. Prerequisite: course 130B or the equivalent. Propagation and reflection of plane waves in isotropic media. Guided electromagnetic waves. Rectangular and circular waveguides.

131B. Electromagnetic Fields and Waves (3) II. Finkel, Dienes Lecture—3 hours. Prerequisite: course 131A or the equivalent. Dielectric guides. Helix and slow waves. Structures wave propagation in media with anisotropic permittivity and permeability.

131C. Electromagnetic Fields and Waves (3) III. Finkel, Dienes Lecture—3 hours. Prerequisite: course 131B or the equivalent. Resonant cavities, microwave network components; antennas; ionospheric propagation.

132A. High-Frequency Systems, Circuits and Devices (3) I. Branner Lecture—3 hours. Prerequisite: course 130B. Application of electromagnetic theory to analysis and design of practical devices, circuits and systems operating at radio frequencies. Emphasis at high frequencies, transmission lines, microwave integrated circuits, circuit analysis of electromagnetic energy transfer systems, the scattering matrix.

132B. High-Frequency Systems, Circuits and Devices (3) II. Branner Lecture—3 hours. Prerequisite: course 132A. Passive high-frequency devices, analysis, design. Microwave circuit and filter design. Analysis of microwave transmission and tuned circuit amplifiers, antenna analysis and design to include thin line, loop, cylindrical, waveguide and horn, and phased array antennas.

133. High-Frequency Laboratory (2) III. Branner, Dienes Laboratory—6 hours. Prerequisite: course 131A or 132A, or consent of instructor. Steady-state and transient transmission line behavior; rudimentary experiments with waveguide and microwave components; design of passive microwave components using stripline. Radiation into free space: analysis of wire, horn and reflector antennas.

134. Radar Systems and Signals (3) III. Branner Lecture—3 hours. Prerequisite: course 112; course 160 strongly recommended. Introductory course on radar system theory and design. Emphasis on analysis of practical radar system configurations and signals. The prediction of radar range performance, accuracy and resolution is discussed for a number of radar classes including: pulse, cw and pulse doppler.

140A. Introduction to Physical Electronics (3) II. Forbes, Church, Diines Lecture—3 hours. Prerequisite: course 130A. Introduction to fundamental physics of electronic conduction, developing models to explain operation of modern devices; equilibrium and nonequilibrium statistical mechanics, conductivity, diffusion, gaseous and beam electronics, plasmas, quantum mechanics.

140B. Introduction to Physical Electronics (3) III. Forbes, Church, Dienes Lecture—3 hours. Prerequisite: course 140A. Electrons in solids and conductors of similar behavior, nonmetals, semiconductors, insulators with special emphasis on the parameters which are useful in the design of semiconductor devices.

145A. Solid-State Electronics (3) I. Church, SooHooh Lecture—3 hours. Prerequisite: course 140B. Electrical and optical properties of solid-state materials. Topics discussed include band-theory of metals, semiconductors, and insulators with special emphasis on the parameters which are useful in the design of semiconductor devices.

145B. Solid-State Electronics (3) II. Church, SooHooh Lecture—3 hours. Prerequisite: course 145A. Electrical properties and design of various semiconductor devices. Devices to be discussed include metal-semiconductor diodes, PN junction diodes, bipolar transistors, field-effect transistors, and bulk negative resistance devices.

145C. Solid-State Electronics (3) III. Church, SooHooh Lecture—3 hours. Prerequisite: course 145B. Design and devices of their associated circuits utilizing the magnetic properties of solid-state devices. Study includes the ferroelectric, ferromagnetic, and magnetic media used in disk, tape, and bubbles and masers and lasers.

148. Superconductivity (3) III. Finkel Lecture—3 hours. Prerequisite: course 130B or course 144B. Prerequisites: course 140B or course 144B. Elementary properties of superconductors, magnetic properties of superconductors of the first and second kind, phenomenological Landau-Ginzburg theory, applications and devices.

150. Instrumentation Systems (3) III. Owen Lecture—2 hours; laboratory—3 hours. Prerequisite: course 140B. Instrumentation techniques. Analysis and design methods common to all instrumentation systems; dynamic response; transducers; signal conditioning.

157A. Control Systems (3) III. Haas, Owen Lecture—3 hours. Prerequisite: course 112. Design and analysis of closed loop automatic control systems. Examples are drawn from all engineering fields. The mathematical representation of systems, frequency, s-plane and state space methods and design criteria.

157B. Control Systems (2) III. Haas, Owen Lecture—2 hours; laboratory—3 hours. Prerequisite: course 157A. Introduction to nonlinear and sampled data systems. Applications of digital and analog computers.

180. Fourier Analysis and Modulation (3) I. Gardiner, Ford Lecture—3 hours. Prerequisite: course 112. Fourier analysis of signals. Applications to analysis and design of linear time-invariant systems, and nonlinear and time varying circuits for filtering, sampling and modulation.

166. Data Communication (3) III. Gardner, Ford Lecture—3 hours. Prerequisite: course 160, Engineering 118. Introduction to data communication systems. Analysis of effect of modulation on signal transmission by noise. Techniques for high speed digital data transmission. Introduction to information theory.

171. Computer Organization (4) I. Loomis, Conn Lecture—3 hours; discussion—1 hour. Prerequisite: course 170. Engineering 100. Review of integrated circuit functions; register transfer operations; basic data structures; central processor design and design of control logic; implementation of multiplication and division algorithms; memory systems; input/output structures; comparison of different computer organizations.

173. Digital System Design (3) III. Loomis Lecture—2 hours; laboratory—3 hours. Prerequisite: course 171. Study of the logic design and hardware implementation of digital systems, including computer arithmetic, digital interfaces and special-purpose machines. Laboratory projects involving the design, simulation, and realization of digital subsystems.

175. Computer Devices and Systems (3) III. SooHooh Lecture—3 hours. Prerequisite: course 140B (may be taken concurrently). Elements of the CPU. Organization of the microprocessor. Organization of memory, cache, and memory systems. Device to device communication and microprocessors.

180. Data Structures and Programming Techniques (4) II. Radinsky Lecture—3 hours; programming practice—3 hours. Prerequisite: course 170. Concept of data-type arrays, records, sets structures and their representation. Sequential file structures. Dynamic information structures; linked lists, trees structures. Heuristic techniques; recursive algorithms; sorting and searching.

181. Programming Languages and Compilers (3) III. Radinsky, Conn Lecture—3 hours. Prerequisite: course 180. Programming language design and implementation: survey and comparison of various language features. Assemblers, macros, interpreters, compilers; methods for describing syntax; parsing techniques; code generation; code optimization.

189A. Special Topics in Electrical Engineering (1-5) I, II, III. The Staff (Chairperson in charge) Instruction in these variable-unit courses may be carried out by lecture or by laboratory or by a combination of these two. Prerequisite: consent of instructor. Special topics in (A) Biomedical Engineering; (B) Computer Science; (C) Programming Systems; (D) Digital Systems; (E) Communication Control Systems; (F) Signal Processing; (G) High-Frequency Phenomena and Devices; (I) Solid-State Devices and Physical Electronics; (J) Systems; (K) Circuits.

191. Discrete Structures and their Applications (3) I. Radinsky Lecture—3 hours. Prerequisite: three-quarter sequence of a lower division mathematics course; course 170. Discrete structures and applications to various areas of computer engineering, including computer science, mathematics, and computer science.
science; mathematical models and mathematical reasoning; sets, relations, functions; application to data structures; semigroups; monoids; groups; lattices; Boolean algebra. Their use in coding theory, computer design, automata theory and formal languages.

195A. Electronic Instrumentation for Biology, Chemistry and Medicine (3) I, Owen
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 16A, 16B; freshman physics course. Electric circuits, amplifiers, operational amplifiers, transistors and transducer systems, differentiators and integrators, dynamic response. Emphasis is on the external characteristics of instruments and the errors inherent in measurement. Engineering majors may not receive credit for this course.

195B. Electronic Instrumentation for Biology, Chemistry and Medicine (3) II, Owen
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 195A. Dynamic response, signal processing, electrical impedance, noise and interference, electrical safety, digital-to-analog conversion, and digital data processing. Engineering majors may not receive credit for this course.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Instruction in these variable-unit courses may be carried out by lecture or by laboratory or by a combination of these two. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses

201. Optimization Techniques with Applications (3) II.
Lecture—3 hours. Prerequisite: knowledge of FORTRAN programming and graduate status. Computer-aided optimization of single-variable and multi-variable functions with and without constraints. Preplanned and sequential search methods. Gradient methods. Linear and nonlinear programming. Typical applications in different disciplines. Offered in odd-numbered years.

204. Digital Processing of Signals (3) II.
Lecture—3 hours. Prerequisite: course 151. Theory and applications of digital processing of signals. Recursive and non-recursive digital filter design techniques, analysis of quantization effects. Homomorphic signal processing.

212A. System Analysis (3) I, Hila, Owen
Lecture—4 hours. Prerequisite: course 112. Mathematical representation and analysis of linear continuous-time dynamical systems by state variable techniques: matrices and linear spaces, state space, solutions of state variable equations, multivariable and composite systems, stability, controllability and observability, state feedback and state estimators.

212B. System Analysis (3) II, Hila, Owen
Lecture—4 hours. Prerequisite: course 212A. Mathematical representation and analysis of discrete-time signals and dynamical systems: state space methods, transform methods, difference equations, sampling and data reconstruction, systems with both continuous- and discrete-time elements, sampled-data control, digital simulation techniques.

213. Signal Theory (4) II. Gardner
Lecture—4 hours. Prerequisite: course 160, course 165 recommended. Unified treatment of techniques for mathematical representation of signals and signal processing operations. Geometry of signals in a Hilbert space; algebra of operators (systems) on a Hilbert space. Applications to Fourier analysis, transfer theory, and optimum signal and system design.

214. Computer-Aided Circuit Analysis and Design (3) III. Current
Lecture—3 hours. Prerequisite: course 110. Network equation formulations; numerical techniques for ac, dc, and transient solutions for linear and nonlinear networks; sensitivities and automated design; device models; and practical design problems using SPICE.

218. Network Theory (3) II.
Lecture—3 hours. Prerequisite: course 110 or the equivalent. Graph theory, network equations, network functions and representations, state equations, integral solutions, fundamentals of network synthesis, scattering matrices. Offered in even-numbered years.

219. Passive Filter Design (3) III. Sanderstraadt
Lecture—3 hours. Prerequisite: course 121 or the equivalent. An introduction to the design of passive filters with lumped and distributed elements. Filter specification and design process, reactance transformations, approximation theory, passive filters with lumped elements, crystal and ceramic filters, mechanical filters, microwave filters. Offered in odd-numbered years.

220. Active Filter Design (3) III. Sanderstraadt
Lecture—3 hours. Prerequisite: course 121 or the equivalent. Introduction to the design of active filters with lumped, distributed elements, and switches. Active filters with lumped RC networks, active distributed RC networks, switched filters, n-path filters. Offered in even-numbered years.

226A. Quantum Electronics (3) I, Diener, Soohoo
Lecture—4 hours. Prerequisite: courses 104B and 140B or the equivalent. Some basic concepts of quantum theory, density matrix formalism, quantum mechanics. Electronic dipole and transition; equation of motion of microwave dipole; resonant processes; absorption, dispersion and saturation; transient behavior of electric dipole transitions, coupled amplitude equations, and rate equations. Offered in even-numbered years.

226B. Quantum Electronics (3) II, Diener, Soohoo
Lecture—4 hours. Prerequisite: course 226A. Laser, masers: population inversion, threshold requirement, steady-state and transient behavior, Q-switching. Interaction between radiation and phonons. Offered in odd-numbered years.

227A. Microwave Electronics (3) I, Soohoo
Lecture—3 hours. Prerequisite: courses 130B and 140B or the equivalent. Theory of microwave, waveguides and cavities. Interaction between electromagnetic fields and the electron charge. Lorentz force law; energy levels in matter and Zeeman splitting. Comparison between conventional and microwave tubes and other new types of microwave oscillators and amplifiers. Offered in odd-numbered years.

227B. Microwave Electronics (3) II, Soohoo
Lecture—3 hours. Prerequisite: course 227A or the equivalent. Theory of interaction between electromagnetic fields and particles, applications to electron, ion and solid-state devices. Beam formation, velocity and density modulation, plasma oscillation, space charge wave propagation in klystrons, parametric amplifiers, tunnel and IMPATT diodes, Gunn oscillators. Offered in even-numbered years.

230A. Advanced Electromagnetic Theory (3) I. Diener, Banner
Lecture—3 hours. Prerequisite: course 131C or the equivalent. The exact formulation of electromagnetic problems by using vector potentials and Green's functions. Applications of these techniques to radiation and transmission problems.

230B. Advanced Electromagnetic Theory (3) II.
Diener, Banner
Lecture—3 hours. Prerequisite: course 230A. Advanced topics in propagation such as propagation through anisotropic media; dust theory of propagation over the earth, ray tracing through the ionosphere. Offered in even-numbered years.

245A. Applied Solid-State Physics (3) I, S. Fink, Soohoo, Churchill
Lecture—3 hours. Prerequisite: course 145C or the equivalent. The physics of solids relevant to solid-state applications. Topics include classical statistical, band theory of solids, electronic polarization, conductivity, and magnetism in solids.

245B. Applied Solid-State Physics (3) II, Fink, Churchill
Lecture—3 hours. Prerequisite: course 245A. Theory of semiconductors with application to transistors. Topics include electronic, holes, mobility, and transistor circuitry. Brief discussion of superconductivity and superconducting solenoids. Offered in odd-numbered years.

245C. Applied Solid-State Physics (3) III, Fink, Soohoo
Lecture—3 hours. Prerequisite: course 245A. Theory of magnetism in solids, with application to ferromagnetic devices and circuits. Topics include paramagnetism, ferromagnetism, magnetic resonance, and switching properties of individual magnetic elements and magnetic arrays. Offered in even-numbered years.

251. Nonlinear Control Systems (3) II, Owen
Lecture—3 hours. Prerequisite: courses 157B and 212B. Techniques for solving nonlinear control problems; state space methods; stability theorems; Lyapunov's methods; sinusoidal describing function and on-off systems. Offered in even-numbered years.

252. Control System Optimization (3) III, Hila
Lecture—3 hours. Prerequisite: courses 157B and 212B. Optimization of systems by the adjustment of parameters; deterministic inputs, stochastic inputs. Optimization of systems by the calculus of variations; Pontryagin's maximum principle, Bellman's principle of optimality. Offered in even-numbered years.

270. Finite-State Machines (3) I, Loomis
Lecture—3 hours. Prerequisite: course 191. A study of finite-state sequential machine models and behavior; experiments; the Regular Algebra; algebraic structures theory of finite-state machines; completeness of sets of primitives. Offered in odd-numbered years.

271. Advanced Digital System Design (3) I, Loomis
Lecture—3 hours. Prerequisite: course 173. Advanced topics in the design of digital systems; high-speed and high-rate arithmetic; digital design automation; high-performance logic design organizations.

272. Advanced Switching Theory (3) I, Loomis
Lecture—3 hours. Prerequisite: courses 171, 191. Topics in switching theory. Synchronous and asynchronous sequential circuits. Theoretical study of Boolean functions and their transformations. Special realization techniques for combinational and sequential circuits. Offered in even-numbered years.

274. Advanced Computer Architecture (3) III.
Loomis
Lecture—3 hours. Prerequisite: course 271 or consent of instructor. Study of the computer architectures of advanced supercomputers. CDC 6600, 7000 series architecture. Illiac IV architecture. Pipeline array processor architecture. Offered in even-numbered years.

275. Computer Graphics (3) III.
Loomis
Lecture—3 hours. Study of the hardware and software implementation of interactive computer graphics systems. Display devices, display files and transformations. Interactive graphics; devices and techniques. Problems in three-dimensional graphics. Examples of current systems; applications project required. Offered in even-numbered years.

277. Advanced Programming and Data Structures (3)
I, Radinsky
Lecture—3 hours. Prerequisite: course 180; course 181 or 182 recommended. Formal specification of data structures; design and representation of data structures; elementary data structures; manipulation of list structures in LISP; memory management.

278A. Formal Languages and Related Automata (3)
II, Radinsky
Lecture—3 hours. Prerequisite: course 191 or consent of instructor. Classes of formal languages and their grammars, important classes of finite and infinite automata and their properties. Correspondence between these classes and types of formal grammars. Emphasis on context-free languages.

278B. Translation of Programming Languages (3)
Lecture—3 hours. Prerequisite: courses 180, 191 and
Engineering: Mechanical

279. Artificial Intelligence (3) I. Radinsky

284A. Random Signals and Noise (4) II. Algazi
Gardner

284B. Estimation and Detection of Signals in Noise (3) III. Algazi, Gardner
Lecture—3 hours. Prerequisite: course 284A. Application of statistical methods and models to detection and estimation of signals in noise. Classical parameter estimation and hypothesis testing. Extension of classical techniques to finite variables to continuous parameter processes. Application to estimation of signal parameters, detection of signals.

285. Information Theory (3) I. Algazi, Gardner
Lecture—3 hours. Prerequisite: Engineering 118 or the equivalent. Information theory and coding; definition of a measure of information and study of its properties, coding of discrete sources; introduction to channel capacity and error-free communications over noisy channels; encoding and decoding of data for transmission over noisy channels.

285A-K. Special Topics in Electrical Engineering (1-5) I, II, III. Staff (Chairperson in charge)
Instruction in these variable-unit topics may be carried out by lecture or by laboratory or by a combination of these two. Prerequisite: consent of instructor. Special topics in (A) Biomedical Engineering; (B) Computer Science; (C) Programming Systems; (D) Digital Systems; (E) Communications; (F) Control Systems; (G) Signal Processing; (H) High-Frequency Phenomena and Devices; (I) Solid-State Devices and Physical Electronics; (J) Systems; (K) Circuits.

290. Seminar (1, 2, 3) I, II, III.
The Staff (Chairperson in charge)
Seminar—1 hour. Discussion and presentation of current research and development. (SU grading only.)

298. Group Study (1-5) I, II, III.
The Staff (Chairperson in charge)
Instruction in these variable-unit courses may be carried out by lecture or by laboratory or by a combination of these two. Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III.
The Staff (Chairperson in charge)
(SU grading only.)

Faculty

James W. Baughn, Ph.D., Associate Professor
Charles W. Beadle, Ph.D., Professor
Harry Brandt, Ph.D., Professor
John W. Brewer, Ph.D., Professor
Harry A. Dwyer, Ph.D., Professor
Clay F. Garland, M.S., Professor Emeritus
Warren H. Giedt, Ph.D., Professor
John F. Giglia, J.D., Lecturer
Jerald M. Henderson, D.Eng., Professor
(Mechanical Engineering, Food Science and Technology)
Myron A. Hoffman, Sc.D., Professor
Mont Hubbard, Ph.D., Assistant Professor
Maury L. Hull, Ph.D., Assistant Professor
Dean C. Karnopp, Ph.D., Professor
John D. Kemper, Ph.D., Professor
Brian E. M. Launder, Sc.D., Professor
Donald L. Margolis, Ph.D., Associate Professor
Allan A. McKillop, Ph.D., Professor
Paul S. Moller, Ph.D., Lecturer
Amiya K. Mukherjee, Ph.D., Professor
Zachary A. Munir, Ph.D., Professor
James F. Shackelford, Ph.D., Assistant Professor
Bruce R. White, Ph.D., Assistant Professor
An Tzu Yang, D.E.C., Professor

Courses in Mechanical Engineering

Lower Division Courses

1. Mechanical Engineering (1) I. McKillop
Lecture—1 hour. Description of the field of mechanical engineering with examples taken from industrial applications. Discussion of the practice with respect to engineering principles, ethics, and responsibilities. (P/NP grading only.)

95. Special Study for Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor; lower division standing. (P/NP grading only.)

Upper Division Courses

110. Fluid Mechanics (3) I, Launder, White
Lecture—3 hours. Prerequisite: Engineering 103B. Development of general equations of motion for viscous fluids: inviscid flow theory; viscous flow; thin shear flow; transition; turbulence; simple mixing theories of turbulence. Applications to turbomachinery and aircorollers.

124. Mechanical Engineering Projects (2) I, II, III.
The Staff (Chairperson in charge)
Laboratory—6 hours. Prerequisite: consent of instructor. Performance of projects which include design, development and evaluation of a mechanical engineering system or related experiments which give the student experience in theoretical modeling and experimental evaluation. May be repeated once for credit.

127. Aerodynamics of Lifting Surfaces (3) II. White
Lecture—3 hours. Prerequisite: Engineering 103B. Dimensional analysis and similarity. Review of basic potential flow. Thin aerofoil theory; infinite wing theory; finite wing theory; boundary layer, and three-dimensional effects. Drag and aerofoil characteristics. Theory of propellers.

128A-128B. Vehicle Design (2-2) II-III.
Lecture—1 hour; discussion—1 hour. Prerequisite: Engineering 104B. Design of aerodynamically related systems, including the influence of aerodynamic and inertial loading on structural integrity, stability, and control.

134. Vehicle Stability (4) III. Karnopp
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 102B. Introduction to the static and dynamic stability characteristics of transport vehicles using examples drawn from aircraft, high-performance automobiles and wheeled vehicles including hovercraft. Laboratory experiments illustrate response to various inputs such as gusts, surface roughness, and control deflections.

150A. Mechanical Design and Manufacturing Processes (3) I, II. Beadle, Henderson
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 104A (may be taken concurrently). The principles of mechanical design and manufacturing processes. Emphasis on failure theories of both ductile and brittle materials and fatigue failure. Manufacturing processes and their relationship between manufacturing and design.

150B. Mechanical Design and Manufacturing Processes (3) I, II. Hull
Lecture—2 hours; discussion—1 hour. Prerequisite: course 150A. Principles of engineering mechanics, failure theories and fatigue theory applied to the design and selection of mechanical components. Design projects which concentrate on conceptual design, engineering analysis, engineering drawing, methods of manufacture, material selection and cost.

151. Advanced Mechanical Design (3) I. Hull
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 150A. Introduction to advanced design processes involving finite element analysis, statistical design and reliability theory, and material selection to reduce friction and wear.

152. Mechanism Design (3) I. Yang
Lecture—3 hours. Prerequisite: Engineering 102A. Application of numerical-ratio method to kinematic and dynamic analysis of planar mechanisms and dynamics of mechanisms. Design of epicyclic gear trains and intermittent mechanisms. Introduction to kinematic synthesis of mechanisms for function generation, curve tracing and body geometry.

155. Engineering Systems Design (3) I. Henderson
Lecture—2 hours; discussion—1 hour. The engineering design process and its use: design projects; engineering case studies.

Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B and 105B; course 161 strongly recommended. Study of energy conversion processes utilizing fossil fuels with emphasis on chemical equilibrium and flame propagation.

162. Gas Turbine and Combustion Energy Systems (4) II. Hoffmann
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B and 105B; course 162 strongly recommended. Study of energy conversion processes utilizing fossil fuels with emphasis on chemical equilibrium and flame propagation. Analysis of cycles and components for gas turbines, steam generators, internal combustion and alternative combustion engines for such applications as power generation and transportation.

163. Nuclear Reactor Engineering (4) III. Hoffmann
Lecture—3 hours; discussion—1 hour. Prerequisite: course 165. Fundamentals of nuclear reactor theory, steady-state and kinetics. Fluid mechanics, heat transfer and the dynamics of existing and future nuclear reactor types. Introduction to fusion power principles and prospects.

165. Fundamentals of Heat Transfer (4) II. Giedt
Lecture—4 hours. Prerequisite: Engineering 103B and 105B. Fundamentals of conduction, convection and radiation heat transfer; applications to engineering equipment.

171. Analysis, Simulation, and Design of Dynamic Systems (4) I, II. Margolis
Lecture—4 hours; discussion—1 hour. Prerequisite: Engineering 102B and 180. Structural models for dynamic systems. Design of control systems to improve linearity, accuracy and speed of response. Design of feedback systems which maintain quality of performance in spite of parameter variations. Analog and digital computer simulation.
172. Analysis, Simulation, and Design of Feedback Systems (3) Ill. Hubbard
Lecture—3 hours; discussion—1 hour. Prerequisite: course 171. Phenomenological models for dynamic systems. Design of control system using frequency domain methods. Stability of nonlinear control systems. Introduction to state space techniques.

Lecture—2 hours; discussion—1 hour; laboratory—1 hour. Prerequisite: Engineering 100 and 102A. Theory of measurements; measurement techniques for mechanical systems; transducers; data manipulation and processing; data digitization.

198. Directed Group Study (1-5) II, III, III. The Staff (Beadle in charge)
Lecture—1-5 hours. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) II, II, III. The Staff (Beadle in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses

205. Thermal Radiation (3) II. Brandt
Lecture—3 hours. Prerequisite: course 165 or consent of instructor. The transfer of radiant energy. Geometrical and spectral characteristics of systems involving thermal radiation. Gaseous radiation. Applications to solar energy systems.

208. Experimental Techniques in Fluid Mechanics and Heat Transfer (3) II. Baughn, Mcllllip
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 103B, course 165. Design of experiments in fluid mechanics and heat transfer. Uncertainty and statistical analysis of data. Steady and unsteady methods of measuring heat flux, temperature, pressure and flow rate. Mean and fluctuating velocity and temperature measurements of fluids with hot-wire anemometry.

210A. Fundamentals of Fluid Mechanics and Heat Transfer (4) II. White
Lecture—4 hours. Prerequisite: graduate standing or consent of instructor. Study of governing equations and numerical solution techniques for linearized convection. Solutions for rotational flows, forced convection and convection and viscous flow interactions. Analysis of turbulence. Transport by Reynolds stresses, and Prandtl’s mixing length hypothesis.

210B. Advanced Fluid Mechanics and Heat Transfer (4) II. Mcllllip
Lecture—4 hours. Prerequisite: course 210A. Analytical and numerical analysis of the Navier-Stokes and energy equations for steady, two-dimensional flows. Numerical techniques in solving fluid problem; turbulent-transport modeling; boundary layers and flow stability. Other selected topics.

211. Fluid Flow and Heat Transfer Design (4) III.
Baughn, Lauder
Lecture—3 hours; discussion—1 hour. Prerequisite: course 211A or consent of instructor. Design aspects of selected topics from: heat conduction, thermal stresses, fins; heat transport in ducts, boundary layers and separated flows; impingement and film cooling, heat exchangers; flow in diffusers, over airfoils and blades. Other selected topics.

212. Advanced Topics in Fluid Flow and Heat Transfer Design (3) II. Lauder
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. In-depth study of advanced technology design problems in fluid mechanics and convective heat transfer. Each student will undertake a project. (Offered in odd-numbered years.)

213. Advanced Turbulence Modeling (3) III. Lauder
Lecture—3 hours. Prerequisite: course 213B. Methods of analyzing turbulence: kinematics and dynamics of homogeneous turbulence; Reynolds stress and heat flux equations; second order closures and their simplification; numerical discretization, force fields; higher order models. (Offered in even-numbered years.)

214. Advanced Numerical Fluid Mechanics (3) III.
Dwyer
Lecture—3 hours. Prerequisite: course 210B. Development and solution of basic and advanced finite difference schemes for the Navier-Stokes equations, laminar and turbulent boundary layer equations, and the potential flow equations. Analysis of the stability and convergence of the methods with practical examples. (Offered in odd-numbered years)

215. Gas Dynamics (3) III. Dwyer
Lecture—3 hours. Prerequisite: Engineering 103B, 105B. Derivation and analysis of the basic equations of motion of inviscid gases at subsonic and supersonic speeds. Prandtl-Meyer flow and the method of characteristics; applications in unsteady transonic and hypersonic flow; shock theory. Offered in even-numbered years.

216. Advanced Thermodynamics (3) III. Gietl
Lecture—3 hours. Study of topics important to energy conversion systems, propulsion and other systems using high temperature gases. Classical thermodynamics and quantum statistical mechanics of nonreacting and chemically reacting gases, gas mixtures, and other substances.

217. Analysis of Reacting Flows (3) III. Dwyer
Lecture—3 hours. Prerequisite: course 210B. Derivation and analysis of the basic equations for chemically reacting flows. Calculation of heat, species and momentum transport in reaction gas properties and the use of reaction rate models. Selected applications to both laminar and turbulent flame propagation in both steady and unsteady situations. (Offered in odd-numbered years.)

218. Advanced Energy Systems (4) III. Hoffman
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing. Study of advanced power generation concepts. Energy balances, component efficiencies and overall power plant efficiencies. Comparison of gas turbines, steam turbines and magnetohydrodynamic generators, as well as power plant combinations based on combustion nuclear fission and controlled thermonuclear fusion.

220A-220B. Mechanical Vibrations (3-3) II, III.
Karmpal
Lecture—3 hours. Prerequisite: Engineering 122. Applications of vibration theory to systems with many degrees of freedom and continuous systems. Introduction to random vibrations.

222. Advanced Dynamics (3) III. Hendron
Lecture—3 hours. Prerequisite: Engineering 103B. Dynamics of particles and of rigid bodies with advanced engineering applications; generalized coordinates; Hamilton’s Principles; Lagrange’s Equations; Hamilton-Jacobi theory.

224. Kinematic Design of Mechanisms (3) II. Yang
Lecture—3 hours. Prerequisite: course 152 or consent of instructor. Introduction to Bemer’s theorem of the rational design of link mechanisms. Geometric concept of two- and three-dimensional rigid-body displacements, instantaneous invariants, higher order path curvature analysis, critical, and center-point curves. Graphic and computer methods for kinematic design.

226. Acoustics and Noise Control (4) IV, Margolis
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 129. Analysis of sound using normal modes and non-normal modes and their interaction between vibrating solids and sound fields; sound abatement in enclosed spaces; sound transmission through barriers; applications in design of mufflers, acoustic enclosures, room acoustics, design of quiet machinery.

240. Transport Phenomena in Materials Processing (4) I, Margolis
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering. Phenomenological and atomistic mechanisms in transport processes in condensed and non-condensed states. Application to heat treatment, chemical and physical vapor deposition, crystal growth, bonding, sintering, and joining of metals. Offered in odd-numbered years.

241. Principles and Application of Dislocation Mechanics (4) III. Mukherjee
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering or consent of instructor. Engineering dislocation theory. Concepts of slip, cross-slip, and climb. Principles of plasticity are applied to explain plasticity of crystalline solids. Glide and climb of dislocations, strain hardening, recrystallization, theories of creep, processes and interaction of dislocation with solute atoms, precipitates and impurity clouds are discussed. Offered in even-numbered years.

242. Advanced Mechanical Properties of Materials (4) III. Mukherjee
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 148 or consent of instructor. Structure and strength of engineering materials. The dependence of their mechanical properties on time, stress and temperature. Generalized concepts of distortion theory in plastic deformation, including fracture, and creep. Influence of microstructure in optimizing the mechanical strength properties. Offered in odd-numbered years.

243. Kinetics of Phase Transformations in Engineering Materials (4) III. Mukherjee
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering or consent of instructor. Engineering 148 recommended. The theory of alloying, kinetics of phase changes, homogeneous and heterogeneous transformations, phase transformation by shear, order-disorder reactions and the phase changes during the heat treatment of iron-carbon alloys are discussed. Offered in odd-numbered years.

244. Interaction of Materials and their Environment (4) IV, Shackelford
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 45, 105A, or consent of instructor. Thermodynamic and kinetic foundations of the corrosion and oxidation processes. Practical aspects of corrosion control and prevention. Stress-corrosion and gas-embrittlement phenomena. Special topics in corrosion: microbiological and atmospheric corrosion. Offered in even-numbered years.

245. Advanced Microstructural Analysis of Engineering Materials (4) III. Shackelford
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering or consent of instructor. Engineering 142 and 148 recommended. Emphasis is on applications of electron microtomics to microstructural analysis and testing of engineering materials. Transmission and scanning electron microscopy, electron microprobe, and Auger electron spectroscopy are covered along with selected topics in advanced techniques of nondestructive testing. Offered in even-numbered years.

250. Engineering Case Studies (2) II. Henderson
Discussion—2 hours. Studies of selected problems which illustrate various methods of the design process and management in advanced mechanical engineering systems.

255. Computer-Aided Mechanical Design (3) III.
Beadle
Lecture—2 hours; discussion—1 hour. Prerequisite: course 150B. The use of computer-based numerical methods including optimization techniques in mechanical design analysis and synthesis. Interactive computer-aided design.

270. Modeling and Simulation of Engineering Systems (3) I. Margolis
Lecture—3 hours. Prerequisite: course 172 or consent of instructor. Computer models of mechanical, electrical, hydraulic and thermal devices; bond graphs, block diagrams and state space equations; Hamilton’s principle for complex systems; formulation for analog and digital simulation; identification of instrumentation; approximate models of distributed systems.

271. Analysis and Control of Multivariable Systems (3) II. Brewer
Lecture—3 hours. Prerequisite: course 270 or consent of instructor. Analysis of multi-input, multi-output systems and synthesis of linear control. State-space models in linear feedback control design for both continuous and discrete time linear mechanical systems.

272. Analysis and Design of Control Systems (3) III. Hubbard
Lecture—3 hours. Prerequisite: course 271 or consent of instructor. Synthesis of automatic control of mechanical engineering systems; both lumped and distributed parameter systems and continuous and discrete time control will be considered.

275. Application of Modern Systems and Control Theory to Environmental Problems (4) III. Brewer Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 271 and 272, or the equivalent. Mathematical analysis, modeling and planning for environmental systems: stability observability, controllability and optimality in environmental technological systems. Introduction to the mathematical theory of environmental monitoring. Offered in odd-numbered years.

280. Advanced Engineering Analysis (3) III. Brewer Lecture—3 hours. Prerequisite: Engineering 180 or the equivalent. Applications in mechanical engineering of advanced analytical and numerical techniques. Topics include probability theory, calculus of variations, classification of differential equations, and advanced numerical methods.

290. Seminar (1) I, II, III. The Staff (Beadle in charge) Seminar—1 hour. (SU/G grading only.)

295. Engineering Case Study Preparation (3) III. Henderson Discussion—1 hour; laboratory—6 hours. Prerequisite: course 250. Preparation of case studies of selected ongoing or completed engineering projects from industry. (SU/G grading only.)

299. Group Study (1-5) I, II, III. The Staff (Beadle in charge) (SU/G grading only.)

299. Research (1-12) I, II, III. The Staff (Beadle in charge) (SU/G grading only.)

English

(College of Letters and Science)

Thomas A. Hanzo, Ph.D., Chairperson of the Department

Department Office, 114 Sproul Hall

Faculty

William E. Baker, Ph.D., Associate Professor
Sidney Berger, Ph.D., Assistant Professor
William M. Byrd, Ph.D., Associate Professor
Joan C. Carr, Ph.D., Assistant Professor
Everett Carter, Ph.D., Professor
Marianne Cooley, Ph.D., Assistant Professor (English, Linguistics)

Elliott L. Gilbert, Ph.D., Professor
Sandra M. Gilbert, Ph.D., Associate Professor
Thomas A. Hanzo, Ph.D., Professor
Wayne Harsh, Ph.D., Professor (English, Linguistics)

John O. Hayden, Ph.D., Professor
Peter L. Hays, Ph.D., Professor
W. Jack Hicks, Ph.D., Assistant Professor
Michael J. Hoffman, Ph.D., Professor
Elizabeth R. Homann, Ph.D., Associate Professor (English, Linguistics)

Robert H. Hopkins, Ph.D., Professor
Richard A. Levin, Ph.D., Assistant Professor
Arthur E. McGinness, Ph.D., Professor
Diane Johnson Murray, Ph.D., Associate Professor
Gwendolyn B. Neeham, Ph.D., Associate Professor
Emeritus

Mary A. O'Conner, M.A., Lecturer

John H. Schaffer, Ph.D., Professor

David A. Robertson, Ph.D., Associate Professor
Winfried Schlesinger, Ph.D., Associate Professor
Gwendolyn Schwabe, M.A., Lecturer
Karl J. Shapiro, Professor
James B. Spamer, Ph.D., Assistant Professor
Brom Weber, Ph.D., Professor of American Literature
Robert A. Wiggins, Ph.D., Professor
James L. Woodress, Ph.D., Professor

Celeste T. Wright, Ph.D., Professor Emeritus

Karl Z. Zender, Ph.D., Assistant Professor

The Major Program

The study of English develops skills in reading analytically and perceptively and in writing clearly and with precision. This is a preparation for careers in writing, teaching, and editing, or for any role in which clear communication is important. The program offers majors several options. A student majoring in English may elect the general study of English and/or American literature or may choose to emphasize (1) Linguistics, (2) Teaching, or (3) Writing.

English

A.B. Degree Requirements: UNITS

Preparatory Subject Matter: 24

One course from English 1, 2, 3

English 45 ... 4

English 30A, 30B, 46A, 46B .. 16

Depth Subject Matter (for each emphasis, see below) 40

One course from each of the following five groups

(a) British Literature to 1500:

English 111, 112, 113, 150A.

(b) Renaissance (1500-1600):

English 116, 117A, 117B, 117C, 120, 122, 150B.

(c) British Literature (1600-1800):

English 123, 125, 127, 150C, 155A, 155B, 155C.

American Literature (1600-1800):

English 140, 141.

(d) 19th Century (British or American):

English 130, 132, 133, 134, 142, 143, 144, 155A, 155C, 156A, 175.

(e) 20th Century (British or American):

English 136, 137, 138, 139, 146, 147, 150D, 152, 155D, 156B, 173, 182, 183.

The above five courses must be selected so that three of the following categories are represented:

(a) Historical Period:

English 111, 112, 116, 120, 123, 125, 127, 130, 132, 133, 134, 136, 137, 139, 140, 141, 142, 143, 144, 146, 147.

(b) Poetry:

English 113, 122, 160, 170A.

(c) Drama:

(d) Fiction:

English 155A, 155B, 155C, 155D, 156, 156A, 158B.

The following courses—English 107, 110A, 110B, 117, 173, 175, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, and 199—are designed for students studying a special subject, one that may be fairly constant in format (as with English 110, 173, 175, 179, 180, 181, 182, 183, 184, 185, 186). These special subject courses may satisfy core requirements and/or emphasis core requirements, in order to ascertain the applicability of one of these courses to the major, you should consult with an adviser.

General Major

Depth Subject Matter ... 40

Core requirements (see above) 20

One course from language/linguistics group:

English 105A, 105B, 105C, 105D, 107, 196 4

A seminar in student’s area of emphasis selected from English 187, 188, 189, 196, or 198 ... 4

Twelve elective units in upper division English courses ... 12

Total Units for the Major 64

Linguistics Emphasis

Depth Subject Matter ... 40

Core requirement, same as for (General) major above .. 20

Four courses in linguistics .. 16

One elective course ... 4

Total Units with Linguistics Emphasis 64

Teaching Emphasis

Depth Subject Matter ... 40

Core requirement, same as for (General) major above .. 20

One course from the language/linguistics group:

English 105A, 105B, 105C, 105D, 107, 196 4

Twelve units in English 100F and/or 100P 12

English 198 (seminar in writing techniques) or 199 (writing) .. 4

Total Units with Teaching Emphasis 64

Writing Emphasis

Depth Subject Matter ... 40

Core requirement, same as for (General) major above 20

One course from the language/linguistics group:

English 105A, 105B, 105C, 105D, 107, 196 4

Twelve units in English 100F and/or 100P 12

English 198 (seminar in writing techniques) or 199 (writing) 4

Total Units with Writing Emphasis 64

Units for Graduation only. English 195, 197, 197T, and 197TC provide units for graduation but do not count toward the major in English.

Recommended for Non-Majors. A non-major’s section of English 117A, 117B, 117C.

Subject A. Students must have passed the Subject A requirement before taking any course in English.

Meeting for Majors. All English majors are required to attend a general meeting for majors at the beginning of each year; all new and transfer English majors are required to attend a general meeting for majors at the beginning of their first quarter in residence; all English majors must see their advisers, individually, in the spring quarters of their sophomore and junior years.

Courses in English

Lower Division Courses

A. Language Skills (2) I, II, III. The Staff (Zender in charge)

Lecture-discussion—4 hours. Introductory course to help students gain writing proficiency required for successful university-level work. Course will focus on the nature and mechanics of written English and the relationship between writing mechanics and coherent thought. Satisfies Subject A requirement.

R. Communications Skills Workshop (no credit) I, II, III.

The Staff (Zender in charge)

Lecture—3 hours; discussion—3 hours; laboratory—3 hours. Workshop in language skills for students from non-standards-English backgrounds who do not qualify for English for Foreign Students. Course worth 6 units toward minimum study list requirement. (Deferred grading only; passing passing of course only)

1. Expository Writing (4) I, II, III. The Staff (Zender in charge)

Lecture-discussion—4 hours. Prerequisite: completion of Subject A requirement. Introduction to modern inquires into the nature and forms of the English language. Frequent writing assignments will be made.

2. Language and Stylistics (4) I, II, III. The Staff (Zender in charge)

Lecture-discussion—4 hours. Prerequisite: completion of Subject A requirement. Introductory study of several genres of English literature, emphasizing both analysis of particular works and the range of forms and styles in English prose and poetry. Frequent writing assignments will be made.

3. Introduction to Literature (4) I, II, III. The Staff (Zender in charge)

Lecture-discussion—4 hours. Prerequisite: completion of Subject A requirement. Introductory study of several genres of English literature, emphasizing both analysis of particular works and the range of forms and styles in English prose and poetry. Frequent writing assignments will be made.

5F. Introduction to Creative Writing: Fiction (4) I, II, III. The Staff (Zender in charge)

Lecture-discussion—4 hours. Prerequisite: completion of Subject A requirement. The elementary principles of writing fiction. Students will write both in prescribed forms and in experimental forms of their own choosing. No final examination.

5P. Introduction to Creative Writing: Poetry (4) I, II, III. The Staff (Zender in charge)

Lecture-discussion—4 hours. Prerequisite: completion of Subject A requirement. The elementary principles of writing poetry. Students will write both in prescribed forms and in experimental forms of their own choosing. No final examination.

*10A-G. Topics in British and American Literature (2) I, II, III.

Lecture—1 hour; discussion—1 hour. An introductory course in modern literature designed for non-majors. Authors and topics will vary, depending upon the following subjects:

(A) The Fantastic in Recent American Literature
(B) The New Journalism
(C) The Literature of California
(D) The Theater of the Absurd
(E) Love and Death in the American Novel
(F) The Literature of Sport
(G) Feminism and Modern Feminist Literature

20. Intermediate Composition (4) I, II, III. The Staff (Zender in charge)

Lecture-discussion—4 hours. Prerequisite: one course from courses 1, 2, 3. Designed primarily for non-majors who wish to improve their skills in expository and technical writing; includes basic principles of rhetoric and rules of usage in present-day English.

Lecture—2 hours; discussion—2 hours; laboratory—1 hour. For foreign students only; required of those who do not pass the examination in English. May be repeated for credit.

Lecture—2 hours; discussion—2 hours; laboratory—1 hour. Continuation of course 25.

28. Introduction to Library Research and Bibliography (3) I, II, III. Library Staff (Chairperson in charge)

Lecture—1 hour; practical—6 hours. Methodology of research in academic libraries including catalogs, indexes and abstracts, bibliographies, specialized sources of information. Emphasis on preparation of detailed bibliographies and term paper research; offered in conjunction with the library.

30A. Survey of American Literature (4) I, Wiggins

Lecture—4 hours. Prerequisite: one course from courses 1, 2, 3. American literature from the seventeenth century to 1830.

30B. Survey of American Literature (4) II, Wiggins

Lecture—4 hours. Prerequisite: one course from courses 1, 2, 3. American literature from 1830 to 1900.

30C. Survey of American Literature (4) III, Wiggins

Lecture—4 hours. Prerequisite: one course from courses 1, 2, 3. American literature from 1900 to present.

*43. Critical Reading of Drama (4) I, II, III. The Staff (Chairperson in charge)

Lecture-discussion—4 hours. Prerequisite: one course from courses 1, 2, 3. An introduction to the forms of drama and the development of critical abilities through directed close reading. Frequent written exercises.

44. Critical Reading of Fiction (4) I, II, III. The Staff (Chairperson in charge)

Lecture-discussion—4 hours. Prerequisite: one course from courses 1, 2, 3. An introduction to the forms of prose fiction and the development of critical abilities through directed close reading. Frequent written exercises.

45. Critical Reading of Poetry (4) I, II, III. The Staff (Chairperson in charge)

Lecture—4 hours. Prerequisite: one course from courses 1, 2, 3. Close reading of selections from English and American poetry. Frequent written exercises.

46A. Masterpieces of English Literature (4) I. The Staff (Chairperson in charge)

Lecture—4 hours. Prerequisite: one course from courses 1, 2, 3. Selected works of principal writers to 1640. The history of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms.

46B. Masterpieces of English Literature (4) II. The Staff (Chairperson in charge)

Lecture—4 hours. Prerequisite: one course from courses 1, 2, 3. Study of literary texts from the various historical periods and genres.
historical periods in the English language, considering, in addition to other stylistic features, those characteristics particularly connected with development and change in the respective linguistic periods.

**1050. Linguistics, Literature, and Composition (4) II.
Hartman
Lecture—3 hours; term paper. Prerequisite: courses 105A and 105B. Linguistic theories and methods in literary analysis and in composition. Course considers structural linguis-
tics and transformational grammar exemplified in analysis, criticism, and content of belittleristic and nonbelit-
tristic written materials.

**107. Special Topics in English Language (1-2) I.
Cooley
Seminar—3 hours; special project. Prerequisite: one course from courses 1, 2, 3. Investigation of varied sub-
jects in contemporary and historical English language studies. May be repeated to credit when a different topic is studied. (Same course as Linguistics 107.)

**110A. Introduction to Principles of Criticism (4) II.
Hayden
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. The essentials of literary criticism and its history from Aristotle to the modern era, with emphasis on the major critics.

**110B. Introduction to Principles of Criticism (4). I.
Spencer
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. The history of literary criticism in the modern era, with emphasis on the ties with the past and the special problems presented by modern literary theory.

111. Old English and Early Medieval Literature (4) I.
Silvia
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Major types, traditions, and conven-
tions of literature in England from the time of Beowulf to the age of Chaucer. Revels movement, with special emphasis on the heroic strain, courtly love and its impact, and the develop-
ment of Arthurian literature. Mostly in translation.

112. The Age of Chaucer (4) III.
Chaucer
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. The literary, religious, and social movements of the later fourteenth century in England as they are reflected in the writings of Chaucer, Langland, the Gawain poet, and their contemporaries; the fifteenth-cen-
tury Chaucerns.

113. Chaucer (4) II.
Silvia
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Troilus and Criseyde, selected Can-
terbury Tales; central ideas in the fourteenth century.

Silvia
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Poetry of Skelton, Wyatt, Surrey, Sid-
ney, Spenser, Marlowe, and Shakespeare; selected discus-
sive prose and fiction. Political, religious, and intellec-
tual background.

117A. Shakespeare: the Early Works (4) I.
The Staff
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Selected major works from Shake-
speare’s early period, up to 1599. Courses 117A-117B-
117C need not be taken in sequence.

117B. Shakespeare: the Middle Period (4) I.
The Staff
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Selected major works from Shake-
speare’s middle period, up to 1604. Courses 117A-117B-
117C need not be taken in sequence.

117C. Shakespeare: The Later Works (4) III.
The Staff
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Selected major works from Shake-
speare’s later period. Courses 117A-117B-117C need not be taken in sequence.

120. Earlier Seventeenth-Century Poetry and Prose (4)
Lecture—3 hours; term paper or the equivalent. Prereq-
quisite: one course from courses 1, 2, 3. Major authors, forms, and styles. Donne, Jonson, Marvell, Bacon, Browne, Hobbes. Tradition and revolution.
**155D. The English Novel: 1900 to the Present (4) (4) III. Hanzo
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Major figures including Conrad, Joyce, and Lawrence. Explores the revolt against naturalism, the experimental novel; the anti-modernist reaction.

**156. The Short Story (4) I. Hoffman
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. The short story as a genre; its historical development, techniques, and formal character as a literary form. European as well as American writers.

**158A. The American Novel to 1900 (4) III. Woodress
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Rise and development of the American novel from its beginnings. Hawthorne, Melville, Twain, and others.

**158B. The American Novel from 1900 to the Present (4) I. Hoffman
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Major American novelists of the twentieth century. Faulkner, Hemingway, Fitzgerald, and others.

**160B. The English Lyric (4) III. Wright
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. History of the lyric form from the 16th century to the present. Major examples of the short poem in relation to intellectual history, to foreign influences, and to the development of poetic form.

**170A. The Epic (4) II. Zander
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Studies in the development of the epic.

**171. English Bible as Literature (4) II. Robertson
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. The Bible as source of literature: poetry and prophecy; the Gospels and certain Epistles.

**173. The Literature of Science Fiction (4) III. Hanzo
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: one course from courses 1, 2, 3. Study of the literary methods and modes of science fiction. The course will analyze representative novels and short stories which exemplify major themes and styles in this genre—e.g., time travel, alternative universes, utopian, anthropological, sociological science fiction.

**175. American Literary Humor (4) III. Wesler
Lecture-discussion—3 to 4 hours; term paper. Prerequisite: one course from courses 1, 2, 3. American humorous vision of man, nature, and the supernatural. Includes one or more of the following: colonial humor, southwestern and New England humor, pre- and post-Civil War masters, local colorists, journalistic gags, anti-provincialists, modernist poets and prose writers, black humor.

**179. Multi-Ethnic Literature (4) I. Weber
Lecture—3 hours; papers. Prerequisite: one course from courses 1, 2, 3. Fiction, poetry, and other writings by Americans of ethnic minority background (Native, Black, Hispanic, Jewish, Italian, etc.) which reveal their immigrant experience, cultural diversity, and contributions to American literature.

**180. Children's Literature (4) I. III. Wiggins
Lecture—3 hours; paper. Prerequisite: one course from courses 1, 2, 3, and one from 30A, 30B, 30C, 45, 46A, 46B, 46C. A study of the historical-backgrounds and development of types of children's literature, folklore and oral tradition, levels of interest, criticism and evaluation, illustration and bibliography.

**181. Black Literature (4) II. Hicks
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. A study of the writings of black Americans, including Chestnut and Dunbar in the nineteenth century, the writings of the Harlem Renaissance in the twentieth century, and the more important contemporary black writers, such as Wright, Ellison, Baldwin, Hansberry, and Jones.

**182. Sexuality and Sexual Experience in Literature (4) I. Amos
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3. Sexual experience in English literature, poetry and prose, cultural anxieties, literary sanctions, eroticism and pornography. National origin of literature to be taught will depend on instructor.

**183. Film as Narrative (4) I. Baker
Lecture—2 hours; discussion—1 hour; film viewing—1 to 2 hours. Prerequisite: one course from courses 1, 2, 3. Dramatic Art 15 or consent of instructor. A close study of modern cinema (1920-60) as a storytelling medium. Emphasis on the work of the American and British artists (Ford, Hitchcock, Welles).

**184. Advanced Filmmaking (4) II. Baker
Lecture-discussion—2 hours; laboratory—3 hours. Prerequisite: course in filmmaking. Creation of short, independent films. Each student will undertake to write a script, then shoot and edit a short 16mm movie. Limited enrollment.

**185. Literature by Women (4) I. S. Gilbert
Lecture—3 hours; term paper. Prerequisite: one course from courses 1, 2, 3, 5. English language literature by women from the Middle Ages to the Renaissance, Moll Flanagin, and feminism. Effects of social constraints upon women's art; the rise of feminism; new trends in literary criticism.

**186. History and Production of the Book (4) II. Berger
Lecture—3 hours; seminar—1 hour; laboratory—1 hour. Prerequisite: one course from courses 1, 2, 3. The course will cover a history of book production from the earliest records to modern book-making techniques. Students will make paper and papyrus, print and bind their books. Also covers are manuscript production, alphabet, type, casting, book design.

**187. Literature and Other Arts (4) III. Robertson
Seminar—2 hours; term paper. Prerequisite: junior or senior standing with a major in English or consent of instructor. Group study of the relationship between the forms of literature and the forms of the other arts, with detailed study of one of the crucial periods of artistic development in western culture.

**188. Special Topics in Literary Studies (4) I, III. The Staff (Chairperson in charge)
Seminar—3 hours; term paper. Prerequisite: junior or senior standing with a major in English or consent of instructor. Group study of a special topic drawn from English or American literature. Course will be offered in sections according to student demand, and papers will be assigned. Limited enrollment. May be repeated for credit with consent of instructor.

**189. Study of a Major Writer (4) II. The Staff (Chairperson in charge)
Seminar—3 hours; term paper. Prerequisite: junior or senior standing; a major in English or consent of instructor. The artistic development of one major writer and his intellectual and literary milieu. Limited enrollment. May be repeated for credit with consent of instructor.

**190. English Instruction of Foreign Students (1-4) II. Schwab
Consultation with coordinator; actual instruction. Prerequisite: advanced standing in English, linguistics, anthropology, or psychology. Designed to teach English pronunciation, grammar, and sentence structure to foreign students through language clinics and tutorials. Does not fulfill major requirements for major. (P/NP grading only.)

**194. Multilingual Literature (4) II. Harsh
Seminar—3 hours; term paper. Prerequisite: course 105A. Analysis of linguistic stylistic variations in specific works to be selected from the corpus of writings in English. (Same course as Linguistics 194.)

**197. Internships in English (2-4) I, II. The Staff (Chairperson in charge)
Field work. Prerequisite: one course from courses 1, 2, 3. Internships in fields where English majors can practice their skills. Does not fulfill major requirements for major. May be repeated for credit for a total of 12 units. (P/NP grading only.)

**197T. Tutoring in English (1-4) I, II, III. The Staff (Chairperson in charge)
Prerequisite: upper-division standing and consent of Chairperson. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. Does not fulfill major requirement for major. May be repeated for credit for a total of 8 units. (P/NP grading only.)

**197C. Community Tutoring in English (1-4) I, II, III. The Staff (Chairperson in charge)
Prerequisite: upper-division standing and a major in English; consent of Chairperson. Field experience, with individuals or in classroom instruction in the understanding of English language, literature, and composition. Does not fulfill requirement for major. May be repeated for credit. (P/NP grading only.)

**198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: one course from courses 1, 2, 3. SF, SP. (NP grading only.)

**199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

**Graduate Courses

**200. Techniques of Literary Scholarship (4) I. Woodress
Lecture—3 hours. The elements of bibliography with special emphasis on the methods of literary research. The principles of literary criticism and musical analysis of literature. (P/NP grading only.)

**201. Literary Criticism (4) I. Hayden
Lecture—3 hours. Surveys the major critics from Aristotle to the present, with emphasis on the relationship of critical theory to the history of literature.

**203. Theory and Practice of Written Composition (4) II. Harsh
Seminar—3 hours; practical exercise of writing and tutorial assignments. Students admitted into this course by examination of their own written skills. (Those with insufficient advanced command of writing shall be required to take a special section of course 103, at no credit, before enrolling in course 203.) Instruction in the teaching of composition. Emphasis on mastering both the basics and finer points of expository prose and teaching such skills to others.

**204. American English from 1600 to Present Day (4) III. Cooley
Lecture—3 hours; term paper. Historical changes reflected in American writing and the study of dialect variations. Emphasis will be placed on patterns of development of phonology, morphology, syntax, and lexicon and on characteristics of regional writing and dialect variations.

**205. Introduction to Old English (4) I. Cooley
Lecture—3 hours; written reports, individual conferences. Language of Anglo-Saxon England, readings in Old English prose and poetry.

**206. Beowulf (4) II. Spamer
Lecture—3 hours. A study of the poem and the Heroic Age of Germanic literature.

**207. Middle English (4) II. Berger
Lecture—3 hours; term paper. Study of the phonology, morphology, syntax, and lexicon between 1100 and 1500 with investigation of the regional dialects; pertinent facts on both the internal and external linguistic history; intensive reading of texts.

**208. Early Modern English (4) II. Harsh, Cooley
Lecture—3 hours; term paper. Study of writings in the period from the Renaissance to the present day. Intensive reading of texts will include consideration of phonology, morphology, syntax, lexicon, and pertinent linguistic changes in the historical period.

**209. Present-Day English Linguistics (4) III. Harsh, Cooley
Lecture—3 hours; term paper. Theory and methods of structural linguistics and transformational grammar as applied to the analysis of English. Emphasis will be on recent linguistic techniques, particularly as they relate to the teaching of language, literature, and composition.

**210. Readings in English and American Literature (4) I, Woodress
English; Entomology

Discussion—3 hours. Prerequisite: upper division English course in area to be studied. Offered in multiple sections each quarter. Content varies according to specialty of instructor. Course designed for students preparing for comprehensive examinations. May be repeated for credit.

215. Arthurian Romance (4) II. Spamer Lecture—3 hours. The sources of Arthurian Romance Literature; Continental and English literary treatment; Malory’s synthesis; significant changes of attitudes in post-Malory literature.

225. Topics in Irish Literature (4) II. McGuinness Seminar—3 hours. Prerequisite: course 139. Course may vary from quarter to quarter and will include such topics as the nineteenth-century novel, contemporary Irish poetry, the rise of the drama, or a study of a major author.

226. Literary Methods and Literary Criticism for the Teaching of English (4) I. The Staff Lecture—3 hours; laboratory—2 hours. Introduction to literary resources, bibliography, and modes of criticism for the prospective teacher of English on the secondary and postsecondary level.

230. Study of a Major Writer (4) I. Woodress; III, Hopkins Seminar—3 hours; conferences with individual students—1 hour; research papers. Aristic development of one major writer and his intellectual and literary milieu. May be repeated for credit when a different writer is studied.

232. Problems in English Literature (4) II. Sivik, III, Hayden Seminar—3 hours; conferences with individual students—1 hour. Selected issues in the current study and critical assessment of a limited period or topic in English literature. May be repeated for credit when different period or topic is studied.

233. Problems in American Literature (4) II. Carter Seminar—3 hours; conferences with individual students—1 hour; research papers. Selected topics for intensive investigation. May be repeated for credit when different topic or period is studied.

234. Dramatic Literature (4) III. R. Cohn Seminar—3 hours. Historical introduction to dramatic theory; the genres of tragedy, comedy, and tragicomedies.

235A. Theory of Fiction (4) II. Hano Seminar—3 hours; preparation and evaluation of research papers. Theories of fiction as reflected in the practice of writers from the eighteenth century to the present.

235B. Theory of Fiction (4) III. Seminar—3 hours; preparation of a work of fiction and a critical explanation of it. Prerequisite: graduate standing in creative writing program. Investigation of fiction from the writer’s, not the critic’s view; revisions, strategies, approaches, and the factors limiting those choices; also relation of the writer to his work.

236. Poetics (4) III. Shaprio Seminar—3 hours. Metaphor, style, and structure in English poetry from the sixteenth century to the present.

237. Modern Critical Theory (4) I, III. Hano Seminar—3 hours. Examination of problems in the theory underlying the practice of literary criticism from I. A. Richards and T. S. Eliot to the present.

240A.-240B.-240C. Medieval Literature (4-4-4) I-II-III Seminar—2 hours; conference—1 hour.

242A.-242B.-242C. Sixteenth-Century Literature (4-4-4) I-II-III Seminar—2 hours; conference—1 hour.

244A.-244B.-244C. Shakespeare (4-4-4) II-I, Levin Seminar—2 hours; conference—1 hour.

246A.-246B.-246C. Seventeenth-Century Literature (4-4-4) A, C, I, Carr, Ill, Schleier Seminar—2 hours; conference—1 hour.

250A.-250B.-250C. Romantic Literature (4-4-4) I-II-III Seminar—2 hours; conference—1 hour.

252A.-252B.-252C. Victorian Literature (4-4-4) B, II, E. Gilbert Seminar—2 hours; conference—1 hour.

254A.-254B.-254C. Twentieth-Century British Literature (4-4-4) I-II-III Seminar—2 hours; conference—1 hour.

255A.-255B.-255C. Early American Literature (4-4-4) B, II, Weber Seminar—2 hours; conference—1 hour.

255A.-255B.-256C. American Literature: 1800 to the Civil War (4-4-4) I-II Seminar—2 hours; conference—1 hour.

256A.-256B.-256C. American Literature: Civil War to 1914 (4-4-4) I-II-III Seminar—2 hours; conference—1 hour.

258A.-258B.-258C. American Literature after 1914 (4-4-4) C, III, Hays Seminar—2 hours; conference—1 hour.

258A-264B.-264C. Studies in Modern British and American Literature (4-4-4) B-C, II-I, Gilbert Seminar—2 hours; conference—1 hour.

290F. Seminar in Creative Writing of Fiction (4) II. The Staff (Shapiro in charge) Seminar—2 hours; 1 hour conference weekly; 1 additional hour of writing. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in master's program in Creative Writing. Writing of prose. Evaluation of written materials and individual student conferences. May be repeated for credit.

290G. Seminar in Creative Writing of Poetry (4) I, III. The Staff (Shapiro in charge) Seminar—2 hours; 1 hour conference weekly; 1 additional hour of writing. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in master's program in Creative Writing. Writing of poetry. Evaluation of written materials and individual student conferences. May be repeated for credit.

298. Directed Group Study (1-5) I, II, III. The Staff Chairperson in charge (SU grading only.)

299. Individual Study (1-12) I, II, III. The Staff Chairperson in charge (SU grading only.)

299D. Special Study for the Doctoral Dissertation (1-12) I, II, III. The Staff Chairperson in charge (SU grading only.)

Entomology

(Chairperson of the Department, Donald L. McLean, Ph.D., Department Office, 367 Briggs Hall (752-0475))

Faculty

Oscar G. Bacon, Ph.D., Professor
Stanley F. Bailey, Ph.D., Professor Emeritus
Martin C. Birch, Ph.D., Associate Professor
Richard M. Bohart, Ph.D., Professor
Warren R. Cothran, Ph.D., Associate Professor
Sebastian J. Duffey, Ph.D., Assistant Professor
Lester E. Elder, Ph.D., Assistant Professor
Norman E. Gary, Ph.D., Professor
Albert A. Grigorac, Jr., Ph.D., Professor
Charles L. Judson, Ph.D., Professor
Harry K. Kaya, Ph.D., Associate Professor
Harry H. Laidlaw, Jr., Ph.D., Professor Emeritus
W. Harry Lange, Jr., Ph.D., Professor
Thomas F. Leigh, Ph.D., Lecturer
Benjamin F. Lonsbery, Ph.D., Professor
Armand M. Maggenti, Ph.D., Lecturer
G. A. H. McClelland, Ph.D., Professor
Donald L. McLean, Ph.D., Professor
Christine Y. Peng, Ph.D., Assistant Professor
Timothy M. Proctor, Ph.D., Professor
Dewey J. Ranki, Ph.D., Professor (Nematology)
Richard E. Rice, Ph.D., Lecturer
Eugene M. Stafford, Ph.D., Professor Emeritus
Francis M. Summers, Ph.D., Professor Emeritus
Robert W. Thorp, Ph.D., Professor
David R. Vignieri, Ph.D., Lecturer
Nematology
Robert K. Washino, Ph.D., Associate Professor

The Major Program

The Entomology major provides students an opportunity for extensive study of insects—their behavior, classification, structure, physiology, and ecology. Some of the areas of emphasis in entomology are: biodynamics, management of pest insects with natural enemies and chemicals, management of honeybees for pollination of agricultural crops and honey production. Entomology and transmission of plant and animal pathogens. Employment opportunities are available in managerial and technical positions with state and federal agencies and agricultural production or chemical companies. Some entomology graduates prepare to teach entomology and other biological sciences in high schools and junior colleges. Other graduates matriculate in graduate programs leading to a higher degree.

B.S. Major Requirements:

(For convenience in program planning the usual...
101A, 101B. Insect Structure and Function (4,4) I, II Birch, Judson, Peng Lecture—2 hours; laboratory—6 hours. Prerequisite: course 100; Chemistry 68 recommended; (course 101A recommended, prior to 101B). Principles of evolutionary, functional and comparative aspects of insect morphology, and study of the mechanisms and processes by which insects maintain themselves and adapt to the environment. Laboratory sessions cover basic insect structure and introduce research principles and techniques.

103. Systematic Entomology (4) III. Bohart Lecture—2 hours; laboratory—6 hours. Prerequisite: introductory course in zoology or entomology. The principles of animal taxonomy and classification, introduction to classification and nomenclature.

104. Insect Ecology (4) II. Coltrain Lecture—3 hours; discussion—1 hour. Prerequisite: a general biology course. Principles of animal ecology with emphasis on insect population dynamics: analysis of factors influencing distribution and abundance. Application of basic theory to management of pest insect populations with focus on biological control and related approaches. Community structure and dynamics.

105. Insect Systematic Classification (3) III. Bohart, Grigarick Lecture—1 hour; laboratory—6 hours. Prerequisite: course 100. Principles and methods of classification of insects to the family level with emphasis on identification.

106. Field Entomology (4) III. Bohart Lecture—8 hours; weekend field trips—8-10 days. Prerequisite: course 105 or consent of instructor. Collection and comparative analyses of insect fauna using techniques employed in field and laboratory settings. Offered in odd-numbered years.

109. Field Taxonomy and Ecology (7) Extra session summer BOHART Lecture—2 hours; laboratory—36 hours; five-week course. Prerequisite: introductory course in entomology or consent of instructor. Identification of insects in their natural habitat, their identification and ecology. Offered in even-numbered years.

110. Economic Entomology (4) I, II Grigarick, Bacon Lecture—2 hours; laboratory—6 hours. An introductory course dealing with the identification, biology, and control of insects and mites that cause economic losses. Emphasis is placed on the management of agricultural pests but includes structures, household, storage, and ornamental pest problems.

112. Agricultural Pest Management (4) II. Lange Lecture—3 hours; laboratory—3 hours. Prerequisite: upper division standing in one of the biological sciences or consent of instructor. An introduction to the principles of pest management as they apply to representative agricultural crops with emphasis on the integration of available control measures in the development of crop protection strategies.

116. Biology of Aquatic Insects (3-5) III. Grigarick Lecture—2 hours and laboratory (Saturday field trips): optional laboratory on identification and/or aquatic insect collection. Prerequisite: course 100 or consent of instructor. A study of the life history, ecology, and identification of insects associated with streams, ponds, and lakes.

118. Crop Resistance to Arthropod Pests (4) III. Leight Lecture—3 hours; discussion—1 hour. Prerequisite: course 110 or equivalent; upper division standing; additional course work in entomology and plant sciences recommended. Designed for students in agricultural entomology and/or crop production; an introduction to host plant resistance as a durable and efficient technique applicable to pest management systems. Procedures and methods. Offered in odd-numbered years.

119. Agriculture (3) II. Gary Lecture—3 hours. Biology and behavior of honeybees; communication, orientation, social organization, foraging activities, honey production, pollination activities.

119L. Agriculture Laboratory (2) II. Gary Discussion—1 hour; laboratory—3 hours; field trips taken primarily during laboratory time. Prerequisite: course 119 or consent of instructor. Biology and behavior of honey bees; fundamentals of culture, management, and use of colonies for agricultural, recreational, teaching, and research purposes. Field trips to industrial activities.

120. Insect Host-Plant Interactions (4) II. Duffey Lecture—3 hours; discussion—1 hour. Prerequisite: course 101A-101B; Biology 101A-101B or equivalent. General introduction to fundamental interactions of insects and their hosts. Emphasis will be on mutualistic and parasitic relationships and on the application of this knowledge to problems of host-plant resistance to insects. Emphasis on comparative defensive biochemical interaction between various organisms particularly plants and insects.

121. Insect Behavior (3) I, Birch Lecture—3 hours. Prerequisite: upper division standing in one of the biological sciences, or consent of instructor. Physiological basis for behavior, specific types and patterns of behavior, comparative behavior, learning and evolution of behavior.

121L. Insect Behavior Laboratory (2) I, Birch Lecture—6 hours. Prerequisite: course 121 (may be taken concurrently). Laboratory demonstrations of different types of insect behavior. Individual projects on analyses of insect behavior. Limited enrollment.

123. Classification of Immature Insects (4) I. Lange Lecture—2 hours; laboratory—6 hours. Prerequisite: introductory course in entomology or plant pathology, or consent of instructor. Biological, physiological and biochemical interactions of immature insects and the plant pathogens they transmit. Emphasis placed on the vector interactions with plant viruses and mycoplasma.

127. Acalyptera (4) I, Eber Lecture—2 hours; laboratory—6 hours. Prerequisite: course 103 or consent of instructor. The systematic, ecology, morphoogy, physiology and evolution of mites; management of pest species. Offered in odd-numbered years.

130. Biological Control (4) I, Eber Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or consent of instructor. Theory and practice of biological control of arthropod pests; biology of entomopathogenic arthropods, role of insects in weed control, microbial control of insects and mites.

140. Insect Pathology (4) III. Yay Lecture—3 hours; laboratory—3 hours. Prerequisite: introductory course in entomology and at least one course in a microbiological science. Principles of insect pathology and insect microbiology. Non-infectious and infectious diseases of insects, diagnosis, epizootiology, therapy, and microbial control.

153. Medical Entomology (4) I. McCollard Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in one of the biological sciences or consent of instructor. The worldwide relationships of insects and other arthropods to human health. The biology and basic classification of medically important arthropods with special emphasis on the ecology of arthopod-borne human diseases and principles of their control.

155. Management of Medically Important Arthropods (3) I. Wasilewski Lecture—2 hours; laboratory—3 hours. Prerequisite: course 153 or consent of instructor. Lectures and laboratory sessions to consider the practical aspects of arthropod vector control practices within the framework of a human-domestic animal disease management program.

156. Biology of Parasitism (3) II. Maggioli Lecture—3 hours. Prerequisite: Biological Sciences 1 or consent of instructor. Lectures on the biological and ecological aspects affecting host-parasite relationships using selected examples from protozoan and metazoan fauna.

156L. Biology of Parasitism Laboratory (1) II. Maggioli (School of Medicine) in charge. Labovario (Veterinary Microbiology). Maggioli (Nematology). Waxing Lecture—6 hours. Prerequisite: Biological Sciences 1 or consent of instructor. Lectures on the biological and ecological aspects affecting host-parasite relationships using selected examples from protozoan and metazoan fauna.
Environmental Horticulture

Microbiology, Maggioni (Nematology), Wuanghi Laboratory—3 hours. Prerequisite: course 156 (concurrently) or consent of instructor. Laboratory demonstrations using selected examples of protozoa and metazoa organisms along with various techniques used in parasitology to exemplify concepts presented in the lecture course.

170. Insect Pest Management. (6) Extra-session summer. Leigh, Rice, Summers Lecture—60 hours total; laboratory and field trips—100 hours total. Prerequisite: upper division standing and at least one course in agricultural entomology or insect ecology. Field course in pest management principles and practices. Students participate in detection and sampling for pest and beneficial species and evaluation of damage; and also plan and conduct experiments utilizing biological, chemical, and cultural control methods.

198. Directed Group Study (1-5) 1, II, III, summer. The Staff (McLean in charge) Prerequisite: consent of instructor. (PIP grading only.)

199. Special Study for Advanced Undergraduates 1-5 I, II, III, summer. The Staff (McLean in charge) (PIP grading only.)

Graduate Courses

201. Theoretical Aspects of Pest Management (3) II. Lecture—2 hours, discussion—1 hour. Prerequisite: Mathematics (statistics) 131A-131B-131C, Mathematics 211A-211B-211C, and knowledge of Fortran. The theory of crop and ecosystem analysis and modeling using various crop models.

202. Advanced Insect Physiology (2) III. Judson Lecture—2 hours. Prerequisite: course 101B or the equivalent or consent of instructor, Biochemistry 131A or 131B recommended. Selected topics in insect physiology. Intensive study of topics of current interest, which will vary from year to year. Course may be repeated for credit. Offered in odd numbered years.

203. Advanced Insect Physiology Laboratory (2) III. Judson Laboratory—6 hours. Prerequisite: course 101B or Zoology 142. Investigation of selected aspects of insect physiology, independent projects may be undertaken. Offered in odd numbered years.

219. Advanced Agriculture (4) III. Peng Lecture—2 hours. Laboratory—6 hours. Prerequisite: course 116, or consent of instructor. Current topics in soil biology with special consideration of morphology, caste determination, queen rearing, nutrition, physiology, pathology, and products of honey bees.

245. Pollination Ecology (4) III. Thorp, Webster (Botany) Lecture—2 hours. Laboratory—6 hours, field trips. Prerequisite: consent of instructor. Theory of ecological relationships between plants and their pollinators with emphasis on insect pollination. Review of adaptations of both flowers and insects, and survey of the coevolution of pollination relationships. Offered in even numbered years. (Same course as Botany 245.)

253. Advanced Medical Entomology (4) III. McClelland, Lavoipierre (Veterinary Microbiology) Lecture—2 hours. Laboratory—6 hours. Prerequisite: one upper division course in entomology (other than course 155) and one course in microbiology; course 155 recommended. An analysis of several arthropod-borne human diseases with emphasis on the relationship of the biology of the vector to the ecology of the disease. Laboratory emphasis on general techniques and in depth study of a selected vector group. Offered in even numbered years.

255. Electrical Principles Related to Entomological Research (4) II. McLean Lecture—3 hours; laboratory—3 hours. Prerequisite: course in college physics, graduate standing in a biological science or consent of instructor. Basic electrical principles of ac and dc circuits. Methods of electrical measurements, discussion of semiconductor devices, and basic circuits of power supplies, amplifiers, oscillators, and electronic switching are presented in relation to biological measurement systems.

275A. Principles and Methods of Entomological Research (4) II. The Staff (McClelland in charge) Lecture—2 hours; laboratory—6 hours. Prerequisite: Agricultural Science and Management 150, Mathematics 13 or the equivalent. Philosophy of research and principles of scientific inquiry related to entomological science with emphasis on problem selection, development of experiments, methods of observation, data collection and application of statistics. Offered in odd numbered years.

275B. Principles and Methods of Entomological Research (4) II. The Staff (McClelland in charge) Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 275A. Principles of scientific inquiry related to entomological science with emphasis on the development of research results for written and oral presentation. Development of skills in scientific communication. Offered in even numbered years.

290. Special Topics in Entomology (1-4) I, II, III. The Staff (Ehler in charge) Seminar—1-4 hours. Prerequisite: consent of instructor. (SU grading only.)

291. Seminar in Medical Entomology (2) II. McClelland, Wasinho Seminar—2 hours. Prerequisite: course 153. Dissections of ticks, vectors of disease in man and animals. (SU grading only.)

292. Seminar in Insect Physiology (2) II. Judson, McLean, Birch, Duffy Seminar—2 hours. Prerequisite: course 101B. Critical examination of areas of current interest in insect physiology and biochemistry. (SU grading only.)

293. Seminar in Systematic Entomology (2) II. Bohart, Lange, Grigarick, Thorp Seminar—2 hours. Prerequisite: course 103. Selected topics in systematicatics and evolution are presented and discussed. Some topics may be illustrated by laboratory sessions. (SU grading only.)

294. Seminar in Insect Ecology (2) II. Cothren, Ehler Seminar—2 hours. Prerequisite: consent of instructor. A general ecology course. Discussions of advanced topics in ecology with emphasis on analysis of factors influencing the distribution and abundance of insects. Includes consideration of applications of basic theory as in biological control and related approaches. (SU grading only.)

295. Seminar in Agricultural Entomology (2) II. Bolin, Grigarick, Cothren, Ehler Seminar—2 hours. Prerequisite: course 110. Discussion of advanced topics related to principles of pest insect population management. (SU grading only.)

296. Seminar in Bee Ecology (3) II. Thorne, Gary, Peng Seminar—2 hours. Prerequisite: course 119 or the equivalent. Discussions of behavior, ecology, management, and general biology of bees (Apis) with emphasis on the honey bee. (SU grading only.)

297. Seminar in Insect Behavior (2) II. Gary, Birch Seminar—2 hours. Prerequisite: course 121. Review and critical analysis and of contemporary advances in insect behavior, especially interpretation and description of observations, physiological mechanisms, functional kinds of behavior, and the application of general principles to the solution of problems in the laboratory and field. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (McLean in charge) (SU grading only.)

299. Research (1-12) I, II, III, Summer. The Staff (McLean in charge) (SU grading only.)

Environmental Horticulture
(College of Agricultural and Environmental Sciences)

Richard B. Harris, Ph.D., Chairperson of the Department
Department Office, 140 Environmental Horticulture Building (752-0130)

Faculty
Seymour M. Gold, Ph.D., Associate Professor
Wesley P. Hackett, Ph.D., Professor
James A. Harding, Ph.D., Professor
Richard W. Harris, Ph.D., Professor
Charles E. Hess, Ph.D., Professor
Ronald W. Hodgson, Ph.D., Assistant Professor
Anton M. Kopranek, Ph.D., Professor
Harry C. Kuhn, Jr., Ph.D., Professor
Andrew T. Leisler, Ph.D., Professor
John H. Madison, Jr., Ph.D., Professor
Richard W. Mayer, M.A., Assistant Professor
James D. MacDonald, Ph.D., Assistant Professor
(Environmental Horticulture, Plant Pathology)
Allan S. Mills, Ph.D., Assistant Professor
Jack I. Paul, Ph.D., Associate Professor
Roy M. Sachs, Ph.D., Professor
Robert L. Thayer, Jr., M.A., Assistant Professor

Related Major Programs and Graduate Study
See the undergraduate majors in Environmental Planning and Management (page 217) and Plant Science (page 293); and for graduate study see page 105.

Related Courses. See Plant Science.

Courses in Environmental Horticulture

Lower Division Courses

6. Introduction to Environmental Plants (3) III. Hackett Lecture—2 hours, laboratory—3 hours. Prerequisite: Botany 2 or Plant Science 2. Growth form, and origin of plants used in landscape and home discussed in relation to their uses and climatic and cultural requirements. Students learn to identify environmental plants.

10. Landscape Horticulture for the Home and Community (3) III. Ryygo (Pomology), Kohranek Lecture—2 hours, discussion—1 hour. Recommended for non-majors. Influences of climate, soil, and cultural practices on the growing of turf, flowers, and horticultural and woody plants in the landscape.

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Kohranek in charge) (PIP grading only.)

Upper Division Courses

105. Taxonomy and Ecology of Environmental Plants (4) I. Leiser Lecture—2 hours, laboratory—6 hours, field trips. Prerequisite: course 6 or one course in taxonomy. Taxonomy of the important plants used in the western landscape. Emphasis will be placed on the identification, nomenclature, characteristics and uses of woody plants in man's environment.

107. Herbaceous Environmental Plants (3) III. Madison Lecture—2 hours, laboratory—3 hours. Prerequisite: course 6 or one course in taxonomy, identification, ecology, and use of herbaceous environmental plants, with emphasis on floricultural and foliage plants, garden annuals, and perennials.

115. Advanced Taxonomy and Ecology of Environmental Plants (4) I. Leiser Lecture—2 hours, laboratory—6 hours, field trips. Prerequisite: course 105 or consent of instructor. Identification, nomenclature, classification and uses of plants for men's environment are studied in relation to extensive variations and
ecological modification. Emphasis is placed on the use of plants in western climatic zones. Nomenclatural codes are discussed. Offered in odd-numbered years.

120. Management of Container Soils (3) I. Paul Lecture—2 hours; laboratory—3 hours. Prerequisite: Soil Science 2. Appropriate use of sand, mineral soil, and amendments to formulate container soils. Management of container soils emphasizing irrigation, salinity control and fertilizer practices.

125. Flower Crop Production and Marketing Technology (4) I. Kofanek Lecture—3 hours; laboratory—3 hours; one all-day field trip. Prerequisite: course 120, Plant Science 2. The technology of growing, marketing and selling flowers, particularly greenhouse crops, as an application of principles. Major flower crops are considered in detail.

126. Nursery Management (2) II. Hackett Lecture—2 hours; one all day field trip. Prerequisite: Plant Science 109, senior standing in plant science. The management of woody ornamental crops in relation to propagation, other cultural practices and marketing. Emphasis on planning and scheduling nursery production. One Saturday field trip required.

130A. General Turf Culture (2) II. Madison Lecture—2 hours and laboratory—3 hours (first two-thirds of the quarter). Prerequisite: Plant Science 2 or Botany 2 and a course in Soil Science. Principles and practices leading to successful planting, establishment, and maintenance of turf. Topics include selection, preparation, fertilization, irrigation, and design of sprinkler systems, mowing, and pest control.

130B. Fine Sport Turf (2) II. Madison Lecture—2 hours and laboratory—3 hours (last one-third of the quarter). Prerequisite: courses 120 and 130A. The installation and management of fine sport turf areas used for golf bowling, lawn tennis, football, etc.

133. Arboriculture (3) II. Harris Laboratory—3 hours; discussion-testing—2 hours. Prerequisite: Plant Science 2 or Botany 2. Principles and practices of selecting, planting, and maintaining trees, shrubs, and vines in urban and natural landscapes. Course given in Personalized System of Instruction format.

155. Plant Selection for Environmental Design (3) II. Leiser Lecture—2 hours; laboratory—3 hours. Prerequisite: course 6 and Environmental Planning and Management 10. Ability, characteristics, and limitations of landscape plants and plantings to modify the environment, control traffic, reduce erosion, create art. etc., with emphasis on specific species

156. Landscape Planting Design (4) II. Thayer Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 105, 155, and Environmental Planning and Management 22. Application of aesthetic, functional, and horticultural principles to the composition of the landscape and the development of planting plans. Limited enrollment.

197. Tutoring in Environmental Horticulture (1-4) I, II, III. The Staff (Hackett in charge) Hours and duties will vary depending on course tutored. Prerequisite: upper division standing, completed course or the equivalent being tutored, consent of instructor. Leading discussion sessions, conducting laboratory exercises or proctoring in personalized-system-of-instruction-format classes under faculty guidance. Occasionally conferences on subject matter and instructional techniques. May be repeated once for credit if different course is tutored.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: 3 units of upper division work in environmental horticulture or consent of instructor. Selected problems in floriculture, nursery management, and landscape horticulture. (PHN grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: 3 units of upper division work in environmental horticulture; consent of instructor. (PHN grading only.)

Graduate Courses

241. Analysis of Horticultural Problems (3) III. Paul Lecture—1 hour; laboratory—6 hours. Prerequisite: a B.S. degree (or the equivalent) in Plant Science or consent of instructor. Diagnosis of ornamental plant disorders. Emphasis on distinguishing among disorders caused by soil, water, insects, pathogens, chemical agents, climatic conditions and cultural practices using visual symptoms and circumstances for determining possible cause and laboratory methods for confirmation.

251. Modeling Productivity of Greenhouse Flower Crops (3) II. Koh Lecture—2 hours; discussion—1 hour. Prerequisite: course 125, Plant Science 101. Course will introduce students to system modeling using the DYNAMO computer program. Economically important production parameters of greenhouse flower crops will be studied and experience will be gained in using computer models to maximize economic flower crop production.

280. Seminar (1-5) I. The Staff (Chairperson in charge) Seminar—1 hour. Selected topics in floriculture, nursery management, and environmental horticulture.

286. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Group study on advanced topics in floriculture, nursery management, and environmental horticulture.

299. Research (1-12) I, II, III. The Staff (Hackett in charge) Prerequisite: graduate standing. Research in floriculture, nursery management, and environmental horticulture. (5 U grading only.)

Environmental Planning and Management

(College of Agricultural and Environmental Sciences)

Faculty

See under the Department of Environmental Horticulture.

The Major Program

The Environmental Planning and Management major provides opportunities to study the relationships between people and the environment through a common core of courses and the development of competence in one of three options. Positions for each option are listed to illustrate employment opportunities in the public or private sector that may be available to graduates. Graduate study or experience may be essential for some occupations.

The (1) Park Administration and Interpretation program option emphasizes administrative processes in the allocation, development and management of outdoor recreation systems, resources and facilities. It encompasses both administrative and interpretive principles to facilitate human-environment interactions; park and recreation director, park ranger, park naturalist, park superintendent, outdoor education specialist, conservation inform
Environmental Planning and Management

Environmental plants, Environmental Horticulture
6

Resource management, at least five courses chosen from Environmental Horticulture 105, 130A-130B, 133, Environmental Planning and Management 129, 144, 155, 161 or courses in geology, meteorology, range management, water science or soil science
16†

Economics, Agricultural Economics 147, 148, Economics 125A or 125B
4

Communications, Environmental Planning and Management 125
4

Environmental Planning and Management 160A or upper division course in applied behavioral Science, English, or rhetoric
3‡

Public administration, Agricultural Economics 112, Political Science 180-188 or 189
4

Park administration, Environmental Planning and Management 122
4

Environmental Planning and Management 134 or 136
3†

Individual requirements
29‡

<table>
<thead>
<tr>
<th>Landscape Architecture Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botany 2</td>
</tr>
<tr>
<td>Natural resources: Botany 102, Environmental Studies 116, 131, Wildlife and Fisheries Biology 10, or Zoology 2, 116</td>
</tr>
<tr>
<td>Landscape Horticulture 130A, 133</td>
</tr>
<tr>
<td>Environmental Plants, Environmental Horticulture 160A or 165 or 168</td>
</tr>
<tr>
<td>Plant selection, Environmental Horticulture 155</td>
</tr>
<tr>
<td>Planting design, Environmental Horticulture 156</td>
</tr>
<tr>
<td>Two-dimensional design, Art 16, Design 21 or Engineering 14</td>
</tr>
<tr>
<td>Three-dimensional design, Art 5, 112, 121A</td>
</tr>
<tr>
<td>Design 130 or 134</td>
</tr>
<tr>
<td>Landscape graphics, Environmental Planning and Management 24</td>
</tr>
<tr>
<td>Landscape construction, Environmental Planning and Management 154A, 154B, 154C</td>
</tr>
<tr>
<td>Landscape architecture, Environmental Planning and Management 182A, 182B, 182C</td>
</tr>
<tr>
<td>Individual requirements</td>
</tr>
</tbody>
</table>

Environmental Planning Option

Biological sciences (Botany 2 and Wildlife and Fisheries Biology 10 or Zoology 2; or with approval, such courses as, Environmental Studies 126, Water Science 120, Zoology 116)
7†

Environmental awareness (Psychology 144) | 4 |

Design and development of great cities (Art 168) | 4 |

Urban geography (Geography 155) | 4 |

Urban economics (Economics 125A) | 4 |

Urban society (Sociology 143) | 4 |

Drafting and perspective (Design 21) | 4 |

Local government and politics (Political Science 100) | 4 |

Cartography (Geography 105) or Interpretation of aerial photography (Geography 106) | 4 |

†Minimum units are indicated, if more units are taken in order to meet this unit requirement, the extra units may be counted as Individual requirements. Additional courses in the same subject to be used as Individual requirements must be approved by an adviser.

‡Courses are selected to complement each student's program option in this major. The list of courses to be used as Individual requirements must have the adviser's approval no later than Winter Quarter of the junior year.

Public mechanisms for controlling land use
(Eastern Environmental Studies 173) | 4 |

Individual requirements
37‡

Unrestricted Electives
30

Total Units for the Major
180

Major Adviser: R. W. Hodgson (Environmental Horticulture)

Courses in Environmental Planning and Management

Questions pertaining to the following courses should be directed to the instructor or to the Environmental Planning and Management advising office, TB-105.

Lower Division Courses

20. Introduction to Landscape Architecture (3) I, Thayer Lecture—3 hours. History, theory, philosophy, techniques, and applications of landscape architecture in the design of outdoor spaces and land areas. Open to non-majors.

22. Landscape Architecture Studio (3) I, Mayer; II, Thayer Lecture—1 hour; studio—6 hours. Prerequisite: course 20; Design 21 or the equivalent recommended. Introductory problems in landscape architecture, design, evaluation, and presentation methods. Limited enrollment.

24. Landscape Graphics and Design (3) II, Mayer Lecture—1 hour; studio—8 hours. Prerequisite: Design 21 or the equivalent. Laboratory work in graphic representation of landscapes and the outdoor environment, including sketching, rendering techniques, landscape drafting, lettering, color use, presentation drawings, and portfolio preparation.

Upper Division Courses

110. Urban and Regional Planning (4) II, Gold Lecture—3 hours; discussion—1 hour; one Saturday field trip. Prerequisite: upper division standing. The history, nature, scope and significance of planning in America with emphasis on basic concepts and ideas, the planning process and comprehensive planning, problems and potential, design, alternatives, and the future, innovation and the profession.

116. Outdoor Recreation (4) II, Gold Lecture—3 hours; discussion—1 hour. History, nature, scope, and significance of outdoor recreation in America, with emphasis on user-resource relationships, special problems, policy issues, and innovation.

122. Park Administration (4) II, Mills Lecture—3 hours; discussion—1 hour. Park field trip. Prerequisite: course 116. Description and analysis of the nature, concepts and techniques of providing leisure opportunities with emphasis on the policies, programs, and organization of park and recreation systems.

125. Applied Communication for Environmental Planners and Managers (4) I, Hodgeson Lecture—4 hours. Prerequisite: English 1 or 104. Communication principles and techniques are applied to the development and implementation of environmental plans and management programs. Topics are: diffusion of environmental innovations, administrative communications, and citizen input in environmental planning and management.

127. Leisure Behavior (4) II, Mills Lecture—2 hours; discussion—2 hours. Prerequisite: course 116; course 125 recommended. Investigation of selected leisure environments and resultant behavior. Analysis of leisure behavior from a motivational basis. Historical analysis of different leisure environments cross-culturally.

129. Research Methods for Planning and Management (4) II, Mills Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Mathematics 13. Applying survey research design and measurement methodology to collection of data needed for planning and managing the environment. Processing and analysis of data using computer facilities. Developing the ability to evaluate published research results.

134. Recreation Planning (4) III, Gold Lecture—3 hours; discussion—1 hour. One Saturday field trip. Prerequisite: courses 110, 116. Description of basic concepts, principles, techniques and methods used to prepare park, recreation and open space plans for urban environments.

136. Design of Recreation Environments (3) III. The Staff Lecture—2 hours; laboratory—3 hours, one Saturday field trip. Prerequisite: courses 20 and 22. Concepts, principles, techniques, problems, and potentials in the design, analysis and evaluation of recreation environments with emphasis on public outdoor recreation resources, form and function, visual quality, and the implications of design alternatives on the urban and natural landscape.

144. Park Operations (4) III, Harris Lecture—3 hours, laboratory—3 hours; one all day field trip. Prerequisite: course 116; courses 122 and Environmental Horticulture 130A, 130B or 133 recommended. Planning, execution, and supervision of field maintenance and operations with emphasis on performance budgeting, personnel practices, and scheduling. Familiarization with different areas, techniques, and technology to develop and maintain park and recreation areas.

154A. Landscape Construction: Introduction (3) III, Mayer Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 20, 22; Engineering 1 recommended. Analysis of the physical, mechanical, functional, and aesthetic properties of materials used in landscape development with emphasis on construction techniques, methods and specifications. Limited enrollment.

154B. Landscape Construction: Site Engineering (4) II, Mayer Lecture—2 hours; studio—6 hours; two 4-hour sessions which combine lecture, discussion, and studio work. Prerequisite: course 154A. Topographic and grading problems in landscape engineering; drainage plans, sections and profiles, grading plans, spot elevation, and cut and fill calculations. Limited enrollment.

154C. Landscape Construction: Details (4) III. The Staff Lecture—2 hours; studio—6 hours; two 4-hour sessions which combine lecture, discussion, and studio work. Prerequisite: course 154B. Advanced course of study in material and construction methods, construction specifications, and irrigation systems. Emphasis on construction details for landscape developments. Limited enrollment.

160A. Environmental Interpretation Principles (3) I, Hodgson Lecture—3 hours. Prerequisite: Rhetoric 1 or 3 and English 1 or 104 recommended. Applications of communication principles and techniques to environmental interpretation. Emphasis on public and recreation interpretation, museums, historic areas, botanical and zoological gardens. Emphasis on information and interpretation strategies from theory and principles.

160B. Environmental Interpretation Methods (3) II. The Staff Lecture—1 hour; laboratory—6 hours (3 hours to be arranged). Prerequisite: course 160A. English 104 recommended. Interpretation development and operations. Students learn to plan, produce, present, maintain and evaluate interpretive programs, includes instruction in the use of selected interpretive media.

161. Natural Park Ecosystems (4) II, Harding Lecture—2 hours; discussion—1 hour; field trips; a field project with oral and written report. Prerequisite: at least one upper division course in ecology (Environmental Studies 100, Zoology 125, Botany 117 or Entomology 104). Ecosystems are studied in the field and applied to selected habitats of natural parks of California. These ecosystems are contrasted in terms of productivity, mineral cycles, diversity, succession, etc. Effects of human use are stressed.

182A. Landscape Architecture: Planning and Analysis (4) I. The Staff
Environmental Studies

(Intercollege Division)

Francisco J. Ayala, Ph.D., Chairperson of the Division and Associate Dean of Environmental Studies
Division Office, 2132 Wickson Hall (752-3026)

Faculty
Gerald C. Bond, Ph.D., Assistant Professor (Geology)
James C. Cramer, Ph.D., Assistant Professor (Sociology)
William G. Davis, Ph.D., Associate Professor (Anthropology)
Theodore C. Foin, Jr., Ph.D., Associate Professor (History, Geography)
Charles R. Goldman, Ph.D., Professor (Human Ecology)
Marvin Goldman, Ph.D., Professor (Radiological Sciences)
William J. Hamilton III, Ph.D., Professor (Environmental Law)
James A. Harding, Ph.D., Professor (Environmental Health)
Robert A. Johnson, M.S., Assistant Professor (Environmental Law)
Jess F. Kraus, Ph.D., Assistant Professor (Law and Policy)
Jerry A. Males, Ph.D., Assistant Professor (Anthropology)
Eldridge M. Moores, Ph.D., Professor (Geology)
Leonard O. Myrup, Ph.D., Professor (Environmental Studies, Land, Air and Water Resources)

Subspecializations are as follows:
(a) Behavioral Biology Environmental Science 125 (social systems of animals and man);
(b) Aquatic Ecology Environmental Science 151 (ecology of fresh water ecosystems);
(c) Ecology of Taxa Botany 117 (plant ecology); Zoology 125 (animal ecology); and others;
(d) Science and Conservation Environmental Science 128 (analysis and simulation of complex systems), 129 (dynamics and simulation of ecological systems); Wildlife and Fisheries Biology 122 (dynamics of exploited animal populations).

The Program of Study

The intercollege Division of Environmental Studies is a teaching and research unit offering courses, workshops, and directed group study classes that focus on the complex problems of human-environment relations. There is no undergraduate major in Environmental Studies. Courses offered by the Division are designed primarily to supplement major programs in a wide variety of established disciplines, although they are motivated by the educational objectives of the Division. Students are encouraged to contact the Chairperson and faculty of the Division regarding individual study plans.

Environmental Policy Analysis

This program is suitable for both natural science and social science students, as well as professionals such as those in environmental planning and management or engineering. This set of courses develops theoretical and analytical skills in political, economics, and legal analysis of public policies, plans, and programs that affect the environment. Intermediate microeconomics should be taken before Environmental Studies 168A and Agricultural Economics 178.
Environmental Studies 160 (environmental decision making), Political Science 107 (environmental politics and administration), 108 (policy making in the public sector), or 109 (public policy and the Governmental process)

Environmental Studies 166 (case studies in institutional failure and reform), Political Science 111 (the American administrative system), or 212 (administrative decision making and public policy)

Environmental Studies 161 (environmental law), 174 (public mechanisms for controlling land use), or Water Science 150 (water law and water institutions)

Environmental Studies (environmental planning), 178 (environmental impact reporting), or Environmental Studies/Zoology 110 (principles of environmental science)

Agricultural Economics 147 (natural resource economics), 148 (economic planning for regional and resource development), or Economics 123 (economics and geography)

Agricultural Economics 176 (economic analysis in resource use)

Environmental Studies 168A (methods of environmental policy evaluation) and 168B (methods of environmental policy analysis)

Environmental Studies 165 (science, experts, and public policy) for natural science and engineering students

Cultural Ecology

This program is for social science and natural science students interested in the interactions between human populations and their environments and in cross-cultural comparisons. Students seeking future work in rural development, public health, environmental management, and graduate work in human ecology, anthropology, economics, or sociology will find this program useful. Several disciplines are synthesized here.

Environmental Studies 100 (general ecology) or Zoology 125 (animal ecology)

Environmental Studies/Anthropology 101 (principles of human ecology)

Environmental Studies/Anthropology 141 (cultural ecology) and Environmental Studies 141L (laboratory and field methods in cultural ecology)

Economics 100 (intermediate micro theory) or Anthropology 122 (economic anthropology)

Environmental Studies/Community Health 126 (human interactions with environmental health)

Environmental Studies 145 (population analysis)

Environmental Studies 125 (social systems of animals and man) or Anthropology 154A (primate behavior and ecology)

Graduate Study. The faculty of the Division offers graduate instruction through the M.S. and Ph.D. degree programs of the Graduate Group in Ecology, as well as through the graduate programs of the departments with which they are associated, such as zoology, sociology, political science, civil engineering, and anthropology. Further information about graduate programs in ecology should be obtained from the Chairperson of the Graduate Group in Ecology.

Graduate Adviser. R. M. Love (Ecology)

Courses in Environmental Studies

Lower Division Courses

10. Introduction to Environmental Studies (4) I, III.

The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: elementary biology recommended. Survey of the importance of ecology and systems behavior for man-environment relationships. Effect of technology, hazards and pollution evaluation based on the predictions of the response of the most sensitive physiological systems will be emphasized. (Same course as Biological Sciences 115.)

116. The Oceans (3) II. Powell, Lipp (Geology)

Lecture—3 hours. Prerequisite: upper division standing or consent of instructor. Introduction to the marine environment. Oceanic physical-chemical phenomena, chemical constituents, geological history, and the sea's biota; man's utilization of marine resources. (Same course as Geology 116.)

118. Mineral Elements in Food Chains (3) I. Buri, Epstein and Rendig (Land, Air and Water Resources)

Lecture—2 hours. Prerequisite: Chemistry 1B and one course each in biological sciences and earth science, or consent of instructor. Sources of mineral nutrients, their progression through food chains, and their importance in plants, animals and human life systems; the effects of man's activities on mineral nutrient cycling and utilization. Guest lectures on some topics. (Same course as Resource Sciences 118.)

119. The Biology of Cancer (4) III. The Staff (Chairperson in charge)

Lecture—4 hours. Prerequisite: Biological Sciences 1 or the equivalent. An introduction to the various aspects of cancer; its biology and biochemistry, its symptoms, incidence, treatment and psychosocial effects, as perceived by medical researchers, biologists, health professionals and health educators.

(b) Ecological Analysis

121. Population Ecology (4) I, The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: Botany 1 or 2, Genetics 1 or 2, Mathematics 1A or 1B, Development of sequential and logistic growth models for plant and animal populations, analysis of age structure and genetic structure, analysis of competition and predator-prey systems. Emphasis is on developing models and using them to make predictions and solving problems.

122. Analysis of Community Dynamics (4) II. Coin

Lecture—3 hours; discussion—1 hour. Prerequisite: one course in elementary ecology (course 100, Zoology 125, Entomology 104, Botany 117, or the equivalent); elementary statistics and calculus strongly recommended. Course examines the theory of community ecology from an analytical point of view. Topics covered include energy and material flows, community organization, homeostasis, and evolution. Emphasis is placed on systems ecology and the impact of man on ecological systems.

123. Introduction to Field and Laboratory Methods in Ecology (4) I, Richardson

Lecture—2 hours; laboratory—6 hours; two weekend field trips. Prerequisite: Mathematics 13, course 100 (may be taken concurrently), or the equivalent. Course will involve students in methods used for collecting ecological data in field and laboratory situations. Methods used by population ecologists and community ecologists are included and emphasis will be placed on experimental design, scientific writing and data analysis.

125. Social Systems of Animals and Man (4) II. Hamilton

Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or the equivalent recommended. The nature and interpretation of animal social systems, and their relevance to an understanding of man's social conventions and evolution. Aggression, dominance, communication, social behavior and regulation of density are considered from an evolutionary perspective.

126. Introduction to Environmental Health (4) I. Kraus

Lecture—3 hours; discussion—1 hour. Prerequisite: Community Health 101 or introductory course in biological science. Problems in environmentally dependent aspects of individual and public health. Diseases associated with pollution of air, water, soil and food; Zoonoses such as malaria, plague, rabies, and hazards of certain occupational environments. (Same course as Community Health 128.)
Environmental Studies; Environmental Toxicology

128. Analysis and Simulation of Complex Systems (4) I, Foin
Lecture—4 hours; discussion—1 hour. Prerequisite: computer programming (FORTRAN or ALGOL), calculus, and statistics. Techniques for analysis, model-building, and simulation of ecological and socioeconomic systems will be explored, with emphasis on applications to environmental problem-solving. Students will be introduced to simulation languages and will apply their training in individual or team projects.

129. The Dynamics and Simulation of Ecological Systems (3) I, Foin
Lecture-seminar—4 hours. Prerequisite: calculus, statistics, and elementary ecology. An advanced course in ecology. Lectures are given as needed, but are replaced with seminars prepared by all students with the emphasis on relative controversy of mathematical models to their solution. Limited enrollment.

(c) Cultural Ecology

141. Cultural Ecology (4) III, Orlove
Lecture—3 hours; discussion—1 hour. A comparative survey of the interaction between diverse human cultural systems and the environment of the peoples that practice them. Primary emphasis is given to people living in rural and relatively undeveloped environments as a basis for interpreting more complex environments. (Same course as Anthropology 141.)

141L. Laboratory and Field Methods in Cultural Ecology (3) I, Orlove
Discussion—1 hour; laboratory—6 hours; field—1 to 2 hours. Prerequisite: course 101, 141/Anthropology 141 (may be taken concurrently). Collection of field data in human ecology (quantitative measurements and estimates, interviews). Laboratory analysis of statistical data and interviews. Emphasis on energy, productivity, and productive systems. Offered in even-numbered years.

*142. Culture and Environmental Perception (4) II, Moles
Lecture—3 hours; individual research project. An examination of man's relationship to the environment through the study of culture. The nature of subjective models and their impact upon environmentally oriented behavior. Focuses upon classification and decision making. (Same course as Anthropology 142.)

145. Population Analysis (4) III, Cramer
Lecture—3 hours; laboratory—3 hours. A comparative and historical examination of interrelations between population dynamics and social organization, technology, and the environment; statistical analysis of the relation of demographic processes of fertility, mortality, and migration of changes and human population size, composition, and distribution.

(d) Aquatic Ecosystems Analysis

150A. Physical and Chemical Oceanography (4) I, Powell
Lecture—3 hours; discussion—1 hour. Prerequisite: course 116 or Geology 116; Physics 4B; Mathematics 22C; Chemistry 1C; or upper division standing in a natural science and consent of instructor. Physical and chemical properties of seawater, fluid dynamics, air-sea interaction, currents, waves, tides, mixing, major oceanic geo-chemical cycles. (Same course as Geology 150A.)

*150B. Geology of the Oceans (3) II, Moores, Bond
Lecture—3 hours. Prerequisite: Geology 60, 60L, 105, or consent of instructor. Introduction to the origin and geologic evolution of ocean basins. Topics include composition and structure of ocean crust, marine volcanism, and deposition of marine sediments. Special emphasis on applying sea floor spreading theory to interpreting geologic history of the ocean floor. (Same course as Geology 150B.)

150C. Biological Oceanography (3) III, The Staff
Lecture—3 hours. Prerequisite: Biological Sciences 1 and a course in general ecology, or consent of instructor. Survey of the ecology of major marine habitats including intertidal, shelf, benthic, deep-sea and plankton communities. Existing knowledge and contemporary issues in research of course will be applied to man's use of and impact on the ocean. (Same course as Geology 150C.)

151. Limnology (4) III, C. Goldman
Lecture—3 hours; discussion—1 hour. Special project. Prerequisites: Biological Sciences 1 and junior standing. The biology and productivity of inland waters with emphasis on the physical and chemical environment.

151L. Limnology Laboratory (3) III, C. Goldman
Laboratory—6 hours; two weekend field trips. Prerequisites: course 151 (may be taken concurrently); junior, senior, or graduate standing. Limnological studies of lakes, streams, and reservoirs with interpretation of aquatic ecology.

