The University of California has been called the state's crowning jewel, and an important point of access for people of talent, ambition, and vision. The University is one of the world's great treasure houses of knowledge, a continuing source of ideas and discoveries, of scientific and technological advances, of art and cultural activity.

During 1992-93, the University of California celebrates 125 years of excellence in teaching, research, and public service. Founded in Oakland, the University currently enrolls more than 166,000 highly qualified graduate and undergraduate students on nine campuses: Berkeley, Davis, Irvine, Los Angeles, Riverside, San Diego, San Francisco, Santa Barbara, and Santa Cruz. Throughout its history, the University has served millions of Californians through its continuing education and Cooperative Extension programs, and has been a powerful source of economic benefit to the state through its own activities and those of its more than 800,000 alumni.

For a fact sheet on the University's role in California, please write: University Relations, 300 Lakeside Drive, 22nd Floor, Oakland, CA 94612.
ADDRESS DIRECTORY

University of California
Davis, California 95616
(916) 752-1011 (main campus number)

Office of the Chancellor
Mrak Hall
916-752-3065

College of Agricultural and Environmental Sciences
228 Mrak Hall
916-752-0107

College of Engineering
2132 Bainer Hall
916-752-0653

College of Letters and Science
150 Mrak Hall
916-752-0392

Division of Biological Sciences
66 Briggs Hall
916-752-0410

Graduate Studies
252 Mrak Hall
916-752-0650

School of Law
1011 King Hall
916-752-0243

Graduate School of Management
106 AOB 4
916-752-7362

School of Medicine
Medical Sciences 1C
916-752-0331

School of Veterinary Medicine
1018 Haring Hall
916-752-1360

Office of Summer Sessions
44 Mrak Hall
916-752-1647

University Extension
1333 Research Park Drive
916-752-0880

Admissions
Undergraduate: Office of Admissions
175 Mrak Hall
916-752-2971

Graduate: Graduate Studies Admissions
252 Mrak Hall
916-752-0655

Law: School of Law Admissions
115 King Hall
916-752-6477

Management: Graduate School of Management
106 AOB 4
916-752-7399

Medicine: School of Medicine Admissions
Medical Sciences 1C
916-752-2717

Veterinary Medicine: School of Veterinary Medicine Admissions
1044 Haring Hall
916-752-1383

Office of the Registrar
124 Mrak Hall
916-752-2973
(for registration information, transcripts, the General Catalog)

Financial Aid Office
North Hall
916-752-2390
(undergraduate and graduate loans, grants, employment information)

Scholarship Office
207 North Hall
916-752-2397
(undergraduate scholarships)

Fellowships and Graduate Scholarships
Graduate Studies
252 Mrak Hall
916-752-7481

Teaching and Research Assistantships
Write to department or group concerned.

Housing
Community: Student Housing Office
916-752-2493

Residence Halls: Student Housing Office
916-752-2033

Student Family Housing: Orchard Park
916-752-4000

ASUCD (Associated Students UCD)
3rd floor, Memorial Union
916-752-1990

Disability Resource Center
101 Silo Student Center
916-752-3184 (voice), 916-752-6889 (telephone device for the speech and hearing impaired)

Memorial Union Information Desk
916-752-2222

News Service
334 Mrak Hall
916-752-1930

Relations with Schools/EOP Outreach Services
2828 Chiles Road
916-757-3108

Residency Matters, Attorney in
590 University Hall
University of California
Berkeley, CA 94720

Student Health Service
544 Cowell Student Health Center
916-752-2300 (voice, and telephone device for the speech and hearing impaired)

Information Services Office
Buehler Alumni and Visitors Center
916-752-0539
(campus tours, maps, and information)
ACADEMIC CALENDAR

FALL 1992
- May 28-July 31
- May 28-29
- May 28-July 31
- May 28-Aug. 21
- Sept. 21, Mon.
- Sept. 21-22
- Sept. 23
- Sept. 24
- Sept. 24, Thurs.
- Oct. 28, Wed.
- April 17, Fri.
- Dec. 4, Fri.
- Dec. 7-12
- Dec. 12, Sat.
- Nov. 26-27
- Dec. 24-25
- Dec. 31-Jan. 1
- Jan. 18
- Feb. 15
- Mar. 29
- Jan. 21
- April 10, Wed.
- May 7, Fri.
- Jan. 20, Wed.
- June 10, Thurs.
- June 10, Thurs.
- June 12-18
- June 18, Fri.
- Mid-June
- May 31

WINTER 1993
- Nov. 2-6 (1992)
- Nov. 5-6
- Nov. 2-6
- Nov. 2-19
- Jan. 5, Tues.
- Jan. 6
- Jan. 7
- Jan. 7, Thurs.
- Jan. 21, Thurs.
- April 5, Mon.
- Apr. 1-2
- Apr. 2
- Apr. 5
- Apr. 16, Fri.
- Feb. 11-17
- Feb. 11-18
- Feb. 11-Mar. 2
- April 1, Thurs.
- To be announced
- Sept. 27, Mon.
- To be announced
- To be announced
- Sept. 30
- Sept. 30, Thurs.
- Nov. 3, Wed.
- April 14, Wed.
- Dec. 10, Fri.
- Dec. 13-18
- Dec. 18, Sat.
- Nov. 25-26
- Dec. 24, 27
- Dec. 30-31

SPRING 1993
- Feb. 11-18
- Feb. 11-18
- Feb. 11-Mar. 2
- April 1, Thurs.
- To be announced
- To be announced
- To be announced
- Sept. 27, Mon.
- To be announced
- To be announced
- Sept. 30
- Sept. 30, Thurs.
- Nov. 3, Wed.
- April 14, Wed.
- Dec. 10, Fri.
- Dec. 13-18
- Dec. 18, Sat.
- Nov. 25-26
- Dec. 24, 27
- Dec. 30-31

A C E D A M I C C A L E N D A R

- Pick up registration and course enrollment materials (all continuing students)
- Faculty advisers available to all students
- Turn in course enrollment forms and student data card (all continuing students)
- Turn in fees along with fee statement

Quarter begins

- In-Person Registration
- In-Person Enrollment
- Final day to petition for reclassification to resident status

Instruction begins

- Final day
 - of late registration
 - to change status from part-time to full-time status or vice versa
 - to add courses without paying a $3 fee
 - to file petitions for PELP
- Final day
 - to add or drop courses
 - to file to take courses on a P/NP basis
 - to file to take courses on a S/U basis

Deadline for filing Independent Study Program project proposal form

Monday classes meet

Instruction ends

- Final examinations

Quarter ends

- Commencement

Academic and Administrative Holidays

- **Summer Sessions I and II**
 - June 28-Aug. 6, 1993 and Aug. 9-Sept. 17, 1993

Financial Aid Deadlines

- Filing period for grants, loans, work-study, and California Student Aid awards for 1993-94
 - Jan. 1-Mar. 2

Filing for Graduation

- Filing period for those who expect to complete work for a bachelor's degree to file with the Office of the Registrar †
 - May 29-Sept. 18
 - Nov. 9-Dec. 21 (1992)
 - Feb. 8-Mar. 22
 - May 28-Sept. 17
 - Oct. 7
 - Jan. 21
 - Apr. 16
 - Oct. 7

Admission Deadlines

- Deadline for undergraduates to file admission applications for 1992-93
 - Nov. 30 (1991)
 - July 31 (1992)
 - Oct. 31 (1992)
 - Nov. 30 (1992)
 - Aug. 21 (1992)
 - Nov. 29 (1992)
 - Feb. 22 (1992)
 - Aug. 27

* Dates are subject to change and should be checked with appropriate Class Schedule and Room Directory.

** Dates unavailable at time of publication. Consult the appropriate Class Schedule and Room Directory.

† For students graduating September 1993, the filing period is May 24-July 1. Deadline to file a minor program with Dean's Office: July 9.
DEGREES OFFERED BY UC DAVIS

Undergraduate majors and professional studies are administered by the colleges and schools listed. All graduate programs are administered by Graduate Studies.

<table>
<thead>
<tr>
<th>Major or Discipline</th>
<th>Degree*</th>
<th>Administering School or College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>M.B.A.</td>
<td>Graduate School of Management</td>
</tr>
<tr>
<td>Aeronautical Science and Engineering</td>
<td>B.S.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>African-American and African Studies (Afro-American Studies)</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Agrarian Studies</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural and Environmental Chemistry</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural and Managerial Economics</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural Education</td>
<td>B.S., Credential</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural Science and Management</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agronomy</td>
<td>M.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>American Studies</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Animal Behavior</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Animal Science</td>
<td>B.S., M.A., M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Anthropology</td>
<td>A.B. or B.S., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Applied Behavioral Sciences</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Applied Physics</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Art</td>
<td>M.F.A.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Art History</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Art Studio</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Atmospheric Science</td>
<td>B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Avian Sciences</td>
<td>B.S., M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>A.B. or B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Biological Systems Engineering</td>
<td>B.S.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Biophysics</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Botany</td>
<td>A.B. or B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Cell and Developmental Biology</td>
<td>Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>B.S.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Chemical Engineering/Materials Science and Engineering</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Chemistry</td>
<td>A.B. or B.S., M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Child Development</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Chinese</td>
<td>M.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Civil Engineering/Materials Science and Engineering</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Classical Civilization</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Classics</td>
<td>M.A.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Community Development</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Community Nutrition</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Comparative Literature</td>
<td>A.B. or B.S., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Comparative Pathology</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Computer Science</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Computer Science</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Consumer Food Science</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Design</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Dietetics</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Dramatic Art</td>
<td>A.B. or B.S., M.A., M.F.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>East Asian Studies</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Ecology</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Economics</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Education</td>
<td>M.S., Ed.D., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Electrical Engineering/Materials Science and Engineering</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>M.S., Ph.D.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Engineering</td>
<td>M.Engr., M.S., D.Engr., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Engineering—Applied Science</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>English</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Entomology</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Biology and Management</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Policy, Analysis, and Planning</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Toxicology</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental and Resource Sciences</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Exercise Science</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
</tbody>
</table>
MINOR PROGRAMS OFFERED BY UC DAVIS

Minor programs are offered by both the College of Agricultural and Environmental Sciences and the College of Letters and Science. The College of Engineering does not offer any minors.

<table>
<thead>
<tr>
<th>Minor Program</th>
<th>Offering Department</th>
<th>Administering College</th>
</tr>
</thead>
<tbody>
<tr>
<td>African-American and African Studies (Afro-American Studies)</td>
<td>Human Development</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Aging and Adult Development</td>
<td>Entomology</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural Entomology</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>American Studies</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Anthropology</td>
<td>Entomology</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Apiculture</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Art History</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Art Studio</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Asian American Studies</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Botany</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Chicano (Mexican-American) Studies</td>
<td>Applied Behavioral Sciences</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Chinese</td>
<td>Nutrition</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Community Development</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Community Nutrition</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Comparative Literature</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Dramatic Art</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>East Asian Studies</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Education</td>
<td>Environmental Policy Analysis and Planning</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>English</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Entomology</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Policy Analysis</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Environmental Geology</td>
<td>Geology</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Environmental Toxicology</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Fiber and Polymer Science</td>
<td>Textiles and Clothing</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Food Service Management</td>
<td>Nutrition</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>French</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Geography</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Geology</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Geophysics</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>German</td>
<td>Classics</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Greek</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>History</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>History and Philosophy of Science</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Human Development</td>
<td>Entomology</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Insect Ecology</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>International Agricultural Development</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Italian</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Japanese</td>
<td>Chinese and Japanese</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Latin</td>
<td>Classics</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Linguistics</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Entomology</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Medical-Veterinary Entomology</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Medieval Studies</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Native American Studies</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Nature and Culture</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Nematology</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Nutrition and Food</td>
<td>Nutrition</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Nutrition Science</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Philosophy</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Physical Education</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Political Science</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Psychology</td>
<td>Environmental Biology and Management</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Recreation</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Religious Studies</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Rhetoric and Communication</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Russian</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Sociology</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Spanish</td>
<td></td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Textiles and Clothing</td>
<td>Textiles and Clothing</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>War-Peace Studies</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Women's Studies</td>
<td></td>
<td>College of Letters & Science</td>
</tr>
</tbody>
</table>
Introduction
UC Davis

With 5,200 acres, UC Davis ranks first in physical size of the nine campuses of the University of California. It’s also one of the nation’s top 20 universities in research funding and has 11 undergraduate programs rated among the country’s top 10, including the No. 1 botany department. What does this mean to you as a student? It means that the University’s reputation for excellence has attracted a distinguished faculty of scholars and scientists in all fields of scholarship. Creative teaching and academic innovation are encouraged by several programs, including the $25,000 prize for Teaching and Scholarly Achievement, believed to be the largest award of its kind in the country.

The teaching faculty of 1700 is also supported by campus resources such as the Teaching Resources Center, which helps professors and teaching assistants sharpen their teaching skills, and the Learning Skills Center, which assists faculty in preparing classroom materials. Constructive criticism is provided by the Student Viewpoint, an evaluation of classes and instructors which is compiled each year from course questionnaires completed by students. Additional academic resources include laboratories; natural reserves; institutes; and centers for research, teaching, or service to students, faculty, or the community.

The Davis campus has undergraduate colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science. Undergraduate enrollment is close to 17,900 students. The Graduate Division administers graduate study and research at all schools and colleges. Professional studies are carried on at the schools of Law, Management, Medicine, and Veterinary Medicine. Approximately 5,400 students are engaged in graduate or professional study.

A Small-Town Setting

Davis is surrounded on all sides by open space—including some of the most valuable agricultural land in the state. Outdoor sports enthusiasts will find many beautiful recreational areas within a 70-mile drive from campus: Folsom Lake, Clear Lake, Lake Berryessa, the Napa and Sonoma valleys, and the historic Mother Lode country. The Sierra Nevada mountains, Lake Tahoe ski resorts, and coastal areas of Mendocino and Monterey are about 150 miles from Davis.

If you prefer the vibrant pulse of city life, Sacramento, the state capital, is only 15 miles to the east, and San Francisco is just 72 miles to the southwest. Both cities offer the symphony, the ballet, sporting events, theater, shopping, and other entertainment.

For long distance travel, the city has a Greyhound bus terminal and an Amtrak station. If you travel by plane, the Sacramento Metropolitan Airport is an easy 20-minute drive from downtown Davis. Within Davis, bicycles are a favorite mode of transportation. The terrain is flat and 46 miles of bike paths crisscross the city. With more bicycles per person than any other city in the nation, Davis has earned the title “City of Bicycles.”

Winters in Davis are generally mild. It rarely snows, but you should get used to your rainwear. Summers are sunny, hot, and dry. On some summer days, the thermometer can exceed 100 degrees, but overnight temperatures generally drop back into the fifties. Spring and fall weather is among the most pleasant in the state.

The City of Davis

Ecologically aware and socially innovative, Davis has a small-town friendliness and spirit of volunteerism that distinguishes it from cities of similar size. Residents are active in local, national, and international political causes, in the arts, and in community organizations ranging from Little League to the Rotary Club.

Students comprise nearly half of the city’s population of 46,000, making Davis one of the state’s few remaining “college towns.” You’ll find an abundance of bookshops, coffee houses, and restaurants catering to students in the bustling downtown area adjacent to campus.

Though closely linked to the university, the city maintains a strong identity of its own. The Davis Art Center, Comic Opera Company, Musical Theatre Company, and several local galleries provide creative outlets for people in the community and supplement the cultural events presented by the University.

The city has long recognized the importance of open space in maintaining its small-town atmosphere and has created 20 city parks offering a variety of attractions: tennis courts, playgrounds, swimming pools, playing fields, and even a skateboard facility.

Campus Life

Like the city of Davis, the campus has a relaxed, country atmosphere, with plenty of open spaces, trees, and lawns. Even as the student population grows, the campus manages to maintain its informal, friendly ambience.

Underlying the casual style of Davis students, however, is a fundamental seriousness and a dedication to academic excellence. Davis students do study hard. After your studying is done, however, you can relax at a movie, public lecture, dance recital, or concert. For the energetic, 20 intercollegiate sports, 35 club sports, and one of the largest intramural programs in the country offer athletics for fun or competition.

Davis welcomes the exchange of opinions and ideas and is committed to advancing the diversity of its students, faculty, staff, and administrators. UC Davis’s commitment to a learning environment characterized by mutual respect and understanding is reflected in the “Principles of Community” (see the opposite page).

The University Farm

Davis was founded in 1905 as a “University Farm” where students from the first UC campus in Berkeley learned the latest in agricultural methods and technology. This beginning gained Davis students their nickname as “Cal Aggies.” As the state’s population grew, so did demand for higher education, and in 1922, in conjunction with the UC Berkeley College of Agriculture, the degree of Bachelor of Science in Agriculture was awarded to students completing the Davis program. A few years later, the Davis campus had its own College of Agriculture.

In 1948 California’s only School of Veterinary Medicine was established at Davis. The College of Letters and Sci-
PRINCIPLES OF COMMUNITY

The University of California, Davis, is first and foremost an institution of learning and teaching, committed to serving the needs of society. Our campus community reflects and is a part of a society comprising all races, creeds, and social circumstances. The successful conduct of the University's affairs requires that every member of the University community acknowledge and practice the following basic principles:

We affirm the dignity inherent in all of us, and we strive to maintain a climate of justice marked by respect for each other. We acknowledge that our society carries within it historical and deep-rooted misunderstandings and biases, and therefore we will endeavor to foster mutual understanding among the many parts of our whole.

We affirm the right of freedom of expression within our community and also affirm our commitment to the highest standards of civility and decency towards all. We recognize the right of every individual to think and speak as dictated by personal belief, to express any idea, and to disagree with or counter another's point of view, limited only by University regulations governing time, place, and manner. We promote open expression of our individuality and our diversity within the bounds of courtesy, sensitivity, and respect.

We confront and reject all manifestations of discrimination, including those based on race, ethnicity, gender, age, disability, sexual orientation, religious or political beliefs, status within or outside the University, or any of the other differences among people which have been excuses for misunderstanding, dissension, or hatred. We recognize and cherish the richness contributed to our lives by our diversity. We take pride in our various achievements, and we celebrate our differences.

We recognize that each of us has an obligation to the community of which we have chosen to be a part. We will strive to build a true community of spirit and purpose based on mutual respect and caring.

The "Principles of Community" were prepared and adopted after extensive discussion within the campus community about the need for a statement which reflects UC Davis' commitment to a learning environment characterized by diversity, understanding, and the acceptance of all people. This statement of common principles was published on April 20, 1990, carrying the endorsement of Chancellor Theodore L. Hullar and the leadership of the Davis Division of the Academic Senate, the Academic Staff Organization, the UCD Staff Assembly, the UCDMC Staff Assembly, the Associated Students of UC Davis (ASUCD), and the Graduate Student Association.
ence was founded in 1951, bringing degree programs in the humanities to add to the campus' strong scientific foundation. By 1959, Davis had expanded enough to be declared a general campus of the University by the Regents, and the campus continued to grow. The College of Engineering came into being in 1962. The School of Law held its first classes in the fall of 1966, and the School of Medicine admitted its first students in the fall of 1968. Davis's newest addition, the Graduate School of Management, opened its doors in 1981.

From its beginning as a 778-acre teaching farm, UC Davis has grown and diversified, establishing an international reputation for teaching and research.

THE UNIVERSITY OF CALIFORNIA

The University of California began in 1868, when Governor Henry H. Haught signed the Organic Act, thus providing for California's first "complete University." Classes began the following year at the College of California in Oakland. The first buildings on the Berkeley campus were completed in 1873, and the University moved into its new home. The following June, the University of California conferred bachelor's degrees on 12 graduates.

Today the University is one of the largest and most renowned centers of higher education in the world. Its nine campuses span the state, from Davis in the north to San Diego in the south. In between are the Berkeley, San Francisco, Santa Cruz, Santa Barbara, Riverside, Irvine, and Los Angeles campuses.

All the campuses adhere to the same admission guidelines and high academic standards, yet each has its own distinct character, atmosphere, and academic individuality. Together, the nine campuses have an enrollment of more than 166,200 students, 90 percent of them California residents.

Some 150 laboratories, extension centers, and research and field stations strengthen teaching and research while providing public service to California and the nation. The collections of the more than 100 UC campus libraries are surpassed in size in the United States only by the Library of Congress collection.

The faculty of the University of California is internationally known for its distinguished academic achievements. On its nine campuses, the University has 26 Nobel laureates, and membership in the National Academy of Sciences is the largest of any university in the country. In 1991, 17 scholars from within the University received a Guggenheim fellowship grant, one of the highest honors that a scholar can receive.

VISITING THE CAMPUS

You may wish to arrange a visit to UC Davis sometime before you apply. If you have specific questions about application procedures or entrance requirements, it is a good idea to write or visit the Undergraduate Admissions Office. For individual or group weekday tours of the campus, contact the Information Services Office at least four or five days in advance. Weekend tours depart from the Buehler Alumni and Visitor's Center at 11:30 a.m. and 1:30 p.m. No appointment is necessary.

Information: Information Services Office, Buehler Alumni and Visitor's Center, 916-752-0539

UNDERGRADUATE ACADEMIC PROGRAMS

The College of Agricultural and Environmental Sciences

The College of Agricultural and Environmental Sciences offers a unique combination of diverse programs that have grown from a shared commitment to improve the quality of life in all its facets. Although its roots are in traditional agriculture and it is still world-renowned for its agricultural programs, the shared commitment has led to the College's expansion into programs which address four major areas: natural resources and the protection of the environment; the production, distribution, and consumer use of food and fiber; the advancement of basic biology, which underpins successful strategies to meet human needs; and issues of the enhancement of the human environment, including environmental design.

The College offers 38 majors in many different areas, including environmental biology and resource sciences, environmental toxicology and pest management, animal and plant sciences, basic biology, food production and processing, nutrition, textiles, human development, design, and managerial economics. The College strives to provide students with the intellectual tools to master their area of study and the ability to apply this knowledge to the world outside the university.

The College offers several levels of academic advising in order to help students get the most out of their education. Advisers can assist students in meeting degree requirements and in taking maximum advantage of the resources available at the University. Students are encouraged to talk not only with their assigned faculty adviser, but also with Advising Associates and peer advisers in different departments. This allows students to make educational decisions on the basis of informa-
tion and ideas from a wide variety of disciplines. Although degree requirements may appear complex, they are usually flexible enough for students to individualize their study programs. With the help of faculty advisers, students can explore many different areas while progressing toward their major degree objectives.

Students are responsible for maintaining regular contact with their faculty advisers, and good relationships are developed by meeting frequently and discussing evolving interests and goals. Faculty and students working together helps keep the College of Agricultural and Environmental Sciences vital and produces individuals committed to improving the relationship of humanity with the natural world.

Information: College Office, 228 Mraz Hall, 916-752-0107

The College of Engineering

The College of Engineering has a tradition of excellence in instruction, in research, and in public service. With an undergraduate enrollment of approximately 2,100 and a graduate enrollment of 600, the College can offer both a friendly atmosphere and the varied academic programs in basic sciences and engineering that have made UCD engineering graduates highly valued in industry and research.

The College has several departments; each has outstanding programs of instruction. The Department of Agricultural Engineering combines study in engineering with instruction in the biological processes used to solve challenging environmental and technical problems. The Department of Applied Science instructs engineering graduate students in broad areas of scientific technology. The Department of Chemical Engineering offers a curriculum integrating an effective knowledge of chemistry with engineering sciences to enable students to solve problems in both current and future product technologies. Devoted to the improvement of the human environment to make our activities and surroundings more productive, safe, enjoyable, and aesthetic, the Department of Civil and Environmental Engineering trains students to plan and design systems that have a direct impact on the health and quality of human life. The Department of Electrical Engineering and Computer Science offers programs in research and education crucial for the continued success of high technology industries in California and the nation, preparing students to design, analyze, and use electronic and computer systems effectively. The Department of Mechanical, Aeronautical, and Materials Engineering educates students to design and manufacture complex engineering systems for transport, industry, or energy; to design, manufacture, and operate aircraft and aeronautical structures; or to analyze the structure, properties, and behaviors of materials.

Every effort has been made to provide students in engineering with the maximum flexibility consistent with rigorous educational standards. The key to flexibility is academic advising. Incoming students are assigned to a faculty adviser before their first term on campus and usually retain the same adviser throughout their college careers. Faculty advising is supplemented by a well-developed peer advising system and by staff advising in the Dean's Office and in many departments.

Undergraduate education in engineering at Davis is intended to serve as a sound basis for beginning professional practice in engineering design and development, as a general preparation for careers in corporate or governmental operations, or as a foundation for graduate study. To these ends, the College emphasizes fundamental sciences to give the student the maximum postgraduate flexibility. Technological developments in recent years have made it clear that engi-
Engineers will continue to face new challenges as society continues its demand for improvements in the quality of life. As a unit in a land-grant institution, the UCD College of Engineering must help maintain the technological leadership long enjoyed by the United States, while advancing technology for the benefit of all.

Information: Dean's Office, 2132 Bainer Hall, 916-733-0553

The College of Letters and Science
The College of Letters and Science is the largest of the three undergraduate colleges at UC Davis. Through its more than 600 faculty members, the College offers over fifty major programs of study and thousands of courses per year in the arts, humanities, life sciences, physical sciences, social sciences, and mathematical sciences. The College confers Bachelor of Arts (A.B.), Bachelor of Science (B.S.), and Bachelor of Arts and Science (B.A.S.) degrees.

The College of Letters and Science is a community of scholars and students sharing a commitment to liberal education rather than to specialized, vocationally oriented training. The College seeks to expose students to the worlds of human experience, of ideas, of artistic accomplishments, and of matter and things. Although separate and distinct to the casual observer, these realms are interconnected and may be studied in a coherent curriculum. It is within this curriculum that students are able to explore a variety of academic fields, engage in the pursuit of fundamental knowledge, and gain the capacity for independent study and thought. By learning to think carefully and critically, students will be able to continue the on-going process of education that begins in the classroom but continues over a lifetime. They will have learned how to learn—the ultimate objective of a liberal arts education.

The educational goals of the College are reflected in the three primary groups of requirements established by the faculty: the English Composition Requirement, the Foreign Language and Area Requirements, and the Major Requirements.

The English Composition Requirement is designed to ensure that students are well versed in the skills of written communication.

The Foreign Language and Area Requirements provide students with a broad background of knowledge, guide them in exploration of the interdependencies of knowledge, and acquaint them with other cultures.

The Major Requirements are designed to provide students intellectual depth and competence in a selected area of study.

The College of Letters and Science recognizes and affirms the importance of perceptive and knowledgeable academic advising. The College has a well-developed system of faculty advisers, student peer advisers and professional staff advisers who are available for individual consultations with undergraduates in a variety of settings ranging from the Dean's Office to departmental offices to campus residence halls.

Woven throughout the tapestry of diversity that is the College of Letters and Science is a fundamental and unswerving commitment to excellence. The faculty of the College are dedicated to advancing the frontiers of human knowledge through research, artistic expression...
and other creative endeavors, and to the effective communication and application of that knowledge through teaching and public service. Together, faculty and students in the College of Letters and Science pursue these goals with enthusiasm and excitement.

Information: Dean's Office, 150 Mrak Hall, 916-752-0392

Academic Resources

Central Support
The University Library
The General Library at the University of California, Davis, is composed of the Peter J. Shields Library, the Physical Sciences Library, the Loren D. Carlson Health Sciences Library, the Agricultural Economics Library, and the library at the UCD Medical Center in Sacramento. A number of specialized departmental libraries are located on the campus, and the Law Library is located at the King Hall Law School.

The libraries contain over 2.4 million volumes and receive about 52,000 periodical and journal titles annually. Shields Library houses the collections in the humanities, arts, social sciences, biological sciences, and agricultural sciences. The collections of the Physical Sciences Library support teaching and research in engineering, computer sciences, physical sciences, and mathematics. The library maintains a collection of one million research reports of the U.S. Department of Energy, the National Aeronautics and Space Administration, the Nuclear Regulatory Commission, and other governmental agencies. The Carlson Health Sciences Library serves the Schools of Medicine and Veterinary Medicine with a collection of approximately 217,000 volumes. The Agricultural Economics Library holds more than 7,500 bound volumes and 244,000 unbound pamphlets in this field. The library at the UCD Medical Center provides a clinical collection of 22,000 volumes.

Information: Library Administration Office, Shields Library, 916-752-6561

Computing Services
Computing Services provides batch, interactive time-sharing, and remote job entry mainframe computing. Additionally, many microcomputers and scientific workstations are provided for student use at no charge. Computers operated by Computing Services include a Unisys A10FX, the primary administrative computer; a Unisys A66K for administrative development work and an A10FX backup; and two DEC VAX 5500s and two VAX 8600s for academic use. These systems support over 100 terminals located in four student terminal rooms, plus over 3,000 additional terminals and microcomputers located throughout the campus.

Information: Surve II, 916-752-0233

University Arboretum
The 150-acre University Arboretum, located along Putah Creek's historic north fork, maintains a large collection of dry-land trees and shrubs for use in teaching and research. Outstanding plant collections include the Shields Grove of oak trees, the Mary Wattis Brown Garden of California native trees and shrubs, the Ruth Storer Garden of drought-tolerant flowering perennials, and the T. Elliot Weier Redwood Grove. The Arboretum program of seed exchange is international in reputation, serves to distribute California native plants throughout the world, and has provided the University with numerous exotic plant specimens. Internships are available in nursery management, landscape design and maintenance, environmental education, conservation biology, and Geographic Information Systems (GIS).

Information: Arboretum Headquarters, 916-752-2486

Agricultural and Environmental Sciences

Agricultural History Center
The center coordinates and administers several research and publication programs designed to further the study of agricultural history. Primary research activities include studies of comparative farm policy, the history of farm land values, the causes and consequences of agricultural mechanization and other sources of productivity improvements in the nineteenth and twentieth centuries, and the impact of scientific research.

Information: 378 Voorhies Hall, 916-752-1827

California Agricultural Experiment Station
The California Agricultural Experiment Station has branches in Davis, Riverside, and Berkeley. The Davis branch includes 500 faculty in over 30 departments in the College of Agricultural and Environmental Sciences and the School of Veterinary Medicine. In addition to lab facilities, it has approximately 3,000 acres devoted to agricultural research in the areas of experimental crops, orchards, and animal facilities. The Experiment Station facilitates research in agricultural production, food processing, nutrition, animal care and disease prevention, consumer sciences and community development, and environmental quality. Research emphasis is placed on resource conservation and management, water and soil pollution, and regional planning.

Information: College of Agricultural and Environmental Sciences, 916-752-1616

Institute of Ecology
The Institute of Ecology has a campuswide responsibility to foster ecological and environmental research, provide intellectual leadership in ecology, administer resources and facilities, provide information on extramural support of ecological research, and maintain liaisons with governmental and private organizations interested in funding ecological and environmental research, or requiring advice on these subjects. The Ecology Institute has a publication series and sponsors national and international activities, including organizing symposia and conferences.

Information: 2132 Wescott Hall, 916-752-3026

Institute of Toxicology and Environmental Health (ITEH)
ITEH coordinates interdisciplinary research on biomedical and toxicological problems related to exposure to chemical, physical, and biological toxic agents or to ionizing radiation. Studies on toxic, radioactive, mutagenic, carcinogenic, and teratogenic compounds are carried out in special animal holding facilities. Central laboratories exist for analytical chemistry, radiochemistry, ionizing radiation detection and quantification, cell
biology research, inhalation toxicology, and human epidemiology. The institute houses a major Universitywide program in occupational health.

Information: Institute of Toxicology and Environmental Health, 916-752-1340

J.M. Tucker Herbarium

The J. M. Tucker Herbarium is used for research in plant systematics and ecology, and for handling public service requests. The herbarium contains more than 115,000 vascular plant specimens. It also houses 30,000 specimens of the Becher Crampton Herbarium Collection of grasses and other range plants. Smaller teaching herbaria are located in various plant science departments on campus.

Information: Department of Botany, 916-752-1091

Jepson Prairie Reserve

The Jepson Prairie Reserve is used to study the effects of long-term grazing, to conduct fire ecology research, and to aid in management of native grasslands. The reserve is located fifteen miles south of the campus and comprises 1,566 acres of perennial bunchgrass grassland and vernal pools. The Jepson Prairie area is typical of habitats that once covered most of California's Central Valley and is recognized as the best remnant of native prairie land. Several rare or endangered species are endemic to the area.

Information: Institute of Ecology, 2127 Wickson Hall, 916-752-6949

Mann Laboratory

Mann Laboratory researchers study the physiology and biology of harvested vegetables, train students, and disseminate information about postharvest biology and technology to growers, shippers, marketers and consumers. The facility is part of the Department of Vegetable Crops and houses 16 controlled-temperature rooms, seven research laboratories, a teaching laboratory, and a library/conference room.

Information: 113 Mann Laboratory, 916-752-1410

Putah Creek Campus Reserve

The goals of the Putah Creek Campus Reserve are habitat conservation, education, research, and environmentally directed recreation. The reserve consists of a 150-acre corridor along the north bank of Putah Creek's South Fork with a remnant of the riparian (streamside) ecosystem that once covered much of the Sacramento Valley. It is an excellent wildlife observation area. A mini-grants program through the Office of Research supports student projects.

Information: Davis Arboretum, 916-752-2498

Water Resources Center

The center supports selected research in such areas as agricultural sciences, biological sciences, economics, engineering, history, geography, law, meteorology, physical sciences, and political science. Research interests include drought responses, water resource systems engineering, economic evaluation of water development and conservation, political strategy in water resources development, environmental and energy relationships in water resources management, watershed hydrology, ground water use, soil and land use management in relation to water resources use, and maintenance and improvement of water quality.

Information: University Extension Building, 916-757-8901

Stebbins Cold Canyon Reserve

Terrain and rainfall patterns of the Cold Canyon area support examples of several different plant communities found in both the inner and outer coast ranges. The diversity of plant and animal species on the reserve, and its close proximity to the campus, contribute to the popularity of the reserve as an open-air classroom and research site. The 576-acre reserve is located 24 miles west of campus near Lake Berryessa and is available for teaching and field research by scientists and students.

Information: Department of Avian Sciences, 3202 Meyer Hall, 916-752-1300

Sustainable Agriculture Program: Student Experimental Farm

The Student Experimental Farm is an innovative teaching and research facility located on 25 acres of University land, and is the main focus of the Sustainable Agriculture Program. Since its inception, the Student Experimental Farm has provided students with unique opportunities to explore alternative agricultural technologies and philosophies through classes, special projects, internships, work study jobs, and original research. Because the farm includes several acres of land that have been managed organically for over a decade, it provides researchers with a facility for conducting field research into sustainable agriculture.

Information: Student Experimental Farm, 916-752-7645

UC Agricultural Issues Center

The UC Agricultural Issues Center, headquarter at Davis, is a Universitywide research and outreach unit that draws on expertise from many disciplines. The center is particularly interested in issues such as the impacts of demographic change on agriculture, natural resources, and rural life in California; the social, economic, and environmental effects of agricultural technologies; food consumption and international trade; and local and national policies that affect Western agriculture and its workers.

Information: 110 University House, 916-752-2320

Biological and Life Sciences

Adult Fitness Program

The Adult Fitness Program serves as an educational laboratory for graduate students engaged in advanced study of the role of exercise and nutrition in the management of optimal physiological function. Basic and clinical research studies are conducted in the areas of cardiovascular, respiratory, and metabolic functions. The program emphasizes risk reduction for cardiovascular disease and development of cardio-respiratory endurance. Studies stress fitness, relaxation, and weight reduction and control through appropriate diet and exercise programs which are individually prescribed after extensive medical and physiological testing.

Information: Department of Physical Education, 916-752-2540

Bodega Marine Laboratory and Reserve

The Bodega Marine Laboratory is an organized
research unit dedicated to research and teaching in marine biology and related fields. Research areas include population biology/ecology, cell and developmental biology, and aquaculture and fisheries. Well-equipped facilities contain running seawater to two classrooms and most laboratories, a marine science library, greenhouses, aviary, experimental freshwater system for anadromous fish studies, and a dive locker and air station. A number of undergraduate courses are taught during the academic year and summer session. The laboratory is located in Bodega Bay, Sonoma County, 100 miles west of Davis.

The Bodega Marine Reserve, part of the UC Natural Reserve System, is 362 acres of remarkably diverse habitats, including an excellent rocky intertidal zone, sand beaches, saltmarsh, lagoon tidal flats, freshwater marsh, coastal prairie, and dunes. Adjacent subtidal sand and rock habitats in a Marine Life Refuge are administered as part of the reserve. Current areas of research include population biology of shorebirds, marine invertebrates, fishes, and coastal plants; plant-insect interactions; subtidal biomechanics; and other topics.

Information: Bodega Marine Laboratory, P.O. Box 247, Bodega Bay, CA 94923, 707-875-2211

California Regional Primate Research Center (CRPRC)
The research staff of the California Regional Primate Research Center investigates selected human health problems for which the nonhuman primate is the animal model of choice. Research programs include behavioral biology, developmental and reproductive biology, respiratory diseases, virology and immunology, and a variety of biomedical collaborative research projects. A major theme of the CRPRC is the study of environmental influences on nonhuman primates and the identification of spontaneously occurring disorders.

Information: Primate Center, 916-752-0447

Food Intake Laboratory
The Food Intake Laboratory supports predoctoral and postdoctoral research in nutrition and behavior. Studies on the control of food intake and the nature of the factors that govern feeding choices are emphasized. The laboratory promotes collaborative research involving the role of metabolic, psychological, neurochemical, hormonal, gender, genetic, and sensory inputs in the feeding behavior of experimental animals.

Information: TB 33, 916-752-7516

Health Sciences Research Labs
The Health Sciences Research Laboratories are composed of several high technology biological science facilities with research staff and assistance for faculty, staff, and students. These include:
Animal Surgery Laboratory—provides surgical facilities in compliance with NIH/AAALAC standards for researchers who perform experimental animal survival surgeries.
Information: Buildings H and J—ARS, 916-752-7756

Biochemistry and Special Instrumentation Laboratory—a central facility providing investigators access to certain common but expensive laboratory equipment. Equipment includes ultracentrifuge and high speed centrifuge with rotors, scintillation and gamma counters, UV/VIS spectrophotometers, densitometers, Bepatube and Elisa readers.
Information: TB 161, 916-752-3166

Electron Microscopy Laboratory—provides transmission and scanning electron microscopes, freeze fracture apparatus, ultramicrotome, darkroom, photomicroscope, and complete EM specimen preparation facilities.
Information: H Hutchison Hall, 916-752-0284

Protein Structure Laboratory—provides instrumentation for protein sequencing and for amino acid, protein and DNA synthesis. Also available are a microbore HPLC for high sensitivity peptide mapping and a preparative HPLC for large scale purification.
Information: 1145 Surge 1, 916-752-6226

Human Performance Laboratory
The Human Performance Laboratory houses equipment for the study of blood and muscle chemistry and enzymology, metabolism and energetics, muscle mechanics and electromyography, movement kinetics and kinematics, body composition and anthropometry, cardiorespiratory function during exercise in a controlled environment, control and acquisition of motor skills, and the psychosocial aspects of human performance. DEC LSI-11 minicomputers, and Apple Macintosh and IBM microcomputers are located within the laboratory and can be used for data collection, reduction, graphing, and statistical analysis as well as for biomechanical, physiological systems, and human performance modeling.
Information: 164 Hickey Gym, 916-752-0965

Institute of Marine Resources
The marine food science component of this statewide institute is part of the Department of Food Science and Technology at Davis. The staff studies factors affecting the chemical, biochemical, microbiological, and nutritional properties of fish and other seafood. Current studies include those dealing with comparative biochemistry of proteolytic enzymes, the use of modified atmospheres for storage of seafood products, crustacea nutrition, carotenoprotein extraction as part of a project dealing with shellfish waste, and extracellular enzyme processing and production by a hydrocarbon-utilizing yeast.
Information: Temporary Building 186, 916-752-2506

Veterinary Genetics Laboratory
The laboratory is recognized for its pioneering research on animal blood groups and biochemical polymorphisms. Current research activities of the Veterinary Genetics Laboratory include: investigation of red cell, serum, lymphocyte and DNA genetic markers which enhance the effectiveness of current techniques applied to parentage investigation and identification of cattle, horses, sheep, goats, llamas, and dogs; study of breed relationships through gene frequency analysis; investigation of the mode of inheritance of several suspected hereditary diseases; and karyotyping for diagnosis of clinical diseases.
Information: Horse Bloodtyping Laboratory, Armstrong Tract, 916-752-2211; Cattle Bloodtyping Laboratory, Armstrong Tract, 916-752-7383

Veterinary Medicine Teaching and Research Center (VMTRC)
VMTRC serves as a clinical center of UCD’s School of Veterinary Medicine. The center offers a forum for teaching, research, and service programs on food-animal herd health, preventive medicine, production management, and food safety.
Information: 18830 Road 112, Tulare, California 93274. 209-688-1731

Engineering and Physical Sciences

Crocker Nuclear Laboratory
This facility is an interdepartmental laboratory for the application of nuclear science to a variety of disciplines. The laboratory has research programs in nuclear physics and chemistry, air pollution analysis, activation analysis, biology, neutron damage studies, the effect of background radiation on computers, and historical studies. Isotopes produced by the variable-energy 76-inch cyclotron are used in clinical and research applications, including pioneering work in brain imaging.
Information: Crocker Nuclear Laboratory, 916-752-1460

Center for Geotechnical Modeling
At the Center for Geotechnical Modeling, research in physical and numerical modeling is conducted by faculty and students from several departments and campuses of the University. The center operates two small centrifuges and the large National Geotechnical Centrifuge. These centrifuges are used for research on geotechnical problems such as the effect of earthquakes on earth structures, toxic waste transport, and foundations of large buildings.
Information: 2092 Bainer, 916-752-6986

Facility for Advanced Instrumentation
The Facility for Advanced Instrumentation is a training and research center where students, faculty, and staff have access to major scientific instruments. An electron microscope laboratory houses scanning and transmission electron microscopes adjacent to a specimen preparation laboratory. Morphometric analysis is supported by a computerized digitizing tablet and digitizing video image analysis computer. A mass spectrometer laboratory consists of a quadrupole mass spectrometer and a high resolution double-focusing instrument. The facility also coordinates access to additional instruments located in other departments around the campus.
Information: 9 Hutchison Hall, 916-752-0284

Institute of Theoretical Dynamics
The institute is an organized research unit promoting research and graduate education in the mathematical sciences. The institute provides a focus for extramural
and intramural research pursuits; the two most important research themes are dynamics and stochastic processes. Approximately 30 faculty from all of the colleges participate in the activities of the institute, which include conferences, workshops, seminars and summer schools. The institute provides networking of computer workstations, a gateway to supercomputers, research offices, and facilities for interaction with students, faculty, and visitors. Three core research areas are currently supported: mathematical biology, mathematical physics, and applied mathematical analysis, especially fluid dynamics.

Information: Academic Surge Building, 916-752-0938

Intercampus Institute for Research at Particle Accelerators

This institute conducts research that uses the unique facilities at national and international accelerator laboratories, particularly the Stanford Linear Accelerator Center, the Enrico Fermi National Accelerator Laboratory, the Japanese accelerator laboratory (KEK), and the German laboratory (DESY) in Hamburg. High-energy particle physics is the dominant area of research. The institute also promotes seminars and lectures by visiting researchers at individual campuses.

Information: Professor Richard L. Lander, Associate Director, 325 Physics/Geology Building, 916-752-1780

Nuclear Magnetic Resonance Facility

The Nuclear Magnetic Resonance Facility provides researchers with direct access to high resolution 500 MHz and 300 MHz General Electric spectrometers. Experts in NMR are available to advise and assist in the application of NMR to problems in chemistry, biochemistry, and molecular biology. For the study of metabolic processes in animals, a 1.9 Tesla spectrometer with a horizontal bore of 200 mm is available to obtain localized spectra and magnetic resonance images from animals. A 7 Tesla spectrometer for both in vivo NMR and magnetic resonance imaging is also available.

Information: Med Sci 10, 916-752-7677

X-Ray Crystallographic Facility

The X-Ray Crystallographic Facility is located in the Department of Chemistry. There are three automated four-circle diffractometers. One of these has a Siemens area detector and is used with an 18 kW rotating anode X-ray source, making it suitable for biocrystallography. There are also traditional Weissenberg and precession cameras. All diffraction equipment is fitted with low-temperature (Liq. N₂) attachments. In addition, the facility contains two VAX-station 3000 series computers, microcomputers, graphics terminals and multi-pen plotters. The laboratory is known for pioneering work in low-temperature crystallography, for the development of rapid structure determination methods, and techniques for handling reactive materials.

Information: Department of Chemistry, 916-752-6666

Humanities and Social Sciences

Center for Consumer Research

The center is a small research unit devoted to consumer issues. The major area of interest is food safety. The center also houses a library of books and periodicals on consumer-related topics.

Information: 148 Everson Hall, 916-752-2647

Early Childhood Laboratory

The Early Childhood Laboratory provides a facility where students enrolled in human development courses can develop observational techniques and participate with peers, children, parents, and professionals in a fully integrated early childhood program. The faculty help students link theory and practice, develop a recognition and respect for individual differences, and consider their interaction and communication styles. Selected graduate students and faculty also conduct research at the laboratory.

Information: Temporary Building 117, 916-752-2888

Humanities Institute

The Davis Humanities Institute organizes interdisciplinary research seminars open to graduates and faculty, and seeks to promote creative exchanges between the humanities, social sciences, and environmental sciences. Its fellowship program enables campus fellows, visiting fellows, and distinguished visitors to spend time in residence at the institute, and to participate in year-long or quarter-long seminars on designated themes. The seminar theme for 1992-93 is Constructions of Gender. In 1993-94, the theme will be Nature and Culture. The institute also co-sponsors lectures with other departments; organizes a Friday noon series of talks and films entitled "Problems and Paradigms"; produces a weekly calendar of events; and publishes a quarterly newsletter, Humanities at Davis.

Information: 508 Second Street, Suite 202, Davis, CA 95616-8612, 916-757-3470, FAX: 916-756-2876

Institute of Governmental Affairs

The Institute of Governmental Affairs (IGA) serves as a center for advanced social science research, IGA offers research opportunities for faculty, undergraduate, and graduate students, as well as for visiting scholars from throughout the United States and around the world. The Institute houses two centers: the Center for Regulation and Deregulation and the Center for State and Local Taxation. In addition, IGA sponsors five research programs: Labor and Immigration Policies; Pacific Rim Studies; Government and Politics; East Asian Business and Development; and Applied Public Policy. The institute also supports a wide range of public affairs programs, seminars, and conferences designed to foster debate on political, economic, and social issues. IGA provides specialized library services and oversees the Social Science Data Service.

Information: Shields Library, 916-752-2042

Social Science Data Service

The Social Science Data Service provides assistance to students and faculty interested in quantitative research involving the use of the computer. The facility offers consultation on statistical packages, database management, survey and database development, and data archives.

Information: 161 AOB 4, 916-752-6063
You can get the Undergraduate Application Packet from the counseling office of any California high school or community college or from the admission office of any UC campus.

Application Filing Periods

Submit your application for admission during the filing period for the quarter in which you want to attend UC Davis.

<table>
<thead>
<tr>
<th>Quarter of Attendance</th>
<th>Filing Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter quarter 1993</td>
<td>July 1-31, 1992</td>
</tr>
<tr>
<td>Spring quarter 1993</td>
<td>October 1-31, 1992</td>
</tr>
<tr>
<td>Fall quarter 1993</td>
<td>November 1-30, 1992</td>
</tr>
<tr>
<td>Winter quarter 1994</td>
<td>July 1-31, 1993</td>
</tr>
</tbody>
</table>

Submit your completed application form to:

University of California
Undergraduate Application
Processing Service
P.O. Box 23460
Oakland, California 94623-0460

Application Fees

The basic application fee to apply to one campus of the University is $40. For each additional campus you select, you must pay an extra $40 fee. These fees are not refundable. Attach a check or money order made payable to the Regents of the University of California to the application form.

PREPARING FOR UNIVERSITY WORK

A carefully planned program of high school courses provides you with the best preparation for University work. As a prospective University student, you should give priority to completing the high school courses required for admission—the "A to F" subject requirements.

You should take college preparatory courses that will challenge you to work hard and will prepare you beyond minimum levels of competence in reading, writing, and mathematics. A student who is well prepared for University work will have taken four years of English in high school, four years of mathematics, two to three years of foreign language, two to three years of laboratory science, one year of history, and one or more years of art or humanities.

Reading: You should become proficient in reading and understanding technical materials and scholarly works. Learn to read analytically and critically, actively questioning yourself about the author's intentions, viewpoint, arguments, and conclusions. Become familiar, and comfortable, with the conventions of standard written English, and with various writing strategies and techniques. Your reading experience should include original works in their entirety, not just textbooks and anthologies, and should encompass a wide variety of forms and topics.

Writing: Effective critical thinking and proficiency with the written language are closely related, and both are skills that every University student must master. By University standards, a student who is proficient in English composition is able to: a) understand the assigned topic; b) select and develop a theme by analysis and argument; c) choose words which aptly and precisely convey the intended meaning; d) construct effective sentences, i.e., sentences that economically and successfully convey the writer's ideas and display a variety of structures; and e) demonstrate an awareness of the conventions of standard written English.

If you plan to attend the University, you must take English courses in high school that require the development and practice of these skills. You must take at least four years of English composition and literature classes that stress expository writing.

Mathematics: Many undergraduate majors require preparation in mathematics beyond the three years required for admission to the University. All majors in the natural and life sciences, engineering, and mathematics require calculus. Many majors in the social sciences require statistics or calculus, or both. Calculus is also required for undergraduates preparing for careers in the environmental sciences, dentistry, medicine, optometry, pharmacy, and biostatistics. If you select a major that requires either calculus or statistics, you should expect to take that course during your first year at the University.

Prepare yourself for University courses in mathematics while you are still in high school. Good preparation includes a year of mathematics beyond second-year algebra (such as precalculus, mathematical analysis, analytic geometry) and, definitely, a course in mathematics during your senior year.

Algebra is necessary for success in University mathematics courses. Students who do not take a mathematics course during their last year in high school often find they need to take a preparatory course at the University in order to renew their algebra skills. The need to take such a course at the University could delay your undergraduate studies for which mathematics is a prerequisite.

Finally, take advantage of any guidance your high school offers in study skills, and diagnostic tests designed to assist you in assessing your college preparation. Managing your time well and studying effectively are critical to excelling at the University. Together with solid academic preparation, these skills should enable you to realize your educational goals and, ultimately, fulfill your career aspirations.

ADMISSION AS A FRESHMAN

The University of California defines a freshman applicant as a student who has graduated from high school but has not enrolled since then in a regular session in any college-level institution. Summer session immediately following high school graduation is excluded in this determination.

Admission requirements vary for California residents and nonresidents. Nonresidents must meet higher scholarship requirements.

The following describes the minimum requirements to
establish eligibility at the University of California. At UC Davis, students generally must perform well above these minimums in order to gain admission.

Requirements for California Residents

To be eligible for admission to the University of California as a freshman, you must meet the subject requirements, scholarship requirement, and examination requirements that are described on this and the following pages.

Subject Requirements: A to F

You must complete at least 15 high school units in the subject areas listed below. At least 7 of the required 15 units will have to be taken in the last two years of high school. The required course sequence is often referred to as the "A to F" pattern.

Courses taken in the ninth grade and completed with a grade of C or better can satisfy a subject requirement, however, the grades will not be used in computing your grade-point average. If you receive a grade of D or lower in a ninth-grade course, you have not satisfactorily completed the subject requirement until you repeat the course (or, in some cases, complete a more advanced course) with a grade of C or better.

A. History—1 year

One year of United States history, or one-half year of United States history and one-half year of civics or American government.

B. English—4 years

Four years of English—composition and literature (classes should stress preparation for university study, including frequent and regular practice in writing expository prose compositions of some length). Not more than one year will be accepted from the ninth grade. (See English Proficiency below.)

C. Mathematics—3 years

Three years of mathematics—elementary algebra, geometry, and intermediate algebra. (Courses taken in grades seven and eight may partially satisfy the requirement if they are accepted by the high school as equivalent to its own courses.)

D. Laboratory Science—1 year

A year course in one laboratory science, taken in the tenth, eleventh, or twelfth grade.

E. Language other than English—2 years

Two years of the same language other than English. Courses should emphasize speaking and understanding, and include instruction in grammar, vocabulary, reading, and composition. (Courses taken in grades seven and eight may satisfy this requirement if they are accepted by the high school as equivalent to its own courses.)

F. College Preparatory Electives—4 years

Four years in addition to those required in "A" through "E" above, to be chosen from at least two of the following subject areas.

• History and English: courses that fit the general description for elective courses above.

• Advanced mathematics: trigonometry, linear algebra, precalculus (mathematical analysis), calculus, statistics, computer science, and similar courses. (Courses containing significant amounts of material for arithmetic or from shop, consumer, or business mathematics are not acceptable.)

• Laboratory science: courses in the biological and physical sciences. A general science course taken in grade nine as preparation for a laboratory science may be used.

• Language other than English: courses may be in either the same language used to satisfy the "E" requirement or a second foreign language. If a second language is chosen, however, at least two years of work in that language must be completed.

• Social science: courses that fit the general description for elective courses above, and that serve as preparation for lower division work in social science at the University. (Courses of an applied, service, or vocational nature are not acceptable.)

• Visual and performing arts: courses should enable students to understand and appreciate artistic expression, and to talk and write with discrimination about artistic materials studied. Courses that develop creative artistic ability or artistic performance may be used. (Courses that are recreational or are offered under physical education are not acceptable.)

If you are a California high school graduate, the courses used to satisfy the Subject Requirement must appear on a list that your high school principal has certified meets the course descriptions above, and has placed on file with the University’s Office of Student Academic Services. If you submit courses from an out-of-state school, the Undergraduate Admissions Office will determine if your courses fulfill the Subject Requirement.

English Proficiency

Instead of a fourth year of high school English, you may satisfy the English Proficiency Requirement by completing one of the following:

• College Board Achievement Test in English Composition (a score of 600 or above); or

• Advanced Placement Examination in English Composition and Literature or English Language and Composition (a score of 5, 4, or 3); or

• California State University and Colleges English Equivalency Test (a "pass for credit" only).

The requirement may also be satisfied with a transferable college-level English course in literature, composition, or speech, worth 3-semester or 4-quarter units in which you earned a grade of C or higher.

Scholarship Requirement

An applicant must have earned a grade of C or better in all high school courses to satisfy the "A" through "E" requirements above. The grades earned in these courses that are taken in grades ten through twelve will be used to evaluate the grade-point average for minimum eligibility.

If you attain a grade-point average of 3.30 [where the letter grade A=4, B=3, and C=2, and in university-approved honors or advanced placement courses]
taken during the tenth, eleventh and twelfth grades (limit of four year-long courses with not more than two coming from the tenth grade) where the letter grade A=5, B=4, and C=3 in the required "A to F" subjects taken after the ninth grade, you will meet the minimum requirements to be eligible to enter the University, regardless of your scores on standardized tests. If your grade-point average falls between 3.29 and 2.82, you will meet the minimum requirements for the University if you achieve the specified scores on the standardized tests (see the Eligibility Index opposite).

In determining the required grade-point average, the University will use a semester grade of A in one course to balance a semester grade of C in another. Grades you received in courses taken in the ninth grade or earlier are not used in determining your grade-point average. (However, these courses may be used to satisfy subject requirements.) The grades that appear on your official high school transcript, including those earned in accelerated and advanced courses, are the grades the University will use in evaluating your record. Grades are counted on a semester basis unless your school gives only year grades.

To meet the Subject and Scholarship Requirements you may repeat courses in which you received a grade of D or lower. The grade achieved in the repeated course will be calculated into the grade-point average. There is no limit to the number of repeated courses that may be used in the "A to F", but each course may be repeated only one time.

Examination Requirement

All freshman applicants must submit scores from the College Board or the American College Testing (ACT) Program. If you are applying for admission to the fall quarter, take the tests no later than December of your senior year (earlier testing is recommended). The following tests are required:

- Scholastic Aptitude Test (College Board)—The verbal and mathematics tests scores you submit must be from the same sitting
 - 3.07 1010 24
 - 3.08 980 23
 - 3.09 960 23
 - 3.10 940 22
 - 3.11 910 22
 - 3.12 890 21
 - 3.13 870 21
 - 3.14 840 20
 - 3.15 820 20
 - 3.16 800 19
 - 3.17 770 19
 - 3.18 750 18
 - 3.19 730 18
 - 3.20 700 17
 - 3.21 680 17
 - 3.22 660 16
 - 3.23 630 16
 - 3.24 610 15
 - 3.25 590 15
 - 3.26 560 14
 - 3.27 540 14
 - 3.28 520 13
 - 3.29 490 12

- American College Test

AND

- Three Achievement Tests (College Board), which must include (a) English Composition (with or without the essay), (b) mathematics (level I or II), and (c) one test from the social studies or science or foreign language, or the test in English literature.

If you are a California resident and your grade-point average in the required high school subjects is 3.30 or higher, the tests are required but your scores will not be used to determine your minimum eligibility for admission. (Reminder: At UC Davis, students generally must perform well above the minimums in order to gain admission).

If your grade-point average in the "A to F" requirement is less than 3.30, refer to the table below to see the examination scores you must earn to be eligible for University admission.

Make arrangements to take the required Scholastic Aptitude Test (SAT) and the Achievement Tests by writ-

*The American College Test (ACT) is scored in intervals of 1 point from a minimum of 1 to a maximum of 36.

†The Scholastic Aptitude Test (SAT) is scored in intervals of 10 points from a maximum of 600 to a maximum of 1600.
Notification

Upon completion of a review of your academic records, you will be notified of your admission status by letter.

The length of time before admission notification varies, depending upon the completeness of your application. For example, most applicants for fall quarter will be notified of their admission status between February 1 and mid-March for freshmen, and February 1 and May 1 for transfer applicants. The Statement of Intent to Register should be returned by May 1 (as a freshman) or June 1 (as a transfer) to notify the campus that you wish to attend. Students admitted to winter or spring quarter must return the Statement of Intent to Register by the date specified in the notification of admission. Students not selected for admission consideration at the UC campuses to which they have applied may have their application considered at another UC campus where space is still available.

Acceptance of Admission

When you receive your notification of admission you will also receive an important form called the "Statement of Intent to Register" (SIR). Complete the form and return it to the Admissions office, along with the required nonrefundable $100 deposit, in order to complete the admissions process. This advance deposit is applied to your University Registration Fee as long as you register in the quarter to which you are admitted. Intercampus transfer, EOP, and readmission applicants are not required to submit the $100 advance deposit; however, they will pay full registration fees at the time of registration.

Requirements for Residents of Other States

If you are a freshman applicant who does not claim California residency, you must meet the following requirements for admission to the University of California:

- Graduate from a regionally accredited or state-accredited high school
- Satisfactorily complete the subject requirements listed under Requirements for California Residents
- Earn a grade point average of at least 3.4 (B+) on the courses used to meet the subject requirements
- Complete the examination requirements listed for California residents

Admission by Examination Alone

If you do not meet the minimum scholarship and subject requirements for admission, you can meet minimum requirements for admission as a freshman by examination alone. (If you have completed transferable college courses, College Board tests cannot be taken in academic subjects covered in those courses.) You must take the same College Board tests discussed above and receive a total score of at least 1300 on the Scholastic Aptitude Test, or a score of 31 on the American College Test. Your total score on the three Achievement Tests must be 1650 or higher with no score less than 500 on an individual Achievement Test. If you are a nonresident applicant, your score on the three Achievement Tests must be 1730 or higher.

High School Proficiency Examination

The University of California will accept the Certificate of Proficiency or the General Education Development (GED) certificate awarded by the State Department of Education, in lieu of the regular high school diploma. However, you must also meet all other University entrance requirements (subject, scholarship, examination).

Transfer Credit

Transfer credit may be granted to a freshman applicant for an acceptable college course taken while still in high school if an official transcript is received from the college that conducted the course.

Transfer credit is also granted for each College Board Advanced Placement Examination completed with a score of 3, 4, or 5. International Baccalaureate Higher Level Examinations with scores of 5, 6, or 7 will receive transfer credit.

ADVANCED PLACEMENT EXAMINATIONS

If you take one or more of the College Board Advanced Placement (AP) Examinations and score 3, 4, or 5, you will be awarded college credit. The credit will become part of the minimum 180 quarter units you need in order to receive a bachelor's degree. The credit from the AP Examinations may also be used to satisfy specific degree requirements. Consult the chart on the facing page to learn how many units you will receive for an AP Examination (see the column headed: Credit Toward Degree), and how those units will be applied toward specific degree requirements (see the column headed: Credit Allowed Toward Specific Degree Requirements). Please note that the courses for which AP credit has been granted may not be used as a substitute for courses required as part of the UCD General Education Requirement. Rather, AP credits are counted as transfer credits and may reduce the number of General Education (GE) courses you have to complete. (See GE section in Bachelor's Degree Requirements chapter.)

In general you may not earn University credit for courses that duplicate credit already earned through AP. There are, however, a few exceptions to this general rule. Since it is often difficult to know exactly which UCD course you should take when you have earned AP credit, you should talk with an academic adviser in your department or dean's office before selecting and enrolling in classes.

ADMISSION AS A TRANSFER STUDENT

The University of California defines a transfer applicant as a student who has been a registered student in a college or university or in college-level extension classes since last attendance at high school. Summer session attended immediately following high school graduation is excluded in this determination. If you are a transfer applicant, you may not disregard your college record and apply for admission as a freshman.

California residents must meet the requirements that follow. If you are not a California resident, see Require-
College Board Advanced Placement (AP) Examination Credit

<table>
<thead>
<tr>
<th>EXAMINATION</th>
<th>UCD COURSE SCORE</th>
<th>UCD COURSE EQUVALENCIES</th>
<th>CONTINUING COURSE</th>
<th>CREDIT TOWARD DEGREE</th>
<th>CREDIT ALLOWED TOWARD SPECIFIC DEGREE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH English</td>
<td>5, 4</td>
<td>English A, 1, 3</td>
<td></td>
<td>8 units</td>
<td>English/ Humanities Credit</td>
</tr>
<tr>
<td></td>
<td>English</td>
<td>3</td>
<td></td>
<td>8 units</td>
<td>Satisfies Subject A requirement.</td>
</tr>
<tr>
<td>FOREIGN LANGUAGES French</td>
<td>5</td>
<td>French 22</td>
<td>French 23, or consultation with adviser</td>
<td>8 units</td>
<td>Satisfies Subject A requirement.</td>
</tr>
<tr>
<td>French</td>
<td>4</td>
<td>French 21</td>
<td>French 22</td>
<td>8 units</td>
<td>College of Engineering:</td>
</tr>
<tr>
<td>French</td>
<td>3</td>
<td>French 3</td>
<td>French 21</td>
<td>8 units</td>
<td>4 units Four units satisfies first part of English composition requirement.</td>
</tr>
<tr>
<td>German</td>
<td>5, 4</td>
<td>German 4, 6, or 6B</td>
<td>German 101, upper division literature courses</td>
<td>8 units</td>
<td>College of Engineering:</td>
</tr>
<tr>
<td>German</td>
<td>3</td>
<td>German 3</td>
<td>German 4, 6, or 6B</td>
<td>8 units</td>
<td>6 units Satisfies English 1, 4 units toward Humanities and Social Sciences electives.</td>
</tr>
<tr>
<td>Latin (Vergil)</td>
<td>5, 4, 3</td>
<td>Latin 2</td>
<td>Determined by consultation with Classics adviser</td>
<td>4 units</td>
<td>College of Letters and Science:</td>
</tr>
<tr>
<td>Latin (Lyric)</td>
<td>5, 4, 3</td>
<td>Latin 2</td>
<td>Determined by consultation with Classics adviser</td>
<td>4 units</td>
<td>Satisfies first course toward English Composition requirement.</td>
</tr>
<tr>
<td>Spanish</td>
<td>5, 4</td>
<td>Spanish 21 or 23</td>
<td>Spanish 22, 24 or 23, or more advanced course in consultation with adviser</td>
<td>8 units</td>
<td>Humanities Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Spanish</td>
<td>3</td>
<td>Spanish 3</td>
<td>Spanish 21, or consultation with adviser</td>
<td>8 units</td>
<td>4 units In each foreign language examination passed.</td>
</tr>
<tr>
<td>HUMANITIES Art Studio</td>
<td>5</td>
<td>Art Studio 2, 5</td>
<td></td>
<td>8 units</td>
<td>Humanities Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Art Studio</td>
<td>4</td>
<td>Art Studio 2</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Art History</td>
<td>5</td>
<td>Art History 1A, 1B, 1C</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Art History</td>
<td>4, 3</td>
<td>History 17A, 17B</td>
<td></td>
<td>8 units</td>
<td>Humanities Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>American History</td>
<td>5, 4, 3</td>
<td>History 4A, 4B, 4C</td>
<td></td>
<td>8 units</td>
<td>4 units History 4A and 4B may be taken for full credit.</td>
</tr>
<tr>
<td>European History</td>
<td>4, 3</td>
<td>History 4B, 4C</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Music</td>
<td>5, 3</td>
<td>Music 10</td>
<td></td>
<td>8 units</td>
<td>Humanities Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>NATURAL SCIENCES Biology</td>
<td>5, 4, 3</td>
<td>Biological Sciences 10</td>
<td></td>
<td>8 units</td>
<td>Humanities Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Chemistry</td>
<td>5</td>
<td>Chemistry 2A</td>
<td>Determined by consultation with adviser</td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Chemistry</td>
<td>4</td>
<td>Chemistry 10</td>
<td></td>
<td>8 units</td>
<td>humanities</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>5, 4</td>
<td>Computer Science Engineering 30</td>
<td>Computer Science Engineering 40</td>
<td>4 units</td>
<td>Satisfies American History and Institutions requirement. History 17A, 17B, and 17C may be taken for full credit.</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>3</td>
<td>Computer Science Engineering 30</td>
<td>Computer Science Engineering 40</td>
<td>4 units</td>
<td>Satisfies American History and Institutions requirement. History 17A, 17B, and 17C may be taken for full credit.</td>
</tr>
<tr>
<td>Mathematics AB</td>
<td>5, 4</td>
<td>Mathematics 12, 16A, or 21A</td>
<td>Mathematics 168 or 21B</td>
<td>4 units</td>
<td>Satisfies American History and Institutions requirement. History 17A, 17B, and 17C may be taken for full credit.</td>
</tr>
<tr>
<td>Mathematics B</td>
<td>5</td>
<td>Mathematics 12, 16A-16B, or 21A-21B</td>
<td>Mathematics 168 or 21B</td>
<td>4 units</td>
<td>Satisfies American History and Institutions requirement. History 17A, 17B, and 17C may be taken for full credit.</td>
</tr>
<tr>
<td>Mathematics BC</td>
<td>4, 3</td>
<td>Mathematics 12, 16A, or 21A</td>
<td>Mathematics 168 or 21B</td>
<td>4 units</td>
<td>Satisfies American History and Institutions requirement. History 17A, 17B, and 17C may be taken for full credit.</td>
</tr>
<tr>
<td>Physics B</td>
<td>5</td>
<td>Physics 1A, 1B, 3A, 5B, 5C, 10</td>
<td>Physics 10</td>
<td>4 units</td>
<td>Satisfies American History and Institutions requirement. History 17A, 17B, and 17C may be taken for full credit.</td>
</tr>
<tr>
<td>Physics B</td>
<td>4</td>
<td>Physics 1A, 1B, 3A, 5B, 5C, 10</td>
<td>Physics 10</td>
<td>4 units</td>
<td>Satisfies American History and Institutions requirement. History 17A, 17B, and 17C may be taken for full credit.</td>
</tr>
<tr>
<td>Physics C</td>
<td>5, 4</td>
<td>Physics 1A, 5A, 5A</td>
<td></td>
<td>4 units</td>
<td>Social Science Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Physics C</td>
<td>3</td>
<td>Physics 1A, 5A, 5A</td>
<td></td>
<td>4 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Physics C</td>
<td>5</td>
<td>Physics 1B</td>
<td></td>
<td>4 units</td>
<td>Social Science Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>SOCIAL SCIENCE American Government and Politics</td>
<td>5, 4, 3</td>
<td>Political Science 1</td>
<td></td>
<td>4 units</td>
<td>Social Science Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Comparative Government and Politics</td>
<td>5, 4, 3</td>
<td>Political Science 1</td>
<td></td>
<td>4 units</td>
<td>Social Science Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Economics (Micro)</td>
<td>5, 4, 3</td>
<td>Economics 1A</td>
<td>Determined by consultation with Economics adviser</td>
<td>4 units</td>
<td>Social Science Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Economics (Micro)</td>
<td>5, 4, 3</td>
<td>Economics 1B</td>
<td>Determined by consultation with Economics adviser</td>
<td>4 units</td>
<td>Social Science Credit/Unrestricted Electives</td>
</tr>
</tbody>
</table>
Requirements for California Residents

Transfer applicants must meet one of the following conditions:

- If you were eligible for admission to the University when you graduated from high school—meaning you satisfied the subject, scholarship, and examination requirements—you are minimally eligible for admission if you have a C (2.0) average in your transferable college course work.

If you have completed fewer than 12 quarter or semester units of transferable college credit since high school graduation, you must also satisfy the examination requirement for freshmen. All transfer students, regardless of the date of high school graduation, must meet the high school requirements stated earlier in this catalog, or establish eligibility as junior-level transfers.

- If you have graduated from high school and meet the needed scholarship and examination requirements but you have not completed one or more of the "A to F" subjects while in high school, you will be minimally eligible to be considered for admission after you have:
 1. established an overall grade-point average of 2.00 or better in another college or university;
 2. completed with a grade of C or better appropriate college courses in the high school subjects that you lack; and
 3. completed 12 or more transferable quarter (or semester) units, or have met the freshman examination requirement.

- If you did not meet the needed scholarship requirement or did not meet the scholarship requirement and lack the required subjects, you will be minimally eligible to be considered for admission after you have:
 1. completed 84 transferable quarter (56 semester) units of credit in college courses; and
 2. established an overall grade-point average of 2.40 or better in another college or university; and
 3. completed one of the following:
 a. appropriate college courses, with a grade of C or better, in high school subjects that you lacked—up to two units (one unit=one year-long course) of credit may be waived except in English and mathematics;
 or
 b. a college course, or courses, in mathematics; one in English; and one in either U.S. history, a laboratory science, or a language other than English, all with grades of C or better. The mathematics component must at least be equal to algebra, geometry, and advanced algebra. A course for which advanced algebra is a prerequisite, including statistics, will satisfy the entire requirement. Courses on the application of statistics to particular disciplines (i.e., business statistics) may not be used to satisfy this requirement. Courses other than mathematics must be transferable to the University.

ADMISSION AS AN INTERNATIONAL STUDENT

International students attend the University of California, Davis from many countries in the world. An international application may be obtained by writing the Undergraduate Admissions Office, University of California, Davis, California, 95616. It is very important that the application be filed during the appropriate filing period.

To be eligible for admission to the University, international students need to meet specific academic and financial qualifications. International students are responsible for providing the University with all secondary school and college transcripts. The Test of English as a Foreign Language (TOEFL) is a require-
ment of admission for applicants from abroad or for those with little schooling in the United States, when English is not the applicant's native language. A minimum score of 500 is required.

The Scholastic Aptitude Test (SAT) and Achievement Tests are required for international freshman applicants who are graduates of U.S. high schools or American-type schools abroad and for applicants from countries with educational systems that do not have national, external examinations at the end of secondary school. Because many preliminary admission decisions are made on the basis of test scores and marks, all international freshman applicants are strongly encouraged to take these tests and to have the official scores reported to UC Davis as early as possible.

For transfer students, course work is considered transferable if the applicant completed the course at an institution that is recognized by the University of California and is comparable to course work offered at the University of California.

Most international students are required to complete a "Certification of Finances" form that attests to the student's ability to pay for non-resident tuition and fees and living expenses.

All international students who have not satisfied the Subject A requirement through domestic course work or testing, or whose native language is not English, must take the Examination in English for Non-Native Speakers upon entrance to UC Davis. Depending on the results of the exam, students may be required to enroll in appropriate classes until they have achieved the necessary language skills.

UC Davis welcomes competent, qualified applicants from around the world.

CAMPUS SELECTION CRITERIA

UC Davis makes every effort to provide a place for all California resident applicants who meet the minimum admission requirements and file an application during the appropriate priority filing period.

In recent years, the number of applicants for some majors has far exceeded the number of spaces available. When UC Davis cannot accept all eligible applicants, it uses standards that are more demanding than the minimum requirements to select students. These standards, which are called selection criteria, identify those students who have demonstrated the capacity for high academic achievement and who have a variety of other qualities that can contribute to the strength and diversity of the campus community.

The selection criteria described below will be used for applicants for the fall 1993 term. The criteria may differ for the winter and spring terms because enrollment targets and applicant qualifications change. Applicants for winter or spring should contact the Undergraduate Admissions Office for more information.

Selection Guidelines

Each campus, in consultation with the Office of the President, develops enrollment targets that specify the number of new freshman and advanced standing students expected to enroll. Campuses that receive more applications than the number required to meet their enrollment target admit students using the criteria described below.

Freshman Applicants

Academic Criteria (used to select 60% of admits): Davis selects freshman applicants who have made the greatest effort to fully prepare academically as measured by the following criteria:
1. Calculated GPA on all academic courses completed in the "A to F" subject areas, with additional points given for honors courses. Maximum value is 4.00.

2. College entrance test scores—SAT or ACT and three required Achievement test scores.

3. The number and content of college preparatory courses taken in academic subjects beyond UC minimums.

4. The number of University-approved honors or advanced placement courses completed or in progress.

Supplemental Criteria (used to select 40% of admits): Applicants are evaluated using the selection criteria described above in conjunction with the following supplemental criteria:

1. Personal accomplishments, talents, experiences, or interests that will contribute to the educational environment of the campus.

2. Special circumstances which may have affected the applicant’s life, including personal hardship, disabilities, economic disadvantage, and membership in groups historically underrepresented at the University.

Transfer Applicants

Academic Criteria: Top priority for admission consideration is given to UC-eligible California community college junior level transfer applicants. Other UC eligible transfer applicants will be admitted if space is available.

When applications far exceed the number of spaces available—for majors such as engineering, biological sciences, computer science, environmental policy analysis and planning, and psychology, for example—the completion of specific lower division preparatory courses for the major is required. Contact Undergraduate Admissions for information on which majors are so impacted.

Supplemental Criteria: The same supplemental criteria described above for freshmen are used.

READMISSION

If you are a former UCD undergraduate student planning to return to UC Davis, you must file an Application for Readmission and pay a nonrefundable fee of $40. This application is available in the Office of the Registrar. (You are a former student if you have interrupted the completion of consecutive terms of enrollment on the Davis campus.) Official transcripts of all work you may have attempted in the interim must be submitted to the Office of the Registrar.

Undergraduate students applying for readmission must file their applications on or before the following deadlines:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Deadline Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 1992</td>
<td>August 21, 1992</td>
</tr>
<tr>
<td>Winter 1993</td>
<td>December 4, 1992</td>
</tr>
<tr>
<td>Spring 1993</td>
<td>March 5, 1993</td>
</tr>
<tr>
<td>Fall 1993</td>
<td>August 27, 1993</td>
</tr>
</tbody>
</table>

SPECIAL PROGRAMS

Academic Reentry Program

The Academic Reentry Program helps students in nontraditional age categories with applying to reenter the University after life and work experience. Readmission and reentry advising provides assistance in combining past study with current academic and career goals. A reentry student who has not met the entrance requirements but has demonstrated recent academic potential, has special talents, or a disadvantaged educational history may be considered for admission by exception. (See also the Academic Advising and Student Resources section.)

Concurrent Enrollment

Concurrent courses are regular University courses open to the community on a space-available basis through UC Extension. This program allows an individual to pursue academic interests and to test academic abilities at the University.

For information, write the University Extension Office, Research Park, University of California, Davis 95616, 916-757-8777.

Educational Opportunity Program/Student Affirmative Action (EOP/SAA)

The Educational Opportunity Program/Student Affirmative Action provides opportunities in higher education and assists students from ethnic groups that are underrepresented in the UC eligibility pool (American Indian, African-American, Chicano, and Latino). Also, the program assists students with a disability and students from economically and/or educationally disadvantaged backgrounds. EOP/SAA can help you with the admission application process and offers academic, social, and cultural support. (See also under the Academic Advising and Student Resources chapter.) An admissions application fee waiver and financial aid are available to those individuals with demonstrated financial need. You can contact the Undergraduate Admissions Office for information on obtaining the fee waiver.

An EOP/SAA applicant may be admitted in one of these two ways: (1) as a freshman or advanced standing student who has met the standard admission requirements, or (2) as an admitted exceptio because the applicant has not met the admission requirements but has demonstrated strong academic potential.

To apply for the program, each applicant must complete the regular UC admission application form and complete the appropriate places related to EOP. In addition, the applicant is advised to discuss the reasons for requesting EOP assistance in the required essay.

Limited Status

Students in limited status are those whose special attainments qualify them to take certain courses in the University toward a definite and limited objective. Fees and filing dates are the same as those for new applicants. To apply for limited status admission, you must either have a bachelor’s degree or have completed a substantial amount of college work with a satisfactory
grade-point average. You must also submit transcripts from all schools attended. You will not be admitted to limited status for the purpose of raising a low scholarship average.

As a limited status student you will be expected to maintain a certain scholarship average during a predetermined time of enrollment.

Admission to the College of Agricultural and Environmental Sciences requires the approval of the Admissions Officer and the dean of the college.

Enrollment pressures have necessitated closing this category of admission for the College of Engineering and the College of Letters and Science.

Second Baccalaureate
If you have a bachelor's degree substantially equivalent to one that is granted by the University of California, you may be allowed to enroll as an undergraduate seeking a second bachelor's degree. Admission in this category will depend upon a superior academic record and clear evidence of a change in objective.

Admission to the College of Agricultural and Environmental Sciences requires the approval of the Admissions Officer and the dean of the college.

Enrollment pressures have necessitated closing this category of admission for the College of Letters and Science. The College of Engineering will accept applicants if their first degree is not in engineering and if they complete the lower division engineering program at a California Community college.

Special Status
The special status classification is for applicants 21 years of age or older who have not had the opportunity to complete a satisfactory high school program or who have not completed a substantial amount of college work, but by reason of special attainment or background may be prepared to undertake certain courses at UC Davis toward a definite and limited objective.

You will not be admitted to special status for the purpose of fulfilling requirements for admission as a regular student. Conditions for admission are determined by the Admissions Officer and are subject to approval by the dean of the college in which you plan to enroll. Admission is for a specified time only and a prescribed scholarship average must be maintained. Fees and filing dates are the same as those for new applicants.

Enrollment pressures have necessitated closing this category of admission for the College of Engineering and the College of Letters and Science.

ADMISSION CHECKLIST
☐ 1. Obtain the undergraduate admissions packet from your high school, a community college, or a campus of the University of California. If you are not a California resident, request an application from the Undergraduate Admissions Office, 175 Mrak Hall, University of California, Davis, CA 95616.

☐ 2. Complete the application including the essay and list the college and major you prefer. Attach a check or money order to cover the application fee with your application materials, and return them in the preaddressed envelope during the priority filing period for the quarter in which you are interested.

☐ 3. Keep a copy of your application and essay.

☐ 4. Retain for your records the notices received from both the Undergraduate Application Processing Service and the Undergraduate Admissions Offices which acknowledge receipt of your application.

☐ 5. If you are applying from high school, do not send a preliminary transcript unless requested to do so by Undergraduate Admissions. If you are applying as an advanced standing student, arrange to have all official transcripts sent. If test scores are required, please arrange to have these forwarded by the testing agency.

☐ 6. High school applicants to the fall quarter should take the SAT or ACT and three Achievement tests no later than December. We strongly encourage you to complete these tests by the November test date.

☐ 7. The Undergraduate Admissions Office may request additional information, such as transcripts, test scores, or confirmation of work in progress. Send this information right away so your application can be processed without delay. Note: Your eligibility for admission cannot be evaluated until all your application materials are received, i.e., application form, filing fee, essay, official transcript (if required), work in progress, and test scores (if required).

☐ 8. If you are admitted, keep your admission letter for your records.

☐ 9. Return your "Statement of Intent to Register" (SIR), "Statement of Legal Residence," and Student Address form along with the nonrefundable advance deposit of $100 (if required), as soon as possible and no later than the date stated on the SIR so your registration materials can be ordered before you register.

☐ 10. Return your completed Medical History and Entrance Requirements forms to the Cowell Student Health Center as soon as possible.
Fees, Expenses and Financial Aid
FEES AND EXPENSES

Give careful consideration to the total financing of your University education. If you will need funds beyond those that you and your family can provide, you should apply for aid well in advance of enrollment. The deadlines for financial aid (grants, loans, work-study, and scholarships) can be found in the following pages.

At the time of registration each quarter, every student must pay the following fees:

Undergraduate Student Fees

- University registration fee: $231.00
- Memorial Union fee: 26.50
- Associated Students fee: 28.50
- Optional undergraduate health insurance fee: (130.00)
- Educational fee: 710.00
- **Total for California residents**: $1,123.00
- Tuition for nonresidents: 2,566.00
- **Total for nonresidents**: $3,689.00

Graduate Student Fees

- University registration fee: $231.00
- Memorial Union fee: 28.50
- Graduate Student Association fee: 4.50
- Health Insurance fee: 114.00
- Educational fee: 710.00
- **Total for California residents**: $1,088.00
- Tuition for nonresidents: 2,566.00
- **Total for nonresidents**: $3,654.00

These are the proposed fees for the 1992-93 academic year. Because they are subject to legislative and gubernatorial action, these fees may change without notice.

Important Fee Exceptions

The Graduate Student Association fee is optional for students in the Schools of Law, Medicine, and Veterinary Medicine. (Law students are required to pay a Law Student Association fee of $5.00 per semester.)

Students approved for enrollment on a part-time basis are required to pay only one-half of the Educational fee and one-half of the Nonresident Tuition fee.

The Undergraduate Health Insurance plan is available to all undergraduates, except for foreign undergraduate students who must pay the Graduate Student Health Insurance fee.

Additional Fees and Expenses

Students may be subject to the following fees for optional services (rates subject to change):

- Parking (per year: $60 to $264 for cars, depending on the type of permit; $60 for motorcycles, $72 for nighttime only permit, i.e., $17 per quarter)
- Bicycles, fee for the California State License (initial license, $6, and renewals, $3). Required for all bicycles on campus.

For details concerning fees and deposits, consult the publication 1992-93 Student Fees and Deposits, available from the Office of the Registrar. Current fees are also published in the Class Schedule and Room Directory.

Costs for a Year at UCD

The costs listed in the chart below are average costs, and your own living expenses may differ somewhat from these. More information on living expenses can be found in the section on housing or obtained from the Financial Aid Office.

<table>
<thead>
<tr>
<th>Average Student Costs Annually</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td>$2,980</td>
</tr>
<tr>
<td>Books and Supplies</td>
<td>$737</td>
</tr>
<tr>
<td>Housing</td>
<td>$3,626</td>
</tr>
<tr>
<td>Food</td>
<td>$1,379</td>
</tr>
<tr>
<td>Personal Expenses</td>
<td>$1,892</td>
</tr>
<tr>
<td>Transportation</td>
<td>$695</td>
</tr>
<tr>
<td>Total (off-campus residence)</td>
<td>$11,309</td>
</tr>
<tr>
<td>Additional for living on campus</td>
<td>$569</td>
</tr>
<tr>
<td>Total (on-campus residence)</td>
<td>$11,878</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate (Single, living off campus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
</tr>
<tr>
<td>School of Law</td>
</tr>
<tr>
<td>Graduate School of Management</td>
</tr>
<tr>
<td>School of Medicine</td>
</tr>
<tr>
<td>School of Veterinary Medicine</td>
</tr>
</tbody>
</table>

Employee-Student Fees

Reduced fees are available to UC career employees and certain UC retirees who are qualified for admission to the University. Once admitted, the employee-student must file a petition for the reduction in fees prior to each quarter of enrollment. Employee students pay one-third of the regular full-time fees and may enroll for up to nine units or three courses per quarter or semester, whichever is greater. Detailed information is in the UC Staff Personnel Policy Manual (Section 260.23 for employees, 775.7 for retirees, and 141.11 for the Administrative and Professional Staff program) available in department offices, at the Library Reference Center, or the Staff Development and Professional Services Office. Petitions can be obtained through the employee’s unit.

International Student Expenses

Careful budgeting is essential for international students. A minimum allowance of $22,000 (or more based on proposed fee increases) per year for a single student is recommended to cover nonresident tuition and fees, and living expenses. A married student must budget an additional $2,500 per year for a spouse and $1,000 for each child accompanying the family. Be aware that there will be numerous initial expenses during the first few months, including cleaning and rent deposits for housing, telephone installation costs, bedding and cooking utensils.

The University of California, Davis expects international students to be responsible for the expenses listed above. Prior to admission, the student must complete the Certification of Finances form certifying availability of
Funds for twelve months. Remember that the minimum allowance may be increased without advance notice.

No financial aid is awarded by the University to international students during their first year of study. International students must be prepared to pay their expenses for the entire length of their stay at UC Davis.

Cancellation, Withdrawal, and Fee Refunds

If you have to withdraw before the first day of instruction, you must complete a Cancellation of Registration form. This form is available from the Office of the Registrar. If you withdraw after the first day of instruction, you must fill out a Petition for Withdrawal, which is also available at the Office of the Registrar.

New Undergraduate Students:

Prior to Day 1, Registration fees paid are refunded in full except for the $100 acceptance of admission fee.

Day 1 and after, the $100 acceptance of admission fee is withheld from the registration fee and the Schedule of Refunds is applied to the balance of fees assessed.

All Continuing and Readmitted Students and New Graduate Students:

There is a service charge of $10 for cancellation of registration before the first day of instruction. After the first day of instruction the Schedule of Refunds is applied to the total of fees assessed.

Schedule of Refunds

The Schedule of Refunds refers to calendar days beginning with the first day of instruction. Percentages listed (days 1-35) should be applied respectively to tuition, education fee, university registration fee, and other student fees. The effective date for determining a refund of fees is the date the student files an official notice of withdrawal with the University, and it is presumed that no University services will be provided to the student after that date.

University registration fee, education fee, nonresident tuition and other student fees:

<table>
<thead>
<tr>
<th>Days</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-14</td>
<td>80%</td>
</tr>
<tr>
<td>15-21</td>
<td>60%</td>
</tr>
<tr>
<td>22-28</td>
<td>40%</td>
</tr>
<tr>
<td>29-35</td>
<td>20%</td>
</tr>
<tr>
<td>36 days and over</td>
<td>0%</td>
</tr>
</tbody>
</table>

Refund of Health Insurance Fee

If you paid the health insurance fee and you are cancelling your registration before the first day of instruction, you are entitled to a 100 percent refund of this fee. Undergraduates must contact the Health Insurance Office at (916) 752-2612 to receive the refund. Graduates will get an automatic refund from the Registrar's Office.

After the first day of instruction, no refund of the health insurance fee will be issued. Any questions regarding the refund of health fees for withdrawals should be directed to the Student Health Center.

FINANCIAL AID

Information:
Financial Aid Office
113 North Hall
916-752-2390 (TDD 752-3244)

The Financial Aid Office provides financial assistance in the form of scholarships, loans, grants, and work-study employment.

Financial Aid Deadlines

| Priority filing period for grants, loans, work-study, and California Student Aid Commission applications for 1993-94 | Jan. 1-Mar. 2 |
| Deadline to file for fellowships and graduate scholarships for 1993-94 with the Graduate Division | Jan. 15 |

Students who miss the priority filing date may not receive funds to meet their full need. However, you should still apply for financial aid even after the priority deadline because application processing will continue until funds are depleted. The Student Aid Application for California (SAAC) is available at local high schools, community colleges, and the Financial Aid Office. Continuing UCD students and prospective graduate students should obtain the SAAC and the booklet, "Financial Aid—How to Apply, 1993-94" from the Financial Aid Office in December.

Undergraduates with outstanding academic records are encouraged to apply for scholarships. See "Scholarships and Awards" at the end of this section for information about scholarship applications or contact the UCD Scholarship Office, 207 North Hall, 916-752-2393.

Graduate students are eligible for most of the same types of financial aid as undergraduates. In addition, graduate scholarships, fellowships, and teaching and research assistantships are administered through the Graduate Division. State graduate fellowships are awarded to students who are pursuing an advanced or professional degree and demonstrate financial need and academic eligibility. The awards pay part of the cost of tuition and are based on undergraduate grades, test scores, parents' educational level, and consideration of disadvantaged background.

Eligibility for most assistance is based upon demonstrated financial need. (Most scholarships are not based on need.) Eligibility is determined by the following formula: 1) the student is assigned a standard budget reflecting the average costs for a student attending UCD; 2) the student's resources are analyzed according to federal and state regulations; 3) the resources are subtracted from the budget, and the remainder is the amount of eligibility. The Financial Aid Office attempts to fill this amount with a combination of grants, work-study, and loans.

The awards for married students are based on the same basic budget plus the addition of a standard child care allowance, unless documentation is provided about a spouse who is unable to work, in which case a dependent living allowance will also be awarded. Single parents' awards are based on the single student's budget and a child care allowance. If single parents' resources (earnings and benefits) are
not sufficient to meet the basic living expenses of their dependents, a standard dependent living allowance may be awarded upon receipt of documentation.

Satisfactory Academic Progress. Federal regulations require that financial aid recipients meet the published Standards for Satisfactory Academic Progress for Financial Aid concerning units, grade-point average, and maximum quarters of attendance allowed to obtain a degree. A copy of these standards is available at the Financial Aid Office, 113 North Hall. Review the policy in detail and discuss it with your academic adviser.

For more information, contact the Financial Aid Office. Regulations and deadlines are subject to change.

TYPES OF FINANCIAL AID

Grants

A grant is a gift that does not have to be repaid as long as the student remains eligible. Whenever criteria and funding levels permit, a student’s financial aid award includes grants.

Pell Grants are federally funded awards. All undergraduate financial aid applicants are required to apply for a Pell Grant each year by following the instructions in the financial aid application packet. Recipients must be enrolled at least half time and must maintain good academic standing and make satisfactory academic progress. Eligibility for a Pell Grant is determined by the federal government according to a formula developed by the Department of Education and approved annually by Congress. All applicants are notified via a "Student Aid Report" (SAR). Submit all parts of the SAR to the UC Davis Financial Aid Office. The amount you receive depends on your financial need.

Cal Grants are awarded by the California Student Aid Commission and may be renewed each year. All undergraduate financial aid applicants who are California residents are required to apply for one of these awards. Follow the instructions in the financial aid application packet.

Cal Grant A awards are based on financial need and academic achievement. Recipients must complete at least 36 units per academic year.

Cal Grant B awards are based on financial need and are for entering undergraduate students primarily from low-income backgrounds. Recipients are required to complete at least 12 units each quarter, unless the student receives permission to enroll for fewer units.

- Cal Grant A pays the full amount of registration fees.
- Cal Grant B pays a monthly stipend for living expenses for first-year students and a portion of the registration fees plus a monthly stipend for living expenses for students in their second through fourth years.

University Grants are available to both graduate and undergraduate students. The maximum varies each year depending on funds available.

Educational Opportunity Program (EOP) Grants are restricted to undergraduates.

Supplemental Educational Opportunity Grants are awarded on the same basis as University Grants. They are available to U.S. citizens or permanent U.S. residents who are at least half-time students and who demonstrate exceptional financial need while pursuing their first undergraduate degree.

Bureau of Indian Affairs (BIA) Grants are awarded to students who are at least one-fourth American Indian, Eskimo, or Aleut as recognized by a tribal group served by the Bureau of Indian Affairs and who show financial need. Applicants must submit a regular financial aid application and provide supporting documents. Write to the agency that administers your tribal affairs and request a BIA Higher Education Assistance application. The BIA Financial Aid counselor on campus can assist you with completing the application.

- Amount of BIA grant depends on need and availability of funds at each BIA agency.

Loans

A Financial Aid Offer almost always includes a long-term, low-interest loan. Repayment of these loans (with the exception of the PLUS/SLS program) begins after you graduate or withdraw from school.
University Student Loans up to $18,000 per student are available for graduate studies; payment may be deferred until completion or termination of studies. Cosigner is required for annual amounts above $1,000.

- $4,500 undergraduate maximum for first 2 years
- $9,000 undergraduate maximum during 4 years
- $18,000 maximum for graduate students, including loans for undergraduate studies
- 5 percent interest (subject to change)
- Repayment begins six months after graduation or withdrawal

Perkins Loans are for U.S. citizens or permanent U.S. residents. Loans may be limited to a percentage of student’s need because of demand and limited funds. Repayment starts six to nine months after graduation or withdrawal from school and may be extended over ten years. Additional deferments are possible for temporary total disability or volunteer service in a private, non-profit organization, VISTA, or the Peace Corps. Some teachers of students from low-income families and full-time teachers of handicapped children may also qualify for partial loan cancellation.

- $4,500 undergraduate maximum for first 2 years
- $9,000 undergraduate maximum during 4 years
- $18,000 maximum for graduate students, including loans for undergraduate studies
- 5 percent interest (subject to change)

Health Profession Student Loans (HPSL) are awarded to students in the Schools of Medicine and Veterinary Medicine who demonstrate exceptional financial need. Parental income information is required for all applicants regardless of age and dependency status.

- $2,500 maximum for veterinary medicine and first-year medical students
- $3,333 maximum for medical students in the second, third, or fourth year of study
- 5 percent interest
- Repayment begins twelve months after receipt of the degree or withdrawal

Stafford Student Loans are available through banks and other lending institutions. These loans are based on financial need. Interest accrued while the student is in school is paid by the federal government.

- $2,625 maximum per year for freshmen and sophomores, $4,000 maximum per year for juniors and seniors, to $17,250 maximum cumulative indebtedness for undergraduate students
- $7,500 maximum per year to $54,750 maximum cumulative indebtedness for graduate students
- 7-9 percent interest (may change on short notice)
- Repayment begins six months after graduation or withdrawal

Health Education Assistance Loan (HEAL) Program provides federally insured loans to students attending the School of Medicine. The loans are made by participating lenders, including banks, credit unions, and savings and loan associations.

- $20,000 maximum per academic year (or the financial need of the student, whichever is less)
- $80,000 total maximum
- The HEAL Program does not provide a subsidy for interest
- Interest is set at 3 percent points above 91-day T-Bill rates
- Repayment begins nine months after completion of formal training, including accredited internship and residency programs or withdrawal

Parent Loans for Students (PLUS) and Supplemental Loans for Students (SLS) are government-insured loans that are made to parents of dependent students, to independent undergraduate students, and to graduate or professional students by participating banks and other lenders, regardless of income and assets.

- Parents of (1) dependent undergraduate students or (2) dependent graduate and professional students may borrow $4,000 per year to a maximum aggregate of $20,000 for each dependent student
- Independent undergraduate students or graduate and professional students may borrow up to $4,000 per year to a maximum aggregate of $20,000
- There is no interest subsidy for this loan
- Repayment begins within 60 days after loan disbursement

Short-Term Loan Program meets temporary or emergency financial needs of registered students. Loan funds are provided by UC Davis alumni, ASUCD, the Cal Aggie Foundation, the Regents of the University of California, and private donors.

- Emergency Loans: $200 maximum; the maximum repayment period is 30 days.
- Short-term Loans: $300 maximum; the full amount of in-state registration fees for one quarter may be borrowed in the form of a fee voucher. The maximum repayment period is five months or the end of the academic year.
- Assistant Loans: students who are in the teaching assistant, research assistant, associate-instructor, or postgraduate researcher classifications can apply for a maximum of one month’s salary before and during fall quarter, or for the first quarter of their appointment. The maximum repayment period is six months or the end of the academic year.

For information about how to apply, pick up an application in the lobby of North Hall. Application procedures vary slightly during the registration cycle of each quarter. Check the Short-term Loan bulletin board in the lobby of North Hall for instructions.

Work-Study

The College Work-Study Program enables students to earn part of their financial aid through part-time employment. To participate, you must first receive Work-Study as a part of your financial aid package. Your Work-Study award offers you both money for your education and work experience. The Student Employment Center coordinates College Work-Study.
Federal Work-Study is funded by the federal government. Employment may be on or off campus with profit or nonprofit organizations. To be eligible, you must be a citizen or permanent resident of the U.S., carry at least a half-time academic course load, and maintain minimum academic progress.

California State Work-Study is funded by the state, and employment may be with profit or nonprofit organizations. The employment must be educationally beneficial or related to a particular career interest or the exploration of a career option. To be eligible, students must meet the requirements for federal student aid eligibility and be California residents.

University Work-Study is funded by the University of California, and employment is limited to jobs on campus. This program is primarily used for international students with financial need who would be ineligible for Federal Work-Study.

The Student Employment Center helps students, including those on the Planned Educational Leave Program, and their spouses find both part-time and temporary full-time employment on and off campus during the school year and vacation periods. Job opportunities are available in many fields of interest and require skills ranging from entry level to highly technical. For further information, see "Student Employment" in the Student Life section of this catalog.

UNDERGRADUATE SCHOLARSHIPS AND AWARDS

Information:
Scholarship Office
507 North Hall
916-752-2393

UC Davis recognizes exceptional students with scholarships awarded on the basis of academic excellence and exceptional promise. The Scholarship Office administers approximately 150 different undergraduate scholarships. Many more scholarships are handled through outside agencies.

Scholarship recipients are chosen by committees made up of both students and faculty. In addition to academic records (a minimum grade-point average of 3.25 is required), selection may be based on letters of recommendation, test scores, and a personal essay in which your University goals and objectives are stated. Some awards are limited to students in specific majors or colleges, residents of certain geographical areas, students of a particular class standing, or students with demonstrated financial need. Most scholarships are not renewable and you must re-apply each year for scholarship aid.

Students applying to the University for the fall quarter are considered for scholarships using the same forms completed for admission purposes. Continuing students and applicants for winter or spring quarter should obtain scholarship applications from the Scholarship Office in October. These applications are due in mid-December. Announcement of winners is usually made beginning in mid-April.

Graduate students are also eligible for various scholarships and fellowships. (See the Graduate Studies chapter.)

Regents Scholarships, among the highest honors that undergraduates at the University can receive, are granted to exceptionally promising freshmen or juniors enrolling in the fall quarter. Awards may be honorary (a $500 per year award) or may be accompanied by a stipend generally covering the difference between family resources and yearly educational costs. The Regents Scholarship Committee conducts personal interviews during the final selection process. These scholarships are renewable as long as you maintain a 3.25 grade-point average.

- Dollar amounts vary—up to full financial need
- 2-year and 4-year renewable scholarships

Alumni Scholarships, provided by the Alumni Association in cooperation with the University, are based primarily upon leadership and scholastic achievement. Your financial need and extracurricular activities may also be considered.

- $1,000 maximum
- New undergraduates only
- Selection by local Alumni Association chapters

Military Scholarships are awarded to outstanding high school seniors without regard to financial need, as well as to UC Davis students who have demonstrated exceptional leadership and scholastic achievement during their freshman and/or sophomore years. Eligible high school seniors apply for the full 4-year scholarship and must file applications by November. UCD scholarship students participate in the Military Science (ROTC) Program. Information and applications are available from the Department of Military Science, 125 Hickey Gymnasium, 916-752-0543.

- Full fees, books and supplies
- $1,000 per year for miscellaneous expenses
- 1-, 2-, 3-, or 4-year scholarships

Other Scholarships are made possible by individual donors, private corporations, and various agencies. Many organizations and groups conduct their own scholarship programs. In most cases, you apply directly to these sponsoring groups.

- Generally $100 to $2,000

Special Prizes at UC Davis recognize outstanding performance, achievement, and promise in special programs or majors. The most prestigious prize is the University Medal, presented to the most outstanding graduating senior.

- Plaques or certificates and cash awards
- College and school medals to outstanding graduates
Student Life
You can expand your UC Davis experience and add a measure of convenience to your life by living on campus; some 3,500 undergraduates and 178 graduate students do just that. Students and professional staff in each of the residence hall complexes help create and maintain an environment conducive to personal growth and educational achievement. About 90 percent of the freshman students live in residence halls. Twenty-five percent of the transfer students elect to live in a residence hall environment. All new undergraduates whose Statements of Intent to Register (SIR) are received on or before May 1, 1992 (June 1, 1992 for transfer students) are guaranteed residence hall housing as long as they complete all of the instructions that accompany their contracts. All graduate students whose applications are received on or before May 1, 1992, will participate in a lottery for the 178 spaces available in Lysle Leach Hall.

The total room-and-board rate for 1992-93 is $4,975-5,470 for a double-occupancy room and $5,496-6,010 for a single room (of which there are very few available to new residents). Cost depends on which of the six meal plans you choose. Rooms are furnished with a bed, desk and chair, bookcase, chest of drawers, study lamp, and bulletin board for each resident.

If the Davis campus is your choice when filling out your University Admissions Application, the Student Housing Office mails necessary housing information with your admissions letter. If you have a physical disability which requires special housing accommodation, please send a detailed letter of explanation to the Contracts and Accounts Office, Room 151, Student Housing Office, at the time you return your Statement of Intent to Register. Your housing contract will be mailed to you around the end of May (freshmen) or June (transfer). At that time you will be able to choose your meal and payment plan.

Student Family Housing: Orchard Park/Solano Park

Information: 916-752-4000

There are 476 University-operated, furnished and unfurnished on-campus apartments for UCD student families. The monthly rates for the academic year 1991-92 were as follows:

- Orchard Park, two-bedroom unfurnished apartment, $398.
- Orchard Park, two-bedroom furnished apartment, $423.
- Solano Park, one-bedroom unfurnished apartment, $299.
- Solano Park, two-bedroom unfurnished apartment, $339.

Vacancies in Orchard Park/Solano Park are filled from a chronological list based on the date of application. For a fall assignment, you should expect a wait of 6 to 12 months after you apply. For an assignment during the remainder of the year, the waiting period is usually shorter. An application may be submitted before you are admitted to the University and before you are married, but you must show documentation of your student and marital or parental status before occupancy can be granted. If a member of your family has a physical disability which requires special housing accommodation, please attach a detailed letter of explanation to your application.

Russell Park

Information: 916-753-7022

Privately owned and managed on-campus living accommodations are available for student families. Russell Park features one-, two-, and three-bedroom unfurnished units. Monthly rents for academic year 1991-92 ranged from $411 for a one-bedroom unit to $664 for a three-bedroom unit.

Other Graduate Student Housing

Information: The Atriums 916-753-0659

The Atriums offers on-campus living accommodations for single graduate students. The privately owned and managed apartments feature studio and two-bedroom unfurnished units. For the academic year 1991-92, monthly rent for a studio was $427 and $593 for a two-bedroom unit.

Community Housing

Information: Student Housing Office 916-752-2483

If you choose to live off campus, the Community Housing Office can be a valuable resource. This office maintains vacancy listings to assist you in roommate selection and in locating rental housing off campus. Housing available in the community includes apartments, duplexes, condominiums, mobile homes, and rooms in private homes. Listings change daily, so they are not furnished by mail or given over the telephone.

Other services of the Community Housing Office include: counseling and mediation of landlord/tenant and roommate grievances; educational programs: publications; liaison with fraternities, sororities, city government offices, and housing-related agencies in the community; and child care information and referral. This office also provides information on accessible housing to persons with disabilities.

STUDENT SERVICES

Student Health

Information: Cowell Student Health Center 916-752-2300 (voice, and telephone device for the speech and hearing impaired)

Your health is important to you and to the University. Consequently, every new full-time student and every full-time student who returns after an absence must submit a medical history form, and evidence of rubella and rubella immunity to the Health Center as part of registration.

Since it is not intended that the Health Center supplant
During registration, you may call 916-752-2612 or visit the Insurance Office at Cowell Student Health Center, 8:00 a.m. to noon and 1:00 to 5:00 p.m., Monday through Friday.

Child Care Programs

Need help with child care? The following programs are available on campus and in the community to help you with child care arrangements and expenses.

- The Community Housing Office distributes child care publications, coordinates child care information and referral services among a network of satellite campus units, and serves as the University’s liaison with LaRue Park Children’s House, Russell Park Child Development Center, and City of Davis Parks and Community Services/Child Care. For further information, contact Community Housing, 101 Student Housing Office, or telephone 916-752-2483.

- City of Davis Parks and Community Services/Child Care provides free resource and referral information and information on child care subsidies in the community. The program is funded jointly by the University of California, Davis; the City of Davis; and the State Department of Education. The program maintains information on licensed family day care homes, day care centers, nursery schools, co-ops, playgroups, and other family-related services. Additional services include workshops and handouts; a bi-monthly newsletter; a parenting resource library; and a book, video, and toy lending library. It is located at 23 Russell Boulevard, 916-757-5626.

- The UCD Registration Fee Child Care Subsidy Program assists full-time students with partial child care subsidies. Spouses must also be full-time students or employed full time. Eligibility is based on family income, with awards determined by lottery. Parents can choose from licensed family day care providers and child care centers. For additional information, call City of Davis Parks and Community Services/Child Care at 916-757-5626 or drop by 23 Russell Boulevard.

- The Child Care Grant Program, funded by the California Department of Education and administered by City of Davis Parks and Community Services/Child Care, provides subsidized care on a sliding fee schedule. Waiting list applications are accepted year round. Admittance is based on income and priority guidelines set by the state. For information call 916-757-5626, or drop by 23 Russell Boulevard.

- The Financial Aid Office can assist students who are parents and who qualify for financial aid with allowances for direct child care costs (in-home provider or child care center charges). This office is in 113 North Hall, 916-752-2390.

- The Student Employment Center posts job listings of parents wishing to hire child care providers. This office is in 114 South Hall, 916-752-0520.

- LaRue Park Children’s House and Russell Park Child Development Center are privately owned and operated child care centers on the UC Davis campus. Residents of Russell Park, Orchard Park, and Solano Park student family housing pay reduced rates. Information about LaRue Park Children’s House, which

the medical care of your family physician, you are advised to have a physical examination by your own doctor before coming to UC Davis. Any problems capable of remedial treatment, such as diseased tonsils or imperfect eyesight, should be corrected to prevent loss of study time. Students with contagious diseases will be excluded from the classroom.

The services of the Health Center are made possible, in part, by your registration fees. As an enrolled student paying full registration fees, you are eligible to use the Health Center from the first day of the quarter through the last day of the quarter or to the date of official withdrawal. Some of the Health Center services and facilities are:

- General outpatient care
- Regularly scheduled clinics
- X-ray, laboratory, and pharmacy services
- Physical therapy
- Women’s Clinic

The Health Center currently does not provide services for dental problems or routine eye care.

Health Center services are available to student’s dependents on a fee-for-service basis. Also, you may purchase a Health Insurance Plan at the Health Center for your spouse and children.

Health Insurance. Graduate, professional, and international students must purchase a mandatory insurance plan as part of registration. Undergraduate students have an opportunity to purchase a voluntary plan
serves infants through preschool-age children, can be obtained at 916-753-8716. Information about Russell Park Child Development Center, serving infants through school-age children, is available by calling 916-753-2487.

• The Early Childhood Laboratory is a teaching and research facility associated with the Human Development Program. Four different programs accommodate children from the ages of six months to six years for three hours a day, following the UC Davis academic calendar. Student families pay lower tuition than do UCD staff, faculty, and community-affiliated families. Children are selected from a waiting list according to criteria designed to meet academic goals. The laboratory is located on campus, and the office is in TB 117, 916-752-2888.

• The Perfect Tender infant care cooperative serves six infants under twelve months of age whose parent(s) attend the School of Law. Contact 916-752-0243 for additional information.

• The Women’s Resources & Research Center sponsors the Child Emergency Notification Service, intended to provide schools and child care providers with a means of contacting student parents in the event of a health-related emergency involving the child. Interested students must sign up for this service in person; this includes providing information that will assist a staff member in notifying the parent if she or he is in class at the time of the emergency. This service, available to single parents and others with special circumstances, is intended as a back-up if the child provider cannot reach the primary emergency contact. The center is located in 10 Lower Freeborn, 916-752-3372.

Student Employment

Information:
Student Employment Center
114 South Hall
916-752-0520

The Student Employment Center helps students who are enrolled in a full-time or part-time degree program, students on PELP, students’ spouses, and students with a letter of acceptance for the following quarter who have not yet registered.

Employment opportunities exist on campus, in the city of Davis, and in adjacent communities. Full-time, part-time, and temporary jobs are available during the school year and vacation periods. New listings are posted daily. Listings of employment opportunities for the summer with government agencies, camps, and resorts throughout California are located at the center. Students are encouraged to begin looking in January for summer jobs.

Employment opportunities are conditional, subject to proof of identity and U.S. citizenship or your right to work in the U.S., as required by federal law (Immigration Reform and Control Act 1986).

The center is open from 8:30 to 11:45 a.m. and from 1:00 to 4:00 p.m.

Transportation and Parking

Parking. If you park a vehicle (including a motorcycle or moped) on the Davis campus you must have a valid parking permit or pay at a meter Monday through Friday between the hours of 7:00 a.m. and 10:00 p.m. Parking lots on campus are financed solely by fees collected from parking permits and meters. Daily permits are currently $2.00 and may be obtained from permit dispensers located in lots 1, 2, 2B, 5, 25, 30, 47, 47A, 49, 50, 54, and 81. Long-term permits are required for all other parking lots, and may be purchased at the Transportation and Parking Services Office, located on Extension Center Drive directly south of lot 30 and the Rec Pool. For visitor parking information, please consult the South Gate Kiosk on Old Davis Road, or call Transportation and Parking Services at 916-752-8277.

Campus Shuttle. The TAPS (Transportation and Parking Services) Intracampus Shuttle System provides service to the central campus area. Other TAPS shuttles provide service to the UCD Medical Center, Research Park, and University facilities on Chiles Road.

Buses. Unitrans, 13 bus lines operated by the Associated Students, serves the campus and city year round. Undergraduate students ride by showing a valid registration card. Others ride by paying a cash fare or purchasing tickets or passes at the Campus Box Office. Full service is provided each UCD school day (Monday through Friday) and Monday through Thursday night during the regular school year—fall, winter, and spring quarters. Reduced schedule bus service operates during the summer, finals week, and all academic break periods. Finals and break schedules are available during the last week of classes each academic quarter. Schedules are available at the MU Information desk, bus terminals, City Hall, Chamber of Commerce, Post Office, and at the Unitrans office.

Ridesharing. UC Davis encourages ridesharing. For information on transportation alternatives to the Davis campus, call 916-752-MIILE or visit the Transportation and Parking Services Office located on Extension Center Drive. Alternatives include carpooling and vanpooling (registered pools receive reduced parking rates as well as preferential parking), public transit, commuter match assistance, and shuttle systems.

RECREATION AND THE ARTS

No matter what your recreational bent—horseback riding, outdoor activities, music listening, arts and crafts, bowling, swimming, or sports—the Davis campus has a place where you can enjoy it.

Facilities and programs such as the Equestrian Center, Craft Center, Outdoor Adventures, Recreation Hall, Intramural Sports, MU Art Gallery, Recreation Swimming Pool, or the MU Games Area will help you balance the academic demands at UCD with your leisure interests.

Memorial Union and Campus Recreation

Information:
Memorial Union Programs and Campus Recreation
463 Memorial Union
916-752-1730

The Memorial Union (MU) complex, directly north of the Quad, serves as the community center for the campus. Bring yourself up to date on local events by stopping at the MU Campus Information Center on the first floor. A valuable resource for current students as
well as new students and visitors, the center can also be reached by telephone, 916-752-2222. Other first-level facilities include the UCD Bookstore, Corral gift shop, and Coffee House.

King Lounge on the second floor features music listening and periodicals in a comfortable and relaxed atmosphere popular for studying. The MU Art Gallery and a complex of meeting rooms, the MU II Conference Center, complete the second floor. In addition to the administrative offices of the Memorial Union and Campus Recreation, the offices of ASUCD, and Student Activities and Judicial Affairs can be found on the third and fourth floors of the MU tower. Freeborn Hall is a 1,250-seat assembly hall used for dances, performing arts, banquets, lectures, and conferences. The Campus Box Office, where you can purchase tickets for campus events and cash checks, is in Freeborn.

The MU Art Gallery and Music and Periodicals Center, adjacent to King Lounge on the second level of the Memorial Union, feature a changing series of contemporary and historical art exhibits throughout the school year. The gallery sponsors print sales, special programs, and lectures, as well as internships for those interested in career work in an art gallery or museum. The Music and Periodicals Center provides current periodicals for leisure reading and has a library of albums for your listening pleasure. Further information regarding these services may be obtained by calling 916-752-2885/1730.

The Games Area, located below the UCD Bookstore, is a recreational facility consisting of a bowling center, billiards room, video arcade, lounge, and storage lockers. The Games Area conducts bowling leagues, classes,clinics, and tournaments for all ages from beginning through advanced skill levels. The facility is fully accessible to the disabled. Call 916-752-2580/1730 for details.

The Memorial Union has several facilities that can be rented for group gatherings. With its rustic wood-paneled interior and ceiling-high windows, Rec Pool Lodge is an ideal location for meetings, lectures, or dances. The eaves-covered patio surrounding the lodge offers a lovely, shaded environment for outside dining during the warm weather months. Situated in the secluded Arborcium on the southwest perimeter of campus, Putah Creek Lodge provides a relaxing atmosphere for lectures, banquets, weddings, or dances. The spacious lawn surrounding the lodge is available for a variety of activities like volleyball, receptions, and picnics. Additional lodge amenities include kitchens and outdoor barbecues.

Outdoor Adventures, located in the Barn on the corner of California and Hutchison, will help you plan your outdoor excursions and develop your outdoor skills. You can rent equipment of professional quality for your adventure. An up-to-date library contains topographic maps, trail guides, and other materials. Classes, excursions and clinics in backpacking, rock-climbing techniques, white-water rafting, kayaking, sea kayaking, mountaineering, cross-country skiing, and other sports are offered throughout the year. Group rates and custom-designed trips can be arranged. Many special activities such as wilderness emergency-care clinics, white-water river guide training, slide presentations, and programs conducted by outdoor experts are also held. Stop in and share your own outdoor experiences! For more information call 916-752-1995/1730.

The Equestrian Center, southwest of the Veterinary Medical Teaching Hospital off Garrod Drive, is active all year round, providing trail rides, practice sessions, and instruction in both English and Western riding. Group and private lessons are available for beginners through advanced levels, and trained volunteers can provide an educational experience for those interested in horse care and stable management. The Equestrian Center sponsors clinics, horse shows, summer equestrian camps, and special events, and also coordinates the Polo and Equestrian Clubs for student participation. Telephone 916-752-2372/1730 for further details.

The Recreation Swimming Pool, at the corner of La Rue Road and Hutchison Drive, is a large free-form pool with a separate wading pool, a pool house, shuffleboard courts, and an extensive grass area for sunbathing. The pool staff offers lessons to all age groups and arranges for special events such as "family nights." The pool opens for the season in April and closes in October. The Hickey Gymnasium Pool is also available on a limited basis for noontime recreational lap swimming. More information on these services can be obtained by calling 916-752-2695 or 916-752-1995/1730.

The Silo Union, recently renovated to serve a variety of campus needs, offers food services, meeting/conference facilities, lounges, and the campus pub. If you would like to reserve space in the Silo for a meeting, social event or conference, contact Campus Events and Information at 916-752-2813.

The Craft Center in the South Silo is an ideal place to channel your creative energy. Facilities are available on a drop-in basis, or purchase a pass for more frequent use of the equipment and work space. Workshops and classes are offered every week in such varied crafts as woodworking, weaving, jewelry-making, art and graphics, ceramics, photography, silkscreen printing, welding, leatherworking, and stained glass. Call for more information: 916-752-1475/1730.

The South Silo also houses the ASUCD Experimental College (916-752-2568), Student Special Services (916-752-2007), Graduate Student Association (916-752-6106), and a small branch of the Bookstore serving the School of Law (916-752-2961).

Recreation Hall
Information:
Entrance 1B
916-752-6073

Recreation Hall is a multi-use arena available for intramural and informal recreation play, intercollegiate athletic basketball and women's gymnastics, physical education classes, and sports clubs. Numerous special events sponsored each year by the campus and community are held in the 8,400-seat Recreation Hall. The tri-level facility has locker rooms; a fitness running track; an equipment room; racquetball, wallyball, and squash courts; a weight room with free weights, universal and a self-guided circuit training concept that utilizes hydraulic machines; main court areas for basketball, volleyball, and badminton; and areas for martial arts,
table tennis, gymnastics, aerobics, and dance. The Special Events Room can be reserved for meetings by calling the Campus Events and Information Office.

Students can use Rec Hall facilities by showing their current, valid photo ID card. They may also purchase a $5.00 guest pass valid for three people. Nonstudents may purchase a privilege card at Rec Hall to use lockers, equipment, and facilities. Patrons may also purchase a daily pass at the 1B entrance. Rec Hall is open Monday through Friday from 6:00 a.m.–midnight, Saturdays 9:00 a.m.–6:00 p.m., and Sundays noon–10:00 p.m. throughout the year. Rec Hall hours are shortened during quarter breaks and summer.

Recreation Hall maintains an outdoor fitness cluster on Orchard Field, the tennis courts on La Rue Road, just north of the Rec Pool, and the volleyball and basketball courts west of the Segundo residence hall complex. While these courts are primarily for student use, they are also available to the general community. The courts cannot be reserved and are available on a first-come, first-served basis.

Intercollegiate Athletics, Intramurals and Club Sports

Information:
264 Hickey Gymnasium
916-752-1111 (Intercollegiate Athletics)
916-752-3500 (Intramurals and Club Sports)

Intercollegiate athletics, intramurals, and club sports programs provide organized sports competition and physical recreational activities across the broad spectrum of student physical abilities. The underlying objective is to offer a coordinated program of sports participation that meets student needs at every level of competence and depth of interest.

Although intercollegiate athletics at Davis is intended to benefit the campus by providing *esprit de corps*, its prime role is to provide personal development opportunities for as many non-scholarship student-athlete participants as facilities and resources permit. Currently, the program consists of varsity teams in eleven men’s sports and nine women’s sports. Membership affiliation is with the Northern California Athletic Conference and Division II of the National Collegiate Athletic Association. Approximately 1,000 students compete on varsity or junior varsity teams each year.

The club sports program includes both recreational and competitive offerings involving 37 sports with 2,100 participants per year, while the intramurals program provides competition in 36 sports and serves approximately 14,000 participants.

The Arts

Whether you want to participate, be entertained, or be inspired, an abundance of creative, musical, theater, art, design, and dance offerings are happening on campus all year long.

UC Davis Presents (916-757-3199), located at 200 B Street, Suite A, brings a wide variety of touring performing artists to UC Davis to serve both the campus and surrounding communities. During the academic year, UC Davis Presents offers concerts and recitals by classical, jazz, and folk music artists; drama; classical, modern, and ethnic dance; and lectures by eminent public figures. Various departments such as English, the foreign languages, and history sponsor lectures, poetry readings, and exhibits open to the University community. Bulletin boards, kiosks, the student radio station KDVS, and the *California Aggie* inform audiences about upcoming events.

You’ll find annual and quarterly brochures and promotional materials on all events sponsored by UC Davis Presents at the UC Davis Presents office. Tickets for UC Davis Presents events may be purchased at the Campus Box Office in Freeborn Hall, or any BASS/TM outlet.

Music

The Department of Music (916-752-0666) sponsors the UCD Symphony Orchestra, Chorus, Chamber Singers,
Early Music Ensemble, Concert Band, and small ensemble groups. Music majors and other interested students can receive credit for participation in these groups, which perform at concerts and recitals open to the University community. The department sponsors the annual Theatre of Voices Festival and also an artist-in-residence for one quarter each year who gives concerts, recitals, and lectures. Free noon concerts featuring individual performers and ensembles—both professional musicians and music students—are a favorite weekly event during the school year. The UC Davis Contemporary Music Players and the UCD Faculty Woodwind Quintet are in residence on campus. The Department of Music sponsors nearly one hundred public concerts each year.

Drama

The Department of Dramatic Art has one of the best theater facilities in California. The excellent faculty and the Granada Artists-in-Residence program (which brings a major British director to the department each quarter); graduate students working on Master of Fine Arts (MFA) degrees in acting, directing, playwriting, and design; and an unusually good stock of scenery, props, costumes, and lighting equipment all contribute to the professional quality of Davis productions. Each year's drama schedule includes University Theatre Season (five major productions of established plays); one major special event; Premiere Season (five smaller productions of plays written by students); Studio Season (three smaller productions of established plays); and dozens of class-related projects. These productions are part of the academic program of the department and serve an important purpose in the study of dramatic art. Participation is open to all students.

Art Galleries

A tour of all the UCD art galleries will take you from one corner of the campus to the other. The Memorial Union Art Gallery (916-752-2885) features a series of changing contemporary and historical art exhibits during the school year and summer break. Works by professional artists as well as students are on display for periods of six weeks.

The Design Gallery (916-752-6223) on the first floor of Walker Hall is known for its exciting exhibitions of design-related material. Changing presentations and installations of architecture, interiors, graphics, costumes, textiles, folk art and the annual Student Show and Picnic Day Exhibition reflect the interests of the design program exhibition. The Design Gallery is an innovative space where the installations are as interesting as the material presented.

The Richard L. Nelson Gallery (916-752-8500), named in honor of the first chairperson of the Department of Art, was dedicated in 1976. Located on the first floor of the Art Building, the Gallery organizes regularly changing exhibitions of historical and contemporary works of art. The Gallery's program reflects and complements the teaching program of the Department of Art and provides aesthetic enrichment to the University community and the Northern California area at large. The Fine Arts Collection (916-752-8500) is located adjacent to the Nelson Gallery. Representing various historical periods and cultures, it is the Davis campus's major collection of art. Selected works are available for viewing weekday afternoons. The basement Gallery is a student-directed gallery that exhibits artwork of advanced UCD art majors. The gallery is located in the Art Building. The exhibitions change weekly throughout the academic year. Hours are 9:00 a.m. to 4:00 p.m. Monday-Friday.

The C. N. Gorman Museum (916-752-6567, Native American Studies), located in Hart Hall, was established in 1973 in honor of Ciel N. Gorman, artist, advocate and former faculty member of Native American Studies on campus. The museum features changing exhibitions of works by contemporary Native American and other ethnic artists. Selections from the permanent collection of art and artifacts are also exhibited on a rotating basis throughout the year.

ASSOCIATED STUDENTS (ASUCD)

Information:
Executive Council Office
370 Memorial Union
916-752-3632
ASUCD Main Office
364 Memorial Union
916-752-1990

The Associated Students of the University of California, Davis (or ASUCD), authorized by the Regents and the Chancellor, represents all undergraduate students. Law students also currently have access to all ASUCD commercial activities. Funds allocated to ASUCD provide activities and services that will make life as a student a little easier, less expensive, or just more fun.

The student government budgets the allocated funds each year through its Executive Council. Based on the city council form of government, the Executive Council consists of seven elected council members and the Council President and Vice President. The Council is the policy-making body for ASUCD and supervises all aspects of the association. The Council President is the chief administrative officer for ASUCD and is assisted by the Vice President who serves as the executive aide. ASUCD is the liaison for the undergraduate student body and represents the students with other universities, the Universitywide administration, the Regents, and the Davis city government.

Five commissions are subordinate advisory bodies of the Executive Council, and assist the governing board with its decisions by researching legislation and making recommendations. Commission chairpersons are ex officio members to the Council. Each commission also involves itself with various projects that relate to their specific area.

• External Affairs deals with off-campus concerns (City of Davis, the Regents, social responsibility, etc.).
• Internal Affairs recommends policies to improve the quality of nonacademic student life on campus.
• Academic Affairs acts as an advocate to student rights in the area of academics, including dealing with the Academic Senate and with issues such as grading policies, tenure, and teacher evaluations.
• Business and Finance makes recommendations to the Executive Council on all financial matters.
• Ethnic and Cultural Affairs makes recommendations on policies and programs concerning UCD's ethnic community, for establishing liaison and achieving rapport on-campus and off-campus bodies affecting ethnic students and their quality of life while at the University.

The judicial branch consists of two boards whose members are appointed by the Executive Council Chair.

• The Student Judicial Board is responsible for determining eligibility of candidates for elective office in ASUCD and interpreting and enforcing the ASUCD Constitution.

• The Student Appeals Board rules on appeals to Student Judicial Board decisions.

ASUCD operates more than forty activities and services for UCD students. Information about these services can be found in the Student Directory, which combines details about ASUCD services and organizations and the ASUCD student telephone directory, or by visiting the ASUCD offices in the Memorial Union.

Some of the services operated by the ASUCD for University students include the Unitrans bus system, California Aggie newspaper, Student Viewpoint evaluation of professors and classes, the Bike Barn repair services, travel service, free legal advice for undergraduates, and the Coffee House in the Memorial Union. The ASUCD-sponsored Experimental College offers a variety of nontraditional classes each quarter for students interested in diversifying their educational experience. Other ASUCD activities include Radio KDSV stereo FM, Classical Notes and Campus Copies, The Third World Forum newspaper, Homecoming, Student Forums, Entertainment Council, Whole Earth Festival, and Picnic Day. ASUCD also cooperates with Associated Student groups on other University of California campuses to operate a full-time Student Lobby in Sacramento to represent student interests to state government, as well as a full-time student lobby on the national level to represent student interests on such matters as financial aid.

GRADUATE STUDENT ASSOCIATION (GSA)

Information:
Room 583, South Silo
914-752-6108

GSA is the officially recognized student government for UC Davis graduate students. It links graduate students to each other and to the UCD administration. GSA provides a place for discussion of any issue affecting graduate student academics or quality of life. Every graduate program should elect or designate GSA representatives to advocate graduate student concerns effectively.

General Assembly meetings are held once a month and are open to anyone interested in attending. Each year several graduate students are elected to the GSA Executive Council in a variety of positions to carry out the policies and/or functions of the organization.
small portion of your registration fees is used to support the activities of GSA. GSA provides advocacy, services, and information to all graduate students, and in turn, needs your participation. Please call or visit the GSA office.

STUDENT ACTIVITIES

Information:
Student Activities Office
4th Floor, Memorial Union
752-2627

There are over 300 registered student organizations at UCD, including cultural, social, religious, political, ethnic, academic, international, recreational, performing, residence hall, and service groups. The Student Activities Office registers these diverse groups and provides advising on activities, resources, and campus policies. In addition to the subunits described below, Student Activities administers a number of campus programs: Danzantes del Alma folkloric dance troupe, Club Finance Council, Activities Faire, Leadership Training Programs, and national collegiate leadership awards competitions. Student Activities staff assist individual students who want to become involved in activities or start new organizations. All students are encouraged to drop by the office to review the resources available to them.

Cultural Days is an annual series of programs celebrating the diverse ethnic cultures of the university community. Programs include African Continuum, Asian Pacific Cultural Week, Semana de la Raza, and the Native American Powwow. Everyone is invited to share in these programs featuring speakers, workshops, films, entertainment, and family events.

The **Cal Aggie Marching Band** entertains spectators at athletic, campus, and community events. As one of the last remaining “student-run” bands in the nation, the band has a style and personality all its own. The UCD **Spirit Squad**, a group of talented and enthusiastic dancers, stunt team members, and gymnasts, travel and perform with the band.

JUDICIAL AFFAIRS

Information:
Student Judicial Affairs
4th Floor, Memorial Union
916-752-1120

Student Judicial Affairs supports the standards of the campus by responding to alleged violations of University policies or campus regulations. In addition, the office coordinates the informal resolution process and receives formal complaints for student grievances based on impermissible discrimination or harassment (sexual, racial, religious, handicap, etc.), or on violations of student rights to obtain access to or prevent disclosures from their campus records. The office aids in conflict resolution and can provide interpretations of University policies and regulations.

Student Conduct and Discipline

Students enrolling or seeking enrollment in the University assume an obligation to act in a manner compatible with the University's function as an educational institution. Rules concerning student conduct, student organizations, use of University facilities, and related matters are set forth in both University policies and campus regulations. Standards for student conduct are included in the UCD Code of Academic Conduct, in the Student Activities Handbook, in the Guide to Residence Hall Life, and in the booklet, University of California Policies Applying to Campus Activities, Organizations, and Students. The operation of the campus student disciplinary system is outlined in the booklet UCD Administration of Student Discipline. These policies and regulations are available from the Office of Student Judicial Affairs, 463 Memorial Union.

A one-sheet summary of student conduct expectations is distributed during fall quarter registration. Misconduct for which students are subject to discipline includes, but is not limited to, plagiarism; cheating; knowingly furnishing false information to the University; sexual or other physical assault; threats of violence; harassment, including “fighting words”; forgery; theft; vandalism; illegal possession, use, or sale of drugs or alcohol; hazing; obstruction or disruption of University activities or functions; and alteration or misuse of University documents, records, keys, or identification. Disciplinary sanctions which may be imposed range from a warning to dismissal and/or restitution.

Alleged violations of campus or University standards should be referred to the Office of Student Judicial Affairs. If complaints cannot be resolved informally between Student Judicial Affairs, the accused student, and the referring party, the case may be referred to a hearing before the Student Conduct Committee, Campus Judicial Board, or a hearing officer. The president of the University, through the chancellor, has ultimate authority for the administration of student discipline.

Student Responsibilities

You are responsible for complying with the announcements and regulations printed in this catalog and in the Class Schedule and Room Directory, published in the campus newspaper, and with all policies, rules, and regulations of the University and this campus.

You will not be able to register or receive transcripts of record or diplomas until you have met all University obligations.

ALUMNI ASSOCIATION

Information:
Cal Aggie Alumni Association
Walter A. Buehler Alumni and Visitors Center
UC Davis
Davis, CA 95616-5317
916-752-5286
Toll free in California 1-800-242-GRAD

After graduation, you can maintain your ties with UC Davis and your fellow alumni by joining and participating in the Cal Aggie Alumni Association.

This worthwhile and vibrant organization sponsors a wide variety of activities and programs that support UC Davis and keep alumni in touch with the campus. Members are also entitled to special privileges. As a new graduate, your first year of membership is only $20, a $15 savings off the regular annual membership fee. For more information, call the alumni association or drop by the Alumni Center before you graduate.
ACADEMIC ADVISING

UC Davis offers many different types of academic advising to help you get the most from your education. Our advisers can assist you in meeting degree requirements and taking maximum advantage of the resources available in the University. A conference at least once a quarter is especially desirable for students during their first year and for seniors during the final quarters preceding graduation.

College of Agricultural and Environmental Sciences

Office of the Dean
228 Mrak Hall
916-752-0108

The Dean's Office provides you with

• Staff advisers who can advise you on University and College rules, regulations, and policies and procedures that affect students.
• Academic advising: advice regarding probation/dismissal status, admission to the College, re-admission, and second bachelor's, limited, and regular status.
• Action on petitions that require the Dean's approval.
• Additional services: study plan clearance, College English requirement check, release of holds on registration packets, final evaluation for graduation, evaluation of Transfer Core Curriculum.

Departments and Advising Centers

Faculty Advisers. You will be assigned a faculty adviser to help you plan a program that corresponds to your individual educational interests. The Master Advisers coordinate advising within a major. You are strongly urged to consult with your faculty adviser or staff adviser each quarter prior to selecting your courses.

As educational objectives evolve, you may, in consultation with the Master Adviser for your major, choose a new faculty adviser whose area of expertise corresponds more directly to your specific objectives.

Advising Centers. Advising on academic programs is available at the College's Academic Advising Center, 202 Mrak Hall.

Primarily, the Academic Advising Center advises students in the Exploratory Program. Advising for Individual Majors is also available at the Academic Advising Center.

Staff advisers located in the department can advise you on courses, specific requirements of majors, and career opportunities. Following is a list of advising centers by major.

ANIMAL SCIENCE

Majors in Animal Science
Animal Science
Avian Sciences
Wildlife and Fisheries Biology

Advising Centers:
1149 Meyer Hall, 916-752-6118 (Animal Science only)
3211 Meyer Hall, 916-752-1300 (Avian Sciences only)

Interdisciplinary Major
Agricultural Science and Management
Advising Center: 1149 Meyer Hall, 916-752-6118

APPLIED ECONOMIC AND BEHAVIORAL SCIENCES

Majors in Applied Economics
Agricultural and Managerial Economics
Advising Center: University House Annex, 916-752-6185

Majors in Behavioral Sciences
Agricultural Education
Applied Behavioral Sciences
Design
Human Development
Landscape Architecture

Advising Centers:
101 AOB A, 916-752-2044
152 Waiker Hall, 916-752-1165 (Design; Landscape Architecture only)

BIOLOGICAL SCIENCES (an intercollege Division)

Majors in Biological Sciences
Biochemistry
Biological Sciences
Botany
Genetics
Microbiology
Physiology
Zoology

Advising Centers:
66 Briggs Hall, 916-752-0110 (Biological Science only)
196 Briggs Hall, 916-752-9696 (Animal Physiology only)
149 Briggs Hall, 916-752-9032 (Biochemistry only)
121 Robbins Hall, 916-752-4749 (Botany only)
2320 Storer Hall, 916-752-7468 (Zoology only)

FOOD, NUTRITION, TEXTILE AND CONSUMER SCIENCES

Majors in Food Sciences
Consumer Food Science
Fermentation Science
Food Biochemistry
Food Science

Advising Centers:
126 Grueus Hall, 916-752-1468 (Consumer Food Science, and Food Science only)
112 Food Science and Technology Building, 916-752-8168 (Food Biochemistry only)
3013 Wickson Hall, 916-752-0397 (Fermentation Science only)

Majors in Nutrition
Community Nutrition
Dietetics
Nutrition Science

Advising Center: 1151 Meyer Hall, 916-752-2512

Majors in Consumer Sciences
Fiber and Polymer Science
Textiles and Clothing

Advising Center: 129 Everson Hall, 916-752-4417

PLANT SCIENCES AND PEST MANAGEMENT

Majors and Programs in Plant Sciences
Plant Science
Range and Wildlands Science

Advising Center: 137 Hunt Hall, 916-752-1715
Major in Pest Management
Entomology
Advising: 367 Briggs Hall, 916-752-0492

Interdisciplinary Major
Agrarian Studies
Advising: 2039 Wickson Hall, 916-752-0926

RESOURCE SCIENCES AND ENGINEERING

 Majors in Environmental Studies
Environmental Biology and Management
Environmental Policy Analysis and Planning
Advising Center: 2134 Wickson Hall, 916-752-3088

 Majors in Resource Sciences
Atmospheric Science
Environmental Toxicology
Environmental and Resource Sciences
Soil and Water Science
Advising Centers:
122 Hoagland Hall, 916-752-1669
4111 Meyer Hall, 916-752-1042 (Environmental Toxicology only)

Major in Agricultural Engineering
(See College of Engineering)

Interdisciplinary Major
International Agricultural Development
Advising Center: 101 AOB 4, 916-752-2244

Peer Advisers. Student advisers are available in the College's Academic Advising Center and at other advising centers around campus.

Associate Dean of Curricular and Student Affairs
Susan Kaiser, Associate Dean
Joe Stasulat, Assistant Dean
228 Mrak Hall
916-752-0108

The College has an associate dean of curricular and student affairs, an assistant dean, and advising staff who welcome the opportunity to become acquainted and to talk informally with individual students. They can also help you with academic problems if you are placed on probation or subject to dismissal.

Exploratory Program (non-degree program)
College Academic Advising Center:
202 Mrak Hall, 916-752-0610

Are you unsure what major you really want to pursue? If so, you may wish to register in the Exploratory Program. With the assistance of the College's Academic Advising Center and the major advisers, you will be able to explore specialization options, develop your decision-making abilities, and ultimately select the major best suited to your needs. A major must be declared before you complete 120 units (see Declaration of Major). For registration purposes, indicate "Exploratory" on your admissions materials.

Orientation Class
Each quarter the College offers an orientation course (see Programs and Courses section) to introduce students to the University, to aid them in formulating educational objectives, and to help them identify the many educational opportunities at UCD. Although not re-

quired, this course is recommended as a useful means for discovering what the Davis campus and the College of Agricultural and Environmental Sciences are all about.

College of Engineering

Departments and Advising Centers

Undergraduate Office (2132 Bainer Hall). By contacting the Undergraduate Office, you may obtain information and assistance on academic, career, and personal matters either through direct assistance with one of the staff members or through referral to other offices on campus. The Undergraduate Office handles student petitions, evaluation of transfer units, articulation, and degree certifications.

Faculty Advisers. You will be assigned a faculty adviser before your first term on campus. Students in engineering usually retain the same faculty adviser throughout the undergraduate program, but you may change to a new adviser of your choice whenever you wish. It is necessary only to keep the Undergraduate Office informed of adviser selections.

Faculty advising is supplemented in some departments by a system of staff advising especially designed for students in that department. Consult your departmental office for more information.

You are expected to meet individually with your faculty adviser at least once each quarter. Freshmen are required to do so each quarter of the first year of enrollment, and new advanced-standing transfers are required to meet with a faculty adviser for the first quarter.

To facilitate dialogue with your adviser on your program of study, use the Advising Worksheets. Extra copies are available in the Undergraduate Office. You should work out your Lower Division Worksheet early in your freshman year, have your adviser sign it, and then review it regularly with your adviser. Similarly, the Upper Division Worksheet should be worked out early in the junior year, signed by your adviser, and then reviewed regularly with your adviser.

Peer Advisers. Faculty advising is complemented by a well-developed peer advising system. Student advisers are available at Bainer Hall and at other locations described in the Other Academic Advising section of this chapter.

College of Letters and Science

Office of the Dean/
Letters and Science Advising Office
150 Mrak Hall
916-752-0392

The Associate Deans and staff in the Letters and Science Advising Office can assist you with a wide variety of issues relating to your academic goals and experiences. You can consult the Advising Office on matters such as program planning, selection of a major, exceptions to regulations and academic enrichment opportunities. The office also provides a number of additional services:

- Determines how your transfer credits from other institutions apply towards completion of breadth and unit
requirements for the bachelor’s degree (applicability of transfer credit toward the major is determined by your major faculty adviser)
- Provides degree checks to identify remaining College requirements
- Acts on petitions requiring the dean’s approval
- Reviews the records of students who are subject to disqualification and determines whether such students may continue at UCD

Departments and Advising Centers

Faculty Advisers. New students are assigned to a faculty adviser when the University receives their Statement of Intent to Register. If you indicated an interest in a particular program on your application, your adviser will be a faculty member associated with that major. If you change your major, you will be reassigned.

New students are encouraged to see their faculty adviser at least once every quarter during their first year on campus to discuss their educational goals, course program, and progress.

Continuing students who have completed three quarters in residence in the College are no longer obligated to consult an adviser except at checkpoint stages (below). They are urged, however, to maintain regular contact with an adviser in their major to avoid program errors that may delay graduation. Seniors should maintain contact with their adviser in order to ensure that they are meeting the major requirements.

Academic Options Program. If you did not indicate an initial commitment to a particular major program on your application, you will participate in the Academic Options Program which provides academic advising to lower division students. You will be assisted by an advising team available in the Letters and Science Outreach Advising Offices located in each of the university residence hall complexes. Students living off campus are asked to contact the Letters and Science Advising Office early in the quarter to receive their adviser assignments.

Advising Checkpoints. You are required to consult with your faculty adviser at two, possibly three, critical stages in your academic career:
- Before you complete 90 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a proposal for a quarter-by-quarter program of courses showing how you will meet your educational goals and the graduation requirements. You must also have declared a major by this time. Filling this plan with your adviser does not preclude subsequent modifications of the plan or a change of major.
- When you complete 135 units of degree credit, including transfer work, you should obtain Degree Check materials from the Letters and Science Advising Office and consult your adviser concerning course selection and satisfaction of requirements in the major.
- Before you complete 195 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a firm study plan, in the form of a quarter-by-quarter program that will satisfy all remaining degree requirements as expeditiously as possible. This plan will be filled with your adviser. If the plan indicates that you will have to register beyond the 225-unit limit in order to meet degree requirements, you must contact the Letters and Science Advising Office immediately. Exceptions to the 225-unit limit are granted by the dean only rarely. Typically, approval is granted only to allow completion of minimum degree requirements.

If you have not met with your faculty adviser before these established check points, a hold will be placed on your registration materials as a reminder.

Peer Advisers. Student-to-student advising is an important part of the University advising services. The College of Letters and Science student assistants to the dean are available during regular office hours in 150 Mrak Hall to talk with students about their academic concerns.

Division of Biological Sciences

The Division of Biological Sciences Office
66 Briggs Hall
916-752-0410

The associate dean and staff in the Division of Biological Sciences Office can assist you with a variety of issues including PELP, withdrawal, part-time status, change of major, and some financial aid forms.

This office is also responsible for the academic progress of all students majoring in the division. If you have any problems (personal, medical, financial) that are affecting your academic performance, or if you are on academic probation, make an appointment to see one of the advisers in the division office.

Sections and Advising Centers

Students entering or intending to declare sectional majors in biochemistry, botany, genetics, microbiology, physiology, or zoology should contact the specific section office for academic advising services. Students selecting the biological sciences major should contact the Division of Biological Sciences Office for academic advising services.

OTHER ACADEMIC ADVISING

Academic Peer Advising

Academic Peer Advising places peer advisers in over 45 departments to help students find the answers to their questions about major requirements, courses, and University regulations. The academic peer adviser complements faculty advising by providing a student perspective on the department. The Academic Peer Advising staff is trained to provide information and assistance concerning graduate schools, career opportunities, and college requirements. For more information contact the main APA office in 108 South Hall, 916-752-3000.

The First Resort

The First Resort is a place to go if you are feeling bogged down by University red tape, registration procedures, course selection, choosing a major or other general advising questions. The student advisers here
can either answer your questions or put you in contact with others who can. The staff can give you advice and assistance from the point of view of someone who has "been there." The First Resort maintains a tutor listing and referral service, a listing of courses 1 to 3 units, and other valuable resources. Pre-graduate school information is available, and graduate school bulletins and other supplemental materials on hand are useful in selecting a graduate program. If you have a problem, remember—start with The First Resort which is open from 9 a.m.–4 p.m. throughout the academic year. (Temporary Building 98, across from the Chemistry building; 916-752-2807 for information or 916-752-3323, the advising hotline.)

Orientation and Summer Advising Office

The Orientation and Summer Advising Office coordinates the Summer Advising and Registration Program, Fall Quarter Orientation activities, and many other student assistance and orientation programs for new students. The staff will introduce you to the campus environment, procedures, and opportunities, and offers programs relevant to students’ changing needs. Your contribution to orientation programs, through ideas and assistance, is always welcome. The coordinator's office is located in 108 South Hall, 916-752-3000.

Advising Services

The Pre-Business School Adviser, 108 South Hall (916-752-3000), is a student peer adviser who can assist you in seeking information about graduate schools in business, management, and public administration. This office also works with students who are in the process of applying to graduate school in business and distributes the Graduate Management Admission Test (GMAT) booklet. A useful library of business school catalogs and an informational handbook are available.

The Pre-Graduate School Information and Referral Service is a program available through Advising Services to assist students interested in M.A., Ph.D., or teaching credential programs. Specific services include help in locating graduate school programs in specific fields, completing application forms and statements of purpose, and planning financial options. Advisers are available through the main Advising Services office, 108 South Hall, 916-752-3000.

The Pre-Law Advising Office is where students interested in legal profession can come for information. The staff can advise you about admission requirements and program planning. The office maintains a reference library of law school bulletins, legal assistant information, admission test materials, and general career information. Students can get more information for preparation for law school and a legal career through the many seminars and workshops held each year. You may contact one of the pre-law advisers in 108 South Hall, 916-752-3009.

The Health Sciences Advising Office, 106 South Hall (916-752-2672), will be an important place for you if you are preparing for a profession in the health science area. The professional staff and student advisers can provide information on requirements, application procedures, professional school curricula, and related options. The office maintains an extensive library of school catalogs, statistics, and books and journals related to health education.

Educational Opportunity Program/Student Affirmative Action (EOP/SAA)

Information:
313 North Hall
916-752-3472

The Educational Opportunity Program/Student Affirmative Action Information Office serves EOP/SAA students by assisting them with their academic, social, and personal adjustments to the University environment; coordinates EOP/SAA new student orientation programs; and serves as liaison to staff, faculty and administrators. The office's multicultural peer staff is particularly sensitive to differing social, cultural, and ethnic concerns. In addition, those students interested in pursuing the "helping" professions can receive training and experience through the Peer Adviser Counselor training program.

EOP/SAA Information Office services are also accessible at various outreach locations throughout the campus such as the Colleges of Agricultural and Environmental Sciences, Letters and Science, and Engineering; Learning Skills Center; The House; and all ethnic studies departments. All students are invited to telephone or stop by the EOP/SAA Information Office on the third floor of North Hall or any one of the outreach locations to find out more about the peer counseling services.

Academic Reentry Program

Information:
175 Mack Hall
916-752-2971

If you are a nontraditional student, you can find help through the Academic Reentry Program, which offers preadmission and reentry advising. The program’s resource area contains information on major programs, and staff are available to discuss ways of combining your past study with future academic and career goals. We will also refer you to major advisers and campus services. Students reentering at the graduate level can also receive special assistance in Graduate Studies.

Once you are admitted, the campus provides additional assistance with an orientation to campus life through Advising Services and through study skills workshops at the Learning Skills Center. Reentry/Transfer Student Services assists admitted students in connecting with campus resources and support groups.

ACADEMIC HELP

Learning Skills Center (LSC)

Information:
The Basement, South Hall
916-752-2013

At the Learning Skills Center you can receive assistance in a wide variety of areas, including:
- General study skills
- Math/science study skills
- Writing essays and term papers
- Reading efficiency
- English as a second language
- Time-management skills
RESOLVING ACADEMIC PROBLEMS

The Grievance Process

Discrimination/Harassment. If you believe that you have been discriminated against or harassed, you may contact the office of Student Judicial Affairs (see below) or the ASUCD Grievance Center (see below) for information and assistance. Advice is also available from the campus's Sexual Harassment Information Line (916-752-2255) or the office of Student Judicial Affairs (see below).

Grade Changes. If you believe you received an incorrect grade due to a clerical error, ask your instructor to file a grade change form with the Registrar's Office. If you believe you received an incorrect grade due to any type of discrimination, consult the office of Student Judicial Affairs (see below).

Other Grievances. If you need a requirement waiver or any other type of variance, contact your faculty advisor or the appropriate dean's office for information on your college's procedures. If you cannot get satisfaction through normal channels, contact the ASUCD Grievance Center or the Committee on Student-Faculty Relationships (see below).

ASUCD Grievance Center

Information:
ASUCD Academic Affairs Office
376 Memorial Union
916-752-6101 or 752-6009

The ASUCD Grievance Center advocates students' academic concerns to the faculty and administration. Grievance counselors deal with students one-on-one, directing them to appropriate channels through which to state their grievances (i.e., student-faculty relations, sexual harassment, grade change problems, and prejudicial treatment in the classroom.)

Committee on Student-Faculty Relationships

Information:
Academic Senate Office
350 Mrak Hall
916-752-3920

If students with a grievance feel they cannot get satisfaction through normal procedures, they may contact the Committee on Student-Faculty Relationships for assistance. The committee is advisory and can make recommendations to the office having authority to resolve the problem. It may also meet informally with the students involved with the grievance. It may not, however, make any binding decisions.

Student Judicial Affairs

Information:
Student Judicial Affairs
4th Floor, Memorial Union
916-752-1128

Student Judicial Affairs supports the standards of the campus by responding to alleged violations of University policies or campus regulations. In addition, the office coordinates the informal resolution process and receives formal complaints for student grievances based on impermissible discrimination or harassment (sexual, racial, religious, handicapped, etc.), or on violations of student rights to obtain access to or prevent disclosures from their campus records. The office also
can aid in conflict resolution and provide interpretations of University policies and regulations.

STUDENT SERVICES

Counseling Center

Information:
219 North Hall
916-752-0671

The Counseling Center offers confidential psychological, psychiatric and peer counseling services to students having problems that affect their academic progress and sense of well-being. To make an initial appointment, telephone or come to the Counseling Center. Students, faculty or staff who have a concern about a student or desire assistance in making a referral, are encouraged to call the center.

The House

Temporary Building 16
24-Hour Hotline: 916-752-2790
Business Line: 916-752-5665

Located in a green, two-story house next to the Housing Office, The House is a professionally managed peer counseling program of the Counseling Center. Students receive confidential support, information, and referrals regarding personal or social problems. Well-trained student volunteers assist students through individual peer counseling and a wide variety of workshops and support groups held in an informal setting. No appointment is necessary and services are offered on a drop-in or telephone basis. The House is open seven days a week and is wheelchair accessible.

Associate Dean of Students

Information:
1st Floor, South Hall
916-752-2019

The Associate Dean of Students provides advising, referral and program development to meet the needs of undergraduate and graduate students, particularly women students. The Associate Dean intercedes with faculty, academic, and Student Affairs administrators on behalf of students in academic or personal difficulty; interprets policies and procedures for students and parents; and works with schools, academic administrators and individual faculty to assist students in meeting UCD academic requirements. This office also provides leadership and influences policy and program development in the administration of activities related to the special needs of women and graduate students.

Health Education

Information:
Cowell Student Health Center
916-752-9652

Because maintaining good health is vital for the successful pursuit of your educational goals, the Health Education Program provides information and services through five programs. Trained peer counselors, health educators, workshops, and resource libraries are available through:

Drink Responsibly in College (916-752-DRUG or 752-3784)—Information on alcohol and other drugs, support and referral for students who have or know someone with a substance abuse problem.

Health Advocates (916-752-9651)—Information and peer counseling on nutrition, exercise, stress management, eating disorders, and other wellness issues. Individual computerized nutritional assessments available by appointment.

Peer Counselors in Sexuality (916-752-1151)—Information and peer counseling (in person or by phone) on birth control, pregnancy, sexually transmitted diseases (including HIV/AIDS), safer sex, healthy relationships, sex roles and other issues related to sexuality.

Campus Alcohol and Drug Abuse Prevention Program (CADAPP) (916-752-6334)—Individual alcohol/drug behavioral assessments with professionals or peers on an appointment and drop-in basis; small six-week alcohol education groups open to students with personal concerns about alcohol/drug use; and an academic course and workshops for students, faculty, and staff on peer counseling skills, dysfunctional families and alcoholism/addiction.

Bicycle Safety and Injury Prevention Program (916-752-4142 or 752-9652)—Information and presentations on bicycle safety, equipment, laws, and injury prevention.

International Student Services (S.I.S.S.)

Information:
Services for International Students and Scholars
300 South Hall
916-752-0864

The S.I.S.S. Office assists incoming international students and scholars in making preparations for study in the U.S. S.I.S.S. helps students in maintaining their legal status while at UCD, and facilitates the international transfer of funds in order for students to maintain their academic endeavors. In addition, S.I.S.S. provides immigration, personal, cultural, and financial advising.

All new and transfer international students are required to attend a special orientation program that is held just before fall quarter registration. The orientation will help you with registration, class enrollment, immigration regulations, making housing arrangements, and finding campus services and community resources.

Students must report to Services for International Students and Scholars as soon after their arrival as possible. S.I.S.S. can help you with your immediate needs, and familiarize you with the Davis campus and community. S.I.S.S. will introduce you to the Davis international community, and help you locate other individuals from your home country.

Student Special Services

Information:
160 South Silo
916-752-2007

Student Special Services coordinates a variety of programs and services to meet the special needs of students as described below.

Disability Resource Center

Information:
Disability Resource Center (DRC)
160 South Silo
916-752-3184 (voice) or 752-8788 (Telephone Device for the Deaf)

The Disability Resource Center (DRC) serves students
who find their disability is a barrier to achieving academic or personal goals. Most often this occurs as individuals begin UCD, get established in the community, set up class support, seek personal/social outlets or plan career/personal changes. DRC provides information concerning campus as well as community resources, and provides specialized support not available elsewhere.

DRC was founded with a strong commitment to improving individual choices, personal control of essential resources, and integrated participation in campus life. All University students are assumed to have similar needs, but the consequences of a disability may include some specialized requirements. Therefore, we work closely with each student in identifying his or her particular needs.

Academic and mobility resources for registered students with verified permanent or temporary disability-based needs include the following:

- Alternative educational materials including large-print and taped textbooks
- Campus shuttle services
- Disability management counseling
- Emergency wheelchair repair
- Facilitation of access to all campus programs
- In-person registration assistance and priority enrollment
- Maintenance of a list of personal care attendants
- Peer support groups
- Reader and notetaker services
- Referral for special parking
- Referral for tutoring
- Referral to on-campus and off-campus resources, services, and agencies
- Sign language, oral interpreting, and transliterating services
- Special adaptive equipment and computers

The campus is flat, with a good network of bicycle paths, curbs cuts and pedestrian walkways. Almost all instructional, recreational and student facilities are wheelchair accessible. Accessible on-campus housing is available and an accessible bus system links the campus and the community of Davis.

Preadmission counseling is available for persons with disabilities. You are encouraged to contact DRC if your disability has affected your ability to meet academic requirements for admission.

Draft Information

Information:
Student Special Services
160 South Silo
916-752-2007/2020

The Office for Draft Information assists students who have inquiries and problems regarding their Selective Service status.

Students will find it to their advantage to continually keep themselves aware of Selective Service laws and procedures. Even during periods when induction is not in effect, draft-eligible students may still have legal responsibilities for registration and status changes. This office provides individual advising and consultation on legal obligations and classification options and conse-

Avoiding workshops in all areas related to the draft.

If you are confused or unsure of your current Selective Service status, the office can help by offering information, assistance, alternatives, and support.

Rape Prevention Education Program

Information:
Fire and Police Building, Kleibe Hall Drive
916-752-2009

The goal of the Rape Prevention Education Program (RPEP) is to explore myths and expose the realities of sexual assault. Focusing on prevention through education, the program reaches out to the UCD community in a variety of ways. Services include the following:

- Free discussions and workshops for student groups and classes on topics such as rape prevention and safety awareness, sexual harassment, acquaintance rape, men and rape prevention, media images of women, and pornography
- Seven-week self-defense classes for women, offered quarterly
- Tear gas certification classes
- Short-term counseling, referrals, and support groups for victims of rape or sexual assault, and for incest survivors
- Training for peer counselors and professionals
- A circulating library of books and articles on sexual assault and related issues
- Quarterly newsletter, *Freeing Our Lives*
- Call RPEP for drop-in hours or to make an appointment

RPEP has student work-study positions, and a volunteer staff. Contact RPEP if you have questions.

Reentry Student Services

Information:
Reentry Student Services
160 South Silo
916-752-2005

The Reentry Student Services Office directly serves enrolled students who have reentered the university after several years of life and work experience. Its Reentry Resource Network provides information, support, and referral assistance. The network is composed of representatives from existing student services units, colleges, and divisions who assist reentry students (e.g., from the Women's Resources and Research Center, Financial Aid, Student Housing, the Dean's Offices, etc.). The office also sponsors special programs for new reentry students and assists members of Advocates For Reentry Students.

Transfer Student Services

Information:
Transfer Student Services
160 South Silo
916-752-2200

The Transfer Student Services Office directly serves enrolled students who have transferred from other institutions of higher education. The office coordinates transfer student matters among existing student services units to ensure students an easy and smooth transfer to the University. It also sponsors special receptions and workshops for new transfers, links them
to second-year transfers, publishes an annual Transfer Guide of available services and assists members of the Transfer Student Association.

Veterans Affairs

Information:
Veterans Affairs Office
160 South Silo
916-752-2020

The Veterans Affairs Office assists veterans, dependents of deceased or disabled veterans, and reservists through a variety of federal, state, and campus programs. The office certifies course attendance to the Veterans Administration, coordinates a tutorial assistance program, provides advice and support, and helps with employment, work study and financial aid concerns.

To initiate a benefit claim, write or drop by with your letter of admission. The office can give you the forms, information and advice to get your claim processed.

Women’s Resources and Research Center (WRRC)

Information:
10 Lower Freeborn
916-752-3372

The Women’s Resources and Research Center brings attention to and challenges the barriers that inhibit the inclusion, equal power, and advancement of women. The center promotes an understanding of the evolving roles of men and women, and helps women develop their full potential. To this end, the WRRC provides the UCD community with a women’s studies library, information and programs on the educational, career, and personal needs and interests of women.

The center encourages you to drop by and talk with our friendly, knowledgeable professionals and student interns. Student internships are available in legislative work, publicity, library, program planning, and research.

INTERNSHIPS AND CAREER SERVICES

Internship Programs

Information:
The Internship and Career Center
2nd floor, South Hall
916-752-2655

You can take advantage of one of the hundreds of organized internships through the Internship and Career Center or initiate your own.