(e) Environmental Policy Analysis

160. Environmental Decision Making (4) III, Schwartz, Johnston
Lecture—3 hours; discussion—1 hour. A survey and examination of approaches and concepts in decision making relevant to environmental problems. Discussion of collective action, problems of institutional design, the implications of public sector entrepreneurship, and the effects of technology on alternative decision structures.

161. Environmental Law (4) II, The Staff
Lecture—4 hours; discussion—1 hour. Introduction for non-Law School students to some of the principal issues in environmental law and the judicial interpretation of some important environmental statutes e.g., NEPA.

*162. Planning and Decision Making in Small Urban Communities (4) III, Solow
Lecture-discussion—4 hours. Examination of urban processes in small U.S. communities, with particular attention to how local governments respond in their structures and programs to community growth, non-growth, and development. The political consequences of excessive subdivision development, overburdened utility plants, and alternative taxation strategies.

165. Science, Experts, and Public Policy (4) I, Sabatier, Cahill
Lecture—4 hours. Factors affecting the influence of scientists, planners, and other experts in policy-making. Several cases and controversies will be examined.

166. Case Studies in Institutional Failure and Reform (4) I, Sabatier
Lecture-discussion—4 hours. Selected case studies demonstrating the institutional constraints faced in environmental problem-solving in the public sector. Cases of legislative, regulatory, and administrative management agencies covering national, international, and subnational problems in environmental management will be discussed.

168A. Methods of Environmental Policy Evaluation (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 13 (or the equivalent), Economics 1A or Agricultural Economics 147. Examination of issues, concepts and methods applicable to environmental policy evaluation. Topics include analysis of information needs, data availability, and research strategies appropriate for policy evaluation models; benefit-cost analysis, policy impact assessment, multi-objective evaluation, and policy implementation.

168B. Methods of Environmental Policy Analysis (4) III, Schwartz, Tardiff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 168A. Continuation of course 168A, with emphasis on examination of the literature for applications of research and evaluation techniques to problems of transportation, air and water pollution, land use and energy policy. Students will apply the methods and concepts by means of a major project.

169. Environmental Movements and Public Policy (4)
Lecture—4 hours; term papers. Prerequisite: Political Science 107 or consent of instructor. Course will develop a conceptual framework for analyzing the historical development of social movements and their role in public policy-making. This will then be applied to the history of the environmental movement in the U.S.

(f) Environmental Planning

172. Theories of the Planning Process (4) III, Johnston
Lecture—2 hours; discussion—2 hours. Prerequisite: completion of at least one of the following: course 12, Environmental Planning and Management 110, courses 168A, 168B. 173. Competing theories of the role of planning in Western society are examined. Problems of optimum degree of economic regulation and of limited information are discussed. Applicable to land use, transportation, waste water, water resources, air quality, and social services planners.

173. Public Mechanisms for Controlling Land Use (4) II, Johnston
Lecture-discussion—3 hours; laboratory—3 hours. Prerequisite: an introductory course in planning. Politics and administration of zoning, subdivision and building regulation and open space preservation, constitutional and legal bases for controls, community and political factors influencing legislation and administration of controls; and the relative effectiveness of specific controls in channeling urban growth.

179. Environmental Impact Reporting (3) III, Johnston
Lecture—2 hours. Prerequisite: upper division standing. Methods of analysis useful in environmental impact reporting. Emphasis on effective writing, review and management of impact reports in the context of rational democratic planning systems.

(g) Other Courses

190. Workshops on Environmental Problems (1-8) I, II, III, The Staff
Laboratory—2 to 16 hours. Prerequisite: consent of instructor. Workshops featuring empirical analyses of contemporary environmental problems by multidisciplinary student teams. Guided by faculty and lay professionals, the teams seek to develop an integrated view of a problem and outline a series of alternative solutions. Open to all upper division and graduate students on application. (P/NP grading only.)

192. Internships in Environmental Management (2-4)
I, II, III, The Staff
Prerequisite: consent of instructor. Supervised program of student internships with public agencies having responsibility for environmental control. Deals with the application and evaluation of theoretical concepts through work experience and systematic observation. (P/NP grading only.)

196. Directed Group Study (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Directed study of a topic selected by the student and the instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5)
I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Directed study of a topic selected by the student and the instructor. (P/NP grading only.)

Graduate Courses

298. Directed Group Study (1-5) I, II, III, The Staff (Chairperson in charge)

299. Research (1-12) I, II, III, The Staff (Chairperson in charge)
Prerequisite: graduate standing. (SU grading only.)

Environmental Toxicology

(College of Agricultural and Environmental Sciences)
Environmental Toxicology

James N. Seiber, Ph.D., Chairperson of the Department
Department Office, 111 Environmental Toxicology
(752-1142)

Faculty

Thomas E. Archer, B.A., Lecturer
Richard G. Burau, Ph.D., Associate Professor
James L. Byard, Ph.D., Assistant Professor
Donald G. Crosby, Ph.D., Professor
Dennis P. H. Hsieh, Sc.D., Ph.D., Associate Professor
Wendell W. Kilgore, Ph.D., Professor
Robert I. Krieger, Ph.D., Associate Professor
Ming-yu Li, Ph.D., Lecturer
James N. Seiber, Ph.D., Associate Professor
Wray W. Winterlin, M.S., Lecturer
Dorothy E. Woolley, Ph.D., Professor

The Major Program

Environmental Toxicology deals with the properties, fate, biological effects, detection and regulation of natural and man-made toxics present in the environment. Toxics studied in the major include pesticides, pollutants, industrial chemicals, and poisons produced by microbes, plants, and animals. The objective of the major is to provide training which will enable students to apply the principles of the physical and biological sciences to the study of toxics as a basis for solving problems occasioned by the presence of toxics in the environment. Through the appropriate choice of electives, students have the opportunity to specialize in any one of several areas of environmental toxicology. Students electing to emphasize the application of the physical sciences to the study of toxics would qualify for positions in residue analysis, environmental monitoring and forensic toxicology. Those electing to emphasize the application of the biological sciences to the study of toxics would qualify for positions in animal toxicology, environmental health and safety, and pest control. The major can also serve as preparation for graduate or professional school.

Prospective majors must contact the major adviser before April 1 of their sophomore year. Enrollment in this major may be limited.

Environmental Toxicology

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses will be accepted. Courses shown without parentheses are required.)

Preparatory Subject Matter

UNITs
Biological sciences (Biology Sciences 1) 5
Other biological sciences (entomology, zoology, botany, bacteriology, physiology) 10-12
General chemistry (Chemistry 1A-1B-1C) 15
Organic chemistry (8A-8B or 12A-12B) 6
Environmetal science (Environmental Toxicology 10 or Environmental Studies 10) 4
Mathematics (Mathematics 16A-16B or 21A-21B, 13, 19) 13-15
Physics (Physics 1A-1B or 2A-2B) 6

Depth Subject Matter

UNITs
Biochemistry (Biochemistry 101A, 101B) 6
Organic chemistry (Chemistry 128A, 128B or 128C) 3
Electives selected for area of specialization with adviser's approval 24
Breadth Subject Matter

UNITs
English and/or rhetoric (see College Requirement) 8
Social sciences and humanities electives 12
Electives selected with adviser's approval to complement program options: courses in agricultural economics, environmental studies, sociology, political science, and psychology are particularly recommended 30
Unrestricted Electives

UNITs
Total Units for the Major 180

Information Center for the major, 122 Hoagland Hall.

Related Courses. See Atmospheric Science 131, Environmental Studies 10, 121.

Courses in Environmental Toxicology

Lower Division Courses

10. Introduction to Toxicology (4-hr.) Krieger
Lecture—3 hours; discussion, seminars, field trips, laboratory demonstrations—2 hours. Prerequisite: open to science and non-science majors. Study of some natural and man-made toxics in personal, occupational, community and global environments. Emphasis placed upon occurrence, properties, and effects of toxic substances. Biological and physical factors which alter fate of substances are described.

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Seiber in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

101. Principles of Environmental Toxicology (3-1) Byard
Lecture—3 hours. Prerequisite: Chemistry 8B or 128C (or the equivalent); Biochemistry 101A recommended. A unified introduction to the principles underlying the use and environmental consequences of pesticides, food additives, and other chemicals; their regulations; and their health significance.

112A. Toxics in the Environment (3-1) Crosby
Lecture—3 hours. Prerequisite: course 101 or consent of instructor. Properties of toxic chemicals which influence their distribution and transformations; action of environmental forces which affect toxicant breakdown, movement, and accumulation; sources and occurrence of major classes of environmental toxics.

112B. Toxics in the Environment (4-3) Burau, Seiber
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 112A and consent of instructor. Continued study of toxic chemicals—primary pollutants—in the environment; concepts of techniques of sampling, detecting, and measuring toxicants of current concern; collection, interpretation, and use of analytical data. Limited enrollment.

Environmental Toxicology majors will be given preference for enrollment.

114A. Biological Effects of Toxics (3) Byard
Lecture—3 hours. Prerequisite: Biochemistry 101B (may be taken concurrently); Course 101 and Physiology 101

114B. Biological Effects of Toxics: Comparative Aspects (4) III. Henderson, Byard, Kilgore
Lecture—1 hour; discussion—2 hours; laboratory—3 hours. Prerequisite: course 114A and consent of instructor. Course designed to illustrate basic principles of toxicity and to acquaint students with laboratory techniques for evaluating potential toxicity of chemicals. Continued course of 114A. Limited enrollment. Environmental Toxicology majors will be given preference for enrollment.

130A-E. Selected Topics in Environmental Toxicology

(3) I, II, III. The Staff (Seiber in charge)
Lecture-discussion—3 hours. Prerequisite: consent of instructor; course 114 recommended. Selected topics of current interest in environmental toxicology. Topics will vary each time the course is offered, and will emphasize such areas as the microbiology of toxic substances, poisonous plants and animals, chemical ecology, toxic substances in foods, and the safe handling of toxic substances.

131. Air Pollutants and Inhalation Toxicology (3) I, Hsieh
Lecture—3 hours. Prerequisite: Chemistry 8B (may be taken concurrently) or the equivalent; Biochemistry 101A recommended. Toxicology of air pollutants in the ambient and occupational environments. Environmental factors, toxicological effects, air-quality criteria and standards, and pulmonary responses to these pollutants.

132. Chromatography for Analytical Toxicology (3) II. Archer
Discussion—1 hour; laboratory—6 hours. Prerequisite: Chemistry 8B (may be taken concurrently) or the equivalent; consent of instructor. Introduction to, including application and theory of, basic chromatographic techniques such as thin-layer, gas-liquid, high-pressure liquid and column chromatography useful for analytical toxicology. Limited enrollment; preference given to Environmental Toxicology majors.

133. Legal Aspects of Environmental Toxicology (3) I, L
Lecture—3 hours. Prerequisite: consent of instructor; courses 10 and 11 recommended. Federal and California legislation concerning air and water pollution, pesticide use, food and feed additives, consumer protection, and occupational exposure to toxic substances; roles of Federal regulatory agencies; alternatives to governmental control.

199. Directed Group Study (1-5) I, II, III. The Staff (Seiber in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Seiber in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses

200. Mammalian Toxicology (4) III. Byard
Lecture—3 hours; discussion—1 hour (alternate weeks); laboratory—4 hours (alternate weeks). Prerequisite: course 114A; and consent of instructor. Fate, mechanism of action and symptomatology of toxiants in mammals. Limited enrollment; preference given to students in Pharmacology and Toxicology and Environmental Pathology.

203. Environmental Toxins (4) II. Crosby
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 128C (or the equivalent), or Chemistry 8B and consent of instructor. Toxic chemicals: selected topics illustrating their occurrence, structure, and the reactions
Epidemiology and Preventive Medicine

(School of Veterinary Medicine)

Hans P. Riemann, D.V.M., Ph.D., Chairperson of the Department
Department Office, 2075 Haring Hall

Faculty

Henry E. Adler, D.V.M., Ph.D., Professor
Raymond A. Bankowski, D.V.M., Ph.D., Professor Emeritus
Nemat B. Borhani, M.D., M.P.H., Professor (Internal Medicine and Community Health)
Robert B. Bushnell, D.V.M., Lecturer
Fred N. Cooper, B.S.P.H., Lecturer
Paul D. DeLay, D.V.M., Lecturer
Thomas B. Farver, Ph.D., Assistant Professor
Constantin Gengeorgis, D.V.M., Ph.D., Professor

underlying detection, toxicity, fate, and ecological importance.

220. Analysis of Toxicants (3) (III) Seiber Lecture—3 hours. Prerequisite: course 101 and consent of instructor; course 203 recommended. Principles of the microanalysis of toxicants. Theoretical considerations regarding separation, detection, and quantitative determination of toxicants using chemical and instrumental techniques.

220L. Analysis of Toxicants Laboratory (3) (III) Seiber Laboratory—4 hours. Prerequisite: course 220 (may be taken concurrently) and consent of instructor. Laboratory techniques for chemical analysis of toxicants. Separation, detection, and quantitative determination of toxicants using chemical and instrumental methods.

234. Neurophysiological Basis of Neurotoxicology (2) (III) Wooley Lecture—11/2 hours; discussion—1 hour. Prerequisite: Physiology 101 or the equivalent, consent of instructor. Techniques of action of a number of different neurotoxins, including marine toxins, insecticides and heavy metals. Examples of ways of toxins may act on the nervous system and mechanisms for study of neurotoxicology. (Offered in even-numbered years.) (Same course as Physiology 234.)

290. Seminar (1) (I, II, III) The Staff (Seiber in charge) Seminar—1 hour. Current topics in environmental toxicology. (SU grading only.)

297T. Tutoring in Environmental Toxicology (1-5) (I, II, III) The Staff (Seiber in charge) Tutoring—hours. Hours and duties will vary depending upon course being tutored. Prerequisite: advanced standing in Environmental Toxicology, a related major, or the equivalent experience, and consent of instructor. Teaching to students conducting discussion for regular departmental courses under direct guidance of teaching staff. May be repeated for credit up to a total of 5 units. (SU grading only.)

298. Group Study (1-5) (I, II, III) The Staff (Seiber in charge) Prerequisite: consent of instructor. Topics such as trace analysis of toxicants, natural toxicants, and new pesticides.

299. Research (1-12) (I, II, III) The Staff (Seiber in charge) (SU grading only.)

Courses in Epidemiology and Preventive Medicine

Upper Division Courses

100. Preventive Veterinary Medicine: Orientation (4) I, The Staff (Wiggins in charge) Lecture—40 hours total. Prerequisite: enrollee in MPVM degree program. Introduction to the concepts basic to biostatistics and epidemiology. Overview of preventive veterinary medicine programs. (P(NP grading only.)

101. Perspective in Veterinary Medicine (2) II, Schwabe Lecture—2 hours. This course gives an introduction to veterinary medicine, including the history and present-day scope, with emphasis on the responsibilities of veterinarians and the avenues of study open to them. Offered in odd-numbered years. (P(NP grading only.)

102. Biomedical Information Retrieval (3) (I) Kistler, Mera Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Use of bibliographic tools in the biomedical sciences; forms of biomedical literature; sources of statistical and epidemiological data; computing systems in literature retrieval; preparation of bibliographies.

103A. Medical Statistics I (3) (I) Wiggins, Farver Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 13 (or the equivalent) and consent of instructor. Use of statistics in clinical laboratory and population health sciences. Use of graphical and tabular methods in analysis of data and presentation of results. Normal, t, F, and chi-square distributions; elementary nonparametric methods.

103B. Medical Statistics II (3) (II) Wiggins, Farver Lecture—2 hours; laboratory—3 hours. Prerequisite: course 103A or consent of instructor. Continuation of course 103A. Analysis of variance in biomedical sciences; time-dependent variation and trends; bioassay; introduction to mathematical epidemiology; nonparametric methods; biomedical applications of statistical methods.

103C. Medical Statistics III (3) (III) Wiggins, Farver Lecture—2 hours; laboratory—3 hours. Prerequisite: course 201A or consent of instructor. Continuation of course 103B. Analysis of covariance; multiple regression; multivariate methods; life tables and cohort studies; problems in sampling and surveys; biomedical applications.

111. Animal Hygiene (3) III. Howarth, McCapes Lecture—3 hours. Prerequisite: Biological Sciences 1 or consent of instructor. Causes, prevention, and control of animal diseases important in economic agriculture and in public health, with emphasis upon animal management factors in disease.

150. Food-borne infections and intoxications (4) II. Genenichoris, Riemann, York Lecture—4 hours. Prerequisite: Bacteriology 2. Prevalence and characteristics of those diseases of man which are derived from food or food sources; access of disease agents to and distribution in food and food sources; exposure of man to these agents; prevention of food-borne diseases.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P(NP grading only.)

Graduate Courses

210A. Advanced Epidemiology (6) I, Schwabe Lecture—4 hours; discussion—2 hours. Prerequisite: a degree in veterinary medicine, medicine, or dentistry, or consent of instructor. Course 103A (may be taken concurrently). Continuation of the principal approaches to the study of diseases in populations both of lower animals and of man, with critical discussion of illustrative case examples from "classical" and contemporary literature.

210B. Advanced Epidemiology (3) III. Riemann, Willetberg and Farver Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: courses 210A, and 103B (may be taken concurrently). Continuation of course 210A with emphasis on use of models and statistical methods in epidemiology. Introduction to animal health economics.

210C. Advanced Epidemiology (3) III. Riemann, Willetberg and Farver Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: courses 210B and 103C (may be taken concurrently). Continuation of course 210B with attention given to case control studies, cohort studies and the use of multivariate techniques in epidemiology.

211A. Applied Epidemiology I (3) (I) Meyer Lecture—1 hour; discussion—2 hours. Prerequisite: course 210A (concurrently) or consent of instructor. Application of the experimental method to solving specific epidemiological problems involving management of animals. Students must identify and select a problem, and complete appropriate preparatory work to the actual field collection of data or specimens.

211B. Applied Epidemiology II (1) (II) The Staff (Meyer in charge) Laboratory—3 hours. Prerequisite: courses 210B and 211A. Emphasis is on decision making with respect to the type and amount of data required for solving an epidemiological problem, and the selection of appropriate statistical, computer, or other methods for processing, analyzing, and interpreting these data.

211C. Applied Epidemiology III (5) (III) The Staff (Meyer in charge) Laboratory—15 hours. Prerequisite: courses 210B and 211B. Completion of the course is begun in course 211B, including consideration of alternative approaches to the presentation of data and conclusions and formulation of recommendations for further investigations.

211D. Applied Epidemiology IV (6) (I) The Staff (Meyer in charge) Laboratory—18 hours. Prerequisite: course 211C. Completion of the exercise begun from 211C, including consideration of alternative approaches to the presentation of data and conclusions and formulation of recommendations for further investigations.

212. Epidemiology of the Zoonoses (3) II, Meyer Lecture—1 hour; discussion—2 hours. Prerequisite: course 210A or consent of instructor. Biological and ecological features of infections shared by man and other animals with particular attention to those perpetuated in nature by wildlife and those which are of greater public health and economic significance.
Fermentation Science; Food Biochemistry

216. Mass Screening for Diseases in Populations (3)
II. Yamamoto
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 210A or consent of instructor. Consideration of immunodiagnostic and other techniques for screening of human and animal populations for abnormalities and diseases; evaluation of their usefulness to study incidence and prevalence and for application in programs of prevention and control.

218. Disease Control and Eradication (4) III. Riemann
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 218 or consent of instructor. Studies of various approaches used to control diseases in animals, including man. Discussions will be concerned with past successes and failures and emphasis placed on future prospects and limitations of these methods.

220. Advanced Avian Medicine (3) II. The Staff (Adler in charge)
Lecture—3 hours. Prerequisite: enrollment in Avian Medicine option of MPVM program, senior standing in school of Veterinary Medicine, or consent of instructor. Instruction on methods of prevention of the major diseases of domestic poultry. (SU grading only.)

254. Public Health Aspects of Meat and Meat Products Technology (2) III. Riemann, Genigeorgis
Lecture—2 hours. Prerequisite: consent of instructor. Study of the influence of techniques and procedures in production of meats and meat products upon their wholesomeness as food.

255. Animal Health Economics (3) III. Riemann
Lecture—2 hours; discussion—1 hour. Prerequisite: courses 103C and 201C (may be taken concurrently). Evaluation of the economic aspects of herd health programs and control or eradication programs of diseases in animal populations.

256. Advanced Food Hygiene Laboratory (3) II. Genigeorgis
Lecture—1 hour; laboratory—6 hours. Prerequisite: a graduate degree in the equivalent of consent of instructor. Techniques used in a veterinary food hygiene laboratory to detect pathogens, adulterants, contaminants, and other substances and factors affecting wholesomeness of foods of animal origin.

290. Current Topics in Avian Medicine (1) III. Yamamoto
Seminar—1 hour. Topics from the current literature in avian medicine will be assigned to students for discussion and interpretation. (SU grading only.)

295. Preventive Avian Medical Practice (3) I, II, III. The Staff (McCapes in charge)
Laboratory—8 hours. Prerequisite: enrollment in avian medicine option of MPVM program or consent of instructor. Clinical instruction in avian medicine in which students apply knowledge from veterinary medicine and avian husbandry in the diagnosis, prevention and eradication of disease processes in domestic poultry populations. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Family Practice
See Medicine

Fermentation Science
(College of Agricultural and Environmental Sciences)

The Major Program
The Fermentation Science major is a program of study of the fundamental and applied sciences related to the use of microorganisms as production and processing agents. A broad interdisciplinary food-related education is offered which may be combined with specializations in enology (wine studies), brewing science, and fermentation of other foods and beverages. Industrial fermentations such as those used in the production of microbial cells, enzymes, solvents, acids, and vitamins, in the expansion of the food supply, and in waste management and preservation of the environment, are further opportunities for study. Courses are selected in consultation with advisors. Graduates qualify for supervisory, technical, research, sales, or executive positions in the food, beverage, and allied industries, in the fermentation industries, and in government agencies.

The major can provide preparation for graduate study in Food Science, Microbiology, Agricultural Chemistry or Biochemistry.

It may be necessary to limit enrollment in this major due to limitations placed on UCD resources.

Fermentation Science

B.S. Major Requirements:
(For convenience in program planning the usual courses taken to satisfy the requirement are shown in parentheses where possible. Equivalent or more comprehensive courses will be accepted.)

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>64 UNITS</td>
</tr>
<tr>
<td>Biochemistry (Biochemistry 101A, 101B)</td>
<td>6</td>
</tr>
<tr>
<td>Biology (Biological Sciences 1)</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry (Chemistry 1A, 1B, 1C, 5, 8A, 8B)</td>
<td>25</td>
</tr>
<tr>
<td>Mathematics (Mathematics 13 or Agricultural Science and Management 150, Mathematics 16A, 16B)</td>
<td>10</td>
</tr>
<tr>
<td>Microbiology (Bacteriology 2, 3)</td>
<td>4</td>
</tr>
<tr>
<td>Physics (Physics 1A-1B or 2A and either 2B or 2C)</td>
<td>6</td>
</tr>
<tr>
<td>Written or oral expression (see College requirement)</td>
<td>8</td>
</tr>
</tbody>
</table>

Depth Subject Matter

Restricted Electives
Selected according to student's educational goal and upon approval of adviser.

Breadth Subject Matter
Social sciences and humanities or other courses as approved by adviser.

Unrestricted Electives
21
Total Units for the Major 180

†Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the Social Sciences and Humanities requirement.

Major Adviser. V. L. Singleton (Viticulture and Enology).

Graduate Study. See page 105 and the Announcement of the Graduate Division.

Food Biochemistry
(College of Agricultural and Environmental Sciences)

The Major Program
The major in Food Biochemistry stresses the principles of chemistry and biochemistry as related to the constituents of foods and the changes which occur in the constituents before and during storage and on processing. Particular emphasis is placed on the role of and changes in the carbohydrates, lipids, proteins, enzymes, and nucleic acids and their effect on the quality attributes of foods. Through the appropriate choice of both electives and in-depth courses in food science and technology, the major offers broad education to students planning careers in food processing, food research, and other food-related fields.

The major also offers excellent preparation for graduate work in agricultural chemistry, biochemistry, nutrition, medicine, and the life sciences.

Food Biochemistry

B.S. Major Requirements:
(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>77-83 UNITS</td>
</tr>
<tr>
<td>Biochemistry (Biochemistry 101A, 101B)</td>
<td>6</td>
</tr>
<tr>
<td>Biology (Biological Sciences 1)</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry, one year general and analytical chemistry (Chemistry 1A-1B, 1C, 5 or 4A-4B-4C)</td>
<td>32-36</td>
</tr>
<tr>
<td>Mathematics, including one year of calculus (Mathematics 16A-16B-16C or 21A-21B-21C, and one course from Mathematics 13, 19, 22A, 22B, 22C)</td>
<td>12</td>
</tr>
<tr>
<td>Microbiology (Bacteriology 2 and 3, Botany 2 or Zoology 2-2L, may be substituted)</td>
<td>4-6</td>
</tr>
<tr>
<td>Physics, any course except Physics 10 and including at least one laboratory course (Physics 2A-2B-3D and 3A or 3B or 3C, or 4A-4B-4C)</td>
<td>10</td>
</tr>
<tr>
<td>English</td>
<td>8</td>
</tr>
</tbody>
</table>

Depth Subject Matter
Food Science and Technology, including 103, 113, and 125. |
| Biochemistry 123, 123L | 5 |

Breadth Subject Matter
Social sciences and humanities, including 4 units of rhetoric. |
Food Science; Food Science and Technology

The Major Program

Food Science applies physical, biological, engineering, and social sciences to processing, preservation, packaging, storage, evaluation, and utilization of foods. Instruction emphasizes the principles of biology, chemistry, microbiology, and other sciences as they are applied to the conversion of raw materials into processed foods. General principles are stressed, not specific food commodities.

Students completing this major receive excellent training and experience for employment in the world's largest industry, the food industry. Opportunities for employment include positions in the food and allied industries where graduates can engage in processing, sensory evaluation, quality assurance, product development, research, and management functions; in education as teachers; and in research, extension, and administration. Local, state, and federal governments offer opportunities for employment as research supervisors, in regulatory agencies, in policy and management positions. Graduate study for the Food Science student may lead to the M.S. degree in Food Science or the Ph.D. degree in related fields such as agricultural chemistry, biochemistry, microbiology, and nutrition.

Food Science

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

Biology and microbiology (Biological Sciences 1, Botany, 2, 3) ... 9
Chemistry and biochemistry, including analytical chemistry (Chemistry 1A-1B-1C-2 or 4A-4B- 4C, 8A-8B; Biochemistry 1A-1B) .. 27-31
Mathematics and physics, including two courses in calculus (Agricultural Science and Management 150 or Mathematics 13; Mathematics 16A-16B; Physics 2A-2B- 2C) .. 18-19
Written or oral expression (see College requirement) ... 8

Depth Subject Matter

Upper division courses in Food Science and Technology, including 103, 104, 104L, 110A-110B .. 28

Breadth Subject Matter

Social sciences and humanities electives† .. 28

Restricted Electives

Nutrition 112 and other courses selected in accordance with student's educational goal and upon approval of advisor .. 32-37

Unrestricted Electives .. 25

Total Units for the Major 180

Major Adviser. E. B. Collins (Food Science and Technology).

Graduate Study. A program of study and research leading to the M.S. degree in Food Science is available. For further information on graduate study see page 105 and the Announcement of the Graduate Division.

Graduate Advisers. See Class Schedule and Room Directory.

Food Science; Food Science and Technology

(College of Agricultural and Environmental Sciences)

Bernard S. Schweigert, Ph.D., Chairperson of the Department

Department Office, 126 Hussess Hall (752-1465)

Faculty

Ericka L. Barrett, Ph.D., Assistant Professor
Richard A. Bernhard, Ph.D., Professor
A. Wade Brant, Ph.D., Lecturer
W. Duane Brown, Ph.D., Professor
John Bruhn, Ph.D., Lecturer
Paul A. Carrod, Ph.D., Assistant Professor
Edwin B. Collins, Ph.D., Professor
Walter L. Dunkley, Ph.D., Professor
Robert E. Feeney, Ph.D., Professor
Dietar W. Gruneweld, Ph.D., Associate Professor
Jerald M. Henderson, D.Engr., Professor
Eugene L. Jack, Ph.D., Professor Emeritus
Harold G. Jennings, Ph.D., Professor Emeritus
Sherman J. Leonard, B.S., Lecturer
Michael J. Lewis, Ph.D., Professor
Bor S. Luh, Ph.D., Lecturer
George L. Marsh, M.S., Professor Emeritus
Mandel Mazels, Ph.D., Professor
R. Larry Meyerson, Ph.D., Professor (Food Science and Technology and Agricultural Engineering)
Martin W. Miller, Ph.D., Professor
Emil M. Mrak, Ph.D., Professor Emeritus
David M. Ogden, Ph.D., Associate Professor
Harold S. O'Coll, Ph.D., Professor Emeritus
Michael A. O'Mahony, Ph.D., Assistant Professor
Rose Marie Pangborn, M.S., Professor
Herman J. Phaff, Ph.D., Professor
Robert J. Price, Ph.D., Lecturer
Gerald F. Russell, Ph.D., Associate Professor
Barbara C. Schenck, Ph.D., Assistant Professor (Food Science and Technology, Nutrition)
Bernard S. Schweigert, Ph.D., Professor
R. Paul Singh, Ph.D., Assistant Professor
J. M. Smith, Sc.D., Professor
Lloyd M. Smith, Ph.D., Professor
Clarence Sterling, Ph.D., Professor
George F. Stewart, Ph.D., Professor Emeritus
Alloys L. Tappel, Ph.D., Professor
Nikita P. Tarassuk, Ph.D., Professor Emeritus
Reese H. Vaughn, Ph.D., Professor Emeritus
John R. Whitaker, Ph.D., Professor

Major Program and Graduate Study. See the major in Food Science (this page); and page 105 for graduate study.

Related Courses. See courses in Biochemistry and Biophysics, Consumer Science, Nutrition, and Viticulture and Enology; Environmental Toxicology, Epidemiology and Preventive Medicine 150, Plant Science 112, and 112L.

Courses in Food Science and Technology

Lower Division Courses

1. Introduction to Food Science (3) I, II. Jennings
Lecture—2 hours; discussion—1 hour. Development and maintenance of an adequate food quality and its measurement; scientific and technological aspects of converting raw material and plant products into a large variety of processed and preserved foods; maintenance and improvement of the acceptability and nutritional value of foods. Course not open to credit to students who have completed courses 101A, 102B, or 111.

20. Food and Culture: An Introduction to Culture, Diet, and Cuisine (4) III. Grivet (Nutrition, Geography)
Lecture—3 hours; discussion—1 hour. Prerequisites: Anthropology 2, Geography 2 and Nutrition 10 recommended. Historical and contemporary overview of culture, food habits, and diet; exploration of the major themes in food habit research; minority food habits, origins and development of dietary practices. (Same course as Nutrition 20.)

49. Processing Plant Studies (1) I. Leonard
Prerequisite: course 1. Field trips to observe processing, distribution, quality control and regulatory control of foods and related materials.

93. Public Issues in Nutrition and Food Science (1) II. Werl (Nutrition, Schweigert)
Seminar—1 hour. Faculty and invited guest speakers will present topics in the area of nutrition and food science which are currently subjects of public debate. Intended as an introduction to nutrition and food science for students new to the campus. (P/NP grading only.) (Same course as Nutrition 93.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Schweigert in charge)
(P/NP grading only.)
Food Science and Technology

Upper Division Courses

100A. Principles of Food Composition and Properties (3) I. Russell
Lecture—3 hours. Prerequisite: Chemistry 8A and 8B. Fundamental chemical, physical, and sensory aspects of food composition as they relate to physical properties, acceptability, and nutritional value of fresh and processed foods.

100B. Principles of Food Composition and Properties Laboratory (2) I.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100A (may be taken concurrently). Course designed to give laboratory experience with the food system and properties described in course 100A.

101B. Principles of Food Composition and Properties (3) II. Mazelis
Lecture—3 hours. Prerequisite: Chemistry 8A-8B. Fundamental chemical, physical, and sensory aspects of food composition as they relate to physical properties, acceptability, and nutritional value of fresh and processed foods.

100B. Principles of Food Composition and Properties Laboratory (2) II.
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100B (may be taken concurrently). Course designed to give laboratory experience with the food system and properties described in course 100B.

102. Matling and Brewing Technology (3) I. Lewis
Lecture—3 hours; field trips and pilot-scale brewing by arrangement. Prerequisite: preparation in biochemistry, microbiology, and beverage technology. Technology of the matling, brewing and fermentation processes is integrated with the chemistry, biochemistry, and microbiology that determines industrial practices and products quality.

102L. Matling and Brewing Science Laboratory (3) I.
Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 102, 103, Chemistry 5. Laboratory experience in the use and application of standard brewing methods of analysis. Data collection on raw materials and application of these data in pilot-scale matling and brewing exercises. Processing studies and influence of process variables on product attributes.

103. Physical and Chemical Methods for Food Analysis (5) I. Whicker, Bernhard
Lecture—3 hours; laboratory—6 hours. Prerequisite: Chemistry 5 and 8A. Biochemistry 101B (may be taken concurrently). An introduction to the theory and application of physical and chemical methods for determining the constituents of foods. Modern separation and instrumental analysis techniques are stressed.

104. Food Microbiology (3) I. Collins
Lecture—3 hours. Prerequisite: Bacteriology 2; Chemistry 8A or equivalent courses. Taxonomy, physiology, ecology, and control of bacterial microorganisms important in the manufacture and ripening of foods, undesirable microorganisms that produce defects and spoil foods, and harmful microorganisms associated with food borne infections and intoxications.

104L. Food Microbiology Laboratory (2) I. Barnett, Collins, Orydziak
Lecture—3 hours; laboratory—6 hours. Prerequisite: Bacteriology 3 or the equivalent, course 104 (should be taken concurrently). Laboratory exercises illustrate selected subject matter discussed in course 104. Microbiological techniques used in studying the characteristics of beneficial, harmful, and undesirable microorganisms associated with foods.

105. Microbiological Analysis of Foods (3) III. Barnett, Collins, Orydziak
Lecture—1 hour; laboratory—5 hours. Prerequisite: courses 104 and 104L. Cultural and morphological characteristics of specific groups of bacteria and fungi involved in production or deterioration of foods. Analyses of microbiological quality of foods and food products.

106. Industrial Fermentations (3) I. Cleary, Orydziak.
Lecture—3 hours. Prerequisite: Bacteriology 2. Microorganisms and their activity in relation to industrial processes such as baking, brewing, and the production of industrial solvents, vitamins, enzymes, and drugs. For laboratory experience in this field, students may register in course 106L.

106L. Food and Industrial Microbiology Laboratory (3) I. Zollicoffer, Lewis
Lecture—5 hours; laboratory—9 hours total. Prerequisite: a course in industrial fermentation (e.g., course 106). Microorganisms and their activities in relation to industrial processes such as baking, brewing, production of industrial alcohol, vitamins, and fuels. Textures of foods; critical use of analytical laboratory methods, relation of sensory with chemical and instrumental measurement, statistical analysis and interpretation of sensory data.

107. Principles of Sensory Evaluation of Foods Laboratory (3) I. Pangborn
Lecture—3 hours. Prerequisite: Agricultural Science and Management 150. Nature of sensory responses with emphasis on aroma, taste, and texture of foods; critical use of analytical laboratory methods, relation of sensory with chemical and instrumental measurement, statistical analysis and interpretation of sensory data.

107L. Principles of Sensory Evaluation of Foods Lab (3) I. Pangborn
Discussion—1 hour; laboratory—3 hours. Prerequisite: Agricultural Science and Management 150, course 107 must be taken concurrently. Laboratory demonstrations and student participation in the participation in and administration of experimental food samples, collection and statistical analysis of data, and correlation of results from sensory tests.

108. Food Processing Plant Sanitation (3) I. Lewis
Lecture—3 hours. Prerequisite: Chemistry 8B and Bacteriology 2. Discussion of factors relating to sanitation control of food processing, including water treatment, chemical and physical sanitizing agents, principles of cleaning and hard surface detergency, metal corrosion, and control of food processing equipment, elements of engineering thermodynamics, fluid mechanics, and problem solving.

110. Heat and Mass Transfer in Food Processing (3) III. Rennon
Lecture—2 hours; laboratory—2 hours. Prerequisite: Physics 2A or the equivalent; calculus recommended. Not open for credit to students enrolled in College of Engineering. Applications of the conservation of mass and energy to food processing. Elements of engineering thermodynamics, fluid mechanics, and problem solving.

110A. Physical Principles in Food Processing (3) I. Rennon
Lecture—2 hours; laboratory—2 hours. Prerequisite: Physics 2A or the equivalent; calculus recommended. Open for credit to students enrolled in College of Engineering. Applications of the conservation of mass and energy to food processing. Elements of engineering thermodynamics, fluid mechanics, and problem solving.

111. Introduction to Food Processing (4) I. Miller
Lecture—3 hours; discussion—2 hours. Prerequisite: Bacteriology 2; Chemistry 8A-8B, and Physics 2A-2B or the equivalent. Food processing from farm to package. Characteristics of raw materials. Fresh product handling, overview of food processing and processing unit operations, chemical additives. Demonstration and field trips.

112. Structure of Food Materials (3) III. Stiling
Lecture—3 hours. Analytical features and structural properties of foods; histochemical tests of food tissues; rheological characteristics; food texture.

112AT. Principles of Dairy Processing (4) III. Dunkley
Personalized system of instruction. Prerequisite: Bacteriology 2; Chemistry 8B. Technical principles related to the commercial processing of milk from the farm to the consumer: includes fluid, concentrated, dried and frozen products, butter and cheese: theory and practical applications.

120. Muscle as Food (3) II. Peterson (Avian Sciences) and staff
Lecture—2 hours; demonstrations (occasional). Prerequisite: Biochemistry 101B and Bacteriology 2 or the equivalent. Biochemical, physiological, microbiological, psychological and engineering principles underlying the conversion of muscle to meat, man's most important protein food. Includes processing, preservation, preparation. Includes research proposals and group problem solving.

121. Birds and their Eggs as Food (3) I. Peterson (Avian Sciences) and staff
Lecture—3 hours; demonstrations. Prerequisite: consent of instructor; Biochemistry 101B recommended. Avian processing of food considered from the physical, chemical and nutritional aspects. Factors affecting processing, preservation and quality.

125. Metals and Metal Complexes in Foods (3) III. Gruenweide
Lecture—3 hours. Prerequisite: Biochemistry 101B; Chemistry 107B or the equivalent. Structure, reactions, and physical properties of metal complexes, particularly those of importance to food science. The biochemistry of metal ions in foods.

130. Chemistry of Milk and Dairy Products (3) III. L. Smith
Lecture—3 hours. Prerequisite: Biochemistry 101A. The chemistry of milk constituents; physical and chemical properties of milk; and the changes that occur during the processing and storage of dairy products, with emphasis on quality.

131. Packaging Processed Foods (3) I. Henderson, Leonard
Lecture—3 hours. Prerequisite: course 101 or 111, Chemistry 8B, Bacteriology 2 and Physics 2B, or consent of instructor. Technical aspects of package processing. Definitions and functions of packaging for food. Packaging materials and properties. Public health problems associated with packaging. Packaging interactions for major commodities and their control.

150. Thermal Processing of Foods (3) II. Merson, Leonard
Lecture—1 hour; laboratory—3 hours. Prerequisite: courses 104 and 110B or consent of instructor. Theory and practical considerations of thermal processes such as canning, pasteurization and aseptic processing. Process calculations of microbial inactivation and chemical changes to safeguard public health, nutrition, and consumer acceptance. Operation and engineering analysis of retorts and heat exchangers.

160. Food Chemistry. Small Molecules in Food (3) III. Bernhard
Lecture—2 hours. Prerequisite: Chemistry 8A-8B, Biochemistry 101A-101B (or the equivalent) or consent of instructor. The important classes of food constituents of low molecular weight (water, carbohydrates, fats, proteins, lipids, vitamins, minerals, fibers, etc.) and their occurrence, occurrence, and chemical and biochemical significance in foods.

161. Food Chemistry: High-Molecular-Weight Food Components (3) II. Gruenweide
Lecture—2 hours. Prerequisite: Chemistry 8A-8B, Biochemistry 101A-101B (or the equivalent) or consent of instructor. Designed to acquaint the student with the important classes of macromolecular food constituents (carbohydrates, proteins, lipids, etc.) and their nature, occurrence, and chemical and biochemical significance in foods.

190. Senior Seminar (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Biochemistry and Food Science (3) I. Tappel
Lecture—3 hours. Prerequisite: Biochemistry 101B. Topics on carbohydrates, lipids, proteins, pigments, and vitamins. Biochemical principles and methods related to food composition, preservation and processing. Includes research proposals and group problem solving.

226
207. Advanced Sensory-Instrumental Analyses (3) III. Noble (Viticulture and Enology), Pangborn Lecture—2 hours; laboratory—3 hours. Prerequisite: course 107L and consent of instructor. Basic principles of measurement of color, texture, and flavor of foods by sensory and instrumental methods. Advanced statistical analysis of relation of colorimetry, texturometry and chemistry of volatile compounds to perception of appearance, texture, flavor.

211. Chemistry of the Food Lipids (3) III. L. Smith Lecture—3 hours. Prerequisite: Biochemistry 101A. Chemical constitution, molecular structure, and stereochemistry of the fats, phospholipids, and related compounds. Methods of isolation, characterization, and synthesis. Relation of molecular structure to physical properties.

213. Macromolecular Gels (2) II. Sterling Lecture—2 hours. Prerequisite: Biochemistry 101A. Structural interrelationship of water with typical biological polymers in gels; aerogels and xerogels; gel properties and methods of study. Offered in odd-numbered years.

235. Mycology of Food and Food Products (3) III. Miller Lecture—3 hours. Prerequisite: course 104 or consent of instructor. Morphology and physiology of fungi associated with food. Desirable activities of fungi: food fermentations, single-cell protein production, mushroom culture. Undesirable activities: preharvest and postharvest deterioration, food spoilage and preservation, toxic production.

250. Isolation and Characterization of Trace Volatiles (3) I. Jennings Lecture—3 hours. Prerequisite: at least one introductory course in inorganic chemistry, organic chemistry, physics. Gas chromatographic theory; preparation, evaluation and use of columns, sample preparations and recovery, qualitative and quantitative analysis; ultraviolet, infrared and mass spectrometry.

251. Isolation and Characterization of Trace Volatiles (2) I. Jennings Discussion—1 hour; laboratory—3 hours. Prerequisite: course 250 (must be taken concurrently). Laboratory demonstrations and discussions of methods for optimizing gas chromatographic performance, treatment of retention data, preparation and evaluation of pack, column and open tubular glass capillary columns, sample preparation and trapping, microreaction coupled with gas chromatography, infrared and mass spectrometry.

290. Seminar (1-1-1) I, II, III. Gruenwedel Seminar—1 hour. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Schweigert in charge) Directed study on food chemistry, food microbiology, food processing, or sensory evaluation.

299. Research (1-12) I, II, III. The Staff (Schweigert in charge) Prerequisite: graduate standing. (SU grading only.)

Food Service Management

College of Agricultural and Environmental Sciences

NOTE: For key to footnote symbols, see page 138.

The Major Program and Graduate Study

Food Service Management has been incorporated as an option within the major in Dietetics (page 181). If you are interested in preparing for a career in commercial organizations such as hotels, restaurants, industrial cafeterias, and contract food services, as well as in public and private institutions such as hospitals, correctional institutions, schools, and colleges, consult the Department of Nutrition regarding the Management specialization listed under the Restricted Electives of the Dietetics major.

Related Courses. See Food Science and Technology and Nutrition.

Courses in Food Service Management

Questions pertaining to the following courses should be directed to the instructor or to the College Office, 229 Marh Hall.

Upper Division Courses

120. Principles of Quantity Food Production (3) III. Prophet Lecture—3 hours. Prerequisite: Food Science and Technology 100B and 100BL. Fundamental principles of food service management including quantity food preparation, institutional equipment, receiving and storage, service, menu planning, merchandising, and safety.

120L. Quantitative Food Production Laboratory (2) I, II. Prophet Laboratory—6 hours. Prerequisite: course 120. Laboratory experience in quantity food production and service.

121. Quantity Food Purchasing and Sanitation (3) I. Schnelme Lecture—3 hours. Prerequisite: Bacteriology 2, course 120. Principles of quantity food purchasing and sanitation.

122. Food Service Systems Management (3) II. Prophet Lecture—3 hours. Prerequisite: Agricultural Economics 112, courses 120, 120L, 121. Principles of quantity food production management; production schedules, portion control, financial management, layout and equipment planning, evaluation of alternative systems, and computer applications.

123. Personnel Management (3) III. The Staff (Zeman in charge) Lecture—3 hours. Prerequisite: a basic course in general psychology. Major personnel management functions; legal constraints and requirements; procedures in solving personnel problems faced by supervisors.

1977. Tutoring in Food Service Management (1-2) I, II, III. The Staff (Zeman in charge) Discussion—laboratory—3 or 6 hours. Prerequisite: Dietetics or related major; completion of the Food Service Management course in which tutoring is done. Tutoring of students in food service management assistance; with discussion groups or laboratory sections; weekly conference with instructor in charge of course, written evaluations. May be repeated if tutoring a different course. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Zeman in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Zeman in charge) (P/NP grading only.)

Foreign Literature in Translation

The following courses are open to students throughout the campus. The readings can be in English. Refer to departmental listing for the course description.

Chinese

(See Oriental Languages following.)

Classics

40. Homer and the Tradition of Ancient Epic
41. Greek Tragedy
*139B. Greek Literature in Translation
141. Greek and Roman Comedy
*142. Greek and Roman Novel

Comparative Literature

1. Great Books of Western Civilization: from Myth to Faith
2. Great Books of Western Civilization: from Faith to Reason
3. Great Books of Western Civilization: the Modern Crisis
4. The Short Story and Novella
5. Fairy Tales, Fables and Parables
6. Myths and Legends
7. Literature of Fantasy and the Supernatural
10A-L. Masterpieces of World Literature
13. Dramatic Literature
40. Introduction to Comparative Literature
49. Freshman Seminar: General Topics in Comparative Literature
50. Intermediate Seminar: Myths and Motifs
51. Intermediate Seminar: Reality and Fantasy
52A-52B. Intermediate Seminar: The Orient and the West
159A-G. Special Topics in Comparative Literature
160A. The Modern Novel
160B. The Modern Drama
161A. Tragedy
161B. Comedy
161C. Tragicomedy
162. The Theory and Practice of Literary Translation
164A. The Middle Ages
164B. The Renaissance
164C. Baroque and Neoclassicism
164D. The Enlightenment
166A. The Epic
166B. The Novel
French

*167. Comparative Study of Major Authors
168A-C. Modern Literary Movements and Styles
169. The Avant-Garde

Dramatic Art

20. Introduction to Dramatic Art
156. Theatre and Drama: Aeschylus to Machiavelli
157. Theatre and Drama: Shakespeare to Schiller
158. Theatre and Drama: Ibsen to Albee
159. Contemporary Experimental Theatre and Drama

English

*170A. The Epic
171. English Bible as Literature

French

25. French Literature in Translation
*121. Twentieth-Century Novel
*122. Twentieth-Century Novel
*150. Masterpieces of French Literature

German

15. The Development of German Literature
49. Freshman Seminar
50. The German Literary Heritage: Prose
51. The German Literary Heritage: Drama
112. Thomas Mann
113. Hermann Hesse
114. Goethe's Faust
115A. German Literature since 1945
115B. German Literature since 1945
116. Literary Aspects of Schopenhauer and Nietzsche
117. Kafka
118. Brecht
121. Older German Literature in English Translation
122. Older German Literature in English Translation

Italian

25. Italian Literature in Translation
*139A. Italian Literature in English: Early Italian Literature and Dante Alighieri
*139B. Italian Literature in English: Boccaccio, Petrarch and the Renaissance
*139C. Italian Literature in English: Modern Italian Literature

Oriental Languages

32A. Twentieth-Century Chinese Literature
32B. Twentieth-Century Chinese Literature

Russian

30. Great Russian Writers
41. Survey of Nineteenth-Century Russian Literature
42. Survey of Twentieth-Century Russian Literature
121. The Nineteenth-Century Russian Novel
123. The Nineteenth-Century Russian Novel
126. The Russian Theater
128. Modern Russian Poets
140. Dostoevsky
*141. Tolstoy
150. Russian Culture
154. Russian Folklore

Spanish

34. Mexico in Its Literature
35. Survey of Mexican Culture
50A. Hispanic Literary Heritage
50B. Hispanic Literary Heritage
149. Order and Chaos: Latin-American Literature in Translation
150. Masterpieces of Spanish Literature

French (College of Letters and Science)

Claude K. Abraham, Ph.D., Chairperson of the Department
Department Office (French and Italian), 515 Sproul Hall

Faculty

Claude K. Abraham, Ph.D., Professor
Max Bach, Ph.D., Professor
Jean Marc Blanchard, Agrégé de Lettres, Associate Professor
Edward M. Bloom, Ph.D., Associate Professor
Richard N. Coe, Ph.D., Professor
Ruby Cohn, Ph.D., Professor (Comparative Literature, Dramatic Art)
Gerald Herman, Ph.D., Associate Professor
Larry H. Hillman, Ph.D., Assistant Professor
Margo R. Kaufman, M.A., Lecturer
Manfred Kusche, Ph.D., Assistant Professor
Marshall Lindsay, Ph.D., Professor
Nicole A. D. Marzocchi, Docteur é des Lettres, Professor
Ruth B. York, Ph.D., Lecturer

The Major Program

A Bachelor of Arts degree in French can lead to careers in business, civil service, library science, education, journalism, law, or health education. The major program is intended to train students in all of the language skills (reading, writing, speaking, understanding) as well as in French literature and civilization. Students majoring in French may choose a course of study from Plan A, emphasis on literature, or Plan B, emphasis on language. Those wishing to do graduate work in French are advised to select Plan A. Potential majors should seek the counsel of a departmental adviser as soon as possible.

French

A.B. Major Requirements:

Preparatory Subject Matter
(for Plan A and Plan B) 16-39
French 1, 2, 3, 4 (or the equivalent) 0-23
French 6, 30A, 30B, 45 16
Plan A: Literature Emphasis
Depth Subject Matter 36
French 104 or 105, 110 8
One course from French 130, 131, 132 ... 4
One course from each of the following five literary periods 12
b. 16th Century: French 116A, 116B
c. 17th Century: French 117A, 117B, 117C
d. 18th Century: French 118A, 118B, 118C
e. 19th Century: French 119A, 119B, 119C, 119D
One course in 20th-century literature from French 120A, 120B, 121, 122, 123 4
Additional upper division units in French language or literature 8

Total Units for the Major (Literature Emphasis) 52-75

Plan B: Language Emphasis
Depth Subject Matter 38
One literature course from French 117A, 118A, 119A, 119B, 120B, 121, 122, 140 4
One additional upper division French literature course 4

Total Units for the Major (Language Emphasis) 54-77

Recommended

Major Adviser: M. Kusch

Teaching Credential Subject Representative: R. B. York. See page 111 for Teacher Education Program.

Graduate Study. The Department offers programs of study and research leading to the M.A. and Ph.D. degrees in French. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of French and Italian.

Courses in French

Lower Division Courses

A course may not ordinarily be taken for credit if it is a prerequisite to a course already completed. Students offering high school language preparation as a prerequisite must take a placement test.

Course Placement. Students with two years of high school French normally take French 2, those with three years take French 3 and those with four years take French 4.
105. Advanced Translation and Composition (4) I. The Staff Lecture—3 hours; essays. Prerequisite: course 30A or the equivalent. Development of skills and practice in the techniques of writing French.

107A. Survey of French Culture and Institutions (4) II. The Staff Lecture—4 hours; term paper or oral presentation. Prerequisite: course 6. From the origins of French civilization through the eighteenth century.

107B. Survey of French Culture and Institutions (4) III. The Staff Lecture—4 hours; term paper or oral presentation. Prerequisite: course 6. From the nineteenth century to the present.

108A. Advanced French Conversation (2) I, II, III. The Staff Lecture—3 hours. Prerequisite: core 30A. Intensive conversational practice stressing accurate pronunciation and spoken language fluency. Not open to native speakers. May not be counted toward the French major. May be repeated once for credit. (P/NP grading only.)

108B. Advanced French Conversation (2) I, II, III. The Staff Lecture—3 hours. Prerequisite: course 30B. Intensive conversational practice stressing accurate pronunciation and spoken language fluency. Not open to native speakers. May not be counted toward the French major. May be repeated once for credit. (P/NP grading only.)

110. Advanced Problems in Language and Style (4) I. The Staff Lecture—3 hours; essays. Prerequisite: course 104 or 105. Analysis of style and practice in composition.

115A. Medieval Literature: Epic and Romance (4) I. Herman Lecture—3 hours; term paper. Prerequisite: course 6. La Chanson de Roland, Tristan et Iseut, and selected works of Chrétien de Troyes. Texts to be read in modern French.

115B. Medieval Literature: Satire and Didactic Poetry (4) II. Herman Lecture—3 hours; term paper. Prerequisite: course 6 or the equivalent. Study of the lyric poetry of the sixteenth century from Marot to d'Aubigné, with emphasis on the Pèlerinage.

116A. Literature of the Sixteenth Century (4) III. Marzac Lecture—3 hours; term paper. Prerequisite: course 6. Study of the lyric poetry of the sixteenth century from Marot to d'Aubigné, with emphasis on the Pèlerinage.

116B. Literature of the Sixteenth Century (4) II. Marzac Lecture—3 hours; term paper. Prerequisite: course 6. Ribelais and Montaigne. Critical study of the works in relation to the period.

117A. Theater of the Seventeenth Century (4) I. Bloomberg Lecture—3 hours; term paper. Prerequisite: course 6.

117B. Morality of the Seventeenth Century (4) II. Bloomberg Lecture—3 hours; term paper. Prerequisite: course 6.

117C. Poetry and the Novel in the Seventeenth Century (4) III. Bloomberg, Abraham Lecture—3 hours; term paper. Prerequisite: course 6.

118A. "Les Philosophes" (4) III. The Staff Lecture—3 hours; term paper. Prerequisite: course 6. Readings from Montesquieu, Voltaire, Diderot, Rousseau and the Encyclopédie.

*118C. The Theater in the Eighteenth Century (4) II. Kusch Lecture—3 hours; term paper. Prerequisite: course 6 or consent of instructor. Development of standard French
French; Genetics

from its origins to the present, tracing changes in pronunciation, orthography, and grammar and examining the role of French in the world.

197T. Tutoring in French (2-4) I, II, III. The Staff Seminar—1-2 hours; laboratory—1-2 hours. Prerequisite: upper division standing and consent of Chairperson. Tutoring in undergraduate courses including leadership in small voluntary discussion groups affiliated with departmental courses. May be repeated for credit for a total of 6 units. (P/NP grading only.)

197TC. Tutoring in the Community (2-4) I, II, III. The Staff Seminar—1-2 hours; laboratory—1-2 hours. Prerequisite: upper division standing and consent of Chairperson. Tutoring in public schools under the guidance of a regular teacher and supervision by a departmental faculty member. May be repeated for credit for a total of 6 units. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

200A. "Analyse Littéraire" (4) I, II, III. The Staff Seminar—3 hours; term paper. Prerequisite: graduate standing. Introduction to the textual reading and group study of a selected work.

200B. "Analyse Littéraire" (4) I, II, III. The Staff Seminar—3 hours; term paper. Prerequisite: graduate standing. Further introduction to methodology. Theory of literature and philosophy of criticism, writing and reading, in the context of today's controversy. Study of selected critical approaches against specific texts.

*201A. History of the French Language (4) II. Hillman Seminar—3 hours. Examination of earliest documents tracing the development of the language from Latin to Old French; study of the influence of grammarians.

*201B. History of the French Language (4) II. Hillman Seminar—3 hours. Evolution of Modern French from the Renaissance to the present, with emphasis on the relationship between language and literature and the influence of grammarians.

*202A. Medieval French Literature: The Epic Tradition (4) I. Herman Seminar—3 hours. Prerequisite: course 201A recommended. Study of the epic tradition in literature and the influence of courtly love. Study of the major works of Chrétiens de Troyes and the doctrine of courtly love. Study of the major works of Chrétien de Troyes and the doctrine of courtly love. Study of the major works of Chrétien de Troyes and the doctrine of courtly love.

*202B. Medieval French Literature: The Romance Tradition (4) II. Herman Seminar—3 hours. Prerequisite: course 201A recommended. Study of the romance tradition in literature and the influence of courtly love. Study of the major works of Chrétien de Troyes and the doctrine of courtly love. Study of the major works of Chrétien de Troyes and the doctrine of courtly love.

204A. Fifteenth-Century Literature: Prose (3) I, II, III. The Staff Seminar—3 hours; term paper. Works of authors such as Minnesingers, LaSalle, Jehan de Paris, etc. May be repeated for credit with consent of instructor when different topic is studied. Offered in odd-numbered years.

*204B. Fifteenth-Century Literature: Poetry (3) I, II, III. The Staff Seminar—3 hours. The poetic achievements of the major French poets of the period. May be repeated for credit with consent of instructor when different topic is studied. Offered in odd-numbered years.

205A. Sixteenth-Century Literature: The Humanists (3) I, II, III. The Staff Seminar—3 hours. French humanism in its most varied forms. May be repeated for credit with consent of instructor when different topic is studied. Offered in odd-numbered years.

205B. Sixteenth-Century Literature: Humanism (3) I, II, III. The Staff Seminar—3 hours. French humanism in its most varied forms. May be repeated for credit with consent of instructor when different topic is studied. Offered in odd-numbered years.

206A. Seventeenth-Century Literature: Theatrical Drama (3) I, II, III. The Staff Seminar—3 hours. The works of Corneille, Racine, Molière, and minor dramatists. One or more plays may be repeated. May be repeated for credit with consent of instructor when different戏剧s are studied. Offered in even-numbered years.

206B. Seventeenth-Century Literature: Prose (3) II, III. The Staff Seminar—3 hours; term paper and/or exposure. Works of authors such as Pascal, Descartes, Mme de La Fayette. May be repeated for credit with consent of instructor when different topics are studied. Offered in even-numbered years.

206C. Seventeenth-Century Literature: Poetry (3) I, II, III. The Staff Seminar—3 hours. The works of Corneille, Racine, Molière, and minor dramatists. One or more plays may be repeated. May be repeated for credit with consent of instructor when different topic is studied. Offered in odd-numbered years.

207A. Eighteenth-Century Literature: French Society and Politics (4) I, II, III. The Staff Seminar—3 hours; term paper and/or exposure. The study of the works of one or more poets of the period. May be repeated for credit with consent of instructor. Offered every other year.

207B. Eighteenth-Century Literature: Novel (4) II, III. The Staff Seminar—3 hours. The study of the works of one or more novelists of the period. May be repeated for credit with consent of instructor when different topics are studied. Offered in even-numbered years.

208A. Nineteenth-Century Literature: Fiction (4) I, II, III. The Staff Seminar—3 hours. The study of the works of one or several novelists and short-story writers of the period. May be repeated for credit with consent of instructor when different topics are studied. Offered in even-numbered years.

208B. Nineteenth-Century Literature: Theater (4) II, III. The Staff Seminar—3 hours. The study of the works of one or more dramatists of the period. May be repeated for credit with consent of instructor when different topics are studied. Offered every third year.

208C. Nineteenth-Century Literature: Poetry (4) II, III. The Staff Seminar—3 hours. The study of the works of one or several poets of the period. May be repeated for credit with consent of instructor when different topics are studied. Offered in odd-numbered years.

209A. Twentieth-Century: Prose (3) II, III. The Staff Seminar—3 hours; term paper and/or exposure. The study of the works of one or several writers of the period. Offered in odd-numbered years.

209B. Twentieth-Century: Theater (3) I, II, III. The Staff Seminar—3 hours; term paper and/or exposure. The study of the works of one or several dramatists of the period. May be repeated for credit with consent of instructor. Offered in even-numbered years.

209C. Twentieth-Century: Poetry (3) II, III. The Staff Seminar—3 hours; term paper and/or exposure. The study of the works of one or several poets of the period. May be repeated for credit with consent of instructor. Offered in odd-numbered years.

*210. Studies in Narrative Fiction (3) I, II, III. The Staff Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied. Offered in even-numbered years.

211. Studies in Criticism (3) II, III. The Staff Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied. Offered every other year.

212. Studies in the Theater (3) I, II, III. The Staff Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied. Offered every other year.

213. Studies in Poetry (3) II, III. The Staff Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied. Offered every other year.

214. Study of a Literary Movement (3) II, III. Bloomfield Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied. Offered every other year.

297. Individual Research (1-5) I, II, III. The Staff (P/S grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Seminar—4-5 hours. May be repeated for credit with consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

300. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

Professional Courses

300A. Teaching of a Modern Foreign Language (3) I, II. The Staff Lecture—3 hours. Prerequisite: senior or graduate standing; a major or minor in a modern foreign language.

300B. The Teaching of French in College (3) I, II. The Staff Lecture—1 hour; discussion—1 hour. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the University. (S/U grading only.)

300C. The Teaching of French in College (3) II. The Staff Lecture—1 hour; discussion—1 hour. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the University. (S/U grading only.)

Genetics

(College of Agricultural and Environmental Sciences)

Paul E. Hansche, Ph.D., Chairperson of the Department
Department Office, 352 Briggs Hall (752-0200)

Faculty

Robert W. Allard, Ph.D., Professor (Genetics, Agronomy and Range Science)
Francisco J. Ayala, Ph.D., Professor
James B. Boyd, Ph.D., Professor
Gordon J. Edlin, Ph.D., Professor
Leslie D. Gottlieb, Ph.D., Associate Professor
Melvin M. Green, Ph.D., Professor
Paul E. Hansche, Ph.D., Professor
Genetics

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses wherever possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter: 57-68

Biological sciences (Biology Sciences 1) 5
Two of the following courses or course sequences: Bacteriology 2 and 3, or 102; Botany 2-3 9-12
Chemistry (Chemistry 1A-1B-1C or 4A-4B-4C; 8A-8B or 128A-128B-128C-128A) 21-26
Physics (Physics 2A-2B-2C) 9
Mathematics (Mathematics 13: 16A-16B-16C or 21A-21B-21C) 13-16

Depth Subject Matter: 20-25

Biochemistry 101A-101B 6
Genetics 100A-100B-100L or 120-120L; or with adviser's consent. 115-120
Three additional courses in genetics 9-12

Breadth Subject Matter: 36

College of Agricultural and Environmental Sciences students: Refer to page 98 for a description of requirements to be completed in addition to the major. 8

Additional requirements as described on page 74

College of Letters and Science students: Refer to page 98 for a description of requirements to be completed in addition to the major. 28

Restricted Electives: 18-30

Six upper division courses in biological sciences or other fields relevant to genetics and related to student's interest, chosen with approval of adviser. (Recommended: one course in animal, plant, or microorganism physiology; Mathematics 105A-105B or 130A-130B, or 131A-131B-131C) 18-30

Unrestricted Electives: 24-27

Total Units for the Major 180

1Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the Social Sciences and Humanities requirement.

NOTE: For key to footnote symbols, see page 138.
Geography

*292. Seminar in Gene Structure and Action (1-3) I II
Seminar—1-3 hours. Prerequisite: course 102 or consent of instructor. Topics of current interest related to the structure of genes, mutation, and the mechanisms of gene action. Offered in odd-numbered years. (SU grading only.)

*293. Seminar in Cytogenetics and Evolution (1-3) I
Seminar—1-3 hours. Prerequisite: course 101 or consent of instructor. Topics of current interest related to chromosomal changes, mutation, and other genetic changes in natural populations, and the application of genetics to study the organic evolution. Offered in odd-numbered years. (SU grading only.)

294. Seminar in Populational, Ecological, and Behavioral Genetics (1-3) II
Seminar—1-3 hours. Prerequisite: courses 103 and 105 or consent of instructor. Topics of current interest relating to genetic problems of populations, ecology, and behavior. Offered in even-numbered years. (SU grading only.)

298. Group Study (1-5) I II III The Staff (Hansche in charge)
Prerequisite: consent of instructor. Directed group study of special topics in genetics. (SU grading only.)

299. Research (1-12) I II III The Staff (Hansche in charge)
(SU grading only.)

Geography

(See Class Schedule and Room Directory.)

Teaching Credential Subject Representative. D. J. Dingleman. See page 111 for the Teacher Education Program.

Graduate Study. The department offers programs of study leading to the M.A. and Ph.D. degrees. Information concerning these programs may be obtained from the Graduate Adviser, Department of Geography.

Graduate Adviser. See Class Schedule and Room Directory.

Courses in Geography

Lower Division Courses

1. Physical Geography (4) I II I II II
Jett Lecture—3 hours; laboratory—2 hours. Basic physical elements of the earth, especially climate, landforms, soils, and natural vegetation.

2. Introduction to Cultural Geography (4) I II I II
Jett, II II
Symons Lecture—4 hours. Traditional systems of cultural use; their characteristics, origin, occurrence, ecology. Development of current cultural patterns and problems in manland relationships. Emphasis on the nonindustrial world.

3. Climate and Weather (3) I II I II
Shelton Lecture—3 hours. Composition and structure of atmosphere; weather elements; pressure, wind, temperature, moisture, fog, and clouds; weather maps; regional climates; and world climate classification; instruments for obtaining climatological data; installation and maintenance of weather stations; evaluation of recordings.

4. Maps and Map Interpretation (3) I II

5. Introduction to Urban and Economic Geography (4) I II
Dingleman Lecture—3 hours; discussion—1 hour. The location of economic and urban activities. Patterns and theories of spatial organization: resource development, agricultural and manufacturing regions, urban systems, and urban structure.

6. Man’s Role in Changing the Face of the Earth (4) I
Thompson Lecture—4 hours. Man’s influence on world geography and environment. The effects of human occupancy and activities on the environment, especially the landscape.

7. Problems in Regional Ecology (4) II
Simons Lecture—4 hours. Selected historical and contemporary ecological problems from various parts of the world. Emphasis on interaction between cultural and physical environments. Regions selected from areas of faculty specialization.

8. Cultural Geography of Black America (4) II
Lecture—4 hours. Geographic origins, dispersal, and adaptations of blacks in the New World.

9. Directed Study (1-5) I II III The Staff (Chairperson in charge)
Prerequisite: consent of instructor; primarily for lower division students. (PINP grading only.)

99. Independent Study (1-12) I II III The Staff (Chairperson in charge)
(PINP grading only.)

Upper Division Courses

*102. Field Course in Physical Geography (4) III
Lecture and field trip—one day per week. Prerequisite: courses 1 and 2 and consent of instructor. Research methodology and field study. Systematic mapping and analysis of elements of the natural landscape.

*103. Field Course in Human Geography (4) III
Lecture and field trip—one day per week. Prerequisite: courses 1 and 2 and consent of instructor. Research methodology and field study. Systematic mapping and analysis of elements of the cultural landscape.

*104. Field Course in Urban Geography (4) III
Dingleman Lecture—1 hour; full-day field trip. Field analysis of selected urban problems in California. Special attention to regional interrelationships, functional structure, and land use changes as specifically related to the core of the city, changing residential and retail patterns, and urban encroachment on agricultural lands.

105. Cartography (4) I II
Bahre Lecture—1 hour; laboratory—6 hours. Prerequisite: course 1 or consent of instructor. Compilation and generalization of base-maps; symbolic representation of map data; cartographic design and lettering techniques; map reproduction.

106. Interpretation of Aerial Photographs (4) III Bahre Lecture—2 hours; laboratory—4 hours. Prerequisite: course 1 or 105, or consent of instructor. Basic photogrammetry, analysis of landscape from conventional aerial photographs, and remote sensing.

107. Advanced Cartography (4) III
Bahre Lecture—1 hour; laboratory—6 hours. Prerequisite: course 105. Advanced cartographic representation of statistical and field data. New and innovative techniques in mapping systems.

108. Analysis of Landforms (4) I II
Helegen Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Introduction to landforms and geomorphic processes. Topics include structural landforms, rock weathering and soil genesis, hillslope processes, and fluvial, glacial and coastal landscapes.

110. Statistical Methods in Geographical Research (4)
Simons Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 13 or the equivalent. Principles of statistical reasoning illustrated with examples from the field of geography. Critical review of current applications of statistical methods in geographical research.

111. Rivers and Alluvial Landscapes (4) I II
Helegen Lecture—3 hours; discussion—1 hour. Prerequisite: course 108, or consent of instructor. Examination of the morphology, sedimentology, and genesis of alluvial land-
112. Coastal Landforms and Landscapes (4) I. Heglen Lecture—3 hours; discussion—1 hour. Prerequisite: course 108 or consent of instructor. Examination of the landforms and geomorphic processes found along coasts. Analyses of coasts in a variety of geographical and cultural perspectives, with emphasis on the interaction of these forces on the coast. Emphasis will also be placed on those areas as they pertain to the people who live on the coast.

120. History of Geography Thought (4) I. Thompson Lecture—3 hours; term paper. Prerequisite: two courses in geography or consent of instructor. Development and use of geographic thought from the ancient Greeks to the present. The role of geographical thought in the development of modern thought and society.

121. North America (4) I. Heglen Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Natural and cultural regions of the United States and Canada.

122. Middle America (4) III. Bahre Lecture—3 hours; term paper. Prerequisite: two courses in geography or consent of instructor. Environment, culture, and economy from Mexico to Panama and in the Caribbean.

122A. South America (4) I. Bahre Lecture—3 hours; term paper. Prerequisite: consent of instructor. Physical characteristics and human utilization of South America.

123. Western Europe (4) II. Thompson Lecture—3 hours; term paper. Prerequisite: courses 1 and 2 or consent of instructor. Geographic conditions and their relation to the economic, social, and political problems of the countries of Western Europe.

123A. Eastern Europe (4) I. Heglen Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Geographic conditions and their relation to the economic, social, and political problems of the countries of Eastern Europe.

124. The Soviet Union (4) I. Dingesman Lecture—3 hours; term paper. Prerequisite: courses 1 and 2 or consent of instructor. Physical and cultural geography of the U.S.S.R.

125. North Africa and the Middle East (4) II. Grivits Lecture—4 hours. Prerequisite: courses 1 and 2 or consent of instructor. Geography of the Islamic world of North Africa and the Middle East. Cultural and physical features; urban areas, nomadic groups, and the influence of Islam.

126. Southern Asia (4) II. Simons Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 2 or consent of instructor. Physical, cultural, and historical geography of South Asia.

131. California (4) III. Heglen Lecture—3 hours; discussion—1 hour. The regional nature and variety of California: landscapes, vegetation, and soils; water, agriculture, and the cities. Ecological problems caused by increasing population and technological pressures on these environments.

141. Organization of Economic Space (4) I. Heglen Lecture—3 hours; discussion—1 hour. Prerequisite: course 5 or consent of instructor. Survey of the principal environmental, social, political, and cultural forces contributing to the regionalization of the world's economic activity. Outline of the more important regional patterns resulting from the interplay of these forces. Emphasis will be placed on these aspects as they pertain to the people who live in these regions.

151. History of Geographic Thought (4) I. Thompson Lecture—3 hours; term paper. Prerequisite: three courses in geography or consent of instructor. Development and use of geographic thought from ancient times to modern times.

154. Geography of Settlement (4) III. Dingesman Lecture—3 hours; term paper. Prerequisite: course 2 or consent of instructor. Settlement patterns; theories of settlement systems. Emphasis on rural settlement and non-rural settlement.

155. Urban Geography (4) I. Dingesman Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Geography of urban life within cities. The processes of change, and the economic and social organization of urban space. The urban landscape as a product of history, planning, and policy.

156. The Urban Region (4) II. Dingesman Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Location and functional interdependence of cities. Relations between city and hinterland, including labor shed, service area, and economic base. Role of urbanization in regional development.

171. Cultural Geography (4) I. Simons Lecture—2 hours; term paper. Prerequisite: course 5 or consent of instructor. Geographical survey of water on the land; needs and opportunities for water-resource development and conservation. Historical aspects of water needs of specific areas and geographical problems associated with current and future water requirements.

182. Geography of Water Resources (4) II. Shetson Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Geographical survey of water on the land; needs and opportunities for water-resource development and conservation. Historical aspects of water needs of specific areas and geographical problems associated with current and future water requirements.

197. Cultural Ecology (4) II. Jett Lecture—3 hours; term paper. Prerequisite: two courses in Anthropology. 2. Geographic theories of environment-man relations. Ecological relations of gatherers, fishermen, hunters, cultivators, and urbanites; their environmental impacts; their domestic plants and animals.

191. Cultural Geography (4) I. Simons Lecture—2 hours; term paper. Prerequisite: courses 1 and 2 or consent of instructor. Theories of human domestication; their effect on the world's vegetation patterns. Particular emphasis on the cultural relationships of man with vegetation patterns.

201. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201A. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201B. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201C. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201D. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201E. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201F. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201G. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201H. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201I. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201J. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201K. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201L. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201M. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201N. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201O. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201P. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201Q. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201R. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201S. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.

201T. Sources and General Literature of Geography (4) I. Heglen Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Literature of general importance in the field of geography.
Geology

297. Seminar in Industrial Geography (4) III. Gregor Seminar—3 hours.
Prerequisite: consent of instructor.

298. Group Study (1-5) II, III. The Staff Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Professional Course

300. Problems in Teaching Geography (2) II. Thompson
Lecture—2 hours. Prerequisite: course 1 or 2. Establishing, organizing, and conducting courses in geography and regional study. Designed primarily for prospective elementary and secondary school teachers of the social sciences. (P/NP grading only for undergraduates and SU for graduate students.)

Geology

(College of Letters and Sciences)

Richard Cowen, Ph.D., Chairperson of the Department
Department Office, 175 Physics-Geology Building

Faculty
Gerard C. Bond, Ph.D., Assistant Professor
Richard Cowen, Ph.D., Associate Professor
Howard W. Day, Ph.D., Assistant Professor
Cordell Durrell, Ph.D., Associate Professor Emeritus
Harry W. Green II, Ph.D., Associate Professor
Charles G. Higgins, Ph.D., Professor
Jere H. Lipps, Ph.D., Professor
Ian D. MacGregor, Ph.D., Professor
Robert A. Matthews, A.B., Lecturer
Eldridge M. Moores, Ph.D., Professor
Dennis R. Ojakangas, Ph.D., Lecturer
Bruce E. Taylor, Ph.D., Assistant Professor
Bennie W. Troxel, M.A., Lecturer
Robert J. Twins, Ph.D., Associate Professor
Kenneth L. Veresub, Ph.D., Assistant Professor
Peter D. Ward, Ph.D., Assistant Professor

The Major Programs

Students interested in becoming professional geologists and continuing their geological studies at the graduate level should elect the program leading to the Bachelor of Science degree. Students desiring a less intensive program in geology as part of their general education or as preparation for nonprofessional careers in geology may elect the program leading to the Bachelor of Arts degree. High school students should note that the preparation for either degree is simplified if their high school programs include chemistry and four years of mathematics. In either program additional courses may be selected for emphasis in physical or environmental geology.

Geology

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoology 2</td>
<td>4</td>
</tr>
</tbody>
</table>

| Major Adviser | C. G. Higgins (A.B. degrees) and E. M. Moores, K. L. Veresub (B.S. degrees) |

Teaching Credential Subject Representative: C. G. Higgins. See page 111 for the Teacher Education Program.

Graduate Study: The Department of Geology offers a program of study and research leading to the M.S. and Ph.D. degrees. For information regarding graduate study in geology, address the Graduate Adviser, Department of Geology.

Graduate Adviser: J. H. Lipps.

Courses in Geology

Lower Division Courses

1. Evolution of Earth (3) III. Lipps, III. The Staff Lecture—5.5 hours. Intended for those not majoring in geology or associated sciences. Origin and physical development of the Earth through geologic time, and the processes and materials that formed it.

2. Evolution of the Earth Laboratory (1) I, III. The Staff Laboratory—5.5 hours. Prerequisite: course 1 (concurrently). Intended for those not majoring in geology or associated sciences. The materials (rocks and minerals), structures (faults and folds), and processes (sea floor spreading and continental drift) that formed the Earth, illustrated by laboratory and field exercises.

3. History of Life (3) II. Cowen Lecture—5.5 hours. Prerequisite: course 1 recommended. The history of life during the three billion years from its origin to the present day, origin of life and processes of evolution to visualize and understand living organisms from their fossil remains.

4. History of Life Laboratory (1) II. Cowen Laboratory—5.5 hours. Prerequisite: course 3 (concurrently). Exercises in understanding fossils as the clues to interpreting ancient life, including their functional morphology, paleoecology, and evolution.

5. The Physical Earth and Man (3) III. Troxel Lecture—2 hours; discussion—1 hour. The problem of non-renewable natural resources. Their role in technology and society; their availability, rates of depletion, and the probable impact on society of their exhaustion.

6. Earthquakes and other Earth Hazards (2) I. Veresub Lecture—5 hours. The study of earthquakes, volcanoes, landslides, and floods on land, on his structures and his environment. Discussion of the causes, effects, and solution of geologic problems in rural and urban settings.

7. Geology of California (3) I. Moores Lecture—5 hours, demonstration—1 hour. The geologic history of California, the origin of rocks and the environment in which they were formed, the structure of the rocks and the interpretation of their structural history, mineral resources, and the history of the California landscape.

8. Physical Geology (3) I. Moores Lecture—4.5 hours. Engagement of physical geology for majors in geology and associated sciences. History of the earth and solar system; geologic time; Earth’s interior; plate tectonics; crustal deformations; rocks and minerals; weathering, erosion, and sedimentation; volcanism, plutonism, and metamorphism.

9. Physical Geology Laboratory (2) I, Moores Laboratory—6 hours; one or two one-day field trips. Prerequisites: course 5 (preferably taken concurrently). Laboratory work to illustrate topics in course 5. Emphasis on introduction to classification and recognition of minerals and rocks, and on reading topographic and geologic maps.

10. General Mineralogy (3) I. Day Lecture—3 hours. Prerequisite: high school chemistry. Crystalllography: physical and chemical structure and properties of minerals; mineral genesis.
Geology; German

170. Geology of Ore Deposits (4) III. Taylor
Lecture—3 hours, laboratory—3 hours. Prerequisite: course 102 and 109L. Examination of major metallic cre- dies using principles of plate tectonics, structural geol-
yey, petrology, and geochemistry. Laboratory study of se- lected ore deposits.

175. Introduction to Geological Engineering (3) III. Shen. (Civil Engineering). Mgr.
Lecture—2 hours, laboratory—3 hours. Prerequisite: junior standing. Introduction to the principles of geology and study of geologic features that affect engineering structures. Discussion of geological aspects of engineering construction problems by means of case history studies.

180. Instrumental Analysis (5) II. Taylor
Lecture—3 hours, laboratory—6 hours. Prerequisite: ele-
mentary chemistry and elementary physics. Theory of the generation and detection of x-rays as applied to the de-
termination of crystal structures and the analytical chem-
istry of rocks, minerals, and other compounds. Laboratory sessions will be given on the use of x-ray diffractometer and electron microscope both as a scanning electron mi-
croscope and analytical tool.

181. Geologic Applications of Computers (3) I. Okajangak
Lecture—2 hours laboratory—3 hours. Prerequisite: upper divison standing and one upper division geology course or consent of instructor. Introduction to solution of geol-
ogy and related scientific problems by computer methods.

190. Seminar in Geology (1) I, II, III. The Staff
Discussion—1 hour, seminar—1 hour. Presentation and discussion of current topics in geology by visiting lecturers, staff, and students. May be repeated for credit. (P/NoP grading only.)

192. Internship in Geology (1-5) I, II, III. The Staff (Chairperson in charge)
Work-term experience. Prerequisite: upper division standing, project approval prior to internship. Supervised work-
term experience in geology. May be repeated for credit for a total of 10 units. (P/NoP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chair-
person in charge)
Prerequisite: senior standing in geology or consent of instructor.

199. Special Study for Advanced Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge)
(P/NoP grading only.)

Graduate Courses

201. Advanced Biological Ecology (4) II. Salt (Zoology).
Major (Botany), Wilson.
Lecture—3 hours; discussion—1 hour. Prerequisite: an up-
ner division course in either plant or animal ecology (re-
ommend both) and graduate standing. An examination of major topics in theoretical ecology. (Same course as Bo-
tany 201, Ecology 201, and Zoology 201.)

202. Stratigraphic Analysis (3) I, Bond.
Lecture—3 hours. Prerequisite: courses 105L and 109L or con-
sent of instructor. Advanced historical geology: analysis of stratigraphy and geologic history of North America and selected parts of other continents. Emphasis on inter-
preting lithologic assemblages and stratigraphic relations in terms of modern eustatic-depositional models.

299. Origin and Significance of Metamorphic Textures (4) II. Green
Seminar—3 hours, laboratory—3 hours. Prerequisite: course 109 or consent of instructor. Advanced historical geography: analysis of stratigraphy and geologic history of North America and selected parts of other continents. Emphasis on inter-
preting lithologic assemblages and stratigraphic relations in terms of modern eustatic-depositional models.

213. Studies in Geomorphology (3) I. Higgins
Lecture—3 hours. Prerequisite: course 123 or Geog-
ography 108. Topics selected from: studies of landslides and landscape development and of the action of formative

262. Palaeosystematics (3) I.
Lecture—1 hour, seminar—2 hours. Prerequisite: course

263. Functional Morphology of Fossil Invertebrates (4)
III. Cowen
Lecture—2 hours, laboratory—6 hours. Prerequisite: course 111A or Zoology 112A. Principles and methods of functional analysis of fossils, with special reference to se-
lected problems in invertebrate phylogeny.

269. Evolutionary Biology of Plants (3) I. Lips.
Seminar—3 hours. Prerequisite: course 111B or Zoology 110 or Botany 150. Analysis and discussion of se-
lected topics on the evolution of single-celled organisms with emphasis on their fossil record and biology.

270. Igneous Petrology (3) II. The Staff
Seminar—3 hours. Prerequisite: course 124B. Integrated laboratory, field study, and se-
minar on igneous processes and products.

290. Seminar in Geology (1) I, II, III. The Staff
Seminar—1 hour, discussion—1 hour. Presentation and discussion of current topics in geology by visiting lecturers, staff, and students. (S/U grading only.)

294. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge).
(S/U grading only.)

German
(College of Letters and Science)

Valerie A. Tumins, Ph.D., Chairperson of the Department
Pete M. Schaeffer, Ph.D., Vice-Chairperson of the Department
Department Office (German and Russian), 416 Sproul Hall

Faculty
Wilbur A. Benware, Ph.D., Associate Professor
Clifford A. Bernd, Ph.D., Professor
William M. Estabrook, Ph.D., Lecturer
John F. Fetzer, Ph.D., Professor
Roland W. Hoermann, Ph.D., Associate Professor
Winder McConnell, Ph.D., Assistant Professor
Karl R. Motes, Ph.D., Associate Professor
H. Guenther Nersjes, Ph.D., Associate Professor
Fritz Bannerm-Frankenberg, Ph.D., Associate Professor
Pete M. Schaeffer, Ph.D., Associate Professor

The Major Program
This major explores in depth the language, the liter-
German

A.B. Major Requirements:

Preparatory Subject Matter

GERMAN 1 or 1AT, 2 or 2AT, 3 (or the equivalent)................. 0-18
GERMAN 4 or 4A-6B.. 4

Depth Subject Matter

GERMAN 101, 110A, 119A, 121A, 122A................. 36
GERMAN 102, 103 (to be taken in residence).............. 8

Total Units for the Major

40-58

Recommended

Linguistics 1

Major Adviser: W. A. Benware.

Honors and Honors Program. The honors program comprises two quarters of study under course 194H, which will include a research paper and a comprehensive examination. See also page 103.

Teaching Credential Subject Representative: W. M. Estabrook. See page 111 for the Teacher Education Program.

The Master of Arts Degree. The Department offers programs of study leading to the M.A. degrees. A minimum of 36 units is required. Further information may be obtained by writing to the Graduate Adviser.

The Degree of Doctor of Philosophy. The Department offers programs of study and research leading to the Ph.D. degree. Detailed information may be obtained by writing to the Graduate Adviser.

Graduate Adviser: J. F. Fetzer, P. M. Schaeffer.

Courses in German

Lower Division Courses

Course Placement. Students with two years of high school German normally continue in German 2; those with three years, German 3; those with four years, German 4 or 6A-6B.

1. Elementary German (6) I, II, III. Estabrook
 Discussion—5 hours; laboratory—two 1/2-hour sessions.
 Students who have successfully completed German 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/N grading basis only.
 Although a passing grade will be charged to the student's P/N option, no petition is required. All other students will receive a letter grade unless a P/N petition is filed.

1ATA-1ATB-1ATC. Individualized German (2-2-2) I-II-III
 Estabrook
 Students participate in group lectures and individual discussions with instructor(s). The three segments of German IAT correspond to course 1. Instruction is on an individual basis. Students may start at any point. Placement advising is available. Not open for credit to students who have successfully completed the second year of high school German.

2. Elementary German (6) I, II, III. Estabrook
 Discussion—5 hours; laboratory—two 1/2-hour sessions. Prerequisite: course 1.

2ATA-2ATB-2ATC. Individualized German (2-2-2) I-II-III
 Estabrook
 Students participate in group lectures and individual discussions with instructor(s). Prerequisite: course 1AT (or the equivalent). The three segments of German 2AT correspond to course 2. Instruction is on an individual basis. Students may start at any point. Placement advising is available.

3. Intermediate German (6) I, II, III. Estabrook
 Discussion—5 hours; laboratory—two 1/2-hour sessions. Prerequisite: course 2. Three credits of German 2AT will be accepted as a prerequisite.

4. Intermediate German (4) I, II, III. The Staff
 Lecture—3 hours. Prerequisite: course 3. (Courses 4 and 6A may be taken concurrently with 6A and/or 6B.) Review of grammatical principles by means of written exercises; expanding vocabulary through reading of modern texts.

5. Advanced German (2) I, II, III. The Staff
 Discussion—2 hours. Prerequisite: course 4. Completion of three-course sequence and one semester of German spoken German. Topics vary from course 6A (P/N grading only).

6. Intermediate German (2) I, II, III. The Staff
 Discussion—2 hours. Prerequisite: course 4. Completion of three-course sequence and one semester of German spoken German. Topics vary from course 6A (P/N grading only).

Upper Division Courses

100A. Advanced German Conversation (2). Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

100B. Advanced German Conversation (2). Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

100C. Advanced German Conversation (2). Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

101. Composition and Conversation (4) I, II, III. The Staff
 Discussion—3 hours; written reports. Prerequisite: course 1 or consent of instructor. Practice in short essay writing. Discussion based on readings from a variety of German texts.

102. Composition and Conversation (4) I, II, III. The Staff
 Discussion—3 hours; written reports. Prerequisite: course 102 or consent of instructor. Advanced essay writing and discussion of selected texts.

104. German Grammar and Stylistics (4). I. The Staff
 Lecture—1 hour; discussion—2 hours; translation projects—1 hour. Prerequisite: successful completion of course 111N, 111S. Continuation of course 111N, 111S with special emphasis on the structures of German and its relation to language in the modern period. Study of masterworks in English translation demonstrating the ability of contemporary German writers to interpret their world through the intellectual framework.

111N, 111S. Reading German (4). I, II. Hoermann
 Lecture—1 hour; discussion—2 hours; translation project—1 hour. Prerequisite: successful completion of course 10 or the equivalent. Continuation of course 10, with special emphasis on the upper division students in the literature of 19th century. Texts are selected from the central element of the course. (P/N grading only.)

12H, 12N, 12S. Advanced Reading German (4) III. Hoermann
 Lecture—1 hour; discussion—2 hours; translation projects—1 hour. Prerequisite: successful completion of course 111N, 111S. Continuation of course 111N, 111S with special emphasis on the structures of German and its relation to language in the modern period. Study of masterworks in English translation demonstrating the ability of contemporary German writers to interpret their world through the intellectual framework.

15. The Development of German Literature (4) I, II, III. The Staff
 Lecture—3 hours. Characteristics, themes, problems, and genres in the development of German literature, from the medieval epics and romance poetry to the modern period. Study of masterworks in English translation demonstrating the ability of contemporary German writers to interpret their world through the intellectual framework.

49. Freshman Seminar (2) II. Hoermann
 Discussion—2 hours. Knowledge of German not required. Discussion of the influence of the intellectual developments of the last 100 years on the students, particularly as illustrated in translation by such modern German literary figures as Nietzsche, Kafka, Heine, Brecht, and Günter Grass. Enrollment limited (P/N grading only.)

50. The German Literary Heritage: Prose (2). II. The Staff
 Discussion—2 hours. Introduction to selected major prose works of German literature and their impact on the American tradition. Texts are selected from the central element of the course. (P/N grading only.)

51. The German Literary Heritage: Drama (2) III. The Staff
 Discussion—2 hours. Introduction to selected major dramatic works of German literature and their impact on the American tradition. Texts are selected from the central element of the course. (P/N grading only.)

NOTE: For key to footnote symbols, see page 138.

German

98. Directed Group Study (1-5). Lecture—1 hour; discussion—1 hour; course 98. Prerequisite: consent of instructor. Primarily for lower division students. (P/N grading only.)

99. Special Study for Undergraduates (1-5). Lecture—1 hour; course 99. Prerequisite: consent of instructor. Primarily for lower division students. (P/N grading only.)

100A. Advanced German Conversation (2). Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

100B. Advanced German Conversation (2). Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

100C. Advanced German Conversation (2). Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

101. Composition and Conversation (4) I, II, III. The Staff
 Discussion—3 hours; written reports. Prerequisite: course 1 or consent of instructor. Practice in short essay writing. Discussion based on readings from a variety of German texts.

102. Composition and Conversation (4) I, II, III. The Staff
 Discussion—3 hours; written reports. Prerequisite: course 102 or consent of instructor. Advanced essay writing and discussion of selected texts.

104. German Grammar and Stylistics (4). I. The Staff
 Lecture—1 hour; discussion—2 hours; written reports. Prerequisite: course 103 or consent of instructor. Exercises in grammar and stylistics; translation of selected English texts into German.

105. Linguistic Analysis of German (4). II. Bernware
 Lecture—3 hours; assigned problem sets. The descriptive study of modern German with consideration of its structural differences from English. (Same course as Linguistics 105.)

106. History of the German Language (4). II. Bernware
 Lecture—3 hours; written reports. Survey of the development of the German language and its role in the modern world. (Same course as Linguistics 106.)

109. Survey of German Culture (4). II. Fetzer
 Lecture—3 hours; written reports. Knowledge of German not required. Close reading of the major novels (Tristan, Trotta); the influence of the intellectual developments in German literature on the American tradition. Text is in English translation. Not intended for majors.

112. Thomas Mann (4). II. Fetzer
 Lecture—3 hours; written reports. Knowledge of German not required. Close reading of the major novels (Tristan, Trotta); the influence of the intellectual developments in German literature on the American tradition. Text is in English translation. Not intended for majors.

113. Hermann Hesse (4). II. Nemeyer
 Lecture—3 hours; additional readings and written reports. Knowledge of German not required. A study of the major ideas and issues of the principal novels, with emphasis on man's dualism and his search for self-knowledge and self-affirmation. Discussion of such works as Siddharta, Steppenwolf, Narcissus and Goldmund. Not counted toward the major in German.

237
114. Goethe's Faust (4) I. Neres
Lecture—3 hours; conferences and reports. Knowledge of German not required. A detailed analysis and aesthetic critique in English. May not be counted toward the major in German.

115A. German Literature since 1945 (4) I. Menges
Lecture—3 hours; written reports. Reading of major writers including the post-war generation of Austria, Switzerland and West-Germany. Discussion of novelists like Böll, Grass, Johnson, Walser, Handke, playwrights such as Frisch, Durrenmatt and Hochhuth and poets like Celan, Enzensberger and Aichinger. May not be counted toward the major in German. Knowledge of German not required.

115B. German Literature since 1945 (4) I. Schaeffer
Lecture—3 hours; written reports. Reading and discussion of the literature of the German Democratic Republic, the theory of literature in the socialist world, the practice of this literature as exemplified in such authors as Strittmatter, Dehvis, Wolf, Kant, Hackes. May not be counted toward the major in German. Knowledge of German not required.

116. Literary Aspects of Schopenhauer and Nietzsche (4) I. Menges
Lecture—3 hours; written reports. Knowledge of German not required. Extension and transformation of the Romantic theories of art and the artist and the influence of Schopenhauer and Nietzsche on the twentieth century literary phenomenon, such as expressionism, and on writers such as Weckkind, Rilke, and Thomas Mann. May not be counted toward the major in German.

117. Kafka (4) I. Hoermann
Lecture—3 hours; written reports. Knowledge of German not required. A study of the works of Kafka and his influence on the development of modern literature. May not be counted toward the major in German.

119A. Survey of German Literature from the Beginnings Through Classicism (4) I. McConnell
Lecture—3 hours; written reports. Knowledge of German not required. A study of the works of some of the most important German writers from the Middle Ages to the present. May not be counted toward the major in German.

119B. Survey of German Literature from Romanticism to the Present (4) I. McConnell
Lecture—3 hours; written reports. Knowledge of German not required. A study of the works of some of the most important German writers from the Middle Ages to the present. May not be counted toward the major in German.

119C. Literary Interpretation (4) VI. Schaeffer
Lecture—2 hours; discussion—1 hour; written reports. Knowledge of German not required. A study of the works of some of the most important German writers from the Middle Ages to the present. May not be counted toward the major in German.

120. The Medieval Period in German Literature (4) I. McConnell
Lecture—3 hours; written reports. Knowledge of German not required. A study of the works of some of the most important German writers from the Middle Ages to the present. May not be counted toward the major in German.

121. Older German Literature in English Translation (4) I. McConnell
Lecture—2 hours; discussion—1 hour; oral reports. Knowledge of German not required. A study of the works of some of the most important German writers from the Middle Ages to the present. May not be counted toward the major in German.

122. Older German Literature in English Translation (4) II. McConnell
Lecture—2 hours; discussion—1 hour; oral reports. Knowledge of German not required. A study of the works of some of the most important German writers from the Middle Ages to the present. May not be counted toward the major in German.

123. Goethe (4) I. Neres
Lecture—3 hours; written reports. Prerequisite: course 101 (may be taken concurrently) or consent of instructor. Goethe's lyric, Werther, Götz and the masterworks of his classical period such as Iphigenia, Tasso and Faust. Discussion in German and English.

124. Schiller (4) I. Neres
Lecture—2 hours; written reports. Prerequisite: course 101 (may be taken concurrently) or consent of instructor. Schiller's drama, Wallenstein, Maria Stuart, Die Jungfrau von Orleans. Discussion in German and English.

125. The German "Novelle" (4) II. Berndt
Lecture—3 hours; written reports. Prerequisite: course 101 (may be taken concurrently) or consent of instructor. Reading of the forms of the "Novelle" through analysis of the materials and formal devices of representative authors from Goethe to Kafka. Discussion in German and English.

126. The German Drama (4) I. Neres
Lecture—2 hours; written reports. Prerequisite: course 101 (may be taken concurrently) or consent of instructor. Reading of the works of German dramatists from the seventeenth century to the present day, such as Lessing, Goethe, Schiller, Kleist, Hebbel, Hauptmann, Brecht. Discussion in German and English.

140. Modern German Literature (4) III. Menges
Lecture—3 hours; written reports. Prerequisite: course 101 (may be taken concurrently) or consent of instructor. Se
ing of the significant works of major twentieth-century writers, such as Hesse, Mann, Kafka, Rilke, Grass. Discussion in German and English.

144A. German Literature and History to 1815 (4) I. Menges
Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or 6A and 6B or consent of instructor. Literature of Germany viewed in relation to such major social and political events as: the Reformation, the Thirty Years' War, the rise of Prussia, the impact of the French Revolution and the Napoleonic wars. Discussion in German and English.

144B. German Literature and History since 1815 (4) II. Menges
Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or 6A and 6B or consent of instructor. German literature viewed in relation to such major historical events as: the revolution of 1848, the founding of the German Empire, World Wars I and II, and the establishment of the two Germanies after 1945. Discussion in German and English.

149H. Special Study for Honors Students (5) I, II, III. The Staff
Prerequisite: open only to honors students. Guided research leading to an honors paper.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(PAP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(PAP grading only.)

Graduate Courses

200. Gothic (4) I. Benware
Seminar—3 hours. Knowledge of Modern German not required. Philosophy, genre, and reading of Gothic texts. Special topics including the influence of Gothic to Indo-European and to the other Germanic languages. Offered in even-numbered years. (Same course as Linguistics 200.)

201. Old High German (4) II. Benware
Seminar—3 hours. Study of the beginnings of German as a written language through the reading of selected texts from the eighth through the eleventh centuries. A linguistic analysis of the dialects. Offered in odd-numbered years.
268. The Poetry of Rilke (4) I, Menge.
Seminar—3 hours. Study of the principal motifs, myths, images and themes in the poetry of Rainer Maria Rilke.

269. Brecht and the Epic Theater (3) III, Menge.
Seminar—3 hours. Reading of Brechtian plays and the development of his theory. Projects based on his techniques.

Seminar—3 hours; written report. A survey of the main trends and principal authors of the eighteenth century, with emphasis on theamburger literaturer and the aesthetic attitudes prevalent at the time.

281. Survey of Nineteenth-Century German Literature (4) II, Sennemann-Frankenberg.
Seminar—3 hours; written reports—1 hour. Survey of the main trends and authors of the nineteenth century, with emphasis on the development of literary forms and the cultural context of the period.

282. Survey of Twentieth-Century German Literature (4) III, Menge.
Seminar—3 hours; written reports—1 hour. Survey of the main trends and authors of the twentieth century, with emphasis on the impact of political and social events on literature.

286. The Renaissance and Reformation in German Literature (4) I, Schaefler.
Seminar—3 hours. Study of the cultural and intellectual developments of the sixteenth century in Germany, with emphasis on the works of key figures.

289. German Literature of the Baroque (3) III, Schaefler.
Seminar—3 hours. Study of the Baroque period, with emphasis on the works of key figures and the cultural context.

290. The Enlightenment in German Literature (4) II, Nerjes.
Seminar—3 hours. Study of the ideas and works of key figures in the Enlightenment, with emphasis on the impact of these ideas on later developments.

296. Twentieth-Century German Literature (4) II, Menge.
Seminar—3 hours. Study of the major authors and trends of the twentieth century, with emphasis on the challenges facing German literature.

297. Special Topics in German Literature (4) 4, The Staff.
Seminar—3 hours; written reports. Course will be offered on various special topics in German literature, depending on faculty interest.

298. Group Study (1-6) I, II, III. The Staff (Chairperson in charge).
(S/U grading only.)

299. Research (1-12) I, II, III. Staff (Chairperson in charge).
(S/U grading only.)

300. Individual Study (1-12) I, II, III. Staff (Chairperson in charge).
Discussion; directed reading. (S/U grading only.)

Professional Courses

304. The Teaching of German (1) I, Estabrook.
Lecture—1 hour. Prerequisite: graduate standing or consent of instructor. Theoretical and practical methods of teaching German, with emphasis on classroom management and student engagement.

305. The Teaching of German (1) II, Estabrook.
Lecture—1 hour. Prerequisite: graduate standing or consent of instructor. Theoretical and practical methods of teaching German, with emphasis on classroom management and student engagement.

308. Practical Phonetics of German (1) III. Baner.
Discussion—1 hour. An introduction to the sounds and sound patterns of modern German with practical exercises. (S/U grading only.)

400. Tutorial and Instructional Internship (1-3) I, II, III. The Staff (Chairperson in charge).
Lecture—3 hours. Prerequisite: graduate standing. Internship in a real-world setting with a German-speaking organization.

The Major Program

This major is designed to provide a strong foundation in German language and culture, as well as opportunities for independent study and research. Students will read extensively in the works of key figures in German literature, with emphasis on the development of literary forms and the cultural context of the period. The major offers a variety of approaches to the study of German literature, with opportunities for advanced study and research. Students will also have the opportunity to study the language and culture of other European countries through elective courses.

Greekgreek
See Classics

Hebrew
See Religious Studies

The History

(Rolfe E. Poppino, Ph.D., Chairperson of the Department)
Department Office, 176 Voorhies Hall

Faculty

Luis Arroyo, M.A., Acting Assistant Professor
Arnold J. Bauer, Ph.D., Associate Professor
William M. Bowsky, Ph.D., Professor
Cynthia L. Brandon, Ph.D., Assistant Professor
D'Andrea Body, Ph.D., Professor
Daniel R. Brower, Jr., Ph.D., Professor
Daniel Callahan, Ph.D., Professor
Robert O. Crumley, Ph.D., Associate Professor
Manfred P. Fleischer, Ph.D., Professor
Paul Goodman, Ph.D., Professor
Nancy Grant, M.A., Acting Assistant Professor
William W. Hagen, Ph.D., Associate Professor
M. W. Turrentine Jackson, Ph.D., Professor
David L. Jackson, Ph.D., Professor
Erlin H. Kimmons, Ph.D., Assistant Professor
Norma Landau, Ph.D., Associate Professor
Kwang-Ching Li, Ph.D., Professor
Jung-Fang Lo, Ph.D., Professor Emeritus
Eugene Lunn, Ph.D., Associate Professor
C. Poland Marchand, Ph.D., Associate Professor
Ted W. Margarett, Ph.D., Associate Professor
C. Bickford O'Brien, Ph.D., Professor Emeritus
Rolle E. Poppino, Ph.D., Professor
Ron C. Prince, Ph.D., Associate Professor
Ruth E. Rosen, Ph.D., Assistant Professor
Mary P. Ryan, Ph.D., Visiting Assistant Professor
Richard N. Schwab, Ph.D., Professor
Morgan B. Sherwood, Ph.D., Professor
James H. Shifler, Ph.D., Professor
Wilson Smith, Ph.D., Professor
Sylvanus Spyridakis, Ph.D., Associate Professor
Donald C. Swain, Ph.D., Professor
F. Roy Willis, Ph.D., Professor
Walter L. Woodfill, Ph.D., Professor

The Minor Program

This minor is designed to provide a strong foundation in German language and culture, as well as opportunities for independent study and research. Students will read extensively in the works of key figures in German literature, with emphasis on the development of literary forms and the cultural context of the period. The minor offers a variety of approaches to the study of German literature, with opportunities for advanced study and research. Students will also have the opportunity to study the language and culture of other European countries through elective courses.
Courses in History

Lower Division Courses

1. Religious ideas and institutions in Early Western Civilization (4) II. Schwab
 Lecture—3 hours; discussion—1 hour. An examination of the Judeo-Christian tradition as it met ancient Near Eastern and classical ideas and institutions from earliest times to St. Augustine.

2. Ancient Civilizations (4) III. Fleischer
 Lecture—3 hours; discussion—1 hour. The growth of ancient civilizations from the Sumerians to the Fall of the Roman Empire.

3. Cities: A Survey of Western Civilization (4) II. Willis

4A. History of Western Civilization (4) I. The Staff (Chairperson in charge)
 Lecture—3 hours; discussion—1 hour. The growth of western civilization from late antiquity to the Renaissance.

4B. History of Western Civilization (4) I, II. The Staff (Chairperson in charge)
 Lecture—3 hours; discussion—1 hour. Development of western civilization from the Renaissance to the Eighteenth Century.

4C. History of Western Civilization (4) II, III. The Staff (Chairperson in charge)
 Lecture—3 hours; discussion—1 hour. The development of Western Civilization from the Eighteenth Century to the present.

7. Latin American Civilization (4) III. Bauer
 Lecture—3 hours; discussion—1 hour. An introduction to Latin America from the Maya, Incas and Aztecs to the present. The course presents a micro-cosmic picture of a single individual (ranging from an Aztec peasant to Eva Peron) each week drawn from documentary and photographic evidence. Supplementary sessions explain the individual’s social context and significance.

9A. History of East Asian Civilization (4) I. Liu
 Lecture—3 hours; discussion—1 hour. Surveys traditional Chinese civilization and its modern transformation. Emphasis on thought and religion, political and social life, art and literature. Perspectives on contemporary China are provided.

9B. History of East Asian Civilization (4) II. Kimmonth
 Lecture—3 hours; discussion—1 hour. Surveys traditional Japanese civilization and its modern transformation. Emphasis is on thought and religion, political and social life, art and literature. Perspectives on contemporary Japan are provided.

17A. History of the United States (4) I, II, III. The Staff
 Lecture—3 hours; discussion—1 hour. The growth of the American people from colonial times through the Civil War.

17B. History of the United States (4) I, II, III. The Staff
 Lecture—3 hours; discussion—1 hour. The history of black people in the United States from Reconstruction to the present.

18. Introduction to United States History Through Film (4) II. Goodman
 Lecture-discussion—4 hours; use of films. An introduction to American history using approximately nine films with parallel readings on selected themes, such as the American Indian, the Civil War, the Great Depression, the cult of success. Topics and films may vary.

22. Violence and Law in America (4) III. Calhoun
 Lecture—2 hours; discussion—2 hours. Movements of protest or social control from the revolutionary period to the present.

27A. Afro-American History (4) II. Grant
 Lecture—3 hours; discussion—1 hour. The history of black people in the United States from Reconstruction to Reconstruction.

27B. Afro-American History (4) II. Grant
 Lecture—3 hours; discussion—1 hour. The history of black people in the United States from Reconstruction to the present.

*1. Discovery and Settlement of Spanish America (4) II. Peterson
 Seminar—4 hours. Some knowledge of Spanish recommended. Examination of the laws, customs, and activities of pre-Colombian and continental Spanish-American society through reading and discussion of contemporary letters, reports, and other sources in translation or transcription. Each student to keep a journal of his studies. No final examination. Limited enrollment.

*2. Introduction to Brazilian History (4) III. Poppino
 Lecture—3 hours; seminar—3 hours. Reading of historic documents in English translation and extensive use of sites. Emphasis is on eighteenth century slavery, race relations and economic development.

72A. Social History of American Women and the Family (4) I. Ryan
 Lecture—3 hours; discussion—1 hour. The social and cul-
tural history of women, sex roles and the family from colonial America until the late nineteenth century emphasizing changes resulting from the secularization, commercialization and industrialization of American society.

728. Social History of American Women and the Family (4-6) Ryan Lecture—3 hours; discussion—1 hour. The social and cultural history of women, sex roles and the family in twentieth century America, emphasizing female reformers and revolutionaries, working class women, consumerism, the role of media, the "feminine mystique." Changes in family life, and the emergent women's movement.

784. Great Issues in American History (4) I, Jackson Lecture—3 hours; discussion—1 hour. Discussion of historians' views of the nation's past, focusing upon the conflict of interpretation about key periods and events up to 1865.

785. Great Issues in American History (4) II. Jackson Lecture—3 hours; discussion—1 hour. Discussion of historians' views of the nation's past, focusing upon the conflict of interpretation about key periods and events since 1865.

908. Modernization of China and Japan (4) II, Sherrerd Discussion—4 hours; term paper. Prerequisite: consent of instructor. Reading and discussion on aspects of modern China and Japan. Background of the contemporary scene is stressed. Emphasis on Japan.

95. Prossemier in Historical Study (4) I, Sherrerd The Staff (Chairperson in charge) Seminar—4 hours; written reports. Prerequisite: consent of instructor. Open primarily for lower division students who have completed at least one course in Western Civilization or American History. Prossemier on selected topics in European or U.S. history, depending on the instructor. Designed for freshmen and sophomores. Intensive reading, discussion and writing.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Seminar—3 hours; term paper. Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

Upper Division Courses

101. Introduction to Historical Thought and Writing (5) II, III, Hagen, Landau Lecture-discussion—4 hours; term paper. Prerequisite: consent of instructor. Study of the history of historical thought and writing, analysis of critical and speculative philosophies of history and evaluation of modes of organization, interpretation and style in historical writing.

1020-O. Undergraduate Prossemier in History (5) I, II, III. The Staff Seminar—3 hours; term paper. Prerequisite: consent of instructor. Designed primarily for history majors. Intensive reading, discussion, research and writing in selected topics in the various fields of history: (A) Ancient; (B) Medieval; (C) Renaissance and Reformation; (D) Modern Europe to 1815; (E) Europe since 1815; (F) Russia; (G) China to 1800; (H) China since 1800; (I) Britain; (J) Latin America since 1810; (K) American History to 1877; (L) United States, 1787-1896; (M) United States since 1896; (N) Japan; (O) Africa. May be repeated for credit. Limited enrollment.

103. Topics in Historical Research (4) I, II, III. The Staff (Chairperson in charge) Discussion—3 hours; individual consultation with instructor; paper. Prerequisite: consent of instructor. Individual research resulting in a research paper on a specific topic in one of various fields of history. May be repeated for credit.

111A. Ancient History (4) I, Spyridakis Lecture—3 hours. History of the ancient empires of the Near East and of the Greek city-states to the fifth century B.C.

111B. Ancient History (4) II, Spyridakis Lecture—3 hours. History of Greece, the Hellenistic kingdoms, and Rome from the fifth century B.C. to the Punic Wars.

111C. Ancient History (4) III, Spyridakis Lecture—3 hours. History of Rome and its empire from the Punic Wars to Constantine.

115A. History of Western Africa (4) I, II Bramley Lecture—3 hours; written reports. Prerequisite: courses 4A, 4B recommended. Introductory survey of the history of West Africa and the Congo region from the earliest times to the present.

115B. History of East and Central Africa (4) I, II Bramley Lecture—3 hours; written reports. Prerequisite: course 115A recommended. An introductory survey of the history of east and central Africa from 1000 to the present.

115C. History of Southern Africa, Swaziland, Lesotho, and Botswana from 1500 to the present (4) I, II Bramley Lecture—3 hours; written reports. Prerequisite: courses 115A and 115B recommended. An introductory survey of the history of Southern Africa, including South Africa, Swaziland, Lesotho, and Botswana from 1500 to present.

121A. Medieval History (4) I, Bowkely Lecture-discussion and panel presentations—3 hours. European history from the "fall of the Roman Empire" to the eighth century.

121B. Medieval History (4) II, Freedman Lecture-discussion and panel presentations—3 hours. European history from Charlemagne to the twelfth century.

121C. Medieval History (4) III, Freedman Lecture-discussion and panel presentations—3 hours. European history from the Crusades to the Renaissance.

130A. Christianity and Culture in Europe: 50-1450 (4) I, Fleischer Lecture—3 hours; written report or research paper. A history of the ideas and institutions of Christianity and their impact on the late Roman Empire and medieval Europe in terms of outlook on life, art, politics and economics.

130B. Christianity and Culture in Europe: 1450-1600 (4) II, Fleischer Lecture—3 hours; written report or research paper. A history of the Lutheran, Zwinglian-Calvinist, Radical, Anglican and Catholic Reformations as foundation stones of a new culture in Europe, with special attention to the interconnections between the revival of antiquity and the different reform movements.

130C. Christianity and Culture in Europe: 1660-1850 (4) III, Fleischer Lecture—3 hours; written report or research paper. A survey of the intellectual, cultural and political reorientation of European society in the aftermath of the Wars of Religion. "Secularization" will be discussed in the context of the Enlightenment and Romanticism.

131A. Early Modern European History (4) I, Fleischer Lecture—3 hours. Prerequisite: courses 4A, 4B recommended. Western European history from about 1500 to about 1500.

131B. Early Modern European History (4) II, Fleischer Lecture—3 hours. Prerequisite: courses 4A, 4B recommended. Western European history from about 1500 to about 1500.

131C. Early Modern European History (4) III, Fleischer Lecture—3 hours. Prerequisite: courses 4A, 4B, 131B recommended. Western European history from about 1650 to about 1789.

134A. The Age of Revolution (4) II, Schwab Lecture—3 hours. Ideas and institutions during the French Revolution and the Napoleonic era.

134B. The Age of Revolution (4) III, Schwab Lecture—3 hours. Ideas and revolution after 1815. Offered in odd-numbered years.

137A. Russian History: Kievan, Muscovite, and Petrov (4) I, Crumley Lecture—3 hours; discussion—1 hour. Russian civilization from early times to 1723. Emphasis on the role of autocracy and the evolution of society and culture.

137B. Russian History: The Empire, 1725-1900 (4) II, Crumley Lecture—3 hours; discussion—1 hour. Russian civilization from the Petrov reforms to the end of the nineteenth century. Emphasis on the strengthening and reform of the autocracy, the rise of movements for revolutionary change, and the evolution of society and culture.

137C. Revolutionary and Soviet Russia, 1900 to the present (4) III, Brower Lecture—3 hours; written reports. The evolution of the Russian state and society from the collapse of tsarist Russia through the creation and consolidation of the new Soviet order.

138. Selected Themes in Russian History (4) II, Brower Lecture—3 hours; written and/or oral reports. Thematic treatment of a particular major issue in Russian history, such as religion and culture in pre-modern Russia, autocracy, aristocracy, the arts, radicals and the revolution from the period of Ivan the Terrible to Stalin.

141. France since 1815 (4) I, Margadant Lecture—3 hours; term paper.

134A. The Social and Cultural Traditions of Eastern Europe (4) I, Hagen Lecture—3 hours; term paper. Baltic, Danubian, Balkan lands. Crystallization of medieval cultures; aristocratic and peasant life (fifteenth to eighteenth centuries); Christians, Jews, Moslems—religious communities, social roles, political institutions. Eastern Europe's confrontation with the western Enlightenment (seventeenth and eighteenth centuries).

134B. Eastern Europe: National Revivals, Imperial Decline 1789-1918 (4) II, Hagen Lecture—3 hours; term paper. Social and political movements among the subject nationalities of the Hapsburg and Ottoman Empires and in the Polish and western lands of Russia; imperial ruling institutions; socioeconomic development, nationality policies, nationalist revolts, successions wars. World War I and imperial collapse.

134C. Eastern Europe since 1918: Social and Political Revolution (4) II, Hagen Lecture—3 hours; term paper. Democracy and capitalism, conservative authoritarianism and popular radicalism in interwar eastern Europe. World War II and the creation of the Popular Democracies; political and social dynamics, Marxism and social thought, popular culture and political dissent since 1935.

144B. The Emergence of Modern Germany 1648-1890 (4) I, Hagen Lecture—3 hours; term paper. German society, politics and civilization in the eras of absolutism and the Enlightenment, revolutionary crisis (1789-1848), and industrialization and national unification (1848-1890).

NOTE: For key to footnote symbols, see page 138.
History

144C. The Crisis of Modern Germany 1890-1945 (4) II. Hagen
Lecture—3 hours; term paper. The rise of German National Socialism amid the social, political and cultural conflicts of Imperial Germany and the Weimar Republic (1919-1933); the German people and the National Socialist dictatorship; Nazi Socialism; war aims and military defeat 1939-1945.

145A. The Social History of Nineteenth-Century Europe (4) II. Margadant
Lecture—3 hours; written reports. Prerequisite: course 4C recommended. A survey of European social history during the period of industrialization. Topics include population growth, family structure, economic development, urbanization, class stratification, social protest, and ideologies of social change.

145B. The Political History of Nineteenth-Century Europe (4) III. Margadant
Lecture—3 hours; written reports. Prerequisite: course 4C recommended. surveys European political history 1815-1918. Topics include the Restoration era, the Revolutions of 1848, the unification of Italy and Germany, Social Democracy, Nationalist movements, Imperialism, and World War I.

146A. Europe in the Twentieth Century (4) I, Wilks
Lecture—3 hours; term paper. Survey of the history of Europe from 1919 to 1939.

146B. Europe in the Twentieth Century (4) III. Wilks
Lecture—3 hours; term paper. Survey of the history of Europe since 1939.

147A. European Intellectual History, 1800-1870 (4) I. Lunn
Lecture—3 hours; term paper. European thought in the early industrial era. Shifting cultural frameworks, from romanticism to scientism; liberal and socialist reactions to social change. Focus on the work of Goethe, Hegel, J. S. Mill, Marx, Darwin and Flaubert.

147B. European Intellectual History, 1870-1920 (4) II. Lunn
Lecture—3 hours; term paper. The cultural and intellectual watershed of the late nineteenth and early twentieth centuries. The emergence of modern art and literature, psychoanalysis and the new social sciences. Focus on the work of Baudelaire, Wagner, Nietzsche, Freud, Weber and Kafka.

147C. European Intellectual History, 1920-1970 (4) III. Lunn
Lecture—3 hours; term paper. European thought and culture since World War I. The impact of Communism and Fascism; Existentialism; new currents since the late 1950's. Focus on the work of Lenin, Gramsci, Hitler, Sartre, Camus, and Marcuse.

151A. England: The Middle Ages (4) I. Woodfill
Lecture—3 hours; term paper. Prerequisite: course 4A recommended. Origins of England to the accession of the Lancastrians. Survey includes: the impact of Norman Conquest on Anglo-Saxon institutions, the rise of the Church, common law, parliament, and the economy; thought, arts, and literature to the age of Chaucer and Wyclif.

151B. England: The Early Modern Centuries (4) II. Woodfill
Lecture—3 hours; term paper. Prerequisite: courses 4A, 4B. 15A recommended. From I. Lancaster and York to the Glorious Revolution. Includes growth of the Church of England; beginnings of modern world economy; rise of the city and parliament; thought, arts, and literature in the times of More, Shakespeare, Hobbes, Wren, and Newton.

151C. Eighteenth-Century England (4) I. Landau
Lecture—3 hours; term paper. English history from the Glorious Revolution to the French Revolution. This course will examine the transformation of one of Europe's most politically unstable kingdoms into the firmly established constitutional monarchy which provided an environment fit to engender the industrial revolution.

151D. Industrial England (4) III. Landau
Lecture—3 hours; term paper. English history from Waterloo to the Battle of Britain; the rise and continuance of the first industrial nation, examining the transformation of landed to class society, oligarchy to democracy and bureaucracy, Bentham to Bloomsbury, empire to commonwealth.

154. Tudor and Stuart England (5) III. Woodfill Seminar—3 hours; reports and research paper. Prerequisites: courses 151A and/or consent of instructor. In-depth investigation of selected aspects of Tudor and Stuart history; emphasis on social problems and the arts and learning.

161A. Latin American History (4) I. Bauer
Lecture-discussion—3 hours; written reports. Pre-colonial civilizations; Inca empire; the decline of the Aztec; the Spanish conquest; the process of colonization; the formation of a hybrid culture. Extensive use of photographic slides.

161B. Latin American History (4) II. Bauer
Lecture-discussion—3 hours; written reports. Evolution of modern Latin American export economies; oligarchic rule; revolution and the military; the political geography of the twentieth century; the United States in Latin America; the implications of the Cold War.

182. History of the Andean Region (4) III. Bauer
Lecture-discussion—3 hours; written and oral reports. History of the Andean region, the area that now comprises modern Peru, Bolivia, and Chile, from the beginning of human settlement to the present.

183A. History of Brazil (4) I. Poppino
Lecture—3 hours; written reports. The history of colonial and imperial Brazil from 1500 to 1889. Offered in odd-numbered years.

183B. History of Brazil (4) II. Poppino
Lecture—3 hours; written reports. The history of the Brazilian republic from 1889 to the present. Offered in even-numbered years.

185A. Latin American Social Revolution (4) III. Poppino
Lecture-discussion—3 hours; written and oral reports. Major social upheavals since 1500 in Mexico, Argentina, Brazil, Bolivia, and Cuba, examined as similarities and differences in cause, course, and consequences.

186A. History of Mexico to 1848 (4) I. Arroyo
Lecture-discussion—3 hours; written and oral reports. The political, economic, and social development of pre-Columbian, colonial and national Mexico to 1848. Offered in odd-numbered years.

186B. History of Mexico Since 1848 (4) II. Arroyo
Lecture-discussion—3 hours; written and oral reports. The history of Mexico from 1848 to the present. Offered in even-numbered years.

186H. History of Inter-American Relations (4) II. Poppino
Lecture—3 hours; written reports. Diplomatic history of Latin America since independence, intra-Latin American relations, relations with the United States, participation in international organizations, and communism in Latin America.

189A. Mexican-American History (4) I. Arroyo
Lecture-discussion—3 hours; written and oral reports. The economic, social, religious, cultural and political development of the Spanish-speaking population of the Southwestern United States from about 1800 to 1910.

189B. Mexican-American History (4) II. Arroyo
Lecture-discussion—3 hours; written and oral reports. The role of the Mexican and Mexican-American in Chicago in the economy, politics, religion, culture, and society of the Southwestern United States since 1910.

170A. Colonial America (4) I. Jacobson
Lecture—3 hours; term paper. Colonial society from 1607 to the American Revolution, with emphasis on European expansion, political, social and economic foundations, colonial thought and culture, and imperial rivalry.

170B. The American Revolution (4) II. Jacobson
Lecture—3 hours; term paper. An analysis of the Revolution with emphasis on the structure of British colonial policy, the rise of revolutionary movements, the War for Independence and its consequences, and the Confederation period.
194C. Modern Japan (4) III. Kinmonth
Lecture—3 hours; term paper and/or discussion. A survey of the cultural, social, economic, and political aspects of Japanese history in the twentieth century emphasizing labor and social movements, militarism and the Pacific war, and the immediate postwar. 4

195. Internship in History (2-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: enrollment dependent on availability of intern positions. Offered to History majors. Supervised internship and study as historian, archivist, curator, or in another history-related capacity, in an approved organization or institution. (P/N grading only.)

1977. Tutoring in History (2) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour; laboratory—3 hours. Prerequisite: enrollment as a history major with senior standing and consent of Department Chairperson. Tutoring of students in lower division courses. Weekly meeting with instructors in charge of courses. Written reports on methods and materials required. May be repeated once for credit. No final examination. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/N grading only.)

Graduate Courses

201A-O. Sources and General Literature of History (4) I, II, III. The Staff
Seminar—3 hours. Designed primarily for students preparing for higher degrees in history. (A) Ancient; (B) Medieval; (C) Renaissance and Reformations, (D) Modern Europe to 1815; (E) Europe since 1815; (F) Russia; (G) China to 1800; (H) China since 1800; (I) Britain; (J) Latin America since 1810; (K) American History to 1877; (L) United States, 1787-1896; (M) United States since 1896; (N) Japan; (O) Africa.

202. Social Science in Historical Practice (4) III. Calhoun
Seminar—4 hours. Explores sociological and economic ideas that have actually been used by working historians, especially in United States history, and develops ways to evaluate and plan such efforts.

211. Ancient History (4) I, II. Spyridakis
Seminar—3 hours. Prerequisite: courses 111A, 111B, 111C. A seminar dealing with the various aspects of Ancient and Greco-Roman civilization.

221. Medieval History (4) I, II. Bowky
Seminar—3 hours. Prerequisite: a reading knowledge of Russian. Topics relating to the history of Muscovite and Imperial Russia before 1656.

242. History of the Enlightenment (4) III. Schwab
Seminar—3 hours. Prerequisite: a reading knowledge of French. Intellectual and social history of Europe during the Enlightenment. May be repeated for credit.

245. Modern European History (4) II. Hagen, Mergandant
Seminar—3 hours. Prerequisite: course 201E. Primary sources and research methodology in the history of modern France and Germany. May be repeated once for credit.

246. Europe in the Twentieth Century (4) I. Willis
Seminar—3 hours. Prerequisite: course 191I with particular emphasis on the post 1939 period.

251A-251B. English History (4-4) I-II. Woodfill
Seminar—3 hours. Prerequisite: courses 151A, 151B, 151C, 154 recommended. (Deferred grading only, pending completion of sequence.)
Home Economics

(College of Agricultural and Environmental Sciences)

The Major Program

The Home Economics major, through the study of the humanities, the biological, physical and social sciences, and specialized subject matter, provides an excellent background for professional home economists. Employment opportunities exist in governmental, industrial, and community agencies dealing with social services, private industry, extension services, and teaching at the secondary and community college levels after completion of a one-year credential program. The major encompasses the broad field of family and consumer sciences combining laboratory work with academic theory in such areas as human (child) development, food science, nutrition, and textiles.

Graduates are qualified to enter graduate programs in Child Development and Consumer Sciences, or with additional courses in biological sciences, in the program in Food Science or Nutrition.

This major also provides academic preparation for those who plan to pursue a teaching credential. It may be necessary to limit enrollment in this major due to limitations placed on UCD resources.

Home Economics

B.S. Major Requirements:

For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses are acceptable. Courses without parentheses are required.

- **Preparatory Subject Matter**
 - Anthropology, cultural or general sociology
 - Biological science (Biological Sciences 1)
 - Chemistry, including organic (Chemistry 1A, 1B, 8A, 8B)
 - Economics (Economics 1A, 1B)
 - Physiology (Physiology 2, 110)
 - Psychology, general (Psychology 1)
 - Statistics (Mathematics 13, Economics 12)

- **Written expression and oral expression (see College requirement)**

- **Depth subject Matter**

- **Economics**
 - Consumer Economics 141, 142; Consumer Science 140
 - Food and nutrition
 - Food Science and Technology 100A, 100B, Nutrition 101-102 or 110-111

- **Human Development**
 - Human Development 110 and 100A or 100B or 101C
 - Textiles and clothing

- **Plus, select one from the following specializations:**
 - Consumer affairs
 - Agricultural Economics 112; Consumer Science 100; Rhetoric 140 or 141

Home Economics Education

See Agricultural Economics and Home Economics Education

Human Development

(College of Agricultural and Environmental Sciences)

Faculty

See under Department of Applied Behavioral Sciences.

The Major Program

Human (Child) Development is an appropriate undergraduate major if you want to explore the developmental process in humans throughout the life cycle. Concentrating on the periods between birth and young adulthood, cognitive and personality/social development are studied from various perspectives. The emphasis is on the interrelationship of the development of the person, the family, and the community. It is an appropriate major for those planning to pursue advanced degrees in the behavioral sciences and offers course work useful for persons who will later pursue careers in education, child guidance, social welfare, health science related fields, or research in human development.
Courses in Human Development

Questions pertaining to the following courses should be directed to the instructor or to the Department of Applied Behavioral Sciences, 119 AOB-4.

Lower Division Courses

30A-30B. Observational Techniques and Case Study of a Young Child (2-1) II, III, IV, V. Walker Lecture—2 hours, laboratory—2 hours (30A); seminar—1 hour (30B). Prerequisite: Psychology 1 and consent of instructor. Observational techniques, intensive case study of an individual child aged 6 months to 5 years; analysis and use of observational data. (Deterred grading only, pending completion of sequence.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Pilsuk in charge) (P/NP grading only.)

Upper Division Courses

100A. Infancy and Early Childhood (4) I, Lynn, III, Harper Lecture—3 hours, discussion—1 hour, field observations of preschool children. Prerequisite: introductory psychology and biology. Analysis of the psychological, social, and cultural influences in the psychological growth and development of children, prenatal through age six.

100B. Middle Childhood and Adolescence (4) I, Harper, II, Lynn Lecture—2 hours, field observations of school-age children. Prerequisite: course 100A. Analysis of the interplay of biological and social-cultural factors in the emotional, cognitive and social development from middle childhood through adolescence.

100C. Adulthood (4) II, III, Hawkins Lecture—3 hours, discussion—1 hour. Prerequisite: course 100B. Biological, cognitive and social psychological aspects of adult development.

101. Cognitive Development (4) III, Krall Lecture—3 hours, discussion—1 hour. Prerequisite: course 100B. Theories of cognitive development including developmental views of perception, learning, memory, concept formation, and language.

102. Social and Personality Development (4) I, Bryant Lecture—4 hours. Prerequisite: course 100B. Theories of the development of child personality through interactions with children and adults. Emphasis on development of interpersonal and intercultural values.

103. Cross-Cultural Study of Children (4) I. Werner Lecture—2 hours, discussion—2 hours. Prerequisite: course 100B. Cross-cultural studies of children in developing countries and among minority groups in the U.S.

110. Contemporary American Family (4) I, Lynn, III, Crokember Lecture—2 hours, discussion—2 hours. Prerequisite: course 100B. Current and future factors influencing American families including changing sex roles, changing sexual mores and parenthood.

120. Research Methods in Human Development (4) I, Harper Lecture—2 hours, discussion—2 hours, Prerequisite: course 100C. Research in selected areas of human development (i.e., infancy, learning, cognition, socialization, personality).

230. Emotionally Disordered Children (4) I, Bryant, II, Berrold Lecture—3 hours, discussion—1 hour. Prerequisite: course 100B. Discussion of psychosis, neurosis, behavior disorders, and learning difficulties in children.

Human Development

131. Developmental Disabilities (4) I, II, Barton, Werner Lecture—3 hours, discussion—1 hour. Prerequisite: course 100B. Mental retardation and special learning disabilities, etiology, diagnosis, educational, and socialization. Introduction to community resources.

132. The Gifted (4) III, Krall Lecture—3 hours. Prerequisite: course 100B. Conceptualization, identification and education of the intellectually and creatively gifted individual.

140A. Laboratory in Early Childhood Education (4) I, II, III, The Staff (Werner in charge) Discussion—1 hour, seminar—2 hours, laboratory—5 hours. Prerequisite: course 30A. Interaction with children 6 months to 5 years; observation of preschool program, evaluation and testing of theories of early childhood education and child development (A) Communication; (B) Infant/Child; (C) Curriculum Analysis; (D) Instructional Procedures.

141. Laboratory: Childcare and their Environments (4) II, Crokember Discussion—2 hours; field placement—6-12 hours. Prerequisite: course 100B and consent of instructor. Study and the interpersonal and social dynamics of family and their children; development and socialization with peers in group homes. May be repeated for credit a total of 12 units.

142A. Field Experience with Exceptional Children (3-5) I, II, III. The Staff (Werner in charge) Seminar—1 hour; field placement—6-12 hours. Prerequisite: course 100B and consent of instructor. Supervised field experience with emotionally disturbed children. May be repeated for credit a total of 12 units.

142B. Field Experience with Exceptional Children (3-5) I, II, III, The Staff (Werner in charge) Seminar—1 hour; field placement—6-12 hours. Prerequisite: course 100B and consent of instructor. Supervised field experience with children who have developmental disabilities. May be repeated for credit a total of 12 units.

142C. Field Experience with Exceptional Children (3-5) I, II, III, The Staff (Werner in charge) Seminar—1 hour; field placement—6-12 hours. Prerequisite: course 100B and consent of instructor. Supervised field experience with emotionally disturbed children. May be repeated for credit a total of 12 units.

158. Directed Group Study (1-5) I, II, III. The Staff (Pilsuk in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Pilsuk in charge) (P/NP grading only.)

Graduate Courses

211. Physiological Correlates of Behavioral Development (3) I, III. Harper Seminar—2 hours. Prerequisite: consent of instructor. An overview of the physiological correlates of behavioral development and the implications of developmental biology for the analysis of behavioral ontogeny, consideration of parallels between processes of organic development and behavioral development in children and non-human mammals.

213. Cross-Cultural Study of Children (3) II, III. Werner Seminar—2 hours. Prerequisite: standing in graduate level psychological anthropology. A study of the development of children, their cultural values, and socialization patterns in different cultures and in different social classes.

214. Clinical Child Development (3) II, Bryant Seminar—2 hours. Prerequisite: consent of instructor. Developmental issues related to child development based on developmental-behavioral concepts and theories. Theory and research focusing on acquisition of interpersonal skills (e.g., social sensitivity) and individual differ-
Individual Major

(Colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science)

The Major Program

The Individual Major, an integrated program composed of courses from two or more disciplines, is designed by the student and is subject to approval by faculty advisers and appropriate college committees. This major enables a student to pursue a specific interest which cannot be accommodated within the framework of an existing major. It is clearly and specifically meet the student's educational goals and provide, where appropriate, a basis for the applicant's career objectives as well as meet University and College academic standards.

Proposals for individual majors must be submitted before the fourth quarter prior to graduation for students registered in the Colleges of Agricultural and Environmental Sciences and Letters and Science, and before the third quarter for students in the College of Engineering. Specific requirements for each college are shown below. Application forms are available in program offices.

Individual Major

(College of Agricultural and Environmental Sciences)

(Academic Advising Center)
Program Office, 132 Hunt Hall

B.S. Major Requirements:

Preparatory Subject Matter .. (variable)
Lower division courses basic to the program or needed to satisfy prerequisites for upper division courses.

Depth Subject Matter .. 45
An individualized program of 45 upper division units taken from two or more areas of study (at least one of the areas must be within the College). At least 30 of the 45 units must be taken from courses provided by the College.

Unrestricted Electives .. (variable)
Total Units for the Degree 180

Additional requirements
At least 54 of the 180 units needed for graduation must be upper division. The College also requires that at least 8 units must be in English and/or Rhetoric courses that emphasize written or oral expression.

Major Advisor: Course of study must be developed in consultation with the Major Advisor.

Individual Major

(College of Letters and Science)

(Dean's Office)
Program Office, 150 Makail Hall

Committee in Charge
Ted W. Margadant, Ph.D. (History), Committee Chairperson
Michael G. Barboux, Ph.D. (Biology)
Dennis J. Dingemans, Ph.D. (Geography)
Ching-Yao Fong, Ph.D. (Physics)
Robert K. Sarios, Ph.D. (Dramatic Art)

A.B. and B.S. Major Requirements:

Preparatory Subject Matter .. (variable)
Lower division courses basic to the program or needed to satisfy prerequisites for upper division courses.

Depth Subject Matter .. 45-54
Upper division units must include:
- a. interrelated and complementary courses from two or more departments which provide a unified pattern and focus;
- b. at least 30 units from Letters and Science teaching departments or programs;
- c. no more than 10 units in courses numbered 194H, 198, and 199.

Total Units for Degree 180

Student Proposal
A student submits to the Dean's Office his or her major proposal and an essay discussing educational purposes, personal and/or professional objectives, along with faculty letters of recommendation. After initial review, the Faculty Committee on Individual Majors evaluates the proposal and provides final action.

Major Advisers (selected by student). Principal Adviser: a faculty member in a teaching department or program in the College of Letters and Science in major field of emphasis. Secondary Adviser: a faculty member from secondary area of interest.

Honors Program
Toward the end of their junior year, students potentially eligible for highest honors at graduation (see page 103), may petition the Individual Majors Committee for tentative acceptance into an honors program.

Final admission will depend upon the Committee's approval of a senior thesis prospectus that has been agreed upon by the student and faculty adviser. The prospectus must be presented to the Committee during the first quarter of the senior year. Graduation with highest honors will be conditional upon both the maintenance of the required grade-point average and the completion of the senior thesis project. The Committee will consider alteration of the student's original major proposal to allow up to 3 units of independent study during each of the last two quarters of the senior year for work on senior honors thesis.

Individual Major

(College of Engineering)

(Undergraduate Office)
Program Office, 2132 Bainter Hall

B.S. Major Requirements:

Subject Areas

Mathematics (calculus, differential equations, vector analysis) 18
Physical and biological sciences (including at least 10 units of general chemistry and 12 units of physics for engineering and science students) ... 27
Analytic mechanics and strength of materials 6
Applied thermodynamics 3
Applied electricity and magnetism 5
Properties of materials 4
Engineering design (courses selected from a list developed for Individual Engineering Majors by the Undergraduate Study Committee) ... 5
Additional upper division engineering courses, exclusive of 199 courses 24
Written and oral expression (courses equivalent to English 1 and either Rhetoric 1 or 3) 8
Humanities-social sciences (from a list of courses and course groups approved by the Undergraduate Study Committee) ... 23
Additional units to complete 180-unit program (Unrestricted electives, 10 units maximum) ... 57

Total Units for the Degree 180

Student Proposal
To follow this alternative, your complete program of study and a statement of objectives must be received by the College Undergraduate Office prior to the official beginning date of the third quarter preceding graduation. It is to your advantage to submit your proposal in advance of this deadline (during your junior year) so that any modifications required by the Committee can be made before the beginning of your senior year. Once your curriculum has been approved, changes may be made only for good
Integrated Studies
(College of Letters and Science)

Kenneth R. Greider, Ph.D., Program Director
Program Office, 4208 Storer Hall

Committee in Charge
Richard G. Swift, M.A. (Music), Committee Chairman
Kenneth R. Greider, Ph.D. (Physics)
Kurt Kreith, Ph.D. (Mathematics)
Arthur E. McGuinness, Ph.D. (English)
Lenora Timm, Ph.D. (Linguistics)

Faculty
Daniel R. Brower, Jr., Ph.D., Professor (History)
Gordon J. Edlin, Ph.D., Professor (Genevics)
Kenneth R. Greider, Ph.D., Professor (Physics)
Kurt Kreith, Ph.D., Professor, (Mathematics)
Arthur E. McGuinness, Ph.D., Professor (English)
James J. Murphy, Ph.D., Professor (Rhetoric)
David A. Robertson, Ph.D., Associate Professor (English)
Lenora Timm, Ph.D., Assistant Professor (Linguistics)

The Program of Study
Integrated Studies introduces students to a variety of disciplines in humanities, natural sciences, and social sciences, as these disciplines relate to a common historical period or a common theme. The program encourages cross-disciplinary interests in its faculty and students. It values close contact between student and professor both in the classroom and in the residence hall. Integrated Studies offers an ideal model for the fulfillment of the College breadth requirements as all of these courses count toward the completion of that requirement. Integrated Studies courses are open to all students but enrollments are limited in order to keep the class size small.

There is in addition, a program for a limited number of freshmen who take four Integrated Studies courses during the year as well as the Integrated Studies Seminar each quarter, and who live in the Tercero Commons building. An integrated Studies House, Building B, Tercero Hall, is the focal point for the freshman program activities.

Courses in Integrated Studies

Lower Division Courses
1A, 1B, 1C, 1D. Ideas and Issues in the Sciences (4)
I, II, III. The Staff (Greider in charge)

2A, 2B, 2C, 2D, 2E. Ideas and Issues in the Arts (4)
I, II, III. The Staff (Greider in charge)
Lecture—4 hours. Exploration of major themes and/or major figures in the humanities. Emphasis on the interrelation of history and the arts. Themes and fields will vary from year to year. Theme for 1978-79: "tradition, revolution, and modern society." Fields for 1978-79: literature, theology, genetics, university origins.

3. Colloquium (1)
I, II, III. The Staff (Greider in charge)
Discussion—1 hour. Lectures, films, seminars and readings on the arts and sciences. May be repeated for credit. (P/NP grading only.)

9. Seminar (1)
I, II, III. The Staff (Greider in charge)
Conference—1 hour. Preparation of a research report. Normally, to be taken with course 3. May be repeated for credit. (P/NP grading only.)

Internal Medicine

See Medicine

International Agricultural Development
(College of Agricultural and Environmental Sciences)

The Major Program
The International Agricultural Development major provides opportunity for you to develop competence in a technical field and, in addition, to acquire those special qualities of mind and spirit requisite for effective performance in underdeveloped areas of the world. You must be perceptive, sensitive, and understanding, and possess knowledge of social-political-economic-cultural relationships existing among people. Graduates concerned with resources development, whether American or foreign, will find opportunities in government service and commercial firms with overseas departments, providing a wide variety of career opportunities.

In this major you may select an area of technical specialization from any of the fields of interest broadly grouped in agriculture and the environmental sciences. A wide selection of courses emphasizing development in the humanities, social sciences, and economics is available in order to develop some understanding of the broad cultural and economic environments in which agriculture operates in particular areas outside the United States.

International Agricultural Development
B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

UNITS
Chemistry, including organic (Chemistry 1A, 1B, 8A, 8B).. 16
Physics 1A.. 3
Mathematics (mathematics and/or statistics)... 6-7
Economics .. 5
Biological sciences (animal or plant physiology, bacteriology, biochemistry, botany, genetics, zoology).. 15
English and rhetoric (see College requirement).. 8

Depth Subject Matter

International Agricultural Development 101 or 102 and 193, and International Agricultural Development 141, 195, 198, 199.. 10

Primary field of specialization

Crisis courses chosen to provide depth of understanding in one of the following, or closely related, fields to include at least 16 upper-division units: agricultural economics, animal sciences, environmental sciences, food sciences, plant sciences, resource sciences; additional units earned in international agricultural development courses may be used in partial satisfaction of this specialization requirement.

Breadth Subject Matter

UNITS
Social sciences and humanities.. 18

Restricted Electives

UNITS
Agricultural and other sciences (including additional mathematics).............. 16
Economics or agricultural economics.. 8
Humanities and social science courses relevant to an understanding of development (Archeology 2, 122, 123, 162; Economics 118, Environmental Studies 101, 145, Geography 2, 5, 141, 142; History 189A, 189B; Political Science 4, 108, 109, 145, 174, 178, 179, Sociology 1, 102, 141, 142; or other courses of comparative emphasis).. 20

Unrestricted Electives .. 29-30

Total Units for the Major .. 180

Major Adviser. O. E. Thompson (Applied Behavioral Sciences)

Graduate Study. A program of study and research leading to the M.S. degree is available in International Agricultural Development. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser.

Graduate Adviser, J. F. Harrington (Vegetable Crops).

**Students with special interest in particular countries or regions may obtain approval of the adviser to elect social science courses appropriate to such interests in satisfying this requirement.

† † † Students not proficient in a foreign language should choose courses in a single language through course 5 as electives.

NOTE: For key to footnote symbols, see page 138.
International Relations; Italian

Related Courses. See Agrarian Studies 2; Agricultural Economics 125, 148, 215C; Agronomy 111, 210; Animal Science 117; Anthropology 221; Economics 115A-115B, 116, 215A-215B-215C; Geography 142; Nutrition 20; Political Science 185; Sociology 144; Vegetable Crops 150.

Courses in International Agricultural Development

Questions pertaining to the following courses should be directed to the instructor or to the Academic Advising Center, 132 Hunt Hall.

Lower Division Course

Lecture—3 hours. Food requirements versus self-realization as the limiting force in population growth; the inter-action of changing human goals and new technology through successive stages in economic development; agriculture's contributions to development.

Upper Division Courses

101. Crop Production under Tropical Conditions (4) II. Mikkelsen (Agricultural Economics)
Lecture—3 hours; discussion—1 hour. Prerequisite: Plant Science 2 or Botany 2. Climatic and soil adaptation, varieties and varietal improvement in annual and perennial crops; pests, diseases, and their control; fertilization and other management practices.

102. Livestock and Poultry Production in Developing Areas (4) I, The Staff. (Vetran. Science, in charge)
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Ecological considerations of developing areas including feed resources, pests, diseases and their control, kinds of livestock, wild game, poultry and fish suited to these areas and their management; use of animals and their by-products.

141. Technology for Agriculture in Developing Regions (2) I. Chancellor (Agricultural Engineering)
Lecture—1 hour; demonstration—2 hours. Prerequisite: Physics 1A. Equipment used in tropical agriculture. Man-, animal-, and engine-powered devices. Energy requirements, size-scaled costs, support infrastructure development, and productivity potentials. (Same course as Agricultural Engineering Technology 141.)

190. Proseminar in International Agricultural Development (3) III. Moles (Anthropology)
Lecture—1 hour; seminar—2 hours. Prerequisite: consent of instructor. Coordination of concepts, principles, and information from technical agriculture and the social sciences presented in the context of economic development. Special emphasis on the problems of program design and implementation.

*195. Field Study in Mexican Agricultural Development (3) II. Hansen (Agricultural Economics)
Field trip—8 days; seminar—4 2-hour sessions. Knowledge of Spanish not required. Observation of agricultural development strategies and impact on Northwestern Mexico. Discussion with farmers and agency staff members. Study of unique Mexican institutional arrangements and experiences in coping with agricultural development problems. United States influence on Mexican agriculture. Preenrollment required. (PNP grading only.)

298. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PNP grading only.)

Graduate Courses

280A-280B. Social, Technological, and Economic Factors: Strategies, Planning Procedures and Case Studies (3-3) II-III. Chancellor (Agricultural Economics)
Seminar—3 hours. Prerequisite: consent of instructor. Problems and analysis in agricultural development; cultural, political, social, and economic organization; human factors in relation to resource use and technology; strategies and planning procedures in agricultural development; case studies of development programs in individual countries.

298. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Selected topics relevant to advanced study in international Agricultural Development. (SUI grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SUI grading only.)

International Relations

(College of Letters and Science)

Program Office, 351 Voisches Hall

Committee in Charge

Donald S. Rothchild, Ph.D. (Political Science), Committee Chairperson
Max Bach, Ph.D. (French)
W. Eric Gustafson, Ph.D. (Economics)
William W. Hagen, Ph.D. (History)
Hiromitu Kaneda, Ph.D. (Economics)

The Major Program

This major is designed to meet the needs of students interested in an understanding of contemporary world politics and economics. The program is built around courses concerned with international relations in political, geographic, economic, and social terms, and in the light of historical precedents.

International Relations

A.B. Major Requirements:

Preparatory Subject Matter... 26-52
Economics 1A, 1B... 10
Political Science 3.. 4
One course from Political Science 1, 2 or 9 (course 2 recommended if electing Regional cluster below).. 4
Two courses from History 3, 4B, 4C, 4A, 9A, 9B.. 8
Approximately 26 units (or the equivalent) in one modern foreign language.. 0-26
Recommended: one course in statistics, (e.g., Mathematics 13, Economics 12, Sociology 46A, 46B)

Depth Subject Matter.. 48
Political Science 127.. 4
Economics 115A, 160 or 162.. 8
One course from History 137C, 143C, 149B.. 4
One course from Political Science 123, 124, 125.. 4
Interdisciplinary seminar, Political Science 192 (normally taken in senior year).. 4

Cluster emphasis.. 24
Choose one from the three clusters shown below, selecting six courses divided among at least three departments including at least two courses from each of two departments. Courses must be in addition to those applied toward requirements above.

Total Units for the Major.. 74-100

Course List for Cluster Emphases

(1) Economics Emphasis (two courses in Economics required)
Anthropology 122
Economics 115B, 116, 117, 118, 123, 161
Geography 141, 142, 143, 154
Political Science 117, 122, 123, 124, 125, 126, 132, 134, 137, 139, 141, 142, 145, 146, 147, 177, 178, 185
Sociology 118, 141, 170

(2) Political Emphasis (two courses in Political Science required)
Anthropology 123, 128
Economics 115B, 116, 117, 118, 123, 161
Geography 141, 142, 143, 154
Political Science 117, 121, 122, 123, 124, 125, 126, 128, 132, 134, 137, 139, 141, 142, 145, 147, 149, 177, 178, 185
Sociology 118, 141, 170

(3) Regional Emphasis: Latin America, Europe, East Asia, Soviet Union and Eastern Europe, or Africa (two courses in History required in the selected region)
Anthropology 105B, 128, 138A, 139B, 146, 147A, 147B, 162, 190, 191, 192
Economics 110B, 115B, 116, 117, 118, 123, 161
Geography 119, 121, 122A, 122B, 123A, 123B, 124, 125A, 125B
Political Science 131, 132, 134, 138, 139, 141, 143, 144, 145, 146, 147, 148A, 148B, 149
Sociology 147

Major Advisor. D. S. Rothchild (Political Science)

Italian

(College of Letters and Science)

Department Office, 515 Sproul Hall

Faculty

Alfonso De Petris, Dottore in Lettere, Associate Professor
* Dennis J. Dutschke, Ph.D., Assistant Professor
 Gustavo Foscari, M.A., Lecturer

The Major Program

This major consists of courses in language, civilization and literature. The use of Italian is stressed on all levels and a knowledge of the language is required for literature courses which are taught only in Italian. The department also offers literature courses in translation (not open to majors) and a
yearly course on Italian civilization, also taught in English. A degree in Italian provides a well-rounded liberal arts background for both graduate studies in the humanities and for a wide range of careers in such areas as civil service, library science, business, travel, and education. Practical experience in education is provided through a teaching internship program offered in conjunction with the Davis Unified School District.

Italian

A.B. Major Requirements:

Preparatory Subject Matter ... 0-18
Italian 1, 2, 10A, 10B (or the equivalent) 0-18

Depth Subject Matter .. 36
Upper division courses in Italian 36

Two of these courses may be chosen from department approved courses in related fields.

Total Units for the Major ... 36-54

Recommended

One year of college Latin or a Romance Language.

Major Advisor: G. Foscarini.

Honors and Honors Program: The honors program comprises two quarters of study under course 194H, which will include a research paper and a comprehensive examination. See also page 102.

Teaching Credential Subject Representative: A. De Petris. See page 111 for the Teacher Education Program.

Courses in Italian

Lower Division Courses

A course may not ordinarily be taken for credit if it is a prerequisite to a course already completed. Students offering high school language preparation as a prerequisite must take a placement test.

1. Elementary Italian (6) I, II, III. The Staff
 Lecture—5 hours, laboratory—1 hour. Basic Italian vocabulary and structure, aimed at enabling the student to understand and use standard Italian. Students who have successfully completed Italian 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a PNP grading basis only. Although a passing grade will be charged to the student's PNP Option, no petition is required. All other students will receive a letter grade unless a PNP petition is filed.

2. Elementary Italian (6) I, II, III. The Staff
 Lecture—5 hours, laboratory—1 hour. Prerequisite: course 1. Continuation of course 1.

 Lecture—5 hours, laboratory—1 hour. Prerequisite: courses 1 and 2 or the equivalent. Continuation of courses 1 and 2 series, basic language preparation.

4. Intermediate Grammar and Composition (3) III. The Staff
 Lecture—3 hours. Prerequisite: courses 1 and 2 or the equivalent. Exercises in grammar and stylistics; study of the idiomatic phenomenon of the language; written papers based on stylistic examples from literature.

5. Elementary Composition (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 1. Continuation of course 2. A course designed to offer practice in speaking Italian. (PNP grading only.)

6. Italian Vocabulary (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 2. A course designed to offer practice in speaking Italian. (PNP grading only.)

7. Intermediate Italian (3) I, II, III. The Staff
 Lecture—3 hours. Prerequisite: course 10A. Continuation of course 10A. Considered the minimum prerequisite for participation in Education Abroad Program.

8. Italian Conversation (3) I, II, III. The Staff
 Discussion—3 hours. Prerequisite: course 10A or consent of instructor. (PNP grading only.)

9. Italian Literature in Translation (3) I, II, III. The Staff
 Lecture—1 hour, discussion—2 hours. Course intended to acquaint the non-major with representative examples of Italian literature. Selected works of the major authors, genres, literary periods, movements, or specific themes.

10. Directed Group Study (1-5) I, II, III. The Staff
 Lecture—3 hours, primarily for lower-division students. (PNP grading only.)

Upper Division Courses

101. Advanced Conversation, Composition, and Grammar (4) I, II. De Petris
 Lecture—4 hours, weekly essays. Prerequisite: course 10B or consent of instructor.

102. Advanced Conversation, Composition, and Grammar (4) III. De Petris
 Lecture—3 hours, weekly essays. Prerequisite: course 101 or consent of instructor.

103. Survey of Italian Culture and Institutions (4) I, Foscarini
 Lecture—3 hours, term paper. An assessment of the impact of regional autonomy on Italian cultural life from the Middle Ages to the present. Special emphasis will be placed on various movements in literature, the arts, philosophy, and socio-political institutions. To be taught in English.

113A. Italian Literature before the Renaissance: from St. Francis to Petrarch (4) I. Dutschke
 Lecture—2 hours, term paper. Prerequisite: course 10B or consent of instructor. Study of the origins of lyrical forms of Italian literature of the thirteenth and fourteenth centuries. The development of an Italian standard of poetry, with special emphasis on the Sicilian school of Poetry, the Dolce Stil Nuovo, and Petrarch.

113B. Italian Literature before the Renaissance: Dante’s Divina Commedia and Boccaccio (4) III. Dutschke
 Lecture—3 hours, term paper. Prerequisite: course 10B or consent of instructor. Study of the origins of lyrical forms of Italian literature of the thirteenth and fourteenth centuries. The development of an Italian standard of poetry, with special emphasis on the Sicilian school of Poetry, the Dolce Stil Nuovo, and Petrarch.

115A. Italian Literature of the Renaissance and the Baroque: from Humanism to Machiavelli (4) I, II. De Petris
 Lecture—3 hours, term paper. Prerequisite: course 10B or consent of instructor. The development of the Renaissance ideal of man and the subsequent loss of faith in this ideal as evidenced in the work of Lorenzo de’ Medici, Poliziano, Ariosto and Machiavelli.

115B. Italian Literature of the Renaissance and the Baroque: from Cellini to Marino (4) III. De Petris
 Lecture—3 hours, term paper. Prerequisite: course 115A. A continued examination into the loss of an ideal. Emphasis on the conflicts in Machiavelli and Tasso leading to Marino, with an excursus on Galileo’s role in the formation of a modern library standard.

118. Italian Literature of the Eighteenth Century (4) III. De Petris
 Lecture—3 hours, term paper. Prerequisite: course 10B or consent of instructor. The development of modern Italian literature. Emphasis on the work of Goldoni, Bettoni, Bartoli, Panini, Afflitti and Vico.

119. Italian Literature in the Nineteenth Century (4) III. De Petris
 Lecture—3 hours, term paper. Prerequisite: course 10B or consent of instructor. The development of the novel from to the present. Emphasis on the work of Svevo, Levi, Moravia, Pavese and Vittorini.

120. Italian Literature of the Twentieth Century: Poetry and Drama (4) I, II. Dutschke
 Lecture—3 hours, term paper. Prerequisite: course 10B or consent of instructor. Italian poetry. Emphasis on the work of Ungaretti, the theater of Luigi Pirandello and its role in the development of contemporary Italian drama.

139A. Italian Literature in English: Early Italian Literature and Dante Alighieri (4) I. Dutschke
 Lecture—3 hours, term paper. The Italian Lyric Tradition with emphasis on authors of the Sicilian School, the Dolce Stil Nuovo, and Dante’s Vita Nova of The Divine Comedy.

139B. Italian Literature in English: Boccaccio, Petrarch and the Renaissance (4) I, II. Dutschke
 Lecture—3 hours, term paper. Petrarch and Boccaccio and their relations to the Middle Ages and the Renaissance: with particular attention to the works of Lorenzo de’ Medici, Leonardo da Vinci, Machiavelli, Ariosto, Michelangelo, and Tasso.

139C. Italian Literature in English: Modern Italian Literature (4) III. Dutschke
 Lecture—3 hours, term paper. The Romantic Movement in Italy and its relationship to European Romanticism with emphasis on Petronio, Leopardi, and Manzoni (offered in even-numbered years); twentieth-century Italian authors: influence, emphasis according to the needs of the students (offered in odd-numbered years).

184H. Special Study for Honors Students (5) I, II, III. The Staff (Abraham in charge)
 Prerequisite: open only to honors students. Guided research leading to an honors paper.

197TC. Community Tutoring in Italian (1-5) I, II, III. Foscarini
 Discussion—1-2 hours, laboratory—2-4 hours. Prerequisite: consent of instructor. Fixed experience as Italian tutors or teacher’s aides. May be repeated for credit for a total of 10 units. (PNP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Abraham in charge)
 Prerequisite: consent of instructor. Directed individual study for advanced undergraduate students. (PNP grading only.)

Italian

See Oriental Languages

Japanese

See Oriental Languages
Land, Air and Water Resources

(College of Agricultural and Environmental Sciences)

Leonard O. Myrup, Ph.D., Chairperson of the Department
Department Office, 139 Hoagland Hall (752-1406)

Resource Science Teaching Center, 122 Hoagland Hall (752-1669)

Faculty

Atmospheric Science Faculty Office

122 Hoagland Hall (752-1669)

John J. Carroll III, Ph.D., Associate Professor
Kinsell L. Coulson, Ph.D., Professor
Daniel E. Fitzjarrald, Ph.D., Lecturer
Jerry L. Hatfield, Ph.D., Assistant Professor
Leonard O. Myrup, Ph.D., Professor
Kit K. Wagner, Ph.D., Assistant Professor
Bryan C. Weare, Ph.D., Assistant Professor

Soils and Plant Nutrition Faculty Office

122 Hoagland Hall (752-1669)

*Daniel G. Aldrich, Ph.D., Professor
Eugene L. Begg, B.S., Lecturer
Francis E. Broadbent, Ph.D., Professor
A. Lloyd Brown, Ph.D., Lecturer
Richard G. Curran, Ph.D., Professor
*Mc. C. Dalwiche, Ph.D., Professor
*Emmanuel Epstein, Ph.D., Professor
Frank H. Harradine, Ph.D., Professor Emeritus
Gordon L. Huntington, M.S., Lecturer
Donald N. Munns, Ph.D., Professor
H. Michael Reisenauer, Ph.D., Professor
Victor R. Rendig, Ph.D., Professor
*Denis E. Rolston, Ph.D., Associate Professor
Michael J. Singer, Ph.D., Assistant Professor
Harry O. Walker, Ed.D., Lecturer
Lynn D. Whittig, Ph.D., Professor

Water Science and Engineering Faculty Office

113 Velmeyer Hall (752-0453)

Jaime Amoroco, Ph.D., Professor
James W. Biggar, Ph.D., Professor
Robert H. Burgy, M.S., Professor
Lloyd D. Donee, Ph.D., Professor Emeritus
Elias Fereiras, Ph.D., Lecturer
Donald W. Grimes, Ph.D., Lecturer
Robert M. Hagan, Ph.D., Professor
Deibert W. Henderson, Ph.D., Professor
*Theodore C. Hsiiao, Ph.D., Professor
Allen W. Knight, Ph.D., Professor
James N. Luthin, Ph.D., Professor
Elmer R. Malskoff, LL.B., Lecturer
Miguel A. Marinho, Ph.D., Associate Professor
Robert J. Miller, Ph.D., Lecturer
Donald R. Nielsen, Ph.D., Professor
William O. Pruitt, Jr., M.S., Lecturer
Frank E. Robinson, Ph.D., Lecturer
Verne H. Scott, Ph.D., Professor
Wendy Kuhn Sil, Ph.D., Assistant Professor
Theodor S. Strelkoff, Ph.D., Professor
Kenneth K. Tanj, M.S., Professor

Major Programs and Graduate Study. See the majors listed under Resource Sciences and Engineering on page 73. For graduate study see page 105 and the Announcement of the Graduate Division.

Related Courses. See course listings under Atmospheric Science, Resource Sciences, Soil Science, Water Science.

Latin

See Classics

Law, School of

Richard C. Wydick, LL.B., Acting Dean of the School
Daniel L. Simmons, Jr., Acting Associate Dean of the School
Joel S. Galley, J.D., Assistant Dean of the School

Dean's Office, 1011 Martin Luther King, Jr. Hall

Faculty

*Homer G. Angelo, J.D., LL.M., Professor
John D. Ayer, J.D., LL.M., Professor
Edward L. Barrett, Jr., J.D., Professor
Brigitte M. Bodenheimer, J.D.U.D., LL.B., Professor
Edgar Bodenheimer, J.U.D., LL.B., Professor
E. Mer у
*Carol S. Bruch, J.D., Acting Professor
Eilie E. Bucko, J.D., Visiting Professor
Charles B. Craver, J.D., Professor
Ann L. Diamond, LL.B., Lecturer
Joel C. Dobris, LL.B., Acting Professor
Hanson C. Dunning, LL.B., Professor
*Daniel J. Dykstra, LL.B., S.J.D., Professor
Floyd F. Feenly, LL.B., Professor
Daniel W. Fessler, J.D., S.J.D., Professor
Susan F. French, J.D., Acting Professor
*Leonard M. Friedman, J.D., Senior Lecturer
Joel S. Galley, J.D., Lecturer
Gary S. Goodpaster, J.D., Professor
Sarah D. Gray, Ph.D., Lecturer
Douglas P. Hafter, J.D., Lecturer
James E. Hogan, LL.B., Professor
Emma Coleman Jones, J.D., Acting Professor
Friedrich K. Juenger, J.D., Professor
Ronald Lipp, J.D., Visiting Professor
*Pierre R. Loiseaux, LL.B., LL.M., Professor
*Jean C. Love, J.D., Professor
David Miller, LL.B., Acting Professor
John B. Oakley, J.D., Acting Professor
Raymond I. Parnas, J.D., LL.M., S.J.D., Professor
*John W. Poulou, J.D., Assistant Professor
Edward H. Rabin, LL.B., Professor Mortimer D. Schwartz, J.D., LL.M., M.S., Professor (Law Librarian)
Daniel L. Simmons, J.D., Acting Professor
James F. Smith, J.D., Lecturer
Colin J. H. Thomson, LL.B., LL.M., Visiting Professor
Alan R. Tolles, M.A., J.D., Lecturer
Jerald L. Wilkerson, J.D., Acting Professor

Courses of Instruction. The following courses for students enrolled in the School of Law are set up for the semester-system basis only. Instruction during the summer is not provided for. The symbols are (I) for Fall Semester and (II) for Spring Semester.

Courses in Law

Professional Curriculum

First Year Courses

200. Introduction to the American Legal Process (1) I. Loupas, Poulos
Discussion (introductory week)—1 hour. An introduction to American Legal Process through study of how courts resolve disputes in selected areas. Emphasis will be placed upon the operation of the case law system, the law-making roles of the courts and the legislatures, and the acquisition of the skills of a lawyer. (SU grading only.)

201A-201B. Procedure (3-3) III. Dobris, French, Rabin
Discussion—3 hours. Study of doctrines and institutions which govern allocation and use of land and improvements thereon. Emphasis is placed upon estates-in-land system, landlord-tenant relationship, conveyancing, and private and public means for land use control. (Deferred grading only, pending completion of sequence.)

202A-202B. Contracts (3-3) III. Ayer, Fessler
Discussion—3 hours. Course examines the sorts of promises that are enforced at law and the nature of protection given. Inquiry is made into the means by which traditional doctrine adjusts or fails to adjust—to changing social demands. (Deferred grading, pending completion of sequence.)

203A-203B. Civil Procedure (3-3) III. Hogan, Lipp, Miller, Oakley
Discussion—3 hours. The methodology of presenting a civil controversy for adjudication in a state or federal court, without reference, however, to the rules and tactics relating to the proof of disputed facts, which are the subject matter of Evidence and Trial Practice respectively. In addition to jurisdiction, the principal matters studied are those governing the formulation of the issues in dispute in a particular case through pleading, joinder and discovery, the resolution of these issues at or before trial, and the finality of the trial court's disposition of the case. (Deferred grading only, pending completion of sequence.)

204A-204B. Torts (3-3) III. Bucko, Jones, Juenger, Wilkerson
Discussion—3 hours. Course in tort law is designed to familiarize the students with the legal concepts which apply to actions brought by litigants who seek relief for injury. It is thus concerned with intentional invasions of personality and property and with the unintentional invasion of these same interests. More specifically the course seeks to analyze civil actions based upon wrongs carrying labels such as: assault, battery, false imprisonment, negligence, defamation, invasion of privacy, misrepresentation, and nuisance. (Deferred grading only, pending completion of sequence.)

205. Legal Research Techniques (1) I. Tolles
Lecture-laboratory—1 hour. How to do legal research and use law books effectively. Offered the first seven weeks of the fall semester.

206. Criminal Law (3) I. Craver, Poulos
Discussion—3 hours. A study of the elements and policies of selected criminal offenses.

207A-207B. Legal Writing (1-1) I-III. The Staff
Discussion—2 hours. Instruction and practice in the techniques of legal writing and oral appellate advocacy. Begins the eighth week of the fall semester. (SU grading only, deferred pending completion of sequence.)

208A-208B. Legal Writing and Oral Advocacy Skills (moot court) (1-1) I-III. The Staff
Laboratory. Open to first year students as an approved
211. The Lawyer as Negotiator (2) II. Craver
Discussion-laboratory—2 hours. Course examines the negotiation process generally engaged in by legal practitioners. Students will participate in a series of role-plays simulating the negotiation process in specific contexts, such as labor bargaining and personal injury settlements. Other topics include the study of alternative dispute resolution techniques, focusing on the role of mediation and arbitration in the context of specific legal issues. Students will be required to write an essay or prepare a mock negotiation. Written papers may be assigned to some students.

212. Public Interest Litigation (2)
Discussion—2 hours. This course will focus on subjects such as the selection of issues (the role of creativity in developing legal solutions to social problems and avoiding cases involving protracted judicial disputes which absorb limited resources); location of plaintiffs (legal problems of "standing" and ethical problems of solicitation); litigation strategy, for example, utilizing the discovery to expedite, expedite, expedite; delay, cases and the value of summary judgment; petition to administrative agencies and attorney's fees (or "How to Practice Public Interest Law and Survive"). The primary course materials will be the readings, briefs, and decisions in public interest cases. Limited enrollment.

213. Business Organizations I (3) I. Fissler
Discussion—3 hours. The business enterprise owned by relatively few persons is the focus of this course. While some treatment is given to the partnerships and limited partnerships between these institutions, it is also a course of study of how the nature of business law changes in the context of the corporate form. The main emphasis is upon the corporation and its superior status under both the decisional and statutory law of State of California. The materials are drawn from a research context, and the course materials, in part, emphasize corporate social responsibility and the fiduciary concepts relevant to this kind of business organization. The materials are taken up.

214. Business Organizations II (3) II. Dykstra
Discussion—3 hours. Building upon the concepts developed in Business Organizations, the focus is on the advocate-oriented offering is upon the legal problems surrounding the dominating phenomenon of the industrial state—-the public issue corporation. Comparative attention is given to the analysis of the development of a professional-market-oriented society, as well as to the public corporation. Within this context emphasis is placed upon a comparative analysis of the statutes of the California corporations Code with the statutory law of similar states which offer the enterprise the alternative of "foreign incorporation." Among the areas studied are: the governance of the public issue corporations (its operations through directors, committees, officers); the development of the corporation as an economic organism and its relationship to the corporate social responsibility, an important factor of the federal regulation of the proxy system and sale of securities.

215. Business Associations (4) I. Gallay
Discussion—4 hours. As an alternative to the more detailed and advocate-oriented concept of the Business Organizations course, the material consists of a course intended primarily for those students interested in a broad survey of the legal and regulatory aspects of the corporate and partnership form of business organization. The course will focus on the processes of incorporation, the formation of corporations, the role of management, the role of shareholders and the laws by which corporate structure can be rendered accountable to the socio-economic demands of the modern state.

216. Commercial Law (3) I. Loiseaux
Discussion—3 hours. The basic course in Commercial Law. Emphasis on secured commercial transactions, particularly under Article 9 of the Uniform Commercial Code. Course covers creation of security interests, the relationship between the secured party and the debtor during the existence of the debt and the enforcement of the agreement upon default. Enrollment in this course is limited to those who have not already taken a similar course in enforcement of security interests.

217. Constitutional Law I (3) I. Goodpaster
Discussion—3 hours. The judicial process in Constitutional Cases. Division of powers between the national government and the states. Constitutional limitations on governmental power derived from the due process clause.

218. Constitutional Law II (3) II. Goodpaster
Discussion—3 hours. Constitutional limitations on government power derived from the equal protection clause. State action concept. Freedom of speech and religion.

219. Evidence (4) I. Miller, II, Wydick
Discussion—4 hours. The rules regarding the admissibility of testimonial and documentary proof during the trial of civil and criminal cases, including the selection of relevant hearsay, the examination and impeachment of witnesses, the opinion rule, constitutional and statutory evidence.

220. Federal Taxation I (4) I. Wolk, II. Simmons
Discussion—4 hours. A study of the statutory, judicial, and administrative materials concerning federal income taxes.

221. Trusts, Wills and Decedents' Estates I (3) I. Dobris
Discussion—3 hours. Study of basic estate planning devices, with emphasis on wills and trusts.

222. Trusts, Wills and Decedents' Estates II (3) II. French
Discussion—3 hours. Prerequisite: course 221. Substantial new material necessary to administer an estate plan.

223. Estate Planning (2) I. Dobris
Discussion—2 hours. Prerequisite: courses 221, 222, and 224. The course is concerned with the planning of an estate plan and administration of estate plans.

224. Marital Property (3) I. Bodenheimer, II. Bodenheimer
Discussion—3 hours. The California community property system, marriage dissolution and nullity proceedings; legal implications of non-marital cohabitation; property, support, tax consequences of marriage dissolution; marital property settlement agreements; ante-nuptial and related contracts.

225. Criminal Procedure (Short Course) (2) I. Barrett
Discussion—2 hours. The police function: arrest, search, seizure, Miranda, confessions, lineups, the exclusionary rule.

227. Criminal Procedure (Long Course) (3) I. Ferrey
Discussion—4 hours. Covers the same material as course 225 plus additional material. The course is concerned with the criminal process in cases of criminal justice.

228. Business Planning (2)
Discussion—2 hours. Consideration of selected problems in business planning.

229. Problems of Small Business (1-2)
Seminar—1-2 hours. Consideration of selected problems of counseling small businesses.

230. Family Law (Short Course) (1) I, II. Bodenheimer, II. Bodenheimer
Discussion—2 hours. Marriage and devolution families, legal aspect of birth control, family support, child custody following marriage dissolution, custody counseling, dependency and neglect, termination of parental rights, guardianship, legitimacy and paternity, uniform parentage act, uniform child custody jurisdiction act, rights of children in general. Emphasis on family law reform in the United States and elsewhere and on recent California developments.

231. Legislative Process (2) I. Pinsa
Discussion—2 hours. Basic examination of the legislative branch of federal and state government. The primary focus will be on the process of enacting legislation, including the
232. Real Estate Finance and Taxation (4) (4) Rabin
Simmons
Discussion—4 hours. Prerequisite: course 220 (may be taken concurrently with consent of instructor). An examination of the problems to be considered in the acquisition and development of real estate including the federal income tax consequences resulting from diverse forms of investment. The course will emphasize current California real estate law and practice and will include a section on federal income taxation of partners and partnerships with a focus on the real estate limited partnership.

233. Philosophy of Responsibility and Punishment Seminar—2 hours. Interdisciplinary approach to some basic problems of criminal justice, among them the following: (1) the relation between freedom of the human will and the imputation of legal responsibility; justifications and criticisms of the notion of punishment; (3) policies of sentencing; (4) excusing from criminal responsibility, especially partial responsibility.

234. Family Law Practice (3) (3) Diamond
Seminar—3 hours. Prerequisite: course 230; course 225 (concurrent). The combined seminar and clinical course will provide practical experience in family law. Students will take primary responsibility for at least one dissolution from first interview through completion, under the direction of the attorney. Students will also participate in a weekly two-hour seminar to discuss the cases assigned to them. Limited enrollment. (SU grading only.)

235. Administrative Law (2) (2) Dunning
Discussion—2 hours. This course deals with the constitutional and statutory principles governing action by the executive branch of government (federal and state), and judicial review of those actions, including: the requirement and nature of an adequate public hearing; the requirements of administrative agencies acting in adjudicatory and legislative capacities; the standards of judicial review of administrative actions and the requirement that the findings of fact and conclusions of law reached by administrative agencies (herein of "administrative discretion").

236. Securities Regulation (2) (2) Dykstra
Discussion—2 hours. Prerequisite: courses 213 and 214, or course 215. The primary purpose of this course is to familiarize students with laws and regulations, federal and state, relating to the issuance of and trading in corporate securities. It includes materials pertaining to the scope of the term "securities," the registration of securities, intrastate and private offerings, broker-dealer regulations and civil liability under the Securities Act of 1933 and the Securities Exchange Act of 1934.

237. Commercial Paper (2) (2) Loisiaux
Discussion—2 hours. A course in commercial paper covering Articles 3 and 4 of the Uniform Commercial Code. This course will cover concepts of negotiability, requisites of negotiable paper, transfer, liability of parties, and rights of holders. The course will cover the issues of deposit and collections, and the relationship between banks and customers. The relationship of parties in credit transactions will also be considered

239. Insurance (2)
Discussion—2 hours. The insurance contract and its evolution; life, property, accident and other risks insured against; construction and enforcement of the various types of policies; statutory and regulatory controls.
264. Water Law (3) I. Dunning
Discussion—3 hours. Emphasis is placed upon appropriative and riparian rights to surface waters and upon the rules used to allocate groundwater. Also included are water pollution control, water rights in public and private corporations, interstate allocation, federal water development programs, environmental protection in water resources development and Indian water rights. Special attention will be given to current efforts to reform several areas of California water rights law.

*266. Law and Medicine (2)
Seminar—2 hours. Prerequisite: second-year medical student and second- and third-year law students with consent of instructor. A seminar approach emphasizing class work, field trips, and individual projects relevant to medical education and practice, attorney-patient relations, development of human behavior, community health care, and current medical-legal problems. Enrollment limited. (Same course as Family Practice, Medicine 266.)

*267. Family Law Seminar (1)
Seminar—1 hour. Prerequisite: course 230 recommended. Detailed consideration of seven problems in family law.

*268. Taxation of Foreign Income (2)
Seminar—2 hours. Analysis of the manner in which the United States taxes foreign-source income and income of foreign corporations and aliens. Special emphasis will be given to the use of the controlled foreign corporation as an avoidance device and to tax incentives for the export of U.S. products (i.e., domestic international sales corporations). Consideration will also be given to such topics as Western Hemisphere Trade Corporations, income from U.S. possessions, the foreign tax credit and tax treaties. Problem approach will be followed.

*269. Consumer Protection (2)
Discussion—2 hours. Study of selected consumer law problems, including a survey of state and federal regulatory efforts. Topics may be selected from, but not limited to, the following: Equal Credit Opportunity Legislation, preservation of consumer defenses on fraud, deceptive advertising, product safety, consumer education, improvement of credit terms. Each student will present one seminar session and write a paper on a subject within the seminar topic.

270. International Business Transactions (2) I. Angelo
Discussion—2 hours. Basic introduction to legal problems and techniques in international trade and investment. Foreign and U.S. law materials will be examined. Students will be presented with research assignments on actual international transactions which have arisen in the representation of U.S. national and private interests in Africa, Asia, Europe, and Latin America. The following functional problems will be examined: transfer of goods and services and the documentation and financing of such transactions; establishing branches and affiliates of corporations in foreign jurisdictions; taxation in more than one country; legal issues of boycott and ethical problems; antitrust regulation by international organizations such as the GATT.

271. Advanced Tax Seminar (1-2) I. Rock
Seminar—1-2 hours. A study of selected problems of public policy in relation to the tax law.

272. Family Law (Long Course) (3)
Discussion—3 hours. Course is designed for the student with a substantial interest in Family Law and Children and the Law. Covers in-depth material offered in the basic (short) course, and in addition, treats the child and education; child labor; emancipation; discipline and child abuse.

273. The Law and the Police (2) I. Feeny
Discussion—2 hours. Prerequisite: course 226 or 227 recommended. A study of all aspects of legal control of police practice and behavior. In addition to constitutional procedure, charges such as arrest, search and seizure, line-up and confession, attention will be given to state legislation, municipal codes, basic authorizations, administrative practices, and informal controls. (An additional unit of credit may be used as research or as clinical experience is available to students with consent of instructor.) Limited enrollment.

274. Unfair Trade Practices (2) II. Lipp
Discussion—2 hours. A study of unfair competition and the protection of intellectual property. Among the topics considered are: consumer fraud, misleading and false advertising, disparagement, interference with business relationships, the role of the Federal Trade Commission, trade secrets, patents, trademarks and copyrights.

275. The Corrective Process (2) I. Panama
Discussion—2 hours. Legal and philosophical issues of a separate juvenile justice process; early stages in the juvenile justice process; investigation, apprehension, intake, detention, juvenile court hearing and juvenile dispositions following disposition. Major emphasis on the emerging role of counsel at each phase of the process. Guest speakers and field trips. A paper may be required in lieu of a final examination.

*277. Corporate Finance (3)
Discussion—3 hours. Prerequisite: courses 213, 214 or 215. Economic and legal problems arising in connection with financial decisions of publicly held corporations, including valuation of the enterprise and its securities, determination of securities structure and dividend policy, and decisions on investment opportunities; whether by internal expansion or by merger or take-over. Consideration will also be given to the rights and remedies of senior security holders.

278. Labor Law Seminar (1-2)
Seminar—1-2 hours. Study of selected problems in labor relations law.

279. Employment Relations in the Public Sector (3)
Discussion—3 hours. Prerequisite: course 251 recommended. A study of the individual and collective rights of public employees. Consideration is given to constitutional protections and to legislation and executive orders relating to state and federal labor law relations.

281. Children and the Law (2)
Discussion—2 hours. Prerequisite: course 217 recommended. This course will consider the child in relationship to the family and society. Attention will be given to paternity and custody, family structure, marriage, adoption, juvenile court proceedings: rights to support, health, birth control, and education; welfare law; and legal capacity and emancipation. The course will focus on the extent to which the law recognizes the emotional needs and development of the child.

282. Sex Discrimination and the Law (2)
Discussion—2 hours. Prerequisite: course 217 recommended. Topics covered are historical and sociological background, sex as a designated preference, and sex stereotypes. In addition, the course will consider the constitutional rights of consumers. Prerequisite is knowledge of the Equal Rights Amendment, education, employment, reproduction and control, the treatment of women in criminal law, and women in the professions.

283. International Organizations (2)
Discussion—2 hours.Prerequisite: course 217 recommended. An examination of the foreign relations of modern international organizations.

284. Consumer Credit (2)
Discussion—2 hours. Students survey a range of commercial law topics, mostly from the perspective of the attorney and public or private, who defends the consumer. Principal problems include: the regulation and disclosure of finance charges, usury, creditors' disclosures, bankruptcy and consumer class actions. No other commercial law course counts toward a student's major or minor.

285. Environmental Law (2) II. Dunn
Discussion—2 hours. Emphasis is placed upon the National Environmental Policy Act and the California Environmental Quality Act. These are general environmental protection statutes which govern governmental decision-making with potential environmental implications and which have been the focus of a great deal of recent environmental litigation. In addition the student will be introduced to a more specialized area of the field of environmental law. Topics will be chosen in conjunction with and therefore based upon student interest. In 1976-77 the topics examined were water quality, air quality and pesticide regulation.

286. Constitutional Law Seminar (2) I. Barrett
Seminar—2 hours. Examination of the process of passing constitutional cases from the trial court to the U.S. Supreme Court. Each student will select a case for study for the full quarter. Begin at the trial level, write a paper and present it based on that study (with a re-write after an individual conference), and discuss the case with the class. The class as a whole will also study at least one case for seminar discussion. Most of the record and briefs in the cases will be available in printed form. Limited enrollment.

287. Law and Poverty (2)
Discussion—2 or 3 hours. A selective study of the processes, institutions, laws and practices which produce, maintain, exacerbate, regulate, or otherwise affect the conditions of being poor, together with an examination of the role of law and the lawyer in ending poverty, its sustaining conditions, and effects.

290. Criminal Justice Administration Seminar (2) I. Feeney
Discussion—1-2 hours. Prerequisite: course 226 or 227 recommended. Consideration of current reform efforts in criminal justice administration. Focus will be placed on the pre-trial process. Specified topics include bail reform, pre-trial detention, alternatives to arrest, and noncriminal methods for handling juveniles.

291. Litigation Seminar (3) I. I. Wilkerson
Discussion—3 hours. Students will participate in the litigation of a reasonably complex simulated lawsuit, from investigation and preparation of the case for trial, through the trial process, including discovery, opening statement, introduction of evidence, examination of expert and lay witnesses, calculation of damages, closing argument and post-trial motions. Limited enrollment. (SU grad. only.)

292. Immigration Law and Procedure (2) I. Hafer
Seminar—2 hours. The course will include consideration of the following subjects: constitutional basis for exercise of power of exclusion and deportation; constitutional basis for distinction between citizens and non-citizens; entity of non-citizens into the United States; administrative arrest and deportation of non-citizens; appeals within the INS and judicial review; subversive non-citizens; non-citizen criminal conduct, and non-citizen employment.

293. International Legal Efforts to Preserve the Environment (1) I. Angelo
Seminar—1 hour. Recognizing that environmental problems cross national boundaries, participants will examine the impact of international law and the emerging network of international treaties on the environment. Participants will be directed to research sources on items of special interest to them, such as the United Nations Environment Program which has emerged from the 1972 Stockholm Conference, the current law of the Sea Negotiations, international energy transactions, and regional environmental programs, such as in the European Community and Africa.

294. Oil and Gas Law (2)
Discussion—2 hours. The nature and protection of interests in oil and gas; oil and gas leases; governmental regulation of oil and gas; taxation.

295. Labor Arbitration (2)
Discussion—2 hours. Prerequisite: course 251. A study of the labor arbitration process and the manner in which various provisions of collective bargaining agreements are interpreted and applied.

297. Appellate Advocacy (3) Friedman
Discussion—2 hours. General introduction to civil practice in state appellate courts. Course will include limited appellate review, an inquiry into decisional motivations as a guide to argument strategy, perfection of record on appeal, techniques of briefing and argument, extraordinary writs as a

NOTE: For key to footnote symbols, see page 133.
means of pretrial review; and petitions for State Supreme Court hearing. Limited enrollment with preference given to students who have had or are currently enrolled in courses 410 and 495A, and second preference given to students who have completed courses 410A and 495A.

298. Group Study (1-4) I, II. The Staff Groups of students (not less than 4 nor more than 10) with common interest in studying a stated legal problem may plan and conduct their own research and seminar program, subject to the following regulations: 1) program may extend over more than two semesters; 2) plan for the program and the list of members of the group must be submitted to Dean's Office at least 4 weeks prior to opening of the semester in which the program is to begin; 3) three-member faculty board will be appointed for each group proposed and will have authority to approve or disapprove the program and the amount of credit sought; 4) changes in the program or in membership of the group must be approved by the faculty board and normally will be approved only prior to the semester involved; 5) group members must conduct a weekly seminar session to be arranged by them; 6) each member of the group must submit to the faculty board an individual paper or an approved alternative growing out of the seminar subject. The faculty board, 7) SU grading basis only unless the entire group requests letter grades in advance.

299. Research in Legal Problems (1-4) I, II. The Staff Students may receive credit for individual research projects, subject to the following regulations: 1) project may extend over more than two semesters; 2) each project will be under the supervision of a faculty member (normally, no faculty member will be permitted to supervise more than 5 students working on individual programs during any semester); 3) an outline of the project must be approved by the supervising faculty member in advance of the semester in which it is to be undertaken; 4) student must submit an individual paper or approved alternative to the supervising faculty member; 5) grading will be on a SU basis unless a request for letter grading has been made in advance.

Professional Courses

410. Moot Court Competition (1) I, II. The Staff Laboratory—2 hours. Prerequisite: either course 207A-207B or 208A-208B. Participation as a competitor in up to two semesters of any of the following intramural or extramural moot court programs: Neumiller, Jessup, Traynor, Environmental, or National Moot Court. Approval of the Moot Court Board is required for enrollment. (SU grading only.)

415. Trial Practice II (1-2) I, II. The Staff Laboratory—1 hour. Students form into teams to litigate mock civil and criminal trials. Following the pleading, discovery, and pre-trial motion stages, a jury trial is conducted. Students may elect to take this portion of the course twice, if the second trial is significantly different from the first. (SU grading only.)

420. Individual Clinicals (1-12) I, II. The Staff Clinical Program. Prerequisite: relevant substantive and procedural courses recommended. Students may engage in individual clinicals of their choice with the approval of the clinical director or the clinical committee and under the tutelage of individual faculty members. A detailed outline of the proposed clinical work, endorsed by the proposed sponsoring faculty member, should be submitted to the Clinical Office two weeks prior to the beginning of the semester in which credit is requested. The clinical must be under appropriate legal supervision and designed to maximize educational benefits. With the exception of a clinical semester, a student may enroll in no more than six units of individual clinical study. Four to five office hours are required per unit per quarter; full-time clinicals (no other courses) for 12 units. A student may take one course in conjunction with a clinical seminar with the consent of the Dean, but a student may receive credit for not more than 14 semester units during such a clinical as a student may receive credit for not more than 14 semester units during such a clinical.

430. Clinical Program in Civil Legal Service (2-5) I, II. Clinical Program. This program is designed to introduce students to the legal problems of the poor and the practice of law with the poor. Course work will consist of an initial and relatively short but intensive period of time during which students familiarize students with poverty law practice and litigation, followed by assignment, for one or two semesters to a poverty law aid office for a minimum of 10 office hours per week. Students will be assigned to local legal aid offices and specialized programs where they will receive a structured clinical experience ranging from interviewing and assisting clients, going to court, drafting pleadings and other legal documents, to assisting in law reform activities. Students will also participate in a seminar keyed to their poverty law practice. May be repeated for credit for a maximum of 10 units. (SU grading only.)

450. Clinical Program in Environmental Law (2-6) I, II. Dunning Clinical Program. Prerequisite: course 285 recommended. Practical experience in environmental law. Students will work under the direct supervision of a government or private lawyer engaged in some form of environmental law work for a minimum of 7 office hours per week. (For purpose of this course, "environmental law" includes land use control with civic means.) Students will also be required to prepare a bi-weekly journal, noting, commenting upon, and reflecting upon their clinical experience. (SU grading only.)

460. Clinical Program in the Legislative Process (2-4) I, II. Parras Clinical Program. Prerequisite: course 231 recommended. This program is designed to provide students with practical experience in the operation of the office of a legislator or the operation of a legislative committee for a minimum of 7 office hours per week. The major thrust of the program is to enable students to become familiar with the give and take realities of the process of making laws as contrasted with their interpretation and enforcement. Journals and seminar attendance are required, if necessary. Limited enrollment with preference given to third-year students. (SU grading only.)

470. Clinical Program in the Administration of Criminal Justice (4-12) I, II. Parras Clinical Program. Prerequisite: courses 219, 226, 227 and 283 recommended. This program affords students the opportunity to gain practical experience working full or part time in a District Attorney's or Public Defender's office or one of several surrounding counties for a minimum of 13 office hours per week. Students enrolled in the program engage in the full range of activities associated with the specific office with emphasis on observation and participation in all phases of criminal procedures, interviewing, counseling, negotiates, motion practice, and trials under state bar rules. Journals and seminar attendance are required. Limited enrollment; fall enrollment limited to third-year students. (SU grading only, pending completion of sequence.)

480. Legal Problems of the Prison Inmate (2-4) I-II. Smith Clinical Program. Prerequisite: consent of instructor; courses 210 and 275 recommended. This program offers students the opportunity to assist prisoners in the California Medical Facility at Vacaville with their legal problems, including both civil and criminal matters. Students are engaged throughout the semester interviewing inmates, and investigating and evaluating their cases for a minimum of 7 office hours per week. Seminar sessions are scheduled throughout the semester. (SU grading only, pending completion of sequence.)

485. Street Law (2-3) II. Goodpaster Clinical and seminar. Teams of selected students will be assigned to teach a general law course to prisoners in the California Medical Facility at Vacaville, the Sacramento County Jail, and Folsom Prison. There is a wide demand among prisoners for practical knowledge of the law. Thus, the general course will include some criminal and property law, consumer law, civil procedure, and topics in law. The seminar will be devoted to the development of the students teaching, writing, oral advocacy and communication skills and to exploration and discussion of the legal, ethical and practical dimensions of the discipline. (SU grading only.)

495A-495B. Instruction in Legal Writing and Oral Advocacy Skills (2-2) I-II. The Staff Prerequisite: course 207A-207B and one semester of 410 or 208A-208B. Each participant will plan, present and oversee a skills program for one small section of Law 208A and 208B. Approval of the Moot Court Board is required for enrollment. (SU grading only.)

Linguistics

(College of Letters and Science)

Marianne Cooley, Ph.D., Program Director
Program Office, 212 Sproul Hall

Committee in Charge

Maximo Torrebiana, Ph.D. (Spanish), Committee Chairperson
Wilbur A. Benware, Ph.D. (German)
*Marianne Cooley, Ph.D. (Linguistics, English)
C. James Gallant III, Ph.D. (Russian)
James Spamer, Ph.D. (English)
Lenora Timm, Ph.D. (Linguistics)

Faculty

Ronald A. Arbin, Ph.D., Associate Professor (Philosophy)
Jasrv R. Bastian, Ph.D., Associate Professor (Psychology)
Wilbur A. Benware, Ph.D., Associate Professor (German)
*Marianne Cooley, Ph.D., Assistant Professor (Linguistics, English)
Gary L. Cronkhite, Ph.D., Professor (Rhetoric)
Linnea C. Ehr, Ph.D., Associate Professor (English)
C. James Gallant III, Ph.D., Assistant Professor (Russian)
Wayne Harsh, Ph.D., Professor (Linguistics, English)
Larry H. Hillman, Ph.D., Assistant Professor (French)
Barbara J. Merino, Ph.D., Assistant Professor (Education)
Richard A. Ogle, Ph.D., Assistant Professor (Linguistics)
David L. Olmsted, Ph.D., Professor (Anthropology)
Anne-Louise Radinsky, Ph.D., Assistant Professor (Electrical Engineering)
Winfried Schleiner, Ph.D., Associate Professor (English)
Gwendolyn Schwabe, M.A., Lecturer (English)
James B. Spamer, Ph.D., Assistant Professor (English)
Lenora Timm, Ph.D., Assistant Professor (Linguistics)
Maximo Torrebiana, Ph.D., Associate Professor (Spanish)
Carolyn F. Wall, Ph.D., Associate Professor (Anthropology)
Benjamin E. Wallacker, Ph.D., Professor (Oriental Languages)

The Major Program

The subject matter of linguistics encompasses a broad spectrum of knowledge about human language. Linguistics focuses on the description of contemporary languages and the study of language change through time. It also has important applications to problems of inmates. (SU grading only.)

254
The major is designed to familiarize students with the methods of linguistic analysis at gradually acelerated levels of methodological and theoretical complexity through a sequence of "core" courses. Elective courses allow the student to explore areas which overlap linguistics.

Linguistics

A.B. Major Requirements:

Preparatory Subject Matter

- **UNITS**
 - **Linguistics 1 or 135**
 - **Foreign language: units beyond the Letters and Science requirement**
 - **Depth Subject Matter**
 - **Linguistics 109, 110, 139, 140**
 - **Linguistics 111 or 165**
 - **Linguistics 102 or 112**
 - **Oriental Languages 100 or Anthropology 220**

At least 12 upper division units from the following courses:

- **Anthropology 118, 120, English 105A, 105B, French 159, 160, Human Development 101**
- **Linguistics 135 (if used as an alternate to course 1 above, any other linguistics course not included in the 24-unit requirement above)**
- **Philosophy 137**
- **Psychology 132, 180G, Russian 140, Spanish 131, 132, 133**

The student should note that a number of these courses have prerequisites. Since it is usual to select some emphasis within the Linguistics major (e.g., anthropology, a foreign language, etc.) such prerequisites should be completed as a matter of course.

Total Units for the Major: **52**

Graduate Study: The Linguistics Graduate Group offers study and research leading to the M.A. degree. Details of the curriculum may be obtained from the Graduate Advisor or from the Chairperson of the Linguistics Program.

Courses in Linguistics

Lower Division Course

 - Lecture—3 hours; laboratory—1 hour. Introduction to the study of language; its nature, diversity, and structure.

Upper Division Courses

102. **Historical Linguistics (4)** I. Benneworth, Cooley.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 109. Description and methods of the historical study of language; sound change, morphological change, syntactic change, semantic change. Offered in odd-numbered years, alternating with course 202.

105. **Linguistic Analysis of German (4)** I. Benneworth.
 - Lecture—3 hours; assigned problem sets. The descriptive study of modern German with consideration of its structural differences from English. (Same course as German 105.)

106. **History of the German Language (4)** I. Benneworth.
 - Lecture—3 hours; written reports. Survey of the development of the German language, and study of its structure in historical perspective. (Same course as German 106.)

Note: For key to footnote symbols, see page 138.

107. **Special Topics in English Language (4)** I, Schieder, Cooley, Harsh, Spinner.
 - Seminar—3 hours. Special project. Prerequisite: one course from English 1, 2, 3, 4A, 4B. Investigation of a variety of subjects in contemporary and historical English language studies. May be repeated for credit when a different topic is studied. (Same course as English 107.)

109. **Phonetics (4)** I, Wall.
 - Lecture—3 hours; discussion—1 hour. Thorough grounding in articulatory phonetics with some attention to the fundamentals of acoustic phonetics. (Same course as Anthropology 109.)

110. **Elementary Linguistic Analysis (4)** I. Omsland, Wall.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: course 105. An introduction to phonemic theory, morphophonemics, and morphemics, and tactics. (Same course as Anthropology 110.)

111. Intermediate Linguistic Analysis (4) I. Omsland.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: course 105. Continuation of course 110. More advanced work in phonemics, morphophonemics, morphemics, and tactics. (Same course as Anthropology 111.)

112. Comparative Linguistics (4) I. Omsland.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Computational prehistory and linguistic reconstruction. (Same course as Anthropology 112.)

113. **Women and Language (2)** I, II. Timm.
 - Lecture—2 hours. Prerequisite: one course in linguistics recommended. An exploration of linguistic aspects of female behavior and of stereotypes about women stressing the U.S. influence of linguistic enculturation patterns. The different sociocultural positions of women and men will be examined.

114. **The Ethnography of Speaking (4)** I, Timm.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: Anthropology 2, Anthropology 4 or course 1. The social and linguistic aspects of verbal behavior. Participants, situations, and functions of communication. Speech communities, language and social stratification, bi- and multilingualism. (Same course as Anthropology 114.)

115. **Chicano Sociolinguistics (4)** I, II. Timm.
 - Lecture—3 hours. Prerequisite: course 1 and Spanish 3 or the equivalent. Study of the varieties of Chicano Spanish spoken in the Southwest. Patterns of Spanish-Chicano bilingualism; attitudes about Spanish and English; Chicano Spanish and the schools.

135. **Perspectives on Linguistic Research (4)** III. Timm.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: upper division or graduate standing plus familiarity with at least one other language than English. An overview of the fields of linguistics and its relation to allied disciplines. Techniques of linguistic analysis will be presented and applied to natural languages. (Only 2 units of credit will be granted to students who have taken course 11.)

138. **Language Development (4)** III. Wall.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: course 111. Theory and research on children's acquisition of their native language including the source systems, grammatical structures, basic semantic categories, and social aspects of usage.

139. **Phonological Analysis (4)** I, II. Cooley, Spinner.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: course 109. Introduction to and application of phonological theory.

140. **Grammatical Analysis (4)** I, II. Ogie.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Introduction to syntactic analysis; survey of types of syntactic and semantic phenomena in natural languages. Emphasis will be on developing skills in data analysis, rather than on investigating formal aspects of the theoretical framework to be employed.

146. **The Indo-European Languages (4)** I. Benneworth, Spinner.

150. **Comparative Analysis of Spanish and English (4)** I, II. Toribegano, Timm.
 - Lecture—4 hours; discussion—1 hour. Prerequisite: Spanish 3 or the equivalent. Comparison of the linguistic structures (phonology, morphology, syntax) of Spanish and English; learning problems of both native Spanish and native English speakers will be considered.

155. **Introduction to Generative Grammar (4)** II. Ogie.
 - Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 140. Introduction to the theory of generative grammar, formalization; goals of linguistic theory, linguistic universals; word and sentence structure, relations between syntax and semantics.

196. **Stylistics (4)** I, II. Harsh.
 - Seminar—3 hours; term paper. Prerequisite: English 105A. Analysis of linguistic stylistic variations in specific works to be selected from the corpus of writings in English. (Same course as English 196.)

197. **Tutoring in Linguistics (1-4)** I, II, III. The Staff (Chairperson in charge).
 - Prerequisite: upper division standing with Linguistics major and consent of Department Chairperson. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. May be repeated for credit. (PIN grading only.)

199. **Directed Group Study (1-5)** I, II, III. The Staff (Chairperson in charge).
 - Prerequisite: senior standing in Linguistics. (PIN grading only.)

199. **Special Study for Advanced Undergraduates (1-5)** I, II, III. The Staff (Chair in charge).
 - (PIN grading only.)

Graduate Courses

 - Seminar—3 hours. Knowledge of Modern German not required. Phonology, grammar and reading of Gothic texts. Special topics including the relationship of Gothic to Indo-European and to the other Germanic languages. Offered in even-numbered years. (Same course as German 200.)

 - Seminar—3 hours. Prerequisite: courses 102 and 112. Advanced treatment of the theory and method of historical linguistics. Offered in odd-numbered years.

205. **History of the German Language (4)** I, Benneworth.
 - Seminar—3 hours. The development of the German language with emphasis on the early periods, from Indo-European to Middle High German. (Same course as German 205.)

215. **Computational Linguistics (2)** I, II. The Staff.
 - Lecture—2 hours. Prerequisite: consent of instructor. The use of electronic computers and other computational devices in linguistic analysis, mechanical translation, and lexicography.

 - Seminar—3 hours. Prerequisite: one course from the following: courses 112, 139, 140. The development of the major Romance languages from Proto-Romance to the modern era. Selected topics in the structure of modern Romance languages. Option of focus on phonology, syntax, or historical linguistics.

225. **Modern Linguistic Theory (4)** III. Ogie.
 - Seminar—3 hours. Prerequisite: courses 165 and 140. Survey of leading contributions to linguistic theory from the 19th century to the present.

250-A. **Topics in Linguistic Theory and Methods (4)** I, II. The Staff.
 - Seminar—3 hours; paper. Prerequisite: graduate standing and consent of instructor. Introduction to current research in various aspects of linguistics.

268. **Directed Group Study (1-5)** I, II, III. The Staff (Chairperson in charge).
 - Prerequisite: graduate standing. (PIN grading only.)
Mass Communication; Mathematics

290. Research (1-12) I, II, III. The Staff (Harsh in charge.) (SU grading only.)

Professional Course

300. The Teaching of English as a Foreign Language (4) I. Schwalbe
Lecture—3 hours; laboratory—3 hours. Prerequisite: English 105A or course 109. Methods of teaching English to nonnative speakers, stressing particularly recent linguistic methodology and techniques.

Mass Communication

(College of Letters and Science)

Program Office, 4208 Storer Hall

Committee in Charge

Sidney Berger, Ph.D. (English), Committee Chairperson
Eveard d'Hamoncourt, Ph.D. (Dramatic Art)
Gary L. Cronkhite, Ph.D. (Rhetoric)
Eveard d'Hamoncourt, Ph.D. (Dramatic Art)
C. Roland Marchand, Ph.D. (History)

The Major Program

This major is designed to acquaint the student with the general processes, content, and effects of the mass media. The program is not designed to provide specialized technical training. Rather, it is intended to introduce the student to the study of the nature, values, and functions of mass communication in our society and to encourage the student to integrate theoretical concepts, research findings, and critical insights from both social science and humanistic disciplines into a basic understanding of mass media. The major prepares students for graduate study in mass communication or journalism, for advanced professional training, and for careers requiring a coherent understanding of mass communication. Possible careers include advertising, public relations, news, and management of media outlets.

Mass Communication

A.B. Major Requirements:

Preparatory Subject Matter
There are no lower division requirements for the major.

The student should plan to take those courses needed to satisfy prerequisites for upper division requirements in the major program.

Depth Subject Matter
At least 36 upper-division units, selected in consultation with a major adviser, to include four courses from the following: 12 units from major areas (listed below), and five courses distributed among two or more of the remaining areas. (At least 16 of the 36 units must be in residence.) 36-38

Rhetoric 190 (to be taken in the junior year in preparation for senior project; may not be taken concurrently with work on senior project) 2

Independent study (199), at least 5 units involved in preparation of required senior project (see below) 5

Total Units for the Major 43-45

Topic Areas

(a) Communication Theory
Required: at least one course from Psychology 145; Rhetoric 100, 114, 120. Additional courses: Anthropology 120; Linguistics 114; Psychology 132; Rhetoric 105, 123.

(b) Social and Political Influences on the Mass Media
Required: at least one course from Political Science 165; Rhetoric 140. Additional courses: American Studies 140, 140B; History 174A, 174B, 176C; Linguistics 113; Political Science 156, 157A, 164; Rhetoric 122; Sociology 148.

(c) Social Science Research Methods
Philosophy 109; Political Science 111; Psychology 103; Rhetoric 153; Sociology 106.

(d) Production of Media Content
Art 110 or 111, 115, one course from 125, 126, 127, 128, or 129; Dramatic Art 124A or 124B; English 124A; English 160; English 100P or 100P; History 104F; 184, 186.

(e) Analysis of the Content and Effects of Mass Communication
Art 147, 148; Dramatic Art 115; English 183; Linguistics 105A; Philosophy 123; Rhetoric 141; Sociology 175.

With approval from the Mass Communication Curriculum (MCC) Committee, certain courses not listed above may be used to satisfy upper division area requirements.

Student's Program. A prospective or declared Mass Communication major should submit a proposed program of upper division courses, prepared in consultation with a major adviser, to the MCC Committee for approval no later than the first quarter of the junior year. Prospective Mass Communication majors transferring into the College as upper-division students should consult with an adviser immediately upon arrival.

Senior Project. The project, which requires prior approval by the MCC Committee, must be undertaken during the senior year while in residence at the Davis campus. The student enrolls for the project through one or more 198 courses totaling at least five units in an appropriate department. A paper substantiating the relation of the project to mass communication is required. A proposed project will not be approved if, in the opinion of the Committee, the student lacks the substantive or methodological background needed for its successful completion.

The project must be original work, conceived, designed and implemented in consultation with a major adviser. It might entail research into a facet of mass communication content, policy, or effects, or involve some form of creative activity that culminates in some artifact; for example, the student may produce a film, video tape, or script.

The completed project must be submitted for final approval in the quarter preceding the one in which a student plans to graduate (except for September graduates who must submit their projects in the preceding Winter Quarter). Final approval requires an evaluation of the completed project by the student's faculty adviser.

Major Advisers. Members of the Committee.

Mathematics

(College of Letters and Science)

David G. Mead, Ph.D., Chairperson of the Department
Howard J. Weiner, Ph.D., Vice-Chairperson of the Department
Department Office, 565 Kerr Hall

Faculty

Henry L. Alder, Ph.D., Professor
Herbert Arnold, Ph.D., Associate Professor
George A. Baker, Ph.D., Professor Emeritus
Dallas A. Banks, Ph.D., Professor
David W. Barrette, Ph.D., Professor
Donald C. Benson, Ph.D., Professor
Carlos R. Borges, Ph.D., Professor
Robert J. Buck, Ph.D., Associate Professor
Albert C. Burdette, Ph.D., Professor Emeritus
Gail D. Chakravarti, Ph.D., Professor
Douglas O. Cutler, Ph.D., Associate Professor
James R. Diederich, Ph.D., Associate Professor
Allan L. Edelson, Ph.D., Associate Professor
Alan P. Fenech, Ph.D., Assistant Professor
Francis J. Flanagan, Ph.D., Visiting Associate Professor
Curtis M. Fulton, Ph.D., Professor Emeritus
Steven P. Galovitch, Ph.D., Visiting Associate Professor
Ronald E. Glaser, Ph.D., Assistant Professor
Robert O. Glaz, Ph.D., Professor
Shirley A. Goldman, M.S., Lecturer
Charles A. Hayes, Jr., Ph.D., Professor Emeritus
Kurt Kreith, Ph.D., Professor
Arthur J. Kremer, Ph.D., Associate Professor
Melvin R. Krom, Ph.D., Professor
Gary J. Kukowski, Ph.D., Professor
Peter Linz, Ph.D., Professor
Mario Martelli, Ph.D., Acting Associate Professor
Norman S. Matloff, Ph.D., Professor Emeritus
David G. Mead, Ph.D., Professor
E. O. Milton, Ph.D., Associate Professor
Donald A. Norton, Ph.D., Associate Professor
Washek F. Pfeffer, Ph.D., Professor
Richard E. Plant, Ph.D., Assistant Professor
B. L. Raitio, Ph.D., Visiting Professor
Edward B. Roessler, Ph.D., Professor Emeritus
Edward A. Sall, Ph.D., Professor
Francisco J. Sarnari, Ph.D., Associate Professor
Evelyn M. Silvia, Ph.D., Assistant Professor
Sherman K. Stein, LL.B. (Hon.), Ph.D., Professor
Robert W. Stringall, Ph.D., Associate Professor
Takayuki Tomura, D.S., Professor
Edward J. Tully, Jr., Ph.D., Associate Professor
Jessica M. Utts, Ph.D., Associate Professor
John Van Ryn, Ph.D., Professor
Howard J. Weiner, Ph.D., Professor

The Major Program

Students majoring in mathematics may follow a program leading to either the Bachelor of Arts or the Bachelor of Science degree. The latter is especially recommended for students who intend to...
pursue mathematics at the graduate level. Under either degree program the student may prepare for various careers by an appropriate choice of elective courses.

Developing an ability to think and communicate in mathematical terms is the basic objective of both bachelor degree programs. This ability requires familiarity with the concepts and techniques of various branches of mathematics and is necessary for graduate study in mathematics as well as the successful pursuit of mathematically oriented careers. In particular, mathematics is an essential tool for people working in the physical sciences, and mathematics is now being widely applied to studies in the biological and social sciences as well. Students with career oriented programs in applied mathematics should supplement their mathematics curriculum with courses in other departments which provide background in their proposed area of application.

Mathematics

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Mathematics</td>
<td>24-26</td>
</tr>
<tr>
<td>Mathematics 11 (or high school equivalent)</td>
<td>0-2</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 22A, 22B</td>
<td>18</td>
</tr>
<tr>
<td>Two courses from Mathematics 22C, 29, 32</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36</td>
</tr>
<tr>
<td>Mathematics 101, 108A (should be taken before junior year)</td>
<td>5</td>
</tr>
<tr>
<td>Additional upper division units in Mathematics</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>60-62</td>
</tr>
</tbody>
</table>

Mathematics

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Mathematics</td>
<td>24-26</td>
</tr>
<tr>
<td>Mathematics 11 (or high school equivalent)</td>
<td>0-2</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 22A, 22B</td>
<td>18</td>
</tr>
<tr>
<td>Two courses from Mathematics 22C, 29, 32</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>45</td>
</tr>
<tr>
<td>Mathematics 101, 108A (should be taken before the junior year)</td>
<td>5</td>
</tr>
<tr>
<td>Additional upper division units in Mathematics</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>69-71</td>
</tr>
</tbody>
</table>

Recommended Language Preparation

Bachelor of Science degree candidates are advised, but not required, to satisfy the same language requirement as that for a Bachelor of Arts degree candidate, and to fulfill it in French, German or Russian.

Depth Subject Matter Requirements

Certain mathematically oriented courses given by other departments may be admissible in partial satisfaction of the above mentioned 36- or 45-unit requirements with prior departmental approval. In general, 192, 197, 198, and 199 courses are not appropriate to be applied towards this requirement: any exceptions must be approved by the Department’s committee on program review.

Statement of Objectives

During the last quarter of the sophomore year each prospective mathematics major should, in consultation with an adviser, prepare a statement of his or her mathematical objectives and a proposed upper division program consistent with those objectives. The form to be used for this statement is available from the Department, and must be submitted in time to receive final approval prior to the last day of instruction of the first quarter of the junior year. Prospective mathematics majors transferring to the University at the upper division level should consult an adviser immediately upon arrival.

Major Advisers

Information for Undergraduates

Students interested in the study of mathematics should obtain the Undergraduate Brochure, which is available at the Department Office. Assistance in planning an undergraduate major program in mathematics should be obtained from a major adviser. In addition, students seeking information pertaining to the application of mathematics to the biological or social sciences, computer science or statistics may contact the appropriate special area adviser.

Applied Mathematics

Recommended career preparation: Most programs include Mathematics 19 or 29, 118A, 118B, 120, 121A, 121B, 128A, 128B, 128C and 167. Applied mathematics has many possible areas of specialization; see the special subject matter advisers for emphasis in applied analysis, biological science, computer science, social science and social systems theory.

Special Area Advisers—Applied Mathematics

J. R. Diederich (Applied Analysis), R. E. Plant (Biological Science), G. J. Kurowaki (Computer Science), K. Kreith (Social Science), A. J. Krener (Systems Theory).

Statistics

Statistics is used extensively in research in the biological, social, and physical sciences, and in other areas, such as economics and engineering.

Concentration in Statistics

Undergraduate mathematics majors who wish to concentrate in statistics should take the following courses: Mathematics 29, 32, 105A-105B, 131A-131B-131C (or 130A-130B, with the consent of adviser), 135; at least three quarters from Mathematics 132A-132B, 133, 134, and 144, or, with consent of the adviser, statistics courses from other departments; at least two quarters of 127A-127B-127C, 128A-128B-128C, 129A-129B, 129C, or 166.

Graduate Study in Statistics

Graduate students who wish to concentrate in statistics should contact the graduate studies adviser. Information concerning careers in statistics is available from statistics advisers.

Statistical Consulting

Those engaged in research on campus may contact the Mathematics Department for information concerning statistical consulting.

Department Statistics Courses Offerings:

Statistics Course Offerings Outside Department

Several departments offer undergraduate or graduate courses in statistics. A list of these courses is available at the Mathematics Department.