An internship may be full time or part time, credit or non-credit, voluntary or involving a stipend—depending on your needs and interests and the availability of openings. Internship experiences must emphasize learning rather than routine activities, and include field supervision by a qualified professional and, where appropriate, the faculty member responsible for giving credit. Academic credit is awarded only for experiences planned and approved in advance by the sponsoring faculty member.

The Internship and Career Center

Information:
2nd floor, South Hall
916-752-2655

If you are an undergraduate, graduate, or alumnus, ICC can assist you in (1) identifying your abilities and interests, and relating them to jobs; (2) gaining access to practical experience to increase your competitiveness in the job market; and (3) finding out how and where to look for the jobs you want. If you are considering dropping out of the University for a term or longer, an adviser can also give you information about internships and employment opportunities.

The Howe Career Center contains material that can aid you in learning how your major field of study can be translated into job opportunities, as well as data concerning types of employment graduates have obtained (summarized by academic major). Useful to job-seekers—and available free of charge—is ICC’s Placement Manual, which provides guidelines for preparing a resume, tips on being interviewed, and information on employment in government, business, and education.

To assist students in finding jobs after graduation, the office solicits and maintains job vacancy listings, arranges employment interviews, and schedules on-campus recruiting by employers.

Education and Graduate Placement Services

Information:
The Internship and Career Center
2nd floor, South Hall
916-752-2655

Any student enrolled in the teaching credential program or pursuing a master’s or doctoral degree in order to teach, should register with the Education and Graduate Placement Office. Services include the following:

- Teaching job vacancy listings
- Placement files (professional dossiers)
- Special workshops on writing teaching resumes and curriculum vitae, and on preparing for interviews
- Individual advising

Advisers maintain contact with school district personnel and work with undergraduate students to explore teaching through internships. In addition, the office sponsors the Graduate Career Options Program for advanced degree candidates originally planning a teaching career and now considering other career options.

Human Corps Program

Information:
The Internship and Career Center
227 South Hall
916-752-2655

Human Corps is a student community services program. Public service work can be a rewarding and satisfying experience that may also improve student’s qualifications for the job market. Service can be paid or non-paid and can take many forms, from a one-day activity to a long-term commitment.

The goal of Human Corps is to facilitate student involvement in community service by serving as a referral center for students wishing to volunteer and a resource for agencies looking for volunteers.
Academic Information
Registration

Information:
Registrar's Office
124 Mirk Hall
(916) 752-2973

Registration is the means by which you become a student at the University. The registration process includes paying fees, enrolling in classes, and completing and filing informational forms. Every UCD student must register each quarter.

If you are a new or reentering student you must also:
• Have a photo ID picture taken.
• Submit a Statement of Legal Residence (see Appendix).
• Return the completed Medical History form, evidence of rubella immunity, results of a tuberculin skin test, and the Insurance Information Request form. These forms are mailed to each new student from the Student Health Center.

New graduate students who have been registered previously at Davis as undergraduates are considered to be new students.

Your registration is complete when you have submitted your registration forms, had your photo taken (first term of enrollment only), paid your fees, and enrolled in classes. Late registration privileges extend through the tenth day of instruction, but you will be assessed a fee of $50 to defray the extra clerical costs of late registration. Permission to register after the deadline will be allowed only under conditions where action or inaction on the part of the University delays registration. A recommendation from an appropriate administrative unit will be required, and the registration fee must be paid with cash, cashier's check, credit union check, University check, or fee exchange.

Change of Name. Petitions to change your name on official University records may be obtained from the Office of the Registrar. (Students planning to graduate should file this petition no later than the fifth week of the quarter in which they intend to graduate.)

Change of Address. Change of Address forms are available at the Office of the Registrar.

Enrollment in Courses

The Class Schedule and Room Directory, available several weeks before the beginning of each quarter, gives class hours and room numbers, changes to the General Catalog, and the most up-to-date information on registration and enrollment procedures.

Class Level
Undergraduate classification is determined by the number of quarter units you have completed:

<table>
<thead>
<tr>
<th>Class</th>
<th>Unit Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0.0—40.0</td>
</tr>
<tr>
<td>Sophomore</td>
<td>40.1—83.9</td>
</tr>
<tr>
<td>Junior</td>
<td>84.0—134.9</td>
</tr>
<tr>
<td>Senior</td>
<td>135.0—</td>
</tr>
</tbody>
</table>

Undergraduate Courses

Lower Division Courses
These courses, numbered 1-99, are open to all students for lower division credit, but are designed primarily for freshmen and sophomores.

Upper Division Courses
These courses, numbered 100-199, are open to all students who have met the necessary prerequisites as indicated in the catalog course description. Preparation should generally include completion of one lower division course in the given subject or completion of two years of college work.

Variable-Unit Courses
Subject to the approval by the department chairperson, an instructor may arrange to give a special study course (numbers 92, 97T, 97TC, 98, 99, 192, 194H, 197T, 197TC, 198, 199) to interested students.

• 92/192 (Internship) courses enable individual students to obtain practical experience to complement their educational goals or to explore potential career interests and opportunities. Students must have completed 84 units before enrollment in course 192.

• 97T/197T (Tutoring) and 97TC/197TC (Tutoring in the Community) are courses for students desiring to tutor in a subject in which they are proficient—generally in their major field—while enrolled as an undergraduate.

• 98/198 (Directed Group Study) courses are set up on a one-time basis for a group of students in a subject for which no regular courses have been established.

• 99 (Special Study for Undergraduates) is a course arranged for an individual student who shares an academic interest that cannot be accommodated within the formal course structure.

• 194H (Special Study for Honors Students) courses are for individual students with honor status, as determined by the department offering the course, and who have completed 84 units.

• 199 (Special Study for Advanced Undergraduates) courses are the upper division counterparts of course 99, and involve supervised independent study and research requiring adequate background in the subject proposed for study as well as prior completion of 84 units.

Credit in courses 99, 194H, 199 is limited to a total of 5 units per term.

Autotutorial Courses are courses in which students instruct themselves at their own pace. These courses can be identified by the letters AT on their course numbers, e.g., 1ATA-1ATB-1ATC, 105AT, 141AT.

Research Conference Courses are courses in which advanced undergraduate students may participate in critical discussions of staff research activities. These one-unit courses are numbered 190C and are graded on a Passed/Not Passed basis.

Graduate Courses

Courses numbered 200-299 are open to graduate students and to undergraduates who have completed 18 units of upper division work basic to the subject matter of the course. However, admission is subject to the approval of the instructor in charge of the course. Grading in 290C courses and variable-unit 299 or 299D courses is Satisfactory/Unsatisfactory.
Professional Courses for Teachers and Nurse Practitioners

Courses numbered 300-399 are teacher-training courses in the Division of Education and in other departments and are especially intended for teachers or prospective teachers. Included are courses designed to provide instruction to teaching assistants. Also included are courses for certification of family nurse practitioners and physician assistants. These courses are open only to students enrolled in those programs.

Other Professional Courses

Courses numbered 400-499 are professional training courses. Graduate students should consult their faculty adviser or contact the Graduate Division before enrolling in 400 series courses to determine if graduate credit may be awarded for the course in question.

Prerequisites

Prerequisites for courses should be noted carefully; the responsibility for meeting these requirements rests on the student. If you can demonstrate that your preparation is equivalent to that specified by the prerequisites, the instructor may waive these requirements for you. However, the prerequisite that requires that you complete 84 units before enrolling may not be waived.

Adding or Dropping Courses

You are officially enrolled in all courses listed on your individual study list and will be held responsible for completing each of the courses. You must file an add/drop card in order to add or drop courses after this initial enrollment. File add/drop cards with the departments offering the courses you want to add or drop.

See the Academic Calendar in the front of this catalog for final dates each quarter for filing petitions to add or drop courses, and refer to the appropriate Class Schedule and Room Directory for filing procedures.

After published deadlines, permission to change your study list may only be granted by the dean of your college or school and only in special circumstances. Graduate students must have their adviser’s approval in order to drop courses. A course which is on your study list and for which you did no work that could be graded is reflected on your official transcript. A verification of your study list is available some time during the fourth week of each quarter.

Retroactive Drops

Occasionally, in exceptional circumstances, students are allowed to drop a course after the course is completed. Reasons for seeking a retroactive drop are very specific: medical problems, severe emotional difficulties, or death or severe illness in the immediate family. Petitions are available from the Office of the Registrar and should include a detailed account of the problem, appropriate documentation, and an adequate explanation of why an “I” grade or late drop was not taken during the quarter in which the problem occurred. The instructor’s signature is required on the petition. A $3.00 fee is applicable on all retroactive drops.

Retroactive Adds

In some rare circumstances, students are allowed to add a course after the course is completed. Petitions for retroactive adds are available from the Office of the Registrar. Each petition must include the reason for the student’s failure to add the course during the quarter in which it is offered. The petition must be supported by the instructor’s signed approval, together with a statement from the instructor indicating knowledge of the student’s participation and performance during the presentation of the course in question and the instructor’s understanding as to the reason for the student’s failure to add the course before the end of the quarter. A course grade must be assigned by the instructor. A $3.00 fee is applicable on all retroactive adds.

COURSE LOAD

Certification of Full-Time Status. Undergraduate students must carry a study load of at least 12 units (including workload units) each quarter in order to be certified as full-time students for insurance and financial aid purposes, or to compete in intercollegiate athletics. Graduate students must carry a study load of at least 8 units each quarter in order to be certified as full-time students for insurance and financial aid purposes.

Minimum Progress Requirements. Minimum progress is defined as an average of 12 units (including workload units) passed per quarter, calculated at the end of every quarter for the preceding three quarters of enrollment. Undergraduate students falling below this required average will be subject to academic disqualification. Minimum progress requirements do not apply to students who have part-time status or to students who have their dean’s approval to carry less than the minimum progress load because of medical disability, employment, a serious personal problem, a death in the immediate family, or an accident.

College of Letters and Science. Freshman students in their first year and transfer students in their first quarter of residence may not take more than 17 units each quarter. For all other Letters and Science students, the study list may not exceed 21 units each quarter. These unit limitations include non-credit remedial courses and repeated courses, but not make-up work to remove incomplete grades.

PART-TIME STUDENT STATUS

If, for reasons of occupation, family responsibility, health, or, for one time only, graduating senior status, you are unable to attend the university on a full-time basis, you may qualify for enrollment in part-time status. Students may change status between full-time and part-time as their circumstances change. To be considered eligible, undergraduate students must be enrolled in ten units (including workload units) or fewer per quarter, and graduate students must be enrolled in six units or fewer per quarter. Minimum progress requirements are waived for part-time students. A petition, available at the Office of the Registrar, must be approved by the dean of your college (certain verifications are required), and then filed with the Office of the Registrar no later than the tenth day of instruction in the quarter of enrollment. Part-time students have use of the same facilities and are eligible for the same services, including Student Health Services, as full-time students.
ACADEMIC CREDIT

Academic work at the University is measured by "units of credit." In conjunction with the letter grade you receive from the course instructor, units of credit give a fairly accurate evaluation of the amount of time you have devoted to a given subject. Units of credit also make it possible to anticipate the amount of work involved in a particular course, and enable you to transfer from one campus or university to another without undue difficulty. (To convert quarter units to semester units, multiply by 0.66; from semester to quarter units, multiply by 1.5.)

Units of credit are assigned to courses based on the "Carnegie unit" which assigns one unit of credit for three hours of work by the student per week. Usually this means one hour of lecture or discussion led by the instructor and two hours of outside preparation by the student. In laboratory courses, two or three hours of work in the laboratory are normally assigned one unit of credit.

In most courses at Davis the standard procedure prevails, so that a three-unit course meets for three hours a week, a four-unit course for four hours, and so on. Courses that are an exception to this pattern may require additional class time or give more demanding assignments. If you have questions about the number of units assigned to a course, you should check the expanded course descriptions (if your college or department provides them) or ask the instructor what is required in terms of outside reading, term papers, problem sets, or field trips. These are not always spelled out completely in the General Catalog. By knowing the amount of work that will be required, you can plan your course load more systematically and realistically.

Credit by Examination

Under certain prescribed conditions, currently enrolled students in good standing may receive course credit by taking an examination without formally enrolling in a course. You may obtain a petition and a copy of the prescribed conditions from the Office of the Registrar. The petition is subject to the approval of the instructor giving the examination and the department involved.

The completed petition, accompanied by a fee of $5.00, must be presented for final approval to the dean of your college or school, or if you are a graduate student, to the dean of Graduate Studies.

The credit received for the examination may not duplicate any credit you have already earned toward your degree. You may not use credit by examination to repeat any course you have taken previously, regardless of the grade you received in that course. The final results will be reported to the Office of the Registrar, which will assign you the appropriate grade and grade points. Since failure to pass the examination will be recorded as an F, you are encouraged to prepare fully for such an examination before attempting it.

You may also receive credit for learning in nonacademic settings through credit by examination.

Concurrent Credit from Another Institution

A student may not obtain transfer credit for courses taken at a non-University of California campus in a term during which the student is enrolled as a full-time student at UCD. A variance can be obtained only by petitioning the dean of your college well in advance of the desired enrollment. When a variance is granted, units earned are counted toward minimum progress for the term in which the dual enrollment occurs. Summer session courses are exempt from this regulation.

Students may gain credit for courses taken during the summer at other institutions, provided the courses parallel those given in the University of California. Assurance that such credit will be accepted, however, can be given only after the courses have been completed. You should arrange to have the transcripts of your summer session grades sent to the Admissions Office for evaluation. On your transcript UCD Summer Sessions courses are identified by the letter "S" preceding course numbers.

See the Summer Sessions bulletin for detailed information.

THE MAJOR

Declaration of Major

College of Agricultural and Environmental Sciences. Students must declare a major by the time they have completed 120 units. Failure to declare a major
at this point will result in a hold on your further registration. In order to declare a major, you must meet with your faculty adviser and/or Advising Associate, fill out a Declaration of Major petition obtainable at the Office of the Registrar or Dean’s Office, and file the petition with the Dean’s Office. If you have completed 120 units you must prepare a study plan with your adviser and/or Advising Associate at the same time. You are accepted into a major only after your major department and the Dean’s Office have approved the Change of Major petition. You’ll find a complete list of the majors offered at UC Davis in a chart at the front of this catalog.

College of Engineering. Students applying to the College of Engineering must declare a major on their applications. Their freedom to change majors thereafter may be limited.

College of Letters and Science. Students must declare a major by the time they have completed 90 units. If you have not declared a major by this point, a hold will be placed on your registration materials. The hold will be removed only when your Declaration of Major petition is on file in the Dean’s Office. Petitions can be obtained from faculty advisers, department offices, or the Registrar’s Office. As a part of the declaration procedure, you must, in consultation with a faculty adviser, prepare a projected plan of study. You are accepted into the major when your adviser and the dean have approved the petition.

To be accepted into a major, you must have a C average in all courses you have completed that are a requirement for that major, as well as a C average in the upper division courses you have taken toward the major. With the approval of the College Executive Committee, additional requirements, such as completion of a particular set of required courses with a specified grade-point average (usually well above a C average), may be introduced as conditions for acceptance into any major at any time.

If your performance is unsatisfactory after you have declared a major, you may be required to withdraw from that major by the dean, upon written recommendation from the chairperson of the department or the curriculum committee that administers the major.

Change of Major Within a College

To change from one major to another within a college, you will need the consent of the department or committee in charge of your proposed new major. Admission into a major program may be denied by the program or by the dean if your grade-point average in courses required for the selected major is less than 2.0.

Procedures for change of major within a college are the same as for declaration of major and the same conditions apply. If you wish to change to a major that has admission restrictions, you must comply with the special procedures and requirements for that major.

Except under unusual circumstances, no change of major will be permitted after you attain senior standing (135 units). It is not possible to change or declare a major in the quarter of graduation.

College of Engineering. The above provisions do not apply to students in the College of Engineering, whose freedom to change majors is limited.

Change of Major Accompanied by Change of College

Petitions for a change of major involving change of college must be filed within the first five weeks of the quarter. A change petition, available at the Dean’s Office, must be endorsed by a faculty adviser of the new major you are selecting and signed by the dean of the college from which you wish to transfer. In addition, admission to the new college will require that dean's approval. Permission to transfer from one college to another may be denied or deferred if you are in academic difficulty or have a GPA of less than 2.0 in courses that are required by the new major.

College of Engineering. You may submit petitions for a transfer into the College of Engineering from another UCD college only if you 1) are in good academic standing and are making minimum progress, 2) have completed at least 40 units as a registered student on the Davis campus, 3) have successfully completed Mathematics 21A, 21B, and 21C and Physics 9A (or their equivalents) on a letter-grade basis, and 4) have the minimum UC GPA specified for the year in which you wish to transfer. Additional requirements apply to students who want to major in Electrical Engineering and Computer Science.

You must declare a specific major at the time you petition to transfer and must have the minimum GPA specified for transfer into that major in that year. Consult the Engineering Undergraduate Office for details on minimum GPAs for specific majors.

Multiple Majors

College of Agricultural and Environmental Science. Because of similarity in course requirements for many of the major programs in the College, requests for multiple majors are not normally approved. If you are interested in two or more areas of study, you should consider the options of planning an individually designed major, or of adopting one or more of the minor programs offered by the College to complement your major. You may also request that your transcript note that you have completed all the requirements for study of a major in addition to your selected major.

College of Engineering. Enrollment in combinations of engineering majors or in an engineering major and a non-engineering major may be possible. A change of major petition is required; this should be filed in the Undergraduate Office and is subject to approval. Double-major students must satisfy the requirements for both majors. Degree requirements for such double majors ordinarily cannot be completed within four academic years.

College of Letters and Science. Students choosing to major in multiple subjects must notify the Dean’s Office of their decision by submitting for approval a petition endorsed by faculty advisers in the majors. The Dean’s approval of the declaration of more than one major is subject to the following conditions:

1. At least 80 percent of the upper division units used to satisfy course and unit requirements in each major selected must be unique and may not be counted towards the upper division unit requirements of any other major undertaken. Courses with substantial overlap in content will not count as part
of the 80 percent. If the major programs differ in the number of upper division units required, the major program requiring the smaller number of units will be used to compute the minimal number of units that must be unique.

2. At the time of request, a substantial part of the preparatory subject matter and at least two upper division courses in each major must have been successfully completed.

It should be possible to complete all degree requirements within the 225-unit limit.

Combination proposals that cannot be approved are two or more majors

1. in the following group: biochemistry, biological sciences, botany, genetics, microbiology, physiology, and zoology;

2. offered by the same discipline, except art history and art studio.

A student who completes all requirements for approved multiple majors in which one major normally leads to an A.B. degree and another normally leads to a B.S. degree, will receive a B.A.S. degree. A single degree is granted to students who graduate with multiple majors.

Cross-College Majors

College of Agricultural and Environmental Sciences. The College does encourage multiple majors between colleges whenever your academic interests and abilities indicate this to be the best route. After endorsement of the Change of Major petition by the appropriate faculty in the colleges involved, each dean may approve the petition if there are sufficient differences between the requirements for the major programs you wish to study. At least 80 percent of the upper division units used to satisfy course and unit requirements in each major selected must be unique and not duplicate those of the other major. In planning for multiple majors, you should determine the total requirements needed for each major as well as for graduation from each college involved.

College of Engineering. Enrollment in a combination of an engineering major and a non-engineering major may be possible. A change of majors petition must be filed in the Undergraduate Office and is subject to approval. Such double-major students must satisfy the requirements for both majors. Degree requirements for such double majors ordinarily cannot be completed within four academic years.

College of Letters and Science. The same conditions apply for cross-college majors as for multiple majors. Cross-college programs will not be approved if the majors involved are available within a single college as well. For example, cross-college programs between the Colleges of Letters and Science and Agricultural and Environmental Sciences will not be approved if one of the majors is biochemistry, biological sciences, botany, genetics, microbiology, physiology, or zoology.

Individual Major

Students with academic interests not covered by an established major have the opportunity to develop an individual major. Such a major requires the selection of interrelated courses totalling a minimum of 45 upper division units from two or more areas of study. If you choose this option you will work closely with faculty advisers to develop a coherent and rigorous academic program. This program is then submitted to a faculty committee for review and approval. Submit the proposed program to the committee at least four quarters before you plan to graduate. If you wish to undertake an individual major, request the appropriate forms from your Dean's Office. Program requirements are outlined under Individual Major in the Programs and Courses section of this catalog. The College of Engineering does not offer an individual major.

THE MINOR

If you are interested in two or more areas of study, you should consider completing one or more minor programs. Minor program requirements are listed in the Programs and Courses section of this catalog under the department that offers them. You will find a complete list of the minors offered at UC Davis in a chart at the front of this catalog.

A minor consists of 18 to 24 units in upper division courses specified by the department or program offering the minor. At least half of these units and courses must be completed in residence on the Davis campus. You are also expected to complete all courses that are prerequisite to the upper division courses. In order to request certification of a minor, you must have a grade-point average of 2.0 in all courses required for the minor. At most, one course used in satisfaction of your major may be applied to your minor. If you elect more than one minor, these minors may not have any courses in common.

If you want to have completion of a minor certified on your transcript, you must obtain a minor petition from your Dean’s Office and file it no later than the deadline for filing for graduation. You can elect only one minor in a subject area. Requirements for the minor must be met by the time of graduation.

No minors are available in the College of Engineering, although students in Engineering may, with the consent of their advisers, develop minors in either the College of Letters and Science or the College of Agricultural and Environmental Sciences. The Undergraduate Office in the College of Engineering has the primary responsibility for certifying minors and should be consulted before you begin the minor sequence.

If you are enrolled in the College of Engineering but elect a minor in either the College of Letters and Science or in the College of Agricultural and Environmental Science, you must pick up a minor petition in the office of the college that offers the minor you want, and have it certified by the Undergraduate Office of the College of Engineering.

EXAMINATIONS

Midterms

In undergraduate courses for which a midterm examination is required, each student has the right to take the midterm (or submit the take-home examination as opted
by the instructor) during one of the regularly scheduled meetings of the class as published in the Class Schedule and Room Directory. The scheduling of a midterm examination at a time other than a regularly scheduled class meeting requires mutual consent of the instructor and each student enrolled in the course. A student who does not consent in writing to the different time must be permitted to take the examination (or submit the take-home examination) at the officially scheduled time. A student who consents in writing to the change of examination time waives the right to take the midterm at the officially scheduled time.

Final Examinations

Scheduling. The Class Schedule and Room Directory lists the times that final examinations are to be held. These are set up according to the day-and-hour periods in which the classes are given during the quarter. This information is available at the beginning of the term so that you can avoid final examination conflicts.

The scheduling of an examination at a time other than the specified time requires the mutual consent of the instructor and each student enrolled in the course. Any student who does not consent in writing to a different time must be permitted to take an examination (or submit the instructor-opted take-home examination) at the officially scheduled time. A student who consents in writing to a change in the final examination time waives the right to take the examination as originally scheduled. Departures from the published examination schedule should be carried out so as not to disadvantage students who are unable to accept the alternate schedule. An in-class final examination may not be rescheduled for a date earlier than the first day of finals week. The due date for a take-home final examination may not be earlier than the time and date published in the Class Schedule and Room Directory. A student who is improperly denied the right to take a required final examination on the published date (or submit the take-home examination as opted by the instructor) may file a petition with the Executive Council of the Davis Division of the Academic Senate by the end of the next regular term for appropriate action.

Requirements. Except under certain specified circumstances, Academic Senate Regulations require that final examinations be given in all undergraduate courses. Final examinations may be given in graduate courses. Exceptions to the regulation would be independent study courses, courses which consist of laboratory work only, and courses in which the examination has been waived (course descriptions will include the statement, "no final examination").

At the instructor's option, the final examination may be completely or in part a take-home examination. The writing time (in undergraduate courses) of a take-home and an in-class final examination together should not exceed three hours. In each course in which a final examination is required, the students have the right to take the final examination (and/or submit the take-home examination) at the time published in the Class Schedule and Room Directory.

An instructor may release each student's original examination, or a copy, at any time. Otherwise, the instructor will keep the exams, or copies thereof, until the end of the next quarter and students may pick up their exams during this period.

Disabilities. Students with learning disabilities may
have additional time for examinations (or alternate examination formats). An adjustment request must be submitted in writing to the instructor of the course involved by the tenth day of the quarter, and must include proof of the existence of a learning disability. The instructor determines, in consultation with the student and the campus learning disability specialist, whether an adjustment is necessary and specifies the terms of the adjustment.

Religious Observances. The University of California, Davis seeks to accommodate any student who, in observance of a religious creed, encounters an unavoidable conflict with a test or examination schedule. It is the responsibility of the student to provide, in writing and at the beginning of the quarter, notification of a potential conflict to the individual responsible for administering the test or examination and to request accommodation. Instructors will consider such requests on a case-by-case basis and determine whether such conflicts can be resolved without imposing on the instructor or the other students in the class an undue hardship which cannot be reasonably avoided. If so, the instructor will determine, in consultation with the student, a time during which the student can take the test or examination without incurring a penalty or violation to the student's religious creed.

GRADES
Every instructor is required to assign a grade for each student enrolled in a course. The following grades are used to report the quality of a student's work at UCD:

A, excellent
B, good
C, fair
D, barely passing
F, not passing (work so poor that it must be repeated to receive recognition)
P, passed (grade C- or better)
NP, not passed
S, satisfactory
U, unsatisfactory
I, incomplete (work is satisfactory but incomplete for a good cause)
IP, in progress
E-NWS, enrolled—no work submitted

The grades A, B, C, and D may be modified by a plus (+) or minus (−).

Grade Points
Grade points are assigned each letter grade as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>A−</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>B−</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>C−</td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>D−</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Grade-Point Average (GPA)
The grade-point average is computed on courses taken at the University of California, with the exception of courses taken in University Extension. The value of grade points over units attempted determines your grade-point average. The grade-point balance represents the number of grade points above or below a C average. The grades IP, P, S, NP, and U carry no grade points and are not included in grade-point computations. Incomplete (I) grades are not included in the GPA at the end of the quarter, but are counted as F in determining if a bachelor's degree candidate has earned the minimum 2.0 GPA required for graduation.

A student at Davis is expected to maintain a C (2.0 GPA) or better in all work undertaken in the University. If you fall below a C average, you are considered "schoastically deficient" (see Probation and Dismissal).

Passed/Not Passed (P/NP) Grading
Subject to regulation by the faculties of the colleges and schools, an undergraduate student in good standing can petition to take specific courses on a Passed/Not Passed basis. Petitions are available in deans' offices as of dates published in the Class Schedule and Room Directory and must be filed before the end of the fifth week of instruction.

The grade P is assigned for a grade of C- or better. Units thus earned are counted in satisfaction of degree requirements but are not counted in determining your grade-point average.

The intent of this option is to encourage exploration in areas in which you have little or no previous experience by alleviating grading pressures. The maximum number of units graded P that will be accepted for degree credit is 1/3 of the units completed in residence on the Davis campus. Consequently, at least 2/3 of the units completed in residence at Davis and presented in satisfaction of degree requirements must be in courses taken for a letter grade.

In specific approved courses instructors will assign only Passed or Not Passed grades. Such courses count toward the maximum number of units graded P allowable toward the degree. If you are planning to take courses on a P/NP basis, you should also familiarize yourself with the requirements of your particular school or college which may have introduced conditions or restrictions in addition to the University requirements. If you plan to attend graduate or professional school, you should consult with Advising Services regarding Passed/Not Passed grading.

If you elect the P/NP grading option for courses graded upon completion of a two- or three-quarter sequence (In-Progress grading), a petition must be submitted before half of the time covered by the IP grading has elapsed. The P/NP grading will then be in effect for the entire course sequence.

If you receive a D or an F in a course you may not repeat it using the P/NP option. If you receive an Incomplete in a course you took for a letter grade, you may not complete the course on a Passed/Not Passed basis.

College of Agricultural and Environmental Sciences: The Passed/Not Passed option should be used only for elective courses, not for courses taken to fulfill major requirements. An NP grade in a course required by the major could prevent graduation. When in doubt, check with your faculty adviser before electing to take a course Passed/Not Passed.

College of Engineering: While registered in the College of Engineering, you may enroll in a maximum of one
course per quarter in which you choose the Passed/Not Passed (P/NS) grading option; you must be enrolled in at least 12 units. Courses that are graded P/NS only may be taken simultaneously with the courses for which you exercise the Passed/Not Passed option.

In the engineering curricula, only courses taken to satisfy (a) the unrestricted electives requirements, or (b) the Humanities-Social Sciences electives (not GE) and the English and rhetoric requirements, or (c) the technical electives requirement may be taken on a Passed/Not Passed basis. In addition, certain design courses may be taken on a Passed/Not Passed basis. Consult the Dean's Office for information about which design courses may be taken on this basis. All other courses must be taken for a letter grade. Humanities-Social Science courses that you plan to offer in fulfillment of the campus General Education requirement must be taken for a letter grade.

You must meet the following conditions to exercise the Passed/Not Passed option:

- be in good academic standing (not on probation or subject to dismissal)
- carry at least 12 units, including the course to be taken P/NS, in that quarter
- have a P/NS petition approved by the Associate Dean for Undergraduate Studies or a designated representative

College of Letters and Science: Graduating seniors, and other students planning to undertake graduate or professional studies, should consult an adviser before petitioning for Passed/Not Passed in courses required for the major program.

Satisfactory/Unsatisfactory (S/U)
The grade of S is awarded to graduate students for work in graduate courses which otherwise would receive a grade of B- or better, and in undergraduate courses for work which otherwise would receive a grade of C- or better. Graduate students, under certain circumstances, may be assigned grades of S or U, but units earned in this way will not be counted in calculating the grade-point average.

Petitions are available from the Graduate Division and must be signed by your graduate adviser. (See also Individual Study courses.) A course in which a C, D, or F grade is received may not be repeated with the S/U option.

In specific approved courses instructors will assign only Satisfactory or Not Satisfactory grades. Such courses count toward the maximum number of units graded S allowable toward the degree.

In-Progress (IP) Grading
For a course extending over more than one quarter (designated "deferred grading only, pending completion of sequence" in course descriptions), evaluation of student performance is deferred until the end of the final quarter. Provisional grades of IP are assigned in the intervening quarters and are replaced with the final grade at the completion of the sequence. In order to gain credit toward graduation, a student must successfully complete the entire sequence. (See above for P/NS grading.)

Incomplete Grades
The grade of I may be assigned when a student's work is of passing quality and represents a significant portion of the requirements for a final grade, but is incomplete for a good cause as determined by the instructor. (Good cause may include illness, serious personal problems, an accident, a death in the immediate family, a large and necessary increase in working hours, or other situation of equal gravity.)

You may replace an I grade with a passing grade and receive unit credit (and grade points if the instructor assigns a letter grade) provided you satisfactorily complete the course work as specified by the instructor. In order to change your records, you must obtain a petition from the Registrar's Office and present it to your instructor for completion and mailing.

An I grade must be replaced with a letter grade (or P or S grade) before the end of the third succeeding quarter (excluding summer sessions) of the student's academic residence, or the grade will revert to an F (or NP or U). If a student's degree is conferred before the expiration of the time limit for an I grade conversion, and the grade is not replaced by the end of the third quarter succeeding the quarter in which the I grade was assigned, the I grade will remain on the student's record.

You may not re-enroll for credit in a course for which an I grade has been assigned. An undergraduate student whose record shows more than 16 units of I grades will be subject to disqualification. A graduate student who accumulates more than eight units of I grades will be subject to probation.

Incomplete grades will not be included in your grade-point average at the end of a quarter. At the time of graduation, however, any remaining I grades are included when your grade-point average is computed, in order to determine whether you have achieved the 2.0 average required for the bachelor's degree. An Incomplete grade, in these computations, has the same effect as a grade F, NP, or U, depending on which option you have exercised. Therefore, it is recommended that students not delay the clearance of incomplete grades so as not to jeopardize graduation.

Changes of Grade
All grades except I and IP are final when filed by an instructor at the end of the quarter. No final grade except I may be revised by examination or the submission of additional work after the close of the quarter.

If, however, a clerical or procedural error in the reporting of a grade by the instructor can be documented, you may request a change of grade with a petition available from department offices.

Repeating Courses
Undergraduates may repeat any course in which they received a D, F, or NP. Up to a maximum of 16 units, the grades for both the first and second time a course is taken will appear on the student's transcript, but only the grade earned the second time a course is taken will be calculated into the student's GPA. After the 16-unit maximum is reached, the grades for both the first and second time a course is taken will be calculated into the student's GPA. However, the units completed after
the 16-unit maximum is reached are credited toward the student's degree only once.

Repeat units of English A are not counted against the 16-unit maximum. Courses in which students received a grade of D or F may not be repeated on a P/NP basis. (Courses in which a grade of NP was received may be repeated on a P/NP basis.)

Departments may restrict the repetition of a course if it is a prerequisite to a course that the student has already completed with a grade of C- or better. Repeating a course more than once requires approval by the appropriate college dean.

Graduate students may repeat any course in which they received a C, D, F, or U. Up to a maximum of 9 units, only the grade earned the second time a course is taken will appear on the student's transcript. After the 9-unit maximum is reached, the grades for both the first and second time a course is taken will appear on the student's transcript. However, the units completed after the 9-unit maximum is reached are credited toward the student's degree only once.

A course in which a C, D, or F grade has been earned may not be repeated on the S/U basis. (Courses in which a grade of U was received may be repeated on a S/U basis.)

Mid-Term Grade Standing

Students wishing to know their grade at the mid-quarter should ask the instructor. Those who have deficient grades (D, F, or Not Passed) are urged to confer with their advisers.

Final Grades

Grades are generally available about three weeks after a quarter has ended. If you wish to have your grades mailed to you, bring in a stamped, self-addressed envelope with your student I.D. card to the Office of the Registrar before the end of the quarter.

Transcripts

A record of each student's academic work at UCD is retained permanently by the Office of the Registrar. Copies of your official transcript may be obtained from that office for $4.00 a copy. Transcripts of all work done through University Extension or Concurrent Enrollment should be requested directly from the University Extension Office, 1333 Research Park Drive. Transcripts of work completed at another campus of the University or at another institution must be requested directly from the campus or institution concerned.

Application for a transcript of record should be made at least two weeks in advance of the time needed.

HONORS AND PRIZES

Deans' Honors Lists

According to Davis campus regulations, the quarterly Dean's Honors List includes names of students who have completed, for a letter grade, a minimum of 12 units in a specific quarter with a grade-point average equal to or higher than the minimum grade-point average attained by the upper 16 percent of those registered in the same class-level and college during the preceding quarter. Honors lists will be posted quarter-

ly on bulletin boards outside deans' offices, and a notation of these honors will be placed on each student's permanent record by the Registrar's Office.

The Honors Program of the College of Letters and Science

The Honors Program in the College of Letters and Science is designed to permit students to pursue a program of study in their major at a level significantly beyond that defined by the normal curriculum. It represents an opportunity for the qualified student to experience aspects of the major that are representative of advanced study in the field.

Entrance into the honors program requires that a student have completed at least 135 units with a minimum grade-point average of 3.5 in courses counted toward the major. Other prerequisites for entrance into the program are defined by the major. The program consists of a project whose specific nature is determined by consultation with the student's major adviser. It may involve completion of a research project, a scholarly paper, a senior thesis, or some comparable assignment depending on the major. The project will have a minimum duration of two quarters and will be noted on the student’s record by a variable unit course number or special honors course designation. Successful completion of the honors program requires that a minimum of six units of credit be earned in course work for the project.

Scholarships

Students with outstanding academic records who show promise of continued scholarly achievement are encouraged to apply for scholarship recognition and awards. Awards are accompanied by a financial honorarium or stipend. Information about scholarships is available from the Scholarship Office, 207 North Hall, 916-752-2393.

Graduation Honors

Honors at graduation are awarded to students who have a grade-point average in the top percent of their college or school as shown in the table below.

<table>
<thead>
<tr>
<th>Total Quarter</th>
<th>Highest Honors</th>
<th>High Honors</th>
<th>Honors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-89</td>
<td>2%</td>
<td>2%</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>90-134</td>
<td>3%</td>
<td>3%</td>
<td>6%</td>
<td>12%</td>
</tr>
<tr>
<td>135+</td>
<td>4%</td>
<td>4%</td>
<td>8%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Grade-point averages from the winter quarter previous to graduation are used to determine the averages that will earn an honors designation. Following are the averages for winter quarter 1992. These averages will be used through winter 1993.

<table>
<thead>
<tr>
<th>Grade-Point Average by College</th>
<th>Determining Cut-Off Point</th>
<th>Agricultural and Environmental Sciences</th>
<th>Engineering</th>
<th>Letters and Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>3.889</td>
<td>3.842</td>
<td>3.832</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>3.841</td>
<td>3.792</td>
<td>3.798</td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>3.794</td>
<td>3.756</td>
<td>3.752</td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td>3.686</td>
<td>3.706</td>
<td>3.688</td>
<td></td>
</tr>
<tr>
<td>8%</td>
<td>3.628</td>
<td>3.623</td>
<td>3.635</td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td>3.514</td>
<td>3.502</td>
<td>3.537</td>
<td></td>
</tr>
<tr>
<td>16%</td>
<td>3.434</td>
<td>3.411</td>
<td>3.460</td>
<td></td>
</tr>
</tbody>
</table>

An honors notation is made on students' diplomas and on their permanent records in the Registrar's Office.
College of Letters and Science. Graduation with honors requires that a student meet the appropriate grade-point requirement for all courses as described in the above table. Students who complete the College Honors Program and who meet the grade-point requirement for graduation with honors may be recommended by their departments for graduation with high honors or highest honors on the basis of an evaluation of their academic achievements in the major and in the honors project in particular. Graduating students will not be awarded honors with the bachelor’s degree if more than eight units of grade I (Incomplete) appear on their transcripts. The College Committee on Honors may consider exceptions to this condition. Petitions for this purpose should be submitted to the Dean’s Office.

Prizes
The University Medal is the highest honor awarded to a graduating senior in recognition of superior scholarship and achievement. In addition, a College or School Medal is given to the outstanding graduating student in each of the colleges and professional schools.

Departmental citations, special awards, and prizes are also awarded to students for superior achievement and scholarship.

College of Agricultural and Environmental Sciences. Each year the outstanding graduating senior in the College is awarded a silver medal, known as the “Agricultural and Environmental Sciences Medal.” Scholastic excellence (in a minimum of six quarters at UC Davis) is the primary basis for choosing the recipient. The Mary Regan Meyer Prize is awarded to an outstanding graduate who has demonstrated expertise and an interest in serving humanity.

College of Engineering. Each year outstanding senior students in engineering are recommended by the faculty of the College as nominees for the College of Engineering Medal. Academic excellence is the primary basis for selecting the recipient of the award.

College of Letters and Science. Graduating seniors with a distinguished academic record may be recommended by the faculty as nominees for the College’s Herbert A. Young Medal. Each June, one medalist is selected from among the graduates of the current academic year. The Leon H. Mayhew Award is conferred upon the outstanding graduate from a disciplinary area other than that of the College medalist. Academic excellence is the primary basis for selecting the recipients of these awards.

The Lawrence J. Andrews prize is awarded to a student entering the senior year who not only has achieved academic excellence, but who also has demonstrated interests outside of pure scholarship.

Honorary Societies
Elective to an honorary society is one of the most prestigious awards a student can receive. At UC Davis, the following honorary societies are represented:

- Alpha Epsilon (Agricultural Engineering)
- Alpha Kappa Delta (Sociology)
- Alpha Omega Alpha (Medicine)
- Alpha Zeta (College of Agricultural and Environmental Sciences)
- Delta Phi Alpha (German)
- Dobro Slovo (Russian)
- Golden Key (All colleges and schools)
- Omicron Delta Epsilon (Economics)
- Omicron Nu (Applied Behavioral Sciences)
- Order of the Coif (Law)
- Phi Alpha Theta (History)
- Phi Beta Kappa (College of Letters and Science)
- Phi Kappa Phi (All colleges and schools)
- Phi Sigma (Biological Sciences)
- Phi Zeta (Veterinary Medicine)
- Pi Alpha Xi (Environmental Horticulture)
- Pi Delta Phi (French and Italian)
- Pi Mu Epsilon (Mathematics)
- Pi Sigma Alpha (Political Science)
- Pytanean Honor Society (All colleges and schools—women only)
- Psi Chi (Psychology)
- Sigma Pi Sigma (Physics)
- Sigma Xi (All colleges and schools—research)
- Tau Beta Pi (Engineering)

WITHDRAWALS AND LEAVES OF ABSENCE
Withdrawals may be granted by the University for emergency reasons or for good cause. In order to withdraw, you must first obtain approval from the dean of your college or school. Unauthorized withdrawals will jeopardize registration privileges and result in failing grades. Petitions for Withdrawal are available at the Office of the Registrar. Information on fee refunds can be found in the Fee Refund section of this catalog. The following signatures are required on withdrawal petitions: director of the Student Health Center; adviser, lab or course instructor; Student Aid Accounting Office; Cashier’s Office; and the dean of your college, division, or school.

If you are receiving financial aid, you must report your change of status immediately, in person or by mail, to the Financial Aid and Student Aid Accounting Offices. If you are receiving veterans benefits, you must also report your withdrawal to the Veterans Affairs Office.

Retroactive Withdrawals
Petitions for retroactive withdrawals may be obtained from the Registrar’s Office. Reasons for seeking such are medical problems, severe emotional difficulties, or death or severe illness in the immediate family. Petitions should include a detailed account of the problem, appropriate documentation, and an adequate explanation of why withdrawal was not taken during the quarter in which the problem occurred.

Planned Educational Leave Program (PELP)
The Planned Educational Leave Program allows students to suspend academic work, leave the campus, and later resume studies with a minimum of procedural difficulties.

Any registered student on the Davis campus, undergraduate or graduate, is eligible to enroll in the Planned Educational Leave Program. Freshmen and transfers who have been admitted but have not yet registered or attended classes are also eligible, providing an opportunity for beginning students to pause between high school or community college and the University.
A student will be placed on probation for qualitative reasons if, at the end of any quarter, the student's grade-point average (GPA):
- is less than 2.0, but not less than 1.5, for the quarter.
- is less than 2.0 for all courses taken within the University of California.

A student will be subject to disqualification for qualitative reasons if, at the end of any quarter,
- the student's grade-point average (GPA) is less than 1.5 for the quarter.
- the student has attempted more than 16 units graded I (Incomplete).
- the student has spent two consecutive quarters on academic probation.

In the case of probation or disqualification the official transcript will state "not in good standing." Once a student has met quantitative standards for scholarship, the notation will be removed from the transcript.

The quantitative standards, referred to as minimum progress requirements, define scholarship in terms of the number of units that you must satisfactorily complete. Minimum progress is defined as an average of 12 units passed per quarter, calculated at the end of every quarter for the preceding three quarters. Minimum progress requirements do not apply to students who have part-time status or to students who have their dean's approval to carry less than the minimum progress load because of medical disability, employment, a serious personal problem, a death in the immediate family, or an accident.

The notation "warning—minimum progress" will be noted on the grade report for a quarter in which the student has passed less than 12 units. The notation "minimum progress—subject to academic disqualification," will be noted on the grade report the first time the total number of units passed at UCD is less than 36, calculated at the end of every quarter for the preceding three quarters of enrollment. Quantitative standards are not reflected on the official transcript.

It is assumed that a student will earn the 180-unit minimum degree requirement prior to completing 15 quarters of enrollment. Normal progress would achieve 180 units in 12 quarters.

The following courses may be counted toward unit minimum progress:
- Required non-credit courses, e.g., Mathematics B, will be evaluated according to the "Carnegie unit" rule and counted as units passed
- Repeated courses passed to improve D or F grades
- Courses passed during Summer Sessions at UCD or at another accredited school and transferred to UCD will be counted as units passed (applied to quarter of enrollment just preceding the summer session)
- Courses passed by examination in accordance with policies established by the Divisional Committee on Courses (applied to quarter in which examination is taken)
Courses that are IP (in progress) will be counted as units passed.

Courses graded I will be counted as units passed when replaced by a passing grade (applied to the quarter in which the I grade is received).

The dean of the student's college may grant a student a minimum progress variance of one or more quarters for an acceptable reason. See your faculty adviser or go to the Dean's Office of your college if you need academic advising about probation and dismissal.

Dismissal

Dismissal for either qualitative or quantitative reasons (defined above) is based on the decision of the dean of the college in which you are enrolled. Such dismissal is from the University of California system and not simply the college or the Davis campus. Should a former Davis student wish to be readmitted on the Davis campus, the authority to do so rests with the dean of the college from which the student was dismissed.

Transfer with Scholastic Deficiencies

To transfer from one University campus to another, or from one college or school to another on the same campus, a disqualified or probational student must obtain the approval of the dean whose jurisdiction is being sought. Following the transfer, the student is subject to supervision by the faculty of the new college, school, or campus.

SUMMER SESSIONS

Information:
44 Morrill Hall
916-752-1641

Summer time affords students the opportunity to accelerate progress toward a degree, to tackle problem courses and meet prerequisites, to take special study courses, or to do research. Although it is possible to complete up to 24 units by attending both summer sessions, 7 units per session is an average load.

Summer Sessions at Davis offers a wide variety of lower division and upper division courses that provide full University credit. Admission is open to all University students, high school graduates, and other qualified applicants; however, admission to a summer session does not constitute admission to the University's regular sessions.

In 1993 there will be two six-week sessions at UC Davis: June 28 through August 6, and August 9 through September 17. The Summer Sessions Bulletin and application materials are available in mid-March and may be obtained by writing to the address above.

Special international programs are offered each summer with admission open only to UC registered students. Last year, students had the opportunity to study in Great Britain, Italy, and Japan. For information on international programs scheduled for 1993, call 916-752-0435.
You must satisfy four groups of requirements before you can become eligible for candidacy for the bachelor's degree. The four groups are as follows:

1. University requirements, which apply to all colleges;
2. General Education requirement, which applies to all colleges;
3. College requirements; and
4. Major requirements.

Detailed information on University requirements, the General Education requirement, and college requirements can be found in this chapter.

Every student is responsible for seeing that all degree requirements are fulfilled.

Bachelor's Degree Requirements

University Requirements

All students must fulfill the following University of California requirements:

Subject A
American History and Institutions
Unit Requirement
Residence Requirement
Scholarship Requirement

General Education Requirement

Students are required to complete a certain number of courses in the two areas of General Education other than the one which contains their major field.

College Requirements

College of Agricultural and Environmental Sciences
Unit
Residence
Scholarship
English Composition

College of Engineering
Unit
Residence
Scholarship
English Composition
Design

College of Letters and Science
Unit
Residence
Scholarship
English Composition
Area (Breadth)
Foreign Language (A.B. and B.A.S. degrees)

Major Requirements

Course requirements for each major are listed in the Programs and Courses section of this catalog.

UNIVERSITY REQUIREMENTS

Subject A: English Requirement

The University requires every undergraduate student to demonstrate college-level proficiency in English composition. Satisfaction of the Subject A requirement is a prerequisite to all other undergraduate courses in English.

The requirement, as determined by Undergraduate Admissions, may be met in one of the following ways:

- By achieving a score of 600 or higher on the College Board Achievement Test in English Composition.
- By achieving a grade of 5, 4, or 3 in the College Board Advanced Placement Examination in English.
- By entering the University with credentials showing the completion of an acceptable 3 semester-unit or 4 quarter-unit college-level course in English composition with a grade of C or better.
- By passing with credit the California State University and Colleges English Equivalency Examination. (Note: the CSUC English Placement Test may not be used to satisfy the Subject A requirement.)
- By writing a passing essay on the Subject A Examination. This examination may be taken only once. It is offered in the spring at local sites throughout California; a student admitted for fall quarter who has not already satisfied the Subject A requirement must take this examination. An out-of-state student or any California freshman admitted after mid-April will take another form of the Subject A Examination, which will be offered on the UCD campus during the orientation period each quarter. For the time and location consult the Fee Payment, Enrollment, and Orientation Information bulletin, published before the beginning of each quarter.

If you have not satisfied the requirement in one of the ways described above, you must enroll in English A during your first quarter of residence at the University, or as soon thereafter as space is available in the course. If the requirement has not been satisfied by the end of your third quarter of enrollment, a hold will be placed on your registration. The English A course must be taken for a letter grade and passed with a grade of C or higher. Students receiving a grade of C- or lower must repeat the course. This 2-unit course counts as 4 units on your study load and toward minimum progress.

Students whose native and school language is not English, and some students whose schooling combines work in the United States and in another country, must demonstrate proficiency in English. The level of proficiency must meet the standards of both the non-native speakers of English program and the Subject A program. The results of the Subject A Examination and a special examination in English administered during the orientation period each quarter determine whether a student has satisfied the Subject A requirement or must take specific course work before meeting that requirement.

American History and Institutions

The American History and Institutions requirement ensures that every graduating student will have at least a minimum knowledge of the background of this country's development and an understanding of the political, economic, and social interrelationships of its way of life.
You may meet this requirement in any of the following ways:

- By offering one high school unit in American history, or ½ high school unit in American history and ½ high school unit in civics or American government, with a grade of C or better in each course.
- By completing any one of the following courses:
 - Afro-American Studies 10, 100, 120, 121
 - Asian American Studies 1, 2
 - Economics 111A, 111B
 - Native American Studies 1, 10, 55, 116, 130A, 130B, 130C
 - Political Science 1, 5, 100, 101, 102, 103, 104, 105, 106, 108, 109, 113, 130, 131, 160, 163

(Students electing to offer one of the above courses are subject to the rules that apply for prerequisites and majors.)

- By presenting evidence that the requirement has been accepted as satisfied at another campus of the University.
- By presenting evidence that the requirement has been satisfied through courses in the area of American History and Institutions at another collegiate institution whose credits are acceptable for transfer to the Davis campus.
- By successful completion of the Advanced Placement Examination in American History.

International students, regardless of the type of visa they hold, must meet the University's American History and Institutions requirement for graduation.

Unit Requirement

A minimum of 180 quarter units is required for graduation. These must be distributed according to the minimum requirements set forth by the faculty of your college.

A maximum of 12 units of Internship Courses (92, 921, or a combination) may be counted toward the 180-unit bachelor's degree requirement.

The acceptability of transfer courses for unit credit is determined by the Office of Admissions. The acceptability of such courses toward specific requirements is determined by the individual college or school.

Students should refer to the Advanced Placement Examination chart and their transcripts to eliminate the possibility of duplication of credit.

Residence Requirements

The minimum residence requirement for a bachelor's degree at the University of California is one academic year (three quarters). Each summer session in which a student completes a course of at least 2 quarter units may be counted as half a quarter's residence. Fifty-five of the final 45 quarter units completed by each candidate must be earned while in residence on the Davis campus. Not more than 18 of these 35 quarter units may be completed in summer session courses at UCD.

Regularly approved courses (laboratory, field, or other individual work) done outside of a regular session but under the direction of a department of instruction may be accepted upon the recommendation of the department in partial fulfillment of the residence requirement for the bachelor's degree. Enrollment is with the consent of the instructor only.

University Extension courses are not accepted as part of the University residence requirement.

There are additional residence requirements for students enrolled in the Colleges of Letters and Science and Engineering. If you are planning to study abroad during your senior year, you should consult your college dean's office.

With the approval of the dean of a student's college or school, a candidate for the bachelor's degree who was in active service in the armed forces of the United States in the year preceding the awarding of the degree may be recommended for the degree after only one quarter of University residence in which the candidate completes at least 16 units or passes a comprehensive examination in the major or field of concentration.

Scholarship Requirement

To receive a bachelor's degree, you must obtain twice as many grade points as units (a 2.0 GPA) for all courses you have attempted in the University. An exception to this rule is made for those students undertaking certain honors courses. Grades earned in University Extension courses are not used in calculating individual grade-point averages. For specific college requirements consult the college sections following.

Filing for Graduation

Each candidate for an undergraduate degree must file an Announcement of Candidacy with the Office of the Registrar for the quarter in which the candidate plans to receive the degree. The dates for filing are published in the Academic Calendar at the front of this catalog.

College of Agricultural and Environmental Sciences. A Major Certification form must be received and evaluated by the Dean's Office before your candidacy for a degree can be finalized. A Major Certification is completed during the quarter a student plans to graduate. At that time, the advisor and student check to see that all major requirements have been completed. The Dean's Office completes the degree certification by verifying that all College and University requirements have been satisfied.

GENERAL EDUCATION REQUIREMENT

The General Education Program promotes the intellectual growth of all undergraduates. The program's objectives are: (1) to offer a choice of courses in all major fields of learning; (2) to stimulate intellectual growth through the study of important methods as well as significant material in a particular discipline; (3) to involve students in the learning process by requiring considerable writing and participation in class activities; and (4) to encourage students to apply the concepts and methods of a discipline in appropriate advanced-level courses.
General Education (GE) courses are grouped into three broad areas of knowledge:

1. **Civilization and Culture.** Courses in this area foster knowledge of the dominant intellectual traditions, achievements, and socio-political institutions of humankind and stimulate awareness of cultural diversity within the Western tradition and in other civilizations.

2. **Contemporary Societies.** Courses in this area create an awareness of critical economic, political, and social problems of the contemporary world.

3. **Nature and Environment.** Courses in this area provide students with knowledge of major scientific ideas and discoveries and some perception of the methods, scope, power, limitations, and appeal of science.

Fulfilling the General Education Requirement

The only way that you can fulfill the GE requirement is by completing a required number of approved GE courses at UCD (see the exceptions in the paragraph below). If you have transferred from a community college or other post-secondary institution, or enter with Advanced Placement (AP) units, you still have to complete some of Davis' GE courses, but the number of required courses may be reduced depending upon the number of transfer or AP units you have brought with you.

Transfer Credit. The following courses and transfer credits will be used in determining the General Education requirement for transfer students:

- UCD Extension courses if they are accepted for transfer by the Office of Undergraduate Admissions.
- Advanced Placement credit.
- Transfer work from other community colleges and four-year institutions.

UCD Summer Sessions courses completed before entry do not count as "transfer credit" for determining your GE requirement. Successful completion of an approved GE course during a UCD Summer Session before entry, however, will count toward satisfaction of the GE requirement.

Consult the "Transfer Credit Evaluation" form prepared by the Office of Undergraduate Admissions to determine your transfer credits.

You are exempt from the UCD General Education Requirement if

<table>
<thead>
<tr>
<th>Student Status</th>
<th>Academic Year of Entrance to UCD</th>
</tr>
</thead>
</table>
| Freshman or transfer student with 40 or fewer transfer units¹ | 2 GE courses:
 - may be in same or different areas;
 - may be introductory or non-introductory | 4 GE courses:
 - maximum of 3 in one area;
 - maximum of 2 introductory | 6 GE courses:
 - 3 courses in each of two areas;
 - must have 1 introductory and 2 non-introductory courses in each area | Same as for 1986-87 |
| Transfer student with more than 40 but fewer than 84 units² | No GE requirement | 2 GE courses:
 - may be in the same or different areas;
 - may be introductory or non-introductory | 4 GE courses:
 - Option 1: 2 courses in each of two areas:
 - only 1 course in each area may be introductory
 - Option 2: 3 courses in one area and 1 in the other:
 - must have 1 introductory and 2 non-introductory in the area with 3 courses;
 - the single course in the other area may be introductory or non-introductory | Same as for 1986-87 |
| Transfer student with 84 or more units | No GE requirement | No GE requirement | 2 GE courses:
 - may be in the same or different areas;
 - may be introductory or non-introductory | 2 or 3 GE courses:
 - Option 1: 1 course in each of two areas:
 - both courses must be non-introductory
 - Option 2: 3 courses in one area:
 - must have 1 introductory and 2 non-introductory courses |

¹ For the academic years 1984-85 through 1986-87, this category of GE requirements applied to freshman or transfer students with fewer than 41 units; the unit cut-off was changed fall 1987.

² For the academic years 1984-85 through 1986-87, this category of GE requirements applied to transfer students with 41 or more but fewer than 84 units; the unit cut-off was changed fall 1987.
you come from a California community college or
other institution of higher education and have com-
pleted the “Transfer Core Curriculum;”

OR

you come from another campus of the University of
California and have completed the lower division
breadth or General Education requirements of that
campus.

Your college dean’s office can tell you whether you fall
into either of these categories.

Determining Your General Education
Requirement

Each academic major and degree program has been
assigned to one of the three areas of General Educa-
tion. Each GE course has also been assigned to one
of the three areas. You must complete courses in those
areas of General Education other than the one that con-
tains your major field.

GE courses may be either introductory or non-intro-
ductive. Introductory courses assume no prior knowl-
dge or exposure to the field. Non-introductory cours-
es require some background course work or familiarity
with the subject. You should consult the course des-
criptions contained in the Programs and Courses sec-
tion of this catalog for the courses recommended as
preparation for non-introductory courses.

The specific General Education requirements for stu-
dents entering UCD from the 1984-85 to 1986-87 acade-
mic years and from 1987-88 and thereafter are
detailed in the General Education Requirements table
opposite

Selecting General Education Courses

Since GE courses must be chosen from the two areas
of General Education other than the one containing
your major field, you must begin by identifying the area
of General Education to which your major has been
assigned. The following list provides this information.

Civilization and Culture (CC)

American Studies
Art History
Art Studio
Chicano (Mexican-
American) Studies
(Humanities emphasis)
Classical Civilization
Comparative Literature
Design
Dramatic Art
East Asian Studies
English
French
German
Greek
History
Italian
Landscape Architecture
Latin
Linguistics
Medieval Studies
Music
Philosophy
Religious Studies
Rhetoric and
Communication
Russian
Spanish

Contemporary Societies (CS)

African-American Studies
Agrarian Studies
Agricultural and
Managerial
Economics
Agricultural Education
Anthropology (A.B.
degree)
Applied Behavioral
Sciences
Asian American Studies
(non-degree
program)
Chicano (Mexican-
American) Studies
(Sociology emphasis)
Economics
Environmental Biology
and Management
Environmental Policy
Analysis and Planning
Geography (A.B.
degree—emphasis I,
II, III, V)
Human Development
International Agricultural
Development
International Relations
Native American
Studies
Political Science
Political Science—
Public Service
Sociology
Sociology—
Organizational Studies
Textiles and Clothing
Women’s Studies
Nature and Environment (NE)
Agricultural Science and Management
Animal Science
Anthropology (B.S. degree)
Applied Science
Atmospheric Science
Avian Sciences
Biochemistry
Biological Sciences
Botany
Chemistry
Community Nutrition
Computer Science
Consumer Food Science
Dietetics
Engineering (all majors)
Entomology
Environmental and Resource Sciences
Environmental Toxicology
Fermentation Science
Fiber and Polymer Science
Food Biochemistry
Food Science
Genetics
Geography (B.S. degree; A.B. degree—emphasis IV)
Geology
Mathematics
Microbiology
Nutrition Science
Physical Education
Physics
Psychology
Plant Science
Psychology
Range and Wildlands Science
Soil and Water Science
Statistics
Wildlife and Fisheries Biology
Zoology

If you have declared multiple majors where all of your majors are classified in the same area of General Education, you complete the General Education requirement just as you would if you had a single major. If your majors are classified in two or more different areas of General Education, you are required to complete only the appropriate number of courses in the one area of General Education in which you do not have a major.

If you have an approved individual major, it should have been assigned to one of the three General Education areas at the time it was approved by your college. If you have any questions concerning the General Education area to which your major is assigned, consult your college dean's office.

Approved General Education Courses
A list of the courses and course sequences which have been approved for offering under the General Education Program appears on the following page. This listing is subject to change. You should check the Class Schedule and Room Directory each quarter for the most current information.

Restrictions Applicable to GE Courses
Effective with the fall quarter 1986, there are two restrictions that apply to GE courses.

1. Letter grading. No GE credit will be awarded for a course that is taken on a Passed/Not Passed basis.

2. Subject A. This requirement must be completed before you begin your GE course work. Exception: GE credit may be earned before completing the Subject A requirement for the following course sequences which have been approved for the General Education Program: Chemistry 1A-1B, Economics 1A-1B, Psychology 15-16, and Music 3A-3B.

If you completed a GE course before fall 1986 on a Passed/Not Passed basis or before having completed Subject A, you will receive GE credit for that course.

General Education Literature Preparation List
The recommended General Education preparation listed in the course descriptions of some non-introductory courses states “any course from the GE Literature Preparation List.” This list consists of the following courses: English 3, Comparative Literature 1, 2, 3, French 25, German 52, and Integrated Studies 2D.

Approved General Education Clusters
General Education “clusters” are groups of closely related introductory GE courses. There are two approved clusters in the area of Civilization and Culture: History 4A, 4B, 4C; and Comparative Literature 1, 2, 3.

You may earn credit for having satisfied the entire requirement in an area of General Education by completing an approved cluster. A cluster allows you to substitute introductory for any required non-introductory courses.
GENERAL EDUCATION COURSES FOR 1992-93

Note: This list contains approved GE courses for the current academic year only. Please consult prior years' catalogs or the Deans' offices for the lists of courses approved in previous years. Please note that you cannot claim GE credit for a course you completed before it was an approved GE course.

Civilization and Culture Introductory
American Studies 1B
Art History 1A/1AG, 1B/1BGA, 1C/1CG, 1D/1DG, 1E/1EG
Classics 4A, 17A, 17B, 17C, 20, 50
Comparative Literature 1, 2, 3, 4, 5, 6, 7, 12, 13, 25, 53B
English 3, 4
French 25
German 4B, 50
History 3, 4A, 4B, 4C, 8, 9A, 17A, 17B, 72B, 161A
History & Philosophy of Science 20
Integrated Studies 2B, 2D, 3B, 3C, 3E, 3G
Italian 50
Linguistics 1
Music 3A-3B, 10
Philosophy 1, 10B, 10D, 13, 14, 21, 22, 23, 24, 31
Political Science 4
Religious Studies 3A, 21, 23, 40
Russian 44
Viticulture and Enology 3

Civilization and Culture Non-Introductory
Art History 176C
Chinese 110
Classics 140, 141, 143, 150
Dramatic Art 156, 157
Education 120
French 112, 113, 114
History and Philosophy of Science 130A, 130B
Italian 140, 141, 142
Landscape Architecture 140
Medieval Studies 20A, 20B, 20C, 120A, 120E
Music 110A, 110B, 110C, 110D, 110E, 129
Native American Studies 130A, 130B, 156, 181A, 181B, 181C
Philosophy 101, 102, 104, 105, 107, 108, 151
Religious Studies 141A, 141B, 141C
Rhetoric and Communication 110
Russian 130, 131, 151, 166
Spanish 149
Veterinary Medicine 170

Contemporary Societies Introductory
American Studies 1A
Anthropology 2, 4
Economics 1A-1B
Environmental Studies 10
Geography 2-2G, 5-5G
History 10, 72B
Integrated Studies 3A, 3D, 3E, 3G, 8C
Native American Studies 10, 55, 70
Political Science 1, 2
Psychology 15-16
Religious Studies 1, 2
Sociology 2, 3
Women's Studies 50

Contemporary Societies Non-Introductory
African-American and African Studies 100, 133
Agricultural Economics 120, 141, 141M
American Studies 45, 120, 130
Anthropology 25, 101, 117, 124, 129, 130, 133, 178
Applied Behavioral Sciences 2, 151, 153, 154, 175
Chicano Studies 132
Consumer Science 100
Economics 106
Education 110, 122, 132
Engineering: Civil and Environmental 160
Environmental and Resource Sciences 10-10G
Environmental Studies 101, 133, 161, 165, 166
Geography 124, 155, 170, 171
History 165, 188B
Human Development 15
International Agricultural Development 10
Linguistics 113
Native American Studies 115, 130C, 180
Philosophy 118
Psychology 175, 177
Rhetoric and Communication 152
Russian 132
Sociology 25
Textiles and Clothing 107
Veterinary Medicine 170

Nature and Environment Non-Introductory
Agrarian Studies 2
Animal Science 2
Anthropology 15, 23, 152, 153
Atmospheric Science 10
Avian Sciences 13
Botany 101
Botany 160
Engineering: Applied Science 137
Engineering: Civil and Environmental 30
Entomology 111, 119, 147, 152
Environmental and Resource Sciences 2, 3-3G, 131
Environmental Studies 30-30G, 116-116G
Fiber and Polymer Science 110
Geology 43, 113-113G, 116-116G, 131, 135, 144
History and Philosophy of Science 130A, 130B
Landscape Architecture 155
Microbiology 20
Philosophy 108
Physics 137, 160
Plant Pathology 140
Plant Science 104
Water Science 10, 100
Zoology 138

1These GE courses must be taken concurrently for General Education credit and will satisfy the requirement for one GE course.
2This is a two-course sequence of non-GE courses which will satisfy the requirement for one GE course.
3Nutrition 10 and 11 must both be completed to satisfy the requirement for one GE course. These courses may be taken concurrently, if offered, or sequentially (10 then 11).
4GE courses in Integrated Studies are open only to students in the Integrated Studies program.
COLLEGE REQUIREMENTS

College of Agricultural and Environmental Sciences

Unit Requirements

Of the required 180 units counted toward a degree, 54 UNITS MUST BE UPPER DIVISION WORK. In addition, the following unit limitations apply to all majors:

- Not more than 6 units can be Physical Education 1
- Not more than 20 units can be courses numbered 92, 99, 190C, 192, 197T, 197 TC, or 199
- Not more than 12 units can be courses numbered 92 and/or 192 (credit will not be given for 192 if taken after the completion of 84 units)
- Not more than 9 units of professional courses (numbers 300-499) may be used toward the 54 upper division units

Credit in University Extension Courses. Students in residence may apply a maximum of 9 units of credit earned in some University Extension courses toward the 180-unit requirement provided written approval has been obtained from the dean before enrolling. Units of credit allowed by the dean may be less than the number of units listed for a course. No grade points are assigned for courses completed through University Extension.

Scholarship Requirement

Students in the College are required to attain a minimum grade-point average of 2.0 for all courses specified as depth subject matter in their major. Each candidate must complete a program of study either as prescribed in (a) a major approved by the Committee on Majors and Courses and printed in this catalog, or (b) an individual major approved by the Individual Major Committee.

English Composition Requirement

The English Composition requirement can be met in one of two ways:

1. by passing the English Composition Examination administered by the College of Letters and Science upon completion of 70 units of degree credit (the examination does not yield credit);

OR

2. by taking, before you have completed 120 units, either two courses emphasizing written expression or one course emphasizing written expression and one course emphasizing oral expression. The following UCD courses have been approved for satisfaction of this requirement:

(a) one course must be selected from English 1, 3, 20, or 103 (courses with primary emphasis in writing skills);

(b) one course selected from the courses not selected above, or from English 102, 104, Comparative Literature 1, 2, 3, or Rhetoric and Communication 1 (courses emphasizing either writing or speaking skills).

General Education

You should consult your Dean’s Office, or department adviser in advance to determine exactly how your General Education courses will apply toward your major.

Degree Requirement Changes

On occasion, the faculty make changes in the requirements that students must satisfy to obtain the baccalaureate degree. So that you will not be penalized by changes that may work to your disadvantage and so that you will benefit by changes that assist you in completing your degree requirements, it is College policy that you may choose to fulfill the University, College, and major requirements in effect at the time you were enrolled at UC Davis. If you have transferred to UCD from a community college, college, or university, you may follow the requirements as stated in any UCD catalog in effect either during the three years immediately preceding your transfer to Davis or at the time you first enrolled at that institution, whichever is most recent. Once you have chosen the year of the General Catalog under which you wish to be governed, you must satisfy all of the University, College, and major requirements specified in that catalog.

Study Plan Approval

A Study Plan provides for attainment of specific long-term goals and should allow for (a) the acquisition of prerequisite knowledge for courses to be taken in subsequent quarters, (b) the fulfillment of College and major requirements, (c) a proper balance between the demands of the courses and your ability to master the subject matter, and (d) meeting the minimum progress regulation (see the Academic Information section).

In conjunction with a faculty adviser and/or staff adviser, you must plan and prepare a program that specifies your goals and shows how the graduation requirements will be met. It is a regulation that a written “study plan” be filed with your faculty adviser or staff adviser by the end of the second quarter of the junior year (having completed not more than 120 units either in residence and/or by transfer).

You will be denied registration for future quarters if you do not comply with this regulation. However, filing this study plan does not preclude a change of major or program modifications.

Major Degree Certification

A Major Certification is completed during the quarter you plan to graduate. At that time, you and your faculty adviser and/or staff adviser check to see that all major requirements have been completed. The Dean’s Office completes the degree certification by verifying that all College and University requirements have been satisfied.
College of Engineering

Unit Requirements

Each candidate for the degree of Bachelor of Science in Engineering must satisfactorily complete an approved curriculum in engineering. Each curriculum consists of a specified Lower Division Program (or an approved equivalent program for students who transfer into the College with 84 or more quarter units) and a specified Upper Division Program. Detailed requirements for the approved curricula are given in the Programs and Courses section of this catalog.

If you are admitted with 84 or more quarter units, you are classified as having upper division standing, but you are required to complete the minimum number of quarter units in the subject areas specified below before your Lower Division Program is considered complete. You may, however, start your Upper Division Program while completing your Lower Division Program.

<table>
<thead>
<tr>
<th>Subject Areas</th>
<th>Minimum Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics (calculus, differential equations, vector analysis)</td>
<td>18</td>
</tr>
<tr>
<td>Physical and biological sciences (at least 10 units must be in general chemistry and at least 12 units in physics for engineering and science students)</td>
<td>26</td>
</tr>
<tr>
<td>Engineering (lower-division subjects such as graphics, properties of materials, surveying, computer programming, dynamics, statics, and circuit theory. These courses must include statics, circuits and FORTRAN or Pascal. Because of additional lower division chemistry requirements, Chemical Engineering majors may elect to take only 9 units of engineering in their lower division programs)</td>
<td>15</td>
</tr>
<tr>
<td>Written and oral expression (courses that are equivalent to English 1, and Rhetoric and Communication 1 or 3)</td>
<td>8</td>
</tr>
<tr>
<td>Humanities-social sciences (courses must be selected from a list of course groups approved by the Committee on Undergraduate Study)</td>
<td>9</td>
</tr>
</tbody>
</table>

Unspecified subjects (Chemical Engineering majors should take quantitative analysis and one course in organic chemistry with laboratory during their sophomore year) | 8

Total: 84

Once you have completed the Lower Division Program and fulfilled these specified subject area requirements, you need not take additional lower division courses, except those that are prerequisite to upper division courses in your curriculum.

The minimum number of required units in the Lower and Upper Division Programs varies, with the curriculum, from 180 to 212.5.

You may, for good cause, request a modification of particular degree requirements by submitting a student petition. These petitions, which are available in the Undergraduate Office, can be a valuable aid in solving individual program conflicts or other special problems. Such petitions are subject to approval by the Undergraduate Study Committee, a body of six professors and six (non-voting) students. A negative decision by the committee may be appealed to the College faculty for action at a regular meeting.

Credit in University Extension Courses. Appropriate courses taken under University Extension may be used for degree credit. Simultaneous enrollment in resident courses and Extension courses requires prior approval by the Associate Dean for Undergraduate Studies of the College. Such approval will be given only for a limited number of credits. No grade points are assigned for courses completed in University Extension.

Residence Requirement

In addition to the University residence requirement, you must complete at least 35 of the final 45 units characteristic of your curriculum in engineering while registered in the College.
Scholarship Requirement

In addition to meeting the University scholarship requirement, you are required to maintain a 2.0 grade-point average for all upper division required courses in your major.

English Composition Requirement (Upper Division)

After completing 84 quarter units, you must satisfy the upper-division English Composition requirement in one of four ways:

1. by passing the English Composition Examination administered by the College of Letters and Science. (You should take it early in your junior year and must take it before your last quarter. Units of credit are not given for passing this examination.)

2. by completing an English 102 adjunct to an upper division course in the College of Engineering with a grade of C- or higher.

3. by completing 3 units of English 104 with a grade of Pass.

3. by completing English 103A with a grade of C- or higher.

This requirement is in addition to the expository writing course requirement (English 1 or 3, or Comparative Literature 1, 2, or 3) specified in the Lower Division Programs.

During the 1992/93 academic year, the English Composition Examination will be offered on the following three Saturdays: October 24, January 30, and May 1. Sign-up rosters will be posted on the College of Letters and Science’s bulletin board, Mrak Hall foyer, Monday through Thursday (or until they are filled) just preceding each Saturday examination date. You must sign up, in person, by Thursday. You must obtain the English Composition Examination form, available at the UCD Bookstore, to take the exam.

Engineering Design Requirement

Engineering design is the process of devising a system, component, or process to meet certain needs. Design involves a decision-making process (often iterative), in which the basic sciences, mathematics, and engineering sciences are applied to convert resources optimally to meet a stated objective. Among the fundamental elements of the design process are the establishment of objectives and criteria, synthesis, analysis, construction, testing and evaluation. You must take at least 24 quarter units of such design course work through a combination of required and restricted elective courses. Specific comments about design are included in individual curricula descriptions. You should also review the design content of your individual program with your adviser in the course of completing the upper division advising worksheet.

Electives

There are four kinds of elective courses in the engineering curricula: Humanities-Social Sciences, General Education, technical, and unrestricted. Transfer students have an additional set of electives: Physical and Biological Sciences electives.

Humanities-Social Sciences electives: Because engineers are significant agents of social change, they must be sensitive to the human setting in which that change takes place. The Humanities–Social Sciences (HSS) electives have been selected within the engineering curricula to increase your awareness of the human and societal implications of engineering practice. The humanities include subject areas such as literature, philosophy, history, and the fine arts. The social sciences include areas such as anthropology, political science, sociology, psychology, and economics.

You must take at least 24 quarter units from subjects in the humanities and social sciences. Subjects that are vocationally oriented or skills oriented, such as management and accounting, or that contain a preponderance of scientific or mathematical content, are not suitable for HSS credit even though a course may be offered by a department ordinarily classified as a humanities or social science department. Foreign language courses must stress literature, not skills, and fine arts courses must emphasize the history and appreciation of forms of expression, not development of performance or other technical skills. You may petition to have a non-literature course in a foreign language which is not your native language count as a humanities course. You may petition for HSS credit for 92, 98, 99, 192, 197, 198, and 199 courses in appropriate cases. If you repeat any of the courses which may be repeated for credit, not more than 4 units in any such courses can be counted toward your HSS requirement.

Your HSS electives should be designed to include a comprehensive and coherent set of courses and may, in some cases, be integrated with your General Education electives, as described in the next section. HSS electives must be selected from the following list.

- Agricultural Economics 1, 100A, 100B, 120, 141, 141M, 150, 169
- American Studies 1A, 1B, 1C, 1E, 1F, 2, 45, 101A-H, 110, 120, 125, 130, 151, 152, 153
- Anthropology 2, 3, 4, 25, 101, 110 through 114, 117 through 149, 170 through 179
- Applied Behavioral Sciences 1, 2, 17, 18, 118, 140, 151 through 154, 157, 161 through 164, 170, 171, 172, 174 through 178, 190
- Art History 1A, 1B, 1C, 1D, 10H, 10S, 15, 25, 150 through 188C, 190 (also Art History 1AG, 1BG, 1CG, 1OG, and 25G when taken concurrently with Art History 1A, 1B, 1C, 1D, and 25)
- Asian American Studies 1, 2, 20, 100, 101, 110, 111, 112, 130, 150, 155
- Chicoano Studies 10, 20, 70, 102, 121, 130, 132
- Chinese 10, 11, 104 through 109A-I, 111 through 116, 130, 131, 132, 140, 160
- Comparative Literature 1 through 53B, 135 through 170
- Consumer Science 100
- Design 140, 142A, 142B, 143, 144
- Dramatic Art 15 (but not 15L), 20, 115, 150 through 159
- East Asian Studies 113
- Economics 1A-1B, 100, 101, 103, 105, 106, 110A through 136B, 151A through 175
that you take the courses that are listed on both the list of HSS courses above and the GE courses list shown earlier in this chapter. In general, a good academic strategy is to satisfy the campus GE requirement first and then to satisfy any remaining HSS requirements by taking courses from the HSS list. In this way, you can benefit from the breadth and depth of course coverage inherent in the GE program structure. (For example, courses from areas outside of your major field of study are required and you must take course work at both the introductory and non-introductory levels.)

In satisfying the GE requirement, note that (a) you must take GE courses for a letter grade and (b) you must fulfill the Subject A requirement before you begin your GE course work. In consultation with your academic adviser, you should attempt to design a comprehensive and coherent set of courses using both the HSS electives and GE electives.

Technical electives permit you to tailor a program to your own academic and career objectives. For some, the technical electives offer the opportunity to prepare for a specific occupation. For others, they offer an opportunity to broaden a background in the sciences and engineering.

You may receive technical elective credit up to a maximum of 6 units for any combination of engineering courses numbered 190C, 192, 197, 198, and 199. Academic credit for 199 courses is limited to a maximum of 5 units for each substantially different project. Academic credit for engineering internship courses (192s) is limited to a maximum of 5 units per quarter.

With the exception of the following courses, all upper division courses in engineering, physics, chemistry, mathematics, and statistics may be taken as technical electives. The courses which may not be used are:

- Applied Science Engineering 137 (restricted to one unit of technical elective)
- Physics 137 and 160 (restricted to one unit of technical elective), 194H, 195, 197T, 198, 199
- Chemistry 194H, 197, 198, 199
- Engineering 160 (restricted to one unit of technical elective)
- Mathematics 192, 197TC, 198, 199
- Statistics 102

In addition to chemistry, engineering, mathematics, physics and statistics courses, the following courses may be taken as technical electives:

- Agricultural Economics 113, 140, 147, 148, 157, 176
- Agricultural Engineering Technology 161A, 161B
- Animal Science 1, 105, 133
- Art Studio 121A
- Atmospheric Science 105, 121A, 121B, 124, 133, 149A
- Biochemistry and Biophysics 101A, 101B
- Biological Sciences 1A, 1B, 1C
- Chemistry 2C, 2CH, 5, 8A, 8B
- Economics 11A, 11B

- Environmental and Resource Sciences 100, 131
- Environmental Biology and Management 110
- Environmental Toxicology 131
- Food Science and Technology 100A, 100B, 102, 104,
College of Letters and Science

Unit Requirements

A minimum of 180 units is required for the bachelor's degree. Of these units, 64 must be upper division units which include 48 units from Letters and Science teaching departments and programs. For the A.B. degree, a minimum of 12 of 48 units of upper division Letters and Science courses must be from outside the major department or program (see Area Requirement, A.B. degree entry, in this section for exceptions). All upper division General Education courses will be accepted in satisfaction of this latter requirement. Nonstandard courses (see Area Requirement, A.B. degree entry, in this section) do not count toward these 12 units.

Registration Beyond the 225-unit Limit. You are normally expected to fulfill all degree requirements within the 180- to 225-unit range. Once 225 units have been completed (excluding units awarded for College Board Advanced Placement Examinations), you may register only with the permission of the dean. Such permission is only rarely granted, and then typically only to allow completion of minimum degree requirements. You will be expected to adhere to a program of courses agreed upon and to meet other conditions that may have been set. Approval must be obtained before course enrollment materials can be made available to you for the quarter following completion of 225 or more units.

If you are in good standing, you will be able to complete 12 quarters or the equivalent (e.g., four years) of college work even if you have earned more than 225 units before you finish your fourth year. You must petition for continuation, however, and file the quarter-by-quarter course program you have planned.

Unit Credit Limitations

For certain courses, limits have been established for the number of units that can be counted towards the 180-unit minimum required for the degree. To avoid discovering just before graduation that you are short units, keep track of the number of units you have taken in each of the following categories.

Limitation on Credit for Graduate and Professional Courses. Undergraduates may enroll in graduate and professional courses in the 200, 300, and 400 series subject to the restrictions described in the Academic Information section in this catalog. Graduate and professional courses that have been completed will be listed on the student's transcript in the usual manner. However, the units earned may be counted toward degree requirements only under the conditions listed below.

Within the limitations A, B, and C given below, undergraduate students in the College may count an unlimited number of units in graduate 200 series courses and up to a combined total of 9 units in 300 and 400 series professional courses toward degree requirements. These units, however, are not counted as upper division units unless this is granted by petition to the dean.

A. The recommendations of the instructor in the course and the department chairperson—in addition to approval from the dean—must be obtained by petition in order to receive credit toward the degree for the following kinds of courses:
• all graduate courses 200-298 whether offered by a department or program outside of or within the College of Letters and Science
• all professional courses 300-398 for teachers offered outside of the College of Letters and Science
• all postgraduate professional courses 400-498 offered outside of the College of Letters and Science
• all variable unit courses 300-398 and 400-498 offered within the College of Letters and Science

B. The minimum eligibility conditions for an undergraduate student in the College to petition for degree credit for a 200, 300, or 400 series course are a UC grade-point average of 3.3 and completion of 18 upper division units basic to the subject matter of the course. These eligibility conditions may be waived, however, upon the recommendation of the course instructor and concurrence of the department chairperson if the student's preparation warrants exception.

C. Undergraduates in the College cannot receive degree credit for special study courses 299, 399, or 499.

Limitation on Credit for Units Graded P. Excluding courses that are graded on a Passed/Not Passed (P/NP) basis only, the number of units graded P that may be accepted towards a degree in the College of Letters and Science is limited to not more than one-fourth of the units completed in residence on the Davis campus.

The Academic Senate limits the total number of courses graded P, including units earned in courses graded "P/NP only," to one-third of the units completed on the Davis campus. This limitation applies to all Davis undergraduates, including Letters and Science students.

Limitation on Credit for University Extension Courses. Students may apply credit earned in University Extension courses toward the 180-unit requirement, only when written approval has been obtained from the dean before enrollment. The degree credit allowed by the dean for Extension courses is usually less than the unit value listed in the course description. A maximum of 9 units may be offered for elective credit only. Such units and courses may not be applied toward fulfillment of the Area, Foreign Language, Upper Division, or Residence requirements of the College. No grade points are assigned for courses completed in University Extension.

Other Unit Credit Limitations. The following are additional courses that have limits on the number of units that can be counted toward your degree.

- Internship courses (numbers 92, 192): 12 units maximum including internship units taken at other institutions. (See under Nonstandard courses below.)
- Nonstandard courses (92, 97T, 97TC, 99, 192, 194H, 197T, 197TC, 199 and similar courses): 30 units maximum or one-sixth of the units taken at UCD, whichever is the smaller. (Note the separate unit limits on internship, special study, and tutoring courses; and major limitations.)
- Physical Education 1: 6 units maximum.
- Special Study courses (99, 194H, 199): 5 units maximum in any one quarter. (See under Nonstandard courses above.)
Tutoring courses (97T, 97TC, 197T, 197TC): 10 units maximum. (See under Nonstandard courses above.)

Residence Requirement
While registered in the College of Letters and Science a minimum of 27 upper division units, including 18 upper division units in the major, must be completed on the Davis campus. (Work completed while enrolled in the Education Abroad Program does not satisfy campus or College Residence requirements.)

Scholarship Requirement
The minimum grade-point average to satisfy the scholarship requirement is 2.00 for all courses counted toward the major and for all upper division courses used to satisfy major requirements. Only grades earned in courses taken at UCD will be included in the grade-point computations. To obtain these minimal averages in the major, you may, with approval from your adviser, repeat courses that are graded D or F. If you have to repeat a course more than once, you need the dean's approval.

English Composition Requirement
The English Composition requirement can be met in one of two ways:

1. by passing the English Composition Examination upon completion of 70 units of degree credit (the examination does not yield credit);

 OR

2. by completing with a grade of C- (or P) or better
 a. one course in English composition from English 1, 3, 20, Comparative Literature 1, 2, or 3;

 and

 b. English 102 or 103 (which must be taken after 84 units have been completed).

Transfer Courses in English Composition. Transfer courses considered by the dean to be equivalent or comparable to English 1, 3, 20, 103A-G, or Comparative Literature 1, 2, 3 will be accepted toward satisfaction of the English Composition requirement. Note that English 103 or the equivalent must be taken after you have completed 84 units of transferable degree credit.

If your transfer work does not include an acceptable English composition course taken after you had completed or accumulated 84 units, you may fulfill the requirement by examination (see below) or take English 102 or 103 at UC Davis.

English Composition Examination. This academic year, the no-fee examination will be offered on the following Saturday mornings:

 October 24, 1992
 January 30, 1993
 May 1, 1993

There are no examinations administered during the summer.

Sign-up rosters will be posted on the College of Letters and Science's bulletin board, Mrak Hall foyer, Monday through Thursday (or until filled) just before each Saturday examination date.

The English Composition Examination form, available at the UCD Bookstore, is required.

Area (Breadth) Requirement
The College Breadth Requirement promotes the intellectual growth of students by asking them to acquire a broader background of knowledge than is provided by the usual major. The Breadth requirement also guides students in exploring the interdependence of knowledge and, in the case of the A.B. degree, provides students the opportunity to become acquainted with performance in the fine arts.

A.B. degree—satisfaction of the campus General Education requirements plus completion of one of the following options:

 a. a "Mini Minor" consisting of a minimum of three approved upper division courses in a single Letters and Science department or program other than the major (and which are not offered in satisfaction of major requirements);

 OR

 b. a minimum of three approved lower or upper division courses in art, music, or dramatic art from outside the student's major;

 OR

 c. a certified minor from any UC Davis college or program

The Letters and Science faculty believes that the completion of a certified minor is often the best way for a student to obtain structure and coherence in pursuit of intellectual breadth.

For the purposes of options a and b above, all courses are considered as approved except courses bearing less than 3 units of credit, internship courses, non-standard courses, directed group study courses, and courses used to satisfy the College English Composition Requirement.

Twelve units of upper division courses must be completed in Letters and Science teaching departments other than the major department or program. Courses numbered 92, 97T, 97TC, 98, 192, 197T, 197TC, 198, and from 200 through 499 cannot be counted toward satisfaction of the 12-unit requirement. Not more than 10 units in special study courses (194H, 199) may be counted. Students pursuing A.B. degree major programs with a strong upper division interdisciplinary emphasis—Biological Sciences, Comparative Literature, East Asian Studies, International Relations, and Sociology—Organizational Studies—may be exempted from the 12-unit requirement.

B.S. degree—a total of 90 units in natural sciences/mathematics; and satisfaction of the General Education requirement.

Courses numbered 92, 97T, 97TC, 98, 192, 197T, 197TC, 198, and from 200 through 499 cannot be counted toward satisfaction of the natural sciences/mathematics Area requirements. A maximum of 10 units in special study courses (99, 194H, 199) may be counted toward that portion of the Area requirements. Courses used to satisfy the English Composition and Foreign Language requirements may not be counted.
toward the area requirement. Subject to the restrictions just listed, courses acceptable for fulfilling the 90-credit natural sciences/mathematics area requirement are as follows:

Natural Sciences and Mathematics

Anthropology 1, 5, 15, 151, 152, 153, 154A, 154B, 155, 156, 157, 158

Astronomy

Avian Sciences 13

Biochemistry and Biophysics

Biological Sciences: All courses except 19

Botany

Chemistry

Engineering 20

Engineering: Civil and Environmental 30

Engineering: Computer Science 10, 30, 32, 40, 100, 110, 120, 122, 140, 170

Engineering: Electrical and Computer Science 171

Entomology 10, 100

Environmental and Resource Sciences 2, 131

Environmental Studies 30

Food Science and Technology 2

Genetics

Geography 1, 3, 102, 108, 110, 112, 115, 116, 117, 118, 162

Geology

Human Anatomy 101

Integrated Studies 1A, 1B, 8A

Mathematics

Microbiology

Nutrition 10

Physical Education 101, 102, 103, 110, 111, 112, 113, 115

Physics

Physiology

Psychology 15, 41, 103, 105, 108, 129, 130, 131, 134, 136, 150, 154, 190B

Statistics

Textiles and Clothing 110

Wildlife and Fisheries Biology 10

Zoology

Foreign Language Requirement (A.B. and B.A.S. degrees)

A.B. and B.A.S. degrees—the 15-unit level or the equivalent in one language.

B.S. degree—none.

Acceptable Languages. The Foreign Language requirement may be satisfied in any language offered at UCD, or for which transfer credit is allowed from another academic institution, with the exception of American Sign Language.

You may also satisfy this requirement by examination in a language not offered on the Davis campus. In this case, the Dean’s Office will assist you in making arrangements to take an examination on another University of California campus, with a faculty member who teaches the language in question.

Satisfaction of the Requirement. Plan to complete the Foreign Language Requirement by the end of your first or second year, as program priorities permit. This is particularly important if you plan to apply for the University’s Education Abroad Program.

The Foreign Language requirement may be satisfied by examination or completion of language courses as follows:

1. **Foreign Language Placement Test.** This test does not yield unit credit—it only determines whether the Foreign Language requirement has been met, or at which point in the language sequence you should enroll.

You may validate your knowledge of a language learned in high school by taking this test. A test may not be taken, however, in a language for which you have already received degree credit. If you are a transfer student, consult your Status Card, which is issued by the Dean’s Office prior to admission to the College.

2. **College Board Achievement Test.** Earning a qualifying score of at least 550 on a College Board Foreign Language Achievement Test satisfies the requirement. This test may be taken at any time during your high school career. Once your score is on file at the Undergraduate Admissions Office notify the Letters and Science Dean’s Office so that satisfaction of the College requirement can be noted on your record.

3. **College Board Advanced Placement Examination.** A score of 5, 4, or 3 on any foreign language College Board Advanced Placement Examination, with the exception of Latin, taken in high school will satisfy the Foreign Language requirement.

4. **Course Completion in College (or the equivalent).** A.B. degree—15-unit level in one language (e.g., Spanish 3 or Japanese 3). B.S. degree—as required in the major program.

If you have successfully completed (C- or better) the second or third year of a language in the tenth or higher grade in high school you may receive unit credit for course 1 of that language on a P/NP grading basis only. Although a passing or nonpassing grade will be charged to your P/NP option, no petition is required. [See "Passed/Not Passed (P/NP) Grading" in the Academic Information section.]

5. **Proficiency Examination.** If you have not completed the required level language course, but assume you have attained equivalent knowledge, you may satisfy the language requirement by passing a proficiency examination. For more information consult the appropriate foreign language department.

Major Program Requirements

Requirements for major programs are described in the Programs and Courses section of this catalog. These requirements are fulfilled by completing a major program offered by a teaching department or program committee in the College of Letters and Science (see the list of majors) or an individual major program approved by the College’s Committee on Individual Majors.

No more than 6 units in internship courses (numbered 92, 192, or similar internship courses), may be accepted in satisfaction of the requirements of major programs. Courses numbered 97T, 97TC, 197T, and 197TC do not satisfy unit or course requirements in the major.
Change in Requirements

On occasion, the faculty makes changes in the requirements that students must satisfy to obtain the baccalaureate degree. So that you will not be penalized by changes that may work to your disadvantage and so that you will benefit by changes that assist you in completing your degree requirements, it is College policy that you may choose to fulfill the University and College requirements (see General Education requirement for an exception) as stated in any UCD General Catalog in effect at any time you were enrolled in a postsecondary institution of higher education (i.e., community college, college, or university). Once you have chosen the year of the General Catalog under which you wish to be governed, you must satisfy all of the University and College requirements specified in that catalog.

With respect to the completion of your major requirements, most of the majors in the College of Letters and Science require completion of the major degree requirements in effect at the time you officially declared your major. However, because departments differ in how they handle these matters, check with the department or major program office if you have any questions about which requirements apply to you.

Degree Check

Before the beginning of your senior year, take some time to consider your goals and to plan the academic program for your final year as an undergraduate. To plan properly and to ensure that you get the most out of your remaining education and complete all graduation requirements as well, you should know what requirements remain unsatisfied. To help you in these efforts, the Letters and Science Advising Office provides informational materials and instructions on how to evaluate your progress on College and University requirements. You should also obtain a check of major requirements from your faculty adviser.

When you have completed 135 units of degree credit, a hold will be placed on your registration materials, requiring that you contact the Letters and Science Advising Office and your faculty adviser for a degree check. The Letters and Science Advising Office will provide each student with one official degree check summarizing your progress in fulfilling College and University requirements. You may request this degree check anytime during your final four regular quarters of enrollment before graduation.
Graduate Studies offers advanced degrees in more than 80 graduate programs. Students' graduate study is guided by either departments or graduate groups. Graduate groups are composed of individual faculty members with similar disciplinary or research interests. The group structure, used extensively at Davis, permits faculty to be affiliated with graduate programs in more than one discipline and offers students flexibility and breadth by crossing the administrative boundaries of the various departments, colleges, schools and sometimes campuses. In keeping with UCD's progressive spirit, the group structure also allows for expansion of established degree programs and facilitates the development of new ones. Almost half of the graduate programs at Davis are sponsored by graduate groups. You will find a list of the graduate degrees available at UCD in the front of this catalog.

Graduate study and research are administered by the Graduate Council, a standing committee of the Davis Division of the Academic Senate, and by the dean of Graduate Studies. A Universitywide Coordinating Committee on Graduate Affairs determines general policies and establishes common procedures.

PREPARING FOR AN ADVANCED DEGREE

Admission to a graduate program at the University of California requires a bachelor's degree that is compa-

DEADLINES

<table>
<thead>
<tr>
<th>Deadline for filing applications for admission to graduate standing, with complete credentials, with the Dean of Graduate Studies</th>
<th>FALL 1992</th>
<th>WINTER 1993</th>
<th>SPRING 1993</th>
<th>FALL 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States residents</td>
<td>June 1</td>
<td>Apr. 1</td>
<td></td>
<td>June 1</td>
</tr>
<tr>
<td>International students</td>
<td>Apr. 1</td>
<td></td>
<td></td>
<td>Aug. 1</td>
</tr>
<tr>
<td>Deadline for filing applications for readmission to graduate status with the Graduate Studies</td>
<td>Aug. 3</td>
<td>Nov. 2</td>
<td>Feb. 1</td>
<td>Aug. 2</td>
</tr>
</tbody>
</table>

Deadline for students who expect to complete work for master's degrees to file applications for candidacy with the Dean of Graduate Studies	Oct. 1	Jan. 8	Mar. 1	June 1
(for Sept.'93)	Oct. 1			Oct. 1
Deadline for candidates for master's degrees to file theses with the committee in charge	Nov. 2	Feb. 1	May 3	July 19
(for Sept.'93)	Mar. 25	June 18		Sept. 10
Deadline for candidates for master's degrees to file theses or final report on comprehensive examination with the Dean of Graduate Studies	Dec. 11			

Deadline for students who expect to complete work for the degrees of Doctor of Philosophy and Doctor of Engineering to file applications for candidacy with the Dean of Graduate Studies	Aug. 14	Nov. 13	Feb. 5	May 17
(for Sept.'93)	Aug. 13			Aug. 13
Deadline for candidates for the degrees of Doctor of Philosophy, Doctor of Education, and Doctor of Engineering to file theses with the committee in charge	Oct. 1	Jan. 4	Apr. 1	July 1
(for Sept.'93)				(for Sept.'93)
Deadline for candidates for the degrees of Doctor of Philosophy, Doctor of Education, and Doctor of Engineering to file theses with the Dean of Graduate Studies	Nov. 30	Mar. 15	June 7	Sept. 3
(for Sept.'93)				(for Sept.'93)
APPLYING FOR ADMISSION

Applications are accepted for fall quarter only. Combined admission and fellowship application forms are available from Graduate Studies, University of California, Davis, CA 95616. You should begin the application process as early as possible in the academic year, since many programs have early deadlines. In addition, your chances for employment as a teaching or research assistant or of receiving financial support are greatly enhanced by applying early. The application deadline is June 1, unless otherwise indicated by the program, or until your proposed graduate program is full, whichever occurs first.

The completed application form, along with the $40 nonrefundable application fee and official transcripts from each college and university you have attended must be sent directly to Graduate Studies. Supplemental application materials required by the graduate program must be sent directly to the graduate adviser for that program.

When all application materials have been received by Graduate Studies, they will be forwarded to your proposed major program where they will be evaluated along with the supplemental materials you have sent to the program adviser. The Graduate Admissions Advisory Committee for the program will submit its recommendation and evaluation to Graduate Studies; final admission decisions rest with the dean of Graduate Studies. This approval procedure applies to all applicants, including those seeking a transfer to UC Davis from another UC campus.

Applications for the degrees of Juris Doctor, Doctor of Medicine, Doctor of Veterinary Medicine, Master of Business Administration, and Master of Preventive Veterinary Medicine must be filed directly with the appropriate professional school.

Readmission

If you were formerly enrolled at UCD as a graduate student and wish to return, you must apply for reentry and pay the readmission application fee of $40 at least six weeks before the beginning of the quarter in which you plan to enroll (see the Academic Calendar at the front of this catalog). Obtain an application from the Graduate Studies Office. Transcripts of all work undertaken since you were last registered in graduate status at Davis must be presented with the application. (There is no assurance of reentry, as applicants for readmission will be considered in competition with other applicants for the program.)

International Students

Assessment of a foreign degree is based on the characteristics of the national system of education, the type of institution attended, and the level of study completed.

If you are an international student with credentials from universities outside the U.S., you should begin the application process as early as a year in advance. Official copies or certified copies of all transcripts in English and in the original language are required before your application can be processed. Completed applications along with the nonrefundable $40 application fee must be received from international students by April 1, unless your proposed program has an earlier deadline.

English Requirement. If English is not your native language and you have not studied at an institution where English was the language of instruction, you will be required to demonstrate proficiency in English by submitting your test scores from the Test of English as a Foreign Language (TOEFL). This test is given six times each year by the Educational Testing Service, CN6151, Princeton, NJ 08541-6151. The minimum score required for admission to graduate study at UC Davis is 550.

Visas. If you need a certificate of eligibility for a student visa issued by UC Davis, you will be required to complete a certification of finances form showing the availability of sufficient funding for your graduate program (see under International Student Services in the Academic Advising section for complete details). No financial aid of any kind (grants, loans, fellowships, scholarships, or work-study awards) is available to international students during their first year of enrollment at UC Davis.

PROGRAM OF STUDY

New students are assigned an adviser within the appropriate department or graduate group who assists them in planning a program of study. The program will depend on some degree on the student's undergraduate training and may include undergraduate courses to remove deficiencies. Each student must satisfy the degree requirements as published in the Graduate Program Directory, or as documented by your program. Additional requirements for study may be established by the department or group and approved by the Graduate Council. These requirements often include a core of required courses, but considerable flexibility is permitted to suit individual needs. Undergraduates at Davis who plan to pursue graduate study should consult with their major adviser early in their senior year to guarantee adequate preparation.

A graduate degree is awarded to recognize a student's command of a wide range of knowledge in an academic field. It is not awarded merely for the fulfillment of technical requirements, such as residence, or the completion of specific courses.

Master's Degree

Students working toward a master's degree must be registered in residence for at least three quarters. Two regular six-week Summer Sessions may count as the equivalent of one quarter. Usually, all work for the master's degree is done in residence on the Davis campus. With the consent of the graduate adviser and the dean of Graduate Studies, however, some work taken elsewhere may be credited toward your degree. The normal limit for such transfer credit is 6 units from another institution, or 12 concurrent units, or up to one half of the unit requirement if the courses were taken at another campus of the University—providing the units were not used to satisfy requirements for another degree.

A master's degree may be awarded upon completion of one of two basic plans in which either a thesis or a comprehensive examination is required.
Ph.D. Degree

The Doctor of Philosophy degree, as granted at the University of California, means that the recipient possesses knowledge of a broad field of learning and has given evidence of distinguished attainment in that field; it is a warrant of critical ability and powers of imagination and synthesis. It means, too, that the candidate has presented a dissertation containing an original contribution to the knowledge of the chosen field of study.

Students working toward a doctorate must be registered and in University residence for a minimum of six regular quarters. Experience indicates that it takes considerably longer than this to complete a degree program. Two consecutive regular Summer Sessions may count as the equivalent of one regular quarter.

There is no University unit requirement for the doctoral degree. However, individual programs have course requirements that must be completed before admission to the qualifying examination.

The qualifying examination is administered by a committee appointed by the dean of Graduate Studies. The examination is intended to demonstrate your critical thinking ability, powers of imagination and synthesis, and broad knowledge of the field of study. Upon recommendation of the Qualifying Examination Committee, and with the approval of the Graduate Council, you may repeat the examination one time.

After successful completion of the Qualifying Examination, you are advanced to Candidacy for the degree. At this time, a committee is appointed to direct your research problem and guide in the preparation of the dissertation.

Graduate students in certain Ph.D. programs may participate in a Designated Emphasis, a specialization that might include a new method of inquiry or an important field of application which is related to two or more existing Ph.D. programs. The Designated Emphasis is awarded in conjunction with the Ph.D. degree and is signified by a transcript designation; for example, "Ph.D. in History with a Designated Emphasis in Critical Theory." Programs approved as Designated Emphases include: Feminist Theory & Research, International Nutrition, Computational Science, Critical Theory, and Social Theory and Comparative History.

INTERCAMPUS EXCHANGE PROGRAM

A graduate student registered on any campus of the University may become an intercampus exchange student, with the approval of the graduate adviser, the chairperson of the department or group on the host campus, and the dean of Graduate Studies on both the home and the host campuses.

An intercampus exchange student has library, health service, and other student privileges on the host campus, but is considered a graduate student in residence on the home campus. The grades obtained in courses on the host campus are transferred to the home campus and entered on the student's official graduate transcript.

Application forms may be obtained at the Office of the Dean of Graduate Studies and should be submitted six weeks before the beginning of the quarter in which you wish to participate in the program.

FELLOWSHIPS, ASSISTANTSHIPS, AND LOANS

Fellowships are awarded by the Fellowship Committee of the Graduate Council on the basis of scholarship and promise of outstanding academic and professional contribution. Applicants for admission who wish to be considered for a fellowship or graduate scholarship must file the combined Application for Admission and Fellowship no later than January 15 preceding the fall quarter to be attended. These applications are considered only once a year. If you are continuing in graduate status at Davis you must file an application for fellowship and graduate scholarship for continuing students with the chairperson of your graduate program on or before January 15. International students are not eligible for fellowship consideration until they have completed one year as a graduate student at UC Davis. Information regarding graduate fellowships, which are supported by various federal and outside agencies, is available at Graduate Studies.

A limited number of Nonresident Tuition Fellowships are awarded each year to new nonresident U.S. citizens, permanent residents of the U.S., and continuing international students based on academic merit. The available fellowships are allocated to graduate programs which choose individual recipients from among their graduate students. A minimum grade-point average of 3.25 is required for eligibility. Application forms for Nonresident Tuition Fellowships are available at Graduate Studies or your graduate program, and must be filed with the chairperson of your graduate program by January 15. Students receiving any funding from a government or other outside agency, whether or not the fees are paid directly to the University of California, are not eligible for a fellowship.

Teaching assistantships and research assistantships are available in many departments. Interested students should inquire at the office of the program in which they wish to work.

The Financial Aid Office has information about loans and work-study for graduate students.

GRADUATE CERTIFICATE PROGRAM FOR ENGINEERS

For engineers who already have a degree, the College of Engineering offers a Graduate Certificate Program. This program consists of course work in selected engineering subjects, and requires fewer units than the degree programs. The purpose of the Graduate Certificate Program is to provide practicing engineers with an opportunity to develop additional expertise in specific areas and to explore new fields of technical interest.

General requirements for the program are:

- 15 or 16 units of specified graduate course work, or a combination of specified graduate and undergraduate course work
TEACHER CREDENTIAL PROGRAMS

The Division of Education offers programs for students interested in becoming elementary or secondary teachers. The elementary education program prepares you to teach all the subjects commonly taught in an elementary classroom. In addition, it offers the option of receiving in-depth training for teaching in a bilingual (Spanish) or English as a Second Language classroom. The secondary education program is designed to prepare teachers who will work in grades 7 through 12 in the following areas: agriculture, English, foreign language, (French, German, Russian, Spanish), home economics, physical and life science, math, music, physical education, and social studies education.

To apply you need to have done the following:
- completed a bachelor’s degree,
- completed most of the required course work in the area you want to teach, or have taken a National Teacher Exam (NTE) in the area you want to teach,
- taken the California Basic Education Skill Test (CBEST),
- worked with school-age children, and
- met Graduate Studies minimum GPA requirement (3.0).

There are additional requirements that we encourage you to take as undergraduates. Information is available in the Student Services Office, 2069 Academic Surge, 916-752-0758.

The teaching credential program starts in the fall quarter only and is nine months long. Student teachers are in classrooms in the morning and early afternoon and back on campus in the afternoon and evening for course work. The student teaching assignments generally are in the following communities: Davis, Winters, Woodland, Dixon, Vacaville, Fairfield, Sacramento, and West Sacramento. It is a full-time professional program with a rigorous schedule. Student teachers are required to participate in the schools in the role of a regularly credentialed teacher. A typical course schedule follows:

- student teaching
- teaching methods courses [on how to teach your subject area(s) and grade level(s)]
- reading methods course
- computer education course
- health education course
- special education course
- CPR certification

Upon satisfactory completion of all requirements, you will be recommended to receive a California teaching credential.

Admission to the teacher education program is by Graduate Studies. Applications and filing deadlines should be obtained from the Division of Education, 2069 Academic Surge, University of California, Davis 95616-8579 or the Department of Applied Behavioral Sciences (home economics and agricultural education), Hart Hall, University of California, Davis 95616-8523.

The teacher education program is also available to upper division students. With careful planning, it is possible for students to finish the requirements for a non-renewable preliminary credential at the same time the bachelor’s degree is completed. This credential allows recipients to teach for five years, but within that time an additional year of study must be completed for the professional clear credential. Specific requirements may be obtained from the Student Services staff in the Division of Education.

Students considering teaching as a career should consult the Division of Education or the Department of Applied Behavioral Sciences as early as their freshman year. Because of the complexity of the Teacher Preparation and Licensing Law and the requirements of Davis campus programs, students are encouraged to maintain close contact with education advisers throughout their undergraduate years.
The School of Law offers a three-year professional curriculum leading to the degree of Juris Doctor. In addition to the traditional professional curriculum, the School provides professional skills training in interviewing and counseling, negotiation and dispute resolution, and trial practice. It also offers opportunities for practical experience through clinical programs and for in-depth study of an area of law in an individualized program of classroom work, research, writing, or experience in the community. The School seeks to promote critical evaluation of law and legal institutions in a broad perspective, integrating non-legal disciplines with professional legal education.

The School is fully accredited by the American Bar Association, is a member of the Association of American Law Schools, and has a chapter of the Order of the Coif.

PREPARATION FOR THE
STUDY OF LAW

No specific college major is required for admission to the School of Law, and there is no prescribed pre-law program. Your college record and Law School Admission Test (LSAT) score must, of course, demonstrate that you are highly qualified for the study of law.

As a pre-law student, you should plan a course of study that will give you a broad cultural background and include intensive work for a substantial period of time in a selected field of study. Pre-law students should develop the ability to think critically. They should gain an understanding of people and institutions and know how to gather and weigh facts, to solve problems, and think creatively. They should be able to read rapidly with comprehension, and express themselves clearly, completely, and concisely, both orally and in writing.

Assistant in program planning may be obtained from the Pre-Law Advising Office, South Hall, 916-752-3009.

For additional information, see the Official Guide to U.S. Law Schools, published annually and prepared by the Law School Admission Council and the Association of American Law Schools. This book includes material on the law and lawyers, pre-law preparation, applying to law school, and the study of law, together with individualized information on all ABA approved law schools. It may be found at college bookstores or ordered from Law Services, Box 2400, 661 Penn Street, Newtown, PA 18940-0977.

APPLYING FOR ADMISSION

February 1 Deadline for filing applications for admission for 1993-94 to the School of Law

1. Request application forms and the School catalog from the Office of Admissions, School of Law, University of California, Davis, CA 95616-5201. Return your completed application to that office, plus a $40 non-refundable application fee, in the form of a check or money order made payable to the Regents of the University of California.

The last date for filing completed application forms, together with all supporting documents, including LSAT scores, Law School Data Assembly Service (LSDAS) reports, and letters of recommendation, is February 1 of the year in which admission is sought. Early filing of all application materials is strongly recommended and will materially assist the School of Law Admissions Committee in its considerations. Applications postmarked after February 1 will be returned to the applicant.

2. You must take the Law School Admission Test and submit the Law School Application Matching Form with your application so that the score will be reported to the school. You are urged to take the test as early as possible, and no later than December preceding the year in which admission is sought.

Testing centers are located in all parts of the United States and in many foreign countries. Tests are given four times a year: February, June, October, and December. The completed test application blank, accompanied by the required fee, must be postmarked at least 30 days before the date of the test to ensure that you will be registered for that test date.

To obtain application forms, information about the test, specific test dates, and the location of testing centers, write to: Law Services, Box 2000, 661 Penn Street, Newtown, PA 18940-0998. The information booklet is also available in the Law School Admission Office and the Pre-Law Advising Office on campus.

3. Register with the LSDAS no later than December 1 by completing and mailing the registration form supplied in each LSAT information book. Have a transcript from each college or university you have attended sent directly to Law Services, Box 2700, 661 Penn Street, Newtown, PA 18940-0978.

4. Submit an official transcript of college work completed during the first semester or quarter of your senior year directly to the School of Law as soon as it is available. Failure to do so may delay consideration of your application materials. Successful applicants must submit directly to the School of Law a final transcript showing the award of a bachelor's degree.

5. Provide two letters of recommendation from objective and responsible persons to whom you are well known. At least one of these letters should come from a faculty member under whom you studied while in college. These letters of recommendation must come directly from a college placement center, career center, or college pre-law office; or they should be enclosed in sealed envelopes, the recommender must sign across the seal, and the letters should be submitted along with the application for admission. Your application cannot be considered until two letters have been received.

Your application will be reviewed by the School of Law Admissions Committee, which seeks students of demonstrated academic ability, as evidenced by LSAT scores and the undergraduate grade-point average (GPA). The committee seeks students of diverse backgrounds and considers ethnic and economic factors, advanced degrees or other advanced studies, significant work experience, and extracurricular and community activities during and after the college years. An applicant's growth, maturity, and commitment to the study of law are also major considerations.
Students are admitted only on a full-time basis and only in August.

6. When accepted by the School of Law, you are simultaneously admitted to Graduate Studies on the Davis campus of the University for the program leading to the degree of Juris Doctor. If you intend to pursue studies leading to other graduate degrees, or wish to become a candidate for a Combined Degree Program (see below), you must make separate application to Graduate Studies before commencing such studies.

Admission to Advanced Standing

If you have completed at least one year of work in another approved law school, you may be considered for admission to advanced standing with credit for not more than one year of such work. No application for advanced standing will be considered until the Office of Admissions has received transcripts for all prior law school work.

Application procedures for advanced standing are the same as described above with the addition of (1) a letter of good standing including class rank from the dean of any law school previously attended; (2) at least one letter of recommendation from a law professor; (3) transcripts of all law school work; (4) LSAT score (no need to register with LSDAS—a copy of the report previously submitted to the school you are presently attending will suffice); and (5) an official transcript from the school where you earned your undergraduate degree, stating the date the degree was conferred. The deadline for transfer applications is June 30 of the year for which transfer is sought. Committee decisions on advanced standing are normally made in late July or early August of the year in which admission is sought.

Students who have been disqualified at another law school will not be admitted to this school.

Recruitment of Underrepresented Groups

The students and faculty of the UCD School of Law recognize the great need for lawyers from underrepresented groups. The School, therefore, actively solicits applications from Asian, African-American, Hispanic, American Indian, Filipino, and other underrepresented students.

The School of Law, in cooperation with the Association of American Law Schools (AALS) and the Council on Legal Education Opportunity (CLEO), participates in programs designed to increase the number of law students from underrepresented groups. CLEO applications may be obtained by writing to: Council on Legal Education Opportunity, 818 18th Street N.W., Suite 940, Washington, D.C. 20006.

Scholarships for Indian and Alaskan natives are available from American Indian Graduate Center, 4520 Montgomery Blvd., N.E., Suite 1B, Albuquerque, New Mexico 87109, 505-881-4584. Applicants must be members of federally recognized Indian tribes or Alaskan native villages and must demonstrate need. The deadline for the fall term is June 1.

The Mexican-American Legal Defense and Education Fund (MALDEF) has monies available for Chicano students who have applied to law school. Applications may be obtained by writing to: Mexican-American Legal Defense and Education Fund, 182 2nd Street, 2nd Floor, San Francisco, CA 94104.
PROGRAM OF STUDY

The course of study in the professional curriculum requires six semesters for completion and extends over a period of three years. It is designed for full-time students only; no part-time or evening program is offered. New students are admitted only at the beginning of the fall semester.

After satisfactorily completing the professional curriculum of 88 semester units, and the required period of resident study, you will receive the degree of Juris Doctor.

The first year’s work is prescribed and provides the essential foundation for subsequent legal study. Satisfactory completion of the first-year courses is, in all cases, prerequisite to second- and third-year courses. The work of the second and third years is elective. Students who fail to attain satisfactory grades may be required to withdraw from the School at the end of any academic year.

Courses taken in summer sessions at other accredited law schools may, with prior permission, be credited toward the units required for the professional degree.

The courses of the professional curriculum are listed in the Programs and Courses section of this catalog.

Combined Degree Programs

Students with interests in areas such as anti-trust, business, labor law, criminal law, or environmental law, may find a combined degree involving law and another discipline such as economics, business, sociology, or science advantageous. In order to encourage this kind of study, the School, in conjunction with other schools and University departments, has established Combined Degree Programs. Under these programs, a student may work toward a J.D. degree and a master’s degree in another discipline at the same time. In some instances it may be possible to work on a Ph.D. degree as well.

Normally, a Combined Degree Program will take at least four years. You will usually be able to earn up to 10 semester-hours of law school credit for work in the related discipline and normally can complete the combined degrees in less time than it would take to earn the two degrees separately. The first year of the Combined Degree Program must be taken entirely in the School of Law. During the remaining years, course work may be divided between the Law School and the related discipline. You must satisfy the admission requirements for both programs and file applications with both units.

Students have pursued degree programs in combination with the UC Berkeley School of Business for the M.B.A. degree, and with UCD departments for the M.A. degree in economics and sociology, and with the School of Management for the M.B.A. degree. The Law School will attempt to work out an additional program if you are interested in other disciplines. You may enroll in the Combined Degree Program any time before the beginning of your third year in law school. If you are interested in pursuing a Combined Degree Program, and have made a separate application to another school or department, you should notify the School of Law if that application is accepted.

SCHOOL OF LAW CALENDAR

The School of Law operates on a semester system rather than the quarter system used on the remainder of the Davis campus.

Academic Calendar 1992-93

<table>
<thead>
<tr>
<th></th>
<th>FALL 1992</th>
<th>SPRING 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-year Introductory Program</td>
<td>Mon-Fri, Aug 17-21</td>
<td>Mon, Jan 11</td>
</tr>
<tr>
<td>Law School instruction begins</td>
<td>Mon, Aug 24</td>
<td>Mon, Feb 15</td>
</tr>
<tr>
<td>Labor Day holiday</td>
<td>Mon, Sept 7</td>
<td>Mon-Fri, Mar 29-April 2</td>
</tr>
<tr>
<td>Thanksgiving holiday period</td>
<td>Thurs-Fri, Nov 26-27</td>
<td></td>
</tr>
<tr>
<td>Martin Luther King, Jr. holiday</td>
<td>Fri, Dec 4</td>
<td>Fri, April 30</td>
</tr>
<tr>
<td>President’s Day holiday</td>
<td>Sat-Wed, Dec 5-9</td>
<td>Sat-Thurs, May 1-6</td>
</tr>
<tr>
<td>Spring recess</td>
<td>Fri, Dec 22</td>
<td>Fri, May 21</td>
</tr>
<tr>
<td>Reading period</td>
<td>Fri, Dec 22</td>
<td>Sat, May 22</td>
</tr>
<tr>
<td>Law School examination period</td>
<td>Fri, Dec 22</td>
<td>Sat, May 22</td>
</tr>
<tr>
<td>Last day of semester</td>
<td>Sat, Dec 22</td>
<td>Fri, May 21</td>
</tr>
</tbody>
</table>

*Friday, February 19 is treated as a Monday for class schedule purposes.
School of Management
The Graduate School of Management offers a full-time, two-year program leading to the Master of Business Administration degree. The program provides both entry-level and mid-career students with an understanding of management approaches to problem solving and an awareness of the environment within which public and private management decisions are made. Successful completion requires not only a sophisticated understanding of a variety of functional skills in finance, marketing, production, program evaluation and accounting, but also an understanding of computers, information systems and the application of scientific methods to the identification and solution of management problems.

PREPARATION FOR THE STUDY OF MANAGEMENT

A bachelor’s degree and a strong interest in professional management are prerequisites for admission to the Graduate School of Management. The school seeks students from diverse professional and academic backgrounds and does not limit its consideration to applicants from any particular category of majors. Entry-level and mid-career applicants are considered, and women and minorities are encouraged to apply.

Although the program has no specific subject prerequisites, it is strongly recommended that students complete the following course work before enrollment in the program:

- **Accounting**—introductory course which discusses basic concepts.
- **Economics**—the introductory courses in micro- and macroeconomics, and one upper division course in microeconomics.
- **English**—reading and writing skills are essential for success in the program.
- **Mathematics**—an introductory course in calculus.
- **Statistics**—one course in elementary statistics.

APPLYING FOR ADMISSION

April 1 Deadline for filing applications for admission for 1993-94 to the School of Management

Admission is for the fall quarter only. Application materials may be obtained from the Graduate School of Management, University of California, Davis, CA 95616. Complete and return your application, with all supporting documents, by April 1. The application fee is $40.00. Completed applications for fellowship and graduate scholarships must be filed by January 15.

Students interested in admission to the school are urged to request an Announcement of the Graduate School of Management at an early date so that all minimum academic requirements and deadlines are met.

In addition to your application, you will need to submit:

- Transcripts from all colleges or universities previously attended.

- Scores from the Graduate Management Admission Test (GMAT). Applicants must take the GMAT no later than March. In order to be considered for fellowships and scholarships, applicants must take the October test to meet the January 15 deadline. For further information and registration forms contact: Graduate Management Admission Test, Educational Testing Service, CN 6108, Princeton, NJ 08541-6108, 609-771-7330.

- Three letters of recommendation. Applicants currently enrolled in school should include one recommendation from a professor. For individuals who are out of school, recommendations from employers or business associates are acceptable.

- A personal statement which discusses career objectives and educational reasons for seeking admission to the program.

Personal interviews are not required, although visits from applicants are welcomed.

International Students

Foreign students for whom English is a second language must take the Test of English as a Foreign Language (TOEFL) by March 1, and receive a score of 600 or better. Registration forms may be obtained by writing to: TOEFL, Educational Testing Service, Box 899, Princeton, NJ 08541-6108.

Criteria for Admission

The major criterion of the committee granting admission is what an applicant has to gain from, and offer to, the program. Consideration of an applicant’s undergraduate performance includes a review of trends in scholastic performance and areas of academic strength as well as an assessment of overall grade-point averages. Admissions standards and grading policies of the schools attended are also considered. Both verbal and quantitative scores on the GMAT are used to evaluate measurable general aptitude for management. Background and maturity as indicated by employment history, service and activity records, recommendations, and the applicant’s personal statement are factors in the committee’s evaluation. Professional management experience is not required for admission but is favorably considered.

PROGRAM OF STUDY

In the first year, the program offers a series of core courses that focus on all the basic disciplines of business—accounting, economics, finance, marketing, organizational behavior, decision sciences, and information systems.

The second year of the program allows students to take courses in individually selected concentrations. These concentrations include accounting, agricultural management, environmental and natural resource management, finance, management information systems, management science, marketing, public sector management, and science and engineering management. Students may also design their own concentration.
The Doctor of Medicine degree requires the satisfactory completion of a four-year course of study comprised of 15 consecutive quarters. Course work is conducted on the Davis campus, at the University of California, Davis, Medical Center, Sacramento; and in nearby affiliated hospitals.

PREPARATION FOR THE STUDY OF MEDICINE

When you apply to the School of Medicine, you must submit the results from the New Medical College Admission Test (MCAT), so it is recommended that you take the MCAT by the spring before application. Information can be obtained at your undergraduate institution or directly from MCAT Registration, Box 414, Iowa City, Iowa 52343. To be acceptable for the entering class of fall 1993, the new MCAT must be taken no later than fall 1992. No scores previous to 1991 will be accepted.

Applicants must also meet the following academic requirements:

A. Must have completed at least three years of study in an accredited college or university in the United States or Canada. A minimum of 90 semester hours or 135 quarter units of college-level work is required. Courses in highly specialized fields are acceptable only at the discretion of the medical school.

B. Must have completed satisfactorily before matriculation each of the following courses:

1. English, 1 year or its equivalent. 12 6
2. Biological science, 1 year including laboratory, or its equivalent. 12 8
3. General chemistry, 1 year including laboratory, or its equivalent. 12 8
4. Organic chemistry, 1 year or its equivalent. If two or more undergraduate organic chemistry courses are offered, it is recommended that you elect the more rigorous option. 12 8
5. Physics, 1 year or its equivalent. 12 8
6. Mathematics, course work sufficient to satisfy prerequisites for integral calculus. (Course work through integral calculus is recommended). 6 4

You will find helpful experience and knowledge gained in biochemistry, genetics, and embryology.

C. Must demonstrate the potential to perform academically at least as well as the average of the current first year class. This reflects the School of Medicine's generally higher standards and our emphasis on potential as judged from the application as a whole, including but not limited to MCAT and GPA scores.

For additional information, contact the School of Medicine Admissions Office and request A Guide for Prospective Students.

APPLYING FOR ADMISSION

November 1 Deadline for filing applications for admission for 1993-94 to the School of Medicine

The School of Medicine participates in the centralized American Medical College Application Service (AMCAS). Application request cards are available from the Admissions Office, School of Medicine, University of California, Davis, CA 95616 after April 1 of each year. You may also secure this form from other AMCAS-participating medical schools or from your premedical adviser. You need to submit only one application and one set of official transcripts to AMCAS, regardless of the number of member schools to which you are applying.

Upon receipt of the application request form, AMCAS will send you an application for admission, together with descriptive material and instructions. Submit the completed application and other required credentials directly to AMCAS for verification, reproduction, and immediate distribution to the medical schools you have indicated.

After your AMCAS application has been received by the School of Medicine, the Admissions Office will notify you and may request a secondary application, and two letters of recommendation along with a nonrefundable application fee of $40. Send these items directly to the Chairperson of the Admissions Committee, School of Medicine, University of California, Davis, CA 95616, and not to AMCAS. Recommendations can be in the form of a report by a premedical advisory committee at the college or university where you are enrolled or letters from two faculty members who are familiar enough with you and your abilities to make a meaningful evaluation. One letter must be from a science instructor and the other from a non-science instructor.

Applications are accepted by AMCAS between June 15 and November 1. We strongly recommended that you make an early request for application materials from AMCAS and see that the necessary supporting items reach the Committee as soon as possible after the School of Medicine requests it. The Committee reviews only complete application files and schedules interviews for highly qualified applicants throughout the application period and beyond.

A personal interview is usually required before a place in the first-year class can be offered. However, because of the large number of applicants, it is not possible to interview each one, and for this reason interviews are held only at the invitation of the Admissions Committee. Interviews take place at the medical school in order to provide you with first-hand knowledge of programs and facilities and give you the opportunity to meet some of the students.

As decisions are made, letters of acceptance are sent; this can be as early as mid-October and as late as September of the following year.

Applicant Selection. The class entering in the fall will be limited to 93 students selected on the basis of academic achievement, academic promise, and personal
characteristics. The Admissions Committee uses these criteria to determine if a candidate will be able to complete satisfactorily the requirements of the medical curriculum and become excellent medical practitioners. Factors taken into consideration include scholastic records, Medical College Admission Test performance, and reports of teachers, advisors, and interviewers with regard to intellectual capacity, motivation, emotional stability, and personal dedication.

The majority of openings in the entering class will be awarded to students who are California residents. However, the School of Medicine participates in the program of the Western Interstate Commission for Higher Education (WICHE) and residents of participating states will be considered as residents for purposes of admission. For more information, write the WICHE at Post Office Drawer P, Boulder, CO 80302.

The School of Medicine selects students for admission with a view to meeting the needs of society, of the medical profession, and of the School. Because we live in a pluralistic society, and the educational experience is enhanced by the interaction of students from various backgrounds, the School desires diversity in its student body. This is reflected in the School’s commitment to expand opportunities in medical education for individuals from groups underrepresented in medicine as the result of societal discrimination and to increase the number of physicians practicing in underserved areas. Therefore, the Admissions Committee, which is composed of individuals from a variety of cultural backgrounds and which is representative of a broad spectrum of medical sciences, evaluates applicants in terms of all relevant factors. These include academic credentials, with due regard to how they may have been affected by disadvantages experienced by the applicant, such personal traits as character and motivation, experience in the health sciences and/or the community, career objectives, and the ability of the individual to make a positive contribution to society, the profession, and the School.

Transfer with Advanced Standing

Currently enrolled students in good standing at approved medical schools in the United States or Canada may apply for admission to the third year of study. In order to provide the best facilities and clinical resources, however, we must limit the number of students in our clinical clerkships. Therefore, applications for transfer to the third year are considered on a space-available basis.

Deadline for application is April 1 of the year of transfer. A nonrefundable application fee of $40.00 is required. Applicants must provide medical school transcripts, and if accepted, must pass Part I of the National Board Examination at their current institution. Available spaces may be filled by the Admissions Committee based upon the entire content of an application, or they may request additional information including letters of recommendation and a personal interview. All applicants for transfer must meet the usual requirements for admission, as well as satisfactorily completing the equivalent of two years of study at the medical school. Applicants will be notified of the Admissions Committee's decision starting April 30.

PROGRAM OF STUDY

The curriculum for the M.D. degree is normally a four-year program that provides comprehensive training for the practice of medicine. The curriculum has been designed to provide a blend of basic sciences training and clinical experience. Although the emphasis during the first two years is on the basic-science foundations of medicine, medical students are introduced to patient care during their very first quarter of study, reflecting the school’s commitment to the training of highly skilled clinicians. Several volunteer clinics, largely staffed by UCD medical students, provide an ideal setting for hands-on clinical experience.

In addition to the Doctor of Medicine degree, the School of Medicine at the University of California, Davis offers a combined M.D./Ph.D. program whose target is to train physicians to meet, respond to, and solve the broad diversity of problems and dilemmas facing current and future health care. Meeting this challenge requires those capable of advancing our biological sciences knowl-
SCHOOL OF MEDICINE

Academic Calendar

The School of Medicine operates on a different schedule from the rest of the campus. A more detailed academic calendar may be obtained from the Office of Curricular Support, 2427 Medical Sciences 1A, University of California, Davis 95616.

SUMMER QUARTER 1992

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction begins for 4th-year</td>
<td>Mon, June 29</td>
</tr>
<tr>
<td>Instruction begins for 2nd-year</td>
<td>Mon, June 29</td>
</tr>
<tr>
<td>Instruction begins for 3rd-year</td>
<td>Mon, July 6</td>
</tr>
<tr>
<td>Instruction begins for 2nd-year</td>
<td>Mon, July 27</td>
</tr>
<tr>
<td>Instruction ends for 2nd-year</td>
<td>Fri, Sept 4</td>
</tr>
<tr>
<td>Final exams for 2nd-year students</td>
<td>Sept 8-11</td>
</tr>
<tr>
<td>Instruction ends for 4th-year</td>
<td>Fri, Sept 18</td>
</tr>
<tr>
<td>Instruction ends for 3rd-year</td>
<td>Fri, Sept 25</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>Fri, July 3</td>
</tr>
</tbody>
</table>

FALL QUARTER 1992

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction begins for 4th-year</td>
<td>Mon, Sept 21</td>
</tr>
<tr>
<td>Instruction begins for 3rd-year</td>
<td>Mon, Sept 26</td>
</tr>
<tr>
<td>Instruction begins for 1st- and 2nd-year students</td>
<td>Thurs, Sept 24</td>
</tr>
<tr>
<td>Exam and study period for 1st-year students</td>
<td>Nov 2-6</td>
</tr>
<tr>
<td>Exam and study period for 2nd-year students</td>
<td>Oct 30-Nov 6</td>
</tr>
<tr>
<td>Instruction ends for 1st-year students</td>
<td>Fri, Dec 4</td>
</tr>
<tr>
<td>Instruction ends for 2nd-year students</td>
<td>Mon, Dec 7</td>
</tr>
<tr>
<td>Final exams for 1st-year students</td>
<td>Dec 7-11</td>
</tr>
<tr>
<td>Final exams for 2nd-year students</td>
<td>Dec 9-16</td>
</tr>
<tr>
<td>Instruction ends for 4th-year students</td>
<td>Fri, Dec 11</td>
</tr>
<tr>
<td>Instruction ends for 3rd-year students</td>
<td>Fri, Dec 18</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>Nov 26-27</td>
</tr>
<tr>
<td></td>
<td>Dec 24-25</td>
</tr>
<tr>
<td></td>
<td>Dec 31-Jan 1</td>
</tr>
</tbody>
</table>

WINTER QUARTER 1993

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction begins for 1st-, 2nd-, 3rd-, and 4th-year students</td>
<td>Mon, Jan 4</td>
</tr>
<tr>
<td>Exam and study period for 1st- and 2nd-year students</td>
<td>Feb 8-12</td>
</tr>
<tr>
<td>Instruction ends for 1st-year students</td>
<td>Fri, Mar 12</td>
</tr>
<tr>
<td>Instruction ends for 2nd-year students</td>
<td>Fri, Mar 19</td>
</tr>
<tr>
<td>Final exams for 1st-year students</td>
<td>Mar 15-19</td>
</tr>
<tr>
<td>Final exams for 2nd-year students</td>
<td>Mar 22-26</td>
</tr>
<tr>
<td>Instruction ends for 3rd- and 4th-year students</td>
<td>Fri, Mar 26</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>Mon, Jan 18</td>
</tr>
<tr>
<td></td>
<td>Mon, Feb 15</td>
</tr>
</tbody>
</table>

SPRING QUARTER 1993

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction begins for 1st-, 3rd-, and 4th-year students</td>
<td>Tues, Mar 30</td>
</tr>
<tr>
<td>Instruction begins for 2nd-year students</td>
<td>Wed, Mar 31</td>
</tr>
<tr>
<td>Exam and study period for 1st-year students</td>
<td>April 28-30</td>
</tr>
<tr>
<td>Instruction ends for 2nd-year students</td>
<td>Fri, May 14</td>
</tr>
<tr>
<td>Final exams for 2nd-year students</td>
<td>May 17-26</td>
</tr>
<tr>
<td>Instruction ends for 1st-year students</td>
<td>Fri, June 4</td>
</tr>
<tr>
<td>Instruction ends for 4th-year students</td>
<td>Thurs, June 10</td>
</tr>
<tr>
<td>Final exams for 1st-year students</td>
<td>June 7-11</td>
</tr>
<tr>
<td>Instruction ends for 3rd-year students</td>
<td>Fri, June 18</td>
</tr>
<tr>
<td>Academic and administrative holidays</td>
<td>Mon, Mar 29</td>
</tr>
<tr>
<td></td>
<td>Mon, May 31</td>
</tr>
</tbody>
</table>
School of Veterinary Medicine
The mission of the School of Veterinary Medicine is to provide the best possible health care for animals through teaching, research, and public service. Students are offered a rigorous four-year program of study that prepares them for diverse career opportunities in veterinary medicine.

PREPARATION FOR THE STUDY OF VETERINARY MEDICINE

To be considered for admission to the school, you must have completed 108 quarter units (72 semester units) in an accredited college or university and have completed the following courses:

<table>
<thead>
<tr>
<th>Lower Division Required Sciences</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry</td>
<td>15</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper Division Required Sciences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryology</td>
<td>4</td>
</tr>
<tr>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>Required English</td>
<td>12</td>
</tr>
<tr>
<td>Required Humanities and Social Sciences</td>
<td>12</td>
</tr>
<tr>
<td>Required Statistics</td>
<td>4</td>
</tr>
</tbody>
</table>

(To convert semester units to quarter units, multiply by 2/3. For example, a 4-unit semester course is equivalent to a 6-unit course in the quarter system.)

You should plan your pre-veterinary medical education carefully. The required courses should be spaced to permit maximum scholastic achievement. An undergraduate major should be selected on the basis of individual interest and aptitude; there is no advantage gained toward admission by selecting one major over another. Many students planning to enter veterinary school have definite areas of interest within the general field of veterinary medicine. These individuals are encouraged to take courses (for example, computer science, agricultural economics, molecular and biochemical genetics) that will broaden their background in these areas. Some specialized areas include laboratory animal medicine, exotic animal medicine, public health, food animal practice, and biomedical research.

Examinations. All applicants must take the General Aptitude Test and the Subject Test in Biology of the Graduate Record Examination (GRE) by the October test date. GRADUATE RECORD EXAMINATION SCORES RECEIVED FROM THE NOVEMBER TEST OR LATER TESTS FOR THE YEAR THE APPLICATION IS FILED WILL NOT BE ACCEPTED FOR CONSIDERATION. Applications for the exams and additional information may be obtained from the Educational Testing Service, Box 23470, Oakland, CA 94623-0470. The GRE must be taken within five years of the time you submit your application. The highest scores will be used when the GRE is taken more than once.

Grade-Point Average. To be considered for admission, you must have a minimum grade-point average of 2.50 for both the required sciences and the cumulative grade-point average. Applicants who do not meet the minimum grade-point average can qualify for admission by receiving GRE scores in the upper 30th percentile for General Aptitude and the combined Subject Test in Biology scores. Applicants who do not have transcripts with letter grading can qualify for consideration with these same scores or by receiving a bachelor's degree with honors.

Practical Experience. Admission to the school requires extensive experience with animals. This experience should entail more than having family pets and should include experience with several animal species if it includes relevant experience with types of activities that give an applicant an appreciation and understanding of the veterinary profession. The minimum requirement for animal, veterinary and biomedical science experience is 180 hours (4.5 weeks). This experience should also include working with veterinarians, so that the applicant understands the duties and responsibilities of a practitioner and the breadth of veterinary medicine.

APPLYING FOR ADMISSION

November 1 Deadline for filing applications for admission for 1993-94 to the School of Veterinary Medicine

Students are admitted to the School of Veterinary Medicine in the fall only. Applications may be obtained any time after July 1 by writing to the Office of the Associate Dean—Student Services, School of Veterinary Medicine, University of California, Davis, CA 95616-8731 or by calling 916-752-1383. Applications, accompanied by a nonrefundable application fee of $40 must be received by this office no later than November 1.

Students interested in admission to the School of Veterinary Medicine are urged to request an Announcement of the School of Veterinary Medicine at an early date so that all minimum academic requirements and deadlines are met.

Applicants with disadvantaged backgrounds (cultural, economic, social, educational, disabled, and other factors) are encouraged to apply to the Veterinary Medical Opportunity Program (VMOP). For further information and advising services, contact the Director of Student Affirmative Action by writing to the Office of the Associate Dean—Student Services or by calling 916-752-1383.

Letters of Evaluation. Three letters of evaluation are required in addition to your application and should be requested from persons who know you well, understand academic and professional demands, and have had the opportunity to evaluate your personal qualities and potential as a professional person. The evaluator should be willing to write a thorough, comprehensive letter on your behalf.

Interviews. Interviews may be requested, as deemed necessary, by the Dean and Admission Committee to obtain additional information. The Dean and Admission Committee may require additional evaluation procedures for selecting candidates for admission.

Out-of-State and Foreign Applicants. California residents are given priority for admission to the school. A
small number of uniquely qualified applicants who are not California residents may be admitted as nonresidents. Residents of states participating in the Western Interstate Commission for Higher Education (WICHE) will be considered as residents for purposes of admission. Based on agreements with WICHE, a small number of applicants from WICHE states may be admitted with WICHE financial support. Other applicants from WICHE states may be admitted but only as nonresidents. For information related to the WICHE program, write to the Western Interstate Commission for Higher Education, Post Office Drawer P, Boulder, CO 80302. The criteria for determining residency are explained in Residency for Tuition Information in the Appendix of this catalog. Specific questions should be addressed to the Legal Analyst—Residence Matters, 300 Lakeside Dr., 7th Floor, Oakland, CA 94720. No other persons are qualified to give rulings on residency.

If you attended college out-of-state, you must include course descriptions of all required science courses with your application. You can do this by sending the current college catalog or by copying the relevant pages.

If you are from a country other than the United States, you must include a certified English version of your college transcript, and, if English is your second language, the official scores from the Test of English as a Foreign Language (TOEFL) taken within five years of the date when your application is submitted.

Criteria for Selection

I. Academic Factors (50-60%)

A. College course work:
 1. GPA of all undergraduate and graduate course work
 2. GPA of required science course work
 3. GPA of last two years of undergraduate work (minimum of 72 quarter units)

B. Graduate Record Examination:
 1. General Aptitude test (Verbal, Quantitative and Analytical)
 2. Subject Test in Biology

II. Non-Academic Factors (40-50%)

A. Narrative (5-20%)
B. Letters of Evaluation (5-20%)
C. Interviews (0-20%)

Applicants will also be evaluated for their understanding of the profession and the responsibilities of being a veterinarian, interest in serving the public, maturity, motivation, and other qualities necessary for successful academic and professional work.

PROGRAM OF STUDY

Doctor of Veterinary Medicine. To receive a Doctor of Veterinary Medicine degree, students must study veterinary medicine for the equivalent of 12 quarters of 12 weeks each (the last six quarters must have been spent in the School of Veterinary Medicine, University of California, Davis). A grade-point average of 2.0 (C), computed on all courses taken in the School is required and students must satisfactorily complete all required work as determined by the faculty of the School.

Master of Preventive Veterinary Medicine. Applicants for candidacy to the Master of Preventive Veterinary Medicine (MPVM) degree program must have completed the Doctorate in Veterinary Medicine or the equivalent; final admission decisions rest with the Admissions Committee, MPVM program. For advising purposes an option should be selected from the four listed below at the time of application. Application deadlines for fall quarter admission are as follows: International students—March 1; Domestic students—May 1. (Please note that the deadline for applications for Non-Resident Tuition Fee Fellowships is January 15.) International applicants are encouraged to apply as early as possible. Students wishing to enter winter or spring quarter should contact the MPVM Program Director concerning application deadlines. Application forms can be requested from the Director, MPVM Program, School of Veterinary Medicine, University of California, Davis, CA 95616.

Candidates for the MPVM degree must satisfactorily complete a total of 50 units of course work while in residence. This includes 24 units of required courses and 26 units of approved electives which include up to 10 units of research in a field appropriate to the chosen option. One requirement of the MPVM program is to complete a research study which culminates in a written report and oral presentation. A committee, consisting of three faculty members, reviews each paper for acceptability and assigns an appropriate grade.

The degree program extends over a minimum of twelve months to a maximum of two years. Students who intend to complete the program in one calendar year must enroll in August unless they have recently completed and performed satisfactorily in a statistics course that has been approved by the MPVM Director and the Epidemiology and Preventive Medicine 400 instructor at the time of the student’s acceptance into the program. Students meeting this requirement may enroll at the beginning of the fall quarter in late September. Students who intend to remain in the program for more than one year may enroll in the optimal course sequencing, but arrival in August is recommended.

Four options offered under the MPVM Program permit students to select an area of study that best identifies their individual interests and needs. The options and advisers are as follows:

1. Epidemiology and Herd Health Management: statistics, epidemiology, animal health economics, and disease control
 Adviser: I. A. Gardner, D. W. Hird

2. Veterinary Public Health: veterinary medicine applied to food safety and zoonoses
 Adviser: B. Chomel, H. Riemann

3. Laboratory Science: design and execution of a laboratory or a laboratory/field-based project relevant to animal health
 Adviser: K. M. Lam

4. Veterinary Programs Administration: administration of programs for control of animal diseases, veterin-
nary laboratories, research, or educational veterinary service (As the intent of this option is to permit veterinarians to spend a mid-career sabbatical leave for leadership training, enrollment is limited to individuals with demonstrated record of success in some area of veterinary medicine)

Adviser: R. H. McCapes

Inquiries regarding the program should be directed to the Director, MPVM Program, School of Veterinary Medicine, University of California, Davis, CA 95616.

Combined Program. Students may enroll in the combined DVM/MPVM program in which the MPVM degree may be awarded by the end of the fall quarter of the fifth year or as soon thereafter as all requirements for both the DVM and MPVM degrees are completed. The advantage of the combined program resides in the ability of the student to complete the MPVM program within six months after normal completion time of the DVM degree, rather than 15 months, as would be the case if taken sequentially.

Master of Science and Doctor of Philosophy. General information regarding these degrees will be found in the Announcement of Graduate Studies, which may be obtained from Graduate Studies, University of California, Davis, CA 95616. Additional detailed information may be obtained by writing the chairperson of the department in which you wish to study.

SCHOOL OF VETERINARY MEDICINE
CALENDAR 1992-93

FALL QUARTER
Orientation for 1st-year students
Instruction begins for 4th-year students
Instruction begins for 1st-, 2nd-, and 3rd-year students
Schalm Lecture
Thanksgiving Holiday
Instruction ends
Finals end
Thur-Fri, Sept 10-11
Tues, Sept 8
Mon, Sept 14
Mon, Sept 14
Thur-Fri, Nov 26-27
Fri, Dec 4
Sat, Dec 12

WINTER QUARTER
Instruction begins
M. L. King Holiday
President's Holiday
Research Day
Instruction ends
Finals end
Mon, Jan 4
Mon, Jan 18
Mon, Feb 15
Tues, Jan 12
Fri, Mar 19
Fri, Mar 26

SPRING QUARTER
Instruction begins
Memorial Day Holiday
Instruction ends for 3rd-year students
Instruction ends for 1st- and 2nd-year students
Finals end for 3rd-year students
Finals end for 1st- and 2nd-year students
Commencement
Mon, April 5
Mon, May 31
Fri, June 4
Fri, June 11
Fri, June 11
Fri, June 18
Sat, June 12
Here is a sample of how a course is listed in this catalog.

190 Proseminar in International Agricultural Development (1) I, II, III. The Staff Seminar—1 hour. Presentation and discussion of current topics in international agricultural development by visiting lecturers, staff, and students. May be repeated for credit. (P/NP grading only)

Top line: course number; title; units; quarters offered; instructor(s).

Paragraph following: course setup; prerequisite; description; grading if other than letter grading.

The quarter in which a course is intended to be given is shown as follows:

I. Fall Quarter (September to December) or Fall Semester (August to December), School of Law

II. Winter Quarter (January to March) or Spring Semester (January to May), School of Law

III. Spring Quarter (April to June)

IV. Summer Quarter (July to September) for students in the School of Medicine only

Alternate Year Designation

Some course descriptions will include the phrase “Offered in alternate years.” If the course number is marked with an asterisk (*), this indicates that the course will not be offered this year, but will be offered the following year. If the course number is not marked with an asterisk, this indicates that the course will be offered this year, but will not be offered the following year.

Multi-Quarter Courses

A series of course numbers followed by two or three letters (for example, Animal Science 49A-49B-49C) is continued through three successive quarters, ordinarily from September to June. The first quarter course listed this way is a prerequisite to the second, and the second to the third. On the other hand, where A and B portions of a course are listed separately (for example, Economics 160A and 160B), the A course is not a prerequisite to B, unless it is specifically mentioned in the list of prerequisites.

Expanded Course Descriptions

You may find that, because of space limitations, the descriptions in the General Catalog will not include all the information you would like about a course. The faculty has responded to this need by writing the “Expanded Course Descriptions” giving more detailed explanations about each course offering. These descriptions are available each quarter to assist students in selecting their courses. They contain such information as course goals, texts used, preparation required of students, basis for grading, course format, special assignments (papers, field trips, etc.), and a topical outline of the material to be covered.

Copies of the “Expanded Course Descriptions” are available for on-campus use at the Shields Library Reference and Periodicals desks, the College Deans’ Offices, advisors’ offices, advising centers, departmental offices, The First Resort, and in the dormitories at the head residents’ offices.

The course offerings and instructors listed in this catalog are subject to change without notice. For more current quarter offerings and instructors, refer to the Class Schedule and Room Directory available in the UCD Bookstore.
African-American and African Studies
(College of Letters and Sciences)
John Stewart, Ph.D., Director
Program Office, 457 Kerr Hall (916-752-1546)

Committee in Charge
Cynthia Brantley, Ph.D. (History)
Michele Foster, Ph.D. (Education Division)
Carl Jorgensen, Ph.D. (Sociology)
Jacob Oluona, Ph.D. (African-American Studies)
John Stewart, Ph.D. (African-American Studies)
Patricia Turner, Ph.D. (African-American Studies)
Clarence E. Walker, Ph.D. (History)
David Scott Wilson, Ph.D. (American Studies)

Faculty
Jacob Oluona, Ph.D., Associate Professor
John Stewart, Ph.D., Office of Education, human service units, county social service programs, and counseling services. African-American and African Studies is an appropriate background for work in Black American studies programs, the urban communities. The major also provides an educational program for future in graduate school.

A.B. Major Requirements:

Preparatory Subject Matter

African-American Studies 104
Two courses from Anthropology 2; Economics 1A, 1B; Geography 2; Sociology 1; Political Science 1; Psychology 18
Two courses from Chicano Studies 10; Native American Studies 1, 10; American Studies 45; Asian-American Studies 1, 28
History 27A, 27B4
Music 284
One course from Statistics 13; Sociology 46A, or Psychology 414

Depth Subject Matter36
A coordinated program of upper division courses, selected and approved in consultation with the major advisors to include:
Core courses: African-American Studies 101, 110, 12012
Additional upper division units chosen to reflect the student's major emphasis24
Total Units for the Major72

Major Program Emphasis
The following areas of emphasis are offered as a guideline for students interested in majoring in African-American Studies:

Culture of African-American emphasis:
African-American Studies 107, 120, 121; Anthropology 140A, 140B; History 177A, 177B; Political Science 167.
African emphasis:
African-American Studies 107, 120, 121; Anthropology 140A, 140B; History 115A, 116; Political Science 134, 146.
The above areas of emphasis are not the only areas students may choose for the major in African-American and African Studies major. However, it should be noted that the major program must (a) be developed in consultation with an African-American and African Studies faculty member, and (b) be approved by the Program's Major Advisor. Information regarding the areas of emphasis may be obtained from the African-American and African Studies Office.

Related Upper Division Courses
Student who contemplate majoring in African-American and African Studies are advised that the following courses are offered by faculty members in other disciplines and focus on African-American and African American people and their culture. Anthropology 104, 139A, 139B, 140, 153; Applied Behavioral Sciences 151, 152, 153, 159A, 159B, 172; Art History 150; Dramatic Art 150; English 179, 181; Geography 125A, 125B; History 102, 116, 116A, 158, 116C, 116, 177; Music 113B, Political Science 134, 138, 146, 151, 167, 176; Sociology 129, 130.

Major Advisor: Patricia Turner

Minor Program Requirements:

African-American and African Studies24 Select one course from African-American Studies 10, 15, or 504
Select five courses from African-American Studies 100, 101, 107, 110, 120, 121, 123, 130, 145A, 145B, 150A or 150B20

American History and Institutions. This University requirement can be satisfied by completion of American Studies 100, 100, 120, 121. See also under University requirements.

Courses in African-American Studies

Lower Division Courses

16. Introduction to Afro-American Culture and Society (African-American Studies) Lecture—4 hours. Introduction to the contemporary Black American experience by critically examining historical, political, and social-economic factors that have affected the development and status of Afro-American people.

15. Introduction to Afro-American Humanities (African-American Studies) Lecture—4 hours. Introduction to Afro-American cultural tradition as it evolved from West Africa to the Caribbean, South America and North America via slavery.

52. African Traditional Religion (African-American Studies) Lecture—2 hours. Discussion—2 hours. Introduction to the traditional religions of the sub-Saharan African peoples: emphasis on myths, rituals and symbols in West, East, Central and South African indigenous religions. Examines the role of such sacred kingship, divination systems, women, prophecy, conversion and adaptation to Islam and Christianity.

99. Special Study for Undergraduates (African-American Studies) Lecture—4 hours. Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Introduction to Research in the Afro-American Community (African-American Studies) Lecture—4 hours. Prerequisite: course 10 or consent of instructor. Introductory survey of Afro-American Studies methods and techniques; problems and methodology in Afro-American Studies.

107. African Cultural Heritage in the Americas (African-American Studies) Lecture—4 hours. Prerequisite: course 110 or consent of instructor. Analysis of African cultural systems as they adapted to the slave regimes in the antebellum and the postbellum Americas.

110. African American Social Organization (African-American Studies) Lecture—4 hours. Prerequisite: course 101 or consent of instructor. Ecology, organization, and survival culture of West Africa in the pre-colonial, colonial, and post-colonial periods.

120. Afro-America: Pre-Emanicipation (African-American Studies) Lecture—4 hours. Prerequisite: course 10 or consent of instructor. Ecology, social organization, and survival culture of Afro-America. Historical and comparative study of African-American populations in relation to other groups.

121. Afro-America: Post-Emanicipation (African-American Studies) Lecture—4 hours. Prerequisite: course 120 or consent of instructor. Analysis of contemporary Afro-American cultural systems and social organizations within the United States.

123. The Black Female Experience in Contemporary Society (African-American Studies) Lecture—4 hours. Prerequisite: upper division standing or consent of instructor. Black female social, intellectual, and psychological development. Black women's contributions in literature, science, and social science; life experiences of Black women and philosophical underpinnings of the feminist movement.

133. The Black Family in America (African-American Studies) Lecture—4 hours. Prerequisite: upper division standing or consent of instructor. Analysis of social science research to examine relationships between Black family structures, patterns of functioning, and political, economic, and social conditions. Examination of role differentiation within families by race and social class. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 2 or 145A. Black Social and Political Thought (African-American Studies) Lecture—4 hours. Prerequisite: course 10 or 80, or consent of instructor. Exploration and analysis of Black social and political thought in the Americas.
Agrarian and Environmental Chemistry

(A Graduate Group)

You-Lo Hsieh, Ph.D., Chairperson of the Group
Group Office, 109 Food Science and Technology Building (916-752-1415)

Faculty. Includes members from various departments in the Colleges of Agriculture and Environmental Sciences, Engineering, Letters and Science, and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Agricultural and Environmental Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees. Study relates to the chemical and biochemical aspects of foods, fibers/ polymers, pesticides, and environmental pollution. Detailed information regarding graduate study may be obtained by writing the Group Chairperson.

Graduate Advisers: D.O. Adams (Viticulture and Enology), R.G. Bursa (Land, Air, and Water Resources), C.F. Schoenaker (Food Science and Technology), D. Hisheh and T. Shibamoto (Environmental Toxicology), S.H. Zeranol (Textiles and Clothing).

Courses in Agricultural and Environmental Chemistry

Graduate Courses
290. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Selected topics in agricultural and environmental chemistry, presented by students. (3U grading only.)

Agrarian Studies

(College of Agricultural and Environmental Sciences)

The Major Program

The agrarian studies major provides a broad view of agriculture and its relationship to humanity.

The Program. The agrarian studies major requires coursework from several academic areas. Courses in the social sciences and humanities are chosen to develop an understanding of agriculture in the context of humanity: anthropology, geography, philosophy, and economics. Courses in the natural sciences are selected to give students an understanding of the scientific disciplines, and biological systems important to modern agriculture. These courses include chemistry, biochemistry, mathematics, soil science, biology, and ecology. For their agricultural specialization, students choose a major emphasis in either agricultural economics, animal sciences, food science, plant sciences, resource sciences, or another closely allied field. In addition to their major area of emphasis, students choose a minor emphasis in either the natural sciences or environmental science.

Career Alternatives. The agrarian studies major provides a solid background for careers in agriculture, agribusiness, government, international services, and teaching.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable.)

UNITS

English Composition Requirement
See College requirement

Social Sciences and Humanities
Cultural anthropology or geography (Anthropology 2 or Geography 2-6)
Philosophy of biological sciences (Philosophy 103 or 108)
Introduction to economics (Economics 1A, 1B, Agricultural Economics 120)
Restricted Electives

Restricted Electives

Additional courses selected in consultation with adviser in 3 or more of the following fields: agricultural economics, American studies, anthropology, geography, history, languages, political science, rhetoric, sociology.

Natural Sciences
Chemistry (Chemistry 2A, 2B, 8A, 8B)
Biochemistry (Biochemistry 101A, 101B)
Mathematics (Mathematics 1A plus two of the following: Mathematics 10B, Agricultural Science 21, 15C, Computer Science Engineering 30)
Soil science (Soil Science 100)
Ecology (Plant Science 101 or Environmental Studies 100)
Biological sciences (Biological Sciences 1A, 1B, 1C)
Restricted Electives

Agrarian Studies Emphasis
Perspectives on agriculture (Agricultural Studies 2)
Geography of agriculture (Geography 142)
Food and culture (Food Science and Technology 20)
History of U.S. Agriculture (History 188A, 188B)

Agricultural Specialization

Major field
Courses chosen to provide depth of understanding in one of the following or closely allied fields: animal sciences, food sciences, plant sciences, resource sciences, international agricultural development.

Complementary field

Senior Honors Thesis (Agrarian Studies 188H) OR closely related courses in either the natural sciences (e.g., entomology, physiology, soil and water science, etc.) or the social sciences (e.g., agricultural economics, anthropology, geography, political science, etc.) chosen specifically to enhance understanding of agriculture in a scientific or a cultural context.

*Course not offered this academic year.

Unrestricted Electives

Total Units for the Major

Major Advisor. R. J. Romani (Pomology)

Courses in Agrarian Studies

Questions pertaining to the following courses should be directed to the instructor or to the Pomology Department, 1035 Wickson Hall.

Lower Division Course

2. Perspectives on Agriculture (Agrarian Studies 2) I, II, Romani
Discussion—1 hour. Prerequisite: introductory course in chemical or biological sciences recommended. Introduction to agrarian studies, exploring agriculture's role in past civilizations and in current societies. A review of important connections between agriculture and the natural and social sciences. General Education credit: Natural Environment/Non-Introductory. Recommended GE preparation: Botany 10.

Upper Division Course

188. Special Topics in Agrarian Studies (1) I, II, Romani
Discussion—1 hour. Prerequisite: course 2 or consent of instructor, open to lower division students. Group study of special topics on the relationships between agriculture and the arts and sciences. May be repeated for credit.

188H. Senior Honors Thesis (2-6) I, II, II, Romani
Independent study—2-6 hours. Thesis. Prerequisite: Agrarian Studies major; senior standing; overall GPA of 3.5 or higher; consent of major adviser. Two or three successive quarters of guided, scientific and/or scholarly research on an agriculturally-related subject of special interest to the student. (P/NP grading only.) (Deferred grading only, pending completion of thesis.)

*Course not offered this academic year.

Unrestricted Electives

Total Units for the Major

Major Advisor. R. J. Romani (Pomology)

Courses in Agrarian Studies

Questions pertaining to the following courses should be directed to the instructor or to the Pomology Department, 1035 Wickson Hall.

Lower Division Course

2. Perspectives on Agriculture (Agrarian Studies 2) I, II, Romani
Discussion—1 hour. Prerequisite: introductory course in chemical or biological sciences recommended. Introduction to agrarian studies, exploring agriculture's role in past civilizations and in current societies. A review of important connections between agriculture and the natural and social sciences. General Education credit: Natural Environment/Non-Introductory. Recommended GE preparation: Botany 10.

Upper Division Course

188. Special Topics in Agrarian Studies (1) I, II, Romani
Discussion—1 hour. Prerequisite: course 2 or consent of instructor, open to lower division students. Group study of special topics on the relationships between agriculture and the arts and sciences. May be repeated for credit.

188H. Senior Honors Thesis (2-6) I, II, II, Romani
Independent study—2-6 hours. Thesis. Prerequisite: Agrarian Studies major; senior standing; overall GPA of 3.5 or higher; consent of major adviser. Two or three successive quarters of guided, scientific and/or scholarly research on an agriculturally-related subject of special interest to the student. (P/NP grading only.) (Deferred grading only, pending completion of thesis.)

Agricultural and Environmental Chemistry

(A Graduate Group)

You-Lo Hsieh, Ph.D., Chairperson of the Group
Group Office, 109 Food Science and Technology Building (916-752-1415)

Faculty. Includes members from various departments in the Colleges of Agriculture and Environmental Sciences, Engineering, Letters and Science, and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Agricultural and Environmental Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees. Study relates to the chemical and biochemical aspects of foods, fibers/polymeres, pesticides, and environmental pollution. Detailed information regarding graduate study may be obtained by writing the Group Chairperson.

Graduate Advisers: D.O. Adams (Viticulture and Enology), R.G. Bursa (Land, Air, and Water Resources), C.F. Schoenaker (Food Science and Technology), D. Hisheh and T. Shibamoto (Environmental Toxicology), S.H. Zeranol (Textiles and Clothing).