Statistics Advisers

Graduate Study in Pure Mathematics

Recommended preparation: Mathematics 127A, 127B, 127C and 151A, 151B, 151C. Students are free to take additional courses reflecting their special interests with the approval of their adviser.

Secondary Teaching in Mathematics

Recommended preparation: Mathematics 108A, 139A, 139B, 141, and 167 are essential; a selection from courses 19 (or 29), 32, 36, 37, 112, 114, 115A, 128A is highly recommended.

Teaching Credential Subject Representative

G. T. Salleie. See page 111 for the Teacher Education Program.

Graduate Study

The Department offers programs of study and research leading to the M.A., M.A.T., and Ph.D. degrees in mathematics. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Mathematics.

Graduate Advisers

Courses in Mathematics

Lower Division Courses

B. Elementary Algebra (no credit) I, II. The Staff Lecture—3 hours. Basic concepts of algebra, including polynomials, factoring, equations, graphs, and inequalities. Offered only if sufficient number of students enroll. (P/NP grading only.) (There is a fee of $45.)

C. Trigonometry (no credit) I, II. The Staff Lecture—4 hours. Basic concepts of trigonometry, including trigonometric functions, identities, inverse functions, and applications. Offered only if sufficient number of students enroll. (P/NP grading only.) (There is a fee of $30.)

D. Intermediate Algebra (no credit) I, II. The Staff Lecture—4 hours. Basic concepts of algebra, designed to prepare the student for college work in mathematics, such as courses 13, 16A, or 21A. Functions, equations, graphs, logarithms, and systems of equations. Offered only if sufficient number of students enroll. (P/NP grading only.) (There is a fee of $15.)

11. Analytic Geometry (2) I, II. The Staff Lecture—2 hours. Prerequisite: two years of high school algebra, plane geometry, plane trigonometry. Analytic geometry in two dimensions.

13. Elementary Statistics (4) I, II, III. The Staff Lecture—4 hours. Prerequisite: two years of high school algebra. Measures of central tendency and dispersion; binomial, normal, Student-t, and chi-square distributions; testing hypotheses; non-parametric statistics; regression and correlation theory. (Students having had courses 130A or 131A may not take course 13 for credit.)

15. Introduction to Matrix Theory and Linear Programming (3) I, II. The Staff Lecture—3 hours. Introduction to matrices, determinants and linear programming. Not open for credit to students who have received credit for course 22A. Not recommended for students who wish to major in the mathematical sciences.

16A. Analytic Geometry and Calculus (3) I, II, III. The Staff Lecture—3 hours. Prerequisite: one and one-half years of high school algebra, plane geometry, plane trigonometry. Not open for credit to students who have received credit for course 21A. A short course in analytic geometry and differential and integral calculus. Not recommended for students who wish to major in the mathematical sciences.
Mathematics

16B. Analytic Geometry and Calculus (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: course 16A or 21A. Not open for credit to students who have received credit for course 21B. Continuation of course 16A.

16C. Analytic Geometry and Calculus (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: course 16B or 21B. Not open to students who have received credit for course 21C. Continuation of course 16B.

Lecture—2 hours; laboratory—1 hour. Prerequisite: two years of high school algebra. Introduction to principles of computing. Methods and algorithms for solving problems by use of a digital computer. Course not intended for students in physical sciences and mathematics. Students having had course 29 or Engineering 5 may not receive credit for this course.

21A. Calculus (4) I, II, III. The Staff
Lecture-discussion—4 hours. Prerequisite: two years of high school algebra, plane geometry, plane trigonometry, and analytic geometry (if analytic geometry has not been completed, course 11 may be taken concurrently). Only two units of credit will be allowed to students who have credit for course 16A. Functions, limits, continuity, slope and derivative. Differentiation of algebraic and transcendental functions. Applications to motion, natural growth, graphing, extremum of a function. Differentials. L'Hopital's rule.

21AH. Honors Calculus (4) I. The Staff
Lecture—4 hours. More intensive treatment of material covered in course 21A. Students completing 21AH can continue with course 21BH or the regular 21B.

21B. Calculus (4) I, II, III. The Staff
Lecture-discussion—4 hours. Prerequisite: course 21A. Only two units of credit will be allowed students who have received credit for course 16B. Continuation of course 21A. Definition of definite integral, fundamental theorem of calculus, techniques of integration. Application to area, volume, arclength, average of a function, improper integrals, surface of revolution.

21BH. Honors Calculus (4) II. The Staff
Lecture—4 hours. More intensive treatment of material covered in course 21B. Students completing 21BH can continue with course 21CH or the regular 21C.

21C. Calculus (4) I, II, III. The Staff
Lecture-discussion—4 hours. Prerequisite: course 21B or consent of instructor. Continuation of course 21B. Sequences, series, tests for convergence, Taylor expansions. Partial derivatives, total differentials. Applications to maximum and minimum problems in two or more variables. Definite integrals over plane and solid regions in various coordinate systems. Applications to physical systems.

21CH. Honors Calculus (4) III. The Staff
Lecture—4 hours. More intensive treatment of material covered in course 21C.

22A. Linear Algebra (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: nine units of college mathematics. Matrices and linear transformations, determinants, complex numbers, quadratic forms. (Courses 22A, 22B, 22C may be taken in any order. However, if enrolled in Physics 4 sequence, 3C, 4C, 4E, courses should be taken in reverse order, 22C, 22B, 22A.)

22AH. Honors Linear Algebra (3) I. The Staff
Lecture—3 hours. Prerequisite: course 21C or consent of instructor. Honors course covering the material of course 22A.

22B. Differential Equations (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: course 21B or consent of instructor. Courses covering material of course 22B.

22BH. Honors Differential Equations (3) II. The Staff
Lecture—3 hours. Prerequisite: course 22AH or consent of instructor. Honors course covering material of course 22B.

22C. Vector Analysis (3) I, II, III. The Staff

22CH. Honors Vector Analysis (3) III. The Staff
Lecture—3 hours. Prerequisite: course 22B or consent of instructor. Honors course covering material of course 22C.

29. Introduction to Computer Science (3) I, II. Norton
Lecture—2 hours; laboratory—2 hours. Prerequisite: course 21C. Introduction to properties of a digital computer. Implementation of mathematical algorithms on a computer. Students electing this course may not receive credit for Engineering 5 and only two units of credit will be allowed for students who have had course 19.

32. Basic Statistical Analysis Through Computers (3) II. Maltoff
Lecture—1 hour. Prerequisite: course 16B or 21B; course 19, 29, or Engineering 5. Introduction to modern statistical thinking using student-developed digital computer algorithms. Simulation and approximation methods. Sampling, Robust estimation and hypothesis testing. Association methods: regression, correlation, and contingency tables.

36. Fundamentals of Mathematics (3) I, II, III. The Staff
Lecture—3 hours. Introduction to fundamental mathematical ideas selected from the principal areas of modern mathematics. Properties of the primes, the fundamental theorem of arithmetic, properties of the rationals and irrationals, binary and other number systems.

37. Topics in Geometry (3) III. The Staff
Lecture—3 hours. Prerequisite: one year high school geometry. Topics in Euclidean geometry selected from the theory of geometric transformations, the area and dissective plane figures, convex polyhedra, foundations of geometry.

71A. Elementary Mathematics and Its Instruction (4) I. The Staff
Lecture—2 hours; field work—6 hours. Introduction to the mathematics underlying the content and methods of instruction in grades K-8. Enrollment requires concurrent placement as a teacher-aid. (Deferred grading only, pending completion of course 71A-Q418 sequence.)

71B. Elementary Mathematics and Its Instruction (3) III. The Staff
Lecture—3 hours. Prerequisite: course 71A; Education 100 (must be taken concurrently). Continuation of course 71A. (Deferred grading only, pending completion of course 71A-Q418 sequence.)

98. Directed Group Study (1-5) I, II, III. The Staff (Mead in charge)
Prerequisite: consent of instructor. (PINP grading only.)

Upper Division Courses

101. Survey of Contemporary Mathematics (2) II. The Staff
Lecture—2 hours. Prerequisite: course 21C. An introduction to modern mathematics, its methods and applications, including the relationship between pure and applied mathematics. (PINP grading only.)

105A. Applied Statistical Methods: Analysis of Variance (4) I, III. The Staff
Lecture—4 hours. Prerequisite: course 13. Design of experiments, Latin squares, split-plot designs, factorial designs, and incomplete block designs.

105B. Applied Statistical Methods: Multiple Regression (3) II, III. The Staff
Lecture—3 hours. Prerequisite: course 105A or knowledge of analysis of variance. Multiple regression and analysis of covariance.

108A. Introduction to Abstract Algebra and Analysis (3) I, III. The Staff
Lecture—3 hours. Prerequisite: course 21C. Introduction to abstract mathematics, including the real number system, sets, mappings, mathematical induction, and algebraic structures.

112. Projective Geometry (3) I. The Staff
Lecture—3 hours. Prerequisite: course 108A. Analytic and synthetic methods applied to topics chosen from the folowing: perspectives, projectivities, harmonic sets, involution, and conics. Offered in odd-numbered years.

*114. The Theory of Convex Sets (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 21C, 22A, 108A; or consent of instructor. Topics selected from the theory of convex bodies, convex functions, geometric inequalities, combinatorial geometry, and integral geometry. Offered in even-numbered years.

115A. The Theory of Numbers (3) I. Ider
Lecture—3 hours. Prerequisite: course 108A. Divisibility and modular arithmetic, congruences, principal roots, quadratic reciprocity law. Offered in even-numbered years.

115C. The Theory of Numbers (3) III. Ider
Lecture—3 hours. Prerequisite: course 108A. Continued fractions, partitions. Offered in even-numbered years.

116. Metric Differential Geometry (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 22C, or consent of instructor. Vector analysis, curves and surfaces in three-dimensional space. Offered in odd-numbered years.

118A. Partial Differential Equations: Elementary Methods of Solution (3) II. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 22B, 22C. Partial differential equations of mathematical physics, solution by separation of variables. Fourier series.

118B. Partial Differential Equations: Boundary Value Problems and Special Functions (3) III. The Staff
Lecture—3 hours. Prerequisite: course 118A. Classical boundary value problems, expansion by orthogonal functions, Sturm-Liouville theory, special functions.

119. Theory of Ordinary Differential Equations (3) I. Edelson
Lecture—3 hours. Prerequisite: courses 22A, 22B, 22C. Existence and uniqueness of solutions of ordinary differential equations, matrix solutions of linear systems, linearization of nonlinear equations, local behavior near a critical point and stability theory.

120. Complex Variables and Applications (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 22B, 22C. Analysis of functions of one complex variable. Laplace transforms, and applications.

121A-121B. Real Variables and Applications (3-3) I-II.
Banks
Lecture—3 hours. Prerequisite: courses 22A, 22B, 22C. Multidimensional calculus, Fourier series, calculus of variations, special functions, distributions, integral transforms, estimation and inequalities. Intended primarily for students majoring in science, engineering, and applied mathematics. Not open without consent of instructor to students who have received credit for course 127.

124. Introduction to Minicomputers (3) II. Glaz
Lecture—2 hours; laboratory—1 hour; laboratory projects. Prerequisite: courses 19 or 29 or Engineering 5, or the equivalent. Basic study of use, programming, and applications of minicomputers. Operating system, utilities, assembly language, computer organization.

125. Introduction to Mathematical Logic (3) I. Krom
Lecture—3 hours. Propositional calculus, predicate calculus, normal forms, completeness. Offered in odd-numbered years.

126. Introduction to the Theory of Sets (3) II. The Staff
Lecture—3 hours. Prerequisite: course 21C or consent of instructor. Fundamental concepts including cardinal numbers, order types, ordinal numbers. Offered in odd-numbered years.

127A-127B-127C. Advanced Calculus (4-4-4) I-II-III.
Buck
Lecture—3 hours; extensive reading and problem solving. Prerequisite: courses 22A, 22C, course 108A (may be taken concurrently with consent of instructor). Real number system, continuity, differentiation and integration on the
real line; vector calculus and functions of several variables; theory of convergence.

128A. Numerical Analysis (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 29 or a knowledge of FORTRAN or ALGOL. Error analysis, approximation, interpolation, numerical differentiation, and integration.

128B. Numerical Analysis in Solution of Equations (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 22A and 29 or knowledge of FORTRAN or ALGOL. Solution of nonlinear equations and nonlinear systems. Minimization of functions of several variables. Simultaneous linear equations. Eigenvalue problems. Linear programming.

128C. Numerical Analysis in Differential Equations (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 22A and 29 or the equivalent. Mathematical topics relating to computer design, number representation, computer arithmetic, Boolean algebra.

129A. Mathematical Aspects of Computer Systems (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 129A or consent of instructor. Programming techniques and efficiency, data structures, graphs, trees, relevance of data structures to problem-solving, analysis of algorithms.

129B. Mathematical Aspects of Computer Programming (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 128B or consent of instructor. Automata theory, Turing machines, formal languages and grammars. Discussion of formal aspects of ALGOL. Parsing of grammars.

130A-130B. Mathematical Statistics, Briel Course (4-4) I-II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 128B or consent of instructor. Course 22A. Fundamentals of mathematical statistics for non-majors. Concepts of probability and sampling, principles of estimation, properties of estimators, sampling distributions, correlation, regression, normal and principles of testing.

131A. Introduction to Probability Theory (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 22A. Fundamental concepts of probability theory, discrete and continuous random variables, standard distributions, moments, and generating functions, laws of large numbers and the central limit theorem.

131B-131C. Introduction to Mathematical Statistics (4-4) II-III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131A. Sampling, point estimation, exact sampling distributions, confidence intervals, hypothesis testing, regression analysis, and analysis of variance.

132A-132B. Introduction to Stochastic Processes (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: course 131A. Random walks, recurrences, events, Markov chains, birth-and-death processes.

133 Probabilistic Models in Operations Research (3) I. The Staff
Lecture—3 hours. Prerequisite: course 130B or 131B. Applications of probability to the study of biological and social systems. Topics include the Poisson process, reliability, queuing, inventory models, Markov chains and processes, diffusion processes. Offered in odd-numbered years.

134. Nonparametric Inference (3) II. The Staff
Lecture—3 hours. Prerequisite: course 130B or 131B. Selected topics in nonparametric statistical inference from a one-sample and a k-sample point of view. Topics include Kolmogorov-Smirnov test, confidence intervals for quantiles, locations and scale parameters; rank tests, dispersion tests, efficiency. Offered in odd-numbered years.

135. Multivariate Data Analysis (3) III. The Staff
Lecture—3 hours. Prerequisite: course 130B or 131B. Quantitative description and analysis of social and biological problems. Multivariate statistical procedures implemented through computer methods. Applied time series, factor and cluster analysis.

136. Development of Mathematical Ideas (3) II. Krell
Lecture—3 hours. Prerequisite: course 21C. Topics and mathematical ideas studied with an emphasis on the origin of modern mathematics. May be repeated for credit with consent of instructor.

138A. Introduction to Algebra (3) I. Sallee
Lecture—3 hours. Prerequisite: courses 22A and 108A or consent of instructor; may not be taken concurrently with course 215A. Introduction to algebraic structures, including groups, rings, and fields. Emphasis is on computations, examples, and applications outside of mathematics. Not open without consent of Department Chairperson to students who have received credit for course 215A.

138B. Introduction to Algebra (3) II. The Staff
Lecture—3 hours. Prerequisite: course 138A. Continuation of course 138A. Emphasis is on the theoretical aspect of algebraic structures and on mathematical proofs.

140. Applications of Mathematics (3) III. Plant
Lecture—3 hours. Prerequisite: courses 22A and 22B. Applications of mathematics in physical, biological and social sciences. Formulation, analysis and interpretation of mathematical models.

141. Euclidean Geometry (3) II. The Staff
Lecture—3 hours. Prerequisite: course 108A. An axiomatic and analytic examination of Euclidean geometry from an advanced point of view. In particular, a discussion of its relation to other geometries.

143. Biometrics (3) II. Plant
Lecture—3 hours. Prerequisite: course 16C or 22B, or Phyllology 10B. Applications of mathematical techniques in biology and the life sciences. Comparative analysis, enzyme kinetics, population models, blood flow and neural modelling. Offered in odd-numbered years.

144. Sampling Theory of Surveys (3) II. Fenich
Lecture—3 hours. Prerequisite: course 130B or 131B. Descriptive and inferential analysis with applications in the social and biological sciences. Stratified and cluster sampling, ratio estimation. Problem of nonresponse. Offered in even-numbered years.

147. Topology (3) II. Edison
Lecture—3 hours. Prerequisite: course 127C and 151A or 139A-139B. Basic notions of point-set and combinatorial topology. Offered in even-numbered years.

151A-151B-151C. Algebra (4-4-4) I-II-III. Stein
Lecture—3 hours; extensive reading and problem solving. Prerequisite: course 108A. Introduction to groups, rings, fields and linear transformations. Course emphasizes theory and is recommended for those planning graduate level mathematics.

167. Linear Algebra and Applications (3) II. The Staff
Lecture—3 hours. Prerequisite: one year of calculus or consent of instructor. Introduction to linear algebra: linear equations, orthogonality projections, similarity transformations, quadratic forms, eigenvalues and eigenvectors. Applications to physics, engineering, economics, biology and statistics.

156. Mathematical Programming and Game Theory (3) III. The Staff
Lecture—3 hours. Prerequisite: one year of calculus, and either course 22A or 167. Linear and nonlinear programming, dynamic programming and game theory. Offered in even-numbered years.

158A-158B. Functions of a Complex Variable (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: course 22C. Complex number systems, Cauchy-Riemann equations, elementary functions, Cauchy integral theorem, power series, Laurent series, residue theorem, conformal mapping, special topics.

192. Internship in Applied Mathematics (1-3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: upper-division standing; senior project proposal prior to enrollment. Supervised work-experience position; final report. Prerequisite: upper-division standing; senior project proposal prior to enrollment. Supervised work-experience in applied mathematics. May be repeated for credit for a total of 10 units. (P/NP grading only.)

197. Tutoring in Mathematics (1-4) I, II, III. The Staff (Mead in charge)
Seminar—1-2 hours; laboratory—2-6 hours. Prerequisite: upper division standing and consent of instructor. Special projects in mathematical education which involve the development of techniques for mathematics instruction and tutoring on an individual or small group basis. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Mead in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Mead in charge)
(P/NP grading only.)

Graduate Courses

201A-201B-201C. Real Analysis (3-3-3) I-II-III. The Staff
Lecture—3 hours. Prerequisite: course 127C. Point set topology; Lebesgue measure and integration on the real line; abstract spaces; general measure and integration.

202A-202B-202C. Functional Analysis (3-3-3) I-II-II. Dierich

205A-205B-205C. Functions of a Complex Variable (3-3-3) I-II-II. Christian
Lecture—3 hours. Prerequisite: course 127C. Theory of analytic functions, Cauchy integral theorem, power series, analytic continuation, conformal mapping, special functions.

210A-210B-210C. Topics in Algebra, Analysis and Geometry (3-3-3) I-II-II. The Staff
Lecture—3 hours. Prerequisite: bachelor's degree in mathematics or consent of instructor. Topics in advanced algebra, analysis, and geometry related to curriculum at all levels. Required in the M.A. program for prospective teachers. Course 210A, 210B, 210C series may be repeated for credit with prior consent of instructor.

215A-215B-215C. Topology (3-3-3) I-II-III. Borges
Lecture—3 hours. Prerequisite: graduate standing in mathematics, consent of instructor. Topics selected from point-set topology and homotopy theory.

218A-218B. Partial Differential Equations (3-3) I-II. Benson
Lecture—3 hours. Prerequisite: courses 22A, 127C. Topics from the theory of partial differential equations and integral equations. Offered in even-numbered years.

219A-219B. Ordinary Differential Equations (3-3) I-II. Kroll
Lecture—3 hours. Prerequisite: courses 22A and 127C. Ordinary differential equations in the real and complex domains; existence and uniqueness theorems; linear systems; analysis of singular points; Sturm-Liouville theory; asymptotic expansions. Offered in odd-numbered years.

220A-220B-220C. Mathematics for the Physical Sciences (3-3-3) I-II-II. Edelson
Lecture—3 hours. Prerequisite: courses 22A, 118B, and 127C. Mathematical methods in the physical and partial differential equations, boundary value problems, functions of a complex variable, matrices and calculus of variations.

225A-225B. Matematik Aramak (3-3) I-II. Krom
Lecture—3 hours. Prerequisite: course 126 or the equivalent. Advanced probability theory, consistency, and completeness: the formalized mathematical theorems; definability in formal languages; topics from the theory of models. Offered in even-numbered years.
227A-227B 227C. Theoretical Numerical Analysis (3-3-3) I-II-III, Linz
Lecture—3 hours. Prerequisite: consent of instructor. Introduction to the principles of modern numerical analysis, its terminology and problems, and its relation to other fields of mathematics. Approximation theory, numerical integration, approximation of solutions of operator equations, theory of iterative procedures, optimization problems and topics of current interest. Offered in odd-numbered years.

228A-228B 228C. Numerical Solution of Differential Equations (3-3-3) I-II-III, Plant

229A-229B 229C. Numerical Methods in Linear Algebra and Selected Topics (3-3-3) I-II-III, Kurowsk
Lecture—3 hours. Prerequisite: consent of instructor. Computational methods and theoretical aspects of the solution of simultaneous algebraic equations and matrix eigenvalue problems. Numerical analysis in the solution of partial differential equations, optimization, data analysis, Monte Carlo, etc. Offered in odd-numbered years.

231A-231B 231C. Mathematical Statistics (3-3-3) I-II-III
The Staff
Lecture—3 hours. Prerequisite: course 131C. Distribution theory, decision theoretic methods, estimation and hypothesis testing, multivariate techniques, large sample theory.

232A 232B. Linear Model Theory (3-3-3) I-II-III, French
Lecture—3 hours. Prerequisite: course 131C. Estimation and testing for the general linear hypothesis, components of variance, multiple comparisons. Offered in odd-numbered years.

233. Design of Experiments (3) I
The Staff
Lecture—3 hours. Prerequisite: course 131C. Topics from balanced and partially balanced incomplete block designs, fractional factorial, and response surfaces. Offered in odd-numbered years.

235A-235B 235C. Probability Theory (3-3-3) A-B-C
The Staff
Lecture—3 hours. Prerequisite: course 127C. Measurement-theoretic foundations of probability, distribution functions and characteristic functions, law of large numbers and central limit theorems, conditional probabilities, martingales. Offered in odd-numbered years.

236A-236B 236C. Advanced Mathematical Statistics (3-3-3) I-II-III, Samaniego
Lecture—3 hours. Prerequisite: course 231C. Statistical theory of invariance, robustness, sequential analysis, non-parametric theory. Offered in odd-numbered years.

240A-240B 240C. Differential Geometry (3-3-3) I-II-III, Cherikoff
Lecture—3 hours. Prerequisite: course 116 or consent of instructor. Introduction to differentiable manifolds, the tangent bundle, tensor fields, differential forms, DeRham cohomology, connections, Lie groups, Riemannian geometry. Offered in odd-numbered years.

245A-245B 245C. Algebraic Topology (3-3-3) I-II-III, Pfeiffer
Lecture—3 hours. Prerequisite: course 215C. Algebraic invariants of spaces and their behavior with respect to continuous functions. Offered in odd-numbered years.

250A-250B 250C. Algebra (3-3-3) I-II-III, Cutler
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. The theory of groups, rings, and fields.

251A-251B. Theory of Groups (3-3-3) I-II, The Staff
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. Normal subgroups, composition series, Sylow subgroups, nilpotent groups, soluble groups, group representations, groups with operators, group extensions, free groups, and ordered groups. Offered in even-numbered years.

252. Linear Algebra (3) I, Stein
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. Vector spaces. Offered in even-numbered years.

253. Theory of Binary Systems (3) III, Tamura
Lecture—3 hours. Prerequisite: graduate standing in mathematics or consent of instructor. Elements of semigroups, quasigroups, and groupoids.

290. Seminar (1-0) I, II, III
The Staff (Mead in charge)
Advanced study in various fields of mathematics, including the following: algebraic theory of semigroups, control theory, mathematical logic, mathematical statistics, ordinary differential equations, partial differential equations, theory of distributions, and univalent functions. (SU grading only.)

298. Group Study (1-0) I, II, III
The Staff (Mead in charge)

299. Individual Study (1-0) I, II, III
The Staff (Mead in charge)
(SU grading only.)

299D. Dissertation Research (1-0) I, II, III
The Staff (Mead in charge)
(SU grading only.)

Professional Courses

300A. The Teaching of Mathematics, K-9 (1-1-1) I-II-III; or (3) I
The Staff
Lecture, discussion, laboratory, and field work—2-6 hours. Prerequisite: senior or graduate standing in mathematics and teaching experience for those enrolled in K-9. Students interested in teaching mathematics in the K-9 range are encouraged to enroll. (SU grading only.)

300B. The Teaching of Mathematics (3) I, II, III
The Staff
Lecture, discussion, laboratory, and field work—2-6 hours. Prerequisite: consent of instructor or senior or graduate standing in mathematics and teaching experience. Students interested in teaching mathematics at the high school level are encouraged to enroll. (SU grading only.)

301A-301B 301C. Mathematics Teaching Practice (3-3-3) I-II-III, The Staff
Lecture—6 hours. Prerequisite: concurrent enrollment in course sequences 210, 302, and 303 or consent of instructor. Special training in mathematics teaching. Required for advanced degrees in mathematics education. (SU grading only.)

302A-302B 302C. Curriculum Development in Mathematics (3-3-3) I-II-III, The Staff
Lecture—1 hour. Prerequisite: concurrent enrollment in course sequences 210 and 303 or consent of instructor. Mathematics curriculum development for all grade levels. Required for advanced degrees in mathematics education. (SU grading only.)

303A 303B 303C. Mathematics Pedagogy (1-1-1) I-II-III, The Staff
Lecture—1 hour. Prerequisite: concurrent enrollment in course sequences 210 and 303 or consent of instructor. An investigation of the interplay of mathematical pedagogy and mathematical content, including a historical survey of past and present methods and the influences that shaped their development. The sequence may be repeated once for credit with consent of instructor.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position/M.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Len Hughes Andrus</td>
<td>Professor (Family Practice)</td>
</tr>
<tr>
<td>C. Robert Ashmore</td>
<td>Associate Professor (Physical Medicine and Rehabilitation)</td>
</tr>
<tr>
<td>Najam Awan</td>
<td>Assistant Professor in Residence (Internal Medicine, Community Health)</td>
</tr>
<tr>
<td>Alexander Barry</td>
<td>Professor (Human Anatomy)</td>
</tr>
<tr>
<td>Arthur L. Barry</td>
<td>Associate Professor in Residence (Internal Medicine, Pathology)</td>
</tr>
<tr>
<td>Lawrence Bass</td>
<td>Lecturer (Dermatology)</td>
</tr>
<tr>
<td>John R. Battista</td>
<td>Assistant Professor in Residence (Psychiatry)</td>
</tr>
<tr>
<td>Herbert Bauer</td>
<td>M.P.H., Lecturer (Community Health)</td>
</tr>
<tr>
<td>Blaine L. Beamam</td>
<td>Associate Professor (Medical Microbiology)</td>
</tr>
<tr>
<td>Charles J. Beaumamp</td>
<td>Assistant Professor (Pediatrics)</td>
</tr>
<tr>
<td>Joseph P. Beiber</td>
<td>M.D., Professor in Residence (Interna's Medicine)</td>
</tr>
<tr>
<td>William F. Benisek</td>
<td>Associate Professor (Biological Chemistry)</td>
</tr>
<tr>
<td>Eliezer Benjamin</td>
<td>Ph.D., Professor (Medical Microbiology)</td>
</tr>
<tr>
<td>Daniel R. Benson</td>
<td>M.D., Assistant Professor (Orthopaedic Surgery)</td>
</tr>
<tr>
<td>Irving N. Berin</td>
<td>M.D., Professor (Psychiatry, Pediatrics)</td>
</tr>
<tr>
<td>Leslie Bernstein</td>
<td>M.D., Ph.D., Professor (Otorhinolaryngology)</td>
</tr>
<tr>
<td>Kazuko Bill</td>
<td>M.D., Assistant Professor in Residence (Radiology)</td>
</tr>
<tr>
<td>Hugo G. Bogren</td>
<td>M.D., Professor (Radiology)</td>
</tr>
<tr>
<td>Robert J. Bolt</td>
<td>M.D., Professor (Internal Medicine)</td>
</tr>
<tr>
<td>William J. Bommer</td>
<td>M.D., Assistant Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Nemat C. Borhani</td>
<td>M.D., Professor (Community Health, Internal Medicine)</td>
</tr>
<tr>
<td>James H. Breden</td>
<td>M.D., Assistant Professor in Residence (Internal Medicine)</td>
</tr>
<tr>
<td>Glen E. Brown</td>
<td>M.D., Lecturer (Family Practice)</td>
</tr>
<tr>
<td>Thomas C. Brown</td>
<td>M.D., Assistant Professor in Residence (Family Practice)</td>
</tr>
<tr>
<td>Robert H. Brownson</td>
<td>M.D., Professor (Human Anatomy)</td>
</tr>
<tr>
<td>Eugene Burbridge</td>
<td>M.D., Assistant Professor in Residence (Internal Medicine)</td>
</tr>
<tr>
<td>Gary R. Burke</td>
<td>M.D., Assistant Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Bill D. Burr</td>
<td>M.D., Associate Professor (Family Practice)</td>
</tr>
<tr>
<td>Peter M. Caia</td>
<td>Ph.D., Assistant Professor (Human Physiology)</td>
</tr>
<tr>
<td>Robert D. Carrief</td>
<td>M.D., Ph.D., Professor (Pathology)</td>
</tr>
<tr>
<td>Richard C. Carlsten</td>
<td>Ph.D., Assistant Professor (Human Physiology)</td>
</tr>
<tr>
<td>Edward C. Carlston</td>
<td>Ph.D., Associate Professor (Human Anatomy)</td>
</tr>
<tr>
<td>Marion A. Carnes</td>
<td>M.D., Professor (Pathology)</td>
</tr>
<tr>
<td>Anthony V. Carrano</td>
<td>Ph.D., Assistant Adjunct Professor (Radiology)</td>
</tr>
<tr>
<td>Stanley N. Carson</td>
<td>M.D., Assistant Professor in Residence (Surgery)</td>
</tr>
<tr>
<td>James J. Castles</td>
<td>Jr., M.D., Associate Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Willard R. Centerwall</td>
<td>M.D., Lecturer (Pediatrics)</td>
</tr>
<tr>
<td>Robert S. Chang</td>
<td>M.D., Ph.D., Professor (Medical Microbiology, Family Practice)</td>
</tr>
<tr>
<td>Loring F. Chapman</td>
<td>Ph.D., Professor (Behavioral Medicine)</td>
</tr>
<tr>
<td>Richard K. Ennink</td>
<td>Ph.D., Assistant Adjunct Professor (Physical Medicine and Rehabilitation)</td>
</tr>
<tr>
<td>Stephen E. Erickson</td>
<td>M.D., Assistant Professor (Residence (Psychiatry))</td>
</tr>
<tr>
<td>Kent L. Erickson</td>
<td>Ph.D., Assistant Professor (Human Anatomy)</td>
</tr>
<tr>
<td>Paul A. Farrar</td>
<td>M.D., Associate Professor in Residence (Radiology)</td>
</tr>
<tr>
<td>Theodore N. Finley</td>
<td>M.D., Professor in Residence (Internal Medicine)</td>
</tr>
<tr>
<td>Charles J. Fisher</td>
<td>Jr., M.D., Assistant Professor (Internal Medicine)</td>
</tr>
<tr>
<td>James H. Fisher</td>
<td>M.D., Assistant Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Neil M. Flynn</td>
<td>M.D., Assistant Professor in Residence (Internal Medicine)</td>
</tr>
<tr>
<td>James Foerster</td>
<td>M.D., Assistant Professor in Residence (Internal Medicine, Community Health)</td>
</tr>
<tr>
<td>Carlyle H. Folkens</td>
<td>Ph.D., Assistant Professor in Residence (Psychiatry)</td>
</tr>
<tr>
<td>William M. Fowler</td>
<td>Jr., M.D., Professor (Physical Medicine and Rehabilitation)</td>
</tr>
<tr>
<td>Charles E. Frantil</td>
<td>Ph.D., Professor (Community Health)</td>
</tr>
<tr>
<td>Ralph C. Frailes</td>
<td>Jr., M.D., Assistant Professor (Pediatrics)</td>
</tr>
<tr>
<td>David M. Freeto</td>
<td>M.D., Assistant Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Barry N. French</td>
<td>M.D., Assistant Professor (Neurology, Surgery)</td>
</tr>
<tr>
<td>Samuel W. French</td>
<td>M.D., Professor in Residence (Pathology)</td>
</tr>
<tr>
<td>Charles F. Frey</td>
<td>M.D., Professor in Residence (Psychiatry)</td>
</tr>
<tr>
<td>Robert P. Friedman</td>
<td>M.D., Professor in Residence (Neurology)</td>
</tr>
<tr>
<td>Dennis L. Fung</td>
<td>M.D., Assistant Professor (Anesthesiology, Human Physiology)</td>
</tr>
<tr>
<td>Andrew J. Gabor</td>
<td>M.D., Ph.D., Associate Professor (Neurology, Behavioral Biology)</td>
</tr>
<tr>
<td>Michael C. Geokas</td>
<td>M.D., Professor in Residence (Internal Medicine)</td>
</tr>
<tr>
<td>M. Eric Geshwain</td>
<td>M.D., Associate Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Irving I. Geschwind</td>
<td>Ph.D., Professor (Human Physiology)</td>
</tr>
<tr>
<td>Jerry R. Gilstrap</td>
<td>V.M., Ph.D., Associate Professor (Human Physiology)</td>
</tr>
<tr>
<td>Blaine W. Glad</td>
<td>M.D., Assistant Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Albert Globus</td>
<td>M.D., Associate Professor (Psychiatry)</td>
</tr>
<tr>
<td>Boyd W. Goetzman</td>
<td>M.D., Ph.D., Associate Professor (Pediatrics)</td>
</tr>
<tr>
<td>Elie Gold</td>
<td>M.D., Professor (Pediatrics)</td>
</tr>
<tr>
<td>Ernest M. Gold</td>
<td>M.D., Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Marvin Goldman</td>
<td>Ph.D., Professor (Radiology)</td>
</tr>
<tr>
<td>Geoffrey A. Goldsmith</td>
<td>M.D., Assistant Professor (Family Practice)</td>
</tr>
<tr>
<td>Elliott Goldstein</td>
<td>M.D., Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Byron J. Good</td>
<td>Ph.D., Assistant Professor in Residence (Psychiatry, Family Practice)</td>
</tr>
<tr>
<td>Mary Jo D. Good</td>
<td>M.A., Assistant Professor in Residence (Psychiatry, Family Practice)</td>
</tr>
<tr>
<td>Robert C. Goodlin</td>
<td>M.D., Professor (Obstetrics and Gynecology)</td>
</tr>
<tr>
<td>Arnold B. Gorin</td>
<td>M.D., Assistant Professor (Internal Medicine)</td>
</tr>
<tr>
<td>Linda J. Gorin</td>
<td>M.D., Lecturer (Pediatrics)</td>
</tr>
<tr>
<td>Joe W. Gray</td>
<td>Ph.D., Assistant Adjunct Professor (Radiology)</td>
</tr>
</tbody>
</table>
Eva K. Killam, Ph.D., Professor (Pharmacology)
Keith F. Killam, Jr., Ph.D., Professor (Pharmacology)
Jae Wook Kim, M.D., Assistant Professor in Residence (Anesthesiology)
Barry F. King, Ph.D., Assistant Professor (Human Anatomy)
David G. Kincaid, M.D., Assistant Professor in Residence (Urology)
Michael A. Klass, M.D., Lecturer (Dermatology)
Patricia N. Konrad, M.D., Assistant Professor (Pediatrics)
Jeffrey B. Kreutz, Ph.D., Associate Professor (Community Health)
Elizabeth Kraybill, F.N.P., Lecturer (Family Practice)
Kenneth A. Krohn, Ph.D., Assistant Professor (Radiology)
Peter E. Kuempel, M.D., Assistant Professor in Residence (Internal Medicine)
Lindy F. Kumagai, M.D., Professor (Internal Medicine)
Bo M. T. Lanz, M.D., Associate Professor (Radiology)
Edward C. Larkin, M.D., Associate Professor in Residence (Internal Medicine)
Jerald A. Last, Ph.D., Assistant Professor in Residence (Internal Medicine, Biological Chemistry)
Ruth A. Lawrence, M.D., Assistant Professor (Internal Medicine)
David R. Leaverton, M.D., Associate Professor in Residence (Psychiatry, Pediatrics)
Garrett Lee, M.D., Assistant Professor (Internal Medicine, Community Health)
James C. Leek, M.D., Assistant Professor in Residence (Internal Medicine)
Nicholas J. Lenn, M.D., Associate Professor (Neurology, Pediatrics)
Morton Levitt, Ph.D., Professor (Psychiatry)
Alvin E. Lewis, M.D., Professor (Pathology)
Jerry P. Lewis, M.D., Professor (Internal Medicine)
James S. Lieberman, M.D., Associate Professor (Neurology, Physical Medicine and Rehabilitation, Ophthalmology)
Robert L. Hunter, Ph.D., Professor (Human Anatomy)
Edward J. Hurley, M.D., Professor (Surgery)
Lucille S. Hurley, Ph.D., Professor (Biological Chemistry, Nutrition)
Gordon D. Jensen, M.D., Professor (Physiatry, Pediatrics)
Hanne M. Jensen, M.D., Assistant Professor in Residence (Pathology)
Chris A. Johnson, Ph.D., Assistant Professor in Residence (Ophthalmology)
George W. Jordan, M.D., Associate Professor (Internal Medicine)
Pat L. Joslin, F.N.P., Lecturer (Family Practice)
James A. Joyce, M.D., Assistant Professor (Internal Medicine)
Leona E. Judson, F.N.P., M.H.S., Lecturer (Family Practice)
Roy A. Kaplan, M.D., Assistant Professor in Residence (Internal Medicine)
Richard J. Katnik, M.D., Assistant Professor (Neurology)
David F. Katz, Ph.D., Assistant Adjunct Professor (Obstetrics and Gynecology)
John L. Keitner, M.D., Associate Professor (Ophthalmology, Neurology)
Wendell W. Kilgore, Ph.D., Professor (Community Health)
Stanley Meisel, Ph.D., Associate Professor (Human Anatomy)
Mortimer L. Mandelsohn, M.D., Ph.D., Adjunct Professor (Radiology)
Janet Mentink, F.N.P., Lecturer (Family Practice)
Daniel C. Merrill, M.D., Associate Professor in Residence (Urology)
Constantine A. Michas, M.D., Assistant Professor (Surgery)
Joseph B. Michelson, M.D., Assistant Professor in Residence (Ophthalmology)
J. Allen Miller, M.D., Assistant Professor in Residence (Psychiatry)
Paula P. Mills, F.N.P., Lecturer (Family Practice)
Jay M. Milstein, M.D., Assistant Professor in Residence (Pediatrics)
Robert E. Milton, M.D., Lecturer (Family Practice)
Joe P. Morgan, D.V.M., Professor (Radiology)
Walter A. Morgan, M.D., Assistant Professor in Residence (Family Practice)
Thomas L. Morrison, Ph.D., Assistant Professor in Residence (Psychiatry)
Kenneth R. Niswander, M.D., Professor (Obstetrics and Gynecology)
Lois F. O'Grady, M.D., Professor (Internal Medicine)
Mary O'Hara-Devereaux, F.N.P., Lecturer (Family Practice)
Richard H. Oi, M.D., Assistant Professor (Obstetrics and Gynecology)
Ronan B. O'Sullivan, M.D., Professor (Human Anatomy)
James W. Overtree, M.D., Ph.D., Assistant Professor (Human Anatomy, Obstetrics and Gynecology)
John M. Palmer, M.D., Professor (Urology)
Philip E. S. Palmer, F.R.C.R., Professor (Radiology)
Demosthenes Pappaganis, M.D., Ph.D., Professor (Medical Microbiology)
Gibbe H. Parsons, M.D., Assistant Professor (Internal Medicine)
Kenneth H. Patton, Ph.D., Assistant Professor in Residence (Psychiatry)
Robert A. Pina, M.D., Associate Professor in Residence (Radiology)
Francis Pepitone-Rockwell, Ph.D., Assistant Professor in Residence (Psychiatry)
Harold Phillips, M.D., Assistant Professor in Residence (Radiology)
Neville B. Picher, M.D., Associate Professor in Residence (Internal Medicine)
V. James Polidora, Ph.D., Associate Professor (Behavioral Biology)
George T. Rab, M.D., Assistant Professor, (Orthopaedic Surgery)
Lawrence Rabkinowitz, Ph.D., Professor (Human Physiology)
David D. Ralph, M.D., Assistant Professor (Internal Medicine)
Antonin Raventos, M.D., Professor (Radiology)
Stanley B. Reich, M.D., Professor in Residence (Radiology)
Michael H. Reid, Ph.D., Assistant Professor (Radiology)
John A. Reitani, M.D., Associate Professor (Anesthesiology)
Helmut Roeliger, Ph.D., Instructor in Residence (Psychology)
Michael P. Remler, M.D., Associate Professor in Residence (Neurology)
Eugene M. Renkin, Ph.D., Professor (Human Physiology)
Stewart R. Reuter, M.D., Professor in Residence (Radiology)
James L. Richards, M.D., Assistant Professor (Surgery)
Thomas A. Riemenschneider, M.D., Associate Professor (Pediatrics)
Richard S. Riggie, M.D., Professor (Orthopaedic Surgery)
Dick L. Robbins, M.D., Assistant Professor (Internal Medicine)
John A. Robbins, M.D., Assistant Professor (Internal Medicine)
Don A. Rockwell, M.D., Associate Professor (Psychiatry)
John L. Rombeau, M.D., Assistant Professor in Residence (Surgery)
Steven D. Rose, M.D., Assistant Professor (Internal Medicine)
Richard M. Rosenblatt, M.D., Associate Professor in Residence (Anesthesiology)
Carl J. Rosenquist, M.D., Associate Professor (Radiology)
Alain M. Roth, M.D., Associate Professor (Ophthalmology, Pathology)
Boris Ruebner, M.D., Professor (Pathology)
George W. Ryst, M.D., Assistant Professor in Residence (Otorhinolaryngology)
Ethelma S. Sassenrath, Ph.D., Associate Professor in Residence (Behavioral Biology)
Andrew W. Saxe, M.D., Assistant Professor (Surgery)
Arthur B. Schiller, M.D., Assistant Professor in Residence (Psychiatry)
Calvin W. Schwabe, D.V.M., D.Sc., Professor (Community Health)
Robert J. Schielsen, Ph.D., Assistant Professor (Medical Microbiology)
Robert P. Scohey, Ph.D., Associate Professor (Behavioral Biology, Human Physiology, Neurology)
Vangibhuram V. Shantaram, M.D., Assistant Professor (Internal Medicine)
Stephen R. Shapiro, M.D., Associate Professor (Urology, Pediatrics)
Bagher M. Sheikholeslami, M.D., Associate Professor (Pediatrics)
Allan D. Siefkin, M.D., Assistant Professor in Residence (Internal Medicine)
John M. Silvert, M.D., Assistant Professor (Plastic Surgery)
Lorraine B. Smith, M.D., Assistant Professor in Residence (Radiology)
Robert E. Smith, Ph.D., Associate Professor (Human Physiology)
George G. Snively, M.D., Professor (Family Practice, Postgraduate Medicine)
Harbhajan S. Soohi, M.B.B.S., Ph.D., Professor in Residence (Internal Medicine, Community Health)
Robert J. Spensley, M.D., Associate Professor in Residence (Psychiatry)
Derek Stables, M.D., Professor in Residence (Pathology)
Robert C. Stadnik, M.D., Associate Professor in Residence (Radiology)
Larry G. Stark, Ph.D., Associate Professor (Pharmacology)
Krzysztof Stengert, M.D., Professor (Anesthesiology)
Margaret S. Stewart, Ph.D., Associate Professor (Psychiatry)
Robert E. Stowell, M.D., Ph.D., Professor (Pathology)
Nancy D. Sullivan, F.N.P., Lecturer (Family Practice)
Marilyn A. Swanson, M.D., Assistant Professor in Residence (Radiology)
Elizabeth A. Taich, F.N.P., Lecturer (Family Practice)
Peter D. Tamulewich, M.D., Assistant Professor in Residence (Psychiatry)
Robert G. Taylor, M.D., Associate Professor (Physical Medicine and Rehabilitation)
Jarrell Taggert, M.D., Assistant Professor in Residence (Radiology)
Jerald H. Theis, D.V.M., Ph.D., Associate Professor (Medical Microbiology)
Corrine T. Thomas, F.N.P., Lecturer (Family Practice)
Wilfred E. Toreson, M.D., Ph.D., Professor (Pathology)
Robert R. Traut, Ph.D., Professor (Biological Chemistry)
Robert L. Treasure, M.D., Associate Professor in Residence (Surgery)
John D. Treford, M.D., Professor (Obstetrics and Gynecology)
Joan M. Trolinger, F.N.P., Lecturer (Family Practice)
Frederick H. Trow, II, Ph.D., Associate Professor (Biological Chemistry)
Walter L. Trudgeon, M.D., Associate Professor (Internal Medicine)
Makepeace U. Tsao, Ph.D., Professor (Surgery)
Joe P. Tuin, M.D., Professor (Psychiatry)
C. John Tupper, M.D., Professor (Internal Medicine)
Judith Turgeon, Ph.D., Assistant Professor (Human Physiology)
Patrick L. Twomey, M.D., Assistant Professor in Residence (Surgery)
Zakaudin Vera, M.D., Assistant Professor (Internal Medicine)
Nahihath Vijayan, M.D., Assistant Professor (Neurology)
Valya K. Vijayan, M.D., Ph.D., Assistant Professor (Human Anatomy)
Betty J. Walraven, F.N.P., Lecturer (Family Practice)
Donal A. Walsh, Ph.D., Associate Professor (Biological Chemistry)
Robert M. Walter, Jr., M.D., Associate Professor (Internal Medicine)
Richard F. Walters, Ph.D., Associate Professor (Community Health, Human Physiology)
George O. Warfing III, M.D., Assistant Professor (Otorhinolaryngology)
Warden Waring, Ph.D., Professor (Physical Medicine and Rehabilitation, Human Physiology)
Edward J. Watson-Williams, M.D., Professor (Internal Medicine)
Lloyd H. Wexler, Ph.D., Lecturer (Biological Chemistry)
Albert Weinshelbaum, M.D., Assistant Professor in Residence (Radiology)
Phillipa L. Weltzel, M.D., Assistant Professor in Residence (Anesthesiology)
Seton R. Wellins, M.D., Ph.D., Professor (Pathology)
Richard P. Wennberg, M.D., Associate Professor (Pediatrics)
Theodore C. West, Ph.D., Professor (Psychiatry)
John E. Whalen, M.D., Assistant Professor in Residence (Psychiatry, Pediatrics)
Lowell D. Wilson, M.D., Ph.D., Professor (Internal Medicine, Biological Chemistry)
Wallace D. Winters, M.D., Ph.D., Professor (Internal Medicine, Pharmacology, Psychiatry)

NOTE: For key to footnote symbols, see page 138.
Prerequisite: consent of instructor. Laboratory research on selected topics relating to the biological bases of behavior. Participation in ongoing research projects or planning, initiation and execution of individual research problem. (P/NP grading only.)

Upper Division Courses

188. Recent Developments in Behavioral Biology (2) I, Polidora
Lecture—1 hour; discussion—1 hour. Prerequisite: consent of instructor. What is new and interesting at the leading edges of development in biological behavior? Theory and concepts of new research. (P/NP grading only.)

190. Directed Group Study (1-6) I, II, III, IV. The Staff (Chapman in charge)
Prerequisite: consent of instructor. Extends evaluative and critical discussions of selected topics relating to the physiological and biochemical bases of behavior. Topics will be assigned from the methodology, theory and concepts presented in current research. (P/NP grading only.)

191. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chapman in charge)
Prerequisite: consent of instructor. Laboratory research on selected topics relating to the biological bases of behavior. Participation in ongoing research projects or planning, initiation and execution of individual research problem. (P/NP grading only.)

Graduate Courses

245. Psychophysiology of Stress (3) II, Sassenrath
Lecture—1 hour; discussion—2 hours. Prerequisite: consent of instructor. Stress, feedback control and hormonal interrelations. Autonomic and hormonal responses to chronic stress and environmental factors. Stress and the CNS. Stress and drug responses. The material covered will be of general interest; however, discussion is limited to stress and pain. (Same course as 498.)

290. Seminar (2) I, II, III, IV. The Staff (Chapman in charge)
Seminar—2 hours. Prerequisite: consent of instructor. Open to graduate students. Group discussion and critique of current topics of importance and relevance to behavioral biology. (Same course as 495.)

298. Group Study (1-3) I, II, III, IV. The Staff (Chapman in charge)
Discussion—1-3 hours. Prerequisite: consent of instructor. Open to graduate students. Extends evaluative and critical discussions of selected topics relating to the psychological and biochemical bases of behavior. Participation in ongoing research projects or planning, initiation and execution of individual research problems. (Su grading only.)

Professional Courses

Lecture—2 hours; laboratory—2 hours. Cognitive-behavioral study of the ancient and modern monistic disciplines of the mind/body. Critical examination of several such disciplines, focusing on their common medicacy relevant aspects. Reading about, discussing, and experiencing mind/body interrelationships. (HS/USU grading only for medical students.)

468. Three-Dimensional Structure of the Human Brain (3) I, II, Polidora
Lecture—laboratory—discussion consisting of two to three 2-hour sessions—20 hours minimum. (Intensive, somewhat flexible early-quarter scheduling.) Course goal is the student retaining a clear, vivid, three-dimensional mental image of the major anatomical structures of the human brain. Presentation of anatomical illustrations emphasizing function; gross dissection; clay model of brain; identity structures on slides; (HS/USU grading only for medical students; SU grading only for graduate students.)

Biological Chemistry

Upper Division Course

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Walsh in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

213. Principles of Comparative Biochemistry (3) I, Bens- kisick, Fennor
Lecture—3 hours. Prerequisite: Biochemistry 201C or consent of instructor. A course in the comparative biochemistry of living systems. Comparison of living systems with respect to cell structure, biochemistry and enzymology. Offered in odd-numbered years. (Same course as Biochemistry 213.)

214. Contemporary Medical Biochemistry (3) II. The Staff (Troy in charge)
Lecture—1 hour. Prerequisite: course in biochemistry or the equivalent. A survey of topics in current biochemical topics in biochemistry related to medicine. The material covered stresses concepts directed from biochemical research which have some potential relevance, which are intended to be of interest to medical students, graduate students, postdoctoral fellows and faculty. (SU grading only.) (Same course as 414.)

*220. Molecular Biology Laboratory (4) II, Traut, Hersey, Dol (Biochemistry)
Lecture—1 hour; laboratory—4 hours. Prerequisite: medical and graduate students with consent of instructor. A laboratory course designed to allow students to become familiar with some of the techniques which are necessary for modern biological research. The course is intended to be of interest to all students, particularly to graduate and medical students. (HS grading only for medical students; SU grading only for graduate students.)

225. Biochemical Mechanisms of Mammalian Hormones (4) I, Walsh, Wilson, Gerstwich
Lecture—3 hours; discussion—1 hour. Prerequisite: Biochemistry 201A-201B or consent of instructor. Biochemistry of mammalian hormones. (Same course as 410.) Biochemical mechanisms by which hormones modulate molecular and cellular processes. Cyclic nucleotides and Ca2+ as hormonal second messengers. Site of action of insulin in regulation of protein, metabolism and protein synthesis. Control of gene function by steroids, interaction between hormones. Offered in odd-numbered years. (HSU grading only for medical students.)

299. Research (1-12) I, II, III, IV. The Staff (Chapman in charge)
Research—3 hours; paper—3 hours. Prerequisite: consent of instructor. Laboratory research on selected topics relating to the physiological and biochemical bases of behavior. Participation in ongoing research projects or planning, initiation and execution of individual research problem. (SU grading only.)

Current Topics in Behavioral Biology (1-1, II, III, IV. The Staff (Walsh in charge)
Seminar—1 hour. Prerequisite: previous course in biochemistry. Current topics of interest. (Same course as 491.) (Su grading only for graduate students; HS/USU grading only for medical students.)

321. Current Topics in Protein Synthesis (1) I, II, III, IV. Traut, Hersey, Do
Discussion and seminars. Prerequisite: consent of instructor. Review of current research in structure and function of proteins and their relationship to control of protein synthesis. (Same course as 491.) (HSU grading only for graduate students; HS/USU grading only for medical students.)

290. Group Study (1-3) I, II, III, IV. The Staff (Chapman in charge)
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved.

299. Research (1-12) I, II, III, IV. The Staff (Walsh in charge)
Prerequisite: consent of instructor. (SU grading only.)

Clinical Psychology

Graduate Courses

200. Theory of the Person-Adult (4) I, Meadow
Lecture—2 hours; seminar—2 hours. Prerequisite: graduate status in Clinical Psychology or consent of instructor. Major contemporary personality theories will be examined and compared. Emphasis will be placed on the theoretical constructs which are most relevant to contemporary intervention techniques.

201. Observational Practicum (3) I, II, III, IV. The Staff (Meadow in charge)
Discussion—2 hours; laboratory—2 hours. Prerequisite: graduate status in Clinical Psychology or consent of instructor. Students rotate through three major field placements: a client-family, an adult clinical, and a community setting in order to develop skills in observing human behavior. Didactic material and field experience.

Lecture—4 hours. Major theories in clinical child psychology, as related to research and clinical findings in pediatrics, child psychiatry and child development.

204. Schizophrenia Psychopathology and Intervention (3) II, III, IV. The Staff (Meadow in charge)
Lecture—4 hours, seminar—2 hours. Prerequisite: consent of instructor. Major theories in the etiology of schizophrenia and the chief methods of therapy.

205. Issues in Clinical Adult Psychology (3) I, II, III, IV. The Staff (Morrison in charge)
Lecture—2 hours; seminar—2 hours. Prerequisite: consent of instructor. A review of the literature in culture and personality and organizational theory relevant to problems of assessment and intervention in community and group process. (SU grading only.)

207. Theories of Group Consultation (3) II, III, Greene
Seminar—3 hours. Prerequisite: course 208 (concurrently) and consent of instructor. A sociopsychological approach towards the study of the interrelationships among the individual, social, and organizational levels. Application of such concepts as role and personality, group and organization, leadership, and authority. Applications to models of small group and social system consultation. (Su grading only.)

208. Practicum in Group Consultation (1-3) I, II, III, IV. The Staff (Morrison in charge)
Seminar—3 hours; term paper. Prerequisite: consent of instructor. A practicum involving systematic observations, participation, and consultation in a variety of social systems working groups, or any other activity in which the student will learn about human relations and the techniques of group consultation and education. May be repeated for credit. (SU grading only.)

209. Developmental Theory of Jean Piaget (3) III, Steward
Seminar—4 hours. Prerequisite: graduate and professional students; consent of instructor. The seminar will be devoted to the study of Jean Piaget's work, including his theoretical development and his educational program. (SU grading only.)

210. Design and Analysis in Clinical Research (I, II, III, IV. G. Abramowicz
Lecture—4 hours. Prerequisite: graduate status in clinical psychology or consent of instructor. Basic statistical procedures, experimental design and correlational methods used in clinical research. Emphasis will be placed on those
methodologies having the broadest application to contemporary clinical investigation.

211. Design and Analysis in Clinical Research II (4) I, II. Ablomowitz
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate student in Clinical Psychology or consent of instructor. Specialized methods for the design and analysis of experimental and quasi-experimental studies, including the analysis of covariance, analysis of variance, and other related methods. (SU grading only.)

212. The Psychology of Women (3) I. Peplomet-Rockwell
Seminar—3 hours. Prerequisite: consent of instructor. Various aspects of women's lives, from birth to death. Implications for psychotherapy and coping styles will be explored. (SU grading only.)

213. Theories of Psychotherapy (3) I. Lyons
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. An examination of major theories of psychotherapy. (SU grading only.)

214. Psychotherapy Practicum (1-3) I, II, III, IV. The Staff (Folks/Kemp in charge)
Discussion—1½ hours; clinical field placement—6 hours. Prerequisite: consent of instructor. Supervised participation in actual psychotherapy and discussion of the experiences gained therein. (SU grading only.)

215. Assessment Practicum (1-3) I, II, III, IV. The Staff (Watson in charge)
Laboratory—2½ hours. Prerequisite: consent of instructor. Students will develop their own instruments and have them discussed with the supervisor. May be repeated for credit. (SU grading only.)

216. Psychological Assessment I (3) I, III. Watson
Seminar—3 hours. Prerequisite: consent of instructor. This course will focus on the theory and practice of psychological assessment. Students will learn how to administer and score various tests and will gain experience in the interpretation of test results. (SU grading only.)

217. Introduction to Projective Assessment (3) I, Bell
Seminar—3 hours. Prerequisite: consent of instructor. Students will learn about the theory and practice of projective assessment. They will participate in the administration and interpretation of projective tests. (SU grading only.)

218. Clinical Behavior Therapy (3) I, II, III. Hines
Lecture—3 hours. Prerequisite: consent of instructor. This course will cover the principles and techniques of behavior therapy. Students will learn how to apply these principles in the treatment of various psychological disorders. (SU grading only.)

219. Intuition and Research (3) I, Patton
Lecture—3 hours. Prerequisite: consent of instructor. This course will explore the role of intuition in research and how to develop and use intuition in research. (SU grading only.)

220. Professional Development and Ethics (1-4) II. Pendleton-Rockwell
Seminar—1 hour. Prerequisite: consent of instructor. This course will cover professional development and ethical issues in psychology. Students will learn how to develop and maintain a professional identity and how to navigate ethical dilemmas. (SU grading only.)

221. Medicine and the Environment (2) I, Kraus
Lecture—1 hour; fieldwork—1 hour. Prerequisite: consent of instructor. This course will cover the impact of medical research on the environment and how to conduct research in an environmentally sustainable manner. (SU grading only.)

Community Health

Upper Division Courses

101. Perspectives in Community Health (3) I, III. Bohrani, Kraus, Bauer
Lecture—2 hours; discussion—1 hour. Prerequisite: consent of instructor. This course will cover the perspectives and challenges faced by community health professionals. (SU grading only.)

121. Introduction to Medical Ecology (2) II. Kraus, Bohrani
Lecture—2 hours. Prerequisite: consent of instructor. This course will cover the principles of medical ecology and their application to community health. (SU grading only.)

126. Introduction to Environmental Health (4) II. Kraus
Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. This course will cover the principles of environmental health and their application to community health. (SU grading only.)

201. Medical and Environmental Epidemiology (3) I, III, IV. Bohrani, Kraus
Lecture—2 hours; discussion—1 hour. Prerequisite: consent of instructor. This course will cover the principles of epidemiology and their application to medical and environmental health. (SU grading only.)

202. Community and Preventive Medicine (1-3) I, II, III, IV. Bohrani, Kraus
Lecture—2 hours. Prerequisite: consent of instructor. This course will cover the principles of community and preventive medicine. (SU grading only.)

203. Medicine and the Environment (2) I, Kraus
Lecture—1 hour; fieldwork—1 hour. Prerequisite: consent of instructor. This course will cover the impact of medical research on the environment and how to conduct research in an environmentally sustainable manner. (SU grading only.)

Family Practice

Upper Division Courses

120A-120B. Fundamentals of Medicine for Family Nurse Practitioners (10-10) I-II. The Staff (Morgan, Wainsen in charge)
Lecture—5 hours; discussion—1 hour; laboratory—12 hours. Prerequisite: consent of instructor. This course will cover the fundamentals of medicine for family nurse practitioners. (SU grading only.)

NOTE: For key to footnote symbols, see page 138.
Fundamentals of Medicine for Family Nurse Practitioners (10–10) II–IV. The Staff (Kryžbili, Mentink in charge)
Lecture—5 hours; discussion—1 hour; laboratory—12 hours. Prerequisite: course 120A–120B. Study of anatomy, physiology, pathophysiology and clinical skills needed for assessment and management of common medical problems seen in primary care; approach to symptom diagnosis and treatment; management of patients with simple acute episodic disease and emergency support.

Introduction to Community Health for Family Nurse Practitioners (2–2) I–II. The Staff (Dervin, Thomas in charge)
Seminar—2 hours. Prerequisite: courses 121A–121B. Discussion of the socio-cultural and psychological aspects of health and disease; methods and materials in patient education.

Health Sciences Practicum (5) I, II, III, IV. Andrus and staff
Lecture—1 hour; laboratory—12 hours. Prerequisite: consent of instructor. Introduction to the health professions and health care delivery system through lecture and experience in clinical settings. (PnP grading only.) 198. Directed Group Study (1–5) I, II, III, IV. Andrus, Mitchell
Prerequisite: consent of instructor. Directed group study for advanced undergraduates interested in health care delivery system. (PnP grading only.) 199. Special Study for Advanced Undergraduates (1–5) I, II, III, IV. The Staff (Andrus, Smilkie in charge)
Hours to be arranged. Prerequisite: consent of instructor. Special study for advanced undergraduates interested in the health care delivery system. (PnP grading only.)

Graduate Courses

Politics, Economics, and Determinants of Health Care (3) I. Andrus, Borzani
Lecture-discussion—3 hours. Group study to obtain an understanding of the political and economic determinants of health-care systems. Each session consists of guest lecturer and discussion. Students select and read references from a reading list. (HSU grading only for medical students; SU grading only for graduate students; PnP grading only for undergraduates.) Same course as Community Health 207.

Law and Medicine (3) I. Schwartz and staff
Lecture—2 hours; rounds ward; rounds. Prerequisite: second-year medical and second- and third-year law students with consent of instructor. Seminar approach emphasizing class work, field trips, individual projects re medical education and practice, attorney-physician relations, development of human behavior, community health care and medical legal problems. (Same course as Law 266.) (HSU grading only for medical students.) 271. Clinical Pharmacology (2–10) I, II, III, IV. Winters
Lecture—2–10 hours; ward rounds. Prerequisite: advanced graduate students or postdoctoral fellows. Principles of pharmacology will be related to the diagnosis and treatment of drug induced disease status as well as principles of therapy of common clinical diseases. (Same course as Pharmacology 271.)

Group Study (1–5) I, II, III, IV. Andrus
Prerequisite: consent of instructor. Group study for graduate students in Advanced Practice. Seminar—2 hours; laboratory—2–4 hours. Prerequisite: consent of instructor. Concepts of family crisis, function, and resources of family (404A); problems of cultural medicine and health care delivery (404B); limited to individual instruction with students who have established on-going advocate relationships with patients seen in 404A laboratory—clinics and social service agencies 404C–404D. (HSU grading only for medical students.)

Primary Care in Sports Medicine (2–2) I, II, III. Burr
Lecture—1 hour; laboratory—2 hours. Prerequisite: second-year medical students or consent of instructor; open to graduate students. First quarter will cover primary health care for the athlete in sports medicine—prevention, treatment and rehabilitation of athletic injuries. Second quarter will deal with the physical fitness programs in health and disease—health care maintenance and rehabilitation. Third quarter is for independent study in sports medicine. (HSU grading only for medical students.) 410A. Analysis of Health Care Delivery Systems (2) II. Michell, Andrus
Lecture—1 hour; discussion—1 hour. Prerequisite: student in Family Nurse Practitioner Program. Topics aimed at providing a theoretical understanding of the economics and organization of health-care systems, quality of care, legislation and licensure, and the role of family nurse practitioners. (HSU grading only for medical students.) 410B. Analysis of Health Care Delivery Systems (2) III. Michell, Andrus
Lecture—1 hour; discussion—1 hour. Prerequisite: student in Family Nurse Practitioner Program. Topics aimed at providing a theoretical understanding of the economics and organization of health-care systems, quality of care, legislation and licensure, and the role of family nurse practitioners. (HSU grading only for medical students.)

Family Structure and Function for Family Nurse Practitioners (2) I. O'Hara-Devereauxs
Lecture—1 hour; discussion—1 hour. Prerequisite: student in Family Nurse Practitioner Program. Topics aimed at providing a theoretical understanding of the contemporary family as a social unit; includes human development, family organization, roles and dynamics. (HSU grading only for medical students.)

Family Structure and Function for Family Nurse Practitioners (2) I. O'Hara-Devereauxs
Lecture—1 hour; discussion—1 hour. Prerequisite: student in Family Nurse Practitioner Program. Topics aimed at providing a theoretical understanding of the contemporary American family as a social unit; includes human development, family organization, roles and dynamics. (HSU grading only for medical students.)

Advanced Clinical Medicine for Family Nurse Practitioners (5–5) I, II. Chayen, Sutka
Lecture—1 hour; seminar—2 hours; laboratory—6 hours. Special topics in Family Medicine selected by student and presented in seminar form with an annotated bibliography. An expert in each selected field will attend and critique.

Graduate Seminar in Preventive Medicine for Family Nurse Practitioners (2) I. The Staff (Judson, Morgan in charge)
Lecture—1 hour; discussion—1 hour. Prerequisite: consent of instructor. Selected topics related to disease prevention and health maintenance. (HSU grading only for medical students; SU grading only for graduate students.)

Graduate Seminar in Psychosocial and Cultural Aspects of Disease for Family Nurse Practitioners (2–2) II–III. The Staff (O'Hara-Devereauxs, Judson in charge)
Lecture—1 hour; discussion—1 hour. Prerequisite: consent of instructor. Selected topics of cultural, ethnic and socioeconomic parameters related to disease prevention, patterns and techniques; family and marital counseling; psychosomatic illness; and human sexuality. (HSU grading only for medical students; SU grading only for graduate students.)

Graduate Seminar in Clinical Medicine for Family Nurse Practitioners (2) I. Mentink
Lecture—1 hour; discussion—1 hour. Prerequisite: consent of instructor. Review of study and current patterns of management of the chronic common diseases; application of flow sheet monitoring, record audits and algorithms. (SU grading only.)

Research Methods for Family Nurse Practitioners (2) I, II. Brown
Lecture—1 hour; laboratory—3 hours. Prerequisite: student in Family Nurse Practitioner Program. Basic concepts of research design and methods, processing data and preparing research reports. (HSU grading only for medical students.)

Research Methods for Family Nurse Practitioners (2) I, II. Brown
Lecture—1 hour; laboratory—3 hours. Prerequisite: student in Family Nurse Practitioner Program. Basic concepts of research design and methods, processing data and preparing research reports. (HSU grading only for medical students.)

Primary Care in Sports Medicine (2–2) I, II, III. Burr
Lecture—1 hour; laboratory—2 hours. Prerequisite: student in Family Nurse Practitioner Program. Basic concepts of research design and methods, processing data and preparing research reports. (HSU grading only for medical students.)

Primary Care Practicum for Family Nurse Practitioners (5–5) I, II, III, IV. The Staff (O'Hara-Devereauxs and Mentink in charge)
Discussion—1 hour; laboratory—8 hours. Prerequisite: courses 410, 420A–420B–420C, and 449. Course 450B is a continuation of course 450A. Individual field study. Each student will analyze a health-care setting, plan, implement, and evaluate changes designed to improve health care to patients and their families. (HSU grading only.)

Human Anatomy

Upper Division Courses

The Gross and Microscopic Structure of the Human Body (5) II. The Staff
Lecture—4 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1 or 10; Physiology 2-2L, or Zoology 2-2L recommended. A study of the gross and microscopic structure of the human body with emphasis on function. The laboratory will be taught from projection models, and slides to give students the opportunity to learn structure from direct experience. Limited enrollment.

Directed Group Study (1–5) I, II, III, IV. The Staff (Chairperson in charge)
Discussion—2 hours; laboratory—6 hours. Prerequisite: consent of instructor. Directed reading, discussion, and laboratory experience on selected topics. (PnP grading only.)

Special Study for Advanced Undergraduates (1–5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PnP grading only.)

Graduate Courses

Human Neuroanatomy (6) II. Brownson, Vijayan
Lecture—5 hours; laboratory—3 hours. Prerequisite: consent of instructor. Microscopic anatomy of the nervous system to include its relationship to coverings, topography and blood supply. Microscopic anatomy, pathways and internal organization of the nervous system.

Mammalian Reproductive Biology (2–2) II. Meck
Lecture—11½ hours; discussion—½ hour; assigned outside reading. Prerequisite: lecture course in biochemistry and one in physiology (including endocrinology); cell biology recommended. Biochemical, endocrinological, morphological and physiological aspects of normal mammalian: gonads, gametogenesis, ovulation, gamete maturation, gamete transport, semen; female reproduction: ovum; ovary, cycle; capacitation; fertilization; pre-implantation and implantation events. (Deferred grading only, pending completion of course.) Offered in odd-numbered years.

Prenatal Development of Human Nervous System (5) I, II, III, IV. O'Reilly
Discussion—4 hours; laboratory—2 hours. Prerequisite: consent of instructor and substantial background in biology, including basic embryology. Graduate course for comparison of developmental human nervous system, including, where possible, correlation with development of function and behavior. (SU grading only.)
212. Advanced Course in Human Prenatal Development (5) I, II, III, IV. O’Rahilly
Discussion—4 hours; laboratory—2 hours. Prerequisite: consent of instructor and potential human developmental biology, including basic embryology. Graduate course for study of human development in general, with emphasis on certain systems to be decided on. (SU grading only.)

213. History of Anatomy (4) I, II, III, IV. O’Rahilly
Discussion—4 hours. Prerequisite: consent of instructor. Graduate course or chronological history of human and comparative anatomy. (SU grading only.)

280. Seminar (1-3) I, III. The Staff
Seminar—1 hour. Prerequisite: consent of instructor. (SU grading only for graduate students. H/SU grading only for medical students.)

298. Advanced Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

405. Human Gross Anatomy (6) I. Erickson
Lecture—2 hours; discussion—1 hour; laboratory—9 hours. Prerequisite: second- or fourth-year medical student, graduate student, and/or consent of instructor. Course is designed to give students a comprehensive understanding of the gross structure of the adult human body. (H/SU grading only for medical students.)

Human Physiology

Upper Division Courses

151. Information Systems: Design and Analysis of Computerized Information Systems (3) I. Walters
Lecture—2 hours; laboratory—3 hours. Prerequisite: programming desirable; consent of instructor. Basic storage devices, organization of information, design of information systems, on-line, off-line and multilevel; relation of systems design to retrieval requirements and storage elements. Laboratory in preparation of modest information system.

198. Directed Group Study (1-5) I, II, III, IV. The Staff
To be arranged. Prerequisite: consent of instructor. Directed reading and laboratory experience on selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff
Directed course; laboratory—15 hours; undergraduate research project. Prerequisite: senior standing in biology, chemistry, physics, psychology, or engineering. (P/NP grading only.)

Graduate Courses

200D. Advanced General Physiology (3) III. The Staff (Renkin in charge)
Lecture—3 hours. Prerequisite: Biochemistry 101B, Chemistry 110B, Physiology 100B, graduate standing and consent of instructor. Physiological basis of living systems with emphasis on membrane permeability of characteristics at both the cellular and tissue level. Offered in even-numbered years.

219. Cellular Physiology of Excitable Membranes (4) I. Scofield
Lecture—2 hours; discussion—1 hour; 1 hour problem sets or written review per week. Prerequisite: elementary physics and calculus. Beginning with electrophysiology, this course covers elementary calculus and physics and reviews problem sets on diffusion potentials, transport, electronic conduction, synaptic transmission, etc. Several topics will be covered by invited lecturers on their research interests.

221. Surgical Approaches to Physiology (2) I, II, III, IV. The Staff (Green in charge)
Discussion—1 hour; laboratory—3 hours. Prerequisite: Physiology 210A-210B or Medical Sciences 411A-411B

and consent of instructor. A practical laboratory experience in the classical surgical techniques used to obtain physiological information.

231. Renal Physiology (5) I. Rablowitz
Lecture—3 hours. Prerequisite: Physiology 110A, 110B or the equivalent; graduate standing. Topics in mammalian renal physiology and related areas of biophysical transport, fluid and electrolyte homeostasis, comparative renal physiology, and pathophysiology of the kidney in man.

231L. Renal Physiology Laboratory (3) I. Rablowitz
Laboratory—3 hours. Prerequisite: Physiology 110A, 110B or the equivalent; graduate standing and consent of instructor. Experimental study of renal function in mammals including measurement of renal blood flow, filtration rate, concentrating ability, excretion of ions and the action of hormones and drugs.

235. Physiology of the Body Fluids (2) II. Rablowitz
Lecture—discussion—2 hours. Drill and problem sets on renal function and properties of body fluid compartments including water, Na, K, Cl, distribution and exchange. Lectures on development of modern concepts. Assigned reading and discussion of clinically oriented articles on the subject. Grading based on attendance and student-generated brief reports.

252. Advanced Information Systems (3) II. Walters
Lecture—2 hours; seminar—2 hours. Prerequisite: course 151 and consent of instructor. Case studies of information systems: development of system components through projects; analysis of on-line file structures; strategies for systems performance optimization. Same course as Biomedical Engineering 252.

259. Physiological Systems Analysis (5) I, Smin
Lecture—4 hours; discussion—1 hour. Prerequisite: Mathematics 228 or Physiology 110B, or consent of instructor. The mathematical analysis of physiological control systems; mathematical models and analytic methods appropriate for the study of different types of physiological control; the application of these techniques to experimental studies on experimental systems.

260. Pulmonary Function Evaluation (4) I, II, III. Cross Lecture—3 hours; laboratory—3 hours. Prerequisite: Medical Sciences 411B; open to graduate students. Clinical laboratory, physiological evaluations of pulmonary function.

263. Respiratory Physiology (3) III. The Staff (Green in charge)
Lecture—3 hours. Prerequisite: Physiology 210A-210B or the equivalent; consent of instructor. Topics in mammalian respiratory physiology and related areas. These include pulmonary mechanics, pulmonary circulation, gas exchange, and the control of respiration. Offered in even-numbered years.

264. Cardiovascular Physiology (3) III. Green
Lecture—3 hours. Prerequisite: Physiology 210A-210B or the equivalent; consent of instructor. Topics in mammalian cardiovascular physiology and related topics. These include capillary dynamics, pressure flow relationships in the peripheral circulation, cardiac mechanics, and regulation of cardiac output. Offered in odd-numbered years.

265. Peripheral Circulation (3) III. Gray
Lecture—1 hour; discussion—2 hours. Prerequisite: Physiology 110B, 1115, or the equivalent; consent of instructor. Course will consist of a series of lectures and discussion sessions on the physiology of mammalian peripheral circulation including topics on anatomy, physiology, and pharmacology of vasomotor system, regional circulation, microcirculatory control mechanisms, and dynamics of capillary transport. Offered in even-numbered years.

299. Group Study (1-5) I, II, III, IV. The Staff (Renkin in charge)
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved.

299. Research (1-12) I, II, III, IV. The Staff (Renkin in charge)
Prerequisite: consent of instructor. (SU grading only.)

Internal Medicine—Cardiology

Upper Division Courses

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Amsterdam in charge)
Prerequisite: consent of instructor. Directed reading, discussion, and laboratory experience on selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Amsterdam in charge)
Prerequisite: consent of instructor, senior standing in biology, chemistry, physics, psychology, or engineering. Undergraduate research project. (P/NP grading only.)

Graduate Courses

298. Group Study (1-5) I, II, III, IV. The Staff (Mason in charge)
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved.

299. Research (1-12) I, II, III, IV. The Staff (Mason in charge)
Prerequisite: consent of instructor. Thesis research. (SU grading only.)

Internal Medicine—Endocrinology

Graduate Courses

299. Research (1-12) I, II, III, IV. The Staff (Kumagai in charge)
Prerequisite: consent of instructor. Endocrinology research. (SU grading only.)

Internal Medicine—Hematology-Oncology

Graduate Courses

298. Topics in Hematology (1-5) I, II, III, IV. The Staff (Lewis in charge)
Prerequisite: one year of graduate work and consent of instructor. Basic concepts of the physiology of the hematopoietic organ, the pathophysiology of hematopoietic disease, and concepts of therapy will be offered for study. The specific topics to be dictated by the interest and background of the students. (H/SU grading only for medical students.)

299. Research (1-12) I, II, III, IV. The Staff (Lewis in charge)
Prerequisite: consent of instructor. Laboratory investigation contributing to the dissertations for a graduate degree. (SU grading only.)

Professional Courses

400. Blood and Marrow Morphology in Disease (1-2) I, II, III, IV. O’Grady
Discussion—1 hour, library work. Prerequisite: one year of postbaccalaureate work and consent of instructor. Outside reading and discussion of current advances in medical immunology with emphasis on appraisals of laboratory studies to clinical disease. (H/SU grading only for medical students.)

402. Topics in Medical Immunology (1) I, II, III, IV. MacKenzie
Discussion—1 hour. Prerequisite: one year of postbaccalaureate work and consent of instructor. Outside reading and discussion of current advances in medical immunology with emphasis on appraisals of laboratory studies to clinical disease. (H/SU grading only for medical students.)
Internal Medicine—Infectious Diseases

Upper Division Course

199. Infectious Diseases Research (1-5) I, II, III, IV. The Staff (Hopwich in charge)
Discussion—1 hour; Seminar—1 hour; laboratory—4 hours; per individual arrangement with instructor. Prerequisite: chemistry through organic chemistry, (in addition, physical and biochemistry preferred), biology through basic bacteriology (in addition, microbiology and immunology preferred), and consent of instructor. A discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results will be reviewed at intervals with the instructor and via seminar presentations. (PINP grading only.)

Graduate Course

*293. Topics in Diagnostic Microbiology and Infectious Diseases (1) I, II, III. Barry, Lawrence, and staff
Seminar—1 hour. Prerequisite: consent of instructor. Laboratory demonstrations, lectures and discussions designed to acquaint students with diagnostic laboratory practices currently used for establishing the etiology of infectious disease. Limited enrollment. (SU grading only.)

Professional Course

499. Research Topics in Infectious Disease (2-12) I, II, III, IV. The Staff (Hopwich in charge)
Prerequisite: successful completion of the first year of study in School of Medicine, graduate students, and/or consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results will be reviewed at intervals with the instructor and via seminar presentation. (HSU grading only for medical students; SUU grading only for graduate students.)

Internal Medicine—Nutrition

Graduate Course

210. Nutritional Aspects of Medical Practice (3) III. Hodges, Glad
Lecture—discussion—3 hours. Prerequisite: medical and graduate students and/or consent of instructor. Lectures and reading assignments on clinical nutrition. Prescribed topics will relate to disease processes, organ systems, and patient care. (HSU grading only for medical students; SU grading only for graduate students.)

Internal Medicine—Rheumatology

Lower Division Course

99. Directed Research in Immunology (1-5) I, II, III, IV. Gershwin
Laboratory—1-5 hours. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (PINP grading only.)

Upper Division Course

199. Directed Research in Immunology (1-5) I, II, III, IV. Gershwin
Laboratory—1-5 hours. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (PINP grading only.)

Graduate Courses

290. Pathogenetic Mechanisms in Development of Immunologic Disease (2) III. Gershwin
Seminar—2 hours. Prerequisite: consent of instructor. The recognition of the central problems in historical aspects of, and association with immunological abnormalities and processes (e.g., rheumatoid arthritis, collagen diseases, autoimmune diseases); the development of immunological test systems for the diagnosis of these diseases; the development of immunological test systems for the diagnosis of these diseases; the clinical relevance of these developments. (PINP grading only.)

Medical Microbiology

Upper Division Courses

107. Chemical and Cellular Immunology (4) II. Benjamini, Scibenski
Lecture—4 hours. Laboratory experience provided to selected individual students. Prerequisite: Biochemistry 101A, 101B or consent of instructor. The chemical and cellular basis of immunity; structure-function relationship of antibodies, antigens, and antigen-antibody interaction; cellular basis of immunity; immunologic and cellular aspects of hypersensitivity and related immunologic phenomena. (Same course as course 107.)

108. Group Study in Medical Microbiology (1-5) I, II, III, IV. The Staff (Pappagianis in charge)
Hours to be arranged. Prerequisite: upper division standing and consent of instructor. Directed research and discussion on laboratory investigation on selected topics. (PINP grading only.)

199. Research in Medical Microbiology (1-5) I, II, III, IV. The Staff (Pappagianis in charge)
Hours to be arranged. Prerequisite upper division standing and consent of instructor. Individual research. (PINP grading only.)

Graduate Courses

298. Frontiers in Immunology (2) II, III, IV. Benjamini, Scibenski
Lecture—2 hours. Prerequisite: consent of instructor. Current developments in various aspects of immunology and their interrelationships. (SU grading only.) (Same course as 408.)

215. Medical Parasitology (5) I. Thesis Lecture—3 hours; laboratory—6 hours. Prerequisite: graduate students with consent of instructor. Epidemiological and laboratory studies of protozoa, helminths and arthropods of medical importance.

220. Current Concepts in Bacterial Utrastructure (2) III. Beaman
Lecture—1 hour; discussion—1 hour: combination formal lecture, class discussion and student presentation. Prerequisite: Bacteriology 105 or consent of instructor. Critical evaluation of current literature dealing with aspects of bacterial ultrastructure. These will be combined formal lectures, discussion of selected and assigned readings and formal student presentation of assigned topics. There will be a midterm and final examination.

235. Group Study in Medical Microbiology and Immunology (1-5) I, II, III, IV. The Staff (Pappagianis in charge)
Prerequisite: consent of instructor; open to graduate students. Directed research and discussion and laboratory investigation on selected topics. (Sections 1, 2, 4, 5; SU grading only.)

298. Research in Medical Microbiology (1-5) I, II, III, IV. The Staff (Pappagianis in charge)
Prerequisite: consent of instructor; open to graduate students. Laboratory investigation contributing to the dissertation for a graduate degree. (SU grading only.)

Professional Courses

401. Medical Virology (2) II, IV. Chang
Lecture—1 hour; discussion—1 hour. Prerequisite: Medical Biology 410 and consent of instructor; open to graduate students. Course deals with the clinical epidemiology and experimental aspects of viral diseases of man. (HSU grading only for medical students.)

405. Clinical Immunology (2) I, II, III. Pappagianis
Lecture—2 hours. Prerequisite: third-year medical student status and consent of instructor. The bases of immunization and immunosuppressive procedures particularly related to diseases of man. (HSU grading only for medical students.)

407. Chemical and Cellular Immunology (4) II, Benjamini, Scibenski
Lecture—4 hours. Laboratory experience provided to selected individual students. The chemical and cellular basis of immunity; structure-function relationship of antibodies, antigens, and antigen-antibody interaction; cellular basis of immunity: immunological and cellular aspects of hypersensitivity and related immunologic phenomena. (Same course as course 107.)

Neurology

Graduate Course

298. Group Study (1-5) I, II, III, IV. The Staff (Dreyfus in charge)

Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth, lectures and conferences may be involved. (HSU grading only.)

Professional Course
498. Research (1-12) I, II, III, IV. The Staff (Crenshaw in charge)
Lecture—1 hour; discussion—1 hour. Prerequisite: general pathology or special training in pathology and neurological sciences; consent of instructor. Reaction of the nervous system to injury and infection; development and function of the central and autonomic nervous systems. (HSU grading only for medical students.)

Neurosurgery
Graduate Course
286. Diseases of the Nervous System (3) I, II, III, IV.
The Staff (Youmans in charge)
Lecture—1 hour; discussion—1 hour, seminar—1 hour. Prerequisite: general pathology or special training in pathology and neurological sciences; consent of instructor. Reaction of the nervous system to injury and infection; development and function of the central and autonomic nervous systems. (HSU grading only for medical students.)

Pathology
Graduate Courses
207. Introduction to Nervous System Pathology (1-4) I, II, III, Eliss
Lecture—1 hour; discussion—2 hours. Prerequisite: open to undergraduate students; consent of instructor. Study of the nervous system tissue response to injury, inflammation, and neoplasia. (HSU grading only for medical students.)

Orthopaedic Surgery
Professional Course
499. Orthopaedic Research (1-12) I, II, III, IV.
The Staff (Ager in charge)
Prerequisite: graduate or medical students; consent of instructor. Laboratory or clinical investigation on selected topics. (HSU grading only for medical students.)

Otolaryngology
Professional Courses
480. Suturing Techniques (1) I, II, III, IV. Bernstein
Lecture—5 hours total; laboratory—10 hours total. Prerequisite: second- and fourth-year medical students with consent of instructor. Open to graduate students. Principles of management of lacerations and the various techniques of suturing a wound. (HSU grading only for medical students.)

Orthopaedic Surgery
Graduate Course
498. Research (1-12) I, II, III, IV. The Staff (Nguyen in charge)
Lecture—1 hour; discussion—1 hour. Prerequisite: general pathology or special training in pathology and neurological sciences; consent of instructor. Reaction of the nervous system to injury and infection; development and function of the central and autonomic nervous systems. (HSU grading only for medical students.)

Professional Course
481. Otolaryngology Seminars (1) I, II, III, IV.
The Staff (Bernstein in charge)
Seminar—1 hour. Prerequisite: fourth-year medical students; consent of instructor. Open to graduate students. Weekly formal presentations of original otolaryngology topics. The subjects will be clinically oriented and explored in depth. (HSU grading only for medical students.)

499. Research (1-12) I, II, III, IV. Donald
Prerequisite: medical students with consent of instructor; open to graduate students. Participation in ongoing projects. (HSU grading only for medical students.)

Pathology
Graduate Courses
207. Introduction to Nervous System Pathology (1-4) I, II, III, Eliss
Lecture—1 hour; discussion—2 hours. Prerequisite: open to undergraduate students; consent of instructor. Study of the nervous system tissue response to injury, inflammation, and neoplasia. (HSU grading only for medical students.)

499. Research (1-12) I, II, III, IV. Donald
Prerequisite: medical students with consent of instructor; open to graduate students. Participation in ongoing projects. (HSU grading only for medical students.)

407. Diseases of the Nervous System (1-4) I, II, III, Eliss
Lecture—1 hour; discussion—1 hour. Prerequisite: medical students or special training in pathology and neurological sciences; consent of instructor. Open to graduate students. Study of nervous system reactions to disease including infection, neoplasia, and maldevelopment. Application of experimental models to human disease and clinical correlations. Seminars emphasize microscopic findings in current cases; discussions include individualized experience in neuropathology and techniques. Open to students with Department of Neurology and Neurosurgery. (HSU grading only for medical students.)

408. Autopsy Case Studies (1-12) I, II, III, IV. The Staff (Rueben in charge)
Discussion—1 hour; laboratory—3 hours. Prerequisite: medical students or consent of instructor; open to open to graduate students. Participation and performance under supervision of complete autopsies with correlation of clinical material. Gross, microscopic, and laboratory findings. (HSU grading only for medical students.)

409. Neuropathology Conference (1) I, II, III, IV. Eliss
Seminar—1 hour. Prerequisite: medical students or consent of instructor; open to graduate students. Student participation in the mechanism of disease. Open to students with Department of Neurology and Neurosurgery. (HSU grading only for medical students.)

410. Seminar in Pathology (2) I, II, III, IV. The Staff (Stowell in charge)
Prerequisite: consent of instructor. Open to graduate students. Participation and performance under supervision of complete autopsies with correlation of clinical material. Gross, microscopic, and laboratory findings. (HSU grading only for medical students.)

411. Surgical Pathology Seminar (1) I, II, III, IV. The Staff (Torenson in charge)
Prerequisite: medical students or consent of instructor; open to graduate students. Open to graduate students. Gross and microscopic pathology of current surgical specimens and study sets with clinical-pathological correlation. Limited enrollment. (HSU grading only for medical students.)

492. Ultrasound Seminar (1) I, II, III. Jensen
Seminar—1 hour. Prerequisite: medical students or consent of instructor. Ultrasonography and their applications to a wide variety of clinical problems. (HSU grading only for medical students.)

Pediatrics
Lower Division Course
99. Special Study for Undergraduates (1-5) I, II, III, IV.
The Staff (Gatlin in charge)
Individual library or laboratory research. Prerequisite: consent of instructor; Chemistry 18 and Biological Sciences 1 or the equivalent (may be taken concurrently). Research in the broad area of physiological maturation. Primarily for lower division students. (P/NP grading only.)

Upper Division Course

198. Special Study in Pediatric Research (1-5) I, II, III, IV. The Staff (Gold in charge). Laboratory—3 to 15 hours. Prerequisite: limited to undergraduates with consent of instructor. Based on adequate preparation in chemistry and/or physiology. Problems related to growth and development including the functions of different organ systems. Also learn different laboratory techniques and use of different laboratory equipment. (P/NP grading only.)

Graduate Course

299. Pediatric Research (1-12) I, II, III, IV. The Staff (Gold in charge). Prerequisite: graduate students who are candidates for a degree in some area of biology or behavioral sciences; consent of instructor. Research will generally involve some aspect of growth and development. (SU grading only.)

Pharmacology

Upper Division Courses

100. Pharmacology for Educators (2) I, E. K. Kilam Lecture—2 hours. Prerequisite: consent of instructor. Survey of the principles underlying the actions of drugs; consequences of the pharmacology of prescription and nonprescription drugs commonly used to treat medical conditions in children of school age; pharmaceutical aspects of drug dependency and related topics.

101. Introduction to Pharmacology (2) II, Hollinger, Stark Lecture—2 hours. Prerequisite: some knowledge of basic physiology and biochemistry. Survey course dealing with various principles of pharmacology. Course is specifically oriented to the undergraduate.

102. Pharmacodynamics A (2) I, Hance, West Lecture—1 hour, discussion—1 hour. Prerequisite: Medical Science 410 and 411B or the equivalent. Pharmacology of the autonomic system; pharmacology of the cardiovascular system; renal pharmacology and pharmacology of nerve and neuromuscular junction.

103. Pharmacodynamics B (2) II, K. F. Kilam, E. K. Kilam Lecture—1 hour, discussion—1 hour. Prerequisite: Medical Science 410, 411B, and 413A-413B-413C, or the equivalent. Pharmacology of general anesthetics, hypnotics, sedatives, analesgesics and antidepressives, narcotic analgesics; convulsants and stimulants, anticonvulsants and drug abetting behavior.

104. Pharmacology Laboratory A: Pharmacodynamics (2) I, Hollinger, West Discussion—1 hour, laboratory—4 hours. Prerequisite: courses 102 and 103 or the equivalent. Laboratory techniques used to evaluate the action of drugs. Offered in even-numbered years.

105. Pharmacology Laboratory B: Neuropharmacology (2) II, Hance, E. K. Kilam Lecture—1 hour, discussion—1 hour. Prerequisite: Medical Science 410, 411B, and 413A-413B-413C, or the equivalent. Specialized laboratory techniques used to evaluate centrally acting drugs. Offered in odd-numbered years.

106. Pharmacology Laboratory C: Psychopharmacology (2) III, K. F. Kilam, Stark Discussion—1 hour, laboratory—4 hours. Prerequisite: Medical Science 410, 411B, and 413A-413B-413C, or the equivalent. Specialized laboratory techniques used to evaluate drugs altering behavior. Offered in odd-numbered years.

198. Directed Group Study (1-5) I, II, III, IV. The Staff (K. F. Kilam in charge). Prerequisite: consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (K. F. Kilam in charge). Laboratory—3 to 9 hours. Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A-200B. Advanced General Pharmacology (3-3) I, III. The Staff (K. F. Kilam in charge). Lecture—3 hours. Prerequisite: upper division courses in biochemistry (101A-101B) and mammalian physiology (110A-110B and 111A-111B) or the equivalent. May be taken concurrently. A "core" course in mammalian pharmacology designed for graduate and medical students. Principles in pharmacology, including pharmacokinetics and drug metabolism and the actions, use and toxicity of the major classes of drugs. (H/S/U grading only for medical students.)

200A-200B. Advanced General Pharmacology (1-1) III. The Staff (K. F. Kilam in charge). Discussion—1 hour, laboratory—3 hours. Prerequisite: courses 200A-200B and 200AL-200BL (with a grade of B or better) and consent of instructor. Intensive review of pharmacology through leading weekly tutorial session with a small group of students taking the sequence of 200A-200B and 200AL-200BL.

299. Research (1-12) I, II, III, IV. The Staff (K. F. Kilam in charge). Prerequisite: consent of instructor. (SU grading only.)

201. Pharmacology of the Nervous System I: Transmitter Substances (1-3) I, Hance Lecture—1 hour, discussion—1 hour. Prerequisites courses 101, 102, and 103 or Medical Science 410, 411B, and 413A-413B-413C, or the equivalent. Pharmacology of substances affecting nervous transmission. Offered in odd-numbered years.

202. Pharmacology of the Nervous System II: Hypnotics, Sedatives and Anesthetics (1-3) I, E. K. Kilam Lecture—1 hour, discussion—1 hour. Prerequisite: courses 102 and 103 or Medical Science 410, 411B, and 413A-413B-413C, or the equivalent. Pharmacology of centrally acting sedative, hypnotic and anesthetic agents with emphasis on alterations in brain function. Offered in even-numbered years.

203. Pharmacology of the Nervous System III: Stimulants and Anticonvulsants (1-3) II, Stark Lecture—1 hour, discussion—1 hour. Prerequisites: courses 101, 102, and 103 or Medical Science 410 and 411B, or the equivalent. Pharmacology of stimulant and convulsant agents, anticonvulsant agents and their evaluation in animal models. Offered in even-numbered years.

204. Pharmacology of the Nervous System IV: Drug Alteration of Behavior (1-3) II, K. F. Kilam Lecture—1 hour, discussion—1 hour. Prerequisite: courses 101, 102, 103 or Medical Science 410, 411B, and 413A-413B-413C, or the equivalent. Activitiy of drugs altering mood and behavior; psychopharmacologic agents, hallucinogens, antidepressants. Offered in odd-numbered years.

205. Drug Distribution and Metabolism (1-3) II, Stark Lecture—1 hour, discussion—1 hour. Prerequisite: course 101 or Medical Science 410 or the equivalent. Evaluation of problems of drug distribution and metabolism with special reference to autoradiographic techniques. Offered in even-numbered years.

207. Drug Alteration of Subcellular Function (1-3) II, Hollinger Lecture—1 hour, discussion—1 hour. Prerequisite: course 101 or Medical Science 410 or the equivalent. The interaction of drugs and subcellular components with special emphasis on mechanism of action. Offered in odd-numbered years.

220. Statistical Approach to Pharmacological Research (2) II, Hance Lecture—2 hours. Prerequisite: course 200A or consent of instructor. Introduction to application of statistics in pharmacological research and therapeutics. Basic concepts of distributions, measures of location, dispersion and correlation, significance, probability, uncertainty, design of experiments.

271. Clinical Pharmacology (2-10) I, II, III, IV, Winters, Ralph Lecture: ward rounds. Prerequisite: advanced graduate students or postdoctoral fellows. Principles of pharmacology will be related to the diagnosis and treatment of drug-induced disease status as well as principles of therapy of common clinical diseases. (Same course as Family Practice 271.)

297T. Tutoring in Pharmacology (1) I, II. The Staff (K. F. Kilam in charge) Discussion—1 hour, laboratory—3 hours. Prerequisites: courses 200A-200B and 200AL-200BL (with a grade of B or better) and consent of instructor. Intensive review of pharmacology through leading weekly tutorial session with a small group of students taking the sequence! of 200A-200B and 200AL-200BL.

299. Research (1-12) I, II, III, IV. The Staff (K. F. Kilam in charge) Prerequisite: consent of instructor. (SU grading only.)

Physical Medicine and Rehabilitation

Upper Division Courses

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Waring in charge) Prerequisite: advanced standing and consent of instructor. Reading, conferences, field trips, laboratory experiences for upper division or master's degree candidates covering selected topics in rehabilitation and physical medicine, including biomechanics and biomedical engineering. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Waring in charge) Prerequisite: advanced standing and consultation of instructor. Supervise independent study project and research for upper division students or graduate students. (P/NP grading only.)

Graduate Courses

298. Selected Topics in Rehabilitation and Physical Medicine (1-5) I, II, III, IV. The Staff (Waring in charge) Lecture-discussion-seminar-laboratory—1.15 hours; field work in rehabilitation centers and agencies. Prerequisite: consent of instructor. Open to graduate students. Group study in a variety of selected topics in Rehabilitation and Physical Medicine for Allied Health Science graduate students.

299. Research (1-12) I, II, III, IV. The Staff (Waring in charge) Prerequisite: consent of instructor. Research on topics in the field of physical medicine and rehabilitation. (SU grading only.)

Psychiatry

Upper Division Courses

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Tupin in charge) Hours to be arranged. Prerequisite: advanced standing and consent of instructor. Reading, conferences, laboratory and clinical exposure in special topics in general and child psychiatry and psychology. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Tupin in charge) Hours to be arranged. Prerequisite: advanced standing...
and consent of instructor. Supervised independent study project and research for upper division students. (P/N grading only.)

Graduate Courses

216. Program Evaluation in Human Services (2) III. Edwards Seminar—2 hours. Prerequisite: graduate standing in medical or social sciences; introductory course in statistics or consent of instructor. Course designed to provide the conceptual base and knowledge of the relevant literature to develop a basic competence as a program evaluator. Relevant examples will be drawn from the areas of medical care, mental health and social services.

219. Computing for Clinicians (1) II. Edvardes, Mueller Lecture—1 hour, laboratory—1 hour. Prerequisite: graduate standing in medical or social sciences; introductory course in statistics or consent of instructor. Introduction to the fundamentals of the information system and the Statistical Package for the Social Sciences. Students will develop mastery of file maintenance and statistical analysis. (SU grading only.)

220. Interdisciplinary Research Seminar in Family Psychology (3) I, II, III, IV. Meadow Seminar—3 hours. Prerequisite: medical, law, or social sciences graduate students with consent of instructor. Participation in research project designed to study the relationship between family structure and communication processes and normal and abnormal behavior. Families will be selected from patient and "normal" populations, ethnic groups, and a variety of socioeconomic classes. (HSU grading only for medical students.)

222. Sociology of Mental Illness (2) I, III. Rockwell Lecture—1 hour; discussion—2 hours. Prerequisite: medical or social sciences graduate students; consent of instructor. Social and cultural aspects of mental illness; theories of "mental illness"; mental illness as deviance; exploration of social and institutional responses. Sociological studies of the mental hospital. (HSU grading only for medical students.)

223. Death and Dying (2) II. Rockwell Lecture—1 hour; discussion—2 hours. Prerequisite: medical or social sciences graduate students; consent of instructor. Social and cultural aspects of death and dying. Aspects of the dying process are explored using literature, film, video, and discussion. Topics covered include stages of dying, managing death, bereavement, suicide, organized religion, and euthanasia. (HSU grading only for medical students.)

224. The Patient with Life Threatening Illness (3) III. Otto Lecture—1 hour; discussion—1 hour; interview with patient—one per week. Prerequisite: course 223 and consent of instructor. Lecture-discussion and clinical experience with student following and working with a patient who has the diagnosis of a terminal illness, and consulting with the patient's family as well. Video and audio recordings of interviews with patients and families will also be used. (HSU grading for medical students and SU grading for graduate students; letter grading for medical students.)

225. Biological and Cultural Basis of Human Behavior (2) II. Jensen, Crain Seminar—2 hours. Prerequisite: consent of instructor. Discussion readings of animal behavior (especially primates) and "primitive" cultures which are relevant in human behavior in our culture, including aggression, sexuality, parental roles, dominance, family and group structure. (SU grading only.)

226. Psychiatric Implications of Legal Intervention (2) I, II. Tippin, Bauer, Schuler Discussion—2 hours. Prerequisite: consent of instructor. The influence of laws on human behavior, and vice versa, will be explored. Particular emphasis on youth and juvenile court procedure. (HSU grading only for medical students.) (Same course as Community Health 226.)

229. Directed Group Study For Graduate Students (1-5) I, II, III, IV. The Staff (Tippin in charge) Hours to be arranged. Prerequisite: graduate standing and consent of instructor. Special group study for graduate students in the area of mental health and illness.

299. Special Study for Graduate Students (1-12) I, II, III, IV. The Staff (Tippin in charge) Hours to be arranged. Prerequisite: graduate standing and consent of instructor. Supervised independent study and research for graduate students. (SU grading only.)

Professional Courses

401. Family and Marital Counseling (2) III. Rockwell, Peplone-Rockwell Lecture—1 hour; discussion—2 hours. Prerequisite: medical students, or consent of instructor. Principles and techniques of family and marital therapy as conducted by the helping professional. Cases will be discussed. Audiovisual materials will be used. (HSU grading only for medical students.)

403. Medical Aspects of Human Sexuality (2) II, III. The Staff (Jensen in charge) Lecture—2 hours. Prerequisite: medical and graduate students, or consent of instructor. An integrated interdisciplinary study of human sexuality, its normal patterns and dysfunctions. Basic techniques of diagnosis and therapy for the general physician will be emphasized. There will be appropriate group teaching. (HSU grading only for medical students.)

406. Problems in American Health Care (2) III. DeFeccio-Good, Good Seminar—2 hours. Course will focus on popular health care beliefs and institutions in American society, the politics of American health care, and the relevance of those for clinical practice and the patient-physician relationship. (HSU grading only for medical students.)

407. Medicine in Non-Western Cultures (2) II. DeFeccio-Good, Good Seminar—2 hours. Course will review diverse forms of therapies in non-Western societies (Asian, Islamic, African, and among U.S. ethnic groups). The role of beliefs about physiology, disease, and treatment in constructing the experience of illness. (HSU grading only for medical students.)

420. Grand Rounds for Department of Psychiatry (1) I, II, III, IV. Tippin. Prerequisite: students of the School of Medicine or other qualified mental health professionals, with consent of instructor. One or one-and-one-half-hour weekly conferences at the Sacramento Medical Center of UCO for presentation of selected clinical cases: presentation of lecture and research reports. (HSU grading only for medical students.)

473. AntiSocial Behavior (3-19) I, II, III, IV. Tippin, Schuler. Prerequisite: consent of instructor. To be arranged: variable time commitment, and clinical assignment, and selected conferences. (HSU grading only for medical students.)

476. Antisocial Behavior (3-19) I, II, III, IV. Tippin, Schuler. Prerequisite: consent of instructor. To be arranged: variable time commitment, and clinical assignment, and selected conferences. (HSU grading only for medical students.)

Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Fundamentals of nuclear physics, chemistry, and biology into a comprehensive, didactic and practical fashion those fundamental and clinical sciences which are the basis for the practice of nuclear medicine and nuclear medical technology. (HSU grading only for medical students.)

409. Nuclear Medicine (3) I, II, III, IV. DeNardo, Kronh. Prerequisite: consent of instructor. (HSU grading only for medical students.)

Professional Courses

400A. Fundamental Nuclear Medicine (4) I. Kronh, Hines, G. L. DeNardo (in charge) Lecture—3 hours; laboratory—2 hours. Prerequisite: consent of instructor. Course is designed to cover in a comprehensive, didactic and practical fashion those fundamental and clinical sciences which are the basis for the practice of nuclear medicine and nuclear medical technology. (HSU grading only for medical students.)

409B. Fundamental Nuclear Medicine (4) II. S. J. DeNardo, Berman, Stalnach, G. L. DeNardo (in charge) Lecture—3 hours; laboratory—2 hours. Prerequisite: consent of instructor. Course is designed to cover in a comprehensive, didactic and practical fashion those fundamental and clinical sciences which are the basis for the practice of nuclear medicine and nuclear medical technology. (HSU grading only for medical students.)

401. Biomedical Radiochemistry (3) III. S. Joh, DeNardo, Kronh, Chen. Lecture—2 hours; laboratory—3 hours. Prerequisite: open to graduate students; consent of instructor. Course is designed to combine basic nuclear physics, chemistry, and biology into a comprehensive, didactic and practical fashion those fundamental and clinical sciences which are the basis for the practice of nuclear medicine and nuclear medical technology. (HSU grading only for medical students.)

498. Group Study in Nuclear Medicine (1-12) I, II, III, IV. The Staff (Raventos in charge). Prerequisite: consent of instructor. (HSU grading only for medical students.)

499. Research in Nuclear Medicine (1-12) I, II, III, IV. The Staff (Raventos in charge). Prerequisite: consent of instructor. (HSU grading only for medical students.)