Courses in Agricultural and Environmental Chemistry

Graduate Courses
290. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Selected topics in agricultural and environmental chemistry, presented by students. (3U grading only.)
Agricultural and Managerial Economics

(College of Agricultural and Environmental Sciences)

The Major Program

The major in agricultural and managerial economics teaches students to apply economics and quantitative principles to problems in agricultural production, marketing, and management.

The Program. Each student must specialize in at least one of three options: agricultural economics, which focuses on topics related to the production and marketing of foods and fibres; consumer economics, which focuses on issues related to consumer decision-making, protection, and welfare; or managerial economics, which focuses on topics related to evaluating, financing, and managing business activities.

Internships and Career Alternatives. Students in agricultural and managerial economics have opportunities to gain additional career information and preparation through internships in a variety of private business and governmental agencies. Graduates qualify for supervisory and management training positions in farm and ranch production, food and agricultural processing, agricultural sales and service, banking, finance, commodity and stock brokerage in the private sector, and a variety of agency career positions in local, state, and federal government. Students who desire additional training are well qualified to enter graduate programs in agricultural economics, economics, business administration, or law.

B.S. Major Requirements:

(For convenience in program planning, the usual course requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

English Composition Requirement	3-12
Additional English (English 1, 3, 20, 102, or 103-A)	3-4
Preparatory Subject Matter	35-36
Accounting (Economics 1A-1B)	8
Computer Science (Agricultural Science and Management 21, Computer Science Engineering 10 or 30)	3-4
Economic principles (Economics 1A-1B)	10
Calculus (Mathematics 16A-16B)	10
Statistics (Statistics 13, 103)	6-8
Breadth/General Education	40

(see undergraduate handbook in Department Advising Office for complete list of courses)

Agricultural Economics

(College of Agricultural and Environmental Sciences)

Hoy F. Cerron, Ph.D., Chairperson of the Department

Office, 118 Voorhis Hall, 116-752-1517

Student information, University House Annex

Undergraduate, 116-752-6185

Graduate, 116-752-6886

Faculty

Julian M. Alston, Ph.D., Associate Professor

Steven Bank, Ph.D., Lecturer

Oscar R. Burt, Ph.D., Professor

Bayford D. Butler, M.S., Lecturer

Lolita J. Butler, Ph.D., Lecturer

Michael R. Caputo, Ph.D., Assistant Professor

Hoy F. Cerron, Ph.D., Professor

Colin A. Carter, Ph.D., Professor

Harold G. Carter, Ph.D., Professor

James A. Chappell, Ph.D., Associate Professor

Robert L. Cook, Ph.D., Lecturer

Richard D. Green, Ph.D., Professor

Arthur Herendeen, Ph.D., Professor

Thyra W. Hazzlett, Ph.D., Associate Professor

Dale M. Heien, Ph.D., Professor

Gloria E. Helfand, Ph.D., Assistant Professor

Garth J. Holloway, Ph.D., Assistant Professor

Richard E. Howard, Ph.D., Professor

Lovell S. Jarvis, Ph.D., Associate Professor

Warren E. Johnston, Ph.D., Professor

Doremon A. Jolly, Ph.D., Lecturer

Catherine L. King, Ph.D., Associate Professor

Karen Klosky, Ph.D., Lecturer

Douglas M. Larson, Ph.D., Assistant Professor

Graham W. Lawhon, Ph.D., Professor

Samuel H. Logan, Ph.D., Professor

John B. Loomis, Ph.D., Associate Professor

Phil L. Martin, Ph.D., Professor

Alexander F. McCauley, Ph.D., Professor

Quirino Paris, Ph.D., Professor

Refugio J. Robinson, Ph.D., Professor

Richard J. Sexton, Ph.D., Associate Professor

Lawrence E. Shepard, Ph.D., Professor

Joe J. Stutsman, Ph.D., Lecturer

J. Edward Taylor, Ph.D., Associate Professor

Mary D. Whitney, Ph.D., Assistant Professor

James E. Wilen, Ph.D., Professor

Emeritus Faculty

D. Barton Deloach, Ph.D., Professor Emeritus

Jerry Foote, Ph.D., Professor Emeritus

Benjamin F. French, Ph.D., Professor Emeritus

Varon Fuller, Ph.D., Professor Emeritus

Gordon A. King, Ph.D., Professor Emeritus

Gordana A. Knezevic, Ph.D., Professor Emeritus

Sylvia Lane, Ph.D., Professor Emeritus

Chester O. Mccorkie, Jr., Ph.D., Professor Emeritus

J. Herbert Pryor, Ph.D., Professor Emeritus

Stephen H. Sosnick, Ph.D., Professor Emeritus

Major Program and Graduate Study. See the major in Agricultural and Managerial Economics; for graduate study, see the Graduate Studies section in this catalog.

Major Advisers. See Class Schedule and Room Directory.

Related courses. See Environmental Biology and Management 110; Environmental Studies 160, 168A, 168B, 173; and courses in Consumer Economics and Economics.

Courses in Agricultural Economics

Lower Division Courses

Economic Basis of the Agricultural Industry (4) (I, II).

Lecture—4 hours. Agriculture and man; the agricultural industry in U.S. and world economies; production and supply, marketing and demand; agricultural land, capital and labor markets; economic and social problems of agriculture in an urban and industrialized economy emphasizing California.

Business Law (4) (I, II).

Lecture—4 hours. Principles of commerce, business organization, real property, uniform commercial code, sales, commercial paper, employment relations and creditor-debtor relations. Credit: 4 hours.

Field Practice (1) (I, II).

Discussion—1 hour; three field trips. Prerequisite: consent of instructor, field trips and experiences to
observe the various management aspects of Agricultural Production. Emphasis will be placed on developing and promoting awareness of the economics and management and their application in agricultural production. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in Charge)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in Charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100A. Intermediate Microeconomics: Theory of Production and Consumption (4) I. Kling, II. Holloway, III. Taylor
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A, 1B, Mathematics 16B. Theory of individual consumer and market demand; theory of production and supply of agricultural products, with particular reference to the individual firm; pricing, output determination, and employment of resources under conditions of perfect competition. (Not open for credit to students who have completed Economics 100 or the equivalent; however, Economics 100 will not serve as prerequisite to course 100B.

100B. Intermediate Microeconomics: Imperfect Competition, Markets and Welfare Economics (4) I. Martin; II. Heffland; III. Hazlett
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A. Pricing, output determination, and employment of resources under conditions of oligopoly and monopolistic competition.

106. Quantitative Methods in Agricultural Economics (4) I. Kling; II. Holloway; III. Chaffent
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A. Statistics 103B. Statistical methods for analyzing quantitative agricultural economics data: linear and multiple correlation and regression analysis.

112. Fundamentals of Business Organization (4) I. Logan; II. Fcher; III. summer
Lecture—2 hours; discussion—2 hours. Prerequisite: upper division standing or consent of instructor. The role of organizational design and behavior in business and public agencies. Principles of planning, decision making, individual behavior, motivation, leadership, informal groups, conflict and change in the organization.

113. Fundamentals of Marketing Management (4) I. Butler, II. Leland
Lecture—4 hours. Prerequisite: Economics 1A. For non-majors only. Nature of product marketing by the business firm. Customer-product relationships, pricing, product development and marketing strategy; promotion and advertising; product life cycles; the distribution system; manufacturing, wholesaling, retailing, Government regulation and restrictions. (Not open for credit to students who have completed course 136.)

118A-118B. Tax Accounting (3-3)-II-III. Sosnitz
Lecture—2 hours; discussion—1 hour. Prerequisite: Economics 118B. Determination of the federal income tax of employers, employees, partnerships, and corporations and the tax implications of alternative business decisions and methods of accounting.

120. Agricultural Policy (4) I. III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A. Analytical treatment of historical and current economic problems and governmental policies influencing American agriculture. Uses of economic theory to develop historical and conceptual understanding of the economics of agriculture: how public policy influences the nature and performance of American agriculture. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE requirement: Agriculture 1A-1B.

120. Agricultural Markets (4) I. Carman
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A. The nature, function, organizational structure, and operation of agricultural markets; prices, costs, and margins; market information, regulation, and controls; cooperative marketing.

121. Agricultural Markets, Prices and Trade (3) Lecture—3 hours. Prerequisite: course 118B; course 130 recommended. Analysis of economic interdependencies among industries, geographically dispersed markets, alternative product forms and markets separated in time.

132. Cooperative Business Enterprises (3) II. Lecture—3 hours. Prerequisite: Economics 1A. Study of cooperative business enterprise in the United States and elsewhere; economic theories of joint action, principles of operation, finance, decision-making, and taxation.

136. Managerial Marketing (4) I. Alexander
Lecture—4 hours. Prerequisite: course 100A; Statistics 103B. Application of economic theory and statistical methods in the study of marketing. Measurement and forecasting, market planning, market segmentation, determination of optimal product market mix, sales and cost analysis, conduct of marketing research, marketing models and systems.

139. Futures and Options Markets (3) I. L. Carter
Lecture—3 hours. Prerequisite: course 100A; Statistics 103B. History, mechanics, and economic functions of futures and options markets; hedging theory of inter-temporal asset formation and behavior of futures and options prices; price forecasting; futures and options as policy tools.

140. Farm Management (5) II. H. Carter
Lecture—5 hours. Prerequisite: Economics 1A. Farm organization and resource allocation; economic and technological principles in decision making, analytical techniques and management control; problems in organizing and managing the farm business.

141. Consumers and the Market (4) II. Heiin
Lecture—4 hours. Prerequisite: Economics 1A. Factors affecting consumer expenditures. Structure of the market and the effects of its performance on consumers. Agencies aiding and protecting consumers, sources of information available to consumers. (Students who have had or are taking course 100A, Economics 100, or the equivalent may receive only 3 units of credit, so must enroll for course 141M.) General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: non-GE introductory course sequence Economics 1A-1B.

141M. Consumers and the Market (4) II. Heiin
Lecture—4 hours. Prerequisite: Economics 1A. Factors affecting consumer expenditures. Structure of the market and the effects of its performance on consumers. Agencies aiding and protecting consumers, sources of information available to consumers. (Students who have had or are taking course 100A, Economics 100, or the equivalent must enroll for this 3-unit course instead of course 141.) General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: non-GE introductory course sequence Economics 1A-1B.

142. Personal Finance (3) I. B. Butler; II. Shepard
Lecture—3 hours. Prerequisite: Economics 1B. Management of income and expenditures by the household. Use of consumer credit, savings, and insurance by households. Retirement, tax, welfare, and estate planning. (Same course as Consumer Economics 142.)

143. Investments (3) III. Shepard
Lecture—3 hours. Prerequisite: Agricultural Economics/Consumer Economics 142 or consent of instructor. Survey of investment institutions, sources of investment information, and portfolio theory. Analysis of the stock, bond and real estate markets from the perspective of the individual investor.

145. Farm and Rural Resources Appraisal (4) I. The Staff
Lecture—2 hours; laboratory—3 hours; field trip. Principles of farm and ranch appraisal; land utilization in relation to problems of development and valuation. Real estate instruments and elements of real estate finance.

147. Resource and Environmental Policy Analysis (3) III. Ried. Lecture—3 hours. Prerequisite: Economics 1A; enrollment open to non-majors only. Natural resource use problems with emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; private and public resource use problems; and public issues. (Students who have had or are taking course 100A, Economics 100, or the equivalent may receive only 2 units of credit, so must enroll in course 147M instead.)

147M. Resource and Environmental Policy Analysis (3) I. Heffland
Lecture—3 hours. Prerequisite: Economics 1A; enrollment open to non-majors only. Natural resource use problems with emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; private and public resource use problems; and public issues. (Students who have had or are taking course 100A, Economics 100, or the equivalent must enroll in this course for 2 units rather than course 147.)

148. Economic Planning for Regional and Resource Development (3) III. Lecture—3 hours. Prerequisite: Economics 1A and 1B. Mathematics 16A recommended. Relation of returns to economic growth, including regional problems; planning economic development with particular emphasis on resource use in agriculture; regional and national planning by both centralized and decentralized governments.

150. Agricultural Labor (4) I. Martin
Lecture—3 hours; discussion—1 hour. Importance of family and hired labor in agriculture; farm labor market; unions and collective bargaining in California agriculture; simulated collective bargaining exercise; effects of unions on farm wages and earnings.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A; Statistics 103. Introduction to selected topics in management science and operations research: decision analysis for management, mathematical programming, competitive analysis, and others.

156. Introduction to Mathematical Economics (4) I. Caputo
Lecture—4 hours. Prerequisite: course 100A and 155. Linear algebra for economists; necessary and sufficient conditions in static optimization problems; implicit function theorem; economic methodology and mathematics; comparative statics; envelope theorem; Le Chatelier principle; applications to production, finance, and public policy.

157. Analysis for Production Management (4) III. Logan
Lecture—4 hours. Prerequisite: course 100A; Statistics 103. Application of economic theory and quantitative methods in analyzing production management problems including inventory control, production scheduling, quality control, simulation, systems approach, and work measurement.

171A. Financial Management of the Firm (4) I. Howitt, II. Whidby
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100B; Economics 11A-11B. Financial analysis at the firm level: methods of depreciation; influence of the tax structure; inventory, cash, and accounts receivable management; sources of short-term and long-term financing, and financial problem solving using a computer spreadsheet program. (Students who have had or are taking Economics 134 may not receive credit for this course.)

171B. Financial Management of the Firm (4) II. Whidby
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A; Economics 11A-11B. Financial analysis at the firm level: methods of capital budgeting; calculating the cost of capital; dividend policies; mergers and acquisitions; and special current topics in finance.

*Course not offered this academic year.
175. Natural Resource Economics (3) II. Wilen Lecture—3 hours. Prerequisite: course 100B or Econometrics 100 or the equivalent. Economic concepts and policy issues associated with natural resources, renewable resources (ground water, forests, fisheries and wildlife populations), and non-renewable resources (minerals and energy resources, soil). (Same course as Environmental Studies 175.)

176. Environmental Economics (3) III. Liasor Lecture—3 hours. Prerequisite: course 100B or Econometrics 100 or the equivalent. Analytical treatment of the role of the environment in economic activity and methods for protecting and enhancing environmental quality; implications of market failures for public policy. (Same course as Environmental Studies 176.)

179A. Senior Research Project (2) II. Lecture—1 hour; discussion—1 hour. Prerequisite: course 100A; Statistics 103 or consent of instructor; senior standing. Individual student-defined research project conducted under faculty guidance. Problem definition, study objectives, procedure, method of analysis, and a written report. (Same course as Economics 204.)

190A. Senior Research Project (2) II. Lecture—1 hour; discussion—1 hour. Prerequisite: course 100A or consent of instructor. (Same course as Economics 204.)

190B. Senior Research Project (2) II. Lecture—1 hour; discussion—1 hour. Prerequisite: course 100A or consent of instructor. (Same course as Economics 204.)

192. Internship (1-6) I, II, III, summer. The Staff (Chairperson is in charge) Internship experience off-campus in all subject areas offered in the Department of Agricultural Economics. Internships are supervised by a member of the staff. (P/N grading only.)

197. Tutoring in Agricultural Economics (1-3) I, II, III. The Staff (Chairperson in charge) Hours and duties will vary depending upon the course being tutored. Prerequisite: senior standing in Agricultural Economics and consent of Department Chairperson. Tutor will learn and develop a course designed for students to complete. (P/N grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-3) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/N grading only.)

Graduate Courses

200A. Microeconomics Theory (5) I. Roemer (Economics) Silvestre (Economics) Lecture—4 hours; discussion—1 hour. Prerequisite: graduate standing. Microeconomic theory applied to the development of the theories of profit-maximizing firms and the utility-maximizing consumer. (Same course as Economics 200A.)

200B. Microeconomics Theory (5) II. Heims (Economics) Lecture—4 hours; discussion—1 hour. Prerequisite: course 200A. Characteristics of market equilibrium under perfect competition, simple monopoly and monopsony. Emphasis on general equilibrium and welfare economics; the sources of market success and market failure. (Same course as Economics 200B.)

200C. Microeconomics Theory (5) III. Makovski (Economics) Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Uncertainty and information economics; individual decision making under uncertainty. Introduction to game theory, with emphasis on applications to markets with firms that are imperfect competitors or consumers that are imperfectly informed. (Same course as Economics 200C.)

204. Microeconomic Analysis (5) I. Alton Lecture—4 hours; discussion—1 hour. Prerequisite: Economics 100 or course 100A-100B and Mathematics 16A-16B. Open to advanced undergraduates with consent of instructor. Economic reasoning and social choice behavior of firms and households, theory of markets, partial and general equilibrium analysis, welfare economics, illustrations and applications. (Same course as Economics 204.)

214. Development Economics (4) I. Roche Lecture—4 hours. Prerequisite: course 100A, 100B, Economics 101; Agricultural Economics 204, Economics 160A, 160B recommended. Review of the principal theoretical and empirical issues in the development of agricultural economics. Analysis of economic development theories and development strategies and their application to specific policy issues in developing country contexts. (Same course as Economics 214.)

215A. Agriculture and Economic Development (4) II. Taylor Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 204A or 204B and 214. Agricultural development theory and application. Analysis of urban-rural linkages and their role in economic development, food price policy, and interactions between economic development and the environment. Analytical focus on household-farm and intersectoral models. (Same course as Economics 215A.)

215B. Open Macroeconomics of Development (4) I. Kaneda Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 204A or 204B, 200D or 205, and 214 or 215A. Models and policy approaches regarding trade, monetary and fiscal issues, capital flows and debt are discussed in the macroeconomic framework of an open developing economy. The basic analytical focus is real exchange rate and its impact on sectoral allocation of resources. (Same course as Economics 215B.)

215C. Empirical Approaches to Development Analysis (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 204A. Extension of development models for policy analysis including Household-Farm models, models of resource allocation under uncertainty. Social Accounting Matrix and Computable General Equilibrium models. Analysis and case studies of methods of project evaluation with a focus on income distribution and resource allocation. (Same course as Economics 215C.)

220. Economics of Consumer Policy (3) III. Lecture—3 hours. Prerequisites: one graduate course in economic theory and one course in econometrics. Analysis of consumer behavior and issues of market failure; consumption policy alternatives; empirical evaluation of selected economic policies. (Same course as Economics 220.)

221. Agricultural Policy in Developing Countries (4) II. McClaflin Lecture—discussion—4 hours. Economic policy, its nature, formation and analysis; characteristics of agricultural sectors in developing countries; comparative analysis of policies relating to production, marketing, research, price and resource adjustment; international trade policies for temperate zone agricultural commodities.

222. International Agricultural Trade and Policy (4) I. C. C. Cost Lecture—3 hours; discussion—1 hour. Prerequisite: course 100B or Economics 204; Economics 106 or the equivalent. Analysis of country interdependence through world agricultural markets. Partial equilibrium model; economic interpretation of rational intervention on world markets, national policy choice in an open economy and multinational policy issues. Offered in alternate years.

240A. Econometric Methods (4) II. Green Lecture—4 hours; laboratory—1 hour. Prerequisite: Statistics 133 and a course in linear algebra or the equivalent. Least squares, instrumental variables, and maximum likelihood estimation and inference for single equation linear regression models; linear restrictions; heteroscedasticity; autocorrelation; lagged dependent variables. (Same course as Economics 240A.)

240B. Econometric Methods (4) III. Havener Lecture—4 hours. Prerequisite: course 240A. Topics include analysis of variance, pooled time-series, cross-section estimation, seemingly unrelated regressions, classical linear regression model, and identification and estimation of simultaneous equation models. (Same course as Economics 240B.)

240C. Econometric Theory (4) II. Wegge Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Finite sample linear and dynamic econometric models; asymptotic distribution theory. (Same course as Economics 240C.)

240D. Topics in Econometrics (4) III. Cameron Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Advanced topics in nonlinear econometric modeling. Contents may vary from year to year. (Same course as Economics 240D.)

252. Applied Linear Programming (4) I. Howitt Lecture—4 hours; discussion—1 hour. Prerequisite: course 240B. Applied linear programming as a tool to solve economic problems. Emphasis on methods used for linear and nonlinear programming. (Same course as Economics 252.)

253. Optimization Techniques with Economic Applications (4) I. Paris Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 200C. Optimization techniques and methods including linear and nonlinear programming. Emphasis on applications to household, firm, general equilibrium and economic problems. (Same course as Economics 253.)

255. Systems Analysis and Simulation (3) III. Lecture—3 hours. Prerequisite: course 200A. Dynamic model formulation and computer simulation of economic systems.

256. Applied Econometrics (4) II. Havener Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B or 240D, or consent of instructor. Quantitative and theoretical analysis of the factors affecting supply, demand and price determination for agricultural products. Emphasis on analytical tools for assessing the impacts of changes in government policies and macroeconomic variables.

261. Case Problems in Management (3) II. McCoid Lecture—1 hour; discussion—2 hours. Case problem analysis and discussion of business policy and strategy including organization, planning, production, marketing, and financing issues. Emphasis is on problem definition and solution using current examples drawn primarily from agriculturally-oriented firms.

263. Agricultural Film Analysis (3) III. H. Carter, Johnston Lecture—1 1/2 hours; discussion—1 hour; summer field trips—one 5-day, and one 5-hour. Prerequisite: graduate standing in Agricultural Economics. Review and analysis of production, marketing, and resource issues facing agricultural firms in California. Applica-
Agricultural Education

(College of Agricultural and Environmental Sciences)

Faculty
See under Department of Applied Behavioral Sciences.

Major Programs and Graduate Study. An undergraduate program leading to a Bachelor of Science degree is offered in Agricultural Education. For graduate study refer to the Graduate Studies section in this catalog.

Teaching Credential Subject Representative. Secondary Teaching Credentials: Agriculture — J.G. Leising (137 AOB 4), Community College Credentials: Agriculture — J.G. Leising (137 AOB 4).

The Major Program
The agricultural education major trains students to teach agricultural sciences in high schools or community colleges. In addition, it prepares students for service careers in agriculture. The program combines practical experience and technical coursework in agriculture with courses from the natural, physical, and social sciences.

The Program, Students in agricultural education benefit from UC Davis' resources as a world-famous agricultural center. Students may choose to emphasize such areas as plant production, animal production, environmental horticulture, agricultural resource management, or agricultural engineering. It is also possible to complete the requirements for a single-subject teaching credential in general agriculture.

Internships and Career Alternatives. Internships can be arranged in private industries such as nurseries, with farmers or ranchers, in laboratories, and with the Forest Service. As part of the teaching credential program, there are opportunities to observe and work with high schools. Many agricultural education graduates enter agriculture teaching or pursue a master's degree in agricultural education. Others enter a variety of advanced degree programs in agricultural sciences. In agriculture production this major is excellent preparation for the future grower, orchardist, or ranch manager. Students can also assume positions in agricultural firms, such as seed, fertilizer, feed, and machinery businesses, and in agricultural finance firms.

B.S. Major Requirements:
For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Either or more comprehensive courses are acceptable. Courses shown without parentheses are required.

UNITS

English Composition Requirement 4-12
English 1 or 3, and 102 or 103 (See College requirement).

Rhetoric (Rhetoric and Communication 1 or 3) 3

Preparatory Subject Matter 60-51

Biological sciences (Biology 1A, 1B, and 1C or 19A-19C); Chemistry 2A-2B, and 8A-8B or 128A-128B). Computer science (Agricultural Science and Management 11-13)

Economics principle (Economics 1A or 1B) 5

Mathematics (Mathematics 16A or 21A) 3-4

Statistics (Agricultural Science and Management 150 or Statistics 13) 1

Breadth/General Education 6-24

Satisfaction of General Education requirement 6-24

Depth Subject Matter 52-65
Education (Agricultural Science and Management 100 and 300, or Applied Behavioral Sciences 175, and Education 110...
Animal science (Anaply 3 Science 1 (if no previous course work in Animal Science)); Animal Science 2, 41; one of the following: Animal Science 15, 21, 49A, 49B, or 49C.

Agricultural economics (Agricultural Economics 130 or 140) 4-5

Plant science (Plant Science 2; Soil Science 10 or 100; choose one of the following: Environmental Horticulture 10 Vegetable Crops 101, Agronomy 100, Pomology 101, Viticulture and Enology 2 or 116)

Agricultural mechanics (Agricultural Practices 49 and 149, Consumer Technology 15 and 18, one of the following: Agricultural Economics 12, Consumer Economics 10, or Consumer Technology 101).

Specialization 30-32

(To be developed in consultation with faculty advisor.)

Unrestricted Electives 10-49

Total Units for the Degree 180

Advising Center for the major is located in 101 AOB 4 (916)-752-2944.

Teaching Credential Subject Representative. You may make an appointment with a credential counselor and obtain a statement of the complete requirements for the credential at the Applied Behavioral Sciences departmental office, 113 AOB 4. Since many majors in the College do not offer the minimum preparation necessary for entering the Agriculture Credential program, you are encouraged to seek counseling as early as possible. See also the Teacher Education Program.

Graduate Study. The Department of Applied Behavioral Sciences offers a program of study leading to the M.Ed. degree. Further information may be obtained from the Department and the Graduate Announcement.

Courses in Agricultural Education

Questions pertaining to the following courses should be directed to the instructor or to the Department of Applied Behavioral Sciences, Advising Center 101 AOB 4.

Lower Division Courses

92. Internship (1-12) I, II, III. The Staff (Chairperson in charge). Advanced study through special seminars, informal group studies, or group research on problems for analysis and experiment. Sections: (1) Managerial Economics; (2) Agricultural Policy; (3) Community and Regional Development; (4) Natural Resources; (5) Human Resources; (6) Research Methods and Quantitative Analysis.

99. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge). Sections: (1) Managerial Economics; (2) Agricultural Policy; (3) Community and Regional Development; (4) Natural Resources; (5) Human Resources; (6) Research Methods and Quantitative Analysis; and (7) Dissertation Research Prospectus.

199. Practical Study for Doctoral Dissertation (1-12) I, II, III. The Staff (Chairperson in charge).

*(SU grading only.)

100. Concepts in Agricultural and Environmental Education (3). The Staff, I. Leising. Lecture—2 hours; laboratory—2 hours. Prerequisite: upper division standing. Philosophy and nature of formal and nonformal agricultural and environmental education programs. Emphasis on understanding the role of the teacher and observing a variety of programs.

160. Vocational Education (3). I. Leising. Lecture—3 hours. Philosophy and organization of vocational education, with particular reference to...
Agricultural Engineering Technology

(College of Agricultural and Environmental Sciences)
Faculty. See under Department of Agricultural Engineering.

Major Programs and Graduate Study. For the Bachelor of Science program, see the major in Engineering; for graduate study see the Graduate Studies section in this catalog.

Courses in Agricultural Engineering Technology

These courses are intended primarily for students not majoring in Engineering. Majors in Engineering should refer to courses in Engineering. Agricultural operations pertaining to the following courses should be directed to the instructor or to the Department Office, 2030 Baner Hall.

Lower Division Courses
98. Directed Group Study (1-5) I, II, III. The Staff (Hills in charge)
Prerequisite: consent of instructor. (PINP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Hills in charge)
Prerequisite: consent of instructor. (PINP grading only.)

Upper Division Courses
103. Hydraulic Power and Controls (1) II. Studer
Prerequisite: upper division standing. Physics 5A. Principles of operation and construction of hydraulic systems. Function and application of pumps, motors, and valves for controlling machinery.

105. Farm Machinery Management (1) I, II, III. J. Runyon
Prerequisite: upper division standing. Principles of operation and construction of hydraulic systems. Function and application of pumps, motors, and valves for controlling machinery.

110L. Experiments in Food Engineering (1) II. Singh
Laboratory—3 hours. Prerequisite: Food Science and Technology 110B (may be taken concurrently). Use of temperature sensors, measurement of thermal conductivity and heat transfer coefficients, heat exchangers, transient heat transfer in foods, refrigeration, freezing, concentration and dehydration of foods. (PINP grading only.)

112. Plant and Animal Environmental Control (2) I. Studer
Prerequisite: upper division standing. Principles of operation and construction of hydraulic systems. Function and application of pumps, motors, and valves for controlling machinery.

134. Pesticide Application Technology (1) II. Gile
Prerequisite: upper division standing. Principles of operation and construction of hydraulic systems. Function and application of pumps, motors, and valves for controlling machinery.

141. Technology for Agriculture in Developing Regions (3) I. Chang
Prerequisite: upper division standing. Principles of operation and construction of hydraulic systems. Function and application of pumps, motors, and valves for controlling machinery.
size-scale, costs, support infrastructure development, and productivity potentials. (Same course as International Agricultural Development 141.)

141AT. Equipment Technology for Developing Agriculture (1) I, II. Chancellor. Autotutorial—1 hour. Prerequisite: course 141 or International Agricultural Development 141 (may be taken concurrently). Autotutorial (slide-tape) presentation of machinery, irrigation, and marine equipment technology applications, operation, and maintenance. (P/NP grading only)

143. Turf and Landscape Irrigation (2) II. Hills Lecture—2 hours. Prerequisite: Physics 1A or 5A. Basic design, installation, and operation principles of irrigation systems for turf and landscape: golf courses, parks, highways, public buildings, etc. Course emphasis is on hardWARE associated with sprinkler and drip/irrigation systems.

161A. Fundamentals of Aquacultural Engineering (3) I. Pedraza Lecture—3 hours. Prerequisite: Biological Sciences 1A, Mathematics 16B, Chemistry 1B. Basic principles of water chemistry and water treatment processes as they relate to aquacultural systems.

161B. Fundamentals of Aquacultural Engineering (3) II. Pedraza Lecture—3 hours. Prerequisite: course 161A. Design of aquacultural systems: design methodology, principles of fluid mechanics, site selection and facility planning, management operations, computer modeling.

192. Internship in Agricultural Engineering Technology (1-5) I, II, III. Staff (Hills in charge) Internship—3 to 15 hours. Prerequisite: upper division standing. Approval of project prior to period of internship. Supervised internship in agricultural engineering technology. May be repeated for credit. (PNP grading only)

197. Directed Group Study (1-5) I, II, III. Staff (Hills in charge) Prerequisite: consent of instructor. (PNP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. Staff (Hills in charge) (P/NP grading only)

Graduate Courses

233. Pest Control Application Technology (3) II. Giese Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Protection and Pest Management 202A or the equivalent. Practical and theoretical considerations of pesticide application systems and techniques. Design, selection, and use of mechanical spray systems for field, orchard, greenhouse, and vector control use. Biological, legal, and environmental considerations in pesticide application.

298. Group Study (1-5) I, II, III. Staff (Hills in charge)

299. Research (1-12) I, II, III. Staff (Hills in charge) (SAU grading only)

Professional Course

317. Teaching Agricultural Mechanics (3) I, II. Rumsy Lecture—1 hour; laboratory—3 hours; term paper. Prerequisite: a course in physics; 6 units related to agricultural mechanics; enrollment in Agricultural Education Teacher Credential Program. Methods of teaching agricultural mechanics in secondary schools, Curriculum planning, Development of lesson plans and teaching aids. Review of subject matter. Safety-planning facilities including selection, arrangement, and management of tools, equipment and teaching materials.

Agricultural Practices

Agricultural Practices (College of Agricultural and Environmental Sciences)

Courses in Agricultural Practices

Questions pertaining to the following courses should be directed to the instructor or to the Office of the Department of Agricultural Engineering, 3030 Bailer Hall.

Lower Division Course

49. Field Equipment Operation (2) I, II. Prerequisite: course 48. Prerequisite: course 49 may be taken concurrently. The function, construction, and operating principles of machines for harvesting, planting, and handling equipment. Typical cultural practices sequences. (P/NP grading only)

50. Harvesting Machinery Laboratory (1) I, II. Prerequisite: course 49. Laboratory—3 hours. Prerequisite: course 49. May be taken concurrently. The function, construction, and operating principles of machines for harvesting, planting, and handling equipment. Typical cultural practices sequences. (P/NP grading only)

Upper Division Course

149. Field Equipment Maintenance (2) I, II. Prerequisite: course 49. Lecture—1 hour; laboratory—3 hours. Prerequisite: Consumer Technology 161 and 101 or consent of instructor. Troubleshooting and repair of farm equipment. Intermediate welding to include hard facing and welding. Basic projects on maintenance, repair and fabrication. (P/NP grading only)

Agricultural Science and Management

Agricultural Science and Management (College of Agricultural and Environmental Sciences)

The Major Program

The agricultural science and management major prepares students for career opportunities in agriculture, agribusiness, and agribusiness-related fields. The program provides a core of science and technology necessary for the understanding of how agricultural and food systems work, along with basic elements of economics, business, and management.

The Program

The program in agricultural science and management is designed for students who want a fundamental understanding of the natural sciences (chemistry, physics, mathematics, biology, botany, microbiology, as well as courses in economics and humanities). After taking preparatory courses, students add to their agricultural knowledge by choosing an area of specialization, and by taking courses in agricultural engineering, soil science, water science, plant pathology, plant physiology, animal science, food science, entomology, and nematology.

Career Alternatives

Job opportunities for agricultural science and management graduates are plentiful. Banking and financial institutions, agribusiness, corporate and privately owned farms, and the U.S. Department of Agriculture are particularly eager to interview graduates with this major. An agricultural science and management graduate who is interested in graduate school has the background to understand take a degree in almost any agricultural area. Advanced degrees open the doors to work with universities as extension specialists, farm advisers, vocational agriculture teachers, and other professional careers.

B.S. Major Requirements:

For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equal courses are acceptable; and a more comprehensive course treatment (e.g., Physics 1A and 1B rather than 1A only) will be useful for some. Students should consider using some of their unrestricted elective units to go beyond the minimum requirements shown for the Preparatory and Depth Subject Matter areas.

UNITs

English Composition Requirement

Preparatory Subject Matter

Accounting (Economics 10A, 11B)...
Biological sciences (Biological Sciences 1A, 1B, 1C)...
Chemistry (Chemistry 2A, 2B, 8A, 8B)...
Economic principles (Economics 1A, 1B)...
Mathematics (Mathematics 16A-16B or the equivalent)...
Statistics (Agricultural Science and Management 150)...

Breadth Subject Matter

Satisfaction of General Education requirement...

Depth Subject Matter

Agricultural Economics...

Three courses covering three additional topics in economics and business management, such as marketing (Agricultural Economics 113, 130, 136), Finance (Agricultural Economics 114, 118, 146, 171A, 171B), business methods (Agricultural Economics 155, 157), and business organization (Agricultural Economics 181, 182, 183)...

Areas of Specialization

Animal Science option...

Animal Science 2 (Animal Science 1 recommended)...
Genetics 100, Animal Genetics 107...
Nutrition 115...
Physiology 110...

Plant Science 1...
Restrictive electives...
Courses to support student's objectives chosen with advisor's approval from the following or other areas: agricultural engineering technology; agronomy; plant science; range management; soil science and water science; Plant Pathology 120, 126, 128; or Agronomy 100; computer science (Agricultural Science and Management 21) recommended.

Food Science option...

Chemistry 1C, 5, 9, 11...
Physics 1A, 1B...
Physical Chemistry 2...

Soil Science 100, 109...
Water Science 110...

Restricted electives...

Additional courses chosen with advisor's approval from agricultural engineering technology, Agricultural Science and Management 21, and upper division courses with a concentration in agronomy, environmental horticulture, plant science, pomology, vegetable crops or viticulture.

*Course not offered this academic year.
Agronomy

(College of Agricultural and Environmental Sciences)
Faculty. See under Department of Agronomy and Range Science.
Major Program. See the major in Plant Science or Range and Wildland Science.
Graduate. A program of study is offered leading to the M.S. degree in Agronomy. Information can be obtained in the Advising Office at 137 Hunt Hall. Also see the Graduate Studies section in this catalog.
Graduate Adviser. R.L. Travis.
Related Courses. See Plant Science and Range Science.

Courses in Agronomy
Questions pertaining to the following courses should be directed to the instructor or to the Advising Center, 137 Hunt Hall.

Lower Division Courses
92. Agronomy Internship (1-12) I, II, III. The Staff (Department Chairperson in charge)
Internship—1-36 hours. Prerequisite: consent of instructor. Internship on or off campus in all subject areas pertaining to agronomy. Internships supervised by a member of the faculty. (F/P grading only.)

Upper Division Courses
100. Principles of Agronomy (3) III. Travis
Lecture—3 hours. Course in general botany and/or Plant Science 2 or consent of instructor. Fundamentals of field crop production and agronomic problem solving using ecological, physiological, and genetic principles. Economic, political, or social problems are considered in relationship to technological problems if they either impair or provide the means to promote agricultural development.

100L. Principles of Agronomy Laboratory (1) III. Travis
Laboratory—3 hours. Course 100 (may be taken concurrently). Field-oriented introduction to principles of agronomic crop production. Offered in alternate years.

110. Perspectives in Biotechnology (3) III. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: Biological Sciences 150 or Genetics 10. Current issues in biotechnology will be related to their impact on the biological sciences and society. Examples of genetic manipulation through transformation and transfer in agriculture and medicine will be stressed. Offered in alternate years.

111. Cereal Crops of the World (4) III. The Staff
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 100, 100L. Contributions of cereal crops to human health through food production, utilization, and factors determining quality of wheat, oats, barley, rice, corn, and sorghum. Emphasis is on recent developments and scientific improvements. Half-day field trip will be required. Offered in alternate years.

112. Forage Crop Ecology (3) III. Rague
Lecture—3 hours. Prerequisite: Biological Sciences 1C or consent of instructor. Forages as a world resource in food production. Ecological principles governing the adaptation, establishment, growth and management of perennial and annual forages, including pastures, rangelands and hay, aspects of forage quality which affect feeding value to livestock. Offered in alternate years.

121. Fiber, Oil and Sugar Crops in a Changing World (4) I. Raines
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 100, 100L. Biological Sciences 1C or equivalent. Study of growth and development of crop plants with emphasis on reproductive structure and pollination techniques for morphological analysis of crop plant growth. Offered in alternate years.

120. Morphology and Reproduction of Agronomic Crops (3) III. Webster
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1C or equivalent. Study of growth and development of crop plants with emphasis on reproductive structure and pollination techniques for morphological analysis of crop plant growth. Offered in alternate years.

192. Internship (1-12) I, II, III. The Staff (Department Chairperson in charge)
Internship—3-36 hours. Prerequisite: completion of 4 units and consent of instructor. Internship on or off campus in all subject areas pertaining to agronomy. Internships supervised by a member of the faculty. (F/P grading only.)

197T. Tutoring in Agronomy (1-5) I, II, III. The Staff (Chairperson in charge)
Tutoring—1-5 hours. Prerequisite: consent of tutor or equivalent. Above division standing and consent of instructor. Designed for undergraduate students who desire teaching experience. Students will assist in classes under the direction of the faculty. May be repeated for credit up to a total of 5 units. Same course may not be tutored more than one time. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (F/P grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: 6 upper division units of agronomy. (F/P grading only.)

Graduate Courses
205A. Design, Analysis and Interpretation (4) II. Plant
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Science and Management 150. Planning and analysis of field and laboratory experiments with emphasis on design and experimental design. Randomized design, factorial, incomplete block and multivariate analysis. Principles of sample size determination and analysis of variance will be stressed. (F/P grading only.)

206A. Design, Analysis and Interpretation (4) III. Williams
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Science and Management 150 or the equivalent. Planning and analysis of field and laboratory experiments with emphasis on the use of multiple regression, multivariate analysis, and dynamic simulation techniques in the biological interpretation of results.

207. Plant Population Biology (3) II. Rice, Jain
Lecture—2 hours; laboratory/discussion—1 hour. Prerequisite: advanced undergraduate ecology course (e.g. Environmental Studies 100, Zoology 125, Botany 117, or Entomology 104); advanced undergraduate course in genetics and/or evolution (e.g., Genetics 100, 103, or Botany 100). Provides an introduction to population biology and emphasizes the development of the scientific method. Emphasis will be placed on linking ecological and genetic approaches to population biology. Offered in alternate years. (Same course as Ecology 207.)

221. Advanced Plant Breeding (4) III. Teuber
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 205A; Genetics 105; Plant Science 113. Philosophy, methods, and problems in developing
improved plant species. Topics include: inbreeding, heterosis, progeny testing, breeding methodology, index selection, germplasm conservation, and breeding for stress resistance. Laboratories include tours of breeding facilities and calculation and interpretation of quantitative data. Offered in alternate years.

222. Quantitative Genetics and Plant Improvement (4) II. The Staff
Lecture—4 hours. Prerequisite: Plant Science 113; Genetics 105; or consent of instructor. Genetic forces affecting populations. Formulation of breeding plans based on principles of population and quantitative genetics. Offered in alternate years.

223. Selection Theory in Plant Breeding (3) II. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: course 222 or consent of instructors. Theory and application of selection to plant populations for improvement of quantitative characters. Statistical genetic analysis of quantitative character expression and methods for obtaining maximum efficiency in plant breeding schemes. Offered in alternate years.

224. Chromosome Evolution (3) I. Dvorak
Lecture—3 hours. Prerequisite: Genetics 221 and 222 or the equivalent. Structure and function of chromosomes. Dynamics of their evolution at the molecular and structural levels. Offered in alternate years.

232. Advanced Topics in the Physiology of Crop and Range Plants (3) II. Phillips
Lecture—3 hours. Prerequisite: Botany 111 or Plant Science 102. Physiological aspects of vegetative and reproductive growth of field crop and range plants in relation to nitrogen utilization and photosynthesis.

233. Biological Nitrogen Fixation (3) II. Phillips
Lecture—2 hours; seminar—1 hour. Relationships between fundamental and applied nitrogen-fixation research in biochemistry, genetics, physiology, microbiology, and ecology, with emphasis on increasing agronomic productivity. Offered alternate years.

234. Physiology of Crop Growth and Development (3) I. Jenkins
Lecture—3 hours. Prerequisite: Botany 111, 112 or the equivalent. Selected aspects of plant growth and development as they relate to crop productivity. Analysis of current literature on shoot and root growth and function, reproduction, senescence, hormonal and environmental controls of development. Offered in alternate years.

290. Seminar in Crop Growth, Production and Utilization (1-2) I. The Staff
Seminar—1-2 hours. Topics of current interest related to plant growth processes, production and management systems, and utilization of cultivated food, feed and fiber crops.

291. Seminar in Plant Breeding and Evolution of Cultivated Plants (1-2) III. The Staff
Seminar—1-2 hours. Topics of current interest related to plant breeding systems and the origins and evolution of cultivated plants.

297T. Tutoring in Agronomy (1-5) I, II, III. The Staff (Chairperson in charge)
Tutoring—1-5 hours. Prerequisite: graduate standing; consent of instructor; and course to be tutored or the equivalent. Tutoring for graduate students who desire teaching experience but are not teaching assistants. May be repeated for credit for a total of 5 units. Same course may not be tutored more than one time. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

401. Functioning as a Professional Beyond UCD (1) I. Phillips
Lecture/discussion—1 hour; seminar—1 hour. Prerequisite: graduate standing as M.S. or Ph.D. candidate. Students will develop a letter of application, a curriculum vitae, a statement of teaching and/or research interest, and a job interview seminar for a position advertised in their area of professional specialization. Group discussions will provide constructive suggestions for strengthening individual presentations. Offered in alternate years. (SU grading only.)

American Studies

Faculty

Jay Meachling, Ph.D., Professor
Patricia Turner, Ph.D., Assistant Professor
David Scofield Wilson, Ph.D., Associate Professor

The Major Program

American Studies offers an alternative approach to the study of American experience for students who feel too limited by departmental approaches. Lower division, introductory classes explore the ways in which cultural systems shape and reflect life in the United States. These classes pay close attention to the ways in which differences of class, race, gender, generation, ethnicity, religion, and sexual orientation unevenly affect American lives.

The Program. American Studies majors take five upper division, in-depth classes (see below) and participate in three smaller seminars or seminars limited to majors and devoted to close study of major thinkers and issues crucial to the practice of American Studies. Advanced work in at least two other departments or programs allows each student to emphasize a period, a problem, or a subject tailored to his or her own individual education goals. Students have the option of writing a senior thesis within this emphasis.

Career Alternatives. As an interdisciplinary program, American Studies provides a good liberal arts and sciences undergraduate education. American Studies maximizes a student's contact with a variety of subject matter and approaches. This flexibility has meant that our graduates have been able to move into a broad range of careers including journalism, law, medicine, nursing, law enforcement, environmental planning, teaching, library science, museum curatorship, and business. Some students discover new career possibilities through their internships in American institutions.

A.B. Major Requirements:

Preparatory Subject Matter

- **Preparatory Related Course:**
 - 24

 - One course from American Studies 1 series...
 - 4

 - One course from African-American Studies 10, Asian American Studies 1, Chinese Studies 10 or 20, Native American Studies 10, or Women's Studies 50...
 - 4

 - Two courses chosen from History 17A, 17B, 27A, 27B...
 - 8

 - One course chosen from English 30A, 30B...
 - 4

 - One course chosen from Anthropology 2, Sociology 2...
 - 4

Depth Subject Matter

- **American Studies core courses:**
 - 12
 - American Studies 110, 120, and 130

American Cultural Themes

- **Choose any two courses from the 150 series:**
 - Three Junior Seminars...
 - 6

Emphasis

- In consultation with an American Studies adviser, the student designs a program of 20 units of upper division course work around a unifying theme, period, or subject matter in American civilization. The course work should come from at least two disciplines. The student may choose the senior thesis option (190A-190B) for 8 of these 20 units.

Total Units for the Major

- **A.B. Major:**
 - 70

Recommended

Completion of the College requirement in English composition before enrollment in American Studies 190A.

*Course not offered this academic year.
Minor Program Requirements:

American Studies \(\text{UNITS} \) 20

American Studies \(\text{undergraduate division courses} \) 20

No more than 8 units of course 192 may be counted toward this total.

Faculty Advisers. J. Mechling, D. S. Wilson.

Teaching Credential Subject Representative. J. Mechling. See also the Teacher Education Program.

Courses in American Studies

Lower Division Courses

Lecture—3 hours; discussion—1 hour. American science and technology as cultural systems, mutual influence and interaction of those systems with other cultural systems, including religion, social thought, art, architecture, literature, music, and common sense. General Education credit: Contemporary Societies/Institutions.

1. B. Religion in American Lives (4) II. Wilson

Lecture—2 hours; discussion—1 hour; tutorials and field exercises. Examines ways Americans have ordered their lives with religion; how latter-day church structures, preachers, and Indian cultures differ or converge; attention to "civil religion" and mass-media evangelism; genres of religious experience, such as testimony, song, dance, ritual, meditation, vision, trance. General Education credit: Civilization and Culture/Intercultural.

1. C. American Lives through Autobiography (4) II. Turner

Lecture—2 hours; discussion—2 hours. American culture as understood through the individual life stories told by Americans, with attention to the roles of gender, race, ethnicity, social class, and sexual orientation in the individual's life course.

1. D. Nature and Culture in America (4) II. Wilson

Lecture—2 hours; fieldwork—3 hours. Uses and abuses of nature in America; patterns of habitation, exploitation, spoilation, and neglect; attention to California; emphasis on metaphor as a key to understanding ourselves and the natural world; attention to models of healing, stewardship, ecology, the "rights" movement. Offered in alternate years.

1. F. The Popular Image of Women in America (4) I. The Staff

Lecture—2 hours; discussion—1 hour; directed analysis of popular media. Lecture; media exposure; special projects. Examines the image of women as presented in popular media. Emphasis on the politics of gender, role, and the connection between the popular feminine image and the demands of the larger American culture.

2. Forms of American Wisdom (2) III. Mechling

Lecture—1 hour; discussion—1 hour. Exploration of the forms wisdom takes in America: folk knowledge, popular belief, prophetic wisdom, public religion, common sense, science, literature, special attention to the grounding of wisdom in circumstance of race, gender, generation, ethnic identity, and region. (P/NP grading only.)

45. Introduction to American Studies (4) I, III. Wilson, Mechling, and staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course from the course 1 sequence, or Anthropology 2, or Sociology 2. Introduction to interdisciplinary approaches to American civilization; close reading of representative American Studies texts from 1930s to present; special attention to the ways American Studies scholars have dealt with gender, social class, race, ethnicity, region, and age. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 2 or Sociology 2.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in Charge)

Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

109. Individual Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

101A-H. Special Topics (4) I, II, III. The Staff (Chairperson in charge)

Seminar—3 hours, intensive reading, writing, and special projects. Interdisciplinary group study of special topics in American Culture Studies, designed for non-majors as well as majors. Content will vary according to the instructor and in accord with the following titles: (A) Popular Culture Studies; (B) Women's Studies; (C) Material Aspects of American Culture; (D) American National Character; (E) American Lives Through Autobiography; (F) The Interrelation Between Arts and Ideologies; (G) New Directions in American Culture Studies; (H) Problems in Cross-Cultural American Studies. May be repeated for credit in different subject area only.

110. A Decade in American Civilization (4) I. Mechling

Lecture—2 hours; discussion—2 hours. Close examination of a single decade in American civilization; the connections between the history, literature, arts, customs, and ideas of Americans living in the decade.

120. American Folklore and Folklife (4) II. Turner

Lecture—3 hours; fieldwork—1 hour. Theory and method of the study of American folk traditions, including oral lore, customs, music, and material folk culture; the study of those traditions in various folk communities, including families, ethnic institutions, voluntary organizations, and occupational groups. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Sociology 2.

125. Corporate Cultures (4) III. Hagerty

Lecture—2 hours; discussion—1 hour; fieldwork—1 hour. Prerequisite: one course chosen from course 120, Anthropology 2, Psychology 16, or Sociology 1; or consent of instructor. Exploration of the small-group cultures of American corporate workplaces, including the role of environment, stories, jokes, rituals, ceremonies, personal style, and play. The effects of cultural diversity upon corporate cultures, both from within and in contact with foreign corporations.

130. American Popular Culture (4) III. Mechling

Lecture/discussion—3 hours; fieldwork and written reports. Prerequisite: course 1 or 45 or consent of instructor. American popular expression and experience as a cultural system, and the relationship between this system and elite and folk cultures. Exploration of theories and methods for discovering and interpreting meaning in American popular culture. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: American Studies 45, Anthropology 2, or Sociology 2.

151. American Landscapes and Places (4) II. Lofland

Lecture—2 hours; discussion—1 hour; fieldwork—3 hours. Prerequisite: course 1 or 45. Comparative study of several American cultural populations inhabiting a region, including their relationships to a shared biological, physical, and social environment, their intercultural relations, and their relationships to the dominant American popular and elite culture and folk traditions.

152. The Lives of Children in America (4) I. Mechling

Lecture—2 hours; discussion—2 hours. Experience of childhood and adolescence in American culture, as understood through historical, literary, artistic, and social-scientific approaches.

153. The Individual and Community in America (4) III. The Staff

Lecture—2 hours; discussion—2 hours. Interdisciplinary examination of past and present tensions between the individual and the community in American experience, as those tensions are expressed in such cultural systems as folklore, public ritual, popular entertainment, literature, fine arts, architecture, and social thought.

154. The Lives of Men in America (4) II. Mechling

Lecture—2 hours; discussion—2 hours. Interdisciplinary examination of the lives of boys and men in America, toward understanding cultural definitions of masculinity, the ways individuals have accepted or resisted these definitions, and the broader consequences of the struggles over the social construction of gender.

155. Symbols and Rituals in American Life (4) I. Wilson

Lecture—2 hours; discussion—2 hours. Prerequisite: course 1. Interdisciplinary examination of selected, richly expressive events (parades, festivals, holidays) and symbols (flags, memorials, temples) which encode nationwide values and understandings (Thanksgiving, New Year's, etc.) or which realize more limited, special meanings (Mardi Gras, rodeo, Kwanzaa, graduation, bar mitzvah, etc.). Offered in alternate years.

Discussion—2 hours. Prerequisite: junior standing in American Studies major. A small-group, intensive study of works frequently cited in American Studies scholarship; emphasis on theory and its application to American materials. May be repeated for credit with consent of instructor.

190A-190B. Senior Thesis (4-4) I, II, III. Mechling, Wilson

Seminar—2 hours; independent study—2 hours. Prerequisite: senior standing in American Studies major, in consultation with adviser, student contracts to write an extended research paper on a topic mutually agreed upon and unannounced in a prospectus reviewed and accepted by faculty. (Deferred grading only, pending completion of sequence.)

191. Internship in American Institutions (1-12) I, II, III. The Staff (Chairperson in charge)

Internship—1-12 hours. Prerequisite: enrollment dependent on availability of intern positions, with priority to American Studies majors. Supervised internship and study within and about key organizations in American civilization at archives, museums, schools, historical societies, governmental and social agencies, etc., with attention to the techniques of participant observation and the collection of ethnographic data. May be repeated for credit for a total of 12 units. (P/NP grading only.)

197T. Tutoring in American Studies (1-5) I, II, III. The Staff (Chairperson in charge)

Tutoring—1-5 hours. Prerequisite: consent of instructor. Tutoring in lower division American Studies courses, usually in small discussion groups. Periodic meetings with the instructor in charge; reports and readings. May be repeated for credit with different tutor. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor and Chairperson of American Studies Program. (P/NP grading only.)

Graduate Courses

291. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (SU grading only.)

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (SU grading only.)
Anatomy
See Veterinary Anatomy and Cell Biology; Cell Biology and Human Anatomy (Medicine, School of)

Anesthesiology
See Medicine, School of

Animal Behavior (A Graduate Group)
Benjamin L. Hart, D.V.M., Ph.D., Chairperson of the Group
Group Office, 1064 Haring Hall (Animal Behavior Program) 916-752-4863

Faculty. The group includes faculty from eleven departments in schools and colleges.

Graduate Study. The Ph.D. program in Animal Behavior is an interdepartmental program which trains students for teaching and research in a variety of areas including psychology, zoology, animal science, veterinary science, ecology, and wildlife biology. Students choose one of the three areas of specialization: (1) ethology and evolutionary bases of animal behavior, (2) physiological basis of animal behavior, and (3) applied animal behavior. All three specializations emphasize the adaptive and evolutionary bases of animal behavior. Resources available to students, in addition to various departmental facilities, include those of the California Primate Research Center and the Agricultural Field Stations. There is an early application deadline of February 15 for fall quarter.

Preparation. Appropriate preparation is a bachelor's or master's degree in one of the several disciplines relevant to behavior, such as psychology, zoology, entomology, anthropology, physiology, wildlife biology, ecology, animal science, veterinary science, genetics, or animal behavior. In addition, at least one course from each of the following four areas must be taken before admission into the program or before the end of the first year in the program.

General genetics: Genetics 100 or the equivalent
Statistics: Statistics 102 or Psychology 103, or the equivalent
Evolution: Genetics 103 or Zoology 148, or the equivalent
Animal behavior: Psychology 150, Wildlife and Fisheries Biology 140, or Zoology 155, or the equivalent

Students are encouraged to engage in some form of research as early as possible during the first year. This pre-dissertation research may be pursued under the guidance of any faculty member of the Group, if not necessarily the student's major professor.

Breadth Requirement. The following core courses or the equivalent (22 to 24 units) are required of all students.
Systemic physiology: Physiology 110 or Zoology 143
Statistical analysis: one course from Psychology 206, 207, Statistics 106, or 110

Scientific approaches to animal behavior research:
Animal Behavior 201
Seminar in animal behavior: Animal Behavior 290
Ecology: Entomology 104, Environmental Studies 100, or Zoology 125

College teaching: Biological Sciences 310 or Psychology 390
Comparative psychology: Psychology 290

Specialization. In addition to the requirements listed above, students must also take courses in one of the three areas of specialization with substitution as approved by the adviser.

Courses in Animal Behavior
Graduate Courses
201. Scientific Approaches to Animal Behavior Research (3) I. The Staff
Lecture—3 hours. Prerequisite: consent of instructor. Philosophical issues, goals, strategies and tools in field and laboratory research. May be repeated for credit when topics differ.

Lecture—3 hours. Prerequisite: graduate standing and a course in animal behavior, or consent of instructor. History of animal domestication, the role of natural and artificial selection in domestication, the influence of environment and experience on domestic animal behavior throughout animal-interractions. Offered in alternate years.

230A. Interdisciplinary Approaches to Animal Behavior (3) II. The Staff
Seminar—3 hours, term paper. Prerequisite: consent of instructor. Analysis of literature in behavior and an allied discipline or disciplines that offer the potential, in combination, to advance the understanding of a topic in animal behavior conceptually and empirically. Topics will vary from year to year.

230B. Interdisciplinary Approaches to Animal Behavior (5) III. The Staff
Workshop—4 days total, discussion—3 hours, term paper. Prerequisite: course 230A the previous quarter. Development of an empirical or theoretical interdisciplinary approach to research on a current topic in animal behavior.

290. Seminar in Animal Behavior (1-3) I, II, III. The Staff
Seminar—1-3 hours. Prerequisite: consent of instructor. Selected topics in animal behavior. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff
Prerequisite: graduate standing and consent of instructor.

299. Research (1-12) I, II, III. The Staff
Prerequisite: consent of instructor. (SU grading only)

Animal Genetics
(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Animal Science.

Major Program. See the major in Genetics.

Related Courses. See Agronomy 221, 222, 223; Plant Pathology 216; Plant Science 113; Vegetable Crops 220.

Courses in Animal Genetics
Questions pertaining to the following courses should be directed to the instructor or to the Animal Science Advising Center, 102 Meyer Hall.

Upper Division Courses
107. Genetics and Animal Breeding (5) III. Medrano
Lecture—4 hours; laboratory—3 hours. Prerequisite: Genetics 100. Principles of quantitative genetics applied to improvement of livestock and poultry. Effects of mating systems and selection methods are emphasized with illustration from current breeding practices.

108. Methods in Quantitative Animal Breeding (3) II. Famula
Lecture—3 hours. Prerequisite: course 107. Methods and procedures in quantitative animal breeding, including: expected value, single and multiple trait selection index, restricted selection, embedded traits, categorical traits, and best linear unbiased prediction.

109. Introduction to Parameter Estimation (1) II. Famula
Lecture—1 hour. Prerequisite: course 107 or the equivalent: course 108 recommended. Procedures for estimation of repeatability, heritability, and genetic and environmental correlations. Concept of expected value, estimation of variance components and the simulation of biological data.

111. Molecular Biology Laboratory Techniques (4) II. Murray, Oberbauer
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 101A or 101B and General Chemistry 101A or 101B. Introduction to the concepts and techniques used in molecular biology; the role of this technology in both basic and applied animal research, and participation in laboratory exercises using some of the most common techniques in molecular biology.

198. Directed Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. Selected topics related to animal genetics. (PRN grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. (PRN grading only)

Graduate Courses
204. Theory of Quantitative Genetics (3) III. Gall
Lecture—3 hours. Prerequisite: course 107 or the equivalent. Theoretical basis of quantitative genetics and the consequences of Mendelian inheritance. Concepts used to estimate quantitative genetic differences and bases for partitioning the phenotypic variance. Offered in alternate years.

206. Advanced Domestic Animal Breeding (3) III. Famula
Lecture—3 hours. Prerequisite: course 107 and Animal Science 206; course 204 recommended. Procedures for the genetic evaluation of individuals to include selection indices and mixed model evaluation for single and multiple traits. Methods of estimating genetic trends. Offered in alternate years.

208. Estimation of Genetic Parameters (3) III. The Staff
Prerequisite: Animal Science 235. Introduction to the estimation of heritability, repeatability and genetic correlations are considered. Specific emphasis is given to procedures applicable to livestock populations under selection.

211. Genetic Engineering of Animals (2) II. Murray
Lecture—1 hour; lecture/discussion—1 hour. Review of techniques for the genetic engineering of animals and their limitations and applications. Student-led discussions of recent papers in the field and possible future applications of genetically engineered animals in basic research and applied agricultural and medical research. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. Lectures and discussions of advanced topics in animal genetics. (SU grading only)

299. Research in Animal Genetics (1-12) I, II, III. The Staff
Prerequisite: (Bradford in charge) (SU grading only)

*Course not offered this academic year.
Animal Physiology

(Division of Biological Sciences)
B. A. Horwitz, Ph.D., Chairperson of the Section
Section Office, 106 Briggs Hall (916-752-4020)

Faculty
Marylynn S. Barkley, Ph.D., Associate Professor
Earl F. Carettes, Ph.D., Professor
Charles A. Fuller, Ph.D., Professor
Jack M. Goldberger, Ph.D., Associate Professor
John M. Horwitz, Jr., Ph.D., Professor
Barbara A. Horwitz, Ph.D., Professor
Andrew T. Ishida, Ph.D., Assistant Professor
Patricia Johnson, Adjunct Professor
Peter R. Marler, Professor
Gary P. Moberg, Ph.D., Professor (Animal Science)
Parneia A. Paperno, Ph.D., Associate Professor
Edward A. Rhode, Ph.D., Professor
Grace L. Rosenzweig, Ph.D., Assistant Adjunct
Professor
Robert P. Scobey, Ph.D., Professor (Neurology)
Arnold J. Stillman, Ph.D., Professor
Jeffrey Wiener, Ph.D., Professor
Charles M. Winget, Ph.D., Lecturer
Dorothy E. Wooley, Ph.D., Professor

Emeriti Faculty
James M. Boda, Ph.D., Professor Emeritus
Harry W. Colvin, Jr., Ph.D., Professor Emeritus
Perry T. Cupps, Ph.D., Professor Emeritus
Frederick W. Lorenz, Ph.D., Professor Emeritus
Verne E. Mendel, Ph.D., Professor Emeritus
Trank X. Ogawa, Ph.D., Professor Emeritus
Arthur H. Smith, Ph.D., Professor Emeritus

Courses. See the course listings under Physiology (Animal).

Animal Science

(College of Agricultural and Environmental Sciences)
G. E. Bradford, Ph.D., Chairperson of the Department
Department Office, 2232 Meyer Hall (916-752-1250)

Faculty
Thomas E. Adams, Ph.D., Associate Professor
Gary B. Anderson, Ph.D., Professor
C. Robert Ashmore, Ph.D., Professor
R. Leland Baldwin, Jr., Ph.D., Professor
Patricia J. Bear, Ph.D., Associate Professor
Eric G. Bradford, Ph.D., Professor
Dan L. Brown, Ph.D., Associate Professor
C. Christopher Calvert, Ph.D., Associate Professor
Ernest S. Chang, Ph.D., Professor (Biological Sciences)
Wallsy H. Clark, Ph.D., Professor (Biological Sciences)
Douglas E. Coklin, Ph.D., Lecturer
Fred S. Conte, Ph.D., Lecturer
Edward J. Deeters, Ph.D., Associate Professor
Serge Doroshov, Ph.D., Professor
James G. Fadel, Ph.D., Assistant Professor
Thomas R. Farnum, Ph.D., Associate Professor
Graham A. E. Gall, Ph.D., Professor
Ian Garnett, Ph.D., Senior Lecturer
Dennis Hedgecock, Ph.D., Lecturer
Silas S. Hines, Ph.D., Associate Professor
Vu-Bang Lee, Ph.D., Professor
Joan M. Macy, Ph.D., Professor
Juan P. Medrano, Ph.D., Associate Professor
Gary P. Moberg, Ph.D., Professor
James D. Murray, Ph.D., Associate Professor
Anita M. Oberbauer, Ph.D., Assistant Professor
James W. Oti, Ph.D., Lecturer
Edward R. Peck, Ph.D., Professor
Janet L. Reiser, Ph.D., Assistant Professor
Roberto D. Sains, Ph.D., Assistant Professor

Richard A. Zinn, Ph.D., Associate Professor

Emeriti Faculty
Floyd D. Carroll, Ph.D., Professor Emeritus
Perry T. Cupps, Ph.D., Professor Emeritus
William N. Garrett, Ph.D., Professor Emeritus
Hubert Heitman, Jr., Ph.D., Professor Emeritus
Robert C. Leisen, Ph.D., Professor Emeritus
Glen P. Lothrop, Ph.D., Professor Emeritus
James M. Meyers, Ph.D., Professor Emeritus
Chancellor Emeriti
Wade C. Collins, Ph.D., Professor Emeritus
Robert H. Touchberry, Ph.D., Professor Emeritus
William C. Weir, Ph.D., Professor Emeritus

The Major Program

The animal science major gives students an understanding of the proper care of animals and their utilization by people for food, fiber, work, research, companionship, and recreation. Aquaculture, companion animals, laboratory species, and domestic animal agriculture are included in animal science. The study of animals is achieved through biological, physical and social sciences, such as chemistry, biochemistry, genetics, physiology, nutrition, economics, mathematics, and their integration in the various animal science courses.

The Program. Two options are available in the major: Animal Biology and Aquaculture. The Animal Biology option is designed for students with interests in the biology of domestic animals, covering the range of study from the molecular to the physiological level, leading to the study of human and animal populations as a whole. Course requirements emphasize domestic animal biology and production. The Aquaculture option emphasizes the physiology and production of fish and shellfish. The Aquaculture option is appropriate for students interested in applying principles of animal production to aquatic systems.

Internships and Career Alternatives. Career opportunities for graduates cover a wide range of options from farming and ranching to all of the industries, institutions, and professions involved with domestic animals and aquaculture. These include positions in management, sales, financial services, health care, agricultural extension, consulting services, teaching, journalism, laboratory technology, and research. Preparation for veterinary medicine or other professions or graduate study can be achieved by careful planning in the major.

B.S. Major Requirements:

UNITs

<table>
<thead>
<tr>
<th>Course</th>
<th>Requirements</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing/Oral Expression</td>
<td>7-8</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>55-56</td>
<td></td>
</tr>
<tr>
<td>Animal science (Animal Science 1. 2, and either 15 or 41 and 41L or 42)</td>
<td></td>
<td>11-12</td>
</tr>
<tr>
<td>Biological sciences (Biological Sciences 1A, 1B, 1C)</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Chemistry (Chemistry 2A, 2B, 8A, 8B)</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Computer science (Agricultural Science and Management 21)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Mathematics (Mathematics 16A-16B or more advanced mathematics courses)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Statistics (Agricultural Science and Management 150 or Statistics 102, or other Pure science courses with prior approval of the master adviser)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>4-24</td>
<td></td>
</tr>
<tr>
<td>Physiological Chemistry, Physiological Sciences 101A-101B (preferred) or Biochemistry 101A-101B</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Genetics, Genetics 100, Animal Genetics 107</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Nutrition, Nutrition 110</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Area of Specialization</td>
<td>39-43</td>
<td></td>
</tr>
<tr>
<td>Animal Biology Option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology, Physiology 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory, one course from Animal Genetics 111, Animal Science 135, Microbiology 177L (Microbiology 177 must be taken concurrently), Biochemistry 101L, Clinical Biochemistry 102, Veterinary Microbiology and Immunology 126</td>
<td></td>
<td>2-6</td>
</tr>
<tr>
<td>Animal science 332 units</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

At least one course from the Animal Care and Management series: Animal Science 115. Animal Science 140, 144, 146, and the balance from Animal Science 104, 105, 106, 118, 120, 120L, 123, 124, 128, 131, 135 (if not elected above), 145, 147, 149, Animal Genetics 108, 111 (if not elected above), International Agricultural Development 102, Microbiology 177L (if not elected above), Nutrition 115, 122, 122L, 123, 124, Physiology 121, 121L, 130 |

A maximum of two courses from the following list may be selected in consultation with your faculty adviser and used toward the 32-unit Animal Science requirement:

- Wildlife and Fisheries Biology 121, 121L
- Veterinary Microbiology and Immunology 126
- Avian Science 100

Aquaculture Option

Physics, Physics 5A-5B or 1A-1B | 6-8 |
Zoology, Zoology 112, 112L | 8 |
Biology, Wildlife and Fisheries Biology 120 | 3 |
Nutrition, Nutrition 124 | 3 |
Zoology, Zoology 142, Wildlife and Fisheries Biology 121 | 4 |
Production, Animal Science 116 and 119 | 8 |
Animal Science | 12 |

At least four (4) courses and at least 12 units including one laboratory course (designated with *L*) in Animal Science 135 or Animal Genetics 111 from the following list:

Unrestricted Electives | 27-53 |
Total Units for the Degree | 180 |

Master Adviser: J.M. Macy

Advising Center for the major is located in 1202 Meyer Hall. Students must secure their academic advisor through this office upon entering the major.

Graduate Study. The Department of Animal Science offers a program of study leading to the M.S. degree. Detailed information may be obtained by contacting the graduate adviser. See also the Graduate Division section in this catalog.

Graduate Adviser: T.R. funnel

Courses in Animal Science

Lower Division Courses

1. Domestic Animals and People (4) I, II. Funnel, Brown/Garnett
 Lecture—3 hours; laboratory—3 hours. Animal domestication and factors affecting their characteristics and distribution. Animal use for food, fiber, work, drugs, research and recreation; present and future roles in society. Laboratory exercises with beef and dairy cattle, poultry, sheep, swine, laboratory animals, fish, horses, meat and dairy products. General Education credit: Nature and Environment/Introducory.

Course not offered this academic year.

15. Introductory Horse Husbandry (3) (I). Roser Lecture—9 hours. Prerequisite: course 2 recommended. Introduction to care and use of light horses emphasizing the basic principles for selection of horses, responsibilities of ownership, recreational use and raising of foals.

21. Livestock and Dairy Cattle Judging (2-3) (II). Van Liew Lecture—6 hours. Prerequisite: course 1 or 2 recommended. Evaluation of type as presently applied to light horses, meat animals and dairy cattle. Relationship between form and function, form and carcass quality, and form and milk production.

22A-22B. Animal Judging (2-2) (II). Van Liew Laboratory—6 hours; weekend field trips. Prerequisite: course 21 or the equivalent. Study of individual and group traits in competition with emphasis on visual appraisal of conformation and its accurate description. Course is required for intercollegiate judging competition. (P/NP grading only.)

41L. Domestic Animal Production Laboratory (2) (I, II). DePeters (in charge), Van Liew Lecture—6 hours. Prerequisite: course 41 (may be taken concurrently). Animal production principles and functions of dairy cattle, beef cattle, sheep, and swine operations, and campus laboratories. (P/NP grading only.)

49A-49B-49C. Animal Management Practices (2-2-2) (II, III). The Staff Discussion—1 hour; laboratory—3 hours. The application of the principles of elementary biology, the art and science of management of beef and dairy cattle, dairy goats, horses, sheep, swine, and laboratory animals. (P/NP grading only.)

92. Internship in Animal Science (1-12) (I, II, III). The Staff (Department Chairperson in charge). Internship—3-18 hours. Prerequisite: consent of instructor. Internship off and on campus in dairy, livestock, and aquaculture production, research and management; or in a business, industry, or agency associated with these or other animal enterprises. All requirements of Internship Approval Request form must be met. (P/NP grading only.)

98. Directed Group Study (1-5) (I, II, III). The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) (I, II, III). The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

104L. Principles of Domestic Animal Behavior (3) (I). Price Lecture—3 hours. Prerequisite: Biological Sciences 1A or 1B or the equivalent. Basic principles of animal behavior as applied to domesticated species. Emphasis will be placed on behavioral development and social behavior. External (exogenous) and physiological mechanisms influencing behavior will be discussed. (Students who have received credit for Zoology 155 may receive only 2 units for this course.)

105. Behavioral Adaptations of Domestic Animals (2) (II). Price Lecture—2 hours. Prerequisite: course 104 or the equivalent. An in-depth examination of the behavior of domestic animals and the role of behavior in management.

106. Domestic Animal Behavior Laboratory (2) (II). Price Laboratory—6 hours. Prerequisite: course 104 or the equivalent. Research experience with the behavior of large domestic animals. Experimental design, methods of data collection and analysis, and reporting of experiments.

115. Advanced Horse Production (4) (I). Roser Lecture—3 hours; laboratory—3 hours. Prerequisite: course 15; Genetics 100; Nutrition 110 or 115; Physiology 110; or consent of instructor. Feeding, breeding, and management of horses; application of the basic principles of physiology, reproduction, and nutrition to production of all types of horses. Designed for students who wish to become professionally involved in the horse industry.

118. Fish Production (4) (II). Beer, Doroshov Lecture—3 hours; discussion—1 hour. Prerequisite: Wildlife and Fisheries Biology 120 and 121. Current practices in fish production; relationship between the biological aspects of a species and the production systems. Husbandry, management, and marketing practices utilized. Emphasis on species currently reared in California.

119. Invertebrate Aquaculture (4) (I). Conkin and Conte Lecture—3 hours; discussion—1 hour. Prerequisite: Zoology 112 or 142, or the equivalent; Agricultural Engineering Technology 161A recommended. Management, breeding and feeding of economically important aquatic invertebrates; application of basic principles of physiology, reproduction, and nutrition to production of mollusks and crustaceans for human food; emphasis on interaction of species biology and managerial techniques on production efficiency.

120. Principles of Meat Science (3) (III). Bandman (Food Science and Technology), Lee Lecture—3 hours. Prerequisite: Biochemistry 101B or the equivalent. Analytical, physiological, developmental, and biochemical aspects of muscle underlying the conversion of muscle to meat. Includes meat processing, preservation, microbiology, and public health issues associated with meat products. (Same course as Food Science and Technology 120.)

120L. Meat Science Laboratory (2) (II). Lee, Bandman (Food Science and Technology) Discussion—1 hour; laboratory—3 hours. Prerequisite: course 120 (may be taken concurrently). Laboratory exercises and student participation in transformation of live animal to carcass and meat, structural and biochemical changes related to meat quality; sensory evaluation of meat, and field trips to packing plant and processing plant. (Same course as Food Science and Technology 120L.)

124. Lactation (4) (I). Baldwin Lecture—3 hours; laboratory—3 hours. Prerequisite: Physiology 110; Nutrition 110; or the equivalent. Background knowledge. Consideration of the biochemical, genetic, physiological, nutritional, and structural factors relating to mammary gland development, the initiation of lactation, the composition of milk, and functional performance.

128. Linear Programming in Animal Agriculture (3) (II). Fadel Lecture—2 hours; laboratory—2 hours. Prerequisite: upper division standing; Nutrition 110, 115 or the equivalent. Understanding of the use of linear programming as a tool of analysis and design, with emphasis on solving problems. (Course 143 recommended.)

131. Reproduction and Early Development in Aquatic Animals (4) (III). Doroshov Lecture—3 hours; laboratory—3 hours. Prerequisite: Zoology 100, Wildlife and Fisheries Biology 120, 121; or consent of instructor. Hormonal and developmental functions related to reproduction, breeding efficiency and fertility of animals commonly used in aquaculture.

135. Experimental Biochemistry Laboratory (4) (I). Ashmore Lecture—2 hours; laboratory—6 hours. Prerequisite: one course each in biochemistry and physiology; consent of instructor. Course designed to introduce student to concepts of research. Experience in research animal care, tissue sampling and handling techniques, a variety of commonly used laboratory analytical methods, cost analysis, literature review and publication writing are provided. (Not open to students who have received credit for Biochemistry 101L.)

140. Management of Laboratory Animals (4) (I). Adams Lecture—3 hours; laboratory—3 hours. Prerequisite: Animal Genetics 107; Nutrition 110 or 115; Physiology 110. Application of the concepts of nutrition, physiology, and genetics to maintenance of experimental animals. Management practices will be examined in view of experimental needs, government regulations, and animal health.

143. Pig and Poultry Care and Management (4) (I). Garnett, Ernst, Berger Lecture—3 hours; laboratory—3 hours. Prerequisite: Nutrition 115 or 110; Physiology 110. Care and management of swine, broilers and turkeys as related to environmental physiology, nutrition and metabolism, disease management and reproduction. Saturday field trips.

145. Meat Processing and Marketing (4) (II). Lee Lecture—3 hours; laboratory—3 hours. Prerequisite: course 143 or 144 or consent of instructor. Distribution, processing and marketing of meat and meat products. Meat and meat animal grading and pricing. Government regulations and social/consumer concerns. Future trends and impact on production management practices. Includes poultry.

146. Dairy Cattle Production (4) (III). DePeters Lecture—3 hours; laboratory—3 hours. Prerequisite: course 124. Animal Genetics 107, and Nutrition 115, or consent of instructor. Scientific principles from genetics, nutrition, physiology, and related fields applied to conversion of animal feed to human food through dairy animals. Management and economic decisions are related to animal biology considering the environment and animal well-being.

147. Dairy Processing and Marketing (4) (II). Lee Lecture—3 hours; laboratory—3 hours. Prerequisite: course 146 or consent of instructor. Examination of distribution systems, processing practices, product quality, impact of government policy (domestic and foreign), marketing alternatives and development of dairy products.

148. Enterprise Analysis in Animal Industries (4) (I, II). Garnett Lecture—4 hours. Prerequisite: course 114 or 116 or 160; or course 143. Examination and application of decision making and problem solving in the production enterprise. The areas of production analysis, problem solving, risk analysis and cost-benefit analysis will be examined in terms of the total enterprise.
190C. Research Group Conference (1) I, II, III. The Staff (Chairperson in charge)
Discussion—is a prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in the animal sciences. May be repeated for credit. (P/NP grading only.)

192. Internship in Animal Science (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: completion of 64 units and consent of instructor. Internship off and on campus. Research and analysis of animal production, research and management; or in a business, industry, or agency associated with these or other animal enterprises. All requirements of Internship Approval Request Form must be met. (P/NP grading only.)

197T. Tutoring in Animal Science (1-2) I, II, III. The Staff (Chairperson in charge)
Tutoring—1-2 hours. Prerequisite: Animal Science or related major; advanced standing; consent of instructor. Tutoring of students in lower division animal science courses; weekly conference with instructors in charge of courses; written critiques of teaching procedures. May be repeated once for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Strategies in Animal Production (4) II. Garnett Lecture/discussion—4 hours. Prerequisite: consent of instructor. Examines the forces and issues in animal agriculture through the strategic management process.

205. Models in Agriculture and Nutrition (3) III. Fadel
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 16B; Statistics 108. Basic model building principles and techniques for statistical and systems simulation models. Optimization techniques for non-linear experimental designs and management models are presented. Quantitative analysis and solution of linear and non-linear equations used in agriculture and nutrition. Offered in alternate years.

215. Advanced Concepts of Growth Regulation (3) I. Oberbauer
Lecture—3 hours. Prerequisite: Biochemistry 101B; Genetics 102B; Zoology 121A-121B. Cellular and molecular mechanisms of growth regulation. Topics include cell proliferation and differentiation in both tissue culture and animal models. Autocrine, paracrine, and transacting factors are discussed. Emphasis on critical reading and writing, including development of an original research proposal.

216. Grant Writing Techniques (1) II. Oberbauer
Lecture—1 hour. Prerequisite: course 215. Introduction to the peer-reviewed grant writing process. Sources of funding, proposal description, budget calculation, and the review mechanism will be discussed. Proposals written in course 215 will be revised. (SU grading only.)

235. Advanced Techniques in Animal Nutrition Research (2) I, II, III. The Staff (Chairperson in charge)
Lecture—4 hours; laboratory—3 hours. Prerequisite: graduate standing and consent of instructor. Application of advanced laboratory techniques to animal nutrition research; use of mechanistic models for experimental design and data analyses; surgical preparations useful in nutrition research; review of current literature. May be repeated for credit when topics differ. (SU grading only.)

290. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Reports and discussions of topics of interest in genetics, nutrition, and physiology as they apply to animal science. (SU grading only.)

290C. Research Group Conference (1) I, II, III. The Staff (Chairperson in charge)
Discussion—is a prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in the animal sciences. May be repeated for credit. (SU grading only.)

297. Supervised Teaching in Animal Science (2) I, II, III. The Staff (Chairperson in charge)
Supervised teaching—6 hours. Prerequisite: consent of instructor. Practical experience in teaching Animal Science at the University level; curriculum design and evaluation; preparation and presentation of material. Assistance in laboratories, discussion sections, and evaluation of student work. An evaluation letter sent to the Graduate Advisor with a copy to the student. (SU grading only.)

298. Special Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Anthropology (College of Letters and Science)
Aram A. Yengoyan, Ph.D., Chairperson of the Department
Department Office, 330 Young Hall
(916-752-0745/0746)

Faculty
John M. Beaton, Ph.D., Assistant Professor
Robert L. Bettinger, Ph.D., Professor
Monique Borgerhoff Mulder, Ph.D., Assistant Professor
David J. Boyd, Ph.D., Associate Professor
Richard T. Curley, Ph.D., Lecturer
William G. Davis, Ph.D., Professor
Jack D. Forbes, Ph.D., Professor (Anthropology, Native American Studies)
Charles E. Hale, Ph.D., Assistant Professor
Sarah B. Hendy, Ph.D., Professor
Susan Joseph, Ph.D., Professor
Smaad Lavelle, Ph.D., Assistant Professor (Anthropology, Center for Comparative Research)
Martha Macrini, Ph.D., Assistant Professor (Anthropology, Native American Studies)
Henry M. McHenry, Ph.D., Professor
David L. Otis, Ph.D., Professor
Peter S. Redman, Ph.D., Professor
G. William Skinner, Ph.D., Professor (Anthropology, Center for Comparative Research)
Carol A. Smith, Ph.D., Professor
David G. Smith, Ph.D., Professor
Janet S. Smith, Ph.D., Associate Professor
Dinah L. True, Ph.D., Professor
Carolyn F. Wall, Ph.D., Senior Lecturer
John T. Willett, Ph.D., Professor (Anthropology, Sociology)
Aram A. Yengoyan, Ph.D., Professor
Emeriti Faculty
Daniel J. Crowley, Ph.D., Professor Emeritus

The Major Program
Anthropology is the systematic study of human beings as they behave. It is a diverse field and the courses at Davis are subdivided into four categories—biological, social/cultural, linguistic, and archaeological. The student of anthropology learns about human social life—past and present—and gains a broader understanding of the human condition.

The Program. Students interested in the scientific study of human origins, primate studies and the fundamental biology of these relate to Homo sapiens should enroll in the Bachelor of Science degree program. Students interested in anthropology and the ethnology of selected culture areas or linguistics (language in culture and society and linguistic field methods) should enroll in the Bachelor of Arts degree program. Students interested in archaeology (prehistoric and the techniques and methods of archaeology) should consult an advisor before choosing one degree program or the other.

Career Alternatives. Although most practising anthropologists tend to be in colleges and universities, a bachelor's degree in anthropology can lead to work in museums, in the Park Service, or in other aspects of public archaeology. A Bachelor of Science degree is a suitable major for premedical and preprofessional preparation. A degree in anthropology with appropriate courses in education also can be good preparation for high school teaching in social sciences or natural sciences.

A.B. Major Requirements:

Preparatory Subject Matter: 24-39
Anthropology 1, 2, 3, 4
Geography 1 or Environmental Studies 30
Foreign Language (15 units or the equivalent in one language)

Depth Subject Matter: 10-16
Anthropology 110, 128, 137, 170
Linguistic anthropology, one course
Biological anthropology, one course
Ethnography, one course
Archeology, one additional course
An additional 8 units selected from the following:
Any upper division anthropology course, Art History 150, 151, Genetics 100

Total Units for the Major: 64-79

B.S. Major Requirements:

Preparatory Subject Matter: 45-56
Anthropology 1, 2, 3, 4
Biology 110, 128, 137, 170
Chemistry 2A, 2B
Statistics 13, 14, 102, 107
Chemistry BA-BS or Mathematics 18A-18B
Foreign Language (10 units or the equivalent in one language)

Depth Subject Matter: 45
Six courses in anthropology, including courses 152, 153 and 154A, and the remaining 3 chosen in consultation with major advisor
Genetics 100 and either Genetics 103 or Zoology 148
Additional units from the list below to achieve a minimum of 45 upper division units. Include at least one laboratory course in human or vertebrate anatomy.

Total units for the Major: 90-101

Recommended
Geology 1, 3, 5, 7, 8; Physics 5A, 5B, 5C; Psychology 1, 5

Bachelor of Science List of Courses

Biological anthropology, Anthropology 151, 152, 153, 154A, 154B, 155, 156, 157, 157L, 158

Upper division courses outside the Department: Anatomy 101; Biochemistry 101A, 101B; Botany 140; Environmental Studies 100, 125; Epidemiology and Preventive Medicine 402, 403, 404; Genetics 100, 102A, 102B, 103, 104, 105, 106, 107; Geology 1; Geology 107; Cell Biology and Human Anatomy 101; Physical Education 103, 115; Physiological Sciences 110, 115, 118; Physiology 10, 118; Statistics 104, 105, 106, 107, 130; Zoology 100, 105, 126, 129, 131, 134, 146, 147, 148, 155

Major Advisers:
A.B. degree: R. Curley, D.L. True
B.S. degree: H.M. McHenry, P.S. Rodman
Minor Program Requirements:

<table>
<thead>
<tr>
<th>Units</th>
<th>Anthropology</th>
<th>19-24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General emphasis</td>
<td>22-25</td>
</tr>
<tr>
<td></td>
<td>One course from Anthropology 114, 117, 160</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One course from Anthropology 151, 152, 153, 154A, 154B, 155, 156, 157L, 157L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One course from Anthropology 170, 171, 172, 173, 174, 175</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One course from Anthropology 140A, 140B, 141A, 141B, 141C, 142, 143, 144, 145, 146, 147, 148A, 148B, 149, 176</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>One course from Anthropology 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 135, 136, 137, 138</td>
<td>4</td>
</tr>
</tbody>
</table>

Biological emphasis:

<table>
<thead>
<tr>
<th>Units</th>
<th>Anthropology 152, 153, 154A</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One additional upper division Anthropology course chosen in consultation with B.S. degree in anthropology advisor</td>
<td>5-6</td>
</tr>
</tbody>
</table>

Social-Cultural emphasis:

<table>
<thead>
<tr>
<th>Units</th>
<th>Anthropology 137</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One course from Anthropology 140A, 140B, 141A, 141B, 141C, 142, 143, 144, 145, 146, 147, 148A, 148B, 149, 176</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Two courses from Anthropology 101, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 135-8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>One additional upper division Anthropology course chosen in consultation with B.A. degree undergraduate advisor</td>
<td>2-5</td>
</tr>
</tbody>
</table>

Teaching Credential Subject Representative. See also the Teacher Education Program.

Graduate Study: The Department offers a program of study leading to the M.A. and Ph.D. degrees in Anthropology. Further information regarding graduate study may be obtained at the Department Office and at Graduate Studies.

Graduate Adviser: P.S. Rodman.

Courses in Anthropology

Lower Division Courses

1. **Human Evolutionary Biology (4)** I, McHenry; II, P.S. Rodman, III, D.G. Smith
 Lecture—3 hours; discussion—1 hour. Introduction to human evolution. Processes and course of human evolution; major theories and the study of primates; the biological variability of living man and the genetic background. General Education credit: Nature and Environment/Introductory.

2. **Cultural Anthropology (4)** I, Yengoyan; II, Curley; III, Davis
 Lecture—3 hours; discussion—1 hour. Introduction to cultural diversity and the methods used by anthropologists to account for it. Family relations, economic activities, politics, gender, and religion in a wide range of societies. Current problems in tribal and peasant societies. General Education credit: Contemporary Societies/Introductory.

3. **Introduction to Archaeology (4)** I, Beaton; II, True
 Lecture—3 hours; discussion—1 hour. Development of archaeology as an anthropological study; objectives and methods of modern archaeology.

4. **Introduction to Anthropological Linguistics (4)** I, Macri; II, Wall
 Lecture—3 hours; discussion—1 hour. Exploration of the role of language in social interaction and world view, minority languages and dialects, bilingualism, literacy, the social motivation of language change, introduction of analytical techniques of linguistics and demonstration of their relevance to language in sociocultural issues. General Education credit: Contemporary Societies/Introductory.

5. **Proseminar in Biological Anthropology (4)** III, Rodman
 Seminar—3 hours; term paper. Prerequisite: course 1 and consent of instructor. Course primarily for majors. Integration of related disciplines in the study of biological anthropology through discussion and research projects. Principal emphasis in human adaptation to the environment.

 Lecture—3 hours; discussion—1 hour; term paper.
 Introduction to biology of birth, childhood, marriage, the family, old age, and death.
 Examination of reproductive characteristics of nonhuman primates and other animals as well as cross-cultural variation in humans by study of selected cases. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Biological Sciences 10, Anthropology 1, or Genetics 10.

23. **Introduction to World Prehistory (4)** III, Beaton
 Lecture—3 hours; discussion—1 hour. Broadly surveys patterns and changes in the human societies' physical and cultural evolution from earliest evidence for "humanness" to recent development of large-scale complex societies or "civilizations." Lectures emphasize the comparative nature of history as a reconstructing the past. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Anthropology 3.

25. **Cross-Cultural Communication (4)** III, J.S. Stoltman
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, or course 2 and Linguistics 1. Description and analysis of communicative behavior in multi-ethnic societies. Analysis and cross-cultural comparison of linguistic and nonlinguistic communication in face-to-face interaction. Language as a sociocultural resource. Conversation and formal speech genres. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 4 or Anthropology 2 and Linguistics 1.

98. **Directed Group Study (1-5)** I, II, III, The Staff
 (Chairperson in charge)
 Primarily intended for lower division students. (P/NP grading only)

99. **Special Study for Undergraduates (1-5)** I, II, III, The Staff
 (Chairperson in charge)
 Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

101. **Human Ecology (4)** II, Borgerhoff-Mulder
 Lecture—3 hours; discussion—1 hour. Prerequisite: one course from course 1, 2, Environmental Studies 30, Genetics 10, or the equivalent; Critical variables in the processes that relate humans and their environment. Emphasis on the biological, cultural, social, and psychological forces which encourage stability or change in human ecological relationships. (Same course as Environmental Studies 101.) General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 1, 2, Biological Sciences 10, Environmental Studies 1, 30, Geography 2, or Sociology 2.

(a) **Anthropological Linguistics**

110. **Elementary Linguistic Analysis (4)** II, Olmsted
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or Linguistics 1. Analytical techniques of articulatory phonetics, phonemics, morphophonemics, and morphology and syntax.

111. **Intermediate Linguistic Analysis (4)** III, Olmsted
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Continuation of course 110. Advanced work in phonetics and phonemics, morphophonemics, and syntax.

112. **Comparative Linguistics (4)** I, Olmsted
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Linguistic prehistory, historical linguistics, and reconstruction.

113. **Indigenous Languages of North America (4)** II, Macri
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, Linguistics 1, or consent of instructor. Survey of indigenous languages of North America, including their classification, linguistic characteristics, well features, and social-cultural aspects.

114. **The Ethnography of Speaking (4)** II, Wall
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, or course 2 and Linguistics 1. Description and analysis of language usage in social context and the sociocultural knowledge it reflects. Structure of speech events within communities; language in formal and informal contexts, ritual use of language, and linguistic means of marking social identity.

117. **Language and Society (4)** III, The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, or Linguistics 1 and course 2. Consideration of language in its social context. Methods of data collection and analysis; identification of socially significant linguistic variables. Contributions of the study of contextualized speech to linguistic theory. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 2 or Anthropology 3.

118. **Language and Ethnicity (4)** I, J.S. Smith
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, or course 2 and Linguistics 1. Exploration of the role of language in creating and maintaining ethnic identity in multilingual societies. Examination of theoretical approaches to language variation and their utility in the interpretation of patterns of ethnic mother tongue and standard language use across groups.

119. **World Writing Systems (4)** I, I. Macri
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or Linguistics 1 and Survey of major world writing systems, including pictographic, syllabic, and alphabetic scripts used in both the Old and New Worlds in ancient and modern times, examined from linguistic and socio-political aspects.

120. **Language and Culture (4)** I, Yengoyan
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, or course 2 and Linguistics 1. Culture, cognition, meaning, and interpretation; language and the classification of experience: communication and learning in crosscultural perspective.

(b) **Social-Cultural Anthropology**

121. **Folklore (4)** III
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or literary preparation acceptable to instructor. Theory and method in the study of folktales, myths, legends, proverbs, riddles, songs, and other forms of verbal tradition.

122. **Economic Anthropology (4)** I, Davis
 Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Economic behavior in nonindustrial societies; its social and cultural setting and its modern changes.

123. **Anthropology and Political Economy (4)** II, The Staff
 Lecture—3 hours; discussion—laboratory—1 hour. Prerequisite: course 2 or consent of instructor. Survey of anthropological approaches to the study of political organizations; the interrelationships among political institutions, economic infrastructures and cultural complexity.

124. **Religion in Society and Culture (4)** III, Curley
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Course 2 or literary preparation acceptable to instructor. Survey of anthropological approaches to the study of political organizations; the interrelationships among political institutions, economic infrastructures and cultural complexity.

Course not offered this academic year.
120 Anthropology

135. Peasant Society and Culture (4) I. C. A. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of political and social organization of peasant communities, utilizing historical and ethnographic sources; analysis of economic and cultural relations; problems of economic development and culture change. (Former course 182.)

136. Visual Anthropology (4) I. I. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 126 or 137. Overview of film use in anthropology and its advantages and limitations in comparison to written ethnographic descriptions. Essential features of ethnographic films emphasized. Film production as an aspect of anthropological research and problems encountered in producing films in the field.

137. Theory in Social-Cultural Anthropology (4) A. Boyd Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative overview of major theoretical orientations in social-cultural anthropology, including evolutionary, historical, functional, ecological, psychological, structural, symbolic, and Marxian approaches. Selected controversies are examined to clarify strengths and limitations of extant theories. (Former course 102.)

138. Ethnographic Research Methods in Anthropology (4) I. I. Boyd Lecture—3 hours; discussion—1 hour. Prerequisite: courses 2 and 137. Basic concepts and approaches to ethnographic field research. Problem formulation, research design, qualitative and quantitative data collection and techniques for organizing, retrieving, and analyzing information. Ethnographic description and constructed inference. Students will organize and conduct individual research projects.

139. Race, Class, Gender Systems (4) I. C. A. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative analysis of class/race/gender inequality, concentrating on the ways in which beliefs about descent, "blood," and biological differences interact with property and marital systems to affect the distribution of power in society.

140. Cultures and Societies of West and Central Africa (4) I. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of West Africa and Congo Basin with analyses of representative societies which illustrate problems of interest to anthropologists. Major consideration will be given to continuities and discontinuities between periods prior to European contact and the present. (Former course 139A.)

140B. Cultures and Societies of East and South Africa (4) I. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of Eastern and Southern Africa with analyses of selected societies which illustrate problems of interest to anthropologists. Major consideration will be given to continuities and discontinuities between periods prior to European contact and the present. (Former course 139B.)

141A. Indians of North America (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Introductory survey of the Indians of North America: origins, languages, civilizations, and history. (Former course 105A.)

141B. Ethnography of California and the Great Basin (4) I. F. Bettinger Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Description and analysis of the native peoples of California and the Great Basin, and their economies at the time of European contact. (Former course 141C.)

142. Peoples of the Middle East (4) I. Lave Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Peoples of the Middle East (including North Africa). Discussions of class relations, kinship organization, religious beliefs and behavior, ethnic relations, social systems. Impact of world systems, political and religious movements and social change. (Former course 136.)

143. Ethnology of Southeast Asia (4) I. Vengel Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Patterns of culture and social organization from prehistory to the present in the context of historical, ecological, economic, and political settings. Emphasis on the relation of ethnic minorities to national states.

144. Contemporary Societies and Cultures of Latin America (4) I. Orlove Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Introduction to Latin American social structure and political systems. Origins, maintenance and changes in inequality: economic responses to poverty, sociocultural responses to discrimination, and political responses to powerlessness.

145. Colonialism and Ethnicity in the Caribbean (4) I. Hale Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 2 or Afro-American Studies 10. Examination of the contemporary Caribbean nations, sketching their diverse geography, history, and economic life, then showing how selected nations have attempted to solve the problems arising from ethnic diversity in racial-bloc formation. (Former course 140.)

146. Indigenous Peoples of Mexico and Central America (4) I. C. A. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Ethnographic survey of the native peoples of Mexico and Central America: their history, socio-political organization, mythology, languages, material culture, writing systems.

147. Peoples of the Pacific (4) I. Boyd Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Ethnographic survey of aboriginal cultures of Oceania. Comparison of origins, prehistory, and traditional social organization of peoples of Polynesia, Micronesia, and Melanesia. Consideration of recent changes associated with colonialism and national independence.

148A. Traditional Chinese Society (4) I. Skinner Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Analysis of society, culture, and political economy of late traditional China to 1949. Attention given to nature of social change in this modern agrarian civilization.

149A. Traditional Japanese Society (4) I. J. S. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Patterns of culture and social organization from prehistoric to early twentieth-century Japan. Origins, prehistory, and traditional religious and political systems, marriage and kinship, language and culture. Changes and continuities in traditional and contemporary Japanese culture are addressed. Offered in alternate years.

149B. Contemporary Japanese Society (4) I. J. S. Smith Lecture—3 hours; discussion—1 hour. Introduction to contemporary Japanese social structure, social organization, and patterns of culture. Analysis of rural-urban cultural continuities and contrasts, class relations, political and economic systems, kinship, sexuality, gender systems, contemporary religious beliefs and behavior, conflict, consensus, and cultural stereotypes. Offered in alternate years.

(c) Biological Anthropology

151. Primate Evolution (4) I. McHenry Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Biological Sciences 19. Origin and relationships of the primates, monkeys, and apes.

152. Human Evolution and Fossil Man (4) I. McHenry Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Biological Sciences 18. Nature and development.

153. Human Biological Variation (4) I. D. G. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Biological Sciences 1B. Origin, adaptive significance and methods of analysis of genetic differences among human populations. Special attention will be given to racial differences such as those in blood groups, plasma proteins, red cell enzymes, physiology, morphology, pigmentation and dermatoglyphics. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Anthropology 1.

154A. The Evolution of Primate Behavior (5) I. Rodman Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1. Examines ecological diversity and evolution of social systems of primates, monkeys, and apes, placing the social behavior of the primates in the context of appropriate ecological and evolutionary forces.

154B. Ecology and Sociobiology of Primates (4) III. Rodman Lecture—2 hours; laboratory—6 hours. Prerequisite: course 154A, Statistics 13 (or the equivalent), and consent of instructor. Course includes a six-week course tour for students interested in methods of studying, describing, and analyzing the ecology and sociobiology of primates. Laboratory consists of direct observation of captive primates and local biologists with quantitative analysis of observations.

155. Comparative Primate Anatomy (4) II. The Staff Lecture—2 hours; laboratory—4 hours. Prerequisite: Biological Sciences 1B. The functional anatomy of monkeys, apes, and man. Emphasis on the anatomical evidence for human evolution. (not listed)

156. Human Osteology (4) III. McHenry Lecture—2 hours; laboratory—4 hours. Prerequisite: course 1 or the equivalent. Introductory study of the human skeleton, including bone growth, pathology, radiology, evolution, dentition, and variation in race, sex, and age.

157. Anthropological Genetics (3) I. D. G. Smith Lecture—1 hour; laboratory—3 hours. Prerequisite: course 1 or Biological Sciences 1A, and Genetics 100, 103 or 105, or 106. Processes of micro-evolution responsible for biological differences among human populations. Special attention to the adaptive significance of genetic variation in blood group antigens, serum proteins and red cell enzymes.

157L. Laboratory in Anthropological Genetics (2) I. D. G. Smith Lecture—1 hour; laboratory—3 hours. Prerequisite: course 1 or Biological Sciences 1A, and either Genetics 100 or enrollment in course 157 concurrently or following). Methods for identifying genetic variation in human blood group antigens, serum proteins and red cell enzymes (hemagglutination), general electrophoresis on starch, cellulose acetate and polyacrylamide, immunodiffusion and immunoelectrophoresis (PAN grading only).

158. The Evolution of Females and Males: Biological Perspective (4) II. Hrany Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Current theoretical frameworks for examining the evolution of sex differences and for understanding the interrelationship between biological processes and cultural construction of gender roles.

(d) Archaeology and Prehistory

170. Archaeological Theory and Method (4) II. Bettinger Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 3. Introduction to history and development of archaeological theory and method, with particular emphasis on the basic dependence of the latter on the former. Stress is on historical development of archaeology in the New World. (Former course 103A.)

171. Archaeology and the Environment (4) I. Beaton Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Examines theoretical, methodological and practical considerations in reconstruction of environmental history and in studying the human environment through archeological, environmental and human population dynamics and their interactions are considered particularly for non-complex societies. Offered in alternate years. (Former course 103C.)

172. New World Prehistory: The First Arrivals (4) II. True Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Survey of data relating to development of the New World. Cultural adaptation and development of early inhabitants of North and South America. Offered in alternate years. (Former course 103C.)

173. New World Prehistory: Archaic Adaptations (4) III. Bettinger Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Introduction to and survey of prehistoric hunting and gathering adaptations across North America with particular emphasis on the East, Southeast, Midwest, Plains, Southwest, and Northwest. Offered in alternate years. (Former course 103D.)

174. New World Prehistory: Formative Life-ways in North and South America (4) II. True Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Transition from hunting and gathering subsistence to sedentary farming life in North and South America. (Former course 103E.)

175. New World Prehistory: The High Cultures Mesoamerica and Andean South America. (4) III. Bettinger Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Urban developments and the rise of civilization in Mexico and Peru. (Former course 103F)

176. Prehistory of California and the Great Basin (4) II. True Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Description and analysis of the prehistoric peoples of California and the Great Basin from earliest times to European contact. (Former course 106A.)

178. Hunter-Gatherers (4) III. Bettinger Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Study and interpretation of the ancient and modern lifeways in which people supported themselves with primitive technologies and without benefit of domesticated plants and animals. Offered in alternate years. General Education credit: Contemporary Societies/Non-Introduction. Recommended GE preparation: Anthropology 2.

179. Ethnoarchaeology (4) II. Beaton Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Relationships between behavior and its archeological consequences. Ethnography by archaeologists examines residence patterns, site formation processes, hunting/foraging behavior and other cultural activities and then these contribute to modern archeological thinking. (Former course 193.)

181. Field Course in Archeological Method (9) Summer. The Staff Lecture—6 hours; daily field investigation. Prerequisite: course 3. On-site course in archeological methods and techniques held at a field location in the western United States, generally California or Nevada. Introduces students to field methods of archaeological survey, mapping, and excavation. (Former course 193.)

*183. Laboratory in Archeological Analysis (4) III. Bettinger Lecture—2 hours; laboratory—6 hours. Prerequisite: course 181 or consent of instructor. Museum preparation, advanced field investigation, and guidance in preparation of museum material for publication. May be repeated for credit with consent of instructor. Limited enrollment. (Former course 196.)

*Course not offered this academic year.

184. Prehistoric Technology: The Material Aspects of Prehistoric Adaptation (4) II. True Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or 3. Examination of the role of lithics, ceramic, textile and wooden implements as elements in prehistoric social and cultural development. Emphasis is descriptive, but the significance of material resources as factors in prehistoric adaptation, settlement patterns, and culture change are discussed.

(e) Special Study Courses

191. Topics in Anthropology (4) III. The Staff (Chairperson in charge) Lecture/discussion—3 hours; term paper. Prerequisite: junior or senior standing in anthropology. Intensive treatment of a special anthropological topic or problem. May be repeated once for credit when topic differs.

194I. Special Study for Honors Students (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: open only to majors of senior standing who qualify for honors program. Independent study of an anthropological problem involving the writing of an honors thesis. (PAN grading only.)

197T. Tutoring in Anthropology (1-5) I, II, III. The Staff Tutorial—1.5 hours. Prerequisite: upper division standing with major in Anthropology and consent of Department Chairperson. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. May be repeated for credit. (PAN grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (PAN grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (PAN grading only)

Graduate Courses

201. History of Anthropological Theory (4) I. Vogtman Lecture—2 hours; discussion—1 hour; term paper. Historical development of the various fields of anthropology with emphasis upon their interactions.

202. History and Theory of Biological Anthropology (4) III. McHenry Seminar—3 hours; term paper. History of thought in biological anthropology and analysis of major theoretical problems in the field. Suggested for all first-year graduate students lacking intensive preparation in biological anthropology.

203. History and Theory of Archaeology (3) III. Bettinger Seminar—3 hours. History of thought in archaeology and analysis of research methods.

204. Contemporary Issues in Anthropological Theory (4) II. Davis Seminar—3 hours; term paper. Prerequisite: course 2, 137 or consent of instructor. Advanced consideration of fundamental issues in anthropological theory. Emphasis on critical examination of major controversies and debates between proponents of competing theories.

205. History and Theory in Anthropological Linguistics (4) III. Olmsted Seminar—3 hours; term paper. History of thought in anthropological linguistics. Consideration of the historical development of fundamental ideas in anthropological linguistics, of major theoretical issues, and of research methodology.

206. Research Design and Method in Social Anthropology (5) II. Joseph Seminar—4 hours; individual student-instructor session (in-depth work on proposal writing). Prerequisite: consent of instructor. Formulation of research problems and preparation of research proposals; relationships between theory and method, funding, pre-fieldwork preparations, interpreting the community, field research techniques, and problems of ethics; intensive work on proposal writing. May be repeated once for credit. Limited enrollment.
207. Ethnographic Writing (4) III. Livie Seminar—3 hours; term paper. Prerequisite: courses 137, 201, or the equivalent. Relationship between conducting participant observation of others and writing it up, emphasizing the processual rift between the reality of fieldwork and its written representation. Study of various literary genres and textual strategies used in cultural anthropology. May be repeated for credit. Offered in alternate years.

208. Objectives and Methods for College Teaching of Anthropology (2) I, II, III. The Staff Discussion—2 hours; assignments and reports. Prerequisite: normally limited to teaching assistants in anthropology analysis of the elements of effective teaching, drawing upon the student's experience in the classroom situation.

210. Aspects of Culture Structure (4) III. The Staff Seminar—3 hours; term paper. Analysis of various phases of culture, such as religion, economics, law, and folklore. May be repeated for credit when topic differs.

211. Advanced Topics in Cultural Ecology (3) I. Orlove Lecture—3 hours. Prerequisite: graduate standing; Anthropology/Environmental Studies 133 or the equivalent or consent of instructor. Discussion and evaluation of theories which relate environment, culture, and social structure. The works of several major theorists will be examined with regard to analytical models, empirical data, research methodologies, and modes of explanation. Offered in alternate years. (Same course as Ecology 211.)

212. Problems in Archaeological Method (4) II. Beaton Seminar—3 hours; term paper. Techniques for analyzing archaeological data; application to various prehistoric cultures. May be repeated for credit with consent of instructor.

217. Andean Prehistory: Theory and Method (4) III. True Seminar—3 hours; term paper. Prerequisite: consent of instructor. Discussion and evaluation of prehistoric occupations in the Andean Region of South America. Emphasis upon Pre-ceramic and early farming peoples.

218. Topics in North American Prehistory (4) II. True Seminar—3 hours; term paper. Advanced study on current problems in North American prehistory and archaeology. May be repeated for credit only if material is unique for that student; with consent of instructor.

220. Field Course in Linguistics (4) III. Macrury Seminar—2 hours; laboratory—2 hours. Prerequisite: courses 110, 111, Techniques of eliciting, recording, and analyzing, work with a native speaker.

221. Rural Transformation in Postcolonial Societies (4) III. Orlove Seminar—3 hours; term paper. Prerequisite: courses 223, 265, or consent of instructor. Problems of rural transformation: May be repeated for credit.

222. Problems in Urban Anthropology (4) I. Walton Seminar—3 hours; one paper. Prerequisite: graduate status or consent of instructor. Study of selected critical problems in urban anthropology. Each quarter focuses on some of the following topics: class, minorities, poverty, migration, religion, politics, kinship, community, sex roles, communication, ideology, consciousness in urban context. May be repeated for credit.

223. Economic Anthropology (4) III. Davis Seminar—3 hours; term paper. Prerequisite: course 122 or consent of instructor. Selected current methodological and theoretical problems in the analysis of nonindustrial economic systems.

224. Problems in Comparative Religion (4) II. Curley Seminar—3 hours; term paper. Advanced study of current problems in the anthropological study of religion.

225. State and Nation in the Modern World (4) I. C.A. Smith Seminar—3 hours; term paper. A presentation of current anthropological theories of the origins and nature of the modern nation-state in both the First and Third Worlds, with special reference to state ideology (nationalism and forms of control. Offered in alternate years.

226. Consciousness and Resistance (4) III. Hale Seminar—4 hours; term paper. Prerequisite: completion of first-year graduate work or consent of instructor. Consideration of approaches to the study of social inequality and responses to subordinated groups. Emphasis on situating approaches to contemporary social theory, concrete research problems, and political strategies. Topics: formation of consciousness and identity; collective action; accommodation to frontal resistance. Offered in alternate years.

227. Behavioral Ecology and Anthropology (4) III. Borgerhoff-Mulder Seminar—3 hours; term paper. Prerequisite: graduate standing. An examination of the links between behavior and structure in the study of human cultural variation, focusing on social organization, marriage, reproduction, inheritance and subsistence in traditional and historical populations. May be repeated once for credit in alternate years.

230. Comparative Family Demography (4) II. Skinner Lecture—2 hours; discussion—2 hours. Prerequisite: Graduate standing in one of the social sciences (including History). Comparative examination of population processes—marriage/nuptiality, fertility/ reproduction, mortality, and migration—in sociocultural and historical context, with an emphasis in contrasting family systems. Case studies are drawn from Western Europe (France, Italy) and East Asia (China, Japan, Thailand). Offered in alternate years.

232. Political Movements (4) I. Walton Seminar—3 hours; term paper. Prerequisite: completion of first-year graduate work recommended. Interdisciplinary approach to political movements of protest, reform, and revolution emphasizing historical comparison and evaluation of major theoretical approaches including world systems, resource mobilization, state and culture, rational choice, moral economy, social class and gender.

239. Problems in African Society and Culture (4) I. Curley Seminar—3 hours; term paper. Diachronic analyses of traditional institutions in sub-Saharan Africa.

240. Problems in Afro-American Studies (4) III. Seminar—3 hours; term paper. Comparative studies of selected black communities in the New World.

241. Topics in North American Ethnology (4) III. Fortes Seminar—3 hours; term paper. Advanced study on current problems in North American ethnography and culture history. May be repeated for credit with consent of instructor.

245. Ethnology of Northern and Central Asia (4) II. Olmsted Seminar—3 hours; term paper. Prerequisite: a reading knowledge of German, Russian, Chinese, or Japanese. Lectures on the culture aborigines of north of the Carolina-Korea line. Supervised study of the primary and secondary sources. Work with informants when available.

246. Ethnology of Europe (4) II. Olmsted Seminar—3 hours; term paper. Prerequisite: reading knowledge of a European language other than English. Supervised study of the primary and secondary sources dealing with the ethnography and ethnology of the peoples of Europe. Emphasis upon folk, peasant, and minority groups.

252. Human Evolution Seminar (4) III. McHenry Seminar—3 hours; term paper. Prerequisite: course 152 or the equivalent; consent of instructor. Study of selected topics in human evolutionary studies. Each year course will focus on one or more of the following: molecular evolution, primate evolutionary biology, Tertiary hominoids, Australopithecus, Homo erectus, archaic Homo sapiens, brain evolution. May be repeated for credit.

253. Seminar in Human Biology (4) III. D.G. Smith Seminar—3 hours; term paper. Prerequisite: course 153, 157, or consent of instructor. Study of selected topics in human biology. May be repeated for credit when topics vary. Offered in alternate years.

254. Current Issues in Primate Sociobiology (4) II. Rodman Seminar—3 hours; term paper. Prerequisite: course 154B or the equivalent. Analysis of primate behavior, with particular emphasis on preparation for field studies. May be repeated for credit when different topic covered.

258. Evolution and Human Behavior (4) II. Hrdy Seminar—3 hours; term paper. Prerequisite: courses 15; 101; 154A or 154B; 159 or consent of instructor. Focus will be on reproductive strategies and parental investment. May be repeated for credit when topics vary.

265. Concepts and Problems in Applied Anthropology (4) II. The Staff Seminar—3 hours; term paper. Prerequisite: consent of instructor. Advanced study in culture change; case studies of directed culture change; problems of planning and evaluation; uses of anthropological theory and data in professional fields such as agriculture, public health, administration, and international technical assistance.

270. Anthropology Colloquium Seminar (1) I, II, III. The Staff Seminar—1 hour. Reports and discussions of recent advances in the four subfields of anthropology. To be presented by guest speakers. May be repeated twice for credit. (SU grading only.)

272. Seminar in Linguistic Anthropology (4) I. J.S. Smith Seminar—3 hours; term paper. Selected topics in linguistic anthropology. May be repeated for credit when topics differ.

279. Group Study (1-49) I, II, III. The Staff (Chairperson in charge). (SU grading only)

299C. Research (1-12) I, II, III. The Staff (Chairperson in charge). (SU grading only)

299D. Dissertation Research (1-12) I, II, III. The Staff (Chairperson in charge). (SU grading only)

Applied Behavioral Sciences (College of Agricultural and Environmental Sciences)
Lawrence V. Harper, Ph.D., Chairperson of the Department
Martin F. Kenney, Ph.D., Associate Chairperson of the Department
Department Office, 106 AOB 4
Community Studies and Development and Human Development (917-752-0770)

Community Studies and Development
Faculty
Stephen B. Brush, Ph.D., Associate Professor
Isao Fujimoto, M.A., Senior Lecturer
Barbara G. Goldman, Ph.D., Lecturer and Supervisor of Teacher Education
James Grosskopf, Ph.D., Lecturer/CE Specialist
Martin F. Kenney, Ph.D., Associate Professor

Course not offered this academic year.
E. Dean MacCannell, Ph.D., Professor
Michael P. Smith, Ph.D., Professor
Miriam J. Wells, Ph.D., Professor
Emeritus Faculty
Marc Pilisuk, Ph.D., Professor Emeritus
Orville E. Thompson, Ph.D., Professor Emeritus

Human Development and Family Studies
Faculty
Curtis R. Acredolo, Ph.D., Adjunct Associate Professor
Carolyn Aldwin, Ph.D., Assistant Professor
Keith Barton, Ph.D., Professor
Brenda K. Bryant, Ph.D., Professor
James Chadwick, Ph.D., Associate Professor
Lawrence V. Harter, Ph.D., Professor
Rosmarie Kihl, Ph.D., Associate Professor
Beth Ober, Ph.D., Assistant Professor
Emmy E. Werner, Ph.D., Professor
Emeritus Faculty
Louise M. Bachrath, Ed.D., Professor Emeritus
Glenn R. Hawkes, Ph.D., Professor Emeritus
David S. Lynn, Ph.D., Professor Emeritus

Agricultural Education
Faculty
James G. Lesing, Ph.D., Lecturer and Supervisor of Teacher Education

The Major Program
The applied behavioral sciences major is concerned with the study of communities and the people in them. The program focuses on community and organizational development, the role of culture and ethnicity in shaping community life, and the ways that knowledge can be used to solve social problems and improve the quality of life.

The Program. Principal subjects of study within the major are: community and organizational development, social change processes, the role of culture and ethnicity in shaping community life, community research methodologies, the impacts of innovation and technology on community development, and the effects of social, economic, and political systems on communities. In addition, the Applied Behavioral Sciences major includes a student-designed field of concentration to complement the student's academic and career interests. Examples of recently approved areas of concentration are: organizational planning and management, aging and community development, community health development, community design and planning, community development and the American socio-environmental planning, and community education.

Internships and Career Alternatives. Applied Behavioral Science students are required to have an internship in their field before graduation. Internships have been arranged with such agencies as local, county, and state planning units, health departments, schools, housing offices, and community education programs. Applied behavioral sciences graduates are prepared for occupations in community development, social research, program evaluation, organization and educational consulting, city and regional planning, and community health. The major also provides effective preparation for graduate or professional study in the social and behavioral sciences.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-12</td>
<td>English Composition Requirement</td>
</tr>
<tr>
<td>0-6</td>
<td>See College requirement</td>
</tr>
<tr>
<td>103</td>
<td>Additional English (English 103)</td>
</tr>
<tr>
<td>22-25</td>
<td>Preparatory Subject Matter</td>
</tr>
<tr>
<td></td>
<td>Community development (Applied Behavioral Sciences 1)</td>
</tr>
<tr>
<td></td>
<td>Computer science (Agricultural Science and Management 2 or Computer Science 101 - 120)</td>
</tr>
<tr>
<td></td>
<td>Economic theory (Economics 1A or 1B)</td>
</tr>
<tr>
<td></td>
<td>Ethnicity and American communities (Applied Behavioral Sciences 1)</td>
</tr>
<tr>
<td></td>
<td>Social science theory (Anthropology 2 or Sociology 1)</td>
</tr>
<tr>
<td></td>
<td>Statistics (Statistics 13 or 35)</td>
</tr>
<tr>
<td>24</td>
<td>Breadth/General Education Requirement</td>
</tr>
<tr>
<td></td>
<td>Satisfaction of General Education requirement to include:</td>
</tr>
<tr>
<td></td>
<td>Sciences and mathematics</td>
</tr>
<tr>
<td></td>
<td>Humanities</td>
</tr>
<tr>
<td></td>
<td>Science (2 lab courses in a single discipline)</td>
</tr>
<tr>
<td></td>
<td>Social sciences</td>
</tr>
<tr>
<td></td>
<td>Depth Subject Matter</td>
</tr>
<tr>
<td>39</td>
<td>Methods for community research, Applied Behavioral Sciences 154, 156, and 160</td>
</tr>
<tr>
<td></td>
<td>Social theory and community change, Applied Behavioral Sciences 164</td>
</tr>
<tr>
<td>4</td>
<td>Institutional and organizational change, Applied Behavioral Sciences 164</td>
</tr>
<tr>
<td></td>
<td>Political processes and community change, one course from Applied Behavioral Sciences 157, 171, Anthropology 123, Political Science 101, 102, 103, 173</td>
</tr>
<tr>
<td>4</td>
<td>Economics and community change, one course from Applied Behavioral Sciences 162, Anthropology 122, Economics 115A, 115B</td>
</tr>
<tr>
<td>4</td>
<td>Ethnicity and social inequality, Applied Behavioral Sciences 172 or 176</td>
</tr>
<tr>
<td>4</td>
<td>Community development and transfer of knowledge, one course from Applied Behavioral Sciences 152, 170, 173, 174</td>
</tr>
<tr>
<td>4</td>
<td>Evaluation of human service programs, one course from Applied Behavioral Sciences 158</td>
</tr>
<tr>
<td>4</td>
<td>Applied Behavioral Sciences seminar: Major Proposal, Applied Behavioral Sciences 193</td>
</tr>
<tr>
<td>4</td>
<td>Internship, Applied Behavioral Sciences 159</td>
</tr>
<tr>
<td>37</td>
<td>Field of concentration</td>
</tr>
<tr>
<td>43-54</td>
<td>Additional upper division courses related to the major, determined in consultation with faculty advisor</td>
</tr>
<tr>
<td>180</td>
<td>Total Units for the Degree</td>
</tr>
</tbody>
</table>

Other Requirements
- In consultation with a faculty and staff advisor, the student will develop a program of study which will consist of a major proposal and a minor program. The student will submit a written proposal for the major to be reviewed by a faculty committee.
- Major Advisor: Contact department office.

Minors

Minor Program Requirements: The Applied Behavioral Sciences faculty offers the following minor program:

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Applied Behavioral Sciences 1, 151, 152, 164</td>
</tr>
<tr>
<td>16</td>
<td>Two courses selected from the 160 and/or 170 series</td>
</tr>
<tr>
<td></td>
<td>(a) Applied Behavioral Sciences 162, 163, 168</td>
</tr>
<tr>
<td></td>
<td>(b) Applied Behavioral Sciences 171, 172, 173, 174, 175, 176, 178</td>
</tr>
</tbody>
</table>

Minor Advisor: E. Dean MacCannell

Graduate Study, Refer to the Graduate Studies section in this catalog.

*Course not offered this academic year.

Related Courses. See Environmental Studies 10, 101, 133.

Courses in Applied Behavioral Sciences

Lower Division Courses

1. The Community (4) F. Fujimoto
 Lecture—4 hours. Basic concepts of community analysis and planning are considered. The dynamics of community change through case studies of communities including peasant, urban ghetto, suburban mainline, and California farm workers.

2. Ethnicity and American Communities (4) II. The Staff
 Lecture—3 hours; discussion—1 hour. Historical and cultural survey of the role of various ethnic groups in the development of American communities. Examines ethnicity as a cultural factor, ethnicity as power and issues related to selected American ethnic groups. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 2.

17. Population and Community (2) I. Fujimoto
 Lecture—2 hours. Dynamics and challenges offered by demographic changes in California and the world community. Implications for individuals and communities. Special emphasis on contributions each individual can make towards resolving global problems related to human ecology through local community action. (P/NP grading only.)

18. Science, Technology and Society (4) III. Kenney
 Lecture—4 hours. Impacts of developments in science and technology on the individual and society. How economics, politics, culture and values affect technological development.

47. Orientation to Community Resources (2) II. Thompson; III. Fujimoto
 Field trip—4 days; seminar—three 2-hour sessions. (Course given between quarters). Prerequisite: consent of instructor. Intensive field course in San Francisco. Students interact with agencies and individuals who address the range of human service, educational and social needs in the city. Advance reservations required. (P/NP grading only.)

92. Internship (1-12) I, II, III. The Staff (Chairperson in charge)
 Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

160. Directed Group Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

118. Technology and Society (4) II. Kenney
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 18 or consent of instructor. Impact of technology on labor relations, employment, industrial development and international relations. The internal relations of technology development and deployment.

140. Political Economy of Regional Development (4) III. Kenney
 Lecture—4 hours. Prerequisite: one undergraduate economics, agricultural economics or political science course, or consent of instructor. Political economy of domestic regional development. Technology, labor relations and interfirm linkages. California and other regions as case studies.

151. Community Research and Analysis (4) II. Sherrard
 Lecture—4 hours. Prerequisite: course 1, Sociology 2, Anthropology 2, or Geography 5. Theories of community change and structure, ethnographic, power structure and comparative approaches to community studies. Use of research in community development programs. Students work in teams and conduct fieldwork in nearby communities. General Education credit: Contemporary Societies/Non-Introductory.
124 Applied Behavioral Sciences

Recommended GE preparation: Anthropology 2, Geography 5, or Sociology 2.

152. Community Development (4) (I) Fujimoto
Lecture—4 hours. Prerequisite: course 151 or 1, Sociology 2, Anthropology 2, Geography 5, Asian American Studies 100, or Core American Studies 132, or African American Studies 101. An introduction to principles and strategies of community organizing and development. Examination of different citizen participation movements and the role of change agents in the development process. Students work in teams to learn and conduct fieldwork in local communities.

153. International Community Development (4) (I) Fujimoto

154. Semiotics, Structuralism and Sociocultural Change (4) (I) MacCormick
Lecture—4 hours. Prerequisite: course 1, Sociology 1, or course 151, or existentialism, structuralism, and semiotics and their application to current social issues and problems: nuclear technology, women's movement, ethnic relations, and other change areas. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 2 or Sociology 2.

157. Politics and Community Development (4) (I) Smith
Lecture—4 hours. Prerequisite: prior course work in sociology or political science recommended. Analyzes political, economic, and sociocultural forces shaping the form and function of local communities in the U.S. Considers theories of the state, the community and social change and case studies of actual community development in comparative historical perspective.

159. Field Experience in Community Development (4) (I) Fujimoto; II. The Staff; III. Fujimoto
Discussion—2 hours; field work—6 hours. Prerequisite: any one of courses 151, 152, 153, 154, or 157. Field involvement with community or organizational issues or problems and their resolution. May be repeated for credit for a total of 12 units with consent of instructor.

160. Research Design and Method in Community Studies (4) (I) The Staff
Lecture—4 hours. Prerequisite: course 1, Sociology 13 or the equivalent. Application of behavioral science research methodology to multidisciplinary problems confronting communities and community organizations. Focuses on design, sampling, measurement and analysis.

161. Ethnographic Research in America (4) (II) The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 151 or 1, course work in Anthropology, Sociology, or Applied Behavioral Sciences. Methodologies, ethics and goals of qualitative research. Emphasis on analyzing and conducting ethnographic research in American communities; problem formulation, analytic modes, data collection and interpretation. Offered in alternate years.

162. People, Work and Technology (4) (I) Wells
Lecture—4 hours. Prerequisite: course work in the social sciences (e.g., Sociology 1, 3, Anthropology 137, or courses 1A, 1B, or labor history). Relationship between work, technology, and people's lives. Such topics as industrialization, bureaucratization, automation, the structure of work-linked communities, education and the labor market, work and the economic system, and the future of work.

163. Behavior of Community Organizations (4) (I) The Staff
Lecture—4 hours. Prerequisite: introductory social sciences course. How community organizations function and how members of organizations interact with each other, the organization, and those people who are clients of the organization. Effects of leadership, motivation, group dynamics, communication, and power.

164. Theories in Organizational Change (4) (II) The Staff
Lecture—4 hours. Prerequisite: course 1 or 2. Developmental approaches to planned change including normative re-educative, applied systems, and developmental strategies.

168. Program Evaluation and the Management of Organizations (4) (I) Goldman
Lecture—4 hours; class-discussion—2 hours. Course 160, 161. Role of program evaluation in organizational and program management. Impact of internal evaluation in program planning, improvement, and accountability.

170. Communication of Innovations (4) (I) The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing and course work in the social sciences; course 1 or Sociology 1 recommended. Information exchange and innovation diffusion in organizational settings. Exploration of the role of information networks and communication channels in planned social change efforts. Philosophical consideration of the consequences of innovation dissemination.

171. Housing and Social Policy (4) (II) Wells
Lecture—4 hours. Social impact, economics, and politics of housing in the United States. Special attention given to alternative policy strategies at the national and local levels.

172. Social Inequality: Issues and Innovations (4) (III) Wells
Lecture—4 hours. Prerequisite: upper division standing. 8 units of sociology or anthropology or combined. Study of the inequality in the U.S. Various approaches to inequality will be examined, including structural and historical explanations, prejudice and discrimination, the “culture of poverty,” and arguments concerning race, sex, and genetic potential.

173. The Continuing Learner (4) (III) The Staff
Lecture—4 hours. Prerequisite: upper division standing. Theories of adult learning and teaching emphasizing the role of adult education in the community. Designing of adult education programs.

174. Communication for Community Change (4) (II) The Staff
Lecture—4 hours. Prerequisite: course 1, Communication as a mechanism and method for creating change in communities. Theories and practices; impact of message on attitudes and behavior; ethics of change induced through communication. Offered in alternate years.

175. Education in the Community (4) (I) The Staff
Lecture—4 hours. Prerequisite: upper division standing and course work in the social sciences; course 1 or Sociology 1 recommended. Function of education in the community. Relationships of community and non-formal education to formal education, schooling and to individual, community and national development. Planning process and role of education in social and community change. Offered in alternate years.

176. Comparative Ethnicity (4) (III) The Staff
Lecture—4 hours. Prerequisite: upper division standing, 8 units of sociology or anthropology or combination. Exploration of the role of ethnicity in shaping social systems and interaction. Examination of analytical approaches to issues arising from the study of ethnicity, through utilization of data from a range of different societies.

178. Social Networks and Community Health (4) (III) The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Sociology 2. Relevance of social ties to the health of family and community. Multidisciplinary look at forces affecting family and friendship ties, as well as community services, and at how social bonds affect physical and psychological health. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Sociology 2.

Seminar—1 hour. Current social, political, and economic issues affecting communities and individuals. One-hour presentations by guest speakers on research topics and contemporary issues in Community Development. (P/NP grading only.)

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: completion of 94 units and consent of instructor. Off-campus, on-campus, and internship off and on campus, in community and institutional settings. (P/NP grading only.)

193. Applied Behavioral Sciences Seminar: Major Proposal (1) I. The Staff
Seminar—1 hour. Prerequisite: upper division standing, Applied Behavioral Sciences majors. Designing and Applied Behavioral Sciences major that incorporates course work and personal experience. Required of all Applied Behavioral Sciences majors. (P/NP grading only.)

196. Senior Project in Applied Behavioral Sciences (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: major in Applied Behavioral Sciences, and consent of instructor. Guidance, research leading to completion of senior thesis. May be repeated for credit. (P/NP grading only.)

197T. Tutoring in Applied Behavioral Sciences (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Leading of small voluntary discussion groups. (P/NP grading only.)

197TC Community Tutoring in Applied Behavioral Sciences
(1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Leading of small voluntary discussion groups. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Leading of small voluntary discussion groups. (P/NP grading only.)

Graduate Courses

201. Planning Processes in Applied Behavioral Sciences (4) (I) The Staff
Lecture—3 hours; supervised practice in planning—3 hours. Prerequisite: consent of instructor. Systematic approach to planning, including new concepts, theories, and methods for planning with application to educational institutions, agencies and the community at large.

202. Systems Analysis for Organizational Change (4) (II) The Staff
Lecture—4 hours. Prerequisite: course 201 or consent of instructor. Organizational structure and processes from systems perspective, organization-environment interaction, dynamics of resource allocation, impact of power and environment on structure, communication networks, role of innovation and determinants of change. Emphasis upon applications of theory for organizational learning.

203. Evaluation and Decision Making (4) (II) Goldman
Lecture—4 hours. Prerequisite: graduate standing; knowledge of social science research methodology. Focuses on theoretical formulations and methodological considerations when designing evaluation research studies for social programs. Includes examination of relationships between organizational planning and decision-making and evaluation research: value conflicts; multiple information requirements; social and political environment influencing evaluation studies. (P/NP grading only.)

240. Community Theory (4) (II) The Staff
Lecture—2.5 hours; seminar—1.5 hours. Prerequisite: two or more upper division courses in sociology, anthropology, philosophy or critical theory. Classic
and current theories of community with an emphasis on the comparative community research tradition from Redfield’s Yucatan studies to Macro-social Accounting. Readings include Rousseau, Marx, Levi-Strauss, the Cornell School, Postmodernist accounts of theory, and critical theory.

241. The Economics of Community Development and Planning Strategies (4) II. Kennedy
Seminar—4 hours. Prerequisite: course 240 and a principle course in economics. Economic theory and planning strategies affecting nonmetropolitan communities. Human resources, community services and infrastructure, industrialization and technological change, policies and plans for mobilizing resources for community growth.

242. Community Development: Program Management (4) III. The Staff
Seminar—4 hours. Prerequisite: course 241. Planning, organizing, financing and administration of social change projects or programs of the community or city level.

243. Professional Skills for Human Service and Community Development (4) I. The Staff
Lecture—2 hours; seminar—2 hours. Prerequisite: graduate student standing in a social science discipline. Theory of interpersonal communication and small group processes as applied to development of professional skills as community developer, program administrator and/or consultant.

244. The Political Economy of Domestic Development (4) II. Kennedy
Lecture—4 hours. Prerequisite: course 242. Examination of the politics and institutions affecting the economic growth of regions. Theories of development and change are examined with specific reference to case study materials.

254. The Political Economy of Urban and Regional Development (4) II. Smith
Lecture—4 hours. Prerequisite: course 157, 264, or the equivalent. How global politics and economic restructuring and national and state policies are mediated by community politics; social protection of urban residents; role of the state in uneven development; dynamics of urban growth and decline; regional development in California.

290. Seminar (1) I, II, III. The Staff
Seminar—1 hour. Analysis of research in applied behavioral sciences. (S/U grading only.)

297. Practicum in Community Development (2) I, II. The Staff
Seminar—2 hours. Prerequisite: course 243 and field placement in a community human service agency. Application of concepts and approaches of community development through field placement in a community or human service agency. Further development of skills as change agents in community settings. Consideration of the field placement as it relates to relevant research. May be repeated for a maximum of 4 units. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson on charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only)

Applied Mathematics (A Graduate Group)

John K. Hunter, Ph.D., Chairperson of the Group
Group Office, 591 Varr Hall (916-752-6131)

Faculty, Consists of members from a variety of departments whose research interests are mathematically oriented. Departments represented include Agricultural Economics, Biological Sciences, Chemistry, Computer Science Engineering, Chemical, Civil, Electrical, and Mechanical Engineering, Environmental Studies, Epidemiology and Preventive Medicine, Genetics, Land, Air and Water Resources, Management, Mathematics, Oceanography and Geology, Statistics, Wildlife and Fisheries Biology, and Zoology.

Graduate Study. Students prepare for careers relating to the application of mathematics to problems in the physical and life sciences, engineering, and management. The degree requirements consist of two years of rigorous training in applied mathematics followed by course work and a research dissertation under the direction of a member of the Applied Mathematics Graduate Group. The M.S. degree provides preparation (1) for further study in applied mathematics or an area of application, or (2) for a career in industry or public service. The Ph.D. degree provides preparation for a career in research and/or teaching. Areas of research in the program include differential equations, fluid mechanics, numerical analysis, operations research, systems theory, probability and stochastic processes, mathematical biology, and mathematical physics. Detailed information may be obtained by writing to the Graduate Coordinator, Department of Mathematics.

New applicants are admitted to the fall quarter only.

Preparation. The program encourages application from students who have prior training in engineering, physical and life sciences, mathematics, economics, and related fields. Applicants must have completed two years of undergraduate mathematics including linear algebra, differential equations, and vector calculus. A rigorous course in advanced calculus is encouraged.

Graduate Advisers. A. Cheer (Mathematics); T. Namik (Land, Air, and Water Resources).

Aquaculture

See Animal Science; Agricultural Engineering Technology; and Wildlife and Fisheries Biology.

Art

See Art History; and Art Studio

Art History

(College of Letters and Science)
Mary H. Fong, Ph.D., Director, Program in Art History
Department Office, 111A Art Building
(916) 752-0195

Faculty
Mary H. Fong, Ph.D., Professor
Robert J. Griggs, Ph.D., Associate Professor
Seymour Howard, Ph.D., Professor
Diane Kacso, Ph.D., Associate Professor
Jeffrey Rudin, Ph.D., Associate Professor
Deborah Wein, Ph.D., Assistant Professor

Emeriti Faculty
Joseph A. Bird, Ph.D., Professor Emeritus
Daniel J. Crowley, Ph.D., Professor Emeritus

The Major Program

Art History is the study of the visual arts in civilization, it examines changing aesthetic and cultural values and significant material and ideological developments as seen in works of art and architecture. It emphasizes visual as well as verbal intelligence, providing more than the standard advantages of liberal arts training.

The Program. The student majoring in art history begins with courses which survey the arts of Asia, Europe, and America. More specialized courses follow in ancient, Byzantine, Renaissance, Baroque, modern, non-Western, and American art and architecture. At the same time students are encouraged to take classes in related disciplines such as religion, history, philosophy, literature, and foreign languages.

Career Alternatives. The major prepares students for advanced study either in graduate school, as professionals, or as professionals. It can also serve as the foundation for careers in teaching, research, museums, galleries, arts administration, art criticism, publishing, and art investment.

A.B. Major Requirements:

UNITS
Preparatory Subject Matter .. 28
Art History 1A, 1B, 1C, 1D, 25 .. 20
One art studio course in drawing, graphics, painting, or photography ... 4
One art studio course in sculpture or ceramics ... 4

Depth Subject Matter ... 36
Nine upper division art history courses, which must be taken in at least six of the following seven areas.. 36
(a) Ancient
(b) Medieval/Northern Renaissance
(c) Southern Renaissance/Baroque
(d) Modern Painting, Sculpture
(e) Modern Architecture
(f) China/Japan
(g) Non-Western

Total Units for the Major .. 54

Minor Program Requirements:

UNITS
Art History ... 20
For upper division art history courses (one lower division substitute course permitted) 20
Courses must be chosen from at least three of the following subject areas with no more than two courses in any single area:
(a) Ancient
(b) Medieval/Northern Renaissance
(c) Southern Renaissance/Baroque
(d) Modern Painting, Sculpture
(e) Modern Architecture
(f) China/Japan
(g) Non-Western

Honors Program. An Honors Program is available to Art History majors who are seriously considering attending graduate school. To be eligible for the program, a student must have a grade-point average of 3.7 in the major. In addition to meeting the standard major requirements, the honors student must complete one quarter of language in German or Chinese, one seminar (courses 190 or 191), and write an honors thesis (course 199). Students participating in this Program are candidates for Departmental recommendation for graduation with High or Highest Honors. See the Letters and Science section of this catalog and consult the department for more information.

*Course not offered this academic year.
Courses in Art History

Lower Division Courses
1A. Ancient Art (4). I. Howard Lecture—3 hours; discussion—1 hour. Art of the pagan Mediterranean world from the prehistoric caves to the fall of the Roman Empire. General Education credit with concurrent enrollment in course 1AG: Civilization and Culture/Introductory.
1AG. Writing: On Ancient Art (1). I. Howard Discussion—1 hour; short papers. Prerequisite: course 1A (concurrently). Small group discussions and preparation of short papers for course 1A. General Education credit with concurrent enrollment in course 1A: Civilization and Culture/Introductory.
1B. Medieval and Renaissance Art (4) II. Grigg Lecture—3 hours; discussion—1 hour. Christian, Baroque, and Renaissance art in European Art from the fourth through the sixteenth centuries. General Education credit with concurrent enrollment in course 1BG: Civilization and Culture/Introductory.
1BG. Writing: On Medieval-Renaissance Art (1) II. Grigg Discussion—1 hour; short papers. Prerequisite: course 1B (concurrently). Small group discussions and preparation of short papers for course 1B. General Education credit with concurrent enrollment in course 1B: Civilization and Culture/Introductory.
1C. Baroque and Modern Art (4) II. Ruda; III. Macleod Lecture—3 hours; discussion—1 hour. Major styles and masters of the European art world after the Counter Reformation. General Education credit with concurrent enrollment in course 1CG: Civilization and Culture/Introductory.
1CG. Writing: On Baroque-Modern Art (1) II. III. Macleod; Ruda Discussion—1 hour; short papers. Prerequisite: course 1C (concurrently). Small group discussions and preparation of short papers for course 1C. General Education credit with concurrent enrollment in course 1CG: Civilization and Culture/Introductory.
1DG. Writing: On Asian Art (1) I. Fong Discussion—1 hour; short papers. Prerequisite: course 1D (concurrently). Small group discussions and preparation of short papers for course 1D. General Education credit with concurrent enrollment in course 1DG: Civilization and Culture/Introductory.
1DG. Writing: On Asian Art (1) I. Fong Discussion—1 hour; short papers. Prerequisite: course 1D (concurrently). Small group discussions and preparation of short papers for course 1D. General Education credit with concurrent enrollment in course 1DG: Civilization and Culture/Introductory.
*10H. Introduction to Art: Art and Civilization (4) II. Lecture—3 hours; term paper or gallery studies and review. Looking at art to understand how aesthetic experience relates to its cultural context, in a variety of historical situations from ancient to modern times. Intended for students not specializing in art. (P/NP grading only.)
*15S. Woman as Artist and Subject (4) I. Macleod Lecture—3 hours; discussion—1 hour. Assessment of women's contribution to the visual arts in Europe and the role of women in the context of major artistic and social movements from Renaissance to present. Two midterms; final examination. Offered in alternate years.
25. Introduction to Architectural History (4) III. Weiner Lecture—3 hours; discussion—1 hour. Formal and social history of architecture, examining design principles, major contributions, and concepts of architectural history with a focus on issues in Western architecture. Emphasis on nineteenth and twentieth centuries. General Education credit with concurrent enrollment in course 25G: Civilization and Culture/Introductory.
98. Directed Group Study (1-5) I, II, III. The Staff (Program Director in charge) Prerequisite: consent of instructor. Restricted to lower division students. (P/NP grading only.)
99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Program Director in charge) Prerequisite: consent of instructor. (P/NP grading only.)
Upper Division Courses
150. Arts of Sub-Saharan Africa (4) III. The Staff Lecture—3 hours; term paper or gallery studies and review. Traditional arts and crafts of Sub-Saharan Africa: particular attention to the relationships between sculpture and culture in West and Central Africa.
151. Arts of the Indians of the Americas (4) I. The Staff Lecture—3 hours; term paper or gallery studies and review. Development of art in North America, emphasizing ancient Mexico. South American relationships and parallels. Recent and contemporary Indian arts and crafts from Alaska to Chile.
152. Arts of Oceania and Prehistoric Europe (4) I. The Staff Lecture—3 hours; term paper or gallery studies and review. Traditional arts of aboriginal Australia, Melanesia, Polynesia, and Micronesia, as seen in their cultural contexts. Prehistoric art of Europe and the Near East.
154A. Early Greek Art and Architecture (4) I. Howard Lecture—3 hours; gallery study and term paper. Prerequisite: upper division standing. Examination of the history and significance of monuments in Greek art and architecture from the Homeric, Geometric Age to the Golden Age and the death of Socrates.
154B. Later Greek Art and Architecture (4) II. Howard Lecture—3 hours; gallery studies and term paper. Prerequisite: upper division standing. Examination of the history and significance of monuments in Greek art and architecture from the Silver Age of Aristotle to Alexander to the end of the Hellenistic Age and the death of Cleopatra.
155. Roman Art (4) III. Howard Lecture—3 hours; term paper or gallery studies and review. The art of Republican and Imperial Rome.
162. History of Printmaking (4) II. Ruda Lecture—3 hours; term paper or gallery studies and review. The development of graphic media in the Western World from the fifteenth century to the present.
163A. Chinese Art (4) II. Fong Lecture—3 hours; term paper or gallery studies and review. A survey from the beginning to the twelfth century focusing on the major art forms that are traditionally known as well as newly discovered through archaeological China.
163B. Chinese Painting (4) II. Fong Lecture—3 hours; term paper or gallery studies and review. The unique form of ink painting, with white ink, depicting human and animal figures, flowers-and-birds, and landscapes—the favorite and enduring theme of the Chinese scholar-painter.
163C. Painting in the People's Republic of China (4) III. Fong Lecture—3 hours; term paper. Prerequisite: course 1D or 163B. Analysis of the interaction between art and politics in the emergence of China into the modern world. Integration of Western influence, implementation of Mao Zedong's thought on art, and the formation of contemporary Chinese painting.
164. The Arts of Japan (4) III. The Staff Lecture—3 hours; term paper and/or gallery studies and review (determined by instructor each quarter course offered). Study of the significant achievements in architecture, painting, sculpture, and decorative arts from prehistoric age to nineteenth century.
168. Great Cities (4) I. Weiner Lecture—3 hours; term paper. Transformation in architecture and urban form in Paris, London, and Vienna in the context of varying social, political, and economic forces as well as the cultural traditions, concentrating on the years 1830-1914. Offered in alternate years.
176A. Art of the Middle Ages: Early Christian and Byzantine Art (4) II. Grigg Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture of the early Christian era and Byzantine Empire: through the later Roman Empire in the West and to the final capitulation of Constantinople.
176B. Art of the Middle Ages: Early Medieval and Romanesque Art (4) III. Grigg Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture of western Europe in the early medieval era: from the rise of the barbarian kingdoms through the twelfth century.
176C. Art of the Middle Ages: Gothic (4) II. Grigg Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture of western Europe from the twelfth through the fifteenth centuries.
177A. Northern European Art (4) III. Grigg Lecture—3 hours; term paper or gallery studies and review. Painting and sculpture of the fifteenth century in Austria, Germany, France and the Lowlands, including such artists as Albrecht Dürer and Pieter Bruegel.
177B. Northern European Art (4) III. Grigg Lecture—3 hours; term paper or gallery studies and review. Painting and sculpture of the sixteenth century in Germany, France and the Lowlands, including such artists as Albrecht Dürer and Pieter Bruegel.
178A. Italian Renaissance Art (4) II. Ruda Lecture—3 hours; term paper or gallery studies and review. The origins of the Renaissance; painting and sculpture in Italy from Nicola Pisano through Lorenzo Monaco, with emphasis on Duccio, Giotto, and other leading artists of the early fourteenth century.
178B. Italian Renaissance Art (4) I. Ruda Lecture—3 hours; term paper or gallery studies and review. Early Renaissance in Florence; fifteenth-century artists from Donatello and Masaccio through Botticelli, in their artistic and cultural setting.
178C. Italian Renaissance Art (4) III. Ruda Lecture—3 hours; term paper or gallery studies and review. The High Renaissance: Leonardo, Michelangelo, Raphael, and Titian in their artistic and cultural settings; Florence, Rome, and Venice in the early sixteenth century. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Art 1B-1BG.
179A. Baroque Art (4) I. The Staff Lecture—3 hours; term paper or gallery studies and review. Western European architecture, sculpture and the art of the garden from the late sixteenth through the early eighteenth centuries.
179B. Baroque Art (4) III. Ruda Lecture—3 hours; term paper or gallery studies and review. Seventeenth-century painting, including such artists as Caravaggio, Rubens, Rembrandt, and Velázquez. Offered in alternate years.
182. British Art (1750-1914) (4) II, Macleod Lecture—3 hours; discussion—1 hour. Prerequisite: course 1C. Analysis of the place of art in British culture—1750 to 1914. Topics include influence of class and gender on art education, patronage, and exhibition societies. Artists: Hogarth, Turner, Pre-Raphaelites, and lesser-known advocates of military, social realist, and colonial themes.

*183A. Art in the Age of Revolution (4) I, Macleod Lecture—3 hours; discussion—1 hour. Prerequisite: at least one course in art or consent of instructor. Analysis of political and stylistic implications of European painting from 1750 to 1860. Artists studied include Goya, David, Delacroix, Constable, Turner, the Raphaelats, and Courbet.

183B, Impressionism and Post-Impressionism (4) II, Macleod Lecture—3 hours; discussion—1 hour. Prerequisite: at least one course in art or consent of instructor. Examination of modern movement in European art from Fauvism and Cubism to Surrealism and Abstract Expressionism. Artists include Picasso, Matisse, Kandinsky, Malevich, and Pollock.

183D, Modern Sculpture (4) I, Howard Lecture—3 hours; term paper or gallery studies and review. Sculpture from Neo-Classicism to the present.

183E, Contemporary Art: 1945 to the Present (4) I, The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: at least one course in art or consent of instructor. Examination of major events and trends in modern and contemporary art from 1945 to the present, with emphasis on the New York School, Pop art, Op art, Earthworks, and Feminist art.

*183F. The Tradition of Modernism (4) II, The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 183A, 183B, 183C, or 194. Introduction to the modern movements which traditionally constitute twentieth-century Modernism. Study will be divided into sessions dealing with formation of such avant-garde movements as Cubism and Surrealism, and sessions critically examining the emergence of individual artists as representatives of such movements.

184. Twentieth Century Architecture (4) II, Weiner Lecture—3 hours; term paper. Prerequisite: course 22, or consent of instructor. Architectural developments in architecture of the twentieth century in Europe and America. Formal innovations are examined within the social, political, and economic circumstances in which they emerge.

187. Word and Image in German Modernism (4) III, The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: background course in modern European history and philosophy recommended. Covers critical theory dealing with links between visual and textual production within the alternative tradition of European modernism. Images and key texts of Expressionism, Blue Rider, Dada, Bauhaus, N.S. Fasching, Weimar Film, and Post-World War II restoration examined.

188B. Architecture of the United States (4) I, Weiner Lecture—3 hours; term paper. Prerequisite: course 25 recommended. American architecture from the first American settlers to Postmodernism. Technological and formal developments will be examined within the social, political, and economic context in which they emerged. Issues include ideals of domesticity and the development of the architectural profession.

188C. Painting of the United States (4) III. The Staff Lecture—3 hours; discussion—1 hour; term paper or gallery studies and review. American pictorial development from 1650 to the present, with emphasis on twentieth-century developments.

*190. Undergraduate Seminar (4) II, The Staff (Program Director in charge). Lecture—3 hours; term paper. Prerequisite: consent of instructor. Introductory seminar for upper class in art. Assigned readings, discussions, and a substantial paper in a particular area of art history will introduce the student to methodology and techniques of art historical research. May be repeated once for credit. Limited enrollment.

192. International (2-12) I, II, III, The Staff (Program Director in charge). Internship—term paper or catalog. Supervised program of internships at professional art institutions such as museums, galleries, and art archives including collectors of slides and photographs. May be repeated once for credit. (P/NP grading only.)

194H. Special Study for Honor Students (1-3) I, II, III, The Staff Independent study—12 hours. Course taken on the student's level and subject matter determined by the major advisor. Open only to students in the Art History Honors Program. Independent study of an art historical problem culminating in the writing of an honors thesis under the supervision of a faculty guidance committee.

198. Directed Group Study (1-5). I, II, III, The Staff (Program Director in charge). (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-6). I, II, III, The Staff (Program Director in charge) (P/NP grading only.)

Graduate Courses

200. Introduction to Art Historical Research (4) I, The Staff Seminar—4 hours. Introductory sampling of major writings, methods, and sources used in research in the discipline of art history.

250. Problems in Art Historical Research (4) I, The Staff Seminar—3 hours; term paper. Major topics in art historical research, emphasizing special methods of investigation, and historical and critical analysis. May be repeated for credit.

*251. Seminar in Primitive Art (4) II, The Staff Seminar—3 hours; term paper. Selected areas of special study in the arts of Africa, Oceania, and Prehistoric Europe. May be repeated for credit with consent of instructor.

254. Seminar in Classical Art (4) III, Howard Seminar—3 hours; term paper. Selected areas of special study in classical art of the Greek and Roman period. Course may be repeated for credit with consent of instructor.

262. Seminar in Chinese Art (4) II, Fong Seminar—3 hours; term paper. Selected areas of special study in Chinese Art. May be repeated for credit with consent of instructor.

*265. Seminar: The Orient in Western Art (4) II, Fong Seminar—3 hours; term paper. Selected topics in European and American art which demonstrate an assimilation of oriental art. May be repeated for credit with consent of instructor.

276. Seminar in Medieval Art (4) III, Grigg Seminar—3 hours; term paper. Selected areas of special study in medieval art from Early Christian to late Gothic. May be repeated for credit with consent of instructor.

*277. Seminar in Northern Renaissance Art (4) I, Grigg Seminar—3 hours; term paper. Selected areas of special study in Netherlandish and German art of the fifteenth and sixteenth centuries. May be repeated for credit with consent of instructor.

*278. Seminar in Italian Renaissance Art (4) III. Rust Seminar—3 hours; term paper. Selected areas of special study in Italian art from the fourteenth to the sixteenth century. May be repeated for credit with consent of instructor.

283. Seminar in Modern European Art (4) II, Macleod Seminar—3 hours; term paper. Selected areas of special study in art since 1800 in Europe. May be repeated for credit with consent of instructor.

*286. After Modernism: The Eighties (4) III. The Staff Seminar—3 hours; term paper. Prerequisite: course 186, course 183A, 183B, 183C, or 184 recommended. Selected areas of special study of post-structuralist critiques converging on visual production and analysis; aspects of signification and discourse, feminist critiques and gender theories, semiotics and deconstruction; works of art relating to sexual identities and images, and recouping of painting.

288. Seminar in European and American Architecture (4) II, Weiner Seminar—3 hours; term paper. Prerequisite: course 186, course 183A, 183B, 183C, or 184 recommended. Selected areas of special study of post-structuralist critiques converging on visual production and analysis; aspects of signification and discourse, feminist critiques and gender theories, semiotics and deconstruction; works of art relating to sexual identities and images, and recouping of painting.

299. Individual Study (1-6) I, II, III, The Staff (Program Director in charge) (SU/UG grading only.)

Professional Course

300. Introduction to Teaching Art History for Teaching Assistants (1) I, II, III, The Staff Discussion—1 hour. Designed for teaching assistants with emphasis on problems and procedures encountered by teachers of undergraduate art history (SU/UG grading only.)

Professional Courses

Note: Various of the above courses are not offered each year; please check quarterly schedules.
Teaching Credential Subject Representative. Department Chairperson. See also the Teacher Education Program.

Graduate Study. The Department of Art offers programs of study and research leading to the M.F.A. degree in the practice of art. Detailed information regarding graduate study may be obtained from the Graduate Announcement or Graduate Admissions Office.

Courses in Art Studio

Lower Division Courses

1. Drawing I (4) I, II. Henderson, Zhang and staff Laboratory—8 hours; to be arranged—4 hours. Form and composition in black and white.

2. Drawing II (4) I, II. Henderson and staff Laboratory—8 hours; to be arranged—4 hours. Pre-requisite: course 2. Form and composition in color.

3. Drawing III (4) I, II. Henderson and staff Laboratory—8 hours; to be arranged—4 hours. Pre-requisite: course 2. Form in composition using the human figure as subject.

4. Life Drawing (4) I. Ill. Puls, Zhang and staff Laboratory—8 hours; to be arranged—4 hours. Pre-requisite: course 2. Form in composition using the human figure as subject.

5. Sculpture I (4) I. Ill. Puls, Zhang and staff Laboratory—8 hours; to be arranged—4 hours. Pre-requisite: course 2. Form in composition using the human figure as subject.

6. Intermediate Art (4) I. Zhang Studio—8 hours; independent study—1 hour. Prerequisite: three courses chosen from the following: courses 2, 3, 4, 5, and 16. Use of multiple media in artmaking. Human body as artistic medium. Non-traditional visual media. Problem solving on conceptual and technical levels. Visual metaphors, narrative, intuitive, meaningful in art. May be repeated once for credit with consent of instructor.

A.B. Major Requirements:

UNITS

Preparatory Subject Matter

Three courses from Art Studio 2, 3, 4, 5, 16; see prereq. 12

Two courses from Art History 1A, 1B, 1C, 1D. 8

Depth Subject Matter

Six courses, under three different areas, chosen from Group A, Practice of Art—24

One course from Group B. Theory and Criticism. 4

Minor Program Requirements:

UNITS

Art Studio—20

Upper division art studio courses chosen in consultation with a faculty adviser (one lower division substitute course permissible). 20

Prerequisite courses must be taken prior to enrollment in upper division courses. 20

Independent study courses are not applicable.

A2. Art Studio

Teaching Credential Subject Representative. Department Chairperson. See also the Teacher Education Program.

Graduate Study. The Department of Art offers programs of study and research leading to the M.F.A. degree in the practice of art. Detailed information regarding graduate study may be obtained from the Graduate Announcement or Graduate Admissions Office.

Courses in Art Studio

Lower Division Courses

2. Drawing I (4) I, II. Henderson, Zhang and staff Laboratory—8 hours; to be arranged—4 hours. Form and composition in black and white.

3. Drawing II (4) I, II. Henderson and staff Laboratory—8 hours; to be arranged—4 hours. Pre-requisite: course 2. Form and composition in color.

4. Life Drawing (4) I. Ill. Puls, Zhang and staff Laboratory—8 hours; to be arranged—4 hours. Pre-requisite: course 2. Form in composition using the human figure as subject.

5. Sculpture I (4) I. Ill. Puls, Zhang and staff Laboratory—8 hours; to be arranged—4 hours. Pre-requisite: course 2. Form in composition using the human figure as subject.

6. Intermediate Art (4) I. Zhang Studio—8 hours; independent study—1 hour. Prerequisite: three courses chosen from the following: courses 2, 3, 4, 5, and 16. Use of multiple media in artmaking. Human body as artistic medium. Non-traditional visual media. Problem solving on conceptual and technical levels. Visual metaphors, narrative, intuitive, meaningful in art. May be repeated once for credit when topic differs and with consent of instructor.

A2A. Architectural Design (4) II. Laboratory—8 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Metal plate etching, aquatint, hard- and soft-ground, burnish engraving and related methods. May be repeated once for credit with consent of instructor.

A2B. Printmaking: Relief (4) I. The Staff Laboratory—8 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Woodcut, linocut, metal-plate relief and experimental uses of other materials.

A2C. Printmaking: Intaglio (4) I. Ill. Thiebaud and staff Laboratory—8 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Stone and metal-plate intaglio and other plane graphic methods. May be repeated once for credit with consent of instructor.

A2D. Printmaking: Lithography (4) II. DeForest Laboratory—8 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Metal plate etching, aquatint, hard- and soft-ground, burnish engraving and related methods. May be repeated once for credit with consent of instructor.

A2E. Printmaking: Screenprint (4) II. The Staff Laboratory—8 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Metal plate etching, aquatint, hard- and soft-ground, burnish engraving and related methods. May be repeated once for credit with consent of instructor.

A2F. Material Explorations (4) I. Puls Studio—8 hours; independent study—1 hour. Prerequisite: course 2, 3, 4, 5, or consent of instructor. Primary application and exploration of a single sculptural material. Examination of its properties, qualities and characteristics for three dimensional expression. May be repeated twice for credit in different subject area with consent of instructor.

A3. Sculpture: Ceramics (4) I. Ill. The Staff Laboratory—8 hours; 1 hour to be arranged. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Introduction to ceramic forms and processes.

A3B. Sculpture: Ceramics II (4) I. The Staff Laboratory—8 hours; to be arranged—1 hour. Prerequisite: course 142 or consent of instructor. Introduction to ceramic forms and processes. May be repeated once for credit with consent of instructor.

A3C. Sculpture: Figure Modeling (4) II. The Staff Laboratory—8 hours; to be arranged—1 hour. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Introduction to ceramic forms and processes. May be repeated once for credit with consent of instructor.
Asian American Studies

Graduate Courses

201. Experiments in Art and Visual Communication (4) I, II, III. The Staff
202. Seminar—3 hours. Original work produced for class discussion and criticism. May be repeated for credit. (SU; grading only)

200. Seminar—3 hours. Original work produced for group discussion and criticism; associated topics of a contemporary and historical nature. May be repeated for credit. (SU grading only)

201. Seminar—1 hour. May be repeated for credit. (SU grading only)

202. Seminar—1 hour. Further critical evaluation of the student's work to determine his eligibility to begin the Comprehensive Project. May be repeated for credit. (SU grading only)

200. Individual Study (1-6) I, II, III. The Staff (Chairperson in charge)
201. Comprehensive Project (9) I, II, III. The Staff (Chairperson in charge)

UNITED STATES

American Studies .. 20
An additional 40 units from the following courses in American Studies. 101, 111, 112, 130, 192 (no more than 4 units of 192 may be counted toward this total) ... 12
Minor Advisor: P.C. Y. Leung

Courses in Asian American Studies

1. Historical Experience of Asian Americans (4) I, II, III. The Staff
2. Contemporary Experience of Asian Americans (4) I, II, III. Kagiwada

20. Calligraphic Expression in Asian American Culture (3) I. Leung

Upper Division Courses

100. Asian American Communities (4) I. Kagiwada

101. Language and Educational Issues of Asian Immigrants (4) I, II. The Staff

110. Theoretical Perspectives in Asian American Studies (4) I. Kagiwada

*Course not offered this academic year.
American writings as expressions of various cultural themes, psychological issues, interpersonal relationships and sociopolitical influences on the Asian American experience. Consideration of metaphoric, autobiographic elements, plot, prototypic antiagonist relationships, and other literary elements.

150. Filipino American Experience (4) I. The Staff Lecture/discussion—4 hours. Prerequisite: course 1 or 2. Examination of the relationship between the Filipino-American community, the Philippine home community and the larger American society through a critical evaluation of the historical and contemporary conditions, problems and prospects of Filippinos in the U.S.

155. Legal History and the Asian American (4) I. The Staff Lecture/discussion—4 hours. Prerequisite: course 1 or 2; consent of instructor. Legal history of Asian Americans beginning with the experience of Chinese Americans in the mid-19th century. Includes an examination of laws affecting Asian American communities in immigration, economic activities, and World War II internment.

182. Internship (1-5) I, II, III. The Staff (Director in charge) Internship—3-15 hours. Prerequisite: enrollment dependent on availability of internship with priority to Asian American Studies minors. Supervised internship in community and institutional setting related to Asian American concerns. (P.N.P grading only.)

197T. Tutoring in Asian American Studies (1-5) I, II, III. The Staff (Director in charge) Tutoring—1-5 hours. Prerequisite: upper division standing and completion of appropriate course with distinction; consent of instructor. Tutoring in lower division Asian American Studies courses in small group discussion. Weekly meetings with instructors. May be repeated for credit once for a given course and also for a different course. (P.N.P grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Director in charge) Prerequisite: consent of instructor. Primarily intended for lower division students. (P.N.P grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge) Prerequisite: consent of instructor. (P.N.P grading only.)

Courses in Cantonese

Lower Division Courses

1-2-3. Elementary Cantonese (5-5-5) II-III. Leung Lecture—3 hours; recitation—3 hours. Introduction to Cantonese grammar and development of conversational skills in a cultural context. Approximately 200 Chinese characters will be introduced during Cantonese 2 and 3. (Not open to native speakers.)

4-5-5. Intermediate Cantonese (3-3-3) II-III. Leung Lecture—2 hours; recitation—2 hours. Prerequisite: course 1-2-3 or the equivalent. Development of conversational skills in a cultural context. Community-oriented language materials in health care, social service, and bilingual education will be introduced.

Asian Studies

See Asian American Studies; and East Asian Studies

Astronomy

See Physics

Aspects of Atmospheric Science

Atmospheric Science (College of Agricultural and Environmental Sciences)

Faculty. See under Department of Land, Air and Water Resources.

The Major Program

Atmospheric science is the study of the layer of air that surrounds the planet. It includes all weather phenomena, such as frontal systems and clouds, as well as severe weather events such as hurricanes and tornadoes. Concerning the effects of human activity on the quality of the air we breathe, and on possible global warming are also central to this field of study.

The Program. Modern meteorology is a quantitative science that is becoming increasingly computer-oriented. In addition to the study of daily weather events, the program deals with fundamental physical processes that involve the general circulation of the atmosphere; mass and energy transfers at the planetary surface and within the atmosphere; solar and terrestrial radiation; atmospheric interaction with the biosphere; climate variations; air pollution meteorology; and developments in meteorological instrumentation. As well as providing a broad background in meteorology, the major includes an informal minor area in science from mathematics, computer science, environmental sciences, research management or a physical or biological science.

Interdisciplinary and Career Alternatives. Atmospheric science students have participated in internships with the California Air Resources Board, various county Air Pollution Control Districts, and the National Weather Service. Numerous career opportunities exist in the federal and state governments, research and development in the private sector, and education. Examples of career areas are weather forecasting, agricultural meteorology, air-pollution forecasting and control, weather modification, hurricane and severe weather forecasting and research, weather satellite meteorology, environmental consulting, and weather research. About half of our graduates continue their education by seeking the M.S. or Ph.D. degree in atmospheric science.

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable.)

- English Composition Requirement
- See College requirement
- Preparatory Subject Matter
- Biological sciences (Biology 1A, plus another course selected with advisor's approval)
- Chemistry (Chemistry 2A, 2B)
- Computer science (Engineering 5 or the equivalent in FORTRAN programming)
- Mathematics (Mathematics 21A, 21B, 21C, 22A, 22B, 22C)
- Meteorology (Atmospheric Science 60)
- Physics (Physics 3A, 3B, 3C, 4A, 4B, 4C, 10A, 10B, 10C)
- Additional units in social sciences and humanities to total 28 units

Additional units in atmospheric science courses selected with advisor's approval

- Atmospheric Science 110A, 110B, 120, 121A, and 121B
- Upper division Atmospheric Science courses selected with advisor's approval

If both courses 105 and 133 are taken, only 4 units may be counted. No more than 3 units of courses 192 and 199 may be counted.

Restricted Electives

Earth and planetary sciences (choose from Environmental Studies 116, 150A, 150B, Geography 116, 117, Geology 105, 113, 115, Environmental and Resource Sciences 103, Soil Science 100, Water Science 100, 141, or courses approved by advisor)

Coordinated group of courses (minor area) to be chosen with advisor's approval from mathematics, computer science, environmental sciences, research management, or a physical or biological science

Unrestricted Electives

Total Units for the Degree

Major Adviser. R. I. Shaw (Land, Air and Water Resources)

Advising Center for the major, as well as for graduate students, is located in 122 Hoagland Hall, Land, Air and Water Resources Teaching Center (916-752-1669).

Graduate Study. You can specialize in particular areas of atmospheric science through graduate study and research leading to the M.S. and Ph.D. degrees. For details see under the Graduate Program in Atmospheric Science. See also the Graduate Studies section in this Catalog.

Related Courses. See Environmental Studies 150A; Geography 3, 115, 116; Physics 104A, 104B; Environmental and Resource Sciences 103, 131.

Courses in Atmospheric Science

Questions pertaining to the following courses should be directed to the instructor or to the Land, Air and Water Resources Teaching Center, 122 Hoagland Hall (916-752-1669).

Lower Division Courses

60. Introduction to Atmospheric Science (4) I. Shaw Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16A and Physics 5A. Composition and thermal structure of the atmosphere. The heat budgets of the earth and its atmosphere. Cloud formation and precipitation processes. The atmosphere in motion: dust devils to mid-latitude cyclones. Thunderstorms and other severe weather phenomena.

92. Atmospheric Science Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Internship off and on campus in atmospheric science. Internship supervised by a member of the staff. (P.N.P grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P.N.P grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P.N.P grading only.)

Upper Division Courses

105. Microclimate of Agricultural Systems (3) I. Paw U Lecture—3 hours. Prerequisite: upper division standing in biological or physical sciences. Intended for nonmajors. Energy balance, air and soil temperature, wind, water vapor, carbon dioxide, evapotranspiration within microclimatic structure. Microclimate modification by windbreaks, frost protection, and other methods of
energy balance manipulation. Students who have completed course 133 may receive only one unit of credit. Offered in alternate years.

110A. Weather Analysis and Forecasting (4) III. Soong
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 12IB may be taken concurrently. Thermodynamic variables and processes, kinematic and dynamic processes and their relationship to observed weather. Laboratory work includes thermodynamic diagrams, pressure surface and vertical cross-section analyses.

110B. Weather Analysis and Forecasting (5) I. The Staff
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 110A, knowledge of FORTRAN (Engineering 5). Application of dynamic theory to weather systems. Special emphasis on remote sensing of weather variables, numerical weather prediction, satellite meteorology and tropical meteorology. Laboratory emphasis on the analysis and forecasting of current weather situations.

120. Atmospheric Thermodynamics and Statics (3) I. Weare
Lecture—3 hours. Prerequisite: Mathematics 22C; Physics 9A; course 60 (may be taken concurrently). Atmosphere at rest: atmospheric composition and structure, thermodynamics of atmospheric gases, thermal properties of materials, moist air, hydrostatic equilibrium and stability criteria, and thermodynamic diagrams in meteorology.

121A. Atmospheric Dynamics (3) II. Nathan
Lecture—3 hours. Prerequisite: course 120, Mathematics 22C, Physics 9B. The atmosphere in motion: equations of motion for rotating atmospheres, pressure and density fields and their relations to atmospheric circulation; wave motion in the atmosphere; vorticity: the physical basis of modern numerical methods in meteorology.

121B. Atmospheric Dynamics (3) III. Nathan
Lecture—3 hours. Prerequisite: course 121A. The dynamics of fluid motion in geophysical and laboratory systems: Rossby waves; Helmholtz waves; the effect of turbulence; boundary layers; the Ekman layer. The dynamics of convective motion: the Rayleigh problem; penetrative convection; convective plumes; cumulus models.

124. Meteorological Instruments and Observations (3) I. Paw U
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 60, Physics 9C. Modern meteorological instruments and their use in observations and measurements. Both standard and micrometeorological instruments are included. Offered in alternate years.

126. Radiation and Satellite Meteorology (4) II. Weare
Lecture/discussion—3 hours; discussion/laboratory—1 hour. Prerequisite: course 60, Physics 9B, Mathematics 22B, 22C. Concepts of atmospheric radiation and the use of satellites in remote sensing. Emphasis on the modification of solar and infrared radiation by the atmosphere. Estimation from satellite data of atmospheric variables such as temperatures and cloudiness.

133. Biometeorology (4) I. Paw U
Lecture—3 hours; discussion—1 hour. Prerequisite: two courses in a biological discipline; Mathematics 16B. Atmospheric and biological interactions. Physical basis for plant, animal and human response and adaptation to short-term and long-term meteorological events. Students who have completed course 105 may receive only two units of credit.

149. Introduction to Air Pollution (3) I. Carroll, Chairman (Civil Engineering)
Lecture—3 hours. Prerequisite: Mathematics 22B, 22C, Chemistry 1B: course 121A or Engineering 103A. Examination of physical and technical aspects of air pollution. Emphasis on geophysical processes and air pollution meteorology as well as physical and chemical properties of pollutants. (Same course as Civil Engineering 149.)

150. Numerical Weather Prediction (4) II. Grothjahn
Lecture—3 hours; discussion—1 hour. Prerequisite: course 121B and Engineering 5. Numerical techniques and their applications to meteorological problems. Finite differencing and spectral methods, design of forecast models of physical processes and predictability. Written computer programs to illustrate these topics.

158. Boundary-Layer Meteorology (4) III. Shaw
Lecture—3 hours; discussion—1 hour. Prerequisite: course 121A. Growth, development and structure of the atmospheric layer directly influenced by the underlying surface and extending to a maximum of about two kilometers under convective conditions. Turbulent diffusion in the boundary layer. The microclimate at and near the ground surface.

192. Atmospheric Science Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: completion of at least one unit of instruction. Internship off and on campus in atmospheric science. Internship supervised by a member of the faculty. (PINP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Directed group study or research. (PINP grading only.)

199. Special Study for Advanced Undergraduates (1-6) I, II, III. The Staff (Chairperson in charge)
Prerequisite: through 221A. Special study in atmospheric science and at least an overall B average. (PINP grading only)

Graduate Courses

200. Atmospheric Processes (3) I. The Staff
Lecture—3 hours. Prerequisite: Mathematics 22B-22C, Physics 9B. Advanced theoretical and physical study of atmospheric structure and processes including radiation, statics, thermal structure and weather phenomena. Accelerated presentation of the major topics covered in courses 60, 110A-110B, 120, and 128. Credit not allowed to students having completed any two of these courses.

221A. Advanced Atmospheric Dynamics (3) II. Nathan
Lecture—3 hours. Prerequisite: course 121B. Shallow water theory and potential vorticity conservation. Mathematical and physical properties of geophysical waves. Wave-wave interactions. Barotropic instability of geophysical flows. Offered in alternate years.

221B. Advanced Atmospheric Dynamics II (3) III. Nathan
Lecture—3 hours. Prerequisite: course 221A. Quasi-geostrophic potential vorticity equation for a rotating straitified atmosphere on a sphere. Conditions for instability in stratified atmospheres; baroclinic instability. Wave-zonal flow interaction theory. Forced waves in the atmosphere. Nonlinear theory of baroclinic instability. Offered in alternate years.

223. Advanced Boundary-Layer Meteorology (3) III. Shaw
Lecture—3 hours. Prerequisite: course 230. Characteristics of the atmospheric boundary layer under convective and neutral conditions. Heat budget at the surface and boundary layer forming. Similarity theory and scaling of the boundary layer. Measurement and simulation techniques. Offered in alternate years.

230. Atmospheric Turbulence (3) III. Shaw
Lecture—3 hours. Prerequisite: course 121B or 156. Dynamics and energetics of turbulence in the atmosphere including vorticity dynamics. Statistical description of turbulent flows. Use of Lagrangian scales, spectral analysis, conditional sampling techniques. Turbulent diffusion; the closure problem, gradient-diffusion and second-order methods. Offered in alternate years.

231. Advanced Air Pollution Meteorology (3) II. Carroll
Lecture—3 hours. Prerequisite: course 149, and one course in fluid dynamics. Processes determining transport and dispersion of primary and secondary pollutants. Models of turbulence, of the atmospheric boundary layer and of mesoscale wind fields, as applicable to pollutant dispersion problems are examined. Offered in alternate years.

233. Topics in Advanced Biometeorology (3) II. Paw U
Lecture—2 hours; discussion—1 hour. Prerequisite: course 133 or consent of instructor. Study of current topics in biometeorology focusing on interactions of plants with the environment. Biological energy budgets and adaptations to changes in energy regime. Quantification of weather parameters and optimum biological response. Offered in alternate years.

240. General Circulation of the Atmosphere (3) I. Grothjahn
Lecture—3 hours. Prerequisite: course 121B. Large-scale, observed atmospheric circulations. Energy and momentum balances derived and compared with observations. Theoretical framework developed to synthesize observed features. Offered in alternate years.

251. Climate Dynamics (3) III. Weare
Lecture—3 hours. Prerequisite: courses 120, 121A, 121B or the equivalent. Applied Science Engineering 115 or the equivalent computer programming experience; course 150 recommended. Dynamics of climatic variations. Global and zonal average energy balance models. Parameterizations of radiative transfer, convection, and ocean circulation. Introduction to primitive equation climate models. Offered in alternate years.

250. Mesoscale Meteorology (3) III. Soong
Lecture—3 hours. Prerequisite: graduate standing, course 150, a course in partial differential equations; or consent of instructor. The study of weather phenomena with horizontal spatial dimensions between 2.5 and 2500 kilometers. Methods of observational study and numerical modeling of the structure and temporal behavior of these weather systems. Offered in alternate years.

255. Numerical Modeling of the Atmosphere (4) II. Grothjahn and Soong
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 121B and Engineering 5; course 150 recommended. Principles of numerical modeling of the dynamic, thermodynamic and physical processes of the atmosphere. Hands-on experiments on model development using the shallow water equations and the primitive equations. Operational forecast models. Offered in alternate years.

270-G. Topics in Atmospheric Science (1-3) I, II, III. The Staff
Discussion—1-3 hours. Applications and concepts in: Atmospheric Meteorological Statistics (1), Computer Model of the Atmosphere, Design of Experiments and Field Studies in Meteorology; (D) Solar and Infrared Radiation in the Atmosphere; (E) Aerosol and Cloud Physics; (F) Atmospheric Chemistry; (G) General Meteorology.

290. Seminar (1-12) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. Prerequisite: graduate standing in Atmospheric Science or related field. Current developments in selected areas of atmospheric research. Topics will vary according to student and faculty interests. (SU grading only.)

291-A. Research Conference in Atmospheric Science (1-3) I, II, III. The Staff
Lecture/discussion—1-3 hours. Review and discussion of current literature in: (A) Air Quality Meteorology; (B) Biometeorology; (C) Boundary Layer Meteorology; (D) Climatic Dynamics; (E) General Meteorology. May be repeated up to a total of 6 units per semester. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: graduate standing and consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: graduate standing and consent of instructor. (SU grading only.)
Atmospheric Science (A Graduate Group)

Richard D. Grotjahn, Ph.D., Chairperson of the Group (916-752-2246)
Group Office, 151 Hoagland Hall (916-752-1406)

Faculty. Includes nineteen faculty members from the Departments of Land, Air and Water Resources, Mechanical Engineering, Civil Engineering, Geophysics, the Laboratory for Energy-Related Health Research, the Division of Environmental Studies, and the National Institute for Global Environmental Change.

Graduate Study. The Graduate Group in Atmospheric Science offers both the M.S. and Ph.D. degree programs. The student can place major emphasis on graduate work in one or more of the following fields: air quality meteorology, biometeorology, micrometeorology, numerical weather prediction, climate dynamics, large scale dynamics, and mesoscale meteorology. The diverse and extensive backgrounds of the faculty allow opportunities for interdisciplinary training and research.

Preparation. The Group encourages applications from all interested students with backgrounds in the physical or natural sciences. Basic qualifications for students entering the Atmospheric Science graduate programs are present. Students who have completed the equivalent of vector calculus and differential equations, and one year of college-level physics. Considerable flexibility may be allowed for students with high academic potential, but it is expected that deficiencies in preparatory material and in key undergraduate atmospheric science courses be completed within the first year of graduate study.

Graduate Adviser: K.T. Paw U (Land, Air and Water Resources, 752-1510)
Graduate Admissions Officer: T.R. Nathan (Land, Air and Water Resources, 752-1609).

Avian Medicine
See Epidemiology and Preventive Medicine

Avian Sciences (College of Agricultural and Environmental Sciences)
Barry W. Wilson, Ph.D., Chairperson of the Department
Department Office, 3202 Meyer Hall (916-752-1300)

Faculty
Ursula K. Abbott, Ph.D., Professor
Francine A. Bradley, Ph.D., Lecturer
Ralph A. Ernst, Ph.D., Lecturer
Anne J. King, Ph.D., Associate Professor
Kirk C. Klausing, Ph.D., Professor
James R. Millam, Ph.D., Associate Professor
Kathryn Radke, Ph.D., Assistant Professor
Wesley W. Weathers, Ph.D., Professor
Barry W. Wilson, Ph.D., Professor
Emeriti Faculty
Hans Abplanalp, Ph.D., Professor Emeritus
C. Richard Grau, Ph.D., Professor Emeritus
F. Howard Kratzer, Ph.D., Professor Emeritus
Frank X. Ogistawa, Ph.D., Professor Emeritus
Ran N. Veith, Ph.D., Professor Emeritus
Willow O. Wilson, Ph.D., Professor Emeritus
Allen E. Woodward, M.S., Lecturer Emeritus

The Major Program
Avian sciences is the study of birds and the ways in which they relate to and are useful to humans. The major combines the study of avian wildlife and their environments, production and marketing of domestic birds and eggs, captive exotic bird management, and basic and applied laboratory research on birds with a broad introduction to biological science.

The Program. The flexibility of the program and the personal interaction between students, faculty, and specialists in the field gives students a large role in selecting and designing their own course work. Students may complete a bachelor's program that qualifies them for a particular career or they may choose a program to meet other broader intellectual and cultural interests.

Internships and Career Alternatives. Independent study, undergraduate research, and internships are features emphasized in the avian sciences program. There are opportunities for laboratory or special study housed within the main building as well as at the research farm and the experimental aviary. A student in the avian sciences major has a career of options: health-oriented research, teaching biology, gamebird production, domestic and foreign agricultural agencies, government agencies, or the domestic or exotic bird industries. A recent survey has shown that the majority of avian sciences graduates enter graduate school or are employed in the bird industry. The remainder of the graduates are evenly distributed in the categories of professional schools, avian biology agencies, educational fields, and individual jobs indirectly associated with birds.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses are acceptable.)

English Composition Requirement: 0-8 UNITS
See College requirement
Preparatory Subject Matter: 50-54
Avian sciences (Avian Sciences 11 or 13) 3-4
Biology (Biology Sciences 1A, 1B, 1C) 16
Chemistry (Chemistry 2A, 2B, 2C) 15
Computer science (Agricultural Science and Management 21) 3
Mathematics (Mathematics 16A, 16B, 16C, 19) 10
Physics (Physics 1A and 1B) 6
Statistics (Statistics 13) 4
Breadth Subject Matter: 24
Satisfaction of the Education requirement: 24

Depth Subject Matter: 55
Physiological chemistry or biochemistry (Physiological Sciences 101A-101B or Biochemistry 101L or Physiology 110L) 16
Genetics (Genetics 100L) 4
Nutrition (Avian Sciences 150-150L or Nutrition 110L) 5
Physiology (Physiology 110) 5
Laboratory units in above listed subjects: 4
(Recommended courses include Animal Science 135, Avian Sciences 150L, Biochemistry 101L, Physiology 110L)
Specialized courses related to avian species: 25

Restricted Electives: 31
To supplement or expand depth subject matter courses
Unrestricted Electives: 13-19
Total Units for the Degree: 180

Major Adviser: A.J. King
Advising Center for the major is located in 3202 Meyer Hall (916-752-1300).

Minor Program Requirements:

Avian Sciences 11-13
Choose 18 units from Avian Sciences 100, 101, 102, 115, 123, 149, 150, 150L, Food Science and Technology 121, Animal Science 143, Physiology 117. One lower division course (Avian Sciences 11L, 12L, or 13) can be used to satisfy part of the 18-unit requirement.

Graduate Study. Further training is available through graduate or professional programs in animal physiology, genetics, nutrition, and veterinary medicine. The M.S. degree is offered in Avian Sciences. For details see the Undergraduate Group in Avian Sciences. See also the Graduate Division section in this catalog.

Related Courses. See Agricultural Economics 130; Food Science and Technology 120, 120L, 121; International Agricultural Development 102; Nutrition 123; Physiology 117; Zoology 100, 100L.

Courses in Avian Sciences

Lower Division Courses
11. Introduction to Poultry Science (3) F. Bradley
Lecture—3 hours. The nature of events that have tied poultry science to other scientific disciplines and poultry to human beings. Poultry science techniques and production methods from the time of domestication to the present. One field trip required. General Education credit: Nature and Environment/Introduc.

11L. Laboratory in Avian Sciences (1) II. Morozov
Laboratory—3 hours. Prerequisite: course 11 may be taken concurrently. Demonstrations, laboratory exercises and two Saturday field trips: management, anatomy, reproduction, egg incubation, nutrition, health and welfare of domestic birds; data collection techniques.

13. Birds, Humans, and the Environment (4) II. Wilson

92. Internship in the Avian Sciences (1-12) I, II, III.
The Staff (Chairperson in charge)
Internship—36 hours. Prerequisite: sophomore standing preferred; consent of instructor. Internship on and off campus in poultry, gamebirds or exotic bird production, management and research; or in a business, industry, or agency concerned with these entities. Compliance with Internship Approval Request form essential. (PNP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Problems in avian biology, nutrition, reproduction, and psychology of poultry, wildlife, and their products. (PNP grading only.)

Upper Division Courses
100. Principles of Avian Sciences (5) II. Radke
Lecture—4 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A. Aspects of biology (anatomy, physiology, behavior, nutrition, reproduction, and genetics) that govern the life of birds. Emphasis on those features of birds, domestic, wild and experimental, which are distinctive.

101. Patterns in Avian Biology (3) II. Weathers
Lecture—3 hours. Prerequisite: Biological Sciences 1B or the equivalent. Patterns of reproduction, locomotion, foraging, growth and development, energetics, and temperature regulation exhibited by birds. Ecological and evolutionary adaptations and allelic analysis of life history traits.
102. Fertility and Hatchability (4) I. Abbott Lecture—3 hours; discussion—1 hour. Prerequisite: course 100, Genetics 100, Zoology 100. Normal avian embryonic development. Reproductive failures resulting from disease, nutritional or genetic causes. Use of avian embryonic markers and genetic resistance.

115. Raptor Biology (3) I. Vorontzov Lecture—3 hours. Prerequisite: Biological Sciences 1A or the equivalent. Study of birds of prey: classification, distribution, habits and habitats, migration, unique anatomical and physiological adaptations, natural and captive breeding, health and diseases, environmental concerns, conservation, legal considerations, rehabilitation, and falconry. Includes two Saturday field trips.

123. Management of Birds (4) III. Millam Lecture—3 hours; discussion—1 hour. Prerequisite: course 100. Captive management of birds will be studied by focusing on four major avian groups: ducks, parrots, pheasants, and pigeons. Management practices will be studied in relation to differences in avian physiology and human culture.

*130. Poultry Breeding and Genetics (3) I. Apchjan Lecture—2 hours; laboratory—3 hours. Prerequisite: course 100. Genetic principles of poultry. Action of major genes in the control of morphology, reproduction and disease resistance. Breeding plans and genetic tests for major genes as well as traits with sex inheritance.

149. Egg Production Management (2) III. Ernst Lecture—2 hours. Prerequisite: course 11 or the equivalent, or consent of instructor. Management of commercial table egg flocks as related to environment, nutrition, disease control, economics, housing, equipment, egg processing and raising replacement pullets. One Saturday field trip required. Offered in alternate years.

150. Nutrition of Birds (1) I. Klausing Lecture—1 hour. Nutrition 110 (may be taken concurrently). Principles of nutrition specific to avian species, including feedstuffs, feed additives, nutritional metabolisms, energy systems, and nutritional support of egg production and growth. Use of computers for feed formulation to support production. Offered in alternate years.

158L. Nutrition of Birds Laboratory (2) III. King Laboratory—6 hours. Prerequisite: course 150. Feeding trials and nutrient requirements. Metabolizable energy study and proximate analysis of feed. Determination of vitamins, minerals, fatty acids and other nutrients or substances in feeds with emphasis on use of laboratory equipment.

190. Seminar In Avian Sciences (1-5) I, II, III. The Staff Seminar—1 hour. Prerequisite: upper division standing in Avian Sciences and consent of instructor. May be repeated three times for credit. (P/NP grading only)

192. Internship In Avian Sciences (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: completion of a minimum of 64 units, consent of instructor. Internship on and off campus in poultry, gamebirds or exotic bird production, management and research; or in a business, industry, or agency concerned with these entities. Enrollment is contingent upon Internship Approval Request form essential. (P/NP grading only)

195. Topics in Current Research (1-3) I, II, III. The Staff (Chairperson in charge) Lecture/discussion—variable. Hours will depend on instructor. Lecture or seminar with the number of units being commensurate with time in class. Prerequisite: consent of instructor. Discussion of topics of current interest in avian sciences. May be repeated three times for credit.

197. Tutoring In Avian Sciences (1-3) I, II, III. The Staff (Chairperson in charge) Hours and duties vary depending upon course being tutored. Prerequisite: Avian Sciences or related major, advanced standing, consent of instructor. Tutoring includes instruction in lower division avian sciences courses; weekly conference with instructors in charge of course; written critiques of teaching procedures. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses

220. Cellular Proliferation and Oncogenes (4) Radke Lecture—3 hours; term paper. Prerequisite: Biochemistry 101B, Zoology 121A-121B, Genetics 102B. Regulation of growth and division of animal cells. Oncogenes, retroviruses and growth factors will be discussed in the context of normal and cancerous growth. Critical reading and writing are stressed.

230. Avian Endocrinology (2) II. Millam Lecture—2 hours. Prerequisite: course work in endocrinology, avian biology or reproductive physiology. Examination of current issues in avian endocrinology with emphasis on endocrine aspects of reproductive physiology. Offered in alternate years.

250. Advanced Poultry Nutrition (3) II. Klausing Lecture—2 hours; discussion—1 hour. Prerequisite: Nutrition 110. Metabolic basis for nutrient requirements in avian species including energy, amino acids, vitamins and minerals. Discussion on design and analysis of nutrition trials, hormonal control of metabolisms, nutritional and metabolic control of nutrient partitioning and gene expression. Offered in alternate years.

260. Topics in Avian Physiological Ecology (2) I. Weathers Lecture—1 hour; seminar—1 hour. Prerequisite: course 100; Physiology 110 or Physiological Sciences 101A-101B; senior or graduate standing. Ecological and water requirements of captive and free-living birds. Metabolic requirements for growth, maintenance, reproduction, and thermoregulation. Emphasis given to diversity of patterns found in birds and their ecological correlates. Offered in alternate years.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. Reports and discussions of recent advances and selected topics of current interest in avian genetics, physiology, nutrition, and poultry technology.

290C. Research Conference (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Major professors lead research discussions with their graduate students. Research papers are reviewed and project proposals presented and evaluated. Format will combine seminar and discussion. (SU grading only)

297T. Supervised Teaching in Avian Sciences (1-4) I, II, III. The Staff (Chairperson in charge) Tutoring—1-4 hours. Prerequisite: graduate standing and consent of instructor. Tutoring of students in lower, upper division, and graduate courses in Avian Sciences; weekly conference with instructor in charge of course; written critiques of teaching methods in lectures and laboratories. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SU grading only)

"Course not offered this academic year.

Avian Sciences

(A Graduate Group)

A. J. King, Ph.D., Chairperson of the Group

Group Office, 3202 Meyer Hall (916-752-1290)

Faculty. Consists of members from several departments in the College of Agricultural and Environmental Sciences and the School of Veterinary Medicine.

Graduate Study. The Graduate Group in Avian Sciences offers the M.S. degree program to students who wish to pursue specialized advanced work on avian species. The areas of specialization that may be chosen by the student at present include: nutrition, physiology, reproduction, pathology, toxicology, food chemistry, management, ecology, genetics, comparative incubation, environmental physiology, and cellular and developmental studies using wild and domestic birds as experimental animals. Both master's degree plans, thesis or comprehensive examination, are available.

Preparation. It is expected that the student will have had undergraduate preparation in a field appropriate to the course of study selected. The student will be expected to have had courses in most of the following subjects: general biology, general and organic chemistry, biochemistry, avian biology, genetics, nutrition, physiology, and statistics.

Graduate Adviser. K.C. Klausing (Avian Sciences).

Bacteriology

See Microbiology

Biochemistry

(Division of Biological Sciences)

The Major Program

The biochemistry major introduces students to the chemistry of living organisms and the experimental techniques that are used to probe the structures and functions of biologically important molecules. Students who enjoy both chemistry and biology and who are comfortable with quantitative approaches to problem solving will find biochemistry a rewarding field of study.

The Program. The biochemistry program begins with a two-quarter general biochemistry course that provides an introduction to the principles of biochemistry. Biochemistry majors then take a comprehensive and rigorous laboratory course designed to familiarize them with the most important aspects of biochemical research. There are additional upper division courses in biochemistry which examine detailed aspects of modern biochemistry. Students also are required to take courses in other biological sciences and a full-year of physical chemistry.

Choice of College. The Bachelor of Science degree is offered by both the College of Agricultural and Environmental Sciences and the College of Letters and Science. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the appropriate college sections in the front of this catalog for more information.

Students majoring in Biochemistry in the College of Letters and Science may petition the Dean of the College to receive credit toward the 64 upper division units required for the degree for certain courses in organic chemistry that have been taken at other institutions prior to first enrollment at UC Davis and that
are judged by the Chemistry department to cover substantially the same material as upper division courses in the subject at UC Davis. Students in the College of Agricultural and Environmental Sciences must accumulate 14 units of upper division courses to graduate. Further information can be obtained from the Division of Biological Sciences Office, 66 Briggs Hall.

Career Alternatives. The biochemistry program provides a solid scientific background for students seeking careers in research, teaching, or service careers in the life sciences. There are positions open to biochemists in the food processing, pharmaceutical, agricultural research, and chemical industries. Also, university-affiliated research laboratories, hospital laboratories, and government-sponsored research facilities provide employment opportunities.

B.S. Major Requirements:

- **English Composition Requirement:** 8 units
 - College of Agricultural and Environmental Sciences students only; see College requirement

- **Preparatory Subject Matter:** 55-58 units
 - Biological Sciences 1A, 1B, 1C ... 15
 - Chemistry (Chemistry 2A-2B-2C, or 2AH-2BH-2CH) ... 15
 - Mathematics 1A-1B-160 or 21A-21B-21C ... 9-12
 - Physics, 12 units minimum (Physics 5A-5B or 5A-5B-5C) ... 12
 - Statistics (Statistics 13, 102, or 130A) ... 4

- **Depth Subject Matter:** 38-41 units
 - Biochemistry 101A-101B, or 110L-111L ... 13-15
 - Genetics 100 ... 4
 - Organic chemistry: Chemistry 118A-118B-118C or 128A-128B-128C ... 12-15
 - Physical chemistry: Chemistry 107A-107B-108 or 110A-110B-110C ... 9

- **Breadth/General Education:** 24 units
 - College of Letters and Science students: Refer to the College section for a description of the options available in meeting this requirement.

- **Restricted Electives:** 12 units
 - To include Biochemistry 133, 143, or 153, and at least one additional upper division course in biochemistry, another biological science, or chemistry.

- **Unrestricted Electives:** 180 units
 - **Total Units for the Major:** 180

- **Major Advisor:** L.R. Sprechman (Biochemistry and Biophysics), 128 Briggs Hall.

- **Advising Center:** For the major is located in 156 Briggs Hall (916-753-9032).

- **Graduate Study:** See Biochemistry and Molecular Biology (A Graduate Group); and the Graduate Division section in this catalog.

- **Courses.** See under Biochemistry and Biophysics.

Biochemistry and Biophysics (Division of Biological Sciences)

Mark G. McNamara, Ph.D., Chairman of the Section
Section Office, 149 Briggs Hall (916-753-3611)

Faculty

- Judy Callis, Ph.D., Assistant Professor
- Don M. Carlson, Ph.D., Professor
- Sterling Chaykin, Ph.D., Professor
- Richard E. Cridde, Ph.D., Professor
- Michael J. DeSipio, Ph.D., Professor
- Roy H. Doi, Ph.D., Professor
- Marilyn E. Entzel, Ph.D., Professor
- Charles L. Gesse, Ph.D., Assistant Professor
- Richard L. Hendrix, Ph.D., Professor
- Leonard M. Hjelmeland, M.D., Associate Professor
- J. Clark Lagarias, Ph.D., Associate Professor
- R. Marc Learned, Ph.D., Assistant Professor
- Mark G. McNamara, Ph.D., Professor
- W. H. Sprechman, Ph.D., Professor
- Larry R. Sprechman, Ph.D., Lecture
- Merna R. Villarjo, Ph.D., Professor

Emeritus Faculty

- Eric E. Conn, Ph.D., Professor Emeritus
- Lloyd L. Ingraham, Ph.D., Professor Emeritus
- Paul K. Stumpf, Ph.D., Professor Emeritus

- **Major Programs and Graduate Study.** See the major in biochemistry and for graduate study see Biochemistry and Molecular Biology (A Graduate Group) and the Graduate Studies section in this catalog.

- **Related Courses.** See Food Science and Technology 210, 250, 290, 295.

Courses in Biochemistry and Biophysics

Questions pertaining to the following courses should be directed to the instructor.

- **Upper Division Courses**
 101A. General Biochemistry (4) I, II, III. Gasser, H. Lecture—4 hours. Prerequisite: Chemistry 88 or 118B or 128B. Introduction to the chemistry of biochemically important compounds such as proteins, nucleic acids, lipids and carbohydrates, with emphasis on their structure and function and the means to study them.

 101B. General Biochemistry (4) I, II, III. Callis, L., Lehm... Lecture—3 hours. Prerequisite: course 101A. Continuation of course 101A: the major metabolic pathways of the cell; synthesis and breakdown of sugars, amino acids, fatty acids and other metabolites; and the bioenergetics involved; the control and integration of metabolism.

 101L. General Biochemistry Laboratory (4) I. Chaykin, H., and Lagarias, M. Lecture—3 hours. Laboratory—9 hours. Prerequisite: course 101B (may be taken concurrently). Chemistry 5. Introduction to laboratory methods and procedures employed in studying biochemical processes. Designed for students who need experience in the use of biochemical techniques as laboratory tools.

 102L. Advanced Undergraduate Laboratory (4) III. Sprechman Lecture—2 hours; laboratory—7 hours. Prerequisite: course 101L and consent of instructor. Advanced biochemistry laboratory methods and procedures including some of the more recent technological advances. Experiments include techniques from areas such as immunohemocrit, nucleic acid analysis and sequencing, high performance liquid chromatography, and membrane biophysics.

 110L. General Biochemistry Laboratory (4) I, II, III. Chaykin, H., and Lagarias, M. Lecture—1 hour; Discussion—1 hour; laboratory—6 hours. Prerequisite: course 101B (may be taken concurrently). Introduction to laboratory methods employed in studying biochemical processes. Experiments include the understanding of enzymes, their regulation and inhibition, the synthesis and degradation of proteins and related problems.

111L. General Biochemistry Laboratory (4) II, III. Chaykin, D., Dahms, H., (Biological Chemistry).

- **Pill.** Leaded, Sprechman
- Lecture—1 hour; Discussion—1 hour; laboratory—5 hours. Prerequisites: course 110L. Continuation of course 110L. Introduction to laboratory methods employed in studying biochemical processes. Experiments include terminal amino acid analysis, use of radioisotopes, lipid biosynthesis, and isolation and identification of pigments.

122. Plant Biochemistry (3) III. Callis, Lagarias.

- Lecture—3 hours. Prerequisite: course 101B. The chemistry of important plant constituents and processes such as photosynthesis and respiration, (carbohydrate, fat, proteins, etc.)

123. An Introduction to Enzymology (3) III. Whittaker (Food Science and Technology).

- Lecture—3 hours. Prerequisite: course 101B. Principles of chemical, physical and catalytic properties of enzymes and their utilization. Experimental determination and quantitative evaluation of influence of reaction conditions on activity are stressed. Specificity and mechanism of action illustrated by consideration of selected enzymes.

123L. Enzymology Laboratory (2) III. Whittaker (Food Science and Technology).

- Lecture—1 hour; laboratory—3 hours. Prerequisite: course 101B. Introduction to enzyme kinetics and receptor-ligand interactions with emphasis on metabolic regulation and data analysis. Topics include steady-state kinetics, patterns of feedback inhibition, control by enzyme activity, allosteric enzymes, multienzyme systems, enzyme assays, and membrane transport.

143. Structure-Function Relations of Proteins (3) I, II. Segel, Sprechman.

- Lecture—3 hours. Prerequisite: courses 101A, 101B, and 111L (may be taken concurrently). Correlation of structure and biological function. Molecular models of enzymes that explain their physiological functioning. Physical and chemical methods used in determining protein structure. Function as measured by kinetic and binding models and as affected by physiological considerations.

153. Molecular Biology of Eukaryotic Cells (3) II. Dahms.

- Lecture—3 hours. Prerequisite: course 101B or 110L-111L; Genetics 100. Structure, expression and regulation of eukaryotic genes. Chromosome structure and replication; gene structure, transcription and RNA processing; protein synthesis and translational control; development, immune system and oncogenes.

190. Undergraduate Seminar in Biochemistry (1) I, II. The Staff.

- Seminar—1 hour. Prerequisite: courses 101A, 101B (may be taken concurrently). Discussion of the historical developments of modern biochemistry.

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge).

- Internship—3 to 36 hours. Prerequisite: consent of instructor. Technical and/or practical experience on and off campus, supervised by a member of the Biochemistry and Biophysics faculty. (P/NP grading only)

194L. Biochemistry Honors (1-5) I, II, III. The Staff.

- Prerequisite: 4 units of course 109 with faculty direction; senior standing; grade-point average of at least 3.25; consent of section. Honors project in Biochemistry. Laboratory research on a biochemical problem followed by presentation of results in written thesis and in a seminar. (P/NP grading only)

197T. Tutoring in Biochemistry (1-5) I, II, III. The Staff (Chairperson in charge).

- Discussion—1.5 hours. Prerequisite: upper division standing and consent of instructor. To assist the instructor by tutoring students in one of the section's regular courses. (P/NP grading only)
198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses

200. Current Techniques in Biochemistry (2) I. Carlson, Hedrick
Lecture—2 hours. Prerequisite: courses 201A, 201B, or 201C, or consent of instructor. Current techniques used in biochemical research including protein and carbohydrate analyses, immunochromatography, recombinant DNA methods, electron photophores and chromatographic methods.

201A. Physical and Chemical Biochemistry (4) I. Benisek (Biological Chemistry), Matthews (Biological Chemistry), Segel, Toy (Biological Chemistry)
Lecture—4 hours. Prerequisite: course 101B. Biochemistry of molecular and cell properties, biochemical properties of macromolecules, including enzyme kinetics and mechanisms for determining size and shape of macromolecules.

202. Techniques in Biochemistry (2) I. Carlson, Hedrick
Laboratory—2 hours. Prerequisite: course 201A or 201B of consent of instructor. Current techniques in biochemistry and chemical and physical properties of macromolecules, including enzyme kinetics and mechanisms for determining size and shape of macromolecules.

202A. Advanced Chemistry Laboratory (5) I, II, III. Learned, Villarejo
Laboratory—15 hours. Prerequisite: consent of instructor for 201A may be taken concurrently), and 101L or the equivalent. Two advanced assignments in biochemistry research laboratories. Individual research problems with emphasis on methodologies, experimental design, and experimental design. May be repeated for credit.

204. Gene Expression (3) III. The Staff
Lecture—3 hours. Prerequisite: course 152 or 201C. Examination of the mechanism of gene expression on transcription. Transcription factors, cis-acting elements and regulatory domains will be examined in detail with special emphasis on human systems.

208. Membrane Biochemistry (2) II. McNamee, Villarejo
Lecture—2 hours. Prerequisite: course 201D. Advanced topics in membrane biochemistry with emphasis on the structure and function of membrane proteins and lipids. Offered in alternate years.

212. Chemical Modifications of Proteins (3) II. Bensiek (Biological Chemistry)
Lecture—3 hours. Prerequisite: course 101B. Chemical approaches to biological proteins, emphasizing the use of chemical modifications as a tool in the study of active sites of enzymes, and relating the structure of proteins to their functions. Offered in alternate years.

215. Kinetics of Biological Systems (2) III. The Staff
Lecture—2 hours. Prerequisite: courses 201A, 201B. FORTAN IV (may be taken concurrently). Kinetic behavior of multivariable biological systems; mathematical methods and analysis of data. Offered in alternate years.

250. Biochemical Literature (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: consent of instructor. Current biochemistry literature. Selected papers will be presented and discussed in detail. (S/U grading only)

270. Advanced Research Conference (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: course 201C or consent of instructor. Current research and critical evaluation of biochemical literature. Selected papers will be presented and discussed in detail. (S/U grading only)

291. Current Progress in Biochemistry (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: course 201C or consent of instructor. Current biochemistry literature. Selected papers will be presented and discussed in detail. (S/U grading only)

296. Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. (S/U grading only)

299. Research (1-12) I, II, III. The Staff (S/U grading only)

Professional Course

390. Teaching of Biochemistry (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: graduate student in biochemistry; consent of instructor. Practical experience in methods and problems of teaching biochemistry. Includes analysis of texts and supporting material, discussion of teaching techniques, preparing for and conducting examinations, and guiding students in laboratory work. (S/U grading only)

399. Research (1-12) I, II, III. The Staff (S/U grading only)

Biological Sciences

See Medicine, School of

Biological Sciences

(Division of Biological Sciences)

Robert D. Grey, Ph.D., Dean of Biological Sciences
Merna R. Villarejo, Ph.D., Associate Dean
Division Office, 66 Briggs Hall (916-752-2140)

Faculty

Includes members of the sections of Animal Physiology, Biochemistry and Biophysics, Botany, Genetics, Microbiology and Zoology; and academic advisers for divisional majors and instructors of upper division courses in curricula of divisional majors.

Programs of Study

The Division of Biological Sciences is an intercollege unit organized into six sections: Animal Physiology, Biochemistry and Biophysics, Botany, Genetics, Microbiology, and Zoology. Seven majors are offered within the Division leading to a B.S. degree in disciplines represented by the six above-named sections, and in the broader field of Biological Science. The major programs are described under the respective section's listings throughout this catalog, except for the majors in Biological Sciences (outlined below).

The Major Programs

Biological sciences is the study of life from the molecular level up to the level of populations. New discoveries continually add to and change this dynamical field.

The Program. The biological sciences major programs (Bachelor of Arts and Bachelor of Science) are for good reasons for students who want to obtain a broad knowledge of biology. The core program for both degrees includes mathematics, both general and organic chemistry, and courses in biology which stress the unity of life as well as its diversity. The Bachelor of Science program focuses on the natural sciences and is intended for students who are interested in laboratory or research careers. The Bachelor of Arts program requires fewer units in the natural sciences allowing students to take more courses in the humanities and social sciences. It is a good choice for students who wish to pursue a "people-oriented" career.

Choice of College. The Bachelor of Arts degree is offered only by the College of Letters and Science. The Bachelor of Science degree is offered only by both the College of Letters and Science and the College...
of Agricultural and Environmental Sciences. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the appropriate college sections in the front of this catalog for more information.

Career Alternatives. The biological sciences degree provides suitable preparation for a wide variety of careers, including teaching, biological research, careers with various governmental agencies or with private companies, and all the health sciences. It is also an excellent background for students wishing to enter a graduate program in biology, a teacher-training program, a health professional school, or other professional schools.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Units</th>
<th>Preparatory Subject Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>57-43</td>
<td>Biological Sciences 1A-1B-C</td>
</tr>
<tr>
<td>10</td>
<td>Chemistry 2A-2B</td>
</tr>
<tr>
<td>6</td>
<td>Mathematics and/or statistics</td>
</tr>
</tbody>
</table>

Recommended: Chemistry 2C, Physics 5A, 5B, 5C, a course in computer programming.

Note: A course in computer programming may be acceptable toward satisfaction of the mathematical/statistics requirement with prior approval from the Dean.

Depth Subject Matter

<table>
<thead>
<tr>
<th>Units</th>
<th>Genetics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Restricted Electives</td>
</tr>
</tbody>
</table>
| 32 | Upper division biological sciences courses to include:

1. A minimum of 2 units or 6 (quarter) hours of laboratory classes,
2. At least 3 units from each of the three Area Requirements: animal biology, microbiology, and plant biology (see "Course List for Area Requirement" section following the B.S. major requirements).
3. At least one course from each of the five Group Requirement lists, (a) through (e) following.

Course List for Group Requirement

(a) Organismal Biology: Botany 102, 105, 108, 119, 120; Entomology 101, 102, 103; Microbiology 105, 162; Veterinary Microbiology 127, 128; Wildlife and Fisheries Biology 111, 120; Zoology 100, 105, 106, 112, 133, 134, 136, 137.

(b) Population biology and ecology: Anthropology 154A, Botany 117, 144; Entomology 104; Environmental Studies 100, 121; Genetics 105; Geology 150C; Microbiology 120; Wildlife and Fisheries Biology 110, 151; Zoology 125.

(c) Evolutionary biology: Anthropology 151, 152; Botany 111, 112; Microbiology 130A-130B; Physiology 110, 117; Plant Pathology 130; Zoology 142, 143.

(d) Physiology: Botany 111, 112; Microbiology 130A-130B; Physiology 110, 117; Plant Pathology 130; Zoology 142, 143.

(e) Biochemistry and cell biology: Biochemistry 101A-101B; Botany/Zoology 130; Physiological Sciences 101A-101B; Physiology 100A-100B.

Total Units for the Major

| 74-80 |

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Units</th>
<th>Preparatory Subject Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>57-43</td>
<td>Biological Sciences 1A-1B-C</td>
</tr>
<tr>
<td>15</td>
<td>Chemistry 2A-2B-2C or 2A-H2B-H2C</td>
</tr>
<tr>
<td>6</td>
<td>Mathematics 1A-1B-C</td>
</tr>
<tr>
<td>12</td>
<td>Microbiology 105, 162</td>
</tr>
<tr>
<td>112</td>
<td>Veterinary Microbiology 127, 128</td>
</tr>
<tr>
<td>136</td>
<td>Wildlife and Fisheries Biology 111, 120</td>
</tr>
<tr>
<td>137</td>
<td>Zoology 100, 105, 106, 112, 133, 134, 136, 137</td>
</tr>
<tr>
<td>36</td>
<td>Genetics 100, 105, 162</td>
</tr>
<tr>
<td>121</td>
<td>Environmental Studies 100, 121</td>
</tr>
<tr>
<td>103</td>
<td>Microbiology 105, 162</td>
</tr>
<tr>
<td>120</td>
<td>Physiology 110, 117, 142, 143</td>
</tr>
<tr>
<td>101B</td>
<td>Physiology 100A-100B</td>
</tr>
</tbody>
</table>

Note: Botany 116, or 116 may be used for either microbiology or plant biology (not both).

Other Upper Division Courses

A list of courses which will be accepted in satisfaction of the upper division major requirement, without petitioning, is available in the Division of Biological Sciences Office.

There is a limitation of variable unit courses which may be counted toward the major. Of these courses, up to 6 units of 199 courses may be counted, and no more than 197 courses may be counted.

Major Advisers. Contact Division Office for adviser assignments.

Honors and Honors Programs. Students who have met the minimum grade-point average and the units-completed criteria, and who have obtained a sponorizing faculty supervisor may elect to participate in the Biological Sciences Honors Program. The program entails completion of a research project and honors thesis through enrollment in course 194H.

The Division of Biological Sciences also confers Citations of Outstanding Performance on undergraduates majoring in Biological Sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a Citation must first meet or exceed a specified grade-point average and participate in an appropriate research project.

The Division additionally recommends students in the Biological Sciences major to the College of Letters and Science for admission to the College’s High and Highest Honors at graduation. Further details on the above programs and awards, contact the Division Office.

Minor Program Requirements:

The minor in Biological Sciences is designed to acquaint students with the range and variety of modern biology, including work in two of three areas: animal biology, plant biology, and microbiology, and in four of the following five subdisciplines: organismal biology, ecology, evolution, physiology, and biochemistry and cell biology. The list of required courses is restricted to those which are acceptable for the major program in Biological Sciences but which do not require extensive upper division preparatory work; substitutions of more advanced courses can be made, as appropriate, with the approval of an adviser. Information on certification of completion of the minor program can be obtained from the Division Office.

<table>
<thead>
<tr>
<th>Units</th>
<th>Biological Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Genetics 100</td>
</tr>
</tbody>
</table>

Additional upper division units (see Area and Group Requirements below)

| 18 |

Area Requirements:

One course in two of three areas: Animal Biology, Microbiology, and Plant Biology. An extensive list of courses which will satisfy area requirements can be found under the Biological Sciences major program description. (Courses can be used to simultaneously satisfy both the area and group requirements.)

Group Requirements:

At least one course or sequence must be selected from four of the following five groups

(a) Organismal biology: Botany 102, 105; Microbiology 105; Zoology 100, 106, 112, 136.

(b) Ecology: Anthropology 154A; Botany 101; Environmental Studies 100; Wildlife and Fisheries Biology 151; Zoology 125.

(c) Evolution: Anthropology 151; Botany 116, 140; Genetics 103; Geology 150C; Zoology 142, 143.

(d) Physiology: Botany 111, 112; Physiology 100A-100B.

(e) Biochemistry and cell biology: Biochemistry 101A-101B; Botany/Zoology 130; Physiology 100A-100B; Zoology 121A, 121B.

Course not offered this academic year.
Bodega Marine Laboratory Program

A full quarter of undergraduate course work in marine biology is available each Spring Quarter at the Bodega Marine Laboratory (BML) located in Bodega Bay, California. Course offerings include lecture and laboratory instruction in the developmental biology and physiological adaptation of marine organisms, and in population biology and ecology; and a weekly colloquium and an intensive individual research experience under the direction of Laboratory scientists. The Bodega Marine Laboratory program is residential, with students housed on the Laboratory grounds. Participants are assessed a room and board fee in addition to standard campus registration fees. Application required. Forms can be obtained from the Division of Biological Sciences. Applications due 4 weeks prior to the Fall quarter. Additional Information: A summer program in Marine Biology is available from the Division Office or BML directly. (707) 875-2211, P.O. Box 247, Bodega Bay, CA 94923.

Courses in Biological Sciences

Lower Division Courses

1A. Introductory Biology (G) 1, I, II, III. The Staff (Microbiology) Lecture—4 hours; discussion—1 hour. Prerequisite: Chemistry 28 (may be taken concurrently). Introduction to biological molecules, bioenergetics, cell structure and function, elements of molecular biology, and viruses. Interdisciplinary course designed for majors in the biological sciences. This course replaces course 1.

1B. Introductory Biology (G) 1, II, III. The Staff (Zoology) Lecture—3 hours; laboratory—3 hours. Prerequisite: course 1A. Continuation of course 1A. Topics covered include transmission genetics, systematics, evolution; survey of the animal kingdom, comparative anatomy, physiology, and adaptation in animals. This course replaces Zoology 2 and 2L.

1C. Introductory Biology (G) 1, II, III. The Staff (Botany) Lecture—4 hours; laboratory—3 hours. Prerequisite: course 1B. Continuation of course 1B. Topics covered include a survey of bacteria, protozoa, algae and plants, structure and function of plant tissue, adaptation of plants to their environment, population ecology, ecosystem analysis and human evolution. This course replaces Botany 2.

10. General Biology (G) 4. Leslie (Zoology); I. Marr (Microbiology); III. Falk (Botany) Lecture—3 hours; discussion—1 hour. Consideration of the main features and principles of biology, with emphasis on biological processes and special reference to evolution, heredity, and the bearing of biology on medicine. Designed for students not specializing in biology. Not open for credit to those who have had course 1A. General Education credit: Nature and Environment/Introductory.

11A-11B. Issues in the Life Sciences (2-2) I, II. Vilarazo Lecture—1 hour; discussion—1 hour. Prerequisite: enrollment limited to BUSP students; consent of instructor required. Designed to broaden the student's understanding of biology by demonstrating the range of subjects and approaches included in the field of biology. Both basic biological research topics and applied biology will be studied.

19. Biology of Cancer (G) 3. Pfieffer (Biological Sciences; Microbiology) Lecture—3 hours. Prerequisite: course 1A or 10, or Genetics 10, or Physiology 10. Interdisciplinary course offers an introduction to the biological, clinical and psychosocial aspects of cancer, and emphasizes basic understanding of biological principles and facts about the disease process. Designed for students with little scientific background. Offered in alternate years.

98. Directed Independent Study (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: consent of instructor. For primarily lower division students. (P/NP grading only.)

Upper Division Courses

120. Developmental Biology of Marine Invertebrates (G) 4. Clark, Chang and Jeffery (Biological Sciences) Lecture—30 hours total; laboratory—30 hours total. Zoology 100-100L, Biochemistry 101A-101B or Physiological Sciences 101A-101B; course 123 concurrently. Phylogenetic patterns of reproduction and development among the marine invertebrates. Emphasis on both modern and classical approaches to understanding gametogenesis, gamete interaction and fertilization, cleavage, cell differentiation, morphological, and larval development and metamorphosis. Course offered at Bodega Marine Laboratory. (See above description for Bodega Marine Laboratory Program.)

120P. Developmental Biology of Marine Invertebrates/Advanced Laboratory Topics (G) 6. Clark, Chang and Jeffery (Biological Sciences) Laboratory—150 hours total; discussion—10 hours total. Prerequisite: course 120 concurrently. Students pick a research topic for intense study. Research will be related to a topic covered in course 120 and will be conducted at the Bodega Marine Laboratory with close supervision of resident faculty. (See above description for Bodega Marine Laboratory Program.)

121. Physiological Adaptation of Marine Organisms (G) 4. Clegg and Crowe (Zoology) Lecture—30 hours total; laboratory—30 hours total. Prerequisite: Biochemistry 101A-101B or Physiological Sciences 101A-101B; course 123 concurrently. Physiological adaptation to the environment among organisms in marine and estuarine habitats. Course offered at Bodega Marine Laboratory. (See above description for Bodega Marine Laboratory Program.)

121P. Physiological Adaptation of Marine Organisms/Advanced Laboratory Topics (G) 6. Clegg and Crowe (Zoology) Laboratory—150 hours total; discussion—10 hours total. Prerequisite: course 121 concurrently. Students pick a research topic for intense study. Research will be related to a topic covered in course 121 and will be conducted at the Bodega Marine Laboratory with close supervision of resident faculty. (See above description for Bodega Marine Laboratory Program.)

122. Population Biology and Ecology (G) 4. Strong, Botsford Lecture—30 hours total; laboratory—30 hours total. Prerequisite: lower division core in biological sciences; course 123 concurrently. Population and community processes. Emphasis on biological and physical processes affecting plant and animal populations in the array of habitats at the ecological reserve. Modelling as a basis for designing experiments. Course offered at Bodega Marine Laboratory. (See above description for Bodega Marine Laboratory Program.)

122P. Population Biology and Ecology/Advanced Laboratory Topics (G) 6. Strong, Botsford, Quinn Laboratory—150 hours total; discussion—10 hours total. Prerequisite: course 122 concurrently. Students pick a research topic for intense study. Research will be related to a topic covered in course 122 and will be conducted at the Bodega Marine Laboratory with close supervision of resident faculty. (See above description for Bodega Marine Laboratory Program.)

123. Undergraduate Colloquium in Marine Science (G) 1. Clark (Biological Sciences) Seminar—1 hour. Prerequisite: enrolled student at the Bodega Marine Laboratory. Series of weekly seminars by recognized authorities in various disciplines of marine science from within and outside the UC system. Includes informal discussion with speaker. Course will be held at Bodega Marine Laboratory. (P/NP grading only.) (See above description for Bodega Marine Laboratory Program.)

194H. Research Honors (2) I, II, III. Independent study—6 hours. Prerequisite: senior standing; Students majoring in Biological Sciences who have completed two quarters (5-5 units per quarter) of 198 and who qualify for the honors program as defined by the current catalog. Opportunity for Biological Sciences majors to pursue intensive research culminating in the writing of a senior thesis with the guidance of faculty advisors. (P/NP grading only.)

197T. Tutoring in Biological Sciences (1-3) I, II, III. The Staff (Associate Dean in charge) Prerequisite: upper division standing; appropriate background in biological sciences. Assisting in courses in Biological Sciences under the direction of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

298. Group Study (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: consent of instructor. Division of Biological Sciences staff members may offer group study courses under this number.

Professional Course

310. Effective Teaching of College Biology (G) 2. Thornton (Botany) Informal lecture/discussion—2 hours. Teaching function of an academic career; objectives, nature, and methods of effective teaching; design of curricula and courses; lecturing and leading discussions; examinations and grading; evaluation; counseling; innovation. (SU grading only.)

Biomedical Engineering (A Graduate Group)

David F. Katz, Ph.D., Chairperson of the Group (916-752-1135 or 752-2004)
Group Office, 3078 Bailer Hall (Chemical Engineering), (916-752-2040/0400)

Faculty. Includes faculty members from the three colleges, and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Biomedical Engineering offers programs of study and research leading to the M.S. and Ph.D. degrees. The programs of study are intended to prepare students for professional work in the effective integration of engineering with biology and medical sciences, including modeling of biological systems and the design of devices and procedures useful for human and veterinary medicine. It is a broad interdepartmental program which is best suited for students who are capable and comfortable with considerable independence. Each student together with an adviser defines a specific course of study suited to individual goals.

Preparation. The Group regards strong competence in mathematics and engineering as necessary for successful completion of study. Prior course work in these areas is not considered in the evaluation of applications. Some such training can in principle be acquired after admission to the Group, but it generally necessitates one or more additional years of study.

Faculty Advisers: F.E. Curry, (Human Physiology); M. Hubbard (Mechanical Engineering); M.L. Hull (Mechanical Engineering); D. Katz (Obstetrics and Gynecology, Chemical Engineering); R.B. Marin
Biophysics
(A Graduate Group)

Richard Nuccitelli, Ph.D., Chairperson of the Group
Office, 2320 Storer Hall (916-752-7468)

Faculty.
Includes faculty members from the De-
partments of Biochemistry and Biophysics, Chemistry,
Physics, Zoology, and others, and the School of Medicine.

Graduate Study.
The Graduate Group in Biophysics offers programs of study leading to M.S. and Ph.D. degrees. Biophysics is a broad interdepartmental program that is ideal for students who are comfortable with quantitative reasoning. The core of the program is on molecular biophysics. The curriculum consists of a variety of courses in biology, chemistry, and physics, followed by specialty courses related to research interests. Specific program requirements are decided upon by a committee consisting of a research supervisor, the graduate advisor, and a group member. The Committee meets to consider individual educational needs with the student.

Graduate Adviser, A. H. Maki (Chemistry).

Graduate Courses

200. Current Techniques in Biophysics (3) I, II, III. Lec- ture—2 hours. Prerequisite: graduate standing. Biochemistry 101A or Zoology 121A or the equiva- lent. Current techniques in biophysics research including fluorescence, magnetic resonance spectroscopy, calorimetry, optical spectroscopy, and electro- physiology. (S/U grading only.)

200A. Biophysics Laboratory (3) I, II, III. The Staff (Chairperson in charge).
Laboratory—18 hours (5 weeks). Prerequisite: course 200 may be taken concurrently. Laboratory assignment in the research laboratory of a Biophysic Graduate Group faculty member. Individual research projects with emphasis on methodology/procedural experience and experimental design.

200B. Biophysics Laboratory (5) I, II, III. The Staff (Chairperson in charge).
Laboratory—two 18-hour rotations (5 weeks each). Prerequisite: course 200 may be taken concurrently. Two five-week laboratory assignments in the research laboratories of Biophysics Graduate Group faculty members. Individual research problems with emphasis on methodology/procedural experience and experimental design.

290C. Research Conference in Biophysics (1) I, II, III. The Staff (Chairperson in charge).
Discussion—1 hour. Prerequisite: graduate standing in Biophysics and/or consent of instructor. Course 299 concurrently. Presentation and discussion of facul- ty and graduate-student research in biophysics. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge).
(S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge).
(S/U grading only.)

Botany
(Division of Biological Sciences)

Robert W. Peary, Ph.D., Chairperson of the Section
Office, 143 Robbins Hall (916-752-0617)

Faculty.
Michael G. Barbour, Ph.D., Professor
David E. Bayer, Ph.D., Professor
James D. Doyle, Ph.D., Professor (Botany, Geology)
Richard H. Falk, Ph.D., Professor

*Course not offered this academic year.

John J. Harada, Ph.D., Associate Professor
Donnel W. Kihodos, Ph.D., Professor
William J. Lucas, Ph.D., Professor
Robert F. Norris, Ph.D., Associate Professor
Sharron O’Neill, Ph.D., Associate Professor
Robert W. Peary, Ph.D., Professor
Marcel Rajmank, Ph.D., Associate Professor
Thomas L. Rost, Ph.D., Professor
Maureen L. Stanton, Ph.D., Associate Professor
Alan J. Stembler, Ph.D., Professor
Steven M. Theg, Ph.D., Assistant Professor
Robert M. Thomton, Ph.D., Senior Lecturer
Larry Vanderpoel, Ph.D., Professor
Grady L. Webster, Ph.D., Professor
Emeriti Faculty

Fredrick T. Addicott, Ph.D., Professor Emeritus
Floyd M. Ashton, Ph.D., Professor Emeritus
Daniel A. Axelrod, Ph.D., Professor Emeritus
Bruce A. Bonner, Ph.D., Associate Professor Emeritus
Paul A. Castellano, Ph.D., Professor Emeritus
Herbert B. Burdick, Ph.D., Professor Emeritus
Emanuel Epstein, Ph.D., Professor Emeritus
Ernest M. Gillord, Jr., Ph.D., Professor Emeritus
Hendrik J. Kellaperuma, Ph.D., Professor Emeritus
Norma A. Lang, Ph.D., Professor Emeritus
Jack Major, Ph.D., Professor Emeritus
Tereence M. Murphy, Ph.D., Professor
C. Ralph Stokhol, Ph.D., Professor Emeritus
John M. Tucker, Ph.D., Professor Emeritus
Kenneth Wells, Ph.D., Professor Emeritus

The Major Programs

Botany is the study of plants. This study includes many specialized areas: anatomy, cell and molecular biology, morphologically, and plant evolution, physiology, ecology, phyology, mycology, and weed science.

The Program:
The Bachelor of Science degree in Botany provides two options. Option I is for students who plan advanced study in botany or a related field and who wish to obtain a general secondary teaching credential or training for a position requiring detailed knowledge of plants. Option II is for students who plan advanced study in the physiology and/or biochemistry of plants. Students who wish to minor in the biology major in both plant biology and its impor- tance, should elect the Bachelor of Arts major program.

Choice of College:
The Bachelor of Arts degree is offered only in the College of Letters and Science. The Bachelor of Science degree in Botany is offered in both the College of Letters and Science and the College of Agricultural and Environmental Sciences. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the appropriate college sections for more information.

Students majoring in Botany in the College of Letters and Science may petition the Dean of the College to receive credit toward the 64 upper division units required for the degree for certain courses in organic chemistry that have been taken at other institutions prior to first enrollment at UC Davis and that are judged by the Chemistry department to be substantially the same as upper division courses in the subject at UC Davis. Students in the College of Agricultural and Environmental Sciences must accumulate 54 units of upper division courses to graduate. Further information can be obtained from the Division of Biological Sciences Office, 66 Briggs Hall.

Career Alternatives:
Botanists may teach, conduct research, or hold administrative positions. They are employed by educational institutions, federal and state agencies such as the U.S. Department of Agriculture, the Forest Service, Environmental Protection Agency, and private industry. Some botanists will have careers in the pharmaceutical, petroleum or chemical industries, seed companies, botanical gardens, plant nurseries or food companies. The development of plant biotechnology will offer challenging...
ing careers to botanically trained graduates, and many elect to continue study toward advanced degrees.

A. B. Major Requirements

UNITS
Preparatory Subject Matter 39-41
Biological Sciences 1A, 1B, 1C 15
Chemistry 1A, 1B, 8A, 8B 16
Statistics 13 or 102 4
Zoology 2-3L, or Microbiology 2 or 102, 2L, or Geology 3-3L 4-6
Depth Subject Matter 41-42
Botany 102 or 108, 105, 111, 112, 114, 116 29
or 140, 177 28
Genetics 100 4
Additional upper division units in Botany or related natural science courses 8-9
Total Units for the Major 80-83

Recommends Botany 100, 108, 119; Chemistry 1C.
For students with interests in specialized areas of botany (e.g., agricultural botany, ecology, systematic and evolution, morphology, plant physiology, etc.) certain substitutions, including courses in other sections or departments, may be allowed on prior consultation with a botany major adviser.

B. S. Major Requirements:

Option I: For those who plan (a) advanced study in some areas of botany or a related discipline, (b) to obtain a general secondary teaching credential, or (c) training for a position requiring a detailed knowledge of plants.

UNITS
Preparatory Subject Matter 59-63
Biological Sciences 1A, 1B, 1C 15
Chemistry 2A, 2B, 2C 15
Chemistry 8A-8B or 128A-128B-128C- 129A 6-11
Physics 6A, 6B, 6C 12
Mathematics 16A, 16B 6
Statistics 13 or 102 4
Depth Subject Matter 47
Biochemistry 101A, 101B 6
Genetics 100 4
Total Units for the Major 105-110

Recommended Botany 199 (3-5 units); German, French, or Russian. For students with interests in specialized areas of botany (e.g., agricultural botany, ecology, systematic and evolution, morphology, plant physiology, etc.), certain substitutions, including courses in other sections or departments, may be allowed on prior consultation with a botany major adviser.

Option II: For those who plan advanced study in physiology and/or biochemistry of plants.

UNITS
Preparatory Subject Matter 56-64
Biological Sciences 1A, 1B, 1C 15
Botany 2 3
Chemistry 2A-2B-2C or 2A-2B-2H-2CH 15
Chemistry 8A-8B or 128A-128B-128C- 129A 6-11
Mathematics 16A-16B-16C or 21A-21B- 21C 9-12
Physics 6A-6B-6C or 8A-8B-8C 12
Statistics 13 or 102 4
Depth Subject Matter 51-54
Biochemistry 101A, 101B, 101L, 112 15
Botany 105, 111, 112, 117 14
Genetics 100 4
Chemistry 107A, 107B 6
One course each in three of the following four areas 12-15
(a) Taxonomy and evolution: Botany 102, 108
(b) Morphology and cytology: Botany 116, 130, 140
(c) Physiological and cytology: Botany 114, 113, 119
(d) Ecology: Botany 118
Total Units for the Major 107-118

Recommended Botany 199 (3-5 units); German, French, or Russian; Engineering 5 or Computer Science Engineering 30.
Certain substitutions, including courses in other sections or departments, may be allowed on prior consultation with the botany major adviser.

Breadth Subject Matter
College of Agricultural and Natural Resources students 24
English and/or rhetoric 8
Social sciences and/or humanities 15
See also the Bachelor's Degree Requirements section for additional recommendations.

College of Letters and Science students:
Refer to the Bachelor's Degree Requirements section for a description of requirements to be completed in addition to the major.

Major Adviser: M. Rejmanek

Minor Program Requirements:

UNITS
Botany 23
To satisfy the minor in Botany, a student must complete Biological Sciences 1C (or equivalent introductory botany course) 5
Upper division units including at least one course from each of the four groups 18
(a) Structural botany: Botany 105, 116, 118, 119, 130
(b) Physiological botany: Botany 111, 112, Plant Science 102
(c) Ecological botany: Botany 101, 117, 141, Zoology 149
(d) Systematics and evolution: Botany 102, 116, 118, 119, 140
Botany 116, 118 and 119 may be offered toward satisfaction of either group (a) or (d) above. However, a single course may not satisfy both groups' requirements.

Minor Adviser: Same as for Major above.

Honors and Honors Programs:
Students in the honors list may elect to substitute a maximum of 5 units of 194H for 5 upper division units of the major regular; however, recommendations for high honors and highest honors at graduation are not dependent on the completion of 194H. Refer to the Academic Information section and the appropriate College section for Dean's Honors List Information.

Teaching Credential Subject Representative: R. N. Thornton. See also the Teacher Education Program.

Graduate Study: Graduate programs leading to M.S. and Ph.D. degrees are offered in cytology, plant physiology, plant molecular biology, anatomy, morphology, taxonomy, ecology, molecular biology, and allied areas. The resources of the section or department are augmented by appropriate courses offered in related departments.

Courses in Botany

Lower Division Courses
10. Plants, People and the Biosphere (3-5) II. Falk Lecture—3 hours; one weekend field trip (half-day); term paper. Ethnobotanical and ecological themes are emphasized in examining our dependence on plants. The ecological roles of plants, and the development of Botany as a contemporary science. Non-science majors are encouraged to enroll. General Education credit: Nature and Environment/Introductory.

92. Internship (1-12) I, II. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Botany Department faculty (P/N grading only).

98. Directed Group Study (1-5) I, II. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Primarily for lower division students. P/N grading only.

99. Special Study for Undergraduates (1-5) I, II. The Staff (Chairperson in charge) Prerequisite: consent of instructor. P/N grading only.

Upper Division Courses
100. Evolutionary Biology of Plants (4) II. Stanton, Doyle, III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to evolutionary principles and processes, emphasizing plants. Topics include: mutation, selection, gene flow, chromosome evolution, speciation, adaptive radiation, reconstruction of evolutionary relationships, evolutionary rates and trends, and origin of new groups.

101. Survey of Plant Communities of California (4) III. Barbour Lecture—2 hours; fieldwork—1 hour; term paper. Prerequisite: consent of instructor required; Biological Sciences 1C recommended. Structure of selected plant communities and the relationships of their component species to the environment. Recommended for non-majors. General Education credit: Nature and Environment/Introductory. Recommended GE preparation: Biology 10.

102. California Floristics (5) III. Webster Lecture—2 hours; lecture/discussion—1 hour; laboratory—6 hours (includes three one-day, weekend field trips). Prerequisite: Biological Sciences 1A, 1B, or the equivalent in plant science offered by the University of California, with emphasis on field recognition and identification of important vascular plant families and genera characterizing the major floristic regions. Lectures review the taxonomic diversity, evolutionary relationships, and geographic patterns of California flora.

105. Developmental Plant Anatomy (5) III. Post Lecture—3 hours; laboratory—6 hours. Prerequisite: Introductory plant biology (for example, Biological Sciences 1C). Survey of vascular plant structure and development. Current ideas and experimental evidence for developmental concepts.

108. Systematic Botany of Flowering Plants (5) III. The Staff Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Laboratory and field studies of the characters and relationships of the principal families and orders of flowering plants. Principles of taxonomy. Practice in identification of species by means of keys.

111. Plant Physiology (3) I. Lucas, Stemer Lecture—3 hours. Prerequisite: Biological Sciences 1C; Chemistry 8B (may be taken concurrently; Physics 5A, 5B, 5C recommended). Fundamental activities of plants; the plant cell as a functioning unit. Processes of absorption, movement, and utilization of water and minerals. Water loss, translocation, photosynthesis, respiration.

111D. Problems in Plant Physiology (11) Lucas, Stemer Discussion—1 hour. Prerequisite: course 111 concurrently. Discussion of problems and applications relating to principles presented in course 111. Students will be assigned problems each week showing novel applications of principles described in course 111 and will prepare answers to be delivered orally during the class period. (P/N grading only).

111L. Introductory Plant Physiology Laboratory (3) III. Bonner Discussion—1 hour; laboratory—6 hours. Prerequisite: course 111 (may be taken concurrently). Introduction to basic experimental techniques and instrumentation used in the investigation of plant physio-
logical processes such as water-solute absorption and their movement and utilization; translocation; transpiration; photosynthesis; respiration; growth, development and reproduction.

117. Plant Growth and Development (3) II. Thornton
Lecture—3 hours. Prerequisite: Biological Sciences 1C; Chemistry 8B; course 111 and Biochemistry 10A. A study of the processes, dynamics, and control of growth and development, metabolism.

118. Problems in Plant Growth and Development (1) II. Thornton
Discussion—1 hour. Prerequisite: course 112 co-conceived. Discussion of problems and applications relating to principles presented in course 112. Students will be assigned problems each week showing novel applications of the principles described in course 112 and will prepare answers to be delivered orally during class period. (P/NP grading only)

119. Morphology and Evolution of Vascular Plants (4) I. Gifford
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to form, structure, and evolutionary history of selected plants from major divisions; emphasis given to living forms and seed-creating plants and their possible relationships to plants of past eras; structure-function relationships and adaptations to changing environments.

120. Plant Ecology (4) I. Pearcy, Barbour, III. The Staff
Lecture—3 hours; three to five field trips (Friday or weekend). Prerequisite: Biological Sciences 1A, 1B, 1C; course 111B and course 102 or 108 strongly recommended. The study of interactions between plant populations or vegetation types and their environment. Special emphasis on California. Students taking course 117 cannot receive credit for course 101.

121. Introduction to Physiology (I. Lang
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Comparative morphology, physiology, development and reproduction of the major algal groups, including cyanobacteria. Focus is on phylogeny through serial endosymbioses. Laboratories study living organisms and have identification exercises. Ecological factors and commercial uses are considered.

122. Introductory Mycology (S. I. The Staff
Lecture—3 hours; laboratory—6 hours; one weekend field trips. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to structure, ontology, and taxonomy of selected species of the major divisions of the fungi.

123. Introduction to Water Science (3) B. Bayer
Lecture—2 hours; discussion—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; Chemistry 8A, 8B. Principles of weed science including mechanical, biological, and chemical control methods. Weed control in crop, pasture, range, brush, forests, aquatic, and non-crop situations. Types of herbicides. Application of herbicides. Sight identification of common weeds and demonstrations to illustrate the principles.

124. Biology of Weeds (3) I. Rejmanek
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Origin and evolution, beneficial and harmful aspects, reproduction and dispersal, seed germination and dormancy, growth and development, ecology, interaction of weeds and crops, natural successional, and herbicide-induced succession. Laboratories will emphasize taxonomy of weeds and demonstrate principles discussed in lectures.

125. Action of Herbicides (3) II. The Staff
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 120: Soil Science 100; courses 111, 111D recommended. An overview of the action of herbicides. Absorption, translocation, fate, mechanism of action and symptoms of herbicides in plants. Effects of herbicides on plant populations. Physical and molecular fate of herbicides in soils.

126. Molecular Biology of Plant Development (3) III. Murphy
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; Biochemistry 101B; Genetics 102A or concurrent. Topics covered include gene expression and gene structure, and their influence on growth and differentiation of higher plant tissues.

127. Survey of Cell Biology (4) I. Falk, Leslie (Zool.) II. Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 8B or 128C; introductory course in biochemistry strongly recommended. A survey of cell biology presenting the structure and function of the major cell organelles, topics discussed include cytoplasmic organelles, cell structure, membranes, biocatalysts, motility, cell synthesis, and cell division. Not open to students who have received credit for Zoology 121A or 121B. (Same course as Zoology 130.)

135. Mineral Nutrition of Plants (4) II. J. Richards (Land, Air and Water Resources and Brown (Pomology)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 111 or the equivalent. Evolution and scope of plant nutrition; essential and other elements; mechanisms of absorption and translocation; mineral metabolism, deficiencies and toxicities, genetic and ecological aspects of plant nutrition. (Same course as Plant Science 135.)

140. Paleobotany (4) I. Doyle
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to plant fossil records, beginning with invasion of land in the Silurian, emphasizing origin and evolution of major groups and adaptations and changes in composition and distribution of flora in relation to plate tectonics and climatic change.

144. Plant Geography (4) I. Webber, Elliott (Geography)
Lecture—3 hours; laboratory—3 hours. Prerequisite: upper-division course in plant ecology or taxonomy, i.e., one of courses 110, 122, 110, 121, or Geography 102. The worldwide distribution of the major plant communities and taxa is reviewed with respect to the historical background and the theoretical principles of biogeography. Laboratory studies introduce students to the interpretation of data and testing of biogeographical hypotheses.

150. Biology and Management of Freshwater Macrophytes (3) I. Anderson
Lecture—3 hours; two field trips. Prerequisite: Biological Sciences 1A, 1B, 1C; Chemistry 8B; course 111 or Water Science 122 recommended. Brief survey of common freshwater macrophytes, their reproduction, growth (photosynthetic nutrient utilization), development (herboma interactions), ecology and management. Offered in alternate years.

153. Anatomical and Cytological Methods (4) III. The Staff
Lecture—1 hour; discussion—1 hour; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Practical laboratory methods in preparing biological material for examination with the light microscope; special emphasis given to localization of cellular constituents; introduction to photomicrography and autoradiography.

190. Research Conference in Botany (1) I. and II. The Staff
Discussion—1 hour. Prerequisite: upper division standing in botany or related discipline; consent of instructor; introduction to research methods in botany. Describes major research projects, survey of appropriate literature, and discussion of research by faculty and students. May be repeated for credit. (P/NP grading only)

192. Internship (1-12) I. and III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: upper division standing; consent of instructor. Technical and/or professional experience on off campus. Supervised by a member of the Botany Department faculty. (P/NP grading only)

194H. Special Study for Honors Students (1-5) I., II, III. The Staff (Chairperson in charge)
Prerequisite: open only to major of standing on honors list. Independent study of selected topics under the direction of a member or members of the staff. Completion will involve the writing of a senior thesis. (P/NP grading only)

197T. Tutoring in Botany (1-5) I., II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I., II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses

202. Plant Ecophysiology (3) II. Pearcy
Lecture—3 hours. Prerequisite: courses 111, 112, 117. Study of the mechanisms of physiological adaptation of plants to their environment. Offered in alternate years.

203. Ecophysiological Methods (3) III. Pearcy
Lecture—1 hour; laboratory—4 hours, individual project; one Saturday field trip to be arranged. Prerequisite: courses 111, 117, and consent of instructor. A laboratory and lecture course covering basic concepts underlying the research methods and instrumentation useful in plant ecophysiology.

205A. Advanced Plant Physiology (3) III. Lucas
Lecture—3 hours. Prerequisite: course 112; Chemistry 10A or consent of instructor. Cellular physiology, plant water relations, translocation and membrane transport.

205B. Advanced Plant Physiology (3) II. Stamler, They
Lecture/discussion—3 hours. Prerequisite: course 111, 112, and Biochemistry and Biophysics 101B. Photosynthesis, photosphorylation, chloroplast metabolism and biology. Offered in alternate years.

205C. Advanced Plant Physiology (3) I. The Staff
Lecture—3 hours. Prerequisite: course 205B (may be taken concurrently); Biochemistry 101B; Laboratory procedures in plant physiology. Experiments demonstrate the theories and practice of modern instrumentation, and are designed to illustrate subject matter of course 205A.

206B. Advanced Plant Physiology Laboratory (3) I. and II. Lucas
Laboratory—6 hours; term paper. Prerequisite: course 205A (may be taken concurrently). Laboratory procedures in plant physiology. Experiments selected to follow subject-matter sequence of course 205B.

205C. Advanced Plant Physiology Laboratory (3) I. The Staff
Laboratory—9 hours. Prerequisite: course 205C (may be taken concurrently). Laboratory procedures in plant physiology. Experiments selected to follow subject-matter sequence of course 205C.

212. Physiology of Herbivorous Action (3) I. Bayer
Lecture—3 hours. Prerequisite: courses 112, 122. Study of the fundamental processes involved in the physiological action of herbicides. Detailed consideration of the fate of herbicides in plants.

215. Light and Plant Growth (3) I. Bonner
Lecture—3 hours. Prerequisite: courses 204A, 205B, 205C. Physics 5B. Mechanisms and phenomena involved in the control of plant growth by light. Photoperiodism, photomorphogenesis, phototropism, and certain aspects of photosynthesis. Course offered in alternate years.

Course not offered this academic year
221. Special Topics in Plant Physiology II. The Staff Discussion—1 hour; seminar—1 hour. Analysis in depth of recent advances in plant physiology. Lectures and discussions by research specialists. Term paper integrating and analyzing lectures required. May be repeated for credit. (SIU grading only.)

222. Special Topics in Plant Morphology, Systematics, and Ecology II. The Staff Seminar—2 hours. Analysis of recent advances in plant structure and evolution. Lectures and discussions by research specialists. Term paper integrating and analyzing lectures required. May be repeated once for credit. (SIU grading only.) Offered in alternate years.

227. Plant Molecular Biology (4) I. O'Neill, Brit Lecture/discussion—4 hours. Prerequisite: Genetics 102A or Biochemistry 153. Molecular aspects of higher plant biology with emphasis on gene expression. Plant nuclear and organelle genome organization, gene structure, mechanisms of gene regulation, gene transfer, and special topics related to development and response to biological and environmental stimuli.

228. Plant Molecular Biology Laboratory (5) II. Thieg, Bennett (Vegetable Crops) Lecture—2 hour; laboratory—10 hours. Prerequisite: Biology 102B or Genetics 102A. Laboratory course in molecular genetics and consent of instructors. Research methods in plant molecular biology. Topics include analysis of gene expression, characterization of gene structure, and gene transfer/technology. Emphasis will be placed on analysis of developmentally regulated gene expression. (Same course as Vegetable Crops 228.)

229. Molecular Biology of Plant Reproduction (3) II. O'Neill Lecture—3 hours. Molecular genetic basis of plant reproduction. Emphasis on understanding developmentally regulated gene expression as it relates to the major changes that occur during plant reproduction and on the genetic control of flowering. Offered in alternate years.

231. Biological Electron Microscopy (1) I. Falk Lecture—1 hour. Prerequisite: consent of instructor. Introduction to biological microscopy. Areas covered are: electron optics, electron specimen interactions, and vacuum systems.

231L. Biological Electron Microscopy Laboratory (1) I. Falk Laboratory—9 hours. Prerequisite: consent of instructor; course 231 (may be taken concurrently). Introduction to biological electron microscopy. Areas covered are: specimen preparation and microscope operation. Limited enrollment.

240. Paleobotany and Angiosperm Evolution (4) III. Doyle Lecture—3 hours; laboratory—3 hours. Prerequisite: course 108, 116, or 140. Critical analysis of the plant fossil record as a source of evidence on origin, evolution, and phylogeny of the angiosperms. Cretaceous and Tertiary climates, geographic history of modern taxa, and origin of modern vegetation types. Offered in alternate years.

255. Principles of Plant Taxonomy (4). Lecture—2 hours; laboratory—6 hours. Prerequisite: course 108; Genetics 103 recommended. Principles of plant taxonomy; phylogenetic vs. phenetic classification; examples of the way in which various disciplines—anatomy, embryology, biochemistry, etc.—elucidate problems of taxonomic relationships, mainly of genera and higher categories.

256A. Experimental Plant Taxonomy (2) II. Kyhos Lecture—1 hour; laboratory—3 hours. Prerequisite: course 108; course 117 and Genetics 103 recommended. Application of experimental techniques to the elucidation of taxonomic problems and evolutionary relationships in higher plants. Offered in alternate years.

256B. Experimental Plant Taxonomy (2) III. Kyhos Lecture—1 hour; laboratory—3 hours. Prerequisite: course 256A. Laboratory study of course 256A. Study of variation in natural populations in relation to taxonomy; the application of population sample analysis, cytogenetics, transplant studies, etc., to the solution of taxonomic problems and the clarification of relationships. Offered in alternate years.

290C. Research Conference in Botany (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: graduate standing and/or consent of instructor. Presentation and discussion by faculty and graduate students of research projects in botany. May be repeated for credit. (SIU grading only.)

291. Seminars in Botany (1) I, II, III. The Staff Seminar—1 hour. Review of current literature in botanical disciplines. Disciplines and special subjects to be announced quarterly. Students present and analyze assigned topics. May be repeated for credit. (SIU grading only.)

295. Seminar in Mycology (1) I. Butler (Plant Pathology) Seminar—1 hour. Review and evaluation of current literature and research in mycology. (SIU grading only.) (Same course as Plant Pathology 295.)

297. Tutoring in Botany I-IV. I, II, III. The Staff Prerequisite: consent of instructor. Designed for graduate students who desire teaching experience, but are not teaching assistants. (SIU grading only.)

298. Group Study I-IV. I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SIU grading only.)

Professional Course

360. The Teaching of Botany (2) I, II, III. The Staff (Chairperson in charge) Discussion—2 hours. Prerequisite: graduate standing; concurrent appointment as a teaching assistant in Botany. Consideration of the problems of teaching botany, especially of preparing for and conducting discussions, guiding student laboratory work, and the formulation of questions and topics for examinations. (SIU grading only.)

Botany (A Graduate Group)

Students admitted into the Botany Graduate Group before June 10, 1989, will be allowed to complete their degree in this subject. New students, however, should see the Plant Biology Graduate Group section in this catalog.

Information, 152 Robbins (916-752-7094).

Cantonese
See Asian American Studies

Course not offered this academic year.
299. Current Topics in Cell and Developmental Biology (1-2) I, II, III. The Staff (Chairperson in charge). Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Seminars presented by guest lecturers describing their research activities. May be repeated for credit. (S/U grading only.)

290C. Research Conference in Cell and Developmental Biology (1-2) I, II, III. The Staff (Chairperson in charge). Discussion—1 hour. Prerequisite: graduate standing in Cell and Developmental Biology and/or consent of instructor; course 299 concurrently. Presentation and discussion of research conducted by graduate-student research in cell and developmental biology. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). (S/U grading only.)

298. Research (1-12) I, II, III. The Staff (Chairperson in charge). (S/U grading only.)

Cell Biology and Human Anatomy
See Medicine, School of

Chemistry
(College of Letters and Science)
Kevin M. Smith, Ph.D., Chairperson of the Department
William H. Fink, Ph.D., Vice-Chairperson of the Department
Peter A. Rock, Ph.D., Vice-Chairperson of the Department
Department Office, 106 Chemistry Building
(916-752-4030/6835, FAX 916-752-6835)

Faculty
Thomas L. Allen, Ph.D., Professor
Alan B. Batch, Ph.D., Professor
Albert I. Bottini, Ph.D., Professor
R. David Brito, Ph.D., Assistant Professor
Timothy C. Donnelly, Ph.D., Lecturer
W. Reid Fawkett, Ph.D., Professor
Mark W. Fink, Ph.D., Professor
Timothy C. Donnelly, Ph.D., Lecturer
Hilton Hope, Cand. real., Professor
William M. Jackson, Ph.D., Professor
S. Kauzlarich, Ph.D., Assistant Professor
Joel E. Keizer, Ph.D., Professor
Paul B. Kelly, Ph.D., Assistant Professor
Mark A. Kurth, Ph.D., Professor
Gerd N. Lemar, Ph.D., Professor
Donald R. Land, Ph.D., Assistant Professor
Carlo B. Lebrilla, Ph.D., Assistant Professor
August H. Maki, Ph.D., Professor
Donald A. McQuarrie, Ph.D., Professor
Claude P. Meares, Ph.D., Professor
R. Bryan Miller, Ph.D., Professor
Tadeusz P. Molinski, Ph.D., Assistant Professor
W. Kenneth Musker, Ph.D., Professor
Kristian P. Nambral, Ph.D., Assistant Professor
Michael H. Nantz, Ph.D., Assistant Professor
Charles P. Nash, Ph.D., Professor
Philip P. Newton, Ph.D., Professor
Peter A. Rock, Ph.D., Professor
Carl W. Schmid, Ph.D., Professor
Neil E. Schore, Ph.D., Professor
Kevin M. Smith, Ph.D., Professor
James H. Swinheart, Ph.D., Professor
Joyce Takalo, Ph.D., Adjunct Professor

Dino S. Teri, Ph.D., Professor
Nancy S. True, Ph.D., Professor
Susan C. Tuck, Ph.D., Assistant Professor
Fred E. Wood, Ph.D., Lecturer

Emeriti Faculty
Lawrence J. Andrews, Ph.D., Professor Emeritus
Robert K. Brinton, Emeritus
Raymond M. Keeler, Ph.D., Professor Emeritus
Richard E. Keeler, Ph.D., Professor Emeritus
Edgar P. Painter, Ph.D., Professor Emeritus
David H. Vollman, Ph.D., Professor Emeritus
George S. Zweifel, Sc.D., Professor Emeritus

The Major Programs
Chemistry studies the composition of matter, its structure, and the means by which it is converted from one form to another.

The Program. Two programs in chemistry are available, one leading to the Bachelor of Arts and the other to the Bachelor of Science. Students who are interested in chemistry as a profession would normally elect the program leading to the B.S. degree, which is accredited by the American Chemical Society. The curriculum leading to an A.B. degree offers a less intensive program in chemistry and is appropriate for a student with a strong interest in chemistry, but who also has another goal such as professional school preparation or secondary school teaching.

Career Alternatives. Chemistry graduates with bachelor's degrees are employed extensively throughout industry in production supervision, quality control, technical marketing, and other areas of applied chemistry. Some of the firms employing these graduates are in the food and beverage processing industries, the petroleum industry, paper and textile production, and the chemical industry, pharmaceuticals, and the photographic industry. The bachelor program also provides chemistry graduates with the rigorous preparation needed for the advanced degrees required for careers in research and education.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Major Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2A-2B-2C or 4A-4B-4C</td>
<td>15</td>
</tr>
<tr>
<td>Physics 5A-5B-5C</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics 21A-21B-21C or 16A-16B-16C</td>
<td>18</td>
</tr>
<tr>
<td>Subtotal</td>
<td>45</td>
</tr>
</tbody>
</table>

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Major Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2A-2B-2C or 4A-4B-4C</td>
<td>15</td>
</tr>
<tr>
<td>Physics 5A-5B-5C</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics 21A, 21B, 21C, 21D, 22A</td>
<td>22</td>
</tr>
<tr>
<td>Subtotal</td>
<td>50</td>
</tr>
</tbody>
</table>

Graduate Study. The Department of Chemistry offers programs of study and research leading to the M.S. and Ph.D. degrees in Chemistry. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Chemistry. See also the Graduate Division section in this catalog.

Courses in Chemistry

Lower Division Courses
1A, 1B. General Chemistry
These courses have been cancelled and replaced by courses 2A, 2B.

1C. General Chemistry (5) I. Donnelly, Power
Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 18 or 4B. Continuation of course 1B. Chemical kinetics, bonding, chemistry of the main group elements, coordination chemistry, nuclear chemistry, application of principles of chemistry to qualitative analysis.

2A. General Chemistry (5) I. McQuarrie, Nash; Wood; II. Donnelly, LaMar and staff
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: high school chemistry and physics strongly recommended; satisfactory score on diagnostic examination or course B with grade of C or better. Periodic table, stoichiometry, chemical equations, physical properties and kinetic theory of gases, atomic and molecular structure and chemical bonding. Laboratory experiments in stoichiometric relations, properties of gases, atomic spectroscopy, and introductory quantitative analysis.

2AH. Honors General Chemistry (5) I. Timp
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: high school chemistry and physics; satisfactory score on diagnostic examinations; Mathematics 21A (may be taken concurrently) or consent of instructor. Limited enrollment course with a more rigorous treatment of material covered in course 2A. Students completing course 2AH can continue with course 2BH or 2B.

2B. General Chemistry (5) I. Nash, Wood and staff; II. Allen and staff
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: course 2A or 2AH. Continuation of course 2A. Condensed phases and intermolecular forces, chemical thermodynamics, chemical equilibria, acids and bases, solubility. Laboratory experiments in thermodynamics, chemical equilibrium, and quantitative analysis using volumetric methods.

2BH. Honors General Chemistry (5) I. Wood
Lecture—3 hours; laboratory/discussion—4 hours. Prerequisite: course 2A or 2AH. Continuation of course 2A. Condensed phases and intermolecular forces, chemical thermodynamics, chemical equilibria, acids and bases, solubility. Laboratory experiments in thermodynamics, chemical equilibrium, and quantitative analysis using volumetric methods.

2CH. Honors General Chemistry (5) I, II. Swinhearth
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 28 or 2CH. Continuation of course 2B. Kinetics, physical chemistry, spectroscopy, structure and bonding in transition metal compounds, applications of principles to chemical reactions. Laboratory experiments in kinetics, spectroscopy, and quantitative analysis using instrumental methods, qualitative analysis, and inorganic and organic synthesis.

4AH. Honors General Chemistry (5) I. Lebrilla, III. Donnelly
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 1C with a grade of C or better. An introduc-
tion to the principles and methods of quantitative chemical analysis with emphasis on the application of equilibrium theory to analytical problems. Students have received credit for the 4A-4B-1C sequence may enroll in course 5 for 2 units of credit only; not open to students who have received credit for 2A-2B-3C or 4A-4B-4C.

8A. Organic Chemistry: Brief Course (3) I. Takaha- hasii; II. F. Friedch. Lecture—3 hours. Prerequisite: course 1B with a grade of C or higher. With course 8B an introduction to the nomenclature, structure, chemistry, and reaction mechanisms of organic compounds, intended for students requiring in areas other than chemistry.

8B. Organic Chemistry: Brief Course (3) II. Taka- hasi; III. S. Friedch. Lecture—2 hours; laboratory—3 hours. Prerequisite: course 8A. Continuation of course 8A. The laboratory is concerned primarily with the study of the properties and chemistry of the common classes of organic compounds.

9. Introduction to General Chemistry (2) I. Donnelly. Lecture/discussion—3 hours. Prerequisite: chemistry diagnostic examination; not open for credit to students who have passed the exam or completed course 2A or 2AH. Introduction to chemistry. Students who complete course 9 will receive only 3 units of credit; course 2A. Course 9 must be taken for a letter grade and may not be repeated.

10. Concepts of Chemistry (4) I. The Staff. Lecture—4 hours. A survey of basic concepts and contemporary applications of chemistry. Designed for non-chemistry majors and not as preparation for Chemistry 1A. Course not open to students who have had Chemistry 1A; but students with credit for course 10 may take Chemistry 1A for full credit. General Education credits: Nature and Environment/Introductory.

98. Directed Group Study (1-5-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor; Primarily for lower division students (transfer only)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

107A. Physical Chemistry for the Life Sciences (3) I. Fink. Lecture—3 hours. Prerequisite: course 4C or 5 or consent of instructor. Mathematics 16C or 21C, one year of college level physics. A basic course in physical chemistry intended for majors in the life science areas. Introduction to the fundamental principles of chemistry including equation processes and solutions of non-electrolytes. Kinetics, theory of gases and liquids. Transport processes in liquids and solutions.

107B. Physical Chemistry for the Life Sciences (3) II. Rock. Lecture—3 hours. Prerequisite: course 107A or 110A. Continuation of course 107A. Electrophysics and the thermodynamics of simple electrolyte solutions, Chemical reaction rates processes, Introduction to spectroscopy; Atomic and molecular structure, X-ray crystallography, radiation and nuclear chemistry, and to surface science and cellular systems. Considerations on bioreversible processes.

108. Physical Chemistry of Macromolecules (3) III. Meares. Lecture—3 hours. Prerequisite: course 107B or 110C. Physical properties and characterization of macromolecules with emphasis upon those of biological interest. Structural thermodynamics, optical and transport properties of polymers in bulk and in solution. Physical characterization methods. Special topics on the properties of polyelectrolyte systems.

110A. Physical Chemistry: Thermodynamics (3) I. Rock; II. M. Kelly. Lecture—3 hours. Prerequisite: course 5 or 4C; Mathematics 21C or 16C, one year of college physics. Detailed development of the principles of chemical thermodynamics.

110B. Physical Chemistry: Quantum Mechanics (3) I. Tucker; II. V. True. Lecture—3 hours. Prerequisite: course 110A. Atomic and molecular structure and spectra.

110C. Physical Chemistry: Kinetics (3) III. Jackson; II. Hahn. Lecture—3 hours. Prerequisite: course 110B. Statistical thermodynamics, kinetic theory of gases, and chemical kinetics.

111. Physical Chemistry Methods and Applications (4) I. Hope; III. Trini. Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 110C (may be taken concurrently) and 115. Introduction to the chemical literature, methods of data analysis, laboratory use of physical measurements, techniques. Laboratory experiments from the areas of thermodynamics, spectroscopy, and kinetics.

115. Instrumental Analysis (4) II. Fawcett. Lecture—2 hours; laboratory—6 hours. Prerequisite: course 110A. Theory and practice of modern instrumental techniques of chemical analysis with emphasis on electroanalytical and spectroscopic methods and separation science. Introduction to instrumentation electronics. Laboratory focuses on trace analyses of samples having practical significance.

118A. Organic Chemistry for Health and Life Sciences (4) I. Schiek; II. Takahashii. Lecture—3 hours; laboratory—3 hours. Prerequisite: course 118C 4C with a grade of C or higher. The 118A, 118B, 118C series is designed to fulfill the requirements of students planning professional careers in the health sciences. A rigorous, in-depth presentation of basic principles with emphasis on stereochemistry and on preparation and reactions of nonaromatic hydrocarbons, alkyl halides, alcohols and ethers.

118B. Organic Chemistry for Health and Life Sciences (4) I. E. Friedch; II. Smith. Lecture—3 hours; laboratory—3 hours. Prerequisite: course 118A. Continuation of course 118A, with emphasis on spectroscopy and the preparation and reactions of aromatic hydrocarbons, organometallic compounds, aldehydes and ketones.

118C. Organic Chemistry for Health and Life Sciences (4) II. Nambri; III. E. Friedch. Lecture—3 hours; laboratory—3 hours. Prerequisite: course 118B. Continuation of course 118B, with emphasis on the preparation, reactions and identification of carboxylic acids and their derivatives, alkyl and acyl amines, B-dicarbonyl compounds, and various classes of normally occurring, biologically important compounds.

120. Physical Chemistry Laboratory: Advanced Methods (3) II. Hope. Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 110C and 111. Design of experiments, experimental control and data acquisition using microcomputers. Laboratory emphasizes the use of microcomputers in advanced physical-chemical experiments.

121. Introduction to Molecular Structure and Spectra (4) III. Fink. Lecture—4 hours. Prerequisite: course 110B. Modern theoretical and experimental methods used to study problems of molecular structure and bonding; emphasis on spectroscopic techniques.

124A. Inorganic Chemistry: Fundamentals (3) I. Land. Lecture—3 hours. Prerequisite: course 1C or 4C. Symmetry, molecular geometry and structure, molecular orbital theory of bonding (polyatomic molecules and transition metals), solid state chemistry, energetics and spectroscopy of inorganic compounds.

124B. Inorganic Chemistry: Main Group Elements (3) II. Kautzner. Lecture—3 hours. Prerequisite: course 124A. Synthesis, structure and reactivity of inorganic and heterocyclic molecules containing the main group elements.

124C. Inorganic Chemistry: d and f Block Elements (3) III. Swinehart. Lecture—3 hours. Prerequisite: course 124A. Synth-...
194A-194HB-194HC. Undergraduate Honors Research (2-2-2) I-II-III. The Staff (Chairperson in charge) independent study—2 hours. Prerequisite: open to chemistry majors who have completed 135 units and who qualify for the honors program. Original research under the guidance of a faculty adviser, culminating in a written exploratory report. (Deferred grading only, pending completion of sequence.)

195. Industrial Chemistry (1) I. Kurfth Seminars—2 hours. Prerequisite: junior or senior standing in Chemistry. Designed to give Chemistry undergraduate students an in-depth perception of careers in the chemical industry. Professional chemists will give seminars describing both research and career insights. The research seminar will be technical while the career-oriented seminar will be more general. (P/NP grading only.)

197. Projects in Chemical Education (1-4) I, II, III. The Staff (Chairperson in charge) Discussion and/or laboratory. Prerequisite: consent of instructor. Participation may include development of laboratory experiments, lecture demonstrations, aututorial modules or assistance with laboratory sessions. May be repeated for credit for a total of 12 units. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics and physics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-6) I. Kurfth (Chairperson in charge) Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics, and physics. (P/NP grading only.)

Graduate Courses

201. Basic Chemical Uses of Symmetry and Group Theory (2). Kauzlarich Lecture—2 hours. Prerequisite: graduate standing in chemistry. Symmetry elements, operations and point group, molecular symmetry. Representations of groups. Applications to molecular orbitals and molecular vibration.

205. Symmetry, Spectroscopy, and Structure (3) II. Land Lecture—3 hours. Prerequisite: course 201 or the equivalent. Vibrational and rotational spectra; electronic spectra and photoelectron spectroscopy; molecular orbital theory; electronic and nuclear quadrupole resonance spectroscopy; nuclear magnetic resonance spectroscopy; other spectroscopic methods.

210C. Quantum Chemistry: Molecular Spectroscopy (3) I. Towe Lecture—3 hours. Prerequisite: course 210B. Molecular spectroscopy: Born-Oppenheimer approximation, rotational and electronic transitions in diatomic and electronic spectroscopy, spin systems, and molecular photochemistry.

211A. Advanced Physical Chemistry: Statistical Thermodynamics (3) I. Brit Lecture—3 hours. Prerequisite: consent of instructor. Principles and applications of statistical mechanics: ensemble theory; statistical thermodynamics of gases, solids, liquids, electrolyte solutions and polymers; chemical equilibrium.

211B. Statistical Mechanics (3) III. Keizer Lecture—3 hours. Prerequisite: course 211A. Statistical mechanics of nonequilibrium systems, including the rigorous kinetic theory of gasses, continuum mechanics and transport in dense fluids, stochastic processes, brownian motion and linear response theory. Offered in alternate years.

212. Chemical Dynamics (3) J. Jackson Lecture—3 hours. Prerequisite: consent of instructor. Introduction to the chemical dynamics of large systems, reaction dynamics for graduate students in chemistry. Emphasis will be placed on experimental techniques as well as emerging physical models for characterizing chemical reactions at a microscopic level. Offered in alternate years.

215. Theoretical and Computational Chemistry (3) III. Keizer, McQuarrie, Fink Lecture—3 hours. Prerequisites: courses 211A and 211B, consent of instructor. Mathematics of wide utility in chemistry, computational methods for guidance or alternative to experiment, and modern formulations of chemical theory. Emphasis will vary in successive years. May be repeated for credit when topical emphasis varies.

216. Magnetic Resonance Spectroscopy (3) II. Brit Lecture—3 hours. Prerequisite: courses 210A, 210B (may be taken concurrently). Quantum mechanics of spin and orbital angular momentum, nuclear magnetic resonance, electronic spin and magnetic susceptibility; nuclear magnetic resonance; electron spin resonance; theory of g-tensor in organic and transition ion, spin Hamiltonians, nuclear quadrupole resonance, spin relaxation processes. Offered.

217. X-Ray Structure Determination (3) II. Hope Lecture—3 hours. Prerequisites: consent of instructor. Introduction to x-ray structure determination; crystals, symmetry, diffraction pattern, sample preparation and handling, diffraction apparatus and data collection, methods of structure solution and refinement, presentation of results, text, tables and graphs, crystallographic literature.

218. Physical Principles of Macromolecular Structure (3) III. Kell Lecture—3 hours. Prerequisite: course 211A or the equivalent. The relationship of larger order macromolecular structure to subunit composition; equilibrium properties and macromolecular dynamics; physical-chemical determinations of macromolecular structure. Offered in alternate years.

219. Spectroscopy of Organic Compounds (3) I. Molinski Lecture—3 hours. Prerequisite: course 128C or the equivalent. Identification of organic compounds and investigation of stereochemical and reaction mechanisms using spectroscopic methods—principally NMR, IR, and MS.

221-A. Special Topics in Organic Chemistry (3) I, II, III. Staff Lecture—3 hours. Selected topics of current interest in organic chemistry. Topics will vary each time the course is offered, and in general will emphasize the research interests of the staff member giving the course.

226. Principles of Transition Metal Chemistry (3) I. Balch Lecture—3 hours. Prerequisite: course 124A or the equivalent. Electronic structure, bonding, and reactivity of transition metal compounds.

228A. Bioinorganic Chemistry (3) III. Sseinert Lecture—3 hours. Prerequisite: course 226 or consent of instructor. Definitive role of inorganic chemistry in the biological world by identifying the functions of metal ions and metal group compounds in biological systems and discussing the chemistry of model and isolated biological compounds. Offered every third year (next offering Spring 1994).

228B. Main Group Chemistry (3) III. Power Lecture—3 hours. Prerequisite: course 226 or consent of instructor. Synthesis, physical properties, reactions and bonding of main group compounds. Discussions of concepts of electronic deficiency, hypervalency, and non-classical bonding. Chemistry of the main group elements will be treated systematically. Offered every third year.

229C. Solid-State Chemistry (3) III. Kauzlarich Lecture—3 hours. Prerequisite: courses 124A, 110B, 226, or the equivalent. Design and synthesis, structure and bonding of solid-state compounds; physical properties and characterization of solids; topics of current interest such as low-dimensional materials, inorganic polymers, and materials for catalysis. Offered every third year (next offering Spring 1995).

231. Organic Synthesis: Methods and Strategies (3) III. Nartz Lecture—3 hours. Prerequisite: course 131 or the equivalent. Provides a broadly based discussion of current strategies in synthetic organic chemistry. Focus on methods for constructing carbon frameworks, controlling relative stereochemistry, and controlling absolute stereochemistry. Retrosynthetic strategies will be discussed throughout the lecture.

233. Physical-Organic Chemistry (3) III. Bottini Lecture—3 hours. Prerequisite: courses 128A-128B-128C and 110A-110B-110C or the equivalent. Introduction to elementary concepts in physical-organic chemistry including the application of simple numerical techniques in characterizing and modeling organic reactions.

236. Chemistry of Natural Products (3) II. Miller Lecture—3 hours. Prerequisite: course 128C or the equivalent. Advanced treatment of chemistry of naturally occurring compounds isolated from a variety of sources. Topics will include isolation, structure determination, chemical transformations, total synthesis, biological activity, and biosynthesis. Biosynthetic origin will be used as a unifying theme.

237. Bioorganic Chemistry (3) I. Nambiar Lecture—3 hours. Prerequisite: course 128C or the equivalent. Structure and function of biomolecules; molecular recognition; enzyme reaction mechanisms; design of suicide substrates for enzymes; enzyme engineering; design of artificial enzymes and application of enzymes in organic synthesis. Offered in alternate years.

240. Advanced Analytical Chemistry (3) I. Fawcett Lecture—3 hours. Prerequisite: courses 110A and 115A or equivalent. Treatment of experimental data; thermodynamics of electrolyte and non-electrolyte solutions; complex equilibria in aqueous and non-aqueous solutions; potentiometry and special ion electrodes; stability of liquid solutions; fundamentals of separation science, including column, gas and liquid chromatography.

241-D. Special Topics in Analytical Chemistry (3) III. Lebrilla Lecture—3 hours. Prerequisite: consent of instructor. Series of advanced, research-oriented, special-topics courses in analytical chemistry. Topics will vary each time course is offered.

250. Seminar (1) I, II, III. Kauzlarich, Lebrilla Seminar—1 hour. Prerequisite: consent of instructor. (SUJ grading only.)

252. Introduction to Chemistry Research (1) I. The Staff (Smith in charge) Discussion—2 hours. Designed for incoming graduate students preparing for higher degrees in chemistry. Group and individual guidance in research activities in the Department and research topic selection. (SUJ grading only.)

255. Industrial Chemistry (1) I. Kurfth Seminar—2 hours. Prerequisite: graduate standing in Chemistry. Designed to give Chemistry graduate students an in-depth perception of careers in the chemical industry. Professional chemists will give seminars describing both research and career insights. The research seminar will be technical while the career
The Program. The major allows for two emphases, one in humanities and the other in society. The humanities track introduces the student to Chicano history and social sciences, but stresses in-depth knowledge of the Spanish language, linguistics, literature, and Chicano culture. The humanities track also develops skills in cross-cultural education and teaching, and provides professional preparation in communications, fine arts, and cultural studies. The society track combines traditional courses in the social sciences with courses that deal intensively with the contemporary Chicano experience. The society emphasis promotes a greater understanding of the social, political, and cultural life of Chicano people, and provides a solid basis of knowledge for those who wish to work in a cross-cultural setting.

Career Alternatives. A degree in Chicano studies prepares students for careers in bilingual education, community service, and public administration. It is also excellent preparation for graduate or professional school.

Chicano (Mexican-American) Studies

A.B. Major Requirements:

Humanities Emphasis:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicano Studies 10</td>
<td>History of Chicano Literature</td>
<td>4</td>
</tr>
<tr>
<td>Chicano Studies 20</td>
<td>History of Chicano Literature</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 1</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 2</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 3</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 4</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
</tbody>
</table>

Society Emphasis:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicano Studies 10</td>
<td>Chicano Studies 10</td>
<td>4</td>
</tr>
<tr>
<td>Chicano Studies 20</td>
<td>Chicano Studies 20</td>
<td>4</td>
</tr>
<tr>
<td>Chicano Studies 30</td>
<td>Chicano Studies 30</td>
<td>4</td>
</tr>
<tr>
<td>Chicano Studies 40</td>
<td>Chicano Studies 40</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 1</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 2</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 3</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 4</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units for the Major:

32. Advanced Methods of Teaching Chemistry (3)

Wood

332. Advanced Methods of Teaching Chemistry (3)

Wood

Course not offered this academic year.

Minor Program Requirements:

This interdisciplinary minor provides the student with a general overview of Chicano/Mexicanos in terms of their history, culture, political movement, and role in the society of the Southwestern United States.

Chicano (Mexican-American) Studies:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicano Studies 10</td>
<td>History of Chicano Literature</td>
<td>4</td>
</tr>
<tr>
<td>Chicano Studies 20</td>
<td>History of Chicano Literature</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 1</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 2</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 3</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 4</td>
<td>Spanish Culture</td>
<td>3</td>
</tr>
</tbody>
</table>

Two elective courses to be chosen from Chicano Studies 101, 132, 154, 155, 156, Education 151, History 169A or 169B (not to duplicate one of the above).

7-8 Courses in Chicano Studies

Lower Division Courses

10. Introduction to Chicano Studies (4) I. Sosa-Riddell

Lecture—3 hours; discussion—1 hour. Analysis of the situation of the Chicano (Mexican-American) people, emphasizing their history, literature, political movements, education, and related areas.

20. Development of Chicano Culture and Literature (4) I. Chabram

Lecture—3 hours; discussion—1 hour. Knowledge of Chicano culture and literary forms from the 1940's to the present. Course explores how Chicano literary texts and other artistic forms reflect social, political, and cultural transformations.

21. Chicano/Latino Health Care Issues (4) I. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 10. Overview of health issues of Chicano/Latinos in the State of California; role of poverty, lack of education in limited access to health care.

30. United States Political Institutions and Chicano (4) I. The Staff

Lecture/discussion—3 hours; term paper. Overview of the major political institutions and ideologies of the United States and the Chicano people's historical and contemporary role in elections, and responses to them. Theory, methods, and critical analysis.

40. Chicanos in the Economy (4) I. Rochin

Lecture—4 hours. Introduction to Chicano/Latinos in the economy and related topics. Topics include census counts, demographics, immigration, education, labor markets, local economies, and government roles and policies in employment and income generation.

70. Survey of Chicano Art (4) Montoya

Lecture—4 hours. Survey of contemporary Chicano art in context of the social turmoil from which it springs. Includes political use of the poster and mural, influence of the Mexican mural and graphic movement, and social responsibility of the artist.

73. Chicano Art Expression Through Screen-Silk Screen (4) Montoya

Studio—6 hours; laboratory—4 hours. Introductory level studio course using silk-screen and basic printing techniques to explore and develop images of Chicano cultural themes and expressions. Students will experiment with images and symbols from their immediate environment/culture. Integrated approach to Chicano philosophy of art and social responsibility.

90. Directed Group Study (1-5) I, II, III. The Staff

Lecture—3 hours; term paper. Prerequisite: course 10 or Spanish 124 or History 169A. Analysis of the role and status of Chicana in contemporary American society. Special emphasis is on their historical and cultural roles.

Upper Division Courses

102. Chicano Community Service Society (4) I. Pesquera

Lecture—3 hours; term paper. Prerequisite: course 10 or Spanish 124 or History 169A. Analysis of the role and status of Chicana in contemporary American society. Special emphasis is on their historical and cultural roles.
role, the political, economic and social institutions which have affected their status, and their contributions to society and their community.

120. Chicano Psychology (4) III. Flores-Oritz Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 20. Introducitory psychology course recommended. Introduction to the field of Chicano psychology. Analysis of socio-cultural context of Chicano/a/Latino/a. Special attention to issues of ethnic identity, psychological development, and self esteem. Impact of minority experience, migration, acculturation are examined.

121. Chicano Community Mental Health (4) I. Flores-Oritz Lecture—3 hours; term paper. Prerequisite: course 10 or 20. Mental health needs, problems, and service utilization patterns of Chicanos/Latinos will be analyzed. An analysis of social service policy, and the economic base of mental health programs.

122. Psychology Perspectives Chicano/Latino Family (4) I. Flores-Oritz Lecture—4 hours. Prerequisite: course 10, introductory psychology course highly recommended, and/or consent of instructor. Role of migration and acculturation on family structure and functioning. From a psychological and Chicano studies perspective, contemporary gender roles and variations in family structures are examined. Special topics: family violence, addiction, family therapy and coping strategies.

130. United States-Mexican Border Relations (4) III. Riddell Lecture—3 hours; term paper. Prerequisite: upper division standing. Theories of U.S.-Mexican border relations. An overview of the political, economic, and social relationships and an in-depth analysis of immigration issues, border industrialization, women's organizations, economic crises, and legal issues.

132. Political Economy of Chicano Communities (4) III. Riddell Lecture—4 hours; term paper. Prerequisite: upper division standing. Lower division Chicano Studies course recommended. Historical and contemporary study of political and economic forces which define and influence the development of Chicano communities. Includes critiques of traditional and Marxist theories and concepts applicable to Chicano communities, case studies of Chicano communities, especially in California and Texas. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparatory: Political Science 1 or 2.

154. The Chicano Novel (4) II. Demers/Rein Lecture—4 hours; term paper. Prerequisite: intermediate Spanish or consent of instructor. Introduction to the forms and themes of the Chicano novel with special attention to the construction of gender, nationality, sexuality, social class, by contemporary Chicana and Chicano novelists. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 128A.

155. Chicano Theatre (4) III. Demers/Rein Lecture—3 hours; term paper. Prerequisite: intermediate Spanish or consent of instructor. Examination of the formal and thematic dimensions of Chicano theater in the contemporary period with special emphasis on El Teatro Campesino and Chicana Feminist Theater. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 128B.)

156. Chicano Poetry (4) III. Demers/Rein Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Survey of Chicano poetry with special emphasis on its thematic and formal dimensions. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 130/D.)

171. Mexican and Chicano Mural Workshop (4) III. Montoya Studio—6 hours; independent study—1 hour. Prerequisite: course 70 and/or written consent of instructor. The mural: a collective art process that empowers students and people through design and execution of mural paintings in the tradition of the Mexican Mural Movement; introduces materials and techniques.

Child Development (A Graduate Group)

Rosemarie Kraft, Ph.D., Chairperson of the Group

Graduate Group Office, 305 ACB 4 (916-752-1976)

Graduate Group: Includes faculty members from the Division of Human Development and the departments of Anthropology, Behavioral Biology, Education, Psychology, and the Schools of Law and Medicine.

Graduate Study: The Graduate Group in Child Development offers a multidisciplinary program leading to a M.S. degree. The aim of the program is to provide students with an opportunity to pursue a coordinated course of postgraduate study in the field of child development which cuts across departmental boundaries. Opportunities are provided to work with children and adults in the community including the University's Early Childhood Laboratory. Recipients of the degree gain sufficient background in the biological and social sciences to engage in professional activities. Admission applications must be made by May 1.

Graduate Adviser: Contact Group Office.

Chinese

See Chinese and Japanese (below); Asian American Studies; and East Asian Studies.

Chinese

A.B. Major Requirements:

Preparatory Subject Matter: 19-34

Chinese 1, 2, 3, 4, 5, 6, or 7, 17, 27, or 8, 18, 28, and 10

Recommended:

Chinese 11, Japanese 10, Linguistics 1,
History 9A

Depth Subject Matter: 36

Recommended: Japanese 101, 102, 103, 104, 105, 106; Anthropology 144A-144B; Art History 163A-163B; East Asian Studies 113; History 190A-190B; Religious Studies 172; or other advanced literature courses.
selected in consultation with the undergraduate advisor.

Total Units for the Chinese Major..................55/70

Japanese

A.B. Major Requirements:

1. Preparatory Subject Matter......................15/30
Japanese 1, 2, 3, 4, 5, 6; or 8, 16, 28
Recommended:
Japanese 10, 15, 25, Chinese 1C, Linguistics 1, History 9B

2. Depth Subject Matter.........................40
Japanese 101, 102, 103, 111, 112, 113, 24
Eight units selected from: Japanese 104, 105, 106, 107, 109A-1: Anthropology 149A-
149B: Art History 164; Comparative Literature 153; History 194A-194B-194C;
Linguistics 100; Religious Studies 172; or other advanced literature courses
selected in consultation with the undergraduate advisor.8

Total Units for the Japanese Major..................55/70

1 See college procedures governing undergraduate enrollment in a graduate course.

The Minor Program

Minors are offered in Chinese and Japanese for students wishing to follow a formally recognized program of study in those languages and their literatures.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Chinese</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Japanese</td>
<td>20</td>
</tr>
</tbody>
</table>

All upper division courses, including both language courses and literature in translation courses, may be used to meet this requirement. One approved lower division course (Chinese 10, 11; Japanese 10, 15, 25) may also be used. In addition, students must demonstrate their language proficiency, normally through completion of Chinese 111 or Japanese 111. For details, consult the undergraduate advisors.

Placement. Chinese 1 and Japanese 1 are intended for beginning students with no prior knowledge of those languages. Students who do have some knowledge but wish to improve their skills should meet with one of the advisors to discuss appropriate placement.

Student Advisers. C.N. Chang (Japanese), S. Griswold (Japanese), M. Yeh (Chinese).

Prerequisite Credit. No student may repeat a course if that course is a prerequisite for a course which has already been completed with a grade of C- or better.

Courses in Chinese

Lower Division Courses

1. Elementary Chinese (5) I. The Staff
Lecture/discussion—5 hours. Introduction to Chinese grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Chinese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a PNP grading basis only. Although a passing grade will be charged to the student's PNP option, no petition is required.)

1A. Intensive Elementary Modern Chinese (10) I, II. The Staff
Lecture—5 hours; discussion—5 hours. Combines the work of courses 1 and 2 into a single quarter. Those who complete this course may go on to course 3.

2. Elementary Chinese (5) II. The Staff
Lecture/discussion—5 hours. Prerequisite: course 1. Continuation of course 1 in the areas of grammar and basic language skills.

3. Elementary Chinese (5) III. The Staff
Lecture/discussion—6 hours. Prerequisite: course 2. Continuation of course 2. Completion of grammar sequence and continuing practice of all language skills.

3A. Situational Chinese (2) I, II. The Staff
Discussion—2 hours. Prerequisite: course 3 (may be taken concurrently). Instructor and students create a specific social situation and establish roles for student-participants. Using techniques of drama and substitution drills, students have greater opportunities to develop spoken skills than is possible in course 3.

4. Intermediate Chinese (5) I. The Staff
Lecture/discussion—5 hours. Prerequisite: course 3 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 3.

5. Intermediate Chinese (5) II. The Staff
Lecture/discussion—5 hours. Prerequisite: course 4 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 4.

6. Intermediate Chinese (5) III. The Staff
Lecture/discussion—5 hours. Prerequisite: course 5 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 5.

6A. Situational Chinese (2) I, II. The Staff
Discussion—2 hours. Prerequisite: course 6 (may be taken concurrently). Instructor and students create a specific social situation and establish roles for student-participants. Using techniques of drama and oral repetition, students develop spoken fluency and appropriateness of expression as skills requisite to internships and study in China.

7. Mandarin for Cantonese Speakers (5) I. The Staff
Lecture—5 hours. Prerequisite: ability to read and write Chinese characters at the elementary school level. Accelerated training in Mandarin, particularly in the phonetic transcription system known as pinyin, for students who already can read and write Chinese. Course assumes knowledge of spoken Chinese.

8. Accelerated Written Chinese (5) I, II. The Staff
Lecture—5 hours. Prerequisite: ability to speak and listen to Mandarin Chinese. Designed for students who already have a good degree of fluency in spoken Mandarin, but who cannot read Chinese characters. This course concentrates on developing reading ability and accelerates progress to the upper division.

10. Modern Chinese Literature (In English) (3). Gibbons
Lecture—3 hours; discussion—1 hour. Introductory course requiring no knowledge of Chinese language or history. Reading and discussion of short stories and novels of two of the writers. Designed to convey a feeling for what China has experienced in the twentieth century.

11. Great Books of China (2) I, II. The Staff
Lecture—1 hour; discussion—1 hour. Selected readings in English translation. (PNP grading only)

12. Mandarin for Cantonese Speakers (5) II. The Staff
Lecture—5 hours. Prerequisite: course 7. Continuation of course 7. Training in spoken Mandarin for students who already can read and write Chinese.

16. Accelerated Written Chinese (5) II. The Staff
Lecture—5 hours. Prerequisite: course 8. Continuation of course 8. Designed to accelerate the progress of students who already know spoken Mandarin but cannot read and write Chinese.

17. Mandarin for Cantonese Speakers (5) III. The Staff
Lecture—5 hours. Prerequisite: course 12. Continuation of course 12.

111. Modern Chinese: Reading and Discussion (4) I, II, III. The Staff
 Lecture—3 hours, discussion—1 hour. Prerequisite: course 6 of the equivalent. Readings in modern Chinese newspaper articles, essays, and short stories, based on language skills developed in courses 1 through 6.

112. Modern Chinese: Reading and Discussion (4) I, II, III, IV. The Staff
 Lecture—3 hours, discussion—1 hour. Prerequisite: course 6 of the equivalent. Readings in modern Chinese newspaper articles, essays, and short stories, based on language skills developed in course 111.

113. Modern Chinese: Reading and Discussion (4) III, IV. The Staff
 Lecture—3 hours, discussion—1 hour. Prerequisite: course 112. Readings in modern Chinese newspaper articles, essays, and short stories, based on language skills developed in course 112.

114. Introduction to Classical Chinese: Confucius (4) I. Lecturer—3 hours; discussion—1 hour. Prerequisite: course 104 or consent of instructor. Texts from the Confucian canon are read with the assistance of prepared word glossaries so that while learning to read classical Chinese, the students also experience the most influential books in the history of China in their original texts.

115. Introduction to Classical Chinese: Mencius (4) I. Lecturer—3 hours; discussion—1 hour. Prerequisite: course 114. Continues course 114 by reading selections from the text of the Mencius.

116. Introduction to Classical Chinese: Narrative Style (4) I, II. III, IV. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 115. Continues course 115 by reading selections from the Records of the Grand Historian and other early, influential works.

120. Advanced Chinese (4) I, II. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or consent of instructor. Selected readings from all genres to develop advanced skills in reading, writing, aural comprehension, and translation. May be repeated once for credit.

130. Readings in Traditional Chinese Fiction (4) II. Ng
 Lecture—1 hour; discussion—3 hours. Prerequisite: course 112 or the equivalent; course 114 recommended. Oral Chinese of representative works from the Tang Dynasty (618-907) to modern times. May be repeated once for credit when content varies.

131. Readings in Traditional Chinese Poetry (4) I. Yeh
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or consent of instructor. Traditional Chinese poetry from its beginnings to the golden ages of Tang and Song, surveying forms and poets that best reveal the Chinese poetic sensibility and the genius of the language of Chinese poetry.

132. Readings in Modern Chinese Poetry (4) II. Yeh
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or consent of instructor. Chinese poetry from the Literary Revolution of 1917 to the present, surveying works that embody exciting innovations and reflect the modernity of twentieth-century Chinese society and culture.

140. Readings in Classical Chinese (4) I, II, III, IV. The Staff
 Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Study and philological analysis of selected texts from the first millennium of Imperial China. May be repeated twice for credit.

160. The Chinese Language (4) III. The Staff
 Lecture/discussion—4 hours. Prerequisite: course 6 (may be taken concurrently); Linguistics 1 recommended. The Chinese language viewed in its linguistic context, synchronically and diachronically. Historical phonology, classical and literary language, rise of written vernacular, descriptive grammar of modern standard Chinese, dialectal variation, and sociolinguistic factors.

192. Chinese Internship (1-12) I, II, III. The Staff
 Internship—36 hours to be arranged. Prerequisite: upper division standing and consent of instructor. Work experience in the Chinese language, with analytical term paper on a topic approved by an instructor. (P/NP grading only.)

197T. Tutoring in Chinese (1-5) I, II, III. The Staff
 Tutoring—1-6 hours. Prerequisite: consent of Program chairman. Leading of small volunteer discussion groups affiliated with one of the Department’s regular courses. May be repeated for credit, but only 2 units may be applied to the minor. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff
 (Chairperson in charge) (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
 (Chairperson in charge) (P/NP grading only)

Graduate Course

289. Research (1-12) I. II. III. The Staff
 (SU grading only)

Courses in Japanese

Lower Division Courses

1. Elementary Japanese (5) I. The Staff
 Lecture/discussion—5 hours. Introduction to spoken and written Japanese in cultural contexts, with emphasis on communication. (Students who have successfully completed Japanese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the Department’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)

2. Intensive Elementary Japanese (10) II. The Staff
 Lecture—5 hours; discussion—5 hours. Combines the work of courses 1 and 2 into a single quarter. Those who complete this course may go on to course 3.

3. Accelerated Intensive Elementary Japanese (15) Spring special session. The Staff
 Lecture/discussion—15 hours. Combines the work of courses 1, 2, and 3, into a single 16-week summer session. Those who complete this course may go on to course 4 in the fall.

2. Elementary Japanese (5) III. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 1 or the equivalent. Continuation of training in basic spoken and written skills.

3. Elementary Japanese (5) III. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 2 or the equivalent. Continuation of training in basic spoken and written skills.

4. Intermediate Japanese (5) I. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 3 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 3.

5. Intermediate Japanese (5) II. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 4 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 4.

6. Intermediate Japanese (5) III. The Staff
 Lecture/discussion—5 hours. Prerequisite: successful completion of C or better of course 5 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 5.

*Course not offered this academic year.

8. Accelerated Japanese for Bilingual Students (5) I. The Staff
 Lecture—5 hours. Prerequisite: bilingual background in Japanese. A special course for students with some bilingual background in Japanese. Emphasis is on speaking at the adult’s level of proficiency, reading and writing long compositions. First of a three-course sequence accelerating advancement to upper division courses.

9. Masterworks of Japanese Literature (in English) (4) III. Fahy
 Lecture—3 hours; discussion—1 hour. An introduction to Japanese literature: readings and discussion in English of important works from earliest times to the present.

10. Introduction to Traditional Japanese Culture (3) I. II. Borgen
 Lecture—2 hours; discussion—1 hour. General introduction to Japanese culture from its beginnings through 1850, focusing on religion, thought, and the arts (visual and performing). Indigenous traditions and the assimilation of foreign influences will be discussed. Readings and discussions in English.

11. Japanese Language and Culture (in English) (4) I. Smith
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Linguistics 1 or Anthropology 4 recommended. Classification and communication of experience in Japanese culture: principles of language use in Japanese society; speech levels and honorific language, language and gender, minority language, literacy, role of Japanese in artificial intelligence and computer science. Offered in alternate years.

12. Accelerated Japanese for Bilingual Students (5) III. The Staff
 Lecture—5 hours. Prerequisite: course 18. Continues course 18. A special course for students with some bilingual background in Japanese. Emphasis is on advanced training in formal and informal speech styles, discourses, and written Japanese and on reading authentic works. Third of a three-course sequence accelerating advancement to upper division courses.

13. Directed Group Study (1-5) I, II, III. The Staff
 (Chairperson in charge) (P/NP grading only)

299. Special Study for Undergraduates (1-5) I, II, III. The Staff
 (Chairperson in charge) (P/NP grading only)

Upper Division Courses

Native speakers may not enroll in courses 111, 112, or 113. Participation in fourth-year Japanese language courses (Japanese 131, 132, 133, 134, 135 and 136) by native speakers is subject to the approval of the instructor.

 Lecture—3 hours; discussion—1 hour. Early Japanese literature from the Nara to the end of the Heian period through a broad survey of the major literary genres such as lyric poetry, court diaries, prose narratives, poems, tales, and classical Chinese writings.

102. Japanese Literature in Translation: The Middle Period (4) II. Griesedieck
 Lecture—3 hours; discussion—1 hour. The major literary genres from the twelfth century to the second half of the nineteenth century including poetry, renga, military chronicles, no drama, Buddhist literature, haiku, haibun, kobushi, bunraku, plays and Edo prose narratives.
Lecture—3 hours; discussion—1 hour. Modern Japanese literature from the 1870s to the 1970s. Surveys representative literary works and ideas against the social and intellectual background of the Meiji, Taisho, and Showa periods.

*104. Modern Japanese Literature: War and Revolution (3) I. Chang
Lecture/discussion—3 hours. Perspectives and sensibilities with which major modern Japanese writers have interpreted the traumatic and often poignant experiences of war and socio-political upheavals from the eighteenth century to the 1970s. Lecture, discussions, and readings in English. Offered in alternate years.

*105. Modern Japanese Literature: Hero and Anti-hero (3) II. Chang
Lecture/discussion—3 hours. The ways in which representative heroes and anti-heroes in modern Japanese literature perceive, confront, struggle with, and resolve a wide array of social, moral, and intellectual problems in their times. Lectures, discussions, and readings in English. Offered in alternate years.

106. Japanese Culture Through Films (3) II. Borgen
Lecture/discussion—3 hours. Aspects of Japanese cultural expression about love, the supernatural, and the family; perceptions of childhood, youth, and death as revealed in internationally-acclaimed films by Kurosawa, Ozu, Kobayashi, Itami, and Monita. Lectures, discussions, and readings in English. Films with English subtitles. Offered in alternate years.

*108. Poetry of China and Japan (in English) (4) II. Borgen
Lecture—3 hours; discussion—1 hour. A comparative approach to Chinese and Japanese poetry, examining poetic practice in the two cultures; includes a general outline of the two traditions, plus study of poetic forms, techniques, and distinct treatments of universal themes: love, nature, war, etc. Offered in alternate years. (Same course as Chinese 108.)

111. Modern Japanese: Reading and Discussion (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 6. Readings in modern Japanese short stories, newspaper articles, and essays; conversation practice based on these readings.

112. Modern Japanese: Reading and Discussion (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 111. Continuation of course 111.

113. Modern Japanese: Reading and Discussion (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 112. Continuation of course 112.

114A. Spoken Japanese (2) I. The Staff
Discussion—2 hours. Prerequisite: course 114A or consent of instructor. Continuation of course 114A. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only.)

114B. Spoken Japanese (2) II. The Staff
Discussion—2 hours. Prerequisite: course 114A or consent of instructor. Continuation of course 114A. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only.)

114C. Spoken Japanese (2) III. The Staff
Discussion—2 hours. Prerequisite: course 114B or consent of instructor. Continuation of course 114B. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only.)

*115. Japanese Composition (2) I. The Staff
Lecture—2 hours. Prerequisite: course 6 or consent of instructor. Development of skills in the techniques of writing Japanese. Practice in short essay writing with an aim toward mastery of the vocabulary and syntax of written Japanese.

*131. Readings in Modern Japanese Literature: 1920-1945 (4) III. Chang
Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Fourth-year level reading of representative works of modern Japanese literature including short stories, novels, diaries, memoirs, poetry, and excerpts from novels and plays from 1920 through the militaristic era, to the end of the war years in 1945.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Continuation of course 131, but may be taken independently. Covers selected texts from the immediate post-war years beginning in 1945 down to 1970 and the post-war recovery.

133. Readings in Modern Japanese Literature: 1970 to Present (4) II. Griswold
Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Continuation of course 132, but may be taken independently. Covers selected texts from 1970 to the present. Offered in alternate years.

134. Readings in the Humanities: Traditional Culture (4) II. Borgen
Lecture—3 hours; discussion—1 hour or term paper. Prerequisite: course 113. Fourth-year level reading of modern works by major specialists on traditional Japanese culture: history, religion, thought, art, international relations, and literary history and criticism. Focus is equally on developing reading skills and learning about Japanese culture.

135. Readings in the Humanities: The Modern Period (4) III. Borgen
Lecture—3 hours; term paper. Prerequisite: course 113. Fourth-year level reading of authentic modern writings on Japanese culture, history, philosophy, society, religion, law, politics, international relations, aesthetics, and comparative culture by prominent critics, commentators, and scholars.

136. Readings in Newspapers and Magazines (4) I. Chang
Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Fourth-year level reading of newspaper and magazine reports, articles, and editorials on domestic and international affairs relating to contemporary Japan. Offered in alternate years.

192. Japanese Internship (1-12) I, II, III. The Staff
Internship—3-36 hours to be arranged. Prerequisite: upper division standing and consent of instructor. Work experience in Japan, with analytical term paper on a topic approved by instructor. (P/NP grading only.)

197T. Tutoring in Japanese (1-5) I, II, III. The Staff
Tutoring—1-6 hours. Prerequisite: consent of Department chairperson. Leading of small voluntary discussion groups affiliated with one of the Program’s regular courses. May be repeated for credit, but only 2 units may be applied to the minor. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff
Chairperson (in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Chairperson (in charge) (P/NP grading only.)

Graduate Courses

*201. Introduction to Classical Japanese (4) I. Borgen
Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Introduction to essential grammatical structure of classical Japanese using selections from classical Japanese prose and poetry.

*202. Introduction to Classical Japanese (4) II. Borgen
Lecture—3 hours; discussion—1 hour. Prerequisite: course 201. Readings of relatively easy texts of classical Japanese prose and poetry assisted by annotations written in modern Japanese.

*Course not offered this academic year.
Graduate Program
The Department offers a master's degree in Classics with emphasis on either Greek or Latin. The program is suitable for high school teachers seeking to improve their qualifications and for students wishing to prepare themselves for admission to one of the more competitive doctoral programs in Classics.

Teaching Credential Subject Representative, R. E. Grimm. See also the Teacher Education Program.

Graduate Study. A program of study and research leading to the M.A. degree in Classics is offered. Detailed information regarding graduate study may be obtained from the Graduate Adviser.

Graduate Adviser, D. A. Traill.

Courses in Classics

Lower Division Courses

4A. Classical Civilization
(3). I, II. The Staff
Lecture—3 hours. An introduction to the literature, art, and institutions of classical Greece. General Education credit: Civilization and Culture/Introductory.

10. Greek and Roman Mythology
(3). I, II, III. The Staff
Lecture—3 hours. Origin and development of myths and legends, their place in the religion, literature, and art of Greece and Rome. General Education credit: Civilization and Culture/Introductory.

15. Women in Classical Antiquity
(3). III. Allan
Lecture—3 hours. Lives and roles of women in ancient Greece and Rome. Readings from the history, philosophy, medical and legal documents, literature and myth.

17A. Mediterranean Bronze Age Archaeology
(4). I. The Staff
Lecture—3 hours; term paper. Archeological monuments of the Ancient Near East, including Egypt and Mesopotamia, and of Greece and Crete during the Bronze Age. Special emphasis on the Minoan and Mycenaean civilizations. General Education credit: Civilization and Culture/Introductory.

17B. Greek Archaeology
(4). II. The Staff
Lecture—3 hours; term paper. Archeological monuments of the Greek world after the conquests of Alexander the Great, and the monuments of Rome and the Roman Empire. Offered in alternate years. General Education credit: Civilization and Culture/Introductory.

20. Pompeii AD 79
(4). III. Traill
Lecture—3 hours; term paper. Rome in life in an urban community at the time of the eruption of Vesuvius. Slide presentations of the archeological evidence will be supplemented by selected readings from Petronius’ Satyricon and other ancient authors. Offered in alternate years. General Education credit: Civilization and Culture/Introductory.

30. Greek and Latin Elements in English Vocabulary
(3). I. The Staff
Lecture—3 hours. Knowledge of Latin and Greek not required. Elements of Greek and Latin vocabulary for increased understanding of English word formation and improved ability to understand and retain unfamiliar words. Emphasis on Greek and Latin elements. Other languages not neglected.

31. Greek and Latin Elements in Technical Vocabulary
(3). III. The Staff
Lecture—3 hours. Knowledge of Greek and Latin not required. Elements of Greek and Latin vocabulary in technical fields of English, scientific and technical terminology and appropriate understanding of English vocabulary. Other languages not neglected.

50. The Rise of Science in Ancient Greece
(4). II. Rosenstock
Lecture/discussion—3 hours; term paper. Prerequisite: Mathematics 16A or the equivalent. Study of the emergence of scientific rationality in ancient Greece, and its political and social context; concentration on four areas: the sciences, medicine, cosmology, and psychology. Reading from the Presocratics, Hippocrates, Plato, Aristotle, and Hellenistic philosophers. General Education credit: Civilization and Culture/Introductory.

Upper Division Courses

140. Homer and Ancient Epic
(4). II. The Staff
Lecture—3 hours; term paper. Prerequisite: course 4A or 10 or Comparative Literature 1. Reading of Iliad, Odyssey, and Ancient Epic in English. Discussion of Homer’s techniques of composition, the beliefs and values of their respective societies, and the influence of Homer on Vergil. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Classics 4A or 10.

141. Greek and Roman Comedy
(4). III. The Staff
Lecture—3 hours; conference—1 hour. Readings in Aristophanes, Menander, Plautus, and Terence; lectures on the development of ancient comedy. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Classics 4A.

142. Greek and Roman Novel
(4). II, III. The Staff
Lecture—3 hours; term paper. Examination of the ancient Greek romances and their development into the grotesque realism of Petronius’ Satyricon, and the religious mysticism of Apuleius’ The Golden Ass.

143. Greek Tragedy
(4). I. Allan
Lecture—3 hours; term paper. Prerequisite: course 4A or 10. Reading in English of selected plays of Aeschylus, Sophocles, and Euripides. Lectures on the development and influence of Athenian tragedy. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Classics 4A.

150. Socrates and Classical Athens
(4). III. Rosenstock
Lecture/discussion—3 hours; term paper. Prerequisite: course 4A. Study of the major sources of our knowledge of Socrates to assess his role in the politics and culture of ancient Athens; his method of teaching and its place in Western thought. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Classics 4A.

174. Ancient Greek Sculpture
(4). III. Roller
Lecture/discussion—4 hours. Prerequisite: course 170 or consent of instructor. The history, cults, and monuments of Olympia, Delphi, and other sanctuaries. Students report on major monuments. Offered in alternate years.

175. Topography and Monuments of Ancient Athens
(4). III. Roller
Lecture/discussion—4 hours. Prerequisite: course 170-17B or consent of instructor. The topography of Athens as an urban center from the Bronze Age through the late Roman period. Student reports on major monuments with emphasis placed on restoration, chronology, and the relating of documentary to excavation evidence. Offered in alternate years.

197CC. Community Tutoring in Classical Languages
(1-5). I, II, III. The Staff
Tutoring—1-5 hours. Prerequisite: consent of instructor. Supervised instruction of Greek or Latin in nearby schools by qualified students in department. May be repeated for credit up to 5 units. (FRP grading only.)

Graduate Courses

201. Introduction to Classical Philology
(4). I, II. Traill
Lecture—3 hours; term paper. Survey of major contemporary areas of classical scholarship with special attention devoted to current problems in literary and textual criticism.
Clinical Pathology (School of Veterinary Medicine)

Joseph G. Zink, D.V.M., Ph.D., Acting Chairperson of the Department
Department Office, 1519 Haring Hall (916-752-0153)

Faculty

Hemi C. Jain, M.V.Sc., Ph.D., Professor
Jiro J. Kaneko, D.V.M., Ph.D., Professor
Joseph G. Zink, D.V.M., Ph.D., Professor

Part-Time Clinical Faculty

Robert M. DuFort, D.V.M., Assistant Clinical Professor
Sonja M. Shelly, D.V.M., Assistant Clinical Professor
John W. Switzer, D.V.M., Associate Clinical Professor

Emeriti Faculty

Bernard F. Feldman, D.V.M., Ph.D., Professor
Emeritus

Donald D. Jasper, D.V.M., Ph.D., Professor Emeritus

Courses in Clinical Pathology

Upper Division Courses

101. Comparative Hematology (2) III. Kaneko, Jain, Zink
Lecture—2 hours. Prerequisite: Biological Sciences 1A, Physiology 110. Biochemistry 101A-101B or
Clinical Psychology

See Medicine, School of

Communication

See Rhetoric and Communication

Community Development

(A Graduate Group)

Desmond Jolly, Chairperson of the Group
Group Office, 1303 Hart Hall (Applied Behavioral Sciences), (918)-732-1926)

Faculty. The interdisciplinary faculty include those in Anthropology, Asian American Studies, African American Studies, Landscape Architecture, Environmental Design, Geography, Psychology, Sociology, and Women's Studies.

Graduate Study. The Graduate Group in Community Development offers a multidisciplinary program of study which leads to the Ph.D. degree. The program is designed to prepare students for professional roles as administrators, planners, researchers, or technicians with some emphasis upon rural, nonmetropolitan communities and human service organizations. Training in community development is also aimed at preparing individuals to work within government or non-profit organizations in the realm of social and economic change. There is opportunity available for specialization in: (1) community design and planning, (2) ethnic and cultural diversity, (3) women's issues in the community, (4) community health and human services, (5) environmental issues, (6) rural and agricultural issues, and (7) community economic development.

Preparation. Applicants to this program can prepare themselves by enrolling for upper division courses in the social or behavioral sciences, e.g., anthropology, economics, sociology, psychology, cultural geography, or political science, and courses in community studies.

Graduate Advisers. Contact the Group Office.

Community Health

See Medicine, School of

Community Nutrition

(College of Agricultural and Environmental Sciences)

The Major Program

Community nutrition teaches students the identification of nutrition-related health problems and the biological, behavioral, economic, and sociocultural factors that influence the nutrition of individuals and groups. The aim of community nutrition is to apply this knowledge to the development of programs that improve the nutritional status in the community.

The Program. The community nutrition major is designed for students who seek to combine a foundation in the biological and nutritional sciences with study in the social sciences. All students in the major are required to complete at least one course in preparatory and depth subject matter courses. Students select one of the three subject matter options emphasizing sociocultural, psychological, or economic aspects of food, diet, and nutrition, and an additional area of concentration in consultation with the adviser.

Career Alternatives. The community nutrition major prepares students for jobs in administrative, teaching, research, or public health/public service positions or for graduate or professional training in nutrition and other health sciences. Students who complete the academic requirements for an internship in dietetics are also qualified for careers in dietetics, following completion of an internship.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parenthese are required.)

UNITS

English Composition Requirement 0-8
See College requirements

Preparatory Subject Matter 49-50
Biological sciences (Biological Sciences 1A, 1B, 1C) 15
Chemistry (Chemistry 2A, 2B, 8A, 8B) 16
Computer science (Computer Science and Management 21 or Computer Science Engineering 15) 3-4
Cultural food habits (Nutrition 20) 4
Cultural social science (Anthropology 2, Geography 2, or Sociology 3) 3
Social research methods (Sociology 46A or Psychology 41) 4
Statistics (Sociology 13 or Statistics 13) 4

Breadth/General Education 6-24
Satisfaction of General Education requirement 6-24
(Note that some of the Option Subject Matter may meet General Education requirements)

Depth Subject Matter 52-63
Biochemistry 101A-101B or Physiological Sciences 101A-101B 6-7
Food Science and Technology 100A, 100B, 101A, 101B 10
Nutrition 192 2
Physiology 110, 110 7
Option Subject Matter 28-32
Course work chosen from one of the following three options in consultation with adviser 18-20
Additional units in a related social or health science chosen in consultation with adviser 10-12
(May include a minor program in fields such as physical education, environmental toxicology, community development, statistics or the social sciences.)

Behavioral-Psychological Option
Psychology 1, Education 110 or Psychology 130 130
Psychology 112 or Human Development 100A or 100B 115
Psychology 115 or Human Development 100C 100C
Applied Behavioral Sciences 173, 178 130
Consumer Science 130 130
Food Science and Technology 107, 117 130
Sociology 154 130
Anthropology 129, 130 130
Rhetoric and Communication 130

Economics and International Development Option
International Agricultural Development 10 economics 1A, 1B 130
Agricultural Economics 100A, 100B, 120, 130, 141
International Agricultural Development 100, 110, 111, 119 130
Economics 100, 110, 115A, 115B, 118, 123, 130, 162 130
Consumer Science 100 130
Anthropology 122, 126 130
Sociology 170 130
Economics 151A 130
Environmental Studies 1, 165 130
Rhetoric and Communication 130

Sociocultural Option
Foreign language (10 units or the equivalent strongly recommended) 130
Anthropology 101, 126, 133, 135 130
Geography 170, 170 130
Afro-American Studies 100 130
Applied Behavioral Sciences 2 130
Rhetoric and Communication 130

*Course not offered this academic year.
Regional courses, choose 8 units from one of the following four areas (alternative courses may be selected in consultation with the adviser):

Central and South America: Geography 122A, 122B, History 161A, 161B, 162, 163A, 163B, 165, 166A, 166B, 168

Africa: Anthropology 140A, 140B, Geography 125A, 125B, History 115A, 115B, 115C

Additional Recommended Courses

Unrestricted Electives ... 13-38

Total Units for Degree 190

Major Adviser: K.G. Dowey (Nutrition)

Advisory Center for the major is located in 1151 Meyer Hall (916-752-2512).

Internship. To fulfill the academic requirements for an internship in Dietetics, the following courses must be included: Economics 1B, Agricultural Economics 115, Food Science Management 120, 121, 122, 123, Applied Behavioral Sciences 173 or Education 110, Psychology 1, Nutrition 110A-110B, Rhetoric and Communication 1. Consult the Advising Center prior to the first quarter of the junior year for information on procedures.

Graduate Study. Information on graduate study, see the Graduate Division section in this catalog.

Comparative Literature
(College of Letters and Science)

Robert M. Torrance, Program Director
Program Office, 922 Sproul Hall (916-752-9934)

Committee in Charge
- Samuel G. Armstide, Ph.D. (Comparative Literature, Spanish)
- Gail Finney, Ph.D. (Comparative Literature, German)
- Michele Harmsch, Ph.D. (Comparative Literature, French)
- Roland W. Hoer mann, Ph.D. (Comparative Literature, German)
- Manfred Kusch, Ph.D. (Comparative Literature, French)
- Karl Lokke, Ph.D. (Comparative Literature, English)
- Seth Schein, Ph.D. (Comparative Literature)
- Robert M. Torrance, Ph.D. (Comparative Literature)
- Marian B. Ury, Ph.D. (Comparative Literature)

Faculty
- Samuel G. Armstide, Ph.D., Professor (Comparative Literature, Spanish)
- Margaret Bedrosian, Ph.D., Lecturer
- Marc El Blanchard, Agrégé de Lettres, Professor (French, Critical Theory)
- Gail Finney, Ph.D., Professor (Comparative Literature, German)
- Michele Harmsch, Ph.D., Associate Professor (Comparative Literature, French)
- Roland W. Hoermann, Ph.D., Professor (Comparative Literature, German)
- Manfred Kusch, Ph.D., Senior Lecturer (Comparative Literature, French)
- Karl Lokke, Ph.D., Assistant Professor (Comparative Literature, English)
- W. Scott McLean, Ph.D., Lecturer
- Donna Reed, Ph.D., Lecturer

Peter R. Schaeffer, Ph.D., Professor (German)
Seth Schein, Ph.D., Lecturer
Robert M. Torrance, Ph.D., Professor
Marian B. Ury, Ph.D., Professor
Emeritus Faculty
Ruby Cohn, Ph.D., Professor Emeritus

The Major Program

Comparative literature encourages students to read, think about, and compare exciting books from different national languages and from different parts of the world. Comparative literature enriches students' horizons by bridging the divisions between national cultures instead of concentrating on a single tradition.

The Program. Both the major and minor comparative literature programs allow students to combine courses in one or more national literature departments together with courses in comparative literature. The introductory course sequence "Great Books of Western Civilization" provides both an overview of European literary culture from ancient times to the present and intensive practice in analytical reading and English composition. All readings in undergraduate comparative literature courses are in English, but majors take upper division courses in at least one foreign language in the original language.

Career Alternatives. Career opportunities directly related to comparative literature include teaching, journalism, publishing, and translating. Because many professional schools consider a literature major an excellent background for graduate study, comparative literature programs prepare students for careers in business, government, medicine, or law.

A.B. Major Requirements:

UNITS
Preparatory Subject Matter 12-42
Comparative Literature 1, 2, 3 12
Foreign language: sufficient preparation to insure satisfactory performance at the upper division level in courses in comparative literature 12-42

Depth Subject Matter .. 40
Five upper division courses (including at least three in a language other than English) distributed between the first and second semester of the junior year, with the approval of the adviser 20
Comparative Literature 141 4
Two additional upper division Comparative Literature courses, including at least one in a major literary period (such as 164-4A), genre (such as 160A-B, 161A-B, or 160B), or movement (such as 184A-C or 169) 8
Two additional upper division courses in one of both literatures of concentration in Comparative Literature, selected with the approval of the adviser 8
Total Units for the Major 52-62

Recommended
- Art History 10H: Dramatic Art 20; Classics 10; History 4A, 4B, 4C; Philosophy 21, 22, 23
- Major Adviser. The Staff.

All Comparative Literature majors and minors must consult with their adviser, individually, at least once at the beginning and once at the end of each academic year.

Honors Program. Candidates for high or highest honors in Comparative Literature must write a senior thesis under the direction of a faculty member approved by the Program Director. For this purpose, in addition to major requirements, honors candidates must enroll in 6 units of Comparative Literature 194H during the first two quarters of the senior year. Only students who have attained a cumulative GPA of 3.5 in all courses satisfying the major (except elementary foreign language courses) at the end of the junior year will be eligible for the honors program.

*Course not offered this academic year.

Minor Program Requirements:
The minor in Comparative Literature allows students to combine courses in Comparative Literature with courses in one or two national literatures, including English and foreign literatures in translation. There is no foreign language requirement for the minor.

Comparative Literature 24
Comparative Literature 1, 2, 3, or 4 3
At least two upper division Comparative Literature courses (Comparative Literature 141 strongly recommended) 8
Three additional upper division courses in one or two national literatures (including English) or in Comparative Literature 12
Courses should form a coherent program and should be chosen in consultation with, and with the approval of, the adviser.

Minor Adviser. Same as Major Adviser.

All Comparative Literature majors and minors must consult with their adviser, individually, at least once at the beginning and once at the end of each academic year.

The Teaching Credential Subject Representative. The Staff. See also the Teacher Education Program.

Graduate Study. Refer to Comparative Literature (A Graduate Group). See also the Graduate Studies section in this catalog.

Courses in Comparative Literature

Lower Division Courses

1. Great Books of Western Civilization: From Myth to Faith (4) I, II, III. Director in charge Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Epic of Gilgamesh to St. Augustine's Confessions. General Education credit; Civilization and Culture/Introductory.

2. Great Books of Western Civilization: From Faith to Reason (4) I, II, III. Director in charge Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Dante's Inferno to Swift's Gulliver's Travels. General Education credit; Civilization and Culture/Introductory.

3. Great Books of Western Civilization: The Modern Crisis (4) I, II, III. Director in charge Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Goethe's Faust to Beckett's Waiting for Godot. General Education credit; Civilization and Culture/Introductory.

4. The Short Story and Novel (4) II. Ury Lecture/discussion—3 hours; term paper. An introduction to shorter forms of prose fiction by major authors of different countries, with special emphasis on the modern period. General Education credit; Civilization and Culture/Introductory.

5. Fairy Tales, Fables, and Parables (4) I, II, III. Bedrosian, Reed Lecture—3 hours; discussion—1 hour. An introduction to fairy tales, fables, and parables as recurrent forms in literature, with such readings as tales from Aesop and Grimm, Chaucer and Shakespeare, Kafka and Borges, Buddhist and Taoist parables, the Arabinian Nights, and Afro-American folklore. General Education credit; Civilization and Culture/Introductory.

25. Ethnic Minority Writers in World Literature (4)

26. Bedouin

27. Literature of China and Japan (3)

28. Ury Lecture/discussion—3 hours; term paper. Prerequisite: English A. A consideration in literary works from different ages, of visionary and rational variations on the literary traditions of the Chinese, Japanese, and Korean literatures.

29. The Forms of Asian Literature (4) I. Ury Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Introduction to distinctive Asian literary forms, such as haiku, noh, the Chinese novel and tale, through the reading of major works. Comparison with Western, Middle Eastern, and Western critical traditions. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

30. War and Peace in Literature (4) I. Blanchard Lecture/discussion—3 hours; term papers. Prerequisites: courses 1, 2, or 3, or consent of instructor. Through study of a few major works from Western and non-Western literature the course seeks to illuminate the way in which literature from Antiquity to the present has dealt with the antimyopia/peace wars through the ages. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

31. The Detective Story as Literature (4) I. The Staff Lecture—3 hours; term paper. Study of the origins, literary and social background, development and implications of the literature of detection in a comparative context.

32. Special Topics in Comparative Literature (4) I. Schein Lecture/discussion—3 hours; term paper. Intensive study of selected subjects: A. The Play Within the Play; B. The Lyric Novel; C. Women in Literature; D. The Role of Philosophy in Literature; E. The Role of Psyche in Literature; F. The Religious Experience in Literature; G. Literary Attitudes and Judgment. May be repeated for credit in different subject areas. General Education credit: T90G: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

33. The Modern Novel (4) I. Reed Lecture/discussion—3 hours; term paper. The changing image of man as seen in novels by such writers as Joyce, Proust, and Mann. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

34. The Modern Drama (4) I. The Staff Lecture/discussion—3 hours; term paper. Readings in representative authors such as Ibsen, Strindberg, Chekhov, Pirandello and Brecht. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

35. Tragedy (4) I. Schein Lecture/discussion—3 hours; term paper. Persistent and changing aspects of the tragic vision in literature from ancient times to the present. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

36. Biography and Autobiography (4) I. Ury Lecture/discussion—3 hours; term paper. Portrayals of a human life in biographies and/or autobiographies of different countries. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended
GE preparation: any course from the GE Literature Preparation List.