Radiology—Diagnostic

Professional Courses

409A. Group Study in Diagnostic Radiology (1-12) I, II, III, IV. The Staff. Prerequisite: consent of instructor. (HSU grading only for medical students.)

499A. Research in Diagnostic Radiology (1-12) I, II, III, IV. The Staff. Prerequisite: consent of instructor. (HSU grading only for medical students.)

Radiology—Nuclear Medicine

Upper Division Courses

101. Biomedical Radiochemistry (3) III. S. J. DeNardo, Kronh
Medicine

(School of Veterinary Medicine)

Murray E. Fowler, D.V.M., Chairperson of the Department
Department Office, 2106 Medical Science 1A

Faculty

Alexander A. Ardans, D.V.M., M.S., Associate Professor
Kurt Benirschke, M.D., Clinical Professor (San Diego Campus)
Dale L. Brooks, D.V.M., Lecturer
Gary P. Carlson, D.V.M., Ph.D., Associate Professor
Larry D. Cowgill, D.V.M., Assistant Professor
Laurence R. Enos, Pharm.D., Lecturer
Murray E. Fowler, D.V.M., Professor
Fredric L. Frye, D.V.M., Lecturer
John S. Glenn, D.V.M., Ph.D., Assistant Professor
Roy V. Henrickson, D.V.M., Lecturer
Charles A. Hjerpe, D.V.M., Professor
Peter J. Ihrike, V.M.D., Assistant Professor
Humphrey D. Knott, D.V.M., Ph.D., Associate Professor
Gerald V. Ling, D.V.M., Associate Professor
Donald G. Low, D.V.M., Ph.D., Professor
Blaine McGowan, Jr., D.V.M., Professor
Ronald L. Muli, D.V.M., Ph.D., Lecturer
Nils C. Pedersen, D.V.M., Ph.D., Associate Professor
William R. Pritchard, D.V.M., Ph.D., J.D., Professor
Livio G. Raggi, D.V.M., Ph.D., Professor Emeritus
Sigmund T. Rich, D.V.M., Lecturer
Edward A. Rhode, D.V.M., Professor
Gary E. Rumbaugh, D.V.M., Lecturer
Charles J. Sedgwick, D.V.M., Assistant Professor
Bradford P. Smith, D.V.M., Assistant Professor
Anthony A. Stannard, D.V.M., Ph.D., Associate Professor
Ronald R. Strombeck, D.V.M., Ph.D., Associate Professor
William P. Thomas, D.V.M., Assistant Professor
James F. Wilson, D.V.M., J.D., Lecturer

Part-Time Clinical Faculty

Paul S. Chaffee, D.V.M., Assistant Clinical Professor
Lanny H. Cornell, D.V.M., Assistant Clinical Professor
Stephen J. Ettinger, D.V.M., Associate Clinical Professor
Norman L. Gates, D.V.M., M.P.H., Assistant Clinical Professor
Gary R. Kuehn, D.V.M., Assistant Clinical Professor
Robert R. Pensinger, D.V.M., Assistant Clinical Professor
Philip T. Robinson, D.V.M., Assistant Clinical Professor

James D. Russell, D.V.M., Assistant Clinical Professor

Courses in Medicine

Upper Division Course

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Fowler in charge) (P/NP grading only.)

Graduate Courses

270. Jurisprudence and Law for the Veterinarian (1) I. Pritchard
Lecture—1 hour. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Introduction to principles of veterinary medical jurisprudence and legal concepts pertinent to professional activities. (SU grading only for veterinary students.)

290. Seminar in Veterinary Medicine (1) I, II, III. The Staff (Fowler in charge)

298. Group Study (1-5) I, II, III. The Staff (Fowler in charge)
Prerequisite: student in School of Veterinary Medicine or consent of instructor. Group study in selected areas of the clinical sciences. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Fowler in charge) (SU grading only)

Professional Courses

401. Small Animal Clinics (1½ per week) I, II, III. The Staff (Ling in charge)
Laboratory—50 hours total. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for diagnoses, medical and surgical treatment of animals in the wards and outpatient clinic, including history taking, physical examination, laboratory tests, special diagnostic and therapeutic procedures, and consultations, under the direction of the senior staff. May be repeated for credit. (SU grading only.)

402. Large Animal Medicine (1½ per week) I, II, III. The Staff (Knight in Charge)
Laboratory—50 hours total. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of animals in the wards and outpatient clinic including physical examinations, history taking, laboratory tests, and consultations under the supervision of the senior staff. May be repeated for credit. (SU grading only.)

403. Small Animal Medicine (1½ per week) I, II, III. The Staff (Ling in charge)
Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of animals in the wards and outpatient clinic including physical examinations, history taking, laboratory tests, and consultations under the supervision of the senior staff. May be repeated for credit. (SU grading only.)

404. Herd Health Management (1½ per week) I, II, III. Hjerpe and McGowan in charge.
Laboratory—50 hours total. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of animals in the wards and outpatient clinic including physical examinations, history taking, laboratory tests, and consultations under the supervision of the senior staff. May be repeated for credit. (SU grading only.)

421. Veterinary Dermatology (1½ per week) I, II, III. Stannard
Laboratory—25 hours. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of animals in the wards and outpatient clinic including history taking, physical examinations, and diagnostic procedures under the direction of the staff dermatologist. (SU grading only.)

423. Pulmonary Diseases (1½ per week) I, II, III. Gillispie Laboratory—25 hours. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for assisting in handling and treatment of clinic cases and for learning the techniques of manual and chemical restraint of a wide variety of mammals, birds, reptiles, and fish. Medication problems, anesthetic techniques and surgical procedures will be discussed and practiced. (SU grading only.)

425. Zoo and Wildlife Medicine (1½ per week) I, II, III. Fowler Laboratory—25 hours. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Interns responsible for assisting in handling and treatment of clinic cases and for learning the techniques of manual and chemical restraint of a wide variety of mammals, birds, reptiles, and fish. Medication problems, anesthetic techniques and surgical procedures will be discussed and practiced. (SU grading only.)

491. Small Animal Grand Rounts (1½) I, II, III. The Staff (Ling in charge)
Discussion—1 hour. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, or consent of instructor. Interns and residents take an active part in the presentation and discussion of selected cases from the small animal clinic. May be repeated for credit. (SU grading only.)

492. Large Animal Grand Rounts (1½) I, II, III. The Staff (Knight in charge)
Discussion—1 hour. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, or consent of instructor. Interns and residents take an active part in the presentation and discussion of selected cases from the large animal and ambulatory clinics. May be repeated for credit. (SU grading only.)

493. Seminar in Veterinary Medicine (1) I, II, III. The Staff (Ling in charge)
Seminar—2 hours. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital. Seminars given by the faculty of the School of Veterinary Medicine in topics relating directly to the practice of clinical medicine and surgery. Interns and residents will assist in the presentation of seminar material. May be repeated for credit. (SU grading only.)

Medieval Studies

(College of Letters and Science)

Program Office, 912 Sproul Hall

Committee in Charge

Gerald Herman, Ph.D. (French), Committee Chairperson (Fall and Spring Quarters)
Dennis J. Dutiche, Ph.D. (Italian)
Robert J. Grigg, Ph.D. (Art)
James J. Murphy, Ph.D. (Rhetoric)
David A. Traill, Ph.D. (Classics)
Daniel Silvia, Ph.D. (English)

The Major Program

The major in Medieval Studies is designed to introduce you to the main features of European civilization during the period from the fall of Rome to the beginnings of the Renaissance. Medieval studies are inherently interdisciplinary. The program involves studies in history, art, philosophy, literature, drama, music, medieval languages, religion, rhetoric, and political theory.
Medieval Studies

A.B. Major Requirements:

Preparatory Subject Matter

Language proficiency is a necessity; courses in Latin and other European languages are strongly recommended; particularly for students planning to pursue graduate studies in the medieval field.

Depth Subject Matter

History, at least 12 units from History 1025, 121A, 121B, 121C, 201B

Literature: at least 16 units, including two courses from each of the following 16
(b) French 115A, 115B, 202A, 202B, 204A, 204B
(c) German 120, 121, 122, 249, 250, 255, 265
(d) Italian 113A, 113B, 115A, 115B, 139A, 139B, Spanish 225
(e) Russian 200, 220

Philosophy and religious, at least 8 units from Philosophy 105, 132, 145, 146, 190, 290; Religious Studies 102, 110

Arts and language, at least 8 units from Art 176A, 176B, 176C, 177A, 178A, 178B, 276, 278; Dramatic Art 156, 233A, 233B, French 201A; German 106, 200, 201, 202, 205; Music 114, 199, Rhetoric 110, 111; Russian 202

Political thought, at least one course from Political Science 115, 116, 118A, 213

Senior thesis, Medieval Studies 190

Total Units for the Major: 52

Prerequisites

See page 137 regarding preparation for graduate courses. Art 1B should be taken prior to enrolling in Art 278, and Music 4 and 21A or consent of instructor are required prior to enrolling in Music 114.

Major Advisors. W. M. Bowsky (History), D. J. Dutschke (Italian), G. Herman (French), J. J. Murphy (Rhetoric).

Courses in Medieval Studies

Lower Division Courses

20A. Early Medieval Culture (4) I. The Staff Lecture—3 hours; discussion—1 hour. Readings (in translation) in early medieval culture, such as the Codes of Justinian, the Confessions of St. Augustine, the Consolation of Philosophy of Boethius, Beowulf, the Nibelungenlied, and the Song of Roland.

20B. The Culture of the High Middle Ages (4) III. The Staff Lecture—3 hours; discussion—1 hour. Readings (in translation) in the culture of the high Middle Ages such as the Summa Theologiae of Thomas Aquinas, the Chronicles of Froissart, the Canterbury Tales of Chaucer, and the Divine Comedy of Dante.

NOTE: For key to footnote symbols, see page 138.

*20C. Medieval Transformations (4) III. The Staff Lecture—2 hours; discussion—1 hour, paper or oral presentation. Course deals with the great medieval transformations that took place before the Renaissance. Topics will be selected from various disciplines, such as literature, philosophy, religion, history, art, music, political thought, rhetoric, and other pertinent fields.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

120A. The Medieval World (4) I, II, III. The Staff (Chairperson in charge) Lecture—2 hours; discussion—1 hour; term paper. Course deals with selected themes from the Middle Ages; the fall of Rome to the beginning of the Renaissance. Subjects will vary from year to year and cover such topics as (A) The Monastic Orders; (B) Origins of the University; (C) The Seven Liberal Arts, and their Significance in the Middle Ages; (D) Family and Society; (E) Chivalry; and (F) Church and State.

190. Senior Thesis (4) I, II, III. The Staff Seminar—4 hours. Prerequisite: senior standing and major in Medieval Studies. Preparation of a research paper dealing with a selected aspect of medieval culture, under supervision of three members of the Committee in Charge.

197T. Tutoring in Medieval Studies (1-4) II, III. The Staff (Chairperson in charge) Seminar—2 hours. Prerequisite: courses 20A and 20B, upper division standing; consent of instructor and chairperson of curriculum committee. Tutoring in Medieval Studies 20A and 20B, including leadership in small discussion groups affiliated with the course. May be repeated for credit for a total of 6 units. (P/NP grading only.)

199. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Mexican-American (Chicano) Studies

College of Letters and Science

Program Office, 211 North Hall

Committee in Charge

Rufugio I. Rochin, Ph.D. (Agricultural Economics)
Committee Chairperson

Barbara J. Merino, Ph.D. (Education)

Douglas L. Minnis, Ed.D. (Education)

Adalizita S. Riddell, Ph.D. (Political Science)

Guillermo Rojas, Ph.D. (Spanish)

The Major Program

This interdepartmental major introduces the student to the Spanish language, linguistics, Mexican and Mexican-American history, culture and literature, and social sciences. The curriculum allows for flexibility to accommodate primary interests in bilingual education, community or social service, or advanced professional preparation.

Mexican-American (Chicano) Studies

A.B. Major Requirements:

Preparatory Subject Matter

Spanish 1 or 1A, 2 or 2A, 3, (or the equivalent) 0-18

Spanish 4A or 7A, 5 or 7B, 28 or 7C 12-14

Depth Subject Matter

Spanish 124, 126, 129, 135 38-40

One course from Spanish 131, 132, 133 16

One course from Linguistics 115, 150 or Education 151 3-4

History 169A, 169B, 169A or 169B 12

Political Science 168 4

Total Units for the Major 50-72

Recommended

Linguistics 1, 115 and 150 (above), American Studies 45, two courses from Spanish 8A, 8B, 9 (for non-native speakers of Spanish); English 2 (for native speakers of Spanish); two courses from American Studies 110, Sociology 124, 130; Anthropology 104, 105A, 139B, Spanish 106B, 132 and 133 (above), 300.

Further Study. If you are contemplating studies in a graduate or professional school you can, with the aid of an adviser, build a program around the discipline of your choice, i.e., Spanish or Spanish-American literature, history, or political science. If you are contemplating a career in bilingual education you should consult the Department of Education for information about the Teacher Credential Program (see also page 111).

Major Adviser. See Class Schedule and Room Directory.

Course in Chicano Studies

Lower Division Course

10. Introduction to Chicano Studies (4) III. The Staff Lecture—3 hours; discussion—1 hour. Analysis of the situation of the Chicano (Mexican-American) people, emphasizing their history, literature, political movements, education and related areas.

Microbiology

See Also Medical or Veterinary Microbiology

Microbiology (A Graduate Group)

JaRue S. Manning, Ph.D., Chairperson of the Group

Group Office, 156 Hutchison Hall

Graduate Study. The Graduate Group in Microbiology offers study and research leading to the
Military Science

M.A. and Ph.D. degrees. For information on the graduate study and undergraduate preparation for the program contact the graduate adviser or the Chairperson of the group. See also page 105.

Graduate Advisers. B. L. Beaman (Medical Microbiology); A. M. Buchanan (Veterinary Microbiology); S. G. Kust (Bacteriology); M. W. Miller (Food Science and Technology).

Course in Microbiology

Graduate Course

299. Research (1-12) I, II, III. The Staff Laboratory—variable. Research under the guidance of dissertation committee. (SU grading only.)

Military Science

(College of Letters and Science)

Philip J. Perles, Lieutenant Colonel, Chairperson of the Department
Department Office, 125 Gymnasium

Faculty

William L. Carlow, Captain, Assistant Professor
Mark J. Donald, Captain, Assistant Professor
Jay D. Johnson, Major, Associate Professor
George J. Mikosz, Captain, Assistant Professor
Philip J. Perles, Lieutenant Colonel, Professor
Robert J. Pope, Major, Associate Professor

Program of Study

The Military Science Department extends the educational opportunities and provides extracurricular activities which, when combined with a baccalaureate degree, qualifies a student for a commission in the Army Reserve or Regular Army. The objectives of the ROTC program is to educate young men and women to become officers who are capable of further development through active duty training and service in the Army of the United States. The program assist qualified students in all academic fields to prepare for positions of leadership in a military or civilian career. A continuing effort is made to assign graduates to military career fields aligned with their major field of study, individual capabilities and preferences. Active duty obligation for upper division ROTC will not exceed three years.

Department Programs

Students are enrolled in military science under one of two programs.

Four-Year Program

Students are enrolled in lower division for the first two years on a voluntary basis. No military obligation is accrued during completion of the lower division courses. Admission to the upper division is by application from those second-year lower division students who meet the academic, physical, and military aptitude requirements.

Upper division students receive $100 subsistence per month after executing a contract agreeing to complete the course and accept a commission if offered. The contract must be obtained prior to the student's 28th birthday. During the course all military science textbooks, uniforms and equipment are provided without cost. Students are trained at summer camp between their third and fourth years of the course. Camp training stresses the evaluation and practical application of tactical, technical and administrative procedures with particular emphasis on individual participation, leadership development and the capability to function effectively in positions of significant responsibility. Each cadet is paid half of a Second Lieutenant's pay during the period of the camp, plus travel expenses.

Breadth Requirements for Commissioning. In addition to the first and second year, students must complete 9 units of course work in the Humanities which will provide them the opportunity to think creatively and to write and speak effectively. In cases where such course work has been waived by their college, the Chairperson of Military Science may accept such waiver as a fulfillment of this requirement.

Third- and fourth-year students are required to complete 9 units in the Humanities, Natural Sciences, or Social Sciences outside of their major academic discipline. The breadth requirements as established by each of the colleges normally satisfies the above requirements for Commissioning. In the case of a student who is pursuing a highly specialized discipline with restricted opportunity to take electives, waivers may be granted.

Two-Year Program

This program is designed primarily for sophomores who have not had the opportunity to pursue lower division ROTC. Applications are accepted during the winter term of the year preceding enrollment in the two-year program. In lieu of lower division courses the applicant must successfully complete a six-week summer camp (which carries no obligation) conducted during the summer preceding enrollment in the upper division program. All other provisions explained above for the upper division course apply to the two-year program.

Scholarship Program

Four-year scholarship students are selected in nationwide competition. Successful candidates receive all tuition, fees, books, uniforms and $100 subsistence per month.

One-, two- and three-year scholarships with similar benefits are awarded by the Department of the Army to outstanding students enrolled in the ROTC program.

Leadership Laboratory

Students enrolled in ROTC for the purpose of pursuing a commission are required to participate in approximately 15 hours of leadership laboratory per quarter in addition to classroom instruction. No academic credit will be given for leadership laboratory. In addition, these students are required to take ½ unit of Physical Education 1 (rifle marksmanship) during any quarter of their freshman or sophomore years, and 1 unit of Physical Education 10 (physical conditioning) during the Spring Quarter preceding attendance at ROTC Advanced Summer Camp.

Air Force ROTC

The UC Davis campus does not offer Air Force ROTC, however, the Department of Aerospace Studies (AFROTC) on the UC Berkeley campus offers upper division students the opportunity to qualify for a commission in the Air Force through cross registration at Berkeley.

Students contemplating application for this two-year program must have two years of academic studies (undergraduate, graduate or a combination) remaining with the University following the summer in which they intend to complete the AFROTC Field Training. Application should be made as early as possible in the academic year preceding the summer training period.

Two-year scholarships are available to qualified students. Tuition, fees, book allowance, and a $100 monthly living allowance is paid all recipients.

Students qualified for, and desirous of flight training as an Air Force officer will be provided training without charge during their final year in the AFROTC program.

Selection for the two-year program is based upon aptitude and interest in becoming an Air Force officer, and potential for leadership and command. Entrance is also subject to the approval of the Department Chairperson. Those students accepted into the Professional Officer Course are provided with uniforms, texts and $100 per month.

For details on the program, contact the Department staff, 10 Callaghan Hall, University of California, Berkeley, 94720, or telephone (415) 642-3672. For information on cross-enrollment procedures, contact the Admissions Office on this campus.

Academic Credit

College of Letters and Science. The Bachelor of Arts degree requires the completion of 180 units. Military Science courses are counted in the allowance for electives.

College of Agricultural and Environmental Sciences. The Bachelor of Science degree in Agriculture requires the completion of 180 units. All units of upper and lower division military science courses combined may be accredited toward this requirement.

College of Engineering. Up to six units of Military Science may be accredited as free electives toward the requirement of the College of Engineering toward the Bachelor of Science degree.

School of Veterinary Medicine. The number of Military Science units acceptable toward the Bachelor of Science degree in Veterinary Medicine is on an individual program basis approved by the Dean of the School. Graduates with the D.V.M. degree may apply for direct commission in the United States Army Veterinary Corps.

Courses in Military Science

Lower Division Courses

2. Introduction to Military Science (1) I. The Staff Lecture—1 hour. Discussion of nature of armed conflict, traditions of the military service, and principles of warfare with emphasis on examples drawn from both classical and contemporary conflicts.

3. The Modern Army (2) III. The Staff Lecture—2 hours. The growth and development of the U.S. Army. Emphasis on the evolution of personnel, logistics, and operational organization and policies.

4. Principles of Basic Tactics (1) II. The Staff Lecture—1 hour. Principles of basic operations, tactics,
and military combat formations, with emphasis on the individual and small unit. Relationship between the small unit and parent organization.

21. Fundamentals of Military Communications Systems (1) (1) III. The Staff Lecture—1 hour. Introduction to the elements of military communications systems and their application to civil and military operators.

23. Military Operations, Maps and Aerial Photos (2) I. The Staff Lecture—2 hours. Prerequisite: course 4 or consent of instructor. Analysis and application of the principles of offensive and defensive warfare as applied to small tactical units, interpretation and application of military map systems, and aerial photography.

26. Military History (2) I. The Staff Lecture—2 hours. The strategy and tactics of selected military engagements.

Upper Division Courses
131. Principles of Military Instruction (2) III. The Staff Lecture—2 hours. Principles and practice in fundamentals applicable to military instruction to include planning, presentation and evaluation. Student's presentation exemplifying lecture material.

132. Theory of Leadership (2) I. The Staff Lecture—2 hours. Principles and theory of leadership; individual and group solution of leadership problems common to small groups.

133. Advanced Military Operations (2) II. The Staff Lecture—2 hours. Prerequisite: course 23 or consent of instructor. Advanced study of military operations, including analysis of the functions of primary and supporting branches and commands.

141. The Military Team (2) II. The Staff Lecture—2 hours. Prerequisite: course 133 or consent of instructor. Fundamentals and dynamics of the military team to include command and staff structure, functions and operations at division and corps level. Analysis of logistical operations and intelligence collection and operation.

142. Managerial Principles and Theories (2) I. The Staff Lecture—2 hours. Military administrative principles and personnel management theories, including the military occupational structure, the administration of military justice.

143. Unconventional Warfare (2) III. The Staff Lecture—2 hours. Prerequisite: course 141. Analysis of unconventional warfare, to include an examination of insurgency and counterinsurgency operations in the world arena.

Music

(College of Letters and Science)

Sydney R. Charles, Ph.D., Chairperson of the Department
Department Office, 112 Music Building

Faculty
Robert S. Bloch, M.A., Associate Professor
Sydney R. Charles, Ph.D., Professor
Dayong Chung, M.M., Associate Professor
Duane L. Cunningham, M.A., Lecturer
Andrew D. Frank, M.A., Assistant Professor
D. Kern Holoman, Ph.D., Associate Professor
Bruce A. Lemott, M.A., Lecturer
Albert J. McNell, M.S., Professor

NOTE: For key to footnote symbols, see page 138.

Jerome W. Rosen, M.A., Professor
Richard G. Switt, M.A., Professor
William E. Valente, M.A., Assistant Professor

The Major Program
The Department of Music offers a unique program of study for a career in music as part of a broadly-based liberal arts education leading to the Bachelor of Arts degree.

The student engages in the study and performance of music of all styles and periods including those of the present. Options are provided for those students with special interests in composition, history, teaching, and performance, and for those who plan to continue in graduate work in music. At the present time, the Department of Music offers a Master of Arts degree with emphasis on composition or music history, and a Master of Arts in Music degree with emphasis on the teaching of music.

Music

A.B. Major Requirements:

Preparatory Subject Matter 42

Music 4A, 4B, 4C, 5A, 5B, 5C, 21A, 21B

Music 30 (or the equivalent determined in consultation with major advisor), one year

Depth Subject Matter 36

Music 104A, 104A, 104B

Music 130 (or the equivalent determined in consultation with major advisor), one year

Or at least 20 units at a minimum of 14 units must be from course series 113A–119

At least 1 additional upper division unit in Music to achieve a total of 36 upper division units (may include upper division performance course)

Performance 14

At least 14 units from Music 41, 42, 43, 44, 45, 46, 141, 143, 144, 145, 146

Piano Skills 0–3

Music 407A, 407B, 405C (required for students with proficiency in piano playing)

Total Units for the Major 92–95

Beginning and transfer students must take an examination in piano playing. Sufficient pianistic ability to perform four-part choral and compositions comparable in difficulty with The Little Preludes of Bach is prerequisite to upper division courses in the major. Students with deficiencies will be required to complete the Music 405 sequence. Students transferring from other colleges should take the Placement Examination and consult with departmental major advisors before enrolling in any music course.

Foreign Language Requirement. Attention is called to the requirements in foreign languages for higher degrees in music: a reading knowledge of French or German for the M.A. degree in both composition and musicology. Undergraduates contemplating advanced study in music should prepare to satisfy these requirements as they proceed to the bachelor's degree.

Teaching Credential Subject Representative. A. J. McNell. See page 111 for the Teacher Education Program.

Graduate Study. The Department of Music offers programs of study and research leading to the M.A. and M.A.T. degrees. Detailed information regarding graduate study may be obtained from the Graduate Adviser.

Graduate Adviser. R. G. Switt.

Courses in Music

Lower Division Courses

3A-3B. Introduction to Music Theory (4-4-4) I. Frank; II–III. Valente Lecture—3 hours; laboratory—1 hour. Fundamentals of music theory, ear-training, harmony, counterpoint and analysis directed toward the development of listening and writing techniques. Course 3A is prerequisite to course 3B. For the general student.

4A-4B-4C. Elementary Theory (5-5-5) I–II–III. Swift; I, Valente Lecture—5 hours. Development of writing and listening techniques through the study of music fundamentals. Ear-training, harmony, counterpoint and analysis. Course 3A is prerequisite to course 3B.

5A-5B-5C. Intermediate Theory (4-4-4) I–II–III. Valente Lecture—4 hours. Prerequisite: course 4A. Intermediate tonal counterpoint and harmony.

10. Introduction to Musical Literature (4) I, II, III. Frank, Lamott, Holoman Lecture—3 hours; listening section—1 hour. An introduction to composers and master styles of Western music. Lecture, listening sessions, and selected readings. For non-majors.

21A-21B-21C. History and Literature of Music (4-4-4) I–II–III. Lamott Lecture—3 hours; listening section—1 hour. Prerequisite: course 4C. The history of music from antiquity to the present.

30. Applied Study of Music Literature: Intermediate (1) I, II, III. The Staff (Jennings in charge) Performance instruction—1 hour. Prerequisite: admission by audition only; ability to perform scales and short compositions from the standard repertoire required. Class organization, arrangement, by section, in the standard orchestral instruments, or in voice. Required for music majors; recommended for those preparing for a teaching credential in music. May be repeated for credit. (P/NP grading only.)

41. University Symphony (4) I, II, III. Holoman Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal, and performance of music from the orchestral literature. May be repeated for credit. (P/NP grading only.)

43. University Concert Band (4) I, II, III. Valente Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal, and performance of music for band. May be repeated for credit. (P/NP grading only.)

275
44. University Chorus (2) I, McNeil; II, Ill., Rosen. Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University. Rehearsal and performance of choral music. May be repeated for credit. (P/NP grading only.)

45. Early Music Ensemble (2) I, II, Ill., Lamott. Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of Medieval, Renaissance, and Baroque music for vocal and instrumental ensembles. May be repeated for credit. (P/NP grading only.)

46. Chamber Music Ensemble (2) I, Charles; II, Ill., Chung. Rehearsal—3 hours; student practice—1 hour. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/NP grading only.)

98. Special Study for Undergraduates (1-5) I, II, Ill. The Staff (Charges in charge). (P/NP grading only.)

Upper Division Courses

104A-104B-104C. Advanced Theory (4-4-4) I-II-III. Rosen. Lecture—4 hours. Prerequisite: course 5C. Twentieth-century compositional procedures: analyses and projects in composition.

*107A-107B-107C. Electronic Music (2-2-2) I-I-II. Pushina. Laboratory—6 hours. Prerequisite: consent of instructor; limited enrollment with priority to major students. Composition of electronic music using the Buchla synthesizer. Only 2 units count toward the major.

108A-108B. Orchestration (2-2) I-II. Lecture—2 hours. Prerequisite: course 5C. Techniques of orchestration from study of basic instrumental techniques to analysis of orchestral scores and scoring for various instrumental combinations.

110A. The Music of a Major Composer: Beethoven (4) II. Holoman. Lecture—3 hours, listening section—1 hour. The work of Beethoven will be studied in the context of his time and his contemporaries. Lectures, listening sections, and selected readings. For non-majors. Offered in odd-numbered years.

*110B. The Music of a Major Composer: Mahler (4) II. Valente. Lecture—3 hours; listening section—1 hour. The work of Mahler will be studied in the context of his time and his contemporaries. Lectures, listening sections, and selected readings. For non-majors. Offered in even-numbered years.

111. Choral Conducting (2) II. McNeil. Lecture—2 hours. Prerequisite: course 5C. Study of the principles and techniques of conducting choral ensembles.

112. Instrumental Conducting (2) II. Chung. Lecture—2 hours. Prerequisite: course 5C. Principles and techniques of conducting instrumental ensembles.

*113A. Music of Non-Western Civilizations (2) I. McNeil. Lecture—2 hours; listening—1 hour. Prerequisite: course 21A. Study of the native music of Asia. Offered in even-numbered years.

*113B. Music of Non-Western Civilizations (2) II. McNeil. Lecture—2 hours; listening—1 hour. Prerequisite: course 21A. Study of the native music of Africa and the Western Hemisphere. Course 113A is not prerequisite to 113B. Offered in even-numbered years.

114. Music of the Middle Ages (4) II. Charles. Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the Middle Ages.

*115. Music of the Renaissance (4) II. Charles. Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the period from 1430-1600.

117. Music of the Classical Period (4) II. Swift. Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the eighteenth century.

119. Music of the Twentieth Century (4) II. Swift. Lecture—3 hours; discussion—1 hour. Prerequisite: course 21C. Studies in the music and styles of the twentieth century.

130. Applied Study of Music Literature: Advanced (1) I, II, III. The Staff (Charges in charge). Performance instruction—1 hour. Prerequisite: by arrangement with instructor; student must have completed Music A, B, C, or equivalent. May be repeated for credit. (P/NP grading only.)

141. University Symphony (2) I, II, III. Holoman. Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal, and performance of music from the orchestral literature. May be repeated for credit. (P/NP grading only.)

143. University Concert Band (2) I, II, III. Valente. Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music for band. May be repeated for credit. (P/NP grading only.)

144. University Chorus (2) I, II, III. McNeil; II, III. Rosen. Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University. Rehearsal and performance of choral music. May be repeated for credit. (P/NP grading only.)

145. Early Music Ensemble (2) I, II, III. Lamott. Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of Medieval, Renaissance and Baroque music for vocal ensemble and instrumental ensembles. May be repeated for credit. (P/NP grading only.)

146. Chamber Music Ensemble (2) I, II, III. Chung. Rehearsal—3 hours; student practice—1 hour. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Charges in charge). Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Charges in charge). (P/NP grading only.)

Graduate Courses

200A-200B. Music Research (4-4-4) I-II. Charles. Seminar—3 hours. Survey of basic materials for music research. Selected projects.

*200C. Notation (4) III. Charles. Seminar—3 hours. Study of selected notation practices.

203A-203B-203C. Composition (4-4-4) I-II-III. Swift. Seminar—3 hours. Technical projects and free composition.

240A-240B-240C. Techniques of Analysis (4-4-4) I, II, III. Charles Seminar—3 hours. Analysis and technical analysis techniques as applied to music of all historical style periods.

291A-291B-291C. Topics in Music History (4-4-4) I-II-III. Charles. Seminar—3 hours. Studies in selected areas of music history and theory.

29L. Individual Study (2-5) I, II, III. The Staff (Charges in charge). Special studies and projects in music composition or music history. (S/U grading only.)

Teaching Methods Courses

Instrumental Methods. The courses in this series consider methods of teaching orchestra and band instruments, and include repertory and program planning for secondary schools.

*300. The Teaching of Music (3) III. The Staff (McNeil in charge). Lecture—3 hours. Prerequisite: course 1 or the equivalent. Methods of teaching music in grades K-6.

301. The Teaching of Music (3) II, McNeil. Lecture—3 hours. Prerequisite: course 5C (or the equivalent). Methods of teaching music in grades 7-12.

321A-321B. Stringed Instruments (1-1) I-II. Cunningham. Discussion—2 hours. Prerequisite: course 4C.

*322. Brass Instruments (2). Discussion—2 hours. Prerequisite: course 4C.

*323A-323B. Woodwind Instruments (1-1) I-II. Discussion—2 hours. Prerequisite: course 4C.

Professional Course

405A-405B-405C. Elementary Piano (1-1-1) I-II-III. Laboratory—2 hours. Prerequisite: limited enrollment with priority given to music majors. Designed for students requiring training to meet the minimal piano requirements for the major in music. (P/NP grading only; deferred until completion of sequence.)

Native American Studies

(College of Agricultural and Environmental Sciences)

Faculty

See under the Department of Applied Behavioral Sciences.

The Major Program

The Native American Studies major is designed to affect the lives of American Indian people as directly as possible. In order to accomplish this the major is designed to prepare you to: (1) work with Indian people as community service personnel, teachers, tribal administrators, etc.; (2) understand Indian values and problems; (3) develop and creative products directly usable by Indian people or by schools and agencies serving Indian people; (4) apply results of past experiences or research to finding solutions to the many problems faced by Indian communities; (5) further creative development of Indian people through innovations within the context of Indian artistic and musical traditions; and (6) enter into graduate programs in Native American Studies or in related fields. In consultation with the Native Amer-
Native American Studies

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable.)

Preparatory Subject Matter

UNITS

Introduction to native American studies (Native American Studies 1)** 36

Native American experience (Native American courses 20)** 4

Native American art (Native American Studies 33)** 4

Inquiry courses which develop intellectual skills in: scientific methods, research methods, statistics, logical thinking, and systems analysis 4

Creative expression courses which explore and develop creative powers (e.g., art, music, dance, design, etc.) 4

Personal and social behavior courses which build an understanding of the dynamics of human relationships from the individual to the international level (e.g., psychology, sociology, anthropology, literature, communication, etc.) 8

Ecological and environmental studies courses which build an understanding of the dynamics of human relationships from the individual to the international level (e.g., life science, earth science, environmental science, etc.) 8

Depth Subject Matter

UNITS

Native American Ethno-historical Studies (Native American Studies 130A-130B-130C) 12

Native American Community Development (Native American Studies 161A) 4

Field experience in Native American studies (Native American Studies 190) 12

Native American studies senior project (Native American Studies 196) 5

Individualized program to be determined by the student and the Native American Studies Major Review Committee. (Minimum of 20 units shall be in a primary field of specialization) 36

Breadth Subject Matter

UNITS

Additional inquiry courses 8

Additional creative expression courses 8

Additional personal and social behavior courses 4

Additional ecological and environmental studies courses 4

Additional units from the above four categories 8

Unrestrictive Electives 43

Total Units for the Major 180

Related Undergraduate Major. Concentration in Native American Studies is also available through the Applied Behavior Sciences major.

American History and Institutions. This University requirement can be satisfied by any one of the following Native American Studies courses with the approval of the Native American Studies Major Review Committee.

NOTE: For key to footnote symbols, see page 138.

111. Native American Curriculum Development (4). Ill. Longfish. Lecture—2 hours; seminar—2 hours. Prerequisite: course 110 or consent of instructor. The study and evaluation of existing Native American curricula and the design and preparation of new curricula and materials. Offered in even-numbered years.

112. History and Culture of the Five Civilized Tribes (4). II. Hutchison. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 20 or consent of instructor. History and culture of the Five Civilized Tribes and the people found in the Southeastern and Eastern parts of the U.S., called the “Five Civilized Tribes.”

113. Navajo History and Culture (4). III. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or consent of instructor. Introduction to the history and culture of the Navajo people and their traditional environment. Attention will be given to both ancient and modern time periods.

116. Native American Tribal Governments (4). II. Longfish. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 20 or consent of instructor. Intensive study of selected Native American tribal Governments, confederations, alliances, and systems.

124. Contemporary Affairs of Native Americans in California (4). Ill. Longfish. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 20 or consent of instructor. Intensive study of selected Native American tribal Governments, confederations, alliances, and systems.

130A. Native American Ethno-historical Development (4). II. Longfish. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 20 or consent of instructor. Intensive study of Native American Ethno-History in the United States. Offered in odd-numbered years.

130B. Native American Ethno-historical Development (4). II. Forbes. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 20 or consent of instructor. Intensive study of Native American Ethno-History in the United States. Offered in odd-numbered years.

130C. Native American Ethno-Historical Development (4). II. Forbes. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 20 or consent of instructor. Intensive study of Native American Ethno-History in the United States. Offered in odd-numbered years.

140. Research Analysis in Native American Studies (4). II. Forbes. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 10, 20, and honors in the major. Analysis of Native American systems of values and how these values translate into actual behavior, attention to the problem of interpreting traditional values in the twentieth century and the
Nematology; Nutrition

possible impact of native values in modern societies. Offered in odd-numbered years.

157. Native American Religion and Philosophy (4) Ill. Forbes, Hutchison. Longfish Lecture—3 hours; discussion—1 hour. Prerequisites: course 1 or 20 or consent of instructor. Religious and philosophical thinking of Native American people. Credit is given for 108. Anthropology 108. Planned in economic development from the reservation standpoint, concentrating on those institutions located on Indian reservations.

181A. Native American Community Development (4) I. Adams Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 and/or 20, 181A, Anthropology 108. Planning in economic development from the reservation standpoint, concentrating on those institutions located on Indian reservations.

*170. Native American Perception (4) II. Hutchison Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 20 recommended. Study of the differences in perception between Native Americans and the dominant society.

*171. Counseling the Native American (4) II. Hutchison Lecture—3 hours; discussion—1 hour. Theory and practice of counseling to reveal the subjective, cultural, and interfering differences between Native Americans and the dominant culture.

180. Native American Woman (4) III. Hutchison Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 20 recommended. Foundations of the feminine personality including the psychological development of the Indian girl, life stages of mature womanhood and the individual feminine ego experience.

181A-181B-181C. Native American Literature (4-4-4) I-II-III. Hutchison Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 20. Analysis of works by and about Native Americans including novels and autobiographies; analysis of Native American poetry, oral literature, songs, and tales. A. The novel and fiction; B. Non-fiction works by Native authors; C. Traditional literature and poetry. Offered in even-numbered years.

190. Seminar in Native American Studies (3) II. The Staff (Rising in charge) Discussion—2 hours. Prerequisite: senior standing. Seminar in critical issues faced by Native American people. (P/NP grading only.)

195. Field Experience in Native American Studies (12) I, II, III. Rising in charge. Prerequisite: major in Native American Studies and consent of instructor; courses 181A-181B and Applied Behavioral Sciences 151-152 recommended. Internship with governmental, community, and grassroots groups, application of knowledge learned in other courses.

196. Senior Project in Native American Studies (1-5) I, II, III. Rising in charge. Prerequisite: major in Native American Studies and consent of advisor. Guided research or creative activity leading to completion of senior thesis or project. May be repeated for credit, for a maximum of 10 units. (P/NP grading only.)

197T. Tutoring in Native American Studies (1-5) I, II, III. The Staff (Rising in charge) Prerequisite: consent of major committee; upper division standing with major in Native American Studies. Supervising tutoring in community. (P/NP grading only.)

197CC. Community Tutoring in Native American Studies (1-5) I, II, III. The Staff (Rising in charge) Prerequisite: consent of major committee; upper division standing with major in Native American Studies. Supervising tutoring in community. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Rising in charge) Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Rising in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Nematology

(College of Agricultural and Environmental Sciences)

Armand R. Maggenti, Ph.D., Chairperson of the Division
Division Office, 488 Hutchison Hall (752-1403)

Faculty

Benjamin F. Lowensby, Ph.D., Professor
Armand R. Maggenti, Ph.D., Professor
Dewey J. Raski, Ph.D., Professor
David R. Vigilchuck, Ph.D., Lecturer

Related Major Program. See the major in Entomology (page 214).

Graduate Study. Graduate degrees specializing in Nematology are offered through the Department of Entomology or the Department of Plant Pathology.

Courses in Nematology

100. General Plant Nematology (4) I. Lowensby Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1 or 10; lower division students with consent of instructor only. An introduction to the classification, morphology, biology, and control of the nematodes attacking cultivated crops.

110. Introduction to Nematology (2) II. Maggenti Lecture—2 hours. The relationship of nematodes to man's environment. Classification, morphology, biology, ecology, distribution, and importance of nematodes occurring in water and soil as parasites of plants and invertebrate animals.

130. Principles of Nematode Control (4) III. Lear (Plant Pathology) Lecture—2 hours; laboratory—6 hours. Prerequisite: course 100, Chemistry 88 and Mathematics 13 recommended. Principles and techniques used for development of data and their interpretation as the basis for control of plant parasitic nematodes. The biological, physical, and chemical factors influencing nematodes and their control are studied in laboratory and greenhouse. Some field trips required.

Graduate Courses

*220. Principles and Techniques of Nematode Taxonomy and Morphology (4) I. Raski Lecture—2 hours; laboratory—6 hours. Prerequisite: course 100. Analysis and evaluation of the techniques used in the collection, extraction, and preparation of specimens, free-hand and histologic sections; presentation of informative material. Offered in even-numbered years.

*222. Nematode Pathogenicity to Plants (3) II. Lowensby Lecture—1 hour; laboratory—6 hours. Prerequisite: course 100. Investigations of problems in proving nematode pathogenicity; the role of nematodes in plant diseases. Offered in odd-numbered years.

*225. Nematode Taxonomy and Comparative Morphology (5) II. Maggenti Lecture—2 hours; laboratory—6 hours; 3 hours of labora- tory to be announced. Prerequisite: course 220. The tax- onomy, morphology, and comparative morphology of soil, freshwater, and marine nematodes as well as select plant and animal parasites. Offered in even-numbered years.

290. Seminar (1) II. The Staff (Maggenti in charge) Seminar—1 hour. (P/NP grading only.)

298. Group Study (1-5) I, II, III. The Staff (Maggenti in charge) Selected topics in Nematology. (P/NP grading only.)

299. Research (1-12) I, II, III. The Staff (Maggenti in charge) (P/NP grading only.)

Neurology

See Medicine

Neurosurgery

See Medicine

Nutrition

(College of Agricultural and Environmental Sciences)

William C. Weir, Ph.D., Chairperson of the Department
Department Office, 129 Everson Hall (752-6650)

Faculty

Nemat O. Botnai, M.D., Professor
Nancy L. Canady, Ph.D., Assistant Professor
Andrew J. Clifford, Ph.D., Associate Professor
Louis E. Grivetti, Ph.D., Assistant Professor
Barbara O. Schneider, Ph.D., Assistant Professor

Related Major Program. See the major in Nutrition, Food Science and Technology.

Judith S. Stern, Sc.D., Associate Professor
Helene Swensert, Ph.D., Lecturer
Aloys L. Tappel, Ph.D., Professor
Joyce A. Vermeer, Ph.D., Assistant Professor
William C. Weir, Ph.D., Professor
Gaylord P. Whitlock, Ph.D., Lecturer
Frances J. Zeman, Ph.D., Professor

Graduate Study. Programs of study leading to the M.S. and Ph.D. degrees are available in Nutrition. For information on graduate study contact the graduate adviser.
Courses in Nutrition

Lower Division Courses

10. Discoveries and Concepts in Nutrition (3) II, III.
Weir
Lecture—3 hours. Nutrition as a science; historical development of nutrition concepts; properties of nutrients and foods. Not open for credit to students who have taken an upper division course in nutrition.

20. Food and Culture: an Introduction to Culture, Diet, and Culinary (4) III. Grivetti
Lecture—3 hours; discussion—1 hour. Prerequisite: Anthropology 2, Geography 2, and Nutrition 10 recommended. Historical and contemporary overview of culture, food habits, and diet; exploration of the major themes in food habit research; minority food habits; origins and development of dietary practices. (Same course as Food Science and Technology 20.)

93. Public Issues in Nutrition and Food Science (1) II.
Weir, Schweigt (Food Science and Technology)
Seminar—1 hour. Faculty and invited guest speakers will present topics in the area of nutrition and food science which are currently subjects of public debate. Interacted as an introduction to Nutrition and Food Science for students new to the campus. (Same course as Food Science and Technology 93.) (PINP grading only.)

99. Individual Study for Undergraduates (1-5) III.
Stem
Prerequisite: consent of instructor. To provide opportunity for students to undertake individual projects in library study, laboratory study, field study, and information analysis in nutrition. (PINP grading only.)

Upper Division Courses

101. An Introduction to Nutrition and Metabolism (5) I, II, III.
Canaday
Lecture—6 hours. Prerequisite: Chemistry 8B; Physiology 101B. Not open for credit to students who have taken courses 110 or 111. An introduction to the metabolism of protein, fat, and carbohydrate; the role of vitamins and minerals; food utilization.

Canaday
Lecture—3 hours. Prerequisite: course 101 or a course in either biochemistry or physiological chemistry. Not open for credit to students who have taken courses 110 or 111. A practical approach to the problems of meeting the nutritional needs of healthy people throughout the life cycle.

102L. General Nutrition Laboratory (1) II.
Canaday
Discussion—1 hour; laboratory—2 hours. Prerequisite: course 101 or 102 (should be taken concurrently). Laboratory study of the principles of nutrition; study of the nutrients and their chemical and physiological roles in metabolism. Not open for credit to students who have taken course 111L.

103. Animal Nutrition and Feeding (4) I, Garrett (Animal Science)
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 8B. The basic principles of animal nutrition as they are applied to livestock feeding; the composition and uses of feedstuffs in their relation to the feeding of farm animals and poultry; the balancing of rations.

110. Principles of Nutrition (6) I, II. Robinson (Animal Science)
Lecture—5 hours. Prerequisite: Biochemistry 101B; a course in physiology or zoology. Fundamental principles of the nutrition of man and other animals. The nutrients in relation to physiological processes of growth, maintenance, and reproduction. Nutritional disorders.

111. Nutrition (5) II, III.
Stern
Lecture—5 hours. Prerequisite: course 110. Nutrition of man; critical study of nutrient requirements at various phases of the life cycle.

111L. Nutrition Laboratory (1) II, III.
Stern Laboratory—3 hours. Prerequisite: course 110. Laboratory study of the chemical and physiological roles of nutrients in metabolism; use of experimental animals in determining the essentiality and function of nutrients.

112. Nutritional Considerations of Food Processing (3) II. Schnell
Lecture—3 hours. Prerequisite: Biochemistry 101A-101B or understanding of the biochemical function of nutrients. The metabolism and availability of nutrients from foods. The use of diet processing techniques on the retention of nutrients in foods. Students having had course 102 or 110 may receive only 2 units of credit for this course.

114. Nutrition and Development (4) II. Hurey
Lecture—4 hours. Prerequisite: course 110 or 112. Role of nutritional factors in embryonic and postnatal development.

118A–116B. Diet Therapy (1) I, II.
Zeman, Clifford, Stem
Lecture—3 hours. Prerequisite: course 111 or 112. Physiology 110 (or the equivalent). Biochemical and physiological bases for therapeutic diets. Problems in planning diets for normal and pathological conditions.

118AL. Practicum in Diet Therapy (2) I, Zeman
Laboratory—3 hours. Prerequisite: course 116B (may be taken concurrently). Planning and evaluation of therapeutic diets; problem solving in patient education. Coordinated with course 118A. (Deferred grading only pending completion of 118AL–118B sequence.)

118BL. Practicum in Diet Therapy (2) II, Vermeersch
Laboratory—3 hours. Prerequisite: course 118A. (Deferred grading only pending completion of 118AL–118B sequence.)

117. Experimental Nutrition (5) I, Clifford
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 111 or 112, Biochemistry 101B or Physiological Science 101B, a laboratory course in nutrition or biochemistry. Methods of assessing nutritional status. Application of chemical, microbiological, chromatographic and enzymatic techniques to current problems in nutrition.

118. Community Nutrition (3) II, Vermeersch
Lecture—3 hours. Prerequisite: course 102 or 111. Examination of nutrition problems in contemporary communities. Consideration of social, political, and economic forces in the development and implementation of community nutrition programs. Principles and methods of nutrition education and evaluation of community nutrition programs and resources.

119. Field Work in Community Nutrition (4) I, II, III.
Canaday, Grivetti, Vermeersch
Lecture—2 hours; six field work per week. Prerequisite: course 118 (may be taken concurrently) or consent of instructor. Introduction to field work in community nutrition; development of basic skills in assessing nutritional problems; application of basic skills to community nutrition programs serving selected sub-groups, especially young children, adolescents, adults, the elderly, and minorities.

120. Food Habits and Their Nutritional Implications (4) III.
Grivetti
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division or graduate standing: upper division course in nutrition or Biochemistry 101B; 20 recommended. Advanced themes exploring food habits and their nutritional implications; pica, toxicants naturally occurring in food; ethnic diet; food systems, dietary codes, overview and case histories.

121. Technical Animal Nutrition (2) II, Heitman and Bath (Animal Science)
Lecture—2 hours. Prerequisite: course 110. The application of knowledge of nutrition to the feeding of livestock. Evaluation of the nutrient content and feeding value of feedstuffs and formulated rations. Feeding standards and nutrient requirements for physiological functions. Ration formulation, cost, and ration ratios.

122. Ruminant Nutrition and Digestive Physiology (3) III.
Morrise and Sky (Animal Science)
Lecture—3 hours. Prerequisite: Physiology 110, Biochemistry 101A-101B or Physiological Sciences 101A-101B; Bacteriology 2 recommended. Study of nutrient utilization as influenced by the unique aspects of digestion and fermentation in the ruminant.

122L. Ruminant Nutrition Laboratory (2) III, Morrise and Sky (Animal Science)
Laboratory—3 hours. Prerequisite: course 122 (concurrently). Students will conduct experiments in small groups and attend demonstrations on topics peculiar to ruminant digestive physiology and nutrition. The laboratory will deal with topics similar to those covered in lectures.

123. Nutrition of Non-Ruminant Animals (3) III, Kratzer (Animal Sciences)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 103 or course 110. Application of nutrition principles to the feeding of non-ruminant species, including swine, poultry, and laboratory animals.

125. Comparative Nutrition (2) I, Weir
Discussion—2 hours. Prerequisite: course 110 or the equivalent. Comparison of the nutritive needs of various species of animals, wild and domestic. Emphasis is on differences in requirements and their explanation. A term paper based on a literature search of nutrition of a selected species will be required.

129. Journalistic Practicum in Nutrition (2) I, II, Vermeersch
Discussion—2 hours. Prerequisite: Nutrition II or Nutrition 116 and Nutrition 116A; course in written or oral expression. Critical analysis and discussion of current, controversial, and important nutrition topics; use of journalistic techniques; emphasis on interpretation of scientific findings for the lay public. Students will be required to write several articles for campus media. Course may be repeated once for credit.

190. Proseminar in Nutrition (1-5) II, III, I, The Staff (Weir in charge)
Seminar—1 hour. Prerequisite: senior standing; course 102 or 111. Discussion of human nutrition problems. Each term will cover different emphasis among experimental, clinical, and dietary problems of community, national, and international scope. May be repeated for credit with consent of instructor. (PINP grading only.)

197T. Tutoring in Nutrition (1-2) III.
The Staff (Weir in charge)
Discussion—1 hour; laboratory—3 or 6. Prerequisite: Nutrition, Dietetics, Community Nutrition or related major. Completion of course 101 or 110 with B grade or better. Tutoring of students in nutrition courses, assistance with discussion groups or laboratory sections. Weekly conference with instructor in charge of course. Written evaluations. May be repeated if tutoring a different course. (PINP grading only.)

198. Directed Group Study (1-5) II, III.
The Staff (Weir in charge)
(PINP grading only.)

199. Special Study for Advanced Undergraduates (1-5) II, III.
The Staff. (Weir in charge)
(PINP grading only.)

Graduate Courses

201. Advanced Vitamin and Mineral Nutrition (4) I, The Staff (Rucker in charge)
Lecture—4 hours. Prerequisite: course 110, Bacteriology 2, Biochemistry 101B or Physiological Sciences 101B. Physiology 110. Advanced studies in metabolic functions and nutritional interrelationships of vitamins and minerals. Comparative aspects.

Lecture—4 hours. Prerequisite: course 110, Biochemistry 101B or Physiological Sciences 101B; Physiology 110. History of nutritional energetics; evaluation of energy transformations associated with food utilization; energy expenditure at cellular, tissue and animal levels as affected by diet and physiological state, appetite regulation, obesity, lipid transport and metabolism.

203. Advanced Protein and Amino Acid Nutrition (4) III.
The Staff (Rogers, Physiological Sciences, in charge)
Lecture—4 hours. Prerequisite: course 110, Bacteriology 2, Biochemistry 101B or Physiological Sciences 101B,

Note: For key to footnote symbols, see page 138.
Nutrition; Nutrition Science; Oriental Languages

Physiology 110. Nutritional significance of protein and amino acids, including studies of the influence of dietary protein on digestion, absorption, metabolism, resistance to disease, and food intake. Study of dietary requirements and interrelationships among amino acids.

212. Design and Evaluation of Nutrition Education Programs (2) III. Vermeersch
Lecture—2 hours. Prerequisite: graduate standing in nutrition education or equivalent. Emphasis on nutrition education curricula, instructional strategies and evaluation methods in formal classroom and informal community settings. Intended for students preparing to administer programs or teach in universities and dietetic internships.

216. Advanced Diet Therapy (3) III. Zeman

218. Advanced Field Work in Community Nutrition (2-12) I, II, III. IV. The Staff (Vermeersch in charge)
Discussion—1 hour; field work. Prerequisite: courses 118, 119, graduate standing, consent of instructor. Directed experience in community nutrition. Organization and implementation of nutrition programs.

Lecture—3 hours. Prerequisite: courses 201, 202, 203. Dynamic interrelationships between food, animal, and environment including concepts in food intake, digestion, absorption, and utilization of nutrients.

251. Single Carbon Metabolism in Nutrition (2) I. Kratzer and Vohra (Avian Sciences)
Lecture—2 hours. Prerequisite: courses 201-202. Nutritional and metabolic interrelationships involved in the transfer of single carbon units in various animals; the involvement of the metabolic functions of biotin, folate acid, vitamin B12, pyridoxine, choline, methionine and other nutrients. Offered in odd-numbered years.

252. Nutrition and Development (3) II. Hurley
Lecture—3 hours. Prerequisite: courses 201, 202, 203. Relationships of nutrition to prenatal and postnatal development. Offered in even-numbered years.

253. Control of Food Intake (3) III. Rogers (Physiological Sciences), Mendel (Animal Science)
Lecture—2 hours; discussion—1 hour; 2 or 3 laboratory demonstrations. Prerequisite: courses 201, 202, Physiology 210C or consent of instructor. Comprehensive study of the biochemical, nutritional, behavioral, and physiological mechanisms controlling food intake. Subject matter will be approached through lectures, laboratory demonstration and discussions where students and staff will critically evaluate the literature. Offered in even-numbered years.

254. Ruminant Digestion and Metabolism (3) I. Morris and Baldwin (Animal Science)
Lecture—3 hours. Prerequisite: courses 122, 201, 202, 203 recommended. Qualitative and quantitative aspects of ruminant digestive and metabolic processes; nutrient requirements; rumen microbiology and biochemistry; digestive physiology; nutrient absorption; patterns, rates and mechanisms of nutrient utilization; regulatory processes. Offered in even-numbered years.

255. Natural Toxins in Foods (2) II. Vohra and Kratzer
Lecture—2 hours. Prerequisite: courses 201, 202, 203. Occurrence, mode of action and alleviation of several natural toxins in foods and feeds. Offered in odd-numbered years.

256. Nutritional and Hormonal Control of Animal Metabolic Function (3) III. Baldwin (Animal Science), Frankland (Physiological Sciences)
Lecture—3 hours. Prerequisite: courses 201, 202, 203. Physiological Sciences 205A, 205B. Significant and interpretation of enzyme, metabolite, in vivo and in situ isolation tracer, energetic and other data. Critical evaluation of methodology and limitations in evaluation of animal metabolism. Diet-hormone interactions in carbohydrate, amino acid and lipid metabolism will be discussed. Offered in odd-numbered years.

280. Supervised Teaching in Dietetics (2-12) I, II, III, extra-semester summer. Hopkins Laboratory—3 hours per unit. Prerequisite: graduate standing in M.S. program in Nutrition with emphasis in dietetics; consent of instructor. Directed teaching in approved dietetic internships. May be repeated for a total of 12 units.

290. Beginning Nutrition Seminar (1) I, II, III. The Staff (Peterson, Avian Sciences, in charge)
Discussion—1 hour; seminar—1 hour. Prerequisite: first-year graduate standing. Discussion and critical evaluation of topics in nutrition with emphasis on literature review and evaluation in this field. Limited enrollment.

291. Advanced Nutrition Seminar (1) I, II, III. Heiman (Animal Science) in charge. Seminar—1 hour. Prerequisite: second-year graduate standing. Discussion and critical evaluation of advanced topics in nutrition research. (SU grading only.)

297. Supervised Teaching in Nutrition (2) I, II, III. Weir Teaching under supervision of members of Nutrition Graduate Group. 6 hours. Prerequisite: graduate status in nutrition or consent of instructor. Practical experience in teaching nutrition at the university level; curriculum design and evaluation; preparation and presentation of material. Assistance in laboratory, discussion sections, and evaluation of student work. (SU grading only, and an evaluation letter to the Graduate Adviser with copy to the student).

298. Group Study (1-5) I, II, III. The Staff (Weir in charge)
(SU grading only.)

299. Research (1-12) I, II, III. The Staff (Weir in charge)
(SU grading only.)

Nutrition Science

(College of Agricultural and Environmental Sciences)

The Major Program

The Nutrition Science major provides organized study in nutrition and relevant biological and physical sciences as preparation for (1) graduate study in nutrition, including the selection of species of groups, such as human, domestic animal, avian, and wildlife; (2) professional study of medicine, veterinary medicine, public health, dietetics, and other health sciences; (3) technical work in nutrition, animal, food, and pharmaceutical industries; (4) technical writing; and (5) health education. You should consult with your adviser with respect to additional courses appropriate to your specific interest.

The number of students in this major may have to be restricted due to limitations in resources.

To fulfill the academic requirements for an internship in Dietetics, choose the following courses from the categories in which they appear above:

English 1, Rhetoric 1, Psychology 1, Sociology or Anthropology 2, Economics 1A, Physics instead of or in addition to Science and Technology 100A, 100B, Nutrition 110, 111, 111L, 116A, 116B, 190 and 114 or 117. The following courses must be added: Agricultural Economics 112; Food Science and Technology 100AL, 100BL, Consumer Technology 3; Food Service Management 120, 120L, 121, 122, 123; Applied Behavioral Sciences 173 or Education 110A. Students intending to apply for admission to a dietetic internship must contact the Master Adviser in Dietetics no later than the first quarter of the junior year for information on procedures.

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

Preparatory Subject Matter

- Biochemistry (Biochemistry 101A, 101B or Physical Sciences 101A, 101B) 6
- Biology with laboratory (Biological Sciences 1) 5
- Chemistry, general and organic (Chemistry 1A, 1B, 1C, 5, 8A, 8B) 25
- Microbiology with laboratory (Bacteriology 2, 3) 4
- Statistics (Mathematics 13 or Agricultural Science and Management 150) 4

Written or oral expression (see College requirement) 8

Depth Subject Matter

- Select from Nutrition 110, 111, 111L, 114, 116A, 116B, 117, 121, 122, 123, 190, 198, and 199 20

Breadth Subject Matter

- Courses in social sciences and humanities 20

Restricted Electives

- Biochemistry laboratory (Biochemistry 101L, 123, 123L) 5
- Calculus or physics (excluding Physics 10) 6
- Foods and food science 6
- Physiology with laboratory (Physiology 110, 110L, plus an additional physiological course) 10
- Additional nutrition or related biological and physical sciences 19-21

Unrestricted Electives 42

Total Units for the Major 180

Major Adviser, W. C. Weir.

Graduate Study. The Department of Nutrition offers programs of study and research leading to the M.S. and Ph.D. degrees in Nutrition. For information on graduate study contact the graduate adviser. See also page 105.

Graduate Adviser. See Class Schedule and Room Directory.

Oriental Languages

(College of Letters and Science)

Department of Anthropology

Department Office, 326 Young Hall

Faculty

- Donald Gibbs, Ph.D., Assistant Professor
- Key H. Kim, Ph.D., Associate Professor
- Janet Shibamoto, M.A., Acting Assistant Professor
- Benjamin E. Wallacker, Ph.D., Professor
- Yun-Chen Li, M.A., Lecturer

Related Courses. See East Asian Studies course listing.
Courses in Chinese

Lower Division Courses
1-2-3. Elementary Modern Chinese (6-6-6) I-II-III. Li Lecture—3 hours; recitation—3 hours. Students who have successfully completed Chinese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a PNP grading basis only. Although a passing grade will be charged to the student's PNP option, no petition is required. All other students will receive a letter grade unless a PNP petition is filed.

4-5-6. Intermediate Modern Chinese (6-6-6) I-II-III. Gibbs Lecture—3 hours; recitation—3 hours. Prerequisite: course 3 or the equivalent.

Upper Division Courses
101. Classical Chinese (4) I, II, III. Wallacker Lecture—3 hours; term paper. Prerequisite: course 6. Readings in selected texts. May be repeated twice for credit. To be given on a sufficient number of students enroll.

*111. Advanced Chinese (4) I, II, III. Gibbs Lecture—3 hours; discussion—1 hour. Prerequisite: course 6. Readings in modern and contemporary Chinese texts. May be repeated for credit.

Courses in Japanese

Lower Division Courses
1-2-3. Elementary Modern Japanese (6-6-6) I-II-III. Lecture—3 hours; recitation—3 hours. Students who have successfully completed Japanese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a PNP grading basis only. Although a passing grade will be charged to the student's PNP option, no petition is required. All other students will receive a letter grade unless a PNP petition is filed.

4-5-6. Intermediate Modern Japanese (6-6-6) I-II-III. Kim Lecture—3 hours; recitation—3 hours. Prerequisite: course 3 or the equivalent.

Upper Division Courses

Courses in Oriental Languages

Lower Division Courses
32A. Twentieth-Century Chinese Literature (in English) (4) II. Gibbs Lecture—3 hours; discussion—1 hour. Reading and discussion of works by twentieth-century China's most influential writers. Seeks to convey a sense of what it was like to be Chinese during an era of three national revolutions, foreign invasion, and severe social restructuring.

32B. Twentieth-Century Chinese Literature (in English) (4) III. Gibbs Lecture—3 hours; discussion—1 hour. Prerequisite: course 32A. Continuation of course 32A with greater emphasis upon the Communist era.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Primarily for lower division students. (PNP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (PNP grading only.)

NOTE: For key to footnote symbols, see page 138.

Upper Division Courses
100. Languages of Eastern Asia (4) II. Wallacker Lecture—3 hours; oral reports. Prerequisite: Anthropology 110 may be taken concurrently or the equivalent. Survey of languages and language families of Eastern Asia, their natures and distributions.

197T. Tutoring in Oriental Languages (1-5) I, II, III. The Staff (Wallacker in charge) Tutoring—15 hours. Prerequisite: consent of Department Chairperson. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. May be repeated for credit. (PNP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (PNP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (PNP grading only.)

Graduate Courses

*201. Proseminar in Sinological Methods (4) III. Wallacker Seminar—3 hours. Prerequisite: knowledge of classical Chinese.

299. Research (1-12) I, II, III. The Staff (SU grading only.)

Orientation

(College of Agricultural and Environmental Sciences)

Course in Orientation

Questions pertaining to the following course should be directed to the instructor or to the Academic Advising Center, 132 Hunt Hall.

Lower Division Course
1. Orientation (no credit) I, II, III. Chaykin (Biochemistry and Biophysics) Discussion. Exploration of the philosophy, purposes, significance, expectations and mechanisms of university education. (PNP grading only.)

Orthopaedic Surgery

See Medicine

Otorhinolaryngology

See Medicine

Pathology

See Veterinary Medicine, this page; or Medicine, page 269

Pathology

(School of Veterinary Medicine)

Donald L. Dungworth, B.V.Sc., Ph.D., Chairperson of the Department Department Office, 1126 Haring Hall

Faculty

Donald R. Cordy, D.V.M., Ph.D., Professor
Donald L. Dungworth, B.V.Sc., Ph.D., Professor
David H. Gribble, D.V.M., Ph.D., Associate Professor
Charles A. Holmberg, D.V.M., Ph.D., Associate Adjunct Professor
Thomas G. Kawakami, Ph.D., Associate Adjunct Professor
Peter C. Kennedy, D.V.M., Ph.D., Professor
Jack E. Moulton, D.V.M., Ph.D., Professor
Bennett I. Ceburn, D.V.M., Ph.D., Professor
Roy R. Pool, Jr., D.V.M., Ph.D., Associate Professor
Lester W. Schwartz, D.V.M., Ph.D., Associate Professor
William L. Spangler, D.V.M., Ph.D., Assistant Adjunct Professor
Anthony A. Stannard, D.V.M., Ph.D., Associate Professor (Medicine)
Eric B. Wheelton, B.V.M.S., Ph.D., Assistant Professor

Courses in Pathology

Upper Division Course
199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (PNP grading only.)

Graduate Courses

282. Tumor Pathology (3) II. Moulton, Dungworth Lecture—3 hours. Prerequisite: graduate student standing or final year veterinary student and consent of instructor. The histogenesis, incidence, geographical distribution, etiology, transmission, immunity, host response, gross and microscopic structure, and metastasis of neoplasms of domestic animals. Offered in even-numbered years.

284. Pathology of Reproductive Failure (2) III. Kennedy Lecture—2 hours. Prerequisite: graduate student standing or final year veterinary student and consent of instructor. Selected topics on causes and effects of fetal disease. Offered in odd-numbered years.

285. Neuropathology (3) II. Cordy Lecture—3 hours. Prerequisite: graduate student standing or final year veterinary student and consent of instructor. Patterns of nervous tissue reaction in disease. Offered in odd-numbered years.

299. Seminar in Veterinary Pathology (1-5) I, II, III. The Staff (Ceburn in charge) Seminar—1 hour. (SU grading only.)
Pharmacology and Toxicology; Philosophy

291. Histopathology Conference (1) I, II, III. The Staff (Kennedy in charge)
Discussion—1 hour. Prerequisite: graduate student standing or final-year veterinary student; consent of instructor. Discussion of selected cases based on records and slides. Defense of diagnoses. (SU grading only.)

292. Surgical Pathology Conference (1) I, II, III. Moulton, Gribble
Discussion—1 hour. Prerequisite: graduate student or final-year veterinary student; consent of instructor. Diagnosis and discussion of current surgical pathology cases based on clinical records and microscopic study. (SU grading only.)

293. Necropsy and Surgical Pathology (1-4) I, II, III. The Staff (Kennedy in charge)
Discussion—1 hour; laboratory—32 hours. Prerequisite: graduate student standing; consent of instructor. Responsible diagnostic casework. Performance of necropsies, slide reading, and case reporting. (SU grading only.)

294. Primate Pathology Conference (1) I, II, III. Gribble, Schwartz
Discussion—1 hour. Prerequisite: graduate student standing or final-year veterinary student; consent of instructor. Discussion of selected topics in primate pathology based on currently available material. Given jointly by Departments of Pathology in the Medical and Veterinary Schools, and the California Primate Research Center. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff
Group Study of advanced topics in pathology. (SU grading only.)

299. Research in Veterinary Pathology (1-12) I, II, III. The Staff
(SU grading only.)

Philosophy

(Conceived of Letters and Science)

William H. Bossart, Ph.D., Chairperson of the Department
Department Office, 308 Voorhis Hall

Faculty

Ronald A. Arbini, Ph.D., Associate Professor
Fred R. Berger, Ph.D., Associate Professor
William H. Bossart, Ph.D., Professor
Arthur Child, Ph.D., Professor
Joel I. Friedman, Ph.D., Associate Professor
Neal W. Gilbert, Ph.D., Professor
Marjorie Grene, Ph.D., Professor Emeritus
John F. Malcolm, Ph.D., Professor
George T. Matley II, M.A., Acting Assistant Professor
Michael V. Wedin, Ph.D., Associate Professor

The Major Program

Philosophy is a discipline concerned with the most general kinds of questions. The fields commonly regarded as central are metaphysics, where we inquire about the nature of things; theory of knowledge, where we inquire about the knowing of things; logic, where we inquire about reasoning and the most formal relations; and ethics, where we inquire about conduct with respect to goodness, rightness, and obligation. The Department of Philosophy offers courses in all these central fields. Then, since philosophy raises fundamental questions about other pursuits, the department offers courses in aesthetics, philosophy of history, philosophy of mathematics, political philosophy, philosophy of religion, and philosophy of the natural and social sciences.

Philosophy is also a subject in which the problems discussed recur, or have important roots in past discussion. The history of philosophy is thus important not only as part of the heritage of educated persons, but also because it is relevant to contemporary issues. The Department therefore places great stress on the history of philosophy, and provides courses in all the major figures and traditions of western philosophy, as well as in the influential contemporary schools of the continental and analytic varieties.

Also, the department has introduced a range of lower division courses, designed for non-majors, which serve not only to introduce students to the subject, but also to permit study of more specialized topics which may be of interest to students who cannot pursue a philosophy major. Many of the lower division offerings may be of benefit to science majors, pre-law, or pre-med majors, as well as to students in the humanities and social sciences. Especially recommended are Philosophies 1, 5, 10A-G, 12, 14, and 21, 22, 23.

Some philosophy majors go on to do graduate work in philosophy, but many have found the program a good preparation for professional careers in law and medicine, as well as for advanced work in other academic disciplines in the humanities and social sciences.

Philosophy

A.B. Major Requirements:

Preparatory Subject Matter .. 16
Philosophy 12, 21, 22, 23 .. 16

Depth Subject Matter .. 36
Upper division units in Philosophy selected with the approval of the departmental major adviser .. 36

Total Units for the Major .. 52

Graduate Study. The Department of Philosophy offers programs of study leading to the M.A. and Ph.D. degrees. Graduate students who intend to work only for the M.A. degree are not admitted to the graduate program. Detailed information may be obtained by writing to the Graduate Adviser.

Graduate Adviser: M. V. Wedin.

Courses in Philosophy

Lower Division Courses

1. Introduction to Philosophy (4) I, II, III. The Staff
Chairperson in charge)
Lecture—3 hours; discussion—1 hour. Problems of philosophy through major writings from various periods. Problems are drawn from political, aesthetic, religious, metaphysical, and epistemological concerns of philosophy.

5. Critical Reasoning (4) III. Berger
Lecture-discussion—3 hours; papers or written reports. Criteria of good reasoning in everyday life and in science. Basic principles of deduction and induction; fallacies in reasoning; techniques and aids to reasoning; principles of scientific investigation; aids to clarity.

5F. Freshman Seminar in Philosophy (4) I, II, III. The Staff
Green Seminar-4 hours. Prerequisite: consent of instructor. Intensive introduction to philosophical inquiry. Open only to freshmen with strong interest in background in philosophy.

10A-G. Themes in Philosophy (4) I, II, III. The Staff
Lecture—discussion—3 hours; papers or written reports. Introductory survey of problems in an area of philosophical interest. Sections to be offered: (A) Knowledge and Existence; (B) Self and Mind; (C) Philosophy and the Arts; (D) Morals and Politics; (E) Philosophy East and West; (F) Philosophy and Myth; (G) Science and Human Nature.

12. Introduction to Logic (4) I, II, III. Berger
Lecture—discussion—3 hours; discussion—1 hour. Basic concepts and techniques of deductive logic with emphasis on propositional logic. Development of a deductive system for propositional logic. Translation of English into symbolic formulas.

14. Ethical and Social Problems in Contemporary Society (4) II. Berger

Pharmacology and Toxicology (A Graduate Group)

Larry G. Stark Ph.D., Chairperson of the Group
Group Office, 4445 Medical Science 1A

Faculty

Larry G. Stark, Ph.D., Associate Professor
(Pharmacology)

Graduate Study. The Graduate Group in Pharmacology and Toxicology offers programs of study and research leading to the M.S. and Ph.D. degrees. For information on the program of study, contact the graduate adviser or the group Chairperson. See also page 101.

Graduate Advisers. J. L. Byard (Environmental Toxicology), M. A. Hollinger (Pharmacology, Medicine), R. M. Joyce (Physiological Sciences), W. W. Kilgore (Environmental Toxicology), E. K. Killam (Pharmacology, Medicine).

Course in Pharmacology and Toxicology

Graduate Course

290. Seminar (1) I, II, III. The Staff
Prerequisite: consent of instructor. Current topics in pharmacology and toxicology. (SU grading only.)

282
Lecture–3 hours; discussion–1 hour. Philosophical issues and positions involving contemporary moral and social problems. Among possible topics are: civil disobedience and revolution, racial and sex discrimination, environment and population control, genetic engineering, technology and human values, sexual morality, freedom in society.

15. Basic Religious Concepts (3) I. Gilbert
Lecture–3 hours. Prerequisite: Religious Studies 10 recommended. An introductory philosophical examination of certain central religious themes, such as sin, guilt, suffering, sacrifice, mysticism, and salvation. Emphasis will be on the conceptual clarification of religious experience rather than on theological formulation or argument.

21. History of Philosophy: Ancient (4) I. Malcolm
Lecture–3 hours; discussion–1 hour. A survey of Greek philosophy with special attention to the Pre-Socratics, Plato, and Aristotle.

22. History of Philosophy: Seventeenth Century (4) II. Bostock
Lecture–3 hours; discussion–1 hour. Selections from Descartes, Spinoza, Leibniz, and Hobbes.

23. History of Philosophy: Eighteenth Century (4) III. Matthey
Lecture–3 hours; discussion–1 hour. Selections from Locke, Berkeley, Hume, and Kant.

Upper Division Courses

101. Metaphysics (4) III. Malcolm
Lecture–3 hours. Prerequisite: two courses in philosophy to be chosen from the 21–22–23 sequence and the upper division course list with the exception of 105, 114A, 114B, 117, 123. Theory of being. Such topics as reality, substance, universals, space, time, causality, becoming, body, experience, persons, freedom and determinism. Views of the nature and method of metaphysics. Anti-metaphysical arguments.

110. Theory of Knowledge (4) I. Child
Lecture–discussion–3 hours. Prerequisite: two courses in philosophy to be chosen from the 21–22–23 sequence and the upper division course list with the exception of 105, 114A, 114B, 117, 123. Philosophical problems of perception and thought, memory and recognition, imagination, truth and error, belief and knowledge. Types of epistemology.

113. Philosophy of Mind (4) II. Wedin
Lecture–discussion–3 hours. The relation between mind and body, our knowledge of other minds, and the explanation of mental acts. Discussion of such concepts as action, intention, and causation. Offered in even-numbered years.

105. Philosophy of Religion (4) I. Child
Lecture–3 hours. Prerequisite: two courses in philosophy. Logical, metaphysical, epistemological and existential aspects of selected religious concepts and problems.

107. Philosophy of the Physical Sciences (4) I. Friedman
Lecture–discussion–3 hours; written papers. Prerequisite: one philosophy course or a major in science. The nature of testability and confirmation of scientific hypotheses; the nature of scientific laws, theories, explanations, and models. Problems of causality, determinism, induction, and probability; the structure of scientific revolutions.

108. Conceptual Problems in the Biological Sciences (4) I. Greene
Lecture–3 hours; written paper. Prerequisite: a major in a biological science or one philosophy course. The nature of theories, explanations and models in biology. Problems of evolutionary theory and taxonomy. (Same course as Zoology 146.)

109. Philosophy of the Social Sciences (4) I. Berger
Lecture–discussion–3 hours; written reports. Prerequisite: one philosophy course or major in a social science. The nature of human action and behavior, and of explanation of behavior. Nature of laws and explanation in the social sciences. Problems in the social sciences such as: "interpretive understanding," role of prediction, behavioral reductionism, role of value judgements, and social rules.

112. Intermediate Logic (4) II. Friedman
Lecture–3 hours; discussion–1 hour. Prerequisite: course 12 or consent of instructor. Development of first order logic, with identity and descriptions, decision procedures, advanced translation of English into the formal language; theory and classes; Ramsey's paradox.

114A. Introduction to Ethics (4) I. Arbin
Lecture–3 hours; term paper. Prerequisite: one course in philosophy. An introduction to major writings of philosophers on central problems of right conduct; principles of obligation, responsibility, justice, the meaning of the basic terms of ethical language. Readings from such philosophers as Aristotle, Butler, Hume, Kant, Mill.

114B. Problems of Ethical Theory and Practice (4) II. Berger
Lecture–3 hours; term paper. Prerequisite: course 114A or consent of instructor. Discussion of important problems of ethical theory with application to modern moral problems. Examples: relativism, utility and justice, act and rule utilitarianism, concept of a right, justification of punishment, the death penalty, morality of civil disobedience, abortion, war.

117. Political Philosophy (4) II. Berger
Lecture–discussion–3 hours. Prerequisite: course 1 or 6 recommended. Introduction to examination of central concepts of politics such as the state, sovereignty, rights, obligation, freedom, law, authority, and responsibility. Offered in odd-numbered years.

118. History of Philosophy (4) III. Child
Lecture–discussion–3 hours; term paper. Survey of philosophical theories of history and an analysis of contemporary problems of historical explanation. Offered in even-numbered years.

123. Aesthetics (4) III. Child
Lecture–3 hours. Prerequisite: one course in philosophy; one course in religious studies, art history, or literature. Nature of art, of artistic creation, of the work of art, and of aesthetic experience; nature and validity of criticism; relations of art to life in general.

131. Philosophy of Logic and Mathematics (4) I.
Lecture–discussion–3 hours; term paper. Prerequisite: course 12 or one course for credit in mathematics. The nature of formal systems and mathematical theories. Selected topics from: logical and semantical paradoxes; foundations of mathematics; set theory, type theory, and intuitionistic theory; philosophy of geometry; philosophical implications of Gödel's incompleteness results. Offered in odd-numbered years.

132. History of Logic (4) II. Malcolm
Lecture–discussion–3 hours; term paper or conferences. Study of special problems or authors in the history of logic. Offered in even-numbered years.

133. Survey of Advanced Logic (4) III. Friedman
Lecture–discussion–3 hours; written reports. Prerequisite: course 112 or consent of instructor. Survey of topics in mathematical logic, theory of descriptions (Russell and Frege), classes and relations; Russell's Paradox; type theory, set theory, models and interpretations; modal logic. Selected topics from: computability and recursion theory, many-valued logic, combinatory logic, non-standard logics. Offered in odd-numbered years.

137. Philosophy of Language (4) III. Arbin
Lecture–discussion–3 hours; term paper. Prerequisite: courses 23, 156, or Linguistics 1 recommended. Discussion of problems arising from consideration of the syntax and semantics of natural and formal languages. Nature of linguistic rules and universal; theories of universal grammar; linguistic implications for theories of cognition.

143. Hellenistic Philosophy (4) I. Gilbert
Lecture–discussion–3 hours; written reports. Prerequisite: course 21. Offered in even-numbered years.

145. Medieval Philosophy (4) III. Gilbert
Lecture–discussion–3 hours; written reports. Prerequisite: course 21. Study of major philosophers in the medieval period.

146. Renaissance Philosophy (4) III. Gilbert
Lecture–discussion–3 hours. Renaissance conceptions of man, as found in the writings of Volta, Rizzolo, Pico, Pomponazzi, Erasmus, Vives, and Montaigne. Some reference to current religious and social developments. Offered in even-numbered years.

151. Philosophy of the Nineteenth Century (4) II. Matthey
Lecture–discussion–3 hours. Prerequisite: courses 21, 22 or 23 recommended. The idealism of Hegel, his contemporaries and his successors; Marxism, the positivism of Comte and Mill; the irrationalism of Kierkegaard and Nietzsche. Offered in odd-numbered years.

155. American Philosophy (4) III. Matthey
Lecture–discussion–3 hours. Prerequisite: course 1 or 6 recommended. Study of such American thinkers as Pierce, James, Royce, Dewey, Santayana, Whitehead, and C. I. Lewis. Offered in odd-numbered years.

156. Contemporary British Philosophy (4) I. Woden
Lecture–discussion–3 hours; term paper. Prerequisite: course 23 or 151 recommended. Interpretation and analysis of the most influential works of Bertrand Russell, G. E. Moore, Wittgenstein, J. L. Austin, and G. Ryle. Offered in even-numbered years.

157. Special Topics in Contemporary British and American Philosophy (4) I. Arbin
Lecture–discussion–3 hours. Prerequisite: course 155 or 156. Intensive study of special topics or special author in contemporary British or American philosophy. May be repeated for credit with consent of instructor. Offered in even-numbered years.

158. Phenomenology (4) I. Bostock
Lecture–discussion–3 hours. Prerequisite: course 23 or 151, or 175A–175B recommended. Husserl, his predecessors and successors. Offered in even-numbered years.

159. Existentialism (4) II. Greene
Lecture–discussion–3 hours. Prerequisite: course 23 or 151, or 175A–175B recommended. Such twentieth-century thinkers as Jaspers, Maclay, Sarre, Menen–Poncy. Offered in even-numbered years.

160. Social Topics in Contemporary European Philosophy (4) III. Greene
Lecture–discussion–3 hours. Prerequisite: course 158 or 159 recommended. Intensive study of special topic or author from the general fields covered by courses 158 and 159. May be repeated for credit with consent of instructor. Offered in even-numbered years.

161. Plato (4) I. Malcolm
Lecture–discussion–3 hours. Prerequisite: course 21. Offered in even-numbered years.

162. Aristotle (4) II. Woden
Lecture–discussion–3 hours. Prerequisite: course 21 or consent of instructor. Offered in odd-numbered years.

168. Descartes (4) II. Arbin
Lecture–discussion–3 hours; term paper. Prerequisite: course 22. Offered in even-numbered years.

169. Spinoza (4) II. Friedman
Lecture–discussion–3 hours; term paper. Prerequisite: course 22. Offered in odd-numbered years.

170. Leibniz (4) I. Gilbert
Lecture–discussion–3 hours; term paper. Prerequisite: course 22. Offered in odd-numbered years.

171. Hobbes (4) III. Gilbert
Lecture–discussion–3 hours; term paper. Prerequisite: course 22 recommended. Offered in odd-numbered years.

172. Locke (4) III. Malcolm
Lecture–discussion–3 hours. Offered in even-numbered years.

173. Berkeley (4) I. Matthey
Lecture–discussion–3 hours; term paper. Prerequisite: course 23. Offered in even-numbered years.

174. Hume (4) I. Arbin
Lecture–discussion–3 hours. Offered in odd-numbered years.

NOTE: For key to footnote symbols, see page 136.
Physical Education

175A. Kant (4) I, Mathey Lecture-discussion—3 hours; written reports. Prerequisite: course 23. Offered in even-numbered years.

175B. Kant (4) II, Mathey Lecture-discussion—3 hours; written reports. Prerequisite: course 175A. Offered in odd-numbered years.

176. Hegel (4) I, Bosart Lecture-discussion—3 hours. Prerequisite: courses 23 and 175A-175B recommended. Offered in odd-numbered years.

178. Kierkegaard (4) III, Child Lecture—3 hours. Prerequisite: course 21, 23 or 185. Offered in even-numbered years.

181. Heidegger (4) III, Child Lecture-discussion—3 hours. Prerequisite: course 23, 151, or 175A-175B recommended. Offered in odd-numbered years.

185. Founders of Modern Thought (4) J. Gilbert Lecture-discussion—3 hours; term paper. Not open to philosophy majors or students who have received credit for course 22 or 23. Survey of modern philosophy from Descartes to Kant. Major emphasis upon problems still current today.

*189. Special Topics in the History of Philosophy (4) II, M. B. Butler Lecture—3 hours; term paper. Intensive study of special topic, problem, or authors in the history of philosophy. May be repeated for credit.

190. Directed Group Study (1-5) I, II, III, The Staff (Chairperson in charge) (P/NP grading only.)

190. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
Graduate courses 201, 202, 207, 214, and 290 are offered every year by different instructors and may be repeated for credit with permission of the Graduate Adviser. The other graduate courses will be varied from year to year.

*201. Metaphysics (4) II, Child Seminar—3 hours.

205. Philosophical Argumentation (4) I, Arbini Seminar—3 hours. Prerequisite: graduate standing. Investigation and evaluation of philosophical arguments. Critical discussion of student papers on various aspects of philosophical disputes.

*207. Philosophy of Science (4) III, Friedman Seminar—3 hours.

214. Ethics (4) I, Berger Seminar—3 hours.

*223. Aesthetics (4) II, Seminar—3 hours. Offered in even-numbered years.

261. Plato (4) II, Malcom Seminar—3 hours. Offered in odd-numbered years.

262. Aristotle (4) III, Wein Seminar—3 hours. Offered in odd-numbered years.

275. Kant (4) III, Bosart Seminar—3 hours. Offered in odd-numbered years.

*299. History of Philosophy (4) II, Mathey Seminar—3 hours. Special topics in the history of philosophy.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

Physical Education

(Excellent of Letters and Science)

Edmund M. Bernauer, Ph.D., Chairperson of the Department
Herbert A. Schmalenberger, M.A., Vice-Chairperson of the Department

Department Office, 264 Gymnasium

Faculty

A. William C. Adams, Ph.D., Professor
Richard L. Bell, Ph.D., Professor (Chemical Engineering)
Edmund M. Bernauer, Ph.D., Professor
Robert R. Brooks, M.A., Supervisor
Joseph E. Carlson, M.A., Supervisor
Jere H. Curry, M.A., Supervisor
Rudy H. Dresdendorfer, Ph.D., Lecturer
Robert L. Foster, M.A., Associate Supervisor
Pamela Gill, M.A., Associate Supervisor
Raymond S. Goldberg, M.A., Associate Supervisor
Robert I. Hamilton, M.S., Supervisor
Jerry W. Hindsdale, A.B., Supervisor
Barbara A. Jahn, M.S., Assistant Supervisor
Charles R. Kovacic, Ed.D., Professor
William S. Lotter, Ed.D., Professor
Paul A. Molé, Ph.D., Associate Professor
John W. Pappal, M.A., Supervisor
Melvin R. Ramey, Ph.D., Professor (Civil Engineering)
E. Dean Ryan, Ed.D., Professor
Herbert A. Schmalenberger, M.A., Supervisor
Joe L. Singleton, M.A., Supervisor
James L. Sochor, Ed.D., Supervisor
Phillip S. Swinney, M.A., Supervisor
Stephen A. Wallace, Ph.D., Assistant Professor
Marya Welch, Ed.D., Supervisor
Neal P. Zumboukos, M.A., Assistant Supervisor

The Major Program

The Physical Education major focuses on the biological and psychological aspects of physical activity. Students will elect courses in each of these two emphases. Courses are designed to develop and impart a scientific understanding of human movement. The major provides the basic education for students planning careers in the area of teacher education, physical, occupational, recreational, or corrective therapy, and other allied health and sport sciences which demand knowledge of human movement.

Physical Education

A.B. Major Requirements:

Preparatory Subject Matter (for both Biological and Psychosocial emphases) 25
Biological Sciences 1 ... 5
Chemistry 1A .. 5
Mathematics 13 .. 4
Physical Education 45 ... 4
Physics 1A ... 3
Psychology 1 or 15 .. 4

Depth Subject Matter (Biological emphasis) ... 45
Human Anatomy 101 ... 5

Total Units for the Major (Biological Emphasis) ... 70

Depth Subject Matter (Psychosocial emphasis) ... 45-48

Human Anatomy 101 ... 5

Physical Education 103, 104A, 104B, 110, 120, 135 ... 23
At least 12 additional upper division units in physical education or psychology, selected in consultation with major adviser ... 12

Total Units for the Major (Psychosocial Emphasis) ... 70-73

Recommended

Students interested in the psychological aspects of physical education are strongly urged to take Chemistry 8A, 8B.

Teaching Major. The teacher-training curriculum in physical education requires in addition to the departmental major requirements, course 130, 180, and 380.

Teaching Credential Subject Representative. H. A. Schmalenberger. See page 111 for the Teacher Education Program.

Graduate Study. A program of study and research leading to the M.A. degree is available in physical education. For detailed information regarding graduate study, write to the Graduate Advisor, Department of Physical Education.

Graduate Advisor. P. A. Molé.

Class and Recreational Use of Facilities. The incidental fee payable by all students at the time of registration, enters students to the use of gymnasium, showers, lockers, tennis courts, and the athletic fields. Certain equipment for games and sports is available for exercise and recreation, either with or without instruction. Lockers will be turned in on the last day of class, before the final examination period.

Fines are imposed for each rental transaction necessitated by failure of the student to comply with the regulations of the department.

Courses in Physical Education

Lower Division Courses

1. Physical Education for Men and Women (16) I, II, III. The Staff (Chairperson in charge)

Laboratory—2 hours. Sections in archery, aerobics, badminton, basketball, bowling, dance (ballet, modern, social, folk and square), field hockey, football, golf, gymnastics, handball, racquet ball, rifle, soccer, swimming, swimming, tennis, track, track and field, tumbling, volleyball, weight training, wrestling, etc. (Men qualified for I.C.A. athletics and women qualified for W.I.A. athletics may enroll in any sport pursued at Davis, such as baseball, basketball, football, or tennis, and receive credit.) This course may be repeated for credit, but not to exceed a total of 6 units. (P/NP grading only.)

5. Foundations of Emergency First Aid Services (2) I, II, III. The Staff (Pappa in charge)

Lecture—1 hour; laboratory—1 hour. An introduction to the basic principles and practices that fulfill the prerequisites for advanced study in First Aid and Emergency Medical
Services. Upon successful completion of course the Standard Red Cross Certificate is awarded.

10. Professional Physical Education Activities (1) I, II, III. The Staff (Chairperson in charge)
Lecture—1 hour; laboratory—2 hours. Fundamental skills in aquatic, aerobics, archery, badminton, basketball, field hockey, gymnastics, handball, rhythmic, softball, tennis, track and field, trampoline, weightlifting, wrestling, and volleyball.

15. Administration of Intramural Sports (2) I. Colberg
Lecture—2 hours. Planning and administering intramural sports programs at the high school and college level.

Lecture—1 hour; laboratory—2 hours. Prerequisite: sound physical condition. No physical handicap that would render student unable to perform the required skills and ability to pass preliminary swimming test. Provides the student with the knowledge, organization, procedures, and skill development necessary to provide for water safety and save his own life or the life of another in an aquatic emergency. (American Red Cross Senior Lifesaving Certificate awarded upon successful completion of necessary requirements.)

27. Training Course for Water Safety Instructors (3) III.
Instructor
Lecture—1 hour; laboratory—2 hours. Prerequisite: advanced swimming and Senior Life Saving Certificate. Theoretical knowledge and practical experience necessary for the organization and teaching of swimming, saving, and water safety courses. (American Red Cross Water Safety Instructor Certificate awarded upon successful completion of necessary requirements.)

29. Basic Scuba (2) I, II, III. Morris
Lecture—2 hours; laboratory—2 hours, two 6-hour field trips to the ocean. Prerequisite: advanced swimming skills equivalent to course 25; diver medical examination; and consent of instructor. Development of physical skills and knowledge required for SCUBA diving. Function and maintenance of equipment, physics of diving, safety and first aid, currents and wave action, marine life and underwater communication. (P.P.N. grading only.)

35A. Dance Composition (2) I.
Laboratory—5 hours. Prerequisite: course 1, modern jazz or jazz dance techniques. Consent of instructor. Composing phrases of movement with a knowledge of elements involved in the craft of choreography: design, dynamics, rhythm, motivation and gesture, vocabulary.

39B. Dance Composition (2) II.
Laboratory—5 hours. Prerequisite: course 35A or consent of instructor. To learn the elements of dance composition as it applies to the use of light, costume design, selection of music, and the use and building of stage props.

35C. Dance Composition (2) III.
Laboratory—5 hours. Prerequisite: courses 35A, 35B, or consent of instructor. To encourage the student to create new dance forms and prepare them for a 4-7 minute presentation in a spring concert on stage. Costumes and lighting will be created and correlated for each dance by the choreographer.

39A-39B. History of Dance (3-3) III-I. Curry
Lecture—3 hours. Study of dance and its relation to culture from the primitive to the Renaissance periods. The development of dance as an art form from the Baroque period to the twentieth century.

44. Principles of Healthful Living (2) I, II, III. Lotter
Lecture—2 hours. Application of scientific and empirical knowledge to personal and community health problems. (P.N.P. grading only.)

44L. Principles of Teaching Healthful Living (1) I, II, III.
Lecture—2 hours. Application of scientific and empirical knowledge to personal and community health problems. (P.N.P. grading only.)

125. Human Performance and Motor Learning (4) II. Wallace
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 1; Psychology 1. Psychology 130 recommended. The process of skill acquisition, with consideration given to open and closed loop theory, attention, automaticity, kinesthetics, movement control, and learning. Proprioception and internal feedback mechanism are also discussed. Laboratory illustrations are offered when practicable.

128A. Research Diving: 65 Foot Certification (1) II. Bell, Morris
Lecture—1 hour, laboratory—1 hour, two-day field trip (14 hours including demonstration, water experience and critique). Prerequisite: basic SCUBA Certification from approved agency (course 29 or the equivalent); 10 logged open-water dives since certification and consent of instructor. Lectures, pool and open-water exercises in diver rescue, and resuscitation, navigation, search and light salvage, night diving, research methods, work performance under water, cold-water diving, blue-water diving, introduction to deep diving. (P.N.P. grading only.)

128B. Research Diving: 65 Foot Certification (2) III. Bell, Morris
Lecture—1 hour, laboratory—1 hour, three two-day field trips (including demonstration, water experience and critique). Prerequisite: course 128A; consent of instructor. Lectures, pool and open-water exercises in diver rescue and resuscitation, navigation, search and light salvage, night diving, research methods, work performance under water, cold-water diving, blue-water diving, introduction to deep diving. (P.N.P. grading only.)

129. Research Diving: 100 Foot Certification (3) II, III. Morris
Lecture—5 hours; laboratory—3 hours; three two-day field trips (including demonstration, water experience and critique). Prerequisite: courses 128A-128B, or the equivalent, consent of instructor. Lecture, laboratories, and open-water exercises in the theory and practice of decompression, structural and decompression tables, use of hyperbaric chambers, instruction and use of decompression stations. (P.N.P. grading only.)

130. Principles and Theory of Physical Education (4) II. Lotter
Lecture—2 hours. Prerequisite: course 45 or consent of instructor. Critical analysis of the assumptions underlying the physical education program.

135. Design and Program Evaluation in Physical Education (4) III. Dresdendorfer
Lecture—3 hours; laboratory—3 hours. Prerequisite: basic statistics courses 104, 104A, 110 or consent of instructor. Topics include data reduction and analysis; test selection, construction, and administration; grading; and teacher evaluation.

140. Recreation in the Community (3) I, Jahn
Lecture—2 hours; discussion—1 hour; two Saturday field trips—8 hours. The nature and scope of community recreation programs in California emphasizing low income, highly populated areas and poor rural communities.

171. First Aid Leadership and Accident Management (3) I, II, III. Papp
Lecture—2 hours; students assist in teaching course 5—1 hour to be arranged. Prerequisite: course 5 or American Red Cross American First Aid Card. Administration, organization, supervision, and first aid programs in school and community sports, recreation and all types of group activities. The study and practice of first aid leadership skills. The American Red Cross First Aid Instructor Certification, will be awarded upon successful completion of the course.

172. Conditioning of Athletes: The Prevention and Care of Sports Injuries (2) I, II. Papp
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 4 or equivalent. An understanding of the use of various types of exercises prior to competition. Understanding the immediate and post injury areas of participants in all activities and how to handle them.

180. Physical Education in the Public Schools (3) I. Brooks

NOTE: For key to footnote symbols, see page 138.
Physics

Lecture—3 hours. Prerequisite: course 130 and senior standing or consent of instructor. Analysis and study of the principles and methods basic to teaching physical education at the elementary and secondary levels.

197T. Tutoring in Physical Education (1-5) I, II, III. The Staff (Chairperson in charge)
Tutorial—1-5 hours. Prerequisite: consent of instructor. Tutoring of students in lower division physical activity courses. Weekly meetings with instructor in charge of courses. Written reports on methods and materials required. May be repeated once for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor and Department Chairperson. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of Department Chairperson. (P/NP grading only.)

Graduate Courses

200. Proseminar in Physical Education (3) I, Adams, Ryan Seminar—3 hours. Prerequisite: course 135. The meaning, methods, and techniques of research procedure as applied to physical education; a critical review of selected studies, literature, practices, and procedures in the field; application to a particular problem in the field.

*210. Historical and Cultural Bases of Physical Education (3) I
Lecture—2 hours; discussion—1 hour. Prerequisite: course 120. An examination of political, economic, social, and religious factors which have influenced sports in various countries.

*215. Growth and Development in Human Performance (4) III
Seminar—4 hours. Prerequisite: course 115. Graduate lecture-seminar investigating the interactions between growth and development, and physical activity. Alterations in composition, motor performance and physiological function with age, and the special problem areas of sex, ethnic and racial differences, aging, athletics, and alteration of normal growth patterns.

220. Kinesiology (4) III, Kovacic Lecture—3 hours; discussion—1 hour. Prerequisite: course 103. Critical review of current literature and research in kinesiology; neurophysiological concepts and physical laws.

*221. Anthropometry in Relation to Physical Performance (4) II. Adams Lecture—2 hours; discussion—1 hour; laboratory—2 hours. Prerequisite: course 104B and 135. Consideration of physical constitution, body proportions, and body composition in man as they affect physical performance; measurement of selected structural and functional changes accompanying prolonged, systematic physical conditioning.

222. Metabolic Functions in Exercise (4) III. Mlod Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 104B. Physiology 114. Review of the current research literature on the metabolic responses to exercise in man; a laboratory survey of respiratory response, metabolic and water balances, blood gas adjustments and acid-base balance with particular reference to the effect of environmental conditions.

230. Motor Performance: Psychological Aspects (4) II. Ryan Lecture—2 hours; discussion—2 hours. Prerequisite: course 110. Critical review of current literature on motor learning; coordination; kinesthesia; and reaction time; consideration of sensory-motor perception, motivation, and personality factors in relation to physical activities.

290. Physiological Basis of Physical Fitness (2) III. Bernauer Seminar—2 hours. Prerequisite: graduate standing. Review and critical discussion of current research topics concerned with the physiological aspects of physical fitness.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: graduate standing; consent of instructor. (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
Prerequisite: graduate standing; consent of instructor and Department Chairperson. (S/U grading only.)

Professional Course

380. Methods of Teaching Physical Education (3) III, Schmalenberger Lecture—1 hour; laboratory—5 hours. Prerequisite: course 180 and six units of course 10, or consent of instructor. The methods of teaching group and individual activities for grades K-12; program planning, class management, organization, and evaluation. (P/NP grading only.)

Physical Medicine and Rehabilitation

See Medicine, School of

Physics (College of Letters and Science)

Douglas W. McComil, Ph.D., Chairperson of the Department
Department Office, 225 Physics-Geology Building

Faculty

Franklin P. Brady, Ph.D., Professor
Thomas A. Cahill, Ph.D., Professor
Albert C. Cheung, M.A., Assistant Professor
Lawrence S. Colema, Ph.D., Assistant Professor
Linton P. Corruccini, Ph.D., Assistant Professor
James E. Draper, Ph.D., Professor
Glen W. Erickson, Ph.D., Professor
Ching-Yao Fong, Ph.D., Associate Professor
Milton E. Gardner, Ph.D., Professor Emeritus
Claude Garrod, Ph.D., Professor
Kenneth R. Greider, Ph.D., Professor
John F. Gunion, Ph.D., Associate Professor
James P. Hurley, Ph.D., Associate Professor
John A. Jungman, Ph.D., Professor
William J. Knox, Ph.D., Professor
Winston T. Ko, Ph.D., Associate Professor
Richard L. Land, Ph.D., Professor
Douglas W. McComil, Ph.D., Associate Professor
Charles G. Patten, Ph.D., Professor Emeritus
Neal Peck, Ph.D., Lecturer
David E. Pelet, Ph.D., Associate Professor
Wendell H. Potter, Ph.D., Associate Professor
Thomas M. Powell, Ph.D., Associate Professor

(Physics, Environmental Studies)

Roderick V. Reid, Jr., Ph.D., Associate Professor
William W. True, Ph.D., Professor
Philip M. Yager, Ph.D., Associate Professor

The Major Programs

The Bachelor of Science major program should be followed by the student who plans to enter physics as a profession. The Bachelor of Arts program is less intensive but provides a broad coverage of classical and modern physics and permits more electives in other fields. The A.B. program is preferred for a student seeking a secondary teaching credential. Either program is suitable for those planning careers in an interdisciplinary field such as biophysics, medical physics, and geophysics.

Both programs are developed in a highly sequential manner, i.e., Physics 4A-4B-4C-4D-4E (or proposed 8A-8B-8C-8D) and Mathematics 21A-21B-21C are required for most upper division courses and must be taken in the freshman and sophomore years. Some prerequisites may be waived with consent of the instructor.

In the junior year the student normally studies advanced courses in mathematical methods, analytical mechanics, electricity and magnetism, and begins quantum mechanics. In the senior year the study of quantum mechanics is continued and courses in the principal modern fields of physics are selected. Laboratory courses may be taken both years.

Physics

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>41</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 22A, 22B, 22C</td>
<td>20</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>38</td>
</tr>
<tr>
<td>At least 2 additional upper division units in physics or astronomy. (No more than 4 units in courses numbered 194, 195, 197T, 199 and they may be applied in satisfaction of this requirement)</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Units for the Major 79

Recommended

Astronomy 2, Chemistry 1A-1B-1C or 4A-4B-4C, Mathematics 118A-118B, 119, 185A-185B, Mathematics 129A-129B or Applied Science 115

Physics

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>56</td>
</tr>
<tr>
<td>Physics 4A, 4B, 4C, 4D, 4E</td>
<td>20</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 22A, 22B, 22C</td>
<td>20</td>
</tr>
<tr>
<td>Chemistry 1A-1B-1C or 4A-4B-4C</td>
<td>15</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>54</td>
</tr>
<tr>
<td>At least 11 units from Physics 105C, 112B, 129A, 129B, 129C, 140A, 140B</td>
<td>11</td>
</tr>
<tr>
<td>At least 10 additional upper division units from physics or astronomy. (No more than 6 units in courses numbered 194, 195, 197, 199, and 199 may be applied in satisfaction of this requirement)</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Units for the Major 110
Courses in Astronomy

Lower Division Courses

2. Introduction to Modern Astronomy and Astrophysics (4) I. Cheung Lecture—3 hours, laboratory-discussion—2 hours. Prerequisite: good facility in high school physics and mathematics (algebra and trigonometry). Description and interpretation of astronomical phenomena using the laws of modern physics. Modern astronomical instrumentation. Gravitation, relativity, electromagnetic radiation, atomic and nuclear processes in relation to the structure and evolution of stars, the solar system, galaxies, and the universe. Not open to students who have received credit for courses 1B or 13.

10. Introduction to General Astronomy (4) III. Cheung Lecture—3 hours, laboratory-discussion—2 hours. A non-mathematical description of modern astronomy with emphasis on the structure and evolution of stars, galaxies, and the universe. The sun and the solar system. Optional topical units include pulsars, black holes, quasars, and extraterrestrial communications. Not open to students who have received credit for courses 1B or 2 or any physics course except (13).

Upper Division Courses

127. Introduction to Astrophysics (3) III. Cheung Lecture—3 hours. Prerequisite: Physics 4C, Mathematics 21C and knowledge of astronomy or consent of instructor. Celestial mechanics, radiation, astrophysical measurements, electromagnetic processes, the sun, binary and variable stars, stellar structure and evolution, galaxies, cosmology. (Same course as Physics 127.)

Courses in Physics

Physics 10 is primarily a concept-oriented one-quarter lecture-discussion course requiring relatively little mathematical background.

Physics 1 is a two-quarter sequence requiring some high school mathematics (trigonometry). Either 1A alone or both quarters may be taken. The sequence is not intended to satisfy entrance requirements of a year of physics for professional schools, but will satisfy requirements of 3 or 6 units of physics.

Physics 2 is a three-quarter sequence using some calculus (mostly concepts rather than calculations). The entire sequence is recommended, rather than just 1 or 2 quarters. Physics 3 is a separate laboratory course recommended to accompany Physics 2.

Physics 4 is a five-quarter sequence using calculus throughout and including laboratory work as an integral part. The entire sequence is recommended, rather than just alternate quarters. The course is designed primarily for students in the physical sciences and engineering. (The above five-quarter Physics 4 sequence may be replaced with a four-quarter Physics 8 sequence starting with 8A in the 1978-79 academic year, to be followed by Physics 8B-8C-8D in 1978-79, see your adviser for recommendations about taking the proposed 8A in the Winter or Spring quarters.) (See "Changes to General Catalog," published each quarter, for courses which have changed from those shown below.)