164A. The Middle Ages (4) II. Armistead Lecture/discussion—3 hours; term paper. Readings in heroic epics, chivalric romances, and such major authors as Boccaccio, Chaucer, and Dante, with emphasis on shared assumptions concerning man's place in the world. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

164B. The Renaissance (4) I. Torrance Lecture/discussion—3 hours; term paper. Readings in major authors such as Petrarch, Machiavelli, Erasmus, Montaigne, Rabelais, and Shakespeare, with particular emphasis on changing conceptions of the possibilities and limitations of man. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

164C. Baroque and Neoclassicism (4) III. Torrance Lecture/discussion—3 hours; term paper. Readings in major authors such as Calderón, Corneille, Pascal, Racine, Milton, and Cimarrons, with consideration of the tension between the expansive energies of the "baroque" and the restraints of dogma and reason.

164D. The Enlightenment (4) III. Kuschn Lecture/discussion—3 hours; term paper. Study of various forms of epic poetry in both the oral and literary traditions. May be repeated for credit in different subject areas. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

166A. The Epic (4) II. Scheff Lecture/discussion—3 hours; term paper. Study of various forms of epic poetry in both the oral and literary traditions. May be repeated for credit in different subject areas. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

166B. The Novel (4) I. Hancock Lecture/discussion—3 hours; term paper. Readings in various forms of the novel such as the picaresque, the developemental, and the confessionnal, with emphasis on the development of the genre. May be repeated for credit in different subject areas. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

167. Comparative Study of Major Authors (4) I. Schaeffer Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Major works of artists in the Western tradition, such as Dante, Shakespeare, Cervantes, Goethe, Tolstoi, Proust, and Joyce.

180A. Romanicid (4) II. McLean Discussion—3 hours; term paper. Prerequisite: any introductory course in literature. Introduction to the Romantic movement with emphasis upon Romantic concepts of the self, irony, love, the imagination and artistic creativity, and the relationship of the individual to society. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

180B. Realism and Naturalism (4) III. Finney Discussion—3 hours; term paper. Prerequisite: consent of instructor. Major works of artists in the Western tradition, such as Balzac, Flaubert, Dostoevsky, and Strindberg. Investigative work and accumulation of the city and its perils, the hardships of industrialization, the war between the sexes, the New Woman, and other 19th-century themes. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

189. The Avant-Garde (4) II. The Staff Lecture/discussion—3 hours; term paper. Studies in movements such as surrealism, expressionism and the absurd. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

170. The Contemporary Novel (4) II. Torrance Lecture/discussion—3 hours; term paper. Study of important novels from different parts of the world, including Asia, Africa, Latin America, Europe, and the United States, in the period from the Second World War to the present. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

194H. Special Study for Honors Students (1-15) I, II, III. The Staff (Director in charge) Independent study—1-5 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member approved by the Program Director, leading to a senior honors thesis on a comparative topic. (P/NP grading only.)

197T. Tutoring in Comparative Literature (1-5) I, II, III. Hoermann Discussion—2-4 hours. Prerequisite: upper division standing with declared major in Comparative Literature. Tutoring in undergraduate courses including leadership in small voluntary discussion groups affiliated with current courses offered by Comparative Literature. May be repeated for credit for a total of 6 units. (P/NP grading only.)

198. Directed Group Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge) (P/NP grading only.)

Graduate Courses

200. Introduction to the Graduate Study of Comparative Literature (4) II. Finney Seminar—3 hours; research paper. Prerequisite: reading knowledge of one foreign language. Introduction to research tools, library resources, and critical concerns of Comparative Literature, with focus on the comparative study of a single work, culminating in a related research project.

201. Theories of Comparative Literature (4) II. Torrance Seminar—3 hours; research paper. Prerequisite: reading knowledge of one foreign language; course 141 or the equivalent recommended. An examination of international theories of literature with reference to language, genre, thematics, social and historical context.

205A. Research in Comparative Literature (4) I, II, III. The Staff (Director in charge) Individual instruction—1 hour. Prerequisite: course 200. Individual guided research under the supervision of a faculty member, in a comparative topic culminating in a term paper. Required of M.A. and Ph.D. candidates.

205B. Research in Comparative Study of Author, Period, or Genre (4) I, II, III. The Staff (Director in charge) Individual instruction—1 hour. Prerequisite: courses 200 and 201. Individual guided research under the supervision of a faculty member, in the specialized study of an individual author, historical period, or literary genre culminating in a term paper. Required of Ph.D. candidates.

250. Basic Research for the Dissertation (4) I, II, III. The Staff (Director in charge) Individual instruction—1 hour. Prerequisite: courses 200 and 201. Individual guided research under the supervision of a faculty member, in preparation for the dissertation in Comparative Literature. Required of Ph.D. candidates.

298. Directed Group Study (1-5) I, II, III Prerequisite: graduate standing. (S/U grading only.)

299. Individual Study (1-12) I, II, III. The Staff (Director in charge) (S/U grading only.)

*Course not offered this academic year.

Comparative Literature (A Graduate Group)

Robert M. Torrance, Ph.D., Chairperson of the Group, (916-752-2239)

Comparative Literature (A Graduate Group) offers the M.A. and Ph.D. degrees with a strong emphasis on individual research under the supervision of a faculty member. Candidates for the M.A. and Ph.D. degrees are expected to demonstrate a high level of scholarship and critical thinking in the study of literature. The program is designed to provide students with the opportunity to develop their own research interests and to contribute to the ongoing dialogue in the field of comparative literature. The Graduate Group is composed of faculty members who specialize in a wide range of areas, including ancient and modern literature, philosophy, social and cultural history, and more.

Preparation. For admission to the program, M.A. candidates should have an undergraduate major in literature or related fields, and a strong background in foreign languages, particularly in the languages of the countries and regions they wish to study. Ph.D. candidates should have an undergraduate major in literature and a strong background in reading ability in two foreign languages. The preparation for the M.A. program includes three years of graduate study, during which students are expected to complete a minimum of 60 units of coursework, including at least 36 units at the graduate level. The Ph.D. program requires a minimum of 90 units of coursework, including at least 60 units at the graduate level. These requirements may be met through coursework, comprehensive examinations, and a dissertation.

Comparative Pathology (A Graduate Group)

Roy R. Pool, D.V.M., Ph.D., Chairperson of the Group, (916-752-1389)

Comparative Pathology (A Graduate Group) offers the M.S. and Ph.D. degrees for graduate study in disciplines concerned with disease processes. The focus of the Group is on the study of the causes and nature of disease processes.
in animals and humans. Major emphasis is on the mechanisms responsible for the development of diseases at the organismal, cellular or subcellular level. To this study is brought a wide array of scientific knowledge so that students with divergent interests can be accommodated in programs designed for individual needs.

This program is primarily designed for students who have a professional medical degree, i.e., D.V.M., M.D., D.D.S. Students without a professional degree will not be considered unless they have an especially strong background in basic biomedical sciences. Beyond core courses selected from disciplines such as anatomy, bacteriology, genetics, immunology, parasitology, pathology, physiology, and virology, course programs are individually flexible.

Graduate Advisor: D. L. Dungworth (Pathology)

Computer Science

See Computer Science:
Computer Science (A Graduate Group); Engineering: Computer Science; and Engineering: Electrical and Computer Science

Computer Science

(College of Letters and Science)

The Major Program

The computer science major is designed to prepare students for careers involving the design of computer systems and their application to science, industry, and management.

The Program. Students taking this major receive a solid grounding in fundamentals of computer languages, operating systems, and the formal mathematical tools required to use the computer in solving complex tasks. Emphasis in the major is on software, although introductory architecture is included. For students interested in the engineering aspects of computer science, see Engineering: Computer Science.

Career Alternatives. The computer science program prepares students for advanced work in computer science or in other disciplines requiring advanced knowledge of the use of computers.

B.S. Major Requirements:

Preparatory Subject Matter 40-49
Computer Science Engineering 30 or 35, 40, 41, 44, 45, 49, 50
Electrical and Computer Science Engineering 70
Statistics 32 3 One series from the following four 15-16
(a) Chemistry 2A-2B-2C
(b) Chemistry 2A-2B and Biological Sciences 1A
(c) Physics 9A-9B-9C and Mathematics 21D
Depth Subject Matter 54
Computer science, core courses 25
Computer Science Engineering 100, 110, 120, 140, 145 or Electrical and Computer Science Engineering 182A
Electrical and Computer Science Engineering 171
Computer science electives 14

Minimum of 15 units from Computer Science Engineering 142, 152, 160, 165, 166, 170, 172, 175, 199 (maximum 3 units), Electrical and Computer Science Engineering 176, 177, 182B
Upper division mathematics 15
Minimum of 15 units of approved upper division courses in mathematics and/or statistics. Any upper division course in mathematics or statistics is approved for this requirement except the following:
Mathematics 108 and any mathematics course numbered above 188
Any statistics course numbered below 131 or above 188
Total Units for the Major 102-103

Major Adviser: P. Linz, R. Olsson (Computer Science)

Minor Program Requirements

Computer Science 24
Electrical and Computer Science Engineering 70 4
Computer Science 110 4
Upper division Computer Science Engineering 16
Any course chosen from the following list:
Computer Science Engineering courses numbered 120 to 199, Computer Science Engineering 150 or Electrical and Computer Science Engineering 162A, Electrical and Computer Science Engineering 171

Graduate Study. See the Graduate Studies section in this catalog.

Consumer Economics

(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Agricultural Economics.

Major Program and Graduate Study. See the major in Agricultural and Managerial Economics, and for graduate study, see the Graduate Division section in this catalog.

Related Courses. See Agricultural Economics.

Courses in Consumer Economics

Questionnaire pertaining to the following courses should be directed to the instructor or to the Department of Agricultural Economics, Advising Office, University House Annex.

Upper Division Courses
142, Personal Finance (3) I. B. Butler; H. Shepard; summer
Lecture—3 hours: Prerequisite: Economics 1B. Management of income and expenditures by the household. Use of consumer credit, savings, and insurance by households. Principles of tax, retirement, and estate planning. (Same course as Agricultural Economics 142.)

188. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Graduate Courses
201, Seminar (1) I, II, III. The Staff (Chairperson in charge)

Computer Science (A Graduate Group)

Charles L. Martel, Ph.D., Chairperson of the Group
Office, 4455 Chemistry Annex (Division of Computer Science) (916-752-7004)

Faculty. Consists primarily of faculty members from the Department of Computer Science, the Department of Electrical and Computer Engineering, the Department of Applied Science (Livermore), the Department of Mathematics, and the Graduate School of Management.

Graduate Study. The Graduate Group in Computer Science offers programs of study leading to the M.S. and Ph.D. degrees in Computer Science. Research strengths lie in algorithms, artificial intelligence, computer architecture, computer networks, computer security, computer systems design, database systems, computer graphics, programming languages, operating systems, parallel and distributed processing, performance evaluation, robotics, scientific computation, software engineering, and others.

Preparation. Normal preparation for the program is a bachelor's degree in either computer science or in a closely related field (such as electrical engineering or mathematics, with substantial course work in computer science). Applications are also considered from students with outstanding records in other disciplines. M.S. students may either complete a thesis or pass written examinations in three areas of specialization as defined by the Graduate Group. Ph.D. candidates must pass oral examinations and complete a dissertation demonstrating original research in an area approved by the Graduate Group.

Graduate Adviser: N.S. Matloff, B. Mukherjee, V. Vemuri.

Consumer Food Science

(College of Agricultural and Environmental Sciences)

The Major Program

Consumer food science emphasizes the socio-economic, cultural, and nutritional aspects of foods as they relate to consumer acceptability and use.

The Program. Students take courses in consumer economics, nutrition, the scientific principles behind food preparation, sensory evaluation (smelling and tasting), food and culture, consumer behavior, and food product development (how new products make it into the marketplace). By working closely with an advisor, a student can develop a program which will satisfy a wide variety of goals, including jobs in industry, teaching credentials, and graduate study in food science.

Career Alternatives. Graduates in this major are prepared for jobs in food product development, quality assurance, marketing and sensory analysis, extension service, creative writing, and community service. Some jobs include working directly with consumers to determine the sensory characteristics of foods and how they are liked or disliked. Some students obtain the requirements for a teaching credential and teach elementary or high school home economics, while others go on to obtain a master's or Ph.D. in a related area.
B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

English Composition Requirement 6-8 See College requirement
Preparatory Subject Matter 59
Biochemistry (Biochemistry 101A-101B or Physiological Sciences 101A-101B) 7
Biological science (Biological Sciences 1A-1B or 2A-B) 15
Chemistry (Chemistry 2A-2B-2C, 8A-8B) 21
Computer science (Agricultural Science and Management) 3
Physics (Physics 5A or 10) 4
Physiology (Physiology 110) 6
Statistics (Agricultural Science and Management 150) 4

Breadth/General Education 17-29
Satisfaction of General Education requirement to include:
Economics (Economics 1A-1B) 10

Depth Subject Matter 56
Agricultural economics (Agricultural Economics 110, 141) 8
Community Nutrition (Nutrition 118, 20 or 120) 7
Consumer Science (Consumer Science 100, 136) 8
Food Science and Technology (Food Science and Technology 100A, 100B, 101A, 101B, 104, 107, 111, 129) 24
Human nutrition and food technology (Nutrition 110, 111, 112 or 113) 11

Restricted Electives 20
Food and consumer related courses selected in accordance with student's educational goal with approval of adviser.

Unrestricted Electives 8-22

Total Units for the Degree 180

Recommended
It is recommended that students interested in graduate work take Chemistry 6, English 104, Mathematics 1A-1B, 16A-16B, and Symbolic Logic 50B.

Advising Center for the major is located in 128 Cruss Hall (916-752-1468).

Graduate Study, Related graduate study and research leading to the M.S. degree in Food Science or Nutrition is available. See also the Graduate Studies section in this catalog.

Consumer Science
(College of Agricultural and Environmental Sciences)

Faculty
See under Department of Agricultural Engineering.

Courses in Consumer Science
Questions pertaining to the following courses should be directed to the instructor or the Department of Agricultural Engineering, 2030 Bainer Hall.

Lower Division Courses
14. Food Product Development Field Study (1) I, II, III.
Schutz

Discussion—three 2-hour sessions; field trip—2 days. To observe commercial aspects of the large-scale development, distribution, and evaluation of food products intended for human consumption. Course given between Winter and Spring Quarters. Advance enrollment with instructor required Winter Quarter. (P/NP grading only)

92. Internship in Consumer Science (1-12) I, II, III.
Schutz
Internship—3-36 hours. Prerequisite: consent of instructor. Internship on and off campus in a consumer science related area. (P/NP grading only)

Upper Division Courses
100. Consumer Behavior (3) I, II, III.
Schutz
Lecture—3 hours. Prerequisite: preparation in areas of psychology or sociology and economics recommended. Provides a set of behavioral concepts and theories useful in understanding consumer behavior on the part of the individual, business, and social organizations. Conceptual model to help guide and understand consumer research will be presented. General Education credit: Contemporary Societies/Non-Introduc. Recommended GE preparation: any introductory GE course in psychology, economics, or sociology.

135. Principles of Food Product Development (3) I, II, III.
Schutz
Lecture—3 hours. Prerequisite: one course in introductory food science. Presents basic concepts of product research and development. Organization, activities, new product development, project management. Role of food regulations, consumerism, marketing, advertising, consumer research.

192. Internship in Consumer Science (1-12) I, II, III.
Schutz
Internship—3-36 hours. Prerequisite: completion of minimum of 84 units; consent of instructor. Internship on and off campus in a consumer science related area. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III.
Schutz
(P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III.
Schutz
(P/NP grading only)

Graduate Courses
Schutz
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Topics will include consumer laboratory and field attitude research, consumer sampling, measurement techniques, scaling and methods of analysis.

299. Research (1-12) I, II, III.
Schutz
(S/U grading only)

Consumer Technology
(College of Agricultural and Environmental Sciences)

Faculty See under Department of Agricultural Engineering.

Courses in Consumer Technology
Questions pertaining to the following courses should be directed to the instructor or the Department of Agricultural Engineering, 2030 Bainer Hall.

Lower Division Courses
15. Experiments in Creative Woodworking (1) III.
Grisher
Laboratory—2 hours. Experimental comparison of techniques for creating objects and structures of wood. Physical principles and properties of woods as related to structural stability, selection and use of tools, and aesthetics in design. Finishes to preserve, enhance, or create effects.

Critical Theory
Marc E. Blanchard, Agrégé de Lettres, Program Director (916-752-4767)
Program Office, 511 Sproul Hall, (916-752-5464)

Committee in Charge
Emily Aker, Ph.D., (French)
Marc E. Blanchard, Ph.D. (French, Critical Theory)
Karen P. Erickson, Ph.D. (Psychology)
M. Kay Fawell, Ph.D. (Humanities Institute, Critical Theory)

Graduate Study
The program in Critical Theory offers study and research leading to the Ph.D. with a designated emphasis in Critical Theory. The program provides theoretical emphasis and interdisciplinary perspective to students already preparing for the
Dance
See Physical Education

Dermatology
See Medicine, School of

Design
(College of Agricultural and Environmental Sciences)
Faculty. See under the Department of Environmental Design.

The Major Program
The design program offers a creative, challenging, and flexible approach to the study of design. The philosophy of the program encourages self-direction and creativity, not only in design work but also in planning the overall undergraduate education.

The Program
Basic introductory design courses such as introduction to design, drawing, and media are required of all design majors. Beyond these, students take specialized courses in their area of interest. A student who emphasizes costume design, for example, might have a studio plan that includes courses in photographic media, personal adornment, history of costume design, and the upper-division studio costume design series. Textile design students take courses in hand-crafted, layered, and loomed textiles, as well as the printed textile design series.

Environmental design is an area which includes courses in drafting and perspective, exhibit design, furniture design, and the two-year studio interior design series. These areas are strongly complemented by classes in related design history.

Portfolio: Students will be required to keep a continuing portfolio of their creative work to be evaluated by faculty for their major. Major students are encouraged to take the major, enroll in courses in related majors, and participate in internships and other courses. Internships and Career Alternatives: As part of their preparation, design students are encouraged to become involved in internships in design firms, museums, art galleries, textile galleries, and in interior designers' and architects' offices. Design graduates have gone directly from this program into design and interior design and architectural firms, exhibit and display work in galleries and museums, and theatrical and textile companies. In addition, students also create their own jobs through freelance and commission work in many related areas.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>B.S. Major Requirements:</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Preparatory Subject Matter

Art (one course from Art History 1A, 1B, 1C or 1D) | 4 |

Design (12, 2, 3, 11, 12, 13) | 21 |

Other (two courses from American Studies 10, Anthropology 2, Geology 2, Psychology 1, Sociology 1, 25, Rhetoric and Communication 1, 3) | 7-9 |

Breadth/General Education

Satisfaction of General Education requirement to include 16 units in natural science and/or natural science and 16 units in social science and/or Contemporary Societies | 32 |

Depth Subject Matter

Design history (select from Design 103, 140, 141, 142, 143, 144) | 12 |

Design, selected with advisor's approval | 12 |

Design, upper division courses | 36 |

Restricted Electives

(Courses to be selected with approval of advisor) | 21 |

Unrestricted Electives | 25-28 |

Total Units for the Degree | 180 |

Additional Requirement
Development of a course of study, in consultation with an advisor, no later than the second quarter of the junior year.

Major Advisor: J. Stabb.

Courses in Design

Questions pertaining to the following courses should be directed to the instructor or to the Advising Center for the major. 152 Walker Hall (916-752-1165).

Lower Division Courses

1. Introduction to Design (4). The Staff (Stabb in charge)

Lecture | 4 hours. Evolution of 20th-century design emphasizing design elements, materials, principles, and vocabulary.

2. Design Methodology (4) II. The Staff (Stabb in charge)

Lecture | 4 hours. Field trips. Prerequisite: course 1 recommended. Introduction to mental, visual, and sensory processes leading to creation of new forms, images, objects, and environments. Emphasis will be on imaging, producing, evaluating, and communicating ideas in the visual and physical realm.

3. Fashion Design (4) III. Geddie

Lecture | 3 hours. Discussion | 1 hour. Prerequisite: course 2. Investigation of fantasy as found in the environment. All aspects of design are explored and fantasy is presented as a problem-solving device.

11. Drawing Studio (4) I. Berteaux and staff (Stabb in charge)

Studio | 8 hours. Prerequisite: course 1 must be taken concurrently; priority enrollment to Design majors. Drawing for the designer as an aid to perception and communication of ideas, objects, and plans. May be repeated once with a different instructor. (course 1 should not be repeated).

12. Media Studio (4) II. Palmer and staff

Studio | 8 hours; field trip. Prerequisite: course 2 must be taken concurrently; priority enrollment to Design majors. Tools, materials, and techniques used in the designer's studio.

13. Graphic Design Studio (4) III. The Staff (Stabb in charge)

Studio | 8 hours. Prerequisite: course 1 or 2; course 3 must be taken concurrently; priority enrollment to Design majors. Film and video tape for description, simulation, analytical research, and design development.

21. Drafting and Perspective (4) I. Olsen and staff

Studio | 8 hours. Prerequisite: course in drawing recommended. Creation of three-dimensional designs on two-dimensional surfaces.

22. Basic Imagery (4) II. Butler and staff

Studio | 8 hours. Prerequisite: courses 11, 12. Presentation of the fundamentals of designed images, combining a theoretical perspective with practice using the components of visual literacy. Specific focus upon (1) abstract structure, (2) symbolism, and (3) representation.

23. Personal Adornment (4) I. The Staff (Stabb in charge)

Studio | 8 hours; field trip. Exploration of the human image altered through ornament and its relation to the human structure.

24. Hand-Worked Textiles (4) I. Lacy

Studio | 8 hours; one or two field trips. Prerequisite: courses 11 or 12. Contemporary approach to textile techniques of construction such as netting, plaiting, knotting and basketry.

25. Reproduction Graphics (4) II. The Staff (Stabb in charge)

Studio | 8 hours; field trip. Prerequisite: courses 11 or 12. Basic studio and photographic skills for the designer; continuous tone, line and halftone films, mechanical and four-color screen separations.

27A. Soft Product Development (4) I. Hetnow

Studio | 8 hours. Prerequisite: course 11 or 12. Basic theories and principles of soft product development from two-dimensional to three-dimensional forms. Approaches include flat pattern, draping, as well as processes of joining and building. Structural development of clothing in relation to bodies is emphasized.

27B. Soft Product Development (4) II. Hetnow

Studio | 8 hours. Prerequisite: course 27A. Study and practice of designing clothing for the human body through pattern development and structural joining sequences. Problems emphasize advanced theories and principles of soft product development.

99. Special Study for Undergraduates (1-5) I, II, III.

The Staff (Stabb in charge)

Prerequisite: consent of instructor. (P/NP grading only).

Upper Division Courses

121. Design delineation (4) II. Olsen and staff

Studio | 8 hours; field trip. Prerequisite: courses 11, 12, and 13. Exploration of the process of delineation, including principles of perspective drawing, rapid visualization techniques (the quick sketch), rendering, and graphic presentation methods.
124. Textile Structures (4) III. Laryn.
 Studio—8 hours; field trip. Prerequisite: course 23 or
 24. Art and science of hand building structures in
 flexible materials. Studio projects in experimental
 two- and three-dimensional forms with some empha-
 sis on relationships to architecture, furniture and inte-
 riors.

125. Textiles in the Landscape (4) III. Shawcorth
 Lecture—2 hours; studio—5 hours. Prerequisite:
 courses 21, 22, 24. Structuring organic and mathe-
 matical forms in textiles, working with the symbolic
 relationship of these textiles and their immediate
 placement in the outdoor landscape.

126A. Visual Presentation: Visual Merchandising (4) II. Gofele
 Studio—8 hours; field trips. Prerequisite: course 11.
 12 or consent of instructor. Principles and practice
 of visual communication of ideas through non-verbal
 presentations. The study of three-dimensional
 objects in a spatial context with an emphasis on
 visual merchandising.

126B. Visual Presentation: Exhibition Design (4) III. Gofele
 Studio—8 hours; field trips. Prerequisite: course 11,
 12 or consent of instructor. Principles and practice
 of visual communication of ideas through non-verbal
 presentations. The study of three-dimensional
 objects in a spatial context with an emphasis on
 the museum and gallery environment.

131. Layered Textiles (4) II. Rivers
 Studio—8 hours; one or two field trips. Prerequisite:
 background in drawing, personal adornment and non-
 loin textiles recommended. Exploration of multi-
 layered textiles and the properties of these textiles:
 applicability, patchwork, quilting, stomp work. The
 individualized influences of materials and techniques on
 contemporary textiles.

132A. Loom-Construct Textile Design (4) I.
 Shawcorth
 Studio—8 hours. Prerequisite: course 23 or 24. Foun-
 dation course in hand-woven textile structure and
design, emphasizing yarn identification, basic draft-
 ing, basic weaves and their derivatives explored in
 context of original color effects and yarn combina-
 tions.

132B. Loom-Construct Textile Design (4) II.
 Shawcorth
 Studio—8 hours. Prerequisite: course 132A. Interme-
 diate level study of complex fabric structure with
 emphasis on pattern in relation to surface, dimen-
 sion, and material.

132C. Computer-Aided Textile Design (4) III.
 Shawcorth
 Studio—8 hours. Prerequisite: course 132B. Micro-
 computer applications to the structure, design, and
 weaving of fabrics, emphasizing advanced composi-
 tions, drafting, and manipulation of multi-dimensional,
 original weave structures.

133A-133B. Visual Metaphor (4-4) II, III. Butler
 Studio—8 hours. Prerequisite: courses 13, 22, 25.
 Study and practice of image formation and produc-
 tion with emphasis on clarity of visual expression,
 the perception and use of color, and visual composi-
 tion in the three-dimensional context.

134A. Fundamentals of Interior Architecture (4) I.
 Harrison and staff (Stabb in charge)
 Studio—8 hours. Prerequisite: courses 11, 12, 13,
 and 21 and junior standing. Introduction to design
 process through simple space planning problems
 focused on residential and small commercial installa-
 tions.

134B. Fundamentals of Interior Architecture (4) II.
 Bertheaux and staff
 Studio—8 hours; field trip. Prerequisite: course 134A.
 Problems emphasize energy considerations, structure,
 building systems, and architectural harmony in
 the urban environment.

134C. Fundamentals of Interior Architecture (4) III.
 Harrison and staff (Stabb in charge)
 Studio—8 hours. Prerequisite: course 134B. Prob-
 lems emphasize design of special and technical
 environments such as laboratories, medical facilities,
 and computer installations and environments for
 the handicapped, aged, and very young.

135. Furniture Design (4) III. Olsen
 Studio—8 hours; one or two field trips. Prerequisite:
 course 21; course 160A recommended. Development
 of furniture for interior and exterior spaces.
 Includes behavioral and physical requirements for
 cultural and historical expression; structural and aes-
 thetic considerations.

140. History of Design (4) II. The Staff (Stabb in charge)
 Lecture—4 hours. Prerequisite: course 101A or
 101B. Historical survey of the changing relation-
 ship to society of its practices and techniques of
 making and using tools and objects; technological
 changes, development of design terminology, con-
 sumer goods, hand workmanship, and industrial
 design.

142A. World Textiles: Far East and Pacific (4) I.
 Rivers
 Lecture—4 hours; field trip. Prerequisite: courses
 recommended: course 101A. History of design
 and development of design in the Far East, including
 Japan, China, Korea, India, Ceylon, Indonesia, and
 the Pacific Islands. Focus on the influence of the
 aesthetic and stylistic qualities of textiles from these
 cultures.

142B. World Textiles: Middle East, Europe, and the
 Americas (4) II. Laryn
 Lecture—4 hours; field trip. Prerequisite: courses
 132A, 132B, 160A, or 170A (concurrent). Study of
 the development of design and the influence of
 design in the Middle East, Europe, and the Americas.
 Emphasis on the aesthetic and stylistic qualities of
 textiles from these cultures.

143. History of Costume Design (4) II. Stabb
 Lecture—4 hours; field trip. Prerequisite: course
 140. History of costume and design from the earliest
times to the present with emphasis on both aesthetic
 and functional aspects.

144. History of Interior Design (4) III. The Staff
 (Stabb in charge)
 Lecture—4 hours. Prerequisite: course 140 and Art
 1C or the equivalent. History of interior design
 in Europe and from the classical period to modern
 times. Emphasis on the evolution of the theory of
 interior design.

160A-160B-160C. Textile Design (4-4-4) II, III, Rivers
 and staff (Stabb in charge)
 Studio—8 hours; one or two field trips. Prerequisite:
 course 11 and 12 recommended. Exploration of the
 design and appreciation of hand printed textiles;
 emphasis on the unique qualities of the individual
 as producer.

170A-170B-170C. Costume Design (4-4-4) I-II-II.
 Stabb
 Studio—8 hours; field trip. Prerequisite: course 117B.
 Study projects in costume design; consideration of
 functional and aesthetic factors influencing the his-
 torical, contemporary, and projected image of man
 as expressed through costume.

177. Apparel Design for Consumer Cultures (4) III.
 Hethorn
 Studio—8 hours. Prerequisite: course 170B. Princi-
 ples and processes of designing apparel for various
 user groups. The relationship among clothing, the
 body, and the environment are addressed in meeting
 functional and aesthetic concerns.

180A. Advanced Interior Architecture (4) I. Olsen
 Studio—8 hours; field trip. Prerequisite: course 134C
 and senior standing. Advanced problems in interior
 architectural design emphasizing re-use of existing
 buildings. Focus on commercial and retail environ-
 ments, code requirements, color and lighting.

180B. Advanced Interior Architecture (4) II. Harri-
 son and staff (Stabb in charge)
 Studio—8 hours; field trip. Prerequisite: course 160A.
 Advanced problems in interior architectural design
 emphasizing space planning for corporate and instit-
 utional environments.

180C. Senior Project in Interior Architecture (4) III.
 Bertheaux
 Studio—8 hours; field trip. Prerequisite: course 180B.
 Design of a complex facility, including the integra-
 tion of design, building structure and building
 systems.

190. Proseminar (1) II. The Staff
 Seminar—1 hour. Prerequisite: design major or con-
 sent of instructor. Philosophies of design explored
 through discussion and presentation of research
 results. May be repeated three times for credit.
 (P/N grading only.)

191A-D. Workshop in Design (4-12) I, II, III.
 The Staff (Stabb in charge)
 Seminar—1 hour; studio or field experience—3 hours
 per unit (units determined by instructor and student).
 Field trip. Prerequisite: course 11, 12; upper division
 standing and consent of instructor. Faculty initiated
 workshops featuring advanced studies and applica-
 tions of original work in Design: (A) Costume; (B)
 Environment; (C) Graphics; (D) Textiles. Credit
 limited to 12 units in one section or a combination of
 sections. Letter grading only.

192. Internship (1-6) I, II, III summer. The Staff
 (Stabb in charge)
 Internship—3-18 hours. Prerequisite: completion of
 84 units and consent of instructor. Supervised inter-
 nship off and on-campus, in areas of design includ-
 ing environmental, costume, textile, museum, display
 and interior design. Enrollment limited to 3 units per
 quarter or 6 units per summer session. (P/N grading
 only.)

197. Tutoring in Design (1-5) I, II, III. The Staff
 (Stabb in charge)
 Discussion—3-15 hours. Prerequisite: upper division
 standing and consent of instructor. Leading of small
 discussion groups or studio meetings affiliated with
 one of the department's regular courses. (P/N grading
 only.)

198. Directed Group Study (1-5) I, II, III. The Staff
 (Stabb in charge)
 Prerequisite: upper division standing and consent of
 instructor. (SU grading only.)

199. Special Study of Advanced Undergraduates
 (1-5) I, II, III. The Staff (Stabb in charge)
 (P/N grading only.)

Graduate Courses

290. Seminar in Design (4) I, II, III. The Staff
 Chairperson in charge
 Seminar—4 hours. Prerequisite: graduate standing
 or consent of instructor. Selected topics in design
 methodology, research, communication, and educa-
 tion. May be repeated for credit.

298. Directed Group Study for Graduate Students
 (1-5) I, II, III. The Staff (Chairperson in charge)
 Studio—variable hours. Prerequisite: consent of
 instructor. (SU grading only.)

299. Directed Individual Study for Graduate Students
 (1-5) I, II, III. The Staff (Chairperson in charge)
 Studio—variable hours. Prerequisite: consent of
 instructor. (SU grading only.)

Dietetics

(College of Agricultural and Environmental Sciences)

The Major Program

The dietetics major provides students with training in normal and therapeutic nutrition, biological and social sciences, food science, communication, and management. This major fulfills the academic requirements for admission to a dietetic internship or the equivalent which must be completed before qualifying for registration as a dietitian.
The Program. The dietetics major takes the same basic core of nutrition classes as the science majors, but in dietetics there is less emphasis on laboratory aspects of the science courses. Instead, dietetics majors take additional courses such as education, sociology, communication skills, and food service management to prepare for work with the public. Dietetics students spend the first two years completing preparatory coursework in the basic biological sciences, along with several of the social sciences. In the final two years, students take courses in normal and clinical nutrition, food science, biochemistry, and management techniques.

Career Alternatives. The dietetics major qualifies students to apply for the American Dietetic Association "accredited internships," enabling them to become a Registered Dietitian, the professional credential necessary to work in a clinical setting. Once dietetics are registered, they generally seek employment in administrative, therapeutic, teaching, research, or public health/public service positions in clinics, hospitals, schools, or other similar institutions. There is a growing role for dietitians working in settings outside of the traditional hospital (for example, in state and federal nutrition programs, nutrition education, Peace Corps and Cooperative Extension work). Students who complete the undergraduate preparation in dietetics are also qualified to enter graduate programs in dietetics, nutrition science, public health nutrition, and food service management.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>See College Requirement</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>52-53</td>
</tr>
<tr>
<td>Biological sciences (Biology: Sciences) A, B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry (Chemistry 2A, 2B, 8A, 8B, 16B)</td>
<td>16</td>
</tr>
<tr>
<td>Computer science (Agricultural Science and Management 21 or Computer Science Engineering 10 or 15)</td>
<td>4-8</td>
</tr>
<tr>
<td>Economic principles (Economics 1A or 1B)</td>
<td>5</td>
</tr>
<tr>
<td>Microbiology (Microbiology 102, 102L)</td>
<td>6</td>
</tr>
<tr>
<td>Psychology (Psychology 1)</td>
<td>4</td>
</tr>
<tr>
<td>Social science (Sociology 1 or 3 or Anthropology 2)</td>
<td>4-5</td>
</tr>
<tr>
<td>Statistics (Statistics 13)</td>
<td>3</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>71-72</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>4</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 137 or Education</td>
<td>5</td>
</tr>
<tr>
<td>Biological chemistry (Biochemistry 101A-101B or Biological Sciences 101A-101B)</td>
<td>6-7</td>
</tr>
<tr>
<td>Food Science and Technology 102A, 102B, 102C</td>
<td>7</td>
</tr>
<tr>
<td>Food Science Management 120, 120L, 121, 122, 123</td>
<td>10</td>
</tr>
<tr>
<td>Physiology (Physiology 110, 110L)</td>
<td>7</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>23-43</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>180</td>
</tr>
</tbody>
</table>

Major Adviser: A.J. Clifford (Nutrition).

Advising Center for the major is located in 1151 Meyer Hall (916-752-2512).

Graduate Study. See the Graduate Studies section in this catalog.

Dramatic Art

(primarily offered in the fall and spring semesters)

Robert A. Fahnri, Ph.D., Chairperson of the Department

Department Office, 222 Dramatic Art Building (916-752-2988)

Faculty

Elizabeth Carlin, M.F.A., Assistant Professor

Robert A. Fahnri, Ph.D., Professor

Harry C. Johnson, M.A., Professor

William E. Kleb, D.F.A., Associate Professor

Phyllis J. Krause, M.F.A., Assistant Professor

Robert K. Srifkins, Ph.D., Professor

Craig Volk, M.F.A., Assistant Professor

Darrell F. Winch, M.A., Lecturer

Emeriti Faculty

Ruby Cohn, Ph.D., Professor Emerita

Everard D'Hammond, Ph.D., Professor Emeritus

Daniel E. Snyder, Professor Emeritus

Alan A. Stankus, Ph.D., Professor Emeritus

The Major Program

The Department of Dramatic Art offers students an opportunity to develop their talents and abilities through a broad spectrum of courses combining both artistic and scholarly skills. The dramatic art student is exposed to every phase of theater: the performing arts such as acting, directing, designing, and playwriting, technical practice involving construction and coordination of sets, costumes, and lights; and a firm grounding in theatre history, dramatic literature, and criticism.

Productions and Facilities. Productions each year are separated into three "seasons." The University Theatre Season consists of five major productions of established plays. Five smaller productions of new, student-written plays take place throughout the season, while Studio Theatre offers three smaller productions of established plays. Also included in the production program are one major presentation of an experimental piece and many class-related projects.

Guest Artists. The department's Granada Artists-in-Residence program brings distinguished British theatre artists to the department each quarter to teach and direct.

Career Alternatives. The various skills involved in producing and performing in the theatre open doors to many career possibilities. Arts management is a relatively new area calling for people with artistic training. Designers and technicians will find careers in community theatres, amusement parks, museums, lighting firms, the fashion industry, and advertising. Training in acting helps those interested in pursuing law, business, public relations, or public office. And there are always those few who—through talent and luck—succeed as actors, directors, or designers for stage, film, or television.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>22-24</td>
</tr>
<tr>
<td>Dramatic Art 29, 21A, 24, 25</td>
<td>14</td>
</tr>
<tr>
<td>Dramatic Art 21B or 27</td>
<td>3-4</td>
</tr>
<tr>
<td>Additional units to achieve a total of 22 lower division units in Dramatic Art</td>
<td>4-5</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>40</td>
</tr>
<tr>
<td>Dramatic Art 12A or 12B, 124 or 12D, 127A, 127B or 126B, 156, 157, 158, 159, 160A</td>
<td>36</td>
</tr>
<tr>
<td>A minimum of 4 elective units chosen from the following: Dramatic Art 115, 121A, 121B, 124C, 124D, 124D, 125, 150, 153, 155; or, with the adviser's consent, from appropriate literature courses in language and literature departments</td>
<td>4</td>
</tr>
</tbody>
</table>

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dramatic Art</td>
<td>20</td>
</tr>
<tr>
<td>Dramatic Art 124A, 163A, 156, 157 or 158, 159</td>
<td>20</td>
</tr>
</tbody>
</table>

Major Advisers. E. Carlin, C. Volk.

Transfer Students. If you are a transfer student you wish to major in Dramatic Art during your freshman year, you must take the following course for your general education: English Composition Requirement (0-8 units). Consult your major adviser for an evaluation of your experience.

Teaching Credential Subject Representative. E. Carlin. See also the Teacher Education Program.

Graduate Study. The Department of Dramatic Art offers programs of study and research leading to the M.A., M.F.A. (acting, directing, or play writing), and Ph.D. (theatre research) degrees. Detailed information may be obtained by contacting the Graduation Adviser.

Graduate Adviser. W.E. Kleb.

Courses in Dramatic Art

Lower Division Courses

10. **Introduction to Acting (3).** I, II, III. The Staff

Laboratory/discussion—4 hours, term paper. Fundamentals of movement, speech, theatre games, and improvisation. Selected reading and viewing of theatre productions. Intended for students not specializing in Dramatic Art.

15. **The Art of the Cinema (4).** II. The Staff

Lecture—2 hours; discussion—1 hour; film viewing—2 hours. The cinema as an art form; its relation to significant modern productions.

15L. Introduction to Filmmaking (2). The Staff

Lecture/discussion—3 hours; film viewing—2 hours. Prerequisite: course 15 concurrently or consent of instructor. Students in small groups will write, shoot, and edit 8 mm films, and prepare sound tracks for them.

20. Introduction to Dramatic Art (4). I, II, III. Volk

Lecture—3 hours; discussion—1 hour. Understanding and appreciation of both the distinctive and collaborative contributions of playwright, actor, director, and designer to the total work of dramatic art. Study of plays from the major periods of dramatic art in their cultural contexts.

21A. **Fundamentals of Acting (4).** II. The Staff

Lecture—2 hours; laboratory—4 hours. Prerequisite: course 20. Physical and psychological resources of the actor. Experience in individual and group contact and communication, theatre games, advanced improvisation, sound and movement dynamics. Viewing of theatre productions. Limited to those planning to major in Dramatic Art.

21B. **Fundamentals of Acting (4).** III. Johnson

Lecture—2 hours; laboratory—4 hours. Prerequisite: course 21A and consent of instructor. Theory and practice of acting with emphasis on character analysis, interpretation, and development. Acting in a student-directed project. Viewing of theatre productions. Limited to those planning to major in Dramatic Art.

24. **Visual Aspects of Dramatic Art (4).** III. The Staff

Lecture—3 hours; laboratory—2 hours. Understanding and appreciation of the visual aspects of dramatic art: theatre architecture, scenery, lighting, costume, and makeup.
25. Technical Aspects of Dramatic Art (2) III. The Staff Lecture—1 hour; laboratory—2 hours. Understanding and appreciation of the technical principles of dramatic production; basic knowledge of materials, principles of scene construction; scene painting, costume construction, stage rigging, lighting and sound equipment and control systems.

27. Fundamentals of Playwriting and Directing (3) I. Kleb Discussion—2 hours; workshop—2 hours; reading of selected texts in the Theory of directing and playwriting. Prerequisite: consent of instructor. Exercises in conceiving and developing theatre pieces with emphasis upon the creative collaboration of playwright and director.

30. Theatre Laboratory (1-5) I, II, III. The Staff Prerequisite: course 26 or consent of instructor. Projects in acting, production, scene design, costuming, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit up to 10 units.

99. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

115. Advanced Study of Major Film Makers (4) II. The Staff Lecture-discussion—3 hours; film viewing—2 hours. Prerequisite: course 15. Analysis of the contribution of some outstanding film creators. Study of diverse aesthetic theories of the cinema and their application to selected films. May be repeated for credit when different film creators are studied.

121A. Advanced Acting (4) I. Johnson Lecture—2 hours; laboratory—4 hours. Prerequisite: course 21B and consent of instructor. Theory and practice of acting focusing on performance problems and the maximization of individual resources.

121B. Advanced Acting (4) II. The Staff Lecture—2 hours; laboratory—4 hours. Prerequisite: course 121A and consent of instructor. Theory and practice of acting focusing on performance problems and the maximization of individual resources.

124A. Principles of Theatrical Design: Scenery (4) I. The Staff Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Scene design processes, working drawings, sketching techniques, scale models, methods and materials of scenic construction.

124B. Principles of Theatrical Design: Scenery (4) II. The Staff Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Analysis of plays in terms of scene design, elements of design, execution of designs for modern and period plays.

124C. Principles of Theatrical Design: Lighting (4) III. Winn Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Theories of lighting the stage, equipment and control systems, execution of lighting plots.

124D. Principles of Theatrical Design: Costume (4) I. Kress Lecture-seminar—4 hours. Prerequisite: course 24 or consent of instructor. Source materials for theatrical costuming, selecting fabrics, elements of design, analysis of plays in terms of costume design, execution of designs for modern and period plays.

126. Production Management (3) I. Winn Lecture—3 hours. Prerequisite: course 25. Theoretical study of backstage operation from audition through performance: techniques of stage management, technical direction, cueing procedures and audience control. Offered in alternate years.

127A. Principles of Directing (4) I. The Staff Lecture—2 hours; laboratory—4 hours; rehearsal.

127B. Principles of Directing (4) II. The Staff Lecture—2 hours; laboratory—4 hours; rehearsal. Prerequisite: courses 127A and consent of instructor for non-majors. The director's creative approach to the play and to its staging.

150. American Theatre and Drama (4) II. Sarlos Lecture—4 hours. The history of the theatre from Colonial times to the present. Readings of selected plays. Offered in alternate years.

153. The American Musical (4) III. Kleb Lecture—4 hours. History and development of the American Musical as a unique theatrical form. Offered in alternate years.

155. Black Theatre and Drama (4) III. Johnson Lecture—4 hours. Black Theatre and drama today: the history, impact and current direction of the work of Black playwrights.

156. Theatre and Drama: Aeschylus to Machiavel (4) I. Sarlos Lecture—4 hours. Selected plays and the history of the theatre from ancient Greece through the Italian and Spanish Renaissance. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 44 or 4B.

157. Theatre and Drama: Shakespeare to Schiller (4) II. Sarlos Lecture—4 hours. Selected plays and the history of the theatre from the English Renaissance through German and French Romanticism. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 44 or 4B.

158. Theatre and Drama: Ibsen to Albee (4) I. Fahner Lecture—4 hours. Selected plays and the history of the theatre from English Romanticism to the present.

159. Contemporary Experimental Theatre and Drama (4) I. Kleb Lecture—4 hours. Examination and evaluation of the "New Theatre." Course includes attending theatre events.

160A-160B. Principles of Playwriting (4-4-I-II) Volk, Kleb Lecture/seminar—4 hours. Prerequisite: two courses in Dramatic Art or related courses in other departments. Analysis of dramatic structure; preparation of scenarios; the construction of plays.

180. Theatre Laboratory (1-5) I, II, III. The Staff Prerequisite: upper division standing and course 25, or consent of instructor. Projects in acting, production, scene design, costuming, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit.

152. Internship in Dramatic Art (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: upper division standing, or graduate standing with major in dramatic art; upper division course related to the project; consent of instructor and Department Chairperson. Internship outside the academic department enabling students to practice their skills. May be repeated for credit for a total of 12 units. (P/NP grading only.)

197. Tutoring in Dramatic Art (1-5) I, II, III. The Staff (Chairperson in charge) Tutoring—1-5 hours. Prerequisite: upper division or graduate standing; major in dramatic art; consent of department chairperson. Leading of small voluntary groups affiliated with one of the department's regular courses. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Methods and Materials in Theatre Research (4) I. Sarlos Seminar—3 hours; term paper. Essential research tools in theatre and related fields; bibliographies, primary sources; methods of evaluating and presenting evidence; delineating research areas in the field.

211. Advanced Voice and Speech (2) I, II, III. Carlin Laboratory—4 hours. Open to advanced undergraduates with consent of instructor. Voice production and speech related to specific acting problems in classical plays, particularly in verse. May be repeated for credit.

212. Advanced Stage Movement (2) I, II, III. The Staff Laboratory—4 hours. Prerequisite: open to advanced undergraduates with consent of instructor. Rhythmic movement patterns relating to acting problems in classic and modern plays. May be repeated for credit.

221. Special Problems in Advanced Acting (4) I, II, III. Johnson, Carlin Seminar—2 hours; laboratory—4 hours. Prerequisite: course 21A. Consent of instructor. Advanced acting problems arising from differences in the type and style of plays selected from Greece to the present. May be repeated for credit.

224A. Visual Problems in Theatre and Performance (4) II. The Staff Seminar—3 hours; term project. Special problems in visual and auditory aspects of theatrical production culminating in a single performance project. Open to Dramatic Art, Art History, Art Studio, and Design majors. May be repeated for credit.

224B. Advanced Principles and Theories of Theatrical Design (4) II. The Staff Seminar—3 hours; term paper. Selected problems in the design of stage scenery and costumes; practice in design. May be repeated for credit.

224C. Advanced Principles and Theories of Theatrical Design (4) III. The Staff Seminar—3 hours; term paper. Design of a production for three different types of theatres: open stage, arena, and prosenium. May be repeated for credit.

224D. Advanced Principles and Theories of Theatrical Costume Design (4) III. Kress Seminar—3 hours; research and design projects—30 hours (minimum) total. Prerequisite: course 124D or consent of instructor. Costume design projects emphasizing research, principles, and theories; the planning and presentation of costume renderings, design of accessories and sketches; and scale drawings of projects. Projects from classic theatre, musical comedy, ballet, and opera. Offered in alternate years.

224E. Advanced Principles and Theories of Theatrical Lighting Design (4) III. Granada Artist Seminar—3 hours; laboratory—2 hours. Prerequisite: course 124C, a scenic design course, and consent of instructor. Design concepts, scotscape analysis, color, composition and design. Projects presented in studio atmosphere. Also included: renderings, written analyses, and drafted plots. Offered in alternate years.

227. Seminar in Directing Theory: Realism (4) III. Granada Artist Seminar—3 hours; term project. Modern directing theory as it applies to theatrical realism; development of directorial concepts for productions of selected realistic plays; emphasis on textual analysis. Offered in alternate years.

228. Seminar in Directing Theory: Non-Realism (4) III. Granada Artist Seminar—3 hours; term paper. Modern directing theory as it applies to non-realistic theatre; development of directorial concepts for productions of selected non-realistic plays—Greek to the present; emphasis on textual analysis. Offered in alternate years.

229. Special Problems in Directing (5) I, II, III. Carlin, Granada Artist Seminar—2 hours; laboratory—2 hours; rehearsal—4 hours. Prerequisite: consent of instructor. Projects in

*Course not offered this academic year.
Earth Sciences and Resources (A Graduate Group)

Students admitted to the Earth Sciences and Resources Graduate Group before June 30, 1990 will be allowed to complete their degree in this subject.

New students, however, should see the Hydrologic Sciences Graduate Group section in this catalog.

Information. 113 Veihmeyer Hall (916-752-3243/0453)

East Asian Studies
(College of Letters and Science)
Michelle Yeh, Ph.D., Program Director
Program Office, Interdepartmental Programs (916-752-1219)

Faculty
Robert Borgen, Ph.D. Professor (Chinese and Japanese)
Chiao-ting Chang, Ph.D. Assistant Professor (Chinese and Japanese)
Mary H. Fong, Ph.D., Professor (Art History)
Donald Gibbs, Ph.D., Associate Professor (Chinese Literature)
Susan Griswold, Ph.D., Assistant Professor (Chinese and Japanese)
Gary G. Hamilton, Ph.D., Professor (Sociology)
Joyce K. Kallgren, Ph.D., Professor (Political Science)
Whalen W. Lai, Ph.D. Professor (Religious Studies)
Kwang-ching Liu, Ph.D. Professor (History)
Susan Mann, Ph.D. Professor (History)
Mau-sang Ng, Ph.D., Associate Professor (Chinese and Japanese)
Don C. Price, Ph.D., Professor (History)
G. William Skinner, Ph.D. Professor (Anthropology)
Janet S. Smith, Ph.D., Associate Professor (Anthropology)
Marian Ury, Ph.D., Professor (Comparative Literature)
Michelle Yeh, Ph.D., Associate Professor (Chinese and Japanese)
Emeritus Faculty
Benjamin Wallacker, Ph.D., Professor Emeritus

The Major Program
The East Asian studies major is designed to give the student an understanding of East Asia (especially China and Japan) through interdisciplinary studies that combine sustained work in an East Asian language with courses on East Asian countries.

The Program. The program offers core courses in East Asian history, humanities, social sciences, and languages. After taking the core courses in conjunction with two or more of either Chinese or Japanese language study, the student chooses additional courses focusing on a special field of interest, such as anthropology or history. Since six quarters of language work are required, students normally should apply to the East Asian studies program no later than their sophomore year.

Career Alternatives. The program provides preparation either for a career that involves working with East Asian affairs and people (e.g., journalism, business, government service, teaching, and counseling), or as preparation for graduate studies in the East Asian field.

A.B. Major Requirements:

Preparatory Subject Matter: History 9A, 9B, or 9C

One course from Art History 1D, Chinese 10, 11, Comparative Literature 53A, History 90A, Japanese 10, 25, Religious Studies 70, 75

Two years (or the equivalent) of Chinese or Japanese language study (Chinese 1-2-3-4-5-6, Japanese 1-2-3-4-5-6)

Must include at least 5 units of core courses from each of the following categories: History, Social Science, and Humanities. Core courses in each category are listed below.

History:
- History 190A-190B or 190B-190C
- 194A-194B or 194B
- Economics 171

Social Science:
- Anthropology 148A, 148B, 149A, 149B
- Geography 127

Humanities
- Art History 163A, 163B, 163C, 164
- Chinese 101, 102, 103
- Religious Studies 172

At least 12 additional units must be selected from the above courses, or from the following:
- Anthropology 110, 111, 112, 120, 122, 123, 124, 128; Chinese (any upper division course); Economics 115A, 115B, 116, 160A, 160B, 162; Geography 143; History 102G, 102H, 102N, 191A, 191B, 194D; Japanese (any upper division course); Linguistics 100, Political Science 127, 133, 138, 140, 148C; Sociology 118, 141, 170, 173. (Other appropriate courses, including individual and group study courses (198, 199), as approved by the Committee in charge.)

Total Units for the Major: 74-75

Recommended.

Students are strongly urged to take a substantial number of courses in Euro-American civilization as a basis for comparison for a deeper understanding of America's relations with East Asia.

Minor Program Requirements:

Courses taken for the minor are expected to reflect a predominant interest in either China or Japan, but also to provide some exposure to the other of the two countries. All courses counting towards the East Asian Studies major, including individual and group study courses (198, 199), may be used to fulfill the requirements for the minor program, as long as they deal predominantly with China, Japan, or both.

Units:

East Asian Studies: 22

Major Advisers. Consult Program Director.

Courses in East Asian Studies. The following courses count toward the major and are open to students throughout the campus. Refer to departmental listings for course descriptions.

Anthropology
- 148A. Traditional Chinese Society
- 148B. Family, Gender, and Population in Contemporary China
- 149A. Traditional Japanese Society
- 149B. Contemporary Japanese Society

Art History
- 1D. Asian Art
- 163A. Chinese Art
- 163B. Chinese Painting
- 163C. Painting in the People's Republic of China
- 164. The Arts of Japan

Chinese
- All courses.

Comparative Literature
- 53A. Literature of China and Japan
- 153. Forms of Asian Literature

Economics
- 171. Economy of East Asia

Geography
- 127. Contemporary East Asia
Courses in Ecology

Graduate Courses

200A. Principles and Application of Ecological Theory (4).
Lecture—3 hours; discussion—1 hour. Prerequisite: first course in ecology, Statistics 104; Mathematics 16A, 16B. Critical evaluation of ecological theory and applications to ecological management. Historical development of ecological theory is emphasized. Critical evaluation of ecological principles pertaining to the structure and dynamic properties of ecological systems, their organization and evolution.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A. Continuation of course 200A. Critical evaluation of theory and application in the areas of ecosystem analysis, plant and animal behavior, spatial and temporal scales, ecological energetics, and system dynamics. Synthesis of ecological theory into testable principles.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A and 200B. Overview of ecosystem and landscape principles (structure, energy and nutrient flow, species diversity and landscape heterogeneity, change, stability), building on ecological principles and theory. Introduction to analysis tools (remote sensing, geographic information systems, modeling) applied to landscape systems.

Lecture—2 hours; laboratory—4 hours; term paper. Prerequisite: course 200A, 200B, and 201. Spatial measurements and analytical techniques: Types and uses of satellite, aircraft, and other remotely sensed images for ecosystem and process studies. Techniques for multispectral image analysis and geographic information systems and applications to ecosystem research.

203. Physiological Ecology of Animals (3). III. Patterson (Environmental Studies).
Lecture—2 hours; discussion—1 hour. Prerequisite: Zoology 125 or Physiology 110 or the equivalent: elementary calculus. Comparative examination of several animal groups addressing fundamental physiological mechanisms that shape the ecology of the animal group.

Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Studies 100 or Zoology 125, Mathematics 21A-21B, or consent of instructor; Mathematics 22B strongly recommended. Review of major theoretical concepts of population and community ecology, with emphasis on both the rationale of the theory and its correspondence to natural phenomena.

205. Structure of Ecological Communities (4). II. Quim (Environmental Studies).
Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Studies 100 or Zoology 125 or Botany 117, Genetics 103 or Botany 100 or Zoology 148, and Mathematics 21A-21B; Ecology 204 and Mathematics 22A-22B strongly recommended. Provides entry-level graduate students and advanced undergraduates an introduction to literature and contemporary research into processes structuring ecological communities. Particular emphasis placed on ecological phenomena with a significant spatial component, e.g., gene flow, colonization, and extinction.

Lecture—3 hours; laboratory—4 hours. Prerequisite: introductory courses in statistics and plant ecology; consent of instructor. Principles and techniques of vegetation analysis, including structure, composition, and community development. Emphasis on plant community analysis: procedures, association analysis, ordination, processes, and mechanisms of succession, and classification. Most techniques are demonstrated or conducted during field trips and laboratories. Offered in alternate years.

Lecture—2 hours; laboratory/discussion—1 hour. Prerequisite: advanced undergraduate ecology course (e.g., Environmental Studies 100, Zoology 125, Botany 117, or Entomology 104) and advanced undergraduate course in genetics and/or evolution (e.g., Genetics 100, 103, or Botany 103). Provides entry-level graduate students and advanced undergraduates with an introduction to both theoretical and empirical research in plant population biology. Emphasis will be placed on linking ecological and genetic approaches to plant population biology. Offered in alternate years. (Same course as Agronomy 207.)

Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Studies 100 or Zoology 125, 148, Botany 117, Entomology 106. Graduate-level introduction to current research in conservation biology. Course will emphasize reading and discussing primary literature. Specific topics will reflect the research interests of UC Davis conservation biology faculty.

209. Demography for Biologists (3). II. Carey.
Lecture—3 hours; prerequisite: course 104 or Zoology 125 or the equivalent. Major demographic concepts and techniques are explored, including current, abridged multiple decrement life tables, analysis of reproduction, stable population theory, stochastic, two-sex and multiregional models and demographic applications such as life history scaling, harvesting theory, and curve fitting. Offered in alternate years.

Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing. Course focuses on the commonalities that human ecologists have as social scientists who specialize in problems relating human populations and environmental variables. General epistemological issues and theoretical models are reviewed. Similarities and differences of human and biological ecology are examined. Offered in alternate years.

211. Advanced Topics in Cultural Ecology (3). I. Orlove (Environmental Studies).
Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing. Course focuses on the commonalities that human ecologists have as social scientists who specialize in problems relating human populations and environmental variables. General epistemological issues and theoretical models are reviewed. Similarities and differences of human and biological ecology are examined. Offered in alternate years.
Economics

environment, culture and social structure. The works of several major theorists will be examined with regard to analytical models, empirical data, research methodologies, and modes of explanation. Offered in alternate years. (Same course as Anthropology 211.)

212A. Environmental Policy Analysis (4) III.
Lecture—3 hours; discussion—1 hour; seminar paper. Prerequisite: course in public policy (e.g., Political Science 107 or 108); course in bureaucratic policy (e.g., Environmental Studies 168 or Political Science 181); course in intermediate statistics (e.g., Sociology 106 or Agricultural Economics 106). An examination of selected topics in the formulation and implementation of environmental policy with a principal emphasis on conceptual and methodological issues. Offered in alternate years. (Same course as Environmental Studies 212A.)

212B. Environmental Policy Analysis: Evaluation (4) I. Schwartz (Environmental Studies).
Lecture—1 hour; discussion—1 hour; seminar—2 hours; independent evaluation project. Prerequisite: Economics 100 or the equivalent; Environmental Studies 169A (or the equivalent course in policy, analysis or resource economics); intermediate level statistics (e.g., Sociology 106 or Agricultural Economics 106). Examination of recent research and proposals in the evaluation of environmentally related policies, programs and plans. Ex-ante and ex-post evaluation will be studied. Offered in alternate years. (Same course as Environmental Studies 212B.)

213. Population, Environment, and Social Structure (4) II. The Staff.
Seminar—3 hours. Term paper. Prerequisite: at least one course in population or human ecology, or in environment and resources. Relationships among population dynamics, resource scarcity and environmental problems, and social structure; focus on demographic content of global ecological models and simulations, ecological content of modern demographic theories, and debates about scarcity, inequity, and social conflict and change. Offered in alternate years.

221. Chemical Aspects of Ecology (3).
Lecture—3 hours. Prerequisite: Chemistry 1A-1B-1C and 88 or 128C (or the equivalent); a course in biological ecology; graduate standing and consent of instructor. A week will be spent on each of nine subjects including chemical ecology of reproduction, nutrition, defense, communication, adaptation, and ecosystem structure and function. Offered in alternate years.

230. Analysis of a Selected Ecosystem (4).
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing. Application of basic ecological principles to the interpretation of biotic and abiotic interrelationships of a particular ecosystem. Recent advances in theory, technique, and basic information are emphasized.

232. Theoretical Ecology (3) III. Hastings (Environmental Studies).
Lecture—3 hours. Prerequisite: courses 204, 205 and Mathematics 22A-22B; or Environmental Studies 102, Environmental Studies 122 or Zoology 125, and Mathematics 118B and 119. Examination of major conceptual and methodological issues in theoretical ecology. Model formulation and development will be emphasized. Topics will vary from year to year. May be repeated for credit in alternate years.

250. Seminar in Ecology (1-3) I, II, III. The Staff (Chairperson in charge).
Seminar—1 to 3 hours. Prerequisite: consent of instructor. Topics in biological, human, physical, and chemical aspects of the environment are expected to present an oral seminar on a particular aspect of the general topic under consideration. (SU grading only.)

291. Biological Conservation (3) II. Schonewald-Cox (Environmental Studies).
Seminar—3 hours. Prerequisite: graduate standing or consent of instructor. Examines characteristics of populations that make them vulnerable to extinction and examines various methods that can be used in the restoration process. Although both plants and animals are of interest, emphasis will be placed on vertebrates. Offered in alternate years.

296. Topics in Ecology (1) I, II, III. The Staff (Chairperson in charge).
Seminar—1 hour. Prerequisite: graduate standing in Ecology. (SU grading only.)

297. Tutoring in Ecology (1-4) I, II, III. The Staff (Chairperson in charge).
Lecture—1 hour; discussion—1 hour. Prerequisite: graduate standing in ecology; consent of instructor. Teaching ecology, including: organizing discussion groups for regular departmental courses under direct guidance of staff. May be repeated for credit. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge).
(SU grading only.)

299. Research (1-12) I, II, III. (Chairperson in charge). Prerequisite: graduate standing. (SU grading only.)

Economics
(See College of Letters and Science)

Robert Feenstra, Ph.D., Chairperson of the Department.
Department Office, 361 Kerr Hall (916-752-0741)

Faculty
Glascoro Bonanno, Ph.D., Associate Professor
Suvini Borenstein, Ph.D., Associate Professor
Colin Cameron, Ph.D., Assistant Professor
Gregory Clark, Ph.D., Associate Professor
Robert C. Feenstra, Ph.D., Professor
W. Eric Gustafson, Ph.D., Senior Lecturer
L. Jay Helms, Ph.D., Associate Professor
Kevin O. Hoover, Ph.D., Associate Professor
Hirakumi Kaneda, Ph.D., Professor
Peter R. Lewis, Ph.D., Professor
Louis Majewski, Ph.D., Associate Professor
Thomas Mayer, Ph.D., Professor
Klaus Nehring, Ph.D., Assistant Professor
Julio A. Nelson, Ph.D., Assistant Professor
Alan L. Olmstead, Ph.D., Professor
Martine Quinzli, Ph.D., Professor
John R. Romer, Ph.D., Professor
Kevin D. Salyer, Ph.D., Assistant Professor
Steven M. Shaffer, Ph.D., Professor
Joaquim Silvestre, Ph.D., Professor
Robert R. Trest, Ph.D., Assistant Professor
Elias H. Turna, Ph.D., Professor
Gary L. Watson, Ph.D., Professor (Economics, Management)
Leon L. Wogge, Ph.D., Professor
Wing T. Woo, Ph.D., Associate Professor

Emeriti Faculty
Andrzej Brzaski, Ph.D., Professor Emeritus
Bruce Glassburner, Ph.D., Professor Emeritus
T. Y. Shen, Professor Emeritus

The Major Program
Economics is the study of how individuals, organizations, and societies choose among alternative uses of resources. Intertemporal resources are turned into the things people want.

The Program. Economics majors complete an introductory course sequence in economics, in addition to several courses in quantitative methods. Intermediate theoretical courses are taken in the upper-division level and then students are free to concentrate the remainder of their units in various areas of interest including more courses in economic theory or history, international economics, labor, industry, alternative economic systems, economic development, public finance, econometrics, or mathematical economics.

Internships and Career Alternatives. Internships for economics majors have been arranged at banks, brokerages, other business enterprises, and governmental units. The internships must complement the student’s course work. A degree in economics is excellent preparation for students who want to go on to law school, business school, advanced work in economics, or graduate work in international relations. It is also a good background for careers in management and positions with the government.

A.B. Major Requirements:

Preparatory Subject Matter

Economics 1A-B 10
Statistics 13, 32, or 102 3-4
Mathematics 16A-16B-16C or 21A-21B-21C ... 21-22

Mathematics 12 12

Depth Subject Matter

Economics 100 or 101M 10
One course from Economics 110A, 110B, 111A, 111B 10
One course sequence from Economics 110A-110B; 111A-111B; 115A-115B; 116-117; 121A-121B; 125-130; 125-131; 130-131; 136A-136B; 161A-161B; 160A-160B 18
Additional economics courses to achieve a minimum of 40 upper division units. 18

Total Units for the Major 62-66

Recommended
Students considering graduate study in economics or business administration are strongly urged to take Mathematics 21A-21B-21C and 22A.

The Economics Department suggests that Economics 101 and 102 be taken as soon as possible after the introductory courses.

Except under extraordinary circumstances, not more than three economics courses may be taken in any one quarter. In special cases, the department will accept a limited number of related upper division courses from other departments in satisfaction of the economics upper division course requirements.

Approval from a departmental adviser is required in all such cases.

Graduation with High or Highest Honors. To be eligible for departmental recommendation for High or Highest Honors in Economics at graduation, a student must take all upper division courses in Economics for a letter grade; earn at least a 3.5 grade point average in those courses, and complete at least eight units of course work that result in the submission of an Honors project. Consult the College of Letters and Science section of this catalog and contact the Department for more information.

American History and Institutions. This University requirement can be satisfied by completion of Economics 111A, 111B. (See also under University requirements.)

For information on admission to graduate study, degree requirements, and financial aid, consult the and contact the chairperson of the departmental graduate committee.

*Course not offered this academic year.
Courses in Economics

Lower Division Courses

1A. Principles of Microeconomics (S) I. Gustafson and staff II. Walton; II. Gustafson and staff.

Lecture—4 hours; discussion—2 hours. Courses 1A and 1B may be taken in either order. Analysis of the allocation of resources and the distribution of income through a price system; competition and monopoly; the role of profit; comparative economic systems. General Education credit for non-GE course sequence (1A-1B) which will satisfy one GE course: Contemporary Societies/Introductory.

1B. Principles of Macroeconomics (S) I. Kaneda; II. Sheffrin. Lecture—3 hours; discussion—2 hours. Courses 1A and 1B may be taken in either order. Analysis of the economy as a whole; determinants of the level of income, employment, and prices; money and banking, economic fluctuations, international trade, economic development; the role of public policy. General Education credit for non-GE course sequence (1A-1B) which will satisfy one GE course: Contemporary Societies/Introductory. Recommended GE preparation: Economics 1A-1B.

11A. Elementary Accounting (4) I, II, III. The Staff (Chairperson in charge). Lecture—4 hours; discussion—1 hour. History and basic concepts. Review of the ledger; journals; income statement; and the balance sheet; inventory valuation; depreciation; introduction to cost accounting; analysis of financial statements.

11B. Accounting (4) I. The Staff. Lecture—4 hours; discussion—1 hour. Prerequisite: course 11A. Introduction to financial accounting for business and personal use. Recommended GE preparation: Economics 1A-1B.

12. Internship and Field Work (1-12) I, II, III. The Staff. Internship—30 hours; term paper. Prerequisite: junior or senior standing; availability of internship position or approved field work project; stock-brokerage internships must have completed course 11A-1B; consent of instructor. Intensive study of practical application of concepts in economics, stressing research methods and empirical analysis. (P/NP grading only.)

98. Group Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Individual Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. International Micro Theory (5) I, II, III. The Staff. Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A-1B and Mathematics 16A or 21A with a grade of C- or better in each course. Theory and distribution theory under conditions of perfect and imperfect competition; welfare economics. (Not open to students who have received credit for course 100M or Agricultural Economics 100A or 100B.)

100M. Intermediate Micro Theory (5) II. Silvestre. Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A-1A5 or Mathematics 19A or 21B or Mathematics 21A-21B each with a grade of C- or better. Theory of the consumer and the firm. Markets under perfect and imperfect competition. General Equilibrium and Welfare Economics. Use of calculus concepts and techniques. (Not open to students who have completed course 100, Agricultural Economics 100A or 100B.)

101. Intermediate Macro Theory (5) I, II, III. The Staff. Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A-1B and Mathematics 16A or 21A with a grade of C- or better in each course. Theory of income, employment, and prices under static and dynamic conditions.

103. Economics of Uncertainty and Information (4) II. Bonanno. Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 100M. Mathematics 16A and 16B or Mathematics 21A and 21B. Optimal decisions under uncertainty, expected utility theory, economics of insurance, asymmetric information, signaling in the job market, incentives and Principal-Agent theory, optimal search strategies and the reservation price principle.

105. History of Economic Thought (4) III. The Staff. Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Historical examination of the classical economic thought from the time of the ancient Greeks through the sixteenth century with special attention to the growth of ex-post and ex-ante thought. (Recommended GE preparation: Economics 1A-1B.)

106. The Great Economists—Ideas, Theories and Ideologies (4) III. Clark. Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: courses 1A-1B. Perspectives on capitalism and markets by major economic thinkers. Emphasis on links to other social sciences. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Economics 1A-1B.

110A. Economic History (4) I. Clark. Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Survey of economic change in Europe prior to the year 1700; reference to other regions of the Eastern Hemisphere; implications for contemporary economic development.

110B. Economic History (4) III. Clark. Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Survey of economic change in Europe from the year 1700 to the present; reference to other regions of the Eastern Hemisphere; implications for contemporary economic development.

111A. Economic History (4) II. Walton. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Survey of economic change in Europe from the year 1700 to the present; reference to other regions of the Eastern Hemisphere; implications for contemporary economic development.

111B. Economic History (4) III. Clark. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, or consent of instructor. Survey of economic change in the United States from Colonial times to 1865; reference to other regions in the Western Hemisphere.

115. Economic Development (4) I. Kaneda; II. Tumur; III. The Staff. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, or consent of instructor. Survey of economic change in the United States from 1865 to the post World War II era.

115B. Economic Development (4) II. The Staff; III. Kaneda. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A and 1B. Covers major issues encountered in emerging from international poverty. Issues include problems of growth and structural change, human welfare, population growth and health, labor markets and internal migration. Important issues of policy concerning international trade and industrialization.

116. Economic Systems (4) III. The Staff. Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Critical examination of major economic systems; their goals and institutions, capitalism, fascism, and varieties of socialism; problems of economic planning in USSR, India, China, and other industrializing economies.

117. The Soviet Economy (4) III. The Staff. Lecture—3 hours; to be arranged—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Survey of Soviet economic development: economic organization, methods of planning, and performance.

118. Political Economy of Agrarian Reform (4) III. The Staff. Lecture—2 hours; discussion—1 hour to be arranged. Prerequisite: courses 1A-1B or the equivalent. Theory and concepts of reform; illustrations from various periods and regions. Impact on economic development; problems of change and stability. Relationship to economic, social, and political institutions.

119. Marxian Economics (4) II. Roemer. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, 100 (or 100M). Marxian economic theories, including theories of value, surplus value and profit; accumulation, the business cycle; class and crises; the role of the State and its relation to classes; imperialism. Readings of Marx and economists in the Marxian tradition will be studied.

120. Economics of War and Peace (4) III. Tuma. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B. Explores economic causes and effects of war; analyzes war and peace situations by comparing theory with practice in specific wars as case studies.

121A. Industrial Organization (4) I. Eirono. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, 100 (or 100M), or consent of instructor. An appraisal of the role of competition and monopoly, in the American economy; market structure, conduct, and economic performance of a variety of industries.

121B. Industrial Organization (4) III. Lewis. Lecture—3 hours; to be arranged—1 hour. Prerequisite: course 121A. Public policy in a private enterprise economy; antitrust; other policies toward industry; economics of regulated industries.

123. Ecology and Economics (4) I. Gustafson. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1A-1B or consent of instructor. Ecological economic problems: pollution, industrial metabolism, renewable resources, population growth and agricultural problems.

125. Urban Economics (4) I. The Staff. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1A, 1B, and 100. Explores the market forces underlying the development of cities, examining the existence of cities and the spatial distribution of activity within cities. Explores the effects of policies that address problems such as poverty, inadequate housing, and crime.

130. Public Microeconomics (4) I. Triest; II. Silvestre. Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 100M, or consent of instructor. Public expenditures; theory and applications. Efficiency and equity of competitive markets; externalities, public goods, and market failures; positive and normative aspects of public policy for expenditure, including benefit-cost analysis. The public sector, including public protection, pollution, education, and crime.

131. Public Finance (4) III. Heims. Lecture—3 hours; discussion—1 hour. Prerequisite: course 100G or 100M. Assessing the economic burden of taxation; equity and efficiency considerations in tax design; structure and economic effects of the U.S. tax system (including personal income tax, corporate income tax, and property tax); tax loopholes, tax avoidance, and development of tax reform models.

134. Financial Economics (4) II. Borenstein. Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, 100; Mathematics 16A; Statistics 13. General background and rationale of corporations; finance as resource allocation over time; decision making under uncertainty and the role of information; capital market and interest rate structure; financial decisions. Students who have completed Agricultural Economics 171 may not receive credit for this course.

135. Money, Banks and Financial Institutions (3) I. Mayer; II. III. The Staff. Lecture—3 hours. Prerequisite: courses 1A-1B or consent of instructor. More advanced topics in the banking system, money creation, the Federal Reserve System, the tools of monetary policy.
136A. Monetary Theory (4) I. Makowski Lecture—3 hours; discussion—1 hour. Prerequisite: course 101. Monetary theory; the impact of changes in the quantity of money and of liquid assets on monetary functions.

136B. Monetary Policy (4) II. Mayer Lecture—3 hours; discussion—1 hour. Prerequisite: courses 135 and 136A. Evaluation of monetary policy, its impact on the economy and past performance.

140. Econometrics (4) I. Cameron Lecture—3 hours; laboratory—2 hours. Prerequisite: courses 100, 101; Mathematics 16A-16B or 21A; Statistics 13. Introduction of problems of observation, estimation, and hypotheses testing in economic application through the study of the theory and application of linear regression models, critical evaluation of selected examples of empirical research and exercises in applied economics.

151A. Economics of the Labor Market (4) I. Cameron Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 100M. Theory of labor supply and demand; determination of wages and employment in the context of the general equilibrium theories of labor unions. Policy issues: labor force participation by married women; minimum wages and youth unemployment; effect of unions on wages.

151B. Economics of Natural Resources (4) III. Nelson Lecture—3 hours; discussion—1 hour. Prerequisite: course 151A. Human resource analysis; introduction to human capital theory and economics of education; the basic theory of wage differentials, including theories of labor market discrimination; income redistribution; poverty. Policy issues: income inequality; manpower training programs; incomes policy.

160A. International Microeconomics (4) I. The Staff; II. Lindert Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, 100 or 100M, and 101, or consent of instructor. Macroeconomic theory of an open economy. Balance of payments adjustment mechanism, international monetary issues; international financial institutions and their policies. Students who have completed course 162 may receive only 2 units of credit for course 160A.

160B. International Macroeconomics (4) II. III. Woo Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, 100 or 100M, and 101, or consent of instructor. Macroeconomic theory of an open economy. Balance of payments adjustment mechanism, international monetary issues; international financial institutions and their policies. Students who have completed course 162 may receive only 2 units of credit for course 160B.

162. International Economic Relations (4) I. The Staff; III. Woo Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, 100 or 100M, and 101, or consent of instructor. International trade and monetary relations, trade policy, exchange rate policy, policies toward international capital migration and investment. Emphasis on current policy issues. Courses intended especially for nonmajors. Students who have completed course 160A or 160B may not receive credit for this course.

170. Economy of the Middle East (4) III. Tuma Lecture—3 hours; discussion—1 hour. Prerequisite: course 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of the Middle East. Consult department for course scheduling.

171. Economy of East Asia (4) I. The Staff (Chairperson in charge) Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of East Asia. Consult department for course scheduling.

172. Economy of South Asia (4) II. Gustafson Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of South Asia. Consult department for course scheduling.

173. Economy of South-East Asia (4) II. Glassburner Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of South East Asia. Consult department for course scheduling.

174. Economy of Europe (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of Europe. Consult department for course scheduling.

175. Economy of Sub-Saharan Africa (4) II. III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of Sub-Saharan Africa. Consult department for course scheduling.

190. Topics in Economics (4) II. III. Nehring Lecture/discussion-seminar—4 hours. Selected topics in economic analysis and public policy. Variable content. May be repeated for credit.

192W. Internship in the Davis-in-Washington Program (6-8) I. III. The Staff Internship—18-24 hours. Prerequisite: junior or senior standing in Economics; completion of 84 units of credit, including a GPA of 3.0 or better. Application deadline: March 30. Admission to the Davis-in-Washington Program. Internship in Washington, DC with an associated research project. Students must arrange for a faculty sponsor before embarking on the internship. Maximum of 8 units will count toward satisfying Economics major requirements. (P/N grading only.)

194HA-194HB. Special Study for Honors Students (4-4) I-II-III. III. The Staff (Lindert in charge) Independent study—3 hours; seminar—1 hour. Prerequisite: major in Economics with senior standing; consent of instructor and completion of 2 at least 3 units with a minimum grade point average of 3.5 in courses counted toward the major. A program of research culminating in the writing of a senior honors thesis under the direction of a faculty adviser. (Deferred grading only, pending completion of course.)

197T. Tutoring in Economics (1-5) I. II. III. The Staff (Chairperson in charge) Tutoring—3-15 hours. Prerequisite: consent of instructor and chairperson. Undergraduates assist the instructor by tutoring students in one of the department's regularly scheduled courses. Units may not be counted toward satisfaction of major requirements.

198. Directed Group Study (1-5) I. II. III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/N grading only.)

199. Special Study: Advanced Undergraduates (1-5) I. II. III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/N grading only.)

Graduate Courses

200A. Microeconomic Theory (5) I. Roemer Lecture—4 hours; discussion—1 hour. Prerequisite: graduate standing. Linear and non-linear optimization theory applied to the theory of the profit-maximizing firm and the utility-maximizing consumer. (Same course as Agricultural Economics 200A.)

200B. Microeconomic Theory (5) II. Quinzi Lecture—4 hours; discussion—1 hour. Prerequisite: course 200A. Characteristic of market equilibrium under perfect competition, simple monopoly and monopsony. Emphasis on general equilibrium and welfare economics; the sources of market success and market failure. (Same course as Agricultural Economics 200B.)

200C. Microeconomic Theory (5) III. Makowski Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Uncertainty and information economics. Individual decision making under uncertainty, introduction to game theory, with emphasis on applications to markets with firms that are imperfect competitors or consumers that are imperfectly informed. (Same course as Agricultural Economics 200C.)

200D. Macroeconomic Theory (5) II. Sheffrin Lecture—4 hours; discussion—1 hour. Prerequisite: course 101, Mathematics 21A, 21B, and 21C. Macroeconomic theory of income, employment, and prices.

200E. Macroeconomic Theory (5) III. Sayer Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B (may be taken concurrently) and 200D. Macroeconomic theory of income, employment, and prices.

201A. History of Economic Thought (4) II. III. Wegg Lecture—3 hours; discussion—1 hour. Economic thought from the classical Greece era to modern times. Offered in alternate years.

201B. History of Economic Thought II (4) II. Hoover Lecture—3 hours; discussion—1 hour. Origins and emergence of modern economic analysis. Offered in alternate years.

203A. Advanced Economic Theory (4) I. Silvestre Lecture—4 hours. Prerequisite: course 200A, 200B. Advanced topics in general equilibrium theory and welfare economics: existence, determinateness and efficiency; intertemporal economics; uncertainty.

203B. Advanced Economic Theory: Game Theory (4) II. Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A, 200B, 200C. Covers the most recent developments in game theory, with the focus changing from year to year. Main topics are: refinements of Nash equilibrium, reputation effects, evolution, social learning, bounded rationality, and bargaining theory.

203C. Topics in Economic Theory (4) III. Nehring Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A, 200B, 200C. Selected topics in contemporary microeconomic theory. May be repeated for credit with the consent of the Graduate Studies Committee.

204. Microeconomic Analysis (5) I. Hazlitt (Agricultural Economics) Lecture—4 hours; discussion—1 hour. Prerequisite: course 100 (or 100M) or Agricultural Economics 100A-100B. Mathematics 21A, 21B and 21C or Mathematics 16A, 16B and 16C). Open to advanced undergraduates with consent of instructor. Economic reasoning and social choice: behavior of firms and households, theories of market, partial and general equilibrium analysis, welfare economics, illustrations and applications. (Same course as Agricultural Economics 204.)

207. Contemporary Economics Seminar (3-5) I. II. III. The Staff Seminar—2 hours and discussion—2 hours (3 units); plus seminar presentation of 15 units. Prerequisite: consent of instructor. Seminar series, consisting principally of outside speakers, on topics of current research. Discussion sections in which instructor and students review background material. Students who enroll for 5 units present seminar on their own work. May be repeated for credit. (SU grading only.)

210A. Economic History (4) II. Tuma Lecture/discussion—4 hours. Economic history of the eastern hemisphere in the modern period. Medieval Europe or other regions may be studied, depending on student interest.

210B. Economic History (4) I. Olmstead Lecture/discussion—4 hours. The United States from Colonial times to the present. Other areas of the western hemisphere may be studied, according to student interest.

210C. Economic History (4) III. Lindert Seminar—4 hours. Prerequisite: a graduate course in economic history. Selected topics and issues, emphasis on current research. (Quarter offered to be flexible.)
Lecture—4 hours. Prerequisite: Agricultural Economics 100A, 100B, course 101; Agricultural Economics/Economics 204 and course 160A-160B recommended. Review of the principal theoretical and empirical results of agricultural economics research on economic development. Analysis of economic development theories and development strategies and their application to specific policy issues in developing countries and contexts. (Same course as Agricultural Economics 214.)

215A. Agriculture and Economic Development (4)
II. Taylor
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 204 or 204 and 214. Agricultural development theory and application. Analysis of rural-urban linkages and their role in economic development, food price policy, and interactions between economic development and the environment. Analytical focus on household-farm and intersectoral models. (Same course as Agricultural Economics 215A.)

215B. Open Macroeconomics of Development (4)
III. Kenedi
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 204A or 204, 200D or 205, and 214 or 215A. Models and policy applications for foreign trade, monetary and fiscal issues. Capital flows and debt are discussed in the macroeconomic framework of an open developing country. The basic analytical focus is real exchange rate and its impact on sectoral allocation of resources. (Same course as Agricultural Economics 215B.)

215C. Empirical Approaches to Development Analysis (4). III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 215A, 215B. Extension of development models for policy analysis including Household-Farm models, models of resource distribution under uncertainty. Social Accounting Matrix and Computable General Equilibrium models. Analysis and case studies of methods of project evaluation with and without income-distribution weights. (Same course as Agricultural Economics 215C.)

221A. Industrial Organization (4). I. Bonanno
Lecture—3 hours; to be arranged—1 hour. Analysis of market structure, business behavior, and economic performance under conditions of limited governmental interference.

221B. Industrial Organization (4). II. Borenstein
Lecture—2 hours; seminar—2 hours. Social standards and public policies toward the business sector of the economy.

221C. Topics in Industrial Organization (4). III. The Staff
Lecture—3 hours; seminar—1 hour. Prerequisite: course 221A. Advanced topics in industrial organization and in applied microeconomics. Emphasis on current research. Contents may vary from year to year.

225. Urban Economics (4). III. The Staff
Lecture—2 hours; discussion—2 hours. Prerequisite: course 200A or 204. Extends development of topics and concepts to urban areas and includes the effects of population changes on the urban economy. (Same course as Agricultural Economics 225.)

230A. Public Economics (4).
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Measures of deadweight loss and consumer surplus; optimal commodity and income tax incidence analysis; policy issues in personal taxation, corporate taxation, and social insurance; evaluation of effective tax rates.

230B. Public Economics (4). II. Triest
Lecture—3 hours; discussion—1 hour. Prerequisite: course 230A or 204. Effects of tax policies on economic behavior; production, consumption, savings, investment, and labor supply. Distribution and equity; social welfare evaluation and the measurement of inequity.

230C. Public Economics (4). III. Nelson
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Advanced topics in economics of the public sector, with emphasis on current research. Contents may vary from year to year.

235A. Alternative Approaches to Monetary Analysis (4). I. Shaffer
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200D (may be taken concurrently). Focuses on relation between changes in money supply and changes in nominal GDP. Also discusses the effect of changes in money supply on interest rates.

235B. Monetary Theory (4). III. Hoover
Lecture—3 hours; discussion—1 hour. Prerequisite: course 235A. Emphasizes problem of finding an appropriate place for money in microeconomic/monetary equilibrium models. Consideration given to meaning of money, its relation to inflation and the real economy and to its role in models of finance.

235C. Monetary Policy (4). II. Mayer
Lecture—3 hours; discussion—1 hour. Organization of the Federal Reserve Bank, the definition of money, goals and tools of monetary policy, alternative targets for monetary policy, impact of monetary policy, the problem of the optimal level of non-monetary targets. (Same course as Agricultural Economics 235C.)

240A. Econometric Methods (4). II. Green
Lecture—4 hours. Prerequisite: Statistics 133 and a course in linear algebra or the equivalent. Least squares, instrumental variables, and maximum likelihood estimation and inference for single and multiple linear regression model; linear restrictions; heteroskedasticity; autocorrelation; lagged dependent variables. (Same course as Agricultural Economics 240A.)

240B. Econometric Methods (4). III. Havener (Agricultural Economics); II.
Lecture—4 hours. Prerequisite: course 240A. Topics include analysis of variance, pooled time-series, cross-section, time-series data, seemingly unrelated regression, classical hypothesis tests, and identification and estimation of simultaneous equation models. (Same course as Agricultural Economics 240B.)

240C. Econometric Theory (4). I. Wegge
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Finite sampling theory; nonlinear and dynamic econometric models; asymptotic distribution theory. (Same course as Agricultural Economics 240C.)

240D. Topics in Econometrics (4). II. Cameron
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Advanced topics in nonlinear econometric modeling; Contents may vary from year to year. (Same course as Agricultural Economics 240D.)

250A. Labor Economics (4). II. Triest
Lecture—3 hours; discussion—1 hour. Prerequisite: course 151A or consent of instructor; course 204 or 200A recommended. Microeconomic theory of labor supply and labor demand, estimation of labor supply and demand functions; human capital theory; labor market analysis.

250B. Labor Economics (4). III. Triest
Lecture—3 hours; discussion—1 hour. Prerequisite: course 151A or consent of instructor; course 204 or 200A recommended. Microeconomic theory of labor supply and labor demand, estimation of labor supply and demand functions; human capital theory; labor market analysis.

256. Applied Econometrics (4). II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: mastery of microeconomics or econometrics; or consent of instructor. Application of statistical tools to economic and business analysis. Emphasis on regression analysis, problems of specification, and model development. (Same course as Agricultural Economics 256.)

260A. International Economics (4). I. Feenstra
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Theory of trade determination, gains from trade, tariffs and effective protection, economic unions.

Course not offered this academic year.
Minor Program Requirements:

Educational theory is considered to be the foundation or basic area for undergraduates to elect as a minor if they wish to (1) major in an allied program, (2) obtain a master's degree in education or allied field, (3) obtain a Ph.D. degree in education, (4) enter a profession that focuses on work with people, (5) seek employment in governmental or industrial training programs, or (6) obtain a better understanding of the issues and concerns of public and private education.

Units

Education (minimum units)20-23
Education 110 or 1114
One course from Education 120 or 1234
Depth courses12-15
All at least 15 units from Education not used above: 100, 110, 111, 115, 120,
123, 130, 145, 151, 152, 153, or 163
chosen in consultation with an Education
adviser.

Minor Advisers. All faculty members who teach undergraduate courses.

Teacher Education Curricula

For a statement of complete requirements and appointments with credential advisers, contact the divisional Student Services Office, 2068 Academic Surge. Interested students are urged to do this as early as possible in their academic career. Applicants to the elementary (multiple subject) or secondary (single subject) credential programs should contact the Student Services Office for forms and procedural information early in the fall quarter of their senior year.

Teacher Education Faculty Advisers—Elementary (Multiple Subject), S.A. Ostergard, D.R. Warnier.
Bilingual Emphasis, J.B. Merino.
Teacher Education Faculty Advisers—Elementary (Single Subject), B.G. Goldman.

Graduate Adviser, B. Merino, B. Goldman (Credential Program).

Graduate Study. The Division offers programs of study and research leading to the M.A. degree in Education. Detailed information regarding graduate study may be obtained by writing the Graduate Adviser, Division of Education.

Joint UCD/CSU Fresno Doctoral Program (Ed.D.)

Rosemary Papalewski, Ph.D. (CSU Fresno) and Douglas Minke, Ed.D. (UC Davis) jointly administer the joint UCD/CSU Fresno doctoral program leading to the Doctorate in Education (Ed.D.) in Educational Leadership. Contact Professor Rosemary Papalewski at CSU Fresno for information and application materials.

Courses in Education

Lower Division Course

98. Directed Group Study (1-5) I, II, III. The Staff (Director in charge)

Prerequisite: consent of instructor. Primarily for lower division students. (P/N grading only)

Upper Division Courses

101. Introduction to Schools (4) I, II, III. Lowry, Warnier

Lecture: 3 hours; field work—3 hours. Prerequisite: upper division standing. Study of educational concerns of teachers; skills for observing classroom activities; school organization and finance; school reform movement; observing, aiding, and tutoring in schools.

110. Educational Psychology: General (4) I, II, III. The Staff (Director in charge)

Lecture/discussion—4 hours. Prerequisite:
132. Church, State and School (4) III. Crockerberg Discussion—4 hours. Prerequisite: upper division standing; course 122 or the equivalent. Analysis of the decisions of the United States Supreme Court applying the free exercise and establishment clauses as the first amendment to the relationship between church, state, and schools. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Political Science 1.

141. Sobriety, Desegregation and the Civil Rights Movement (4) III. Crockerberg Discussion—4 hours. Prerequisite: upper division standing; course 122 or an equivalent course emphasizing legal analysis. The law of school desegregation in California subsequent to the landmark decision of the broader movement for civil rights led by Martin Luther King, Jr., with particular attention to the history of school desegregation in California.

145. Aesthetics in Education (4) II. Armstine Lecture/discussion—4 hours. Prerequisite: upper division standing. Considers the role of the arts in education. Examines various conceptions of the nature of art and aesthetic experience, and relates this to instructional procedures.

151. Language Development in the Chincano Child (3) I. Merino Lecture—3 hours. Prerequisite: some knowledge of Spanish and linguistics recommended. Bilingualism, first and second language acquisition, bilingual education, language assessment, Chicanos, Spanish, and the role of dialect varieties in the classroom.

152. Communication Skills for Bilingual Teachers (3) III. The Staff (Merino in charge) Lecture/discussion—2 hours; field work—3 hours. Prerequisite: course 151; Spanish 2, BA-BB. The development of communication skills of prospective educators with an emphasis on the study and use of standard Spanish and Southwest Mexican dialects in teaching science, mathematics, social science, music, art, and language arts to bilingual elementary school children.

153. Cultural Diversity and Education (3) III. Merino and staff Lecture/discussion—2 hours. Prerequisite: upper division standing. Analysis of research on learning styles among culturally-diverse students with review and evaluation of responsive curricula and classroom teaching techniques. The ethnographic interview as a research tool.

156. Peer Counseling (2) I, II. The Staff Seminar—2 hours. Prerequisite: upper division standing. Staff of the Student Counseling Center and peer counseling techniques and development of peer counseling skills. (PINP grading only).

163. Guidance and Counseling (4) III. Figueroa, Sandalow, and staff Lecture/discussion—4 hours. Prerequisite: course 110 (may be taken concurrently). Nature and scope of pupil personnel services; basic tools and techniques of guidance; theory and practice of counseling psychology, with emphasis on educational and vocational adjustment.

175. Critical Thinking in Classrooms (4) III. Minnis, Friedman (Philosophy) Lecture/discussion—4 hours. Prerequisite: upper division standing. Critical thinking skills and rigorous analysis of argumentation in classrooms on the basis of philosophical and educational theory. Enables teachers to utilize existing school curricula to engage children in discussions of significant scientific, social, ethical, and philosophical issues.

180. Computers in Education (3), I, II, III. Carwright, Dugdale, Murphy Lecture—1 hour; seminar—1 hour; laboratory—3 hours. Prerequisite: upper division standing. Applications of computers in education as instructional, intellectual, and communication tools.

192. Internship (1-5), I, II, III. The Staff (Director in charge) Discussion—1 hour; field work—2 to 15 hours; term paper. Prerequisite: upper division standing; consent of instructor. Internship in schools under supervision of a faculty member. May be repeated once for credit. (PINP grading only).

198. Directed Group Study (1-5) I, II, III. The Staff (Director in charge) Prerequisite: consent of instructor. (PINP grading only).

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge) Prerequisite: upper division standing and consent of instructor. (PINP grading only).

Graduate Courses

200. Educational Research (4) III. Spring, Gandara Lecture—4 hours; discussion—2 hours. Prerequisite: introductory statistics and graduate standing in education or consent of instructor. Defining educational research questions, reviewing relevant literature, developing research designs, developing research instruments, statistical analysis procedures, and writing research projects. A case problem will provide practice in designing and reporting research.

201A. Ethnographic Research in Schools I: Current Theory and Practice (4) I. Delgado-Gaitan, Walton-Gage Lecture—4 hours. Prerequisite: graduate standing. Review of current literature from anthropology and sociology related to schools, with emphasis on the organizational structure of institutions, and the analysis of face-to-face interaction. Will explore the relationship between field-based research and theory development about the nature and knowledge in specific social and cultural contexts.

201B. Ethnographic Research in Schools II: Field-Based Research Projects (4) I. Walton-Gage Discussion—4 hours. Prerequisite: graduate standing and course 201A. Student research projects in specific schools with cooperative critical analysis of the design, data collection, and interpretation by researchers. Students will continue to meet with instructor as a group throughout the quarter to discuss specific projects.

202. Philosophy of Education: Models and Methods (4) II. Armstine Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Examples of some major philosophical points of view about educational aims, illustrations of several types of philosophical discourse and argumentation, and an opportunity for students to locate and critique some contemporary studies in philosophy of education. Offered in alternate years.

204. School Change and Educational Reform (4) II. Wagner Lecture/discussion—2 hours; seminar—2 hours. Prerequisite: graduate standing in Education with course 120 or the equivalent, or consent of instructor. Analysis of models, processes, and case studies of school change and educational reform with respect to variable characteristics of schools and schooling, planned and unplanned change, the moral evaluation of school change, and the role of educational research.

205. The Concept of Mind in Teaching (4) III. Armstine Seminar—4 hours. Philosophical analysis of the problems of educational practice which are created, aggravated, and sometimes solved by varying conceptualizations of mind and thinking. Offered in alternate years.

207. Concepts of the Curriculum (4) I. Armstine Lecture—3 hours; discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Development of the skills of philosophical analysis and argument for the establishment of a point of view, in the consideration of curriculum theory and practice. Classical and contemporary approaches to subject matter and activity experience, curriculum, and moral education.

209. Pedagogics (4) III. Yonge Seminar—4 hours. Critical analysis of the literature available in English dealing with theoretical and practical issues in education in terms of Pedagogics (i.e., an existential phenomenological approach to the systematic study of education).

211. Psychopedagogy (4) II. Yonge Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Phenomenological approach to the psychological experience of the school situation (psychopedagogy). A critical consideration of how psychopedagogies contributes to the theory and practice of education.

213. Individual Assessment (4) III. Sandalow Lecture—4 hours. Prerequisite: courses 114 and 219, admission to school psychology credential program. Theories of intellectual functioning and the measurement of cognitive abilities in school-aged children. Supervised practice in admittance and scoring of contemporary tests for children including the WISC-R, the WAIS-R, the Stanford Binet, the McCarthy Scales of Children's Ability.

214. Assessment of Children's Personality (4) III. Sandalow Lecture—3 hours; field work—3 hours (minimum). Prerequisite: admission to school psychology credential program; courses 213 and 218; and familiarity with basic personality theory and theories of motivation. Study of the projective hypothesis, concepts of personality and its measurement; legal and ethical issues in personality assessment; interpreting techniques in assessment of social and affective function; specific measurement assessment; reporting on personality assessments; school interventions. Offered in alternate years.

215. Motivation and Behavior Modification (4) II. Spring Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Factors related to influencing behavior in educational settings, including analyses of intrinsic and extrinsic motivation, psychological reaction, locus of control, achievement attribution, and behavior modification.

218. Testing Minority Children (4) I. Figueroa Lecture—3 hours; field work—3 hours. Prerequisite: admission to school psychology program or to M.A. bilingual education program or consent of instructor. Emphasizing tests and techniques that are appropriate for use with Hispanic students. The use of multicultural pluralistic assessment. Review studies and guidelines on use of tests with minority children. Offered in alternate years.

219. Educational Testing and Evaluation (3) I. Gandara Seminar—3 hours. Prerequisite: courses 114 and 219, admission to school psychology program or consent of instructor. Study of test theory as it applies to research and evaluation in education, with an emphasis on general ability and reading tests. Offered in alternate years.

231. Culture and Learning (4) II. Delgado-Gaitan Seminar—4 hours. Prerequisite: graduate standing in Education with course 120 or the equivalent, or consent of instructor. Analysis of major theories of relationships between learning and the sociocultural context in which learning takes place, issues related to the academic achievement of different language groups, and implications for research and pedagogical reform.

233. Science Analysis in Educational Settings (4) II. Walton-Gage Seminar—3 hours; term paper. Prerequisite: graduate standing and at least one previous course in linguistics or sociolinguistics, or consent of instructor. Examinations for and type of discourse (e.g., narration, conversation, routines), approaches to discourse analysis, and research on classroom discourse (Lessons, teaching/learning interacational sequences, etc). Final term paper is an analysis of discourse data tape-recorded by student in a field setting.

241. Research on Reading and Spelling Acquisition (4) III. Murphy, Spring Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Analysis and critique of research on psychological processes in learning to read and spell. Topics include writing systems, theories of processes and acquisition, emergent reading, readiness, decoding, word read-
ing, oral text reading, spelling stages, instructional methods, disability, dialect. Offered in alternate years.

242. Research on Text Comprehension (4) I. Spring Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Analysis and evaluation of research related to the comprehension of written and oral text, with an emphasis on the teaching and learning of comprehension processes in school settings. The course will focus on current issues and on research methodology. Offered in alternate years.

243. Research on the Teaching and Learning of Writing (4) I. Murphy Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Study of issues in research on composition; history of composition studies; data analysis techniques; product and process approaches; cognitive and social perspectives. Offered in alternate years.

251. Research in Bilingual and Second Language Education (3) I. Minero Seminar—3 hours. Prerequisite: course 151; knowledge of a foreign language. Discussion and analysis of recent research in bilingual and second language education. Topics include: language acquisition in second language learners and bilinguals, second language teaching methods, language-use models in bilingual education, interaction analysis in bilingual/cross-cultural classrooms, use of the vernacular in classrooms. Offered in alternate years.

252. Multicultural Teaching and Curriculum (3) II. Murchie Seminar—2 hours; fieldwork—3 hours. Prerequisite: graduate standing or consent of instructor. Cross-cultural research on socialization, motivation, language acquisition and cognition and its application to effective classroom strategies and curriculum development for minority students. Students will develop and implement multicultural curriculum as well as use ethnographic research techniques in an education setting in alternate years.

253. Language and Literacy in Linguistic Minorities (3) I, II. Minero, Watson-Geggo Seminar—2 hours; fieldwork—3 hours. Prerequisite: familiarity with another language and culture, graduate standing. Analysis and application of research on oral language development and literacy in language minority students, through the development, implementation, and evaluation of research-based language arts instructional materials. Offered in alternate years.

255. Curriculum Development and Evaluation in Mathematics (4). Dugdale Seminar—4 hours. Prerequisite: graduate standing in Education with upper-division coursework in mathematics education, or consent of instructor. The role of calculators, computers, and graphical calculators in mathematics education will be addressed, with emphasis on the impact of these technologies on curriculum reform. Selected topics on integrating technology into mathematics instruction will be examined. Offered in alternate years.

257. Computer Technology in Mathematics Education (4). Dugdale Seminar—4 hours. Prerequisite: graduate standing in Education with upper-division coursework, or consent of instructor. The role of calculators, computers, and graphical calculators in mathematics education will be addressed, with emphasis on the impact of these technologies on curriculum reform. Selected topics on integrating technology into mathematics instruction will be examined. Offered in alternate years.

271. Recent Developments in Social Studies Education (3) II. Lowry Lecture—2 hours; fieldwork—2 hours. Prerequisite: consent of instructor. Recent analyses of research on the rationale of effective teacher behavior and student learning. Use of research on teacher effectiveness to develop teaching strategies. Ways to decide on the most appropriate instructional strategies in specific teaching situations.

290C. Research Conference in Education (1) I, II, III. The Staff (Director in charge) Discussion—1 hour. Prerequisite: graduate standing. Participation in research conferences on discussions of research in education by graduate students with their major professors. May be repeated twice for credit. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Director in charge) (SU grading only.)

299. Individual Study (1-6) I, II, III. The Staff (Director in charge) Independent study—3-12 hours. Individual study under the direction of a faculty member. (SU grading only.)

299D. Research (1-6) I, II, III. The Staff (Director in charge) Independent study—3-12 hours. Research for individual and graduate students. (SU grading only.)

Professional Courses

300. Reading in the Elementary School (4) I, II, III. The Staff (Director in charge) Lecture—3 hours; fieldwork—3 hours. Prerequisite: graduate standing. Principles, procedures, and curricular materials for teaching of reading. Includes decoding skills with a special emphasis on phonics, comprehension skills, study skills, and reading in the content areas.

311. Reading in the Secondary School (4). Lowry Discussion—4 hours. Prerequisite: must be teaching or student teaching. Principles, procedures, and materials to help secondary school teachers improve their reading comprehension of their students. The teaching of phonics, structural analysis, and alternative methods of coping with the poorest reader in the classroom.

320. Language Arts in the Elementary School (2) I, II. The Staff (Director in charge) Lecture—2 hours. Prerequisite: graduate standing. Principles, procedures, and materials for the teaching of oral and written expression, listening skills, drama, and children's literature in elementary schools.

330. Art Education (3) I, II. The Staff (Director in charge) Lecture/discussion—2 hours; laboratory—2 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in preschool or elementary schools. Selection and organization of teaching materials. Introduction to techniques of diagnosing school achievement of children.

340A. Teaching in the Elementary Schools (5-8). I, II. The Staff (Director in charge) Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in preschool or elementary schools. Current conceptions of elementary school curriculum, emphasis on contributions from the social, biological, and physical sciences. Emphasis on effective teaching methods.

340B. Teaching in the Elementary Schools (5-8). II. The Staff (Director in charge) Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: course 340A; acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in preschool or elementary schools. Current conceptions of elementary school curriculum, emphasis on contributions from the social, biological, and physical sciences. Emphasis on effective teaching methods.

340C. Teaching in the Elementary Schools (5-8). III. The Staff (Director in charge) Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: course 340B; acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in preschool or elementary schools. Assessment of teaching materials including audio-visual aids. Current elementary school curriculum with emphasis on contributions from fine arts and humanities.

350A. Teaching in the Middle Grades (5-8) I. The Staff (Director in charge) Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in middle grades. Current conceptions of middle grades curriculum with emphasis on social, biological, and physical sciences. Effective teaching methods.

350B. Teaching in the Middle Grades (5-8) II. The Staff (Director in charge) Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: course 350A; acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in middle grades. Current conceptions of middle grades curriculum with emphasis on social, biological, and physical sciences. Effective teaching methods.

350C. Teaching in the Middle Grades (5-8) III. The Staff (Director in charge) Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: course 350B; acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in middle grades. Current conceptions of middle grades curriculum with emphasis on social, biological, and physical sciences. Effective teaching methods.

360A-360B-360C. Teaching in Secondary Schools (9-12) I, II, III. The Staff (Director in charge) Seminar—2 hours; student teaching—10-21 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education secondary school classrooms. Techniques for classroom communication, constructing goals and objectives; assessment of learning; special problems of adolescents; audio-visual techniques. Must be repeated by undergraduates for a total of 15 units; 21 units by graduates in Physical Education and Music, and 24 units by all other graduate students.

3607. Methods in Elementary Science (2) III. Wampler, Osterjard Lecture/discussion—2 hours. Prerequisite: acceptance into the teacher education program. Principles, procedures, and materials for teaching the biological and physical sciences in elementary schools.

380. Methods in Elementary Social Studies (2) III. Wampler, Osterjard Lecture/discussion—2 hours. Prerequisite: acceptance into a teacher education program. Principles, procedures, and materials for teaching history and the social sciences in elementary schools.

380A. Planning the kindergarten and Early Childhood Education (3) I. The Staff (Director in charge) Lecture—1 hour. Prerequisite: upper division or professional standing. Methods, materials, and history of educational programs for the preschool through primary grade. Development of curriculum methods and materials which stress integration of appropriate subject areas with emotional, social, creative, physical, and cognitive development.

382. Methods in Secondary Social Studies (4). Lowry Lecture—4 hours. Prerequisite: acceptance into a teacher education program or consent of instructor. Methods and materials of teaching concepts and skills. Recent developments in applying basic skills to the teaching of social studies.

383. Physical Science in the Secondary School (3) I. The Staff (Director in charge) Laboratory/discussion—2 hours; discussion/laboratory—1 hour. Prerequisite: acceptance into a teacher education program. Activity-based overview of concepts and principles in secondary school physical sciences. Emphasis upon philosophy, appropriate teaching methods, materials, assessment and evaluation of learning.
Education Abroad Program

Carolyn F. Walt, Ph.D., Campus Coordinator
Program Office, 323 South Hall (916-752-3014)

Programs of Study
The Education Abroad Program (EAP) of the University of California offers students who meet the minimal admission requirements the opportunity to experience a different culture while making progress toward degree objectives. Students interested in the language, literature, art, culture, history, or governmental or social institutions of the countries or areas where study centers are located will gain substantially from firsthand, cultural and academic experience. The same is true for students of foreign affairs. All students, whatever their field of study, will broaden their outlook and gain new skills as the result of study in a foreign country. The academic—and non-academic—debts and credits of participation in the EAP should be weighed carefully prior to departure, however. Estimated all-inclusive minimum costs for the nine- to twelve-month programs range from $7,000 to $16,000 (varies depending upon the country).

Application
Normally, students participate in the program during their junior year, but a limited number of students may be selected for participation as seniors. A few programs are open to seniors and graduate students as well. Students considering study abroad with the EAP should contact the EAP Office early in the fall quarter concerning application and filing deadlines. EAP programs are offered for some centers, including the United Kingdom and Ireland, are in early November.

Eligibility requirements include:
- At least three regular session quarters completed in residence at UC by the time of participation.
- At least 84 quarter units completed by the time of participation; except for specific short-term programs.
- At least a 3.0 grade-point average for course work completed at UC at the time of application and departure.
- In most cases, 2 years (6 quarters) of University-level foreign language or the equivalent, with a 3.0 grade-point average (not applicable where classes are in English), but consult EAP Office for specific requirements.
- An academic plan approved by your major adviser and the campus coordinator.
- Endorsement of the Academic Senate Committee on the Education Abroad Program Application forms are available from the EAP Office. A provisional academic planning form, prepared in consultation with the EAP Adviser and the major adviser, must be submitted along with the completed application to the EAP Office prior to the appropriate deadline. Applications received after the official deadline cannot be considered.

For study abroad during the 1993-94 academic year, the application deadlines are as follows: mid-October for spring semester program in the US and the Japanese Global Security Studies spring quarter program; early November for the United Kingdom and Ireland, Japan, and the spring quarter programs in Mexico and Costa Rica; early May for Australia, New Zealand, and the year program in Costa Rica; and mid-to-late January for all other study centers. If you intend to participate in a study program during your senior year, careful advance planning is necessary to make sure that all degree requirements will be met. Consult with your major adviser, the Dean's Office of your college, and the campus EAP coordinator.

*nator. For information on EAP centers and study programs, refer to EAP in the Programs and Courses section of this catalog.

Students who do not meet the minimal requirements for acceptance (see under Education Abroad in the Introduction section) must consult a Campus Coordinator. Students who will have accumulated more than 145 units prior to the beginning of their planned year of study abroad must receive permission from the Campus Coordinator before submitting an application; the probability of such students being accepted is low.

Selection
The Academic Senate Committee on the Education Abroad Program is intimately involved in the selection of EAP participants of the University. This committee strongly recommends that prospective participants take appropriate courses dealing with the country of their interest in preparation for the year abroad. Applicants who are taking or have completed such courses at the time of the campus selection process tend to have an increased probability of being selected.

Once the completed application materials have been filed, an applicant will be interviewed by a selection committee consisting of faculty and EAP returnees. Among other things, academic goals, knowledge of the host country and the United States, and proficiency in the language of the host country, when applicable, will receive considerable attention during the interviews.

Flies of applicants receiving the endorsement of the Senate Committee on Education Abroad are forwarded to the Systemwide Office of the EAP on the Santa Barbara campus, where further selection decisions will be made.

Academic Program
In most cases, students from the University of California will be the students of the host country and attend the same courses, taught by faculty of the host country in their own language. Thus, language skills are very important. To aid adjustment of UC students to different, often unfamiliar educational practices, tutorials are a part of the academic program of most centers. Tutorials also assist in overcoming language problems and provide cultural background information prior to the arrival in the host coun-

ciencies. Tutorials are taught by graduate students or junior staff of the host university and are offered in association with courses in which a sufficient number of UC students have enrolled.

To assist in the adjustment and the academic work of the students, faculty members of the University of California serve as Directors and/or Associate Directors at most of the study centers abroad.

The academic program of each student includes: (1) an intensive preparatory course in the language of the host country (except for the programs in the United Kingdom, Ireland, Canada, Australia, Egypt, Ghana, Hungary, Kenya, and New Zealand); (2) a full year of academic courses; (3) broad opportunity to audit courses within the host university. It is expected that students will complete a minimum of 36 units during the academic year in addition to units earned in the intensive language program.

Graduation Requirements
All prospective applicants and particularly students who intend to study abroad during their senior year, should plan their course programs for Davis and abroad carefully in order to satisfy University, College, and major requirements for the degree. The provisional planning form is intended to take care of this, but a few potential problems deserve emphasis. Although units and grade points earned in the EAP are incorporated into the University transcript and GPA, the major departments and programs retain the right to determine which units will be counted in satisfaction of major requirements. Several major programs have identified key upper division...
courses which must be completed in residence at Davis. Major advisors should be consulted early so that the pre-departure program at Davis will be planned appropriately.

All degree candidates must meet the University residence requirement. Students planning to graduate immediately upon completion of participation in the EAP may satisfy residence requirements within the final 45 units preceding entrance into the EAP. Otherwise, subject to prior approval of the major department or program concerned, the requirement may be satisfied as follows: Within the final 90 units earned toward the degree, 35 units must be completed at the student's College or School, 12 units of which must be completed after returning from EAP participation. With this option, no more than 55 units taken abroad may be applied toward the requirement for graduation. The applicant's College or School Dean is the source for information on the University residence requirement and additional residence requirements that may be imposed.

Participants who satisfy all degree requirements while abroad and expect to graduate upon completion of the year abroad should file for candidacy to receive the degree in September. Unfortunately, transcripts may take a long time to get to the home campus and are not received in time for EAP returnees to be included on the June degree list. Such returning students may participate in the June commencement ceremony, however.

Study Centers

At about 50 universities, the courses and fields of study open to UC students may be limited. Moreover, each of the host institutions has special areas of excellence and strength. The listing of centers below incorporates selected information concerning these points. More detailed information is available in the flyers describing each of the centers and from the EAP adviser in South Hall.

In addition to the programs listed below, Davis students have access to a variety of study and work abroad opportunities. More information can be obtained at the EAP Office in South Hall.

Europe

Austria. The program is small and is designed to offer an opportunity to pursue a specialized interest to a limited number of highly qualified students. A compulsory intensive language course in German is offered at the following institutions:
- University of Vienna. Eastern European studies (Balkans, Russia), fine arts (history of art, music, theatre arts), folklore, history.
- Denmark. A compulsory summer intensive language program precedes the academic year and continues through the fall semester. Instruction is in Danish, though examinations in English may be available.

Most students concentrate on their major or a closely related field. Independent study under tutorial supervision is expected. Students may also apply to the Summer Intensive Language Program only as a short-term program option.
- University of Copenhagen. Broad availability of humanities and social sciences. Programs in communication, economics and international politics, history, linguistics, and medieval studies are of particular interest.
- France. A compulsory intensive language course precedes the beginning of the academic year. All courses are taught in French. UC faculty directors are in residence at Bordeaux, Lyon and Paris.
- University of Bordeaux. Broader availability of the humanities and social sciences. The Institute of Political Science and the Institute of Prehistory (Anthropology) are well known.
- University of Grenoble. Mainly in the social sciences through the Université des Sciences Sociales (Grenoble II); some humanities. Offerings in anthropology and psychology are limited. Not suitable for physical or life sciences.
- University of Lyon. Social sciences, art history; modern languages and linguistics, Arabic studies.
- Paris Centre for Critical Studies. Film theory, literary criticism, philosophy, theater (literature, criticism, and history), historiography, and limited art history.
- Pau-Pay. Participants spend the first semester at the University of Pau. At the end of January, they move to Paris to take courses at the Paris Centre for Critical Studies.
- University of Pau. Courses are offered in the fields of humanities and social sciences, with emphasis on comparative cultural studies, French language, and critical studies.
- University of Pau. Pau-Pay core courses, humanities, social sciences, program in Basque studies is of special interest. Scholarships available for students of Basque or Breton cultural background.
- University of Poitiers. Humanities is taught, with major emphasis in history and medieval studies; mathematics; physics.
- Germany. A compulsory intensive language program precedes the beginning of the academic year.
- All courses are taught in German.
- Göttingen University, Göttingen. Broad curriculum covering most majors. Excellent science programs, with strength in biology, chemistry, and physics. Space in laboratory courses in biology and psychology may be limited.

Hungary. Budapest University of Economics, Budapest. A fall semester or full-year program jointly sponsored with the University of Wisconsin at Madison. Offers opportunities for the program in Budapest. Offerings developed for the program include conversational Hungarian and courses in Central European history, culture, economics, and economic history.

Italy. A compulsory intensive language program in language and history precedes the beginning of the academic year. Students who have completed only one year of Italian may be eligible for participation by attending a short semester-long program in Italy in order to attain the required third-year level, followed by the normal compulsory intensive-language program in Padua. A UC faculty director resides in Padua administers all EAP programs in Italy. All courses are taught in Italian.
- University of Bologna. Humanities, social sciences, economics, history.
- University of Padua. History of art (including archaeology), Italian literature (including linguistics), and political science (which includes history, social sciences, geography, and demography, as well as political science in the American sense). Sciences are not available for UC students.
- University of Venice. Economics, history, history of art.
- Il Bionte International School of Graphic Arts. Etching and lithography for advanced undergraduates. Co-sponsored by portfolio of etchings must be submitted for admission.

Norway. Knowledge of Norwegian is not required, but a compulsory intensive course in Norwegian (mid-June to mid-August) precedes the beginning of the academic year. Norwegian language study is continued during the fall semester. All courses are taught in Norwegian.
- University of Bergen. Humanities, social sciences, natural sciences, and mathematics are available, but space in the sciences may be limited. The usual pattern is study of a single subject, usually the major of a closely allied field, for the entire year.
- Portugal. A six-week intensive language program at UC Santa Barbara is required before departure for the academic year program. Students enroll in courses taught through the Department for Foreign Students as well as regular offerings at the University of Lisbon.

Spain. A compulsory intensive language program precedes the beginning of the academic year. All courses are taught in Spanish.
- University of Alcala de Henares. Spanish language and literature, history and economics.
- University of Barcelona. Humanities (with emphasis on Spanish art, history, literature, linguistics) and some social sciences. Courses developed for the Center for Study of Spain by Spanish faculty. EAP students are required to take at least two regular year-long courses in the University of Barcelona. (This is a cooperative program with the University of Illinois.)

Sweden. Compulsory intensive language course during the summer for students who are not already fluent in Swedish. Language study continues during the fall semester for all students until the student has gained the equivalent of two years of Swedish. Most courses are taught in Swedish, but a few courses offered in English may be available.
- University of Lund. Broad curriculum. Excellent science programs.
- United Kingdom and Ireland.** The program, which includes 15 institutions, is administered by a director and associate director located in London. Following selection by the student for preliminary approval, a student must still be accepted by a specific department in one of the host institutions. In many host institutions, the student can pursue studies that are not available at the university. Students may be placed on an ad hoc basis at other institutions.
- Ireland: University College, Cork, University College, Galway.
- Scotland: University College, Glasgow; University of St. Andrews, University of Stirling.
- Wales: University College of Wales at Aberystwyth. Generally, the host universities offer a broad curriculum that includes most liberal arts majors. Life sciences and physical sciences are available.

Russia. Two semester-long programs are available, depending on language preparation. Students with two or two and one half years of university-level Russian may participate in an intermediate-level program developed for UC. Those with three or more years of university-level Russian may apply for the advanced-level program. Both programs are primarily intended for language majors, but are open to students of literature, history, area studies, etc.
- Herzen State Pedagogical Institute, Leningrad. Russian language and civilization only.

Middle East

Egypt. All courses are taught in English, except courses in Arabic language and literature.
- The American University of Cairo. A broad curriculum offered by the Faculty of Arts and Sciences. All students are required to take at least one year-long course in Arabic. Offerings in science are limited.
Asia

Hong Kong. A limited selection of courses is offered in English. Knowledge of Chinese is not required for acceptance; however, all students are required to complete at least two courses in Chinese culture, history, or language prior to departure. A compulsory intensive Cantonese program precedes the beginning of the academic year. All students are required to include 18 units of Mandarin or Cantonese in their annual program.

Chinese University of Hong Kong. Humanities and social sciences, with emphasis on Chinese studies. Art studio and music performance courses are available. (Information about courses is to be offered in English and is announced only one week before instruction begins.)

India. Instruction is in English. A compulsory intensive language program in conversational Hindi precedes the academic year. Students will take a year-long core program focusing on development in modern India and Indian culture and tradition, as well as continue their study of Hindi. During the second and third quarters, students will also take regular course work at the University of Delhi. Humanities and social sciences are well represented, with some offerings in fine arts and mathematics.

Indonesia. An eight-week summer intensive-language program at Gadjah Mada University in Yogyakarta is required for all students. Those with less than two years of University-level Indonesian must then take a ten-week inter-term program of continuous study of the language, with additional courses in Indonesian history and culture, taught in English. Students enroll in regular courses at one of five institutions for the second semester. Instruction is in Indonesian; tutorial assistance may be available.

It is possible to apply for an intensive summer language program in the fall. Students may take more advanced language in subsequent years.

Gadjah Mada University. Agriculture, anthropology, biology, economics, geography, mathematics, philosophy, social sciences, and the Institute Sani Indonesia (ISI). The Indonesian Institute of the Arts: visual arts, music, dance, theater, fine arts, ethno-musicology.

Akademisi Seni Tari Indonesia (ASTI) at Derpasar and Bandung. The Indonesian Dance Institute of Bali: dance, music, and theater.

University of Padjadjaran at Bandung: Development studies, environmental studies, humanities, and social sciences are available.

Japan. A variety of study opportunities are available to UC students. Course requirements vary depending upon the host institution and the academic focus of the program. A summer intensive language course prepares students for year-long programs. The program is administered by a director located in Tokyo.

Doshisha University, Kyoto. Humanities and social sciences; emphasis on Japanese language and culture. This center serves students having more advanced study of Japanese; at least two, preferably three, years of language study.

Global Security Studies Program, Meiji Gakuin University, Yokohama. This spring quarter program provides students the opportunity to study world peace and security issues. Previous Japanese language study is preferred, but not required.

Inter-University Center for Japanese Language Studies (IUC), Yokohama. This program offers an intensive program of training for graduate students in Japanese language and literature. The prerequisite is two years of university-level Japanese.

International Christian University, Mitaka (Tokyo). Humanities and social sciences, emphasis on Japanese language and international communication. A limited number of courses taught in English are available. At least one year of university-level Japanese language study is required.

Kyushu University of Technology, Kitakyushu. This program, which specializes in Civil, Mechanical, and Electrical Engineering, is primarily for undergraduates. While pursuing a research project, students will engage in language courses and a seminar on Japanese-American comparative engineering methods. One year of university-level Japanese language study is required prior to departure.

Kyushu University, Fukuoka. This program is for graduate-level economics students. The academic program consists of an intensive language program and a research project to be completed under the guidance of a Japanese professor. Prior Japanese language study is not required.

Nagoya University, Nagoya. This program is for graduate and undergraduate students. The academic program includes intensive Japanese language study and research conducted under the supervision of a Japanese professor. The prerequisite is two years of university-level Japanese. Osaka University, Osaka. Undergraduate students study Japanese language and a set program of economics courses. Instruction is in English during the fall semester and in Japanese during the spring. A minimum of two years of university-level Japanese is required.

Sophia University, Tokyo. Comparative culture studies, Japanese language and literature, history, political science, economics, and business are available. Many are taught in English. The prerequisite is one year of university-level Japanese.

Tokyo University, Sendai. This program is primarily for graduate students in most fields with well-developed research projects. Participants will study Japanese language for a summer while participating in their research projects under the guidance of a Japanese professor. Graduate study in Engineering may also be available. Undergraduates at the advanced level in Japanese language and culture program. The prerequisite is two to three years of university-level Japanese.

Tokyo Institute of Technology. Graduate students proficient in Japanese may do research and take courses in science and engineering.

People's Republic of China. EAP offers a full-year program in Beijing and a fall semester program in Tianjin. Intensive language study in Chinese is the primary emphasis of all programs.

Beijing University of Science and Technology. Students receive a half-year of academic credit and financial support for studying standard Chinese and teaching English to Chinese students. The prerequisite is two years of Chinese language and one course in teaching English as a foreign language.

Nankai University, Tianjin. This fall semester program includes Chinese language study and courses taught in English on Chinese culture and civilization. The prerequisite is one year of college-level Chinese. Students must take an intensive language course in July and August prior to the start of the semester.

Peking University. A year-long program focused on advanced-level instruction in Chinese language and literature. Courses are taught in Chinese. The Language Training for Foreigners Division of Peking University. The prerequisite for the program is two years of college-level Chinese.

Taiwan, Republic of China. Students participating in the Chinese Language and Culture Studies program in Taipei receive instruction in the Chinese language and enroll in lecture courses (taught in English) on Chinese culture and society arranged by CSU International Programs. Courses in art history, literature, economics, history and political science are available. Prior course work in Chinese culture, history and language are recommended. (This is a cooperative program with California State University International Programs.)

Thailand. An eight-week summer intensive language program at Chiangmai University is required for all students. This is followed by a seven-week inter-term program of continued study of the Thai language, with additional courses in Thai history and culture, taught in English. Most students will remain at Chiangmai University for the second semester and continue taking courses in Thai language and area studies taught in English. Students with sufficient language background (more than two years of University-level Thai language) have the option of enrolling at Chulalongkorn University in Bangkok for the second semester. Instruction is in Thai, though English-speaking tutors are available.

It is possible to apply for the summer intensive-language program in subsequent years.

Africa

Ghana. University of Ghana, Legon-Accra. Open to undergraduate and graduate students. Instruction is in English. As in the British system, students take a year-long program of study in a single area. End-of-year examinations are given only once and are mandatory for credit to be awarded. Offerings include humanities and social sciences, with emphasis on African studies. There is a strong program in ethnology.

Kenya. Enrollment open to undergraduate and graduate students. As in the British system, students take a year-long program of study in their major or area of specialization. Examinations are given once, at the end of the academic year, and are mandatory for receiving credit. Operation of this program is subject to the availability of an annual budget. University of Nairobi. Humanities and social sciences, with emphasis in African studies. Limited opportunities in the sciences and in veterinary science. Graduate students in history, political science, social sciences, and education may associate with the Institute for Development Studies, Institute for African Studies, or the Housing and Research Development Unit.

Togo. Study and field experience (SAFE). An eight-week summer program designed by UC. Four weeks of academic course work in French language and contemporary Africa are taught at the University of Benin, Lome, followed by four weeks of field work.

Latin America

Brazil. Language requirements for admission to this program are: two years of college-level Portuguese or the equivalent; or one year of college Spanish and one year of college Portuguese; or two years of college Spanish and completion of an intensive course in Portuguese prior to departure. Since courses are taught in Portuguese, the equivalent of one year of college-level Portuguese is the absolute minimum. A compulsory intensive language course precedes the beginning of regular course work.

University of São Paulo. Brazilian literature, Portuguese language, arts, humanities, social sciences. (This is a cooperative program administered by the Council on International Educational Exchange (CIEE).)

Costa Rica. University of Costa Rica, San Jose. As is appropriate in this Hemisphere, the academic year extends from early March to early August. UC participants elect in January. Applications for participation in this program are due in May for a January departure.

A mandatory intensive language program precedes the academic year. During the academic year, courses are in Central American studies (history, literature,
political science, etc.) form half of the curriculum, with the remaining courses taken from any of the faculties at the University of Costa Rica.

Costa Rica Tropical Biology Quarter at Monteverde. Although the program provides an unusual opportunity for undergraduates to study and do field research in a tropical cloud forest, applicants should have completed a year of biology, including one upper-level organismal biology course, and have some background in Spanish language.

Costa Rica Medical Quarter at San Jose. This summer quarter program provides medical students the opportunity to combine intensive medical Spanish instruction and clinical studies. Conversational ability in Spanish is required.

Ecuador. Since all instruction is in Spanish, students must have completed at least two years of university-level Spanish prior to departure.

Pontificia Universidad Catolica del Ecuador, Quito. During the fall semester students take Spanish-language courses and study the history, politics, and culture of Ecuador and Latin America. In the spring, students can study in a variety of fields, including languages and literature, anthropology, biology, economics, and sociology.

Mexico. Universidad Nacional Autonoma de Mexico (UNAM), Mexico City. A compulsory, intensive language program precedes the beginning of the academic year, augmented by courses in modern Spanish (history, art, literature, etc.). Students have the option of spending one semester (two UC quarters) at UNAM, or a full year. All instruction is in Spanish.

Study and Field Experience (SFE) in Mexico. Available for either Fall or Spring Quarter, the SFE program begins in Mexico City with six weeks of intensive language courses and a course on contemporary Mexico. The final weeks of the program are spent working in a community outside of Mexico City to complement formal course work. Students must have completed a minimum of one year of university-level Spanish, or the equivalent, by departure.

Summer Intensive Language Quarter in Morelia. This program provides total immersion in Mexican and Spanish language instruction for students who have completed one year of university-level Spanish before departure. It is not appropriate for advanced students in Spanish.

Peru. A compulsory intensive language course precedes the beginning of the academic year. All courses are taught in Spanish.

University of Cusco, Lima, Humanities, social sciences. Anthropology, archaeology, and ethnohistory are of special interest. (This is a program of the Peru Corporation, which is operated by Indiana University and a number of California universities.)

Canada

Students may enroll for a full year. Studies on the major or a closely allied field is expected.

University of British Columbia (UBC), Vancouver. Most academic disciplines are available. Areas of special interest include Pacific Rim and Canadian Studies.

Australia and New Zealand

As is appropriate in the Southern Hemisphere, the academic year extends from the beginning of instruction in early March through the examination period, which starts in November. UC participants must leave in February, and will be unable to attend classes during the winter term preceding departure. Applications for participation in these programs are due in May for a February departure. The universities follow the British system of higher education.

The Australian program includes the Australian National University in Canberra, three institutions in the Melbourne area, University of Melbourne, Monash University and La Trobe University, the University of Sydney, and the University of New South Wales in Sydney. University of Adelaide and Flinders University in South Australia, and the University of Wollongong in Wollongong. A full range of academic programs is available. The Study Center accommodates a limited number of students. A UC faculty member in Melbourne directs all programs.

The New Zealand program includes the University of Auckland, Lincoln College in Christchurch, the University of Otago in Dunedin, Massey University in Palmerston North, Victoria University in Wellington, and the University of Waikato in Hamilton. All academic disciplines are available; programs in textiles and a variety of agricultural sciences are of special interest.

Endocrinology (A Graduate Group)

Judith Turgeon, Ph.D., Chairperson of the Group

Graduate Study. The interdepartmental Graduate Group in Endocrinology offers programs of study leading to the M.S. and Ph.D. degrees. Research and instruction are offered in topics ranging from endocrinological processes at the cellular and molecular levels to integrative systemic endocrinology. Graduate students receive a strong background in basic cellular, biochemical and integrative endocrinology and related course work, plus have the opportunity to select specific fields of emphasis such as molecular mechanisms of hormone action, signal transduction, metabolism, hormone regulation, growth factors, neuroendocrinology, and reproduction.

Graduate Advisers. Contact the Program Office.

Courses in Endocrinology

Graduate Courses

210. Methods in Endocrine Research (4) I, II, III. The Staff. Laboratory—9 hours; discussion—1 hour. Prerequisite: consent of instructor; one-semester assignment in endocrine research laboratory. Individual research project on experimental design and methodological/experimental experience. Exposure to and experience with a range of endocrine research techniques. May be repeated three times for credit. (SU grading only.)

240. Biochemical Endocrinology (3). I. Adams. Lecture—3 hours. Prerequisites: standing or consent of instructor. Examination of recent advances in biochemical endocrinology and molecular and cellular biology of endocrine systems with emphasis on processes of hormone and receptor synthesis, second messenger phenomena, and hormonal control of gene expression.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge). Seminar—1 hour. Prerequisite: consent of instructor. Discussion and critical evaluation of advanced topics and current trends in research in endocrinology. May be repeated for credit.

296. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor.

299. Research (1-12) I, II, III, IV. The Staff (Chairperson in charge). (SU grading only.)

Endocrinology and Metabolism

See Internal Medicine in Medicine, School of

Engineering

College of Engineering

M. S. Ghoushi, Ph.D., Dean

Benjamin J. McCoy, Ph.D., Associate Dean—Research

Zuhair A. Munir, Ph.D., Associate Dean—Graduate Studies

James E. Shackleford, Ph.D., Associate Dean—Undergraduate Studies

Billy Sanders, Ph.D., Assistant Dean

College Office, 213 Bailer Hall (916-752-0553)

Undergraduate Study

Thirteen undergraduate engineering curricula, including four formal double-major programs, are offered. Each of these is a four-year program leading to the degree of Bachelor of Science. The Agricultural, Chemical, Civil, Electrical, Mechanical Engineering, Aeronautical Science and Engineering, and Computer Science and Engineering curricula are seven programs which have been accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET), the nationally recognized accrediting body for engineering curricula.

The four-year undergraduate program is divided into two parts: the Lower Division Program and the Upper Division Program.

Graduate Study

See the Graduate Division section of this catalog. For additional information refer to the College of Engineering Bulletin, obtainable from the UC Davis Bookstore, or phone the Graduate Study Office (916-752-0562).
Lower Division Programs
If you enter the College of Engineering with lower than 84 quarter units of credit, follow the lower division program specified for your major.

Agricultural Engineering Lower Division Programs: Biological Systems Engineering
Requirements for majors in Biological Systems Engineering only.

Required Courses
Calculus—Mathematics 21A-21B-21C-21D........16 1-2-3-4
Linear algebra—Mathematics 22A........3 5
Differential equations—Mathematics 22B........3 6
General physics—Physics 9A-9B-9C........12 3-4-5
General chemistry—Chemistry 2A-2B........10 2-3
Chemical engineering—Chemistry 1A, 1B, 1C........15 4-6
Engineering graphics in design—Engineering graphics 4........1 1
Applications of computers—Engineering 5........3 2
Circuits—Engineering 17........3 6
Statics—Engineering 35........3 6
Properties of biological materials—Agricultural engineering 75........5 1
Expository writing—English 1 or 3, or Comparative Literature 1, 2, or 3........4 2
Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3........4 5
Humanities—Social Sciences electives and General Education electives........8 1-3
Total Lower Division Units........16-97

Agricultural Engineering Lower Division Programs: Food Engineering
Requirements for major in Food Engineering.

Required Courses
Calculus—Mathematics 21A-21B-21C-21D........16 1-2-3-4
Linear algebra—Mathematics 22A........3 5
Differential equations—Mathematics 22B........3 6
General physics—Physics 9A-9B-9C........12 3-4-5
General chemistry—Chemistry 2A-2B........10 2-3
Chemical engineering—Chemistry 1A, 1B, 1C........15 4-6
Engineering graphics in design—Engineering graphics 4........1 1
Applications of computers—Engineering 5........3 2
Circuits—Engineering 17........3 6
Statics—Engineering 35........3 6
Properties of biological materials—Agricultural engineering 75........5 1
Expository writing—English 1 or 3, or Comparative Literature 1, 2, or 3........4 2
Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3........4 5
Humanities—Social Sciences electives and General Education electives........8 1-3
Total Lower Division Units........16-97

Chemical Engineering Lower Division Program
Requirements for major in Chemical Engineering and the double major, Chemical Engineering/Materials Science and Engineering, only.

QUARTER USUALLY TAKEN
Calculus—Mathematics 21A-21B-21C-21D........16 1-2-3-4
Linear algebra—Mathematics 22A........3 6
Differential equations—Mathematics 22B........3 5
General physics—Physics 9A-9B-9C........12 3-4-5
Physics 93 or Microbiology 102........4 6 or 7
General chemistry—Chemistry 1A, 1B, 1C, 1D (Chemistry 2A, 2B, 2C (Chemistry 2A, 2B, 2C strongly recommended))........15 1-3-4
Chemical engineering—Chemistry 1A, 1B, 1C, 1D........15 3-4-5
Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3........4 6
Total Lower Division Units........94-98

Civil Engineering Lower Division Program
Requirements for major in Civil Engineering and the double major, Civil Engineering/Materials Science and Engineering, only.

QUARTER USUALLY TAKEN
Calculus—Mathematics 21A-21B-21C-21D........16 1-2-3-4
Linear algebra—Mathematics 22A........3 5
Differential equations—Mathematics 22B........3 6
General physics—Physics 9A-9B-9C........12 3-4-5
Physics 93 or Microbiology 102........4 6 or 7
General chemistry—Chemistry 1A, 1B, 1C, 1D (Chemistry 2A, 2B, 2C (Chemistry 2A, 2B, 2C strongly recommended))........15 1-3-4
Chemical engineering—Chemistry 1A, 1B, 1C, 1D........15 3-4-5
Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3........4 6
Total Lower Division Units........94-98

Humanities—Social Sciences electives and/or General Education electives........10

Electrical Engineering/Computer Science Lower Division Program
Requirements for majors in Electrical Engineering, Electrical Engineering/Materials Science and Engineering, and Computer Science and Engineering only.

QUARTER USUALLY TAKEN
Calculus—Mathematics 21A-21B-21C-21D........16 1-2-3-4
Linear algebra—Mathematics 22A........3 5
Differential equations—Mathematics 22B........3 6
General physics—Physics 9A-9B-9C........12 3-4-5
Physics 93 or Microbiology 102........4 6 or 7
General chemistry—Chemistry 1A, 1B, 1C, 1D (Chemistry 2A, 2B, 2C (Chemistry 2A, 2B, 2C strongly recommended))........15 1-3-4
Chemical engineering—Chemistry 1A, 1B, 1C, 1D........15 3-4-5
Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3........4 6
Total Lower Division Units........94-98

Mechanical, Aeronautical, and Materials Engineering Lower Division Program
Requirements for aeronautical and Materials Engineering, Materials Science and Engineering, Mechanical Engineering, and Mechanical Engineering/Materials Science majors only.

QUARTER USUALLY TAKEN
Calculus—Mathematics 21A-21B-21C-21D........16 1-2-3-4
Linear algebra—Mathematics 22A........3 5
Differential equations—Mathematics 22B........3 6
General physics—Physics 9A-9B-9C........12 3-4-5
Physics 93 or Microbiology 102........4 6 or 7
General chemistry—Chemistry 1A, 1B, 1C, 1D (Chemistry 2A, 2B, 2C (Chemistry 2A, 2B, 2C strongly recommended))........15 1-3-4
Chemical engineering—Chemistry 1A, 1B, 1C, 1D........15 3-4-5
Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3........4 6
Total Lower Division Units........94-98
Introduction to engineering systems—Engineering 3 1 or 2
(Engineering 3 is designed for freshman students. More advanced students may petition to substitute 3 units of technical electives for Engineering 3.)

Engineering graphics design—
Engineering 4 1 or 2

Applications of computers—
Engineering 5 2 or 3

Circuits—
Engineering 17 5 or 6

Statics—
Engineering 35 4 or 5

Dynamics—
Engineering 36 5 or 6

Propulsion of machinery—
Engineering 45 4 or 6

Expository writing—
English 1 or 3, or Comparative Literature 1, 2, or 3 1 or 2

Introduction to group communication—
Phonetic and Communication 1 or 3 4

Humanities—
Electives 12

Total units required for major: 186

Upper Division Programs

If you have completed the requirements for the lower division program or have entered the College of Engineering with more than 64 units of credit, you should follow the upper division requirements for the major you have selected from the programs that follow.

Aeronautical Science and Engineering

Aeronautical Science and Engineering is the branch of engineering that applies scientific knowledge to the design, manufacture, and operation of aircraft. The program leading to the Bachelor of Science degree in Aeronautical Science and Engineering is designed to provide a broad background and fundamental education in mathematics, the physical sciences, and the engineering sciences. These fundamentals, when complemented by the required technical courses, prepare the student for employment in government or industry, where simultaneously establishing an excellent foundation for graduate studies.

The fundamental disciplines of this branch of engineering apply to all bodies and vehicles whose motion is affected by aerodynamic forces. Within this context, aeronautical engineers are involved with automobiles, trains, ships and submarines, aircraft, rockets, missiles, and space equipment and with the operation of systems.

The fundamental engineering disciplines are supplemented with courses in aircraft propulsion, aerodynamics, aircraft performance, and control, aircraft propulsion design, aeronautical structures, and aerostatics.

A broad range of technical elective courses is available. Some students choose their electives from one area of study in order to begin developing a specialization. Others choose courses from several areas in order to broaden their background in the sciences and engineering. Typical aeronautical science and engineering specialties include aerothermodynamics, propulsion systems, aircraft performance, stability and control, aeronautical structures, aerodynamics, flight testing, or component mechanics. While students should consult with their adviser before selecting technical electives, there are a number of courses which could be recommended to all aeronautical science and engineering students regardless of their chosen area of specialization. These include:

Aeronautical Science and Engineering 131, 135, 137, 139

Materials Science and Engineering 140, 142

Mechanical Engineering 150A, 150B, 150L, 162, 172, 184A, 184B, 186, 187

Electrical and Computer Science Engineering 150

Applied Science Engineering 115

Civil and Environmental Engineering 131A

Aeronautical Science and Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.)

Minimum units required for major: 186

UNITS

Subject Areas and Courses

Electronic circuits—
Engineering 100 4

Applied mechanics—
Engineering 102, 104A, 104B, 104L 10

Applied thermodynamics—
Engineering 105A, 105B, Mechanical Engineering 165 10

Fluid mechanics—
Engineering 103A, 103B, Mechanical Engineering 103, 104, 105 10

Aeronautical engineering fundamentals—
Aeronautical Science and Engineering 125 3

Aerodynamics—
Aeronautical Science and Engineering 126, 128, 139A 12

Aircraft propulsion—
Aeronautical Science and Engineering 126, 128, 139A 12

Aircraft performance design—
Aeronautical Science and Engineering 130 4

Aeronautical structures—
Civil and Environmental Engineering 131B, Aeronautical Science and Engineering 135 12

Measurement systems—
Mechanical Engineering 176 3

Controls and systems analysis—
Mechanical Engineering 171 4

Applied mathematics—
Engineering 180 3

Technical electives 10

Students are urged to consider choosing from Engineering 102L, 105L, 105, 118, 122, 139, Aeronautical Science and Engineering 131, 137, Materials Science and Engineering 140, 142, 148, 155, Mechanical Engineering 150A, 150B, 150L, 162, 172, 184A with 184B (both courses must be taken), 196, 197, Electrical and Computer Science Engineering 150, Applied Science Engineering 115, Civil and Environmental Engineering 131A.

Humanities—
Electives for General Education electives 12

Total Units for Upper Division Program 96

Agricultural Engineering:

Biological Systems Engineering

Commercial enterprises in plant and animal production, bioengineering, biotechnology, food processing, greenhouses and nurseries, forest production and aquaculture need engineers with a background in biology. Concern for the environment is creating new engineering opportunities as society strives to maintain a balance within the biosphere. The combination of engineering and biology offers a challenging and socially useful career. Engineers with an understanding of living systems are in increasing demand to create the equipment, processes, and systems for production of animal and biological materials.

Students in the Biological Systems Engineering program may select courses from the curriculum according to their interests and future career goals. The program offers a general set of courses that provide a foundation in engineering and various disciplines that is common to other engineering disciplines. In addition, a basic foundation in biological sciences is provided in preparation for the more advanced Biological Systems Engineering courses where biology and engineering are brought together in the analysis and design of biological systems. The program offers flexibility in the selection of technical electives, ranging from biochemistry to plant and animal production to advanced mechanical design courses. Given the flexibilities, students are encouraged to consult a faculty adviser when planning their program and selecting elective courses.

Areas of Specialization

Although specialization is not required, the Biological Systems Engineering program allows a student to select one of the following three areas: agricultural engineering, agricultural engineering, or forest engineering. If such specialization is desired, students may follow, during their junior and senior years, one of the six track sequences that have been recommended for the three areas mentioned. By taking the set of electives for a specialization, a student acquires more in-depth knowledge in an area of special interest. Students wishing to specialize in some other area should consult a departmental adviser.

Agricultural Engineering is the application of engineering principles to the production, processing, packaging, and use of agricultural materials. The field integrates many engineering disciplines, with special attention to the interface between physical systems and agricultural products. Students can emphasize environmental resource management (soil, water, land), plant production and greenhouse facilities, animal production and facilities, machinery, electronic systems, energy resources, and process engineering.

Suggested technical electives:

Agricultural Engineering 114, 125, 132, 145, 175

Engineering 102, 104B

Civil and Environmental Engineering 141

Mechanical Engineering 150A

Soil Science 100

Pomology 102

Vegetable Crops 101

Aquacultural Engineering is involved in the design, fabrication and management of equipment and facilities for culturing, harvesting, and handling aquatic plants and animals. Understanding the environmental requirements of cultured organisms is an essential consideration in the design and management of aquacultural operations. Understanding the interactions in the biology and water quality is stressed in the aquacultural engineering specialization.

Suggested technical electives:

Agricultural Engineering 114, 125, 132, 145, 175

Agricultural Engineering Technology 161A, 161B

Animal Science 119

Civil and Environmental Engineering 141, 141L, 145

Engineering 102

Wildlife and Fisheries Biology 121

Suggested Advisers: F. S. Kelley, G. Granderth, R. D. Forest Engineering is the application of engineering principles and silvicultural knowledge in the management of forests and forest land. Ecological, aesthetic, and recreational aspects of this renewable natural resource are integrated into systems for the production of wood products. Students study systems and equipment for timber harvesting, forest protection, reforestation, forest recreation facilities, and forest land management. Students have the opportunity to participate in cooperative programs with the Extension Service, Forestry and Resource Management at UC Berkeley, and other universities.

Course not offered this academic year
Suggested technical electives:
Agricultural Engineering 114, 115, 116, 125
Engineering 102, 120
Forestry 101, 102, 103, 110, 113, 120, 125
Forest Products 132
Mechanical Engineering 150A
Geography 106
Soil Science 100

The Forestry Summer Camp courses (Forestry 100A through 100E) are strongly recommended for students in the Forest Engineering specialization.

Suggested advisors: Fredley, Hartsough, Miles.

*Forestry and forest products courses offered at UC Berkeley.

Biological Systems Engineering Curriculum
Minimum units required for major: 186
Upper Division Requirements:

<table>
<thead>
<tr>
<th>Subject Areas and Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics/Statistics—Civil and Environmental Engineering 114</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Science and Design—Engineering 36, 100, 103A, 104A, 105A, 106</td>
<td>19</td>
</tr>
<tr>
<td>Agricultural and Biological Sciences Electives:—Select at least seven units from: Animal Science 118; Biochemistry and Biophysics 101A; Forestry 101, 102, 103, 110, 113, 120, 125; Geography 106; Pomology 102; Soil Science 100; Vegetable Crops 101.</td>
<td>7</td>
</tr>
<tr>
<td>Wildlife and Fisheries Biology 121</td>
<td>7</td>
</tr>
<tr>
<td>Engineering Science Electives—Select at least three units from: Agricultural Engineering 131; Civil and Environmental Engineering 141; Engineering 102, 104E, 164 or Forest Products 132; and at least three units from Agricultural Engineering 115, 175; Engineering 105B; Chemical Engineering 161 or Civil Engineering 141.</td>
<td>12</td>
</tr>
<tr>
<td>Engineering Design Electives—Select at least twelve units from: Agricultural Engineering 114, 116, 125, 132, 145; Agricultural Engineering Technology 101A, 161B; with at least three of the units from Civil and Environmental Engineering 132A, 145 or Mechanical Engineering 150A.</td>
<td>12</td>
</tr>
<tr>
<td>Humanities and Social Sciences—General Education electives</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Units for Upper Division Program...94 or 95

Master Undergraduate Adviser: Delwiche

Agricultural Engineering: Food Engineering
Food engineering is the application of engineering principles and concepts to the handling, storage, processing, packaging, and distribution of food and related products. In addition to engineering principles, the food engineering degree is intended to provide an understanding of the chemical, biochemical, microbiological, and physical characteristics of foods. Concepts of food refrigeration, freezing, thermal processing, drying, and other food operations are studied. The food engineering program is designed to provide a strong foundation in mathematical, physical, biological, and food sciences. Courses are drawn from biological and agricultural engineering; chemical, biological, and mechanical engineering to provide methods that account for material and energy expenditures and flows; methods for analyzing and designing processes, equipment and operations (e.g., fluid flow and heat transfer); and methods for predicting, monitoring and controlling performance of operations in a manner most relevant to food and food systems. Like other engineers, food engineers have to deal with chemical, mechanical, and physical design and performance criteria. In addition, they also have to provide products that are safe, nutritious, and convenient to prepare and eat. The goal is to manufacture and distribute quality products that consumers find affordable and acceptable.

The food industry is the largest industrial sector of the U.S. economy, creating many employment opportunities. Food engineers help develop new food products. They also conceive, design and operate food processes, equipment and plants for efficient production of foods with minimal impact on the environment. Food engineers may work for food companies in process research and development, equipment and facility design, or management of production operations. Research and regulatory positions are also available with state and federal agencies. Summer internships are usually available, and students are encouraged to make use of these opportunities.

Food Engineering Curriculum
Minimum units required for major: 187 or 188
Upper division requirements:

<table>
<thead>
<tr>
<th>Subject Areas and Courses</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics/Statistics—Agricultural Science and Management 150</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural and Biological Engineering 125, 125B; Chemical Engineering 150A (or Engineering 130A), 157, 158; Engineering 36, 100, 104A, 104A, 105B, 106; Mechanical Engineering 161A, 161B (or 49).</td>
<td>4</td>
</tr>
<tr>
<td>Food Engineering 130; Agricultural Engineering 130, 131, 132, 170A, 170B, 170C, 175; Biotechnology and Biochemistry 101A; Chemistry 130 (or 110A); Food Science and Technology 104, 151, 152, 155, 156, 157, 158, 159, 160.</td>
<td>12</td>
</tr>
<tr>
<td>Humanities—Social Sciences electives—General Education electives</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units for Upper Division Program...94 or 95

The premedical and prebiomedical engineering areas of specialization have been specifically designed to prepare the student for graduate work in biomedical engineering or to meet the undergraduate requirements for entrance into medical school. Knowledge of the fundamentals of the natural sciences and the application of fluid mechanics, mass transport, heat transfer, thermodynamics, reaction kinetics, and process dynamics to problems in natural science, students are well prepared to understand problems in living systems. Many biological phenomena, such as blood flow, solute transport, and energy exchange, can be dealt with using the theoretical tools learned as an undergraduate chemistry courses.

A Biomedical Engineering: Food Engineering Curriculum includes an important core of chemistry courses. Students can take advantage of this background to build a strong program in chemistry by choosing electives from among advanced undergraduate chemistry courses.

Suggested technical electives:
Chemistry 111, 115, 121, 126, 128C, 129B, 129C, 130, 131, 150, 160
Textile and Clothing 100, 110

Applied Mathematics. The mathematics specialization is designed both to strengthen the student's understanding of the foundations of engineering science and to improve the ability to treat complex engineering problems. Courses in abstract algebra, advanced calculus, and the theory of differential equations provide a sound theoretical background, while courses in analytical and numerical analysis provide the techniques for solving a wide range of engineering problems.

Suggested technical electives:
Applied Science Engineering 115, 116

Biomedical Engineering. This area of specialization prepares students to do graduate work in biomedical engineering and for employment in the biotechnology, pharmaceutical, and food industries.

Suggested technical electives:
Strongly recommended
Microbiology 102 (instead of Physics 98D), 102L, 130A
Biotechnology and Biochemistry 101A, 101B
Chemical Engineering 161

Recommended
Genetics 100, 102A, 102B, 102L
Biochemistry and Biophysics 101L, 123, 123L, 133
Microbiology 130B and 130D
Plant Science 140
Viticulture and Enology 166

Computers and Automation. This specialization offers the opportunity to master various computational techniques to formulate, solve, and analyze chemical engineering problems. In addition, the student is exposed to the theory and practice of monitoring and operation of chemical processes using microcomputer systems. The common ingredient in all these courses is the computer. Development of expert systems for detecting process failures, using computer-aided design (CAD) packages to optimize product yields, solving large numbers of equations on supercomputers to assess transient behavior of processes, and implementation of plantwide control systems are all examples of chemical engineering endeavors based on extensive use of computers. The following list of elective courses is suggested to help the student obtain the necessary background in respective areas.

Suggested technical electives:
Artificial Intelligence and Computer Graphics:
Computer Science Engineering 170, 175
Numerical Analysis and Optimization:
Applied Science Engineering 115, 116
Mathematics 128B-C, 160
Civil and Environmental Engineering 153

*Course not offered this academic year.
Recommended

Food Science and Technology 150, 150L, 151
Marketing, Specialty chemical and product manufacturers need chemical engineers who have training in market management, which involves the application of economic, sociological, and statistics in market planning and forecasting. who are strategically developing and promoting new products.

Suggested technical electives:
- Management 250, 251
- Agricultural Economics 113, 130, 136
- Sociology 183
- Statistics 103

Prebiomedical Engineering

This area of specialization is designed to prepare the student for graduate work in biomedical engineering. Early planning of a comprehensive course schedule in consultation with a Chemical Engineering adviser is important to provide space for Biomedical Sciences courses.

Suggested technical electives:
Four to six courses from
- Anatomy 100, Biochemistry and Biophysics 101A, 101B, Biological Sciences 1A, 1B, 1C, 10, Physiological Sciences 1A1, 101B, Physiology 110, 112, 112B, 112, 133, 114, Zoology 121, 123

Premedicine

Inclusion of both organic and physical chemistry in the curriculum allows the student to complete the premedical requirements while satisfying the requirements of the Chemical Engineering major. Those electing the premedical (including preprofessional) area of specialization should verify the specific preparation requirements with the Health Sciences Advising Office before making a final decision on electives. To insure that room is provided in the program for the biology courses, it is important to prepare a course schedule with a Chemical Engineering adviser early in the freshman year.

Suggested technical electives:
- Anatomy 100
- Chemistry 129C, 129B, 129C
- Six biology or biochemistry courses, such as Biochemistry and Biophysics 101A, 101B, Biological Sciences 1A, 1B, 1C, Genetics 100, Microbiology 102, Physiology 110, 112, 113, 114, Zoology 100, 121

Chemical Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.)

Minimum units required for major: 194

Subject Areas and Courses

Engineering—Engineering 100
Chemistry—Chemistry 110A, 110B
Advanced chemistry electives
To be selected from upper-division courses in Chemistry, Biochemistry and Biophysics, Chemical Engineering 161, 163, Civil and Environmental Engineering 140, 140L, Materials Science Engineering 134, 144, 147, Environmental Toxicology 112A, 112B, Food Science and Technology 100A-100B, 104, 115, Physiological Sciences 101A-101B, Textiles and Clothing 150.

Humanities-Social Sciences/General Education electives

12

Total Units for Upper Division Program
100

Civil and Environmental Engineering

Civil and environmental engineering is devoted to the improvement of the human environment for the purposes of making our activities productive, safe, and enjoyable, and to providing aesthetically pleasing surroundings. The profession contributes directly to humanity's continued health and well-being by the planning and design of systems that provide plentiful supplies of potable water, freedom from disease-carrying wastes, and clean, air transportation; housing and other structures; food control; and large recreational facilities.

Areas of specialization within civil and environmental engineering include (1) Civil Engineering Planning; (2) Environmental Engineering, (3) Structural Engineering, (4) Transportation Planning and Engineering; and (5) Water Resources Engineering. You may specialize in one or more of these areas by selecting appropriate technical electives. However, such specialization is not required. While developing your individual program, you are urged to consult a faculty adviser.

Because of the direct concern of professional civil engineers for the quality of human life, civil engineering students are encouraged to include among their technical electives courses such as Economics 125 and 125B, Environmental Studies 160 and 166, Political Science 103, 105, 106, and Sociology 143A. Additional information concerning the areas of specialization and suggested courses are given in the following paragraphs.

Areas of Specialization:

Civil Engineering Planning

Specialization in this area is directed towards planning of resources utilization and development of projects on an urban or regional scale. Civil engineering planning requires an understanding of the basic principles of economics, law, planning concepts and techniques, environmental sciences, political administration, and politics. You are encouraged to plan your program early with the aid of a faculty adviser to complement the suggested technical electives with courses in the humanities and social sciences.

Suggested technical electives:
- Agricultural Economics 147, 146, 176
- Civil and Environmental Engineering 137, 146, 153, 160, 161, 163
- Economics 125, 125B, 130, 131
- Environmental Engineering 161
- Geography 155, 165
- Geology 134
- Political Science 100, 101, 102, 107, 108
- Water Science 150, 151

Suggested advisers: R. Klamura, J. L. Ruhn, P. Mokhtarian, D. Spiering

Environmental Engineering

Specialization in this area is concerned with improving and maintaining the qualities of the air, land, and water environments that affect our health and well-being in the face of

Course not offered this academic year.

Structural Engineering, Structural Mechanics, and Geotechnical Engineering. This area is concerned with the design, construction, analysis, and planning of structures such as buildings, bridges, highways, and dams. Structural Engineering encompasses structures made of materials such as metals, reinforced concrete or timber. Geotechnical Engineering encompasses natural and man-made structures such as foundations or slopes which are composed of rock or soil. Structural Mechanics emphasizes more theoretical aspects of structures such as the mathematical analysis and characterization of material properties. Suggested technical electives: Aeronautical Science and Engineering 135, 137 Art Studio 121A Civil and Environmental Engineering 131B, 132A, 132C, 133, 134, 137, 138, 139, 173, 174, 176 Engineering 122, 138, 160 Mathematics 128A, 128B, 128C Suggested advisors: K. Arulananadan, Y.F. Dafalias, J.R. Hennion, J.R. Hutchinson, J.M. Idriss, B. Kutter, K.D. Mish, M.R. Ramey, K.M. Romstad, M.A. Taylor.

Transportation Planning and Engineering. Specialization in this area is concerned with the development, coordination, and management of transportation systems for the movement of people and goods in a manner compatible with societal demands. Transportation planning blends knowledge of the basic concepts of engineering, economics, and planning, and provides decision-making services—serving in the form of an integral system. Students should acquire awareness of the social sciences and environmental science through courses in these areas. Suggested technical electives: Civil and Environmental Engineering 137, 149, 152, 153, 160, 161, 162, 163 Engineering 160 Environmental Studies 167, 168A, 168B, 171, 173, 174, 175, 176, 177, 178, 179 Suggested advisors: P. Jovanis, R. Kitamura, P. Mokhtarian, D. Sperring.

Water Resources Engineering. This area includes hydrology, hydraulics, and water resources systems planning and design. Hydraulics is concerned with the flow in pipes and open-channel water-distribution systems and through hydraulic structures. Water resources system planning and design is concerned with the comprehensive development of water resources for multiple purposes is placed on principles of planning, analysis, and engineering design and operation as related to the water needs of industry, agriculture, recreation, and other activities. Suggested technical electives: Agricultural Economics 145, 146, 147 Water Resources Science 120, 121A, 121B Civil and Environmental Engineering 142L, 144, 145, 146, 148B, 152, 153

Civil Engineering (Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.) Minimum units required for major: 181.

Subtopics Areas and Courses
- Electronic circuits—Engineering 100 or 111, 3-4T
- Applied mechanics—Engineering 103A, 104A, 104L
- Applied thermodynamics—Engineering 105A or Chemistry 110A
- Structures—Engineering 104B; Civil and Environmental Engineering 131A
- Soils mechanics—Civil and Environmental Engineering 148A
- Economics—Engineering 106
- Engineering mathematics analysis—Applied Science Engineering 115, Chemical Engineering 114, and Civil and Environmental Engineering 114, and other Applied Science Engineering 116, Civil and Environmental Engineering 131B or 153
- Transportation systems—Civil and Environmental Engineering 160, 161, or 163.
- Technical electives—6

Six of these units must be selected from engineering courses.

Electrical and Computer Science Engineering 112

Civil Engineering (Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.) Minimum units required for major: 181.

Subtopics Areas and Courses
- Electronic circuits—Engineering 100 or 111, 3-4T
- Applied electronics—Engineering 103A, 104A, 104L
- Applied thermodynamics—Engineering 105A or Chemistry 110A
- Structures—Engineering 104B; Civil and Environmental Engineering 131A
- Soils mechanics—Civil and Environmental Engineering 148A
- Economics—Engineering 106
- Engineering mathematics analysis—Applied Science Engineering 115, Chemical Engineering 114, and Civil and Environmental Engineering 114, and other Applied Science Engineering 116, Civil and Environmental Engineering 131B or 153

*Course not offered this academic year.

Materials science—Materials Science Engineering 132, 132L, 134, 134L, 138L, and 138, and two courses from Materials Science Engineering 140, 142, 144, 147, 148B, 155, or Civil and Environmental Engineering 137.

Humanities—Social Sciences electives and/or General Education electives.

Total units for Upper Division Program: 94.

*One unit of Engineering 100 applies toward the Technical electives requirements.

Civil Engineering 10 is a required prerequisite to Civil Engineering 111, and to the extent of further specialization is chosen by the student with the help of a departmental advisor.

Electrical Engineering and Computer Science

The Department of Electrical Engineering and Computer Science administers three undergraduate curricula: Electrical Engineering, Computer Science and Engineering, and Electrical Engineering/Materials Science and Engineering. The Department, through the Division of Computer Science, also administers a Computer Science curriculum in the College of Letters and Science which is described in detail under the listing "Computer Science" in this catalog.

The upper division requirements for the degrees in Electrical Engineering, Computer Science and Engineering, and Electrical Engineering/Materials Science and Engineering are described below. Lower division requirements are listed under Lower Division Curricula at the beginning of the Engineering section. Please note that the lower division requirements for these majors are found in "Electrical Engineering/Computer Science and Lower Division Program.

Electrical Engineering

Electrical Engineering involves the design, analysis, and effective use of electrical systems. Electrical systems play central roles in nearly all aspects of modern life, including home entertainment, space exploration, medicine, communications, transportation, energy, industrial automation, defense, commerce, and education.

The Electrical Engineering curriculum combines a strong background in the scientific and theoretical aspects of electrical engineering with practical knowledge of the design of electrical systems to prepare students both for careers in industry and graduate study.

The Electrical Engineering curriculum is designed to provide you with a solid background in mathematics and physical science preparatory to a study of fundamental electrical engineering principles, including electromagnetics, physical electronics, and electronic circuits. Through the choice of upper division technical electives, you are then able to concentrate your studies in one of the many specialized fields of electrical engineering. Examples of some of the possible fields of specialization are circuits and electronics, signal processing, computer engineering, controls, automation, solid-state electronics, communication, microwaves, and electro-optics. You should select the elective courses leading to a specialty in consultation with a faculty advisor.

Electrical Engineering/Materials Science and Engineering

In addition to the general Electrical Engineering curriculum, the Department of Electrical Engineering and Computer Science offers a double major in Electrical Engineering/Materials Science and Engineering. In the past decade, the fields of solid-state electronics, opto-electronics, magnets, and superconductors have developed to the point that demands for new materials now pace progress in these fields.
Engineering

Materials scientists with an electron microscope background are key to continued progress in these areas. The Electrical Engineering/Materials Science and Engineering curriculum is designed to provide such a background.

Computer Science and Engineering

Computer Science and Engineering encompasses the design, development, analysis, theory, programming, and application of digital computers. It spans the hardware-software spectrum and, thus, combines many aspects of computer science and computer engineering.

The Computer Science and Engineering curriculum has been designed to meet the demand for graduates knowledgeable in all major aspects of digital computers. As a consequence, it is broader than either computer engineering or computer science. Compared with computer engineering (i.e., the Electrical Engineering degree with a specialization in computer design), it is distinguished by the additional study of software systems and computer theory. Compared with computer science, it is distinguished by the inclusion of many engineering and design-oriented courses.

Through the selection of upper division technical electives, students are able to emphasize either hardware or software design within the Computer Science and Engineering curriculum.

Electrical Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.)

Minimum units required for major: 181.

Subject Areas and Courses

Circuits, systems and electronics—Engineering 100, Electrical and Computer Engineering 110A, 110B, 111A, 111B, 112...16
Electromagnetic fields and physical electronics—Electrical and Computer Engineering 130A, 130B, 140A...

Additional technical electives...

Humanities—Social Sciences electives and/or General Education electives...

Total Units for Upper Division Program...

Computer Science and Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.)

Minimum units required for major: 187.

Subject Areas and Courses

Circuits, systems, and electronics—Engineering 100, Electrical and Computer Engineering 110A, 110B, 111A, 111B, 112...
Electromagnetic fields and physical electronics—Electrical and Computer Engineering 130A, 140A...

Engineering science—Engineering 105A...

Professional Responsibilities—Engineering 190...

Discrete structures and probability—Computer Science Engineering 100, plus one course from Statistics 120, 131A, or Mathematics 131...

Computer hardware—Electrical and Computer Science Engineering 171, 176...

Computer science theory—Computer Science Engineering 110, plus Computer Science Engineering 120 or 122...

Those planning to take Electrical and Computer Science Engineering 142 as an elective should elect Computer Science Engineering 120...

Computer software—Computer Science Engineering 140, 140A, plus Computer Science Engineering 150 or Electrical and Computer Science Engineering 182A (Students planning to take Electrical and Computer Science Engineering 182B as an elective should elect Computer Science Engineering 182A)

Hardware emphasis—select courses from Engineering 110A, 110B, 112...

Software emphasis—select courses from Computer Science Engineering 120, 122, 142, 165, 168, 170, 172, 175, Electrical and Computer Science Engineering 182B...

(May include up to 3 units of approved Electrical and Computer Science Engineering or Computer Science Engineering Technical electives)

Humanities—Social Sciences electives and/or General Education electives...

Total Units for Upper Division Program...

Electrical Engineering/Materials Science and Engineering

Minimum units required for major: 186.

Subject Areas and Courses

Circuits, systems and electronics—Engineering 100, Electrical and Computer Science Engineering 110A, 110B, 111A, 111B, 112...
Electromagnetic fields and physical electronics—Electrical and Computer Science Engineering 130A, 130B, 140A...

Materials science—Materials Science and Engineering 132, 134, 136, 146, and one course from Materials Science and Engineering 140, 142, 146...

Thermodynamics—Materials Science Engineering 130, Engineering 105A...

Professional Responsibilities—Engineering 190...

Laboratory courses—Materials Science and Engineering 149, Electrical and Computer Science Engineering 146A...

Probability Theory—Statistics 120, 131A, or Mathematics 131...

Technical Electives...

Humanities—Social Sciences electives and/or General Education electives...

Total Units for Upper Division Program...

Materials Science and Engineering

Materials Science and Engineering is directed toward an understanding of the structure, properties, and behavior of materials. Society demands new and improved materials with capabilities far superior to common metals, alloys, and ceramics. New materials are needed for high-speed transportation systems, surgical and dental implants, new generations of power plants, and solid-state electronic devices in computer and communication technology.

Both the development of new materials and the understanding of present-day materials demand a thorough knowledge of basic engineering and scientific principles including crystal structure, elastic and plastic behavior, thermodynamics, phase equilibria and reaction rates, and physical and chemical behavior of engineering materials.

The services of materials engineers are required in many different engineering operations; they study subjects ranging from fracture behavior in automobiles to fatigue behavior in aircraft frames, from corrosion behavior in petro-chemical refineries to radiation-induced damage in promising power plants, and from fabrication of steel to design of semiconductors. Materials engineers are also increasingly involved in developing the new materials needed to attain higher efficiencies in existing and proposed energy conversion schemes, and will play a central role in the development of new technologies based on composites and high temperature superconductivity.

The curriculum is based on a common core of courses basic to engineering. These courses, taken during your first two years, provide a strong foundation in fundamental engineering concepts. In your third year, you will take a set of "fundamentals" courses (Materials Science Engineering 130, 132, 134, 138). With this background, you are then ready for the "applications" courses (Materials Science and Engineering 140, 142, 144, 146, 147, 148, 154, 155) which are recommended for the fourth year.

Two technical elective units may be selected to complete the undergraduate Materials Science and Engineering program. By selecting the appropriate technical electives and Humanities and Social Science/General Education electives, you may orient the program to suit your interests and career objectives. These objectives may include production and development, applied research, basic research, teaching, and management.

Upper division courses in engineering, chemistry, physics, mathematics, and biological sciences are generally acceptable as technical electives in Materials Science Engineering. The following technical elective courses and the suggested areas of specialization are guidelines to assist you and your advisor in the preparation of study lists.

Suggested technical electives:

Aerospace Structures:

Aeronautical Science and Engineering 130, 135, 137, 139

Civil and Environmental Engineering 131B

Automatic Control and Systems Analysis:

Mechanical Engineering 171, 172, 185, 187, 188

Electrical and Computer Science Engineering 150, 157A, 157B

Biomedical Engineering:

Chemistry 107A, 107B

Biological Sciences 1A, 1B

Physical Education 101, 102

Chemical Corrosion:

Chemistry 110A, 110B, 110C or 107A, 107B

Chemical Engineering 151, 152A, 152B

Computers:

Applied Science Engineering 115

Computer Science Engineering 110, 122, 142

Electrical and Computer Science Engineering 171, 172, 175, 176, 177, 182A, 182B

Mathematics 129A, 129B, 168

Statistics 130A, 130B

*Course not offered this academic year.
An Automotive System Dynamics Laboratory is being developed for testing components such as engines, transmissions, brakes, and steering systems as well as complete test vehicles. As plans for a laboratory are being developed for a test track, ten experimental vehicles are housed in a rented facility and research on vehicle components proceeds in various Mechanical Engineering laboratories.

Suggested technical electives:
Aeronautical Science and Engineering 128, 129, 131
Mechanical Engineering 134, 152, 172, 184A, 184B, 187
Engineering 122

Transportation Systems. An important aspect of Mechanical Engineering is the planning, design, and operation of transportation systems. As society recognizes the increasing importance of optimizing transportation systems to minimize environmental degradation and energy expenditure, engineers will need to consider major innovations in the way people and goods are moved. Such innovations will require competence in vehicle dynamics, propulsion, and control, and an understanding of the problems caused by present-day modes of transportation.

Suggested technical electives:
Aeronautical Science and Engineering 127, 128, 129
Civil and Environmental Engineering 131A, 149A, 160
Engineering 122, 160
Mechanical Engineering 134, 152, 162, 172, 184A with 184B (both courses must be taken), 187

Mechanical Engineering
(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology)
Minimum units required for major: 180.

Subject Areas and Courses
Electronic circuits—Engineering 100
Applied mathematics—Engineering 103A, 104A, 106
Applied thermodynamics—Engineering 105A, 105B, Mechanical Engineering 130
Engineering design elective—select from Aeronautical Science and Engineering 137, 139A, Civil and Environmental Engineering 132A, 132B, 133, Mechanical Engineering 150A, 150B, 150L
Materials in design—Materials Science and Engineering 140, 148, 149
Measurements and laboratory—Materials Science and Engineering 132L, 134L, 138L, 140L, Mechanical Engineering 176
Materials science fundamentals—Materials Science and Engineering 132, 134, 138...9
Materials science applications—Select from Materials Science and Engineering 142 (with 142L), 144 (with 144L), 146, 147, 155...9
Applied mathematics—Engineering 180
Basic science—Select from Chemistry 110A, 110C, or Physics 140A, 140B, or Chemistry 128A, 128B, or Physics 121, 122A, or Geology 117A, 117B, or Physiology 110, 110L...6
Technical electives (Engineering 104B recommended)

Total units for Upper Division Program: 93

Mechanical Engineering
The mechanical engineer uses basic science in the design and manufacture of complex engineering systems requiring the application of physical and mechanical principles in the development of machines, energy conversion systems, materials, and equipment for guidance and control.

Preparation for this broad field of engineering requires a thorough knowledge of mathematics, physics, chemistry, fluid mechanics, thermodynamics, heat transfer, mass transfer, electricity, manufacturing processes, properties of materials, and economics.

The Mechanical Engineering curriculum is based on a common core of engineering courses taken in the first two years. Your third year is spent in further study of fundamental courses, and in the fourth year you may tailor your studies to your own interests by selecting courses in controls and systems analysis, fluid mechanics, materials science, thermodynamics, mechanical design, and materials science. You can either prepare for graduate study in Mechanical Engineering or obtain a broad background for entering engineering practice at the bachelor's level.

You are encouraged to select elective courses from among the areas of specialization listed below.

AREAS OF SPECIALIZATION:
Creative Design. The creation and improvement of products, processes, or systems that are mechanical in nature are the primary activities of a professional mechanical engineer. The solutions to such major social problems as environmental pollution, lack of mass transportation, and shortages of raw materials will depend heavily on the engineer's ability to create new types of machinery and mechanical systems. The engine-designer must have a solid and relatively broad background in the basic physical and engineering sciences and have the ability to solve a variety of problems. In addition to having technical competence, the designer must be able to consider the socioeconomic consequences of the design and its possible impact on the environment. Product safety, reliability, and economics are other considerations.

Suggested technical electives:
Aeronautical Science and Engineering 130
Applied Science Engineering 115
Civil and Environmental Engineering 131B
Engineering 111, 122, 162
Materials Science Engineering 140, 142
Mechanical Engineering 134, 150B, 150L, 151, 152, 161, 162, 172, 184A with 184B (both courses must be taken), 187

Energy Systems. This area is specifically designed for those who would like to work in the fields of power generation, propulsion for transportation, and energy conversion. In these fields, the increased efficiency of systems and the impact of potential environmental pollution are assuming more importance in the design stage.

The program of study is based on the fundamentals of fluid mechanics, thermodynamics, and heat transfer. These fundamentals are applied to combustion engines, gas turbines, heat exchangers, nuclear reactors, fusion powerplants, solar energy systems, and others.

Suggested technical electives:
Engineering 160
Mechanical Engineering 162, 186

Systems Dynamics and Control. Engineers are increasingly concerned with the performance of integrated dynamic systems in which it is not possible to optimize component parts without considering the overall system.

Systems Dynamics and Control is concerned with the modeling, analysis, and simulation of all types of dynamic systems and with the use of automatic control techniques to change the dynamic characteristics of systems in useful ways. The emphasis in this program is on the physical systems that are closely related to mechanical systems, but the techniques for studying these systems apply to social, economic, and other dynamic systems.

Graduate research includes projects on continuously variable transmissions, active and semi-active suspension systems, anti-skid braking systems, electromechanical actuators, design and control of walking machines, electronically controlled steering, mathematical models of motorcycle dynamics, and the analysis of fuel management systems.

*Course not offered this academic year.
Mechanical Engineering/ Materials Science and Engineering

Minimum units required for major: 187.

Subject Areas and Courses

Electronic circuits—Engineering 100.........4
Applied thermodynamics—Engineering 105A, 105B; Materials Science and Engineering 130; Mechanical Engineering 16513
Fluid mechanics—Engineering 103A, 103B; Mechanical engineering design—Mechanical Engineering 150A, 150B, 150L, or 172, and one course from 184A with 184B (both courses with a grade of C or better), 186, 186A, 186B
Electrical and computer engineering 180, 183
Controls and systems analysis—Mechanical Engineering 1714
Measurements and laboratory—Engineering 102L, 103L, 105L; Mechanical Engineering 1766
Applied thermodynamics—Engineering 180, 183
Professional responsibilities—Engineering 190, 193
Technical electives6

In order to satisfy design requirements, select two courses from Aeronautical Science and Engineering 129, 130, Materials Science and Engineering 140, 148, 149, Mechanical Engineering 150B, 172, 184, with courses that must be taken: 185, 186, 187, 188 (these courses may not be used for design units above), 134, 151, 152, 160.

Humanities—Social Sciences electives and/or General Education electives12

Total Units for Upper Division Program97

Courses in Engineering

Lower Division Courses

3. Introduction to Engineering Systems (3) I, II.
The Staff (Chairperson in charge)
Lecture—2 hours; laboratory—3 hours. Prerequisite: algebra and trigonometry. Introduction to the engineering profession. General view of the engineering process as obtained by participation in laboratory experiments illustrative of the solution of representative, but generally simplified, engineering problems. (RPNI grading only)

4. Engineering Graphics in Design (3) I, II.
Yamazaki
Lecture—2 hours; laboratory—3 hours. Principles of descriptive geometry and of mechanical and freehand drawing; their application in the representation, visualization, and solution of engineering problems. Computer-aided graphics. Introduction to engineering design.

5. Applications of Computers (3) I, II, III.
The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: Mathematics 16A or 16A. Digital calculation and computer programming in FORTRAN. Algorithms and their description. Basic programming, debugging, and approximation. Accuracy and significance; solving simple numerical and non-numerical problems.

11. Issues in Engineering (1) I. Shackelford
Lecture—1 hour; discussion—1 hour. Prerequisite: participation in the Minority Engineering Program (MEP) or consent of instructor. Designed to broaden students’ understanding of the engineering profession: its methods, principles, design, and development process; career opportunities; and professional resources.

17. Circuits (3) I, II, III.
The Staff
Lecture—3 hours. Prerequisite: Mathematics 22E (may be taken concurrently); Physics 5C. Basic electric circuit analysis techniques, including, electrical quantities and elements, resistive circuits, transient and steady-state responses of RLC circuits, sinusoidal excitation and resonances, and complex frequency and network functions.

20. The Technological World (3) I. II. The Staff
Lecture—3 hours. Prerequisite: high school algebra. The nature of technology; computers and automation; energy systems; engineering design, analysis, and problem solving; societal system outputs and creativitv. Technology and social change; technology assessment and technological choices. Intended primarily for students who are not engineering students. Economics majors or physical science students may receive only 2 units of credit. General Education credit. Nature and Environment/Intorduction.

25. Introduction to Physical Devices and Systems (2) I. II. Henderson
Lecture/discussion—1 hour; laboratory—3 hours. Prerequisite: lower division standing in engineering and consent of instructor. Introduction to and experience with common hardware and physical devices with the overall goal of enriching the student's understanding of physical devices and systems.

35. Statics (3) I, II, III.
The Staff (Chairperson in charge)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 21D (may be taken concurrently); Physics 9A. Force systems and equilibrium conditions with emphasis on engineering problems.

36. Dynamics (3) I, II, III.
The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 35, Mathematics 21D. Open to College of Engineering students only. Kinematics and kinetics of particles, of systems of particles, and of rigid bodies applied to engineering problems.

The Staff
Lecture—3 hours; laboratory—3 hours. Prerequisite: sophomore standing in engineering. Introductory course on the properties of engineering materials and their relation to the internal structure of materials.

Upper Division Courses

The Staff
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 17. Introduction to theory and application of analog and digital circuits and systems. It is strongly recommended that students enroll in this course as soon as possible after completing Engineering 17.

106. Intermediate Dynamics (3) I, II, III.
The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 36, Mathematics 21D. Open to College of Engineering students only. Topics in three dimensional rigid body dynamics, elementary dynamics of vibrating systems; introduction to energy methods.

107. Dynamics Laboratory (1) I, II.
The Staff
Lecture—1 hour; laboratory—1 hour. Prerequisite: course 102B (may be taken concurrently). Experimental laboratory to demonstrate fundamental principles of dynamics and their application to engineering problems. Introduction to instrumentation for dynamic motion measurement.

103A. Fluid Mechanics I (3) I, II, III.
The Staff
Lecture—3 hours. Prerequisite: course 103A; open to College of Engineering students only. Incompressible viscous flow; boundary layer flow; onedimensional compressible flow; fluid measurements; applications.

103B. Fluid Mechanics II (3) I, II, III.
The Staff
Lecture—3 hours. Prerequisite: course 103A; open to College of Engineering students only. Incompressible viscous flow; boundary layer flow; one-dimensional compressible flow; fluid measurements; applications.

119. Fluid Mechanics Laboratory (1) I, II, III.
The Staff
Lecture—1 hour, discussion—1 hour, and laboratory—1 1/2 hours (alternate weeks with course 103L). Prerequisite: course 103B (may be taken concurrently). Basic principles and devices which are common in fluid mechanics are illustrated with a series of experimental demonstrations. Experiments are conducted with flow, pressure, and viscosity measurements. (RPNI grading only). Not open for credit to students who have completed Civil Engineering 141L.

104A. Mechanics of Materials (3) I, II.
The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 35; Mathematics 21D. Open to Engineering students only. Uni-axial loading and deformation; general concepts of stress-strain-temperature relations and yield criteria; stresses in thin-walled pressure vessels; torsion of inelastic bending of geometrical beams.

104B. Mechanics of Materials (3) I, II, III.
The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 104A. Open to Engineering students only. Reflections due to bending of beams, simple solution of vibration and deflection problems, application of energy methods to bending problems, yielding and plastic deformation in beams, limit analysis; buckling of columns.

104L. Mechanics of Materials Laboratory (1) I, II, III.
Hutchinson
Laboratory—3 hours. Prerequisite: course 104B (may be taken concurrently). Experiments which illustrate the basic principles and verify the analysis procedures used in the mechanics of materials. Performed using the basic tools and techniques of experimental stress analysis.

105A. Thermodynamics (3) I, II, III.
The Staff
Lecture—3 hours. Prerequisite: Mathematics 21D, 22CD. Open to College of Engineering students only. Fundamental concepts of thermodynamics: heat energy and work, properties of pure substances, First and Second Law for closed and open systems, reversibility, entropy, thermodynamic temperature scales; power cycles: Carnot, Rankine, Brayton; and applications of thermodynamics to engineering systems.

105B. Thermodynamics (3) I, II, III.
The Staff
Lecture—3 hours. Prerequisite: course 105A; open to College of Engineering students only. Irreversibility and availability, thermodynamic relations, gas and vapor mixtures, and chemical reactions.

105L. Thermodynamics Laboratory (1) I, II, III.
Shaw
Lecture—1 hour, discussion—1 hour, and laboratory—1 1/2 hours (alternate weeks with course 105L). Prerequisite: course 105B (may be taken concurrently). Demonstrations and experiments to illustrate the principles of the first and second laws of thermodynamics, and thermodynamic cycles. (RPNI grading only).

106. Engineering Economics (3) I, II, III.
Hartsough
Lecture—2 hours; laboratory—2 hours. Prerequisite: course 17. Principles of AC and DC electric motors and generators, their control systems and power sources. Selection of electric power equipment components based on their construction features and performance characteristics.

122. Introduction to Mechanical Vibrations (3) I.
Hubbard
Lecture—3 hours. Prerequisite: course 102. Free and forced vibrations in lumped-parameter systems with and without damping; vibrations in coupled systems; electromechanical analogs; use of energy conserva- tion principles.

160. Environmental Physics and Society (3) I.
Jungreis, Craig
Lecture—3 hours. Prerequisite: Physics 30D, 5C, or 10 or 1B and Mathematics 16B or the equivalent. Impact of mankind on the environment will be discussed from the point of view of the physical sciences. Calculations based on physical principles will be made, and the resulting policy implications will be

*Course not offered this academic year.
Engineering: Agricultural

183

Engineering: Agricultural (17, 102A, 103A, 105A. Design and performance characteristics of power units: internal combustion engines, electric motors, and hydraulic power systems. Selection and design of power transmission systems for agricultural and industrial applications.

125. Environmental Management of Biological Systems (4) [I /II. Jenkins Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 105A. Fundamentals of heat and mass transfer, psychrometrics, solar radiation, and illumination including their measurement, and their interactions with plants and animals in controlled environments. Application of fundamental principles to the design of animal and plant production structures and other intensively managed biological systems.

130. Dynamic Modeling of Processes in Biological Systems (3) [I. T. Rumsey Lecture—discussion—3 hours. Prerequisite: Engineering 5 or the equivalent. Introduction to techniques for modeling processes through mass and energy balances, rate equations and equations of state. Analytical and numerical methods for the solution of equations.

131. Fluid Mechanics in Biological Systems (3) [III. SpAertially Lecture—3 hours. Prerequisite: Chemical Engineering 150A or Engineering 103A. Introduction to fluid flow characteristics, viscoelastic behavior of fluids, applications of Bernoulli’s equation and macroscopic balances (mass, momentum, mechanical energy) to practical problems in food and biological materials processing. Introduction to turbulent flow and concepts of time averaging. (Not open for credit for students who have taken Chemical Engineering 150B or Engineering 103B.)

132. Unit Operations in Food Engineering (4) [III. Singla /Slaughter Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 103A. 105A. Mechanical unit operations applied to such processes as non-Newtonian flow, size reduction, sorting and mixing of granular materials. Thermal operations related to refrigeration, freezing, evaporation and drying of foods.

145. Irrigation and Drainage Systems (4) [II. Wallender, Grissmer, Hill Lecture—4 hours. Prerequisite: Engineering 103A or Water Science 142. Engineering and scientific principles applied to the design of surface, sprinkler and micro irrigation systems and drainage systems within economic, biological, and environmental constraints. The interrelated design and drainage will be emphasized. (Same course as Water Science 145.)

165. Computer Interfacing and Control (4) [I. Delwiche Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 100, Engineering 5 or Computer Science Engineering 30. Structured programming in C, digital data acquisition concepts and hardware, analog input/output systems, drive software, and computer control.

170A. Engineering Design and Professional Responsibilities (3) [II. Miles Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 102A, 104A. Introduction to product design including professional responsibilities. Emphasis placed on project selection, data sources, specifications, human factors, biological materials, safety systems and professionalism. Detailed design proposals will be developed for course 170B.

170B. Engineering Projects: Design Evaluation (3) [I, II, III. Miles Laboratory—three 2-hour sessions. Prerequisite: course 170A. Individual or group projects involving the design of devices, structures, or systems to solve specific problems in agriculture or forestry. Students may select their projects, subject to approval of instructor.

Engineering Projects: Design Evaluation (3) [I, II, III. Miles Laboratory—three 2-hour sessions. Prerequisite: course 170B strongly recommended. Individual or...
group projects involving fabrication, assembly and testing of devices, structures or systems designed to solve specific problems in agriculture or forestry. Projects selected by the instructor from those designed in course 170B.

175. Rheology of Biological Materials (3) II. McCarthy
Lecture—3 hours. Prerequisite: Chemical Engineering 150A or Engineering 103A; and Engineering 105A or Chemical Engineering 182A. Introduction to fluid and solid rheology, viscoelastic behavior of foods and other biological materials, and application of rheological properties to food and biological systems (e.g., pipeline design, extrusion, mixing, coating).

192. Internship in Agricultural Engineering (1-5) I, II, III. The Staff (Hills in charge)
Internship. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in agricultural engineering. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Hills in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Hills in charge)
(P/NP grading only.)

Graduate Courses

215. Soil-Machine Relations in Tillage and Traction (3) I. Chancellor
Lecture—3 hours. Prerequisite: course 114 or 117. Mechanics of interactions between agricultural soil and tillage and traction devices; determination of relevant physical properties of soil, analyses of stress and strains in soil due to machine-applied loads, experimental and analytical methods for synthesizing characteristics of soil and tillage systems. Offered in alternate years.

216. Energy Systems in Agriculture (3) III. Jenkins
Lecture—3 hours. Prerequisite: Engineering 105A. Theory and application of energy systems in agriculture. Analysis of energy transformations processes and energy systems design utilizing solar and wind energy resources. Offered in alternate years.

220. Piviot Plant Operations in Aquacultural Engineering (3) III. Pedrahita
Lecture—3 hours. Prerequisite: Civil Engineering 243A-243B or Agricultural Engineering Technology 216A-216B. Topics in water treatment as they apply to aquaculture operations. Laboratory study of unit operations in aquaculture. Offered in alternate years.

235. Advanced Unit Operations in Process and Food Engineering (3) II. T. Fumsey
Lecture—3 hours. Prerequisite: course 111. Process and food engineering. Basic principles and fundamental problems of process and food engineering. Heat and mass transfer applications to drying, dehydration and freezing; flow of food and semi-fluid materials; size reduction of bio-materials.

240. Infiltration and Drainage (3) II. Grismer
Lecture—3 hours. Prerequisite: Soil Science 107C. Water Science 140. Aspects of multiphase flow in soils and their application to infiltration and drainage. Gas transport and entrainment during infiltration, and transient drainage with nonlinear, diffusional, and evapotranspiration considerations. Offered in alternate years.

241. Sprinkle and Trickle Irrigation Systems (3) III. Hill
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 145. Computerized design of sprinkle and trickle irrigation systems. Consideration of emitter mechanics, distribution functions and water yield characteristics of various systems. Offered in alternate years.

242. Hydraulics of Surface Irrigation (3) III. Wallender
Lecture—3 hours. Prerequisite: a course in differential and integral calculus; a course in hydraulics or fluid mechanics. Study of some open-channel flow, a course in irrigation principles. Mathematical models of surface-irrigation systems for prediction of the ultimate disposal of water flowing onto a field. Quantitative model of infiltration of water over field length as a function of slope, roughness, infiltration and inflow rates.

245. Agricultural Waste Management (3) III. Hills
Lecture—3 hours. Characterization of agricultural wastes, soil, crop residues and food processing. Study of methods of collection, treatment, and disposal of these wastes. Offered in alternate years.

250. Analog Instrumentation (4) II. Delich
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 100. Instrument characteristics: general-purpose instruments, models, calibration, and frequency response. Signal conditioning: operational amplifier circuits, filtering, and noise. Transducers: motion, force, pressure, flow, temperature, and photodetector. Offered in alternate years.

255. Design and Analysis of Engineering Experiments (4) II. Upadhyaya
Lecture—3 hours; laboratory—3 hours. Prerequisite: at least one undergraduate course in statistics or consent of instructor. Design, analysis, and statistical and reliability analysis. Engineering experiments with emphasis on statistical methods; confirmation, and assessment of the use of computer and departmental computing facilities will be assigned.

270. Modeling and Analysis of Biological and Physical Systems (3) III. Upadhyaya; T. Fumsey
Lecture—3 hours. Prerequisite: Civil Engineering 212A. Mathematical modeling of biological systems: model development; analytical and numerical solutions. Case studies from various specialties within agricultural engineering. Offered in alternate years.

275. Physical Properties of Agricultural Materials (3) I. Cao
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Selected methods on physical properties, such as mechanical, optical, rheological, and aerodynamic properties, as related to the design of drying, handling, sorting, and processing equipment. Techniques for measuring and recording physical properties of agricultural materials.

289A-D. Selected Topics in Agricultural Engineering (1-5) I, II, III. The Staff (Hills in charge)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Directed group study of selected topics with separate sections in (A) Simulation of Food Processing Systems, (B) Heat and Mass Transfer in Food and Biological Systems, and (D) Alternative Energy Systems.

290. Research Methods in Agricultural Engineering (2) I. Giles
Lecture—2 hours. Prerequisite: graduate student standing or consent of instructor. Planning, execution, and reporting of research projects. Literature review techniques and proposal preparation. Identification of sources for support of research. Oral presentation of research results. Written presentation of research results, manuscript preparation, submission, and review.

296. Graduate Research Conference (1) I, II, III.
The Staff (Hills in charge)
Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress, and techniques in agricultural engineering. May be repeated for credit. (S/U grading only.)

297. Advances in Food Engineering (1) I, II, III. Singh
Seminar—1 hour. Prerequisite: consent of instructor. Review and discussion of current literature and developments in food engineering. Presentations by individual students. (S/U grading only.)

297T. Supervised Teaching in Agricultural Engineering (1-3) I, II, III. Singh
Laboratory—3 hours; tutorial—3-9 hours. Prerequisite: graduate standing; consent of instructor. Tutoring and teaching students in undergraduate courses offered in the Department of Agricultural Engineering. Weekly conferences with instructor, evaluation of teaching. Preparing for and conducting demonstrations, laboratories, and discussions. Preparing and grading exams. May be repeated for a total of 6 units. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Hills in charge)

299. Research (1-12) I, II, III. The Staff (Hills in charge)
(S/U grading only.)

Engineering: Applied Science

(College of Engineering)

Frederick Wooten, Ph.D., Chairperson of the Department
Yin Yeh, Ph.D., Vice Chairperson of the Department

Department Office, 228 Walker Hall 816-752-0560

Faculty

Bernard B. Alper, Ph.D., Professor
Meera M. Blattner, Ph.D., Associate Professor
Stewart Cameron, Ph.D., Assistant Professor
Richard Christensen, Ph.D., Professor
Paul P. Craig, Ph.D., Professor
Stephen Cramer, Ph.D., Professor
John S. De Groot, Ph.D., Professor
S. Paul Drake, Ph.D., Professor
Roger A. Haas, Ph.D., Professor
William G. Hoover, Ph.D., Professor
David Hwang, Ph.D., Associate Professor
Nelson Max, Ph.D., Professor
William McCurdy, Ph.D., Professor
Ann Oll, Ph.D., Assistant Professor
Garry Rodrigue, Ph.D., Professor
Rao Venu, Ph.D., Professor
Frederick Wooten, Ph.D., Professor
Yin Yeh, Ph.D., Professor

Emeriti Faculty

Stewart D. Bloom, Ph.D., Professor Emeritus
John Kline, Ph.D., Professor Emeritus
William A. Newcomb, Ph.D., Professor Emeritus
Richard F. Post, Ph.D., Professor Emeritus
Wilson K. Talley, Ph.D., Professor Emeritus
Edward Teller, Ph.D., Universit Professor Emeritus

Courses in Engineering: Applied Science

Davies

Lower Division Courses

98. Directed Group Study (1-5) I, II, III. The Staff (Wooten in charge)
Prerequisite: consent of instructor and lower division standing. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Wooten in charge)
Prerequisite: consent of instructor; lower division standing. (P/NP grading only.)

Upper Division Courses

Lecture—3 hours. Prerequisite: course 115 or consent of instructor. Application of computers to solution of physical problems. Numerical solution of elliptic, parabolic, and hyperbolic partial differential equations; eigenvalue problems, Monte Carlo methods, linear programming.

Science and Technology of Nuclear Arms Effects and Control (3) J. Junghans (Physics), Craig
Lecture—3 hours. Prerequisite: upper division standing. Course from Physics 109, 50, 90, or 10. Scientific and technical aspects of nuclear arms effects and nuclear arms control including the nuclear physics of atomic and hydrogen bombs, blast and radiation effects, radioactivity, electromagnetic pulse.

147. Arms Race Technologies and Strategies (3) I. Craig Lecture—2 hours; discussion—1 hour. Prerequisite: course 137. Technological and strategic issues in the nuclear arms race. Characteristics of nuclear weapons and weapons defense systems; responses and counter-responses. Advantages and disadvantages of alternative realizations of weapons systems.

165B. Quantum Optics (3) III. Yeh Lecture—3 hours. Prerequisite: course 165A or the equivalent. Quantum nature of interaction between light and matter: photoelectron counting statistics. Photon distributions in scattering processes and in radiation patterns of sources.

166A. Quantum Optics Laboratory (1) II. Yeh Laboratory—3 hours. Prerequisite: course 165A concurrently. On hand experience in working with lasers, photon spectroscopy, electro-optical devices and photoelectric counting systems.

166B. Quantum Optics Laboratory (1) III. Yeh Laboratory—3 hours. Prerequisite: course 165B concurrently. Continuation of course 166A.

180. Introduction to Plasma Physics and Controlled Fusion (3) I. De Groot Lecture—3 hours. Prerequisite: Physics 110B and 112A, or consent of instructor. Equilibrium plasma properties, plasma sources, plasma diagnostics, magnetohydrodynamics, kinetic theory, plasma stability, plasma confinement and systems and approaches to controlled thermonuclear fusion.

181. Plasma Physics Laboratory (1) I. De Groot Laboratory—3 hours. Prerequisite: course 180 concurrently. Langmuir probes, plasma sources, Landau damping of ion acoustic waves, ion acoustic shocks, ion-ion two-stream instability.

196. Group Study (1-5) I, II, III. The Staff (Wooten in charge) Prerequisite: consent of instructor. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-6) I, II, III. The Staff (Wooten in charge) Prerequisite: consent of instructor. (P/N grading only.)

Graduate Courses

228A-228B-228C. Properties of Matter (3-3-3) I-II-III. Hoover Lecture—3 hours. Prerequisite: Mathematics 22B and Physics 112B. Macroscopic and microscopic descriptions of matter: thermodynamics and kinetics; constitutive, electrical, mechanical and thermal properties.

230A-230B-230C. Structure of Matter (3-3-3) I-II-III. Yeh Lecture—3 hours. Prerequisite: course 225C. Classical properties of matter; introduction of quantum mechanics by the correspondence principle; perturbation theory; electron theory of atoms, molecules, and solids; quantum theory of cooperative effects.

271. Optical Methods in Biophysics (3) I. Yeh Lecture—3 hours. Prerequisite: Physics 110A-110B-110C, Chemistry 110A, 110B, or the equivalent. Physics of light-matter interactions used in biophysical techniques of absorption, ellipsometry, fluorescence, phosphorescence, elastic and inelastic scattering, diffraction, and nonlinear optics are applied to the studies of proteins, nucleic acids, lipids, and super-molecular organizations in biological systems. Offered in alternate years.

280A-280B-280C. Plasma Physics and Controlled Fusion (3-3-3) I-II-III. DeGroot Lecture—3 hours. Prerequisite: course 224B or consent of instructor. Equilibrium plasma properties; single particle motion; fluid equations; waves and instabilities in a fluid plasma; plasma kinetic theory and transport coefficients; linear and nonlinear Vlasov theory; fluctuations, correlations and radiation; inertial and magnetic confinement systems in controlled fusion.

289A-J. Special Topics in Applied Science (1-5) I, II, III. The Staff (Wooten in charge) Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in the following areas: (A) Atomic and Molecular Physics; (B) Chemical Physics; (C) Computational Physics; (D) Computer Science; (E) Materials Science; (F) Nuclear Science; (G) Optics; (H) Plasma Physics; (J) Quantum Electronics; (M) Solid State. May be repeated up to a total of 5 units per segment.

290. Seminar (1-2) I, II, III. The Staff (Wooten in charge) Seminar—1-2 hours. (S/U grading only.)

290C. Graduate Research Group Conference (1-2) I, II, III. The Staff Discussion—1 hour. Prerequisite: consent of instructor. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Wooten in charge) (S/U grading only)

299. Research (1-12) I, II, III. The Staff (Wooten in charge) (S/U grading only)

Livermore

Upper Division Courses

101. Data Structures (3) I. The Staff Lecture—3 hours. Prerequisite: consent of instructor. Introduction to high-level language programming techniques that are useful in all programming courses. Topics include programming language Pascal, lists, queues, trees, graphs, sorting and searching algorithms, and memory management algorithms.

103. Introduction to Computer Architecture (3) I. The Staff Lecture—3 hours. Prerequisite: consent of instructor. Basic hardware knowledge for computer science students. Main elements of computer hardware and how they function. Covers topics like number systems, symbolic logic, assembly language, and logic implementation. Several assembly language programs are required.

108. Concurrent Programming (3) II. The Staff Lecture—3 hours. Prerequisite: course 103 or 106 or the equivalent. Presentation of concepts surrounding concurrent programming, as an introduction to operating systems. Focus on concepts of processes and synchronization, emphasizing their use in solving classical problems. This material is then related to operating system design.

111. Introduction to Foundations of Computing (3) II. Blattner Lecture—3 hours. Prerequisite: course 101; Computer Science Engineering 100. Basic ideas in the theory of computing and the analysis of algorithms. Topics include: finite automata, regular and context-free grammars, order of execution time and space, advanced programming techniques.

135. Introductory Nuclear Science and Technology (3) I. The Staff Lecture—3 hours. Prerequisite: Physics 121 or the equivalent. Introductory aspects of nuclear phenomen-
in language design, the contour model and binding times, abstract data types, functional languages, and syntax analysis.

207. Compiler Construction (3) I. The Staff
Lecture—3 hours. Prerequisite: course 206. Syntax-directed translation techniques are used to implement a compiler for a block-structured, high-level programming language. Emphasis given to semantic analysis and code generation.

208A. Operating Systems I (3) I. The Staff
Lecture—4 hours. Prerequisite: courses 108, 203B. Design of an operating system. Emphasis given to mechanisms commonly used to implement systems and the various policy options. Course stresses the Kernighan and Ritchie design approach.

208B. Operating Systems II (3) II. The Staff
Lecture—3 hours. Prerequisite: course 208A. Concentration on operating system structure, interprocess communication, and issues of naming, error control, protection, synchronization, abstract object representation and encoding, resource management, and measurement in distributed operating systems. Course integrates design goals, problems, and solutions.

208C. Operating Systems III (3) III. The Staff
Lecture—3 hours. Prerequisite: course 208B. Synchronous and asynchronous models of interprocess communication; the abstract object model; distributed algorithms; fault tolerance; operating system benchmarks; programming languages; software systems and non-linear data structures.

210A. Numerical Methods in Applied Science (3) I. The Staff
Lecture—3 hours. Prerequisite: calculus through differential equations and vector analysis. Numerical techniques used in a wide variety of applications of digital computers to problems in applied science. Emphasis on computer implementation of the common mathematical elements of the techniques developed.

210B. Numerical Methods in Applied Science (3) II. The Staff
Lecture—3 hours. Prerequisite: course 210A. Numerical methods applicable to the solution of partial differential equations. Emphasis on finite-difference, finite element, and spectral methods for linear hyperbolic, parabolic, and elliptic systems.

210C. Numerical Methods in Applied Science (3) III. The Staff
Lecture—3 hours. Prerequisite: course 210B. Computational methods in various fields including: fluid mechanics, kinematic theory, solid mechanics, quantum mechanics.

211. Automata Theory and Formal Languages (3) I. The Staff
Lecture—5 hours. Prerequisite: course 111. Relation between type (0) through type (2) languages and their respective machines (Turing machine, linear bounded automata, and push down automata) is discussed. Decidability and the Halting problem discussed.

212. Analysis of Algorithms (3) III. The Staff
Lecture—3 hours. Prerequisite: course 211. Investigation of time and space requirements of commonly used programming tasks, such as searching, sorting, set manipulation, and graph algorithms. NP completeness and intractability also discussed.

213A. Computer Graphics (3) II. Max
Lecture—3 hours. Prerequisite: course 113. Development of algorithms for perspective line drawings of three-dimensional objects, as defined by polygons or bicubic patches.

213B. Computer Graphics (3) III. Max
Lecture—3 hours. Prerequisite: course 213A. Emphasis on algorithms to produce color shaded raster images of three-dimensional models.

214. Computing with Symbolic Expressions (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 211 and 212. Theory and practice of computing with symbolic expressions. The LISP and SNOCOBOL programming languages. Writing programs to manipulate symbolic expressions. Algebraic manipulation. Proving the equivalence of algorithms. Survey of symbolic manipulation languages. Offered in alternate years.

215A. Mathematical Methods in Computer Science (3) I. The Staff
Lecture—3 hours. Prerequisite: course 210A. Mathematical techniques common to advanced computing science and scientific computing. Examination of methods used in statistical analysis and probability theory, with applications to queues and other models.

215B. Mathematical Methods in Computer Science (3) II. The Staff
Lecture—3 hours. Prerequisite: course 215A. Emphasis on the mathematical methods utilized in the study of data structures and computer architecture.

216A-G Special Topics in Computer Science (1-5) I, II, III. Laboratory, computer, or combination. Prerequisite: consent of instructor. Special topics in the following areas:

(A) Architecture; (B) Software Systems; (C) Language Translation; (D) Operating Systems; (E) Foundations of Computing; (F) Gammaratical Computation.

217A-217B. Computational Science (3-3) I, II. The Staff
Lecture—3 hours. Prerequisite: courses 205A and 205B (may be taken concurrently). Designed for physical scientists. Topics in computer science with applications to computational science. Computer organization and architecture, data structures, algorithms complexity, and software environments for scientific visualization, symbolic computation.

218A. Signal Processing (3) I. The Staff
Lecture—3 hours. Prerequisite: Mathematics 158A, 121A-121B. Discrete-time and continuous-time signal processing. Fourier transforms, Laplace transforms, sampling and reconstruction, linear time-invariant systems, signal space concepts, and probability and random processes. Offered in alternate years.

218B. Signal Processing (3) III. The Staff
Lecture—3 hours. Prerequisite: course 218A. Systems and signals, convolution, causality, and stability. Z-transform, DTFT, DFT, IIR, and FIR filters. Adaptive filters, array signal processing, spectral estimation, and image processing. Offered in alternate years.

220. Artificial Neural Networks (3) III. Ramurthy

222. User Interfaces (3) II. The Staff
Lecture—3 hours. Prerequisite: courses 101, 106. Design and evaluation of the interface between systems and users. Covers user interface styles and techniques, display formats, user guidance, and methodologies for designing and evaluating user interfaces. Offered in alternate years.

224. Microprogramming and Microprogrammable Architecture (3) III. The Staff
Lecture—3 hours. Prerequisite: consent of instructor. Concepts of microprogramming, design and implementation of the internal logic and data to form the hardware primitives. Survey of the architecture of commercially available, user microprogrammable computer. Course includes a programming project on a commercial microprocessor.

227. Chaos, Fractals, and Nonlinear Dynamics (3) II. Hoover
Lecture—3 hours. Prerequisite: course 115. Computational treatment of the mathematics of pervasive instabilities in a variety of physical conditions called "chaos" links the Second Law of Thermodynamics to nonlinear dynamics. Strange attractors which result are generally fractal objects with great aesthetic and intellectual appeal.

228A-228B-228C. Properties of Matter (3-3-3) I-II-III. Hoover
Lecture—3 hours. Prerequisite: Mathematics 228 and Physics 128B. Microscopic and macroscopic descriptions of matter; thermodynamics and kinetic; constitutive, electrical, mechanical and thermal properties.

230A-230B-230C. Structure of Matter (3-3-3) I-II-III. The Staff
Lecture—3 hours. Prerequisite: course 205C. Classical properties of matter; introduction of quantum mechanics by the correspondence principle; perturbation theory; electronic, molecular and solid state quantum theory of cooperations.

233A-233B-233C. Theory and Applications of Solid-State Physics (3-3-3) I-II-III. The Staff (Wooten in charge)
Lecture—3 hours. Prerequisite: course 230C or the equivalent. Structure and properties of crystals; thermodynamics of dielectrics, metals and alloys; magnetism, superconductivity, and semiconductors. Applications to solid-state devices.

234A-234B-234C. Electromagnetic Theory (3-3-3) I-II-III. Newcomb

255. Classical Mechanics (3) I. Newcomb
Lecture—3 hours. Prerequisite: consent of instructor. General principles of analytical mechanics; variational principles; Lagrange's and Hamilton's equations; kinematics, collisions.

256. Continuum Mechanics (3) II. Christensen
Lecture—3 hours. Prerequisite: course 205C. Hydrodynamic of incompressible and compressible flows in two and three dimensions; problems of hydrodynamic instability; viscous hydrodynamics; boundary layer theory.

257. Magnetohydrodynamics (3) III. Newcomb
Lecture—3 hours. Prerequisite: course 234B. Fundamental equations, MHD waves (both linear and nonlinear), shocks, Lagrangian formulation of theory of stability, gyroscopic effects, finite-resistivity effects.

262A-262B-262C. Atomic and Molecular Interactions (3-3-3) III-I-II. Ooi
Lecture—3 hours. Prerequisite: course 230A-230B-230C or the equivalent. Atomic and structure and spectra, molecular structure and spectra, classical and quantum mechanical collision theory of electron and heavy-particle scattering.

265A-265B. Laser Physics (3-3-3) II. Haas

266A-266B. Laser Physics Laboratory (3-3-3) II. Haas

267. Nonlinear Optics (3) I. Haas
Conversion. Stimulated Raman and Brillouin scattering, self-focusing, four-wave mixing, phase conjugation and spectroscopy.

267L. Nonlinear Optics Laboratory (3) III. Cameron Lecture—1 hour; laboratory—6 hours. Prerequisite: course 267. Experiments exploring the principles of nonlinear optics. Phenomena selected from: crystal-optics, electro-optics, acoustooptics, parametric amplification and amplification, harmonic conversion, stimulated Raman and Brillouin scattering, self-focusing, four-wave mixing, phase conjugation. Laser spectroscopy.

280A-280B-280C. Plasma Physics and Controlled Fusion (3-3-3) II-II-II. Hwang Lecture—3 hours. Prerequisite: course 234B or consent of instructor. Equilibrium plasma properties; single particle motion; fluid equations; waves and instabilities in a fluid plasma; plasma kinetic theory and transport coefficients; linear and nonlinear Vlasov Theory; fluctuations; correlations and radiation; inertial and magnetic confinement systems in controlled fusion.

289A-J. Special Topics in Applied Science (1-5) I, II, III. Staff (Wooten in charge) Laboratory, or combination. Prerequisite: consent of instructor. Special topics in the following areas: (A) Atomic and Molecular Physics; (B) Chemical Physics; (C) Computational Physics; (D) Computer Science; (E) Materials Science; (F) Nuclear Science; (G) Nonlinear Optics; (H) Plasma Physics; (I) Quantum Electronics; (J) Solid State. May be repeated up to a total of 5 units per segment.

290. Seminar (1-2) I, II, III. The Staff (Wooten in charge) Seminar—1 to 2 hours. (SU grading only.)

290C. Graduate Research Group Conference (1-2) I, II, III. The Staff Lecture—1 hour. Discussion—optional hour. Prerequisite: consent of instructor. May be repeated for credit. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Wooten in charge) (SU grading only.)

Courses in Engineering: Chemical

Lower Division Courses

1. The Scope of Chemical Engineering (1) II. The Staff (Chairperson in charge) Lecture—1 hour. Demonstrations and discussions of the opportunities in chemical engineering for professional development, contributions to basic knowledge, with clarification of what chemical engineers actually do in various jobs. (PINP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor and lower division standing. (PINP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (PINP grading only.)

Upper Division Courses

150A. Chemical Engineering Fluid Mechanics (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22A, 22B, 21D, Engineering 35. Fluid statics and one-dimensional laminar flows. Kinematics of point and integral functions. The stress vector stress tensor, the Navier-Stokes equations, law of viscosity and lubrication. Application of the Navier-Stokes equations to laminar flow and dimensional analysis. Flow of non-Newtonian fluids. Not open for credit to students who have completed Engineering 103A.

150B. Chemical Engineering Fluid Mechanics (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Turbulent flows and time averaging. Application of Bernoulli's equation and the macroscopic mass, momentum, and energy energy balances to a variety of practical problems. Introduction to compressible flow. The entropy equation and isentropic processes. Shock waves and choked flow. Not open for credit to students who have completed Engineering 103B or Civil Engineering 141.

151. Material Balance (3) I. Whitaker Lecture—3 hours. Prerequisite: Chemistry 110A, Chemistry 128B. May be taken concurrently. Engineering 5. Application of the principles of conservation of mass to single and multi-component systems in chemical process calculations. Studies of batch, semi-batch, and continuous processes involving mass transfer, change of phase, and chemical reaction.

152A. Chemical Engineering Thermodynamics (3) II. The Staff Lecture—3 hours. Prerequisite: course 151, Chemistry 110A. Application of principles of thermodynamics to chemical processes. Not open for credit to students who have completed Engineering 105A.

152B. Chemical Engineering Thermodynamics (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 152A. Continuation of course 152A. Not open for credit to students who have completed Engineering 105B.

154A. Mass Transfer (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 153. Chemistry 110A. Fundamental concepts of mass transfer in fluids. Problems in pressure drop and convective mass transfer.

154B. Applications of Mass Transfer (3) II. The Staff Lecture—3 hours. Prerequisite: course 154A. Application of the principles of mass transfer and thermodynamics to problems of absorption, extraction, distillation, and other separation processes.

155A. Chemical Engineering Laboratory (4) I, II. The Staff Laboratory—12 hours. Prerequisite: course 154A. Laboratory experiments in heat, mass and momentum transfer and in chemical kinetics.

155B. Chemical Engineering Laboratory (4) III, IV. The Staff Laboratory—12 hours. Prerequisite: courses 154B, 155A. Continuation of 155A.

156A. Chemical Engineering Kinetics (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: courses 152B, 154A; and Chemistry 110C (may be taken concurrently). Introduction to homogeneous and heterogeneous reactor design.

156B. Chemical Engineering Kinetics (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 156A. Continuation of course 156A.

157L. Process Control Laboratory (1) I, II, III. The Staff Laboratory—1 hour. Prerequisite: course 157. Laboratory experiments in control system design and analysis.

158B. Process Equipment Design (3) II. Palazoglu Lecture—3 hours. Prerequisite: course 158A. Design of chemical process equipment. Equipment cost estimation techniques.

158C. Chemical Plant Design (3) III. Palazoglu Lecture—3 hours. Prerequisite: course 158B. Conceptual design of chemical processes. Design, costing and profitability analysis of complete chemical plants. Use of computer-aided design techniques.

159. Chemical Engineering Analysis (3) I. The Staff Lecture—3 hours. Prerequisite: Mathematics 22B. Chemical engineering applications of partial differential equations, tensors, systems of linear equations, and operational calculus.

161. Biochemical Engineering Fundamentals (3) II. McDonald Lecture—3 hours. Prerequisite: Chemistry 128B, Mathematics 22B, and Microbiology 2 or 102, or consent of instructor. Enzyme and microbial kinetics, bioreactor design and analysis, transport phenomena in bioreactors, and downstream processing.

163. Chemical Engineering in Integrated Circuit Fabrication Technology (4) I. The Staff Lecture—4 hours. Prerequisite: course 154A (concurrent). Chemistry 128B. Manufacturing of semiconductor devices, integrated circuits, magnetic bubble memories, tapes and disks involving application of chemical engineering processing techniques. The chemistry and engineering of the modern production of integrated circuits.

190C. Research Group Conferences (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: upper division standing in Chemical Engineering; consent of instructor. Research group conferences. May be repeated for credit. (PINP grading only.)

198. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (PINP grading only.)
199. Special Study for Advanced Undergraduates (1-3) I, II, III. The Staff (Chairperson in charge) Pre-requisite: consent of instructor. (P/NP grading only.)

Graduate Courses

206. Biochemical Engineering (3) II. Ryu Lecture—3 hours. Prerequisite: course 161 and Microbial Physiology; or 3. Biochemistry and Biophysics 101A, 101B, and Food Science and Technology 205 recommended. Interaction of chemical engineering, biochemistry, and microbiology. Mathematical representations of microbial systems. Kinetics of growth, death, and metabolism. Continuous fermentation, agitation, mass transfer, and scale-up in fermentation systems, product recovery, enzyme technology. Offered in alternate years.

226. Enzyme Engineering (3) II. Ryu Lecture—3 hours. Prerequisite: Biochemistry 123 or consent of instructor; Biochemistry 133, Food Science and Technology 110A-110B, Chemical Engineering 161, Microbiology 102 recommended. Application of basic biochemical and engineering principles of practical enzymatic processes. Lectures cover large scale production and separation of enzymes, immobilized enzyme systems, enzyme reactor design, product isolation, and application of enzymes in genetic engineering related biotechnology. Offered in alternate years.

246. Advanced Biochemical Engineering (2) III. Ryu Lecture—2 hours. Prerequisite: course 161, Chemical Engineering 206, or consent of instructor. Advances in the field of biotechnology including genetic engineering, enzyme engineering, fermentation science, and renewable resources development. The important results of original research will be evaluated for understanding of the fundamental principles and for potential practical application.

252. Advanced Thermodynamics (3) I. The Staff Lecture—4 hours. Prerequisite: course 152B or Engineering 105B. A general treatment of the first and second laws; applications of thermodynamic relationships to phase and chemical reaction equilibria; introduction to statistical thermodynamics.

253A. Advanced Fluid Mechanics (3) I. The Staff Lecture—3 hours. Prerequisite: courses 150A, 150B, and 259 (may be taken concurrently) or the equivalent. Kinematics and basic principles of fluid flow. Principles of constitutive equations. Navier-Stokes equations for Newtonian fluids. Survey of creeping flow, ideal flow and boundary layer theory. Macroscopic mass, momentum, and mechanical energy balances.

253C. Advanced Mass Transfer (3) II. The Staff Lecture—3 hours. Prerequisite: courses 154A, 154B, and 259 (may be taken concurrently) or the equivalent. Kinematics and basic conservation principles for multiphase systems. Constitutive equations for momentum, heat, and mass transfer. Applications to binary and ternary systems. Details of diffusion with reaction, and the effects of concentration.

254. Colloid and Surface Phenomena (4) I. Stroock Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 110C. Colloid and surface phenomena occur in a wide spectrum of problems encountered in engineering and science. Introduction to the behavior of surfaces and disperse systems. Fundamentals will be applied to the solution of practical problems.

256. Applied Kinetics and Reactor Design (4) III. Stroock Lecture—3 hours; discussion—1 hour. Prerequisite: courses 253B, 253C. Application of kinetics and molecular transport to the design of chemical reactors with emphasis on heterogeneous systems.

259. Advanced Chemical Engineering Analysis (4) I. The Staff Lecture—4 hours. Prerequisite: Mathematics 223A, 223B, 21D. Applications of methods of applied mathematics to the analytical and numerical solution of partial differential equations arising in the study of momentum, heat, and mass transfer.

261. Separation Processes: Column Operations (3) III. McLean Lecture—3 hours. Prerequisite: course 154B. Analysis and design of chemical separation processes: distillation, extraction, adsorption, chromatography. Finite difference equations, unified design methods, axial dispersion models, probability and random walk theories, method of characteristics, moment analysis, optimization. Offered in alternate years.

262. Transport Phenomena in Multiphase Systems (3) III. White Lecture—3 hours. Prerequisite: course 253C. Heat, mass, and momentum transfer in multiphase, multi-component systems with special emphasis on transport processes in porous media. Derivation of the averaging theorem and application of the method of volume averaging to multicomponent, reacting systems.

263. Rheology and Mechanics of Non-Newtonian Fluids (3) II. P. P. Power Lecture—4 hours. Prerequisite: courses 253A and 259 or consent of instructor. Mechanics of polymer solutions and suspension, especially the development of properly invariant constitutive equations. Topics include: viscometry, linear and nonlinear viscoelasticity, continuum mechanics, kinetic theory. Offered in alternate years.

267. Advanced Process Control (3) II. McDonald, Palazoglu Lecture—3 hours. Prerequisite: course 157 or the equivalent. Advanced course in analysis and synthesis of linear multivariable systems. Emphasis on frequency domain techniques and applications to chemical processes. Topics include singular value analysis, internal model control, robust controller design methods as well as self-tuning control techniques. Offered in alternate years.

290. Seminar (1) I, II, III. The Staff Seminar—1 hour. (S/U grading only.)

290C. Graduate Research Group Conference (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress and techniques in chemical engineering. May be repeated for credit. (S/U grading only.)

291. Seminar in Multiphase Transport Phenomena (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: graduate or senior standing. Seminar devoted to the theoretical and practical aspects of multiphase transport phenomena. Subjects will include flow in porous media, dispersion with adsorption and reaction, and heat transfer in multiphase systems with chemical reaction. (S/U grading only.)

Engineering: Civil and Environmental

(Phase of Engineering)

Melvin R. Ramey, Ph.D., Chairperson of the Department (916-752-0066)
Daniel P. Chang, Vice-Chairperson of the Department (916-752-2537)
Department Office, 206 Walker Hall (916-752-0586)

Faculty

Kandiah Arulananand, Ph.D., Professor
Takashi Asano, Ph.D., Adjunct Professor
Don O. Brush, Ph.D., Professor
Daniel P. Chang, Ph.D., Professor
Yannis F. Dafalias, Ph.D., Professor
Jeanne L. Darby, Ph.D., Assistant Professor
Johannes J. DeWies, Ph.D., Lecturer
Leonard P. Herrmann, Ph.D., Professor
James R. Hutchinson, Ph.D., Professor (Graduate Adviser)
I.M. Idriss, Ph.D., Professor
William K. Johnson, M.S., Lecturer
Paul P. Jovanis, Ph.D., Associate Professor
M. Levent Kavvas, Ph.D., Professor
Ian P. King, Ph.D., Professor
Ryosuke Kimura, Ph.D., Professor
Bruce L. Kutter, Ph.D., Associate Professor
Bruce E. Larock, Ph.D., Professor
Jay R. Lund, Ph.D., Assistant Professor
Miguel A. Marín, Ph.D., (Civil Engineering: Civil and Environmental Engineering; Land, Air and Water Resources)
Kyran D. Mish, Ph.D., Assistant Professor
Patrika L. McKnight, Ph.D., Assistant Professor
Carlos E. Puente, Ph.D., Visiting Assistant Professor (Civil and Environmental Engineering; Land, Air and Water Resources)
Otto O. Rehbock, Ph.D., Professor in Residence (Civil and Environmental Engineering; Laboratory for Energy-Related Health Research)
Melvin R. Ramey, Ph.D., Professor
Karl M. Romstad, Ph.D., Professor
Edward D. Schroeder, Ph.D., Professor
Daniel Sperling, Ph.D., Associate Professor (Civil and Environmental Engineering; Environmental Studies)
Michael A. Taylor, Ph.D., Professor
George Tchobanoglous, Ph.D., Professor

*Course not offered this academic year.
Courses in Engineering: Civil and Environmental

Lower Division Courses

1. The Civil Engineer in Society (1) I. The Staff (Chairperson in charge)
 Lecture—2 hours. Prerequisite: enrollment in civil engineering.
 Lower division standing; approval of project prior to period of internship.
 Supervised work experience in civil engineering may be repeated for credit.

2. Internship in Engineering (1-5) I, II, III. The Staff (Chairperson in charge)
 Internship. Prerequisite: lower division standing; approval of project prior to period of internship.
 Supervised work experience in civil engineering may be repeated for credit. (P/N grading only.)

3. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
 Special study. Prerequisite: consent of instructor and lower division standing. (P/N grading only.)

Upper Division Courses

114. Probabilistic Systems Analysis for Civil Engineers (3) I. Mohsenian
 Lecture—3 hours. Prerequisite: Mathematics 21C. Probabilistic concepts and models in civil engineering.
 Statistical analysis of civil engineering experimental and field data. Introduction to stochastic processes.
 Models of civil engineering systems. (P/N grading only.)

131A. Structural Analysis (3) I, II, III. Romstadt
 Lecture—3 hours. Prerequisite: Mathematics 22A; Engineering 104B (may be taken concurrently).
 Open to Engineering students only. Elastic structural analysis of determinate and indeterminate trusses,
 beams, and frames. Calculation of displacements. Methods of virtual work, moment area, superposition,
 slope deflection, moment distribution.

131B. Matrix Structural Analysis and Introduction to Finite Element (3) I. Romstadt
 Lecture—3 hours. Laboratory—5 hours. Prerequisite: Engineering 104B. Open to Engineering students only.
 Matrix formulation and computer analysis of statically indeterminate structures. Introduction to finite element methods for elasticity and bending problems.

132A. Structural Design: Metallic Elements (3) I, II. Ramay
 Lecture—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Metallic beams,
 columns, other members: analysis and design of bolted and welded joints; design of simple beam
 connections, moment resistant connections, and column base plates.

132B. Structural Design: Concrete Elements (3) I. Ill. Taylor
 Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 104B (may be taken concurrently).
 Open to Engineering students only. Elastici and ultimate strength design procedures for columns,
 rectangular beams, T-beams and beams of general cross-section. Building code requirements for bending,
 shear, axial load, combined stresses and bond.

132C. Structural Design: Timber Elements (3) III. Ramay
 Lecture—3 hours. Prerequisite: course 132A. Elements of timber structures and laminated structures,
 including connection design.

133. Properties of Concrete (4) I. Taylor
 Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 35; senior standing. Physical and chemical
 properties of cements, the properties of fresh concrete, the ingredients of concrete, the desirable
 characteristics of hardened concrete, and how to obtain them. Mix design methods.

134. Analysis and Design of Buildings (3) III. Ill. Taylor
 Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 131A, 132A; 132B (may be taken concurrently).
 Dead and live loading; earthquake and wind forces. Approximate analysis of building frames; concrete
 building design. Plastic analysis of metal frames.

137. Construction Principles (3) III. The Staff (Chairperson in charge)
 Lecture—2 hours; laboratory—3 hours. Prerequisite: senior standing in Engineering. A study of the con-
 struction industry; its form, evolution, and methods of operation; fundamental principles underlying con-
 struction practices such as materials, construction plans, drawing, organizing, and operating a construction force.
 Field trips and analysis of local construction projects.

138. Earthquake Loads on Structures (3) I. Rom-
 Lecture—3 hours. Prerequisite: course 131A. Engineering
 Determination of loads on structures due to base motions. Methods of static lateral forces,
 approximate dynamic analysis (response spectrum), and time history. Concepts of mass, damping,

139. Prestressed Concrete (3) I. Taylor
 Lecture—3 hours. Prerequisite: course 132B. Principles of prestressed concrete and design of sections for
 bending, interactive computer analysis, ultimate strength of sections. Loss of prestress, shear design.
 Applications to bridges, buildings, and tanks. Special materials properties needed for effective prestressing.

140. Environmental Analysis of Aquatic Systems (3) I. Darby
 Lecture—3 hours. Prerequisite: Chemistry 28B; course 140L concurrently. Introduction to principles underlying current practices in sampling and analysis of water and wastewater.

140L. Environmental Analysis of Aquatic Systems Lab (1) I. Darby
 Laboratory—3 hours. Prerequisite: course 140C concurrently. Introduction to laboratory practice in the examination of water and wastewater. "Wet chemical" and instrumental techniques.

141. Engineering Hydraulics (3) I, III. Laroc
 Lecture—3 hours. Prerequisite: Engineering 103A. Open to Engineering students only. Applications of fluid of type of a real fluid; flow in pipes; open channel flow; turbulence; fluid flow on objects: boundary layers, lift and drag.

141L. Engineering Hydraulics Laboratory (1) I, III. Laroc
 Laboratory—3 hours. Prerequisite: course 141 may be taken concurrently. Open to Engineering students
 only. Laboratory experiments and demonstrations on flow measurement, sluice gates, hydraulic jump, flow characteristics, and centrifugal pumps.

142. Engineering Hydrology (3) I, II. Kavvas
 Lecture—3 hours. Prerequisite: course 141 (may be taken concurrently), or the equivalent. Open to Engineering
 students only. Study of the hydrologic cycle. Frequency analysis of hydrologic variables. Precipitation
 analysis for hydrologic design. Evaporation, transpiration, interception, depression storage and infiltration.
 Streamflow analysis. Flood routing through channels and reservoirs.

142L. Engineering Hydrology Laboratory (1) I. Darby
 Laboratory—3 hours. Prerequisite: course 142 (may be taken concurrently). Laboratory calculations and
 demonstrations of hydrologic processes, such as rainfall-runoff, storm characteristics and precipitation,
 evaporation and transpiration, infiltration, streamflow, and flood routing.

144. Groundwater Systems Design (3) I. Darby
 Lecture—3 hours. Prerequisite: Engineering 5 and course 142 (may be taken concurrently). Applied Science
 Engineering 115 recommended. Groundwater occurrence, distribution, and movement; well-flow
 systems; design of wells; groundwater quality and contamination; aquifer management. Introduction to
 groundwater modeling.

145. Hydraulic Structure Design (3) III. I. DeVries
 Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 141, 144, 142. Principles of project design.
 Methods of analysis and hydraulic design of storage systems, diversion structures, conveyance and regula-
 tion systems, and structures for irrigation, power, and flood control projects. Emphasis is on application of principles of open channel and hydraulic structures in these systems.

146. Water Resources Simulation (3) I. L. Lund
 Lecture—3 hours. Prerequisite: course 142. Simulation techniques in the design and operation of water resources projects; introduction to simulation theory, testing, and application to surface and groundwater problems and system analysis.

147. Solid Waste Management (3) I. Chobanoglu
 Lecture—2 hours; laboratory—3 hours. Characteristic and amounts of solid wastes; collection systems;
 introduction to waste treatment processes and return of treated wastes to the environment.

148A. Water Quality Management Systems Design (3) I. Schroeder
 Lecture—2 hours; laboratory—3 hours. Prerequisite: course 148A (may be taken concurrently). Introduction to the design of water and wastewater treatment processes.

149. Introduction to Air Pollution (3) I. Carroll
 Lecture—3 hours. Prerequisite: Mathematics 22B, 21D, Chemistry 28B; Atmospheric Science 121A or Engineering 103A. Examination of physical and technical aspects of air pollution. Emphasis on geophysical processes and air pollution meteorology as well as physical and chemical properties of pollutants. (Same course as Atmospheric Science 148.)

152. Introduction to Civil Engineering Planning (3) I. The Staff
 Lecture—3 hours. Basic planning concepts; role of engineering, economic, environmental, and social
 factors; housing, institutional, public and legal aspects. Case studies will illustrate planning of water regulation
 and distribution systems, water treatment and disposal systems, land and water transportation systems.

153. Deterministic Optimization and Design (3) II. Lund
 Lecture—3 hours. Prerequisite: Mathematics 21C, 22A, and Engineering 5 or the equivalent. Introduction to
 operations research. Optimization techniques such as linear programming, dynamic programming.
and non-linear programming. Applications in water resources planning, transportation planning, systems engineering, and other civil engineering disciplines through computer-based design projects.

154. Probabilistic Design and Optimization (3) III.

Lecture—3 hours. Prerequisites: courses 114 and 153, and Engineering 106, or the equivalents. Design by optimization for probabilistic systems, determination of information, probabilistic linear programming, probabilistic dynamic programming, nonlinear probabilistic optimization. Applications in civil engineering design, project evaluation, and management.

160. Introduction to Transportation Planning (4) I.

Sperling

Lecture—3 hours; discussion—1 hour. Prerequisite: any two of course 152, Geography 5, and Economics 1A. Transportation and associated environmental problems confronting urban areas, and prospective technological and institutional solutions. Draws upon concepts and analytical techniques from economics, engineering, political science, and environmental studies. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Geography 5.

161. Transportation System Operations (3) II.

Jovaisa

Lecture—3 hours. Prerequisite: Engineering 36, Principles of transportation system operations; traffic characteristics and methods of measurement; safety and operations; models of transportation operations and transportation demand; application to urban streets, freeways, and mass transit services.

162. Transportation System Design (3) III. Jovaisa

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 160 or 161 or 163. Human vehicle and guideway factors and their relationship to transportation system design. Generalized design paradigm; application to large scale group problem solving.

163. Energy and Environmental Aspects of Transportation (3) II.

Sperling

Lecture—3 hours. Prerequisite: course 160 recommended. Application of engineering, economic, and systems planning concepts. Analysis of energy, air quality, and other selected environmental attributes of transportation technologies. Investigation of strategies for reducing pollution and petroleum consumption, in light of institutional and political constraints. (Same course as Environmental Studies 163.)

171. Soil Mechanics (4) I, II.

Kutter

Lecture—4 hours. Prerequisites: course 104A (may be taken concurrently), course 171L (must be taken concurrently). Soil formations, mass-volume relationships, soil classification, effective stress, soil-water-void relationships, compaction, seepage, capillarity, compressibility, consolidation, stress, states of stress and failure.

171L. Soil Mechanics Laboratory (3) I, II.

Kutter

Lecture—3 hours. Prerequisite: course 171 must be taken concurrently. Laboratory studies utilizing standard testing methods to determine physical, mechanical and hydraulic properties of soil and determination of design principles of soil behavior.

172. Foundation Design (4) I, II.

Lecture—4 hours. Prerequisite: courses 132B, 171, 171L. Soil exploration and determination of soil properties for design; consolidation and elastic settlement of foundations; bearing capacity of soils and footing design; lateral earth pressures and retaining wall design; pile foundations; excavations and dewatering.

174. Environmental Geotechnology (3) III.

Arthurian

Lecture—3 hours. Prerequisite: course 148A and 171. Soil and site characterization in relation to natural and man-made hazards, waste containment, and waste site remediation techniques.

176. Geology (3) I.

Kutter

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 171, 171L. Principles of similitude and the theory of models. Applications to soil mechanics and foundation engineering utilizing centrifugation.

Instrumentation, calibration, computer-aided data reduction and recording. Experiments demonstrating basic principles, including bearing capacity, dynamic impact response, and liquefaction in earthquake.

189A-J. Selected Topics in Civil Engineering (1-5) I, II, III. Staff

Prerequisite: consent of instructor. Directed group study of selected topics with separate sections in (A) Environmental Engineering; (B) Hydraulics and Hydrologic Engineering; (D) Geotechnical Engineering; (E) Structural Engineering; (F) Structural Mechanics; (G) Transportation Engineering; (H) Transportation Planning; (I) Water Resources Engineering; (J) Water Resources Planning. May be repeated for credit when the topic is different.

192. Internship in Engineering (1-5) I, II, III. The Staff (Chairperson in charge)

Internship. Prerequisite: upper division standing; approval of program and of the intern. Supervised work experience in civil engineering. May be repeated for credit. (P/N grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: senior standing in engineering and at least a B average. (P/N grading only.)

Graduate Courses

201. Introduction to Theory of Elasticity (4) I.

Hutchinson

Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 104B. Fundamental equations of elasticity in three dimensions, plane stress and plane strain; flexure and torsion of bars of various shapes. Introduction to variational and approximate methods.

202. Buckling of Columns and Plates (3) II.

The Staff

Lecture—3 hours. Prerequisites: courses 201 and 221. Analysis of the buckling behavior of structural members: buckling of columns, lateral buckling of beams, nonlinear bending and lateral-torsional buckling of beam-columns, stability of structural frames, buckling strength and ultimate strength of plates.

203. Inelastic Behavior of Solids: Plasticity (3) III.

Dafalias

Lecture—3 hours. Prerequisite: course 201. Fundamentals of plasticity, the concept of yield, strain-hardening, and the associated constitutive equations for elastoplasticity. Materials and practical problems involving elastoplastic, strain-hardening materials. Slip line field theory and limit analysis. Offered in alternate years.

204. Viscoelastic Behavior of Solids (3) III. Dafalias

Lecture—3 hours. Prerequisite: course 201. Fundamentals of theories of viscoelasticity and viscoplasticity for solids. Characterization of engineering materials, creep, relaxation, soil, asphalt, rubber, etc. General analysis procedures for problems in viscoelasticity. Offered in alternate years.

205. Continuum Mechanics (3) II. Dafalias

Lecture—3 hours. Prerequisite: course 203 or 204. Tensor formulation of the field equations for continuum mechanics, including large deformation effects. Introduction to nonlinear thermomechanics and thermodynamics. Solution of three-dimensional problems. Offered in alternate years.

211. Advanced Matrix Structural Analysis (3) III.

Romstad

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 131A, and course 131B or consent of instructor. Computer analysis of complex frameworks by the displacement, force, and couple methods; curved and beam on elastic foundation members; partially rigid connections; nonlinearity and stability analysis; introduction to structural optimization.

212A. Finite Element Procedures in Applied Mechanics (3) III.

Mish

Lecture—3 hours. Prerequisite: Applied Science Engineering 115 or Mathematics 128A-128B (128B may be taken concurrently), or consent of instructor. Approximate analysis procedures; Galerkin and stationary principle methods. Construction of approximate solutions by the finite element method. Applications to one- and two-dimensional problems in civil engineering. Introduction to element, non-linear and three-dimensional problems, and other approximation procedures.

212B. Finite Elements: Application to Linear and Nonlinear Structural Mechanics Problems (3) III.

Lecture—3 hours. Prerequisite: course 212A. Application of the finite element method to linear and nonlinear, one-, two-, and three-dimensional problems in continuum mechanics, soil mechanics, and to plate and shell theories.

212C. Finite Elements: Application to Fluid Problems (3) III.

Lecture—3 hours. Prerequisite: courses 141, 212A. Application of the finite element method to two- and three-dimensional fluid flow problems, including inviscid and viscous flow, convection-diffusion problems, the shallow water equations, and flow through porous media. Class lectures and independent study projects. Offered in alternate years.

213. Analysis of Structures Subjected to Dynamic Loads (3) III. Romstad

Lecture—3 hours. Prerequisite: courses 138, 211. Analysis of structures subjected to earthquake, wind, and blast loading; distributed, consistent and lumped mass techniques; development of a computer program for complex structures; nonlinear response spectrum analysis; frequency and time domain analysis.

217. Theory of Plates and Introduction to Shells (3) I.

Herrmann

Lecture—3 hours. Prerequisite: course 201 (may be taken concurrently). Development of classical and refined plate theories. Application to isotropic, orthotropic and composite plates. Solutions for rectangular and circular plates. Membrane theory for antisymmetric shells and bending of circular shells.

223. Advanced Topics in Concrete Structures (3) III.

Ramsey and Taylor

Lecture—3 hours. Prerequisite: course 132B. Ductility of reinforced concrete; design for torsion of structural concrete, seismic requirements; two-way slabs.

233. Advanced Design of Steel Structures (3) II.

Ramsey and Taylor

Lecture—3 hours. Prerequisite: course 132A and 131A. Design considerations for steel column and frame buckling; steel plate girder design; steel-concrete composite design; connections. Design basis follows the AISC’s, LRFD, and ASD specifications.

240. Water Quality (3) II.

The Staff

242A. Air Quality (3) III.

Chang

Lecture—3 hours. Prerequisite: Engineering 105A; courses 141 and 143, or the equivalent. Factors determining air quality. Air pollutants. Physical and chemical fundamentals of atmospheric transport and reaction. Introduction to dispersion modeling.

242B. Airborne Particles and Scavenging Mechanisms (3) III.

Raabe

Lecture—3 hours. Prerequisites: Engineering 103A, 105A, courses 141, 149; or consent of instructor. Generation, characterization and behavior of small particles and droplets suspended in gas including deposition and scavenging of airborne particles in the earth’s atmosphere. Offered in alternate years.

242BL. Airborne Particles Laboratory (3) I.

Raabe

Lecture—3 hours. Prerequisite: course 242B (may be taken concurrently). Laboratory exercises designed to familiarize the student with methods of characterization of airborne particles. Offered in alternate years.
243A. Water and Waste Treatment (3) I. Schroeder Lecture—3 hours. Prerequisite: course 148A. Character-istics of water- and airborne wastes; treatment processes and process kinetics; treatment system design.

243B. Water and Waste Treatment (3) II. Schroeder Lecture—3 hours. Prerequisite: course 243A. Consent of instructor: Continuation of course 243A.

244. Environmental Quality Modeling (5) III. Orlob Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 240, 241, or 240A. Mathematical modeling of environmental quality, with emphasis on mathematical models of quality, their structure, capabilities and limitations, sensitivity and reliability as analytical and/or predictive tools. Offered in alternate years.

245. Applied Environmental Chemistry (4) III. Darby Lecture—4 hours. Prerequisite: Engineering 105A, courses 140 and 141, or equivalent. 2A, 2B, or the equivalent; Chemistry 5 or 2C or 107A recommended. Chemistry of natural and polluted waters. Chemical kinetic and equilibrium principles, thermodynamics. Selection and operation of water and air pollution control systems. Oxidation and disinfection, and interfacial phenomena.

246. Pilot Plant Laboratory (3) III. Darby Lecture—1 hour; laboratory—6 hours. Laboratory investigation of physical, chemical, and biological processes for water and wastewater treatment.

248A. Design of Natural Systems for Wastewater Treatment (3) III. Smith Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 243A, 243B. Procedures are presented for the design of natural and small-scale systems for treatment of municipal and industrial wastewater. Emphasis is placed on the practical application of principles developed in core courses 243A and 243B plus new information related to natural systems. Offered in alternate years.

248B. Wastewater Reclamation and Re-use: Theory and Practice (3) III. Asano Lecture—3 hours. Prerequisite: course 243A, 243B. Wastewater reuse in water resource planning, wastewater reuse practices in agricultural and landscape irrigation, industry, groundwater recharge, recreational and environmental uses, and potable water reuse. Assessment of health risks and health risk mitigation. Offered in alternate years.

250. Urban Transportation and Land Use Policy and Planning (3) III. Mokhtarian Lecture—3 hours. Prerequisite: course 251. Historical and current relationships between transportation and land use. Traditional land use models. Role of land use in urban transportation modeling. Relationship between transportation and urban form. Impact of telecommunications on urban form. Policies involving transportation/land use relationships.

251. Transportation Demand Analysis (3) III. Kitamura Lecture—3 hours. Prerequisite: course 114 or the equivalent. Detailed discussions of a standard procedure used in urban passenger travel demand forecasting. Principles and assumptions of the model components (trip generation, trip distribution, and modal split). Computer exercises using empirical data to calibrate models and forecast travel demand. Offered in alternate years.

254. Discrete Choice Analysis of Travel Demand (3) II. Kitamura Lecture—3 hours. Prerequisite: course 114 or the equivalent, and statistical principles underlying the formulation and estimation of discrete choice models. Practical application of discrete choice models to characterization of choice behavior, hypothesis testing, and forecasting. Emphasis on computer exercises using large-scale data sets obtained from home interview surveys.

256. Urban Traffic Management and Control I (3) III. Jovaisa Lecture—3 hours. Prerequisite: graduate standing. Nature of urban vehicular traffic congestion; roadway capacity, intersection design and traffic signal operations; freeway operations and management; corridor control.

257. Urban Traffic Management and Control II (3) III. Jovaisa Lecture—3 hours. Prerequisite: course 256. Microscopic and macroscopic traffic stream properties; traffic signal delay models; queueing theory applications; Traffic surveillance and detection; traffic forecasting; applications to traffic control systems. Offered in alternate years.

258. Transportation Planning in Developing Countries (3) III. Spring Lecture—3 hours. Prerequisite: course 160 or consent of instructor. Investigation of the role that transportation investments and policies play in the development of regions and countries. Emphasis is on identifying appropriate technologies, policies, and planning methods for designing transportation systems in regions of differing socioeconomic, geographic, and institutional settings. Offered in alternate years.

259. Advanced Highway Technology and Automation (3) III. Jovaisa, Kitamura Lecture—3 hours. Prerequisite: graduate standing. Technologies covering vehicle navigation and guidance, telecommunications and information systems, and highway electrification. Analysis and evaluation of policy implementation issues, driver response and pricing strategies and costs, and formulation of control theory.

260. Noncohesive Sediment Transportation (3) II. The Staff Lecture—3 hours. Prerequisite: course 141. Sediment materials. Particle suspension by currents, waves, and winds. Modes of transport, bed load relations and suspended load relations. Calculation of total loads in streams. Similarity criteria for movable bed models. Stable channel design. Offered in alternate years.

261. Cohesive Particle Transportation (3) III. The Staff Lecture—3 hours. Prerequisite: course 141. Cohesion; cohesive particulate materials; processes of aggregation and dispersion; aggregate properties; deposition and scour, channel and harbor design and maintenance. Offered in alternate years.

266B. Applied Stochastic Methods in Engineering (3) II. Kawas Lecture—3 hours. Stochastic differential equations and their applications to the solution of engineering problems. Offered in alternate years.

267. Water Resources Management (3) III. I. Lund Lecture—3 hours. Prerequisite: basic probability (course 114 or the equivalent) and courses 141 and 142; course 153 recommended. Operation, maintenance, and modification of existing water resource systems; evaluation of social, legal, and institutional considerations; decision, optimization, and multi-objective analysis.

268. Public Works Economics (3) II. Lund Lecture—3 hours. Prerequisite: Engineering 106 or Agricultural Economics 148; Economics 1A. Engineering economics applied to public works planning, operations, and maintenance problems; microeco-nomic and macroeconomic theories; benefit-cost analysis; effect of uncertainty; optimization economics; non-classical economics; public finance. Offered in alternate years.

268. Water Supply and Hydroelectric Power Planning (3) I. Johnson Lecture—3 hours. Prerequisite: courses 142 and 152 or the equivalent. Analysis of drought phenomena and low streamflow; water demand; risk and reliability analysis; conjunctive supply and conservation; plant-operating alternatives. Capacity and energy determination; operations studies; planning alternatives; market requirements and load studies; analysis of system power and supply; regulatory considerations. Offered in alternate years.

270. Advanced Water Resources Management (3) III. Lund Lecture—3 hours. Prerequisite: courses 153 and 267 or the equivalent. Discussion of technical papers related to planning theory, system maintenance, regionalization, multi-objective methods, risk analy-sis, institutional issues, pricing model application, economic development, forecasting, operations, and others. Offered in alternate years.

271. Water Resources Planning Laboratory (3) III. Johnson Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 142, 152. Application of hydrology, hydraulics, systems analysis, economics and policy models to plan formulation and plan evaluation in conducting a water resources planning study. Lectures provide instruction on principles and methodology used in the laboratory study. Offered in alternate years.

272A. Advanced Groundwater Hydrology (3) II. Manno Lecture—3 hours. Prerequisite: course 144 or the equivalent; Mathematics 118A recommended. Flow in confined, unconfined and leaky aquifers. Hydraulics of pumping and recharging wells; identification of aquifer parameters. Groundwater quality problems.

273. Water Resource Systems Engineering (3) I. King Lecture—3 hours. Prerequisite: courses 114 and 153 or the equivalent. Planning, design, and management of water resource systems. Application of deterministic and stochastic optimization techniques. Water allocation, capacity expansion, and design and operation of reservoir systems. Surface water and groundwater management.

*Course not offered this academic year.

279. Hydromechanics (3) I. Laroc Lecture—4 hours. Prerequisite: course 141. Equations for conservation of mass, momentum, energy, vorticity, circulation; stream functions, velocity potential; flows by superposition and conformal mapping; free stream, gravity effect; introduction to wave motion. Offered in alternate years.

281B. Advanced Soil Mechanics (3) II. Kutter Lecture—3 hours; laboratory—3 hours. Prerequisite: course 281A. Site investigation methods: CPT, SPT, pressure-meter, vane, seismic investigation, electrical properties. Slope stability, including seepage pressure and local earthquake effects. Centrifuge modeling.

283. Physicochemical Influences and In-Situ Evaluation of Soil Behavior (3) I. Arulanan Lecture—2 hours; laboratory—3 hours. Prerequisite: course 171. Analysis of the mechanical behavior of soils from the consideration of clay mineralogy, colloidal phenomena, ion-exchange. Soil-water-electrolyte characteristics and soil structure. Laboratory methods of characterization of soils, quantification of soil structure, and rotating cylinder tests to evaluate soil erosion.

285A. Soil Modification (3) I. Idries Lecture—3 hours. Prerequisite: course 171. Purposes, principles, and methods of soil modification for various geotechnical applications. Offered in alternate years.

285B. Pavement Systems Design (3) I. Arulanan Lecture—2 hours. Prerequisite: course 171. Principles and methods of pavement design for highways and airfields. Offered in alternate years.

286. Advanced Foundation Design (3) III. Idries Lecture—3 hours. Prerequisite: course 173. Design and analysis of shallow foundations. Deep excavation. Back analysis of deep excavations. Solid mechanics: foundation behavior. Ground support systems; cased piles; loads on buried conduits; pile loading capacity; pier foundations; and other related topics.

287. Geotechnical Earthquake Engineering (3) II. Idries Lecture—3 hours. Prerequisite: course 138, 281A. Characteristics of earthquake ground motions; empirical and simulation procedure for estimating these motions; dynamic soil response; liquefaction potential; residual strength and stability consideration; generation and dissipation of pore water pressures; settlement.

288. Earth and Rockfill Dam (3) III. Idries Lecture—4 hours; laboratory—2 hours, 281A. Site selection; preliminary design considerations; layout; seismic effects including considerations of fault movements; construction; instrumentation; maintenance.

289A-L. Selected Topics in Civil Engineering (1-5) I, II, III. The Staff (Chairperson in charge). Lecture, laboratory, or combination. Prerequisite: consent of instructor. Directed group study of special topics with separate sections in (A) Environmental Engineering; (B) Hydraulics and Hydrologic Engineering; (C) Engineering Planning; (D) Geotechnical Engineering; (E) Structural Engineering; (F) Structural Mechanics; (G) Transportation Engineering; (H) Transportation Planning; (I) Water Resources Engineering. May be repeated for credit.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge). Seminar—1 hour. Discussion of current research activities and guest lectures on recent advances. Oral presentation of individual study. Course graduated degree candidates. (SU grading only)

290C. Graduate Research Group Conference (1) I, II, III. Chairperson in charge. Discussion—1 hour. Research problems, progress, and techniques in civil engineering. May be repeated for credit. (SU grading only)

290D. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (SU grading only)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge). (SU grading only)

Professional Course

390. The Teaching of Civil Engineering (1) I, II, III. The Staff (Chairperson in charge). Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate in Civil Engineering. Participation as teaching assistant or associate in a designated engineering course. Methods of teaching engineering: writing and grading assignments. How to prepare for laboratory equipment and laboratory reports. May be repeated for total of 9 units. (SU grading only)

Faculty

Sergio Alvarado, Ph.D., Assistant Professor
Myla M. Archer, Ph.D., Assistant Professor
Matthew K. Farr, Ph.D., Assistant Professor
Mahadevan Ganapathi, Ph.D., Associate Professor
Daniel Gustfield, Ph.D., Associate Professor
Kenneth I. Joy, Ph.D., Associate Professor
Robert M. Keller, Ph.D., Professor
Lawrence T. Kous, Ph.D., Professor
Kari Levitt, Ph.D., Professor
Peter Linz, Ph.D., Professor
Charles U. Martel, Ph.D., Associate Professor
Norman S. Matloff, Ph.D., Professor
Biswanarah Mukherjee, Ph.D., Associate Professor
Ronald A. Osias, Ph.D., Assistant Professor
Arvin Park, Ph.D., Assistant Professor
Armand E. Prieditis, Ph.D., Assistant Professor
Arvind Raghuram, Ph.D., Assistant Professor
Manfred G. Ruschitzka, Ph.D., Professor
Richard F. Walters, Ph.D., Professor

Courses in Engineering: Electrical and Computer Science

(Courses in Electrical and Computer Science Engineering are listed below; courses in Computer Science Engineering are listed immediately following.)

Lower Division Courses

1. Introduction to Electrical and Computer Engineering (1) I, II. The Staff (Chairperson in charge). Lecture—1 hour. Electrical and computer engineering as a professional activity. What electrical engineers know and how they use their knowledge. Problems they are concerned with and how they go about solving them. Presentation of basic ideas and their applications. Examination of some case studies. (P/NP grading only)

70. Computer Structure and Assembly Language (4) I, II, II. Matloff, Redinbo, Wilken Lecture—3 hours; computer workshop—3 hours. Prerequisite: Computer Science Engineering 30 or 36. Introduction to computer architecture; machine language; assembly-language; macro and conditional macros; subroutine/parameter passing; input/output programming, interrupt and trap; direct memory access; absolute and relocatable code; emulating device code; program development in an operating system.

92. Internship in Electrical and Computer Engineering (1-5) I, II. The Staff (Chairperson in charge)
Internship—3-15 hours. Prerequisite: lower division project approval prior to period of internship. Supervised work experience in Electrical and Computer Science Engineering. May be repeated for credit. (PINP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PINP grading only)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge)
(PINP grading only)

Upper Division Courses

110A. Electronic Circuits (3) II, III. Spencer, Hailey, Hunt, Lewis
Lecture—3 hours. Prerequisite: courses 112, 140A, Engineering 100; course 111A concurrently; course 140B concurrently recommended. Large and small signal device models; analysis and design of bias and gain stages; analysis and design of op. amps.

110B. Electronic Circuits (3) III. Spencer, Hailey, Hurst, Lewis
Lecture—3 hours. Prerequisite: courses 110A, 111A, 112; course 111B concurrently; course 140B recommended. Analysis and design of multi-stage and feedback amps; op-amp limitations and applications; active filters; oscillators, digital switches.

111A. Electronic Circuits Laboratory (2) II. Spencer, Hurst, Lewis
Laboratory—3 hours. Prerequisite: courses 110A, 140A, Engineering 100; course 111A concurrently; course 140B concurrently recommended. Design, analysis, and evaluation of transistor circuits, amplifiers, and op-amps.

111B. Electronic Circuits Laboratory (1) III. Spencer, Hurst, Lewis
Laboratory—3 hours. Prerequisite: courses 110A, 111A, 112; course 111B concurrently; course 140B recommended. Design, analysis and evaluation of multi-stage and feedback amps, oscillators and switching circuits.

112. Linear Systems and Circuits (4) I, II. Abdel-Ghany, Kwon, Hailey
Lecture—4 hours. Prerequisite: Engineering 17, Mathematics 22A. Characterization and analysis of linear systems and circuits. Time domain analysis by convolution techniques. Emphasis on frequency domain techniques, including Laplace transform, Fourier transform and Fourier series, with applications to electrical circuits.

114. Analog Integrated Circuits (3) I. Hurst, Spencer, Current, Lewis
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 110B, 111B, 140B. Analysis and design of analog integrated circuits. Emphasis is on bipolar transistor circuits. Single-stage amplifiers, cascaded amplifier stages, current sources, differential pair, frequency response, and feedback amplifiers. (Former course 114A)

118. Digital Integrated Circuits (3) III. Hunt, Current
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 110B, 111B, 140B. Analysis and design of digital integrated circuits. Emphasis is on MOS logic circuit techniques, logic gate construction, voltage transfer characteristics, and propagation delay. Regenerative circuits, RAMs, ROMs, and PLAs. (Former course 114B)

130A. Introductory Electromagnetics (3) (I, III) Dienes, Fink, Kroesen
Lecture—3 hours. Prerequisite: Mathematics 22B and 21D, Physics 9C strongly recommended. Static electric and magnetic fields, time-varying electromagnetics.

130B. Introductory Electromagnetics (3) III. Fink, Dienes, Kroesen
Lecture—3 hours. Prerequisite: course 130A and Engineering 17. Plane electromagnetic waves, transmission, refraction, and lens. Course 110B concurrently open for credit to students who have completed course 139.

131A. Electromagnetic Fields and Waves (3) I. Fink, Dienes
Lecture—3 hours. Prerequisite: course 130B or the equivalent. Propagation and reflection of plane waves in isotropic media. Guided electromagnetic waves. Rectangular and circular wave guides.

131B. Electromagnetic Fields and Waves (3) II. Fink, Dienes
Lecture—3 hours. Prerequisite: course 131A or the equivalent. Fiber optics. Helix and slow-wave structures. Wave propagation in media with anisotropic permittivity and permeability, and on plasmas. Traveling wave amplifier.

131C. Electromagnetic Fields and Waves (3) III. Fink, Dienes
Lecture—3 hours. Prerequisite: course 131B or the equivalent. Resonant cavities; microwave networks and components.

132A. High-Frequency Systems, Circuits and Devices (4) I. Branner
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 130B. Application of electromagnetic theory to analysis and design of practical devices, circuits and systems operating at radio frequencies. Energy transfer at high frequencies, transmission lines, microwave integrated circuits, circuit analysis of electromagnetic energy transfer systems, the scattering parameters.

132B. High-Frequency Systems, Circuits and Devices (4) II. Branner
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 132A. Passive high frequency device analysis, design, Microwave circuit and filter design, introduction to analysis and design of microwave transistor and tunnel diode amplifiers.

135. Optical Communications I: Fibers (3) II. Dienes, Kroesen

139. Fields and Waves for Computer Majors (4) III. Dienes
Lecture—4 hours. Prerequisite: Mathematics 22B, 21D, Physics 9C. Static electric and magnetic fields. Electromagnetic waves and transmission lines. Not open for credit to students who have completed course 130B.

Lecture—3 hours. Prerequisite: Physics 9C, Semiconductor device fundamentals, equilibrium and non-equilibrium statistical mechanics, conductivity, diffusion, density of states, electrons and holes, p-n junctions, Schottky junctions, and junction field effect transistors.

140B. Fundamental Principles of Device Physics (3) II. Bower, Churchill, Hailey, Hunt, Smith
Lecture—3 hours. Prerequisite: course 140A. Electrical properties, design, and models for Bipolar and MOS devices.

145A. Solid-State Electronics (3) III. Bower, Churchill, Hailey
Lecture—3 hours. Prerequisite: course 140B. Physical properties of electronic materials.

145B. Solid-State Electronics (3) I. Churchill, Hailey, Hunt
Lecture—3 hours. Prerequisite: course 145A. Magnetic properties of solids. Design of devices and their associated circuits utilizing the magnetic properties of solids. Devices studied include the ferrite core, ferrite isolator, magnetic media used in disk, tape, and bubble devices.

146A. Integrated Circuits Fabrication (3) I. Hunt, Bower
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 140B. Basic fabrication processes for metal oxide semiconductor (MOS) integrated circuits. Laboratory assignments covering oxidation, photolithography, impurity diffusion, metallization, wet chemical etching, and characterization work together in producing metal-gate PMOS test chips where the student performs parametric and functional testing. (Former course 115A.)

146B. Advanced Integrated Circuits Fabrication (3) II. Hunt, Bower
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 146A. Fabrication processes for CMOS VLSI. Lab projects examine deposition of thin films, ion implantation, process simulation, anisotropic plasma etching, sputter metalization, and Cu processing. Topics include isolation, projection alignment, eplayer growth, thin gate oxidation, and rapid thermal annealing. (Former course 115B.)

148. Superconductivity (3) I. Fink
Lecture—3 hours. Prerequisite: course 130A and 140A. Fundamental properties of superconductors of the first and second kind, London and Ginzburg-Landau theories, Josephson effects, applications and device design.

150. Microprocessor-Based Instrumentation Systems (4) I. Soderland
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 70 and Engineering 100. Typical uses of microprocessors and microprocessor development systems in instrumentation applications. Analytical and design methods common to modern instrumentation systems including: transducers, dynamic response, signal conditioning, A/D conversion, data transmission, hardware interfacing, software development, noise and safety.

Lecture—3 hours. Prerequisite: course 112. Characterization, analysis, and design of discrete time systems. Difference equation models, z-transform analysis methods. Introduction to digital filter design. Discrete and fast Fourier transforms.

152. Feedback Design of Uncertain Systems (3) I. Hsia
Lecture—3 hours. Prerequisite: course 157A. Quantitative design of feedback systems to achieve prescribed performance tolerances despite large uncertainties in system parameters and corrupted disturbance inputs. Applications to single input-output, linear time invariant, and nonlinear systems. Minimization of the cost of feedback. Extension to multiple input-output linear time-invariant systems.

157A. Control Systems (3) I, II. Dorf, Gundes, Mayne, Wang
Lecture—3 hours. Prerequisite: course 112. Analysis and design of feedback control systems. Examples are drawn from electrical and mechanical systems as well as other engineering fields. Mathematical modeling of systems, stability criteria, root-locus and frequency domain design methods.

157B. Control Systems (3) II. Hsia, Dorf
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 157A. Control system optimization and compensation techniques, digital control theory. Laboratory includes Servo system experiments and computer simulations.

160. Signal Analysis and Communications (4) I. Algaaz, Feher, Ford, Friedlander, Gradner, Levy
Lecture—3 hours; discussion—1 hour. Prerequisite: course 112. Signal analysis based on Fourier methods, Fourier series and transforms, time-sampling, convolution, and filtering, spectral density, modulation: carrier-amplitude, carrier-frequency, and pulse amplitude.

*Course not offered this academic year.
161. Signal Processing (3) I. Ford, Reed Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 151, 160; Engineering 100. Design and implementation of analog and digital signal processing systems. Topics include: filtering, spectral analysis, function circuits, A/D and D/A conversion, and digital communication systems.

166. Digital Communications: Satellite, Microwave, Cable (3) I. Feher Lecture—3 hours. Prerequisite: course 160. Introduction to digital communications by satellite, microwave, and cable systems. Baseband signal processing techniques for digital MODEMs (modulators-demodulators). Principles and applications of QPSK, 64-QAM, and other MODEMs in TDMA and SCPC. Satellite and terrestrial microwave systems.

167. Telecommunications Measurements and Instrumentation (3) I. Feher Lecture—3 hours. Prerequisite: course 160. Measurements and control for digital communication and signal processing systems. Analysis of bit error rate, noise and jitter measurement uncertainties. Digital PMUX video and voice spectral and timing measurements. Use of expert (artificial intelligence) applications. In-class experiments/demonstrations.

171. Introduction to Computer Architecture (4) I., II, III. Matloff, Oklobdzija, Park, Redinbo, Wilken Lecture—3 hours; discussion—1 hour. Prerequisite: courses 70, 176; course 177 (concurrently) recommended. 8086/8088 microprocessor architecture; bus-based system architecture; peripheral chips architecture; I/O interface design; interrupt driven system design; general system design procedure; MS-DOS operating system; comparison of different types of microprocessors.

175. Computer Devices and Systems (3) III. Lecture—3 hours. Prerequisite: course 140B. Characteristics and selection of the essential components of a computer. Design of I/O, storage, memory, logic, and control units using devices with realistic rather than idealized characteristics emphasized. Advantages and disadvantages of alternative realizations are considered.

176. Digital Systems (4) I, II, III. Lin, Oklobdzija, Redinbo Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 100. Design and implementation of digital systems including combinational logic design, sequential and asynchronous circuits, computer arithmetic, memory systems and algorithmic state machines.

177. Digital Systems II (4) I, II, III. Lin, Oklobdzija Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 110A–110B, 176. Multi-input/output sequential digital systems; timepulse circuits; TTL, CMOS, ECL, logic elements; analog switch; sample/hold; A-D and D-A converters; memory systems; CAD with PLD/PLA.

182A. Operating System Design (4) I. Ruschitzka Lecture—3 hours; laboratory—3 hours. Prerequisite: course 171. Architectural support of operating system concepts; systems programming; major components of an operating system; their functions, and their interactions. Lecture material coupled with programming project that involves a machine simulator and the implementation of a matching multiprogramming system. Not open for credit to students who have completed Computer Science Engineering 150B.

182B. Operating System Design (3) II. Ruschitzka Lecture—3 hours. Prerequisite: course 182A. Introduction to computer memory and operating system support functions. Concurrent processes and problems of deadlock, contention, and synchronization; management of physical and virtual resources. Protection mechanisms. User interface and ease-of-use considerations.

189A-U. Special Topics in Electrical Engineering and Computer Engineering (1-5) I, II, III. The Staff (Chairperson in charge) Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in (A) Computer Science (B) Circuits, structures, systems (C) Digital Systems; (D) Communications; (E) Signal Transmission; (F) Digital Communication; (G) Control Systems; (H) Robotics; (I) Signal Processing; (J) Image Processing; (K) High-Frequency Phenomena and Devices; (L) Solid-State Devices and Physical Electronics; (M) Systems Theory; (N) Active and Passive Circuits; (O) Integrated Circuits; (P) Computer Software; (Q) Computer Engineering; (R) Microprocessing; (S) Electromagnetics; (T) Optoelectronics. May be repeated for credit when topic is different.

190C. Research Group in Electrical Engineering and Computer Engineering (1), II, III. The Staff Discussion—1 hour. Prerequisite: upper division standing in Electrical and Computer Science Engineering; consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)

190. Internship in Electrical and Computer Engineering (1-5) I, II, III. The Staff (Chairperson in charge) Internship—3-15 hours. Prerequisite: completion of a minimum of 64 units; project approval prior to period of internship. Supervised practical experience in electrical and computer engineering. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

201. Digital Processing of Signals (4) I. Alzagi, Friedlander Lecture—4 hours. Prerequisite: course 151. Theory and applications of digital processing of signals. Z-transform analysis of discrete-time systems, filter design techniques, design of discrete-time systems, discrete Fourier transform, and Hilbert transforms. (Former course 204.)

205. Introduction to Optical Information Processing (3) I. Krensen Lecture—3 hours. Prerequisite: courses 230 and 250 recommended. Review of the scalar theory of diffraction and of two-dimensional Fourier transforms, from which the foundations of the frequency analysis of imaging systems. Image processing techniques will be examined, including the theory and application of holography. Introduction to optical computing. Offered in alternate years.

206. Digital Image Processing (4) I. Alzagi, Ford, Reed Lecture—3 hours; laboratory—3 hours. Prerequisite: course 151. Two-dimensional systems. Image theory, perception, sampling and quantization, transform theory and applications, enhancement, filtering and restoration, image analysis, and image processing systems.

207. Pattern Recognition and Classification (3) II. Ford, Reed Lecture—3 hours. Prerequisite: Statistics 120. Topics in statistical pattern recognition and classification: linear decision functions and minimum distance classification, Bayes decision theory, clustering algorithms, the generalized perceptron, multi-layer neural networks, and feature extraction.

211. Advanced Analog Circuit Design (3) I. Spencer, Current, Hurst Lecture—3 hours. Prerequisite: course 210; Statistics 131A or the equivalent recommended. Noise in electronic circuits and systems. Distortion analysis; the translinear principle and its application to circuit analysis and synthesis; phase-locked loops and their applications.

212. Analog MOS IC Design (3) II. Hurst, Spencer, Current, Lewis Lecture—3 hours. Prerequisite: course 210. Analysis and design of analog MOS integrated circuits. CMOS process, MOS device modeling, passive components, single stage amplifiers, current sources, op amps, compensation, comparators, switched-capacitor filters, and analog-to-digital converters.

214B. Computer-Aided Circuit Analysis and Design (3) II. Current, Lewis Lecture—3 hours. Prerequisite: course 214A. Transient (time-domain) analysis; harmonic analysis; steady-state analysis; time-domain network sensitivities; ac, dc, transient, and calculations, design optimization. Extensive computer project.

218A. Introduction to VLSI Circuits (3) I. Current, Hurst, Oklobdzija, Spender Lecture—3 hours. Prerequisite: courses 110A–110B, 111A–111B. Theory and practice of VLSI circuit and system design. Extensive use of VLSI computer-aided design aids allows students to undertake a VLSI design example.

218B. Multiprocessor Chip Design (3) I. Current, Hurst, Oklobdzija, Spender Laboratory—3 hours. Prerequisite: course 218A. CMOS and NMOS multiprocessor chip layouts of projects begun in courses 218A, 212, and 219 are assembled and submitted to the DARPA/NSF M0SS program for fabrication.

218C. IC Testing and Evaluation (1) III. Current, Hurst, Oklobdzija, Spender Laboratory—3 hours. Prerequisite: course 218A and 218B. Chips submitted in course 218B are tested and evaluated. Issues involving design of ICs for testability are discussed.

220. Semiconductor Devices (3) II. Churchill, Bower, Hunt Lecture—3 hours. Prerequisite: course 140B. Covers the physical principles, characteristics, and models of several semiconductor devices including P-N junctions, FETs, bipolar transistors, diodes, bipolar-rectifier diodes, tunnel diodes, and insulated gate field-effect transistors.

221. Passive Filter Design (3) I. Soderstrand, Current, Haley Lecture—3 hours. Prerequisite: course 100 and course 112 or the equivalent. Introduction to the design of passive filters with lumped and distributed elements. Filter specification and design process, approximation theory, modern doubly terminated networks, and passive ladder filters with lumped elements, crystal and ceramic filters, mechanical filters.

222. Active Filter Design (3) II. Soderstrand, Current, Haley Lecture—3 hours. Prerequisite: course 221 recommended. Introduction to the design of active filters with lumped elements and switches. Active filters with lumped RC elements, active-R networks, and switched capacitor filters.

225. RF Amplifiers, Oscillators, Mixers, and Antennas (4) III. Branner Lecture—3 hours. Laboratory—3 hours. Prerequisite: course 132B and consent of instructor. Microwave amplifier theory and design including transistor circuit models, stability considerations, noise models, and low noise design. Theory and design of microwave transistor oscillators and mixers. Analysis and design of linear, loop, waveguide, and horn radiators.

226A. Quantum Electronics (3) I. Dienes, Heritage Lecture—3 hours. Prerequisite: courses 130B and 140B. Basic concepts of quantum theory: density operator, Hamiltonian, and parity. Electric dipole transitions; equation of motion of magnetic dipole; resonant processes, absorption, dispersion and saturation; transient behavior of electric dipole transitions; population amplitudes and rate equations. Offered in alternate years.

226B. Quantum Electronics (3) II. Dienes, Heritage Lecture—3 hours. Prerequisite: course 226A. Lasers, masers: population inversion, threshold requirement, steady-state and transient behavior. Q-switching, interaction between radiation and phonons. Offered in alternate years.

227A. Microwave Electronics (3) I. The Staff Lecture—3 hours. Prerequisite: courses 130B and 140B. Theory of microwave components, waveguides and cavities. Interference between electromagnetic fields and the electron charge. Lorentz force law, energy levels in matter and Zeeman splitting. Comparison between conventional and microwave tubes and other new types of microwave oscillators and amplifiers. Offered in alternate years.

227B. Microwave Electronics (3) II. The Staff Lecture—3 hours. Prerequisite: course 227A or the equivalent. Theory of interaction between electromagnetic fields and electronic charge, with applications to electron beam and solid-state devices. Beam formation, velocity and density modulation, plasma-based devices, space charge wave propagation in klystrons. Parametric amplifiers, tunnel and IMPATT diodes. Gunn oscillators. Offered in alternate years.

228. Advanced Microwave and Antenna Design Techniques (3) III. Branner Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 132B or 131B, 221. Design, fabrication, analysis of advanced microwave devices, antennas. Includes FETs, Gunn diodes, broadband microstrip and stripline filters, hybrids, beamformers, tapered networks. Yuill's broad-band matching theory applied to microwave devices. Antenna design, analysis of horns, microstrip, log periodic, arrays, spirals and reflectors. Offered in alternate years.

230. Electromagnetics (3) I. Dienes, Fink Lecture—3 hours. Prerequisite: course 130B. Maxwell's equations, plane waves, reflection and refraction, waveguides, waves in anisotropic media, propagation in disperse media, laser beams and resonators.

231. Electromagnetic Theory (3) II. Dienes, Fink, Knobloch Lecture—3 hours. Prerequisite: course 131B. Advanced topics in electromagnetics, including propagation in anisotropic and nonlinear media. Offered in alternate years.

232A. Advanced Applied Electromagnetics I (3) I. Branner Lecture—3 hours. Prerequisite: course 131B or 132B. The exact formulation of applied electromagnetic problems using Green's functions. Applications of these techniques to transmission circuits. Offered in alternate years.

232B. Advanced Applied Electromagnetics II (4) III. Branner Lecture—3 hours. Laboratory—3 hours. Prerequisite: course 131B or 132B. Advanced treatment of electromagnetics with applications to passive microwave devices and antennas. Offered in alternate years.

245A. Applied Solid-State Physics (3) II. Fink, Churchill, Haley, Hunt Lecture—3 hours. Prerequisite: course 140B. Physics of solids relevant to solid-state applications. Topics include conduction mechanisms in semiconductors and transport phenomena in semiconductors, and polarization and magnetism in solids.

245B. Applied Solid-State Physics (3) III. Churchill, Haley, Hunt Lecture—3 hours. Prerequisite: course 245A or the equivalent. Theory of semiconductors with applications to transistors. Topics include transport and recombination of excess carriers and semiconductor devices.

245C. Applied Solid-State Physics (3) III. Dienes, Heritage Lecture—3 hours. Prerequisite: course 245A. Theory of magnetism in solids, with application to ferromagnetic devices and circuits. Topics include paramagnetism, ferromagnetism, magnetic resonance, and switching properties of individual magnetic elements and magnetic arrays.

246. Advanced Projects in IC Fabrication (3) III. Current, Hunt, Spencer, Smith Discussion—1 hour; laboratory—6 hours. Prerequisite: course 146B. Individual projects in the fabrication of analog or digital integrated circuits. (Former course 215.)

248. Microsensor Design and Fabrication (3) III. Smith, Bower Lecture—3 hours. Prerequisite: graduate standing in Engineering. Design and fabrication of sensors using microfabrication techniques. Topics include transduction principles, fabrication technologies specific to microsensors, and design of microsensor systems, including packaging. Offered in alternate years.

249. Microfabrication (3) III. Hunt Lecture—3 hours. Prerequisite: graduate standing in Engineering. Theory and practices of several major technologies of microfabrication, used for producing integrated circuits, sensors, and microstructures. Major topics include sputtering, chemical vapor deposition, plasma processing, micromachining, and ion implantation. Offered in alternate years.

254. Digital and Sampled-Data Control System (3) III. Hsia, Chang Lecture—3 hours. Prerequisite: courses 157A, 250 or the equivalent. Major topics in digital and sampled data control theory with applications to computer control system analysis and design. Frequency domain (Z-transform) methods, state space methods and statistical design methods. Offered in alternate years.

257. Topics in Optimization (3) III. Chang, Mayne Lecture—3 hours. Prerequisite: graduate standing. Advanced topics in the theoretical foundations of optimization and its applications, such as linear and nonlinear systems theory, stochastic programming, stochastic optimal control, approximation theory for optimization, advanced topics in numerical implementation of algorithms, shape optimization, large scale optimization, semi-infinite and nondifferentiable optimization with applications to engineering design, global optimizations. (Same course as Mathematics 257.)

258A. Optimization I (3) II. Chang, Mayne Lecture—3 hours. Prerequisite: knowledge of FORTRAN or C. Modeling optimization problems existing in engineering design and other applications, optimality conditions, linear programming and unconstrained optimization (gradient, Newton, conjugate directions and minimax algorithms), convergence and rate of convergence, selected topics. (Same course as Mathematics 258A.)

258B. Optimization II (3) III. Chang, Mayne Lecture—3 hours. Prerequisite: course 258A. Modeling constrained optimization problems existing in engineering design and other applications, optimality conditions, linear and nonlinearly constrained optimization problems, projection, feasible directions and reduced gradient algorithms, interior point methods, Lagrangian theory, duality, augmented Lagrangians, sequential quadratic programming, selected topics. (Same course as Mathematics 258B.)

259. Optimal Control, Theory and Algorithms (3) I. Chang, Mayne Lecture—3 hours. Prerequisite: graduate standing. Optimal control and calculus of variations, existence of solutions to optimal control problems; necessary conditions of optimality, Pontryagin maximum principle, Euler equation, sufficient conditions of optimality.
15. Introduction to Computers (4) I, II. Walters Lecture—3 hours; laboratory—3 hours. Computer uses in modern society. Emphasis on uses in non-scientific disciplines. Includes word processing and other applications, elementary programming concepts, and an overview of current and projected computer uses. Intended for students in majors in the College of Letters and Science, and other non-computer science majors. General Education credit: Natural and Engineering Inquiry (NII).

30. Introduction to Programming and Problem Solving (4) II, III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16A or 21A (may be taken concurrently). Introduction to computers and computer programming, algorithm design, running, debugging and testing of well-structured programs. Programming language Pascual will be used to solve problems. (Not open to students who have completed course 10, 35, or former course 30H. Only two units of credit allowed for students who have completed Engineering 5.)

35. Structure and Interpretation of Computer Programs (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: Computer Science or Electrical Engineering major, Mathematics 16A or 21A (may be taken concurrently), or consent of instructor. Mathematical foundations of computer science: Procedural and data abstraction. Design and analysis of algorithms. The Scheme programming language is used. Not open to credit for students who have completed course 10, 16E or 21E, or former course 30H. Intended for students who have been introduced to a high-level programming language in high school.

40. Introduction to Software Development (4) I, II, III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 30 or 35. Elements of program design, style, documentation, efficiency. Methods for debugging and verification. Application of dynamic data structure concepts to the programming language C.

98A-L. Special Topics in Computer Science (1-5) I, II, III. The Staff (Chairperson in charge) Lecture, laboratory or combination. Prerequisite: consent of instructor. Special topics in (A) Computer Science Theory, (B) Architecture, (C) Programming Languages and Compilers, (D) Operating Systems, (E) Software Engineering, (F) Data Bases, (G) Artificial Intelligence, (H) Computer Graphics, (I) Networks and Interconnected Design, (J) Scientific Computing, (K) Computer Science. May be repeated for credit when the topic is different.

92. Internship in Computer Science (1-5) I, II, III. The Staff Internship. Prerequisite: lower division standing; project approval prior to period of internship. Supervised work experience in computer science. May be repeated for credit. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

100. Discrete Structures (3) I, II. Archer, Kou Lecture—3 hours. Prerequisite: Mathematics 21C. Discrete structures and applications to various areas of computer science; mathematical models and mathematical reasoning, sets, relations, functions, mathematical induction, algorithms and fault-tolerant computer systems. (Not open to students who have had former Electrical and Computer Science Engineering 191.)

110. Data Structures and Programming (4) I, II, III. Martel Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Electrical and Computer Engineering 70. Study of the design and analysis of data structures for a variety of applications. Concept of abstract data-types and their representation. File structures. Dynamic information structures, linear lists, tree structures. Hash techniques. Recursive algorithms. Sorting algorithms and searching algorithms. Automata Theory and Formal Languages (3) I, II. Archer, Kou, Linz Lecture—3 hours. Prerequisite: course 100. Finite automata and regular expressions, deterministic and non-deterministic automata. (Not open to students who have completed course 128 or former Mathematics 171.)

122. Algorithm Design and Analysis (3) II, III. Gusfield, Myers Lecture—3 hours. Prerequisite: courses 100, 110. Complexity of algorithms, bounds on complexity, algorithms for searching, sorting, pattern matching, graph manipulation, combinatorial problems, introduction to NP-complete problems. (Not open for credit to students who have completed former course 123 or former Mathematics 129B.)

130. Programming Languages (4) I, II. Archer Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Syntactic definition of programming languages. Introduction to programming language features including variables, data types, data abstractions, scope, parameter disciplines, exception handling. Comparative study of several high-level languages. (Not open for credit to students who have completed former course 124 or former Mathematics 129B.)

142. Compilers (4) III. Archer Lecture—3 hours; discussion—1 hour. Prerequisite: courses 120 and 140, course 160 recommended. Principles and techniques of lexical analysis, parsing, semantic analysis, and code generation. Implementation of student's compiler. (Not open for credit to students who have completed former Electrical and Computer Science Engineering 181.)

150. Operating Systems and System Programming (4) I, II. Lions, Milosh, Olsson Lecture—3 hours; discussion—1 hour. Prerequisite: Electrical and Computer Science Engineering 70; Electrical and Computer Science Engineering 171. Study of basic concepts of operating systems and program programming. Processes and interprocess communication/interprocess synchronization; virtual memory; program loading and linking; file and I/O subsystems; utility programs. Study of a real operating system. Not open for credit to students who have completed Electrical and Computer Science Engineering 182A.

160. Introduction to Software Engineering (4) I, II. Levitt Lecture—3 hours; discussion—1 hour. Prerequisite: courses 110 and 140. Requirements, specification, design, implementation, testing, and verification of large software systems. Study and use of software engineering methodologies. Team programming. (Not open for credit to students who have completed former course 129 or former Mathematics 176.)

165. Database Systems (4) II. Walters Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Database hardware, input techniques; file types; database integrity and security; operating system interfaces with databases.

168. Information Systems (3) I. Walters Lecture—3 hours. Prerequisite: course 40 or the equivalent; upper division standing. Course design, implementation, and case study evaluation of information systems. Project-oriented, self-paced implementation of actual information including survey selection of data, input design, and development of components to enter, sort, and retrieve data. Case study of typical information systems problems. Offered in alternate years.

170. Introduction to Artificial Intelligence (4) I, II. Levitt, Fleissig Lecture—3 hours; discussion—1 hour. Prerequisite: course 110; course 140 or experience with Lisp recommended. Design and implementation of intelligent computer systems. Lisp as a programming language and building symbolic processing systems. Knowledge representation and organization. Memory and inference. Problem solving. Natural language processing. (Not open for credit to students who have completed former course 128 or former Mathematics 174.)

175. Computer Graphics (4) I, II. Joy Lecture—3 hours; discussion—1 hour. Prerequisite: course 110, Mathematics 22A. Principles of computer graphics. Current graphics operations in two- and three-dimensional space, transformational geometry, clipping, graphics system design, standard graphics systems. Individual projects. (Not open for credit to students who have completed former course 127 or former Mathematics 173.)

190C. Research Group Conferences in Computer Science (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: upper-division standing in Computer Science and Engineering; consent of instructor. Research group conferences. Not cross listed for credit. (P/NP grading only.)

192. Internship in Computer Science (1-5) I, II, III. The Staff (Chairperson in charge) Internship. Prerequisite: completion of a minimum of 84 units, project approval prior to period of internship. Supervised work experience in computer science. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Course

220. Theory of Computation (3) I, II. Linz Lecture—3 hours. Prerequisite: courses 120 and 122. Theory of computation: the notion of effective procedures, computability, Turing machines, Post symbol manipulation system, models similar to digital computers, computational complexity and tractable problems. (Not open to students who have completed the same topic under Electrical and Computer Science Engineering 289A.)

221. Formal Language Theory (3) I, III. Archer, Linz Lecture—3 hours. Prerequisite: course 220. Definition and properties of formal languages, deterministic context-free languages, context-sensitive languages, abstract families of languages, special topics of current interest.

*Course not offered this academic year.
228A. Design and Analysis of Algorithms (3) I. Gusfield, Martel
Lecture—3 hours. Prerequisite: course 122; Statistics 131A recommended. Techniques for designing efficient algorithms and analyzing their complexity. Use of data structures. Counting and estimating. Search techniques. Graph algorithms. (Not open for credit to students who have completed former Electrical and Computer Science Engineering 277A.)

228B. Advanced Design and Analysis of Algorithms (3) II. Gusfield, Martel
Lecture—3 hours. Prerequisite: course 228A. Advanced topics in complexity theory, Problem classification: the classes P, NP, NP-complete, polynomial time, co-NP, Match- ing and network flow algorithms, Matrix multiplication, Approximation algorithms. Selected advanced topics. (Not open for credit to students who have completed former Electrical and Computer Science Engineering 277B.)

223. Parallel Algorithms (3) I. Martel
Lecture—3 hours. Prerequisite: course 228A. Models of parallel computer systems including PRAMs, loosely coupled systems, and message passing networks. Parallel algorithms for classical problems are studied as well as general techniques for their design and analysis. Lower bounds on parallel computation are proved in several settings.

225. Graph Theory (3) A. Hakeem
Lecture—3 hours. Prerequisite: graduate standing in electrical engineering or computer science or consent of instructor. Fundamental concepts. Vertex spaces and graphs, planar graphs, Whitney’s and Kuratowski’s Theorems, Topological parameters: packings and coverings, Connectivity, Menger’s theorem, Hamiltonian graphs, Posa’s and Chvatal’s theorems, Graph factorization. Tutte’s theorem. Graph coloring. Brooks and Vizing’s theorem.

226. Computational Algorithms in VLSI (3) I. Koy
Lecture—3 hours. Prerequisite: course 122; Electrical and Computer Science Engineering 176. Application and inherent limitations of using VLSI to implement algorithms: circuit design and analysis of algorithms for the design of VLSI circuits, VLSI test set generation and simulation.

240. Programming Languages (3) II. Archer
Lecture—3 hours. Prerequisite: courses 140, 142. Advanced study of programming languages including formal syntax and semantics, formal verification, modularization, data flow languages, object-oriented languages, concurrent processing. Principles of programming language design.

242. Translation of Programming Languages (3) III. Archer
Lecture—3 hours. Prerequisite: course 240. Lexical analysis, parsing, storage management, symbol tables, compilation, analysis and code generation, LR, LALR grammars, Compiler-compiler. (Not open for credit to students who have completed former Electrical and Computer Science Engineering 278B.)

243. Code Generation and Optimization (3) I. Loves
Lecture—3 hours. Prerequisite: course 242. Advanced code generation techniques. Representation of intermediate code. Data flow analysis, code motion, loop optimization, common subexpression elimination, and peephole optimization. Optimization by program transformation. (Not open for credit to students who have completed former Electrical and Computer Science Engineering 278A.)

244. Principles of Concurrent Programming (3) I. Olsson
Lecture—3 hours. Prerequisite: course 100, 150 or Electrical and Computer Science Engineering 182B. Fundamental models and applications of concurrent programs; concurrent program verification and derivation; synchronization mechanisms in programming languages; distributed programming techniques; and studies of concurrent languages.

247. Parallel Languages (3) I. Keller
Lecture—3 hours. Prerequisite: course 240. Language constructs for parallel computation in functional-programming, logic-programming, and related languages. Representation and implementation of task spawning and synchronization. Forms of parallelism, including explicit vs. implicit, AND vs. OR, and All-Solutions vs. Committed-Choice. Techniques of data flow, suspensions, graph reduction, backtracking, difference lists, etc. Mapping to architectures.

250A. Advanced Computer Architecture (3) I. Matloff
Lecture—3 hours. Prerequisite: course 150; Electrical and Computer Science Engineering 171. Computer architecture; the relationship between processor and memory spaces; opportunities for parallelism.

250B. High-Performance Uniprocessoring (3) II. Farrens
Lecture—3 hours. Prerequisite: course 250A. Maximizing uniprocessor performance. Barriers to high performance; solutions to the problems; historical and current processor designs.

250C. Parallel Processing (3) I. Park
Lecture—3 hours. Prerequisite: course 250A. Using parallelism to increase computational speed: interconnection topologies; parallel programming paradigms; architecture-specific algorithms; synchronization; parallel programming languages.

252. Local Area Networks (3) II. Mukherjee
Lecture—3 hours. Prerequisite: course 152. Local area networks and their functions, structures, and access protocols. Emphasis on performance modeling and analysis of multiaccess techniques in polling, ring, and random access networks. Also discussed are standards, example products, and recent directions in research.

253. Cryptography and Data Security (3) I. Levitt
Lecture—3 hours. Prerequisite: course 150; consent of instructor. Methods of protecting data in computer and communication systems from unauthorized disclosure and modification. Introduction to mathematical principles of security with applications to operating systems, database systems, and computer networks.

256A. Analytic Methods for Computer Systems Design (3) I. Matloff
Lecture—3 hours. Prerequisite: course 100, Electrical and Computer Science Engineering 171, Statistics 131A or the equivalent; Electrical and Computer Science Engineering 182A and 182B recommended. Use of simulation and queuing theory in computer design. Analysis of parallel computing systems; file storage; computer networks; fault-tolerance, scheduling. Only one unit of credit allowed to students who have completed former Electrical and Computer Science Engineering 276A.

256B. Modeling and Analysis of Computer Networks (3) II. Matloff
Lecture—3 hours. Prerequisite: course 256A. Use of simulation and queuing theory in the design of wide-area and local computer networks, with particular emphasis on optimization. Multiple access protocols, capacity planning, topological design, flow control, and congestion.

260. Software Engineering (3) I. Olin
Lecture—3 hours. Prerequisite: courses 140, 142, 160. Advanced techniques for program specification, design, implementation, testing, and documentation, and to large-scale software systems. (Not open for credit to students who have completed the same topic under Electrical and Computer Science Engineering 288.)

261. Program Verification (3) I. Archer
Lecture—3 hours. Prerequisite: course 256A. Mathematical specification, design, implementation, testing, and documentation of large-scale software systems. (Not open for credit to students who have completed the same topic under Electrical and Computer Science Engineering 288.)

278. Computer-Aided Geometric Design (3) I. Joy
Lecture—3 hours. Prerequisite: course 275. Advanced topics in computer graphics. Hidden surface models, rendering of various surface types, subdivision methods, shading techniques, anti-aliasing, modeling techniques.

279. Advanced Graphics (3) III. Joy
Lecture—3 hours. Prerequisite: course 275. Advanced topics in raster graphics techniques. Ray tracing models, advanced modeling techniques, anti-aliasing, animation. Discussion of current research in the field.

278. Computer-Aided Geometric Design (3) III. Joy
Lecture—3 hours. Prerequisite: course 275; Applied Science Engineering 115 or Mathematics 128A Mathematical techniques for the definition and manipulation of curves and surfaces. Coon’s patches, Bezier curves and surfaces. B-spline curves and surfaces, beta splines, box splines. Integration into various computer-aided modeling and computer-aided design systems.
Engineering: Mechanical, Aeronautical, and Materials

(College of Engineering)
Allan A. McKillop, Ph.D., Chairperson of the Department

Department Office, 2020 Bailer Hall (916-752-0580)

Faculty
James W. Baughn, Ph.D., Professor (Aeronautical Science and Engineering)

Harry A. Dwyer, Ph.D., Professor (Mechanical Engineering)

Fidelis O. Eke, Ph.D., Assistant Professor

Andrew A. Frank, Ph.D., Professor (Aeronautical Science and Engineering)

Jeffrey C. Gibeling, Ph.D., Associate Professor (Materials Science and Engineering)

Mohamed M. Hafez, Ph.D., Professor (Aeronautical Science and Engineering)

Jerald M. Henderson, D.Eng., Professor (Food Science and Technology)

Ronald A. Hess, Ph.D., Professor (Aeronautical Science and Engineering)

Myron A. Hoffman, Sc.D., Professor (Materials Science and Engineering)

Mont Hubbard, Ph.D., Professor (Aeronautical Science and Engineering)

Maury L. Hult, Ph.D., Professor (Aeronautical Science and Engineering)

Dean C. Kannopp, Ph.D., Professor

Ilan M. Kennedy, Ph.D., Associate Professor

Wolfgang Kollmann, Dr.-Ing., Professor (Aeronautical Science and Engineering)

Donald L. Margolis, Ph.D., Professor (Aeronautical Science and Engineering)

Allan A. McKillop, Ph.D., Professor (Aeronautical Science and Engineering)

Amiya K. Mukherjee, Ph.D., Professor (Materials Science and Engineering)

Zuhar A. Munir, Ph.D., Professor (Materials Science and Engineering)

Howard L. Needles, Ph.D., Professor (Textiles and Clothing)

Brahm Ravani, Ph.D., Associate Professor

Lawrence W. Rehfeld, Ph.D., Professor (Aeronautical Science and Engineering)

Subhiksh R. Risbud, Ph.D., Professor (Materials Science and Engineering)

Nesrin Sarigul-Klijn, Ph.D., Associate Professor (Aeronautical Science and Engineering)

James F. Shackelford, Ph.D., Professor (Materials Science and Engineering)

Benjamin D. Shaw, Ph.D., Assistant Professor

S. Antony Snieh, Ph.D., Assistant Professor (Aeronautical Science and Engineering)

Joseph L. Steger, Ph.D., Professor (Aeronautical Science and Engineering)

Corneel P. van Daminck, Ph.D., Associate Professor (Aeronautical Science and Engineering)

Steven A. Velinsky, Ph.D., Associate Professor (Aeronautical Science and Engineering)

Bruce R. White, Ph.D., Professor (Aeronautical Science and Engineering)

Kazu K. Yamazaki, Ph.D., Professor (Materials Science and Engineering)

S. Haig Zeronian, Ph.D., D.Sc., Professor (Textiles and Clothing)

Emeriti Faculty
Charles W. Beadle, Ph.D., Professor Emeritus

Elyse F. Grantland, M.S., Professor Emeritus

Waren H. Gledt, Ph.D., Professor Emeritus

John D. Kemper, Ph.D., Professor Emeritus

An Tzu Yang, D.E.S.C., Professor Emeritus

Division of Aeronautical Science and Engineering

Faculty
James W. Baughn, Ph.D., Professor

Don O. Brush, Ph.D., Professor (Civil and Environmental Engineering)

James A. Cherry, Ph.D., Professor (Civil and Environmental Engineering)

Jean-Jacques Chattoor, Ph.D., Professor

Harry A. Dwyer, Ph.D., Professor (Mechanical Engineering)

Mohamed M. Hafez, Ph.D., Professor

Leonard R. Herrmann, Ph.D., Professor (Civil and Environmental Engineering)

Ronald A. Hess, Ph.D., Professor (Mechanical Engineering)

Myron A. Hoffman, Sc.D., Professor (Mechanical Engineering)

Mont Hubbard, Ph.D., Professor (Mechanical Engineering)

James H. Hutchinsion, Ph.D., Professor (Civil and Environmental Engineering)

Wolfgang Kollmann, D.ing., Professor (Mechanical Engineering)

Lawrence W. Rehfeld, Ph.D., Professor

Nesrin Sarigul-Klijn, Ph.D., Associate Professor

S. Antony Snieh, Ph.D., Assistant Professor (Mechanical Engineering)

Joseph L. Steger, Ph.D., Professor

Corneel P. van Daminck, Ph.D., Associate Professor

Bruce R. White, Ph.D., Professor

Division of Materials Science and Engineering

Faculty
Jeffery C. Gibeling, Ph.D., Associate Professor

Joanna R. Groza, Ph.D., Associate Professor

David G. Howitt, Ph.D., Associate Professor

Amiya K. Mukherjee, Ph.D., Professor

Zuhar A. Munir, Ph.D., Professor

Howard L. Needles, Ph.D., Professor (Textiles and Clothing)

Subhiksh R. Risbud, Ph.D., Professor

James F. Shackelford, Ph.D., Professor

S. Haig Zeronian, Ph.D., D.Sc., Professor (Textiles and Clothing)

Courses in Engineering: Mechanical

(Courses in Mechanical Engineering are listed below; courses in Aeronautical Science and Engineering and Materials Science and Engineering are listed immediately following.)

Lower Division Courses

1. Mechanical Engineering (1) I, II, III. The Staff (Chairperson in charge)

Lecture—1 hour. Description of the field of mechanical engineering with examples taken from industrial applications; discussion of the practice with respect to engineering principles, ethics and responsibilities. (Prerequisite: credit in 20A grade only)

92. Internship in Mechanical Engineering (1) I, II, III. The Staff (Chairperson in charge) Internship. Prerequisite: lower division standing; approval of project prior to period of internship. Supervised work experience in engineering. May be repeated for credit (P/NP grading only)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor; lower division standing. (P/NP grading only)

Upper Division Courses

134. Vehicle Stability (4) III. Kannopp Lecture—3 hours; laboratory—3 hours. Prerequisite: course 171 and Engineering 102. Introduction to static and dynamic stability characteristics of ground transportation vehicles. Examples drawn from automobiles, trains, articulated vehicles, motorcycles, bicycles and others. Lateral handling characteristics, oversteer, understeer. Laboratory experiments illustrate effects of vehicle parameters on dynamic vehicle response.

150A. Mechanical Design (3) I, II. Ravani Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 104B, course 150L (may be taken concurrently). Restricted to Aeronautical and Mechanical Engineering and Materials Science majors. The principles of mechanical engineering mechanics applied to fundamentals of mechanical design. Theory of static and fatigue failure of metals. Design projects emphasizing the progression from conceptualization to hardware.

150B. Mechanical Design (4) I, II. Velinsky Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Restricted to Aeronautical and Mechanical Engineering and Materials Science majors. Principles of engineering mechanics, failure theories and fatigue theory applied to design and selection of mechanical components. Design projects which concentrate on design, engineering analysis and product development, methods of manufacture, material selection and cost. Introduction to computer-aided design.

150L. Manufacturing Processes (2) I, II, III. Hensengerth Discussion—1 hour; laboratory—3 hours. Restricted to junior and senior Mechanical, Aeronautical, and Materials Science Engineering majors. Introduction to and experience with modern manufacturing methods and computer-aided manufacturing and their role in engineering design and development process.

151. Statistical Methods in Design (3) II. Hull Lecture—3 hours. Prerequisite: course 150A. Methods of statistical analysis with emphasis on applications in mechanical design. Applications include product evaluation and decision making, stress-strength inference, probabilistic design, systems reliability, and fatigue under random loading.

152. Mechanism Design (3) I. Ravani Lecture—3 hours. Prerequisite: Engineering 36 Application of complex-number method to kinematic, static, and dynamic analyses of plane mechanisms and dynamic balancing of mechanisms. Design of epicyclic gear trains and intermittent mechanisms.
186. Thermal Systems Design Project (4) III. Kennedy

Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B, 105B. Introduction to combustion kinetics; the theory of premixed flames and diffusion flames; turbulent combustion; formation of air pollutants in combustion systems; examples of combustion devices which include internal combustion engines, gas turbines, furnaces and waste incinerators, alternative fuel sources.

187. Modern Power Systems (4) II. Hoffman

Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 103B, 105B. Study of modern powerplants for electric power generation and cogeneration. Thermodynamic analysis of different powerplant concepts using fossil fuels, nuclear fuels, solar energy, etc. Design studies of some specific powerplants.

188. Vehicle Systems Design Project (4) II. Frank

Lecture—2 hours; laboratory—6 hours. Prerequisite: course 102B; senior standing in Mechanical Engineering (enrollment preference to students who have not taken any of course series, 184-188). Design of a traction system such as a power plant or engine, including consideration of engineering and economic factors. Grading based on individual contributions to project. Laboratory components.

187. Control Systems Design Project (4) III. Frank

Lecture—3 hours; discussion—1 hour. Prerequisite: course 172; senior standing in Mechanical Engineering (enrollment preference to students who have not taken any of course series, 184-188). Design of dynamic systems engineering. Formulation of goals, mathematical modeling of plant, consideration of passive, open loop, and closed loop active solutions. Hilbert space of control systems. Grading based on individual contributions to projects.

189. Fluid Flow and Heat Transfer Design (4) III. Hoffman

Lecture—3 hours; discussion—1 hour. Prerequisite: course 210A (may be taken concurrently) or consent of instructor. Study of advanced fluid mechanics and heat transfer. Course content will vary from year to year. Offered in alternate years.

211. Fluid Flow and Heat Transfer Design (4) III. Hoffman

Lecture—3 hours; discussion—1 hour. Prerequisite: course 210A. Study of stability and transition to turbulence. Introduction to the physics of turbulence. Modeling of turbulence for numerical determination of heat and mass transfer.

212. Advanced Thermodynamic Systems (4) III. Hoffman

Lecture—3 hours; discussion—1 hour. Prerequisite: course 210B (may be taken concurrently) or consent of instructor. Study of advanced fluid mechanics and heat transfer. Course content will vary from year to year. Offered in alternate years.

213. Advanced Turbulence Modeling (4) III. Kolmann

Lecture—4 hours. Prerequisite: course 210B. Methods of analyzing turbulence; kinematics and dynamics of homogeneous turbulence; Reynolds stress and heat-flux equations; second order closures and their simplifications; numerical methods; application to boundary layer-type flows; two-dimensional and three-dimensional hydraulic and environmental flows. Offered in alternate years.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 210A and Aeronautical and Astronautical Science 223, or consent of instructor. Introduction of numerical and approximation methods of solving flows and heat transfer for mechanical and aeronautical applications. Application to pipe flows, high Reynolds number flow in laminar and turbulent combustion; and solution of the Navier-Stokes equations. Offered in alternate years.

215. Advanced Thermodynamics (4) I. Shaw

Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B. Study of topics important to energy conversion systems, propulsion and other systems using high temperature gases. Classical thermodynamics and quantum statistical mechanics of nonreacting and chemically reacting gases, gas mixtures, and other substances. Offered in alternate years.

216. Combustion (4) II. Kennedy

Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B. Review of chemical thermodynamics and chemical kinetics. Discussions of reacting flows, their governing equations and transport phenomena; detonations, laminar flame structure and turbulence; multiphase flows. Offered in alternate years.

Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B, 105B, or the equivalent. Review of options available for advanced power generation. Detailed study of basic power balances, component efficiencies, and overall plant performance for one advanced concept such as a fusion, magneto-hydrodynamic, or solar electric powerplant. Offered in alternate years.
220A-220B. Mechanical Vibrations (3-3-3) I-II Elec Lecture—3 hours. Prerequisite: Engineering 122. Applications of vibration theory to systems with many degrees of freedom and continuous systems. Introduction to random vibrations.

222. Advanced Dynamics (3) K. Kanap Lecture—3 hours. Prerequisite: Engineering 102. Dynamics of particles and of rigid bodies with advanced engineering applications; generalization of coordinates; Hamilton's Principles; Lagrange's Equations; Analytical mechanics.

223A. Multibody Dynamics (4) E. Eke-Hubbard Lecture—3 hours, discussion—1 hour. Prerequisite: course 222 or consent of instructor. Dynamics of coupled rigid bodies; multibody kinematics; Euler and Lagrange equations of motion; nonholonomic systems; inertia dyadics; generalization of inertial forces; Kane, Newton-Euler, and Lagrange formulations; multibody systems; computational multibody dynamics. Application of equation dynamics.

223B. Multibody Dynamics II (4) E. Eke-Hubbard Lecture—3 hours; discussion—1 hour. Prerequisite: course 223A. Advanced topics on the dynamics of coupled rigid bodies; multibody kinematics; multibody systems; information form dynamical equations; linearization stability of motion; numerical methods in dynamics; computer simulations.

224. Kinematic Design of Mechanisms (3) I. Ravani Lecture—3 hours. Prerequisite: course 152 or consent of instructor. Introduction to Bormester theory of the rational design of link mechanisms. Geometric concept of two- and three-dimensional rigid-body displacements, instantaneous invariants, higher order patch curve analysis, circle- and center-point curvatures. Graphing and computer methods for kinematic design. Offered in alternate years.

225. Spatial Kinematics and Robotics (3) I. The Staff Lecture—3 hours. Prerequisite: course 222. Spatial kinematics: point and line coordinates and their transformations; concept of screw systems and instantaneous invariants for rigid body motion. Robotics: solving for kinematic equations; differential relationships; motion trajectories. Application of dual-number matrices, screw calculus, and associated analytical methods. Offered in alternate years.

227. Design and Dynamics of Road Vehicles (3) I. Welnsky Lecture—3 hours. Prerequisite: course 134. Analysis and numerical simulation of road vehicles with emphasis on design applications. Offered in alternate years.

228. Mechatronics (4) I. Yamauchi Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 222. Studies of techniques needed for the design of mechatronic systems that consist of the mechanical and the electronics-based/sophisticated control. Methodologies for designing the microprocessor applied control hardware and dedicated software and applying electric and dedicated software and applying electric actuator and sensors with its theoretical background.

229. Computer-Aided Design and Manufacturing (3) I. Vattulainen Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 180 and course 150B. Proficiency in a high-level programming language such as FORTRAN, BASIC, or C. Studies of computational and computer graphics in design and manufacturing. Use of numeric and nonnumeric computations and geometric tools in design and manufacturing.

270. Modeling and Simulation of Engineering Systems (3) I. Margolis Lecture—3 hours. Prerequisite: course 172 or consent of instructor. Model representations of mechanical, electrical, hydraulic, and thermal systems; bond graphs, block diagrams, and state space equations; Hamilton's principle for complex systems; formulation for analog and digital simulation; identification; instrumentation, approximate models of distributed systems.

271. Design of Multivariable Control Systems (3) I. Margolis Lecture—3 hours. Prerequisite: course 270 or consent of instructor. Modern methods of state variable feedback applied control system design. Introduction to observers and equivalent dynamic feedback. Stress on practical application of theory to engineering systems in various energy domains.

272B. Multivariable Feedback Control and Estimation Theory (4) I. Brewer Lecture—4 hours. Prerequisite: course 272A. Emphasis on multi-input, multi-output systems. Digital and continuous time control and estimation. Introduction to singular value methods and quantization feedback theory. Optimum Wiener-Hopf design and other frequency domain methods.

274. Analysis and Design of Digital Control Systems (4) III. Hess Lecture—3 hours; discussion—1 hour. Prerequisite: course 172. Discrete systems analysis; digital filtering; state space systems; state space and design techniques; quantization effects.

276A. Digital Data Acquisition and Analysis (3) I. Gibling Lecture—2 hours; discussion—1 hour. Prerequisite: course 175. Application of microcomputers and minicomputers to data acquisition and control. Topics include computer organization, hardware for laboratory applications of computers, fundamentals of interfacing between computers and experimental equipment, programming techniques for data acquisition and control, and basic data analysis.

276B. Digital Data Acquisition and Analysis (3) III. Hull Lecture—3 hours. Prerequisite: basic course in probability and statistics, Engineering 130 or the equivalent, and either course 176 or 172. Theory and application of digital techniques in digital data analysis. Topics include signal representation, description of data, convolution and correlation, and frequency analysis using the discrete Fourier transform. Emphasis on applying these techniques in the experimental characterization of linear dynamic systems. Offered in alternate years.

277. Computer-Aided Design of Nonlinear Dynamic Systems (3) I. Margolis Lecture—2 hours; discussion—1 hour. Prerequisite: courses 270 and 172. Application of bond graph modeling and control system design principles. The bond graph processor programs ENPOTO and CAMP are used with advanced continuous system modeling programs to simulate the dynamic response of engineering systems.

288. Advanced Engineering Analysis (3) I. Brandt Lecture—3 hours. Prerequisite: Engineering 170 or the equivalent. Applications in mechanical engineering of advanced analytical and numerical techniques. Topics include probability theory, calculus of variations, classification of differential equations, and advanced numerical methods.

290C. Graduate Research Conference (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: consent of instructor. Individual and/or group conference on problems, progress, and techniques in mechanical engineering research. May be repeated for credit. (SU only grading only.)

295. Design Seminar (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: consent of instructor. Review and discussion of current mechanical engineering design literature and projects with presentations by students and faculty. (SU grading only.)

296. Fluid and Thermal Sciences Seminar (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: consent of instructor. Review and discussion of the current literature and trends in fluids and thermal sciences. (SU grading only.)

297. Dynamic Systems and Control Theory Seminar (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: consent of instructor. Review and discussion of current literature and developments in system theory and automatic control with presentations by individual students. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SU grading only.)

309. Research (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SU grading only.)

Professional Course

390. The Teaching of Mechanical Engineering (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate-in mechanical engineering. Participation as a teaching assistant or associate-in in a designated engineering course. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated for credit. (SU grading only.)

Courses in Aeronautical Science and Engineering

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor and lower division standing. (RP grading only.)

Upper Division Courses

125. Aeronautical Engineering Fundamentals (3) II. Sarigui-Klijn Lecture—3 hours. Prerequisite: Engineering 103A (may be taken concurrently). Aircraft subsystems and nomenclature. History and structure of the aviation industry. Design/development cycle. Fundamentals of aircraft aerodynamics, performance, stability and control, propulsion, structures, wind tunnel testing, flight simulators and testing.

126. Theoretical Aerodynamics (4) III. Hatale Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B. Study of flow field kinematics and dynamics. Flow about a body. Thin airfoil theory. Finite wing theory. Application of numerical methods to wing design.

128. Aircraft Performance (4) II. van Dam Lecture—2 hours; discussion—1 hour. Prerequisite: course 127. Aircraft propulsion systems and their

130. Aircraft Preliminary Design (4) III. van Dam Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: courses 125 and 129. Aircraft preliminary design including estimation of weight, volume, aerodynamics, performance, stability and control. Design iteration and trade-off studies.

131. Aircraft Flight Performance Laboratory (3) III. Baugh Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: courses 125 and 129. Measurements and analysis of aircraft characteristics and performance in flight and with flight simulator.

135. Aerospace Structures (3) I. Sarrigi-Klin Lecture—3 hours. Prerequisite: Engineering 104B (may be taken concurrently). Introduction to methods used in the analysis and design of aircraft structures. Shear flow in open, closed, and multi-cell beam cross sections, buckling of flat and curved sheets, tension field beams, local buckling.

137. Structural Composites (4) I. Reifield Lecture—3 hours; laboratory—1 hour. Prerequisite: Engineering 104B. Overview of materials and technology for creating structures from fiber-reinforced resin matrix composite materials. Elementary design analysis and case studies emphasizing aeronautical applications.

138A, Aircraft Propulsion (4) II. Hofman Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 45, 103B, 105B. Analysis and design of modern gas turbine engines. Development and application of cycle performance prediction techniques for important engine configurations. Introduction to the operation and design of inlets, compressors, burners, turbines, and nozzles. Cycle design studies for specific applications.

139. Introduction to Aerelasticity (4) III. Sarrigi-Klin, Reifeld Lecture—4 hours. Prerequisite: course 127, 135. Fundamentals of structural dynamics and an introduction to aerelasticity. Categorization of aerelastic properties into three categories: Static aeroelasticity and flutter instabilities of simple structures. Offered in alternate years.

161. Gas Dynamics (4) III. Steger Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 103B. Development of the governing equations, analysis of one-dimensional steady and unsteady compressible flow, shock waves, and heat addition, special forms of the governing equations, steady supersonic flow, small disturbance theory, numerical demonstration of steady and unsteady flow effects.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses

231. Advanced Aerodynamic-Viscous Flow (4) I. Steger Lecture—4 hours. Prerequisite: Engineering 103B, Discussion of boundary-layer theory, laminar and turbulent boundary layers, laminar boundary-layer instability and transition, separation, viscous-inviscid interaction, three-dimensional flows and computational methods and their application. Offered in alternate years.

233. Introduction to Computational Aerodynamics and Fluid Dynamics (4) I. Chattot, Hafez, Steger, Dwyer Lecture—4 hours; discussion—1 hour. Prerequisite: Engineering 103B. Introduction to numerical methods of solution of fluid flow problems. Discretization techniques and solution algorithms. Finite difference solutions to classical model equations pertinent to wave propagation, diffusion phenomena, or equilibrium. Application to the incompressible Navier-Stokes equation.

235. Computational Fluid Dynamics, Euler and Navier-Stokes Equations (4) III. Steger Lecture—4 hours. Prerequisite: course 223 or consent of instructor. Euler and Navier-Stokes equations, conservation form, numerical methods for systems of conservation and convection-diffusion equations, computational methods for compressible Euler and Navier-Stokes equations, generalized coordinates, grid generation, applications.

236. Aerodynamics in Nature and Technology (4) I. White Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B. Introduction to aerodynamics in nature, fundamentals of turbulence in atmospheric flows, planetary boundary layers, wind effects on man-made objects, wind interacting with man-made objects. Criteria for laboratory modeling of atmospheric flows, wind tunnel testing, extra-terrestrial aerodynamics. Offered in alternate years.

237. Analysis and Design of Composite Structures (4) III. Reifeld Lecture—4 hours; discussion—1 hour. Prerequisite: course 137. Modeling and analysis methodology for composite structures including response and failure. Laminated plate bending theory. Introduction to failure processes.

238. Advanced Aerodynamic Design and Optimization (4) III. van Dam Lecture—4 hours; discussion—1 hour. Prerequisite: course 135. Application of aerodynamic theory to optimize aeroelastic shapes. Both analytic solutions and solutions obtained with numerical optimization techniques will be examined. Includes development of optimization techniques and numerical optimization techniques. Offered in alternate years.

275. Advanced Topics in Aircraft Stability and Control (4) I. Hess Lecture—3 hours; discussion—1 hour. Prerequisite: Theoretical Analysis 172. Development of aircraft motions of motion; response to ideal actuator response to random inputs; turbulence description; stability argumentation system design, pilot/vehicle analysis; handling qualities. Offered in alternate years.

290C. Graduate Research Conference (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: consent of instructor. Individual and/or group conference on problems, progress and techniques in mechanical engineering research. May be repeated for credit. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (SU grading only)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SU grading only)

Professional Course

390. The Teaching of Aeronautical Science and Engineering (1) I, II, III. The Staff Lecture—3 hours. Prerequisites: Instraining and/or associate in aeronautical science and engineering. Methods of leading discussion groups, laboratory sections, writing and grading quizzes. Use of laboratory equipment, grading laboratory reports. May be repeated for credit. (SU grading only)

Courses in Materials Science and Engineering

Upper Division Courses

130. Thermodynamics of Materials Processes (3) I. Redub Lecture—3 hours. Prerequisite: Engineering 45 and 105A (or the equivalent); upper division standing in Engineering. Application of the principles of thermodynamics to solid engineering materials with emphasis on solving problems associated with materials processes, e.g., alloying, phase stability, surface properties, semiconductors, thermoelectric power and thermionic energy conversion.

132. Structure of Engineering Materials (3) I. Howitt Lecture—3 hours. Prerequisite: Engineering 45; upper division standing. Structure of engineering materials on the atomic scale will be described by exploring the fundamentals of crystallography. The microstructure of this atomic structure to macroscopic properties will be emphasized. Experimental determination of structure will be described using x-ray diffraction techniques.

132L. Structure of Materials Laboratory (1) I. Howitt Laboratory—3 hours. Prerequisite: course 132 concurrently. Experimental investigations of the structure of solid materials. Laboratory exercises emphasize methods used to study structure of solids at atomic and microstructural levels.

134. Rate Processes in Materials Science (3) III. Groza Lecture—3 hours. Prerequisite: Engineering 45 and 105A or course 130. Kinetics of chemical processes (related to Rate Theory of Solubility, diffusion, solidification, evaporation, and sintering processes.

134L. Rate Processes in Materials Laboratory (1) III. Groza Laboratory—3 hours. Prerequisite: course 134 concurrently. Laboratory experiments to illustrate fundamental principles of diffusion, solidification, recrystallization, precipitation, evaporation, sintering and phase transformations in materials.

138. Mechanical Behavior of Materials (3) II. Muhler Lecture—3 hours. Prerequisite: Engineering 45 and 105A (or the equivalent); upper division standing in
Engineering. Microscopic aspects of the mechanical behavior of engineering materials are discussed with emphasis on recent developments in materials science and fracture mechanics. High temperature plastic deformation processes, strengthening mechanisms, and fatigue failure modes of materials are outlined.

138L. Mechanical Properties Laboratory (1) I. Mujkheerjee
Laboratory—3 hours. Prerequisite: course 136 concurrently. Laboratory experiments on the microscopic behavior of materials. Experiments exercise emphasis on the fundamental relationships between microstructure and mechanical properties.

140. Materials in Engineering Design (3) II. Gobel Lecture—3 hours. Prerequisite: senior standing in Engineering or consent of instructor. Descriptive treatment of common engineering materials. Discussion of design parameters of typical materials including metals, ceramics, glasses, polymers, and composites. Principles of heat treatment and fabrication as they affect design parameters and applications in engineering will be emphasized.

140L. Materials Selection Laboratory (1) I. Gobel
Laboratory—3 hours. Prerequisite: course 140 concurrently. Experimental investigations of processing and properties of materials used in structural applications. Laboratory exercises emphasize fundamental relationships between microstructure and properties. Consideration given to the role of property control in materials selection.

142. Principles of Nondestructive Testing (3) II. Shoebelmeyer
Lecture—3 hours. Prerequisite: senior standing in Engineering or consent of instructor. Basic principles of nondestructive testing using radiological, ultrasonic, magnetic, penetrant, and acoustic methods, as discussed. Typical results expected from these tests and their application in material characterization, flaw detection, crystalline information, chemical inhomogeneity, residual stress analysis, etc., are emphasized.

142L. Nondestructive Testing Laboratory (1) II. Shoebelmeyer
Laboratory—3 hours. Prerequisite: course 142 concurrently. Laboratory experience in nondestructive testing techniques with emphasis on X-ray radiography, X-ray diffraction, and ultrasonics.

144L. Corrosion Laboratory (1) I. The Staff
Laboratory—3 hours. Prerequisite: course 144 concurrently. Laboratory experiments to demonstrate corrosion behavior of materials in aqueous and high temperature environments. Relationship between corrosion behavior and fundamental principles and theories are emphasized.

146. Electronic and Optical Materials Processing (3) III. The Staff. Lecture—3 hours. Prerequisite: upper division standing in Engineering, Physics, Chemistry, or Geology. Principles of phase equilibria, thermodynamics and reaction kinetics applied to the processing of electronic and optical materials in polycrystalline, single crystal, and amorphous forms.

147. Principles of Polymer Materials Science (3) II. The Staff
Lecture—3 hours. Prerequisite: chemistry through organic or Engineering 45; introductory physics sequence. Basic principles of polymer science presented including polymer structure and synthesis; polymer processing; polymer classes, properties, and reactions; polymer morphology, rheology, and characterization; polymer processing. (Same course as Fiber and Polymer Science 100.)

148. Failure Analysis (4) III. Gobel
Lecture—3 hours. Laboratory—3 hours. Prerequisite: Engineering 45, 104A; course 138 and Mechanical Engineering 150A recommended. Fracture mechanisms and failure mechanisms in metals, ceramics, and composites. Interlinking of service constraint and load levels. Methodology for investigating failure including optical microscopy, scanning electron microscopy and destructive testing.

149. Materials Engineering Design Project (3) II. The Staff
Discussion—1 hour; laboratory—6 hours. Prerequisite: course 140 may be taken concurrently. A capstone engineering design experience involving analysis of real materials problems and the fundamentals of manufacturing materials. The various principles of materials science introduced in other courses in the curriculum are integrated into the design project.

155. Manufacturing Process Design (3) II. Groze Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 45, Mechanical Engineering 150A and 150L (may be taken concurrently). Principles of materials processing and manufacturing properties, effects of processing variables on structure-property relationships, and the fundamentals of manufacturing process selection are described. Case histories are used to explore recent developments in manufacturing processes.

198. Directed Group Study (1-2) I, II, III. The Staff
Lecture—1.5 hours. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-2) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. P/NP grading only.

Graduate Courses

230L. Laboratory for Electron Microscopy (2) II. Howitt Laboratory—6 hours. Prerequisite: course 230 concurrently. Practical application of techniques of electron scanning and transmission microscopy including x-ray microanalysis. Offered in alternate years.