Lower Division Courses

1A. Applied Physics (3) III II. McCollum Lecture—3 hours. Prerequisite: trigonometry or consent of instructor. Mechanics, electrical energy. Not open to students who have completed course 2A or 2ATA.

1B. Applied Physics (3) III II. Potter Lecture—3 hours. Prerequisite: course 1A or 2A and consent of instructor. Heat, optics, radiation. Not open to students who have completed course 2B or 2C.

2A. General Physics Lecture (3) I II. The Staff Lecture—3 hours. Prerequisite: Mathematics 16A (may be taken concurrently) or consent of instructor. Mechanics, introduction to general principles and analytical methods used in physics. Not open to students who have received credit for course 1A or 2ATA.

2ATA. Individualized General Physics (3) I The Staff Lecture—1 hour; personalized system of instruction, with tutored assistance (averaging to 1 hour per week). Prerequisite: Mathematics 16A (may be taken concurrently) or consent of instructor. Mechanics, introduction to general principles and analytical methods used in physics. Not open to students who have received credit for course 1A or 2A. Limited enrollment.

2B. General Physics Lecture (3) I II. The Staff Lecture—3 hours. Prerequisite: course 2A, 2ATA or 1A and consent of instructor. Electricity and magnetism, heat, kinetic theory, and thermodynamics. Not open to students who have completed course 1A, 1B or 2A.

2C. General Physics Lecture (3) I II. The Staff Lecture—3 hours. Prerequisite: course 2B. Wave motion, optics, modern physics. Not open to students who have received credit for course 1B.

3A. General Physics Laboratory (1) I II. The Staff Laboratory—2 hours. Prerequisite: course 2A or 2ATA (may be taken concurrently) or consent of instructor. Mechanics. Experimental work planned to accompany the lectures in course 2A. Recommended for students electing course 2A.

3B. General Physics Laboratory (1) I II. The Staff Laboratory—2 hours. Prerequisite: course 3A. Electricity and magnetism, heat, kinetic theory, and thermodynamics. Experimental work planned to accompany the lectures in course 2B. Recommended for all students who take course 2B.

3C. General Physics Laboratory (1) I II. The Staff Laboratory—2 hours. Prerequisite: course 3B. Wave motion, optics, modern physics. Experimental work planned to accompany the lectures in course 2C. Recommended for all students who take course 2C.

4A. General Physics (4) III Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 21B (may be taken concurrently). Mechanics. (This course may be replaced by a proposed Physics 8A in 1978-79. See statement under Physics 4 sequence just preceding course listing above.)

4B. General Physics (4) III Lecture—3 hours; laboratory—3 hours. Prerequisite: course 2A, Mathematics 21C (may be taken concurrently). Properties of many body systems; rigid body motion, hydromechanics, kinetic theory, thermodynamics and statistical physics.

4C. General Physics (4) I Peilett Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4A, Mathematics 21D, 22C (may be taken concurrently); course 4B recommended. Fundamentals of electromagnetic theory, Maxwell's equations.

4D. General Physics (4) II Yager Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4C, Mathematics 22B (may be taken concurrently). Fundamentals of electromagnetic theory (continuation of course 4C), A.C. circuitry, electromagnetic waves, optics, electric and magnetic fields in matter.

4E. General Physics (4) III Garrod Lecture—3 hours; discussion-quiz—2 hours. Prerequisite: course 4D. General Physics 4A, 4C recommended. Physics since 1900; special relativity, quantum mechanics, atoms, molecules, the solid state, nuclei, and particle physics.

98. Directed Group Study (1-5) I II III. The Staff (Chairperson in charge) Prerequisite: consent of instructor; primarily for lower division students. (P/N grading only.)

99. Special Study for Undergraduates (1-5) I II III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/N grading only.)

Upper Division Courses

104A-104B. Introduction to Methods of Mathematical Physics (4) I III. Erickson Lecture—3 hours. Prerequisite: course 4C, Mathematics 22C. Elements of vector and tensor analysis, matrix methods, boundary value problems, integral transforms with applications in physics.

105A. Analytical Mechanics (3) I Ko Lecture—3 hours. Prerequisite: course 4A; Mathematics 22A, 22B, 22C. Principles and applications of Newtonian mechanics.

105B. Analytical Mechanics (3) II Ko Lecture—3 hours. Prerequisite: courses 4B and 105A. Continuation of course 105A, introduction to Lagrange's and Hamilton's equations.

105C. Analytical Mechanics (3) III Powell Lecture—3 hours. Prerequisite: course 105B. Continuation of course 105B.

108. Optics (3) III Cahill Lecture—3 hours. Prerequisite: course 4 or 2 sequence and Mathematics 21 sequence or consent of instructor. The phenomena of light, applications to current problems in astronomy, material science, and atmospheric science. Study of modern optical instrumentation. Open to non-majors.

108L. Optics Laboratory (1) III Cahill Laboratory—3 hours. Prerequisite: current enrollment in 108. The laboratory will consist of one major project-
110A-110B-110C. Electricity and Magnetism (3-3-3) I- II- III. Jungman
Lecture—3 hours. Prerequisite: course 4D; Mathematics 22C. Theory of electromagnetism, Maxwell's equations, electromagnetic waves.
112A-112B. Thermodynamics and Statistical Physics (3-4) II. Corrucitti
Lecture—3 hours (112A); lecture—3 hours plus 9 hours outside work (112B). Prerequisite: course 4E, 104B, 105B. The classical background, basic ideas, and methods of quantum mechanics, with applications to atomic physics.

118A. Electronic Instrumentation (4) I. Pellett
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4E, 226B. Experimental and theoretical study of important electronic circuits commonly used in physics.

118B. Electronic Instrumentation (4) II. Pellett
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 4E, 226B. Continuation of course 116A. Introduction to the use of digital electronics and microcomputers in experimental physics.

121. Foundations of Atomic and Molecular Physics (4) I. McColl
Lecture—3 hours; outside work—9 hours. Prerequisite: course 4E, 21C. The phenomena of atomic physics; introduction to quantum phenomena and quantum mechanics; selected topics dealing with atoms, molecules, nuclei, and the solid state.

122. Advanced Physics Laboratory (2) II. Pellett; III. Pellett
Discussion—1 hour, laboratory—3 hours. Prerequisite: course 4E. Experimental techniques and measurements in atomic, nuclear, and solid-state physics. May be repeated once for credit.

123. Application of Nuclear Physics (3) II. Jungman
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Applications to environmental, medical, and energy source programs. Course emphasizes but is not limited to experimental programs underway at Crocker Nuclear Laboratory. Student participation in one such experimental program is the required lab work.

127. Introduction to Astrophysics (3) I. Cheung
Lecture—3 hours. Prerequisite: course 4C and Mathematics 21C and knowledge of astronomy or consent of instructor. Celestial mechanics, radiation, astrophysical measurement, electromagnetic processes, the sun, binary and variable stars, stellar structure and evolution, galaxies, cosmology. (Same course as Astronomy 127.)

129A. Introduction to Nuclear and Particle Physics (4) I. Landau
Lecture—3 hours; term paper. Prerequisite: course 4E; Mathematics 22C. Survey of basic nuclear properties and concepts requiring only rudimentary knowledge of quantum mechanics.

129B. Nuclear Physics (4) II. Draper
Lecture—3 hours; outside work—9 hours. Prerequisite: courses 115B, 129A. Continuation of course 129A.

129C. Elementary Particle Physics (4) III. Ko
Lecture—3 hours; term paper. Prerequisite: courses 115A and 129A or consent of instructor. Properties and classification of elementary particles. Strong, weak, and electromagnetic interactions; conservation laws and CPT invariance; quarks.

140A. Introduction to Solid-State Physics (4) II. Coleman
Lecture—3 hours; outside work—9 hours. Prerequisite: course 115A. A survey of basic concepts and classification of experimental phenomena in solids. Introduction to band theory.

140B. Introduction to Solid-State Physics (4) III. Coleman
Lecture—3 hours; outside work—9 hours. Prerequisite: course 140A. A thorough treatment of one or more of the following: energy bands and Fermi surfaces, transport phenomena, Cooper-pair phenomena, magnetic resonance.

150. Topics in Current Research (2) I, II, III. The Staff
Discussion—1 hour; outside work—5 hours. Prerequisite: consent of instructor. Discussion of topics of current interest in physics. May be taken for credit more than not more than four times.

194H. Special Study for Honors Students (4) I, II, III. The Staff (Chairperson in charge)
Prerequisite: open only to seniors who qualify for the honors program. Independent research and/or reading on selected topics.

195. Senior Thesis (9) I, II, III. The Staff (Chairperson in charge)
Prerequisite: physics major of senior standing. Preparation of a senior thesis on a topic selected by the student with approval of the department. May be repeated for a total of 16 units and to no more than 5 units in any one quarter without Departmental approval.

197T. In tutoring in Physics and Astronomy (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor and department chairperson. Tutoring of students in lower division courses. Weekly meetings with instructor. (PINP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PINP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PINP grading only.)

Graduate Courses

200A. Theory of Mechanics and Electromagnetics (3) I. Garrod
Lecture—3 hours. Prerequisite: courses 105C and 110C or the equivalent; Mathematics 220A (concurrently). Special theory of relativity, covariant formulation of mechanics and electromagnetic theory. Lagrange's equations, variational principles for discrete and continuous mechanical and electromagnetic systems. Courses 200A, 200B, 200C, 200D, an integrated sequence, will emphasize physical content as they are coordinated with Mathematics 220A, 220B, 220C.

200B. Theory of Mechanics and Electromagnetics (3) II. Garrod
Lecture—3 hours. Prerequisite: course 200A; Mathematics 220B (concurrently). Hamilton's equations. Hamilton-Jacobi theory and contact transformations, action-angle variables and perturbation theory, selected topics in mechanics of continuous media, incompressible and compressible flows, gravity waves and shock theory.

200C. Theory of Mechanics and Electromagnetics (3) III. True
Lecture—3 hours. Prerequisite: course 200B; Mathematics 220C (concurrently). Brief review of static electromagnetic fields; Maxwell's equations; plane waves in various media; magnetohydrodynamics.

200D. Theory of Mechanics and Electromagnetics (3) III. True
Lecture—3 hours. Prerequisite: course 200C. Diffraction theory. Radiating systems and electron theory.

215A. Quantum Mechanics (3) I. True
Lecture—3 hours. Prerequisite: course 115B. Nonrelativistic quantum mechanics. Formal development and interpretation of quantum mechanics, including the Schroedinger wave equation, matrix mechanics, and use of state vectors in describing a dynamical system.

215B. Quantum Mechanics (3) II. True
Lecture—3 hours. Prerequisite: course 215A. Wave packets, Wannier-Kramers-Brillouin approximation, and perturbation methods applied to atomic, nuclear, molecular, and solid-state problems.

215C. Quantum Mechanics (3) III. True
Lecture—3 hours. Prerequisite: course 215B. Scattering theory, radiation theory, and a brief introduction to relativistic quantum mechanics and the Dirac equation.

219A. Statistical Mechanics (3) I. Garrod, Hurley
Lecture—3 hours. Prerequisite: courses 112B and 115B. Foundations of classical and quantum statistical mechanics.

219B. Statistical Mechanics (3) II. Hurley, Garrod
Lecture—3 hours. Prerequisite: course 219A. Applications to properties of solids, real gases, nuclear matter, fluctuations about the equilibrium state.

221A-221B-221C. Atomic Physics (3-3-3) I-II-III. McCom
Lecture—3 hours. Prerequisite: course 215C. Term structure of atoms using the angular momentum formalism; methods of computing wave functions and radial integrals, splitting in external fields; term structure in crystals; scattering and collisions.

224A. Nuclear Physics (3) I. Brady, Draper
Lecture—3 hours. Prerequisite: course 215B. Comprehensive study of the nucleon-nucleon interaction including the deuteron, nucleon-nucleon scattering, polarization, determination of real parameters of S-matrix, and related topics. Not offered every year.

224B. Nuclear Physics (3) II. Brady, Draper
Lecture—3 hours. Prerequisite: course 224A. Study of nuclear models, including shell model, collective model, unified model. Energy level spectra, static momenta, and electromagnetic transition rates.

224C. Nuclear Physics (3) III. Brady, Draper
Lecture—3 hours. Prerequisite: course 224B. Study of nuclear scattering and reactions including the optical model and direct interactions. Beta decay and an introduction to weak interactions.

229A. Advanced Nuclear Theory (3) I. Reid
Lecture—3 hours. Prerequisite: course 224C. Advanced topics in nuclear theory: theory of quantum-mechanical scattering processes. Exact formal theory and models for two-body scattering. Not offered every year.

229B. Advanced Nuclear Theory (3) II. Reid
Lecture—3 hours. Prerequisite: course 229A. Advanced topics in nuclear theory: theory of quantum-mechanical scattering processes. Exact formal theory and models for three-body scattering. Not offered every year.

238A. Quantum Theory of Fields (3) I. Erickson
Lecture—3 hours. Prerequisite: course 215C. Relativistic quantum mechanics of particles; techniques and applications of Feynman diagrams; renormalization. Not offered every year.

238B. Quantum Theory of Fields (3) II. Erickson
Lecture—3 hours. Prerequisite: course 238A. Continuation of 238A, with selected advanced topics, such as S-matrix theory, dispersion relations, axiomatic formulations. Not offered every year.

239A. Quantum Many-Body Systems (3) I. Garrod
Lecture—3 hours. Prerequisite: courses 215C and 219B. The quantum theory of many-particle systems. Theoretical analysis of superfluids, superconductors, and nuclear matter.

239B. Quantum Many-Body Systems (3) III. Garrod
Lecture—3 hours. Prerequisite: course 239A. Perturbation and variational techniques in many-particle systems. Band theory of solids, electron-phonon interactions, and other topics.

240A-240B. Solid-State Physics (3-3) III-II. Fong

245A-245B. High Energy Physics (3-3) III-II. Ko
Lecture—3 hours. Prerequisite: course 245A. Fundamentals of elementary particle interactions; determination of quantum numbers; interpretation of experiments; selected special topics in second quarter. Not offered every year.

251. Frontiar Physics (3) II. Reid
Lecture—3 hours. Prerequisite: courses 200C, 219B, or
Physiology

understanding of the vital functions of living organisms and includes a systematic study of the functional properties of tissues and organs and comparison of processes among different kinds of animals. It will provide the foundations for a challenging career in physiology and also serve as a basis for further training in schools of human and veterinary medicine, medical technology, pharmacy, dentistry, optometry, and other health sciences. Students interested in research and advanced teaching may use the program as preparation for continued study leading to advanced degrees.

Choice of College. The Bachelor of Science degree is offered in both the College of Agricultural and Environmental Sciences and College of Letters and Science.

Physiology

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
</table>
| Chemistry (Chemistry 1A-1B, 1A-1B, 5, 8A-8B) | 25
| Mathematics (Mathematics 13, 16A-16B, 16C or Physics 108) | 13-14
| Physics (Physics 2A-2B-2C) | 5 |

Depth Subject Matter

| Physiology, including Physiology 100A-106B, 106L, 110L, 111A-111B | 33 |

Breadth Subject Matter

| College of Agricultural and Environmental Sciences students | 16 |
| Social sciences and humanities (see College requirement) | 16 |

Additional requirements as described on page 74.

College of Letters and Science students: Refer to page 98 for a description of requirements to be completed in addition to the major.

Restricted Electives

| Upper division units, chosen with adviser's approval, constituting a sequence in biochemistry, morphology, and selected biological science courses or mathematics, chemistry, physics, and/or engineering. No course 192 or more than 5 units of a course 199 will be accepted as restricted electives. | 30 |

Unrestricted Electives

| Total Units for the Major | 180 |

Graduate Study. The Physiology Department offers programs of study and research leading to the M.S. and Ph.D. degrees. Information on graduate study can be obtained by contacting the graduate adviser or the Announcement of the Graduate Division.

Graduate Adviser. M. W. Beal.

Related Course. Human Physiology 200D (Medicine, School of).

Courses in Physiology

Lower Division Courses

See also Physiology 2, 2L, and 10 listed under Zoology course listing (page 327).

Upper Division Courses

100A. General Physiology (3) I., Horowitz

Discussion—five 2-hour sessions (alternate weeks); laboratory—five 6-hour sessions (to alternate with discussion). Prerequisite: course 100A. Continuation of course 100A with particular emphasis on transport phenomena, cell recognition and communication, and properties of excitable cells.

100B. General Physiology (3) II., Horowitz, Horowitz

Discussion—five 2-hour sessions (alternate weeks); laboratory—five 6-hour sessions (to alternate with discussion). Prerequisite: course 100A, 10GB (concurrently). Biological Sciences 1; or consent of instructor. Laboratory in the physical and chemical processes of cells and tissues.

102. Physiology of Growth (3) III., A. Smith

Discussion—five 2-hour sessions (alternate weeks); laboratory—three 6-hour sessions (to alternate with discussion). Prerequisite: course 100B. Continuation of course 100B with particular emphasis on transport phenomena, cell recognition and communication, and properties of excitable cells.

103. Physiology of Animal Cells (4) III., L. B. Wilson

Discussion—three 2-hour sessions; laboratory—three 6-hour sessions. Prerequisite: course 100B or Zoology 121 B. Organization of metabolic systems at the cellular level. Life cycles of cells; regulation and development of specialized cell functions.

106A. Experiments in Physiology: Design and Execution (3) III., Horowitz, Horowitz

Discussion—thirty 2-hour sessions; laboratory—seven 2-hour sessions. Prerequisite: course 100B or 100L, 106B, 106L, and consent of instructor. Allows students to experimentally examine current physiological problems. Following group discussions on approaches to designing experiments, groups of 2-3 students will choose a project and design an experimental protocol that will then be evaluated by the Instructor and reported upon. (P/NP grading only.)

106B. Experiments in Physiology: Design and Execution (3) III., Horowitz, Horowitz

Discussion—two 2-hour meetings per quarter; laboratory—six 2-hour sessions. Prerequisite: course 106A and consent of instructor. Continuation of course 106A. (P/NP grading only.)

106C. Biodynamics (3) I., Horowitz

Discussion—three 2-hour sessions; laboratory—ten 2-hour sessions. Prerequisite: course 100B or 100L, 106B, 106L, 110L, 111B. Application of mathematics to physiological processes.

110. Systemic Physiology (5) I., II, III, Colvin, Goldberg, Mendel, Silman, Weisner

Discussion—three 2-hour sessions per week; laboratory—ten 3-hour sessions. Prerequisite: course 100B. Continuation of course 100B, 100L, 106B, 106L, 110L, 111B. Application of anatomy to physiological processes. Systems covered include the cardiovascular, respiratory, renal, and endocrine systems. Emphasis on modern conceptual and methodological approaches using several species in demonstrating the physiology of organ systems.

112. Nervous and Endocrine Control System (4) I., Boden, Horowitz, Silman

Lecture—four hours. Prerequisite: course 110. The nature, functional significance, and integration of neuronal and endocrine control of physiological processes. Emphasis will be placed on neuroendocrine, neural sensory, and motor systems, their relative integration, and control of metabolic and reproductive status.

113. Cardiovascular, Respiratory, and Renal Physiology (4) II., Golubberg, Weisner

Lecture—three hours. Prerequisite: course 110. Chemistry 8B, Physics 2A, 2B, 2C recommended. An intensive and advanced presentation of concepts in cardiovascular, respiratory, and renal physiology including discussion of acid-base balance. Recommended for Physiology students, graduate students, and others in allied interests.

114. Gastrointestinal Physiology (2) III., M. Colvin

Lecture—two hours. Prerequisite: course 110, Biochemistry 101 or Physiological Chemistry 101 recommended. Advanced gastrointestinal physiology covering absorption, secretion, enunciation, and motility. Also includes physiology of the digestive tract. The emphasis will be placed on the physiology of the gastrointestinal tract; however, the interface between the tract and metabolic events will be briefly covered.

117. Avian Physiology (3) III., Ogawa

Lecture—three hours. Prerequisite: course 110 or Zoology 2. Physiology of the various systems of birds, with emphasis on digestion, respiration, excretion, and the endocrine system.

117L. Avian Physiology Laboratory (2) III., Burger

Discussion—three 2-hour sessions; laboratory—two 6-hour sessions. Prerequisite: course 117 (may be taken concurrently). Laboratory instruction in selected organ systems of the bird.

120A. Comparative Physiology: Neurointegrative Mechanisms (3) I., Woolley

Lecture—three hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom; neurointegrative mechanisms of integration across phylogenetic development at both neuronal and systemic levels.

120B. Comparative Physiology: Circulation (3) II., Goldberg, Rhode

Lecture—three hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom; circulatory systems. Comparative approach to cardiovascular function in vertebrates and invertebrates. Offered in odd-numbered years.

120C. Comparative Physiology: Digestion (3) III., Colvin

Lecture—three hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom; digestion. Offered in even-numbered years.

120D. Comparative Physiology: Humoral Integrative Mechanisms (3) III., Boden

Lecture—three hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom; humoral integrative mechanisms. Offered in even-numbered years.

120E. Comparative Physiology: Respiration (3) III., A. Smith, Burger

Lecture—three hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom; respiration. Offered in even-numbered years.

120F. Comparative Physiology: Osmoregulatory Mechanisms (2) II., Boden

This course is in a group from which one or more may be chosen; however, to be considered as having had full exposure to advanced systemic physiology a student must take courses 112, 113, 114, 120A, 121, 121L, and 120D. A student with special interests in comparative physiology may wish to select courses from the 120 series.

290
Plant Protection and Pest Management (A Graduate Group)

Albert A. Grigarick, Jr., Ph.D., Chairperson of the Group
Group Office, 318 Briggs Hall
Graduate Study. The Graduate Group in Plant Protection and Pest Management offers programs of study and research leading to the M.S. and Ph.D. degrees. Detailed information can be obtained from the Group Chairperson and the Announcement of the Graduate Division.

Graduate Adviser. O. G. Bacon (Entomology)

Courses in Plant Protection and Pest Management

201. Concepts and Systems of Plant Protection and Pest Management (3) I. Sall (Plant Pathology)
Lecture—2 hours; discussion—1 hour. Prerequisite: Entomology 110 or 112, Botany 120 may be taken concurrently. Nematology 100, Botany 117, Zoology 125 recommended. Ecological perspective of agricultural systems; the role of pesticides in these systems; plant protection and pest management methods as modifiers of the systems and their components.

202A-202B, 202C. Diagnosis of Plant Pest Problems and the Control of Insect and Plant Pathogen Aggressors (3-3-3) I, Norris (Botany), II, Nyland (Plant Pathology), III, Lange (Entomology)
Fieldwork—9 hours. Prerequisite: Entomology 110 or 112.
Plant Science

(Botany 120, Botany 120, Nematology 100 (Botany or Nematology may be taken concurrently). Diagnosis of disease and assessment of losses caused by insects, pathogens, weeds, nematodes, and other pests, methods of determining pest resistance and establishing economic thresholds, and control of these pests with emphasis on integration of available management practices into programs.

280. Seminar (1-2) I, II, III. The Staff (Chairperson in charge) (SU grading only)

288. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III, IV. The Staff (Chairperson in charge) (SU grading only)

Plant Science

(College of Agricultural and Environmental Sciences)

Faculty

See under Departments of Agronomy and Range Science, Botany, Environmental Horticulture, Genetics; Land, Air and Water Resources; Plant Pathology; Pomology; Vegetable Crops; and Viticulture and Enology.

The Major Program

The objective of the Plant Science major is to train students in the biological and natural sciences as applicable to the technology required for the production, protection, and maintenance of crop plants. The Plant Science student may choose to develop competence in one of seven subject matter options (Agronomy, Horticulture/Nursery Management, Landscape Horticulture, Pathology, Pomology, Vegetable Crops, and Viticulture) or the general option.

The Master Adviser serves as adviser for all students who opt for the Plant Science major. Following commitment to one option, the student is assigned to an adviser associated with the department offering expertise in that area. A general option including two or more areas of specialization is administered by the Master Adviser.

Upon graduation, students may qualify for a career in one or more specialization or for advanced study leading to the M.S. or Ph.D. degrees. Each of the U.C. (UCD) Departments of Agronomy, Plant Pathology, and Vegetable Crops offer an M.S. degree in their respective fields, while the M.S. degree in Horticulture is available through the Departments of Environmental Horticulture, Pomology, and Viticulture and Enology.

Occupational opportunities exist in nursery and greenhouse management, farming, technical and sales positions in agricultural business and associated enterprises, such as banking and equipment and supply companies, as well as in private, state and federal service in consulting and research.

NOTE: For key to footnote symbols, see page 138.

Plant Science

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses may be taken with your adviser's approval. Courses shown without parentheses are required.)

Common Core Courses (Lower Division) ... 70 UNITS

General Chemistry (Chemistry 1A, 1B) .. 10

Biology (Biological Sciences 1) .. 5

Botany (Botany 2) .. 5

Organic chemistry (Chemistry 8A, 8B) .. 6

Statistics (Mathematics 13 or Agricultural Science and Management 150) 4

Physics (Physics 1A, 1B) .. 6

English and rhetoric (see College requirement) 8

Plant science (Plant Science 1.2) .. 7

Soil science (Soil Science 2-3) .. 4

Water science .. 4

Economics (Economics 1A, 1B) .. 5

Social sciences and humanities electives (see page 74) 6

Common Core Courses (Upper Division) 21-23 UNITS

Entomology (Entomology 110 or 112) .. 3

Water science (Botany 120, 121) ... 3

Genetics (Genetics 100A-100B or 160) ... 4

Plant pathology (Plant Pathology 130) ... 4

Plant physiology (Botany 111A, 111B) ... 6

Depth Subject Matter ... 45 UNITS

Agronomy Option

Specific course requirements .. 22-23

Agronomy 102, 100L ... 4

Agronomy 111, 112, 113 (any two courses) 7-8

Plant Science 101 .. 4

Soil Science 103 ... 4

Water Science 101A .. 3

Additional courses to be selected with consent of the adviser from the following subject areas ... 23

Agricultural Economics 130, 140, 150; Agricultural Engineering 102, 105, 104, 105; Agricultural Practices 49A, 49B; Agricultural Science and Management 150; Animal Science 2, 111, 114, 116, 117; Agricultural Science 105; Nematology 100, 110; Plant Pathology 125; Plant Science 102, 103, 105, Soil Science 102, 120, 122, 125; Water Science 103, 104, 110B, 172.

Courses offered in other production departments (e.g., Vegetable Crops, Pomology, Viticulture and Enology, etc.) or in Range Management may be selected in consultation with adviser to satisfy specific individual goals.

Natural sciences electives, not to exceed 8 units, may also be included (see page 74).

Horticulture/Nursery Management Option

Specific course requirements .. 26

Environmental Horticulture 6, 105, 120, 125 19-22

Plant Science 162 .. 4-7

Additional courses to be selected with consent of the adviser from the following subject areas ... 19

1Units earned in satisfaction of the American History and Social Sciences requirement may be used in partial satisfaction of the Social Sciences and Humanities requirement.
Plant Science; Political Science

Agricultural Economics 112, 114, 140; Agricultural Engineering Technology 101; Agronomy 100, 100L; Atmospheric Science 105; Entomology 119, 119L; International Agricultural Development 101; Nematology 100, 110; Plant Pathology 125, 130; Plant Science 101, 102, 112, 112L, 113, 116; Pomology 3; Soil Science 102, 121, 150; Vegetable Crops 100, 118; Viticulture and Enology 116A, 116B; Water Science 110A, 110B.

Natural sciences electives, not to exceed 8 units, may also be included (see page 74)

Vegetable Crops Option

Specific course requirements
- Vegetable Crops 100 and 101: 3-4 units
- Water Science 110A or 110B: 3 units
- Soil Science 109: 4 units

Additional courses from Vegetable Crops 105, 118, 150, 197, or Plant Science 112: 5-6 units

Additional courses to be selected with consent of the adviser from the following subject areas:
- Agricultural Economics 112, 114, 140
- Agricultural Science and Management 150; Agronomy 100, 111, 113
- Biochemistry 101A, 101B, 101L
- Geography 3; Nematology 110; Plant Science 102, 103, 109, 112L, 113, 116
- Soil Science 102, 111, 150; Vegetable Crops 196, 198; Water Science 104.

Natural sciences electives, not to exceed 8 units, may also be included (see page 74)

Viticulture Option

Specific course Requirements
- Viticulture and Enology 3, 100, 105, 116A, 116B: 15 units

Additional courses to be selected with consent of the adviser from the following subject areas:
- Agricultural Economics 130, 140, 150; Agricultural Engineering Technology 101; Agricultural Practices 49A, 49B
- Agricultural Science and Management 150; Atmospheric Science 105; Geography 3; Nematology 110
- Plant Science 101, 102, 103, 109, 113; Soil Science 102, 109, 152; Viticulture and Enology 121, 124, 126, 208; Water Science 104, 110A, 110B.

Natural sciences electives, not to exceed 8 units, may also be included (see page 74)

Unrestricted Electives (units needed to total 180): 44 units

Total Units for the Major: 180

Major Adviser: F. D. Howard (Vegetable Crops)

Related Courses. See Agronomy, Environmental Horticulture, Plant Pathology, Pomology, Vegetable Crops, Viticulture and Enology.

Courses in Plant Science

Questions pertaining to the following courses should be directed to the instructor or to the Academic Advising Center, 132 Hunt Hall.

Lower Division Courses

1. **Plants and Man** (3) I, II, III. Howard (Vegetable Crops)
 - Lecture: 3 hours. Plants as a basic resource for food, fiber, shelter, and recreation and their use and effect on man, past, present, and future.

2. **Production of Cultivated Plants** (4) I, III. Lister (Viticulture)
 - Lecture: 1 hour; discussion: 1 hour; laboratory: 3 hours. Principles of plant production, improvement, propagation, harvesting, preserving, processing, and marketing. Course will proceed with the Video-Audio-Self-Tutorial method with students making use of the learning facilities at their own convenience.

Upper Division Courses

101. **Ecology of Crop Systems** (4) II. Looper, and Rains (Agronomy and Range Science)
 - Lecture: 3 hours; discussion: 1 hour. Prerequisite: course 2 or consent of instructor. Ecological processes governing the structure and behavior of managed ecosystems. Emphasis on competition, adaptation, photosynthetic production and relations to radiant energy, nutrition, water and temperature and their control in crop production.

102. **Physiology of Cultivated Plants** (4) III. Sachs (Environmental Horticulture, Rapaport (Vegetable Crops)
 - Lecture: 3 hours; discussion: 1 hour. Prerequisite: course 2 or consent of instructor. The plant as a dynamic system; physiological processes in the vegetative growth, development, flowering and fruiting of cultivated plants.

103. **Evolution of Crop Plants** (3) I, Jen
 - Lecture: 2 hours; discussion: 1 hour (a few sessions will be used for laboratory work on plant materials.) Prerequisite: course 1: introductory genetics (e.g., Genetics 100B).
 - Diversity and domestication of economic plants; principles of plant evolution; centers of origin, genetic diversity and germ plasm collections; implications in new agricultural developments.

109. **Principles of Plant Propagation** (3) III. Hartmann and Kester (Pomology)
 - Lecture: 2 hours; laboratory: 3 hours. Prerequisite: course 2 or consent of instructor. Principles and practices of propagating horticultural plants with emphasis on anatomical and physiological relationships.

112. **Postharvest Physiology and Handling of Horticultural Commodities** (3) I, Morris (Vegetable Crops), Nelson (Viticulture)
 - Lecture: 3 hours. Prerequisite: Botany 111B or consent of instructor; course 112 (recommended to be taken concurrently). Physiological processes related to the maturation and senescence of horticultural commodities involved in handling, transportation, storage, and marketing practices, e.g., temperature and humidity control, protective treatments, controlled atmospheres.

112L. **Postharvest Physiology and Handling Laboratory** (2) I, Morris (Vegetable Crops), Nelson (Viticulture)
 - Discussion: 1 hour; laboratory: 3 hours. Prerequisite: course 112 (may be taken concurrently). Demonstrations and exercises following the subject matter of course 112. One or more field trips to observe commercial practices.

113. **Plant Breeding** (3) II, III. Stevens (Vegetable Crops)
 - Lecture: 3 hours. Prerequisite: Genetics 100B. The principles of plant breeding.

116. **Mineral Nutrition of Plants** (4) III. Epstein (Botany, Soils and Plant Nutrition)
 - Lecture: 3 hours; laboratory: 3 hours. Prerequisite: Botany 111A or the equivalent. Evolution and factor plant nutrition; essential and other elements; mechanisms of absorption and translocation; mineral metabolism; deficiencies and toxicities; and genetic and ecological aspects of plant nutrition.

**121A-121B (or 121C). Applied Crop Physiology (3-3-3) I-II-III.
 - Agronomy and Vegetable Crops Staff
 - Lecture: 1 hour; laboratory: 6 hours. Prerequisite: basic knowledge of botany, chemistry, and horticulture and consent of instructor; elementary plant physiology, and courses 101, 102 required (may be taken concurrently). Introduction to research in applied crop physiology with examples drawn primarily from agronomic and vegetable crops. Field and laboratory projects, data reduction, and preparation of suitable reports. Limited enrollment.

122. **Physiological Genetics and Crop Plants** (3) II. Jones, Stevens
 - Lecture: 3 hours. Prerequisite: Genetics 100A or 120; Botany 111A, 111B; or consent of instructor. Principles and recent advances in the physiological genetics of plants. Plant developmental processes related to yield will be considered at several levels: genetic control, biochemical regulation and the impact of the environment on development of plants.

130. **Plant Growth Kinetics** (4) III. Silk
 - Lecture: 2 hours; laboratory: 6 hours. Prerequisite: Botany 2, Mathematics 16A, 16B, Botany 105 recommended. Topics include growth curves, developmental indices, growth of the plant axis, leaf expansion, phyllotaxis, and growth of the apex. In laboratory, students plants seeds and use methods described in lecture to analyze quantitative aspects of plant development.

Graduate Courses

202. **Advanced Physiology of Cultivated Plants** (3) III. Sachs (Environmental Horticulture, Rapaport (Vegetable Crops)
 - Lecture: 1 hour; discussion: 1 hour; presence at three lectures and one discussion section of course 102. Prerequisite: course 2; Botany 111A-111B or the equivalent. Case histories of selected topics in physiology of cultivated plants from original literature will be presented. Emphasis will be on analysis of physiological problems and pertinent experiments that contribute to concepts of crop production.

221A-221B-221C. **Crop Physiology** (3-3-3) I, II, III. Agronomy and Vegetable Crops Staff
 - Lecture: 1 hour; laboratory: 6 hours. Prerequisite: basic knowledge of botany, chemistry, and horticulture and consent of instructor. Principles of crop physiology and courses 101, 102 recommended (may be taken concurrently). Introduction to research in applied plant physiology with examples drawn primarily from agronomic and vegetable crops. Field and laboratory projects, data reduction, and preparation of suitable reports. Limited enrollment.

291. **Seminar in Postharvest Biology** (1) I, II, III. The Staff
 - Discussion: 1 hour. Prerequisite: consent of the instructor. Open to advanced undergraduate and graduate students. Intensive study of selected topics in the Postharvest Biology of fruits, vegetables, and ornamentals. (SU grading only.)

298. **Group Study** (1-5) I, II, III. The Staff (Chairperson in charge)
 - To be arranged.

Political Science

(College of Letters and Science)

*Robert J. Lieber, Ph.D., Chairperson of the Department
Edmond Constantini, Ph.D., Acting Chairperson
Department Office, 228 Voorhis Hall

Faculty

Lawrence Berman, Ph.D., Assistant Professor
Edmond Constantini, Ph.D., Professor
George W. Downs, Jr., Ph.D., Assistant Professor
Philip L. Dubois, Ph.D., Assistant Professor
Richard W. Gabie, Ph.D., Professor
Alexander J. Groth, Ph.D., Professor
Charles M. Hunt, Ph.D., Professor Emeritus
Ole Holst, Ph.D., Professor
Clyde E. Jacobs, Ph.D., Professor
Joyce K. Kallgren, Ph.D., Associate Professor
American History and Institutions. This University requirement may be satisfied by passing any one of the following Political Science courses: 1, 5, 10, 101, 102, 103, 104, 105, 106, 108, 109, 113, 127, 128, 160, 163. (See also page 66.)

Courses in Political Science

Lower Division Courses

1. American National Government (4) I, II. The Staff Lecture—3 hours; discussion—1 hour. Survey of American National Government, including the constitutional system, political culture, parties, elections, the Presidency, Congress, and the courts.

2. Introduction to Comparative Politics (4) I, II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: not open to students having credit for course 3D. Introduction to basic concepts in political analysis and application of them in comparative studies of selected countries. Coverage includes the cultural and other informal dimensions of politics as well as to more formal political and governmental structures.

2D. Seminar in Comparative Politics (4) I. The Staff Seminar—2 hours; seminar sections or student-faculty conferences—2 hours. Prerequisite: open to lower-division students with consent of instructor. Not open to students having credit for course 2. Introduction to basic concepts in political analysis and application of them in comparative studies of selected countries. Individual or team research projects will be required and constitute a major part of the course.

3. International Relations (4) I, Swenson, III, Lieber Lecture—3 hours; discussion—1 hour. Prerequisite: not open to students having credit for course 3D. International conflict and cooperation, including the Cold War, nuclear weapons, and new techniques for understanding international politics.

3D. Seminar in International Relations (4) II. Oye, Lieber Seminar—2 hours; seminar sections or student-faculty conferences—2 hours. Prerequisite: open to lower-division students with consent of instructor. Not open to students having credit for course 3. Selected problems in international relations. Individual or group research projects will be required.

4. Basic Concepts in Political Theory (4) I, Peterman, Zetterbaum Lecture—3 hours; discussion—1 hour. Prerequisite: not open to students having credit for course 4D. Analysis of such concepts as the individual, community, liberty, equality, liberty, justice, and natural law as developed in the works of the major political philosophers.

4D. Seminar in Basic Concepts of Political Theory (4) III. Peterman, Zetterbaum Seminar—2 hours; seminar sections or student-faculty conferences—2 hours. Prerequisite: open to lower-division students with consent of instructor. Not open to students having credit for course 4. Analysis of such concepts as the individual, community, liberty, equality, justice, and natural law as developed in the works of the major political philosophers. Individual or group research projects will be required.

5. Contemporary Problems of the American Political System (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: not open to students having credit for course 5D. In depth treatment of selected problems and issues of American politics, governmental institutions, and policies.

5D. Seminar in Contemporary Problems of the American Political System (4) II. The Staff Seminar—2 hours; seminar sections or student-faculty conferences—2 hours. Prerequisite: open to lower-division students with consent of instructor. Not open to students having credit for course 5. In depth treatment of selected problems and issues of American politics, governmental institutions, and policies. Individual or group research projects will be required.
Political Science

late into actual behavior; attention to the problem of implementing traditional values in the twentieth century and the

9. Introduction to Contemporary Problems of Asia (4) I. Kallgren
Lecture—3 hours; discussion—1 hour. Introduction to modern problems, such as imperialism and nationalism, population demands versus economic development, national liberation and Marxism, as reflected in Asia.

Upper Division Courses

100. Local Government and Politics (4) II. Sokolow
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division course or consent of instructor. The study of local government in the United States, including cities, counties, and special districts. Emphasizes sources and varieties of community conflict, legislative and executive patterns, expertise, decision-making, and the politics of structure. Observation of local governing boards.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or consent of instructor. Historical development of urban political economies. Focuses on ways in which different groups have tried to use local government authority to achieve their objectives and why they succeeded or failed.

102. Urban Public Policy (4) III. Marshall
Lecture—4 hours. Political and economic relationships among central cities, suburbs, and regional, state, and federal governments. Focuses upon policy areas such as poverty, transportation, welfare, housing, and urban policy, and upon who governs, who benefits from the policies in these areas.

103. Comparative State Government and Politics (4) II. Sokolow
Lecture—3 hours; discussion—1 hour. The comparative study of the government and politics of American states, including their constitutional frameworks, their participation in the federal system, the dynamics of governmental institutions, and the behavior of parties and interest groups.

104. California State and Local Government (4) I. The Staff
Lecture-discussion—4 hours. California’s constitution, party system, legislature, executive agencies, administration, courts, major public programs and problems, state-local relations, county, city, school and special district governments.

105. The Legislative Process (4) I, Owens
Lecture—3 hours; discussion—1 hour. An analysis of the legislative process with emphasis on the United States Congress; legislative organization and procedures, legislative leadership and policy making, legislators and constituents, relations between Congress and other agencies.

106. The Presidency (4) I, Berman
Lecture—3 hours; discussion—1 hour; optional term paper. The American presidency, in its origins and development, presidential power and influence as manifest in relationships with Congress, courts, and the public in the formulation and administration of foreign and domestic policy, nominations, campaigns, and elections.

107. Environmental Politics and Administration (4) I. Wondro-Davis
Lecture—3 hours; discussion—1 hour. Introduction to the environment as a political issue in the United States and to the development of administrative mechanisms for handling environmental problems. Changing role of Congress, the presidency, the bureaucracy, and the courts in environmental policy formulation and implementation.

108. Policy Making in the Public Sector (4) I, Downs
Lecture—3 hours; research paper. The theoretical rationale for governmental activity, program evaluation, PBBB, positive theories of policy making, the quantitative study of policy determinants, implementation, and proposals for improved decision making.

109. Public Policy and the Governmental Process (4) II. Wade
Lecture—3 hours; research paper. The processes of formulating public policy including individual and collective
decision making, public exchange, competition, bargaining, coalition formation and the allocation of public goods, resources and opportunities.

110. Contemporary Political Science (4) II. Downs
Lecture-discussion—4 hours. History, nature, and methodology of the profession, schools of thought and trends within the field at present. Offered in even-numbered years.

111. Systematic Political Science (4) II. Downs
Lecture-discussion—4 hours. Philosophical basis of modern political science, major specific approaches, selected concepts relevant to modern political concerns, and research design and execution.

112. Contemporary Democratic Theory (4) III. Zettlbaum
Lecture—3 hours; discussion—1 hour. The contemporary attempts to reformulate traditional democratic theory and attempts to replace traditional theory by conceptual models derived from modern social science findings. Offered in odd-numbered years.

113. American Political Thought (4) I. Peterman
Lecture—4 hours. Origins and nature of American political thought. The principles of American thought as they emerge from the founding period to the present. Offered in odd-numbered years.

114. Quantitative Analysis of Political Data (4) III. Holsti
Lecture—3 hours; term paper. Logic and methods of analyzing quantitative political data. Topics covered include central tendency, probability, correlation, and non-parametric statistics. Particular emphasis will be placed on understanding the use of statistics in political science research. Offered odd-numbered years.

115. Medieval Political Thought (4) II. Peterman
Lecture—3 hours; discussion—1 hour. Prerequisite: course 118A. Offered in even-numbered years.

116. Foundations of Political Thought: A Study in Depth of a Major Political Thinker (4) I. Peterman, Zettlbaum
Lecture-discussion—3 hours; term paper. Intensive analysis of the seminal works of a major political philosopher.

117. Marxism (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Examination of the political and social philosophy of Karl Marx, with reference to the revolution of Marxism in the nineteenth and twentieth centuries.

118. History of Political Theory (4) III. Zettlbaum
Lecture—3 hours. Critical analyses of the works of major political philosophers. Classical and medieval political philosophy—Plato, Aristotle, Cicero, St. Thomas.

119. History of Political Theory (4) II. Peterman

120. History of Political Theory (4) III. Zettlbaum
Lecture—3 hours; term paper. Critical analyses of the works of major political philosophers. Nineteenth and twentieth centuries: Hegel, Toqueville, Mill, Marx, Nietzsche, Sartre.

121. Studies in Modern Political Thought (4) II. Zettlbaum
Lecture—4 hours. A study in depth of philosophers considered central to modern political thought, especially nineteenth and twentieth century political thought. Emphasis will be upon individual philosophes or concepts rather than upon the survey of modern political thought.

122. War (4) I, Svorny
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 recommended. An analysis of political processes involved in the initiation, conduct, and termination of modern international warfare.

123. Theories of International Politics (4) II, Svorny
Lecture—4 hours. Major contemporary approaches to the study of international politics, including balance of power, game theory, Marxist/Maoist theory, systems theory, and decision-making analysis.

124. International Political Economy (4) III. Oye
Lecture—3 hours; discussion—1 hour. Politics of international economic relations. Analysis and evaluation of interaction among national foreign economic policies, international rivalry, and transnational flows of goods, services, and capital.

125. National Security Policy (4) III. Holsti
Lecture—3 hours; research assignment. The development of American military policy since 1945. An analysis of the policy of deterrence and the assumptions upon which it is based. Effects of nuclear weapons upon the conduct of war, alliance systems, and the international system. The prospects of security and stability through arms control.

126. Arms Control and Disarmament (4) III. Oye
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 recommended. Examination of the proposals, problems, and achievements of various efforts to limit the magnitude, type, possession and use of major weapons systems in the period since World War II.

127. Recent American Foreign Policy (4) I, Holsti
Lecture—3 hours; discussion—1 hour. Development of American foreign policy in the twentieth century, with emphasis on the transformation of policy during and after World War II. Examination of the internal and international factors influencing policy adoption, retention, and change.

128. Conduct of American Foreign Policy (4) II. Oye
Lecture—3 hours; discussion—1 hour. Examination of roles of individuals and organizations, in the process of U.S. foreign-policy formulation since World War II, relying extensively on case studies and memoirs to illuminate the nature of the behavioral debate on policy.

129. Special Studies in International Relations (4) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour. An intensive examination of one or more special problems in International Relations. May be repeated once for credit.

130. Soviet Foreign Policy (4) II. Zinner
Lecture—3 hours; discussion—1 hour. The conduct of Soviet foreign relations in contemporary world affairs: ideology and power as mainstays of policy; foreign policy as an instrument of revolution; the roles of diplomacy, economic aid and nuclear armaments. Offered in odd-numbered years.

132. The American Role in East Asia (4) II. Kaltenmark
Lecture—4 hours. Prerequisite: course 3 recommended. Survey of role the United States has played in East Asia in the post-World War II era, with special emphasis on U.S.-dominated East Asia policy, missionaries, traders, and returning students.

134. International Relations in Africa (4) I. Rothchild
Lecture—3 hours; discussion—1 hour. African-African state relations, pan-Africanism, regional integration, policies toward South Africa, and relations between African and major non-African powers.

135. Nationalism and Imperialism (4) I. Kaltenmark
Lecture—4 hours. Prerequisite: course 3 recommended. The theory of nation building illustrated by Western and non-Western experience. Offered in even-numbered years.

136. Colonialism, Neo-colonialism and Nationalism in Africa (4) I. Rothchild
Lecture—4 hours. Analysis of colonial penetration, European political, social, economic, and administrative impact on African societies, the rise of African nationalism, and the contemporary influence of imperialist relationship upon present-day African-African contacts.

137. International Relations in West Europe (4) II. Lieber
Lecture—4 hours. Analysis of European unity, problems of the Third World, U.S.-Western European relations, Communism in Western Europe and the relationship between domestic politics and foreign policy.
Political Science

Party systems; social stratification and group politics; social mobility and political participation; instability, violence, and the politics of integration.

179. Special Studies in Comparative Politics (4) I, II, III. The Staff
Seminar—4 hours. Prerequisite: consent of instructor and upper division standing. Intensive examination of one or more special problems appropriate to comparative politics. May be repeated once for credit.

180. Bureaucracy in Modern Society (4) II. Gable
Lecture—3 hours; special assignments. Role of bureaucracy in a complex society, with emphasis upon changing relationships between government and the economy; consequences of rapid technological and social change for bureaucratic structures and processes; the problems of recent reform.

181. The American Administrative System (4) I, Marshall
Lecture—3 hours; research assignment. Introduction to the development and organization of administrative institutions in the American political system; focus on design and reorganization, and the relationship of structure to performance, at the national, subnational, and local levels.

182. Administrative Decision Making and Public Policy (4) III. Downs
Lecture—3 hours; special assignments. Approaches to and models of administrative decision making; techniques of substantive policy analysis, problems and developments in planning, budgeting, personnel, and administrative reform.

183. Administrative Behavior (4) Ill. Musolf
Lecture—3 hours; discussion—1 hour. The implications for American public administration of evolving concepts about behavior in organizations.

185. Comparative Administration (4) Ill. Gable
Lecture—4 hours. Methodologies, theories, and models of comparison: setting of administrative systems, structures and functions of administrative systems in developed and developing policies, role of bureaucracy in development and nation-building.

186. Urban Administration (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Role of the professional administrator in the urban political and social environment; application of modern management concepts to urban governmental organizations; and examination of persistent and emerging problems and issues.

187. Administrative Theory (4) III. Downs
Lecture—3 hours; discussion—1 hour. Historical and critical analysis of the principal theories of organization and management of public agencies in the light of such concepts as decision making, bureaucracy, authority and power, communication and control; an examination of the role of government bureaucracies in the total society.

188. Manpower Policy and Personnel Administration (4) III. Gable
Lecture—3 hours; discussion—1 hour. Politics and economics of effective manpower programs; planning manpower needs; recruitment, selection, and administration of professional personnel; training and development; unions and collective bargaining; affirmative action; ethics and morality in the public service.

189. Politics of Budgeting and Finance Administration (4) III. Gable
Lecture—3 hours; discussion—1 hour. Fiscal role of government in mixed economy and democratic society; politics of revenue and resource allocation; tax policy; governmental financial relations; budget formulation and execution; alternative models of resource allocation; budget as a tool of management.

190A. Internship in Public Affairs (5) I, II, III. The Staff
Prerequisite: consent of instructor and upper division standing. Supervised internship and study in political, governmental, or related organizations. (P/NP grading only.)

190B. Internship in Public Affairs (5) I, II, III. The Staff
Prerequisite: course 190A (not to be taken concurrently); enrollment dependent on availability of intern positions, with priority to students from Political Science-Public Service major. Supervised internship and study in political, governmental, or related organizations. Not to be taken concurrently with 190A. (P/NP grading only.)

190C. Internship in Public Affairs (2) I, II, III. The Staff
Prerequisite: course 190A (not to be taken concurrently); enrollment dependent on availability of intern positions, with priority to students from Political Science-Public Service major. Supervised internship and study in political, governmental, or related organizations. Not to be taken concurrently with 190A. (P/NP grading only.)

191. Special Studies in Local Government and Politics (4) Ill. Sokolow, Marshall, Riddell
Lecture—3 hours; 1 hour field work. Prerequisite: consent of instructor; enrollment limited to advanced students. Intensive study of one or more topics relating to urban policy and politics, designed for advanced students. Group project and field work in one or more communities are emphasized.

192. International Relations (4) I, III. Oye
Lecture—2 hours; discussion—2 hours. Prerequisite: open to juniors and seniors; consent of instructor. Analysis and evaluation of substantive issues in contemporary international relations. Readings drawn from current and non-academic works.

194HA-194HB-194HC. Special Study for Honors Students (2-3-5) II-Ill. The Staff (Jacobs in charge)
Directed research. Prerequisite: major in Political Science or Political Science-Public Service with junior standing and overall grade-point average of 3.5. Directed reading, research, and writing culminating in the preparation of a senior thesis under the direction of faculty advisor. (Deferred grading only, pending completion of course sequence.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses

202. American State and Local Government (4) I. The Staff
Lecture—2 hours; discussion—2 hours. Prerequisite: courses 100, 101, 103, or consent of instructor. Analysis of American state and local government and politics. Special emphasis on community power structure, federalism, state legislatures, and state administration.

203. American National Government (4) II. Berman
Seminar—4 hours. Survey and analysis of the literature in the field of American Government. Emphasis upon development of methodologies for the study of American Government, and on the development of theories and concepts for understanding the behavior and performance of major national institutions.

Seminar—3 hours; field research—2 hours. Examination of research design and methodologies appropriate to field research in community-level politics and policy, with an emphasis on the role of interviewing and observation. Analysis of illustrative case studies. Team participation in design, execution and analysis of a field research project.

207. Environment Public Policy (4) III. Wandersforde-Smith
Seminar—4 hours. Analysis of the interface between the world of academic reflection about ecological and environmental problems and the world of political action. Examination of alternative approaches to policy analysis and recommendation. Individual research, including field research, will parallel discussion of the literature.

208. Policy Analysis (4) III. Downs
Seminar—4 hours. Social science techniques applied to public policy formation and evaluation.

209. The American Political System (4) I. Wade
Seminar—4 hours. Analysis of selected theoretical and empirical issues posed by contemporary research in American government and politics.

212. Problems of Classical and Medieval Political Thought (4) Ill. Peterson
Seminar—3 hours. Prerequisite: consent of instructor. Concentrated study of the political thought of selected political thinkers of classical and medieval periods.

215. Basic Problems of Political Theory (4) I. Zellerbaum
Seminar—3 hours. Prerequisite: 4 units of political theory or consent of instructor. An examination of the fundamental assumptions underlying various approaches to an understanding of politics, emphasizing the scientific or value-free school, the historicist school, and the contributions of analytic philosophy. Offered in even-numbered years.

218. Political Theory (4) I. Zellerbaum
Seminar—3 hours.

223. International Relations (4) II. Lieder
Seminar—3 hours.

224. International Organization (4) I.
Seminar—3 hours.

225. The International System (4) III. Siverson
Seminar—3 hours. Analysis of the international system by means of theory formation and integration; critique of research designs; use of various techniques of data generation and analysis.

230. American Foreign Policy (4) I.
Seminar—3 hours.

240. Democracy and Dictatorship (4) III. Zinner
Seminar—3 hours. Prerequisite: one upper division course in comparative government, or consent of instructor. Analytical study of differences and similarities in the political process under democratic and authoritarian government. Offered in odd-numbered years.

241A. Communist Political Systems (4) I. Zinner
Seminar—3 hours. Prerequisite: course 141 or the equivalent. Consent of instructor. Systematic analysis of selected topics dealing with the political process of Communist political systems.

241B. Communist Political Systems (4) II. Zinner
Seminar—3 hours. Prerequisite: course 141 or the equivalent and consent of instructor. Systematic analysis of selected topics dealing with the political process of Communist political systems.

242. Seminar in Comparative Politics (4) I. Groth
Seminar—3 hours. Prerequisite: graduate status or consent of instructor. Systematic survey of theories and methods used in the study of Comparative Politics.

243. Latin American Politics (4) III
Seminar—3 hours. Prerequisite: consent of instructor. Intensive study of topic chosen by instructor each year. Normally, students will focus on a specific country, although other possibilities may include land reform and politics of the U.S. in Latin America, etc. Students conduct research projects related to their interests.

246. Selected Problems of Transnational Societies (4)
III. Roddick
Seminar—3 hours.

247. Western European Government and Politics (4)
II. Groth
Seminar—4 hours. The evolution, politics, and contemporary problems of selected political systems of Western Europe.

248. Politics of East Asia (4) III. Kagelgren
Seminar—3 hours. Selected contemporary problems of government and international relations in East Asia.

249. Political Parties (4) II. The Staff
Seminar—4 hours. Survey of selected topics in American and Comparative Politics.

298
Pomology; Preforestry

Pomology; Preforestry

281. Political Behavior (4) II. Owens
Seminar—3 hours. Survey of selected topics in political behavior and public opinion.

282. Concepts and Problems in Public Administration (4) I. Gable
Discussion—3 hours. The nature of administrative processes in modern society; analysis of complex organizations; contemporary management practices and processes; and means of controlling bureaucracy. Offered in even-numbered years.

283. Organizational Behavior (4) II. Downs
Seminar—4 hours. Organizational behavior as it relates to public sector decision-making.

284. Administrative Values (4) II. Musolf
Seminar—3 hours. Examination of American administrative values. Offered in odd-numbered years.

Seminar—4 hours. Special research seminar on selected problems and issues in the study of American government and public policy.

286. Research in Political Theory (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected political issues and problems in the study of political theory.

287. Research in International Relations (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of international relations.

288. Research in Public Law (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of public law.

289. Research in Political Parties, Politics and Political Behavior (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of political parties, politics, and political behavior.

290. Research in Comparative Government and Policy (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of comparative government and policy.

291. Research in Public Administration (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of public administration.

292. Seminar in American Constitutional Law (4) II. Jacobson
Seminar—3 hours. Prerequisite: course 1578 or consent of instructor.

293. Internships in Political Science (2) I, II, III. The Staff
Seminar—2 hours. Prerequisite: open only to persons who have internships or other positions in governmental agencies, political parties, etc., including participants in the State and Local Government Internship Program. Deals with the application and evaluation of theoretical concepts through work experience or systematic observation in public and political agencies. May be repeated for credit.

294. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

295. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

NOTE: For key to footnote symbols, see page 138.

296. Directed Reading (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

Pomology (College of Agricultural and Environmental Sciences)

Noel F. Sommer, Ph.D., Chairperson of the Department
Department Office, 1035 Wickson Hall (752-0122)

Faculty
Frank W. Allen, Ph.D., Professor Emeritus
Murriel V. Bradley, Ph.D., Lecturer Emeritus
Royce S. Brighurst, Ph.D., Professor
Dillon S. Brown, Ph.D., Professor
Robert M. Carlson, Ph.D., Lecturer
Peter B. Catlin, Ph.D., Lecturer
Lawrence L. Claypool, Ph.D., Professor Emeritus
Julian C. Crane, Ph.D., Professor
Luther D. Davis, Ph.D., Professor Emeritus
William H. Grogg, Ph.D., Professor Emeritus
Paul E. Hansche, Ph.D., Professor (Pomology and Genetics)
Hudson T. Hertmann, Ph.D., Professor
Clarion O. Hissey, Ph.D., Professor
Adel A. Kader, Ph.D., Assistant Professor
Dale R. Kester, Ph.D., Professor
John H. Labavitch, Ph.D., Lecturer
George C. Martin, Ph.D., Lecturer
Gordon Mitchell, M.S., Lecturer
Louis Proebsting, Ph.D., Professor Emeritus
David E. Ramos, Ph.D., Lecturer
Roger J. Romani, Ph.D., Professor
Kay Ryugo, Ph.D., Professor
Noel F. Sommer, Ph.D., Lecturer
Kyoto Uru, Ph.D., Lecturer
Steven A. Weinbaum, Ph.D., Lecturer

Related Major Program. See the major in Plant Science, page 293.

Related Courses. See Plant Science 112, 112L.

Courses in Pomology

Lower Division Courses
3. Citrus and Other Subtropical Fruits (3) II. Brighurst
Lecture—3 hours (including one 3-hour field trip to be arranged). The production of the subtropical fruits including avocados, dates, olives, and citrus with special emphasis on citrus. A study of the fundamental information relating to orchard management as applied to these fruits.

10. Fruit and Nut Crop Production and Utilization (3) I, II, III. Martin, Sommer
Lecture—2 hours; discussion—1 hour; one all day Saturday field trip in lieu of discussion last 5 weeks of quarter. Introduction to pomology including climatic adaptation of deciduous fruits; orchard planning and management; tree nutrition and physiology; fruit development, maturation and harvesting; protection from cold; quality, storage, transportation and marketing.

Upper Division Courses
101. Tree Growth and Development (4) II. Crane, Uru
Lecture—3 hours; laboratory—3 hours. Prerequisite: Botany 2 or Plant Science 102 or consent of instructor. Physiology of fruit plant growth and development; species adaptation; response to environment and cultural modification (pruning, soil and water management, etc.).

102. Principles of Fruit Production: Flowering, Fruit Development, and Harvesting (4) III. Ryugo
Lecture—3 hours; discussion—1 hour. Prerequisite: Botany 2 or Plant Science 102 or consent of instructor. Physiology and harvesting of edible fruits and vegetables, the nature and development of buds, flowers, and fruits, with emphasis on commercial deciduous species.

103. Directed Group Study (1-5) I, II, III. The Staff (Sommer in charge)
Prerequisite: consent of instructor. (P/IP grading only.)

104. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Sommer in charge)
(P/IP grading only.)

Graduate Courses
201. Biochemistry and Physiology of Fruits (4) II. Romani
Lecture—3 hours. Prerequisite: Biochemistry 101B; Botany 111B; or consent of instructor. Biochemical and physiological phenomena of growth, maturation, ripening, and senescence of fruit. (Open to qualified undergraduates.)

202. Physiology of Fruit Plants (3) II. Weinbaum
Lecture—2 hours; discussion—1 hour. Prerequisite: Biochemistry 101A-101B, Botany 111A-111B or Plant Science 102; Pomology 101 and 102 or consent of instructor. Course will consider the physiological bases of developmental phenomena specific to deciduous perennial fruit plants. Classroom discussions will include interpretation of current research as well as future research approaches. Offered in odd-numbered years.

205. Nutritional Requirements of Deciduous Fruit Crops (4) II. Carlson, Uru
Lecture—3 hours; laboratory—1 hour; field trips. Prerequisite: Soil Science 109, Botany 111A-111B or Plant Science 102 (or the equivalent). Development and distribution of roots, irrigation and water relations, mineral nutrient status, deficiencies and excesses, symptoms, use of tissue analysis, related and deficiency correction as factors in orchard management. Offered in odd-numbered years.

210. Fruit Morphology (4) II. The Staff
Lecture—2 hours; laboratory—6 hours. Prerequisite: Botany 2. The development of flower, fruit, and seed structures of representative fruit types.

290. Seminar (1-5) I, II, III. The Staff (Catlin in charge)
Seminar—1 hour.

298. Group Study (1-5) I, II, III. The Staff (Sommer in charge)

299. Research (1-6) I, II, III. The Staff (Sommer in charge)
(S/U grading only.)

Portuguese

See Spanish

Preforestry (College of Agricultural and Environmental Sciences)

Preforestry students who intend to major in either General Forestry or Wood Science and Technology may be admitted to the School of Forestry and Conservation located on the Berkeley campus following completion of the sophomore year. The programs offered at Davis provide full preparation for admission to the School. To qualify for such admission, at least 64 quarter units of credit must...
Psychology

be completed with a grade-point average of C or higher. In addition, the prescribed preparatory subject matter requirements for the majors must be satisfied. For full details on the majors in General Forestry, Wood Science and Technology, and in the Conservation of Natural Resources please consult the Announcement of the School of Forestry and Conservation, which may be obtained from the School of Forestry and Conservation, 145 Mulford Hall, Berkeley 94720. (See also page 114.)

Preforestry Adviser: J. Major (Botany); C. C. Dellenbach (Land, Air and Water Resources).

Psychotherapy

See Medicine

Psychology

(College of Letters and Science)

Alan C. Eims, Ph.D., Chairperson of the Department

Department Office, 149 Young Hall

Faculty

Linda P. Acreolo, Ph.D., Assistant Professor

Jarvis R. Bastian, Ph.D., Associate Professor

Leo M. Chalupa, Ph.D., Associate Professor

Stanley Cooperstein, Ph.D., Lecturer

Richard G. Coss, Ph.D., Assistant Professor

William F. Dukes, Ph.D., Professor Emeritus

Alan C. Eims, Ph.D., Professor

Albert A. Harrison, Ph.D., Associate Professor

Kenneth R. Henry, Ph.D., Associate Professor

Thomas W. Klein, Ph.D., Associate Professor

Neal E. Kroll, Ph.D., Associate Professor

Jay K. Lott, Ph.D., Professor (Wildlife and Fisheries Biology)

Joseph Lyons, Ph.D., Professor

William A. Mason, Ph.D., Professor

Gary D. Mitchell, Ph.D., Professor

Robert M. Murphy, Ph.D., Associate Professor

Thomas Natoula, Ph.D., Professor

Donald H. Owings, Ph.D., Associate Professor

Karen E. Paige, Ph.D., Associate Professor

Theodore E. Parks, Ph.D., Associate Professor

Stephanie A. Shields, Ph.D., Assistant Professor

Dean K. Simonton, Ph.D., Assistant Professor

Robert Sommers, Ph.D., Professor

Charles T. Tarr, Ph.D., Professor

Edward D. Turner, Ph.D., Associate Professor

The Major Programs

This major is intended to acquaint the student with the wide range of contemporary psychology. Although the courses reflect a wide array of approaches, interests, and issues, emphasis is upon the application of the tools of science to uncover the biological, environmental, and social causes and consequences of behavior. The Bachelor of Arts program is geared for the student interested in liberal arts; the Bachelor of Science program is geared for students with a keen interest in mathematics or biology. The program acquaints the student with the basic terms, procedures and principles of contemporary psychology, but does not constitute preparation for employment as a professional psychologist. Counseling and other careers in psychology require graduate-level training.

Psychology

A.B. Requirements:

Preparatory Subject Matter:

1. Psychology 1

2. Mathematics 13 or Psychology 41

3. Biological Sciences 1 or a combination of Biological Sciences 10 and one course from Anthropology 1, Physiology 10, Genetics 10, 21A, 21B, 21C, 29.

4. One course in sociology or cultural anthropology (may be lower or upper division).

Recommended: both Mathematics 13 and Psychology 41

Preparatory Subject Matter:

1. Psychology 1

2. Mathematics 13 or Psychology 41

3. Biological Sciences 1 or a combination of Biological Sciences 10 and one course from Anthropology 1, Physiology 10, Genetics 10.

4. One course in sociology or cultural anthropology (may be lower or upper division).

Recommended: both Mathematics 13 and Psychology 41

Depth Subject Matter:

Two courses from the following three groups and one course from the remaining group.

- Group A: Psychology 130, 131, 132
- Group B: Psychology 108, 129, 134, 150
- Group C: Psychology 112, 145, 147, 160

Additional units to achieve a total of 40 units in psychology

- Group A: Psychology 130, 131, 132
- Group B: Psychology 108, 129, 134, 150
- Group C: Psychology 112, 145, 147, 160

Total Units for the Major: 57-61

Psychology

B.S. Requirements:

Biology Emphasis

Preparatory Subject Matter:

1. Psychology 1

2. Mathematics 13

3. Mathematics 19A, 19B, or 19C (or higher equivalent), 21A, 21B

4. Physics 10

5. Biological Sciences 1, Physiology 2, Zoology 2

6. Chemistry 19A, 19B

7. One course in sociology or cultural anthropology (may be lower or upper division)

Depth Subject Matter:

Seven Psychology courses distributed as specified.

- Group A: Two courses from 130, 131, 132, 135
- Group B: Three courses from 128, 129, 134, 150
- Group C: Two courses from 112, 145, 147, 160

Additional units to achieve a total of 40 units in psychology

- Genetics 100A:100B or 115 or 120
- Zoology 129 or 141

Total Units for the Major: 94-102

Mathematics Emphasis

Preparatory Subject Matter:

1. Psychology 1

2. Mathematics 13

3. Mathematics 19A, 19B, or 19C (or higher equivalent), 21A, 21B, 21C

4. Chemistry 10

5. Physics 10

6. Biological Sciences 1, or a combination of Biological Sciences 10 and one course from Anthropology 1, Physiology 10, Genetics 10.

7. One course in sociology or cultural anthropology (may be lower or upper division)

Recommended: Psychology 41

Depth Subject Matter:

Five Psychology courses, distributed as specified.

- Group A: Two courses from 130, 131, 132, 135
- Group B: Two courses from 108, 129, 134, 150
- Group C: One course from 112, 145, 147

Total Units for the Major: 88-95

Recommended for All Majors

Psychology 103 is strongly recommended for students who plan to do graduate work in a field other than clinical psychology or counseling. Psychology 41 or Mathematics 13 must be taken prior to the junior year unless departmental approval is obtained.

Honors and Honors Program: In order to be eligible for highest honors in Psychology, the student must both meet the college criteria (see page 103) and complete an empirical research project (i.e., experiment or field study) which is written in thesis form and approved by the Department.

Graduate Study: The Department offers programs of study and research leading to the M.A. and Ph.D. degrees in psychology. Detailed information regarding graduate study may be obtained by writing the Graduate Adviser, Department of Psychology.

Graduate Adviser: See Class Schedule and Room Directory.

Courses in Psychology

Lower Division Courses

1. General Psychology (4) I, II, III. The Staff

Lecture—4 hours. A general introduction emphasizing em-
15. Introductory Psychobiology (4) I, II, III. The Staff
Lecture—4 hours. A survey of genetic, evolutionary, and physiological factors affecting behavior. Using the comparative approach where appropriate, the behavior of biological and cultural systems to an understanding of how people and their interactions with their environment will be emphasized.

18. Psychology and Modern Life (3) I, II, III. The Staff
Lecture—3 hours. Personality development, interpersonal relationships, and the relevance of psychology to social processes.

41. Research Methods in Psychology (4) I, III. The Staff
Lecture—4 hours. Introduction to experimental design, interviews, questionnaire, field and observational methods, reliability and statistical inference.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
By prior arrangement with individual instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Lower Division Students (1-6) I, II, III. The Staff (Chairperson in charge)
By prior arrangement with individual instructor. (P/NP grading only.)

Upper Division Courses

133. Advanced Quantitative Description of Behavior (5) I, Turner
Lecture—4 hours. Prerequisite: Mathematics 13 or consent of instructor. Summary, inference, and prediction from psychological data, with emphasis on the theoretical aspects.

150. Statistical Inference from Psychological Experiments (4) I, Krull
Lecture—4 hours. Prerequisite: course 103 or consent of instructor. Probability theory, sampling distributions, hypothesis testing, statistical inference, and nonparametric statistics.

Lecture—4 hours. Laboratory—2 hours. Prerequisite: course 2 or 3. An introduction to the physiological bases of behavior.

Lecture—4 hours. Prerequisite: course 1. An introduction to the psychological development of an organism from conception to death.

115. Maturity and Aging (4) I. Acredolo, Lyons
Lecture—4 hours. Laboratory—2 hours. Prerequisite: course 112. Biological, cognitive, personality, and social aspects of the human life span from early maturity and death.

120. History of Psychology (4) III. Bastian, Murphey
Lecture—3 hours. Term paper. Prerequisite: course 1 or 2. Overview of the development of psychology from the time of Galen to the present.

129. Sensory Processes (5) I, III. Owings, Henry
Lecture—5 hours. Prerequisite: course 1 or Psychology 2-2L or consent of instructor. Psychological aspects of sensation and perception as they affect communication and behavior.

130. Human Learning and Memory (4) I, II, III. Krack, Parks
Lecture—4 hours. Prerequisite: course 1 or Mathematics 13. A study of the processes of learning and memory, the brain basis of learning and memory, and the role of memory in the human mind.

Lecture—3 hours. Prerequisite: Introduction to Psychological Science. Topics include the processes by which we are able to perceive the environment and the neural mechanisms underlying perception.

132. Language and Cognition (5) II. Bastian
Lecture—5 hours. Prerequisite: courses 1 and 2. An introduction to the study of language and its relationship to human cognition.

134. Animal Learning and Motivation (5) II. Coss
Lecture—5 hours. Prerequisite: course 1 or consent of instructor. General principles of animal learning and motivation, including classical and operant conditioning, and the role of motivation and emotion in animal behavior.

135. Psychology of Consciousness (4) II. Natsoulas
Lecture—4 hours. Prerequisite: course 1. An introduction to major theories of consciousness, with emphasis on the scientific study of consciousness.

136. Human Emotion and Feeling (4) II, III. Natsoulas, Shields
Lecture—4 hours. Prerequisite: course 1. An introduction to the study of emotions and feelings, including the biological and psychological factors that influence them.

137. Environmental Awareness (4) I, II, III. Sommers
Lecture—4 hours. Prerequisite: course 1. An introduction to the study of environmental issues and their impact on human behavior.

Lecture—4 hours. Prerequisite: course 1. An introduction to the study of social psychology, including topics such as social cognition, social influence, and social behavior.

140. Personality Theory (5) I, II, III. Elms, Paige
Lecture—4 hours. An introduction to personality theory, focusing on the major theoretical perspectives and research methods.

148. Interpersonal Relations (4) II.
Lecture—4 hours. Prerequisite: course 1 or 2. An introduction to the study of interpersonal relations, including communication, conflict resolution, and group dynamics.

149. Psychology of Sex Differences (4) I, II. Paige
Lecture—4 hours. An introduction to the study of sex differences, including the role of genetics, hormones, and social factors in determining sex differences in behavior.

150. Comparative Psychology (5) II, III, I. Mason, Owings
Lecture—4 hours. Discussion and project. Prerequisite: course 1 or consent of instructor. An introduction to the study of comparative psychology, focusing on the behavior of non-human species.

NOTE: For key to footnotes, see page 138.

151. Behavioral Genetics (4) II, Klein
Lecture—4 hours. An introduction to the study of the genetics of behavior, including topics such as genetic theory, linkage analysis, and the role of genes in behavior.

154. Primate Psychology (4) I, Meck
Lecture—4 hours. Prerequisite: course 150 or consent of instructor. An introduction to the study of primate behavior, including topics such as primate cognition, communication, and social structure.

157. Personality Assessment (4) II, Klein
Lecture—4 hours. Prerequisite: course 147, course 41 or Mathematics 13. An introduction to the assessment of individual and group behavior, including topics such as personality testing and interviewing techniques.

158. Social Psychology of Black Americans (5) II, Turner
Lecture—4 hours. Discussion—7 hours. Prerequisite: course 145 and Sociology 130 or consent of instructor. An introduction to the study of social psychology as it relates to the experiences of African Americans.

159. Abnormal Psychology (4) II, III. Murphey, Sommer
Lecture—4 hours. Prerequisite: course 1. An introduction to the study of abnormal psychology, including topics such as diagnostic criteria and treatment approaches.

Lecture—4 hours. Laboratory—4 hours. Prerequisite: course 1 or consent of instructor. An introduction to experimental design and data analysis in psychology.

181A-181B. Field Work in Psychology (3-3) I, II, III. Harrison
Laboratory—4 hours. Term paper. Prerequisite: upper division standing in psychology and consent of instructor. An introduction to field work in psychology, including topics such as research methods and data analysis.

190. Seminar in Psychology (4) I, II, III. The Staff
Seminar—4 hours. An introduction to major topics in psychology, including topics such as social psychology, cognitive psychology, and personality theory.

197. Tutorial in Psychology (1-4) I, II, III. The Staff
Lecture—4 hours. Discussion and project. An introduction to the study of individual and group behavior, including topics such as personality assessment and therapy.
Psychology: Radiological Sciences

May be repeated for credit a total of 8 units. No more than 6 units may count toward the Psychology major requirement. (P/N grading only.)

198. Directed Group Study (1-5). I, II, III. The Staff (Chairperson in charge). By prior arrangement with individual instructor. Directed small group study on psychological topics of special interest and relevance to instructor and students. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5). I, II, III. The Staff (Chairperson in charge). By prior arrangement with individual instructor. (P/N grading only.)

Graduate Courses

200. Current Research Topics in Psychology (1). I. The Staff Seminar—4 hr. May not be repeated for credit. Consent of instructor. A seminar designed to introduce students entering graduate work in the department to its ongoing research activities. (SU grading only.)

201. Research Preceptorship (4) I, II, III. The Staff Laboratory-discussion—4 hr. May not be repeated for credit. Consent of instructor. (SU grading only.)

*205. Advanced Statistical Inference from Psychological Experiments (5). I, Kroll Lecture—4 hr. Project and term paper. Prerequisites: graduate standing and consent of instructor. Probability theory, sampling distributions, nonparametric statistics, statistical inference, and hypothesis testing. A term paper will be required which develops a research proposal with a detailed discussion of the statistical techniques to be employed. (P/N grading only.)

206. Statistical Analysis of Psychological Experiments (4). I, Kroll Lecture—4 hr. Prerequisites: course 103 or consent of instructor. Statistical analysis of data obtained with various experimental designs; analysis of variance and covariance, factorial and repeated measures, Latin square designs, and tests of trends.

207. Multivariate Analysis of Psychological Data (4). III. Simonton Lecture—4 hr. Prerequisites: course 105 or 205 or consent of instructor. The application of multiple regression, factor analysis, and related correlational techniques to non-experimental, quasi-experimental, and experimental data. Techniques implemented using computer multivariate statistical packages.

*208. Physiological Psychology (4). II. Henry Seminar—4 hr. Prerequisites: graduate standing in psychology and consent of instructor. A conceptual analysis of the contributions of neuroanatomy, neurophysiology, and neurochemistry to an understanding of animal and human behavior.

212. Developmental Psychology (4). I, Acredolo Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. The ontogenetic repertoire of the child and its subsequent development.

*223. Sensory Processes (4). II. Calkins, Henry, Owings Lecture—2 hr. Seminar—2 hr. Prerequisites: graduate standing in Psychology and consent of instructor. A lecture-seminar on selected topics in the fields of sensory psychology and physiology with an emphasis on the biological correlates of sensory processes.

230. Learning (4). III. Parks, Kroll Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. Theories and memory as applied to the experiential study of simple and complex behavioral processes.

*231. Perception (4). III. Natsoulas Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. Analysis of the role of perception in experience and its effects on behavior.

245. Social Psychology (4). I, II. Harrson Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. Theory and research in social psychology.

247. Personality (4). II. Paige Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. Theory and research in human personality.

250. Comparative Psychology (4). II. Mason Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. The study of animal behavior in an evolutionary and comparative framework.

251. Genetic Correlates of Behavior (4). II. Klein, Murphy Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. Theory and research in the genetic determination of animal and human behavior.

252. Seminar in Psychology (4). III. Chaupis, Owings Seminar—4 hr. Topics in the field of psychology selected by the instructor.

263A-263B-263C. Topics in Cognitive Psychology (4). I, II, III. Bastian, Kroll, Parks Seminar—4 hr. Prerequisites: consent of instructor. Selected topics in language processing, memory, perception, problem solving, and thinking, with an emphasis on the common underlying cognitive processes.

254. Psycholinguistics (4). III. Bastian Seminar—4 hr. Prerequisites: consent of instructor. Theory and research in the psychology of language.

255. Psychology of Consciousness (4). II. Natsoulas Seminar—4 hr. Prerequisites: graduate standing in psychology or consent of instructor. Research into the nature of consciousness.

272. Experimental Offspring of Personality (4). II. Seminar—4 hr. Prerequisites: consent of instructor. An in-depth examination of various aspects of personality and their implications.

273. Environment and Behavior (4). III. Sommer Seminar—4 hr. Prerequisites: consent of instructor. Research into the nature of social psychology in general.

275. Attitude Formation and Change (4). III. Ellis Seminar—4 hr. Prerequisites: consent of instructor. Research into the nature of attitudes and their formation and change.

290. Seminar (4). III. The Staff Seminar—4 hr. Prerequisites: consent of instructor. Seminar devoted to a highly specific research topic in an area of basic psychology. Special topic selected for the quarter will vary depending on interests of instructor and students.

298. Group Study (1-5). I, II, III. The Staff (SU grading only.)

299. Research (1-12). I, II, III. The Staff (SU grading only.)

2900. Dissertation Research (1-12). I, II, III. The Staff Prerequisites: consent of instructor. (SU grading only.)

Professional Courses

298A-298B-298C. The Teaching of Psychology (4-2-4). I, II, III. Murphy Seminar—2-4 hr. Prerequisites: graduate standing in psychology or consent of instructor. Practical experience in teaching methods and problems of teaching psychology at the undergraduate and graduate levels. Curriculum design and evaluation. Practical experience in the preparation and presentation of materials. (Deferred grading only, pending completion of sequence.)

Radiological Sciences

(School of Veterinary Medicine)

Timothy R. O'Brien, D.V.M., Ph.D., Chairperson of the Department

Department Office, 1114 Medical Science I

Faculty

Norman Ackerman, D.V.M., Assistant Professor

Steven Book, Ph.D., Lecturer (Radiology Laboratory)

Gerald J. DeNardo, M.D., Professor (School of Medicine)

Gerald L. Fisher, Ph.D., Lecturer (Radiology Laboratory)

Marvin Goldman, Ph.D., Professor (Radiology Laboratory)

Joe P. Morgan, D.V.M., Vet. med. dr., Professor

Timothy R. O'Brien, D.V.M., Ph.D., Associate Professor

Philip E. S. Palmer, M.D., Professor (School of Medicine)

Otto G. Raalte, Ph.D., Associate Adjunct Professor (Radiology Laboratory)

Peter F. Suter, Dr. med. vet., Professor

Courses in Radiological Sciences

Upper Division Courses

115. Biophysical Consequences of Nuclear Technology (3). Goldsmit Lecture—2 hr. Discussion—1 hr. Field trip to Nuclear Power Station. Prerequisites: Physics 2A and Biological Sciences 1 or equivalent. Consent of instructor. Discussion of biophysical impurities of radioactives and thermal effects generated by nuclear technology. Hazards evaluation based on the preceding topics of the most sensitive physiological systems will be emphasized. (Same course as Environmental Studies 115.)

199. Special Study for Advanced Undergraduates (1-5). I, II, III. Radiology Staff (P/N grading only.)

Graduate Courses

210. Radiography Technic (6). I (extra section). Morgan and staff Lecture—3 hr. Discussion—1 hr. Laboratory—4 hr. Prerequisites: A.D. degree. Duties of the radiology technician are discussed enabling the student to become proficient in the operation of x-ray machines. Position, protocol, and quality control procedures for various procedures are taught. Course begins in late summer. (Deferred grading only, pending completion of course in Fall quarter.)

211. Radiology of the Skeletal System (6). I, II, III. Morgan and staff Lecture—3 hr. Discussion—2 hr. Laboratory—2 hr. Prerequisites: a DVM degree. Course presents information on radiographic diagnosis of radiographic conditions of the skeletal system. Includes are diseases of joints, fracture disease, fracture healing, articular, bony, and soft tissue infections. Offered only in even numbered years. (SU grading only.)

212. Radiology of the Abdomen (6). I, II, III. O'Brien and staff Lecture—3 hr. Discussion—1 hr. Laboratory—4 hr. Prerequisites: a DVM degree. Course presents information on radiographic diagnosis of radiographic conditions of the abdomen. Includes is diseases of the stomach and intestines. The theory and interpretation of upper GI and lower GI series, cholecystography, splenography, and angiography will be discussed. Offered only in odd numbered years. (SU grading only.)

213. Radiology of the Thorax (6). I, II, III. Suter and staff Lecture—3 hr. Discussion—1 hr. Laboratory—4 hr. Prerequisites: a DVM degree. Course presents information on the normal radiographic anatomy and radiographic diagnosis of radiographic conditions of the chest. Includes is diseases of the heart and lungs. The theory and interpretation of chest X-rays and angiography will be discussed. Offered only in even numbered years. (SU grading only.)
Range and Wildlands Science; Range Management

Range and Wildlands Science; Range Management

214. Radiology of the Skeletal System, II. (6) I, Morgan and staff. Lecture—3 hours; discussion—2 hours; laboratory—2 hours. Prerequisite: A DVM degree. Information on the radiographic diagnosis of the skeletal system including degenerative diseases of the intervertebral disc, trauma, infection, and neoplasia is discussed. Theory and interpretation of myelography and cerebrospinal myelography are covered. Offered in odd-numbered years. (SU grading only.)

215. Radiology of the Abdomen, II. (6) I. Ackerman and staff. Lecture—3 hours; discussion—1 hour; laboratory—4 hours. Prerequisite: A DVM degree. This course presents information on radiographic diagnosis of pathologic conditions of the abdomen, including diabetes, diseases of the kidneys, ureters, urinary bladder, urethra, uterus, and prostate. The theory and interpretation of intravenous pyelography, retrograde cystography and urethrography will be discussed. Offered in even-numbered years. (SU grading only.)

216. Radiology of the Thorax, II. (6) III. Suter and staff. Lecture—3 hours; discussion—1 hour; laboratory—4 hours. Prerequisite: A DVM degree. This course presents information on radiographic diagnosis of congenital and acquired heart diseases and mediastinal diseases. The theory and techniques of cardiac catheterization, fluoroscopy, and esophagography will be covered. Offered in odd-numbered years. (SU grading only.)

266A-266B. Fundamentals of Radiation Biology. (2-2) II-III. Goldman. Lecture—2 hours. Prerequisite: Introductory courses in physics, biochemistry and physiology or consent of instructor. Biological effects of radiation including genetic, teratogenic, carcinogenic responses in terms of dose to quality and quantity. Included are discussions of dose-effect relationships, radiation therapy, environmental radiological, and radiation protection criteria. Offered in odd-numbered years.

286. Group Study (1-5) I, II, III. Radiology Staff (SU grading only.)

299. Research (1-12) I, II, III. Radiology Staff (SU grading only.)

Radiology
See Medicine

Range and Wildlands Science

Range and Wildlands Science (College of Agricultural and Environmental Sciences)

The Major Program

Range and Wildlands Science is the study of the biological and physical components of land resources which are used mostly for grazing domestic livestock, but which also provide wildlife habitats, watersheds, recreation, and open space. The major provides background in the biological, physical, and social sciences. Comprehensive study in the plant, animal, soil, and resource sciences supplements the core of range management courses. Integration of knowledge of a variety of specialized fields is learned as a basis for land management oriented toward the multiple use concept and the management of environmental quality.

The field is broad and diverse. Graduates, especially those with some experience, may be employed as consultants, ranch managers, or ranchers. They may also qualify for the position of Range Conservationist in governmental agencies such as the Forest Service, Soil Conservation Service, and the Bureau of Land Management. With more advanced training, there is an opportunity to pursue graduate work in the major field.

Range and Wildlands Science

B.S. Major Requirements:

For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology (Biology Sciences 1)</td>
<td>5</td>
</tr>
<tr>
<td>Botany (Botany 2)</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry (Chemistry 1A, 1B)</td>
<td>16</td>
</tr>
<tr>
<td>Physics (Physics 2A or 10)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (Mathematics 13, 16A)</td>
<td>7</td>
</tr>
<tr>
<td>Economics (Economics 1A or Agricultural Economics 1)</td>
<td>4-5</td>
</tr>
<tr>
<td>Production of cultivated plants (Plant Science 2)</td>
<td>4</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Science 102</td>
<td>6-71</td>
</tr>
<tr>
<td>Physical geography (Geography 1) or geology (Geology 1)</td>
<td>3-4</td>
</tr>
<tr>
<td>Meteorology (Atmospheric Science 20 or 103)</td>
<td>3</td>
</tr>
<tr>
<td>Soil science and/or water science (Soil Science 21 and two upper division courses from Soil Science and/or Water Science)</td>
<td>8-10</td>
</tr>
<tr>
<td>Agonomy 112-121L</td>
<td>3-4</td>
</tr>
<tr>
<td>Animal science (Animal Science 2, 118A)</td>
<td>6</td>
</tr>
<tr>
<td>Nutrition 103</td>
<td>4</td>
</tr>
<tr>
<td>Resource sciences (Resource Sciences 100)</td>
<td>4</td>
</tr>
<tr>
<td>Plant ecology (Plant Science 101 or Botany 117)</td>
<td>4</td>
</tr>
<tr>
<td>Wildlife ecology (Wildlife and Fisheries Biology 151 or Entomology 104)</td>
<td>3-4</td>
</tr>
<tr>
<td>Animal physiology, ecology, or botany</td>
<td>4</td>
</tr>
</tbody>
</table>

Range Management 11, 119, 119B, 120, 125, 150, 151, 152, 153, 154, 158, 198, 199 | 18 |

1. Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the Social Sciences and Humanities requirement.

Breadth Subject Matter

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English and/or rhetoric</td>
<td>8</td>
</tr>
<tr>
<td>Social sciences and humanities electives</td>
<td>12</td>
</tr>
<tr>
<td>Upper division social science courses in at least two of the following: agricultural economics, economics, environmental studies, geography, or political science</td>
<td>12</td>
</tr>
</tbody>
</table>

Unrestricted Electives

| Units | 32-38 |

Total Units for the Major

| Units | 180 |

Major Adviser. C. A. Fraguse.

Graduate Study. See page 101.

Range Management

(Continued from Agricultural and Environmental Sciences)

Faculty

See under the Department of Agronomy and Range Science.

Major Program. See the major in Range and Wildlands Science, this page.

Graduate Study. A program of study is offered leading to the M.S. degree in Range Management. Detailed information can be obtained from the graduate adviser and the Announcement of the Graduate Division.

Graduate Adviser. W. A. Williams (Agronomy and Range Science).

Courses in Range Management

Questions pertaining to the following courses should be directed to the instructor or to the Academic Advising Center, 132 Hunt Hall.

Lower Division Course

1. Introduction to Range Management (4) I, Laube. Lecture—3 hours; discussion—1 hour. Basic principles of range management and their relationship to the management of wildlands for livestock production, wildlife, water, recreation, and timber.

Upper Division Courses

100. Range Plants (4) I, Crampton. Lecture—2 hours; laboratory—8 hours; two Saturday field trips. Prerequisite: Botany 2. A systematic study and identification of range grasses, legumes, forbs, and shrubs; their distribution, environmental requirements, and use.

105. Field Course (2) III. Love, Crampton. Lecture—10 hours total; laboratory—30 hours total. Prerequisite: consent of instructor. Field studies of range conditions and methods of utilization in various parts of the state. To be given between winter and spring quarters. Considered a spring course for preregistration.

133. Grassland Ecology (3) II. Raguse. Lecture—3 hours; one Saturday field trip. Prerequisite: course in plant ecology or consent of instructor. Structure, function, and environment of North American grasslands.
Religious Studies

with emphasis on the California annual type. Concepts and problems in measuring primary and secondary productivity. Principles of grassland and management including vegetation, improvement, utilization by animals, and recreation and aesthetic values. Offered in even-numbered years.

142. Advanced Range Planning and Management Practices (3) I, II, III, Jones Lecture—2 hours; two Saturday field trips. Prerequisite: course 1 and 100 or consent of instructor. Rangeland use planning and management practices in California grasslands, oak woodlands, chaparral and sagebrush including grazing management, range seedling, fertilization, fire and herbicides; discussion of rangeland as watersheds and multiple-use areas.

147. Rhizosphere Ecology of Annual Rangelands (3) II, Phillips Lecture—2 hours. Prerequisite: Botany 117 or Plant Science 101; Soil Science 2 and Bacteriology 1 recommended. A study of interactions between plant roots and soil microorganisms in annual rangelands with emphasis on the importance of biological nitrogen fixation.

150. Principles and Procedures in Sampling Herbaceous Rangeland Vegetation (2) III, Regusse Lecture—1 hour; laboratory—3 hours; one Saturday field trip. Prerequisite: courses 100 and 142; Mathematics 13 or Agricultural Science and Management 150 or consent of instructor. Principles and methods used in sampling herbaceous grassland vegetation. Techniques and tools used to estimate cover frequency, density and weight. Exercises in data collection and statistical analysis using artificial and field populations. Applicability of remote sensing.

154. Multiple Use of Rangelands (3) III, Longhurst Lecture—3 hours; two optional Saturday field trips. Prerequisite: course 1 or 100 and upper division standing. Multiple use of rangelands with emphasis on North America.

158. Directed Group Study (1-5) I, II, III, The Staff (Regusse in charge); Prerequisite: consent of instructor. (P/NP grading only.)

160. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (The Staff in charge); Prerequisite: senior standing and consent of instructor. (P/NP grading only.)

Graduate Courses

208. Computer Modeling in Range Management (3) I. Williams, Kong Lecture—1 hour; discussion—1 hour; computer programming and analysis—1 hour. Prerequisite: Agronomy 2058 or the equivalent experience. Workshop on use of computer models involving dynamic simulation (DYNAGRO and CSMP) and optimization (linear programming) models used in planning and modeling range problems. Modeling philosophy: assumptions, implementation, validation, and experimentation will be emphasized. Offered in odd-numbered years.

209. Seminar in Range Management (1-2) II. Crompton, III, Williams Seminar—1 to 2 hours. Topics of current interest in grassland ecology, range and rangeland management, and related modeling and analysis techniques.

299. Group Study (1-5) I, II, III. The Staff (Williams in charge)

309. Research (1-12) I, II, III. The Staff (Williams in charge)

Religious Studies

(College of Letters and Science)

R. David Freedman, Ph.D., Program Director
Program Office, 912 Sproul Hall

Committee in Charge

Richard T. Curley, Ph.D. (Anthropology), Committee Chairperson
Paul A. Castelfranco, Ph.D. (Botany)
Manfred P. Fleischer, Ph.D. (History)
R. David Freedman (Religious Studies)
Whalen W. Lai, Ph.D. (Religious Studies)

Faculty

R. David Freedman, Ph.D., Assistant Professor
Whalen W. Lai, Ph.D., Assistant Professor
Peter B. Manchester, Ph.D., Lecturer

The Major Program

The Religious Studies major is designed to give the student an understanding of religion in its manifold complexity. The study of religion must consider a vast number of elements, in particular: (1) the message of the great historical religions; (2) the thought of the main theological and philosophical spokesmen for these traditions; (3) the contribution of great literary authors having religious significance; (4) the approach of the social sciences to the study of religious phenomena; (5) the history of religious thought and institutions and the political and social history of those periods in which religious questions have played a prominent role; and (6) the expression of religious beliefs through music and the arts.

Religious Studies

A.B. Requirements:

UNITS

Preparatory Subject Matter 74
History 4A, 4B, 9A 12
Philosophy 21 4
Religious Studies 4A, 4B 8
Depth Subject Matter 42-44
Religious Studies 169, 169 6-8

A consistent program of at least 36 upper division units dealing with various aspects of religious study, including:

(a) one course with a theological, philosophical, or literary orientation (e.g., Religious Studies 140, Philosophy 105, English 171)
(b) one historical course (e.g., History 102A, 131B, Religious Studies 110)
(c) one course which exemplifies the approach of the social sciences to religious phenomena (e.g., Anthropology 124, Sociology 146)

Total Units for the Major 65-88

Recommended

American Studies 1B; Anthropology 2; Classics 10, 41; Integrated Studies 28; Philosophy 1. A reading knowledge of a foreign language is highly recommended. Consult major adviser for a complete list of recommended upper division courses.

Renewable Natural Resources; Reproduction

(Preparatory Subject Matter) .. 73
Biology (Biological Sciences) .. 5
Animal science and/or plant science 6
Additional courses in biological sciences 14
English composition (English 1, 119) and oral expression (Rhetoric 1, 3) 8
Physics and chemistry .. 22
Mathematics (Mathematics 13) 9
Soil and/or water science .. 6
Geology or physical geography 3
Note: the above courses are to be selected with adviser’s approval.

Depth Subject Matter .. 46-47
Resource Sciences 100 .. 4
Agricultural Economics 147 or 148 3-4
Resource-oriented courses selected with adviser’s approval 21
Supportive courses in biological, physical, and environmental sciences 18
Breed Subject Matter .. 22
Social sciences and humanities electives 12
At least one upper division course from three of the following areas: animal science, atmospheric science, botany, economics or agricultural economics, civil or agricultural economics, civil or agricultural engineering, environmental horticulture, environmental planning and management, environmental toxicology, geography, plant sciences, range management, resource science, soil science, wildlife and fisheries biology, zoology, or others with adviser’s approval 10
Electives .. 38-39
Total Units for the Major .. 180

Major Adviser. V. V. Rendir (Land, Air and Water Resources), 752-8215.
Information Center for the major is located at 122 Hoagland Hall, Resource Science Teaching Center, 752-1669.

Graduate Study. See page 105.

Reproduction

(School of Veterinary Medicine)
John P. Hughes, D.V.M., Chairperson of the Department
Department Office, 1126 Medical Science I

Faculty
Donald L. Bath, Ph.D., Lecturer
Robert H. Bon Durant, D.V.M., Assistant Professor
John P. Hughes, D.V.M., Professor
John W. Kendrick, D.V.M., Ph.D., Professor
Ann T. Smith, Ph.D., Lecturer
George H. Stabenfeldt, D.V.M., Ph.D., Professor
Clyde Stormont, Jr., Ph.D., Professor

Part-Time Clinical Faculty
Paul E. Blackmer, D.V.M., Assistant Clinical Professor

Renewable Natural Resources

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)
Resource Sciences: Rhetoric

Robert E. Dickerson, D.V.M., Associate Clinical Professor
Robert J. Harris, D.V.M., Associate Clinical Professor
James R. Howard, D.V.M., Ph.D., Associate Clinical Professor
Ronald S. Laub, D.V.M., Associate Clinical Professor
Gerald R. Mitchell, D.V.M., Associate Clinical Professor
Frank A. Morgini, D.V.M., Assistant Clinical Professor
Jack W. Morse, D.V.M., Associate Clinical Professor
James D. Ver Steeg, D.V.M., Associate Clinical Professor

Courses in Reproduction

Upper Division Courses

111. Immunogenetic and Electrophoretic Techniques (2) I, Stornont
Lecture—1 hour; laboratory—3 hours. Prerequisite: Animal Genetics 107 (may be taken concurrently) or consent of instructor. Immunologic and electrophoretic techniques used in the exploration of heritable differences in red cell antigens, serum proteins, and enzymes of domestic animals.

109. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Hughes in charge) (P/N grading only.)

Graduate Courses

231. Pathophysiology of Mammalian Reproductive Processes (3) III. Stabbeised
Lecture—3 hours. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. Physiological and pathological aspects of reproductive failure in mammals concerning general function, fertilization, implantation, prenatal mortality, neonatal mortality, environmental factors, anatomical and hereditary defects, sterility, and behavior. Offered in odd-numbered years.

232. Teratologic Aspects of Development (3) II
Lecture—2 hours. Prerequisite: courses in embryology, histology, and anatomy, or consent of instructor. Embryological and pharmacological principles of teratogenesis; design and interpretation of teratogenic tests; consideration of congenital malformations and abnormalities induced by environmental and genetic factors. Offered in odd-numbered years.

234. Applied Dairy Cattle Nutrition (2) II. Bath
Lecture—2 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine. Application of basic nutritional principles to practical dairy cattle feeding and use of computers to formulate rations based on optimum nutritional and economic values. Lectures supplemented with visits to dairy farms to evaluate feeding programs.

290. Seminar (1) I, II, III. The Staff (Kendrick in charge)

292. Current Topics in Reproduction (1) I, II, III. The Staff (Stabbeised in charge)
Seminar—1 hour. Prerequisite: consent of instructor. Discussion of current scientific literature in reproduction, as well as presentation of research findings by graduate students and faculty. (SU grading only.)

296. Group Study (1-5) I, II, III. The Staff (Hughes in charge)

Professional Courses

424. Thermology of Farm Animals (1½ per week) I, II, III. The Staff (Kendrick and Hughes in charge)
Seminar—laboratory—50 hours. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, graduate students, or consent of instructor. Emphasis placed on preventive medicine aspects of reproduction in the horse and cow. Opportunity given for indepth study of individual animal disease problems. Seminar participation required. May be repeated for credit. (SU grading only.)

Resource Sciences

(College of Agricultural and Environmental Sciences)

Faculty

See under departments of Agricultural Economics, Agronomy and Range Science, and Land, Air and Water Resources.

Related Major Program. See the major in Renewable Natural Resources, page 305.

Related Courses. See courses in Agricultural Economics, Atmospheric Science, Civil Engineering, Environmental Planning and Management, Environmental Studies, Geography, Range Management, Soil Science, Water Science, and Wildlife and Fisheries Biology.

Courses in Resource Sciences

Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 122 Hoagland Hall (752-1981).

10. Natural Resources of California (2) II. Walker
Lecture—2 hours. Study of the natural resources of California: topographical influences on climate and habitat characteristics; resource interrelationships; the social and economic implications of resource utilization for agriculture, recreation, and urban development.

12. Aerial Study of Natural Resources of California (3) III. Walker
Discussion—2 hours; one Saturday flight. Prerequisite: course 10 (may be taken concurrently) or consent of instructor. Group study of natural resources of California with emphasis directed to resource character and utilization potential. Mid-quarter study of topics via a "flying classroom" enhances a unique learning experience. (Right fee approximately $50.) Limited enrollment. (P/N grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Myrup in charge) (P/N grading only.)

Rhetoric

(College of Letters and Science)

James J. Murphy, Ph.D., Chairperson of the Department

Department Office, 224 AOB-IV

Faculty

Gary L. Cronkhite, Ph.D., Professor
Stuart J. Kaplan, Ph.D., Assistant Professor
Michael C. Leff, Ph.D., Associate Professor
Gerald P. Mohrman, Ph.D., Professor
James J. Murphy, Ph.D., Professor
Ralph B. Pomeroy, Ph.D., Associate Professor
F. Eugene Scott, Ph.D., Assistant Professor
John L. Voss, M.A., Lecturer

The Major Program

The Department of Rhetoric offers a wide range of courses for credit leading to a bachelor's degree. The study of human communication is approached from two broad and complementary perspectives—archaic and social scientific methods of study are represented by active scholars.

Rhetoric

A.B. Major Requirements:

Preparatory Subject Matter .. 8
Rhetoric 1, 3 ... 8
Depth Subject Matter .. 50
Rhetoric 110, 120, 153 .. 12
One course from each of the following three groups (Note: Rhetoric 114 may satisfy the requirement in either a or c but not both) 12
(a) Rhetoric 111, 112, 113, 114 .. 12
(b) Rhetoric 121, 122, 123 ... 12
(c) Rhetoric 114, 130, 141 ... 12
Rhetoric 190, 191 .. 6
Additional upper division units in rhetoric to achieve a total of 38 8
Courses outside Department of Rhetoric ... 12

A coherent program of 12 upper division units selected in consultation

111. Medieval and Renaissance Rhetorical Theory (4) II, Murphy Lecture—4 hours. Development of the European rhetorical tradition from Augustinian to A.D. 1700. Attention to the three medieval rhetorical genres, the medieval university, the impact of printing, and changes in Renaissance concepts of knowledge as they affected rhetoric.

112. Early Modern Rhetorical Theory (4) II, Pomroy Lecture—4 hours. English and continental theories of rhetoric from 1660 to 1900, with reference to developments in psychology, philosophy, and belles-lettres. Emphasis upon the works of Ward, Priestley, Campbell, Blair, and Whately.

113. Current Humanaistic Trends in Rhetorical Theory (4) III. Left Lecture—4 hours. Contemporary developments in traditional-rhetorical concepts such as style, meaning, theory of argument, and persuasion.

114. Contemporary Theories of Human Communication (4) I. Cronkite Lecture—3 hours. Discussion—1 hour. Rhetoric as a social science, characteristics of social theories, components of theories, development and testing of hypotheses, general models, theories, and research.

120. Rhetorical Criticism (4) I. Mohrmann Lecture—4 hours. Survey of critical methods and their use in the interpretation of rhetorical discourse.

121. Public Address in Western Culture (4) I. Scott Lecture—3 hours; discussion—1 hour. Notable and representative speeches from antiquity to the present. Special emphasis on the role of rhetoric in significant events in their historical contexts, and as noted instances of rhetorical art.

122. Rhetoric in Social Controversy (4) III. Scott Lecture—3 hours; discussion—1 hour. Discussion of selected social movements. Examination of rhetorical devices in social movements; rhetorical strategies and tactics, including extra-discursive means of persuasion, and the nature and effects of establishment response.

123. The Persuasive Campaign (4) I. Lecture—4 hours; class project. Study of selected political and nonpolitical campaigns, illustrating organized efforts to change, maintain, or deter designated behaviors in a given audience through the use of a variety of media and influences.

130. Group Communication Processes (4) III. Voehs Lecture—4 hours. Examination of current theories of group formation, goals, structure, and leadership, as they relate to communication processes.

140. Mass Communication and the Public (4) II. Kaplan Lecture—4 hours. Current issues in mass communications policy, with emphasis on the broadcast media. Examination of the economic and legal influences on media performance; the role of public broadcasting; the social impact of technological advances, including cable television and communication satellites.

141. Mass Communication Theory and Research (4) III. Kaplan Lecture—4 hours. Prerequisite: course 153, or the equivalent. Development of the study of mass communications content and effects, with emphasis on the broadcast media. Special attention to the function of television for selected audiences; children, minorities, the aged.

151. Methods of Advocacy (4) I. Pomroy Lecture—4 hours. Prerequisite: course 57 or consent of instructor. Study and practice of methods involved in the effective advocacy of positions on current controversial issues. Relation of inquiry and justification to advocacy. Consideration of logical and psychological modes of persuasion.

153. Empirical Studies in Rhetoric (4) II. Voehs Lecture—4 hours. Prerequisite: consent of instructor. Consideration of contributions derived from sociometric and psychometric approaches to analysis of rhetorical process.

160. Current Topics in Rhetoric (4) I, II, III. The Staff Seminar—1 hour. Prerequisite: upper division standing with a major in rhetoric or consent of instructor. Group study of a special topic in rhetoric. May be repeated once for credit. Enrollment limited.