232. Advanced Topics in Transmission Electron Microscopy (1-2) II. The Staff
Lecture—1 hour; discussion—2 hours. Prerequisite: course 230. Advanced course in the techniques of electron microscopy including analytical techniques, probe diffraction methods, and high resolution imaging. Offered in alternate years.

232L. Laboratory for Advanced Transmission Electron Microscopy (2) II. Howitt Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering, Phenomenological and statistical mechanisms in transport processes in condensed and non-condensed phases. Application to heat treatment, chemical and physical vapor deposition, crystal growth, bonding, sintering and joining of metals. Offered in alternate years.

241. Principles and Applications of Dielectric Mechanics (4) II. Rischbuhler Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering. Consent of instructor. Concepts in dielectric relaxation are applied to explain plasticity of crystalline solids. Glide and climb of dislocations, strain hardening, recrystallization, theories of creep processes and interaction of dislocation with solute atoms, precipitates and impurity clouds are discussed. Offered in alternate years.

242. Advanced Mechanical Properties of Materials (4) II. Mujkheerjee Lecture—3 hours; discussion—1 hour. Prerequisite: course 138. Strength and structure of engineering materials. The dependence of their mechanical properties on time, stress, and temperature and new concepts of dislocation theory in plastic deformation, including creep, superplasticity, and cavitation influence of microstructure in optimizing the mechanical strength properties. Offered in alternate years.

243. Kinetics of Phase Transformation in Engineering Materials (3) II. Groze Lecture—3 hours. Prerequisite: graduate standing in Engineering and consent of instructor. Course 130 recommended. Theory of alloying, kinetics of phase changes, homogeneous and heterogeneous transformation, transformation by shear, order-disorder reactions. Offered in alternate years.

244. Interation of Materials and their Environment (3) II. Murin Lecture—3 hours. Prerequisite: Engineering 45 and 105A, or consent of instructor. Thermodynamic and kinetic foundations of the corrosion and oxidation processes. Practical aspects of corrosion control and prevention. Stress-corrosion and gas-embrittlement phenomena. Special topics in corrosion, microbiological and atmospheric corrosion. Offered in alternate years.

245. Advanced Topics in Structure of Materials (4) II. Shackelford Lecture—3 hours; discussion—1 hour. Prerequisite: course 132 and graduate standing in Engineering or consent of instructor. Course 138 and 142 recommended. Nature of microstructure in engineering materials will be explored. Crystalline and non-crystalline structures will be studied with special emphasis on grain boundary segregation in development of polycrystalline microstructure and the relative distribution function of amorphous materials. Offered in alternate years.

246. Current Topics in Electronic Materials Processing (3) II. Rubisco Lecture—3 hours. Prerequisite: course 146; graduate standing in physical sciences or engineering. Discussion of current literature and topical areas related to the processing of electronic and optical materials in polycrystalline, single crystal, and amorphous forms. Offered in alternate years.

247. Advanced Thermodynamics of Solids (3) II. Groze Lecture—3 hours. Prerequisite: course 130 or the equivalent. Thermodynamics of gas-solid reactions and solutions; criteria for phase stability; thermodynamics of surfaces and interfaces; thermodynamics of defects in compounds; their influence on transport processes; thermodynamics of EMF cells and application to solid-state electrolysers. Offered in alternate years.

248. Fracture of Engineering Materials (3) III. Gobel Lecture—3 hours. Prerequisite: course 138. Description of failure of materials by crack propagation. Topics include the stress fields about elastic cracks, the Griffith- Irwin analysis, descriptions of plastic zones, fracture toughness testing, microstructual aspects of fracture and fatigue at elevated temperatures. Offered in alternate years.

249. Mechanisms of Fatigue (3) I. Gobel Lecture—3 hours. Prerequisite: course 138 or consent of instructor. Course 248 recommended. Microstructural description of mechanisms of fatigue in metals. Topics include the phenomenological treatment of cyclic deformation, dislocation processes in cyclic deformation, fatigue in loaded and cracked structures. Effect of crack growth, peak effects and high temperature cyclic deformation. Offered in alternate years.

250A-F. Special Topics in Polymer and Fiber Science (3) I, II. Zarour Lectures—3 hours. Prerequisite: course 147 or consent of instructor. Selected topics of current interest in polymer and fiber sciences. Topics will vary each time the course is offered. (Same course as Textiles and Clothing 250A-F.)
English

(College of Letters and Science)
Peter A. Dale, Ph.D., Chairperson of the Department
Department Office, Sproul Hall, (916) 752-2257

Faculty
William E. Baker, Ph.D., Professor
Phillip J. Barrish, Ph.D., Assistant Professor
Max Byrd, Ph.D., Professor
Garon A. Cott, Ph.D., Assistant Professor
Peter A. Dale, Ph.D., Professor
Sandra M. Gilbert, Ph.D., Professor
John O. Hayden, Ph.D., Professor
Peter L. Hayes, Ph.D., Professor
W. Jack Hicks, Ph.D., Associate Professor
Michael J. Hoffman, Ph.D., Professor
Michael P. Kramer, Ph.D., Associate Professor
Richard A. Levin, Ph.D., Associate Professor
Kari E. Loke, Ph.D., Assistant Professor
Clarence Major, Ph.D., Professor
Arthur E. McGuinness, Ph.D., Professor
Sandra J. McPherson, B.A., Professor
Patricia L. Moran, Ph.D., Assistant Professor
Linda A. Morris, Ph.D., Senior Lecturer
Marjorie Osborn, Ph.D., Associate Professor
David A. Robertson, Ph.D., Professor
Winfried Scheiner, Ph.D., Professor
Gary Snyder, B.A., Professor
Margot K. Stange, Ph.D., Assistant Professor
Elizabeth Tallent, B.A., Associate Professor
David W. Van Leer, Ph.D., Professor
Raymond W. Waddington, Ph.D., Professor
Alan B. Williamson, Ph.D., Professor
Karl F. Zander, Ph.D., Professor

Emeriti Faculty
Everett Carter, Ph.D., Professor Emeritus
Thomas A. Harrington, Ph.D., Professor Emeritus
Wayne Harsh, Ph.D., Professor Emeritus
Robert H. Hopkins, Ph.D., Professor Emeritus
James J. Murphy, Ph.D., Professor Emeritus
Gwendolyn Schwabe, M.A., Senior Lecturer Emeritus
Kari J. Shapiro, Professor Emeritus
Daniel Silvia, Ph.D., Associate Professor Emeritus

Brom Weber, Ph.D., Professor of American Literature Emeritus
James L. Woodress, Ph.D., Professor Emeritus
Celeste T. Wright, Ph.D., Professor Emeritus

The Major Program
The study of English develops skills in reading analytically and perceptively and in writing clearly and with effect.

The Program
The English department offers three kinds of courses, undergraduate courses, and graduate courses. Composition courses develop skills in reading analytically and in writing persuasively. Undergraduate and graduate courses cover the entire range of English and American literature, as well as creative writing. Students majoring in English may elect a teaching emphasis, a creative writing emphasis, or a general literature emphasis. The teaching emphasis focuses on the study of composition and of language. The writing emphasis focuses on fiction, poetry, article writing, and magazine editing. Creative writing majors have an opportunity to work with distinguished professional writers of fiction and poetry, and to be involved with a national literary magazine, California Quarterly, published by the English department. The general literature emphasis focuses on a series of related courses in various historical periods of English and American literature. A Senior Honors Program is available to an invited group of English majors, who prepare and write a Senior Thesis (either a research paper or creative writing) in their final year. Graduate courses lead to the M.A. and Ph.D. degrees.

Career Alternatives. Graduates have found the major excellent preparation for professional training in graduate study in English, as well as for careers in teaching, law, medicine, and literary work. Many graduates are employed in journalism, publishing, advertising, and public information. Others have worked in local, state, and federal government agencies, as well as in industry and agriculture. Some have even established their own businesses.

A.B. Degree Requirements:

Preparatory Subject Matter
English 45, 46, 47
English 30A, 30B, 46A, 46B, 46C

Depth Subject Matter (for each emphasis, see below)

Core requirement

A. Historical Periods

One course each in four of the following five areas

1. British literature, beginnings to 1500: English 111, 150A
2. British literature, 1500-1660: English 116, 120, 150B
3. British literature, 1660-1800 or American literature, 1620-1800: English 125, 127, 140, 141, 155A
4. Nineteenth-century British or American literature: English 130, 132, 133, 134, 143, 144, 155B, 155C, 155A, 195A
5. Twentieth-century British or American literature: English 136, 137, 138, 139, 140, 141, 142, 143, 152, 155B, 155C, 155A, 180, 195B

B. Major Authors

Two courses in different authors selected from English 113A, 113B, 117A, 117B, 117C

C. Senior Seminar

One course selected from English 187, 188, 189, 191-194

Course not offered this academic year.

UNITS

General Major

Depth Subject Matter

Core requirements (see above) (26)
One course from language/linguistics: English 20A, 20B, 20C
Twin elective units in English literature courses (4)

Total Units for the Major (68)

Teaching Emphasis

Depth Subject Matter

Core requirements, same as for General major above, but must include one course from English 117A, 117B, or 117C
English 130A, 150B
One course selected from English 178, 181, or an ethnoliterature course from outside the English department (4)

Total Units (Teaching Emphasis) (68)

Writing Emphasis

Depth Subject Matter

Core requirements, same as for General major above (28)
One course from language and linguistics: English 103A, 105B
English 20C, 105C, 105D

Total Units (Writing Emphasis) (68)

English Majors

Up to four upper division units in a national literature other than English or American, or in Comparative Literature, may count toward the requirements of the major.

Minor Program Requirements:

UNITS

English

Five upper division courses, four of which will be literature courses (20)

Campus Writing Center. The Campus Writing Center, an affiliate of the English Department, is a program designed to provide writing instruction across the curriculum. Of special interest to students are its adjunct writing courses, which are offered to students who are simultaneously enrolled in specified courses in other disciplines. Topics of instruction and writing assignments in each adjunct course relate to the subject matter of the companion course. These are credit-based courses offered in conjunction with both lower and upper division courses in English literature, engineering, and letters and sciences. Interested students and faculty should contact the Campus Writing Center, 2775 Wilder Unity Road, (916) 752-7004, for the current schedule of courses.

Subject A. Students must have passed the Subject A requirement before taking any course in English.

Prerequisites. English 1 or 3 is required for admission into courses 30A, 30B, 45, 46A, 46B, and all upper division courses. Course 45 is recommended as preparation for the 30 and 46 series. Students taking course 30A, 30B, 45, 46A, 46B, or 45C for General Education credit must substitute Comparative Literature 1.2, or 3.2.

Meeting for Majors. All new and prospective English majors are invited to attend a general meeting for majors at the beginning of each year: all new and transfer English majors are invited to attend a general meeting for majors at the beginning of their first quarter in residence; all English majors must see their advisers, individually, in the spring quarters of their sophomore and junior years.

Undergraduate Adviser: P.L. Hays.

Course not offered this academic year.
Foreign Languages. Students who contemplate advanced study in English should prepare for foreign language requirements for higher degrees, and should consult with the graduate adviser.

Honors and Honors Program. The honors program consists of four units of 1004 and four units of 1904, normally taken during the fall and winter quarters of the senior year. Completion of the program is a prerequisite for High or Highest Honors at graduation. Eligible written of English language materials may be submitted to the Undergraduate Office, Spraul Hall. Refer to the Academic Information section and the College section for Dean's Honors List Information.

Teaching Credential Subject Representative. R.A. Lewis, 312, International Education Program.

Graduate Study. The Department of English offers programs of study and research leading to the M.A. and Ph.D. degrees. Detailed information may be obtained from the graduate adviser or the Chairperson of the Department.

The department's affiliation with the Critical Theory Program also provides the opportunity for students in English to prepare for the designated emphasis in Critical Theory (an interdisciplinary program in theoretical and methodological perspectives in the Humanities and Social Sciences). Graduate Adviser: D.A. Robertson.

Courses in English

Lower Division Courses

A. Language Skills (2) I, II, III. The Staff (Chairperson in charge).

Lecture/discussion—4 hours. Introductory course to help students gain writing proficiency required for successful University-level work. Focus on critical thinking, reading, and writing, on the fundamentals of essay writing, and on the relationship between written and spoken language. This course must be taken for a letter grade. Minimum passing grade is C; students receiving a C- or below must repeat course. Satisfies Subject A requirement. (Counts as 2 units toward minimum progress.)

R. Communications Skills Workshop (0). I. The Staff (Chairperson in charge).

Lecture—4 hours: workshop—2 hours; reading laboratory—1 hour. Workshop in language skills for students from non-standard English backgrounds who need to strengthen basic skills before taking English A. Course worth 6 units toward minimum study requirement. (P/NP grading only.)

1. Expository Writing (4) I, II, III. The Staff (Chairperson in charge).

Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement: Composition, the essay, paragraph structure, diction, and related topics. Frequent writing assignments will be made. General Education credit: Civilization and Culture/Introductions.

Seminar—4 hours. Prerequisite: completion of Subject A requirement and consent of instructor; enrollment limited to freshmen. Critical inquiry into significant literary texts. Emphasis on close reading, classroom dialogue, and the writing of several papers or a long seminar paper. General Education credit: Civilization and Culture/Introductions.

5F. Introduction to Creative Writing: Fiction (4) I, II, III. The Staff (Chairperson in charge).

Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement and consent of instructor. The elementary principles of writing fiction. Students will write both in prescribed forms and in experimental forms of their own choosing. No final examination.

5P. Introduction to Creative Writing: Poetry (4) I, II, III. The Staff (Chairperson in charge).

Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. The elementary principles of writing poetry. Students will write both in prescribed forms and in experimental forms of their own choosing. No final examination.

Lecture/discussion—4 hours. Prerequisite: course 1 or 3. Emphasis on the grammatical patterns of standard English, sentence revision techniques, development of coherent paragraphs, and the formal properties of the extended paragraph.

21. Introduction to Reading and Composition in ESL (5) I, II. The Staff (Chairperson in charge).

Lecture/discussion—5 hours. Prerequisite: enrollment by placement examination only. Course provides undergraduate students whose native language is not English with intensive work in reading for factual information and in writing organized, coherent, and grammatically correct paragraphs. Students also study elements of the academic essay. (P/NP grading only.)

22. Reading and Composition in ESL (4) I, II, III. The Staff (Chairperson in charge).

Lecture/discussion—4 hours. Prerequisite: enrollment by placement examination or by successful completion of course 21. Course provides undergraduate students whose native language is not English with experience in reading complete short essays in recognized rhetorical modes, such as definition, comparison, cause and effect. General Education credit: Civilization and Culture/Introductions.

23. Advanced Reading and Writing in ESL (4) I, II, III. The Staff (Chairperson in charge).

Lecture/discussion—4 hours. Prerequisite: enrollment by placement examination or by successful completion of course 22. Course provides students whose native language is not English with experience with the expository essay in written English and with writing persuasive essays. Students also asked to read for tone, style, content, and assumptions. (P/NP grading only.)

25. English for Foreign Students (5) I, II, III.

Lecture—3 hours; laboratory—4 hours. Prerequisite: enrollment by examination in English placement; open to international graduate students only. Course develops skills needed by the graduate student: note-taking on oral presentations and on written academic discourse, writing logically developed essays accurately under time pressure, using thinking strategies implicit in objective testing, systematically expanding vocabulary, and writing a research paper.

Lecture—3 hours; laboratory—4 hours. Prerequisite: satisfactory completion of course 25: open to international graduate students only. Continuation of work in course 25 for international students.

28. Introduction to Library Research (5) II, III. Library staff (Chairperson in charge).

Lecture—1 hour, practicum—3 hours. Methodology of research in libraries: catalogs, indexes and abstracts, periodicals, reference books, specialized sources. Emphasis on preparation of detailed bibliographies for term papers, reports; offered in conjunction with campus libraries. (P/NP grading only.)

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. American literature from the seven- teenth century to the present. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

30B. Survey of American Literature (4) I. Morris, II. Barrish, III. Harris.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. American literature from 1865 to the present. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

34B. Close Reading of Poetry (4) I, II, III. The Staff (Chairperson in charge).

Lecture/discussion—4 hours. Prerequisite: course 1 or 3. Close reading of selections from English and American poetry. Frequent written exercises.

46A. Masterpieces of English Literature (4) L. Schierer, II. Waddington.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1640. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

46B. Masterpieces of English Literature (4) II. Hayden, III. Lakes.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1640 to 1832. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

46C. Masterpieces of English Literature (4) I. McGillicuddy.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1832 to present. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

92. Internship in English (1-12) I, II, III. The Staff (Chairperson in charge).

Internship—3-36 hours. Prerequisite: course 1 or 3. Internships in fields where students can practice their skills. May be repeated for credit for a total of 12 units. (P/NP grading only.)

89. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge).

Prerequisite: course 1 or 3. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III.

Lecture (P/NP grading only).
ic discipline. May be repeated once for credit if taken in conjunction with a different subject-matter course.

103A-F. Advanced Composition (4) II, III, IV. The Staff (Chairperson in charge).
Lecture-discussion—3 hours; individual evaluations and conferences. Prerequisite: course 1 or 3; course 20 recommended. Instruction and practice in a variety of modes of composition. Frequent written assignments. Oral and written evaluation of teaching credentials: section "F" strongly recommended. Study areas are: (A) General; (B) Legal Writing; (C) Article Writing; (D) Report Writing; (E) Technical Writing; (F) Composition for Elementary and Secondary Teachers. May be repeated once for credit in different area of emphasis.

104. Scientific Writing (1-3) I, II, III. The Staff (Chairperson in charge).
Lecture—2 hours; discussion—1 hour. Prerequisite: upper division enrollment in a science curriculum. Analysis and practice of scientific writing; research methods, organization, proper style and format, oral presentation of scientific papers. Lecture and workshop-discussions by English and science department staff. May be repeated for a total of 4 units of credit (P/NP grading only).

105A. Language (4) II, III.
Lecture-discussion—3 hours; term paper. Prerequisites: course 1 or 3. Present-day English grammar and pronunciation according to the perspectives of traditional grammar and contemporary linguistics. Preparation for stylistic analysis and historical study of English literature. Required of teaching credentials.

105B. Language (4) II, III. Scheier
Lecture-discussion—3 hours; term paper. Prerequisite: course 1 or 3. History of the English language. Examination of the language as recorded from Old English to present-day English. Relationship of English to other languages; development of vocabulary, phonology, and grammatical patterns. Required of teaching credentials.

110A. Introduction to Principles of Criticism (4)
Lecture-discussion—3 hours; term paper. Prerequisite: course 1 or 3. Essentials of literary criticism and its history from Aristotle to the modern era, with emphasis on the major critics.

110B. Introduction to Principles of Criticism (4) II. Hayden
Lecture-discussion—3 hours; term paper. Prerequisite: course 1 or 3. History of literary criticism in the modern era, with emphasis on characteristic techniques and the special problems presented by modern literary theory.

111. Medieval Literature (4) III. Osborn
Lecture-discussion—3 hours: term paper. Prerequisite: course 1 or 3. Major works of the Middle Ages, their significance, and their influence on later literature.

113A. Chaucer: The Canterbury Tales (4) I. Coffin
Lecture—3 hours; term paper. Prerequisite: course 1 or 3. The Canterbury Tales complete as a work of art. Courtly love, literary forms, medieval science and astrology, and the influence on modern culture of the vision of Chaucer. Courses 113A and 113B need not be taken in sequence.

113B. Chaucer: The Canterbury Tales (4) II. Osborn, III. Coffin
Lecture—3 hours; term paper. Prerequisite: course 1 or 3. The Canterbury Tales complete as a work of art. Courtly love, literary forms, medieval science and astrology, and the influence on modern culture of the vision of Chaucer. Courses 113A and 113B need not be taken in sequence.

116. Sixteenth-Century Poetry and Prose (4) I.
Lecture-discussion—3 hours; term paper. Prerequisite: course 1 or 3. Poetry of Skelton, Wyatt, Surrey, Sidney, Spenser, Marlowe, and Shakespeare; select-
152. American Drama from Its Beginnings to the Present (4) II. Hays
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Critical and historical survey of drama in America from its 17th-century origins with emphasis on O'Neill, Williams, Miller, and others.

155A. The English Novel: 1700-1770 (4) I. Byrd
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Restarts and the rise of the modern novel. Defoe, Richardson, Fielding, Sterne, and Smollett.

155B. The English Novel: 1770-1850 (4) Lecture—3 hours; extensive reading includes 5 two-page position papers. Prerequisite: course 1 or 3. Emphasis on 1770-1850 with particular emphasis on the invention of the gothic novel (Redcliffe, Mary Shelley), invention of the historical novel (Sir Walter Scott), and the contributions of women writers to the novel (Jane Austen, Emily, Charlotte, and Anne Bronte).

155C. The English Novel: 1850-1900 (4) II. Barnhill
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Major Victorian novelists: their theory and fiction. Dickens, Thackeray, Trollope, Eliot, Meredith, and Hardy.

155D. The English Novel: 1900 to the Present (4) I. Hoffman
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Major figures including Conrad, Joyce, and Lawrence. Impressionism: the revolt against naturalism; the experimental novel; the modernist reaction.

156. The Short Story (4) III. Moran
Lecture/discussion—2 hours; term paper. Prerequisite: course 1 or 3. The short story as a genre; its historical development, techniques, and formal character as a literary form. European as well as American writers. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

158A. The American Novel to 1900 (4) II. Stange
Lecture/discussion—2 hours; term paper. Prerequisite: course 1 or 3. Rise and development of the American novel from its beginnings. Hawthorne, Melville, Iwoi, and others.

158B. The American Novel from 1900 to the Present (4) II. Lewis
Lecture/discussion—2 hours; term paper. Prerequisite: course 1 or 3. Major American novelists of the twentieth century Faulkner, Hemingway, Fitzgerald, and others.

160. Film As Narrative (4)
Discussion—2 hours; lecture and film study—3 hours. Prerequisite: course 1 or 3. Study of modern film (1900 to the present) as a storytelling medium.

182. Film Theory and Criticism (4)
Lecture—1 hour; discussion—2 hours; laboratory—3 hours. Prerequisite: course 1 or 3. Film theory and criticism, with a study of ten major works of international film art. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

171A. The Bible as Literature: The Old Testament (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. May be taken independently of course 171B. Selected readings from the Old Testament illustrating various literary forms. Emphasis on the Pentateuch, the Historical Books, and the Wisdom Books. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 44, 45, or Philosophy 101, 108, Religious Studies 21, 40, 41, or any course from the GE Literature Preparation List.

171B. The Bible as Literature: Prophets and New Testament (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 2. May be taken independently of course 171A. Selected readings from the Old Testament prophets and the New Testament. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4, 4A, 4B, 4C, Philosophy 1, 108, Religious Studies 21, 40, or any course from the GE Literature Preparation List.

173. The Literature of Science Fiction (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of the literary modes and methods of science fiction. The course will analyze representative novels and short stories written by those exemplify major themes and styles in this genre—e.g., time travel; alternative universes; utopian, anthropological, sociological science fiction.

173. American Literary Humor (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3, or standing above freshman level. American humorous vision of man, nature, and the supernatural. Includes one or more of following: colonial humor; southwestern and New England humor; pre- and post-Civil War masters; local colo- nists; journalistic gags; anti-provincials; frontier poet and prose writer; black humor.

177. Study of an Individual Author (4) II. Hays; III. Morris
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Seminar study of the works of an individual author other than Chaucer, Shakespeare, or Milton. May be repeated for credit when subject differs.

178. Special Topics in Ethnic Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or sophomore standing or above. Extended study of one of the major ethnic literatures of the United States. Course may focus on particular ethnic groups, historical periods, writers, genres, and/or themes. May be repeated for credit when subject differs.

179. Multi-Ethnic Literature (4) II. Kramer
Lecture/discussion—3 hours; papers. Prerequisite: course 1 or 3, or standing above freshman level. Fiction, poetry, and other writings by Americans of ethnic minority origins. Readings from Hispanic, Jewish, Italian, etc. which reveal their immigrant experience, cultural diversity, and contributions to American literature.

180. Children's Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historical backgrounds and development of types of children’s literature, folklore and oral tradition, levels of interest, criticism and evaluation, illustration and bibliography.

181. Black Literature (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. A study of the writings of black Americans, including Chesnut and Dunbar in the nineteenth century, the writings of the Harlem Renaissance and the works of the more important contemporary black writers, such as Wright, Ellison, Baldwin, Hensberry, and Jones.

182. Literature of California (4)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. California literature in the context of California's social, political, and intellectual history. Reading of poetry, fiction, and essays. Emphasis on nineteenth- and twentieth-century writers, turn of the century novelists, the Beats, and writers of the last two decades. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: English 3, Comparative Literature 1, 2, or 3.

184. Literature of the Wilderness (4) II. Robertson
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of the theme of wilderness as primitive in American Literature, with some consideration of Gothic and European antecedents. Major attention given to Thoreau, Muir, London, Austria, Faulkner, Snyder, and Atoey. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: English 3, History 177, or 178.

185A. Literature by Women (4) II. Stange
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. English language literature by women from Braddstel and Behe to the Brontes, Eliot, and Dickinson. The effects of social constraints upon women's art; the rise of feminism; new trends in literary criticism.

185B. Literature by Women II (4) III. S. Gilbert
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Course 185A recommended. English language literature by women from Chopin and Woolf to Platt, Rich, and Morrison. The effects of social constraints upon women's art; the rise of feminism; new trends in literary criticism.

187. Literature and the Other Arts (4) III. Stange
Seminar—3 hours; term paper. Prerequisite: junior or senior standing with a major in English or consent of instructor. Group study of the relationship between the forms of literature and the forms of the other arts, with detailed study of one of the crucial periods of artistic development in modern literature.

188. Special Topics in Literary Studies (4) II, III. The Staff (Chairperson in charge)
Seminar—3 hours; term paper. Prerequisite: junior or senior standing with a major in English or consent of instructor. Special topics in literary studies. Topic to be announced from English or American literature. Course will be offered in sections according to the topic studied, and papers will be assigned. Limited enrollment. May be repeated for credit with consent of instructor.

190. Seminar in a Major Writer (4) II, III. The Staff (Chairperson in charge)
Seminar—3 hours; term paper. Prerequisite: junior or senior standing; a major in English or consent of instructor. One major writer in depth. Special attention paid to the relationship between the literary style and the non-literary life of a given author. Limited enrollment. May be repeated for credit with consent of instructor.

192. Internship in English (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-38 hours. Prerequisite: course 1 or 3. Internships with fields where students can practice their skills. A maximum of 4 units is allowed toward the major in English. May be repeated for credit for a total of 12 units. (P/NP grading only.)

194H. Special Study for Honors Students (4) I. The Staff (Chairperson in charge)
Seminar—3 hours; term paper. Prerequisite: admission to English Department Senior Honors Program. Study of a special literary topic or topic drawn from major writer, and preparation for writing an honors thesis in course 195H.

195H, Honors Thesis (4) II. The Staff (Chairperson in charge)
Independent study—12 hours. Prerequisite: course 194H. Preparation of a thesis, under the supervision of an instructor. Students satisfying requirements to the general major or the teaching emphasis write on a subject of special interest, or creative writing students submit a volume of poems or fiction.

197T. Tutoring in English (1-5) I, II, III. The Staff (Chairperson in charge)
Tutoring—1-5 hours. Prerequisite: upper division standing and consent of Chairperson. Leading of small voluntary discussion groups affiliated with one of the department's regular courses. Does not fulfill requirements for major. May be repeated for credit for a total of 8 units. (P/NP grading only.)

197TC. Community Tutoring in English (1-4) I, II, III. The Staff (Chairperson in charge)
Tutoring—1-4 hours. Prerequisite: upper division standing and a major in English; consent of Chairperson. Field experience, with individuals or in classroom in instruction of English language, literature, and composition. Does not fulfill requirement for major. May be repeated for credit. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: one course from courses 1, 3, 5, 6, 5P. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)
Graduate Courses

200. Techniques of Literary Scholarship (4) I. Waddington. Discussion—3 hours; term paper. The elements of bibliography with special attention to literary and documentary aspects of the principal modes of literary investigation—tactical, historical, textual, and others.

201. Literary Criticism (4) I. Discussion—3 hours; term paper. Survey of the major critics from Aristotle to the present, with emphasis on the relationship of critical theory to the history of literature.

205. Introduction to Old English (4) II. Osborn. Discussion—3 hours; written reports; individual conferences. The language of Anglo-Saxon England; readings in Old English verse and poetry.

206. Beowulf (4) III. Osborn. Discussion—3 hours; oral and written reports; conferences with students. Prerequisite: course 205 or the equivalent. A study of the poem and the Heroic Age of Beowulf. Offered in alternate years.

207. Middle English (4) Discussion—3 hours; term paper. Study of the phonology, morphology, syntax, and lexis between 1100 and 1500 with investigation of the regional dialects. Pertinent facts on both the internal and external linguistic history; intensive reading of texts.

209. Present-Day English Linguistics (4) Discussion—3 hours; term paper. Theory and methods of structural linguistics and transformational grammar and the analysis of English. Emphasis will be on recent linguistic techniques, particularly as these relate to the teaching of language, literature, and composition.

210. Readings in English and American Literature (4) Seminar—3 hours; conference—1 hour. Prerequisite: upper division English course in area to be studied. Offered in multiple sections each quarter. Content varies according to the instructor. Course designed for students preparing for comprehensive examinations. May be repeated for credit.

225. Topics in Irish Literature (4) I. McGuinness Seminar—3 hours; conference—1 hour. Prerequisite: course 220 or consent of instructor. Contents will vary from quarter to quarter and will include such topics as the thirteenth-century novel, contemporary Irish poetry, the rise of the drama, or a study of a major author.

230. Study of a Major Writer (4) Seminar—3 hours; conference with individual students—1 hour; research papers. Artistic development of one major writer and his intellectual and literary milieu. May be repeated for credit when a different writer is studied.

232. Problems in English Literature II. Schlaifer Seminar—3 hours; conferences with individual students—1 hour. Selected issues in the current study and critical assessment of a limited period or topic in English literature. May be repeated for credit when different period or topic is studied.

233. Problems in American Literature (4) I. Major. Robinson Seminar—3 hours; conferences with individual students—1 hour; research papers. Selected topics for intensive investigation. May be repeated for credit when different topic or period is studied.

234. Dramatic Literature (4) II. Hays Seminar—3 hours; conference—1 hour. Historical introduction to dramatic theory; the genres of tragedy, comedy, and tragedy.

235. Theory of Fiction (4) III. Seminar—3 hours; preparation and evaluation of papers on a work of fiction. Theories of fiction as they relate to the professional writer's practice of the craft. Designed for students in the creative writing program.

236. Poetics (4) IV. Seminar—3 hours; conference—1 hour. Structure, prosody, and idiom of British and American poetry variably approached—sometimes through an intensive study of a single writer, sometimes broadly and theoretically—at the instructor's discretion. Preparation and evaluation of research papers. Directed toward Creative Writing master's degree students.

237. Modern Critical Theory (4) I. Hoffman Seminar—3 hours; conference—1 hour. Examination of problems in the theory underlying the practice of literary criticism from I.A. Richards and T.S. Eliot to the present.

238. Special Topics in Literary Theory (4) II. Moran, Varnum Seminar—3 hours; term paper. Prerequisite: course 237 or the equivalent. Advanced topics in literary theory and criticism. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

240. Medieval Literature (4) I. CofFI Seminar—3 hours; conference—1 hour. Studies of Medieval literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

242. Sixteenth-Century Literature (4) Seminar—3 hours; conference—1 hour. Studies in sixteenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

244. Shakespeare (4) I. Waddington Seminar—3 hours; conference—1 hour. Studies in Shakespeare. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

246. Seventeenth-Century Literature (4) Seminar—3 hours; conference—1 hour. Studies in seventeenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

248. Eighteenth-Century Literature (4) Seminar—3 hours; conference—1 hour. Studies in eighteenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

250. Romantic Literature (4) L. Locke Seminar—3 hours; conference—1 hour. Studies in Romantic literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

254. Twentieth-Century British Literature (4) III. Williamson Seminar—3 hours; conference—1 hour. Studies in twentieth-century British literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

256. Early American Literature (4) I. Kramer Seminar—3 hours; conference—1 hour. Studies in Early American literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

258. American Literature: 1800 to the Civil War (4) Seminar—3 hours; conference—1 hour. Studies in American literature from 1800 to the Civil War. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

260. American Literature: Civil War to 1914 (4) III. Barron Seminar—3 hours; conference—1 hour. Studies in American literature from the Civil War to 1914. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

262. American Literature after 1914 (4) I. Hicks Seminar—3 hours; conference—1 hour. Studies in American literature from 1914 to the present. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

264. Studies in Modern British and American Literature (4) II, III. S. Gilbert Seminar—3 hours; conference—1 hour. Studies in modern British and American literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

265. Literature by Women (4) Seminar—3 hours; conference—1 hour. Studies in literature by women and the theoretical approaches to literature by women. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when topic and/or reading list differs.

260F. Seminar in Creative Writing of Fiction (4) I. Brown, II: Major; III: Miller Seminar—3 hours; 1 additional hour of writing. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in the Master's Program in English (Creative Writing). A workshop in the writing of fiction, with emphasis on the craft of the short story. Evaluation of written materials and individual student conferences. May be repeated for credit.

260NF. Seminar in Creative Writing of Non-Fiction (4) III. The Staff (Chairperson in charge) Seminar—3 hours; term paper. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in the Master's Program in English (Creative Writing). A workshop in the writing of non-fiction, with emphasis on the craft of the essay and the memoir, the occasional or nature essay, or other non-fiction prose narratives.

260P. Seminar in Creative Writing of Poetry (4) I. S. Gilbert, II: McPherson, III: Snyder Seminar—3 hours; 1 additional hour of writing. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in the Master's Program in English (Creative Writing). A workshop in the writing of poetry, with emphasis on the craft of the lyric and the sonnet. Evaluation of written materials and individual student conferences. May be repeated for credit.

299. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (SU grading only)

299C. Colloquium on Literary Scholarship (1-4) I, II, III. The Staff (Chairperson in charge) Oral presentation and critique of research paper. (SU grading only)

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only)

299D. Special Study for the Doctoral Dissertation (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only)

Professional Courses

300. Problems in Teaching English Language, Literature, and Composition in Secondary Schools (3) I. Lecture/discussion—3 hours. Prerequisite: senior or graduate standing; an English teaching major or minor. This course includes in-service and supervised practicum teaching. Course is accepted in partial satisfaction of the requirement in education for the general secondary credential.

390. Teaching English at the College Level (4) I. Lecture—3 hours; preparation—2 hours. Prerequisite: graduate standing. Consideration of the problems and techniques of teaching composition and literature at the college level. (SU grading only)

*Course not offered this academic year.
382. Teaching Internship in English (4) I, II, III.
(20 credits)
(Supervised internship—4 hours. Prerequisite: graduate standing. In-class internship with English Department faculty member.)

393. Problems in Teaching College Composition (2) I, II, III.
(Supervised discussion—2 hours. Prerequisite: open to graduate students teaching composition in a variety of University courses including English A, I, I, S, 20, 102, and 103. Taught by experienced student teacher who would profit from developing skills in specific areas. (SU grading only.)

Professional Course

401. Editing California Quarterly (2) I, III. Hicks Seminar—2 hours; conference—1 hour. Prerequisite: participation in Creative Writing Program. Approved for graduate degree credit. Students will read all manuscripts submitted to California Quarterly and attend weekly editorial board meetings, choosing manuscripts for publication. They will also participate in copy-editing, copy-reading, layout, and other aspects of journal production. May be repeated for a total of 6 units. (SU grading only.)

Entomology

(College of Agricultural and Environmental Sciences)
Michael P. Parrella, Ph.D., Chairperson of the Department
Department Office, 367 Briggs Hall (916-752-0475)

Faculty
James R. Carey, Ph.D., Associate Professor
Hugh Dingle, Ph.D., Professor
Sean S. Duffey, Ph.D., Professor
Lester E. Ehler, Ph.D., Professor
Bruce F. Eldridge, Ph.D., Professor
Norman E. Gary, Ph.D., Professor
Larry Godfrey, Ph.D., Lecturer
Jeffrey Granett, Ph.D., Professor
Bruce D. Hammock, Ph.D., Professor (Entomology, Environmental Toxicology)
Richard Karban, Ph.D., Associate Professor
Harry K. Kay, Ph.D., Professor
Lynn S. Kimes, Ph.D., Associate Professor
G. A. H. McCallan, Ph.D., Senior Lecturer
Susumu Maeda, Ph.D., Associate Professor
Fumito Matsumura, Ph.D., Professor (Entomology, Environmental Toxicology)
Robert E. Page, Ph.D., Professor
Michael P. Parrella, Ph.D., Professor (Entomology, Environmental Toxicology)
Christina Y. S. Peng, Ph.D., Professor
Richard E. Rice, Ph.D., Lecturer
Jay A. Rosenheim, Ph.D., Assistant Professor
Arthur Shapiro, Ph.D., Professor (Entomology, Zoology)
Robbin W. Thorp, Ph.D., Professor
Philip S. Ward, Ph.D., Associate Professor
Robert V. Washino, Ph.D., Professor
Frank G. Zalom, Ph.D., Lecturer

Emeriti Faculty

Oscar G. Bacon, Ph.D., Professor Emeritus
Richard M. Bohart, Ph.D., Professor Emeritus
Albert A. Girgick, Jr., Ph.D., Professor Emeritus
Charles J. Jackson, Ph.D., Professor Emeritus
Harry H. Laidlaw, Jr., Ph.D., Professor Emeritus
W. Harry Lange, Jr., Ph.D., Professor Emeritus
Thomas A. Leigh, Ph.D., Lecturer Emeritus
Donald L. McLean, Ph.D., Professor Emeritus
Timothy P. Roitch, Ph.D., Professor Emeritus
Francis M. Summers, Ph.D., Professor Emeritus

The Major Program

The Entomology major is a general biological curriculums major, designed to be moved over by studies in their diversity and biology. Areas of emphasis include: agricultural entomology, bee management and biology, behavior, ecology, insects affecting human and animal health, natural history, and physiology.

The Program: Students begin their study in entomology with selected insect biology courses. After completing the core courses, students may enroll in courses in the particular area of interest. A student interested in agricultural entomology, for example, could enroll in courses such as pest management, biological control of insects, and insect-host plant interactions.

Internships and Career Opportunities: Entomology majors have participated in internships with the State Department of Agriculture in the areas of insect identification, insect surveys, and the development of entomological libraries. Students have interned with professional entomologists in the area of supervised pest control. Graduates are prepared for managerial and technical positions with state and federal agencies and agricultural production or supporting industry. Entomology graduates also teach biological sciences in high schools. Others matriculate in graduate programs leading to a higher degree.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or comparable courses are acceptable and may be counted for the attainment of some career goals. Courses shown without parentheses are required.)

English Composition Requirement

Preparatory Subject Matter

Biology (Biological Sciences 1A, 1B, 1C)...........15
Chemistry (Chemistry 2A, 2B, 4A, 1B)............16
Mathematics (Mathematics 1A, 1B)..............3
Statistics (Statistics 3, 3A, 4, 5).................1
Agricultural Engineering (Agricultural Engineering 167)...........2
Chemical engineering (Engineering 154)...........1

Breadth Subject Matter

Satisfaction of General Education requirement.............2

Subtotal..............32

Elective Courses

At least 7 units from Entomology 101, 102, 103, 104, 107, 109, or 116............8

Elective Courses

At least two courses from Entomology 101, 102, 103, 104, 107............5
At least two additional upper division Entomology courses (except courses 192, 196, 199)............6

Agrochemical Entomology

Entomology 100, 100L, 110, 115, 135............17

Agricultural Entomology

Entomology 104, 104L, 119, 119L............10
Entomology 104 or 119............4
Additional courses recommended: Agronomy 120, Botany 102, Pomology 102............4

Agronomy

Entomology 100, 104............9
Seven units from Entomology 103, 107, 109, 119, 119L, 135, 139, 149 or Environmental Studies 121............14

Insect Ecology

Entomology 100, 104............9

Medical-Veterinary Entomology

Entomology 100L, 104, 105, 156............16
At least two units from Entomology 155, 155L, Veterinary Microbiology and Immunology 126, 128, 129, 132............2

Minor Adviser

J. Granett

Graduate Study: The Department of Entomology offers a program of study and research leading to the M.S. and Ph.D. degrees. See the Graduation Section and the Graduate Announcement for further details.

Graduate Advisers: See Class Schedule and Room Directory.

Related Courses: See courses in Nematology.

Courses in Entomology

Lower Division Courses

10. Natural History of Insects (3) I. Dingle, Kaya
Lecture—3 hours. Designed for students not specializing in entomology. Not open to students who have had course 100. Prerequisite: credit in Entomology 101, 102, 104, 107 may be taken concurrently. An introduction to the insects detailing their life cycles, structure and function, habits, and their significance in relation to plants and animals including man.

17. Natural Selection and Sociobiology (4). The Staff
Lecture—3 hours; discussion—1 hour. Introduction to the theory of natural selection, using evaluations and applications of behavioral adaptations, ranging from insects to humans. General Education credit: Nature and Environment/Introductions.

99. Special Study for Undergraduates (1-3) I, II, III.
The Staff (Chairperson in charge)
(PNP grading only.)

Upper Division Courses

100. General Entomology (3) I. Granett in charge
Lecture—3 hours. Prerequisite: Biological Sciences 1A, Biology, anatomy, physiology, development, classification, ecology and relation of insects to human welfare.

100L. General Entomology Laboratory (2) I. Granett in charge
Laboratory—3 hours. Prerequisite: credit in Entomology 100L may be taken concurrently. An introduction to the insects detailing their life cycles, structure and function, habits, and their significance in relation to plants and animals including man.

101. Functional Insect Morphology (3) I. Peng
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 100. Study of the basic external and internal structures, organs and tissue of insects, with emphasis on functional systems. Functional anatomy, histology and fine structure of important organs and tissues will be discussed.

102. Insect Physiology (4) I. Duffey, Hammock
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or course in physiology of invertebrate zoology. Processes by which insects maintain themselves, reproduce, and adapt to environment.

*Course not offered this academic year.
Insects as models for basic/applied research through detailed analysis of metabolic, physiological, and behavioral processes. Emphasis on analysis of methodology, fact, and theory.

103. Insect Systematics (3) III. Ward Lecture—2 hours; laboratory—1 hour. Prerequisite: introductory course in zoology or entomology. Principles and methods of systematics, with particular reference to insects. Emphasis on different theories of classification, and analysis of phylogenetic relationships.

107. California Insect Diversity (5) III. Thorp, Kimsey Lecture—1 hour; laboratory—6 hours; fieldwork—6 hours. Prerequisite: introductory course in entomology. Survey of the diversity of insects from selected ecological zones in California with emphasis on collection, identification, and natural history. Offered in alternate years.

109. Field Taxonomy and Ecology (7) Extra-semester. Ward Lecture—2 hours; laboratory—36 hours; five-week course. Prerequisite: an introductory course in entomology or instructor’s consent. The study of insects in their natural habitats; their identification and ecology. Offered in alternate years.

110. Economic Entomology (4) I. Parella Lecture—2 hours; laboratory—6 hours. Introductory course dealing with the identification, biology, and control of insects and mites that cause economic losses. Emphasis is placed on the management of agricultural pests but includes structural, household, stored products, and ornamental plant problems.

111. Insects and Human Affairs (4) II, III. McClelland Lecture—2 hours; discussion—1 hour; film/demonstration—1 hour; one required evening meeting. Prerequisite: Biological Sciences 10 recommended. Diversity, structure and function of insects. Their role as benefactors, competitors, and destroyers of human resources and health. Their contribution to human culture and scientific knowledge. Approach to insect pest control and its environmental, social and political correlates. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Biological Sciences 10.

115. Arthropod Management in Agriculture (4) II. Granett Lecture—3 hours; laboratory—3 hours. Prerequisite: course 100 or 110. Principles of integrated pest management with emphasis on arthropod pests in California crop systems. Definition of pest status, measurement of pest damage, and interactions between pests and plants. Integration of control tactics. Use of insecticides within the IPM framework.

116. Biology of Aquatic Insects (3-5) III. The Staff Lecture—2 hours and laboratory (Saturday field trips); optional laboratory on identification and/or aquatic insect collection. Prerequisite: course 100 or consent of instructor. Study of aquatic organisms and their ecology, and identification of insects associated with streams, ponds, and lakes.

119. Apliculture (3) II. Gary Lecture—3 hours; papers. Prerequisite: Biological Sciences 10 recommended. Biology and behavior of honeybees; communication, orientation, social organization, foraging activities, honey production, pollination activities. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Biological Sciences 10 or Botany 10.

119P. Apliculture Laboratory (2) III. Gary Lecture—1 hour; laboratory—3 hours. Prerequisite: course 119. Biology and behavior of honey bees; fundamental principles of bee management, and use of colonies for agricultural, recreational, teaching, and research purposes.

135. Introduction to Biological Control (4) III. Ehrler, Kaya Lecture—3 hours; laboratory—3 hours. Prerequisite: course 100 or 110. Principles of biological control of arthropod pests and weeds. Biology of pathogens, entomophagous nematodes, parasites, and predators. Implementation in classical and augmentative biological control. Role of biological control in pest management.

147. Evolution of Life on Earth (4) III. Kimsey Lecture—3 hours; discussion—1 hour. Prerequisite: Botany 10 or Biological Sciences 10. Relationships between physical changes in the continents and the evolution and diversification of plants and animals, particularly insects, over the past 400 million years. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Botany 10 or Botany 2, or Biological Sciences 10 or Zoology 3.

153. Medical Entomology (4) I. McClelland Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in one of the biological sciences or consent of instructor. The worldwide relationships of insects and other arthropods to human health. The biology and basic classification of medically important arthropods with special emphasis on the ecology of arthropod-borne human diseases and principles of their control. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Entomology 111 or any other course in the biological sciences.

158. Biology of Parasitism (3) III. Washino in charge; Thesis (Medical Microbiology), Maggert (Nematology) Lecture—3 hours. Prerequisite: Biological Sciences 1A or consent of instructor. Lectures on the biological and ecological aspects affecting host-parasite relationships using selected examples from protozoan and melazona fauna.

158L. Biology of Parasitism Laboratory (1) III. Washino in charge; Thesis (Medical Microbiology), Maggert (Nematology) Laboratory—3 hours. Prerequisite: course 158L (concurrently) or consent of instructor. Laboratory demonstrations using selected examples of protozoan and metazona organisms along with various techniques used in parasitology to exemplify concepts presented in the lecture course.

192. Internship (1-12) I, II, III, extra-semester. The Staff (Chairperson in charge) Internship—1 to 12 hours. Prerequisite: completion of 64 units and consent of instructor. Laboratory experience or fieldwork off and on campus in all subject areas offered in the Department of Entomology. Internships supervised by a member of the faculty. (P&N grade only.)

197T. Tutoring in Entomology (1-3) I, II, III. McClelland Discussion—1 to 3 hours. Leading small discussion groups. Preview assignments and prepare guidelines for discussion. (P&N grade only.)

199. Directed Group Study (1-5) I, II, III, summe, The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P&N grade only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, summer. The Staff (Chairperson in charge) (P&N grade only.)

Graduate Courses

200A. Conceptual Basis of Entomology: Basic Biology (4) I. Dufy Lecture—3 hours; discussion—1 hour. Selected advanced topics in contemporary entomological research with an emphasis on theoretical and fundamental aspects of natural selection, behavior, ecology, physiology, and biochemistry as relates to the regulation of insect populations. The provides the theoretical framework for coursework.

200B. Conceptual Basis of Entomology: Application (4) II, Thorp, Gary Lecture—3 hours; discussion—1 hour. Selected advanced topics in contemporary entomological research with emphasis on the application of theoretical/conceptual outlines from course 200A to epidemiology, biotechnology, biological control and integrated pest management for current insect pest problems concerning food, fiber, and health.

219. Advanced Apliculture (4) II. Peng Lecture—2 hours; laboratory—6 hours. Prerequisite: course 119L. Current topics in bee biology with special consideration of morphology, caste determination, queen rearing, nutrition, physiology, pathology, and products of honey bees. Offered in alternate years.

220. Chemical Ecology of Plant–Insect Interactions (4) I. Dufy Lecture—3 hours; discussion—1 hour. Prerequisite: introductory biochemistry. Investigation of the interface between plants, herbivorous insects and their natural enemies from a mechanistic viewpoint of stress and defense principles of biochemistry, physiology, and ecology rather than those of ecology. Major emphasis is placed on plant/natural products.

225. Terrestrial Field Ecology (4) II. Kerban Seminar—1 hour; laboratory—2 hours. Prerequisite: introductory ecology and introductory statistics. Field course conducted over spring break and four weekends at Bodega Bay emphasizing student projects. Ecological hypothesis testing, data gathering, analysis, and written and oral presentation of results stressed.

230. Advanced Biological Control (3) I. Ehrler Lecture—2 hours; discussion—1 hour. Prerequisite: one upper division course in entomology (other than course 153) and one course in microbiology; course 153 strongly recommended. An analysis of several arthropod-borne human diseases with emphasis on the relationships of the biology of the vector to the ecology of the disease. Discussion includes demonstration of vectors and techniques. Offered in alternate years.

250. Special Topics in Entomology (1-4) I, II, III. The Staff (Chairperson in charge) Seminar—1 to 4 hours. Prerequisite: consent of instructor.

251. Seminar in Medical Entomology (2) I. McClelland, Washino, Eldridge Seminar—2 hours. Prerequisite: course 153. Discussions of parasitology, ecology and epidemiology related to vectors of pathogens causing disease in man and animals.

252. Seminar in Insect Physiology (2) II. Dufy, Hammock, Maeda Seminar—2 hours. Prerequisite: course 102. Critical examination of areas of current interest to insect physiology and biochemistry.

253. Seminar in Systematic Entomology (2) II. Ward, Thorp, Kimsey Seminar—2 hours. Prerequisite: course 103. Selected topics in systematics and evolution are presented and discussed. Some topics may be illustrated by laboratory sessions.

254. Seminar in Insect Ecology (2) III. Carey, Ehrler, Karban Seminar—2 hours. Prerequisite: a general ecology course. Discussions of current topics in ecology with emphasis on analysis of factors influencing the
distribution and abundance of insects. Includes consideration of applications of basic theory as in biological control and related approaches.

295. Seminar in Agricultural Entomology (2) II. Granett, Parrella, Rosenheim
Seminar—2 hours. Prerequisites: course 110. Discusses advanced topics relevant to the principles of pest insect population management.

296. Seminar in Bee Biology (2) I. Gary, Thorp, Page, Peng
Seminar—2 hours. Prerequisite: course 119 or the equivalent. Discussion of behavior, ecology, management, and general biology of bees (Apoidea) with emphasis on the honeybee.

297. Seminar in Insect Behavior (2) II. Gary, Ding
Seminar—2 hours. Prerequisite: a course in animal behavior. Review and critical analysis of contemporary advances in insect behavior, especially interpretation and description of observations, physiological mechanisms, functional kinds of behavior, and the application of general principles to the solution of problems in the laboratory and field.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(SU grading only)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only)

Professional Courses

404. Grantmanship (2) I. Granett, Duffey
Lecture—1 hour; 15-20 page research proposal required. Prerequisite: graduate standing; research experience. Approved for graduate degree credit. Develops in students an awareness of options and strategies in writing research proposals. Students write a full-length research proposal.

Environmental and Resource Sciences

(College of Agricultural and Environmental Sciences)

Faculty. See under departments of Agricultural Economics, Agronomy and Range Science, and Land, Air and Water Resources.

The Major Program

The environmental and resource sciences major is a program for study of the physical, chemical and biological features of renewable natural resources, and the economical and social considerations associated with their use, conservation, protection, and management. Students who choose this major include those with an interest in careers associated with resource utilization and management, as well as those pursuing post baccalaureate, academic or professional training.

The Program. The curriculum for the major provides flexibility in meeting individual needs, interests, and objectives. At the same time, certain courses are required in the basic physical and biological sciences areas. An upper division general resource sciences course, a resource economics course, and a specified number of units of resource-oriented courses are required for all students in the major. Resource-oriented courses shall be selected in consultation with and approval of the student's adviser. Considerable care should be taken to ensure effective utilization of the flexibility of the major, and to meet individual academic and career objectives. Areas of specialization are achieved through selection of one of the options within the major.

Internships and Career Alternatives. Positions now held by graduates in environmental and resource sciences are quite varied, but many are employed as resource analysts and planners as well as technical and environmental specialists with government agencies, municipalities, and private firms. A significant proportion of graduates undertake further studies leading to advanced degrees in resources, the environment, and related fields.

B.S. Major Requirements:

For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. (Courses shown without parentheses are required.)

UNITS

Written/Oral Expression

See College requirement

English (English 1, 3, or 20).................7-8
Rhetoric (Rhetoric and Communication 1).............4

Preparatory Subject Matter

Biological sciences (Biological Sciences 1A-1B or 1C).............15
Chemistry (Chemistry 2A-2B).................10
Environmental quality (Environmental Toxicology 10).............3
Geology (Geology 110-119).................6
Mathematics (Mathematics 16A-16B or 21A-21B).............6-6
Microcomputer skills, computer programming (Agricultural Natural Science and Management 212 and 211, Engineering 5, Computer Science Engineering 15, 25).............6
Physics (Physics 1A-1B or 4A-4B).............6-6
Statistics (Statistics 13)..................4

5. Students are encouraged to take the advanced series—consult with your adviser.

Breadth/General Education..................24
Satisfaction of General Education requirements. Additional units in social sciences and humanities to total 24 units.

Depth Subject Matter

Written expression (in addition to college requirement) (English 103D, 103E, 104).............3
Agricultural Economics 147 or 148...................3-4
Soil Science 100..................................4
Water Science 100.................................4
Social-political awareness (Environmental Studies 161, 179; Environmental Toxicology 138, Geology 142 or 151, Geology 134; Wildlife and Fisheries Biology 154).............3-4
Plant or animal ecology (Botany 117, Entomology 194, Environmental Studies 100, Plant Science 101, Zoology 125).............3-4

Areas of Specialization (choose one)

Environmental Resources Option............39-43
For the general study of the physical, chemical and biological features of renewable natural resources, and the economic and social considerations associated with their use, protection and management. For those who plan careers associated with resource utilization and management, and those pursuing post baccalaureate, academic or professional training.

Statistics (Agricultural Science and Management 150, Environmental Sciences 123).............3-4
Environmental and natural science 102-103
Upper division resource-oriented courses chosen in consultation with and approval of advisor.............18-24
Environmental and natural science upper division breadth courses (choose from the following areas).............9-12
Agricultural economics, agronomy and range science, animal science, botany, agricultural engineering, civil and environmental engineering, economics, environmental horticulture, environmental studies, environmental toxicology, geography, geology, plant science, range management, environmental and resource science, soil science, water science, wildlife and fisheries biology, and zoology.

Unrestricted electives (to total 180).............10-29

Energy Systems Option.........................28
Provides a general, semi-technical appreciation of the roles and importance of energy conversion systems to industrial societies and the associated environmental (physical/biological) impacts of existing technologies. Appropriate preparation for careers with utilities, monitoring and environmental quality agencies.

Environmental Studies 1, 126, 167, 169 (select three courses).............12
Atmospheric Science 133.................4
Radiological Science 115..........................3
Environmental and Resource Science 3.............3
Environmental and Resource Science 103-104
(Internship).............3

Unrestricted Electives.........................25-40

Land and Water Management Option............24-28
A broad background in management of soil and water resources in both natural and agricultural ecosystems. Emphasis on analysis of soils and plants for estimating crop nutrient requirements and principles of irrigation and drainage of agricultural land. Appropriate for those seeking employment with state and federal agencies or with agroindustry.

Soil Science 109.................................4
Soil Science 119.................................3
Water Science 103..............................4
Water Science 104..............................4
Soil Science 192 or Water Science 192 (Internship).............3

Additional Soil Science or Water Science courses selected with adviser's approval.............6-10

Unrestricted Electives.........................25-44

Hydrobiology Option.........................32-35
Training in the biological aspects of water resources focusing on the understanding and protection of polluted and unpolluted water systems. The structure, function, and principles of aquatic systems. Graduates may seek employment with state and federal agencies such as Water Resources Control Board, Department of Fish and Game, Department of Water Resources, or consulting firms concerned with environmental impacts.

Water Science 122, 122A..........................5
Botany 116, 150.................................3-5
Entomology 176.................................5
Wildlife and Fisheries Biology 120, 123
Water Science 180..............................4
Water Science 192 (Internship).............3

Additional electives (Environmental Studies 123, Water Science 192, Wildlife and Fisheries Biology 153, Environmental Studies 151 and 151L, Water Science 150, Environmental Toxicology 101, Water Science 141-149).............6-10

Unrestricted Electives (to total 180).............18-36

Total Units for the Major.......................180

Related Courses. For courses that are related to this major see course listings for Agricultural Economics, Agricultural Science and Management, Atmospheric Science, Botany, Entomology, Environmental Biology and Management, Environmental Studies, Environmental Toxicology, Geography, Geology, Range Management, Soil Science, Water Science, Wildlife and Fisheries Biology, and Zoology.

Major Adviser. J. Stasulat (201 South Hall).
Advising Center for the major is located in 122 Hoagland Hall (916-752-1669).

Courses in Environmental and Resource Sciences

Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 122 Hoagland Hall (916-752-1669).
Environmental Biology and Management

College of Agricultural and Environmental Sciences

Faculty
See under the Division of Environmental Studies.

The Major Program
The environmental biology and management major offers an education in the basic natural sciences, especially ecology, together with a set of management and public policy analysis courses. Students completing the program will understand the scientific basis for environmental decision making, and the legal, economic, and political issues involved in management of the environment in the United States and worldwide.

The Program. Courses in chemistry, physics, mathematics, biology, and earth sciences form the foundation. In the upper divison, courses taken to fulfill major requirements must be approved by a faculty advisor.

Required Courses (30 Units)

1. **Environmental Science** (3)
- **Course Number:** 100
- **Title:** Environmental Biology and Management
- **Units:** 3
- **Description:** A survey of the major concepts in environmental biology and management, with an emphasis on the role of the individual in making informed decisions about environmental issues.

2. **Environmental Law** (3)
- **Course Number:** 200
- **Title:** Environmental Law
- **Units:** 3
- **Description:** An introduction to the legal framework governing environmental protection and regulation. Topics include air and water pollution, hazardous waste, and solid waste management.

3. **Environmental Economics** (3)
- **Course Number:** 300
- **Title:** Environmental Economics
- **Units:** 3
- **Description:** An introduction to the economic principles and tools used to analyze environmental problems. Topics include environmental valuation, cost-benefit analysis, and policy instruments.

4. **Environmental Policy** (3)
- **Course Number:** 400
- **Title:** Environmental Policy
- **Units:** 3
- **Description:** An introduction to the processes and actors involved in environmental policy making. Topics include policy formulation, implementation, and evaluation.

5. **Environmental Ethics** (3)
- **Course Number:** 500
- **Title:** Environmental Ethics
- **Units:** 3
- **Description:** An exploration of the ethical dimensions of environmental issues, including human rights, equity, and intergenerational justice.

6. **Environmental Communication** (3)
- **Course Number:** 600
- **Title:** Environmental Communication
- **Units:** 3
- **Description:** An introduction to the role of communication in environmental advocacy and policy making. Topics include media, public opinion, and stakeholder engagement.

7. **Environmental Planning** (3)
- **Course Number:** 700
- **Title:** Environmental Planning
- **Units:** 3
- **Description:** An introduction to the principles and practices of environmental planning, including environmental impact assessment and strategic environmental assessment.

8. **Environmental Decision Making** (3)
- **Course Number:** 800
- **Title:** Environmental Decision Making
- **Units:** 3
- **Description:** An introduction to the methods and tools used to support environmental decision making, including scenario analysis, risk assessment, and decision analysis.

9. **Environmental and Natural Resources Management** (3)
- **Course Number:** 900
- **Title:** Environmental and Natural Resources Management
- **Units:** 3
- **Description:** An introduction to the principles and practices of natural resources management, including land use planning, water resources management, and wildlife management.

10. **Environmental Finance** (3)
- **Course Number:** 1000
- **Title:** Environmental Finance
- **Units:** 3
- **Description:** An introduction to the financial aspects of environmental projects and programs, including environmental valuation, cost-benefit analysis, and environmental policy instruments.

11. **Environmental Law and Policy** (3)
- **Course Number:** 1100
- **Title:** Environmental Law and Policy
- **Units:** 3
- **Description:** An introduction to the legal and policy frameworks governing environmental protection and regulation. Topics include air and water pollution, hazardous waste, and solid waste management.

12. **Environmental Ethics and Policy** (3)
- **Course Number:** 1200
- **Title:** Environmental Ethics and Policy
- **Units:** 3
- **Description:** An exploration of the ethical dimensions of environmental issues, including human rights, equity, and intergenerational justice, in the context of environmental policy making.

13. **Environmental Communication and Advocacy** (3)
- **Course Number:** 1300
- **Title:** Environmental Communication and Advocacy
- **Units:** 3
- **Description:** An introduction to the role of communication in environmental advocacy and policy making, including media, public opinion, and stakeholder engagement.

14. **Environmental Planning and Policy** (3)
- **Course Number:** 1400
- **Title:** Environmental Planning and Policy
- **Units:** 3
- **Description:** An introduction to the principles and practices of environmental planning, including environmental impact assessment and strategic environmental assessment.

15. **Environmental Decision Making and Policy** (3)
- **Course Number:** 1500
- **Title:** Environmental Decision Making and Policy
- **Units:** 3
- **Description:** An introduction to the methods and tools used to support environmental decision making, including scenario analysis, risk assessment, and decision analysis.

16. **Natural Resource Management and Policy** (3)
- **Course Number:** 1600
- **Title:** Natural Resource Management and Policy
- **Units:** 3
- **Description:** An introduction to the principles and practices of natural resources management, including land use planning, water resources management, and wildlife management.

17. **Environmental Finance and Policy** (3)
- **Course Number:** 1700
- **Title:** Environmental Finance and Policy
- **Units:** 3
- **Description:** An introduction to the financial aspects of environmental projects and programs, including environmental valuation, cost-benefit analysis, and environmental policy instruments.

18. **Environmental Law and Ethics** (3)
- **Course Number:** 1800
- **Title:** Environmental Law and Ethics
- **Units:** 3
- **Description:** An introduction to the legal and ethical frameworks governing environmental protection and regulation. Topics include air and water pollution, hazardous waste, and solid waste management.

19. **Environmental Planning and Communication** (3)
- **Course Number:** 1900
- **Title:** Environmental Planning and Communication
- **Units:** 3
- **Description:** An introduction to the principles and practices of environmental planning, including environmental impact assessment and strategic environmental assessment, and the role of communication in environmental planning and policy making.

20. **Natural Resource Management and Advocacy** (3)
- **Course Number:** 2000
- **Title:** Natural Resource Management and Advocacy
- **Units:** 3
- **Description:** An introduction to the principles and practices of natural resources management, including land use planning, water resources management, and wildlife management, and the role of advocacy in environmental policy making.

21. **Environmental Finance and Advocacy** (3)
- **Course Number:** 2100
- **Title:** Environmental Finance and Advocacy
- **Units:** 3
- **Description:** An introduction to the financial aspects of environmental projects and programs, including environmental valuation, cost-benefit analysis, and environmental policy instruments, and the role of advocacy in environmental policy making.

22. **Environmental Law and Policy and Communication** (3)
- **Course Number:** 2200
- **Title:** Environmental Law and Policy and Communication
- **Units:** 3
- **Description:** An introduction to the legal and policy frameworks governing environmental protection and regulation, and the role of communication in environmental policy making.

23. **Environmental Planning and Advocacy** (3)
- **Course Number:** 2300
- **Title:** Environmental Planning and Advocacy
- **Units:** 3
- **Description:** An introduction to the principles and practices of environmental planning, including environmental impact assessment and strategic environmental assessment, and the role of advocacy in environmental policy making.

24. **Environmental Finance and Planning** (3)
- **Course Number:** 2400
- **Title:** Environmental Finance and Planning
- **Units:** 3
- **Description:** An introduction to the financial aspects of environmental projects and programs, including environmental valuation, cost-benefit analysis, and environmental policy instruments, and the role of planning in environmental policy making.

25. **Environmental Law and Planning** (3)
- **Course Number:** 2500
- **Title:** Environmental Law and Planning
- **Units:** 3
- **Description:** An introduction to the legal and policy frameworks governing environmental protection and regulation, and the role of planning in environmental policy making.

26. **Environmental Ethics and Planning** (3)
- **Course Number:** 2600
- **Title:** Environmental Ethics and Planning
- **Units:** 3
- **Description:** An exploration of the ethical dimensions of environmental issues, including human rights, equity, and intergenerational justice, in the context of environmental planning.

27. **Environmental Communication and Planning** (3)
- **Course Number:** 2700
- **Title:** Environmental Communication and Planning
- **Units:** 3
- **Description:** An introduction to the role of communication in environmental planning and policy making, including media, public opinion, and stakeholder engagement.

28. **Environmental Planning and Advocacy and Communication** (3)
- **Course Number:** 2800
- **Title:** Environmental Planning and Advocacy and Communication
- **Units:** 3
- **Description:** An introduction to the principles and practices of environmental planning, including environmental impact assessment and strategic environmental assessment, and the role of advocacy and communication in environmental policy making.

29. **Environmental Finance and Advocacy and Planning** (3)
- **Course Number:** 2900
- **Title:** Environmental Finance and Advocacy and Planning
- **Units:** 3
- **Description:** An introduction to the financial aspects of environmental projects and programs, including environmental valuation, cost-benefit analysis, and environmental policy instruments, and the role of advocacy and planning in environmental policy making.

30. **Environmental Law and Planning and Advocacy** (3)
- **Course Number:** 3000
- **Title:** Environmental Law and Planning and Advocacy
- **Units:** 3
- **Description:** An introduction to the legal and policy frameworks governing environmental protection and regulation, and the role of planning and advocacy in environmental policy making.

Note: Students must complete a minimum of 30 units to fulfill the major requirements.
Environmental Geology

(Course of Letters and Science)

The minor in Environmental Geology examines the multidisciplinary factors of geology and related earth science fields, and planning and resources oriented programs.

Students in the minor are encouraged to participate in internship programs that assist in solidifying the Environmental Geology minor with their Geology major or other major field areas that include geologic components.

The minor is sponsored by the Department of Geology, 174 Physics/Geology. Faculty adviser: Robert A. Matthews, Department of Geology, 397 Physics/Geology, 752-0179.

Minor Program Requirements:

Enrollment in Environmental Geology meets the requirements of the minor.

Unofficially...4

UNITs

Environmental Geology...23-25

Geology 130, 134, and 152 or Geography 106...10

Soil Science 118...4

Water Science 141 or Civil and Environmental Engineering 142...3

Two courses chosen from:

Environmental Studies 160, 171, 179

Geology 135, 154 or Geography 106

Environmental and Resource Science 100, Water Sciences 149...6-8

Environmental Horticulture

(College of Agricultural and Environmental Sciences)

James A. Harding, Ph.D., Chairperson of the Department

Department Office, 140 Environmental Horticulture Building (916-752-0130)

Faculty

Aileen M. Berry, Ph.D., Associate Professor

David W. Burger, Ph.D., Associate Professor

Thomas G. Byrne, M.S., Lecturer

Don J. Durzan, Ph.D., Professor

Richard Y. Evans, Ph.D., Lecturer

Seymour M. Gold, Ph.D., Professor

James A. Harding, Ph.D., Professor

Charles E. Hess, Ph.D., Professor

J. Heinrich Lieth, Ph.D., Associate Professor

James D. MacDonald, Ph.D., Associate Professor

(Plant Pathology)

Carolyn Napoli, Ph.D., Assistant Professor

Michael P. Parrella, Ph.D., Associate Professor

(Entomology)

Michael S. Reid, Ph.D., Professor

Roy M. Sachs, Ph.D., Professor

Lin L. Wu, Ph.D., Associate Professor

Emeriti Faculty

Richard W. Harris, Ph.D., Professor Emeritus

Anton M. Kofranek, Ph.D., Professor Emeritus

Harry C. Kohl, Jr., Ph.D., Professor Emeritus

Andrew T. Leiser, Ph.D., Professor Emeritus

John H. Madison, Jr., Ph.D., Professor Emeritus

Jack L. Paul, Ph.D., Professor Emeritus

Related Undergraduate Programs and Graduate Study. See the undergraduate majors in Environmental Biology and Management, and Plant Science, and for graduate study, refer to the Graduate Studies section.

Related Courses. See Plant Science.
Courses in Environmental Horticulture

Lower Division Courses

6. Introduction to Environmental Plants (3) III. Summer. Harding. Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Classification, nomenclature, and identification of common trees, shrubs, ground covers, turfgrasses, bedding plants, and house plants. Characteristics of important plant families are discussed.

10. Landscape Horticulture for the Home and Community (3) III. Burger. Lecture—2 hours; discussion—1 hour. Recommended for non-majors. Influences of climate, soil, and cultural practices on the growing of turf, flowers, and herbaceous and woody plants in the landscape.

92. Internship (1-12) I, II, III. The Staff (Department Chairperson in charge). Internship—3-36 hours. Prerequisite: lower division standing, Biological Sciences 1C or Plant Science 2 or 10, and consent of instructor. Work experience off- and on campus in flower and nursery crop production, marketing, landscape horticulture; and park management. Internships supervised by a member of the faculty. (P/NP grading only)

98. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge). (P/NP grading only)

Upper Division Courses

105. Taxonomy and Ecology of Environmental Plants (4) III. Paul. Lecture—2 hours; laboratory—6 hours; field trips. Prerequisite: course 6 or one course in taxonomy. Taxonomy of the important plants used in the western landscape. Emphasis will be placed on the identification of taxa, characteristics, and uses of woody plants in man's environment.

107. Herbaceous Environmental Plants (4) III. Harding. Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: introductory course in environmental plants (course 6) or in plant taxonomy (Botany 108). Evolutionary relationships, hybridization, selection and cultural uses of herbaceous, environmental plant materials with emphasis on family characteristics and genetic and environmental differences. Plants are identified with the use of taxonomic keys.

120. Management of Container Soils (3) I. Paul. Lecture—2 hours; laboratory—3 hours. Prerequisite: Soil Science 100. Appropriate use of sand, mineral soil, and amendments to formulate container soils. Management of container soils emphasizing irrigation, salinity control, and fertilizer practices.

123. Greenhouse and Nursery Crop Production (5) III. Napoli. Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Plant Science 2. Principles and techniques necessary for the greenhouse and nursery production of ornamental crops.

130. Turfgrass Culture (3) III. Wu. Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Science 2 or Biological Sciences 1C and Soil Science 100. Professional turfgrass culture and management emphasizing turfgrass species and cultivars, physiological differences among turfgrass species, the interaction between turfgrass and the environment, and management practices.

133. Woody Plants in the Landscape: Growth, Ecology and Management (4) II. Berry. Lecture—2 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C or the equivalent preparation in plant biology. Principles and practices of managing trees and shrubs in the urban landscape and other managed environments. Topics include woody plant form, growth response and adaptation, tree management in relation to soil, moisture, climate; plant problems.

192. Internship (1-12) I, II, III. The Staff (Department Chairperson in charge). Internship—3-36 hours. Prerequisite: completion of 84 units, two upper-division courses in Environmental Horticulture appropriate for the internship, and consent of instructor. Work experience off and on campus in flower production and marketing, nursery crop production and marketing; landscape horticulture; and park management. Internships supervised by a member of the faculty. (P/NP grading only)

197. Tutoring in Environmental Horticulture (1-4) I, II, III. The Staff. Hours and duties will vary depending on course tutored. Prerequisite: upper division standing, completed course or the equivalent being tutored, and consent of instructor. Leading discussion sections, conducting laboratory exercises or procuring in individualized instruction format classes under faculty guidance. Weekly conferences on subject matter and instructional techniques may be repeated once for credit if different course is tutored.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: 3 units of upper division work in environmental horticulture; consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: 3 units of upper division work in environmental horticulture; consent of instructor. (P/NP grading only)

Graduate Courses

220. Tree Biotechnology (2) II, Durzan. Lecture—2 hours. Prerequisite: Bachelors or Masters degree in a plant science discipline (botany, plant physiology, genetics, agronomy, related fields). Development of basic principles of biotechnology of woody perennials. Cell and tissue culture methods and current process control problems are emphasized. Recombinant DNA methods covered where appropriate. Develop analytical evaluation skills. Review trends in commercialization.

241. Analysis of Horticultural Problems (3) III. The Staff. Lecture—1 hour; laboratory—6 hours. Prerequisite: a B.S. degree (or the equivalent) in Plant Science or consent of instructor. Diagnosis of ornamental plant disorders. Emphasis on distinguishing among disorders caused by soil, water, insects, pathogens, chemical agents, climatic conditions and cultural practices using visual symptoms and circumstances for determining probable cause and laboratory methods for confirmation. Offered in alternate years.

250. Seminar (1) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. Research conference conducted by departmental faculty to discuss design, philosophy, and interpretation of ongoing specific research areas which includes plant morphogenesis, floriculture, greenhouse production and modeling, landscape plant ecology, arboriculture, turf culture, post harvest, plant breeding, etc. (S/U grading only)

290C. Research Group Conference (1) I, II, III. Berry, Lieth, Napoli, Reid, Sachs, Wu. Discussion—1 hour. Prerequisite: students in a plant science graduate program. Research conference conducted by departmental faculty to discuss design, philosophy, and interpretation of ongoing specific research areas which includes plant morphogenesis, floriculture, greenhouse production, landscape plant ecology, arboriculture, turf culture, post harvest, and plant breeding related to environmental horticulture. (S/U grading only)

297T. Tutoring in Environmental Horticulture (1-4) I, II, III. The Staff (Chairperson in charge). Tutoring—4 to 8 hours; discussion—1 hour. Prerequisite: graduate standing; permission of course or the equivalent and/or consent of instructor. Leading discussion sessions, conducting laboratory exercises, and lecturing in environmental horticulture classes under faculty guidance. Weekly conferences on subject matter and instructional techniques may be repeated once for credit by tutoring in different courses.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
<table>
<thead>
<tr>
<th>Units</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-11</td>
<td>English Composition Requirement</td>
</tr>
<tr>
<td>6-8</td>
<td>See College requirement</td>
</tr>
<tr>
<td>3</td>
<td>Additional English (English 102 concurrently with Environmental Studies 1)</td>
</tr>
<tr>
<td>3</td>
<td>Preparatory Subject Matter 51-58</td>
</tr>
<tr>
<td>4-5</td>
<td>Biological sciences (Biological Sciences 1A or 1B)</td>
</tr>
<tr>
<td>3-4</td>
<td>Chemistry (Chemistry 2A, 2B)</td>
</tr>
<tr>
<td>10</td>
<td>Computer science (Agricultural Science and Management 21, Engineering 5, Computer Science Engineering 10, 30)</td>
</tr>
<tr>
<td>10</td>
<td>Economic principles (Economics 1A, 1B)</td>
</tr>
<tr>
<td>10</td>
<td>Environmental science/Ag (Animal Science 1, Biological Sciences 1B, Geology 1, Plant Science 1, Soil Science 100, Water Science 100)</td>
</tr>
<tr>
<td>3-5</td>
<td>Environmental studies (Environmental Studies 1)</td>
</tr>
<tr>
<td>4</td>
<td>Mathematics (Mathematic 16A-16B or 21A-21B)</td>
</tr>
<tr>
<td>5-8</td>
<td>Physics (Physics 1A)</td>
</tr>
<tr>
<td>3</td>
<td>Political science (Political Science 1)</td>
</tr>
<tr>
<td>3-4</td>
<td>Statistics (Statistics 1A, 1B)</td>
</tr>
<tr>
<td>2-4</td>
<td>Breadth/General Education 6-24</td>
</tr>
<tr>
<td>6-24</td>
<td>Satisfaction of General Education requirement</td>
</tr>
<tr>
<td>37-40</td>
<td>Depth Subject Matter (Students must take three of these units on a letter grade basis, and must obtain an average grade-point average of 2.000 or higher in the Depth Subject Matter courses.)</td>
</tr>
<tr>
<td>4</td>
<td>Core Courses</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Studies 160</td>
</tr>
<tr>
<td>3-4</td>
<td>Environmental Studies 161, 173, or Water Science 150</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Studies 168</td>
</tr>
<tr>
<td>3-4</td>
<td>Environmental Studies 171 or 179</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Studies 110</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Studies 164</td>
</tr>
<tr>
<td>4</td>
<td>Research Methods</td>
</tr>
<tr>
<td>103</td>
<td>Environmental Studies 178 or Sociology 103</td>
</tr>
<tr>
<td>106</td>
<td>Sociology 106 or Agricultural Economics 106 or Statistics 108</td>
</tr>
<tr>
<td>3</td>
<td>Economic Analysis</td>
</tr>
<tr>
<td>100A</td>
<td>Economics 100, Agricultural Economics 100A</td>
</tr>
<tr>
<td>3</td>
<td>Agricultural Economics 176</td>
</tr>
<tr>
<td>3</td>
<td>Areas of specialization (choose one) 17-23</td>
</tr>
<tr>
<td>4</td>
<td>Advanced Policy Analysis Option</td>
</tr>
<tr>
<td>4</td>
<td>Political Institutions (Political Science 102, 105, 155, 155A, 155B)</td>
</tr>
<tr>
<td>4</td>
<td>Political behavior (Political Science 164, 165, 170)</td>
</tr>
<tr>
<td>4</td>
<td>Science policy (Environmental Studies 165)</td>
</tr>
<tr>
<td>4</td>
<td>Policy evaluation research (Environmental Studies 168B)</td>
</tr>
<tr>
<td>4</td>
<td>City and Regional Planning Option</td>
</tr>
<tr>
<td>4</td>
<td>Urban design (Art History 166, Environmental Biology and Management 110, Landscape Architecture 40 recommended)</td>
</tr>
<tr>
<td>4</td>
<td>Urban geography (Geography 155, 156)</td>
</tr>
<tr>
<td>4</td>
<td>Transportation planning (Civil and Environmental Engineering 153)</td>
</tr>
<tr>
<td>4</td>
<td>Environmental impact assessment (Soil Science 118, Environmental Studies 179)</td>
</tr>
<tr>
<td>3-4</td>
<td>Urban economics (Economics 125)</td>
</tr>
<tr>
<td>4</td>
<td>Urban politics (Political Science 100, 102)</td>
</tr>
<tr>
<td>4</td>
<td>(Enroll for Environmental Studies 173 for law requirement under Depth Subject Matter above.)</td>
</tr>
<tr>
<td>4</td>
<td>Energy Policy Option</td>
</tr>
<tr>
<td>4</td>
<td>Environmental health (Environmental Studies 126, Environmental Toxicology 101)</td>
</tr>
<tr>
<td>4</td>
<td>Nuclear hazards (Environmental Studies 113)</td>
</tr>
<tr>
<td>4</td>
<td>Energy technology (Engineering 160, 162)</td>
</tr>
<tr>
<td>4</td>
<td>Solar energy (Environmental and Resource Sciences 103)</td>
</tr>
<tr>
<td>4</td>
<td>Economics of energy (Environmental and Resource Sciences 153)</td>
</tr>
<tr>
<td>4</td>
<td>Energy policy (Environmental Studies 167)</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Science Option</td>
</tr>
<tr>
<td>4</td>
<td>Students choosing the Environmental Science area of specialization must consult with a faculty adviser to identify an emphasis within this specialization and to select suitable courses; possible areas of emphasis are: biological conservation, pollutants in the environment, ecology, planning in the presence of environmental hazards.</td>
</tr>
<tr>
<td>4</td>
<td>Recreation Policy Option</td>
</tr>
<tr>
<td>4</td>
<td>Internship in Recreation Management, Environmental Studies 192</td>
</tr>
<tr>
<td>4</td>
<td>Public Land Management, Environmental Studies 174, 175</td>
</tr>
<tr>
<td>4</td>
<td>Urban recreation programs (Environmental Science and Management 134, Physical Education 150)</td>
</tr>
<tr>
<td>4</td>
<td>Recreation policy analysis, Environmental Studies 162</td>
</tr>
<tr>
<td>4</td>
<td>Recreation administration (Agricultural Economics 112, Applied Behavioral Science 163, 170, Political Science 163, 169)</td>
</tr>
<tr>
<td>4</td>
<td>Transportation Planning Option</td>
</tr>
<tr>
<td>4</td>
<td>Urban transportation must consult (Environmental Studies 155, 156, Agricultural Economics 125)</td>
</tr>
<tr>
<td>3</td>
<td>Transportation planning (Civil and Environmental Engineering 160)</td>
</tr>
<tr>
<td>3</td>
<td>Transportation engineering and analysis (Civil and Environmental Engineering 161, Environmental Studies 166B)</td>
</tr>
<tr>
<td>3</td>
<td>Energy policy (Environmental Studies 167, 168)</td>
</tr>
<tr>
<td>4</td>
<td>Air quality (Environmental and Resource Sciences 131)</td>
</tr>
<tr>
<td>3</td>
<td>Energy and environmental aspects of transportation (Environmental Studies 163)</td>
</tr>
<tr>
<td>3</td>
<td>Water Quality Option</td>
</tr>
<tr>
<td>3</td>
<td>Water resource management (Environmental Studies 126, Environmental Toxicology 101, Geography 162)</td>
</tr>
<tr>
<td>3</td>
<td>Water pollution (Water Science 122, Soil Science 120)</td>
</tr>
<tr>
<td>2-3</td>
<td>Freshwater systems (Water Science 122, Environmental Studies 151)</td>
</tr>
<tr>
<td>3-4</td>
<td>Field and laboratory methods (Water Science 122, Environmental Studies 151)</td>
</tr>
<tr>
<td>3</td>
<td>Water chemistry (Water Science 103, 180)</td>
</tr>
<tr>
<td>3-4</td>
<td>Hydrology (Water Science 141)</td>
</tr>
<tr>
<td>3</td>
<td>(Enroll for Water Science 150 for law requirement under Depth Subject Matter above.)</td>
</tr>
<tr>
<td>24-59</td>
<td>Unrestricted Electives</td>
</tr>
<tr>
<td>180</td>
<td>Total Units for the Degree</td>
</tr>
</tbody>
</table>

Environmental Studies (Intercollege Division)

Charles R. Goldman, Ph.D., Chairperson of the Division

Division Office: 2132 Vickas Hill (916-752-3028)

Faculty

Theodore C. Foote, Jr., Ph.D., Professor
Charles R. Goldman, Ph.D., Professor
William Jackson, III, Ph.D., Professor
Susan Harrison, Ph.D., Assistant Professor
Alan M. Hastings, Ph.D., Professor
Robert A. Johnston, M.S., Professor
John B. Loomis, Ph.D., Associate Professor (Environmental Studies, Agricultural Economics)
Benjamin S. Ohto, Ph.D., Professor
Mark R. Patterson, Ph.D., Assistant Professor
Thomas M. Powell, Ph.D., Professor
James F. Quinn, Ph.D., Associate Professor
Elisia Rejmarkova, Ph.D., Assistant Professor
Peter J. Richerson, Ph.D., Professor
Paul A. Sabatier, Ph.D., Professor
Thomas W. Schoener, Ph.D., Professor (Zoology)
Christine Schnoerl-Cox, Ph.D., Assistant Adjunct Professor
Seymour I. Schwartz, Ph.D., Professor
Daniel Sperling, Ph.D., Associate Professor (Environmental Studies, Civil Engineering)
Geoffrey A. Wandersfoord-Smith, Ph.D., Associate Professor (Environmental Studies, Political Science)
James E. Wilen, Ph.D., Professor (Environmental Studies, Agricultural Economics)

The Program of Study

The intercollege Division of Environmental Studies is a teaching and research unit offering courses, workshops, and directed group study classes that focus on the complex problems of human-environment relations. The Division offers Bachelor of Science degrees in Environmental Biology and Management and in Environmental Policy Analysis and Planning. Courses in Environmental Studies also supplement major programs in a wide variety of established disciplines, although highly motivated undergraduates who find existing majors unsuited to their educational objectives are encouraged to contact the Chairperson and faculty of the Division regarding individual majors in the College of Agricultural and Environmental Sciences (see Individual Major in the Programs and Courses section).

Current Information. Through its continuing contacts with many other departments and teaching divisions on the campus, the Division develops each year a variety of special courses and workshops that cannot be listed here. Students are advised to check with the Division Office and with the expanded course description handbook of the College of Agricultural and Environmental Sciences for up-to-date information about courses.

<table>
<thead>
<tr>
<th>Environment Studies 126 or Environmental Toxicology 101</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental and Resource Sciences 103 or Environmental Studies 115</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Studies 169</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Studies 167 or Political Science 171</td>
<td>4</td>
</tr>
</tbody>
</table>

Minor Adviser: S.I. Schwartz (Environmental Studies)
Graduate Study. The faculty of the Division offers graduate study through the M.S. and Ph.D. degree programs of the Graduate Group in Ecology, as well as through the graduate programs of the disciplines with which they are associated, such as agriculture, ecology, ethnology, political science, civil engineering, and anthropology. Further information about graduate programs in ecology should be obtained from the Chairperson of the Graduate Group in Ecology.

Graduate Adviser: T.C. Poin (Ecology).

Courses in Environmental Studies

Lower Division Courses
1. Environmental Analysis (4) III. Loomis, Patterson Lecture—3 hours; discussion—1 hour. Prerequisite: English 1 or English 102. 1, Economics 1A, 1B, Biological Sciences 1A, and Political Science 1 recommended. Analysis of the biological, physical, and social interactions which constitute environmental problems, such as food production, energy development and conservation, pollution, and the conservation of natural resources. Emphasis is on analysis of problems and the consequences of proposed solutions.

10. Introduction to Environmental Studies (4) I. Wandelforde-Smith Lecture—3 hours; discussion—1 hour. Prerequisite: Introduction to biology recommended. Survey of the importance of ecology and systems behavior for man-environmental relationships and management problems. Resources, environmental quality, urban dynamics, environmental perception, and conservation are covered. Includes integrative case studies, and features individual reading in environmental problems. Not open to credit for those who have credit for Education credit: Contemporary Societies/Introductory.

30. The Global Ecosystem (3) I. Richerson Lecture—3 hours; 1 one-day field trip. Prerequisite: Biological Sciences 10 or Geography 1 or Anthropology 2. The interaction of climate and biotic adaptation and the production of ecological systems. The limits and opportunities for human use of different natural environments, and human utilization of the earth’s biotic resources. General Education credit with concurrent enrollment in course 30G: Nature and Environment/Non-Introductory. Recommended GE preparation: Biological Sciences 10.

92. Internship (1-12) I, II, III. The Staff (Department Chairperson in charge)
Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in selected areas offered in the College of Agricultural and Environmental Sciences. Internship supervised by member of the faculty. (PAP grade only)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Primarily for lower division students. (PAP grade only)

Upper Division Courses
100. General Ecology (4) I. Harrison Lecture—3 hours; discussion—1 hour. Prerequisite: elementary biology (including botanical and zoological elements) and calculus. Ecological principles of biological systems, emphasizing populations and ecosystems. Principles of growth, regulation, distribution, structure, energetics, and mineral cycles related to the evolution of biological systems and applications to selected human ecological problems.

101. Human Ecology (4) II. Richerson, Mulder Lecture—3 hours; discussion—1 hour. Prerequisite: one course from cohort 30, Anthropology 1, or 2, Genetics 10, or the equivalent. Critical variables in the relationships that relate humans and their environment. Emphasis on cultural, ecological, psychological, and physiological forces which encourage stability or change in human ecological relationships. (Same course as Anthropology 101.) General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Environmental Studies 1, 30, Anthropology 1, 2, Biological Sciences 10, Geography 2, or Sociology 2.

(a) Environmental Science
110. Principles of Environmental Science (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: Physics 1A or 5A, Mathematics 16B or 21B, and Biological Sciences 1A. Application of physical and chemical principles, ecological concepts, and systems approach to policy analysis of atmospheric environments, freshwater and marine environments, land use, energy supplies and technology, and other resources.

115. Bioenvironmental Consequences of Nuclear Technology (3) I. Spero Lecture—3 hours; field trip to nuclear power station. Prerequisite: a course in biology, biophysics, implosions of nuclear and thermal phenomena generated by nuclear technology. Evaluation based on predictions of radioactive physical response. Offered in alternate years.

116. The Oceans (3) I. Spero, Margolis, II. Suchanek, Margolis Lecture—3 hours. Introductory survey of the marine environment; oceanographic phenomena, chemical constituents, geophysical history, the sea’s biota, and utilization of marine resources. (Same course as Geology 116.) General Education credit with concurrent enrollment in course 116G: Nature and Environment/Non-Introductory. Recommended GE preparation: Biological Sciences 10, Chemistry 10, or Geology 1.

(b) Ecological Analysis
121. Population Ecology (4) II. Hastings Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1B, 1C, Mathematics 16A-16B. Development of exponential and logistic growth models for plant and animal populations, analysis of age structure and genetic structure, analysis of competition and predator-prey systems. Emphasis is on developing models and relating them to predator- prey interactions. Offered in alternate years.

123. Introduction to Field and Laboratory Methods in Ecology (4) III. Hamilton Lecture—2 hours; laboratory—6 hours; two-week field trip. Prerequisite: Statistics 130 or 130A (may be taken concurrently), or the equivalent. Course will introduce students to methods used for collecting ecological data and laboratory situations. Methods used by population ecologists and community ecologists are included and emphasis will be placed on experimental design, scientific writing, and data analysis.

124. Marine and Coastal Field Ecology (10) Extra- session summer. Chow Lecture—6 hours; discussion—4 hours; seminar—1 hour; laboratory—18 hours (Summer Session I). Prerequisite: Biological Sciences 1A, 1B; Statistics 13; course 100. Full-time study at Bodega Marine Laboratory. Intensive lecture-laboratory-field study of current ecological theory and problems with emphasis on marine populations and communities; techniques and evaluation of quantitative field research.

125. Social Systems of Animals and Humans (4) III. Hamilton Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or the equivalent recommended. The nature and interpretation of animal social systems, and their relation to an understanding of man's social conventions and evolution. Aggression, dominance, communication, sexual behavior, cooperation, and social regulation of density are considered from an evolutionary perspective.

126. Environmental and Occupational Epidemiology (4) I. Beaumont Lecture—3 hours; discussion—1 hour. Prerequisite: Introductory course in statistics and upper division standing. Methods and contemporary issues in environmental and occupational epidemiology. Effects of carcinogens, reproductive hazards, lifestyle factors, air and water pollution, infectious agents, and other hazards on human populations. Discussion of epidemiologic study designs, biases, and risk assessment.

128. Analysis and Simulation of Complex Systems (3) I. Foin Lecture—3 hours. Prerequisite: Mathematics 16B or 21B, Statistics 102; upper division standing in the biological or social sciences. Analysis of systems and the application of ecological and socioeconomic systems using DYNAMO, evaluation of models. Logical and scientific reasoning is stressed.

128L. Modeling Complex Systems (3) I. Foin Lecture—1 hour; laboratory—3 hours; discussion—1 hour. Prerequisite: course 128 concurrently. Simulation modeling using DYNAMO. Students complete a series of exercises from model formulation to model development and experimental project of their own choosing.

129. Physical Biology (3) III. Patterson Lecture—3 hours. Prerequisite: Chemistry 2B, Physics 1B, and Biological Sciences 1A and 1B. Comparative and evolutionary study of organismic responses and adaptations to the physical and chemical environment. Body size and metabolism, gas and nutrient exchange, thermoregulation, biomechanics, locomotion, and selected topics in current research.

129L. Physiological Ecology Laboratory (3) III. Patterson Laboratory—6 hours. Prerequisite: course 129 (may be taken concurrently). Methods for monitoring physical variables in aquatic and terrestrial environments and animal responses to them. Water balance, respiration, and thermoregulation are demonstrated and a broadly comparative approach is considered. Enrollment limited.

(c) Cultural Ecology
133. Cultural Ecology (4) III. Oriole Lecture—3 hours; discussion—1 hour. Comparative survey of the interaction between human cultural systems and the environment. Primary emphasis given to people in rural and relatively undeveloped environments as a basis for interpreting more complex environments. (Same course as Anthropology 133.) General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 2.

(d) Aquatic Ecosystems Analysis
150A. Physical and Chemical Oceanography (4) I. Powell Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Studies/Geology 110, Physics 99, Mathematics 22C, Chemistry 1C, or upper division standing in a natural science and consent of instructor. Physical and chemical properties of seawater, fluid dynamics, air-sea interaction, currents, tides, mixing, major oceans, and chemical cycles. (Same course as Geology 150A.)

*Course not offered this academic year.
Environmental Toxicology

(College of Agricultural and Environmental Sciences)

Takayuki Shibamoto, Ph.D., Chairperson of the Department

Department Office, 4138 Meyer Hall (916-752-1142)

Faculty

Richard G. Burau, Ph.D., Professor (Environmental Toxicology, Soil Science)

Arthur L. Craighill, Ph.D., Lecturer

Bruce D. Hamrock, Ph.D., Professor (Environmental Toxicology, Entomology)

Dennis P. H. Hsieh, Sc.D., Professor

Theodore L. Hull, Ph.D., Professor

Fumio Matsunuma, Ph.D., Professor

Marion G. Miller, Ph.D., Assistant Professor

Clayton A. Reace, M.S., Lecturer

Robert H. Rice, Ph.D., Associate Professor

James N. Selber, Ph.D., Professor

Takayuki Shibamoto, Ph.D., Professor

Michael W. Sittmann, Ph.D., Lecturer

Benjamin W. Wozny, Ph.D., Professor (Environmental Toxicology, Avian Sciences)

Emeriti Faculty

Donald G. Crosby, Ph.D., Professor Emeritus

Wandel P. Kilgore, Ph.D., Professor Emeritus

Ming-ju Li, Ph.D., Lecturer Emeritus

Wayne W. Winterlin, M.S., Lecturer Emeritus

The Major Program

Students in environmental toxicology study toxic substances which can be found in our personal, occupational, community, and global environments. What these substances are, where they are distributed and what happens to them, how they work, and locating and analyzing these substances are the central focus of study. A special concern is with human-made toxicants such as pesticides industrial chemicals, food additives, and environmental pollutants; but toxic substances also occur naturally in the environment and include heavy metals and toxics produced by animals, plants, molds, and bacteria.

The Program. The study of environmental toxicology draws heavily from preparatory courses in biology, chemistry, mathematics, and physics. The major offers courses outlining the chemical, biological, and legal aspects of environmental toxicology (legislation concerning pollution, pesticides, food additives, and consumer protection) as well as providing in-depth treatment of different groups of toxic substances. Students can specialize in any of several areas of environmental toxicology—for example chemical analysis, environmental monitoring, animal toxicology, or environmental health and safety—by choosing electives in these areas.

Internships and Career Alternatives. Research positions in both government and private laboratories, as well as with governmental regulatory agencies in nearby Sacramento, are examples of current internships openings for environmental toxicology majors. Approximately half of the undergraduate completing the environmental toxicology program elect to go on for advanced degrees in toxicology, pharmacology, public health, or the medical sciences. Others with the B.S. degree have found jobs with government agencies, universities, in industry, research and consulting firms, and with laboratories. Those students who emphasize the physical sciences in their study of toxicants would qualify for positions in residue analysis, environmental monitoring, and forensic toxicology. Those emphasizing the biological sciences would qualify for similar positions in animal toxicology, environmental health and safety, and pest control.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible; equivalent or more comprehensive courses may be substituted with advisor's approval. Courses shown without parentheses are required)

UNITS

Environmental Composition Requirement.................0-8

Preparatory Subject Matter.........................61-70

Biological sciences (Biology Sciences 1A, 1B, 1C)...........15

Chemistry (Chemistry 2A-2B-2C, or 2AH-2BH-2CH and 119A-119B-119C or 129A-129B-129C).........................20-24

Computer science (Agricultural Science and Management 21)...........3

Environmental sciences (Environmental Toxicology 10 or Environmental Sciences 10).......3-4

Mathematics (Mathematics 1A-1B or 21A-21B)...........6-8

Physics (Physics 1A-1B or 5A-5B)....................6-8

Statistics (Statistics 13).....................3

Breadth/General Education................................36

Satisfaction of the General Education Requirement to include courses selected with advisor's approval to complement the major (courses in agricultural economics, environmental studies, political science, psychology, and sociology are particularly recommended)...........24

Additional breadth in humanities and social sciences...........12

Depth Subject Matter......................................30

Biochemistry (Biochemistry 101A-101B)....................7

Restricted/Others Electives.................................24

Electives selected for area of specialization with advisor's approval

Unrestricted Electives.................................12-29

Total Units for the Degree..............................180

Major Adviser, R.H. Rice

Advising Center for the major, is in 4111 Meyer Hall (916-752-1042).

Minor Program Requirements:

UNITS

Environmental Toxicology.........................18

Elective courses 6 units minimum, selected from Environmental Toxicology 128, 198 and 199 (4 units combined maximum)...........10, 130A-E, 131, 132, 190....................8

Minor Adviser, M.G. Miller

Related Courses: See Atmospheric Science 149A, Resource Sciences 131, Environmental Studies 10, 121, 126, Wildlife and Fisheries Biology 153, Water Science 41.

Graduate Study. Programs of study leading to M.S. and Ph.D. degrees are available in the areas of Pharmacology and Toxicology, Ecology, and Agricultural and Environmental Chemistry. For information on graduate study, contact the Office of Graduate Studies, University of California, Davis.

Graduate Adviser, B.W. Wilson (Pharmacology and Toxicology), T. Shiba, M.W. Winterlin (Agricultural and Environmental Chemistry).

Courses in Environmental Toxicology

Lower Division Courses

10. Introduction to Toxicology (3) III. The Staff

Lecture—3 hours. Prerequisite: open to science and non-science majors. Study of some natural and man-made toxic substances in personal, occupational, community, and global environments. Emphasis placed upon occurrence, properties, and effects of toxic substances. Biological and physical factors which alter fate of substances are described.

92. Internship (1-12) II, III, The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the College of Agricultural and Environmental Sciences. Internships supervised by a member of the faculty. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) II, III, The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

101. Principles of Environmental Toxicology (3) I, Matsunuma

Lecture—3 hours. Prerequisite: Chemistry 80, 126B, or equivalent. Emphasis on assessment of toxicants in environmental and biological systems; classes of environmental toxicants discussed include pesticides, air and water pollutants, phytotoxins, mycotoxins, food-borne toxics, and heavy metals.

112A. Toxicants in the Environment (3) II, Crosby

Lecture—3 hours. Prerequisite: course 101 or consent of instructor. Properties of toxic chemicals which influence their distribution and transformation; action of environmental forces which affect toxicant breakdown, movement, and accumulation; sources and occurrence of major classes of environmental toxicants.

112B. Toxicants in the Environment (4) III, Burau, Shibamoto

Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 5; course 112A; consent of instructor. Continuation of 112A. Toxic chemicals—primarily pollutants—in the environment; concepts and techniques of sampling, detecting, and measuring toxicants of current concern: collection, interpretation, and use of analytical data. Limited enrollment. Environmental Toxicology majors will be given preference for enrollment.

*Course not offered this academic year.
114A. Biological Effects of Toxins (3) I. Rice
Lecture—3 hours. Prerequisite: Biochemistry 101B
(may be taken concurrently); course 101 and Physi-
ology 110 recommended. Course designed to illus-
trate the biological effects of toxic substances in liv-
ing organisms. Topics to be covered: fate and mech-
anism-of-action of representative toxins, types of
effects, symptoms, and antidotes.

114B. Biological Effects of Toxins: Compara-
tive Aspects (3) II. Miller
Lecture—1 hour, discussion—2 hours, laboratory—3
hours. Prerequisite: course 114A and consent of in-
structor. Course designed to illustrate basic prin-
ciples of toxicity and to acquaint students with lab-
oratory methods for evaluating potential toxicity of
chemicals. Continuation of course 114A. Limited
enrollment. Environmental Toxicology majors will be
given preference for enrollment.

128. Food Toxicology (3) III. Shibanoko, Graun-
weide (Food Science and Technology)
Lecture—3 hours. Prerequisite: Biochemistry 101A,
101B. Chemistry and biochemistry of toxins occur-
ring in foods, including plant and animal toxins,
intentional and unintentional food additives. The
assessment of food safety and toxic hazards. (Same
course as Food Science and Technology 128.)

130A-E. Selected Topics in Environmental Toxi-
ology (3) I, II, III. The Staff (Chairperson in charge).
Lecture—1 hour, discussion—3 hours. Prerequisite: consent of instructor; course 101 recommended. Selected
topics of current interest in environmental toxicology.
Topics will vary each time the course is offered, and
will emphasize such areas as the microbiology of
toxic substances, poisonous plants and animals,
chemical ecology, toxic substances in food, and the
safe handling of toxic substances.

131. Air Pollutants and Inhalation Toxicology (3)
III. Hiest, Lilac (Internal Medicine)
Lecture—3 hours. Prerequisite: Chemistry 8B (may
be taken concurrently) or the equivalent; Biochem-
istry 101A recommended. Toxicology of air pollu-
tants in the natural and artificial environments. En-
vironmental fate, biological effects, air-quality criteria and
standards, and pulmonary responses to these pollutants. Of-
ffered in alternate years.

132. Chromatography for Analytical Toxicology (3)
II. The Staff (Chairperson in charge)
Discussion—1 hour; laboratory—8 hours; slide
demonstrations and extensive library assignments.
Prerequisite: Chemistry 8B or the equivalent (may
be taken concurrently) or consent of instructor. Ap-
plication and theory of basic chromatographic tech-
niques, such as thin-layer, gas-liquid, high-pressure liquid and
column chromatography useful for analytical toxicology;
residue analysis comprises one-third of course.

135. Health Risk Assessment of Toxicants (3)
Hsieh
Lecture—3 hours. Prerequisite: course 101; course
114A recommended. Current practices of health risk
assessment of environmental chemicals using tox-
icological principles and their application to regula-
tory control of these chemicals.

139. Legal Aspects of Environmental Toxicology (3)
II. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: consent of instructor;
courses 10 and 101 recommended. Federal and Cali-
ifornia legislation concerning air and water pollu-
tion, pesticide control, food and feed additives, con-
sumer protection, and occupational exposure to
noxious substances; roles of Federal regulatory agen-
cies, alternatives to governmental control.

190. Seminar (1) I. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: consent of instructor.
Selected topics presented by students, faculty, or
outside speakers covering current research and in-
structional activities within environmental toxicology.
Reports and discussion concerning oral and writ-
en presentations, literature sources, and career
opportunities. (P.N.P. grading only.)

190C. Research Group Conference (1) I, II, III. The
Staff
Discussion—1 hour. Prerequisite: consent of instruc-
tor. Weekly conference of advanced research meth-
ods and the interpretation of research results. (P.N.P.
grading only.)

192. Internship (1-12) I, II, III. The Staff (Chair-
person in charge)
Lecture—3-36 hours. Prerequisite: completion of 84
units and consent of instructor. Work experience off
and on campus in all subject areas offered in the
College of Agricultural and Environmental Sciences.
Interim supervised by a member of the faculty.
(P.N.P. grading only)

197T. Tutoring in Environmental Toxicology (1-5)
I, II, III. The Staff (Chairperson in charge)
Hours and duties will vary depending upon course
being tutored. Prerequisite: advanced standing in
Environmental Toxicology, a related major, or the
equivalent experience and consent of instructor.
Teaching toxicology including conducting discussion
groups for regular departmental courses under
direct guidance of staff. May be repeated for credit
up to a total of 5 units. (P.N.P. grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff
(Chairperson in charge)
Prerequisite: consent of instructor. (P.N.P. grading
only.)

199. Special Study for Advanced Undergraduates
(1-5) I, II, III. The Staff (Chairperson in charge)
(P.N.P. grading only.)

Graduate Courses

203. Environmental Toxicants (4) II. Crosby
Lecture—3 hours; discussion—1 hour. Prerequisite:
Chemistry 126C (or the equivalent), or Chemistry 8B
and consent of instructor. Toxic chemicals: selected
topics illustrating their occurrence, structure, and the
reactions underlying detection, toxicity, fate, and
ecological importance of these chemicals.

214. Mechanisms of Toxic Action (3) III. Harnack, Matsumura
Lecture—3 hours. Prerequisite: Biochemistry 101A-
101B and consent of instructor. Biochemical and physiologi-
ical mechanisms underlying toxicity and
detoxification.

220. Analysis of Toxicants (3) I. The Staff
Lecture—3 hours. Prerequisite: course 101 and con-
sent of instructor; course 203 recommended. Prin-
ciples of the microanalysis of toxicants. Theoretical
considerations regarding separation, detection, and
quantitative determination of toxicants using chemi-
cal and instrumental techniques.

220L. Analysis of Toxicants Laboratory (2) I. The
Staff
Laboratory—6 hours. Prerequisite: course 220 (may
be taken concurrently) and consent of instructor.
Laboratory techniques for microanalysis of toxicants.
Separation, detection, and quantitative determination of

toxicants using chemical and instrumental meth-
ods.

228. Gas Chromatography/Mass Spectrometry of
Toxic Chemicals (3) I. Reese, Shibanoko
Lecture—1 hour; discussion—1 hour; laboratory—3
hours. Prerequisite: course 220 and Chemistry 129C;
or consent of instructor. Application of GC/MS tech-
niques to investigate toxic chemicals. Mass spectral
tragamations and their application to the structural
elucidation. Practical application of GCMS in current
research. Preference given to environmental toxicol-
y graduate students.

234. Neurophysiological Basis of Neurotoxicology
(4) I. Wooley
Lecture—3 hours. Prerequisite: Physiology 110 or the
equivalent; basic understanding of neurophysiology.
Mechanisms of action at the cellular and systemic
levels of a number of different neurotoxins and tox-
cants. Examples of ways toxics may act on the
nervous system and techniques for study of neuro-
toxicity. (Same course as Physiology 234.)

240. Ecotoxicology (3) III. The Staff
Lecture—3 hours. Prerequisite: Consent for advanced
course in toxicology and ecology or the equivalent, or
consent of instructor. Principles of ecology as applied
to chemical action on natural populations, commu-
nities, and ecosystems. Physical, chemical, and bio-
logical characteristics which influence ecotoxic effects,
evaluation, and field research. Selected case
histories are analyzed and presented in class.

290. Seminar (1) I, II, III. The Staff (Chairperson
in charge)
Seminar—1 hour. Current topics in environmental tox-
icology (S.U. grading only.)

290C. Advanced Research Conference (1), I, II, III.
The Staff (Chairperson in charge)
Lecture/discussion—1 hour. Prerequisite: consent of in-
structor. Presentation and critical discussion of
advanced research methods and interpretation of
research results. Designed primarily for graduate
students. (S.U. grading only.)

297T. Tutoring in Environmental Toxicology (1-5)
I, II, III. The Staff (Chairperson in charge)
Hours and duties will vary depending upon course
being tutored. Prerequisite: graduate standing in
Environmental Toxicology, a related major, or the
equivalent experience and consent of instructor.
Teaching toxicology including conducting discussion
groups for regular departmental courses under
direct guidance of staff. May be repeated for credit
up to a total of 5 units. (S.U. grading only.)

298. Group Study (1-5) I, II, III. The Staff
(Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chair-
person in charge)
(S.U. grading only.)

Epidemiology (A Graduate Group)

Tim E. Carpenter, Ph.D., Chairperson of the Group
Office: 110 Surge IV (Department of Epidemiology and Preventive Medicine), 916-752-9174

Faculty. Includes members from the Department of Epidemiology and Preventive Medicine, Division of Occupational and Environmental Medicine, and other related departments in the Schools of Medicine, Veterinary Medicine, Graduate School of Management, and the Colleges of Agricultural and Environmental Sciences and Letters and Science.

Graduate Study. The Graduate Group in Epidemiology offers programs of study and research leading to the M.S. and Ph.D. degrees. Areas of emphasis include: environmental/occupational epidemiology; infectious disease epidemiology; epidemiologic methods; health services and economics; and metabolic, nutritional, and chronic disease epidemiology. For detailed information regarding the program, address the chairperson of the group.

Graduate Adviser: M. Thurmond (Department of Epidemiology and Preventive Medicine, 752-5933)

Related Courses. For additional course work in Epide-
miology, please see Epidemiology and Preventive Medicine and internal Medicine—Occupational and Environmental Health.

Courses in Epidemiology

251. Environmental Epidemiology (3) III. Gold
Lecture—3 hours. Prerequisite: Epidemiology and Pre-
ventive Medicine 400B (or the equivalent); upper divi-
sion undergraduates who have completed Environmental Studies 126 or the equivalent. Examination of the human health effects and the risk discourse in community, occupational, and personal exposure to toxic substances. Offered in alternate
years.

270. Research Methods in Occupational Epidemi-
ology (3) II. Beaumont
Lecture/discussion—3 hours. Prerequisite: Envi-
ronmental Studies 126 or Epidemiology and Preventive Medicine 405, and Statistics 102 or Epide-
miology and Preventive Medicine 402. Methods used in epidemiologic research on occupational
Epidemiology and Preventive Medicine
(School of Veterinary Medicine)
Richard H. McCapes, D.V.M., Chairperson of the Department
Department Office, 112 Surge-IV
(916)-572-1379/9174

Faculty
Raymond A. Bankowski, D.V.M., Ph.D., Professor Emeritus
JoAnne Bookman, M.S.L.S., Lecturer
Tim E. Carpenter, Ph.D., Professor
James T. Case, D.V.M., Ph.D., Assistant Professor of Clinical Diagnostic Medicine
Bruno B. Chomel, D.V.M., Ph.D., Assistant Professor
Thomas B. Farver, Ph.D., Professor
Charles E. Frant, Ph.D., Professor
Ian A. Gardner, V.M.S., Ph.D., Assistant Professor
John S. Glenn, D.V.M., Ph.D., Lecturer
Lyntte A. Hart, M.A., Ph.D., Assistant Adjunct Professor
David W. Hird, D.V.M., Ph.D., Associate Professor
David A. Jessup, D.V.M., M.P.P.V.M., Lecturer
Philip H. Kass, D.V.M., Ph.D., Assistant Professor
Carolyn S. Kopper, M.S.L.S., Lecturer
Kenneth M. Lam, Ph.D., Associate Professor
Richard H. McCapes, D.V.M., Senior Lecturer
Duncan McMartin, D.V.M., Ph.D., Lecturer
Ben B. Norman, D.V.M., Ph.D., Lecturer
Patton I. Smith, D.V.M., M.P.V.M., Lecturer
Frederick Stevens, D.V.M., M.S., Lecturer
Mark C. Thurmond, D.V.M., Ph.D., Professor
Patricia S. Wakenell, D.V.M., Ph.D., Assistant Professor
George W. West, D.V.M., M.P.V.M., Lecturer

Part-Time Clinical Faculty
Galistan Ghalghaghrani, D.V.M., Ph.D., Associate Clinical Professor

Emeriti Faculty
Constatgin Genigeorgis, D.V.M., Ph.D., Professor Emeritus
Jack M. Howarth, D.V.M., Ph.D., Professor Emeritus
Margaret E. Meyer, Ph.D., Professor Emeritus
Hans P. Riemann, D.V.M., Ph.D., Emeritus Professor Emeritus
Walter W. Sadler, D.V.M., M.P.H., Professor Emeritus
Calvin W. Schwabe, D.V.M., M.P.H., Sc.D., Professor Emeritus
Richard Yamamoto, Ph.D., Professor Emeritus

Courses in Epidemiology and Preventive Medicine

Upper Division Courses

104. History of Veterinary Medicine (3) III.
Lecture—2 hours; discussion—1 hour. Veterinary medicine’s role (from man’s first domestication of animals to the decline of Rome) in building a foundation for rational healing and its contributions during the eighteenth-twentieth centuries to the creation of modern medicine.

106. Human–Animal Interactions: Benefits and Issues (3) II.
Lecture—2 hours. Prerequisite: upper division standing or consent of instructor. The contributions of animals to human society, including historic, anthropological, developmental, human health, and therapeutic perspectives, as well as effects of humans on animals.

111. Animal Hygiene (3) II. McCapes
Lecture—3 hours. Prerequisite: Biological Sciences 1A or consent of instructor. Causes, prevention, and control of animal diseases important in agriculture and public health, with emphasis upon animal management factors in disease.

150. Food-borne Infections and Intoxications (4)
III. Genigeorgis, Riemann
Lecture—4 hours. Prerequisite: Food Science and Technology 104, Veterinary Microbiology and Immunology 127. Prevalence and characteristics of those diseases of man which are derived from food or food sources; access of disease agents to and distribution in food and food sources, exposure of man to these agents; prevention of food-borne diseases.

199. Special Study for Advanced Undergraduates
(1-5) I, II, III. The Staff (Chairperson in charge)
(FnPr grading only)

Graduate Courses

202. Sampling in Health-Related Research
(3) I. Farver
Lecture—3 hours. Prerequisite: course 403 or the equivalent; consent of instructor. A thorough coverage of simple random sampling, stratified sampling, cluster sampling, systematic sampling, and sequential sampling. Emphasis is on application of the sampling methods. Offered in alternate years.

203. Multivariate Biostatistics
(3) I. Farver
Lecture—3 hours. Prerequisites: courses 403 and 404, or the equivalent; consent of instructor. Multivariate procedures covered are principal component analysis, factor analysis, two-group and k-group multivariate ANOVA, multivariate regression, two-group and k-group discriminant analysis and related measures analysis, cluster analysis, and canonical analysis. Emphasis is on application of procedures. Offered in alternate years.

212. Epidemiology of the Zoonoses
(4) II. Chomel
Lecture—4 hours. Prerequisite: standing or third-year standing in School of Veterinary Medicine, or consent of instructor. Epidemiological, biological, and ecological features of some major infections shared by man and animals. Wildlife and domestic animals zoonoses of major health and economic significance are presented to illustrate how knowledge of zoonoses epidemiology is essential for implementing control measures.

216. Immunodiagnostic Techniques
(3) II. Lam, Cullor
Lecture—3 hours. Prerequisite: enrollment in PMVP program or consent of instructor. Consideration of immunodiagnostic techniques for screening of animal populations for disease. Emphasis on rapid, simple, and inexpensive procedures for mass screening.

216L. Immunodiagnostic Techniques Laboratory
(2) II. Lam
Discussion—1 hour; laboratory—2 hours. Prerequisite: course 216 or may be taken concurrently; consent of instructor. Application and interpretation of serologic techniques for diagnosis of animal diseases. (Sa grading only.) Limited enrollment.

217. Evaluation of Diagnostic Tests
(2) III. Gardner
Lecture/discussion—1.7 hours; laboratory—1 hour. Prerequisite: consent of instructor. Topics include sensitivity, specificity, predictive values, Bayes’ Theorem, ROC curves, measuring agreement between tests, series and parallel testing strategies. Emphasis on rational interpretation and presentation of test results for individuals and aggregates. Offered in alternate years.

219. Mycoplasma as Agents of Disease
(2) III. Lam
Lecture—2 hours. Prerequisite: Veterinary Microbiology and Immunology 127 or the equivalent or consent of instructor. Specific agents of disease. Specific.

220. Advanced Avian Medicine
(3) III. Lam, Wakenell
Lecture—3 hours. Instruction on the methods of prevention of the major diseases of domestic poultry.

222. Epidemiological Modeling
(3) II. Carpenter
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: course 405. Techniques of model-building and simulation of infectious diseases will be explored. Epidemiological modeling philosophy, construction, and validation will be emphasized.

225. Preventive Avian Medical Practice
(3) III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: enrollment in avian medicine option of PMVP program, third- or fourth-year standing in School of Veterinary Medicine, or consent of instructor. Discussion of the economic structure of the broiler, commercial egg and turkey industries, and the delivery of preventive veterinary medical services within these industries. Specific prevention and eradication programs pertaining to diseases of economic importance are covered.

254. Public Health Aspects of Meat and Meat Products Technology
(3) III. Genigeorgis
Lecture—3 hours. Prerequisite: course 150 or consent of instructor. Study of the influence of techniques and procedures for processing meats and meat products upon their wholesomeness as food.

255. Animal Health Economics
(3) III. Carpenter
Lecture—3 hours. Prerequisite: consent of instructor. Basic concepts of microeconomics (production and cost functions, firm decision making, and the market place) as they relate to animal health are considered. Application of economic decision making techniques which may be used in veterinary medicine are also presented.

290. Current Topics in Avian Medicine
(1) I, II, III.
Lam, Wakenell
Seminar—1 hour. Prerequisite: consent of instructor. Topics from the current literature in avian medicine will be assigned to students for discussion and interpretation.

291. Seminars in Epidemiology
(1) III.
Seminar—1 hour. Participants will present and discuss ongoing or publish research projects in epidemiology. Emphasis will be on study design and data analysis. (Sa grading only)

298. Group Study
(1-5) II, III, III. The Staff (Chairperson in charge)

299. Research
(1-12) II, III, III. The Staff (Chairperson in charge)

Professional Courses

400. Orientation to Statistics
(4) I.
Lecture—40 hours total. Prerequisite: enrollment in PMVP degree program. Introduction and overview to the concepts basic to biostatistics and epidemiology. (Sa grading only)

401. Biomedical Information Resources and Retrieval
(3) I. Bookman
Lecture—4 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: enrollment in PMVP Program or consent of instructor. Introduction to the skills and tools needed to find information in the biomedical sciences with an emphasis on veterinary medicine. Emphasis will be placed on selection of appropriate sources to solve a particular information need using both print and electronic reference and bibliographic sources.

402. Medical Statistics
(4) I, III.
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: Fall quarter: course 400 or Statistics 13 (or the equivalent), and consent of instructor; Spring quarter: consent of instructor; restricted to students entering the DVM/PMVP dual degree program. Use of statistics in clinical, laboratory, and population medicine; graphical and tabular presentation; probability; binomial, Poisson, normal, t-, F-, and Chi-square distributions; Neyman–Pearson non-parametric methods; simple linear regression and correlation; lifetable.

403. Medical Statistics
(4) II.
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: course 402. Preparation of course 402. Analysis of variance in biomedical sciences; non-parametric methods; multiple regression; biomedical applications of statistical methods.
404. Medical Statistics III (4) III.
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: course 403. Continuation of course 403. Analysis of covariance, variable selection; analysis of multiway frequency tables; logistic regression; discriminant analysis; time dependent variation and trends; biomedical applications.

405. Principles of Epidemiology (5) I.
Hird
Lecture—3 hours; discussion—3 hours. Prerequisite: a degree in veterinary medicine, medicine, or dentistry, or consent of instructor. Approved for graduate degree credit. Combination of lectures, class discussions, and problem solving. Topics are methods of investigating disease outbreaks, quantifying disease populations, medical ecology survey methods, an introduction to epidemiologic study design and animal disease surveillance.

406. Epidemiologic Study Design (3) II.
Hird
Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: course 405 or the equivalent; course 403 or the equivalent (may be taken concurrently). Approved for graduate degree credit. Design and interpretation of clinical trials, case-control, and cohort studies. Critical review of published epidemiologic studies. Principles of association and causality.

407. Analytical Epidemiology (3) III.
Kass
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 403 and 404 (may be taken concurrently). Approved for graduate degree credit. Uses of multiple regression, discriminant analysis, factor analysis, path analysis and other multivariate techniques in epidemiologic studies. Application of the experimental method to solving specific epidemiologic field problems involving disease. Students must identify and select a problem, and complete all work preparatory to the actual field collection of data or specimens.

409A-409B. Topics in Data Analysis (2-3) II-II.
The Staff (Chairperson in charge)
Discussion—2 hours (409A); discussion—3 hours (409B). Prerequisite: course 405 (may be taken concurrently) or consent of instructor. Approved for graduate degree credit. Emphasis on decision making with respect to the type and amount of data required for solving epidemiologic problems and the selection and use of appropriate data in statistics and economics for processing, analyzing, and interpreting these data. (Deferred grading only, pending completion of course.)

410A-410B. Topics in Applied Epidemiology (3-2) II-II.
The Staff (Chairperson in charge)
Discussion—3 hours (410A); discussion—2 hours (410B). Prerequisite: course 405 (may be taken currently) or consent of instructor. Approved for graduate degree credit. Emphasis on the collection of data, and the interpretation and analysis of data from field studies, serum banks or data banks. Laboratory examinations of specimens and recording of results. Alternative approaches to presentation of data and conclusions and formulations of recommendations for further investigations. (Deferred grading only, pending completion of course.)

411. Disease Control and Eradication (3) I.
Riemann
Lecture—1.5 hours; discussion—1.5 hours. Prerequisite: Veterinary Medicine 403 or course 405. Studies of various approaches to controlling/eradicating diseases in animal populations. Design and economic evaluation of control programs.

412A. Use of Microcomputers: Level 1 (3) I.
Steers
Course—2 hours; laboratory—3 hours. Prerequisite: computer oriented to microcomputers or consent of instructor. Introduction to and development of skills on modern microcomputers for students involved in epidemiologic studies and research. Level one topics include microcomputer anatomy, operating systems, file handling, fundamentals of word processing, spreadsheets, and statistical analysis software. (SU grading only)

412B. Use of Microcomputers: Level 2 (3) II.
Steers, Riemann
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 412A or consent of instructor. Development of intermediate skills on modern microcomputers for students involved in epidemiologic studies and research. Level two topics include advanced use of word processing and spreadsheet software, and introduction to database management programs. (SU grading only)

412C. Use of Microcomputers: Level 3 (3) III.
Steers, Riemann
Lecture—1 hour; laboratory—4 hours. Prerequisite: course 412B or consent of instructor. Development of advanced skills on modern microcomputers for students involved in epidemiologic studies and research. Level three topics include advanced use of database management programs, and development of application programs to facilitate the students' research efforts. (SU grading only)

413. Microcomputer Programs in Epidemiology (1-1-1)
Gardner
Laboratory—3 hours. Prerequisite: introductory course in epidemiology (course 405 or Veterinary Medicine 409) and basic understanding of MS-DOS and IBM-compatible microcomputers. Applications of Epilinfo to epidemiologic research and disease outbreak investigation, including questionnaire design, data checking and validation, statistical analysis, sample size calculations, and design of a surveillance system (SU grading only)

Family Practice

See Medicine, School of

Feminist Theory and Research

Judith Newton, Ph.D., Program Director
Program Office, 277 Kerr Hall (916-752-5336)

Graduate Study. The program in Women's Studies offers courses leading to a doctoral degree with a designated emphasis in Feminist Theory and Research. The courses provide theoretical and interdisciplinary perspectives to students already preparing for the Ph.D. in one of eight participating departments (Anthropology, Comparative Literature, English, French, History, Italian, Spanish, and Sociology). Students complete all requirements for the Ph.D., including the dissertation, in one of the participating departments. The additional requirements leading to the designated emphasis consist of two core courses (Women's Studies 200A and 200B) and two additional graduate courses, one of which must be in the student's home department. It is an expectation that gender will be a central component of the student's doctoral examination and dissertation.

Graduate Adviser. Consult the Women's Studies office (916-752-4688).

Fermentation Science

(College of Agricultural and Environmental Sciences)

The Major Program

The Fermentation Science major is a program of study of the fundamental and applied sciences related to the use of microorganisms as production and processing agents. A broad interdisciplinary food-related education is offered which may be combined with specializations in enology (wine studies), brewing science, and fermentation of other foods and beverages. Industrial fermentations and waste treatments in the production of microbial cells, drugs, enzymes, hormones, solvents, acids, and vitamins are further opportunities for study.

The Program. The major in fermentation science leads to a Bachelor of Science degree. Most of the instruction for the major is done in the Department of Viticulture and Enology and in the Department of Food Science and Technology. Students also take courses in chemistry, biochemistry, microbiology, genetics, and computer science. Electives often include additional courses in sensory science, management and viticulture.

Career Alternatives. Graduates qualify for supervisory, technical, production, product development, quality control, research, sales, or executive positions in the food, beverage, and allied industries. In the fermentation industries, and in governmental agencies. Students who choose to continue in graduate study have done so in such areas as food science-enology, microbiology, agricultural chemistry, and biochemistry.

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirement are shown in parentheses where possible. Equivalent or more comprehensive courses will be accepted.)

ENGLISH COMPOSITION REQUIREMENT

PREPARATORY SUBJECT MATTER

BIOLOGY (BIOLOGICAL SCIENCES 1A)

COMPUTER SCIENCE (AGRICULTURAL SCIENCE AND MANAGEMENT 21, COMPUTER SCIENCE ENGINEERING 10, 30, OR 65)

MATHEMATICS (MATHEMATICS 16A-16B or 21A-21B)

MICROBIOLOGY (MICROBIOLOGY 102-102L)

PHYSICS (PHYSICS 5A, and SB 5C or 5C)

STATISTICS, INCLUDING AN ANALYSIS OF VARIANCE (AGRICULTURAL SCIENCE AND MANAGEMENT 150 or STATISTICS 106)

BREADTH/GENERAL EDUCATION

SATISFACTION OF GENERAL EDUCATION REQUIREMENT (EN "CIVILIZATION AND CULTURE" AND OR "CONTEMPORARY SOCIETIES") PLUS ADDITIONAL COURSE WORK IN SPECIAL SCIENCES AND HUMANITIES OR OTHERS AS APPROVED BY ADVISER TO TOTAL 24 UNITS.

DEPTH SUBJECT MATTER

Choose from:

CHEMISTRY 107A, 107B, 108, 130

CHEMICAL ENGINEERING 161, 206

EPIDEMIOLOGY AND PREVENTIVE MEDICINE 150 (OR "FOOD SCIENCE AND TECHNOLOGY 104")

FOOD SCIENCE AND TECHNOLOGY 102L, 102, 104L, 104, 108, 109, 110A, 110B, 125, 150, 205, 205, 250, 250L, 250L, 250

GENETICS 100

MICROBIOLOGY 105, 130A, 130B, 130L, 250

VITICULTURE AND ENOLOGY 3, 123, 124, 125, 126, 127, 135, 140, 186, 217, 219, 235 (NO VARIABLE-UNIT 190, 192, 199, 259 COURSES ALLOWED TOWARD DEGREE REQUIREMENTS)

(Courses in depth subject matter may not be taken on the P/NP grading basis. Overall GPA in depth subject matter must be 2.0 or greater)
Fiber and Polymer Science

(College of Agricultural and Environmental Sciences)

Faculty
See Textiles and Clothing

The Major Program

The fiber and polymer science major is concerned with the physical, chemical, and structural properties of fibers, and how these relate to fiber and polymer performance and end-use.

The Program. All students in this major are required to take a common core of course work in chemistry, physics, and mathematics, and depth subject matter in fiber and polymer science, organic and physical chemistry, and technical writing. In the restricted electives, the student is expected to select from courses in areas such as computer science and mathematics, chemistry, marketing and management, material and advanced fiber and polymer science, and textiles.

Career Alternatives. The major prepares the student for a career in a wide range of industries in the areas of research and development, technical marketing and management, production, quality control, and testing (on completion of an additional year in the teaching credential program). The companies employing fiber and Polymer Science graduates are in the fiber, polymer, and chemical industry. Graduates are prepared to enter the graduate program in textiles or agricultural and environmental science with a specialization in fiber and polymer chemistry, and fiber and polymer science programs at other universities.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses will be accepted.)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>7-12</td>
</tr>
<tr>
<td>College requirement (English 104)</td>
<td>3</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>51-54</td>
</tr>
<tr>
<td>Chemistry (Chemistry 1A-B/A-B)</td>
<td>16</td>
</tr>
<tr>
<td>Physics (Physics 5A, 5B, 5C or 9A, 9B, 9C)</td>
<td>9-12</td>
</tr>
<tr>
<td>Statistics (Statistics 13 or Agricultural Science and Management 150)</td>
<td>12</td>
</tr>
<tr>
<td>Textiles and Clothing (Textiles and Clothing 6 and 8 or Engineering 45)</td>
<td>8</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td>See advising office for breadth requirement.</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Subject</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textiles Science: Textiles and Clothing 163, 163L, 180A, 180B</td>
<td>8</td>
</tr>
<tr>
<td>Fiber and Polymer Science 100, 150, 161, 163, 163L</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry (Chemistry 128A, 128B, 128C, 129A, 129B, 110A and 110C or 107A and 107B)</td>
<td>19</td>
</tr>
</tbody>
</table>

Restricted Electives

<table>
<thead>
<tr>
<th>Electives</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select courses from the following: Computer Science and Mathematics: Agricultural Science and Management 21; Engineering 5; Applied Science Engineering 115, 116; Food Science and Technology 156, Mathematics 22A, 22B.</td>
<td>30</td>
</tr>
<tr>
<td>Marketing/Management: Agricultural Economics 100A, 100B, 113, 136, 157, Economics 1A, 1B, Statistics 103.</td>
<td>4</td>
</tr>
<tr>
<td>Material and Advanced Fiber Polymer Science: Aeronautical Science Engineering 137, Engineering 104A, 104B, Textiles and Clothing 250A-F, 250, 253.</td>
<td>4</td>
</tr>
<tr>
<td>Textiles and Clothing 162, 162L, 164, 165, 171, 173, 174</td>
<td>4</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>24-41</td>
</tr>
<tr>
<td>Total Units for the Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

Major Adviser. Y.L. Hsieh (Textiles and Clothing)

Advising Center. For the major is located in 129 Everson Hall (916-522-4417).

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber and Polymer Science</td>
<td>18</td>
</tr>
<tr>
<td>Textiles and Clothing 6 or Engineering 45</td>
<td>4</td>
</tr>
<tr>
<td>Courses selected from the following: Fiber and Polymer Science 100, 150, 161, 161L; Textiles and Clothing 163 and 163L or 180A and 180B</td>
<td>14</td>
</tr>
</tbody>
</table>

Minor Adviser. Y.L. Hsieh

Courses in Fiber and Polymer Science

100. Principles of Polymer Materials Science (3) II., Zeronian.

Lecture—3 hours. Prerequisite: Chemistry 2A-2B; Chemistry 8A-8B or Engineering 45; introductory physics; the basic principles of polymer science are presented including polymer structure and synthesis, polymerization mechanisms, polymer classes, properties, and applications; polymer morphology, rheology, and characterization; polymer processing. (Same course as Engineering: Materials Science 147.)

Lecture—3 hours, discussion—1 hour. Prerequisite: Chemistry 10 or Introductory course in physical sciences. Basic concepts and methodologies in the study of plastics. Formation, classification, structure, properties, processing, and formulation. Their application to societal needs, and their impact on society and the environment. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Chemistry 10 or introductory course in physical sciences.

150. Polymer Syntheses and Reactions (3) III. Hsieh.

Lecture—3 hours. Prerequisite: Chemistry 128B or 8B, and Chemistry 107A. Organic and physical chemistry aspects of polymer syntheses and reactions including polymerization mechanisms, kinetics and thermodynamics for major types of organic high polymers.

Lecture—3 hours. Prerequisite: Textiles and Clothing 6, Chemistry 104A, 104B, 110A and 110C or 107A and 107B; reactions of natural and man-made fibers; the relations between molecular structure of fibers and their physical properties; interactions of fibers and detergents.

181L. Textile Chemical Analysis Laboratory (1) II. Zeronian.

Laboratory—3 hours. Prerequisite: course 161 may be taken concurrently. Laboratory methods and procedures employed in qualitative and quantitative analysis of textile fibers and auxiliaries.

Fisheries

See Animal Science; and Wildlife and Fisheries Biology

Food Biochemistry

(College of Agricultural and Environmental Sciences)

The Major Program

The major in food biochemistry stresses the principles of chemistry and biochemistry as related to constituents of foods and the changes which occur in the constituents before and during processing and during storage. Particular emphasis is placed on the role of and changes in the carbohydrates, lipids, proteins, enzymes, and nucleic acids and their effect on the quality attributes of foods.

The Program. The food biochemistry curriculum stresses a strong background in chemistry, physics, mathematics, and biology at the lower-division level. At the upper-division level students take specialized courses in food science and technology and advanced biochemistry and nutrition. Through the appropriate choice of electives, students may emphasize certain research areas such as nutrition, food processing, or toxicology.

Career Alternatives. The major employment options for a food biochemistry graduate are in research and development at large food industry units, in laboratories-related employment in quality assurance, new food technology, and food analysis, or in any position requiring knowledge of biochemical techniques, such as in clinical laboratories. The major offers excellent preparation for graduate study in areas such as food science, nutrition, biochemistry, and environmental toxicology. Food biochemistry has also been chosen as a pre-professional major by students interested in medical, veterinary, or dental school.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>6-8</td>
</tr>
<tr>
<td>See College English requirement</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>74-78</td>
</tr>
<tr>
<td>Biochemistry (Biochemistry 101A, 101B)</td>
<td>7</td>
</tr>
<tr>
<td>Biology (Biological Science 1A)</td>
<td>5</td>
</tr>
</tbody>
</table>
Food Science
(College of Agricultural and Environmental Sciences)

The Major Program
Food science applies physical, biological, engineering, and social sciences to the processing, preservation, packaging, storage, evaluation, and utilization of foods.

The Program. Students studying for the Bachelor of Science degree in food science must complete courses in microbiology, general chemistry, organic chemistry, quantitative analysis, and biochemistry. Calculus, statistics, and physics are also required. These subjects help students understand the complex interactions of food science. Students also take courses in English and literature courses. These courses develop communication skills, and broaden their general education by taking courses in social sciences and humanities.

Career Alternatives. Opportunities for employment include positions in the food industry, research institutions, government agencies, and management positions. Graduate study for the food science student may lead to the M.S. or Ph.D. degree in food science, or in related fields such as agricultural chemistry, biochemistry, microbiology, and nutrition.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>6</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>Biological sciences</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>6</td>
</tr>
<tr>
<td>Statistics</td>
<td>6</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>24</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>30</td>
</tr>
<tr>
<td>Food Science and Technology</td>
<td>105</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>103</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>6</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>34</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>29</td>
</tr>
<tr>
<td>Restrictive Electives</td>
<td>44</td>
</tr>
<tr>
<td>Total Units for the Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

Food Science
(A Graduate Group)

Charles F. Shoemaker, Ph.D., Chairperson of the Group

Graduate Study. A program of study leading to the M.S. and Ph.D. degrees in Food Science is available. For further information on graduate study, contact the graduate adviser.

Food Science and Technology
(College of Agricultural and Environmental Sciences)
R. Larry Merson, Ph.D., Chairperson of the Department

Department Office, 126 Cruea Hall (916-752-1465)

Faculty
Everett Bandman, Ph.D., Professor
Erick L. Berrett, Ph.D., Professor
Richard A. Bernhard, Ph.D., Professor
John Brum, Ph.D., Lecturer
Stephanie R. Dungan, Ph.D., Assistant Professor

J. Bruce German, Ph.D., Associate Professor
Dorothy G. Schwoedel, Ph.D., Professor
Norman F. Haard, Ph.D., Professor
Jerald M. Henderson, D.Engr., Professor

Michael J. Lewis, Ph.D., Professor
Kathryn L. McCarthy, Ph.D., Associate Professor

Michael J. McCarthy, Ph.D., Associate Professor

R. Larry Merson, Ph.D., Professor

David M. Ogletreez, Ph.D., Professor
Michael A. O'Mahony, Ph.D., Professor
Chester W. Price, Ph.D., Associate Professor
Robert J. Price, Ph.D., Lecturer
David S. Reid, Ph.D., Professor
Gerald F. Russell, Ph.D., Professor
Barbara O. Schmeen, Ph.D., Professor

Howard G. Shultz, Ph.D., Professor
C.F. Shoemaker, Ph.D., Associate Professor
Elizabeth O. Shuster, Ph.D., Assistant Professor
H. Paul Singh, Ph.D., Professor
Mandel Mazzelo, Ph.D., Professor Emeritus
Martin W. Miller, Ph.D., Professor Emeritus
Herman J. Pfaff, Ph.D., Professor Emeritus
Thomas Richardson, Ph.D., Professor Emeritus
Gideon Zeidler, D.Sc., Lecturer

Emeriti Faculty
Wallace J. Dunke, Ph.D., Professor Emeritus
Robert E. Feeney, Ph.D., Professor Emeritus
Robert L. Jennings, Ph.D., Professor Emeritus
Bel S. Loh, Ph.D., Professor Emeritus
George L. Marn, M.S., Professor Emeritus

Major Program and Graduate Study. The majors are in Food Science, Food Biochemistry, and Consumer Food Science, and for graduate study, refer to the Graduate Studies section in this catalog.

Related Courses. See courses in Biochemistry and Biophysics, Consumer Science, Engineering, Nutrition, and Viticulture and Enology; Environmental Toxicology, Epidemiology and Preventive Medicine. 150, Plant Science 112 and 113.

Courses in Food Science and Technology

Lower Division Courses

Food Science and Society (3.1) Bernhard
Lecture—2 hours; discussion—1 hour. Nature and scope of world food problem; food composition; sci-
entific and technological aspects of converting animal and plant products into a variety of prepared foods; improvement and evaluation of acceptability and nutritional value of foods. Not open for credit to students who have received credit for course 100A, 100B, or 111.

2. Introductory Food Science (3) I. Lewis Lecture—3 hours; one industrial visit to a food factory (optional). Processes by which raw agricultural commodities are preserved and converted into edible foods; regulation of food manufacture and the chemistry and microbiology of food that control its qualities and safety. Not open for credit to students who have received credit for any other Food Science and Technology course. Departmental General Education credit: Nature and Environment/Introductory.

49. Processing Plant Studies (1) I. M. McCarthy Discussion—1 hour; field trips—3 hours. Field trips to observe production, distribution, quality control and regulatory control of foods and related materials.

93. Public Issues in Nutrition and Food Science (1) II. Schneman Seminar—1 hour. Faculty and invited guest speakers will present topics in the area of nutrition and food science which are currently subjects of public debate. Intended as an introduction to nutrition and food science for students new to the campus. (P/NP grading only.) (Same course as Nutrition 83.)

99. Senior Study for Undergraduates (1-5) II, III, The Staff (Mentor in charge) (P/NP grading only)

Upper Division Courses

100A. Principles of Food Composition and Properties (3) I. Shoemaker Lecture—3 hours. Prerequisite: Chemistry 8A-8B. Fundamental physical, chemical, and sensory aspects of food composition as they relate to physical properties, acceptability, and nutritional value of fresh and processed foods.

100B. Principles of Food Composition and Properties (3) I. Russell, Shoemaker Lecture—3 hours. Prerequisite: Chemistry 8A-8B. Fundamental chemical, physical, and sensory aspects of food composition as they relate to physical properties, acceptability, and nutritional value of fresh and processed foods.

101A. Principles of Food Composition and Properties Laboratory (2) I. Shoemaker Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100A (may be taken concurrently). Course designed to give laboratory experience with the food systems and properties described in course 100A.

101B. Principles of Food Composition and Properties Laboratory (2) II. Mazelia Lecture—3 hours. Prerequisite: course 100B (may be taken concurrently). Course designed to give laboratory experience with the food systems and properties described in course 100B.

108. Metabolism and Brewing Science (4.5) I. Lewis Lecture—4 hours. Prerequisite: Biochemistry 101B recommended. Technology of malting, brewing, fermentation, finishing, and packaging of beer is integrated with the chemistry, biochemistry, and microbiology that determine industrial practice and control product quality.

109. Metabolism and Brewing Science Laboratory (3) II. Lewis Discussion—1 hour; laboratory—6 hours. Prerequisite: course 108. Chemistry 5, Laboratory experience in the use and application of standard brewing methods of analysis. Data collection on raw materials and application of these data in pilot-scale malting and brewing exercises. Processing studies and influence of process variables on product attributes.

110. Physical and Chemical Methods for Food Analysis (5) I. Gruenwedel, G. Smith, Tappel Lecture—3 hours; laboratory—6 hours. Prerequisite: Chemistry 5, 8B; Biochemistry 101B (may be taken concurrently). An introduction to the theory and application of physical and chemical methods for determining the constituents of foods. Modern separation and instrumental analysis techniques are stressed.

112. Food Microbiology (3) I. Barrett Lecture—3 hours. Prerequisite: Biological Sciences 1A, Biochemistry 101A. Microorganisms in food safety, spoilage, and production of food. Use of microorganisms as agents and their control. Growth parameters of food spoilage agents. Destruction of microbes in food. Fermentations. The development of microbes as a resource for the food industry.

114. Food Microbiology Laboratory (4) III. C. Price, Shuster Lecture—1 hour; discussion—1 hour; laboratory—6 hours. Prerequisite: Biological Sciences 1A, course 104. Cultural and morphological characteristics of microorganisms; identification of molds, yeasts, and bacteria; spoilage in foodborne diseases, and food fermentation. Analysis of microbiological quality of foods.

116. Principles of Sensory Analysis of Foods (4) II. Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Agricultural Science and Management 150 or the equivalent course in statistics. Nature of sensory responses with emphasis on aroma, texture, and texture of foods; critical use of analytical laboratory methods; relation of sensory data to chemical and instrumental measurements; collection and statistical analysis and interpretation of sensory data.

118. Food Processing Plant Sanitation (3) II. York Lecture—3 hours. Prerequisite: Chemistry 8B, Biological Sciences 1A. Discussion of factors relating to sanitary control of food processing involving water treatment, plant layout, and personnel. Monitoring agents, principles of cleaning and hard surface detergent, metal corrosion, concepts in the disposal of wastes and the pertinence of government control agencies.

119. Principles of Quality Assurance in Food Processing (3) III. Rozier Lecture—2 hours; discussion—1 hour. Prerequisite: Statistics 13 or Agricultural Science and Management 150. Quality assurance measurement techniques applied to food processing. Concepts of quality assurance programs including selection of samples at critical points. Statistical problems in quality assurance programs used by the food industry.

120A. Physical Principles in Food Processing (3) I. Merson Lecture—2 hours; laboratory—2 hours. Prerequisite: Physics 5A and 5B or the equivalent; calculus recommended. Principles of heat and mass transfer in food processing. Elementary heat and mass transfer in biological systems. Introduction to heat, mass transfer in biological systems. Introduction to heat, mass transfer in non-uniform media. Heat and mass transfer in biological systems. Introduction to heat, mass transfer in biological systems.

120B. Heat and Mass Transfer in Food Processing (3) II. Singh Lecture—3 hours. Prerequisite: course 110A or the equivalent; Agricultural Engineering Technology 110L recommended (may be taken concurrently). Rate processes: conduction, convection, and radiation heat transfer; microwave heating, refrigeration, freezing, psychrometrics; mass transfer during drying, and storage of food materials.

111. Introduction to Food Processing (4) II. M. McCarthy, Miller Lecture—4 hours; discussion-demonstration—2 hours. Prerequisite: Biological Sciences 1A, Chemistry 8A-8B, and Physics 5A and 5B, or the equivalent. Food processing from farm to package. Characteristics of raw materials, fresh produce handling, over-view of food processing and processing unit operations, chemical additives. Demonstration and field trips.

117. The Senses, Sensory Measurement, Psychology, and Food (4) I. O'Mahony Lecture—4 hours. Prerequisite: Biological Sciences 1A; Statistics 1A, 8A and 8B, or the equivalent. Management 150 (may be taken concurrently). Structure and function of sensory receptors; psychological and physiological variables affecting sensory responses. Critical examination of modern psychophysical methods for the investigation of the mechanisms of human sensory systems. Problems of sensory measurement and their relation to food flavor.

118. Chemistry and Technology of Milk and Dairy Products (4) II. Rehn Lecture—4 hours; demonstrations and a field trip. Prerequisite: Biological Sciences 1A, Biochemistry 101A, or consent of instructor. Composition, structure and properties of milk and products derived from milk. Relations of chemical and biological principles to commercial practices in processing of milk and its products.

120. Principles of Meat Science (3) III. Bandman, Lee (Animal Science) Lecture—3 hours. Prerequisite: Biochemistry 101B or the equivalent. Anatomical, physiological, developmental and biochemical aspects of muscle underlying the conversion of muscle to meat. Includes meat processing, preservation, microbiology and public health issues associated with meat products. (Same course as Animal Science 120.)

120L. Meat Science Laboratory (2) III. Lee (Animal Science), Bandman Discussion—1 hour; laboratory—3 hours. Prerequisite: Biochemistry 101B; course 120 (may be taken concurrently). Laboratory exercises and student participation in transformation of live animal to carcass and meat. Structure and functional properties related to meat quality, chemical and sensory evaluation of meat, and field trips to packing plant and processing plant. (Same course as Animal Science 120L.)

121. Principles of Poultry Product Technology (3) I. King (Avian Sciences) Lecture—3 hours. Prerequisite: Biochemistry 101B (may be taken concurrently). Quality, preservation, and processing of avian products. Topics include quality control, nutrition, chemistry, biochemistry, microbiology, and functional properties.

122. Marine Food Science (3) II. Ogrydziak, Haard Lecture—3 hours. Prerequisite: Biological Sciences 1A; Biochemistry 101B (may be taken concurrently). Biochemical, microbiological, and ecological principles unique to fish; white fish are found and why; fishing and landing techniques as they influence quality; processing, storage, and public health aspects of marine organisms; resource development, including aquaculture. Offered in alternate years.

125. Corrosion Principles in Food Processing Interactions (3) II. Gruenwedel Lecture—3 hours. Prerequisite: Mathematics 16B; Physics 5BC; Chemistry 8B. Course presents thermodynamic and kinetic principles of container-product interactions (internal corrosion) and investigates how these interactions affect the wholesomeness of processed canned foods.

129. Food Toxicology (3) III. Gruenwedel, Shimamoto (Environmental Toxicology) Lecture—3 hours. Prerequisite: Biochemistry 101A, 101B. Chemistry and biochemistry of toxins occurring in foods, including plant and animal toxins, intentional and unintentional food additives. The assessment of food safety and toxic hazards. (Same course as Environmental Toxicology 129.)

131. Packaging Processed Foods (3) III. Krochta Lecture—3 hours. Prerequisite: course 1 or 111, Chemistry 8B, Biological Sciences 1A, and Physics 5B, or consent of instructor. Technical aspects of packaging processed foods. Definitions and functions of packages for food. Packaging materials and properties. Public health problems associated with packaging. Food-packaging interactions for major commodities and their controls.

140. Food Laws and Regulation (3) I. Lesaux (Law) Lecture—3 hours. Prerequisite: upper division standing. Legal and scientific issues involved in the regulation of the nation's food supply and nutritional status. Philosophy underpinning and the adequate of regulatory statutes. Sources of information necessary for communication with government on public food policy information.
150. Food Processing (3) Ill. Merson Lecture—2 hours; discussion, demonstration, and problem workshops—2 hours. Prerequisite: courses 104 and 110B or the equivalent. Theory and practical considerations of thermal processes by canning, pasteurization, and aseptic processing. Process control of microbial inactivation and chemical changes to safeguard public health, nutrition, and consumer acceptance. Description and engineering analysis of thermal processing equipment.

150L. Thermal Processing Laboratory (2) Ill. Merson Laboratory—6 hours. Prerequisite: courses 104 and 110B; course 150 (may be taken concurrently). Laboratory experience in the use and application of thermal processing methods and related procedures, and the interpretation of results, including evaluation of can closures, operation of thermal processing equipment, and the development and testing of sterilization processes.

151. Freezing Preservation of Food (3) II. Reid Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 110B, Biological Sciences 1A, and Chemistry 88; course 104 recommended. Freezing of model systems and food with emphasis on physicochemical aspects. Consequences of food freezing and thawing. Modeling of freezing for predictive purposes. Visualization and characterization of frozen materials. Offered in alternate years.

156. Computer Interfacing for Laboratory and Process Control (4) II. Russell Lecture—3 hours; laboratory—3 hours. Prerequisite: consent of instructor. Principles of micro- and minicomputer use in measurement and control of laboratory instrumentation and processing operations with both theoretical and practical aspects of computer interfacing.

160. Project Conduct in Industry (2) II. Henderson Lecture—1 hour; discussion—1 hour. Prerequisite: background in the physical sciences. Planning, execution, and documentation of design, development, and practical aspects of the activities in the industrial world using the physical sciences. The project experiences will be food oriented (harvesting, processing, packaging, consumption).

190. Senior Seminar (1) I. Reid, German Seminar—1 hour. Prerequisite: senior standing or consent of instructor. Selected topics presented by students on recent advances in food science and technology. Reports and discussions concerning oral and written presentations, literature sources and career opportunities.

192. Internship for Advanced Undergraduates (1-12) I, II, III. The Staff (Merson in charge) Internship—3-36 hours. Prerequisite: consent of instructor. Work experience in the practical application of food science (P/NP grading only).

198. Directed Group Study (1-5) I, II, III. The Staff (Merson in charge) Prerequisite: consent of instructor (P/NP grading only).

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Merson in charge) (P/NP grading only).

Graduate Courses

201. Food Chemistry and Biochemistry (3) III. Tappel, Bernhard, Greenwald Lecture—3 hours. Prerequisite: Biochemistry 101B. Topics on enzymes, proteins, pigments, lipids, and vitamins. Biochemical principles and methods related to food composition, preservation, and processing. 202. Physical and Chemical Changes in Food (4) II, Reid, Haard Lecture—3 hours, term paper. Prerequisite: Biochemistry 101B; Chemistry 107B. Fundamental principles of chemistry and physics are applied to a study of changes in water binding properties and activity, changes in proteins, nutrients, toxic constituents, and other compounds during storage, heating, freezing, dehydrating, and concentrating of food materials.

205. Industrial Microbiology (3) I. Ogydziak Lecture—3 hours. Prerequisite: Biochemistry 101A-101B and Biological Sciences 1A; Microbiology 130A-130B or Genetics 102 recommended. Use of microorganisms for producing substances such as amino acids, peptides, enzymes, antibiotics and other substances. Emphasis on metabolic regulation and pathways leading to fermentation products, on yeast fermentations, and on genetic manipulations (including recombinant DNA techniques) of industrial microorganisms. Offered in alternate years.

207. Advanced Sensory-Instrumental Analyses (3) III. Noble (Viticulture and Enology) Lecture—2 hours; laboratory—3 hours. Prerequisite: course 107 and consent of instructor. Basic principles of measurement of color, texture, and flavor of foods by sensory and instrumental methods. Advanced statistical analysis of relation of colorimetry, texturometry, and chemistry of volatile compounds to perception of appearance, texture, flavor. Offered in alternate years.

211. Lipids: Chemistry and Nutrition (3) I. German Lecture—3 hours. Prerequisite: Biochemistry 101B, Chemistry 107B, 126B. Chemistry of lipids as it pertains to research in food and nutrition. Relations between lipid structure and their physical properties in oils and fats. Regulation of absorption, transport, and metabolism of lipids. Implications of dietary fats and health.

235. Mycology of Food and Food Products (3) II. Milet Lecture—3 hours. Prerequisite: course 104 or consent of instructor. Morphology and physiology of fungi associated with food. Desirable activities of fungi: food fermentations, single-cell protein production, mushroom culture. Undesirable activities: preharvest and postharvest deterioration, food spoilage and preservation, toxin production.

250. Chromatographic and Electrophoretic Methods (4) I. G. Smith, Bandman, German Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 14A-14B, 1A-1B, 1A-1B or consent of instructor. Theory and practice of gas and liquid chromatography, and electrophoresis for analytical and preparative purposes. Choice and optimization of separation methods, detection systems and recovery of purified sample components.

250L. Chromatographic and Electrophoretic Methods Laboratory (1) I. G. Smith, Bandman, German Laboratory—3 hours. Prerequisite: course 250 concurrently. Practice of gas and liquid chromatography and electrophoresis for analytical and preparative applications. Choice and optimization of separation methods, detection systems, and recovery of purified sample components.

256. Computer Applications in Laboratory and Process Control (3) III. Russell Lecture—1 hour; laboratory—6 hours. Prerequisite: course 156 or the equivalent. Theory and practice of microcomputer interfacing to laboratory instrumentation for analytical and process control applications. Study of systems commonly used in food laboratories, including integration and control systems including A/D and D/A converters, transducers, signal conditioning, and data transmission.

290. Seminar (1) II, Ill. Ogydziak Seminar—1 hour (S/U grading only).

290C. Advanced Research Conference (1) II, Ill. The Staff (Merson in charge) Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Critical evaluation and presentation of original research by graduate students. Planning of research programs and proposals. Discussion led by individual major instructors for their research projects. (S/U grading only).

291. Advanced Food Science Seminar (1) Ill. Ogydziak Seminar—1 hour. Prerequisite: completion of at least one quarter of course 290. Oral presentation of students’ original research, discussion, and critical evaluation (S/U grading only).

298. Group Study (1-5) I, II, Ill. The Staff (Merson in charge) Prerequisite: graduate standing. (S/U grading only.)

Food Service Management

(College of Agricultural and Environmental Sciences)

Faculty

See under the Department of Nutrition.

The Major Program and Graduate Study

Food Service Management is incorporated within the major in Dietetics. If you are interested in preparing for a career in commercial organizations such as hotels, restaurants, industrial cafeterias, or contract food services, as well as in public or private institutions such as hospitals, correctional institutions, schools, or colleges, consult the Department of Nutrition.

Related Courses. See Food Science and Technology, and Nutrition.

Courses in Food Service Management

Questions pertaining to the following courses should be directed to the instructor or to the Nutrition Department Advising Office, 1151 Meyer Hall (916-702-2152).

Upper Division Courses

120. Principles of Quantity Food Production (3) III. Prophet Lecture—3 hours. Prerequisite: Food Science and Technology 100B and 101BL. Fundamental principles of food service management including quantity food preparation, institutional equipment, receiving and storage, service, menu planning, merchandising, and safety.

120L. Quantity Food Production Laboratory (2) I, II, III Laboratory—6 hours. Prerequisite: course 120. Laboratory experience in quantity food production and service.

121. Institutional Food Purchasing and Sanitation (3) I. Scheneen Lecture—1 hour; discussion—2 hours. Prerequisite: Biological Sciences 1A; course 120. Principles of quantity food purchasing and sanitation.

122. Food Service Systems Management (3) I, II, III Lecture—3 hours. Prerequisite: Agricultural Economics 112, courses 120, 120L, 121. Principles of quantity food production management: production structure, portion control, systems analysis, layout and equipment planning, evaluation of alternative systems, and computer applications.
123. Personnel Management (3) III. The Staff Lecture—3 hours. Prerequisite: A basic course in general psychology. Major personnel management functions; legal constraints and requirements; procedures in solving personnel problems faced by supervisors.

139. Internship (1-12) I, II, III. The Staff Internship—3-12 hours. Prerequisite: one upper division course in Food Service Management and consent of instructor. Work experience on or off campus in practical aspects of food service management; supervised by a faculty member. (P/NP grading only.)

137. Tutoring in Food Service Management (1-2) I, II, III. The Staff (Prophet in charge) Discussion/lab—3 or 6 hours. Prerequisite: DQ or related major; completion of the Food Service Management course in which tutoring is done. Tutoring of students in food service management, assistance with discussion groups or laboratory sections; weekly conference with instructor in charge of course; written evaluations. May be repeated if tutoring a different course. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Prophet in charge) (P/NP grading only.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Prophet in charge) (P/NP grading only.)

French

(Chair of French and Italian, 516 Sproul Hall (916-752-0930)

Faculty

Claude Abraham, Ph.D., Professor
Marc E. Blanchard, Agrégé de Lettres, Professor (French, Critical Theory)
Edward M. Bloomer, Ph.D., Associate Professor
Michele Hanouch, Ph.D., Associate Professor (French, Comparative Literature)
Gerald Herman, Ph.D., Senior Lecturer
M. A. Manes-Manouli, Ph.D., Professor
Marcella Kusch, Ph.D., Senior Lecturer (French, Comparative Literature)
Michele Prager, Ph.D., Associate Professor
George Van Der Beek, Ph.D., Senior Lecturer

The Major Program

The major program is designed to assure proficiency in all four of the language skills—speaking, understanding, reading, and writing—and to acquaint students with the intellectual and cultural contributions of the French-speaking world through the study of its literature, traditions, and institutions.

The Program. The department is strongly committed to undergraduate education. It encourages its students to work closely with the academic advisor in designing a major tailored to their needs and interests within the broad requirements prescribed by the program and to avail themselves of the guidance of an excellent teaching faculty. The department sponsors an active French Club and a chapter of Phi Delta Theta, the National French Honor Society. Each year, a substantial number of students with a preparation in French participate in the university’s very popular Education Abroad Program, which maintains centers at seven French universities.