190. Rhetorical Research (2) I, II. Murphy Lecture—2 hours; laboratory—1 term paper. Prerequisite: junior standing and declared major in rhetoric or consent of instructor. Requires for majors in Rhetoric. Methods of research reporting into various aspects of human communication. Weekly assignments in organization and writing of research reports.

191. Senior Proseminar (4) II, III. The Staff Lecture—3 hours; seminar—1 hour. Prerequisite: course 190. Individual research on a rhetorical topic approved by a faculty committee.

192. Internship in Rhetoric (3-5) I, II, III. The Staff Laboratory—3-5 hours. Prerequisite: 12 upper division units in rhetoric and consent of instructor. Work-research projects at off-campus sites under departmental supervision. (P/N grading only.)

197. Tutoring in Rhetoric (2-4) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. Prerequisite: 12 upper division units in rhetoric and consent of Department Chairperson. Tutoring in undergraduate rhetoric courses, including leadership in small voluntary discussion groups affiliated with departmental courses. May be repeated for credit up to six units. (P/N rating only.)

199. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/N grading only.)

Graduate Courses

Seniors may take graduate courses with consent of instructor.

200. Research in Rhetoric and Communication (4) I. The Staff (Murphy in charge) Lecture—4 hours. Survey of traditional and current approaches to the study of human communication, special attention to bibliographic and methodological techniques used in research.

201. Empirical Methods in Communication (3) III. Cronkite, Kaplan Lecture—4 hours. Seminar—3 hours. Prerequisite: course 153 or the equivalent or consent of instructor. Upper division or graduate standing. Methods and techniques of empirical communication research: epistemological assumptions, methodologies, measurement and communication variables, techniques of research design, statistical analysis.

202. Critical Methods (3) III. Mohrmann Lecture—4 hours; seminar—1 term paper. Prerequisite: course 200 or the equivalent. Theory and method of rhetorical criticism. (P/N grading only.)

260. Message Analysis: Argumentation, Persuasion, and Opinion Change (3) III. Cronkite, Left Seminar—3 hours. Prerequisite: course 199. Rhetorical theory and methodology and course 114 or the equivalent or consent of instructor. Survey of theories of argumentation, persuasion, and opinion change in classical, renaissance, early modern, and contemporary history of rhetorical communication theory.

281. Message Analysis: Language and Style (3) III. Left Seminar—3 hours. Prerequisite: courses 105, 120, or the equivalent. Study of the persuasive effects of the diction...
Additional upper division units in Russian 8

Total Units for the Major 44-74

Major Adviser, V. H. Bennett.

Honors and Honors Program. The honors program comprises at least one quarter of study under course 194H, which will include a research paper. See also page 103.

Teaching Credential Subject Representative, G. A. Generoux. See page 111 for the Teacher Education Program.

Graduate Study. The Department offers two programs of study (one with emphasis on language and culture, the other with emphasis on literature) leading to the M.A. degree. Detailed information may be obtained by writing to the Graduate Adviser.

Graduate Adviser, C. J. Gallant.

Courses in Russian

Lower Division Courses

Course Placement. Students with two years of Russian in high school normally continue in Russian 2; those with three years, Russian 3; those with four years, Russian 4.

1. Elementary Russian (6) I, II, III. Grant and staff.
Recitation—5 hours; language laboratory—1 hour. Reading, speaking, and composition; all students may study at their own speed and may contract for a grade. Only 4 units of credit will be allowed to students who have received credit for course 222 or 223. Students who have successfully completed Russian 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's record, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.

2. Elementary Scientific Russian (3) I, II, III. Grant and staff.
Recitation—3 hours. Reading and translation from Russian to English. Students may study at their own pace and may contract for a grade.

3. Elementary Russian (6) I, II, III. Grant and staff.
Recitation—5 hours; language laboratory—1 hour. Prerequisite: course 2. Reading, speaking, and composition; all students may study at their own speed and may contract for a grade.

4. Elementary Scientific Russian (3) I, II, III. Grant and staff.
Recitation—3 hours. Prerequisite: course 2Sc or the equivalent. Reading and translation from Russian to English. Students may study at their own pace and may contract for a grade.

5. Intermediate Russian (4) I, II. Grant and staff.
Discussion—4 hours; laboratory—1 hour. Prerequisite: course 3.

6. Intermediate Russian (4) I, II. Grant and staff.
Discussion—4 hours; laboratory—1 hour. Prerequisite: course 5. Grammar review. Intermediate conversation and continued reading of literature.

10. Elementary Conversation (2) I, II, III. The Staff.
Discussion—2 hours. Prerequisite: course 4, and 2 or 3 to be taken concurrently. Conversational practice to improve pronunciation and master spoken idioms. May be repeated for credit up to a maximum of 8 units.

Reading and translation—5 hours; language laboratory—1 hour. Prerequisite: course 3Sc. Grammar review and oral conversation from Russian to English. Students may study at their own speed and may contract for a grade.

20. Great Russian Writers (In English) (4) I, II. Grant and staff.
Lecture—3 hours; written work. Introduction to the important writers and dramatic works of such writers as Gogol, Turgeniev, Dostoevsky, Tolstoy, Chekhov, Sholokhov, and Pasternak.

41. Survey of Nineteenth-Century Russian Literature (In English) (4) I, II. Generoux.
Lecture—3 hours. Introduction to major literary trends such as Symbolism, Acmeism, Futurism, Neorealism, and Socialist Realism. Readings from representative writers such as Gorky, Bely, Pasternak, Solzhenitsyn, and Tsern. Offered in even-numbered years.

42. Survey of Twentieth-Century Russian Literature (In English) (4) I, II. Generoux.
Lecture—3 hours. Introduction to major literary trends such as Symbolism, Acmeism, Futurism, Neorealism, and Socialist Realism. Readings from representative writers such as Gorky, Bely, Pasternak, Solzhenitsyn, and Tsern. Offered in even-numbered years.

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Turnins in charge).
(P/NP grading only.)

Upper Division Courses

110A. Advanced Conversation and Reading (4) I. Grant.
Lecture—1 hour, discussion—2 hours. Individual reading with instructor—1 hour. Prerequisite: course 6. Conversational practice based partly on reading materials (newspaper and literature). Student develops passive vocabulary by reading and active vocabulary by conversing.
101B. Advanced Conversation and Reading (4) I. Grant Lecture—1 hour, discussion—2 hours, individual recitation with instructor—1 hour. Prerequisite: course 101A. Conversational practice based partly on reading materials (newspapers and literature). Student develops passive vocabulary by reading and active vocabulary by conversing.

101C. Advanced Conversation and Reading (4) III. Grant Lecture—1 hour, discussion—2 hours, individual recitation with instructor—1 hour. Prerequisite: course 101C. Conversational practice based partly on reading materials (newspapers and literature). Student develops passive vocabulary by reading and active vocabulary by conversing.

102. Russian Composition (4) I. Bennett Lecture—3 hours. Prerequisite: course 101C.

103. Literary Translation (4) III. Generaux Discussion—3 hours; individual consultation—1 hour. Prerequisite: course 6 or consent of instructor. Translation of Russian scientific texts. Each student will write materials selected from his field of interest.

105. Advanced Russian Conversation (4) II. Tumins Lecture—3 hours; preparation of texts—1 hour. Prerequisite: course 6. Intensive conversational practice and discussion based on current events and contemporary texts.

106. Contemporary Language and Communication (4) III. The Staff Lecture—1 hour, discussion—2 hours, individual projects—1 hour. Prerequisites: courses 101A, 101B, 101C, or consent of instructor. Contemporary language usage as a mirror of Soviet social, cultural, and political phenomena. An analysis and discussion of selected texts.

107. Russian Oral Interpreting (4) III. Tumins Lecture—3 hours; laboratory—2 hours. Prerequisite: course 101A, 101B, 101C, or consent of instructor. Study of diacronic interpreting technique. Exercises in retelling speakers words, and interpreting conversations, discussions and speeches from English into Russian and Russian into English. Politics, business, education, literature and other fields will be considered.

120. Medieval Literature and Eighteenth Century Classicism (In English) (4) II. Tumins Lecture—5 hours, discussion—1 hour. Survey of Medieval epic, chronicle, and the rise of the early development of prose and of Baroque literature. Also Classicism and Continentalism will be studied.

121. The Nineteenth-Century Russian Novel (In English) (4) II. Generaux Lecture—3 hours, term paper. The development of the realistic novel from Pushkin and Gogol through Dostoevsky and Tolstoy, to Maxim Gorky. Other novels are selected, such as Turgenev, Goncharov, Platonov, Sinyavsky, etc. The Natural School, critical realism, and psychological realism are also covered. Offered in odd-numbered years.

123. The Twentieth-Century Russian Novel (In English) (4) II. Generaux Lecture—3 hours, term paper. Examination of various trends including Critical Realism, Symbolism, Neorealism, and Social Realism in the development of the novel. Readings from such writers as Solzhenitsyn, Shardakov, and Pasternak.

125. Russian Drama to 1917 (4) III. Tumins Lecture—3 hours. Prerequisite: course 6. The rise and development of Russian drama. Reading and analysis of Pushkin, Turgenev and others of the nineteenth century. Drama works by authors such as Gorky, Ostrovsky, Chekhov, and Dostoevsky. Offered in odd-numbered years.

126. The Russian Theater (In English) (4) I. Generaux Lecture—3 hours, discussion—1 hour. The main works of Russian dramatists from Gogol to the present, including Turgenev, Tolstoy, Chekhov, Gorky, Mayakovskaya, Bulgakov, Shvarts. Offered in even-numbered years.

127. The Golden Age of Russian Poetry (4) III. Bennett Lecture—3 hours. Prerequisite: course 101A. A study of Russian poetry in the period of the golden age, particularly selection to the works of 17th and 18th centuries. Offered in odd-numbered years.

128. Modern Russian Poets (4) III. Bennett Lecture—3 hours. Knowledge of Russian not required. Russian modernism. Offered in odd-numbered years.

140. Dostoevsky (In English) (4) I. Tumins Lecture—3 hours. Reading and analysis of Dostoevsky's novels. Offered in even-numbered years.

141. Tolstoy (In English) (4) I. Bennett Lecture—3 hours. Reading and study of Tolstoy's major works. Offered in odd-numbered years.

150. Russian Culture (4) III. Tumins Discussion—3 hours; term paper. Knowledge of Russian not required. Study of Russian literature and culture in the nineteenth and twentieth centuries. Offered in even-numbered years.

154. Russian Folklore (4) III. Gallant Lecture—3 hours; term paper. Knowledge of Russian not required. Russian folklore, cliques, and history will be analyzed and compared with folklore of other peoples. Sociological implications of attitudes toward family and children, etc., will be studied.

160. Russian Phonology and Morphology (4) III. Gallant Lecture—3 hours; laboratory—1 hour. Prerequisite: course 101A, 101B, or consent of instructor. A linguistic analysis of the Russian sound system and of Russian word formation.

162. Research Essay (2) I, II, III. The Staff Prerequisite: a Russian literature course (may be taken concurrently). A research essay, based on primary and secondary sources, dealing in depth with a topic arising from or related to the prerequisites literature course may be chosen.

119H. Special Study for Honors Students (5) I, II, II. The Staff (Chairperson in charge) Prerequisites: open only to honors. Guided research leading to an honors paper.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

200. Old Church Slavic (4) I. Gallant Lecture—3 hours; reading projects. A synchronic and diachronic analysis of Old Church Slavic.

202. History of the Russian Language (4) II. Gallant Lecture—2 hours, reading projects—2 hours. Prerequisite: course 200 or consent of instructor. Survey of Russian historical and modern grammatical and the development of the Russian literary language. Reading in the original texts from the eleventh century to the late nineteenth century.

204. Descriptive Russian Grammar (4) III. Gallant Lecture—3 hours; reading projects. An introduction to the modern Russian morphology and morphology.

2104. Style and Syntax (4) I. Tumins Lecture—3 hours, reading projects—1 hour. Examination of stylistic differences between spoken and written Russian.

Russian Literature and History

2108. Style and Syntax (4) II. Tumins Discussion—3 hours; reading projects—1 hour. Prerequisites: course 2104 or consent of instructor. Examination of stylistic differences between spoken and written Russian.

220. Old Russian Literature (4) III. Tumins Discussion—3 hours. Advanced study of intellectual movements and literary styles of works such as "The Song of Igor's Campaign," "Zadonschina," "Efimova's Lives," Ivan V's cycle of epistles. May be repeated for credit.

221. Eighteenth-Century Russian Literature (4) II. Tumins Seminar—3 hours. Advanced study of particular movements and styles in prose or poetry. The works of writers such as Kantor, Lomozov, Samokov, Radishchev and Karagazov will be analyzed. May be repeated for credit.

222. Nineteenth-Century Russian Literature (4) I. Tumins Seminar—3 hours. Advanced study of the works of one or several writers or movements of the period. May be repeated for credit with consent of instructor when different topics are studied.

223. Early Twentieth-Century Russian Literature (4) I. Tumins Seminar—3 hours. Advanced study of one or more of the major movements in Russian literature, including psychology, acmeism, and futurism. May be repeated for credit when different topics are studied.

224. Soviet Russian Literature (4) II. Generaux Seminar—3 hours. Analysis of selected works of Russian prose and poetry with particular emphasis on works of extraordinary literary merit or of substantial importance in the development of genres, schools, styles, techniques, and various formal elements. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

Professional Course

300. The Teaching of Russian (3) I, II, II. The Staff Lecture—3 hours. Prerequisites: senior or graduate standing; a major or minor in modern foreign language. Study of various methods of teaching a foreign language at the elementary, secondary, and college levels. Organization and methods of other language learning media, i.e., private language schools, television, and radio.

Russian Literature and History

(College of Letters and Science)

Program Office, 176 Voorhees Hall

Committee in Charge

Robert O. Crumley, Ph.D. (History), Committee Chairperson
Daniel R. Bowser, Jr., Ph.D. (History)
Andrzej Brzeski, Ph.D. (Economics)
C. James Gallant III, Ph.D. (Russian)
Washek F. Pfeffer, Ph.D. (Mathematics)

The Major Program

The Russian Literature and History major is designed to give the student a better understanding of Russia through the study of its literature and history, two fields closely related in its intellectual and cultural development. The program thus allows the student to concentrate on a single rich and creative culture other than his own. Majors are
Sociology

encouraged to extend their study of Russia beyond the confines of the two core subjects, literature and history, to include related subjects such as art, economics, folklore, geography and politics or neighboring regions like Eastern Europe. The major will prepare a student for graduate studies in either field—Russian history or Russian literature—or in a similar combined program. In either case, students planning on graduate work should continue to study the Russian language through Russian 101A-101B-101C and beyond.

Russian Literature and History

A.B. Major Requirements:

Preparatory Subject Matter - 20-50
Three courses from History 3, 4A, 4B, 4C .. 12
Russian 1 through 6 (or the equivalent) .. 0-30
Russian 41, 42 ... 8
Recommended: Economia 1A-1B and/or Political Science 2 or 3 highly recommended.

Depth Subject Matter - 36-37
Three courses from History 102F, 137A, 137B, 137C, 138 12-13
At least three courses from Russian 120, 121, 123, 125, 127, 128, 140, 141 ... 12
At least three courses from Anthropology 121; Economia 117; Geography 123B, 124; History 143A, 143B, 143C; Political Science 131, 141, 149; Russian 150, 154 ... 12
Total Units for the Major - 95-97

Major Adviser: R. O. Crumney (History)

Sociology

(A College of Letters and Science)

Bruce Hackett, Ph.D., Chairperson of the Department
Department Office, 135 Young Hall

Faculty

James C. Cramer, Ph.D., Assistant Professor
Ruth Dixon, Ph.D., Associate Professor
Bruce Hackett, Ph.D., Associate Professor
Gary G. Hamilton, Ph.D., Assistant Professor
James P. Hawley, Ph.D., Assistant Professor
Car I. Jorgensen, Ph.D., Associate Professor
Edwin M. Lernert, Ph.D., Professor
John Lofland, Ph.D., Professor
Lyn Lofland, Ph.D., Associate Professor
Leon H. Mayhew, Ph.D., Professor
Daniel M. Ramirez, Ph.D., Acting Assistant Professor
Judith Stacey, Ph.D., Acting Assistant Professor
Julius Roth, Ph.D., Professor
John F. Scott, Ph.D., Professor
John T. Walton, Ph.D., Professor

The Major Program

Sociology focuses on the structure of human interaction and the processes or institutions that both control and emerge from it. The special features of families, tribes, communities, formal organizations, and nation-states, as well as the processes of conflict, cooperation and domination, delinquency, religious conversion, and artistic creation are among the major subjects of study. Graduates in the field have traditionally led into teaching careers; increasingly, however, career possibilities include the application of sociological knowledge to the areas of policy and correction, education, industrial management, regional and community planning, and the administration of hospitals and health care systems.

A student may elect to complete requirements for the general major or, if desiring to specialize, complete the Criminal Justice or Social Welfare option.

Sociology

A.B. Degree Requirements:

Preparatory Subject Matter - General Major - 25
Sociology 1, 4A, 4B (or the equivalent) .. 13
Select 12 units from Anthropology 1, 2; Economia 1A, 1B; History 3, 4B, 4C, 17A, 17B, 21A; Linguistics 1; Political Science 1, 2, 3, 4; Psychology 1, 15 .. 12

Depth Subject Matter - 36
Sociology 165A, 165B ... 8
At least 28 additional units in upper division sociology courses to achieve a minimum of 36 units .. 28

Total Units for the Major - 61

Recommended
Anthropology 102, 118, 119A, 119B, 124, 128; History 101, 102; Mathematics 105A, 105B; Philosophy 12, 21, 22, 23; 109, 115, 156; Political Science 150, 151, 156; Psychology 145.

Sociology

A.B. Degree Requirements:

Criminal Justice and Social Welfare Options - 25-27
Sociology 1, 3, 4A, 4B .. 17
Two courses from Anthropology 1, 2, Economia 1A, 1B; History 3, 4B, 4C, 17A, 17B, 21A; Political Science 1, 2, 3, 4; Psychology 1, 15 .. 10-16

Depth Subject Matter - 39
Criminal Justice Option:
Sociology 120, 150, 152, 153 .. 15
Two courses from Sociology 140, 143, 165B, 180 ... 8
At least two courses from Sociology 122, 130, 155, 185 ... 8
At least 8 additional units in upper division sociology courses .. 8

Social Welfare Option:
Sociology 131, 185, 186 .. 11
Sociology 154 or 156 .. 4
At least two courses from Sociology 140, 143, 165B, 180 ... 8
At least two courses from Sociology 120, 123, 127, 130, 132, 151 ... 8-9
Additional units in upper division sociology courses to achieve a minimum of 39 units .. 7-8

Total Units for the Major - 64-66

Recommended
Anthropology 1, 118, 119A, 119B, 124, 128; History 101, 102; Mathematics 105A, 105B; Philosophy 12, 21, 22, 23, 102, 109, 118, 151, 156; Political Science 150, 151, 156; Psychology 145.

Major Advisers: Consult the Department Office.

Teaching Credential Subject Representative: J. Roth. See page 111 for the Teacher Education Program.

Graduate Study. The Department offers programs of study and research leading to the M.A. and Ph.D. degrees in sociology. Further information and applications regarding graduate study may be obtained at the department office.

Graduate Advisers: See Class Schedule and Room Directory.

Courses in Sociology

Lower Division Courses

1. Introduction to Sociology (3) I, II, III.
Lecture—4 hours; discussion—1 hour. Principles and concepts of sociology. The study of groups, culture, collective behavior, classes and caste, community and ecology, role, status, and personality.

2. Social Problems (4) III. The Staff
Lecture—3 hours; discussion—1 hour. General sociological consideration of contemporary social problems in relation to sociocultural change and programs for improvement.

7. Seminar in Sociological Analysis (4) I, II, III. The Staff
Seminar—3 hours; discussion—1 hour. Research and analysis using basic concepts of sociology, social organization, culture, socialization, stratification in application to specific problems. May be repeated for credit with consent of instructor. Limited enrollment.

9A-9B-SC. Seminar in Sociological Analysis (2-2-2)
I-III. The Staff
Seminar—2 hours. Research and analysis using basic concepts of sociology, social organization, culture, socialization, stratification in application to specific problems. Courses must be completed within one academic year. May be repeated for credit with consent of instructor. Limited enrollment. (Deferred grading only, pending completion of sequence.)

15A-15B-15C. Universities (4-4-4) I, II, III. Hackett
Lecture—2 hours; discussion—1 hour; laboratory—1 hour. Preparation for enrollment in Experimental Freshman Program. Study of the history, social structure, and functions of contemporary American universities; with special reference to the University of California, Davis.

25. Sociology of Popular Culture (4) II. Hackett
Lecture—4 hours. The historical emergence of popular culture. "High" culture, "folk" culture and "mass" culture; the democratization of culture values; the organization of popular tastes; characteristics and forms of popular culture; literature, music, the graphic arts; the social structure of audiences.

40. Computers and Social Research (2) I, II. Cramer
Lecture—2 hours; exercises. Elementary introduction to the use of computers in the social sciences. Topics include use of canned programs such as SPSS and MINITAB, data preparation and elementary analysis, and simulations and games. No prior knowledge of FORTRAN or statistics necessary. Those who have had Engineering or Mathematics 19 or 20 can receive only 1 unit of credit for Sociology 40. (P/NP grading only.)

46A. Introduction to Social Research (4) I, II. The Staff
Lecture—4 hours. Examination of the methodological problems of social research. Selection and definition of problems, investigation, data-gathering techniques, and sampling.

46B. Introduction to Social Research (4) II. The Staff
Lecture—4 hours. Prerequisite: course 46A. Data-analysis
techniques, measurement, scaling, multivariate analysis, and quantitative measures of association.

88. Directed Group Study (1-5) I, II, III. The Staff
Lecture—3 hours; laboratory—2 hours. Prerequisite: consent of instructor. Primarily intended for lower division students. (P/NP grading only)

89. Special Study for Undergraduates (1-5) I, II, III. The Staff (May write in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

102. Sociology of the Environment (4) II. The Staff
Lecture—3 hours; laboratory—2 hours. Prerequisite: one college level course in mathematics or statistics and upper division status. Course will examine two questions: (1) What is the effect of environmental change on social systems? (2) How can such change be measured? Systems to be studied include economics, population, recreation, transportation, institutions, and values. Laboratory and field work in measurement of effects.

103. Evaluation Research Methods (5) II. Cramer
Lecture—3 hours; discussion—1 hour; field research. Prerequisite: course 46A and 46B or the equivalent. Surveys and applications of research methods to the evaluation of social programs, primarily governmental, with emphasis on methodological issues, e.g., research design and data collection. Uses of evaluation research are also discussed and placed in theoretical context. Participation in an evaluation project.

105A-105B. Laboratory in Survey Research (5-5) I-II. The Staff
Lecture—4 hours; laboratory—3 hours; study design, drawing a sample from the city of Sacramento, and analysis of the data collected. Provides an introduction to survey methods, nonequivalent research, and data collection and analysis. (Deferred grading only, pending completion of sequence.)

106. Intermediate Social Statistics (4) III.
Lecture—4 hours. Prerequisite: course 46B. An intermediate level course in statistical analysis of social data, emphasizing the logic and interpretation of statistical procedures and mathematical models especially relevant to sociological analysis.

107. Seminar in Sociological Analysis (4) I, II, III. The Staff
Seminar—3 hours; to be arranged—1 hour. Research and analysis using basic concepts of sociology, social organization, culture, and socialization, with application to specific problems. May be repeated for credit with consent of instructor. Limited enrollment.

109. Advanced General Sociology (5) I, II, III. The Staff
Lecture—4 hours; to be arranged—1 hour. Prerequisite: upper division standing and consent of instructor. Analysis of sociological research and concepts emphasizing application of the basic concepts in research and analysis of social structures, culture, socialization, stratification in relation to specific selected problems of analysis. May be repeated for credit and consent of instructor. Limited enrollment.

109A-109B-109C. Seminar in Sociological Analysis (2-2-2) I-II-III. The Staff
Seminar—2 hours. Prerequisite: upper division standing and 9 units of sociology. Research and analysis using basic concepts of sociology, social organization, culture, socialization, stratification in application to specific problems. Course must be completed within one academic year. May be repeated for credit with consent of instructor. Limited enrollment. (Deferred grading only, pending completion of sequence.)

110. Political Sociology (4) II. The Staff
Lecture—4 hours. Relation of social cleavages and social cohesion to the functioning of political institutions; the social bases of local and national power structures; social sources of political mobilization; analysis of concepts of alienation, revolution, ideology, ruling class, and elite.

119. Sociology of Military Institutions (4) II.
Lecture—4 hours. Prerequisite: course 1. Relationship of military institutions to the political, economic, and social structure of historic and contemporary societies. The impact of military institutions on non-military institutions; military society as a model of stratification; methods and theory of studying the relation of social and cultural power. Emphasis on research into the social implications of military organizations.

120. Deviation and Society (5) I. Lemert
Lecture—4 hours. Historical and theoretical studies of deviation and social control as an expression of social control. Emphasis on the theories of social control, conflict, and social change. Historical and contemporary examples from a variety of social settings.

122. Sociology of Adolescence (4) III. The Staff
Lecture—4 hours. Historical and theoretical studies of society and social control as a cultural system. Emphasis on the theories of social control, conflict, and social change. Historical and contemporary examples from a variety of social settings.

123. American Society (4) III. Scott
Lecture—4 hours; paper. Essay in sociology. Historical and theoretical studies of society and social control as a cultural system. Emphasis on the theories of social control, conflict, and social change. Historical and contemporary examples from a variety of social settings.

124. Sociology of Education (5) II. Scott
Lecture—4 hours; lecture. Theories of education and social control as a cultural system. Emphasis on the theories of social control, conflict, and social change. Historical and contemporary examples from a variety of social settings.

125. Sociology of Intellectual Life (4) I. Mayhew
Lecture—4 hours. Social analysis of the intellectual life of society, including the role of intellectuals and the social structure of intellectual communities. Historical and contemporary examples from a variety of social settings.

126. Social Interaction (4) I, J. Lofland
Lecture—4 hours. Everyday interaction in natural settings: ethnographic approaches to the understanding of social interactions; ethnographic analysis of the interaction of people; ethnographic analysis of the interaction of people.

127. Sociology of Death (4) III. J. Lofland
Lecture—4 hours. Sociology of death, the social construction of death, the social organization of death, and the social consequences of death.

130. Race Relations (4) I, II. The Staff
Lecture—4 hours. Analysis of race relations in society. Historical and contemporary examples from a variety of social settings.

131. The Family (5) I. Scott
Lecture—4 hours; term paper. Social implications of the family, major family roles, family structure, family socialization, family life cycle, family processes, and family conflict.

132. The Sociology of Sex Roles (4) I.
Lecture—4 hours; class discussion—1 hour. Analysis of the social, psychological, and biological aspects of sex roles in society.

134. Social Stratification (4) I. Hackett
Lecture—4 hours. Systems of social stratification, including social class, social mobility, and their consequences for social structure.

141. Industrialization and Social Change (4) I.
Lecture—4 hours. Social analysis of the impact of industrialization on society. Historical and contemporary examples from a variety of social settings.

NOTE: For key to footnote symbols, see page 138.

142. Sociology of Transportation (4) II. Scott
Lecture—3 hours. Social factors in transportation. Emphasis on transportation as a social process. Historical and contemporary examples from a variety of social settings.

143. Urban Society (4) I, II. Lofland
Lecture—4 hours. Urbanization as a social process. Social factors in the organization of large urban communities. Historical and contemporary examples from a variety of social settings.

144. Rural Society (4) II. The Staff
Lecture—4 hours. Social factors in rural society. Historical and contemporary examples from a variety of social settings.

145. Sociology of Religion (4) II. The Staff
Lecture—4 hours. Social factors in religion. Historical and contemporary examples from a variety of social settings.

146. Sociological Perspectives on East Asia (4) II. Hamilton
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

147. Sociological Perspectives on Europe (4) II. Hamilton
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

148. Collective Behavior (4) III.
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

150. Criminology (4) III. Lemert
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

152. Juvenile Delinquency (4) II.
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

154. Sociology of Health Care (4) I. Roth
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

155. Sociology of Law (4) III. Lemert
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

156. Social Movements (4) III. J. Lofland
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.

158. Consumer-Vendor Relationships (4) III. Roth
Lecture—4 hours. Historical and contemporary examples from a variety of social settings. Engaging with social, economic, and political aspects of the region.
165A. Sociological Theory (4) I. Mayhew
Lecture—4 hours. Contemporary sociological theory with special reference to the history of American sociology and the emergence of contemporary schools of thought in the United States. Schools discussed will include functionalism, symbolic interactionism, exchange theory, and ecology.

170. Population (4) I, Scott
Lecture—4 hours. Introduction to the study of human populations, including theories and statistical measures; social causes and consequences of population trends; changes in population structure; geographic distributions; migration; socio-psychological factors affecting fertility.

173. Sociology Through Literature (4) II. The Staff
Lecture—4 hours. Introduction to analysis of literature as sociological data. Reading of numerous works on American and other societies by authors such as Steinbeck, Lewis, Dreiser, Schulberg, Orwell, etc.

175. Sociology of Communication (4) II. The Staff
Lecture—4 hours. Studies of mass communications, media, and public opinion; theories of information flow; ideology, group and personal influence on opinion formation.

176. Sociology of Knowledge (4) III.
Lecture—4 hours. Critical analysis of the social foundations of knowledge in society. The history, problems, and dilemmas in classical sociology of knowledge. Contemporary applications. Natural and social sciences as social systems. Sociocultural nature of personal knowledge in everyday life.

180. Complex Social Organization (4) II. Hackett
Lecture—4 hours. The forms and processes of contemporary social organization. Comparative analysis of the problems of organizing families, business firms, government agencies, schools, political movements, religious ceremonies, and urban communities.

182. Experimental and Utopian Communities (4) III. Hackett
Lecture—3 hours, discussion—1 hour. The social structure of intentional, experimental, or utopian settlements and communities, including comparisons with other small settlements: villages, neighborhoods, monasteries, encampments and new settlements, communities based on occupation, ethnicity, and religion.

185. Sociology of Social Welfare (4) I.
Lecture—4 hours. Sociological analysis of the evolution and current organization of welfare functions in modern societies.

196. Practicum in Social Welfare (2) III. Scott
Lecture—2 hours. Social welfare system as seen by practitioners, social workers, welfare administrators, welfare movement leaders, legislators, community organizers. Provides exposure to workers in the field and the literature on their activities, through lectures by nonacademic welfare professionals.

197. Tutoring in Sociology (1-4) I, II, III. The Staff (Mayhew in charge)
Prerequisite: upper division standing in sociology and consent of Department Chairperson. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Mayhew in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Mayhew in charge)
Prerequisite: open to seniors only. (P/NP grading only)

Graduate Courses

205. Methodological Critique of Research (4) III.
Lecture—4 hours. Methodological analysis and criticism of empirical research emphasizing different types of research design. Examination of surveys, experiments, historical and comparative studies, and studies using biographical and demographic data.

207A-207B. Methods of Quantitative Research (4-4) III.
Lecture—3 hours; paper. Prerequisite: course 106 or the equivalent. Principles of study design, examination of measurement, survey research methods and multivariate analysis. Course will stress actual practice of techniques. Students will be called upon to conduct research studies using published computer programs. (Deferred grading, pending completion of sequence.)

219A-219B. Behavioral Political Sociology (4-4) I, II.
Seminar—4 hours. Development of behavioral and empirical political sociology; study of conflict, discontent, community politics, international system, game theory, and coalition formation. Empirically grounded theories.

220. Deviance, Law, and Social Control (4) I, Lernert
Seminar—3 hours. Prerequisite: course 120 or consent of instructor. Report and discussions on literature on selected topics such as deviance in relation to law and social control. Agency contacts and exploratory research projects.

224. Sociology of Education (4) II. Scott

226. Sociological Social Psychology (4) II.
Lecture—2 hours; discussion—2 hours. Prerequisite: course 120 or consent of instructor. Advanced study of approaches to sociological social psychology with particular emphasis on the symbolic interactionism and ethnomet hodology.

230. Ethnic (Race) Relations (4) III. Jorgensen
Lecture—3 hours. Prerequisite: course 120 or consent of instructor. Advanced study of the determinants of ethnic groupings and their interrelationships. Major theme will be the patterns of ethnic stratification and causes of ethnic conflict. Specific focus on dominance and resistance to dominance. Influence of social science research.

242. Comparative Method in Historical Sociology (4) III.
Lecture-discussion—3 hours. Prerequisite: course 120 or consent of instructor. Comparative approach to major historical phenomena such as nationalism, bureaucratic-rationalism, and mass societies. Basic categories of historical analysis. Historical and sociological theories to historical interpretation. The verstility of historically grounded hypotheses; the meaning of analogy, correspondence, and causality.

243. Urban Society (4) III. L. Lofland
Seminar—3 hours, paper. Broad overview of the issues and concerns of the field of urban sociology. Special emphasis on the urban experience of urban living in contemporary, cross-cultural or historical settings.

248. Collective Behavior and Social Movements (4) II. J. Lofland
Seminar—3 hours; paper. Analysis of current issues in and contributions to the study of collective behavior and social movements; particular focus on the strategies and tactics of social movements.

254. Sociological Issues in Health Care (4) II. Roth
Seminar—3 hours; paper. Prerequisite: open to graduate students or professional students. Sociological perspectives and methods directed to health care issues. Students select topics for supervised research. The course will have a theme (described in advance) each time it is offered. Paper on research will be required. (SU grading only.)

255. Sociology of Law (4) II.
Seminar—4 hours. Prerequisite: consent of instructor. Analysis of the nature of the legal process and its impact on social behavior. With special attention to the role of law, (2) the organization and administration of law, and (3) the capacity of law to affect social behavior.

256. Pros and Sociological Theory (4) I, L. Lofland
Seminar—3 hours. Prerequisite: limited to first year Sociology graduate students. Introduction to sociological concepts at an advanced level. Subjects include culture, social interaction, stratification, deviance, demography, collective behavior, organizations and other topics in which the department offers further specialization work. Various approaches to sociological analysis are examined.

260. Organizational and Institutions (4) II. Hackett
Seminar—4 hours. Theory of formal organizations and bureaucracy. Methods of research in organizational and institutional studies. Historical and comparative analysis of political, religious, educational, military, and economic structures.

292A-292B. Field Research (4-4) I, II. J. Lofland
Seminar—3 hours. Prerequisite: graduate standing. Perspective, logical, and techniques of qualitative social research and analysis; the nature and use of intensive interviewing, participant observation, and analytic ethnography. Application of field research principles is stressed. Each participant conducts, compiles, and presents a three-quarter field work project. (Deferred grading, pending completion of sequence.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge)

Soil and Water Science

(College of Agricultural and Environmental Sciences)

The Major Program

Soil and Water Science is concerned with the use and protection of our land and water resources. The major is designed to provide preparation for a career involving these resources as well as for a more diverse career in resource use and protection. Programs are designed to include land use, soil survey, soil management and conservation, plant nutrition, diagnostic technology, irrigation and drainage, water resources management, water quality, general soil science, and general water science. For instance, the emphasis on water quality would include more than the minimum number of units in physical and biological sciences, while an emphasis in resource allocation and land-use planning would include more
Soil Science

(College of Agricultural and Environmental Sciences)

Faculty
See under the Department of Land, Air and Water Resources.

Related Major Programs. See the major in Soil and Water Science, this page.

Graduate Study. Programs of study leading to the M.S. and Ph.D. degrees are available. Information regarding these programs can be obtained from the graduate adviser and the Announcement of the Graduate Division.

Graduate Advisers. L. D. Whitlitt, T. C. Hsiiao, D. N. Munns (Land, Air and Water Resources).

Related Courses. See Plant Science 116, 130; Environmental Horticulture 120. See also courses in Atmospheric Science, Resource Sciences, and Water Science.

Courses in Soil Science

Questions pertaining to the following courses should be directed to the instructor or to the College Office, 228 Mink Hall.

Lower Division Courses

2. Introduction to Soil Science (3). Ilh. Whitlitt. Lecture—3 hours. Prerequisite: Chemistry 1A-1B, Biological Sciences 1. Physics 2B or 2C recommended. Development and properties of soils; interactions between the soil, aquifer, gaseous, and biotic soil components; technical aspects of management, development, and conservation of soils.

2L. Introductory Soil Science Laboratory (1). L. Munns. Laboratory—3 hours. Prerequisite: course 2 (may be taken concurrently) and consent of instructor. Laboratory exercises and demonstrations illustrating and supplementing principles embodied in course 2, and providing greater depth of treatment of subject areas.

Upper Division Courses

102. Soil and Water Chemistry (5). Ilh. Bureau. Lecture—3 hours; discussion—1 hour. Laboratory—3 hours. Prerequisite: course 2 or the equivalent preparation in introductory earth science or consent of instructor. Chemical nature of the mineral and organic constituents of soil and of the soil solution; ion exchange and other colloidal phenomena including the effect of soil amendments and fertilizers; microbiological processes in soils.

105. Field Studies of Soil Resources (8). Extra-Session summer. Begg, Huntington, Singer. On campus—daily 1 week; study tour—daily 5 weeks. Prerequisites: consent of instructor; course 120 recommended. In situ soil studies with emphasis on the interactions between soil characteristics and land use. Field identification and evaluation of soils for agriculture, range, forest, urban, and other uses.

109. Soil Fertility and Fertilizers (4). Ilh. Reinheimer. Lecture—3 hours; laboratory—3 hours. Prerequisite: course 2 or the equivalent preparation in elements of soil science. Forms and availability of plant nutrient elements in soils; effects of fertilizers and soil amendments on crop and soil characteristics; conduct and interpretation of soil fertility tests.

111. Geomicrobiology (4). Ilh. Broadbent. Lecture—3 hours; laboratory—3 hours. Prerequisite: general chemistry and an introductory course in biology. Major groups of microorganisms in the geosphere and their responses to environmental variable. Activities of microorganisms in relation to plant production, soil, water pollution, solid waste disposal, pesticide degradation, and soil fertility.

118. Soils in Land Use and the Environment (4). Ilh. Singer. Lecture—3 hours; discussion—1 hour; two 1-day field trips. Prerequisite: course 2 or consent of instructor. Soils and land use. Principles of soil survey, remote sensing, and environmental quality. Topics include: soil survey reports, remote sensing, soil capability classification, soil erosion control, and soil fertility.

120. Soil Genesis and Morphology (2). Ilh. Begg. Lecture—2 hours. Prerequisite: course 2; Geology 1 or 2; consent of instructor. Soil forming factors and how these factors affect soil properties and soil morphological characteristics. Soil forming processes as they influence the genesis and features of the soil profile. Soil-land form relationships.

120L. Soil Genesis and Morphology Laboratory (1). Ilh. Begg. Laboratory—3 hours (including 4 Saturday field trips). Prerequisite: course 120; laboratory—3 hours (even of the ten sessions are in the field). Prerequisite: course 120, 120L; course 118 recommended. Course introduces systems of soil classification to develop structural understanding of soils on the landscape and a basis for soil resource inventory. Procedures used in soil survey introduced. Laboratory field studies provide practice in anogenetic soil description and soil mapping.

122. Soil-Affected Soils (3). Ilh. Whitlitt. Lecture—3 hours. Prerequisite: consists of instructor; course 102 or equivalent. Soil biogeochemistry and nutrient cycling in soil-plant systems. Soil problems in salinized and alkali soils; ion exchange and nutrient cycling in soil-plant systems. Chemical interactions with soil minerals; studies towards salinity control in relation to environmental quality; physiological characteristics of native and crop plant species governing soil salinity and sustainability. Offered in even-numbered years.

123. Soil Taxonomy (3). Ilh. Huntington. Lecture—1½ hours; discussion—1½ hours. Prerequisite: courses 120, 120L, and 121, or consent of instructor. An intermediate course in soil classification. Study and analysis of the current system of classification used by the National Cooperative Soil Survey of the United States. Practice in classifying soil samples for the diagnosis of problems associated with the mineral nutrition of plants.

198. Directed Group Study (1-5). Ilh, I, III. The Staff (Myrup in charge). Directed group study in soil science for advanced undergraduate and graduate students. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5). Ilh, I, III. The Staff (Myrup in charge). (P/NP grading only.)

NOTE: For key to footnote symbols, see page 138.
Spanish

Graduate Courses

207. Soil Physics (3) I. Rolfson
Lecture—3 hours. Prerequisite: Mathematics 22B or consent of instructor; course 107 recommended. Physical processes occurring in soils with emphasis on heat flow, diffusion of gases and solutes, the movement of soluble materials during leaching and irrigation, mechanics, and applications of physics and mathematics to soil system. Offered in even-numbered years.

208. Soil-Plant Interrelationships (3) III. Rendig
Lecture—3 hours. Prerequisite: course 2; Botany 117B; or consent of instructor. Processes and reactions involved in the acquisition by plants of nutrients from soils; the root-soil interface; physiological reactions involved in the assimilation of nutrients; soil factors and crop quality.

211. Soil Microbiology (2) II. Broadbelt
Lecture—2 hours. Prerequisite: Chemistry 88, course 102, or consent of instructor. Activities of some important groups of soil microorganisms, metabolism of organic substances in soil including pesticides; influence of microbial activities on soil properties, microbial activity in soil in relation to some environmental problems.

214. Soil Mineralogy (5) I. Whitting
Lecture—3 hours. Discussion—1 hour; laboratory—6 hours. Prerequisite: a course in soil chemistry or consent of instructor. Nature, properties, and occurrence of the more common minerals in soils and rocks. Application of mineral analysis methods, including X-ray, thermal and chemical for characterization of mineral systems, and in the study of properties of soils and weathering of minerals. Offered in even-numbered years.

215. Physical Chemistry of Soils (3) III. Burau
Lecture—3 hours. Prerequisite: Chemistry 107A or 110B, or consent of instructor. Physicochemical, colloidal, and surface aspects of the soil system. Offered in even-numbered years.

280. Special Topics in Soil Science (1) III. Delwiche
Seminar—1 hour. Prerequisite: graduate standing. Oral presentation and discussion of scientific material and procedures for review and critique of publications. (S/U grading only.)

281. Current Literature in Plant Nutrition (1) I, II, III. The Staff (Reisenauer in charge)
Lecture—2 hours. Prerequisite: graduate standing in Soil Science, Plant Physiology, Ecology, or related subject, and consent of instructor. Current literature in plant nutrition and soil-plant relationships will be reviewed and discussed. Each participant will prepare and present reports to the seminar. (S/U grading only.)

288. Group Study (1-5) I, II, III. The Staff (Myrup in charge)
Prerequisite: consent of instructor.

289. Research (1-12) I, II, III. The Staff (Myrup in charge)
(S/U grading only.)

Daniel S. Keller, Ph.D., Associate Professor
Guillermo Rojas, Ph.D., Associate Professor
Fabián A. Samaniego, M.A., Lecturer
Antonio Sánchez-Romero, Ph.D., Professor
Robert M. Scari, Ph.D., Professor
Maximó Torreblanca, Ph.D., Associate Professor
Hugo J. Verani, Ph.D., Assistant Professor

The Major Program

The major in Spanish is designed to develop competence in the spoken and written language and to provide the possibility of emphasis either on language or on literature, depending upon each student's professional goal. The program, alone or in combination with other major programs, may lead to advanced study of the language or literatures of Spain and Spanish America, and to careers not only in teaching but also in other professions such as library science, law, medicine, and in government, social service, or business. Spanish majors are strongly encouraged to complement their work in the department through studies in related areas such as Mexican-American studies, international relations, linguistics, comparative literature, art, history, and philosophy.

Spanish

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 1 or 1AT, 2 or 2AT, 3 or 3AT, 4 or 7A, 5 or 7B, 26 or 7C (or the equivalent)</td>
<td>0-32</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Spanish 103A or 103B</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 110A or 110B</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 134, 135, or 136</td>
<td>4</td>
</tr>
<tr>
<td>Any two courses from Spanish 104A, 104B, 105A, or 105B</td>
<td>8</td>
</tr>
<tr>
<td>Additional upper division units</td>
<td>16</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>40-72</td>
</tr>
</tbody>
</table>

Recommended

The following recommendations should be taken into account. Majors who are interested in a concentration in:

- a. literature are advised to take Spanish 110C (advanced Spanish composition; literary analysis).
- b. language are advised to take Linguistics 1 (not counted toward major). This course is prerequisite to Linguistics 115 (Chicano sociolinguistics) and courses for Spanish-American literature, or selected from two or more areas. See recommendations below.

Teaching Credential Subject Representative: D. S. Keller. See page 111 for the Teacher Education Program.

The Master of Arts Degree

The Department offers courses leading to the M.A. degree in Spanish to students who have completed with distinction the A.B. degree in Spanish, or the equivalent. Candidates will be recommended for admission to graduate studies in Spanish provided they meet the requirements of the Graduate Division and the Department of Spanish. Detailed information may be obtained by writing to the Chairperson of the Spanish Department.

The Degree of Doctor of Philosophy. The Department offers programs of study and research leading to the Ph.D. degree. Detailed information may be obtained by writing to the Chairperson of the Spanish Department.

Graduate Adviser: R. M. Scari (M.A. degrees); D. T. Jahn (Ph.D. degrees).

Courses in Portuguese

Lower Division Courses

1. Elementary Portuguese (4).
Laboratory—2 hours; recitation—3 hours. Portuguese grammar, conversation, and reading. Students who have successfully completed Portuguese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP option is filed.

2. Elementary Portuguese (4).
Laboratory—2 hours; recitation—3 hours. Prerequisite: course 1. Continuation of course 1.

3. Elementary Portuguese (4).
Laboratory—2 hours; recitation—3 hours. Prerequisite: course 2. Continuation of course 2.

Upper Division Courses

104. Survey of Brazilian Literature: Prose Fiction (3).
Lecture—3 hours; individual and group conferences. Prerequisite: course 3.

105. Survey of Brazilian Literature: Poetry (4).
Lecture—3 hours; individual and group conferences. Prerequisite: course 3.

106. Survey of Brazilian Literature: Drama and Essay (4).
Lecture—3 hours; individual and group conferences. Prerequisite: course 3.

Courses in Spanish

Lower Division Courses

1. Elementary Spanish (8) I, II, III. The Staff
(Samaniego in charge)
Laboratory—two 90-minute sessions; recitation—5 hours. An introduction to the fundamentals of Spanish grammar, listening and speaking emphasized. Students who have successfully completed Spanish 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP option is filed.

1ATA-1TAT-1ATC. Individualized Instruction in Elementary Spanish (2-2-2) III-II-II. Samaniego
The three segments of course 1AT correspond to course 1. Student-instructor contacts consisting of individual tutoring, conversation practice and testing periods. Students may start at any point and complete one or more two-unit segments in a given quarter. (Students who have successfully completed Spanish 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP option is filed.)

2. Elementary Spanish (8) I, II, III. The Staff (Samaniego in charge)
508. Hispanic Literary Heritage (3) I, Anderson Lecture—3 hours. Major works in Spanish literature, from the Medieval Epic to the Golden Age, presented in English translations. Lectures and discussions in English. May not be counted as part of the major or minor in Spanish.

509. Hispanic Literary Heritage (3) II, Scan Lecture—3 hours. Major works in Spanish and Latin American literatures, from the sixteenth century to the present, presented in English translations. Lectures and discussions in English. May not be counted as part of the major or minor in Spanish.

98. Directed Group Study (1-5) I, II, III, The Staff (Chairperson in charge) Prerequisite: consent of instructor and Department Chairperson. Primary for lower-division students (PINP grading only.)

Upper Division Courses

103A-103B. Hispanic Literary I: Medieval and Golden Age (4-4) I, II, III. The Staff (Chairperson in charge) Lecture—3 hours; written reports. Prerequisite: course 28 or 7C. Introduction to the study of the principal authors, works and movements of Medieval and Golden Age literature of Spain, and of Spanish-American colonial literature.

104A. Hispanic Literary II: Modern Peninsular (4) II. The Staff (Chairperson in charge) Lecture—3 hours; written reports. Prerequisite: course 28 or 7C. Introduction to the study of the principal authors, works, and movements of modern Spanish literature from 1700 to the present.

104B. Hispanic Literary II: Modern Peninsular (4) III. The Staff (Chairperson in charge) Lecture—3 hours; written reports. Prerequisite: course 28 or 7C. Introduction to the study of the principal authors, works, and movements of Spanish-American literature of the nineteenth and twentieth centuries.

105A. Hispanic Literary III (Modern Spanish American) (4) I. The Staff Lecture—3 hours; written reports. Prerequisite: course 28 or 7C. Introduction to the principal authors, works, and movements of Spanish-American literature of the nineteenth and twentieth centuries. Continuation of course 105A.

106. Literature of Colonial Spanish America (4) I, Castillio Lecture—3 hours; conferences and reports. Prerequisite: course 28 or 7C. Study of the most important authors and movements in the various regions of Spanish America to 1810.

107. Spanish-American Literature of the Nineteenth Century (4) II, Jahn Lecture—3 hours; individual or group conferences. Prerequisite: course 28 or 7C. The literary development of Spanish America between independence and Modernismo. Modernismo.

108A. Spanish-American Prose of the Twentieth Century (4) III, Castillio Lecture—3 hours; conferences and reports. Prerequisite: course 28 or 7C. Emphasis on the novel. Offered in odd-numbered years.

108B. Spanish-American Prose of the Twentieth Century (4) II, Jahn Lecture—3 hours; conferences and reports. Prerequisite: course 28 or 7C. Emphasis on the essay. Offered in even-numbered years.

109. Spanish Drama of the Golden Age (4) III, Sanchez-Romero Lecture—3 hours; conferences and reports. Prerequisite: course 28 or 7C. Offered in even-numbered years.

110A (110D). Advanced Spanish Composition I (4) I. The Staff Discussion—3 hours; written reports. Prerequisite: course 28 or 7C. Practice in expository writing, with an aim toward refinement and expansion of vocabulary.

110B. Advanced Spanish Composition II (4) II. The Staff Discussion—3 hours; written reports. Prerequisite: course 28 or 7C. Practice in creative writing, with an aim toward refinement and appreciation of written expression and expansion of vocabulary.

110C. Advanced Spanish Composition III (4) III. The Staff Lecture—1 hour; discussion—2 hours; written reports. Prerequisite: course 28 or 7C. Practice in writing of critical essays based on textual analysis of selected works from Hispanic literature.

111. Don Quijote (4) II, Castillio Lecture—3 hours. Prerequisite: course 26 or 7C.

114. Spanish Romantic Literature (4) I, Scari Lecture—3 hours; conferences and reports. Prerequisite: course 28 or 7C. Readings and lectures on romantic writers of the first half of the nineteenth century with emphasis on drama and poetry. Offered in even-numbered years.

115. Lyric Poetry of the Golden Age (4) III, Sanchez-Romero Lecture—3 hours. Prerequisite: course 28 or 7C. Offered in odd-numbered years.

119. Spanish Novel of the Nineteenth Century (4) III, Scari Lecture—3 hours. Prerequisite: course 28 or 7C. Offered in odd-numbered years.

120A. Twentieth-Century Spanish Prose (4) I, Anderson Lecture—3 hours. Prerequisite: course 28 or 7C.

120B. Twentieth-Century Spanish Drama (4) III, Castillio Lecture—3 hours. Prerequisite: course 28 or 7C. Offered in odd-numbered years.

120C. Twentieth-Century Spanish Poetry (4) III, Anderson, Sanchez-Romero Lecture—3 hours. Prerequisite: course 28 or 7C. Offered in even-numbered years.

124. Chicaano Culture (4) I, Rojas Lecture—3 hours; term paper. Prerequisite: course 2 or consent of instructor. Study of Chicaano culture in the Southwest from 1580 to the present. Emphasis on the period after 1846. Lectures and discussions of English readings in English and/or Spanish. May not be counted as part of major in Spanish. Offered in even-numbered years.

125A. Modernism: The Procrustes (4) I, Casillio Lecture—3 hours. Prerequisite: course 28 or 7C. Offered in odd-numbered years.

125B. Modernism: The Major Poets (4) II, Casillio Lecture—3 hours. Prerequisite: course 28 or 7C. Offered in even-numbered years.

126. Chicaano Literature (4) I, Rojas Lecture—3 hours; term paper. Prerequisite: course 2 or consent of instructor. Analysis and interpretation of representational works in poetry, prose fiction, essay and drama. Lectures and discussions in English. Readings in English and/or Spanish. May not be counted as part of major in Spanish. Offered in even-numbered years.

127. Poetry of Post-Modernism and Vanguardism (4) III, Veram Lecture—3 hours; conferences. Prerequisite: course 28 or 7C. Offered in odd-numbered years.

128. Contemporary Spanish-American Short Story Writers (4) I, Casillio Lecture—3 hours; conferences and reports. Prerequisite: course 28 or 7C. Literary trends in the short story in Spanish America. As seen in the representative works of major contemporary authors. Offered in even-numbered years.

129. The Mexican Novel (4) III, Rojas Lecture—3 hours; conferences and reports. Prerequisite: course 28 or 7C or consent of instructor. Major figures in
the development of the Mexican novel. Offered in odd-numbered years.

131. Modern Spanish Syntax (4) I, Keller Lecture—3 hours. Topics in sentence structure. Prerequisite: course 28 or consent of instructor. Study of word order in Spanish, its evolution, and influence on English.

132. Introduction to Spanish Linguistics (3) III, Torreblanca Lecture—3 hours. Prerequisite: course 28 or consent of instructor. Principles of linguistic theory, phonetics, phonology, and morphology of modern Spanish and their influence on English.

133. Spanish Phonetics (3) I, II, Torreblanca Lecture—3 hours. Prerequisite: course 28 or consent of instructor. The sound structure of modern Spanish and the pronunciation of selected words.

134. Survey of Spanish Culture (4) I, Gonzalez Lecture—3 hours. Prerequisite: course 28 or consent of instructor. Introduction to major periods, figures, and epochs of Spanish culture.

135. Survey of Mexican Culture (4) III, Rojas Lecture—4 hours. Hours designated for course and reports. Prerequisite: course 28 or consent of instructor. Survey of Mexican culture with emphasis on Mexican culture.

136. Survey of Spanish-American Culture (4) II, The Staff (Chairperson in charge) Lecture—3 hours (term paper prerequisite: course 28 or consent of instructor. Major works of the arts and social institutions of Spanish-American countries other than Mexico. Readings, lectures, and discussions.

138. Contemporary Spanish-American Drama (4) II, Keller Lecture—3 hours. Special works and cultural context of contemporary Spanish-American drama. Offered in odd-numbered years.

139. Masterpieces of Spanish Literature (4) I, Scari Lecture—3 hours. Hours designated for course and reports. Prerequisite: course 28 or consent of instructor. Major works of Spanish literature.

142. Spanish Literature of the Golden Age: Prose Fiction (4) II, Castanien Seminar—3 hours. Offered in even-numbered years.

143. Spanish Literature of the Golden Age: The Drama (4) II, Sánchez-Romero Seminar—3 hours. Offered in odd-numbered years.

144. Cervantes (4) I, Castanien Seminar—3 hours. The major works of Cervantes and the context of his age. Offered in odd-numbered years.

147. Twentieth-Century Spanish Prose (4) I, Anderson Seminar—3 hours. Offered in odd-numbered years.

148. Twentieth-Century Spanish Prose (4) II, Anderson Seminar—3 hours. Offered in even-numbered years.

149. Twentieth-Century Spanish Thinkers (4) I, Scari Seminar—3 hours. Major Spanish thinkers from Gasset to Unamuno and Ortega y Gasset. Offered in even-numbered years.

237. Twentieth-Century Spanish Drama (4) I, Anderson Seminar—3 hours. Major Spanish dramatists from Valle-Inclan to the present.

238. Spanish Romanticism (4) I, Scari Seminar—3 hours. Sources and development of Romanticism in Spain, particularly in poetry and drama.

239. Post-Romantic Spanish Literature of the Nineteenth Century (4) I, Cannon Seminar—3 hours. Offered in even-numbered years.

241. Spanish-American Novel, 1900-1920 (4) I, Castanien Seminar—3 hours. Offered in even-numbered years.

245. Delio and his Contemporaries (4) II, Castanien Seminar—3 hours. Offered in even-numbered years.

246. New Directions in Spanish-American Poetry (4) III, Yeates Seminar—3 hours. Offered in even-numbered years.

248. Study of a Major Writer (4) I, II, III, The Staff Seminar—3 hours. Development of a major writer and his intellectual and literary milieu. May be repeated with consent of instructor.

249. Research (2-5) I, II, III. The Staff (Chairperson in charge) (SU grading only)

Professional Courses:

300. The Teaching of Spanish (3) III, Samaniego Lecture—3 hours. Prerequisite: senior or graduate standing, major or minor in Spanish.

300A. Problems in Teaching Spanish at College Level (1) III, Samaniego Discussion—1 hour. Prerequisite: graduate standing. Theories of instruction in modern teaching methods and demonstration of their practical application. Required of graduate teaching assistants.

300B. Problems in Teaching Spanish at College Level (1) III, Samaniego Discussion—1 hour. Prerequisite: graduate standing. Theories of instruction in modern teaching methods and demonstration of their practical application. Required of graduate teaching assistants.

Subject A

See under University Requirements, page 65, or English A course, page 211.
Surgery
(School of Veterinary Medicine)

John D. Wheat, D.V.M., Chairperson of the Department
Department Office, 2112 Medical Science

Faculty
Eugene M. Breznock, D.V.M., Ph.D., Associate Professor
Murray P. Brown, D.V.M., Assistant Professor
Robert M. Cello, D.V.M., Professor
I. M. Gourley, D.V.M., Ph.D., Professor
Steve C. Haskins, D.V.M., M.S., Assistant Professor
Terrell A. Holliday, D.V.M., Ph.D., Professor
Kenneth G. Kang, D.V.M., Assistant Professor
Robert L. Leighton, D.V.M., Professor
Bruce R. Mazwedi, D.V.M., Assistant Professor
Dennis M. Meagher, D.V.M., Ph.D., Professor
Harold R. Parker, D.V.M., Ph.D., Professor
(Surgery)
Harold D. Snow, D.V.M., Associate Adjunct Professor (School of Medicine, Los Angeles campus)
Eugene P. Stoffey, D.V.M., Ph.D., Associate Professor
Gordon H. Theilen, D.V.M., Professor
John D. Wheat, D.V.M., Professor
Alda P. Wind, D.V.M., Lecturer

Part-Time Clinical Faculty
Charles T. Robinson, D.V.M., Assistant Clinical Professor
Randall H. Scagliotti, D.V.M., Assistant Clinical Professor

Courses in Surgery
Upper Division Course

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Wheat in charge)
(P/N grading only.)

Graduate Courses

206. Clinical Oncology (3) I, II, III. The Staff
Lecture—2 hours; rounds—6 hours. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. A study of neoplastic diseases of animals.

225. Veterinary Anesthesiology (3) I. H. Haskins
Lecture—1 hour; demonstrations. Prerequisite: senior standing in School of Veterinary Medicine or consent of instructor. Advanced course in veterinary anesthesia emphasizing patient management and anesthesia for specific diseases and surgical procedures. Discussions will include the relation between pathophysiology and the aspects of anesthesia, preoperative preparation, and particular species requirements including laboratory animals.

228. Anesthesia in Research (1) I. Stoffey
Lecture—1 hour. Prerequisite: graduate or professional student, or consent of instructor. Lecture series offered by the School of Veterinary Medicine directed at graduate and professional students interested in broadening their knowledge of the principles of anesthesia as related to biomedical research.

208. Group Study (1-5) I, II, III. The Staff (Wheat in charge)

299. Research (1-12) I, II, III. The Staff
(SU grading only.)

Professional Courses

410. Small Animal Surgery (1½ per week) I, II, III. The Staff (Leighton in charge)
Laboratory—50 hours. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Interns responsible for preoperative preparation of hospital patients, assistance at operating and postoperative care under the supervision of the veterinary staff. Provides experience in orthopedic and general surgery in small animals. May be repeated for credit. (SU grading only.)

411. Surgery (1½ per week) I, II, III. The Staff (Leighton in charge)
Laboratory—50 hours. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Interns responsible for care of hospitalized patients in the hospital including physical examinations, presurgical work-up, surgery, postoperative care and follow-up under the supervision of the veterinary staff. May be repeated for credit. (SU grading only.)

412. Large Animal Surgery (1½ per week) I, II, III. The Staff (Wheat in charge)
Laboratory—50 hours. Prerequisite: professional standing, intern in Veterinary Medical Teaching Hospital, or consent of instructor. Interns responsible for care of hospitalized patients in the hospital including physical examinations, presurgical work-up, assistance at operating and postoperative care and follow-up under the supervision of the veterinary staff. May be repeated for credit. (SU grading only.)

414. Veterinary Anesthesiology (1½ per week) I, II, III. The Staff (Leighton in charge)
Laboratory—50 hours. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, or consent of instructor. Interns responsible for anesthetic care of patients in the operating rooms under the supervision of the veterinary staff. May be repeated for credit. (SU grading only.)

429. Veterinary Neurology (1½ per week) I, II, III. Holiday Laboratory—50 hours. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, or consent of instructor. Interns and residents responsible for care of hospitalized patients including history taking, neurologic and special diagnostic and therapeutic procedures under the direction of the staff neurologist. (SU grading only.)

422. Veterinary Ophthalmology (¾ to 1½ per week) I, II, III. Cello Laboratory—25-50 hours. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, or consent of instructor. Interns and residents responsible for care of hospitalized patients including history taking, ophthalmologic examinations, special diagnostic techniques, assistance at ophthalmic surgery and medical and post-surgical care under the direction of the staff ophthalmologist. May be repeated for credit. (SU grading only.)

492. Large Animal Grad Rounds (1½) I, II, III. The Staff (Wheat in charge)
Discussion—1 hour. Prerequisite: professional standing, intern or resident in Veterinary Medical Teaching Hospital, or consent of instructor. Interns and residents take an active part in the presentation and discussion of selected cases from the large animal and ambulatory clinics. (SU grading only.)

NOTE: For key to footnote symbols, see page 138

Surgery; Swedish; Textile Science

Faculty
Fritz Sammen-Franckenegg, Ph.D., Associate Professor (Swedish, German)

Courses in Swedish

Lower Division Courses

1. Elementary Swedish (6) I. Sammen-Franckenegg Discussion—5 hours; language laboratory—2 1½-hour sessions. Students who have successfully completed Swedish 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/N grading basis only. Although a passing grade will be charged to the student's P/N option, no petition is required. All other students will receive a letter grade unless a P/N petition is filed.

2. Elementary Swedish (6) II. Sammen-Franckenegg Discussion—5 hours; language laboratory—2 1½-hour sessions. Prerequisite: Course 1.

3. Intermediate Swedish (6) III. Sammen-Franckenegg Discussion—5 hours; laboratory—2 1½-hour sessions. Prerequisite: Course 2.

6A. Spoken Swedish (2) III. Sammen-Franckenegg Discussion—2 hours. Prerequisite: course 2. Conversational practice based on everyday vocabulary of modern spoken Swedish. May be taken concurrently with course 3. (P/N grading only.)

Textile Science

The Major Program

The Textile Science major is concerned with the physical, chemical, and structural properties of fibers and fabrics, textile dyeing and finishing, polymer science and the relation of these aspects to fiber and fabric performance and end-use. All students in this major are required to take a common core of coursework in chemistry, physics, and mathematics coupled with selected social sciences-humanities courses, and depth subject matter in the field of textile science, statistics, and technical writing. The student is expected to emphasize a particular aspect such as physical sciences, mathematics, economics, or textiles and clothing through selection of appropriate restricted electives in consultation with an adviser. The major prepares the student for a career in textiles or fiber science and other polymer-related areas including research and development, technical service, technical marketing, production, quality control, and science teaching (on completion of an additional year in the teaching credential program). Graduates are prepared to enter the graduate program in Textiles or Agriculture Chemistry with a specialization in Textile Chemistry, and Textile Science or Fiber and Polymer Science programs at other universities.

Textile Science

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

317
Textiles and Clothing

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry, including organic and analytical: Chemistry 1A, 1B, 1C, 5, 12B, 12BA, 12BC</td>
</tr>
<tr>
<td>Mathematics, including calculus, statistics, and computer science: Mathematics 16A-16B-16C or 21A-21B-21C, 13, 19, or 29</td>
</tr>
<tr>
<td>Physics 2A, 2B, 2C</td>
</tr>
<tr>
<td>Economics (Economics 1A-1B)</td>
</tr>
<tr>
<td>Written and oral expression (see College requirement)</td>
</tr>
<tr>
<td>SS or Humanities elective</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textiles and Clothing 6, 161-161L, 162-162L</td>
</tr>
<tr>
<td>163-163L, 165, 180A, 180B</td>
</tr>
<tr>
<td>Agricultural Science and Management 150</td>
</tr>
<tr>
<td>English 104</td>
</tr>
</tbody>
</table>

Restricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
</table>

Unrestricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of units necessary to complete the major</td>
</tr>
</tbody>
</table>

Major Adviser: H. L. Needles

Graduate Study: A program of study leading to the M.S. degree in Textiles. Information can be obtained from the graduate adviser. Also see page 105.

Textiles and Clothing

(College of Agricultural and Environmental Sciences)

S. Haig Zeronian, Ph.D., Acting Chairperson of the Division
Division Office, 129 Eversen Hall (752-6550)

Faculty

Emory Menetee, Ph.D., Adjunct Professor
Mary Ann Morris, Ph.D., Professor
Howard L. Needle, Ph.D., Professor
Allen G. Pittman, Ph.D., Adjunct Professor
Barbara V. Pontrelli-Clark, M.S., Lecturer
Margaret H. Rucker, Ph.D., Assistant Professor
Howard G. Dutsch, Ph.D., Professor
S. Haig Zeronian, Ph.D., Professor

The Major Program

The Textiles and Clothing major is concerned with the study of the socioeconomic and physical science aspects of textiles and clothing including physical and chemical properties, applications, structure, and care of fibers and fabrics, and their production and end-use. All students in the major are required to take a common core of preparatory subject matter balanced between the social sciences-humanities and physical sciences and depth subject matter in textiles and clothing as well as business. The student is expected to have a particular area of emphasis in textiles through careful selection of restricted electives in consultation with an adviser. This major prepares you for a career in textiles and clothing and related fields including merchandising and marketing, production, testing, quality control, technical service, textile journalism, and design. Those interested in careers in extension service and teaching should consult with their adviser. Graduates are qualified to enter the graduate program in Textiles, and Textiles and Clothing or Textile Science programs at other universities.

Textiles and Clothing

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown within parentheses are required.)

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural anthropology (Anthropology 2)</td>
</tr>
<tr>
<td>Introductory psychology (Psychology 1)</td>
</tr>
<tr>
<td>Sociology (Sociology 1)</td>
</tr>
<tr>
<td>Economics, including general principles and sociology (Economics 1A-1B, 11A-11B)</td>
</tr>
<tr>
<td>Written expression, two courses (see College requirement)</td>
</tr>
<tr>
<td>Oral expression (see College requirement)</td>
</tr>
<tr>
<td>Chemistry, including organic (Chemistry 1A, 1B, 8A, 8B)</td>
</tr>
<tr>
<td>Statistics, one course (Mathematics 13 or Economics 12)</td>
</tr>
<tr>
<td>Physics (Physics 1A, 1B)</td>
</tr>
<tr>
<td>Computer science (Mathematics 19)</td>
</tr>
<tr>
<td>History of art or design, one course</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Economics 18, 112, 113, 17A, 17B</td>
</tr>
<tr>
<td>Design 143</td>
</tr>
</tbody>
</table>

Restricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses selected from the following: Agricultural Economics 11, 117, 155, 171A, 171B; Agricultural Science and Management 150; Applied Behavioral Sciences 162; Consumer Science 100; Consumer Economics 141 or 141A, 142; Design 142A, 142B, 170A, 170B, 170C; Economics 100, 101, 121A, 121B, 134; Mathematics 16A, 16B, 16C, 105A, 105B; Psychology 14E; Rhetoric 2, 14D; Sociology 25, 123, 124, 146, 159, 175; Textiles and Clothing 47, 90, and courses not taken under Depth Subject Matter above</td>
</tr>
</tbody>
</table>

Unrestricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of units necessary to complete the major</td>
</tr>
</tbody>
</table>

Major Adviser: B. V. Pontrelli-Clark

Graduate Study: A program of study is offered leading to the M.S. degree in Textiles. Information can be obtained from the graduate adviser. Also see page 105.

Related Courses: See courses in Consumer Science and Design.

Courses in Textiles and Clothing

Questions pertaining to the following courses should be directed to the instructor or to the Division of Textiles and Clothing.

(Note—Each course is listed under one of three groups: a. Clothing; b. Textiles; c. Field, Group, and Special Study.)

a) Clothing

7. Social and Psychological Aspects of Dress (3) I, III. Rucker
Lecture—3 hours. Prerequisite: introductory courses in anthropology, sociology and/or psychology recommended.
A study of dress in relation to culture, society and the individual.

17A. Clothing Structure (4) I, II. Pontrelli-Clark
Lecture—4 hours, laboratory—3 hours. Prerequisite: clothing construction skills; courses 6 and 7 recommended.
Principles of clothing design through the medium of daping and flat pattern. Construction principles are applied.

17B. Clothing Structure (4) I, III. Pontrelli-Clark
Lecture—4 hours, laboratory—6 hours. Prerequisite: course 17A.
Principles of clothing design through the medium of daping of various fabrics.

172. The Textile and Apparel Industries (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 4, 7; an introductory course in economics (1A or 1B).
A study of the clothing industry including the production, distribution and consumption of textile goods.

b) Textiles

6. Introduction to Textiles (4) I. Morris
Lecture—3 hours; laboratory—3 hours. Introduction to the structure and properties of textiles. Consumer use and fabric characteristics are emphasized.

161. Structure and Properties of Fibers (3) I. Zeronian
Lecture—3 hours. Prerequisite: course 6 and Chemistry 8B. The structure, properties and reactions of natural and man-made fibers; the relations between molecular structure and physical behavior of fibers and the interactions of fibers and dyes.

161L. Textile Chemical Analysis Laboratory (1) I. Zeronian
Laboratory—3 hours. Prerequisite: course 161 (may be taken concurrently). Laboratory methods and procedures employed in qualitative and quantitative analysis of textile fibers and auxiliaries.

162. Textile Fabrics (3) II. Morris
Lecture—3 hours. Prerequisite: course 6. Properties of fabrics as related to serviceability, comfort, and appearance.

162L. Textile Fabrics Laboratory (1) II. Morris
Laboratory—3 hours. Prerequisite: course 162 (may be taken concurrently). Laboratory methods and procedures employed in studying properties of textile fabrics as related to serviceability, comfort, and appearance.

163. Textile Coloration and Finishing (3) III. Needles
Lecture—3 hours. Prerequisite: course 6, Chemistry 8B, Physics 18. Basic principles of dyeing, printing, and finishing of textiles; structure and properties of dyes and finishes; the effect of variables and auxiliaries on dyeing, printing, and finishing; dye and mordant fixation and fastness.
163L. Textile Coloration and Finishing Laboratory (1) III. Needles Laboratory—3 hours. Prerequisite: course 163 (may be taken concurrently). Demonstrates various aspects of dyeing, printing, and finishing of textile substrates, including the effect of fiber and finish type, and physical and chemical properties on dying and finishing processes and on the properties of the resultant textile.

164. Principles of Apparel Production (3) III. Pontrelli-Clark Lecture—3 hours. Prerequisite: course 178, Agricultural Economics 113. Overview of research, theoretical basis, technology and processes in the apparel manufacturing industries including study of product engineering, materials utilization and fabrication, management control, mechanization, production engineering.

185. Principles of Textile Processes. (3) III. Needles Lecture—3 hours. Prerequisite: course 6, Chemistry 8B, Physics 1B. Explores the physical and chemical processes involved in production of textiles from the individual fiber to the finished fabric. Includes polymerization, spinning, texturizing, yarn formation, weaving preparation, weaving and knitting, non-wovens, tufting, scouring, bleaching, and physical/chemical finishing.

210. Textile Physical and Chemical Processes (3) I. Needles Lecture—3 hours. Prerequisite: courses 6, 161, organic chemistry (Chemistry 8A, 8B); or consent of instructor. Theoretical aspects of physical and chemical treatment of textile fiber yarns and fabrics. Textile pre- and post-treatment, physical processing, chemical finishing, and dyeing. Effect of processes on textile and end-use properties and on the environment.

220. Textile Product Quality and Standards (3) II. Zeronian Lecture—3 hours. Prerequisite: course 161. Principles involved in establishing standards for implementation of government laws and regulations concerning textiles and clothing and quality controls for textile products.

260. Recent Advances in Textiles (2) III. Zeronian Lecture—2 hours. Prerequisite: course 161 or consent of instructor. Critical reading and evaluation on selected topics of current interest in textiles. May be repeated for credit.

c) Field, Group, and Special Studies

47. Field Study (1) I. II. The Staff Seminar—two to three hours per week, three to five days per week. Prerequisite: consent or instructor; registration in advance required. Field trip to observe commercial aspects of the design, production, distribution, and maintenance of clothing. To be given between winter and spring quarters. Considered a spring course for pre-enrollment. (P/NP grading only.)

90. Challenges and Opportunities in Textiles and Clothing (1) I. The Staff Seminar—1 hour. One hour seminar per week at which selected students in areas of textiles and clothing discuss their part in today's industry, indicating challenges, opportunities, and prospects for the future. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

180A-180B. Introduction to Research in Textiles and Clothing (2-2) II-III. The Staff. Prerequisite: textile major of senior standing. Senior thesis on independent projects. The research begun in 180A will be continued and completed in 180B. (Deferred grading only, pending completion of sequence.)

188. Directed Group Study (1-9) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

NOTE: For key to footnote symbols, see page 138.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

200. Seminar (1) I, II. The Staff Seminar—2 hours. Critical review of selected topics of current interest in textiles. (SU grading only.)

208. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

209. Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

195. Systematic Oenothera (2) I, Rubatzky Laboratory—6 hours. Prerequisite: Botany 111. Physiological and biochemical factors affecting induction of seedling, seed development, viability and longevity of seed. Principles of seed production. One or more field trips.

196. Mushrooms of California (3) I, II, Howard Lecture—2 hours; discussion—1 hour; laboratory—2 hours; field trips. Prerequisite: upper-division standing and/or consent of instructor. Introduction to the culture, food value and culinary aspects of mushroom mushrooms and techniques of identification of wild mushrooms. Oral and written reports and a final examination form the basis for grading.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

212. Postharvest Physiology of Vegetables (4) I. Morris, Pratt Lecture—2 hours; laboratory—6 hours. Prerequisite: consent of instructor. Comparative physiology of harvested vegetables representing diverse plant structures: emphasis on experimental studies of maturation, composition and morphological changes, senescence, and physiological disorders; lecture stresses species responses and requirements; laboratory stresses concepts and research procedures. Offered in even-numbered years.

220. Vegetable Genetics and Improvement (4) I, Rick Lecture—3 hours; laboratory—3 hours. Prerequisite: Genetics 100B; course 105 and Plant Science 113 recommended. Breeding systems of vegetable species as affected by self-incompatibility, flower structure, pollen vectors, and other reproductive factors. Problems of chromosome number and structure, heterosis, polyploidy, and species hybridization peculiar to vegetable improvement.

229. Seminar (1) I, II, III. The Staff (Spurr in charge) Discussion—1 hour. (SU grading only.)

229. Group Study (1-5) I, II, III. The Staff (Yamaguchi in charge) Prerequisite: consent of instructor. Current concepts, techniques, and procedures applicable to research and the production of vegetables.

299. Research (1-12) I, II, III. The Staff (Lorenz in charge) (SU grading only.)
Veterinary Medicine, School of
William R. Pritchard, D.V.M., Ph.D., J.D., Dean of the School
Edward A. Rhode, D.V.M., Associate Dean—Instruction
Michael H. McCammon, D.V.M., Associate Dean—Public Programs
Barbara J. Ostlund, D.V.M., Ph.D., Associate Dean—Research
George H. Cardinet III, D.V.M., Ph.D., Associate Dean—Students Services
William J. Winchester, D.V.M., Assistant Dean
School Office, 1018 Haring Hall

Courses in Veterinary Medicine
Upper Division Courses

101. Veterinary Medicine Orientation (2) III. McGowan
Discussion—twelve 2-hour sessions; laboratory—eight 3-hour sessions. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. An overview of the Veterinary Medical Profession emphasizing its main integrants and publics; environmental needs of a wide spectrum of animal species pointing out unique biological characteristics and necessities; breeds recognition; interrelationships of the animal kingdom and mankind. (IPNP grading only pending completion of course.)

102. The Normal Animal, Examination and Tophographic Anatomy (3) I. Kitchell
Lecture—1 hour; discussion—2 hours; laboratory—2 hours. Prerequisite: freshman standing in the School of Veterinary Medicine. Anatomical structures, features and landmarks fundamental to an integrated study of organ systems, the performance of physical examination, routine diagnostic and therapeutic procedures.

102A. Cell Biology (6) I. Hansen and staff
Lecture—4 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: freshman standing in the School of Veterinary Medicine. Physical-chemical principles underlying biological processes; intermediary metabolism and its control. The course will emphasize structural-functional relationships from the molecular to the tissue level to give a background for understanding.

102B. Cell Biology (5) I. Hansen and staff
Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: freshman standing in the School of Veterinary Medicine. Examination and topographic anatomy; biochemical and cellular bases of veterinary medicine. (IPNP grading only pending completion of course.)

103. General Principles of Pharmacology (3) III. Conzelman, Giri, Joy, Segall
Lecture—2 hours; laboratory—6 hours. Prerequisite: biochemical and cellular bases of veterinary medicine and supracellular organizations, or consent of instructor. Designed to provide veterinary medical students with basic foundation for understanding how drugs are used to restore diseased animals to normal health. Lectures—demonstrations—discussions on pharmacokinetics, drug metabolism, pharmacodynamics, toxicity, and pharmacotherapeutics.

104. Fundamentals of Radiography (11) I. Morgan and staff
Lecture—16 hours. Prerequisite: sophomore standing in the School of Veterinary Medicine. The production of x-rays, description of x-ray-producing equipment, utilization of accessory equipment, principles of film processing, preparation of technique chart, and principles of positioning.

105A. Agents of Disease and Host Responses (4) I. Osbold
Lecture—22 hours total; laboratory—16 two-hour sessions. Prerequisite: sophomore standing in School of Veterinary Medicine. The course will establish a basis for understanding diseases of infectious, parasitic, immunological, neoplastic and radiological nature, and includes general responses of vertebrate tissues to injury.

105B. Agents of Disease and Host Responses (2) II. Osbold
Lecture—54 hours total; laboratory—32 two-hour sessions. Prerequisite: sophomore standing in School of Veterinary Medicine. Course will furnish a basis for understanding diseases of infectious, parasitic, immunological, neoplastic and radiological nature, and includes general responses of vertebrate tissues to injury. (Deferred grading only, pending completion of 15-week session.)

105C. Agents of Disease and Host Responses (4) II. Osbold
Lecture—33 hours total, 30 one-hour demonstration laboratories. Prerequisite: sophomore standing in School of Veterinary Medicine. Course will furnish a basis for understanding diseases of infectious, parasitic, immunological, neoplastic and radiological nature, and includes general responses of vertebrate tissues to injury.

107. Principles of Anesthesiology and Surgery (5) I. Leighton, Lohse
Lecture—3 hours; laboratory—6 hours. Prerequisite: second-year standing in School of Veterinary Medicine. Course in the principles of surgery and anesthesiology including instruction in surgical anatomy and techniques of surgery and anesthesia.

108. Nutrition and Nutritional Diseases in Animals (4) II. Ills, Morris
Lecture—36 sessions; one 3-hour field trip. Prerequisite: freshman standing in the School of Veterinary Medicine or consent of instructor. Principles of nutrition and their application to the feeding of small and large animals. Selected clinical material will be discussed in relation to deficiency symptoms, pathology and biochemical lesions. (Deferred grading only, pending completion of course.)

109. Epidemiology (2) II. Rupp-Rennier
Lecture—20 hours. Prerequisite: second-year standing in School of Veterinary Medicine. An introduction to epidemiology and its applications in veterinary medicine.

110. Veterinary Medical Statistics (1) III. Wiggins
Lecture—1 hour. Prerequisite: freshman standing in School of Veterinary Medicine. Elements of biostatistics applied to veterinary medical problems.

120. Musculoskeletal Basis of Locomotion (5) I. I. Kitchell and staff
Lecture—1 hour; laboratory—6 hours. Prerequisite: normal animal, examination, and topographic anatomy; biochemical and cellular bases of veterinary medicine. First-year standing in School of Veterinary Medicine. Gross, submicroscopic, light microscopic, electron microscopic, functional anatomy of the musculoskeletal system of selected domestic animals. (Deferred grading only, pending completion of 15-week session.)

121. Neurosciences (6) II. Hart
Lecture—4 hours; laboratory—3 hours. Prerequisite: first-year standing in School of Veterinary Medicine. Normal animal, examination and topographic anatomy; biochemical and cellular bases of veterinary medicine. An integrated study of the nervous system relating anatomy, physiology, pharmacology, and animal behavior to veterinary medicine. (Deferred grading only, pending completion of 13-week session.)

125. Cardiopulmonary and Renal Systems: Normal Function and Dysfunction (8) III. Giesep and staff
Lecture—56 hours total; laboratory—24 3-hour sessions (dissections and laboratories flexible). Prerequisite: first-year standing in School of Veterinary Medicine. Correlated presentation emphasizing anatomical, physiological and pathological aspects of the cardiovascular, respiratory, and renal systems of common domesticated animals. (Homeostatic mechanisms governing body fluids and electrolytes will be included.) (Deferred grading only, pending completion of 13-week session commencing the last part of Winter Quarter and through Spring Quarter.)

130. Structure and Function of the Gastrointestinal System (4) III. Curry and staff
Lecture—26 hours total; laboratory—14 3-hour sessions. Prerequisite: second-year standing in School of Veterinary Medicine. Structure and function of the normal gastrointestinal system, including ruminants, as a basis for understanding the disease process. Emphasis will be on integrating morphological and physiological aspects of gastrointestinal secretions, motility, absorption, and allied processes. Course runs for 9 weeks only.

131. Metabolism and Bioenergetics (2) I. Freedland, Hauser
Lecture—20 hours total. Prerequisite: first-year standing in School of Veterinary Medicine. Energy processes and interaction of carbohydrate, lipid, and protein metabolism with emphasis on physiological control mechanisms in animals; factors affecting metabolic control including hormones, nutrition, and development; adaptations involved in homeostasis. Significance of these processes in health and disease. (Deferred grading only, pending completion of 10-week session.)

135. Hemopoietic System: Normal Structure and Function (3) III. Jan
Lecture—14 sessions; laboratory—13 3-hour sessions. Prerequisite: freshman standing in School of Veterinary Medicine. Correlated presentation of the development, structure and functions of proerythroblasts, leucocytes, platelets, and hemopoietic and lymphoid tissues; hemopoiesis and its regulation; hemoglobin synthesis; blood groups; hemostasis and blood coagulation; methods of study including laboratory exercises.

136. Laboratory Practices (1) I. Kaneko and staff
Lecture—1 hour; laboratory—2 hours. Prerequisite: sophomore standing in School of Veterinary Medicine. Basic techniques of clinical pathology and chemistry necessary for adequate performance in the clinical rotation during the second year of the core curriculum. Course runs for 6 weeks only.

140. Endocrine System Normal and Abnormal Structure and Function (3) II. Kennedy
Lecture—22 hours; laboratory-discussion—12 sessions (flexible). Prerequisite: sophomore standing in School of Veterinary Medicine. Correlated presentation of the structure and function of the normal and diseased endocrine glands of domesticated animals.

145. Reproduction (7) III. Kendrick and staff
Lecture—4 hours; laboratory—6 hours. Prerequisite: sophomore standing in School of Veterinary Medicine. Course covers structure, function, pathologic and clinical aspects of reproduction (normal and abnormal). (Deferred grading only, pending completion of 11-week session.)

170A-170B-170C. Hospital Practices (2) I-III. VMTH Staff (Low in charge)
Lecture—6 hours. Prerequisite: sophomore standing in School of Veterinary Medicine. Course covers structure, function, pathologic and clinical aspects of reproduction (normal and abnormal). (Deferred grading only, pending completion of sequence.)

180A-180B-180C. Clinic Rounds for Freshmen (4) I-H III. The Staff (Low in charge)
Discussion—12 1½-hour sessions per year. Prerequisite: freshman standing in School of Veterinary Medicine. (IPNP grading only, pending completion of sequence.)

181A-181B-181C. Rounds (2) I-H III. The Staff (Low in charge)
Discussion—12 1½-hour sessions per year. Prerequisite: sophomore standing in School of Veterinary Medicine. Discussion of selected cases from the clinic. (IPNP grading only, pending completion of sequence.)

Graduate Courses

203. Epidemiology, Statistics and Experimental Design (3) III. Rupp-Rennier, Wiggins
Lecture—36 hours total; laboratory—10 hours. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. This course will concentrate upon basic techniques for (1) epidemiological surveillance and (2) intensive epidemiological follow-up, as
applied to (a) fattening type operations (feedlots, broiler farms, etc.) and (b) breeder-type operations (dairy, cow-calf ranches, egg producers, etc.).

205. Equine Surgery (2) II. Wheat Lecture—2 hours; laboratory—3 hours. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. A course designed to allow senior veterinary students additional training and experience with surgical procedures in the horse. Limited enrollment.

206. Equine Anesthesia and Intensive Care (1) I. Steffen Lecture—1 hour. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. Course dealing with basic and applied anesthesia and intensive care in the equine.

207. Small Animal Anesthesiology (1) III. Hart Lecture—1 hour; video tapes and home study. Prerequisite: junior standing; candidate for DVM degree. A course in small animal anesthesia emphasizing the influence of pathophysiologic anesthetic homeostasis and techniques suitable for animals of poor physical status using opiates, reagents and dissociative agents.

208. Infectious Diseases and Public Health (6) II. III. Pedersen Lecture—42.5-4.5 hour sessions. Prerequisite: junior-year standing in School of Veterinary Medicine. An introduction to preventive aspects of zoonotic medicine, with special attention to zoonotic and systemic infections of animals. (Deferred grading only, pending completion of course.)

209. Veterinary Toxicology (3) III. Wofford Lecture—3 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Diseases of animals produced by chemical agents that are organic or inorganic. The prevalence of poison agents in the environment and exposure of animals to them; the incidence, pathology, pathogenesis, diagnosis and treatment of diseases produced by poisons.

211A. Laboratory Animal Science (2) III. Schmidick Lecture—2 hours. Prerequisite: junior standing in the School of Veterinary Medicine, graduate student or consent of instructor. Basic management practices used in laboratory animal facilities, including husbandry procedures, animal welfare standards, facility design, nutrition, reproduction and sanitation.

211B. Laboratory Animal Medicine (2) I. Brooks Lecture—2 hours. Prerequisite: enrollment in Zoological Medicine Track, graduate student or consent of instructor. Prevention, diagnosis and therapy of medical problems in rabbits, guinea pigs, hamsters, mice, rats and other laboratory species.

212. Seminar in Zoological Medicine (1) I II. III. Wofford Seminar—1 hour. Prerequisite: enrollment in Zoological Medicine. Enrolled students will select a topic, prepare and present the topic to the class. (SU grading only.)

213. Medical Primatology (2) II. Henrickson Lecture—2 hours. Prerequisite: enrollment in Zoological Medicine Track. Graduate student or consent of instructor. Major diseases, medical management and husbandry of captive nonhuman primates. (SU grading only.)

214. Management and diseases of Captive Wildlife (2) II. Wofford Lecture—2 hours. Prerequisite: enrollment in Zoological Medicine Track of Veterinary School, graduate student or consent of instructor. Lectures, demonstrations and discussions used to illustrate selected medical problems of captive wild animals.

216. Aquatic Animal Medicine (2) II. Wofford Lecture—2 hours. Prerequisite: senior standing in the School of Veterinary Medicine. Ecology, pathology, diagnosis, treatment and prevention of diseases of fish and some selected aquatic amphibians and mammals. Preventive management of disease in aquaculture.

217. Cape Bird Medicine (1) I. Wofford Lecture—1 hour. Prerequisite: senior Veterinairy Medicine or consent of instructor. Medical and surgical problems of caged birds; handling and restraint, feeding, nutritional and infectious diseases, anesthesia and surgery, plus problems of organ systems.

217L. Cape Bird Medicine Laboratory (1) I. Wofford Laboratory—3 hours. Prerequisite: enrollment in Zoological Medicine Track. Laboratory sessions on the taxonomy, anatomy, pathology and management of different species of birds and aspects of avian surgery.

218. Diseases of Free Living Wildlife (2) II. Wofford Lecture—2 hours. Prerequisite: enrollment in Zoological Medicine Track of Veterinary School, graduate student or consent of instructor. Directed discussions following the reading of selected papers on free-living wildlife medicine topics. Discussions will emphasize ecological implications, geographical distribution and epidemiology.

220. Musculoskeletal System: Abnormal Function (4) III. Wind Lecture—36 hours total; laboratory—six 2½-hour sessions. Prerequisite: second-year standing in School of Veterinary Medicine. A course on abnormal function of the musculoskeletal system and diseases affecting the musculoskeletal system in animals. The manifestations, pathology, pathogenesis, diagnosis, and medical and surgical treatments of musculoskeletal disease will be discussed. Course runs for 12 weeks. (Deferred grading only, pending completion of course.)

221. Neurology: Abnormal (4) III. Holiday Lecture—36 hours total; laboratory—six 2½-hour sessions. Prerequisite: second-year standing in School of Veterinary Medicine. A course on abnormal function of the nervous system and diseases affecting the nervous system of animals. The manifestations, pathology, pathogenesis, diagnosis and medical and surgical treatments of neuromuscular disease will be discussed.

222. Veterinary Ophthalmology (3) II. Cello Lecture—21 hours total; laboratory—seven 3-hour sessions. Prerequisites: second-year standing in School of Veterinary Medicine. A course on abnormal function of the ocular system and diseases affecting the eye and the anatomy of the eye. Some topics include: All species of domestic animals will be included. Discussion of selected ocular diseases of various species.

223. Small Animal Ophthalmology (2) II. Cello Lecture—2 hours. Prerequisite: course 222. The diagnosis and treatment of common encountered eye diseases of small animals.

225. Cardiopulmonary, Renal, Abnormal (9) I II. Dungworth Lecture—68 hours total; laboratory—68 hours. Prerequisite: third-year standing in School of Veterinary Medicine. A course on abnormal function of the circulatory, pulmonary and renal systems and disease affecting these systems. The manifestations, pathology, pathogenesis, diagnosis, and medical and surgical treatments of cardipulmonary-renal disease will be discussed. (Deferred grading only, pending completion of sequence.)

226. Advanced Small Animal Cardiology (11) I. Rhone Lecture—15 hours total for course. Prerequisite: course 225 or the equivalent. Cardiovascular diseases of canine and feline species.

227A. Equine Medicine (2) I. Carlson Lecture—20 hours total. Prerequisite: senior standing in the School of Veterinary Medicine. Advanced equine medical diseases including sections on general medicine, respiratory medicine, cardiology, dermatology, neurology, ophthalmology and orthopedics.

227B. Equine Medicine (3) II. Carlson Lecture—25 hours total; discussion—5 hours total. Prerequisite: senior standing in the School of Veterinary Medicine. Advanced equine medical diseases including sections on general medicine, respiratory medicine, cardiology, dermatology, neurology, ophthalmology and orthopedics.

228. Food Animal Medicine (2) I. Hiepe in charge Lecture—2 hours. Prerequisite: fourth-year standing in the School of Veterinary Medicine or consent of instructor. Selected diseases of cattle, sheep, goats and swine are discussed, with emphasis on pathogenesis, treatment and control. Major areas include respiratory diseases of sheep and cattle, urolithy and diseases of the bovine mammary system.

228L. Food Animal Medicine (1) II. Baker and staff Lecture—5 hours. Prerequisite: fourth-year standing in the School of Veterinary Medicine. Selected topics of food animal disease with emphasis on control of mastitis and internal and external parasitism.

229. Hard Harte Management (3) III. Hiepe in charge Lecture—3 hours. Practical systems for delivering domestic veterinary service to feedlot, dairy, cow-calf, stocker, sheep and swine production units are considered, with emphasis on prevention and control of disease.

230. Gastrointestinal Diseases: Gastroenterology (6) III III. Strombeck Lecture—53 hours total; nine laboratory sessions—23 hours total. Prerequisite: second-year standing in School of Veterinary Medicine. A course on abnormal function of the digestive system and diseases affecting the digestive system in all species of animals. The manifestations, pathology, pathogenesis, diagnosis including special diagnostic procedures, and medical and surgical treatments of gastrointestinal disease involving the liver and pancreas. (Deferred grading only, pending completion of sequence.)

235. Hematology: Abnormal (6) I. Osburn Lecture—39 hours total; laboratory—42 hours total. Prerequisite: third-year standing in the School of Veterinary Medicine. A course on abnormal function of the hemolytic system and diseases affecting the blood; blood forming organs and lymphatic system in animals. The manifestation of these diseases, pathology, pathogenesis, diagnosis and medical and surgical treatments of hemolytic disease will be discussed.

245. Small Animal Theriogenology (1) I. S. Stablenfelt Lecture—1 hour. Prerequisite: third-year standing in the School of Veterinary Medicine. Conditions affecting the reproductive system in the dog and cat, with emphasis on embryology, pathology and treatment. The development of diagnostic and therapeutic approaches to the clinical patient will be stressed.

246. Food Animal Theriogenology (3) I. Kendrick Lecture—2 hours; laboratory—3 hours. Prerequisite: course 145. Conditions affecting the reproductive system in the cow, sheep and goat with emphasis on embryology, pathophysiology, pathology, treatment and prevention.

247. Equine Theriogenology (3) I. Hughes Lecture—2 hours; laboratory—3 hours. Prerequisite: senior standing in the School of Veterinary Medicine or consent of instructor. A discussion of special problems of equine reproduction with emphasis on methods of diagnosis and the interpretation of clinical and laboratory findings.

248. Summer Clinics (5 or 6) Extra-session summer. Low active participation in clinic—40 hours (either four or six weeks). Prerequisite: completion of first-year of study in Veterinary Medicine. Diagnosis and treatment of animal diseases. Students responsible for case records, care of patients, physical examinations, and participation in surgery. Grades determined by the teaching faculty by observation of student's performance of assigned duties, by rounds and discussions, the preparation of case records, and competence and responsibility shown in the care of patients. In some sessions, students serve in the emergency, on-call capacity. (SU grading only.)

255. Integumentary System (5) I. Stannard Lecture—45 hours total; laboratory—10 hours total. Prerequisite: third-year standing in the School of Veterinary Medicine. Course covers structure, function, pathology and clinical aspects including therapeutic of the integumentary system and diseases of the integumentary system of animals.

266. Emergency and Critical Patient Care (2) I. Parker in charge Lecture—14 meetings total; laboratory—3 meetings total. Prerequisite: fourth-year standing in the School of Veterinary Medicine. To introduce the fourth-year veterinary stu-
Viticulture and Enology

(College of Agricultural and Environmental Sciences)

A. Dinanor Webb, Ph.D., Chairperson of the Department
Department Office, 1023 Wickson Hall (752-0360)

Faculty

Curtis J. Alley, Ph.D., Lecturer
Maynard A. Amerine, Ph.D., Professor Emeritus
Harold W. Berg, M.S., Professor Emeritus
Roger B. Boulton, Ph.D., Assistant Professor
James A. Cook, Ph.D., Professor
James F. Gauyond, Ph.D., Professor Emeritus
W. Mark Klawer, Ph.D., Lecturer
Ralph E. Kunkee, Ph.D., Professor
Lloyd A. Lider, Ph.D., Professor
W. Robert Logan, Ph.D., Assistant Professor
Kjayiton E. Nelson, Ph.D., Professor
Ann C. Noble, Ph.D., Assistant Professor
Harold P. Oman, Ph.D., Professor Emeritus
Cornelius S. Ough, D.Sc., Professor
Vernon L. Singleton, Ph.D., Professor
Robert J. Weaver, Ph.D., Professor
A. Dinsmore Webb, Ph.D., Professor
Albert J. Winkler, Ph.D., LL.D., Professor Emeritus

Related Major Programs. See majors in Fernation Science (page 224) and Plant Science (pages 293-94).

Related Courses. See courses in Food Science and Technology; Plant Science 112, 112L.

Courses in Viticulture and Enology

Lower Division Courses

3. Introduction to Wine Making (3) I, II, III. Singleton, Kunkee
Lecture—2 hours; discussion—1 hour. An introduction to wine technology, including effects of alcohol, history of wine, fermentation, production practices, wine types, and the wine industry of California and other wine producing areas.

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Webb in charge)
(PNP grading only)

Upper Division Courses

100. Grape Growing (3) III. Weaver
Lecture—2 hours; discussion or vineyard trips—1 hour. Prerequisite: six units of plant science, botany and/or biology; or consent of instructor. Grape growing including botany and morphology, native distribution and domestication, propagation, varieties and uses, climatic requirements, utilization of the crop, grape regions of the world, production practices, and some common diseases and insect pests.

105. Systematic Viticulture including Fruit Maturation and Handling (3) I. Nelson, Lider, Logan
Lecture—1 hour; laboratory—6 hours. Prerequisite: Plant Science 2 or consent of instructor. Principal fruiting varieties, rootstocks, and species of grapes; environmental factors affecting composition of the fruit during growth and maturation; fruit handling practices for wine, raisin and table grape production.

115A. General Viticulture (3) II. Cook, Kiewer
Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Science 2 and consent of instructor. Principles underlying pruning, training, grafting, and propagation of vines; environmental and economic factors affecting choice of vineyard type and location; establishment of vineyards.

115B. General Viticulture (3) III. Kiewer, Cook
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 115A. Economics and scientific principles of recommended vineyard management practices including irrigation, mineral and carbohydrate nutrition, flower development and fruit set, virus and fungal diseases, and insect control.

123. Analysis of Mists and Wines (3) I, Ough
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: Chemistry 5, Food Science and Technology 103 recommended. The principles and practice of wine analysis.

124. Wine Production (3) I, Webb
Lecture—2 hours; laboratory—3 hours. Prerequisite: Basic Winemaking; Chemistry 5, 8B. Recommended: courses 3, 123, 124, 125 (may be taken concurrently). The principles and practice of making the various standard types of wines, with special reference to the grape varieties used and the methods of vinification required for each.

125. Wine Types and Sensory Evaluation (3) II. Noble
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: Chemistry 8B. Recommended: Food Science and Technology 107, 107L; and courses 3, 123, and 124. Major types of wines and the factors influencing their quality; principles of sensory evaluation.

126. Wine Processing (3) III. Boulton
Lecture—2 hours; laboratory—3 hours. Prerequisite: Basic Winemaking; Chemistry 5, 8B. Recommended: Chemistry 10, 107B, Plant Science 2 and courses 3, 123, 124, 125. Principles and theory of nonbacterial disorders: metal, tannins, protein, color, oxidation and their control by clarification, filtration, refrigeration, filtration and ion exchange.

140. Distilled Beverage Technology (4) II. Boulton
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 8B or the equivalent; Food Science and Technology 107A recommended. Distillation principles and practice; production technology of brandy, whiskey, and other distilled beverages; characteristics of raw materials, fermentation factors, distillation and aging, chemical analysis and sensory evaluation. Course normally taught in late quarter of each academic year.

198. Directed Group Study (1-5) I, II, III. The Staff (Webb in charge)
Prerequisite: consent of instructor. (PNP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Webb in charge)
(PNP grading only)

Graduate Courses

206. Plant Hormones and Regulators (3) I, Weaver, Lavavch (Pomology)
Lecture—3 hours. Prerequisite: Botany 111B, Chemistry 8B, or consent of instructor. Outgrowth and regulation of growth; chemical and physical factors controlling development of plants; their chemistry, natural occurrence, biochemistry, relation to animal diets, and relation to properties of foods and other products.

235. Plant Genetics (3) II. Singleton
Lecture—3 hours. Prerequisite: Biochemistry 101B or the equivalent and consent of instructor. Flavonoids and other natural colorants; structure and function of pigments; their chemistry, natural occurrence, biochemistry, relations to animal diets, and relation to properties of foods and other products.

290. Seminar I, II, III. Webb
Seminar—1 hour. Prerequisite: consent of instructor.

291. Advances in Viticulture I, II. Weaver
Seminar—1 hour. Prerequisite: consent of instructor. Recent advances in their fields of expertise. Emphasis and topics will vary from year to year and course may be repeated for credit. (SU grading only)

292. Advances in Enology (1) I, Webb
Discussion—1-2 hours, seven to ten weeks. Prerequisite: course 1. 100, 101, 123, 125, 126 (may be taken concurrently). Discussions of previously assigned reading material, usually in the form of two to three reprints. Discussions led by staff members or students with their current research interests. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff (Webb in charge)
(SU grading only)

299. Research (1-12) I, II, III. The Staff (Webb in charge)
(SU grading only)

Water Science

(College of Agricultural and Environmental Sciences)

Faculty.

See under the Department of Land, Air and Water Resources (Water Science and Engineering Section).

Related Major Program. See the major in Soil and Water Science, page 312.

Graduate Study. A program of study is offered leading to the M.S. degree in Water Science. Detailed information can be obtained from the graduate adviser. Also see page 109.

Graduate Adviser. J. W. Biggar.

Related Courses. See Engineering: Civil 141L, 142, 143, 144, 146, 148A, 148B, Plant Science 130. See also listings for Atmospheric Science, Resource Sciences, and Soil Science.

Courses in Water Science

Questions pertaining to the following courses should be directed to the instructor or to the College Office, 228 Mraz Hall.

Lower Division Courses

2. Introduction to Water Science (4) II. The Staff (Silk in charge)
Lecture—3 hours; laboratory—3 hours; one all-day field trip. Prerequisite: Chemistry 1A, Physics 2A, and Botany 2 or the equivalent preparation: Chemistry 1A and Physics 2B recommended. Introduction to scientific principles as applied to water and water problems. Topics include hydrology (surface and ground water), flow through porous media, water in soil-plant-atmosphere continuum, water quality, flow through pipes and channels, and sample water-resource problems.

10. Water and Man (3) III. Hagan
Lecture—3 hours. Water as a factor in civilization and man's environment. Water supply and utilization problems of agricultural, domestic, industrial, and other water users in developed and developing nations. A cultural and technical course providing an introduction to water science and engineering.

40. Ecological Studies of Streams and Ponds (2) I. Knight
Lecture—2 hours. Prerequisite: Introductory course in biology. Analysis of water quality problems resulting from multiple use and effects of man's activities on streams and ponds. Multidisciplinary student teams may design and conduct projects leading to alternative approaches.

Upper Division Courses

103. Water Quality, Salt Control and Reclamation (4) I, Biggar
Lecture—3 hours; laboratory—3 hours. Prerequisite: course in soil or water chemistry or consent of instructor. Water quality parameters, water analysis and salinity control in relation to soil and plant factors; reclamation of soil
and disposal of waste water and their effects on receiving waters; localized and regional river basin problems in relation to salinity control and water quality.

104. Plant-Water-Soil Relationships (4) III. Ehrman Lecture—3 hours; discussion—1 hour; two mid-quarter examinations to be arranged. Prerequisite: course 2 or the equivalent. Preparation of elements of water in soil and plants, Soil Science 2 and one additional course in soils or plant physiology, or consent of instructor. Principles of plant interactions with soil and water environments and their applications to crop production and environmental management, including nutrient and water uptake and transport; transpiration, soil processes affecting plant growth; and the responses of plant to water and nutrient conditions.

118A. Irrigation Principles and Practices (3) II. Henderson Lecture—3 hours. General course for agriculture and engineering students dealing with soil and plant aspects of irrigation and drainage. Soil-water movement and storage, plant responses to irrigation regimes, water use by crops, and procedures for determining frequency and depth of irrigation. Drainage.

118B. Irrigation Principles and Practices (3) I. Feiters Lecture—3 hours. Prerequisite: Physics 2B. General course for agriculture and engineering students dealing with engineering aspects of irrigation on the farm. Irrigation distribution systems; water measurement; farm water supply and storage facilities, including tanks and pumps; water application methods; land grading; and water quality.

120. Ecology of Polluted Waters (3) I. Knight Lecture—3 hours. Prerequisite: Biological Sciences 1 and junior standing. The causes and nature of various types of pollution and their effects upon the aquatic biota. Particular emphasis on biological effects of toxic compounds, inorganic compounds, suspended matter, organic matter, salts, and heated water on aquatic life.

140. Groundwater Hydrology (3) III. Luthin Lecture—3 hours. Prerequisite: course 2, Soil Science 2. Groundwater occurrence and development, flow through porous media, groundwater wells, drainage of agricultural lands. Reclamation procedures. Course not recommended for engineering majors.

141. Hydrology (3) II. Bury Lecture—3 hours. Prerequisite: consent of instructor. Principles of hydrologic analysis including consideration of precipitation, stream flow and ground water phenomena.

154. Water and Related Resource Allocation from Economic Principles (2) I. George Lecture—2 hours. Prerequisite: Mathematics 16A or consent of instructor. An examination of information needed for analysis and basic procedures of production and distribution of water and related resources in agriculture. Cost minimization in production and alternative goals are considered.

160. Water Application Systems (4) I, Pruit Lecture—3 hours; laboratory—3 hours. Prerequisite: senior standing in Soil and Water Science or Civil Engineering, or consent of instructor. Design conservation and operation of water-application systems (with emphasis on farm irrigation methods) and appurtenant structures. Preparation of land for irrigation. Precision and field and laboratory exercises.

170. Field Studies in Irrigation and Drainage Management (1) Extra-session summer. Robinson Discussions and field observations—8 days. Prerequisite: senior standing in Soil and Water Science or Engineering or consent of instructor. Field observations and discussions on irrigation and drainage systems in the San Joaquin Valley, San Diego Area; Imperial Valley; Yuma Arizona, and Coachella Valley. (P/NP grading only.)

172. Farm Irrigation Management (3) III. Henderson Lecture—3 hours; one field trip. Prerequisite: course 104 or 110A, or consent of instructor. The water budget is used as a means of orderly analysis of plant, soil, climatic, and operational factors to develop a rationale for irrigation practice. Plant and soil factors are emphasized.

180. Chemistry of the Hydrophere (3) II. Tanji Lecture—3 hours. Prerequisite: Chemistry 5 and introductory courses in geology, soils, hydrology or limnology. To provide an understanding of the chemistry and physics of natural waters. Linkage between hydrologic and geochemical cycles is stressed. Covered are chemical characteristics of rainwater, snow, stream water, rivers, lakes, ground waters, estuaries, and oceans.

186. Directed Group Study (1-5) I, II, III. The Staff (Myrnp in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Myrnp in charge). Prerequisite: senior standing. (P/NP grading only.)

Graduate Courses

200. Water-Soil-Plant Relationships in Irrigation Programming (3) III. Hagan Lecture—3 hours. Prerequisite: course 104 or consent of instructor. Selected topics including prediction of crop response, design of irrigation systems, and water requirements, production functions, and strategy for using limited water supplies, and irrigation planning and operations for optimizing water use and crop production under conditions of developed and developing nations.

210. Advanced Plant-Water Relations (3) I. Hida Lecture—3 hours; discussion sessions. Prerequisite: course 140 or Plant Science 101 or Botany 111A; elementary knowledge of mathematics and rudiments of thermodynamics required. Concentration in water relations: crop water requirements, water relations in crop production, and the effects of environment on crop water relations. Laboratory experience in physiological and water relations.

220. Erosion and Transplantation (3) I, II. Pruit Lecture—2 hours. Prerequisite: Atmospheric Science 20-20L or 105, or consent of instructor. Radiation and energy balances of water, soil and vegetative surfaces and the effects of wind, temperature, humidity, and vegetation. Atmospheric and terrestrial measurement techniques. Prediction of water evapotranspiration from aerodynamic, energy balance, and empirical approaches.

225. Water-Resource Systems Analysis: Deterministic Models (3) I, Maribo Lecture—3 hours. Prerequisite: Mathematics 22A or consent of instructor; course 141 or the equivalent. Applications of deterministic linear and dynamic programming techniques to water-resource systems design. Allocation of aquifer and reservoir capacities, conjunctive surface and groundwater systems: sequencing of water supply projects.

230. Advanced Topics in Water and Soil Chemistry (3) II. Bigger Lecture—3 hours. Prerequisite: course in physical chemistry and soil chemistry or consent of instructor. Advanced course in water chemistry emphasizing principles governing interactions of ionic constituents in water with sediment and soils. Topics include electro-kinetic properties of clays, mineral surface properties, rate processes and thermodynamic applications to the water and soil system. Offered in odd-numbered years.

217. Hydrochemical Models (3) II. Tanji Lecture—2 hours; laboratory—3 hours. Prerequisite: physical chemistry, calculus, and computer programming or consent of instructor. Mathematical and computer modeling of chemical state variables and terrestrial and aquatic systems. Equilibrium and rate models, transport models, systems assessment and simulations.

222. The Biology of Streams (3) III. Knight Lecture—1 hour; discussion—1 hour, laboratory—3 hours. Field trips: Prerequisite: graduate standing; aquatic entomology and the equivalent, limnology, and physiology. The course will relate various environmental factors to the ecology and productivity of flowing freshwater systems. Emphasis is placed on relationships between stream organisms and their environment by means of integrated field and laboratory activities.

220. Physics of Soil-Water Movement (3) II. Nielsen Lecture—3 hours. Prerequisite: Mathematics 22C or consent of instructor: course in physics of soil-water systems recommended. The physics of fluid flow through porous media, miscible and immiscible displacement theories; theory of capillary pressure and pore size distribution with emphasis on unsaturated flow problems; physical aspects of permeability, porosity, relative hydraulic conductivities, and pore structure. Offered in odd-numbered years.

291. Seminar in Water-Soil-Plant Relations and Irrigation (1-2) I, II. Henderson, Smith Seminar—1 hour. Prerequisite: graduate standing and background in water-soil-plant relations. Seminar on current developments in water-soil-plant relations, plant water use, and irrigation management. Associate discussion analyzes research approaches and techniques and data interpretations. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Myrnp in charge) (SU grading only.)

Wildlife and Fisheries Biology

(College of Agricultural and Environmental Sciences)

Dale F. Lott, Ph.D., Chairperson of the Division
Division Office, 188 Briggs Hall (752-6566)

Faculty

Daniel W. Anderson, Ph.D., Assistant Professor
Joseph J. Cecch, Ph.D., Assistant Professor
Walter E. Howard, Ph.D., Professor
Nadine K. Jacobsen, Ph.D., Assistant Professor
Hiram W. Li, Ph.D., Assistant Professor
Rene H. Lott, Ph.D., Professor
Peter E. Marsh, A.B., Lecturer
Robert G. Schweb, Ph.D., Associate Professor

The Major Program

The Wildlife and Fisheries Biology major deals with the interface between the needs of man and wildlife which must be maintained for the sake of future generations for ecological stability, recreation, and food supply. Certain species of wildlife are
threatened because they cannot adapt to man’s activities, whereas others have thrived so well under man-made changes in the environment that their numbers must be controlled. Emphasis is placed on biological and physical sciences, with specialization in wildlife or fisheries. This program provides training in biology appropriate to careers as wildlife or fisheries biologists, animal control specialists, game or fish technicians, and in following additional academic preparation for careers in teaching, research, and administration in those areas.

Wildlife and Fisheries Biology

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
</tr>
</tbody>
</table>

Botany (Botany 2) ... 5

Chemistry (Chemistry 1A, 1B, 8A, 8B) 16

Computer science (Engineering 5A, Animal Science 127, or Mathematics 19) 3

Mathematics (Mathematics 13, 16A, 16B) 10

Physics (Physics 2A, 2B, 2C) 9

Zoology (Zoology 2-3L) .. 6

Depth Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-31</td>
</tr>
</tbody>
</table>

Chemistry (Biochemistry 101A-101B or Physical Sciences 101A-101B) 6-7

Ecology (Environmental Studies 100, Entomology 101, or Zoology 125) 3-4

Genetics (Genetics 120 or 120A-120B) 6-7

Physiology (Physiology 110) 5

Vertebrate anatomy (Zoology 105 and 106 or 108) 4-5

Evolution (Zoology 148, 149, Genetics 103, or the equivalent) 3-5

Breadth Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

English and Rhetoric (including the equivalent) 8

Social sciences and humanities 12

Courses in the Major

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

Wildlife and fisheries biology (Wildlife and Fisheries Biology 122, 130, 140) 11

Additional Courses (select Plan I or Plan II)

Plan I: Wildlife Biology Specialization

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-30</td>
</tr>
</tbody>
</table>

Statistics (upper division courses with advisor’s approval) 3-6

Botany (Botany 102 or 106, 117) 8-9

Wildlife biology (Wildlife and Fisheries Biology 101, 110, 111, 111L) 15

Plan II: Fisheries Biology Specialization

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-30</td>
</tr>
</tbody>
</table>

Aquatic entomology (Entomology 116) 3

Limnology/physiology (Environmental Studies 116, 151, or 152) 3-4

Statistics (upper division courses with advisor’s approval) 7-9

Fisheries biology (Wildlife and Fisheries Biology 102, 120, 121) 14

Unrestricted Electives ... 34-39

Total Units for the Major 180

1 Units earned in satisfaction of the American History and Institutions requirement may be used in partial satisfaction of the Social Sciences and Humanities requirement.

NOTE: For key to footnote symbols, see page 138.

Graduate Study. See page 105.

Related Courses. A selection of courses may depend on each student's special interests. A set of related courses is available from advisors.

Courses in Wildlife and Fisheries Biology

Lower Division Courses

10. Wildlife Biology (4) I. The Staff Lecture—4 hours. Prerequisite: Biological Sciences 1 recommended. Introduction to the biology and ecology of aquatic and terrestrial wildlife, and basic principles of management.

Upper Division Courses

101. Field Studies in Wildlife Biology (6) Extra-session summer. The Staff Lecture—1 hour; laboratory—40 hours; field study—4 weeks, and data analysis and presentation—2 weeks. Prerequisite: upper division course in ecology and laboratory in biology of birds or mammals; consent of instructor. Intensive 4 week field study of the biology and management of wildlife followed by 2 weeks of data analysis and presentation. Emphasis is on individual investigation affording the student the opportunity to implement knowledge gained from other courses on biology and management of wildlife.

102. Field Studies in Fisheries Biology (6) Extra-session summer. The Staff Lecture—1 hour; laboratory—60 hours; field study—4 weeks, and data analysis and presentation—2 weeks. Prerequisite: upper division course in ecology and fish biology; consent of instructor. Intensive 4 week field study of the biology and management of fish, followed by sample processing and data analysis and presentation. Emphasis is on individual projects that utilize knowledge gained from other courses on fish and fisheries.

110. Mammalian Biology and Ecology (5) II. Schwalbe Lecture—2 hours; discussion—1 hour; laboratory—6 hours. Prerequisite: Biological Sciences 1, Botany 2, and Zoology 2-3, or the equivalent; course in ecology recommended. Integrated introduction to the biology and ecology of nondomestic mammals. Emphasis on natural history, taxonomy, ecological-physiological distribution, and behavioral adaptations of mammals to their environment, and research-management methodologies.

111. Biology and Management of Wild Birds (3) I. Anderson Lecture—3 hours. Prerequisite: upper division course in ecology or consent of instructor. Phylogeny, distribution, migration, reproduction, population dynamics, behavior, and physiological ecology of wild birds. Emphasis on adaptations to environments, species interactions, and management considerations.

115. Laboratory in Biology and Management of Wild Birds (1) I. Anderson Lecture—3 hours; field trips. Prerequisite: course 111 (may be taken concurrently). Laboratory exercises in bird identification, anatomy, molt, and sex differences, adaptations, behavior, and research management techniques.

120. Biology of Fish (4) I. Moyle Lecture—2 hours; laboratory—3 hours. Prerequisite: Zoology 2-3, or consent of instructor. Introduction to fish ecology, morphology, evolution, and systematics of freshwater and marine fishes. Laboratory exercises in morphology and identification, lectures emphasize ecology and its relationship to fish management.

121. Physiology of Fishes (4) II. Cech Lecture—3 hours; laboratory—3 hours. Prerequisite: upper division courses in nutrition and physiology or consent of instructor. Comparative physiology, growth, reproduction, behavior, and energy relations of fishes.

Wildlife and Fisheries Biology

122. Dynamics of Exploited Animal Populations (3) III. Li Lecture—3 hours. Prerequisite: upper division ecology courses and Mathematics 13, 16A, 16B. A critical evaluation of the ecological bases for exploiting animal populations (vertebrates and invertebrates). Application of formal logic to quantitative concepts of population analysis and strategies of animal exploitation. Simulation and decision making will be used in teaching decision-making skills.

120. Physiological Ecology of Wildlife (5) III. Jacobson Lecture—4 hours; discussion—1 hour. Prerequisite: course 110 (may be taken concurrently), or 111 or 120. Physiology 110 and Zoology 129 or the equivalent. A study of animal functions, adaptations, and ecological energetics of wildlife. Nutrition, metabolism, thermoregulation, and productivity are emphasized as a pattern of relationships for understanding the distribution and abundance of wildlife in time and space.

135. Ecology of Waterfowl and Game Birds (3) II. Raveling Lecture—2 hours; laboratory—3 hours; field trips. Prerequisite: courses 111 and 110 or the equivalent. Detailed examination of distribution, behavior, population dynamics, and management of waterfowl and upland game birds. Offered odd-numbered years.

140. Ecology and Evolution of Vertebrate Social Organization (3) I. Lov Lecture—3 hours. Prerequisite: Zoology 2 and upper division ecology. Spacing, competition, cooperation, leadership, and grouping of wild vertebrates are described and analyzed as adaptive products of their evolutionary history and ecology. Minimal consideration is given to man and the other primates. Offered odd-numbered years.

152. Principles of Vertebrate Control (3) II. Howard Lecture—3 hours. Prerequisite: course 151 recommended. The philosophical, historical, ecological, behavioral, and economical basis for regulating population levels of species of terrestrial vertebrates found throughout the world.

152. Principles of Vertebrate Control Laboratory (1) II. Howard Lecture—3 hours. Field trips. Prerequisite: course 151 (concurrent) and consent of instructor; course 151 recommended. Laboratory and field experiences to complement course 152. (PINP grading only.)

153. Wildlife in Polluted Environments (3) II. Anderson Lecture—3 hours. Prerequisite: introductory courses in organic chemistry, ecology, statistics, and physiology, or consent of instructor. Environmental pollution in relation to vertebrate ecology, studies of the effects and mechanisms of various forms of pollution, review of instances of pollution-wildlife interaction, the ecological consequences, effects on individuals, and philosophical considerations. Offered even-numbered years.

190. Prospective in Wildlife and Fisheries Biology (1) I, II, III. The Staff (Lott in charge) Seminar—1 hour. Prerequisite: senior standing in Wildlife and Fisheries Biology or consent of instructor. Reports and discussions of recent advances related to wildlife and fisheries biology. (PINP grading only.)

199. Directed Group Study (1-5) I, II, III. The Staff (Lott in charge) (PINP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Lott in charge) (PINP grading only.)

Graduate Courses

290. Seminar (3) I, II, III. The Staff (Lott in charge) Seminar—3 hours. Prerequisite: consent of instructor. Seminar devoted to a highly specific research topic in any
Work-Learn Program, Zoology

area of wildlife or fisheries biology: Special topic selected for a quarter will vary depending on interests of instructor and students.

201. Fish Ecology Seminar (2) I, II, III. Lecture—2 hours. Prerequisite: graduate status or consent of instructor. Current research and advances in fisheries biology and fish ecology.

208. Group Study (1-5) I, II, III. The Staff (Lott in charge) or for discussions—1-5 hours.

209. Research (1-12) I, II, III. The Staff (Lott in charge) (SU grading only.)

--

Work-Learn Program

(College of Agricultural and Environmental Sciences)

Joe J. Stastulat, Ph.D., Program Coordinator

Bixby Work-Learn Office (Work-Learn and Career Planning and Placement Center) 227 South Hall (752-2861)

Faculty

Joe J. Stastulat, Ph.D., Lecturer
(all members of College faculty)

Course in Work-Learn

Questions pertaining to the following course should be directed to the Work-Learn Office, 207 South Hall.

Upper Division Courses

192. Internship (1-15) I, II, III. College of Agricultural and Environmental Sciences Faculty Laboratory—3-40 hours. Prerequisite: consent of instructor. Work-experience offered on or campus in all subject areas offered in the College of Agricultural and Environmental Sciences. Internships supervised by a member of the faculty. Student transcripts show the field in which an internship is taken. (1-15 units grade only.)

Zoology

(College of Letters and Science)

Ronald J. Baskin, Ph.D., Chairperson of the Department

Robert D. Grey, Ph.D., Vice-Chairperson of the Department

Department Office, 2320 Storer Hall

Faculty

Peter B. Armstrong, Ph.D., Associate Professor

Ronald J. Baskin, Ph.D., Professor (Zoology, Physiology)

John H. Crowe, Ph.D., Associate Professor

David W. Deamer, Ph.D., Professor

Robert D. Grey, Ph.D., Professor

Milton Hildebrandt, Ph.D., Professor

Everett W. Jameson, Jr., Ph.D., Professor

Robert A. Metcalf, Ph.D., Assistant Professor

Milton A. Miller, Ph.D., Professor Emeritus

Brian Maita, Ph.D., Associate Professor

Richard L. Nuccitelli, Ph.D., Assistant Professor

David W. Phillips, Ph.D., Assistant Professor

Lauren E. Rosenberg, Ph.D., Professor Emeritus

Robert L. Rudd, Ph.D., Professor

George W. Satt, Ph.D., Professor

Arthur M. Shapiro, Ph.D., Associate Professor

Herman T. Spith, Ph.D., Professor Emeritus

Judy Stamps, Ph.D., Assistant Professor

Catherine A. Tol. Ph.D., Assistant Professor

Vadim V. Vaccari, Ph.D., Associate Professor

Kenneth J. Watt, Ph.D., Professor

Darryl W. Wilson, Ph.D., Assistant Professor

Stephen L. Wolfe, Ph.D., Associate Professor

The Zoology Program

The Zoology major presents animal biology from the subcellular and molecular to the community and ecosystem levels. As a basic life science major, it is suitable for students who plan to pursue a professional career in Zoology, to do graduate work in Zoology or another life science, or who intend to apply to professional schools in the health sciences. The major is structured to insure breadth of preparation while still allowing individualization of each student's program in accordance with his or her interests.

Choice of College. The Bachelor of Arts degree is offered only in the College of Letters and Science. The Bachelor of Science degree is offered in both the College of Letters and Science and the College of Agricultural and Environmental Sciences.

Zoology

A.B. Major Requirements:

Preparatory Subject Matter

- Preparatory Subj. Matter
- Zoology 2-2L
- Chemistry 1A, 1B, 8A, 8B
- Biological Sciences 1
- Mathematics 13
- Physics 2A, 2B, 2C
- One course from Bacteriology 2, 201, Botany 100, 101

Total Units for the Major 76-82

B.S. Major Requirements:

Preparatory Subject Matter

- Preparatory Subj. Matter
- Zoology 2-2L
- Chemistry 1A, 1B, 1C
- Biological Sciences 1
- Mathematics 13
- Physics 2A, 2B, 2C
- Botany 100, 101

Total Units for the Major 100-109

Breadth Subject Matter

- College and Agricultural Environmental Sciences students
- English and/or rhetoric
- Social sciences and/or humanities

Areas of Study

- Biology and behavior: Zoology 116, 117, 125, 147, 149, 155
- Cell biology: Zoology 121A, 121B, 121L, 166, Botany 130, 130L
- Developmental biology: Zoology 100, 100L, 101

Recommended

Chemistry 5, Mathematics 16C or 21C, Geology 3

Major Advisers. Students transferring from Davis from another institution and majoring in Zoology must consult an adviser immediately upon matriculation so that their transfer credits can be applied to the major requirements. All new students in the major should contact the Zoology Department Adviser for major assignment. A list of approved upper division courses for the Zoology major is available from the Department Adviser. Substitutions of other courses for major requirements are arranged through the adviser.

Preprofessional students should establish contact with the Health Sciences Advising Office, in South Hall, to learn what specific courses are required on their transcripts.

Teaching Credential Subject Representative.

Students planning for a teaching career should consult the Department of Education in regard to preparation for certification. See page 111, for the Teacher Education Program.

Graduate Study. The Department of Zoology offers programs of study and research leading to the M.A. and Ph.D. degrees. For detailed information
regarding graduate study write to the Graduate Adviser, Department of Zoology.

Graduate Advisers. See Class Schedule and Room Directory.

Courses in Physiology

Lower Division Courses

2. Introductory Physiology (4). II. Lecture—4 hours. Prerequisite: Biological Sciences 1. Physiological principles of regulation, nervous integration, sensation, circulation, respiration, excretion, and digestion.

2L. Introductory Physiology Laboratory (2). II. Laboratory—6 hours. Prerequisite: course 2 (completed or in progress).

10. Elementary Physiology (4). III. Deamer Lecture—3 hours; discussion—1 hour. Prerequisite: not open for credit to students who have had Biological Sciences 1. Introductory course in physiology for non-science majors.

Courses in Zoology

Lower Division Courses

2. General Zoology (4). I. Stamps; II. Phillips; III. Tolt Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1. Strongly recommended. Survey of the diversity of animal life and the physiological principles of adaptation, evolution, and integration in animals.

2L. Laboratory in General Zoology (2). I. Stamps; II. Phillips; III. Tolt Laboratory—6 hours. Prerequisite: course 2 (previously taken concurrently). Laboratories on the diversity of animal life and basic principles of organismal biology.

99. Special Study for Lower Division Students (1-5). I., II., III. The Staff (Chairperson in charge) Directed study of a specific topic selected by the student and the instructor. (PINF grading only.)

Upper Division Courses

100. Embryology (4). I., Vacquier; II. Grey; III. Armstrong Lecture—4 hours. Prerequisite: Biological Sciences 1; course 2. Events and mechanisms of embryonic development, including fertilization, morphogenesis, cell differentiation and organization, with emphasis on vertebrates.

100L. Laboratory in Vertebrate Embryology (2). I. Vacquier; II. Grey; III. Armstrong Laboratory—6 hours. Prerequisite: course 100 (concurrently). Comparative analysis of the embryonic development of vertebrates. Limited enrollment. (PINF grading only.)

101. Experimental Analysis of Animal Development (3). I. Grey, Armstrong, Vacquier Discussion—1 hour; laboratory—6 hours. Prerequisite: courses 100, 100L, Biochemistry 101A, 101B; and consent of instructor. Principles and techniques of genetic manipulation and embryonic maintenance; applications of techniques such as microsurgery, tissue culture, and radioisotopic labeling to experimental study of developmental problems, with emphasis on sea urchins, amphibians, and chickens. Limited enrollment. Offered in even-numbered years.

105. Phylogenetic Analysis of Vertebrate Structure (5). II. Hildebrand Lecture—2 hours; laboratory—8 hours. Prerequisite: course 2. The structure of the classes and subclasses of vertebrates is described and interpreted in terms of phylogeny.

106. Functional Analysis of Vertebrate Structure (3). III. Hildebrand Lecture—2 hours; laboratory—demonstration—4 hours. Prerequisite: course 2. Mechanical principles are used to interpret the structure associated with supporting the body, running, digging, climbing, swimming, flying, and feeding. Emphasis is on the skeletal system of mammals.

106P. Project on the Functional Analysis of Vertebrate Structure (1). I. Hildebrand Project report. Prerequisite: course 106 (may be taken concurrently). A paper of about 2,000 words, or a dissertation with explanation, analyzing the function of a selected aspect of vertebrate structure.

107. Histology (3). I. Crowe Lecture—3 hours. Prerequisite: course 2; Biological Sciences 1; Functional morphology of animal organs, tissues, and cells, with consideration of both vertebrates and invertebrates. Emphasis is placed on the use of structural studies in elucidating mechanisms underlying physiological and morphometric processes.

107L. Histology Laboratory (2). I. Crowe Lecture—3 hours; laboratory—10 hours. Prerequisite: course 107 (may be taken concurrently). Laboratory practice in histology and cytotechniques and recognition of animal organs, tissue, and cell types; use of anatomical techniques in research.

110. Principles of Environmental Sciences (4). I. Watt, Powell Lecture—3 hours; discussion—1 hour. The principles basic to biological ecology, human ecology, and planning. (Same course as Environmental Studies 110.)

112A. Invertebrate Zoology (5). II. Mulleney Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2; Physiology, morphology, and embryology of the protozoa, the diaphanous animals, and the deuterostome invertebrates.

112B. Invertebrate Zoology (5). III. Phillips Lecture—3 hours; laboratory—6 hours. Prerequisite: course 2; Physiology, morphology, and embryology of the protostomes.

116. Principles of Animal Resource Management (5). I. Watt Lecture—3 hours; laboratory—3 hours; special projects. Prerequisite: Biological Sciences 1; Mathematics 13 and 16A. Population dynamics and management of marine, freshwater, and terrestrial animal resources; analysis and solution of problems in maximization of animal resource production.

121A. Cell Biology (3). I. Deamer Lecture—3 hours. Prerequisite: Biochemistry 101A, 101B; Structure and function of living systems at the molecular and subcellular level, including morphology of animal cells, cell physiology, membrane structure, photosynthesis and respiration.

121B. Cell Biology (3). II. Wolfe Lecture—3 hours. Prerequisite: Biochemistry 101A, 101B; Continuation of course 121A. Structure and function of living systems at the molecular and subcellular level, concentrating on synthetic mechanisms in the nucleus and cytoplasm, including cell division.

121L. Cell Biology Laboratory (2). I. Deamer, Wolfe Laboratory—6 hours. Prerequisite: course 121A and/or 121B recommended. Exercises illustrating the principles of cell biology, emphasis on individual research employing one or more advanced techniques.

133A. Patterns in Vertebrate Biology (3). II. Jamieson Lecture—3 hours. Prerequisite: course 2. Introduction to phylogeny, distribution, skin and color, senses and communication and breathing in vertebrates.

133B. Patterns in Vertebrate Biology (3). III. Jamieson Lecture—3 hours. Prerequisite: course 2; Vertebrate biology with respect to thermo-regulation and water balance, seasonal activity, migration, food, reproduction and population.

133L. Systematics and Field Studies in Cold-Blooded Vertebrates (3). II. Jamieson Laboratory—6 hours; field trips. Prerequisite: course 133 and consent of instructor. Systematic and faunal studies on poikilothermic vertebrates.

136. Mammalogy (2). I. Rudder Lecture—2 hours. Prerequisite: course 125 or equivalent. General course in ecology. Systematics, life history, reproduction, distribution and physiology of wild mammals.

136L. Mammalogy Laboratory (3). I. Rudder Laboratory—6 hours. Extensive weekly field trips. Prerequisite: course 125, or 136 and consent of instructor. Systematics of Californian mammals; techniques of study in professional mammalogy. Mates be taken concurrently with course 136.

137. Ornithology (2). II. Rudder Lecture—2 hours. Prerequisite: course 125 or the equivalent course in ecology. Systematics, distribution, physiology, and population dynamics of birds.

137L. Ornithology Laboratory (3). II. Rudder Laboratory—6 hours. Prerequisite: course 125 or 137 (may be taken concurrently) and consent of instructor. Systematics, behavior, population dynamics and reproduction of California birds. Individual study and field trips strongly emphasized.

138. Ecology of Tropical Latitudes (3). II. Rudder Lecture—6 hours; extensive weekly field trips. Prerequisite: course 2 or the equivalent; general course in introductory ecology recommended. Physical and biological aspects of tropical zones. Distribution, number, ecological and evolutionary relationships of tropical animals.

142. Invertebrate Physiology (4). I. Crowe Lecture—3 hours; term paper; Individual conferences. Prerequisite: either course 112A or 112B, Chemistry 1A, 1B, Physics 2B; Biochemistry 101A, 101B recommended. Comparative physiology of invertebrate organ systems.

142L. Invertebrate Physiology Laboratory (3). I. Crowe Laboratory—9 hours. Prerequisite: course 142 (may be taken concurrently). Experiments on the physiological mechanisms of invertebrate organ systems.

143. Cellular and Developmental Neurobiology (4). I. Mulleney Lecture—6 hours; extensive reading. Prerequisite: course 2; Biochemistry 101A-101B or the equivalent. Neuronal structure; impulse transmissions, synapses; transmitters and transmitter pharmacology; receptors; growth and differentiation of neurons and nervous systems; genetics of behavior. Only three units of credit will be allowed students who have received credit for course 144. Offered in odd-numbered years.

144. Neurobiology (4). I. Mulleney Lecture—6 hours; extensive reading. Prerequisite: course 2. Neurons and nervous systems, sensory systems, centrally-generated behavior; analysis of neural substrates of stereotypic behavior, long-term changes in CNS. Only three units of credit will be allowed students who have received credit for course 143. Offered in even-numbered years.

149. Conceptual Problems in the Biological Sciences (4). I. Shapiro Lecture—3 hours; term paper. Prerequisite: a major in a biological science, or an equivalent philosophy course. Nature of theories, explanations and models in biology. Problems in evolutionary theory and taxonomy. (Same course as Philosophy 106.)

170. Zoogeography (4). I. Jamieson Lecture—3 hours. Prerequisite: course 2 or Entomology 1. Movements of terrestrial animals. The role of geologic, climatic, and biologic changes in the geographic distribution of animals.

186. Animal Phylogeny and Evolution (4). II. Metcalf Lecture—4 hours. Prerequisite: course 2 or equivalent and Genetics 100, ecology and biochemistry recommended. Introduction to current evolutionary theory. The place of evolution as the central unifying theory in biology will be emphasized.

194. Evolution of Ecological Systems (4). II. Shapiro Lecture—3 hours; term paper. Prerequisite: course 2 or Botany 1 or Entomology 100; Genetics 100B recommended. Evolution as an organizing force in natural communities. Coexistence in trophic and competitive relationships. Ecology of polymorphisms, clines, and specialization.
Zoology

155. Behavior of Animals (4) I. Stamps
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Basic principles, mechanisms and evolution of behavior, with special reference to the significance of behavior under natural conditions.

158. Evolution of Behavior (3) I. McCall
Lecture—3 hours; course 148, Genetics 103, or consent of instructor; course in population genetics strongly recommended and basic course in behavior, ecology, and psychology recommended. Current interpretations of the additive significance of behavioral patterns and the mechanisms of their evolution. Emphasis on the genetic basis of behavioral evolution through examination of data and theoretical models.

166. Advanced Cell Biology (4) III. Baskin
Lecture—3 hours; extensive reading and research report. Prerequisite: Biochemistry 101B and 168. The physical-chemical basis of cell structure and function, including a discussion of aspects of biological thermodynamics, the ionic basis of excitation, and the molecular basis of contractility.

197. Senior Colloquium in Zoology (2) II. The Staff
Lecture-discussion—2 hours. Prerequisite: senior standing. The consideration of innovation and synthesis in broad areas of zoology. (P/N grading only.)

1977. Tutorial in Zoology (1-5) I, II, III. The Staff (Chairperson in charge)
Discussion—1-2 hours. Prerequisite: major in zoology; consent of instructor. Experience in teaching zoology under guidance of staff. (P/N grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5)
I, II, III. The Staff (Chairperson in charge)
Directed study of a specific topic selected by the student and the instructor. (P/N grading only.)

Graduate Courses

201. Advanced Biological Ecology (4) II. Salt, Major, (Botany), Wilson (Environmental Studies)
Lecture—3 hours; discussion—1 hour. Prerequisite: an upper division course in either plant or animal ecology (recommend both) and graduate standing. An examination of major topics in theoretical ecology. (Same course as Botany 201, Ecology 201, and Geology 201.)

202. Biometrics (6) III. Watt
Lecture—4 hours; laboratory—6 hours. Prerequisite: two courses in statistics, three courses in calculus, course 101A-101B and Mathematics 168, and completion of course 101A recommended, or consent of instructor. Mathematical aspects of biology, ecology, and epidemiology, development and testing of models, mathematical description of biological systems; measurement, analysis, simulation and optimization of biology. Offered in odd-numbered years.

203. Global and Regional Modelling (6) III. Watt
Lecture—4 hours, seminar—3 hours; laboratory—3 hours. Prerequisite: Mathematics 16A-16B, Mathematics 105A-105B or 121A-121B-121C. FORTRAN. Use of statistical analysis of data, mathematical modeling, and computer simulation of the world or regions to provide basis for policy recommendations and new legislation. Offered in even-numbered years.

204. Cellular Basis of Morphogenesis (4) I. Armstrong
Lecture—3 hours; term paper. Prerequisite: course 100. Development of form and structure, morphogenetic movement, mechanisms of cellular motility, cell adhesion, intercellular invasion, interaction of cells and tissues in development.

224. Developmental Biology (3) III. Vacquier
Lecture—1 hour; discussion—1 hour, laboratory—6 hours. Prerequisite: course 120 and consent of instructor; Biochemistry 101A. Introductory approach to research in development. Observations and experiments involving a variety of developing systems and experimental methods, with critical interpretation of the results. Open to qualified undergraduates. Offered in odd-numbered years.

225. Biology of Fertilization (3) III. Vacquier
Lecture—2 hours; term paper. Prerequisite: course 121A or the equivalent and consent of instructor. The morphological, physiological and biochemical interactions of gametes and the mechanism and consequences of their union. Offered in even-numbered years.

226. Cellular Biology of the Malignant Transformation (1) II. Armstrong
Lecture—1 hour. Prerequisite: course 100; course 121A or 121B or Biochemistry 101A or 101B. Topics include factors causing the malignant transformation of cells, control of growth of tissue cells (and loss of control in transformed cells), mechanisms of intercellular invasion, natural defense mechanisms against transformed cells. Emphasis is at the cellular and molecular levels.

228. Experimental Animal Ecology (3) III. Salt
Lecture—4 hours; 3 weekend field trips, 2 written critiques. Prerequisite: course in animal ecology. Discussion of theories of 101A-101B and Mathematics 168 or 21B. Laboratory; and interpretation of results. Limited enrollment.

236. Muscle Physiology (4) I. Baskin
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: graduate standing and consent of instructor. Discussion and review of current topics in the area of cell biology. May be repeated for credit.

241. Membrane Biology (3) I. Deamer
Lecture—3 hours; course 121A-121B or Biochemistry 101A-101B recommended, or consent of instructor. Course emphasizes biological aspects of membrane function and structure. The general approach will be to discuss cell biology from the viewpoint of the functions of components of cells. Offered in even-numbered years.

243. Topics in Cellular and Behavioral Neurobiology (2) III. Mulleney
Seminar—2 hours. Prerequisite: consent of instructor. An advanced examination of several current problems in neurobiology. Topics will vary in different years. May be repeated for credit. (S/U grading only.)

266. Seminar in Cell Biology (2) II. Wolfe; III. Baskin
Seminar—2 hours. Prerequisite: consent of instructor. Discussion of recent literature on the physical and chemical aspects of organization and function of living systems, topics of current interest in ultrastructure and function of cells. Organizational and functional properties of the molecular and cellular levels of biological systems.

269. Research Conference in Developmental Biology (1) I, II. Armstrong, Grey, Vacquier
Seminar—2 hours. Prerequisite: consent of instructor. Presentation and critique of faculty and graduate student research in developmental biology. Intended primarily for graduate students. (S/U grading only.)

276. Seminar in Animal Behavior (2) II. Stamps
Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on the principles and recent developments in invertebrate and vertebrate animal behavior.

292. Seminar in Development (2) II. Armstrong, Grey, Vacquier
Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on development, morphology, and behavioral mechanisms.

293. Seminar in Invertebrate Zoology (2) III. Crowe
Seminar—2 hours. Prerequisite: either course 112A or 112B, or consent of instructor. Critical review of the literature in selected topics and taxa in the invertebrates. Open to qualified undergraduates.

294. Seminar in Animal Ecology (2) I. Rudd, Salt
Seminar—3 hours. Prerequisite: course 215 and graduate standing. Readings, discussions, and publication of research topics in the population and community ecology of animals.

295. Seminar in Marine Invertebrate Ecology (2) II. Phillips
Seminar—2 hours. Prerequisite: course 112A or 112B; consent of instructor. Reports and discussion on current topics in marine invertebrate ecology. Open to qualified undergraduates.

296. Seminar in Geographical Ecology (2) I. Shapiro
Seminar—2 hours. Prerequisite: course 125 or 148 or Genetics 103 or consent of instructor. Recent developments in the theoretical and experimental biogeography, the biology of colonizing species, and related topics.

297. Seminar in Systematic Zoology and Evolution (2) II. Rudd
Seminar—2 hours. Prerequisite: consent of instructor. Principles of animal classification, speciation and the evolution of higher categories, emphasis on modern concepts and pertinent contributions from the fields of genetics and paleontology.

298. Group Study (1-5) I, II, III. The Staff (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Baskin in charge) (S/U grading only.)
Appendix

STATEMENT OF
LEGAL RESIDENCE

University of California

Each new student entering the University of California (and each former student returning after an absence of one or more quarters) is required to submit a Statement of Legal Residence to the Office of the Registrar. This Statement is used by the Deputy to the Attorney in Residence Matters in determining the legal residence of each student for fee assessment purposes.

Students who have not been legal residents of California for more than one year immediately prior to the residence determination date for each quarter in which they propose to attend the University are charged, along with other fees, a tuition fee of $635 for the quarter. (Law students should refer to page 38.)

The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter.

GENERAL

California residence is established by an adult who has relinquished his or her prior residence and is physically present within the state with the intent to make California the permanent home. California residence must be established more than one year prior to the term for which resident classification is requested. Indicia of California residence include, but are not limited to: registering and voting in California elections; designating California as the permanent address on all school and employment records, including military records if one is in the military service; obtaining a California I.D. card or driver’s license; obtaining a California vehicle registration; paying California income taxes as a resident; establishing an abode where one’s permanent belongings are kept; licensing for professional practice in California, etc. Conduct inconsistent with the claim of California residence includes, but is not necessarily limited to: maintaining voter registration and voting in person or by absentee ballot in another state; obtaining a divorce in another state; attending an out-of-state institution as a resident; obtaining a loan requiring residence in another state; maintaining out-of-state driver’s license and vehicle registration, etc.

Students seeking resident classification must perform all applicable acts of intent within the one-year durational period. If a substantial number of these acts are not performed when the student first comes to California, or very shortly thereafter, the durational period will be extended until both presence and intent have been demonstrated for one year.

A student who is within California for educational purposes only does not gain the status of resident regardless of the length of his or her stay in California.

The residence of the parent with whom an unmarried minor (under age 18) child maintains his or her place of abode is the residence of the unmarried minor child. When the minor lives with neither parent his or her residence is that of the parent with whom he or she maintained his or her last place of abode. The minor may establish his or her residence when both parents are deceased and a legal guardian has not been appointed. The residence of an unmarried minor who has a parent living cannot be changed by his or her own act, by the appointment of a legal guardian, or by relinquishment of a parent’s right of control.

A man or a woman establishes his or her residence. A woman’s residence shall not be derivative from that of her husband, or vice versa.

EXCEPTIONS

1. A student who remains in this state after his or her parent, who was a resident of California for at least one year prior to leaving but has established residence elsewhere shall be entitled to retain resident classification until one year after the student turns
Residence Statement
eighteen, thus enabling the student to establish residency, so long as continuous attendance is maintained at the University.

2. Nonresident students who are minors or 18 years of age who can show that they have been totally self-supporting through employment and actually present within California for the entire year immediately prior to the residence determination date and have demonstrated the intent to make California their permanent home may be eligible for resident status.

3. A student shall be entitled to resident classification if immediately prior to the residence determination date he or she has lived with and been under the continuous direct care and control of any adult other than a parent for not less than two years, provided that the adult having such control has been a California resident during the year immediately prior to the residence determination date. This exception continues until the student has attained the age of majority and has resided in the state the minimum time necessary to become a resident student, so long as continuous attendance is maintained at an institution. No support can be given the student by either parent.

4. Exemption from payment of the nonresident tuition fee is available to the natural or adopted child, stepchild or spouse who is a dependent of a member of the United States military stationed in California on active duty. Such resident classification may be maintained until the student has resided in California the minimum time necessary to become a resident. If a student is enrolled in an institution and the member of the military is transferred on military orders to a place outside the United States immediately after having been on active duty in California, the student is entitled to retain resident classification under conditions set forth above.

5. A student who is a member of the United States military stationed in California on active duty, except a member of the military assigned for educational purposes to a state-supported institution of higher education, shall be entitled to resident classification until he or she has resided in the state the minimum time necessary to become a resident.

6. A student who is an adult alien is entitled to resident classification if (a) the student has been lawfully admitted to the United States for permanent residence in accordance with all applicable provisions of the laws of the United States and has thereafter established and maintained residence in California for more than one year immediately prior to the residence determination date; or (b) the student is a refugee who has been granted parolee, conditional entrant, or indefinite voluntary departure status in accordance with all applicable laws of the United States, provided that he or she has lived in the state for one year immediately prior to the residence determination date.

7. A student who is a minor alien shall be entitled to resident classification if (a) the student and the parent from whom residence is derived have been lawfully admitted to the United States for permanent residence, provided that the parent has had residence in California for more than one year after acquiring a permanent resident visa prior to the residence determination date for the term; or (b) the student is a refugee who has been granted parolee, conditional entrant, or indefinite voluntary departure status in accordance with all applicable laws of the United States, provided that the student has lived in this state for one year immediately prior to the residence determination date.

8. Children of deceased public law enforcement or fire suppression employees, who were California residents and who were killed in the course of law enforcement or fire suppression duties, may be entitled to resident status.

The student is cautioned that this summation is not a complete explanation of the law regarding residence. The student should also note that the rate of nonresident tuition and the residence requirements are subject to change. Regulations have been adopted by The Regents, a copy of which is available for inspection in the Registrar's Office of the campus.

Those classified incorrectly as residents are subject to reclassification and to payment of all nonresident fees not paid. If incorrect classification results from false or concealed facts (by the student), the student also is subject to University discipline. Resident students who become nonresidents must immediately notify the Attorney in Residence Matters' Deputy.

Inquiries from prospective students regarding residence requirements for tuition purposes should be directed to the Attorney in Residence Matters, 590 University Hall, 2200 University Avenue, Berkeley, California 94720. No other University personnel are authorized to supply information relative to residence requirements for tuition purposes. Any student, following a final decision on residence classification by the Residence Deputy, may make written appeal to the Attorney in Residence Matters at the above address within 120 days after notification of the final decision by the Residence Deputy.
DISCLOSURE OF STUDENT RECORDS

In accordance with the Federal Family Educational Rights and Privacy Act of 1974 and the University of California Policies Applying to the Disclosure of Information from Student Records, students at the University have the right:

- To inspect and review records pertaining to themselves in their capacity as students;
- To have withheld from disclosure, absent their prior consent for release, personally identifiable information from their students records, with exceptions as noted in Section VI of the Policies;
- To inspect records maintained by the campus of disclosure of personally identifiable information from their student records;
- To seek correction of their student records through a request to amend the records or a request for a hearing; and
- To file complaints with the Department of Health, Education and Welfare regarding alleged violations of the rights accorded them by the Federal Act.

Questions pertaining to these rights should be referred to Harvey Trace, Registrar, 752-2975. Copies of the Federal Act and the full text of the UC Policies can be found at the Reference Desk of the Library. Copies of the UC Policies may be obtained at the Registrar's Office.

Categories of personally identifiable information designated by the campus as public information are: name, address, telephone listing, place of birth, major field of study, dates of attendance, degrees and honors received, and the most recent educational institution attended; also included shall be participation in intercollegiate athletics and the name, weight, and height of the participants on intercollegiate University athletic teams.

Students may request, in writing, by the last day of registration, that any or all personally identifiable information for their records not be regarded as public information. Students who desire to withhold their addresses and telephone listings may so indicate on the Student Data Card included in the registration packet. Students who desire to withhold any other item of information in the list from the category of public information must file a form in the Registrar's Office indicating which items they wish withheld.

Students availing themselves of this right should understand what the consequences of this action may be. For example, if a request is made to withhold from disclosure a student's name and degrees and honors received, the campus cannot make public any honors received by the student, e.g., the award of a Regent's Scholarship or election to Phi Beta Kappa, and cannot include the student's name and degree earned in the campus commencement program without the written consent of the student. Similarly, if a request is made to withhold from disclosure a student's name and dates of attendance, a student's status as a student cannot be verified for potential employers without written consent of the student. Furthermore, if a student's instruction to the campus was to withhold from disclosure the degree granted to that student and the date on which the degree was conferred, that information cannot be confirmed for a third party in connection with the appointment of that graduate to a new position or published in connection with an honor that individual subsequently receives. Students may reverse the decision of a previous quarter at registration for a new quarter on the student data form, or at any time by filing a form with the Registrar's Office indicating which items they now wish released.
RETENTION DATA

Freshmen
(Retention and graduation rates for regularly admissible undergraduates entering UCD as freshmen.)

<table>
<thead>
<tr>
<th>Fall quarter of Initial Enroll.</th>
<th>Number of Students</th>
<th>Percent Enrolled in 4th Quarter</th>
<th>Percent Graduating in 4 yrs.</th>
<th>Percent Graduating in 5 yrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>1801</td>
<td>85%</td>
<td>40%</td>
<td>59%</td>
</tr>
<tr>
<td>1972</td>
<td>1959</td>
<td>85%</td>
<td>39%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Transfer Students
(Retention and graduation rates for regularly admissible undergraduates transferring to UCD as juniors.)

<table>
<thead>
<tr>
<th>Fall Quarter of Initial Enroll.</th>
<th>Number of Students</th>
<th>Percent Enrolled in 4th Quarter</th>
<th>Percent Graduating in 2 yrs.</th>
<th>Percent Graduating in 3 yrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>795</td>
<td>79%</td>
<td>44%</td>
<td>73%</td>
</tr>
<tr>
<td>1972</td>
<td>1050</td>
<td>79%</td>
<td>43%</td>
<td>71%</td>
</tr>
<tr>
<td>1973</td>
<td>1123</td>
<td>78%</td>
<td>42%</td>
<td>67%</td>
</tr>
<tr>
<td>1974</td>
<td>1053</td>
<td>75%</td>
<td>39%</td>
<td>64%</td>
</tr>
</tbody>
</table>

*These are not necessarily years of continuous enrollment. Students may drop out or go on Planned Educational Leave for a quarter or longer, and then resume their studies.

*Source: Research and Evaluation, University of California, Davis July 1978

SALARY AND EMPLOYMENT INFORMATION
UNIVERSITY OF CALIFORNIA

<table>
<thead>
<tr>
<th>FIELD OF STUDY</th>
<th>DEGREE LEVEL OF GRADUATES</th>
<th>AVERAGE MONTHLY SALARY</th>
<th>PROBABLE OR DEFINITE JOB COMMITMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BACHELOR'S</td>
<td>MASTER'S</td>
<td>DOCTORATE</td>
</tr>
<tr>
<td>Engineering</td>
<td>$930-1,374</td>
<td>$1,065-1,513</td>
<td>$1,437-1,954</td>
</tr>
<tr>
<td>Humanities</td>
<td>532-1,018</td>
<td>684-1,242</td>
<td></td>
</tr>
<tr>
<td>Life Science</td>
<td>587-1,033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td>1,067-1,579</td>
<td></td>
</tr>
<tr>
<td>Physical Science</td>
<td>811-1,289</td>
<td></td>
<td>1,304-1,974</td>
</tr>
<tr>
<td>Social Science</td>
<td>579-1,061</td>
<td>694-1,324</td>
<td></td>
</tr>
</tbody>
</table>

*Source: A 1976 national survey of a representative group of colleges conducted by the College Placement Council, representing the 80 percent range of offers throughout the country. It should be noted that a wide variation in starting salaries exists within each discipline based on job location, type of employer, personal qualifications of the individual, and employment conditions at the time of job entry.

*Source: The Job Market for UCLA's 1976 Graduates. Percentages are based only upon those students who planned to work immediately after graduation.
Proportion of Graduates Finding Work in Their Field of Choice

The percent of UCD alumni whose full-time job is in the field of their choice is shown by field of study and number of years since receiving the bachelor’s degree.

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Animal Science</th>
<th>Applied Economics</th>
<th>Food Science</th>
<th>Plant Science</th>
<th>Bio-Science</th>
<th>Resource Science</th>
<th>Engineering</th>
<th>Humanities</th>
<th>Physical Science</th>
<th>Social Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>78</td>
<td>79</td>
<td>76</td>
<td>51</td>
<td>65</td>
<td>88</td>
<td>47</td>
<td>76</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>75</td>
<td>87</td>
<td>65</td>
<td>71</td>
<td>85</td>
<td>95</td>
<td>59</td>
<td>94</td>
<td>71</td>
</tr>
</tbody>
</table>

Mean Annual Starting Salaries of 1976 Graduates with Bachelor’s Degrees

20 Occupational Groupings

<table>
<thead>
<tr>
<th>Occupational Grouping</th>
<th>Average Starting Salary</th>
<th>Number of Respondents</th>
<th>Examples of Specific Fields of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal scientist or technician</td>
<td>$8,658</td>
<td>12</td>
<td>Undergraduate Field of Study</td>
</tr>
<tr>
<td>Biological scientist or tech</td>
<td>8,576</td>
<td>33</td>
<td>Average Starting Salary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Number of Respondents)</td>
</tr>
<tr>
<td>Computer specialist</td>
<td>9,513</td>
<td>8</td>
<td>Phys Sci & Math $11,900 (4)</td>
</tr>
<tr>
<td>Engineer</td>
<td>14,093</td>
<td>74</td>
<td>Engr $14,269 (70)</td>
</tr>
<tr>
<td>Food scientist or technician</td>
<td>11,296</td>
<td>28</td>
<td>Bio Sci $11,980 (5); Food Sci $11,268 (22)</td>
</tr>
<tr>
<td>Physical scientist or technician</td>
<td>10,553</td>
<td>17</td>
<td>Bio Sci $11,367 (6); Phys Sci & Math $10,286 (7)</td>
</tr>
<tr>
<td>Plant scientist or technician</td>
<td>8,600</td>
<td>15</td>
<td>Bio Sci $8,986 (7); Plant Sci $8,920 (5)</td>
</tr>
<tr>
<td>Resource technician or planner</td>
<td>9,667</td>
<td>18</td>
<td>Resource Sci $10,014 (14)</td>
</tr>
<tr>
<td>Agricultural manager</td>
<td>13,400</td>
<td>13</td>
<td>An Sci $12,750 (4); Applied Econ $10,567 (3); Resource Sci $11,333 (3)</td>
</tr>
<tr>
<td>Financial manager, analyst or administrator</td>
<td>10,216</td>
<td>32</td>
<td>Applied Econ $10,800 (9); Bio Sci $10,167 (3); Phys Sci & Math $13,600 (3) Soc Sci $8,700 (12)</td>
</tr>
<tr>
<td>Manufacturing manager</td>
<td>15,656</td>
<td>9</td>
<td>Bio Sci $13,860 (5)</td>
</tr>
<tr>
<td>Social services analyst or admin</td>
<td>7,932</td>
<td>19</td>
<td>Soc Sci $7,153 (17)</td>
</tr>
<tr>
<td>Retail trade manager or buyer</td>
<td>10,779</td>
<td>24</td>
<td>Food Sci $9,013 (8); Phys Sci & Math $12,733 (3); Soc Sci $11,200 (8)</td>
</tr>
<tr>
<td>Other administrator or manager</td>
<td>11,319</td>
<td>26</td>
<td>Food Sci $9,867 (3); Resource Sci $9,800 (3); Soc Sci $11,986 (14)</td>
</tr>
<tr>
<td>Artist or entertainer</td>
<td>7,088</td>
<td>8</td>
<td>Humanities $8,467 (6)</td>
</tr>
<tr>
<td>Teacher (non-credentialed)</td>
<td>5,694</td>
<td>31</td>
<td>Humanities $4,967 (6); Soc Sci $5,820 (15)</td>
</tr>
<tr>
<td>Health technician (animal or human)</td>
<td>6,921</td>
<td>73</td>
<td>An Sci $6,333 (3); Bio Sci $7,558 (38); Food Sci $5,426 (19); Soc Sci $6,950 (10)</td>
</tr>
<tr>
<td>Legal analyst or administrator</td>
<td>8,571</td>
<td>7</td>
<td>Soc Sci $8,333 (6)</td>
</tr>
<tr>
<td>Police or Fire</td>
<td>10,570</td>
<td>10</td>
<td>Soc Sci $11,025 (4)</td>
</tr>
<tr>
<td>Writer, librarian or museum tech</td>
<td>8,118</td>
<td>11</td>
<td>Humanities $7,280 (5); Soc Sci $8,833 (3)</td>
</tr>
</tbody>
</table>

1Source: A 1977 survey of UCD graduates conducted by Student Affairs Research and Evaluation, University of California, Davis
2Fields of Study are a group of related undergraduate majors; for example, "Animal Science" would include such majors at UCD as: Animal Science, Avian Sciences, and Wildlife and Fisheries Biology.
3Fields of study with fewer than three (3) respondents are omitted.
GLOSSARY

Academic Senate The faculty governing body at the University. Consists primarily of the regular faculty and certain administrative officers. Determines conditions for the admission of students and for granting certificates and degrees; develops educational policy; and authorizes and supervises all courses in the University.

Academic year Starts at the beginning of the Fall Quarter, ends at the close of the Spring Quarter; does not include Summer Sessions.

Advanced degree Any degree beyond the bachelor's degree.

AOB Stands for “Academic Office Building,” a building that houses administrative and academic offices. AOB is the informal designation until the building is officially named.

ASUCD (Associated Students of the University of California, Davis) The undergraduate student body governing organization at UCD.

College A subdivision of the campus instructional system (e.g., College of Letters and Science). The Colleges are further divided into departments (e.g., English, Zoology, etc.) which offer specialized curricula.

Continuing student One who was registered for the immediately preceding quarter.

Credential A license for public school teaching in California. Programs offering the multiple-subject (elementary) or single-subject (high school) teaching credential are supervised by the Graduate Division in coordination with the Department of Education.

Curriculum (plural, curricula) All the courses of study offered by the University. May also refer to a particular course of study (major) and the courses in that area.

Drop/Add Petition A petition used when you want to drop, change, or add a course to your study list.

Enrollment The actual placing of a student in classes; to be on record as officially registered in a class.

Good standing An undergraduate student who has at least a 2.0 grade-point average in all work completed at the University of California, and who has maintained his or her minimum unit progress requirement for UCD, is considered a student in good standing.

Grade-point average (GPA) The GPA is computed in the following manner. You receive a certain amount of points for each grade received. An "A" grade is worth 4 points, a "B" worth 3, a "C" worth 2, "D" worth 1, and an "F" worth 0. The total amount of points accumulated is then divided by the number of course credits taken for a letter grade. The result is the grade-point average. Passed, Not Passed, or Incomplete grades are not computed in the quarterly grade-point average. (Exception: Incompletes are counted as "F" at the end of a student's undergraduate studies when determining whether a bachelor's degree candidate has achieved the required 2.0 average.) Only grades received for courses completed at the University of California are computed.

Graduate student A student who is enrolled in the Graduate Division for an advanced degree. Graduate courses at UCD are numbered 200-499.

GSA (Graduate Student Assembly) The elected representative body for graduate students at UCD.

Independent studies Special courses involving independent work supervised by a faculty member. Such courses for undergraduates are numbered 98, 99, 198, and 199. Those for graduate students are numbered 298, 299, 398, 399, 498, and 499. These courses are restricted to qualified students for a designated number of units.

Lower Division Freshman and sophomore standing at UCD (fewer than 84 units completed); also refers to UCD courses numbered from 1 through 99.

Major The area of academic concentration in which the degree is conferred.

Matriculate To enroll for a degree in a college or school.

Minimum progress Refers to the number of units a student must have completed and passed by the end of a specific number of quarters at UCD.

New student A student beginning work at any level at UCD is considered to be a new student. After one quarter's attendance at Davis, a student is considered to be a continuing student. Graduate students who were enrolled at UCD as undergraduates are considered to be new students for their first quarter of graduate work.
Part-time student A student enrolled in the Part-Time Degree Program.

Passed/Not Passed (P/NP) A system used to encourage undergraduate students to experiment in fields outside of their major areas. The "P" grade is given for a grade of C- or better. P/NP grades are not included in a student's grade-point average, but the units are counted toward the 180-unit graduation requirement.

Petition A request, usually written on a standard form, to adjust a study list or curriculum to fit an individual situation. Also, a request for an exception to a policy or regulation.

Prerequisite A necessary condition for enrollment in a course or a major. Prerequisites for courses usually consist of a previous course or courses in a related subject and/or the instructor's permission. Prerequisites are indicated in the course descriptions.

Professional school student A student enrolled in the School of Medicine, Veterinary Medicine, or Law.

Probation An indication that performance is below standard because of academic deficiencies; a trial period in which a student is permitted to redeem failing grades or deficient units.

Quarter A subdivision of the academic year at UCD, consisting of three 10-week terms (Fall, Winter, and Spring Quarters). The two 6-week Summer Sessions provide a quarter's work in a more concentrated format, but are not considered regular quarters. (Attendance at both Summer Sessions, however, may count as one quarter in residence.)

Quarter units Academic work at the University is measured by quarter units of credit which determine the amount of time a student has formally devoted to a given subject. To convert these units to semester units multiply by 2/3; from semester to quarter units multiply by 3/2.

Registration The process by which a student informs the University that he or she plans to begin attendance or continue attendance. Registration typically involves paying fees and enrolling in classes.

Registration card (sometimes called a "reg card") Given to a student who is registered and has paid all fees for the current quarter. You will need your registration card to secure grades, gain student admission to campus events, and to identify yourself as a UCD student. If you lose your registration card there is a $3 replacement fee.

Regular session Refers to Fall, Winter, and Spring Quarters.

Residence This word is used in a number of senses in this catalog; care must be taken to determine the meaning of the word each time it is used. Residence can be used: (1) to denote registration in a regular session (i.e., when a student is "in residence" during Fall, Winter, or Spring Quarters); (2) to denote the period of time that a student must be registered at UCD in order to be eligible for graduation (i.e., academic residence); (3) to denote a student's state of residence (e.g., California) to determine if nonresident tuition must be paid (i.e., legal residence); (4) to indicate the student's place of residence (i.e., living quarters).

Sabbatical A leave of absence granted to a University professor for travel, research, etc. May be for one quarter to a full year.

Satisfactory/Unsatisfactory The equivalent of Passed/Not Passed for graduate students. The "S" grade is given for a grade of B- or better in graduate courses and C- or better in undergraduate courses.

Semester A subdivision of the academic year into two sessions, usually Fall and Spring, each lasting approximately 14 weeks. Only the School of Law uses the semester system at UCD. To convert semester units to quarter units, multiply by 3/2.

Study List The official program of courses for which a student registers. The Study List is submitted to the Registrar at the time of registration each quarter. In the College of Agricultural and Environmental Sciences, the Study List also refers to a student's long-term academic plan.

Subject A The University's requirement in English composition which must be completed to receive the bachelor's degree.

Summer Sessions Two 6-week summer sessions are offered between the close of Spring Quarter and the opening of Fall Quarter. Regular instruction, both undergraduate and graduate, is offered for full credit.

TA (Teaching Assistant) TA's are graduate students, usually on the doctoral level, who teach on a part-time basis while pursuing their degrees. They are selected, trained, and supervised by senior faculty members in each department.

TB Stands for "temporary building," usually a trailer or prefabricated building not intended as a permanent facility.

TBA Stands for "to be announced." In the Class Schedule and Room Directory course listings, TBA may refer to class meeting time, instructor's name, or room number for class meeting.

Tenure Denotes security of employment until retirement; may be granted to a faculty member after a specified number of years at the University.

Term A regular quarter (Fall, Winter, or Spring).

Transcript An official copy of your academic record (grades) at an educational institution such as the University of California.

Undergraduate A college student who is pursuing a bachelor's degree.

Unit Courses are assigned a unit value based on one unit of credit for every three hours of work (in-class and preparation time) per week by the student. A student's progress in the University and class level are determined in part by the number of units completed.

Upper Division Junior and senior standing at UCD, based upon completion of at least 84 units; also refers to UCD courses numbered 100-199.

Work-Learn A program providing on-the-job experience in a student's field of interest. Participation may be full time (during the summer or academic year) or part time, and may be paid or volunteer. Academic credit may also be earned.

Work-Study A financial aid program which provides eligible students with part-time jobs on campus or with off-campus nonprofit organizations.
PUBLICATIONS

General Catalog, UC/Davis
Contains complete information about academic programs on the Davis campus—admission requirements, curricula, course descriptions, degrees offered, regulations and requirements for degrees, financial aid for students, the academic calendar, student activities, and general campus information.
Office of the Registrar. (Price $1.50 if purchased directly at the UCD Bookstore; $3.00 by mail from the Office of the Registrar with checks made payable to The Regents of the University of California.)

Undergraduate Admissions Circular
A complete statement of the University’s requirements for admission as an undergraduate.
Office of Admissions, 175 Mrak Hall, or from your high school or community college counselor. (No charge.)

Answers for Transfers
A question-and-answer booklet for students who want to attend a community college before transferring to the University. Gives information about University admission requirements, costs, financial aid, and advice on planning your program and transferring courses to UC.
Available from University Admissions Offices and Relations with Schools Offices, and at community college counseling offices. (No charge.)

29 Questions and Answers about UC Davis
Some answers to commonly asked questions about UCD.
Office of Admissions, 175 Mrak Hall. (No charge)

Announcement of the Graduate Division, UC/Davis
A brief description of the graduate program, including procedures and dates for filing applications, degrees offered, fields of study, fees and expenses, financial aid, living accommodations, and sources of additional information. Course descriptions are not included.
Dean of the Graduate Division, 252 Mrak Hall. (No charge.)

College of Engineering Bulletin
A detailed description of College of Engineering programs, majors, and course offerings.
College of Engineering Dean’s Office, 2120 Bainer Hall. (No charge.)

School of Law Bulletin
A detailed description of admissions requirements, academic programs, courses of instruction, faculty, law school activities, and general information about the School of Law.
Office of Admissions, School of Law, University of California, Davis 95616. (No charge.)

Highlights (School of Medicine)
A brief overview of the programs and admissions procedures in the School of Medicine.
Office of Admissions, School of Medicine, University of California, Davis 95616. (No charge.)

School of Medicine Bulletin
A complete description of academic programs, courses of instruction, faculty, student activities, admissions requirements, and general information about the School of Medicine.
Office of Admissions, School of Medicine, University of California, Davis 95616. (No charge.)

Class Schedule and Room Directory
Issued quarterly. Lists times and place of meeting for specific classes, instructors, and units of credit. Also contains information on registration and enrollment in classes.
Available free at the UCD Bookstore and the Registrar’s Office (in person only).

Summer Sessions Bulletin
Complete information about Summer Session courses and instruction.
Office of the Summer Sessions, 375 Mrak Hall. (No charge.)

Educational Opportunity Program (EOP) Brochure
Information on applying to the EOP program; application dates.
EOP, Office of Admissions, 175 Mrak Hall. (No charge.)

Financial Aid Handbook
Information on financial aid: grants, loans, and work-study at UCD.
Financial Aid Office, North Hall. (No charge.)

Student Viewpoint
Student-compiled evaluations of courses and professors by in-class surveys.
UCD Bookstore. (Not available by mail.)

Venture
University Extension quarterly catalog. Complete information about Unex courses, including times and locations.
University Extension, 4445 Chemistry Addition. (No charge.)

City of Davis Information
Chamber of Commerce, 620 4th Street, Davis, California 95616
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

Regents ex Officio
Edmund G. Brown, Jr.
Governor of California and President of The Regents
Mervyn M. Dymally
Lieutenant Governor of California
Leo T. McCarthy
Speaker of the Assembly
Wilson Riles
State Superintendent of Public Instruction
Cheryl F. Biles
President of the Alumni Association of the University of California
Forrest A. Plant
Vice President of the Alumni Association of the University of California
David S. Saxon
President of the University
Lee B. Wenzel
George D. Kieffer
Regents-Designate (non-voting)

Appointed Regents*
Edward W. Carter
William K. Coblentz
DeWitt A. Higgs
Glenn Campbell
William French Smith
Robert O. Reynolds
Dean A. Watkins
Joseph A. Moore
John H. Lawrence, M.D.
William A. Wilson
Gregory Bateson
Wilma S. Martinez
Verne Orr
John F. Henning
Stanley K. Sheinbaum
Yuri Wada

Student Regent
Renee P. Turkell
Faculty Representative
William B. Frazer

Principal Officers of The Regents
Edmund G. Brown, Jr.
Governor of California
President
Robert O. Reynolds
Chairman of the Board
DeWitt A. Higgs
Vice Chairman of the Board
Donald L. Reichhaar
General Counsel
Herbert M. Gordon
Treasurer
Miss Marjorie J. Woolman
Secretary

OFFICERS EMERITI
Clark Kerr
President of the University, Emeritus
Charles J. Hitch
President of the University, Emeritus
Claude B. Hutchison
Vice President of the University, Emeritus, and Dean of the College of Agriculture, Emeritus
Harry R. Wellman
Vice President of the University, Emeritus
Robert M. Underhill
Vice President, Emeritus, and Secretary and Treasurer of The Regents, Emeritus
Thomas J. Cunningham
General Counsel of The Regents, Emeritus
Frank L. Kidner
Vice President—Educational Relations, Emeritus

SYSTEMWIDE ADMINISTRATION
David S. Saxon
President of the University
William B. Fretter
Vice President of the University
Donald C. Swain
Academic Vice President
Archie Kleingartner
Vice President—Academic and Staff Personnel Relations
James B. Kendrick, Jr.
Vice President—Agriculture and University Services
Thomas E. Jenkins
Associate Vice President
Lowell J. Paige
Special Assistant to the President for Governmental Relations
Dorothy E. Everett
Assistant President—Coordination and Review
David A. Wilson
Executive Assistant

UNIVERSITY CHANCELLORS
Albert H. Bowker
Chancellor at Berkeley
James H. Meyer
Chancellor at Davis
Daniel G. Aldrich, Jr.
Chancellor at Irvine
Charles E. Young
Chancellor at Los Angeles

*The names are arranged in order of original appointment to the Board. The Governor appoints all Regents except the Student Regent, who is appointed by the Board for a one-year term beginning July 1 and ending June 30. Regents appointed before March 1, 1976, are serving sixteen-year terms. Those appointed after that date serve twelve.
Administrative Officers
Ivan Hinderaker
Chancellor at Riverside
William D. McElroy
Chancellor at San Diego
Francis A. Sooy
Chancellor at San Francisco
Robert A. Huttenback
Chancellor at Santa Barbara
Robert L. Sinheimer
Chancellor at Santa Cruz

GENERAL ADMINISTRATIVE OFFICERS—DAVIS

Chancellor
James H. Meyer, Ph.D.

Chancellor Emeritus
Emil M. Mrak, Ph.D.

Vice Chancellors
Elmer W. Learm, Ph.D.
Executive Vice Chancellor
Thomas B. Dutton, Ed.D.
Vice Chancellor—Student Affairs
Leon H. Mayhew, Ph.D.
Vice Chancellor—Academic Affairs
James F. Sullivan, Ph.D.
Vice Chancellor—Business and Finance

Assistant to the Chancellor for Development
John L. Hardie, A.B.

Executive Assistant to the Chancellor
Lorena J. Herrig

Assistant Vice Chancellors
Robert S. Downie, B.S.
Assistant Vice Chancellor—Student Affairs (Business Management and Operations)
Robert W. Glock, M.B.A.
Assistant Vice Chancellor—Planning and Analysis
Michael J. Hoffman, Ph.D.
Assistant Vice Chancellor—Academic Affairs
Patrick A. Lattore, Ph.D.
Assistant Vice Chancellor—Student Affairs (Housing, Memorial Union, Recreational Services)
Scott T. Rickard, Ed.D.
Assistant Vice Chancellor—Student Affairs (Student Development)
Dennis W. Shimek, B.S.
Assistant Vice Chancellor—Staff Affairs
Maynard C. Skinner, Ed.D.
Assistant Vice Chancellor—Student Affairs (Admissions, Records, and Student Financial Services)
F. Edwin Spafford, M.Ed.
Assistant Vice Chancellor—Physical Construction and Maintenance
Eugene D. Stevenson, Ed.S.
Assistant Vice Chancellor—Student Affairs (Student Relations)

University Librarian
Bernard Kreissman, Ph.D.

Office of Student Affairs
Ruth E. Anderson, M.A., Dean of Women

Director of Student Health
T. Y. Cooper, M.D.

Assistant to the Vice Chancellor—Student Affairs
(Rolland K. Allen, Ed.D.)

Public Information Officer
Robert C. Bynum, B.S.

Director of Alumni Affairs
Douglas B. Hartford, Ed.D.

Relations with Schools Officer
David H. Allen, Ph.D.

Deans

College of Agricultural and Environmental Sciences
Charles E. Hess, Ph.D., Dean
Glenn R. Hawkes, Ph.D., Associate Dean
James M. Lyons, Ph.D., Associate Dean
Donald R. Nielsen, Ph.D., Associate Dean
John R. Whitaker, Ph.D., Associate Dean

College of Engineering
John D. Kemper, Ph.D., Dean
Don O. Brush, Ph.D., Associate Dean
Warren H. Gieck, Ph.D., Associate Dean
Ray B. Krone, Ph.D., Associate Dean

College of Letters and Science
Lawrence J. Andrews, Ph.D., Dean
Hendrik J. Ketelhatter, Ph.D., Associate Dean
Robert M. Murphey, Ph.D., Associate Dean
Benjamin E. Wallacker, Ph.D., Associate Dean

Division of Biological Sciences (Intercollege)
James E. Devay, Ph.D., Associate Dean

Division of Environmental Studies (Intercollege)
Francisco J. Ayala, Ph.D., Associate Dean

School of Law
Richard C. Wydick, LL.B., Acting Dean
Daniel L. Simmons, J.D., Acting Associate Dean
Joel S. Gallay, J.D., Assistant Dean

School of Medicine
C. John Tupper, M.D., Dean
Kay H. Blacker, M.D., Associate Dean
Morton Levitt, Ph.D., Associate Dean
Lois F. O'Grady, M.D., Associate Dean
Robert B. Smith, M.B.A., Associate Dean

School of Veterinary Medicine
William R. Pritchard, D.V.M., Ph.D., J.D., Dean
George H. Cardinet III, D.V.M., Ph.D., Associate Dean
Richard H. McCapes, D.V.M., Associate Dean
Bennie I. Osburn, D.V.M., Ph.D., Associate Dean
Edward A. Rhode, D.V.M., Associate Dean

Graduate Studies and Research Development
Allen G. Carr, Ph.D., Dean
Fredric W. Hill, Ph.D., Associate Dean
David L. Jacobson, Ph.D., Associate Dean
Douglas L. Minnis, Ed.D., Associate Dean

Division of Extended Learning
Richard C. Dorf, Ph.D., Dean

Index

Absence
leave of, 58
planned leave of, 58
(see also Withdrawal)

Academic Senate, 9
Administration, University, 9
Administrative Officers, 9, 337

Admission
application procedures, 45
deadlines, 7, 18, 46
by examination, 51
categories of (student), 47
change of campus, 46, 47
checklist, 55
college, choice of, 48
Educational Opportunity Program, 47, 52
eligibility, notification of, 46
failure to register, 46
handicapped students, 45
in advanced undergraduate standing, 47, 51
in freshman standing, 47, 48
in graduate standing, 47, 108
in limited status, 47, 52
in part-time status, 18, 47
in special status, 47, 53
intention to Register, Statement of, 46, 55
intercampus transfer, 47, 53
of applicants for second bachelor's degree, 47, 52
of applicants from other countries, 47, 53
of out-of-state applicants, 52
preparatory high school subjects, 48
reapplication, 46
requirements at entrance, 48-51
credit toward, 51, 55
examinations, 50, 54
for a College, 70, 77, 93
for graduate study, 108
for preprofessional study, 113, 121, 127, 131
for Law, School of, 121
for Medicine, School of, 129
for Veterinary Medicine, School of, 131
transcript of record for, 46
visit to campus, 45, 70

Advising
Academic Advising Intern Program (AAIP), 29
and counseling, 29-31
College of Agricultural and Environmental Sciences, 70
Engineering, 78
Letters and Science, 94
Educational Opportunity Program (EOP), 30-31
faculty, 57, 70, 78, 94, (see under specific major program)
First Resort, The, 29, 71
international student, 32
orientation and summer, 29, 57, 78, 94
Aeronautical Engineering (see Engineering)
Afro-American Studies, Program in, 139
courses in, 139
major in, 139
Agrarian Studies
courses in, 140
major in, 73, 140
Agricultural Alternative Development Program, 18
and Environmental Sciences, College of, 69-75
advising, 70
expanded course descriptions, 71
honors and prizes, 75
majors and special programs, 72, 246
orientation, 71
passed/not passed option, 74
program planning, 70
requirements, 74
scholarship, 67, 74
scholarships, 75
services (student), 70
study-list requirements, 74
teaching credentials, 74, 140, 144, 156
transfer students, 75
unit limitation, 75
work-learning, 72, 140, 326
and Home Economics Education, courses in, 140
and Managerial Economics, major in, 72, 141
business management, (see Management)
Chemistry
courses in, 141
graduate group, 106, 141
Economics
courses in, 142
Department of, 141
option, 141
related major, 141
Education
major in, 72, 144
(see also Agricultural and Home Economics Education)
Engineering
courses in (see Agricultural Engineering Technology; Consumer Technology; Engineering: Agricultural)
Department of, 144, 197
major in (see Engineering: Agricultural)
Technology, courses in, 144
Agricultural technology (see Agriculture)
genetics (see Genetics)
History Center, 14
Practices
courses in, 145
(see also Agrarian Studies; Work-Learn)
Science and Management
course in, 146
major in, 72, 145
Agronomy
and Range Science, Department of, 147
courses in, 145, (see also Range Management)
related majors, 73, 146
(see also Plant Science)
Allied Health Sciences, preprofessional requirements, 115-19
Alumni Association, 35
American History and Institutions requirement, 66, 139, 185, 240, 277, 295
(see also Afro-, Asian-, Mexican-, and Native-American Studies)
Studies Program, 147
courses in, 146
major in, 147
Anatomy
courses in, 149, (see also Human Anatomy)
Department of, 149
graduate group, 106
Anesthesiology, courses in, 263
Animal Behavior
courses in, 149
graduate group, 106, 149
biochemistry (see Biochemistry)
Genetics, courses in, 150
husbandry (see Animal Science)
nutrition (see Animal Science; Nutrition)
Physiology
Department of, 150
courses in, (see Physiology)
Science
courses in, 151
Department of, 150
major in, 72, 151
(see also Agricultural Science and Management)
Anthropology, Department of, 152
courses in, 153

339
Biological
Chemistry, courses in, 264
control (see Entomology)
Sciences (intercollege Division)
courses in, 168
majors in, 72, 95, 167
Biology (see Biological Sciences)
Biomedical Engineering
courses in, 168
graduate group, 106, 168
Biophysics
group graduate, 106
(see also Biochemistry and Biophysics)
Black studies (see Afro-American Studies)
Botany
courses in, 169
Department of, 168
graduate group, 106
majors in, 72, 95, 169
Brewing technology (see Fermentation Science; Food Science)
Business
administration, preprofessional requirements, 114
management (see Management)
(see also Agricultural and Managerial Economics; Economics)

Calendar, 6-7, (Law School) 125
Campuses, University, 9
Campus tours, 20, 45
Candidacy for degrees, filing announcement undergraduates, 6, 67
graduate students, 7
Cantonese, courses in (see Asian American Studies)
Cardiology, courses in, 267
Carnegie Institute (Davis Division), 17
Change of
Campus before registration, 46
college, school, or major, 58, 96
grade, 61
name, 58
Chemical Engineering (see Engineering)
Chemistry
Agricultural, graduate group, 106, 141
applied, specialization in, 85
Biological, courses in, 264
courses in, 171
Department of, 171
majors in, 171
Chicana Studies, course in, 273
Child Development
group graduate, 106
(see also Human Development)
Childhood Center, Early, 15
Chinese, courses in, 281, (see also Asian American Studies; Oriental Languages)
City Planning, (see Environmental Planning and Management)
Civil Engineering (see Engineering)
Class level, 62
Classical Civilization, major in, 173
Classics
courses in, 174

Major programs, 173
Clinical
Pathology
courses in, 175
Department of, 175
Psychology
courses in, 264
graduate group, 106
Community
Development
graduate group, 106
(see also Applied Behavioral Sciences; Home Economics)
Health, courses in, 265
Nutrition, major in, 73, 175-76
Services Center, 14
Comparative
biochemistry (see Biochemistry graduate group)
Literature, Program, 176
courses in, 176
major in, 176
Oncology Laboratory, 16
Pathology, graduate group, 107
Computer
Center, 15
Science
courses in, 89, 168, 195, 199, 200, 206, 221, 258-59, 271
(see also Engineering: Electrical)
Computing Science, graduate group, 107
Concurrent courses, defined, 47, 53, 138
Conduct and discipline, 65
Conservation, 303, 305, 312, 325
Consumer
Economics
courses in, 178
(see Development, Resource, and Consumer Economics)
Food Science, major in, 73, 178
Science
courses in, 178
graduate group, 107
related majors, 178
Technology, courses in, 179
Counseling Center, 29
Courses
adding and dropping, 58
Classification and numbering, 135-37
enrollment in, (see Registration)
expanded descriptions of, 71, 80, 135
prerequisites, 136, 137
repetition of, 61
(see also Credit; Units of Credit)
Credentials (see Teacher Education)
Credit
advanced (credit) allowed, 63
and scholarship, 59
by examination, 62, 64
for repetition of course, 61, 64
for work taken in other institutions, 55
in extension courses, 80, 100, 138
in professional courses, 101, 137
in Summer Session courses, 64, 66, 138
minimums, 64
non-credit courses, 64
(see also Units of Credit)
value of courses, defined 135
Criminal Justice
Center on Administration of, 14
option in, 310
Crocker Nuclear Laboratory, 17

Davis campus and community, 9-13
Deficiencies
disciplinary action, 64
of transfer students, 51, 64
removal of grade, 61
Degree requirements
advanced, 109
Bachelor of Arts
for Letters and Science, College of, 98-99
(see also under specific majors)
Bachelor of Science
for Colleges, 74, 80, 98-99
for Veterinary Medicine, School of, 132
(see also under specific majors)
Part-Time Program, 18
filing candidacy, 6-7, 67
second baccalaureate, 47, 52
units, 67
University, 65-67
Design
courses in, 180
major in, 72, 180
specializations in, 89, 90
Development, Resource and Consumer Economics, major in, 72, 181
Dietetics
major in, 73, 181
related fields, 72-73
Disqualification for scholastic deficiency, 57, 64
Directory for correspondence (inside front cover)
Division of Extended Learning (see Extended Learning)
Dramatic Art, Department of, 182
Artists in residence Program, 182
courses in, 182
major in, 182
University theatre, 24, 182

East Asian Studies Program, major in, 184
Ecology
courses in, 184
graduate group, 107, 184
Institute of, 16
Economics
courses in, 185
Department of, 185
major in, 185
(see also Agricultural Economics; Consumer Economics)
Education
Abroad Program (EAP), 20, 190
Agricultural, major in, 72, 144
courses in, 137, 188
Department of, 188
(see also Agricultural and Home Economics Education; Applied Behavioral Sciences)

Educational
Opportunity Program, 30-31, 47, 52
Placement Service, 35
Electrical Engineering (see Engineering)
Eligibility for admission, notification of, 46
Embryology
Carnegie Institution of Washington,
Department of, 17
courses in, 327
Employment
and salary information, 332-33
career, 20, 35
student, 34-35, 40
Endocrinology
course in, 287
ggraduate group, 107
Engineering
Aeronautical
double major, 79, 196
major in, 79, 82, 193
specializations in, 82
Agricultural, Department of, 144, 197
courses in, 197-98
major in, 79, 83, 193
Forest engineering option, 79, 84, 194
specializations in, 63
Applied Science, Department of, 198
courses in (Davis and Livermore), 199
graduate study, 91
Biomedical (see Biomedical Engineering)
Chemical, Department of, 201
courses in, 201
major in, 79, 86, 194
lower division program, 193
specializations in, 84
Civil, Department of, 202
courses in, 202
major in, 79, 86, 194
specializations in, 86
College of, 77-91, 192
admission, and requirements, 77-78
advanced standing, 78
advising, 78
broad requirements, 81
core courses, 196
double majors in, 79, 194-96
electives, 81-82
graduate study, 91
honors, 67
individual major, 79, 196, 246
lower division programs, 193
major and program planning, 79-82
placed/not placed option, 82
requirements (college), 81
residence, 66
scholarship, 79-80
senior degree check, 80
study list regulations, 79-80
Work-Learn, 80
Electrical, Department of, 205
courses in, 205
majors in, 79, 87-88, 195
graduate group, 107
Material Science and
double majors, 79, 194-96
major in, 79, 88, 195
specializations in, 89
Mechanical, Department of, 208
courses in, 208
double majors, 79, 196
major in, 79, 90, 195-96
specializations in, 90
English
courses in, 211
Department of, 210
major in, 210
requirements
for admission to University, 48
for international students, 53, 66, 109
for Colleges, 74, 78, 93, 98, 101
(see also Subject A)
Enology (see Viticulture and Enology)
Enrollment
dates for, 6, 125 (Law School)
Davis campus, 9
in courses, (see Registration)
Entomology, Department of, 214
courses in, 215
major in, 73, 214
Environmental
Education (see Environmental Planning and Management; Renewable Natural Resources)
Horticulture, Department of, 216
courses in, 216
related majors, 72-73, 216
Planning and Management
courses in, 218
major in, 72, 217
Studies (Intercollege Division), 219
courses in, 220
program of study 219
Toxicology, Department of, 221
courses in, 222
major in, 73, 222
Epidemiology and Preventive Medicine
courses in, 223
Department of, 223
Examinations
advanced placement (CEEB), 50, 54, 63
American History and Institutions, 66
credit by, 62
English Composition, 98, 101
entrance, 51, 54
final, 62
high school proficiency, 54
foreign language placement, 63, 101
in English for international students, 53, 66, 109
Law School admission, 121
Medical School admission, 127
physical (see physical examination)
reexaminations, 61
regulations concerning, 62
Subject A requirement, 54, 65
Exchange Program, Intercampus, 110
Expenses, student (see Fees)
Exploratory program, 73
Extended Learning, Division of, 18-20
Academic reentry, 18, 31, 52
Arts and Lectures, 19
Conferences and Campus Services, 20
Part-Time Degree Program, 18
Summer Sessions, 19

341
University employees, 19
University Extension, 19
Extension
courses, defined, 138
(see also Credit)
University, 19
Extra-session courses, defined, 137

Facility for Advanced Instrumentation, 15
Family Practice, courses in, 265
Farm management (see Agricultural Economics)
Federal Family Educational Rights and Privacy Act, 331
Fees and deposits, 37
application for admission, 45, 52, 53, 55, 58
associated students membership, 27, 37, 38
educational, 37, 38
$50 Reduced Fee Program, 18, 58
Graduate Student Association, 37, 38
intention to register, 46, 55
intercampus transfer, 37
late payment, 37, 58
Law Student Association, 38
Memorial Union, 37, 38
nonresident tuition, 32, 37, 38, 329
parking, 37
part-time student, 18
Planned Educational Leave Program, 37, 59
readmission applications, 37, 58, 59
reapplication, 46
refunds, 38
registration, University, 37, 46
residence hall contract, 23
transcript of record, 37, 61
Fellowships, 39, 110
Fermentation Science, major in, 73, 224
Financial aid, 39-42
application for, 39
international students, 53
Fine Arts and Museology, Laboratory for, 16, 157, 158
First Resort, The, 29, 71
Fish and game management, 325
Floriculture (see Plant Science)
Food
Biochemistry, major in, 73, 224
processing
specializations in, 83, 85
(see also Fermentation Science; Food Science)
Protection and Toxicology Center, 15
Science and Technology, Department of and courses in, 225
graduate group, 107
major in, 73, 225
Service Management
courses in, 227
major in (Dietetics), 181
study option, 181-82, 227
Foreign language
admission requirements, 48
advanced placement in, 63, 101
Letters and Science College
requirements, 99, 101
professional courses for teachers (see under specific language)
(see under specific language)
literature in translation, 227-28
Students (see international students)
Forest engineering, 79, 84, 194
Forestry (see Preforestry)
French (and Italian), Department of, 228
courses in, 228
major in, 228
Freshman standing, 47, 46, 62

Genetics
Animal (see Animal Genetics)
courses in, 231
Department of, 230
graduate group, 107
major in, 72, 95, 231
plant, courses in (see Agronomy)
Geography, Department of, 232
courses in, 232
major in, 232
Geology, Department of, 234
courses in, 234
majors in, 234
German (and Russian), Department of, 236
courses in 237
major in, 236
Glossary, 334
Government Affairs, Institute of, 16
Grade point
computation of (grade-point) average, 59
deficiency, 64
defined, 59
major requirement (Letters and Science), 97
Grading
change of, 61
defined, 59
incompletes, 60
in-progress (deferred), 60
mid-term, 61
passed/not passed, 60, 102, 138
passed/not passed option, 60, 74, 82, 98, 102
removal of deficiency, 61
satisfactory/unsatisfactory, 60, 137
unofficial grades available, 61
Graduate
admission
applications and requirements, 108-10
for international students, 109
reentry, 109
with degree objective, 109
degrees
list of, 105-6
requirements for, 109
Part-Time Degree Program, 18
Division, 105-11
fellowships, assistantships, and loans, 39, 110
groups, list of, 106-7
intercampus exchange program, 110
part-time students, 18
program of study, 110
student scholarship deficiencies, 64
study in Engineering, 91
teacher credential program, 111
Grants, 39, 40-41
Greek (Spanish and Classics, Department of), 173
courses in, 174
major in, 173
Gymnasium, use of, 26, 284

Handicapped Students, Services to, 33, 45
Health
evaluation, 32, 57
insurance plan, 32
Sciences, Allied, 115-19
Service, Student, 32
Hebrew, courses in, 304
Hematology-Oncology, courses in, 267
History
and government of University, 9
courses in, 240
Department of, 239
major in, 239-40
of the Davis campus, 10
requirement for admission, 48
Home
Economics
major in, 73, 244
education (see Agricultural and Home Economics Education)
Management (see Consumer Science)
Honors
at graduation, 67, 75, 103
courses, defined, 136
deans list, 67, 75, 103
prizes and awards, 67
Horticulture
graduate group, 107
(see Environmental)
Housing
family student, 23
on-campus and off-campus, 23
room and board, 23, 38
Human
Anatomy, courses in, 266
Development
(child), major in, 72, 244
courses in, 245
Physiology, courses in, 267
Humanities
advanced credit allowed, 63
Humanities
advanced credit allowed, 63
list of courses, 74, 78, 81, 100
requirements in Colleges, 74, 78, 81, 99
Immunology
graduate group, 107
Independent Study Program, 6, 137
Individual major (see Majors)
Infectious Diseases, courses in, 268
Integrated Studies
courses in, 247
Program in, 247
Intercampus
exchange program, graduate students, 110
transfer, 46, 47, 53
Interdepartmental majors (see Majors)
Interior decoration (see Design)
Intercollegiate athletics, 27
Intermural sports, 26, 27
Internal Medicine, courses in, 267-68
International
Agricultural Development
courses in, 248
graduate group, 107
major in, 73, 247
Relations Program, major in, 248
students
admission, 53, 109
advising and services, 32
American History and Institutions
requirement, 66
courses in English for, 66, 211
examination in English for, 53, 66, 109
financial aid, undergraduate, 53
rules governing residence, 329
scholarship, 52, 53
Irrigation (see Engineering: Civil; Soil and Water Science)
Italian (French and Italian, Department of), 248
courses in, 249
major in, 248
Japanese, courses in, (see Oriental Languages) 281
Laboratory
science requirement for admission, 48
technician (see various natural science majors)
Land, Air and Water Resources, Department of, 250
Landscape
architecture, 217, 218
horticulture, 293
management, 217-18
Late registration and filing, 37, 58
Latin
courses in, 174
major in, 173
Law, School of, 121-25, 250
admission to, 121-23
applications, 121-23, 125
calendar (semester), 125
courses in, 250
degree programs, 124
preprofessional requirements, 114, 121
residence rules, 66
student assistance program, 29, 121
Learning Skills Center, 31
Leave of absence, 58
Letters and Science, College of, 93-103
advising, 94
advanced placement examinations, 63, 101-2
change of major, 96
credit in special courses, 101
declaration of major, 95
honors and awards, 103
individual honors, 95, 246
major programs, list of, 95-96
passed/not passed option, 98, 102
preprofessional advising, 95
requirements breadth, 98, 100, 101-2
College, 96-99
English composition, 63, 98, 101
major (see under specific major)
residence, 99
scholarship, 97, 99
unit limitations, 98, 102, 103
senior degree check, 103
student services, 93
teaching departments, 95
Library, University, 13
Limited status (see admission)
Linguistics
courses in, 255
graduate group, 107
major in, 254
Program in, 254
Living accommodations, 23
Loans, 35, 40, 41-42, 110
Majors
change of, 58, 97
cross-college, 73, 96 (see also individual major)
declaration of (Letters and Science), 95
exploratory, 73
individual, 72, 73, 79, 95, 96, 246
requirements (see under specific major)
Management
Agricultural Science and, 72, 145
business, 141, 185
Food Service, 181, 227
food technology and, 181
home, 178, 179, 244
landscape, 217, 218
Managerial Economics option, 141
Marketing (see Agricultural and Managerial Economics; Food Science)
Marine
Laboratory (Bodega), 16
Resources, Institute of, 16
Mass Communication Program, major in, 256
Materials Science and Engineering (see Engineering)
Mathematics
applied, 85, 257
courses in, 257
Department of, 256
majors in, 257
requirement for admission, 48, 257
requirement for, 78 (Engineering), 99, 101
(letters and Science)
statistics, 257
Meat technology (see Food Science)
Mechanical Engineering (see Engineering)
Medical
evaluation and examination, 32, 57
Learning Resources, courses in, 268
Microbiology, courses in, 268
Medicine
courses in (Veterinary Medicine), 272
Department of (Veterinary Medicine), 272
School of, 127-29, 260-72
admission to, 132
courses in, 263-72
health professions student assistance program, 29, 114
preprofessional requirements, 114, 128
transfer with advanced standing, 127
Medieval Studies Program, 272
courses in, 273
major in, 272
Memorial Union
Complex, 26
fee, 37, 38
Merchandising, 141, 181, 317, 318
Meteorology, 161
Mexican-American (Chicano) Studies
course in (Chicano Studies), 273
major in, 273
Program in, 273
Microbiology
courses in, 268, 274, 322
graduate group, 107, 273
Medical, courses in, 268
Veterinary (see Veterinary Microbiology)
Military Science, Department of, 274
Air Force ROTC (Berkeley campus), 274
Army ROTC training, 274
courses in, 274
credit in, 274
programs in, 274
scholarships, 43, 274
Molecular biology, 168, (see also Biochemistry; Genetics)
Music, Department of, 275
courses in, 275
major in, 275
Name change, 58
Native American Studies
courses in, 277
major in, 72, 276
Natural sciences
advanced credit allowed, 63
requirements for, (Agricultural and Environmental Science) 74, (Letters and Science) 99, 101
Nematology
courses in, 278
Division of, 278
related fields (see Environmental Toxicology, Plant Science)
Neurology, courses in, 268
Neurosurgery, courses in, 269
Nonresident student
admission requirements, 52, 53, 109
rules governing residence, 329
(see also International students)
tuition fee, 32, 37, 38, 329
Nursery
production and management (plant science), 293
school education (see Human Development)
Nutrition
Community, major in, 73, 175-76
courses in, 268 (medicine), 279
Department of, 278
graduate group, 107
related majors (see Animal Science; Dietetics)
Science, major in, 73, 280

Oriental Languages, courses in, 281
Orientation
course in, 71, 281
in Agricultural and Environmental Sciences College, 71
Week, 6, 29, 57
Summer, 29, 57
Ornamental Horticulture. (see Landscape)
Orthopaedic Surgery, course in, 269
Otorhinolaryngology, courses in, 269
Out-of-state applicants (see Nonresident student)

Park and recreation administration, 217
Part-Time Degree Program, 18
Passed/not passed (see Grading)
Pathology
Clinical (see Clinical Pathology)
courses in, 269 (medicine), 281 (veterinary medicine)
Department of (Veterinary Medicine), 281
Pediatrics, courses in, 269

Petitions, change, 58, 98-97
Pharmacology
and Toxicology
course in, 282
graduate group, 107, 282
courses in, 270 (medicine)
(see also Medicine, Veterinary Medicine, 272)

Philosophy, Department of, 282
courses in, 262
major in, 262

Physical Education, Department of, 284
Adult Fitness Program, 17
courses in, 284
Intercollegiate athletics, 27
Intemural sports, 26
major in, 264
evaluation and examination, 32, 57

Medicine and Rehabilitation, courses in, 270
Physics, Department of, 286
courses in, 287
majors in, 286
Physiological Sciences
courses in, 289

Department of, 289

Animal, Department of, 150
courses in, 290, 292, 327
graduate group, 107
major in, 72, 95, 289-90
plant (see Plant Physiology)
related field (see Animal Science)
Placement services (see Employment)
Planned Educational Leave Program, 58
Plant Pathology,
courses in, 292
Department of, 291
related fields (see Environmental Toxicology, Plant Science)
Physiology
courses in, 292
graduate group, 107, 292
prevention (see Environmental Toxicology)
Protection and Pest Management
group, 107, 292
courses in, 295
Science
courses in, 294
major in, 73, 293
related courses, 146, 216, 292, 299, 303, 319, 323
specialization in, 145
Political Science, Department of, 294
courses in, 295
majors in, 295
Pomology
courses in, 299
Department of, 299
related major (see Plant Science)
Portuguese, courses in, 314
Poultry husbandry (see Avian Sciences)
Preenrollment (see Registration)
Preforestry, non-degree program, 73, 114, 299
Preprofessional advising, 29, 95, 114
curricula, 73, 95, 113-19, 124, 128, 131, 299, 310
Prerequisites, course, 136, 137
Preventive Veterinary Medicine
group, 107
master's degree in, 133
Primat Research Center, California, 14
Prizes and awards, 67
Probation, 54, 74
PROBE (see Work-Learn)
Professional courses, defined, 137
schools reference material, 29, 119
requirements, 113-19
(see also Law, Medicine, Preprofessional, Veterinary Medicine)
Psychiatry, courses in, 270
Psychology, Department of, 300
courses in, 300
majors in, 300
Public health
related fields (see Consumer Food Science; Dietetics; Epidemiology)
records, disclosure of, 331

Publications, 28, 336
Quantitative biology (see Biochemistry; Nutrition Science; Physiology)
Quarters
explanatory note, 135
how to convert units, 59
Radiobiology Laboratory, 17
Radiological Sciences (Veterinary Medicine)
courses in, 302
Department of, 302
Radiology, courses in, 271 (medicine)
Ranching, 303
Range and Wildlands Science, major in, 73, 303
Management courses in, 303
graduate group, 107
related major, 303
science (see Agronomy)
Readmission
Academic reentry (see Extended Learning)
after an absence, 58, 109
after disqualification, 64-65
application deadlines, 7, 58
health requirement, 32
Recreation, 26-27, 284
Registration
and Summer Advising Conference, 57
deadlines, 6
enrollment in courses, 57, 58, 136-38
intention to register form, 46, 55
procedures, 57-59
reduced fee program, 18, 58
Religious Studies Program, 304
courses in, 304
major in, 304
Renewable Natural Resources, major in, 73, 305
Reproduction (Veterinary Medicine)
courses in, 306
Department of, 305
Requirements
advanced degree, 105
biodiversity (College), 74, 81-82, 99, 100
degree (see Degree Requirements)
for admission, 48-53
for graduation, 65-67
minimum scholastic, 59, 64
(see also Preprofessional, specific major program)
Research
assists, 39, 110
facilities, 13-18, 34
Residence
requirement for graduation, 67
requirement for Letters and Science, 99
rules governing, 329
Statement of, 57, 329
Resource Sciences and Engineering, 73
courses in, 306
related major, 305
Rhetoric, Department of, 306

344
courses in, 307
major in, 306
Rheumatology, courses in, 268
Russian
courses in, 308
Department of (German and Russian), 308
Literature and History Program, major in, 309
major in, 308
Satisfactory/Unsatisfactory (see Grading)
Scholarship
deficiencies, 64
honors and prizes, 67
requirement, 59
requirements for admission, 49, 51-52, 53
requirements for graduation, 67, 74, 81, 97, 99
Scholarships, 39, 43, 75
Alumni, 35, 43
California State, 40
in Agricultural and environmental Sciences
College, 75
private donors and agencies, 43
ROTC programs (Army and air force), 43, 274
Second baccalaureate, 47, 52
Selective Service, 34
Serology Laboratory, 17
Social Sciences
requirements for Colleges, 74, 81, 99
list of courses (Letters and Science), 100
Welfare, option in, 310
Sociology, Department of, 310
courses in, 310
majors in, 310
Soil and Water Science
courses in (see Soil Science; Water Science)
major in, 73, 313
Science
courses in, 313
graduate group, 107
related major, 303
Soils and Plant Nutrition
related fields, 250, 303
faculty (Land, Air and Water Resources), 250
Spanish (and Classics), Department of, 314
courses in, 314
major in, 314
Special Study courses
defined, 136
(see also Units of credit)
Speech (see Rhetoric)
Statistics
concentration in, 257
consulting service, 257
courses in, 257
Student
activities, 24, 26-28 (see also Campus Tours)
advising and counseling, 29-35
conduct and discipline, 65
employment, 34-35, 39, 40
experimental farm, 18
government, 27
handicapped services, 33
Health Service, 32
housing, 23
nontraditional, 52
organizations, 28
publications, 28
recreation, 26-27, 284
responsibility, 65, 69
services, 28-35
Study list regulations
at registration, 57
College requirements, 74, 79-80, 103
Subject A
course in, English A, 211
Diagnostic Essay Examination, 66
enrollment in English A course, 57, 66
requirement for graduation, 54, 65
Summer
Advising Program, 29, 57, 78-79, 94
Sessions
applications for, 19
course acceptability (see Credit)
courses and residence requirement, 66, 138
credit from other institutions, 138
Surgery (Veterinary Medicine)
courses in, 317
Department of, 317
Swedish, courses in, 317
Symbols, footnote, 138
Teacher education
courses, defined, 137
credentials, 74, 95, 111, 188, 334
programs, 111, 140, 144, 155, 188, 244, 257
upper-division program, 111
Teaching assistantships, 39, 110
Tests (see Examinations)
Textile Science, major in, 73, 317
Textiles and Clothing
courses in, 318
Division of, 318
major in, 73, 318
related fields, 72, 178, 179
Toxicology
Center, Food Protection and, 15
(see Environmental Toxicology)
Transcript of record
for admission, 46
from the University, 61
Transfer students
admission, 47, 51, 53
American History and Institutions
requirement, 66
application to Davis campus, 45
credit advanced, 54, 55, 75
regulations for students on probation, 64
Subject A requirement, 65
to another campus, 46, 53
Transportation, 11, 37, 38
Truck crops (see Agricultural Science and Management; Plant Science)
Turf management (see Environmental Planning and Management; Soil and Water Science)
Tutorial courses, defined, 136
Units of credit
class-level breakdown, 62
computation of grade-point average, 59
converting to quarter system, 59
deficiencies, 64
in Colleges, 74-75, 77-81, 93, 98, 103
maximum and minimum limitations, 57, 64, 80, 103, 136
quarter, 59
requirements for graduation, 67
University arboretum, 14
employee students, 19
Extension, 19
history and government, 9-10
library, 13
medal, 67
professors, 21
requirements, 65-67
Theatre, 24, 182
Upper-division courses, defined, 136
Variable-unit courses, 136
Vegetable Crops
courses in, 319
Department of, 319
related majors, 73, 222, 293
Veterans affairs and benefits, 34
Veterinary
Medicine, School of, 131-33, 320-22
admission and application, 132
programs, 111, 140, 144, 155, 188, 244, 257
upper-division program, 111
Teaching assistantships, 39, 110
Tests (see Examinations)
Textile Science, major in, 73, 317
Textiles and Clothing
courses in, 318
Division of, 318
major in, 73, 318
related fields, 72, 178, 179
Toxicology
Center, Food Protection and, 15
(see Environmental Toxicology)
Transcript of record
for admission, 46
from the University, 61
Transfer students
admission, 47, 51, 53
American History and Institutions
requirement, 66
application to Davis campus, 45
credit advanced, 54, 55, 75
regulations for students on probation, 64
Subject A requirement, 65
to another campus, 46, 53
Transportation, 11, 37, 38
Truck crops (see Agricultural Science and Management; Plant Science)
Turf management (see Environmental Planning and Management; Soil and Water Science)
Tutorial courses, defined, 136
Units of credit
class-level breakdown, 62
computation of grade-point average, 59
converting to quarter system, 59
deficiencies, 64
in Colleges, 74-75, 77-81, 93, 98, 103
maximum and minimum limitations, 57, 64, 80, 103, 136
quarter, 59
requirements for graduation, 67
University arboretum, 14
employee students, 19
Extension, 19
history and government, 9-10
library, 13
medal, 67
professors, 21
requirements, 65-67
Theatre, 24, 182
Upper-division courses, defined, 136
Variable-unit courses, 136
Vegetable Crops
courses in, 319
Department of, 319
related majors, 73, 222, 293
Veterans affairs and benefits, 34
Veterinary
Medicine, School of, 131-33, 320-22
admission and application, 132
programs, 111, 140, 144, 155, 188, 244, 257
upper-division program, 111
Teaching assistantships, 39, 110
Tests (see Examinations)
Textile Science, major in, 73, 317
Textiles and Clothing
courses in, 318
Division of, 318
major in, 73, 318
related fields, 72, 178, 179
Toxicology
Center, Food Protection and, 15
(see Environmental Toxicology)
Transcript of record
for admission, 46
from the University, 61
Transfer students
admission, 47, 51, 53
American History and Institutions
requirement, 66
application to Davis campus, 45
credit advanced, 54, 55, 75
regulations for students on probation, 64
Subject A requirement, 65
to another campus, 46, 53
Transportation, 11, 37, 38
Truck crops (see Agricultural Science and Management; Plant Science)
related fields, 73, 312
Weed science (see Environmental Toxicology, Plant Science)
Wildlife and Fisheries Biology
courses in, 325
Department of, 324
major in, 72, 325
related field, 312
Wine making, 224, 224-25, 323
Withdrawals, 58
Women's Resources and Research Center, 34
Work-learn program, 20, 40, 137, 140, 326
courses in, 137, 140, 326
defined, 137
in Colleges, 72, 80, 101

Zoology, Department of, 326
courses in, 327
majors in, 72, 95, 326
UCD AT A GLANCE

Founding Year 1905
Location 15 miles west of Sacramento, 72 miles northeast of San Francisco. Adjacent to the city of Davis (population 36,000).
Area 3,800 acres
Enrollment (1977-1978)
- Undergraduate—12,410
- Graduate—3,083
- Health Sciences—1,757
Faculty and Staff 1,400 teaching faculty
1,400 teaching faculty
6,000 staff
Colleges, Schools, and Divisions
- College of Agricultural and Environmental Sciences
- College of Engineering
- College of Letters and Science
- Graduate Division
- School of Law
- School of Medicine
- School of Veterinary Medicine
- Division of Extended Learning
Library Collection
- 1,472,000 volumes
- 42,100 periodicals received annually
Fees (1978-79)
- California Resident:
 - Undergraduate, $228.50 per quarter
 - Graduate, $242.50 per quarter
- Nonresident:
 - Undergraduate, $863.50 per quarter
 - Graduate, $877.50 per quarter
Nickname Cal Aggies
Colors Blue and Gold
Address University of California, Davis, California 95616
Telephone (916) 752-1011