Career Alternatives. Foreign language teachers, a cardinalist, a veterinarian, a naval commander at the Pentagon, a professor of Political Science, lawyers, sales representatives, journalists, anthropologists, a law professor, translators, a senior applications programmer, travel agents, independent business owners, a senior museum preparator, nurses, financial managers, stock brokers, and an industrial attaché of a French Trade Commission, all graduated with an A.B. in French from U.C. Davis and represent only a small fraction of the career choices documented in a recent survey of department graduates.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>French 2, 3, 4 (or the equivalent)</td>
<td>0-17</td>
</tr>
<tr>
<td>French 5, 6, 7</td>
<td>15</td>
</tr>
<tr>
<td>Linguistics 1</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>French 100</td>
<td>4</td>
</tr>
<tr>
<td>French 101, 102, 103</td>
<td>4</td>
</tr>
<tr>
<td>French 104, 105, 106</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>French Literature courses</td>
<td>8</td>
</tr>
<tr>
<td>Elective courses in French literature, language, or civilization to be chosen in consultation with undergraduate advisor</td>
<td></td>
</tr>
</tbody>
</table>

Total Units for the Major: 63-80

Recommended

French 101, 102, 103, 104, 107, and 60 plus other upper division courses for a total of 45 units for students interested in obtaining a "single subject" teaching credential in California.

Major Advisor: G. Herman.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>French</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>French 100</td>
<td>4</td>
</tr>
<tr>
<td>French 101, 102, 103</td>
<td>12</td>
</tr>
<tr>
<td>Two electives in French language, literature, or civilization to be chosen in consultation with undergraduate advisor</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisite Credit. Credit will not normally be given for a course if it is the prerequisite of a course already successfully completed. Exceptions can be made by the Department Chairperson only.

Honor Programs. Candidates for high or highest honors in French must write a senior thesis under the direction of a faculty member. For this purpose, honors candidates must enroll in at least six units of French 194H distributed over two quarters. Normally, a student will undertake the honors project during the first two quarters of the senior year; other arrangements must be authorized by the chairperson. Only students who, at the end of the junior year (135 units), have attained a cumulative grade-point average of 3.5 in courses required for the major will be eligible for the honors program. The requirements for earning high and highest honors in French are in addition to the regular requirements for the major in French.

Graduate Study. The Department offers programs of study and research leading to the M.A. and Ph. D. degrees in French.

Candidates for the Ph.D. have the option of enriching their degree program by preparing a designated emphasis in either Critical Theory or Feminist Theory and Research, which are offered by the Program in Critical Theory and The Women’s Studies Program, respectively. Detailed information may be obtained from the graduate advisor or the department chairperson.

Course not offered this academic year.
98. Directed Group Study (1-5) I, II, III. The Staff Prerequisite: consent of instructor. (FINP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (FINP grading only.)

100. Composition in French (4) I, II, III. The Staff Lecture—3 hours; term paper. Prerequisite: course 23. Introduction and practice in expository writing in French, with emphasis on organization, correct syntax, and vocabulary building.

101. Introduction to French Poetry (4) I, II, III. The Staff Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Analysis and evaluation of works representing the main types of French poetry. Study of French poetic conventions and versification.

102. Introduction to French Drama (4) I, II. Abrahamsen Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Introduction to aspects of French literary history and to a number of the great French playwrights.

103. Introduction to French Prose (4) I, II, III. The Staff Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Introduction to the works of the major French prose writers.

104. Translation (4) I, II. The Staff Lecture—3 hours; short translations. Prerequisite: course 100 or consent of instructor. Practice in translation into French using a variety of texts illustrating different problems and styles.

106. French in Business and the Professions (4) I. Herman Lecture—1 hour; discussion—2 hours; frequent written assignments. Prerequisite: course 100 or consent of instructor. Intensive course in business vocabulary and writing in French.

107. Contemporary France (4) III. Praeger Lecture—3 hours; term paper. Prerequisite: course 100 or consent of instructor. Introduction to aspects of French culture and institutions of the contemporary period, such as architecture, literature, music, film, and the media. Provides a background in French contemporary history, sociology, and institutions.

109. Stylistics and Creative Composition (4) II. Herman Lecture—3 hours; frequent papers. Prerequisite: course 100 or consent of instructor. Intensive course in creative composition using a variety of techniques and literary patterns, studied on Queenea's Exercícís de style. Practice in such stylistic modifications as inversion, antithesis, changes in tense, mood, and tone, etc., The writing of poetry.

112. Masterpieces of French Drama in Translation (3) III. The Staff Discussion—3 hours. Prerequisite: course 25 or consent of instructor. Plays in translation representing the major types of French drama with emphasis on dramatic structure and techniques. Consideration of this genre within French social and cultural context. Intended for the nonmajor. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: French 25.

113. Masterpieces of French Novel in Translation (3) III. The Staff Discussion—3 hours. Prerequisite: course 25 or consent of instructor. Novels in translation representing the major types of French novels of the seventeenth century to the present. Study of broad generic, thematic, and historical contexts in France. Analysis of structure and techniques of the genre. Intended for the nonmajor.

114. French Philosophical Literature in Translation (3) III. The Staff Discussion—3 hours. Prerequisite: course 25 or consent of instructor. French philosophical literature, with works analyzed within broad philosophical, moral, and historical contexts. Focus on such topics as stoicism, classicism, naturalism, existentialism, absurdism. Literary techniques and styles analyzed. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: French 25.

116. The French Renaissance (4) III. Van Den Abbeele Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Overview of major works and writers with particular attention to the historical context of the turbulent 16th century. Writers to be read may include Rabelais, Marot, Ronsard, Du Bellay, Labe, Marguerite de Navarre, Montaigne, and D'Aubigné. May be repeated once for credit when topic differs. Offered in alternate years.

117A. Baroque and Preclassic (4) II. Abraham Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The literature and intellectual culture of the period between the Renaissance and French classicism. Offered in alternate years.

118. The Age of Reason and Revolution (4) II. Kusch Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Literature and philosophy of the French Enlightenment. Readings from such authors as Bayle, Fontenelle, Montesquieu, Voltaire, Rousseau, and Diderot. Offered in alternate years.

119. Private Lives and Public Secrets: The Early French Novel (4) II. Kusch Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. History of the French roman from the Middle Ages to the Revolution with particular emphasis on the novels of the 18th century. Offered in alternate years.

119A. The Romantic Imaginary (4) II. Apier, Hannah Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Major concepts and themes of French Romanticism, such as dream and the supernatural, sensuality, revolution, individualism, nature, the "ma de siècle", Romantic irony, the creative imagination, the cult of ruin. Offered in alternate years.

119B. Realism, History and the Novel (4) III. Apier, Hannah Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Major works and themes of French Realism, such as Balzac, Flaubert, Zola, and Maupassant. Offered in alternate years.

121. Twentieth Century French Novel (4) III. Petru Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Introduction to the post-Independence Black African and/or Caribbean and/or North African literary works written in French. Selected topics include: identity and subjectivity, the role of the intellectual, women's voices, and oral and written culture. Offered in alternate years.

124. Post-Colonialist and Francophone Literature (4) III. Apier, Praeger Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Introduction to the post-Independence Black African and/or Caribbean and/or North African literary works written in French. Selected topics include: identity and subjectivity, the role of the intellectual, women's voices, and oral and written culture. Offered in alternate years.

125. French Literature and Other Arts (4) II. Apier, Hannah Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The relationship between French literature and other arts—painting, music, cinema, architecture, opera—from different periods. May be repeated once for credit when topic differs. Offered in alternate years.

131. Paris: Modernity and Metropolitan Culture (4) III. Hannah, Apier Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Study of the representation of Paris in 19th and 20th century texts and its importance in defining the literature and art of modernity. Offered in alternate years.

130. From Page to Stage: Theatre and Theatricality (4) I. Abraham Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The study of theatre and its role in the development of literature and performance. May be repeated once for credit when topic differs. Offered in alternate years.

132. Gender and Politics in French Literature and Culture (4) I. Apier Lecture/discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Examination of the thematic, theoretical and political tendencies in contemporary French fiction. Barthès, Foucault, Duras, Guibert, considered in terms of their writing—painting and literary works. Offered in alternate years.

138. Advanced Literary Translation (4) III. Bloomberg Lecture—3 hours; term paper. Prerequisite: courses 100 and 104 or consent of instructor. Morphological, syntactical, and stylistic aspects of English-French translation.

140. Study of a Major Writer (4) II. The Staff Lecture—3 hours; term paper. Prerequisite: course 100 and 101, 102 or 103 as appropriate to selected topic or consent of instructor. Concentrated study of works of a single author. May be repeated once for credit as a subject-change.

141. Selected Topics in French Literature (4) I, III. The Staff Lecture—3 hours; term paper or short papers. Prerequisite: courses 100 and 101 or 102 or 103 as appropriate to selected topic or consent of instructor. Concentrated study of works of a single author. May be repeated once for credit as a subject-change.

160. French Morphosemantics (3) III. Manes-Manueli Lecture/discussion—3 hours; term paper. Prerequisite: course 100 and Linguistics 1. Analysis of cross-linguistic grammatical phenomena with emphasis on the semantic and pragmatic function of such categories as tense, mood and gender. Offered in alternate years.
206B. Seventeenth-Century Literature: Prose (4) I. The Staff Seminar—3 hours; term paper and/or exposition. Works of authors such as Pascaul, Descartes, Mme de Lafayette. One or more authors may be covered. May be repeated for credit with consent of instructor as different topics are studied from quarter to quarter.

206C. Seventeenth-Century Literature: Poetry (4) III. Abraham Seminar—3 hours; term paper and/or exposition. Studies of the works of one or more poets of the period. May be repeated for credit with consent of instructor.

207A. Eighteenth-Century Literature: Philosophes (4) I. Kusche Seminar—3 hours; term paper and/or exposition. Not a course in philosophy, but an examination of the role of the philosophes in the design and context of literary works. Study of one or more authors. May be repeated for credit.

207B. Eighteenth-Century Literature: Novel (4) III. The Staff Seminar—3 hours. Rise of the novel. Study of narrative experiments in the context of the philosophical climate and of new literary values. Course can treat one or more novelists of the period. May be repeated for credit when different topics are studied.

208A. Nineteenth-Century Literature: Fiction (4) I. Hannock Seminar—3 hours. Study of the works of one or several novelists and short-story writers of the period. May be repeated for credit with consent of instructor when different topics are studied.

208B. Nineteenth-Century Literature: Poetry (4) III. Blanchard Seminar—3 hours. Study of the works of one or several poets of the period. May be repeated for credit with consent of instructor when different topics are studied.

209. Twentieth-Century: Prose (4) II. The Staff Seminar—3 hours; term paper and/or exposition. Study of the works of one or several dramatists of the period. May be repeated for credit with consent of instructor.

209C. Twentieth-Century: Poetry (4) III. The Staff Seminar—3 hours; term paper and/or exposition. Study of the works of one or several poets of the period. May be repeated for credit with consent of instructor.

210. Studies in Narrative Fiction (4) J. Preger Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

211. Studies in Criticism (4) I. Blanchard Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

212. Studies in the Theater (4) I. The Staff Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

213. Studies in Poetry (4) II. The Staff Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

214. Study of a Literary Movement (4) III. The Staff Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

238. Advanced Literary Translation (4) III. Bloomberg Seminar—3 hours; significant amounts of translation of texts. Designed to acquaint students with the basic principles of applied translation theory. Translation of texts chosen for their theoretical interest. Open to native French speakers only with consent of instructor.

250A. French Linguistics: Morphemetics (4) I. Manea-Manolou Seminar—4 hours. Prerequisites: courses 150, 160, and consent of instructor. Theoretical approach to French grammar, with emphasis on morphemes, i.e., a semantic analysis of grammatical categories, as well as of their paradigmatic and syntactic relations.

250B. French Linguistics: Transformational Syntax (4) I. Manea-Manolou Seminar—4 hours. Prerequisites: course 250A or consent of instructor. Presentation of French syntax exemplified by a core of transformational rules (such as subjectification, passivization, relativization, etc.) focusing on the most recent developments in the field (i.e., case grammars, generative semantics, trace theory, etc.).

251. Trends in French Contemporary Linguistics (4) I. Manea-Manolou Seminar—3 hours; term paper. Prerequisites: course 250A or 250B or consent of instructor. Issues in contemporary French linguistic thought and their relation to the development of the theoretical linguistics. Topics such as pragmatics, semantics, syntax, logic, speech acts, etc. Intended for students in French linguistics or those interested in applying linguistic models to literature.

251. Current Issues in Modern French Syntax (4) II. Manea-Manolou Seminar—3 hours; term paper. Presentation of contemporary approaches to French syntax. Explanations of various regular phenomena, with reference to on-going changes in modern spoken French.

260A. The Teaching of English as a Second Language (3) I. Wagnild Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate students with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (SU grading only.)

260B. The Teaching of French in College (2) II. Wagnild Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (SU grading only.)

260C. The Teaching of French in College (3) III. Wagnild Lecture/discussion—3 hours. Prerequisite: senior or graduate standing; a major or minor in a modern foreign language.
Freshman Seminar Program
Evelyn M. Silvia, Ph.D., Program Director
Program Office, 17 Wedman (Teaching Resources Center) (916-752-6050)

Committee in Charge
Stephanie Beardsley, Ph.D. (Residence Life)
Louis Grisetti, Ph.D. (Previous FRS Instructor)
Chris Rivers (Student Representative, ASUCD—Academic Affairs)
Roger Romstad, Ph.D. (College of Agricultural and Environmental Sciences)
Karl Romstad, Ph.D. (College of Engineering)
Carolyn Walt, Ph.D. (College of Letters and Science)
Daniel Wick, Ph.D. (Teaching Resources Center)

Course in Freshman Seminar
(questions pertaining to the following course should be directed to the instructor or to the Teaching Resources Center)

1. Freshman Seminar (2) I, II, III, The Staff Seminar—20 hours total (8 weeks). Prerequisite: open only to students who have completed less than 40 quarter units. Investigation of a special topic through readings, discussions, written assignments, and special studies (such as fieldwork, site visits, laboratory work, etc.). Emphasis upon student participation in learning.

Genetics
(Division of Biological Sciences)
Carl W. Schmidt, Jr., Ph.D., Chairperson of the Section
Section Office, 357 Briggs Hall (916-752-0200)

Faculty
James B. Boyd, Ph.D., Professor
Kenneth C. Burtis, Ph.D., Assistant Professor
John H. Gillespie, Ph.D., Professor
Leslie D. Gottlieb, Ph.D., Professor
R. Scott Hawley, Ph.D., Professor
John A. Kiger, Jr., Ph.D., Professor
Charles H. Langle, Ph.D., Professor
Gregg B. Morin, Ph.D., Assistant Professor
Raymond L. Rodriguez, Ph.D., Professor
Carl W. Schmidt, Ph.D., Professor (Genetics, Chemistry)
Che-Kun J. Shen, Ph.D., Professor
Michael Turell, Ph.D., Professor
Emeriti Faculty
Gordon J. Edlin, Ph.D., Professor Emeritus
Melvin M. Green, Ph.D., Professor Emeritus
Timothy Prout, Ph.D., Professor Emeritus
G. Leydard Stebbins, Ph.D., Professor Emeritus

The Major Program
The genetics major is designed to provide a broad background in the biological, mathematical, and physical sciences basic to the study of heredity and evolution. The major is sufficiently flexible to accommodate students interested in the subject either as a basic science at the level of the biological sciences or in terms of its applied aspects in improving domestic plants and animals.

The Program. Genetics majors begin with a core of introductory courses in biological sciences, chemistry, mathematics, statistics, and other basic sciences. At the upper division level they have an opportunity to specialize in areas such as molecular, developmental, population, and evolutionary genetics.

Choice of College. Students may elect this major either in the College of Agricultural and Environmental Sciences or in the College of Letters and Science. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the appropriate college sections in the front of this catalog for more information.

Students majoring in Genetics in the College of Letters and Science must be on the College to receive credit toward the 64 upper division units required for the degree for certain courses in organic chemistry that have been taken at other institutions prior to first year at UC Davis and that are judged by the chemistry department to cover substantially the same material as upper division courses in the subject at UC Davis. Students in the College of Agricultural and Environmental Sciences must accumulate 54 units of upper division courses to graduate. Further information can be obtained from the Division of Biological Sciences Office, 66 Briggs Hall.

B.S. Major Requirements:
(For convenience in planning program, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

- English Composition Requirement (0-8)
- See College requirement
- Preparatory Subject Matter (65-71)
 - Biological sciences (Biological Sciences 1A, 1B, 1C, 2A, 2B, 2C, 2CH, 1AB, 1B1B, 1B1C, or 2AB-2CHB, 11AB-11B1B, 11B1C, recommended) (21-24)
 - Mathematics (Mathematics 16A-16B-16C or 21B-21B-21C) (9-12)
 - Microbiology (Microbiology 102) (4)
 - Physics (Physics 5A-5B-5C) (12)

Breadth/General Education (28)
- College of Agricultural and Environmental Sciences students
 - Satisfaction of General Education requirement plus social and/or humanities electives to total 28 units
- College of Letters and Science students
 - Refer to College section for a description of requirements to be completed in addition to the major.

Depth Subject Matter (28-29)
- Biochemistry 101A-101B (7)
- Genetics 100, 100L, 102A, 102B (12)
 - Additional courses in genetics (9-10) include at least one course from Genetics 102L, 104, 107, and one course from Genetics 103, 105, 106.

Restricted Electives (18-30)
- A minimum of 18 upper division units of coursework chosen from upper division courses in biological sciences, mathematics, chemistry, or other fields relevant to the student's interest chosen in consultation with the adviser. At least two different areas are to be represented, such as agricultural sciences, biochemistry, cell biology, statistics, physiology, or systematics. No more than 6 units of 192, 199, 198 or laboratory credit can be used in this category.

Unrestricted Electives (15-36)
- Total Units for the Degree (180)

Major Adviser. J. Gillespie

Courses in Genetics

Graduate Study. The Graduate Group in Genetics offers study and research leading to the M.S. and Ph.D. degrees in Genetics.

*Units earned in satisfaction of the American History and Institutions requirement may be used in partial fulfillment of the Social Sciences and Humanities requirements.

Courses in Genetics

Lower Division Courses

99. Special Study for Undergraduates (1-6) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PINP grading only)

Upper Division Courses
100. Principles of Genetics (4) I, II, III, summer. The Staff Lecture—4 hours. Prerequisite: Biological Sciences 1B. Introduction to genetics, emphasizing DNA structure and function, gene regulation including transmission genetics, cytogenetics, and evolutionary genetics.

100L. Principles of Genetics Laboratory (2) I, II. Boyd/Sanders, Sanders Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100. Laboratory work in basic genetics including gene mapping and isolation of mutants.

102A. Molecular Genetics (3) II. Rodriguez/Schmidt Lecture—3 hours. Prerequisite: course 100. Biochemistry 101B. Prokaryotic molecular genetics including DNA structure and replication, restriction analysis, sequencing, transcription, translation, and gene regulation.

102B. Molecular Genetics (3) III. Rodriguez/Shen Lecture—3 hours. Prerequisite: course 102A. Continuation of course 102A, emphasizing fundamental discoveries in eukaryotic molecular genetics, transposable elements, and mechanisms of recombination.

102L. Advanced Molecular Genetics Laboratory (4) IL, Morin Lecture—1 hour; laboratory—2 hours. Prerequisite: course 100L, 102A, laboratory experience, consent of instructor; Microbiology 102L recommended. Molecular analysis of gene structure and function. Isolation, manipulation, and characterization of DNA, RNA, and proteins using recombinant DNA technology. Limited enrollment.

103. Organic Evolution (3) III. Gillespie Lecture—3 hours; prerequisite: course 100. Evolution in higher organisms including genetic structure in populations, speciation, macroevolution, and history of life.

104. Developmental Genetics (3) III. Burris Lecture—3 hours. Prerequisite: course 100; Biochemistry 101A and Zoology 100 recommended. Current aspects of developmental genetics. Historical background and current genetic approaches to the study of development of higher animals.

105. Population Genetics (4) L. Langley Lecture—4 hours. Prerequisite: course 100; a course in statistics and Mathematics 16B. Population genetics including the effects of natural selection, mutation, and genetic drift.
106. Evolutionary Quantitative Genetics (4) II. Turelli. Lecture—3 hours; discussion—1 hour. Prerequisite: course 103, Mathematics 19C, and Statistics 102. Experimental and theoretical analysis of polygenic traits. Topics include classical experiments and methods of analysis as well as modern theoretical treatments with emphasis on applications to micro-evolution and macromutation. Offered in alternate years.

107. Human Genetics (5) III. Sanders. Lecture—3 hours. Prerequisite: course 100 or the equivalent. Human molecular genetic variation, mechanisms of metabolic disorders, chromosome aberrations and consequences, diseases associated with the immune system, and statistical techniques for estimating genetic and environmental effects.

144. Advanced Developmental Genetics (3) III. Kiger. Lecture—2 hours; discussion—1 hour. Prerequisite: course 102A, 104. Topics of current interest in the area of genetic control of development. Focus on the genetic bases of development in Drosophila and Caenohabditis with emphasis on transgenic and other novel techniques for the description and manipulation of developmental processes. Offered in alternate years. (SU grading only)

190C. Introduction to Genetics Research (1) I, II, III. Summer. The Staff (Chairperson in charge). Discussion—1 hour. Prerequisite: upper division standing in Genetics or related biological sciences; consent of instructor. Discussion and critique of current genetics research by faculty, graduate, and undergraduate students. May be repeated for credit. (P/NP grading only)

191. Undergraduate Seminar in Molecular Genetics (1) I, II, III. The Staff (Chairperson in charge). Seminar—1 hour. Prerequisite: upper division standing, completion of course 100 and 100L, and Genetics 102A (may be taken concurrently). Discussion of current topics in molecular genetics to show advanced applications of basic principles and to highlight professional career opportunities. (P/NP grading only)

193. Research Seminar in Current Topics (3) I, II, III, summer. The Staff. Laboratory—6 hours; seminar—1 hour. Prerequisite: courses 100, 100L, upper division standing and consent of instructor based on adequate preparation in allied areas. Laboratory experimentation, critical analysis, and oral presentation of original results in any area of genetics. (P/NP grading only)

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge). Internship—3-36 hours. Prerequisite: course 100 and consent of instructor. Technical or practical experience on or off campus, arranged and supervised by member of Genetics faculty. (P/NP grading only)

197. Tutoring in Genetics (1-5) I, II, III. The Staff (Chairperson in charge). Tutoring—1-5 hours; seminar—1 hour. Prerequisite: courses 100, 100L, upper division standing and consent of instructor based on adequate preparation in allied areas. Conducting of discussion groups affiliated with one of the department's regular courses. (P/NP grading only)

198. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Group study—1-5 hours. Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). Special study—1-5 hours. Prerequisite: consent of instructor based on adequate preparation of the student in allied fields. (P/NP grading only)

Graduate Courses

202. Plasmids, Recombinant DNA, and Genetic Engineering (3) I. Rodriguez. Lecture—3 hours. Prerequisite: course 102A or Microbiology 130A-130B, or consent of instructor. Presentation of recent experiments in recombinant DNA technology. Description of biochemical and genetic properties of bacterial plasmids. (SU grading only). Offered in alternate years.

203. Advanced Evolution (3) III. Gottlieb. Lecture—1 hour; discussion—2 hours. Prerequisite: graduate status. Adaptation and speciation, and biochemical and morphological evolution in plants and animals with emphasis on the appropriateness of different methods of analysis. Offered in alternate years.

205. Theoretical Population Genetics (4) I. Gillespie, Turelli. Lecture—4 hours. Prerequisite: course 105; Mathematics 22A, and Statistics 130A or 131A, and consent of instructor; Mathematics 22B recommended. Mathematical theory of population genetics with emphasis on the assumptions underlying the standard models and the mathematical techniques used to derive conclusions. Offered in alternate years. (SU grading only)

206. Molecular Evolution (3) III. Gillespie, Langley. Lecture—3 hours. Prerequisite: Biochemistry 101B; course 103 recommended. Evolution from the molecular standpoint, including the evolution of genome structure and the organization of single genes and gene clusters, evolution of enzymes and metabolic pathways, molecular clocks, transpositions and other movable genetic elements, and molecular polymorphism. Offered in alternate years. (SU grading only)

209C. Research Conference in Genetics (1) I, II, III. The Staff (Chairperson in charge). Discussion—1 hour. Prerequisite: graduate standing in Genetics; consent of instructor. Presentations and critical discussions of current research in genetics. Intended primarily for graduate students. May be repeated for credit. (SU grading only)

229. Group Study (1-5) I, II, III. The Staff. Prerequisite: consent of instructor. (SU grading only)

299. Research (1-15) I, II, III. The Staff. (SU grading only)

Professional Course

300. Methods in Teaching Genetics (1) I, II, III. The Staff (Chairperson in charge). Lecture/discussion—1 hour. Prerequisite: graduate standing in Genetics and consent of instructor. Experience in methods and problems of teaching genetics, including analysis of texts and other materials, teaching techniques, preparing for and conducting discussion and laboratory sections, preparing examinations. May be repeated for credit. (SU grading only)

Genetics (A Graduate Group)

R. Scott Hawley, Ph.D., Chairperson of the Group

Group Office, 12028 Meyer Hall (916-752-9041)

Faculty includes members drawn from the Colleges of Agricultural and Environmental Sciences, and Letters and Science, and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Genetics offers programs of study and research leading to the M.S. and Ph.D. degrees. The Group is subdivided into three affinity groups: molecular, animal, and plant. Each of these affinity groups provides broad training in genetics, with emphasis specific to its area. Both model genetic organisms and agricultural species are studied using molecular and classical approaches. For additional information regarding the Graduate Group, consult the administrative assistant at 916-752-3931.

Graduate Adviser. Consult Genetics Graduate Group Office.

Courses in Genetics

Graduate Courses

201A. Transmission Genetics (3) I. Geis. Lecture—3 hours. Prerequisite: Genetics 100, introductory statistics and calculus. Study of segregation, linkage, and mapping and the modifications of Mendel's original genetic model.

201B. Cytogenetics (3) II. Dvorak and Murray. Lecture—3 hours. Prerequisite: course 201A or consent of instructor. Study of cytogenetics including meiosis, recombination, chromosomes, haploidy, aneuploidy, trisomies, monosomies, autopolyploids and intra- and interspecific manipulation.

201C. Molecular Genetics (3) III. Burtis, Williamson. Lecture—3 hours. Prerequisite: course 201A or consent of instructor. Current topics in molecular genetics at a graduate level, with emphasis on the relationship between classic genetic studies and current molecular research, as well as on the molecular techniques used to develop the basic concepts of molecular genetics.

201D. Quantitative and Population Genetics (3). The Staff. Lecture—3 hours. Prerequisite: course 201A or consent of instructor. The basic concepts of quantitative and population genetics, including gene and genotypic frequencies, multiple factor hypothesis, phenotypic and genotypic values, heritability, selection, genetic variation and evolution in populations, and experimental methodologies.

205. Molecular Genetics Laboratory (5) I, II, III. Williamson and staff. Lecture—15 hours. Laboratory—15 hours. Prerequisite: Genetics 100 (may be taken concurrently) or the equivalent, enrolled in Genetics Graduate Group, consent of instructor. Students will conduct experiments in molecular genetics laboratories. Individual research problems, emphasis on experimental design, experience with methodology, and data interpretation. May be repeated up to three times for credit.

207. Research Methods in Plant Genetics (1) I. Yoder. Lecture—1 hour. Basic skills required of contemporary scientists in plant genetics will be reviewed. Topics include manuscript preparation, grant writing, seminar presentations, budgeting and time management. (SU grading only)

207L. Research Methods in Plant Genetics Laboratory (2-5) I, II, III. Yoder and staff. Lecture—6-15 hours. Prerequisite: course 207 (may be taken concurrently). Working knowledge of contemporary methodologies in plant genetics is obtained by participating in research programs of the various Plant Genetics Affinity Group members. (SU grading only)

229A. Seminar in Cytogenetics (1-3) I. The Staff. Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the deletion, duplication and rearrangement of chromosome regions. Offered in alternate years. (SU grading only)

229B. Seminar in Quantitative Genetics (1-3) I. The Staff. Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the deletion, duplication and rearrangement of chromosome regions. Offered in alternate years. (SU grading only)

229C. Seminar in Developmental Genetics (1-3) I. The Staff. Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the deletion, duplication and rearrangement of chromosome regions. Offered in alternate years. (SU grading only)

229D. Seminar in Population, Evolutionary and Ecological Genetics (1-3) I. The Staff. Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the analysis and prediction of genetic changes in populations. Offered in alternate years. (SU grading only)

229E. Seminar in Animal Genetics (1) I. III. The Staff. Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Emphasis on recent advances...
in the field of animal genetics, ranging from quantitative genetics to molecular biology as it relates to animals. (SU grading only.)

295. Seminar in Molecular Genetics (1-3) I. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics of current interest related to the structure, modification, and expression of genes. (SU grading only.)

297. Seminar in Plant Genetics (1-3) I and II. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Current topics in plant genetics will be examined in student-conducted seminars and discussion format. The integration of molecular, organismal, and population genetics to address questions in plant biology will be examined. (SU grading only.)

298. Group Study (1-5) I, II, III. Members of the Group (Chairperson in charge)
Prerequisite: consent of instructor. Group Study of selected topics in Genetics. (SU grading only.)

299. Research (1-12) I, II, III. Members of the Group (Chairperson in charge)
(SU grading only.)

Geography

(College of Letters and Science)

Jack D. Ives, Ph.D., Chairperson of the Department
Department Office, 2201 Hart Hall (916-752-0790)

Faculty

Nigel J. R. Allan, Ph.D., Associate Professor
Conrad J. Bahm, Ph.D., Professor
Dennis J. Dinges, Ph.D., Associate Professor
Deborah L. Elliott-Fisk, Ph.D., Associate Professor
Louis E. Gillett, Ph.D., Professor (Geography, Nutrition)
Jack D. Ives, Ph.D., Professor
Stephen C. Jett, Ph.D., Professor
Janet D. Murnen, Ph.D., Professor
Marilyn L. Shetton, Ph.D., Professor

Emeriti Faculty

Howard F. Gregor, Ph.D., Professor Emeritus
Frederick J. Simons, Ph.D., Professor Emeritus
Kenneth Thompson, Ph.D., Professor Emeritus

The Major Program

Geography is a multifaceted discipline defined by its concern with place. Geographers strive to answer spatial questions regarding the earth's surface and adjacent atmosphere and to describe and explain the character of regions; to ascertain the ways in which humans, historical and contemporary, have used and shaped the earth's surface; and to understand the physical, biotic, and human systems of our global environment and their interactions.

The Program. Both Bachelor of Arts and Bachelor of Science degrees are offered in geography. A.B. students choose one of five possible emphases: 1) general geography, encompassing the whole spectrum of the field; 2) cultural/historical geography, which stresses traditional human uses of the earth and the search for explanations of the different customs, beliefs, and lifeways characteristic of different parts of the world; 3) economic urban geography, which focuses on the locational factors affecting contemporary agricultural, industrial, and commercial activities, as well as on the characteristics and problems of urban centers; 4) physical geography, whose concern is the natural world, including climate, vegetation types, and the many physical features of the land's surface; and 5) regional planning and analysis, which emphasizes how geographic principles are applied to contemporary urban and environmental concerns. These areas of emphasis will be closely integrated into the department’s new specialization in mountain geography. The B.S. program emphasizes physical geography courses with training in other physical and biological sciences and mathematics. A geography minor is also available.

Career Alternatives.

The study of geography provides background for students interested in careers in education, business, industry, and government. In business and industry, opportunities for employment include positions in locational analysis, international trade, environmental consulting, transport planning, remote sensing, environmental-impact analysis, market planning, and aerial photo interpretation. Local and state governments offer opportunities for employment in city, state, and regional planning and environmental analysis, while various federal departments need regional analysts, cartographers, remote-sensing experts, climatologists, and conservationists.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geography 1, 2, and 5</td>
<td>10</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>35-44</td>
</tr>
</tbody>
</table>

Geography 105 or 106; 151; and one UCD regional or environmental course 121-127.

Choose one emphasis from the following five:

Emphasis I (General)

Geography 105, 141, 155; Geography 108 or 115.

Four additional divisional geography courses.

Emphasis II (Cultural/Historical)

Geography 170, 171; one course from 108, 115, 141, 155.

Four additional courses from Geography 110, 115, 143, 172, 173, 175.

Emphasis III (Economic/Urban)

Geography 110, 141, 155; one course from 108, 115, 170, 171.

Three additional courses from Geography 104, 142, 143, 156, 160, 161, 162.

Emphasis IV (Physical)

Geography 3, 108, 115, 162; 173, one course from 141, 155, 170, 171.

One additional course from Geography 102, 112, 116, 117, 161.

Emphasis V (Regional Planning and Analysis)

Geography 155 or 156; one additional course from 121–127; and one course from 142, 160, 161, 162, 170, 171.

Environmental Biology and Management 110; Environmental Biology and Management 134 or Environmental Studies 171; Political Science 107 or Environmental Studies 161; one course from Economics 115A, Agricultural Economics 148, or Geology 134.

Total Units for the Major

Recommended: Geography 4

<table>
<thead>
<tr>
<th>B.S. Major Requirements;</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>57-64</td>
</tr>
<tr>
<td>Geography 1, 2, and 5</td>
<td>16</td>
</tr>
<tr>
<td>Statistics 13 or the equivalent</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 16A, 16B, and 16C; or Mathematics 21A, 21B, and 21C</td>
<td>9-12</td>
</tr>
<tr>
<td>Computer Science Engineering 10 or 30</td>
<td>3-4</td>
</tr>
<tr>
<td>Chemistry 2A, 2B, 2C</td>
<td>15</td>
</tr>
<tr>
<td>Biological Sciences 1A</td>
<td>5</td>
</tr>
</tbody>
</table>

Course not offered this academic year.

Depth Subject Matter

Two courses from Geography 102, 110, 112, 116, 117, 162, 173.

Four additional upper division, letter-graded courses in Geography.

Nine additional upper division courses chosen in consultation with the undergraduate advisor.

Total Units for the Major

Recommended

Geography 4; Physics 8A, 8B and 8C; Chemistry 8A and 8B.

Addendum

The B.S. major provides a wide diversity of possible themes, including geomorphology, climatology, zoogeo graphy, plant geography, nutritional geography, and mathematical geography. An individual's program may emphasize one or more of these themes, and is planned in consultation with the major advisor.

Minor Program Requirements:

Letters and Science students who do not major in Geography may satisfy the requirements for a minor in the field by successfully completing the minimum units as follows. When choices of individual courses are required, these must be made in consultation with the major advisor.

<table>
<thead>
<tr>
<th>Geology</th>
<th>19-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor I (General)</td>
<td></td>
</tr>
<tr>
<td>Geography 151, plus one course from each of the following four groups:</td>
<td></td>
</tr>
<tr>
<td>Geography 108, 115, or 173</td>
<td></td>
</tr>
<tr>
<td>Geography 170 or 171</td>
<td></td>
</tr>
<tr>
<td>Geography 155, 160, or 161</td>
<td></td>
</tr>
<tr>
<td>Geography 121, 122A, 122B, 123, 124, 125A, 125B, 126, or 127</td>
<td></td>
</tr>
<tr>
<td>Minor II (Physical)</td>
<td></td>
</tr>
<tr>
<td>Geography 102, 105, 106, 115, and 173, plus one course from 121, 121A, 122A, 122B, 123, 124, 125A, 125B, 126, or 127</td>
<td></td>
</tr>
<tr>
<td>Minor III (Cultural)</td>
<td></td>
</tr>
<tr>
<td>Geography 170, 171, and 173, plus one course from each of the following two groups: Geography 121, 122A, 122B, 123, 124, 125A, 125B, 126, or 127, and Geography 143, 172, or 175</td>
<td></td>
</tr>
<tr>
<td>Minor IV (Economic)</td>
<td></td>
</tr>
<tr>
<td>Geography 110 and 141, plus one course from each of the following three groups: Geography 142, 143, or 156</td>
<td></td>
</tr>
<tr>
<td>Geography 163, 161, 162, or 170</td>
<td></td>
</tr>
<tr>
<td>Geography 121, 122A, 122B, 123, 124, 125A, 125B, 126, or 127</td>
<td></td>
</tr>
<tr>
<td>Minor V (Environmental/Resource)</td>
<td></td>
</tr>
<tr>
<td>Geography 163, 161, 162, 173, and 175</td>
<td></td>
</tr>
<tr>
<td>Minor VI (World Regional)</td>
<td></td>
</tr>
<tr>
<td>Geography 121, 122A or 122B, 123 or 124, 125A or 125B, 126 or 127</td>
<td></td>
</tr>
<tr>
<td>Major Advisor. See Class Schedule and Room Directory.</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Study. The department offers programs of study leading to the M.A. and Ph.D. degrees. Information concerning these programs may be obtained from the Graduate Adviser, Department of Geography.

Graduate Adviser. See Class Schedule and Room Directory.

Courses in Geography

Lower Division Courses

- **The Physical Geography** (4-5)
- **Lecture—3 hours; laboratory—2 hours. Basic physical elements of the human habitat, especially climate, landforms, soils, and natural vegetation.**
2. Introduction to Cultural Geography (3) I. Allan; II. Jett

2G. Introduction to Cultural Geography: Discussion
Discussion—1 hr.; short papers. Prerequisite: course 2 concurrently. Small group discussion of topics and readings assigned for course 2. Preparatory reading of short papers. General Education credit with concurrent enrollment in course 2G. Contemporary Societies/Introductory.

3. Climate and Weather (4) I. Shelton
Lecture—3 hrs.; discussion—1 hr. Basic concepts of climate and weather; energy and moisture exchanges, atmospheric pressure, global circulation and winds; instruments for obtaining climatological data; weather maps; severe storms; global, regional, and local climate and weather; climatic change; climate of California.

4. Maps and Map Interpretation (3) I. Bahre
Lecture—3 hrs. Properties and components of maps, Major classes of projections. Types of maps, emphasis on thematic, topographical, and national and state maps. History and development of cartography.

5. Introduction to Urban and Economic Geography (3) I. Dingemans; II. Morsman
Lecture—3 hrs.; discussion—1 hr. The location of economic and urban activities. Patterns and theories of spatial organization: resource development, agriculture and manufacturing regions, urban systems, and urban structure. Emphasis on evolution of credit with concurrent enrollment in course 5G. Contemporary Societies/Introductory.

5G. Economic and Urban Geography: Discussion
Discussion—1 hr. Short papers. Prerequisite: course 5 concurrently. Small group discussion of topics and readings assigned for course 5. Preparation and discussion of short papers. General Education credit with concurrent enrollment in course 5G. Contemporary Societies/Introductory.

6. Human Impacts on the Landscape (4) I. The Staff
Lecture—4 hrs. Local and global effects, through time, of human occupancy, economics, and technology on the major geographic regions of the earth; relative density and patterns of flora and fauna; soils; water; landforms; climate. Emphasis on landscape modification. Not intended for students planning to take course 161 or 170.

10. The World's Regions (3) I. Jett; II. Jett; III. Allan
Lecture—3 hrs.; laboratory—3 hrs. The major geographic regions of the world; their origins, physical environments, cultures and economies; their interactions and global roles. Designed for non-majors.

50. Geography and Environmental and Regional Planning (5) I. Dingemans

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only)

99. Independent Study (1-15) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only)

Upper Division Courses

102. Field Course in Physical Geography (4) III. Elliott-Fisk
Lecture and field trip—normally one day per week. Prerequisite: courses 1 and 2 and consent of instructor. Research methodology and field study. Systematic mapping and analysis of elements of the natural landscape.

104. Field Course in Urban Geography (4) III. Dingemans
Lecture—1 hr.; field trip—full-day field trip. Field analysis of selected urban problems in California. Special attention to regional relationships, functional structure, and land-use changes as specifically related to the core of the city, changing residential and retail patterns, and urban encroachment on agricultural lands.

105. Cartography (4) I. The Staff
Lecture—1 hr.; laboratory—1 hr. Emphasis of principles of cartographic representation. Emphasis on scribing, plate-making, process photography, color separation, and color proofing. Use of contemporary cartographic and photocomposing equipment utilized in producing maps.

108. Analysis of Landforms (4) I. The Staff
Lecture—3 hrs.; discussion—1 hr. Prerequisite: courses 1 or consent of instructor. Introduction to landforms and their processes. Topics include: structural landforms, rock weathering and soil genesis, hillside processes, and fluvial, glacial, and coastal landforms.

110. Quantitative Spatial Analysis (4) I. Dingemans
Lecture—4 hrs.; term paper. Prerequisite: course 3 or 5. Methods for geographic and location planning; quantitative summary and analysis of spatial data patterns and trends; optimal location solutions; includes correlation, regression, and use of pre-packaged computer programs.

112. Coastal Landforms and Landscapes (4) III. Elliott-Fisk
Lecture—3 hrs.; discussion—1 hr. Prerequisite: course 10B or consent of instructor. Examination of the landforms and geomorphic processes occurring along the coasts. Analyses of coasts in a variety of tectonic, eustatic, and climatic settings. Emphasis on the Quaternary history of coastal landscapes. Offered in alternate years.

115. Mesoclimatology (4) I. Shelton
Lecture—4 hrs.; discussion—1 hr. Prerequisite: course 3. Analysis of energy and moisture exchanges at the earth/atmosphere interface: physical controls, spatial and temporal variations, measurement and modeling the exchange processes, classification of mesoclimates. Climatic and related processes in coastal systems. Human alteration of mesoclimates. Offered in alternate years.

118. Mountain Geocology: Physical Geography (4) II. Ives
Lecture—3 hrs.; term paper. Prerequisite: course 1 or other introductory natural science course. Broad overview of world mountain systems, including topography and structure, climate and vegetation, geomorphic processes and natural hazards. Will integrate relevant section of cognate disciplines to focus on three-dimensional character of mountain regions — a physical geography of the Mojave, the Colorado deserts of the U.S., the plateau, and the southern Great Basin. Desert origins, climate, vegetation, and landforms. Cultures and history of native tribes, Hispanic peoples, and Anglo-Americans. Offered in alternate years.

120L. Field Excursion to California and southwestern Deserts (2) I. Jett
Fieldwork—60 hours minimum (1 week). Field excursion to examine physical and human geography of selected desert areas in California and Nevada. Arizona, and Utah. May be repeated for credit. Limited enrollment; preference given to students having completed course 120. (P/NP grading only) Offered in alternate years.

121. North America (4) II. The Staff
Lecture—3 hrs.; discussion—1 hr. Prerequisite: courses 1 and 2 or consent of instructor. Landscape and climatic processes and their influence on the evolution of the diverse natural and cultural landscapes of North America. Emphasis on understanding the evolution of the diverse natural and cultural landscapes of North America. Offered in alternate years.

122A. Mexico and Central America (4) I. Bahre
Lecture—3 hrs.; discussion—1 hr. Prerequisite: courses 1 and 2 or consent of instructor. Environmental, culture, and economy from Mexico to Panama and in the Caribbean. Emphasis on understanding the evolution of the diverse natural and cultural landscapes of North America. Offered in alternate years.

122B. South America (4) III. Elliott-Fisk
Lecture—3 hrs.; discussion—1 hr. Prerequisite: courses 1 and 2 or consent of instructor. Environmental, culture, and economy in the South American countries. Emphasis on understanding the evolution of the diverse natural and cultural landscapes of South America. Offered in alternate years.

123. Western Europe (3) I. The Staff
Lecture—3 hrs.; discussion—1 hr. Prerequisite: courses 1 and 2 or consent of instructor. Introduction to the social sciences; course 2 or 5 recommended. Human use of the land in the Soviet Union and Western Europe. Location and nature of resources, agriculture, industry, and cities. Emphasis on modification of traditional landscapes by the Soviet model of planning for regional development. General Education credit: Contemporary Societies/Non-Introduction. Recommended GE preparation: Geography 2, 5, Economics 1A-B, Anthropology 2, or Political Science 2.

125A. North Africa and the Middle East (4) I. Gribetz
Lecture—4 hrs.; discussion—1 hr. Prerequisite: courses 1 and 2. Introduction to the social sciences; course 2 or 5 recommended. Human use of the land in the Soviet Union and Western Europe. Location and nature of resources, agriculture, industry, and cities. Emphasis on modification of traditional landscapes by the Soviet model of planning for regional development. General Education credit: Contemporary Societies/Non-Introduction. Recommended GE preparation: Geography 2, 5, Economics 1A-B, Anthropology 2, or Political Science 2.

125B. Sub-Saharan Africa (3) II. The Staff
Lecture—3 hrs.; discussion—1 hr. Prerequisite: courses 1 and 2 or consent of instructor. Physical, cultural, and historical geography of Africa south of the Sahara.

126. Southern Asia (3) I. Allan
Lecture—3 hrs.; discussion—1 hr. Prerequisite: courses 1 and 2 or consent of instructor. Physical, cultural, and historical geography of the Indian Subcontinent.
geography of Southern Asia. Offered in alternate years.

*217. Contemporary East Asia (4) III. Dingemans
Lecture—3 hours; discussion—1 hour. Prerequisite: introduction course in the social sciences; course 2 or 3 in Asian studies as a product of the earth in East Asia. Location and nature of resources, agriculture, industry, and cities. Modernization of traditional rural and urban landscapes. Emphasis on contemporary China and Japan as contrasting paths to economic development.

*218. California (4) III.
Lecture—3 hours; discussion—1 hour. The regional nature and variety of California: landforms, climate, vegetation, agriculture, population, and industry. Ecological problems caused by increasing population and technological pressures on these environments.

*141. Organization of Economic Space (4) II. Mom- sen
Lecture—3 hours; discussion—1 hour. Prerequisite: course 5 or consent of instructor. Survey of the principal environmental, economic, social, political, and cultural forces contributing to the regionalization of the world’s economic activities. Outline of the more important regional patterns resulting from the interaction of these forces. Emphasis will also be put on these aspects as they pertain to the problems of regional inequalities both within and between nations.

*142. Geography of Agriculture (4) II. Mom- sen
Lecture—3 hours; discussion—1 hour. Prerequisite: course 5 or consent of instructor. Distribution and analysis of the world’s food-producing areas, and the ways physical, historical, cultural, and economic factors have influenced these aspects of agriculture. Current and future trends and associated resource problems.

*143. Cultural Geography (4) II. Dingemans
Lecture—4 hours; term paper. Area differentiation of major natural and cultural phenomena affecting the world’s political organization.

151. History of Geographic Thought (4) III. Mom- sen
Lecture—3 hours; term paper. Prerequisite: three upper division courses in geography. The literature of geography: objectives, subdivisions, and development of the subject.

155. Urban Geography (4) II. Dingemans
Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Geography of land use within cities. The processes of change, and theories of economic and social organization of urban space. The role of the public in the planning of cities, changing land use, transportation systems, and residential structure. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Geography 2 or Anthropology 2.

*156. The Urban Region (4) I. Dingemans
Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Location and functional interdependence of cities. Relations between city and hinterland, including labor market, service area, and economic base. Role of urbanization in regional development.

160. World Resource Patterns (3) I. The Staff
Lecture—3 hours. Prerequisite: upper division standing. Principal world patterns of resource distribution. Concentrations and voids, and their significance for economic development and the welfare of the state. Focus on both natural and human resources of the geographic complex. Resource status of main economic regions.

*161. Conservation of Resources and Environment (4) III.
Lecture—4 hours. Principles of natural-resource and environmental-quality conservation. Land use conflicts between forestry, agriculture, mining, municipal, and recreational interests. Roles of industry, government, and society in creating and resolving resource and environmental problems.

162. Geography of Water Resources (4) I. Shelton
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Geographical survey of water on the land: needs and opportunities for water-resource development and conservation. Historical solutions to water needs of specific areas, and geographical problems associated with current and future water requirements.

168. Mountain Geocology: Human Geography (4) II. Ives
Lecture—3 hours; term paper. Prerequisite: course 118, or consent of instructor. Analysis of traditional adaptations of mountain cultures to their habitats: resource use and environmental degradation; tourism impacts and Third World development issues. Examples: Himalayan Andes, Alps, and Rocky Mountains, providing historical perspectives and discussion of current environmental crises.

*170. Cultural Ecology (4) I. Jet
Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Geographic theories of environment-man relations. Ecologic relations of gatherers, fishermen, hunters, cultivators, and urbanites; their environmental impacts; their domestic plants and animals. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Anthropology 2 or Geography 2.

171. Cultural Geography (4) II. Jet
Lecture—3 hours; term paper. Prerequisite: course 2 or consent of instructor. Consideration of principal concepts and approaches in cultural geography in modern times, and links with, and parallels in, other disciplines. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Geography 2 or Anthropology 2.

*172. Animals and Culture History (4) III. The Staff
Lecture—4 hours. Prerequisite: course 2 or Anthropology 2, or consent of instructor. Theories of animal domestication; spread of domesticated animals in Old and New Worlds; contrasting roles of domesticated animals in human ecology, through time; pastoral nomadism and other animal-based economies.

173. Humans and Vegetation Change (4) III. Braha
Lecture—3 hours; term paper. Prerequisite: course 1 or Biocultural Sciences 1A, or consent of instructor. Role of humans in modifying the earth’s vegetation. Emphasis on cultural plant geography, factors of plant distribution, classification and mapping of vegetation, world vegetation patterns, human impact on major regions, and case studies of land use and vegetation change.

*175. Geography of Food and Diet (4) I. Grivetti
Lecture—4 hours. Prerequisite: course 2 or Anthropology 2. Nutrition 25 recommended. Consideration of the cultural and environmental factors that influence dietary practices; historical development of food habits; food use in different economic systems, both traditional and contemporary. Offered in alternate years.

192. Student Internship in Geography (2-4) I, II, III. The Staff
Internship—5-16 hours at employing agency: term paper. Prerequisite: consent of undergraduate Geography major advisor and consent of instructor. Supervised program of student internships with public agencies dealing with geographical problems. The application and evaluation of theoretical concepts through work experience with a variety of assignments and work schedules. (P/NP grading only.)

196. Directed Group Study (1-5) I, II, III. The Staff
Chairperson in charge (P/NP grading only).

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only).

Graduate Courses

200. Research Trends in Geography (1) I. The Staff
Seminar—1 hour. Current research themes and trends in geography. (SU grading only.)

201. Sources and General Literature of Geogra- phy (4) II, III. The Staff
Discussion—4 hours. Prerequisite: graduate status in geography; consent of instructor. Designed for stu-
dents preparing for higher degrees in geography. May be repeated for credit in one or more of the fol-
lowing subfields: physical, cultural, economic, urban, historical, political, conservation, and regional geography.

*202. Arctic and Alpine Environments (4) I. Ives
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 118 or consent of instructor. Analysis of cold climate processes in high latitudes and high altitudes. Interdisciplinary evaluation of arctic and alpine environments; including glaciation and permafrost, vegetation development and landscape change through time; effects of climate change. Offered in alternate years.

*290. Seminar: Selected Regions (4) III. Ives
Seminar—3 hours. Region to be announced annually.

*291. Seminar in Cultural Geography (4) II. Mom- sen
Seminar—3 hours.

292. Seminar in Plant Geography (4) I. Braha Seminar—3 hours; seminar paper. Prerequisite: graduate standing. Examination of that aspect of cultural plant geography dealing with human impacts and vegetation change in the earth’s major biomes. Particular emphasis on the New World’s savannas, deserts, and grasslands. Offered in alternate years.

294. Seminar in Climatology (4) II. Shelton Seminar—3 hours.

295. Seminar in Urban Geography (4) II. Dingem- ans Seminar—3 hours.

296. Seminar in Agricultural Geography (4) II. Allian Seminar—3 hours.

298. Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only).

299D. Individual Study (1-12) I, II, III. The Staff
Prerequisite: graduate student status in Geography and consent of instructor (SU grading only).

Geology

(College of Letters and Sciences)

Howard W. Day, Ph.D., Chairperson of the Department

Department Office, 174 Physics-Geology Building (916-752-0350/0351)

Faculty

Sandra J. Carlson, Ph.D., Lecturer
Richard Cowen, Ph.D., Senior Lecturer
Robert E. Criss, Ph.D., Associate Professor
Howard W. Day, Ph.D., Professor
James A. Doyle, Ph.D., Professor (Botany)
Graham E. Fogg, Ph.D., Associate Professor (Lands, Air, and Water Resources)
Harold W. Geon, Ph.D., Professor
Anne M. Hofmeister, Ph.D., Assistant Professor
Louise H. Kelford, Ph.D., Assistant Professor
Charles E. Lester, Ph.D., Assistant Professor
Stanley V. Margolis, Ph.D., Assistant Professor
Robert A. Matthews, A.B., Senior Lecturer
James S. McClain, Ph.D., Associate Professor
Eldridge M. Moores, Ph.D., Professor
Jeffrey P. Mount, Ph.D., Associate Professor
Peter Schilliman, Ph.D., Professor
Philip W. Signor, Ph.D., Associate Professor
Howard J. Spero, Ph.D., Assistant Professor
Robert J. Weiss, Ph.D., Associate Professor
George J. Vernau, Ph.D., Professor
Kenneth L. Verosub, Ph.D., Professor
Emeriti Faculty

Charles G. Higgins, Ph.D., Professor Emeritus

*Course not offered the academic year.
The Major Programs

"Civilization exists by geological consent—subject to change without notice."

Will Durant

Geology is the study of the Earth, and in particular the history, the structure, the evolution of life, and the processes that have molded the Earth and its inhabitants. The science of geology has extended the field to include the solid planets of the solar system. Although often attracted to the study of geology by aesthetic appreciation and enjoyment of the earth, geologists commonly approach their studies from an interest either in the academic or the applied aspects of the science.

The academic aspects include the study of the history of life, the Earth, and the planets, and of the processes that drove the historical evolution. It is in the study of this historical evolution through "deep time" that fundamentally distinguishes geology from most of the other physical sciences. The study of the processes that drive this evolution can involve the application of any of the physical or life sciences to understanding the Earth. In this sense, geology is truly an interdisciplinary science.

The applied aspects of the science generally involve the investigation of phenomena affecting humans and the earth. Applied studies include the study of mineral resources including oil and water; identification and mitigation of Earth hazards such as earthquakes, landslides, and volcanic eruptions; identification and mitigation of soil problems; and land use planning.

The Program. Students interested in becoming professional geologists or continuing their geological studies beyond the undergraduate level should elect the Bachelor of Science degree program. The Bachelor of Arts program is designed for students interested in an interdisciplinary program of study, or who plan to go into geology teaching. Both programs require the completion of a core of courses in geology and related fields approved by the major adviser (as adviser for the list of approved courses).

Total Units for the Major

Additional upper division electives chosen from selected courses in geology and related fields approved in advance by the major adviser (see adviser for list of approved courses).

38-44

B.S. Major Requirements:

Preparatory Subject Matter

- Geology 3, 3L, 50L, 60, 60L, 60S
- Computer science 10, 10L
- Mathematics 16A-16B-16C or 21A-21B-89
- Chemistry 2A-2B or 2AL-2BL
- Physics 1A-1B or 5A-5B

38-44

Geology 102, 105, 105L, 106, 110, 110L, 110S, 122, 123

54

Recommended

Chemistry 2C or 2CH; Geology 3L, Statistics 13 or 102.

54

Preparatory Subject Matter

- Geology 3, 3L, 50L, 60, 60L
- Mathematics 12A-12B or 12L
- One course chosen from Mathematics 22A, 22B, 21D.
- Statistics 32, 102
- Chemistry 2A-2B-2C or preferably 2A4-2B4-2C
- Physics 1A-1B or 5A-5B-5C

3-4

Subtotal Subject Matter

- Geology 102, 105, 105L, 106, 110, 110L, 112, 122, 123
- Geology 130 (Repeat course if necessary)

38-44

Recommended

Elective for general geology emphasis: Geology 106, 108L, completion of 124, 125 sequence plus one other course (consult adviser).

3-4

Additional recommended courses: one or more of the following courses, depending on emphasis in geology: Mathematics 210, 22A, 22B, Statistics 104, 106, 108, 110.

3-4

Major Adviser: A.B. degree; R. Cowen; B.S. degree; R. Cowen, S.V. Margolis, R.J. Twiss.

Minor Program Requirements:

Students in other disciplines may elect to complete a minor in Geology by choosing a geological subject emphasis that is not already included in the minor which will appear as a minor in Geology.

38-44

General Geology emphasis

- Geology 50 and 50L or 1, 1G, and 1L.

38-44

Geology 106 and 108L or 110 and 110L

38-44

Geology 113, 115, or 116.

3-12

Minor Advisers: S.V. Margolis, R.J. Twiss.

Engineering Geology emphasis

- Geology 50 and 50L
- Geology 105

9-12

Minor Adviser: R.A. Matthews.

Geochemistry emphasis

- Chemistry 110A, 110C
- Geology 60, 60L, 115, 180.
- One elective course chosen from Chemical Engineering 131, Geology 126, Engineering 130, 154, Geology 150A, Soils Science 102, Water Science 150.

3-6

Minor Adviser: R.E. Fiske.

Geomorphology emphasis

- Geology 50 and 50L or 1, 1G, and 1L.
- Geology 152 or Geography 106.
- Geology 153 or Geography 106.

3-6

5 Total Units for the Major

38-44

Geology 135 or 154.

At least six additional units chosen from:

- Civil Engineering 171, 171L, 177
- Geography 112, 117, 118
- Soil Science 111, 112
- Water Science 141 or Civil Engineering 142.

3-6

Minor Adviser: R.J. Twiss

Oceanography emphasis

- Geology 106, 116, 150A, 150B, 150C.
- One course chosen from Environmental Studies 100, 151, Geology 111A, 111B, 111S, Water Science 180.

3-8

Minor Adviser: S. V. Margolis.

Paleobiology emphasis

- Geology 110 and 110L or 107 and 107L.
- Geology 111A or 111B, 145 or 146, 150C.

3-8

At least six additional units from the following:

- Anthropology 151 or 152, Botany 116.

3-8

Minor Adviser: R. Cowen.

Interdisciplinary minors. The Geology Department administers two interdisciplinary minor programs,

Environmental Geology and Geophysics, which may be completed by students majoring in any discipline including Geology. Programs for these minors are listed separately in the catalog under alphabetical order. For Geology majors, one course at most from these minor programs can be counted toward satisfaction of the Geology degree requirements.

Teaching Credential Subject Representative: R. Cowen. See also under Teacher Education Program.

Graduate Study. The Department of Geology offers a program of study and research leading to the M.S. and Ph.D. degrees. For information regarding graduate study in geology, address the Graduate Advisor, Department of Geology.

Graduate Advisers: J.F. Moulton, J.S. McClain, P. Schiffman.

Courses in Geology

Lower Division Courses

1. The Earth (3)
2. II. Cowen, II. McClain

Lecture—3 hours. Introduction to study of the Earth for those not majoring in geology or associated sciences. Not open for credit to students who have taken course 50. General Education credit with concurrent enrollment in course 1G. Nature and Environment/Introductory.

1G. Earth Discussion (1)
3. III. Cowen, II. McClain

1L. Earth Laboratory (1)
4. III. Cowen, II. McClain

Laboratory—3 hours. Prerequisite: course 1 (preferably taken concurrently). Introduction to Earth materials (minerals and rocks), crustal deformation (folds and faults), landforms, and the processes that form them. Not open for credit to students who have taken course 50.

3. History of Life (3)
5. II. Cowen

Lecture—3 hours. Prerequisite: course 1 recommended. History of life during the three and one-half billion years from its origin to the present day. Origin of life and processes of evolution; how to visualize and understand living organisms from their fossil remains. General Education credit with concurrent enrollment in course 3. Nature and Environment/Introductory.

3G. History of Life: Discussion (1)
6. II. Cowen

*A course offered this academic year.
39. History of Life Laboratory (1) II. Cowen
Laboratory—3 hours. Prerequisite: course 3 (concurrently). Exercises in understanding fossils as the clue to interpreting ancient life, including their functional morphology, paleoecology, and evolution. Discussion of the causes, effects, and solution of geologic problems in rural and urban settings.

40. Geology of California (2) I. Moores
Lecture—2 hours; demonstration—1 hour. The geologic history of California, the origin of rocks and the environments in which they were formed, the structure of the rocks and the interpretation of their stratigraphic history, mineral resources, and appreciation of the California landscape.

43. Form, Function, and Evolution: The Molluscan Shell (3) II. Vermeij
Lecture/discussion—2 hours; term paper. Prerequisite: course 1, 3, or Biological Sciences 10. Evolution of the molluscan shell, its form, function, and evolution are explained through the study of shells of living and fossil mollusks. Topics include shell geometry, mechanical design, adaptation to enemies, and the distinct structural types in space and time. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Geology 1 or 3, Biological Sciences 10.

50. Physical Geology (3) I. Green
Lecture—3 hours; lab (required). Prerequisite: high school physics and chemistry. The Earth, its materials, its internal and external processes, its development through time by sea-floor spreading and global plate tectonics. Students with credit for course 1L may receive credit for course 50L; students with credit for course 50 may receive credit for course 50L. General Education credit: Natural World/Introductory. Recommended GE preparation: Earth Science 10 or 30.

50L. Physical Geology Laboratory (2) I. Green
Laboratory—6 hours; one or two one-day field trips. Prerequisite: course 50L (preferably taken concurrently). Introduction to classification and recognition of minerals and rocks and to interpretation of topographic and geologic maps and aerial photographs. Students with credit for course 1L may receive credit for course 50L.

60. General Mineralogy (3) I. Green
Lecture—3 hours; prerequisite: Chemistry 2A or 2AH. Crystallography; physical and chemical structure and properties of minerals, mineral genesis. General Education credit: Natural World/Introductory. Recommended GE preparation: Earth Science 10 or 30.

99. Special Study for Undergraduates (1-5) I, II. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; lower division standing. (F, P grading only.)

Upper Division Courses

109. Field Geology (3) I, II. Ross
Lecture—1 hour; laboratory—2 hours; field study—3太阳 days; prerequisite: course 105L or 106L. Survey of the geologic features of the western United States. Preparation of geologic maps, cross-sections, stratigraphic sections, and descriptions of geologic rock units is required (30 hours minimum).

105. Structural Geology (3) I, II. Ross
Lecture—3 hours; prerequisite: courses 50-L, 50L: Physics 5A or 5A; Mathematics 21A, 21B recommended. Description and origin of the deformational features of the earth's crust. Brittle deformation, stress, faults and fractures, ductile deformation, strain, folds and foliations. Experimental rock deformation.

109L. Structural Geology Laboratory (2) I, II. Teissed Lecture—lab—2 hours; three or four-one-day field trips and reports. Prerequisite: course 105L (concurrently); high school trigonometry and geometry. Geologic structure, field characterization and mapping. Structural geology of the western United States. Preparation of geologic maps, cross-sections, stratigraphic sections, and descriptions of geologic rock units is required (30 hours minimum).

110. Ancient Environments (4) I. Mount
Lecture—3 hours; laboratory—2 hours; prerequisite: 105L (concurrently); course 105L recommended. Study of modern and ancient environments from continents, oceans, and continental margins. Ecologic and paleoclimatic reconstructions. Identification of diatomaceous rock types. Paleoclimatic reconstructions. Preparation of geologic maps, cross-sections, stratigraphic sections, and descriptions of geologic rock units is required (30 hours minimum).

111. Principles of Paleobiology (3) I. Vermeij
Lecture—3 hours; prerequisite: courses 3-3L or Biological Sciences 15. Evolution and ecology of the biota from the origin of life to the present. General Education credit: Natural World/Introductory. Recommended GE preparation: Earth Science 10 or 30.

110L. Principles of Paleobiology Laboratory (2) I. Vermeij
Laboratory—6 hours; prerequisite: courses 3-3L or Biological Sciences 15; course 105L (concurrently). Exercises in determining the ecological functions and evolution of organisms, and the distribution of fossil organisms in space and time. General Education credit: Natural World/Introductory. Recommended GE preparation: Earth Science 10 or 30.

110G. General Geology (3) I. Moores
Lecture—3 hours. Prerequisite: course 105L, 105L. Geologic structure, features and processes, tectonic structure, stratigraphy, and evolution of large-scale features of the earth's crust. Shield plateaus, continental margins, oceans, basins, plate boundaries, and mountain belts.

110L General Geology Laboratory (2) I. Moores
Laboratory—6 hours; two one-day field trips. Prerequisite: course 105L (preferably taken concurrently). Preparation of geologic maps, cross-sections, stratigraphic sections, and descriptions of geologic rock units is required (30 hours minimum).

110R. Regional Structure and Stratigraphy (3) I, II. Moores

110E. Earthquakes and Other Earth Hazards (2) I. Vera

111G. The Solar System (3) I. Vermeij
Lecture—3 hours; prerequisite: Astronomy 61 or 61L or 105L or 105L; course 105L recommended. Introduction to the origin and evolution of the solar system and to our place in the cosmos. General Education credit: Natural World/Introductory. Recommended GE preparation: Earth Science 10 or 30.
119. Field Studies in Marine Paleontology (9) Summer-Fall
Lecture—12 hours; laboratory—25 hours. Prerequisite: one course in geology or geology and consent of instructor. Lectures and field-laboratory studies of physical and biological aspects of nearshore marine environments, and the reconstruction of ancient environments by the study of fossil assemblages and sedimentary rocks in nearby coastal areas. Full time residence at Bodega Marine Laboratory is required. A $25.00 lab fee is required.

122. Optical Mineralogy (3) (I) 15-week
Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 60, 60L, or consent of instructor. Optical properties of crystals and techniques of mineral identification with the petrographic microscope.

123. Igneous Petrology (5) or 3 Credit Hours Lecture—6 hours. Prerequisite: course 122. Origin and occurrence of igneous rocks. Laboratory exercises emphasize the study of these rocks in hand specimen and thin section.

124. Sedimentary Petrology (5) II Mount Lecture—3 hours; laboratory—6 hours. Prerequisite: course 122. Origin and occurrence of sedimentary rocks. Laboratory exercises emphasize the study of these rocks in hand specimen and thin section.

125. Metamorphic Petrology (5) I 15-week
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 122; course 123 recommended. Occurrence and origin of metamorphic rocks. Laboratory exercises emphasize the study of these rocks in hand specimen and thin section.

150. Non-Renewable Natural Resources (3) III 15-week
Crisis Lecture—3 hours. Prerequisite: course 1. Origin, occurrence, and distribution of non-renewable resources, including metallic, nonmetallic, and energy-producing materials. Problems of discovery, production, and management. Estimations and limitations of reserves, and their sociological, political, and economic effects.

131. Earth Science, History, and People (4) I 15-week
Cowan Lecture—3 hours, discussion—1 hour. Prerequisite: upper division standing. Course 1. Study of interplay between the earth and its human inhabitants through history and prehistory. Emphasis on technological advancements, current issues, and the impact of man on the environment.

135. Rivers of California: Geology and Land Use (3) II 15-week
McClain Lecture—2 hours; discussion-laboratory—3 hours. Prerequisite: courses 1 and 13. Analysis of the conflict between geologic processes and the urbanization and resource exploitation of California’s watersheds. Moving, digging, and dam construction. Case studies of Sierra Nevada watersheds. Field study includes two raft trips on Sierra Nevada and visit to Aubum Dam site. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Geology 1.

140. Geologic Data Collection and Report Presentation (2) III 15-week
The Staff Lecture—2 hours. Prerequisite: upper division standing. Techniques of data collection and organization and presentation of data for geologic reports. Participants will analyze published reports, write syntheses of published reports, and write abstracts.

144. Evolution and the Fossil Record (4) II 15-week

145. Palaeoecology (3) III 15-week
Signor Lecture—3 hours. Prerequisite: course 107. Principles and methods of environmental reconstruction of ancient animal and plant communities. Course includes studies of methods in paleoecology; principles of biostratigraphy.

146. Evolutionary Paleontology (3) III 15-week
Vermeij Lecture—3 hours. Prerequisite: course 107 or 110. Principles of evolution from the special perspective of the fossil record; the processes that give rise to the species and other taxa. Survey of adaptive radiations and major extinctions.

150A. Physical and Chemical Oceanography (4) I 15-week
Frewell Environmental Studies Lecture—3 hours; discussion—1 hour. Prerequisite: course 116 or Environmental Studies 116; Physics 9B; Mathematics 210D; Chemistry 2C; or upper division standing in a natural science and consent of instructor. Physical and chemical properties of seawater, fluid dynamics, air-sea interaction, currents, waves, tides, mixing, major oceanic geohydrological cycles. Offered in alternate years. (Same course as Environmental Studies 116.)

150B. Geologic Oceanography (3) III 15-week
Margolis Lecture—3 hours. Prerequisite: courses 50 or 116. Introduction to the origin and geologic evolution of ocean basins. Composition and structure of ocean crust; marine volcanics; and deposition of marine sediments. Interpretation of geologic history of the ocean floor in terms of sea-floor spreading theory. (Same course as Environmental Studies 116B.)

150C. Biological Oceanography (3) III 15-week
Spero Lecture—3 hours. Prerequisite: Biological Sciences 1A and 1B or consent of instructor. Survey of the ecology of major marine habitats including intertidal, shelf, benthic, deep-sea, and plankton communities. Existing knowledge and contemporary research will be equally stressed. A portion of the course will be devoted to man's use of and impact on the ocean. Offered in alternate years. (Same course as Environmental Studies 115C.)

152. Photogeology and Remote Sensing (4) II 15-week
Higgins Lecture—2 hours; laboratory—6 hours. Prerequisite: course 110 or 110. Courses 105 recommended. Field use of aerial photographs; types and evaluation; stereoscopic viewing, and basic geometry. Geologic uses and interpretation of aerial photographs and images obtained by remote sensing.

153. Geomorphology (4) II 15-week
Higgins Lecture—4 hours. Prerequisite: courses 50-50L or 1-1L; Geography 1 recommended. Landforms, landscapes, and the processes that shape them. An introduction to geomorphic observation and theory. Alternates with and complements course 154. Offered in alternate years.

154. Environmental Geomorphology (5) II 15-week
Higgins Lecture—4 hours; laboratory—2 hours. Prerequisite: courses 50-50L or 1-1L; Geography 1 recommended. Landforms, landscapes, and the processes that shape them. An introduction to geomorphic observation and theory. Alternates with and complements course 154. Offered in alternate years.

162. Stress and Deformation (4) II, III 15-week
Green Lecture—3 hours; discussion—2 hours. Prerequisite: Mathematics 210C and Physics 9B; Mathematics 222A, 221D, and Physics 9C recommended. Introduction to tensor analysis; tensor rotation transformations, representation quadratic, Mohr-circle construction; stress analysis; and principal stresses and strain. Three-dimensional problems with geologic application.

180. Sample Preparation and Techniques (1) II, III 15-week
Winter Lecture—3 hours. Prerequisite: course 122. Introduction to petrographic laboratory techniques for petrographers. Topics covered may include the and polished section preparation, rock crushing/grinding, mineral separation, staining, and photomicroscopy. (P/NP grading only.

185. Advanced Field Geology (1-6) I, III, III 15-week
Fieldwork—3-18 hours. Prerequisite: course 118 or graduate standing in Geology. Advanced problems and methods in geologic field studies; preparation of a geologic report. May be repeated for a total of 6 units when different subject matter studied.

190. Seminar in Geology (1-4) I, II, III 15-week
The Staff Discussion—1 hour; seminar—1 hour. Prerequisite: major in Geology. Presentation and discussion of current topics in geology by visiting lecturers, staff, and students. May be repeated for credit. (P/NP grading only.

192. Internship in Geology (1-12) I, II, III 15-week
The Staff Internship. Prerequisite: upper division standing; project approval prior to internship. Supervised work experience in geology. May be repeated for credit for a total of 10 units. (P/NP grading only.

194A-194B. Senior Thesis Project (3-3) I-III 15-week
The Staff Project open to geology majors who have completed 135 units and who do not qualify for the honors program. Guided independent study of a selectet topic leading to the writing of a senior thesis. (Deferred grading only, pending completion of sequence.)

194A-194B. Senior Honors Project (3-3) I-III 15-week
The Staff (Chairperson in charge) Independent study—3 hours. Prerequisite: open to Geology majors who have completed 150 units and who qualify for the honors program. Guided independent study of a selected topic, leading to the writing of an honors thesis. (Deferred grading only, pending completion of sequence.)

196. Directed Group Study (1-5) I, II, III 15-week
The Staff (Chairperson in charge) Prerequisite: senior standing in geology or consent of instructor. Offered in alternate years.

199. Special Study for Advanced Undergraduates (1-5) I, II, III 15-week
The Staff (Chairperson in charge) (P/NP grading only.

Graduate Courses

206. Stratigraphic Analysis (3) III, Mount Lecture—3 hours. Prerequisite: courses 105L and 106 or consent of instructor. Advanced historical geologic analysis of stratigraphic history of North America and selected parts of other continents. Emphasis on interpreting lithologic assemblages and stratigraphic relations in terms of modern tectonic-depositional models. Offered in alternate years.

209. Origin and Significance of Metamorphic Textures (4) III 15-week
Green Seminar—3 hours; laboratory—3 hours. Interpretation of metamorphic textures in terms of surface energy anisotropy, growth anisotropy, crystal deformation processes, and dislocation phenomena. Offered in alternate years.

213. Studies in Geomorphology (3) III 15-week
Higgins Lecture—2 hours; laboratory—3 hours. Prerequisite: course 153 or Geography 108. Topics selected from: studies of landform, and landscape development and the action of formative processes, methods of analysis of geomorphic problems, development of geomorphic theory. Topics change from year to year. May be repeated three times for credit.

215A. Geochronology (3) I 15-week
Lecture—3 hours. Prerequisite: Chemistry 110A, or consent of instructor. Principles and applications of nuclear chemistry to geology, emphasizing radioactive dating methods. Topics include K-Ar, Rb-Sr, Sm-Nd and U-Th-Pb systems, and the age and origin of Earth, Lunar, and meteoric materials. Offered in alternate years.

215B. Stable Isotope Geochemistry (3) III 15-week
O'Nions Lecture—3 hours. Prerequisite: course 115, Chemistry 119A, Mathematics 225B, or consent of instruc-
for. Principles of equilibrium and kinetic isotope fractionation and material balances with special application to the distribution of oxygen and hydrogen isotopes in natural systems. Topics include isotope hydrology and biogeochemistry, radiocarbon, oxygen, igneous rocks and materials, and tectonic-rock interaction. Offered in alternate years.

**216. Tectonics (3) I. Moores Seminar on tectonic and isotope geology courses 109 or consent of instructor. Nature and evolution of tectonic features of the Earth. Causes, consequences, and evolution of plate motion, with selected examples from the Earth. Offered in alternate years.

**217. Topics in Geophysics (3) III. I. Staff Lecture—1 hour; seminar—2 hours. Prerequisite: consent of instructor. Discussion and evaluation of current research in a given area of geophysics. Topic will change from year to year. May be repeated for credit.

**218A. Structural Analysis I: Macrosfracs (3) II. Twiss Seminar—3 hours. Prerequisite: consent of instructor. Geometric and kinematic analysis and interpretation of mesoscopic and macroscopic geologic structures and fabrics: geometry of folding, superposed folding, and faulted inclusions; symmetry arguments in the interpretation of fabrics; determination of slip line and deformation lineation; macroscopic structural analysis. Offered in alternate years.

**218B. Structural Analysis II: Microfracs (4) III. Gren Seminar—3 hours; laboratory—3 hours. Prerequisite: consent of instructor; course 216A recommended. Microscopic structural aspects of deformed metamorphic rocks, emphasizing deformation features and the origin and significance of preferred crystallization orientation. Offered in alternate years.

**219. Special Studies in Marine Geology and Paleobiology (6-9) Sumner, Farmer Discussion—5 hours; seminar—3 hours; laboratory—20 hours. Prerequisite: graduate standing or consent of course 119A, and consent of instructor. Independent field and laboratory investigation of selected topics in marine geology and paleobiology. Offered in alternate years.

**220. Mechanics of Geologic Structures (3) III. Twiss Lecture—2 hours; seminar—1 hour. Prerequisite: course 162, or consent of instructor and course 145B. Abolishment of principles of continuum mechanics to understand the development of structural geologic systems such as folds, fractures, faults, dike swarms, and lineations. Independent field study. Offered in alternate years.

**226. Advanced Sedimentation and Sedimentary Petrology (4) III, Mount Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 100 or consent of instructor. Advanced petrographic and stratigraphic study of major sedimentary rock suites. Lecture emphasis on recognition and interpretation of the spatial and temporal variations in sedimentary rocks and mineralization. Laboratory focus on provenance and diagenesis. Subjects vary yearly. May be repeated for credit. Offered in alternate years.

**231. Isotope Biogeochemistry (3) III. Spero Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Application of stable isotope techniques to paleoclimate, paleoecology, paleoceanographic, ecological and anthropological research problems. Emphasis on carbon, oxygen, nitrogen, hydrogen and sulfur stable isotopes. Offered in alternate years.

**245. Metamorphic Petrology (5) I. Day Lecture—3 hours; laboratory—6 hours. Prerequisite: course 125 or consent of instructor. Metamorphic processes; origin and characteristics of metamorphic rocks; laboratory study of representative rock suites in hand specimen and thin section. Offered in alternate years.

**246. Physical Chemistry of Metamorphic Processes (3) II. Day Lecture—3 hours. Prerequisite: course 125, Chemistry 110A, or consent of instructor. Physical-chemical principles of metamorphic mineral assemblages and methods of interpreting the paragenesis of metamorphic rocks. Offered in alternate years.

**247. Metamorphic Petrology Seminar (3) II. Day Seminar—3 hours. Prerequisite: course 245; course 246 recommended. Selected topics in metamorphic petrology (e.g., major transport processes, tectonic settings, geothermometry, thermal structure of metamorphic belts, regional studies). May be repeated for credit when topic is different. Offered in alternate years.

**250. Advanced Geochemistry Seminar (3) I. Criss Seminar—3 hours. Prerequisite: course 115 or consent of instructor. Critical review of selected topics in geochemistry including: ore genesis, hydrothermal and geothermal fluids, recent and ancient sediments, isotope geochemistry of organic and inorganic oceans. Subject varies yearly depending on student interest. May be repeated for credit. Offered in alternate years.

**254. Phase Equilibria (3) I. Staff Seminar—3 hours. Prerequisites: Chemistry 2C and Mathematics 22A; physical chemistry recommended. Physical-chemical aspects of the phase relations in silicate systems and their application to the petrogenesis of igneous and metamorphic rocks. Offered in alternate years.

**260. Paleontology (3) I. Carlson, II. Skelton. III. Vermeil Seminar—3 hours. Prerequisite: graduate standing in geology or in a biological science. Selected problems in paleontology selected to be studied will be decided as an organizational meeting. May be repeated for credit when topic varies.

**263. Functional Morphology of Fossil Invertebrates (4) II. Coven Lecture—3 hours; laboratory—6 hours. Prerequisite: course 111A or Zoology 112. Principles and methods of functional analysis of fossils, with special reference to selected problems in invertebrate phyla. Offered in alternate years.

**286. Evolutionary Biology of Prokariota (3) III. The Staff Seminar—3 hours. Prerequisite: course 118B. Analysis and discussion of selected topics on the evolution of single-celled organisms with emphasis on their fossil record and biology. Offered in alternate years.

**288. Igneous Petrology (3) I. Lesher Seminar—2 hours; laboratory—3 hours. Prerequisite: course 123. Integrated laboratory, field study, and seminar on igneous processes and petrology. Offered in alternate years.

**289. Geophysical X-Ray Spectrometric Analysis (4) III. Schiffman Lecture—3 hours; laboratory—4 hours. Prerequisite: course 86, Chemistry 2C or 2CH, Physics 9D, graduate standing in Geology. Theory of generation and detection of x-rays as applied to analytical chemistry of rocks and minerals. Laboratory sessions on use of the x-ray fluorescence spectrometer, electron microprobe, and x-ray diffractometer. Offered in alternate years.

**290. Seminar in Geology (1) I., II. III. The Staff Seminar—1 hour; discussion—1 hour. Presentation and discussion of current topics in geology by visiting lecturers staff, and students. (SU grading only.)

**291. Geology of the Sierra Nevada (1) I. Day, Moore Seminar—one day-long session. Prerequisite: consent of instructor. Short oral presentations by students and faculty concerning results of their past work and plans for future work in the Sierra Nevada. A written abstract is required following the format required at professional meetings. (SU grading only.)

**295. Advanced Problems in Geodynamics (3) III. Twiss Seminar—3 hours. Prerequisite: courses 105 or consent of instructor. Seminar dealing with problems in geodynamics. Topics will vary (e.g., ductile deformation mechanisms, brittle fracture, earthquake prediction, driving forces for plate tectonics, mantle convection). Emphasis on recent literature. May be repeated for credit. (SU grading only.) Offered in alternate years.

**296. Advanced Problems in Tectonics (3) I. Moores Seminar—3 hours. Prerequisite: course 106 or consent of instructor. Seminar dealing with current problems in tectonics of selected regions. Topics will change from year to year. Emphasis on study of recent literature. May be repeated for credit. (SP grading only.)

*Course not offered the academic year.
moderate specifically those students whose interest lies in literary or linguistic studies, while the Area Studies emphasis addresses the needs of students wishing to obtain a broader knowledge of the contributions of the German-speaking world to fields such as music, art, history, philosophy, economics, etc.

The Program. The department’s primary emphasis on literary figures, movements and themes finds expression in the common core of upper division literature electives characterizing both programs. Beyond the common courses in advanced conversation and composition (101, 102 and 103) shared by students emphasizing area studies, literature, or language interests, those majoringdriving maximum practice in spoken and written German, as well as in listening comprehension, will find opportunities for such exposure especially in any of the upper division literature courses that are offered in German.

Career Alternatives. Completion of the major will prepare the student for graduate study in German. Both programs (general and area studies) prepare students for career opportunities in fields such as international relations, business, and the sciences, and the arts, as well as perminism to admission to such professional curricula as law and medicine.

A.B. Major Requirements:

- Preparatory Subject Matter: 6-23
 - German 1-2 (3 or the equivalent): 0-15
 - German 4 or 6A-6B: 4
 - German 51: 4

- Depth Subject Matter: 44
 - General Program
 - German 101: 4
 - German 102 or 103: 4
 - German 120: 4
 - Three courses chosen from upper division literature courses that are taught in German.
 - Five additional upper division courses selected from 104-109 and 121-198, upon the explicit advance approval of an undergraduate major advisor.

The above category may be satisfied in part by substituting one or more courses in Comparative Literature, in another national literature, or from German literature-in-translation offerings (110-113, 140, 141) upon consultation with, and advance approval of, an undergraduate major advisor.

- German Area Studies Emphasis
 - German 101, 102, 103: 8
 - Three courses chosen from upper division literature courses that are taught in German.

- History 144: 4
 - Four elective courses in accordance with student interest.

Minor Program Requirements:

- The Department offers a German Language minor and a German Literature minor. In addition, individual minor programs may be designed upon consultation with the undergraduate advisor.

Students are particularly encouraged to consider a minor that combines a coherent group of courses to emphasize area studies in German (e.g., German philosophy, the arts, history, political science, etc., as well as literature). The purpose of the minor is to provide students with the opportunity to augment their training in other fields by acquiring proficiency in the German language and exposure to German literature and culture.

UNITS

German Language and/or Literature: 18-24
 - Choose courses numbered from German 100A through 109B and literature courses that are taught in German.
 - One lower division course from German 46 to 52 may be counted.

Major Advisers: C. Asman, J. Fejer

Honors and Honors Program. The honors program comprises two quarters of study under course 194A-194B, which will include a research paper. See also the University and College requirements.

Teaching Credential Subject Representative. I. Henderson. See also under the Teacher Education Program.

The Master of Arts Degree. The Department offers programs of study leading to the M.A. degree under both Plan I (thesis) and Plan II (comprehensive final examination). A minimum of 30 units is required for Plan I, and a minimum of 36 units for Plan II. Further information may be obtained by writing to the Department Chairperson or the Graduate Adviser.

The Doctor of Philosophy. The Department offers programs of study and research leading to the Ph.D. degree. The department's affiliation with the programs in Critical Theory and in Women's Studies provides the opportunity for students to prepare for the designated emphasis in Critical Theory (an interdisciplinary program in theories and methodologies in the Humanities and Social Sciences) or for the designated emphasis in Feminist Theory and Research (an interdisciplinary program focusing on theories and issues involving gender studies). Detailed information may be obtained by writing to the Department Chairperson or the Graduate Adviser.

Graduate Advisers: G. Finney, H. Schneider

Courses in German

Lower Division Courses

Course Placement: Students with two years of high school German normally continue in German 2; those with three years of German 3; those with four years, German 4 or 6A-6B.

1. Elementary German (5) I, II, III, Henderson in charge
 Discussion—5 hours, laboratory—two 1/2-hour sessions. Introduction to German grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed German 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)

1H. Elementary Honors German (5) I, II, III, Henderson in charge
 Lecture-discussion—5 hours. Prerequisite: overall high school GPA of 3.5 or GPA of 3.5 in German for students with prior knowledge of German. Accelerated and considerably expanded introduction to German language, short literary texts, and culture accompanied by computer-assisted grammar instruction. Material covered in courses 1H and 2H is equivalent to that covered in courses 1, 2, and 3.

2. Elementary German (5) I, II, III, Henderson in charge
 Discussion—5 hours, laboratory—1 hour. Prerequisite: course 1. Continuation of course 1 in areas of grammar and basic language skills.
24. Elementary Honors German (5) I, II, III. Henderson in charge
Lecture/discussion—5 hours. Prerequisite: completion of courses 301 or GPA of 3.3 or GPA of 3.5 for incoming students. Completion of the accelerated and expanded first-year program with special emphasis on four skills in a cultural context, literary texts, and computer-assisted grammar instruction.

3. Elementary German (5) I, II, III. Henderson in charge
Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Completion of grammar sequence and continuing practice of all language skills through cultural texts.

4. Intermediate German (4) I, II, III. Henderson in charge
Recitation—3 hours. Prerequisite: course 3. Course 4 may be taken concurrently with 6A and/or 6B. Review of grammatical principles by means of written exercises; expanding of vocabulary through readings of modern texts.

6A. Spoken German (2) I, II, III. Henderson in charge
Discussion—2 hours. Prerequisite: course 3. Courses 4 and 6B may be taken concurrently with 6A, laboratory—1 hour. Conversational practice based on everyday vocabulary of modern spoken German. (PNP grading only.)

6B. Spoken German (2) I, II, III. Henderson in charge
Discussion—2 hours. Prerequisite: course 3. Courses 4 and 6B may be taken concurrently with 6A, laboratory—1 hour. Conversational practice based on everyday vocabulary of modern spoken German. Topics vary from course 6A. (PNP grading only.)

10. Basic Reading German (3) I. The Staff
Discussion—3 hours. Intensive course for non-majors, providing reading proficiency of texts containing basic sentence patterns and standard general vocabulary. Outside preparation will focus on developing translation techniques with general texts.

11. Intermediate German (3) II. The Staff
Discussion—3 hours. Prerequisite: successful completion of course 10 or the equivalent. Continuation of course 10. Study of advanced reading grammar to gain proficiency with texts of intermediate difficulty. (PNP grading only.)

12. Advanced Reading German (3) III. The Staff
Discussion—3 hours. Prerequisite: successful completion of course 11 or the equivalent. Continuation of course 11, with special focus for upper-intermediate level students on individualized translation projects within each student's field of academic specialization. Systematic review of reading grammar in terms of advanced reading texts. (PNP grading only.)

46. Myth and Sage in the Germanic Cultures (4) I. Hoermann
Lecture—3 hours; term paper. Knowledge of German not required. Reading in English translation from the Norse Eldas, the Volsungs and Sigurd-Siegfried cycles, and the Gudrun lays: literary mythology in Germanic Romanticism culminating in Wagner's "total anti-work" concept and The Ring of the Nibelung cycle. May not be counted toward major in German. General Education credit: Civilization and Culture/Introductory.

49. Freshman Colloquium (2) II. The Staff
(Chairperson in charge)
Seminar—2 hours. Prerequisite: open only to students who have completed 40 or fewer quarter units of transferable college-level work. Readings, discussions and written projects on topics such as communist-capitalist tension in a German cultural context; masculine versus feminine authorial consciousness; disintegration and reconstitution of language reflecting cultural transformation; exercising post-Holocaust national guilt and individual frustration—Germany's new European "nation." (PNP grading only.)

50. Survey of German Culture (3) II. Axmann
Lecture—3 hours; discussion—1 hour. Knowledge of German not required. Characteristic themes in the mainstream of German culture, from medieval intellectual and artistic achievements to the modern period. Study of major trends in arts and literature. Frequent short written reports and in-class expository presentations. General Education credit: Civilization and Culture/Introductory.

51. Introduction to Literary Analysis (4) I. Menges
Lecture—3 hours; discussion—1 hour. Knowledge of German not required. Introductory study of various genres of German literature with emphasis on the relationship between form and content and the impact on contemporary literary appreciation.

52A. Great Books of German Culture in English Translation: The Age of Faith (4) I. The Staff (Chairperson in charge)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 50 recommended. The transformation of ideas resulting from the German cultural experience and its expression within the context of the general Western development from Charlemagne through medieval chivalry to Luther and Gimmelshausen. Knowledge of German not required. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4A or Comparative Literature 1.

52B. Great Books of German Culture in English Translation: The Age of Reason (4) II. The Staff (Chairperson in charge)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 50 recommended. The significant cross-currents in the history of ideas as these shaped the German cultural experience, from the Reformation and the waning Holy Roman Empire, through the Enlightenment and Lessing, to Weimar's Classicism and its 19th century transformations in Romanticism and Realism. Knowledge of German not required. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4B or Comparative Literature 2.

52C. Great Books of German Culture in English Translation: The Age of Relativity (4) III. The Staff (Chairperson in charge)
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 50 recommended. The conflict between European and individual consciousness and national cultural identity, from Büchner, Wagner and Nietzsche, through bourgeois and Freudian realism, to the post-World War II ethical critiques of Mann, Brecht, Grass and Handke, culminating in capitalistic-communist polarity and its resolution. Knowledge of German not required. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4C or Comparative Literature 3.

98. Directed Group Study (1-3) I, II, III. The Staff
(Chairperson in charge)
Prerequisite: consent of instructor. Primarily for lower division students. (PNP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(Researh only)

Upper Division Courses

100A. Advanced German Conversation (2) I. The Staff
Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

100B. Advanced German Conversation (2) II. The Staff
Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

100C. Advanced German Conversation (2) III. The Staff
Discussion—2 hours. Prerequisite: course 4. Intensive conversational practice, accurate pronunciation, and language fluency.

101. Composition and Conversation (4) I, II, III. The Staff
Discussion—3 hours; written reports. Prerequisite: course 6 or consent of instructor. Practice in essay writing. Discussion based on readings from a variety of German texts.

102. Composition and Conversation (4) I, II, III. The Staff
Discussion—3 hours; written reports. Prerequisite: course 101 or consent of instructor. Practice in short essay writing with an aim toward refinement and expansion of vocabulary. Discussion based on readings in a variety of German texts.

103. Writing Skills in German (4) I, II, III. The Staff
Discussion—3 hours; term paper. Prerequisite: course 101. Practice in different kinds of writing, such as abstracts, correspondence, lecture summaries, analysis of or response to short literary texts.

104A. Translation (4) I. McConnell
Discussion—3 hours; written reports. Prerequisite: course 102 or the equivalent. Exercises in German translation using literary and non-literary texts of different styles and linguistic difficulty.

104B. Advanced Translation (4) II. McConnell
Discussion—3 hours; written reports. Prerequisite: course 104A or the equivalent. Exercises in German to English translation of literary and non-literary texts.

105. The Modern German Language (4) I. Benware
Lecture/discussion—3 hours; laboratory—1 hour. Prerequisite: course 4; Linguistics 1 recommended. Introduction to the linguistic analysis of contemporary German, including its phonology, morphology, syntax and semantics, as well as sociolinguistic considerations.

106. History of the German Language (4) II. Benware
Discussion—3 hours; written reports. Prerequisite: course 102; course 105 or Linguistics 1 recommended. Survey of the development of the German language and study of its structure in historical perspective.

107. Modern German Syntax (4) III. Benware
Discussion—3 hours; term paper. Prerequisite: course 102 or the equivalent or consent of instructor. Linguistics 1 recommended. Examination of the major problems in describing modern German sentence structure.

108. Varieties of Contemporary German (4) III. Benware
Discussion—3 hours; laboratory and/or individual/group consultation on projects. Prerequisite: courses 102, 105. Study of relations between Standard language, Umgangsgesprachen and dialects. Approach is both descriptive and sociolinguistic. Class or individual projects on regional differences, including all of the contiguous German-speaking area of Europe.

109A. Business German (4) I. Henderson
Lecture/discussion—4 hours. Prerequisite: course 102 or consent of instructor. Advanced language course designed for use in German 109A. Emphasis on previously introduced materials and features new topics such as the EC, the European Currency System, German company forms and the stock market. Offered in alternate years.

110. Older German Literature in English (4) I. McConnell
Lecture—3 hours; discussion—1 hour. Prerequisite: course 104A or consent of instructor. Specialized advanced language course designed as a sequel to German 109A. Emphasis on previously introduced materials and features new topics such as the English, the European Currency System, German company forms and the stock market. Offered in alternate years.

111A. Major Writers in Translation (4) II. The Staff
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: knowledge of foreign language; course 50, 52A or 52B or 52C (as appropriate to current seg-
German

ment topic). Examination of representative works by a major writer, set in the broader cultural context of the relevant period or movement in each case: (A) Goethe (B) E.T.A. Hoffmann (C) Thomas Mann: (D) Franz Kafka, (E) Bertolt Brecht, (F) Christa Wolf, (G) Günter Grass, (H) Friedrich Schiller. General Education credit, 111A or 111E: Civilization and Culture/Non-Introductory. Recommended GE preparation: German 52 or any course from the GE Literature Preparation List.

112A-C, Topics in German Literature (A), (B), (C). The Staff
Discussion—3 hours; term paper. Prerequisite: courses 50 and 52 recommended. Investigation of significant themes and issues within their European context: (A) Women in Literature, (B) Anti-Hero Figures in Literature, (C) Literary Fairytales. Knowledge of German not required. May be repeated in different subject area. General Education credit for 112A, 112B: Civilization and Culture/Non-Introductory. Recommended GE preparation: Comparative Literature 1, 2, or any course from the GE Literature Preparation List.

113. Goethe's Faust (4) J. Bernd
Discussion—3 hours; term paper. Intensive study of one of the great works of world literature: Parts I and II. Discussion in English; reading the text in the original is encouraged. General Education credit: Civilization and Culture/Non-Introductory.

114. The Faust Tradition Before and After Goethe (4) J. Lidz
Lecture—3 hours; term paper. Examines predecessors of Goethe's Faust (the German chauvinist of 1587, Marlowe's Tragic History of Dr. Faustus of 1592), and some successors (Man's novel of 1947) in order to underscore key variations of this provocative and pervasive theme. Knowledge of German not required. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: German 113.

115A. German Literature since 1945 (4) J. Menges
Lecture—3 hours; term paper. Knowledge of German not required. Reading of major writers including the post-war generation of Austria, Switzerland and West Germany. Discussion of novelists like Böll, Grass, Johnson, Walser, Handke, playwrights such as Frisch, Dürenmatt and Hochhuth, and poets like Celan, Enzensberger, and Aichinger. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: German 113.

115B. German Literature since 1945 (4) J. Kuhn
Lecture—3 hours; written reports—1 hour. Knowledge of German not required. Reading and discussion of the German Democratic Republic (East Germany), the theory of literature in the socialist world, the practice of this literature as exemplified in such authors as Strittmatter, Seghers, Wolf, Kast, Hacks.

116. From Goethe's Werther to Today's Wethers (4) J. Lidz

117A. The Tristan Tradition: Medieval, Musical, Modern (4) J. Lidz
Lecture—3 hours; term paper. Prerequisite: courses 51, 52, and Music 10 recommended. Three different modes of the Tristan and Isolde legend: the medieval epic poem of Gottfried von Strassburg (1210), the music drama of Wagner (1859) and Thomas Mann's parable of 1913. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: German 52, Comparative Literature 2, or English 3.

117B. The Nibelungen Legend: Medieval, Musical, and Modern (4) J. Lidz, McConnell
Lecture—3 hours; term paper. Prerequisite: course 51 or 52 or Music 10 recommended. Knowledge of German not required. Three modes of the Nibelungen legend: the medieval epic poem Nibelungenlied, the Scandinavian Volusunga Saga, Wagner's music drama Ring of the Nibelungen, and Thomas Mann's Magic Mountain on their intellectual environment and interrelationship. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: German 52 or any course from the GE Literature Preparation List.

117C. Parzival Tradition: Medieval, Musical, Modern (4) J. Lidz, McConnell
Lecture—3 hours; term paper. Prerequisite: Music 10 and course 51 recommended. Three modes of the Parvaz legend: the medieval epic Parzival, Wagner's music drama Parsifal and Thomas Mann's The Magic Mountain in their intellectual environment and interrelationship. Knowledge of German not required. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Music 10, or German 52, or another course from the GE Literature Preparation List.

118A. Fin-de-siècle Vienna (The Swing Song of the Habsburg Empire) (4) J. Kuhn
Lecture—1 hour; discussion—2 hours; term paper. Prerequisite: background in European history helpful (e.g., History 147B). Cultural ferment in Vienna, capital of the Austro-Hungarian Empire at the turn of the century, with consideration of innovations in literature, music, graphic arts, architecture, philosophy, and psychology, heralding European modernism. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Comparative Literature 3 or History 4C; History 147B.

118B. Weimar Culture: Defeat, the Roaring Twenties, the Rise of Nationalism (4) J. Kuhn
Lecture—1 hour; discussion—2 hours; term paper. Prerequisite: background in European history helpful (e.g., History 147B). Expressionism in graphic arts literature, film, New Objectivity, Brecht, and Bauhaus considered in the context of the failure of the German experiment in democracy, the Weimar Republic of 1919-33. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Comparative Literature 3 or History 4C; History 147B.

118C. Germany Under the Third Reich (4) J. Kuhn
Lecture—1 hour; discussion—2 hours; term paper. Prerequisite: German 118B and History 147B recommended. Germany in the history of Europe. Interdisciplinary study of German politics, society, and culture during the Third Reich (1933-45). Historical, literary, philosophical, sociological readings; study of architects, cinema, fashion, aesthetic. Everyday life in Hitler's Germany: consent, dissent, opposition, and resistance. Jews in Germany, the Holocaust. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List; German 118B highly recommended.

118E. Contemporary German Culture (4) J. Schneider
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 50. Thorough introduction into the political, economic, social and cultural scene of Germany today (Austria and Switzerland marginally included). Historical background and comparative perspectives. Readings from a variety of sources, films and videotapes. Knowledge of German not required. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4C.

119. From German Fiction to German Film (4) J. Lidz
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: a minimum of 2 years of German. Re-examines a number of major German prose works and plays to ascertain the types of changes involved in the shift from medium and the positive and negative effects achieved by such transfers. General Education credit: Civilization and Culture/Non-Introductory.

120. Survey of German Culture (4) J. Lidz
Lecture—1 hour of discussion—1 hour. Prerequisite: course 101. Major developments in such areas of German life as the arts, philosophical thought, social institutions, and political history.

121. The Medieval Period in German Literature (4) J. McConnell
Discussion—3 hours; term paper. Prerequisite: course 101. Literary-philosophical profile of the Mittelalterliche Blütezeit in terms of the significant episics, romances, and lyric poetry. Readings in modern German.

122A. Humanism and Reformation (4) J. Schaeffer Lecture/discussion—3 hours; term paper. Prerequisite: course 101. Exemplary literary works of the sixteenth century tracing the principal lines of development and showing the reflection in literature of the social scene.

122B. The Literary Baroque (4) J. Schaeffer Lecture/discussion—3 hours; term paper. Prerequisite: course 101. Exemplary literary works of the seventeenth century tracing the principal lines of development and showing the reflection in literature of the social scene.

123. Literature of the Classical Age (4) J. Schneider Discussion—3 hours; term paper. Prerequisite: course 101. A critical analysis of major works of Goethe and Schiller in their development from Sturm und Drang individualism and rebellion to the balanced harmony of the classical period.

124A-D. Major Movements in German Literature (A), (B), (C), (D). The Staff
Discussion—3 hours; term paper. Prerequisite: course 101 or the equivalent. Examination of significant movements and schools, with particular emphasis on the broader cultural ideologies as these apply to individual literary works: (A) Sturm und Drang; (B) Romanticism; (C) Naturalism; (D) Expressionism.

125. Short Story Fiction Around 1900 (4) J. Schaeffer Lecture—3 hours; term paper. Prerequisite: course 101. Representative short German fiction in the fin-de-siècle period, to attain consonance with various prose styles and the cultural currents they reflect.

126. Modern German Literature (4) J. Menges Discussion—3 hours; term paper. Prerequisite: course 101. Selections from the significant works of major twentieth-century writers, such as Hesse, Mann, Kafka, Rilke, Brecht, Grass. May be repeated for credit with consent of Undergraduate Major Advisor.

127A-G. Studies in Major Writers (4) J. III. The Staff
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 101 or the equivalent; course 120 and the appropriate segments of course 252B-252C recommended. Examination of representative works by a major writer, set in the broader cultural context of the relevant period or movement in each case: (A) Lessing; (B) Goethe; (C) Kafka; (D) Rilke, George and Hofmannsthall; (E) Brecht; (F) Schiller; (G) Kleist. Course presentation in German. May be repeated for credit with subject area differs.

128A-B. Topics in German Literature (4) J. II, III.
The Staff
Discussion—3 hours; term paper. Prerequisite: course 101 or the equivalent. Investigation of significant themes and issues within their European context: (A) Frauen in der Literatur; (B) Der Künstler als literarischer Held und Anti-Held.

129. Postwar Women Writers (4) J. II.
Discussion—3 hours; term paper. Prerequisite: course 101. Survey of major women writing in German since 1945. Considers such issues as the existence of "feminine essence" and of a feminist aesthetics. Writers include Seghers, Bachmann, Wolf, Kirch, Morgner, Wohmann, Stein, and Schwaiger.

130. Modernity and its Discontents: The Tradition of German Cultural Critique (4) J. III. Schneider
Lecture—2 hours; discussion—1 hour; four short

*Course not offered this academic year.
papers. Prerequisite: History 40, or 4C, Philosophical and aesthetic tradition of Kulturkritik from Nietzsche, Freud, Spengler, Klages, Heidegger, G. H. Frankfurk. Illustrations from landscape and city representation. No credit for German not taken as part of a larger, comprehensive course. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 40, or 4C.

131. German Lyric Poetry (4) III. Schneider Lecture/discussion—3 hours; term paper. Prerequisite: course 101. Study of the genre of lyric poetry from the late Middle Ages to the present. Course 5 recommended. Offered in alternate years.

132. The German Novel (4) I. Berner Lecture—3 hours; written reports. Prerequisite: course 101. Inquiry into the art of the "Novelle" through analysis of the material and formal devices of representative authors from Goethe to Kafka.

133. The German Drama (4) III. Fetter Lecture—3 hours; term paper. Prerequisite: course 101. Readings in the works of Germany's leading dramaticists from the eighteenth century to the present, such as Lessing, Goethe, Schiller, Kleist, Hebbel, Hauptmann, Bracht.

140. German Political Literature from the Middle Ages to the Present (4) II. McConnell Lecture—3 hours, discussion—1 hour. Prerequisite: English 2 or 3. Course 51 recommended. Examination of the relationship of art to politics in German literary history from the time of Walther von der Vogelweide in the Middle Ages, through the Reformation, the period of Romanticism, and the Twentieth Century. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: English 3 or 4.

141. The Holocaust and Its Literary Representation (4) I. Fetter Lecture—2 hours; discussion—1 hour; term paper. Knowledge of German not required. Aesthetic representation and metaphorical transformation of the holocaust in its human and historical perspectives. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE Preparation: any course from the GE Literature Preparation List.

143. Contemporary German Press (4) II. Schaefler Lecture/discussion—3 hours; term paper. Prerequisite: course 101. Study of contemporary German-language newspapers and magazines for insight into political and cultural developments in German-speaking countries. Discussion of current articles. Critical approaches. Writing of summaries, rebuttals, comments.

150. Love in the Middle Ages (4) I. McConnell Lecture—3 hours; discussion—1 hour. Prerequisite: course 101. Analysis of the phenomenon of love in selected medieval lyrical poems and romances of the twelfth and thirteenth centuries. Blützeit. Origins of courtly love, love and individualism, love and the Church, love and adultery.

156. The German Epigram (4) I. Schaefler Lecture/discussion—3 hours; term paper. Prerequisite: course 101. Survey of the German epigram from its beginnings to the present. Traces the origins and development of the genre, its place in European literature, and its function as a mirror of the history of ideas.

166. Die Meistersinger (4) III. Schaeffer Lecture/discussion—3 hours; term paper. Prerequisite: course 101. Wagner’s music-drama Die Meistersinger von Nürnberg against the background of the city’s cultural history, the practice of Meister sang and the historical Hans Sachs, to show the relationship of words to music, and the resulting music-drama as an eminently humanistic work. Offered in alternate years.

178. The Kunstmärchen in German Literature (4) III. Hoermann Lecture/discussion—3 hours; term paper. Prerequisite: course 101 and either 110 or 120, Comparative Literature 5 or 168A strongly recommended. Development of the literary "fairytale," or magical tale — beginning with Grimmselhausen and Goethe’s epich-magic. Die Maschenr, focusing on Romanticism’s poet figure in its Endungsmärchen format, and ending with modern variants as in Hoffmannstäf, Kafka, and Brecht.

185. The Age of Bismarck (4) III. Berner Discussion—3 hours; term paper. Prerequisite: course 101. Study of notable literary repercussions that took place when Germany’s international status reached its peak during the age of the Iron Chancellor. The poetry of Storm, the prose of Fontane, the drama of Hauptmann.

192. Field Work in German (1-12) I, II, III. Hendersch Internship—3-36 hours. Prerequisite: course 104. Internship with several German companies. Participation in various business activities where expertise in German is expected and further developed. (P/NP grading only.)

194HA-194HB. Honors Program (3-3) I, II. The Staff (Chairperson in charge)

Independent study—2 hours; term paper. Prerequisite: open only to students with a 3.5 minimum GPA in at least 135 graduation units. (A) Research of integrative nature in either "General" or "Area Studies Emphasis" fields of major, guided by thesis advisor chosen by student. (B) Writing of Honors Thesis on topic selected by student in consultation with thesis advisor. (P/NP grading only. Deferred grading only, pending completion of course sequence.)

197T. Tutoring German (4) I. Henderson Lecture—2-4 hours; term paper. Prerequisite: course 102 or consent of instructor. Tutoring and leading of special discussion sections in first-year language classes. Offers teaching opportunities under guidance of staff after initial observation period. Exposes course participants to all phases of language teaching: instant feedback and discussion. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-3) I, II, III. The Staff (Chairperson in charge)

(P/NP grading only.)

Graduate Courses

200A. German Colloquium Series (2) I. The Staff Lecture/discussion—2 hours. A literary colloquium designed to help students prepare for the M.A. Examination. Review of texts based on the M.A. Reading List (Middle Ages to 1790), including pertinent bibliographies and other research tools. Required of M.A. candidates. (SU grading only.)

200B. German Colloquium Series (2) II. The Staff Lecture/discussion—2 hours. A literary colloquium designed to help students prepare for the M.A. Examination. Review of texts based on the M.A. Reading List (1790-1900), including pertinent bibliographies and other research tools. Required of M.A. candidates. (SU grading only.)

200C. German Colloquium Series (2) III. The Staff Lecture/discussion—2 hours. A literary colloquium designed to help students prepare for the M.A. Examination. Review of texts based on the M.A. Reading List (1900 to present), including pertinent bibliographies and other research tools. Required of M.A. candidates. (SU grading only.)

202. Middle High German (4) I. Berner Discussion—3 hours; lecture—1 hour. Outline of grammar; selections from Middle High German epic, romance, and lyric poetry.

*Course not offered the academic year.
Greek

See Classics

Hebrew

See Religious Studies

History

(College of Letters and Science)

Barbara Metcalf, Ph.D., Chairperson of the Department

Department Office, 176 Voorhis Hall (319-752-0776)

Faculty

Arnold J. Bauer, Ph.D., Professor
William M. Bowsky, Ph.D., Professor
Cynthia L. Brantley, Associate Professor
David Brody, Ph.D., Professor
Daniel R. Brower, Jr., Ph.D., Professor
Robert O. Crumney, Ph.D., Professor
Betty Jo Deeter Dobbs, Ph.D., Professor
Paula E. Findlen, Ph.D., Assistant Professor
Paul Goodman, Ph.D., Professor
William W. Hagen, Ph.D., Professor
Karen Hattin, Ph.D., Professor
David L. Jacobson, Ph.D., Professor
Phil W. Johnson, Ph.D., Assistant Professor
Catherine J. Kudlick, Ph.D., Assistant Professor
Norma B. Landau, Ph.D., Professor
Kwang-Ching Liu, Ph.D., Professor
Susan L. Mann, Ph.D., Professor
Roland Marchand, Ph.D., Professor
Ted W. Margadant, Ph.D., Professor
Barbara Metcalf, Ph.D., Professor
Don C. Price, Ph.D., Professor
Ruth E. Rosen, Ph.D., Professor
Morton Rothstein, Ph.D., Professor
Vicki L. Ruiz, Ph.D., Associate Professor
Michael Smith, Ph.D., Associate Professor
Stylianos Spyridakis, Ph.D., Professor
Clarence E. Walker, Ph.D., Professor
F. Roy Wills, Ph.D., Professor

Emeriti Faculty

Daniel H. Callihan, Ph.D., Professor Emeritus
Manfred P. Fleischer, Ph.D., Professor Emeritus
W. Turteria Johnson, Ph.D., Professor Emeritus
Rolfe E. Poppino, Ph.D., Professor Emeritus
Richard N. Schwab, Ph.D., Professor Emeritus
Morgan B. Sherwood, Ph.D., Professor Emeritus
James H. Shmel, Ph.D., Professor Emeritus
Wilson Smith, Ph.D., Professor Emeritus

The Major Program

The major history is designed to develop critical intelligence and to foster an understanding of ourselves and our world through the study of the past—both remote and recent.

The Program. A student electing a major in History may complete Plan I, Plan II, or Plan III. Plan I enables students to concentrate chiefly on the history of one geographic area or time period of their choosing. The purpose of Plan II is to encourage interested students, including those preparing for graduate work in history, to enroll in a seminar, to undertake independent work, and to study the history of history as part of the major. Students preferring more active engagement in research and writing are encouraged to follow Plan II. The purpose of Plan III is to enable students to study in depth the field of twentieth-century history, whose common problems of political conflict, social development, and cultural creativity cut across the several geographical fields of concentration which the department now offers.

Career Alternatives. A degree in history is excellent preparation for a professional career such as teaching, law, journalism, public administration, or business management. Professional schools in these
and related fields are looking for students who can weigh conflicting evidence, evaluate alternative courses of action or divergent points of view, and express conclusions logically in everyday language. These analytical skills are stressed in many history classes, and their mastery gives the history student a solid preparation for subsequent training in a specialized career.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Plans I, II, and III)</td>
<td></td>
</tr>
</tbody>
</table>

Five lower division courses, including at least two of each of the following classes:

a. Western Civilization: History 4A, 4B, 4C, 4D, 4E, 4F.

b. Asian Civilization: History 8, 9A, 9B.

d. Africa: History 15.

<table>
<thead>
<tr>
<th>Depth Subject Matter—Plan I</th>
<th>40-41</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least six lower division courses from one of the fields of concentration listed below. Include a two-quarter sequence of courses.</td>
<td></td>
</tr>
<tr>
<td>At least three upper division courses from one of the other fields listed.</td>
<td>12</td>
</tr>
<tr>
<td>At least one course from the following: History 101, 102 (in field of concentration); in exceptional circumstances, a student may with the permission of an advisor, take the seminar in another field); or 103 (in field of concentration).</td>
<td>4-6</td>
</tr>
</tbody>
</table>

| Total Units for the Major, Plan I | 60-61 |

<table>
<thead>
<tr>
<th>Depth Subject Matter—Plan II</th>
<th>40-41</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least four upper division courses from one of the fields of concentration listed below. Include a two-quarter sequence of courses.</td>
<td></td>
</tr>
<tr>
<td>At least three upper division courses from one of the other fields listed.</td>
<td>12</td>
</tr>
<tr>
<td>History 101</td>
<td>5</td>
</tr>
<tr>
<td>History 102 in field of concentration (in exceptional circumstances, a student may with the permission of an advisor, take the seminar in another field); or 103 (in field of concentration).</td>
<td>4-6</td>
</tr>
<tr>
<td>History 103 in field of concentration.</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total Units for the Major, Plan II | 62 |

<table>
<thead>
<tr>
<th>Depth Subject Matter—Plan III</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>History 146A, 146B, 147A, 147C</td>
<td>16</td>
</tr>
<tr>
<td>At least three upper division courses chosen from the following list of twentieth-century courses, classified by area of concentration.</td>
<td></td>
</tr>
<tr>
<td>At least one course must be from category A.</td>
<td>12</td>
</tr>
<tr>
<td>C. Europe: History 137C, 137E, 138, 141, 142, 143, 144, 147B, 147C, 150, 151D, 155A, 155B, 155C.</td>
<td></td>
</tr>
<tr>
<td>History 102, on a topic in twentieth-century history (normally chosen from sections E, F, H, I, L, M, N, O, or Q).</td>
<td>12</td>
</tr>
<tr>
<td>Two additional upper division history courses selected from courses within a single field of study (e.g., Europe, United States, Africa, Latin America, Asia) which do not cover twentieth-century history.</td>
<td>8</td>
</tr>
</tbody>
</table>

| Total Units for the Major, Plan III | 61 |

† Fields of Concentration

| A. European History: History 102A, 102B, 102C, 102D, 102E, 102F, 102I, 102P. | |

Minor Program Requirements:

History units may be taken in a single field of concentration, such as Africa, East Asia, Europe, Latin America or the United States. Students may select a minor with a thematic emphasis, as listed below, or design a thematic minor in consultation with a Department advisor.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Program Requirements:</td>
<td>Minor Advisers: Same as for major advisers.</td>
<td></td>
</tr>
</tbody>
</table>

| Honors and Honors Program: A student becomes eligible for graduation with honors by meeting the requirements established by the College of Letters and Science. To qualify for high or highest honors, students must also complete the History Department honors program with a grade-point average of 3.5 or above in honors courses. Students will be invited to participate in the honors program during the latter part of their junior year on the basis of grade-point average, interviews, and faculty reputations. They are required to complete the History 104A, 104B, 104C sequence of honors courses, which includes the completion of a senior honors thesis. Students who anticipate seeking admission to the honors program are strongly encouraged to present one History 102 (undergraduate seminar) before the end of their junior year. They may follow any of the three plans for depth subject matter described above, and may substitute History 104 in their program (though they may not substitute it for History 102).

Students who anticipate pursuing graduate work in history or a teaching credential, and who do not wish to opt for the research emphasis embodied in the honors program, are encouraged to select Plan II of the major.

Teaching Credential Subject Representative, D.L. Jacobson. See also the section on the Teacher Education Program.

Waiver Program for Single-Subject Teaching Credential in History. The Department of History offers a program of study for students seeking a secondary teaching credential in history. The program may easily be accommodated with the requirements for the major in History, but does require some specific course work. A list of current course requirements is available in the Advising Office, Division of Education, 174 Kerr Hall.

Education at Home Program (EHP). In the Winter Quarter of 1990, the UCR campus will continue the Education at Home Program for those students with special interest in early American history and culture. Those selected for participation in this program will spend nine weeks in Williamsburg, one in Philadelphia, and a concluding week in Washington, D.C. This program is open to all undergraduates from any campus in the U.C.S. With prior approval of their graduate advisor, graduate students may also apply.

Registration (through the Riverside campus) will be made for the following three courses in the Department of History: 157, 158, 165. Special arrangements for independent study (maximum of 4 units) may be made with the student's home campus. For further information, brochures or application forms, telephone Riverside (714) 824-2250. Preference is given to applications received by June 30; the final application deadline is November 1.

Graduate Study. The Department of History offers programs of study and research leading to the M.A., M.A.T., and Ph.D. degrees in history. Detailed information may be obtained by writing to the Graduate Adviser, Department of History.

American History and Institutions. This University requirement can be satisfied by successful completion of the following courses in History: 17A, 17B, 17C, 17D, 17A, 17B, 17C, 17B, 174A, 174B, 174C, 174A, 175A, 175B, 176A, 176B, 177A, 178A, 180A, 180B, 184A, 184B, 184C, 188A, 188B, 188C. Only one of these courses may be used only with the consent of the instructor. (See also under University requirements.)

Courses in History

Lower Division Courses

1. The Bible and Ancient History (4) H

Lecture—3 hours, discussion—1 hour. Examination of the Judeo-Christian tradition as it met ancient Near Eastern and classical ideas and institutions through New Testament times. Emphasis on the Bible as a historical document and on historical-critical interpretation of scriptures.
history, such as African states and empires, slave trade, relationship of Egypt to rest of Africa, Bantu origins and migrations, and French policy of Assimilation and Association.

121A. Medieval History (4) Ill. Bowksy Lecture/discussion and panel presentations—3 hours. European history from the "fall of the Roman Empire" to the eighth century.

121B. Medieval History (4) II. The Staff Lecture/discussion and panel presentations—3 hours. European history from Charlemagne to the twelfth century.

121C. Medieval History (4) I. Bowksy Lecture/discussion and panel presentations—3 hours. European history from the Crusades to the Renaissance.

122. Selected Themes in Medieval History (4) II. Bowksy Lecture—3 hours; term paper. Each offering will focus on single major theme, such as medieval agrarian history, feudalism, family, medieval Italy, or the Crusades. Readings include original sources in English translation and modern works. May be repeated for credit.

125. Topics in Early Modern European History (4) III. Findlen Laboratory/discussion—3 hours; term paper. Prerequisite: course 4B recommended. Social and cultural history, 1300-1800. Topics such as medieval and Renaissance Italy, early modern Italy, Ancien Régime France, family and sexuality, and material culture and daily life. May be repeated for credit.

130A. Christianity and Culture in Europe: 50-1450 (4) II. The Staff Lecture—3 hours; written report or research paper. A history of the ideas and institutions of Christianity and their impact on the late Roman Empire and medieval Europe in terms of outlook on life, art, politics and economics.

130B. Christianity and Culture in Europe: 1450-1600 (4) I. The Staff Lecture—3 hours; written report or research paper. A history of the Lutheran, Zwinglian-Calvinist, Radical, Anglican, and Catholic Reformations as foundation stones of a new culture in Europe, with special attention to the interconnections between the revivals of antiquity and the different reform movements.

130C. Christianity and Culture in Europe: 1600-1850 (4) III. The Staff Lecture—3 hours; written report or research paper. A survey of the intellectual, cultural and political reorientation of European society in the aftermath of the Wars of Religion. "Secularization" will be discussed in the context of the Enlightenment and Romanticism.

131A. Early Modern European History (4) I. The Staff Lecture—3 hours; written reports. Prerequisite: courses 4A, 4B recommended. Western European history from about 1350 to about 1500.

131B. Early Modern European History (4) I. The Staff Lecture—3 hours; written reports. Prerequisite: courses 4A, 4B, 131A recommended. Western European history from about 1500 to about 1650.

131C. Early Modern European History (4) III. The Staff Lecture—3 hours; written reports. Prerequisite: courses 4A, 4B, 131B recommended. Western European history from about 1650 to about 1789.

133. The Age of Ideas (4) II. Lecture—3 hours; written reports. The Enlightenment and its background in the seventeenth century.

134A. The Age of Revolution (4) I. The Staff Lecture—3 hours; written reports. Ideas and institutions during the French Revolution and the Napoleonic era.

135A. History of Science to the 18th Century (4) II. Dobbs Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Survey of the historical development of science, technology, and medicine from the ancient world to the eighteenth century, with special emphasis on Isaac Newton as the culmination of the eighteenth century scientific revolution.

135B. History of Science, 18th to 20th Centuries (4) III. Dobbs Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Survey of the historical development of scientific thought in geology, biology, chemistry, physics, and cosmology from the eighteenth to the twentieth century, with special emphasis on emergence of broad explanatory principles that serve more than one science.

136. Scientific Revolution (4) II. Findlen Lecture/discussion—3 hours; term paper. Prerequisite: courses 135A or 135B recommended. History of science in Western Europe (1400-1750), investigates the changing definitions of science in the age of Copernicus, Vesalius, Harriot, Galileo and Newton. Considers the evolution of new ideas about nature, experiment, observation, and scientific theory.

137A. Russian History: Kievian, Muscovite, and Petrovich (4) II. Crumley Lecture—3 hours; term paper. Russian civilization from early times to 1725. Emphasis on the rise of autocracy and the evolution of society and culture.

137B. Russian History: The Empire, 1725-1900 (4) II. Brower Lecture—3 hours; term paper. Russian civilization from the Petrine reforms to the end of the nineteenth century. Emphasis on the strengthening and reform of the autocracy, the rise of movements for revolutionary change, and the evolution of society and culture.

137C. Revolution, Agriculture, and Soviet Russia, 1900 to the Present (4) III. Brower Lecture—3 hours; written reports. Evolution of the Russian state and society from the collapse of tsarist Russia through the creation and consolidation of the new Soviet order.

139A. Medieval and Renaissance Medicine (4) III. Findlen Laboratory/discussion—3 hours; term paper. The history of medicine, circa 1000-1700. Revival of ancient medicine; role of the universities; development of anatomy, chemistry and natural history; ideas about the body; cultural understanding of disease; hospital and the public health system. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4A or 4B. Offered in alternate years.

139B. Medicine, Society, and Culture in Modern Europe (4) II. Kidluck Lecture—2 hours; discussion—1 hour; term paper. European history of medicine, 18th to 20th centuries, by examining the development of medical knowledge in epidemiology and anatomy; function of this knowledge, how it changed with technological breakthroughs and professionalization, and role of medicine in attitudes toward poverty, women, race, disease. Offered in alternate years.

140. The Rise of Capitalism in Europe (4) III. Hagen Lecture—3 hours; term paper. Prerequisite: course 4B or 4C. Comparative analysis of major interpretations of the rise of merchant capitalism during the Middle Ages and Renaissance; European expansion overseas, 1450-1815, the transition to modern capitalism via industrial revolution. Interplay of social, political, cultural, and economic history. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4A, 4B, or 4C.

141. France Since 1815 (4) II. Margadant Lecture—3 hours; term paper.

*Course not offered this academic year.
150. Ethnic Conflict and Anti-Semitism in Modern Europe (4) I. Hagan Lecture—3 hours; term paper. Prerequisite: course 4C. Historical dynamics of ethnic conflict and radical nationalism in nineteenth- and twentieth-century Europe. Focus on selected examples (e.g., the Habsburg Empire; the Celtic lands; forms and functions of anti-Semitism; interpretations and consequences of the Holocaust). Offered in alternate years.

151A. England: The Middle Ages (4) II. The Staff Lecture—3 hours; term paper. Prerequisite: course 4A recommended. Origins of England to the accession of the Lancastrians. Survey includes: impact of Norman Conquest; Angevin institutions; rise of the Church, common law, parliament, and the economy; thought, arts, and literature to the age of Chaucer and Wycliff.

151B. England: The Early Modern Centuries (4) II. The Staff Lecture—3 hours; term paper. Prerequisite: courses 4A, 4B. Course 151A recommended. From Lancaster and York to the Glorious Revolution. Includes growth of the English church; beginnings of modern worldwide economy; rise of the gentry and parliament; thought, arts, and literature in the times of More, Shakespeare, Hobbes, Wren, and Newton.

151C. Eighteenth-Century England (4) I. Landau Lecture—3 hours; term paper. English history from the Glorious Revolution to the French Revolution. Examination of the transformation of one of Europe's most politically unstable kingdoms into the firmly established constitutional monarchy which provided an environment fit to engender the industrial revolution.

151D. Industrial England (4) II. Landau Lecture—3 hours; term paper. English history from Waterloo to the Battle of Britain; the rise and continuance of the industrial nation; examining the transformation of landed to class society, oligarchy to democracy and bureaucracy; Bentham to Bloomsbury, empires to commonwealth.

154. Tudor and Stuart England (5) III. The Staff Seminar—3 hours; reports and research paper. Prerequisite: courses 151A, 151B and consent of instructor. Intensive investigation of selected aspects of Tudor and Stuart history; emphasis on social problems.

155A. British Foreign Policy Since 1920: The End of the British Empire (4) I. The Staff Lecture—3 hours; term paper. Prerequisite: upper division standing. How and why Britain passed so rapidly from a great world power to being the greatest imperialist in the world; the rising of the American empire and the growth of the Commonwealth; the consequences of the Great War and the rise of the Commonwealth.

155B. British Foreign Policy Since 1920: Britain's Relations with the U.S. and the U.S.S.R. (4) II. The Staff Lecture—3 hours; term paper. Prerequisite: upper division standing. Britain's supposed intimate relation with the U.S.; its modification with changes in power structure and with Britain's EEC membership; the effect on relations with the U.S. of Britain's (and other NATO power's) efforts to achieve independent relations with the U.S.S.R.

161A. History of Colonial Spanish America (4) I. Bauer Lecture/discussion—3 hours; written reports. Pre-Columbian civilizations of the Native American area; the Spanish Conquest and the formation of the Spanish Empire; the Inca and the Aztecs; the impact of European conquest and colonization; the formation of a hybrid culture. Expensive use of photographic slides. General Education credit: Civilization and Cultures.

161B. Latin American History (4) II. The Staff Lecture/discussion—3 hours; written reports. Evolution of modern Latin America: economic development; oligarchical rule; revolution and revolution; the difficulties of the twentieth century. Emphasis on Mexico, Cuba, the Andean region, Chile, and Argentina. Photographic slides.

162. History of the Andean Region (4) III. Bauer Lecture/discussion—3 hours; written and/or oral reports. History of the Andean region, the area that now comprises modern Peru, Bolivia, and Chile, from the beginning of the Spanish Conquest to the present.

163A. History of Brazil (4) III. The Staff Lecture—3 hours; written reports. The history of colonial and imperial Brazil from 1500 to 1889. Offered in alternate years.

163B. History of Brazil (4) III. The Staff Lecture—3 hours; written reports. The history of the Brazilian republic from 1889 to the present. Offered in alternate years.

164A. History of China (4) LI. Bauer Lecture—3 hours; term paper. Prerequisite: course 161A, 161B recommended. Emphasis on the history of Chinese political economy from 1930 to the present. Various strategies of development (modernization, Marxism, Neo-Liberalism). The rise of mass politics; the course of foreign relations; and the richness of Chinese literature. Offered in alternate years.

165. Latin American Social Revolutions (4) I. The Staff Lecture—3 hours; written reports. Major social upheavals since 1930 in selected Latin American nations; similarities and differences in cause, course, and consequence. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: History 4C, 17B, or Political Science 2.

166A. History of Mexico to 1848 (4) III. The Staff Lecture/discussion—3 hours; written and/or oral reports. Political, economic, and social development of pre-Columbian, colonial and national Mexico to 1848. Offered in alternate years.

166B. History of Mexico Since 1848 (4) III. The Staff Lecture/discussion—3 hours; written and/or oral reports. History of Mexico from 1848 to the present. Offered in alternate years.

166W. History of Inter-American Relations (4) II. Poppino Lecture—3 hours; written reports. Diplomatic history of Latin America since independence, Intra-Latin American relations, relations with the United States, participation in international organizations, and communism in Latin America.

169A. Mexican-American History (4) I. Ruiz Lecture/discussion—3 hours; written and/or oral reports. Economic, social, religious, cultural, and political development of the Mexican-American population of the Southwestern United States from about 1800 to 1910. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 17A or 17B.

169B. Mexican-American History (4) II. Ruiz Lecture/discussion—3 hours; written and/or oral reports. Role of the Mexican and Mexican-American in the political, religious, cultural, and social life of society of the Southwestern United States since 1910. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 17A or 17B.

170A. Colonial Americas (4) I. Jacobson Lecture—3 hours; term paper. Colonial society from 1607 to the American Revolution, with emphasis on European expansion, political, social and economic foundations, colonial thought and culture, and imperialism.

170B. The American Revolution (4) II. Jacobson Lecture—3 hours; term paper. Analysis of the Revolutionary period with emphasis on the structure of British colonial policy, the rise of revolutionary movements, the War of Independence and its consequences, and the Confederation period.

170C. The Early National Period, 1789-1815 (4) III. Jacobson Lecture—3 hours; written reports. Political and social history of the American republic from the revolution through the War of 1812 and its consequences.

171A. The Jacksonian Era (4) I. The Staff Lecture—3 hours. Political and social history of the American republic from the end of the War of 1812 to the Compromise of 1850.

171B. U.S. Civil War: Politics and Society (4) I. The Staff Lecture/discussion—3 hours; term paper. Social crisis, 1844-1877: slavery and the West, new political parties, secession, mobilization and emancipation, economic nationalism, and Reconstruction (military aspects, see course 173).

173A. North America: Early Imperial Wars (4) II. The Staff Lecture—3 hours; paper with scheduled consultation. Caucasian conquests, Native American resistance, early colonial protest actions and rebellions. Tactile analysis of various conditions of effectiveness and failure, and the relation of strategy to social development and conflict. Offered in alternate years.

173C. North America: Later Imperial Wars (4) III. The Staff Lecture—3 hours; paper with scheduled consultation. Military conflict and planning on the North American continent and adjacent islands, from the Spanish-American War to the present. Overdetermined aspects of internal protest, and military aspects of internal security operations.

174A. The Emergence of Modern America, 1876-1914 (4) I. Marchand Lecture—3 hours; term paper. Rise of modern business and labor organizations; changing political institutions, the culmination and decline of Victorian culture, and the reaction of muckrakers, Populists, socialists, feminists, and social reformers to industrialization and urbanization.

174B. America in War, Prosperity and Depression, 1914-1945 (4) II. Brody Lecture—3 hours; term paper. America's emergence as a world power, the business culture of 1920s, the New Deal and World War II. Emphasis on such issues as the government of the economy, welfare capitalism, and class, racial, ethnic and gender conflicts.

174C. The United States Since World War II, 1945 to the Present (4) III. Marchand Lecture—3 hours; term paper. America's struggle to respond to new complexities in foreign relations, social tensions, family changes and media. Emphasis on such topics as: Cold War, anticommunist crusade; civil rights, feminist and environmental movement; New Left; counterculture; Vietnam; Watergate; and the moral major.

174D. Selected Themes in Twentieth-Century American History (4) I. The Staff Lecture—3 hours; term paper. Prerequisite: course 17B or the equivalent or consent of instructor. Interpretative overview of a single topic in twentieth-century America with emphasis on the phases and processes of historical change.

175A. Intellectual History of the United States (4) I. The Staff Lecture—3 hours; oral or written reports on reading; panel discussion preparation. Prerequisite: course 172 or the equivalent course in philosophy since the Renaissance, political theory, American literature, or sociological theory. American thought from the Puritans through the era of the American Enlightenment. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 4B or Philosophy 23.

175B. Intellectual History of the United States (4) II. The Staff Lecture—3 hours; oral or written reports on reading; panel discussion preparation. Prerequisite: courses
17A and 17B or the equivalent; or a course in philosophy since the Renaissance, political theory, American literature, or sociological theory. Nineteenth-century American thought from the 1820s to about 1900, emphasizing Transcendentalism, Jacksonian democracy, and the impact of Darwinism, and pragmatism.

175C. Intellectual History of the United States (4) III. Lecture—3 hours; oral or written reports on reading, partial examination preparation. Prerequisite: courses 17A and 17B or the equivalent; or a course in modern political theory, philosophy, American literature, or sociological theory. Twentieth-century American thought from about 1900 to the 1960s, emphasizing pragmatic liberalism, nationalism in law and literature, protestant liberalism and neo-orthodoxy, Freudian currents in social thought and social criticism of the 1960s.

175A. Cultural and Social History of the United States (4) III. Hattunen Lecture—3 hours; term paper. Study of social and cultural forces in American society in the nineteenth century with emphasis on social structure, work and leisure, family, social reform movements and changes in cultural values.

176B. Cultural and Social History of the United States (4) III. Hattunen Lecture—3 hours; term paper. Study of social and cultural forces in American society in the twentieth century with emphasis on social structure, work and leisure, socialization and the family, social reform movements and changes in cultural values.

177A. History of Black People and American Race Relations (4) II. Walker Lecture—3 hours; term papers. Prerequisite: course 17A or 17B. Afro-American history. History of black people in the United States from African background to Reconstruction. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 17A or 17B.

177B. History of Black People and American Race Relations (4) III. Walker Lecture—3 hours; term papers. Prerequisite: course 17A or 17B. Afro-American history. History of black people in the United States from Reconstruction to the present. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 17A or 17B.

178. American Colleges and Universities (4) III. The Staff Lecture—3 hours; term paper. A survey of American higher education. Historical and present factors that have influenced the present, emphasizing institutional leadership and the role of colleges and universities in their larger society. Tutorial term paper; readings of general interest. Offered in alternate years.

180A. Growth of American Politics to 1815 (4) I. Goodman Lecture—3 hours; extensive reading and supervised writing. The growth of American politics from the early settlements to 1815 focusing on the distribution of power, its change over time and the ways power has been used. Examines political party development and the social and ideological dimensions of political behavior.

180B. Growth of American Politics, 1815-1890 (4) II. Goodman Lecture—3 hours; extensive reading and supervised writing. Continuation of course 180A.

180C. Growth of American Politics, 1890 to the Present (4) III. Goodman Lecture—3 hours; extensive reading and supervised writing. Continuation of course 180B.

181. Religion in American History to 1900 (4) III. Jacobson Lecture—2 hours; discussion—1 hour: oral and written reports. Religious ideas and institutions in the Puritans to about 1900. Survey of the large-scale social changes associated with revival and the great awakenings and the movement from Protestant orthodoxy to pluralism in industrial America.

183A. The Frontier Experience: Trans-Mississippian West (4) III. The Staff Lecture—3 hours; written and/or oral reports. The fur trade, western exploration and transportation, the Oregon Country, the Greater Southwest and the Mexican War, the Mormons, mining discovery, and the West during the Civil War.

183B. The Frontier Experience: Trans-Mississippian West (4) II. M. Smith Lecture—3 hours; written and/or oral reports. Spread of the mining and cattle industry, Indian-military affairs, settlement of the Great Plains and Rocky Mountain Regions and political organization of the West.

185A. History of Science in America (4) I. The Staff Lecture—3 hours; research paper. Survey of the European background. Study of American scientific institutions, ideas, personalities, creative processes in science, and of relationships between society and science from colonial times to present.

185B. History of Technology in America (4) II. M. Smith Lecture—3 hours; research paper. Study of American technology, emphasizing biographical approach to historical understanding of technological change, creative processes, institutions, ideas, and relationships between technology and society from colonial times to present.

185A. American Business History to the 1880s (4) I. I. Rothstein Lecture—3 hours; term paper. Changes in the role of entrepreneurs, organizations, and management practices from the colonial period to the 1880s, with emphasis on the transition from mercantile capitalism to industrial capitalism, marketing, financial intermediaries, and concentration. Offered in alternate years.

185B. American Business History, 1880s to the Present (4) II. I. Rothstein Lecture—3 hours; term paper. Changes in the role of entrepreneurs, organizations, and management practices from the 1880s to the present, with emphasis on the transition from mercantile capitalism to industrial capitalism, marketing, financial intermediaries, and concentration. Offered in alternate years.

188A. History of Agriculture in the U.S. to 1900 (4) II. Rothstein Lecture—3 hours; term paper. Agricultural settlement and development in the U.S. with emphasis on government policies, economic and social institutions. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: History 17A, 17B, or Agrarian Studies 2.

188B. History of Agriculture in the U.S. since 1900 (4) II. Rothstein Lecture—3 hours; term paper. Agricultural settlement and development in the U.S. with emphasis on government policies, economic and social institutions. Offered in alternate years. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: History 17B, Agrarian Studies 2, Agricultural Economics 120, or Political Science 1.

189A. History of California (4) II. M. Smith Lecture—3 hours; written and/or oral reports. Spanish exploration and settlement, the state as a frontier institution; revolt of the Californios; penetration by Mountain Men; pioneer trails and settlement; Bear Flag Revolt and Mexican War.

189B. History of California (4) II. M. Smith Lecture—3 hours; written and/or oral reports. State constitution; land grant and Indian policies; Gold Rush; vigilantes; railroad construction; the wheat era; changing economy; social and literary developments; Progressivism.

189C. History of California (4) II. M. Smith Lecture—3 hours; written and/or oral reports. Impact of World War I; conservative reaction of the 1920s; rise of organized labor; the automobile and moving picture industry; New Deal developments; change with World War II; role of minorities; contemporary politics.

190A. Late Imperial China: Background to Revo- lution (4) I. Li Mairn Lecture—3 hours; discussion—1 hour; two papers. Patterns and problems of Chinese life traced from the late Ming through the Ch'ing period. Readings include primary sources (including fiction) in English translation on social and intellectual history. Offered in alternate years.

190B. The Chinese Revolution (4) II. Liu Lecture—3 hours; discussion—1 hour; term paper. Analysis of China's cultural and political transformation from Confucian empire into Communist state. Emphasis on emergence and triumph of peasant revolutionary strategy (to 1949), with some attention to its implications for post-revolutionary culture and politics.

190C. History of the People's Republic of China (4) III. Mann Lecture—3 hours; discussion—1 hour; two papers. Comprehensive analysis of recent Chinese history, including land reform, the Cultural Revolution, the post-Mao era, and the consequences of the new economic policies of the 1980s. Offered in alternate years.

191A. Classical China (4) III. Price Lecture—3 hours; term paper. History of Chinese civilization from its origins through the establishment of city states and the flowering of classical philosophy, to the rise and fall of the First Empire. Offered in alternate years.

192. Intensive Historiography (1-12) I, II, III. The Staff (Chairperson in charge)
Prerequisite: enrollment dependent on availability of intern positions, with priority to History majors. Supervised internship and study as historian, archivist, curator, or in another history-related capacity, in an approved organization or institution. (P/NP grading only.)

193. History of the People's Republic of China, 1949 to the Present (4) II. Mann Lecture—3 hours; term paper. Comprehensive analysis of recent Chinese history, including land reform, the Cultural Revolution, the post-Mao era, and China's foreign relations from 1949 to the present. Offered in alternate years.

194A. Aristocratic and Feudal Japan (4) I. The Staff Lecture—3 hours; term paper and/or discussion. Broad survey of the cultural, social, religious, and political aspects of Japanese history from mythological times through the sixteenth century emphasizing comparison of the organizations, values, and beliefs associated with the aristocratic and feudal periods. Offered in alternate years.

194B. Early Modern Japan (4) III. The Staff Lecture—3 hours; term paper and/or discussion. Survey of the cultural, social, economic, and political aspects of Japanese history from the seventeenth through the nineteenth centuries emphasizing the development of those patterns of thought and political organization with which Japan met the challenge of the nineteenth-century Western expansionism.

194C. Late Imperial China (4) II. Price Lecture—3 hours; term paper and/or discussion. Survey of the cultural, social, economic, and political aspects of Japanese history in the twentieth century emphasizing labor and social movements, militarism and the Pacific war, and the emergence of Japan as a major economic power.

194D. Business and Labor in Modern Japan (4) I. The Staff Lecture—3 hours; term paper or papers. Survey of labor and management relations in Japan from the mid-eighteenth century to the present. Offered in alternate years.

194E. Education and Technology in Modern Japan (4) I. The Staff Lecture—3 hours; term papers. Survey of education
and technology in Japan from the mid-eighteenth century to the present were offered in alternate years.

1968. **Medieval India (4)**. Metcalfe
Lecture—3 hours; discussion—1 hour. Written reports. Survey of history of India in the millennium preceding arrival of British in the eighteenth century, focusing on the interaction of the civilizations of Hinduism and Islam and on the changing nature of the state.

1968. **Modern India (4)**. Metcalfe
Lecture—3 hours; discussion—1 hour. Written reports. Survey of cultural, social, economic, and political aspects of South Asian history from arrival of the British in the eighteenth century to formation of new independent states—India, Bangladesh, and Pakistan—after the Second World War.

1977. **Tutoring in History (2)**. I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour; laboratory—3 hours. Prerequisite: enrollment in a course in modern history. Tutorial for students in lower division courses. Weekly meetings with instructors in charge of courses. Written reports on methods and materials required. May be repeated once for credit. No final examination. (P/N grading only)

198. **Directed Group Study (1-5)**. I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; upper division standing. (P/N grading only)

199. **Special Study for Advanced Undergraduates (1-5)**. I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/N grading only)

Graduate Courses

201A. **Sources and General Literature of History** (4). I, II, III. The Staff
Seminar—3 hours; term paper. Designed primarily for students preparing for higher degrees in history. (A) Ancient; (B) Medieval; (C) Renaissance and Reformation; (D) Early Modern Europe; (E) Europe since 1915; (F) China since 1600; (G) China since 1900; (H) Britain; (I) Latin America since 1810; (J) American History to 1877; (K) United States, 1877-1896; (L) United States since 1896; (M) Modern Japan; (N) Cross-Cultural Women's History; (O) History of Science and Medicine. May be repeated for credit when different subject area is studied.

202A1. **Major Issues in Historical Interpretation** (4). I, II, III. The Staff
Seminar—3 hours; term paper. Prerequisite: graduate standing. Essential issues and debates in the study of history. (A) Ancient; (B) Medieval Europe; (C) Modern Europe; (D) India; (E) Africa; (F) China; (G) Japan; (H) United States; (I) Latin America. Readings, papers, and class reports. May be repeated for credit when different subject area is studied.

203. **Seminar Research (4)**. I, II, III. The Staff (Chairperson in charge)
Seminar—3 hours; research paper. Prerequisite: consent of instructor. Designed primarily for students preparing for higher degrees in history. Individual research and analysis resulting in substantial research paper. May be repeated for credit.

204A. **Historiography** (4). I. The Staff (Chairperson in charge)
Seminar—3 hours; research paper. Prerequisite: consent of instructor for non-History graduate students. Introduction to major works of historical scholarship from the Greeks to the present.

204B. **New Methods of Historical Research** (4). III. The Staff (Chairperson in charge)
Seminar—3 hours; research paper. Prerequisite: consent of instructor for non-History graduate students. Introduction to basic historical data, to the methods currently employed in historical research, and to the problems of presenting findings in a literary form.

211. **Ancient History** (4). I, II
Seminar—3 hours. Prerequisite: courses 111A, 111B, 111C. Seminar dealing with the various aspects of Near Eastern and Greco-Roman civilization.

221. **Medieval History** (4). II. Bowser
Seminar—3 hours. Prerequisite: courses 121A, 121B, 121C recommended. Topics in the history of medieval and early Renaissance Europe.

237. **Russian History** (4). II.
Seminar—3 hours. Prerequisite: a reading knowledge of Russian. Topics relating to the history of Muscovite and Imperial Russia before 1865.

242. **History of the Enlightenment** (4). III.
Seminar—3 hours. Prerequisite: a reading knowledge of French, Intellectual and social history of Europe during the Enlightenment. May be repeated for credit.

245. **Modern European History** (4). III.
Seminar—3 hours. Prerequisite: course 201E. Primarily sources and research methodologies in the history of modern France and Germany. May be repeated for credit.

246. **Europe in the Twentieth Century** (4). II. Willson
Seminar—3 hours. Prerequisite: a reading knowledge of European history since 1919, with particular emphasis on the post-1939 period.

Seminar—3 hours. Prerequisite: two courses in Latin American history: reading knowledge of Spanish or Portuguese.

270. **Early American History** (4). III. Jacobson
Seminar—3 hours; research paper. Research in history, methods, and historical approaches to the areas of women and the family in each student completing a research paper in this field. (Deferred grading only, pending completion of sequence.)

274. **Recent History of the United States** (4). I.
Seminar—3 hours. Topics in twentieth-century American history.

275. **American Social and Intellectual History** (4). II. The Staff
Seminar—3 hours. Prerequisite: courses 175A, 175B and 175C, or equivalent, or consent of instructor. Studies in the recent historiography of, or research and writing in, American social and intellectual history. May be repeated for credit.

276. **Social History of Science and Technology in America** (4). III. The Staff
Seminar—3 hours. Prerequisite: graduate standing. Studies in the historiography of, and research in, the history of science and technology in America from colonial times to the present.

278. **History of the United States: The Twentieth Century** (4). III. Brindy
Seminar—3 hours. Emphasis on social and economic developments.

291A-291B. **Chinese History** (4-4). II, III. Liu
Seminar—3 hours; article-length paper. Prerequisite: consent of instructor. Research on topics to be chosen by the student for the purpose of writing article-length papers. May be repeated for credit.

291C. **Chinese History** (4). III. Price
Seminar—3 hours. Prerequisite: reading knowledge of Chinese. Readings in Chinese historical materials. Training in the techniques of using Chinese reference works will be provided.

292. **College Teaching Internship** (4). I, II, III. The Staff
Internship—4 hours. Prerequisite: course 300 (may be taken concurrently). Student prepares and teaches one lower division history course in a nearby community college under the supervision of an instructor and a community college instructor. (S/U grading only)

298. **Group Study (1-5)** I, II, III. The Staff (Chairperson in charge)

299. **Research (1-12)** I, II, III. The Staff (Chairperson in charge) (S/U grading only)

299D. **Individual Study** (1-12). I, II, III. The Staff (Chairperson in charge) (S/U grading only)

Professional Courses

300. **Teaching History in the Community College** (3). I. The Staff
Discussion—3 hours. Prerequisite: graduate standing. Designed for MAT students. Methods for the presentation of history at the community college and secondary school level. (S/U grading only)

389. **Introductory Seminar for Teaching Assistants** (1). I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: must be enrolled in History 390. An introduction to the broad comparative and theoretical issues of teaching methods and technique in history. (S/U grading only)

390. **Teaching History in College** (2). I, II, III. The Staff
Discussion—2 hours. Designed for teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (S/U grading only)

History and Philosophy of Science

(Complied by Peter W. Singer, 1964)

Paul Teller, Ph.D., Program Director
Program Office, 403 Surge IV (916-752-8621)

Committee in Charge

Betty Jo T. Dobbs, Ph.D. (History)
Michael R. Dietrich, Ph.D. (Philosophy, History, and Philosophy of Science)
Paul E. Findlay, Ph.D. (History)
James R. Griesemer, Ph.D. (Philosophy)
Paul Teller, Ph.D. (Philosophy)

The Program. The interdisciplinary minor in the history and philosophy of science invites students to examine historical and contemporary problems in a variety of scientific disciplines, and to explore concepts and procedures basic to science and how they have evolved. The minor is sponsored by the Program in the History and Philosophy of Science.

Minor Program Requirements:

COURSES TO BE TAKEN

History and Philosophy of Science

104

Philosophy

104

History

135A or 135B

Courses from these listed below.

One course must be from each of three areas: (a) history, (b) philosophy, and (c) history and philosophy of science.

a. History

130A, 130B, 139A, 139B, 185A, 185B, 189A, 189B

b. Philosophy

106, 107, 108, 109, 110, 111

c. History and Philosophy of Science

130A, 130B, 150, 180

Minor adviser: M. Dietrich, Department of Philosophy, 215 Surge IV, 916-752-3709

Lower Division Course

2. **Cosmic Origins and Structures: Scientific and Non-Scientific Theories** (4). II. Dobbs

Lecture/discussion—3 hours; term paper. Broad cultural survey of cosmogonies and cosmologies from several societies. Non-technical study of developments in Western culture which produced the cosmologies of Plato, Newton, and Einstein; also cosmologi-
Horticulture
(A Graduate Group)

David W. Burger, Ph.D., Chairperson of the Group
Group Office, 1035 Wickson Hall
Faculty. The faculty includes departmental members of Environmental Design, Entomology, Plant Pathology, Pomology, Vegetable Crops, and Viticulture and Enology.
Graduate Study. The Graduate Group in Horticulture offers programs of study leading to the M.S. degree. The programs provide opportunities for specialized study of the production, management, and utilization of horticultural plants and the post-harvest handling of horticultural commodities. Areas of specialization include: floriculture, nursery production, landscape horticulture, pomology, and viticulture.
Research may be conducted on an applied or basic problem having a physiological, genetic, or ecological emphasis.
Preparation. A level of competence equivalent to that of a sound undergraduate program in Plant Science is required. This includes course work in general botany, chemistry, physics, genetics and introductory plant physiology. A few limited deficiencies in any of these areas can be made up after admission to the graduate program. Specific requirements are outlined in detail and may be obtained from the Group Office.
Graduate Advisers. Consult the Group Office.

Courses in Horticulture

Graduate Courses
251. Modeling Horticultural Systems (3) II. Leith
Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Science 101, calculus, or consent of instructor.
Introduces students to systems modeling. General systems approach emphasizes the relationships between ecological models and examples drawn from areas of interest to class participants. Applications of horticultural systems will be explored. Students will receive hands-on experience.
290. Seminar (1-5) I, II, III. The Staff Seminar—1 hour. Prerequisite: graduate standing at UCD. Seminars presented by invited speakers, students, or faculty on selected topics in horticulture.

Human Development

See Cell Biology and Human Anatomy in Medicine, School of

Human Development

(College of Agricultural and Environmental Sciences)
L.V. Harper, Ph.D., Chairperson of the Division
Faculty
Curtis R. Acredolo, Ph.D., Adjunct Associate Professor
Carolyn Alwin, Ph.D., Assistant Professor
Keith Barton, Ph.D., Professor
Brenda Bryant, Ph.D., Professor
James Chishom, Ph.D., Associate Professor
Lawrence Harpur, Ph.D., Associate Professor
Rosemare Krieger, Ph.D., Associate Professor
Beth Over, Ph.D., Assistant Professor
Emmy Werner, Ph.D., Professor

Emeriti Faculty
Louise Bachtold, Ed.D., Professor Emeritus
Glenn Hawkes, Ph.D., Professor Emeritus
David Lynn, Ph.D., Professor Emeritus

The Major Program
Human development explores the developmental process in humans throughout the life cycle. Cognitive and personality/social development are studied from various perspectives.

The Program. Human development majors complete a group of preparatory courses in anthropology, biological sciences, genetics, nutrition, physiology, psychology, statistics, and human development. Upper division students can design their programs in consultation with a faculty member to emphasize a particular interest. For instance, students can study the social and the biological aspects of human development while emphasizing child or adult development.

Internships and Career Alternatives. At least one practicum course is required. A second practicum or supervised internship can be used to fulfill the requirements for the major. In addition, students can intern in schools, early childhood education centers, hospitals, rehabilitation centers, probation offices, group foster homes, mental health clinics, or as tutors for handicapped and bilingual students. Human development graduates fill a wide variety of positions in preschools, elementary and special educational settings, as well as governmental jobs related to social welfare and recreation. Those who emphasize the biological aspect of human development can apply to medical school or pursue training for para-medical positions within the health sciences. Human development prepares students to pursue advanced degrees in the behavioral sciences, education, child guidance, social welfare, health sciences, or further research in human development.

The study is available through a Master of Science degree in child development, and a Ph.D. degree in human development.

B.S. Major Requirements:
For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.

UNITS

English Composition Requirement: 10-12
See College requirement: 0-8
Additional English (choose from English 102, 103, 104): 3-4

Preparatory Subject Matter
Anatomy 1.2, and 15: 4-4
Biological sciences (Biological Sciences 1A or 10): 4-5
Genetics (Genetics 10 or 100): 4-4
Human development (Human Development 30): 3-4
Nutrition (Nutrition 10 or 101): 3-5
Physiology (Physiology 10 or 110): 3-5
Psychology (Psychology 1 or 15): 3-4
Statistics (Education 114, Psychology 41, Sociology 46A and 46B, or Statistics 101): 3-4

General Chemistry 2A is recommended prerequisite for Biological Sciences 1A. Biological Sciences 1A is prerequisite for Biological Sciences 1B.

Breadth/General Education
Satisfaction of General Education requirement: 6-24
American history/american government (History 17A, 17B, 17C, 72A, 72B, and Political Science 1 are recommended courses): 3-8

Depth Subject Matter
Human Development 100A, 100B, 100C, 110: 16
Minor Program Requirements:

Aging and Adult Development ... 21-27
Human Development 100C, 160, 191 8
Community Health 183 .. 4
Human Development 110. Applied Behavioral Sciences 173 ... 8
Practicum, 2 units minimum ... 8
Minor Adviser. K. Barton.

UNITS
Human Development ... 20
Human Development 100A ... 4
Human Development 100B or 100C 4
Human Development 110 or 103 or 151 4
Two courses from: Human Development 101, 102, 130, 131, or 132 ... 8
Minor Adviser. K. Barton.

Graduate Study. Refer to the Graduate Division section in this catalog.

Courses in Human Development

Questions pertaining to the following courses should be directed to the instructor or to the Applied Behavioral Sciences Advising Office, 101 ADB 4 (316-725-2244).

Lower Division Courses

19. Life Cycles, Kinship, and Growth in Human Populations (4) II. Carey Lecture—3 hours. Discussion—1 hour. Human populations at different levels of organization; including life cycle, family life cycle, race, ethnicity, genealogy, and population trends and changes. Offered in alternate years. General Education credit: Nature and Environment/Introductory.

30. Observation Techniques in Human Development (4) I, II, III. The Staff Lecture—3 hours. Laboratory—3 hours. Prerequisite: Psychology 1 and consent of instructor. Observational techniques used in the study of human behavior and development, with focus on ages six months to five years; analysis and use of observational data. Students may not preregister for this course, but must sign up for laboratory time at the Early Childhood Laboratory prior to in-person enrollment.

98. Directed Group Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/N/P grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge). (P/N/P grading only.)

Upper Division Courses

190A. Infancy and Early Childhood (4). Harper Lecture—4 hours. Prerequisite: Psychology 1 or 15, Biological Sciences 1A or 1B. Analysis of the biolog-ical, social, and emotional influences in the psychologi-cal growth and development of children, prenatal through age six.

190B. Middle Childhood and Adolescence (4) I, II. The Staff Lecture—4 hours; three brief observations of schoolage children. Prerequisite: course 100A or the equivalent; introductory biology. Analysis of the interplay of biological and social-cultural factors in the emotional, cognitive, and social development from middle childhood through adolescence.

190C. Adulthood and Aging (4) I, II, III. Ober Lecture—4 hours. Prerequisite: Psychology 1 or 15. Development during early, middle, and late adulthood: biological, cognitive, and socio-cultural aspects of adult development. Emphasis on normative patterns of development which characterize "successful aging."

110. Cognitive Development (4). The Staff Lecture—4 hours. Prerequisites: courses 100A and 100B, or Psychology 112. Theories of cognitive development including developmental views of perception, learning, memory, concept formation, and language.

102. Social and Personality Development (4). The Staff Lecture—4 hours; discussion—1 hour. Prerequisite: introductory psychology; course 100B or the equivalent. Theories of development of a child's personality through interactions with children and adults; development of interpersonal and culturally valued skills.

103. Cross-Cultural Study of Children (4). The Staff Lecture—4 hours. Prerequisite: course 100A or consent of instructor. Cross-cultural studies of children in developing countries and among minority groups in the U.S.

110. Contemporary American Family (4) III. Chishom Lecture—4 hours. Prerequisite: introductory psychology. Factors currently influencing American families including changing economic conditions, changing sex roles, divorce, and parenthood; theories and research on family interaction.

120. Research Methods in Human Development (4) II. Barton Lecture—3 hours; laboratory/discussion—1 hour. Prerequisites: courses 100A and 100B; elementary statistics. Research methods in selected areas of human development (i.e., infancy, learning, cognition, personality).

121. Psychological Assessment (4) I. Barton; III. The Staff Lecture—4 hours. Prerequisites: courses 100A and 100B; elementary statistics. Current issues and methodology related to the process of psychological assessment with children.

130. Emotionally Disturbed Children (4) I. Bryant Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A and 100B or consent of instructor. Discussion of psychosocial, neurosis, behavior disorders, and learning difficulties in children.

131. Developmental Disabilities (4) I. The Staff Lecture—4 hours. Prerequisite: course 100A or consent of instructor. Mental retardation and special learning disabilities, etiology, diagnosis, education, and socialization. Introduction to community resources.

*Course not offered this academic year.

132. Individual Differences in Giftedness (4) II. Kraft Lecture—3 hours; discussion—1 hour. Prerequisites: courses 100A and 100B or consent of instructor. Conceptualization, identification and education of the intelligent, the creative, and the talented, gifted individual.

140. Communication and Interaction with Young Children (2) I, II, III. Stockman Lecture—4 hours. Prerequisites: courses 30A, 100A, and 104L (may be taken concurrently) recommended. Theories and practice in the area of effective interaction with young children. Humanistic, child-centered approaches; awareness of gists, beliefs, and values as these affect interactions. Students may not preenroll for this course, but must sign up for laboratory time at the Early Childhood Laboratory prior to in-person enrollment.

140L. Laboratory in Early Childhood (3-6) I, II, III. Stockman Discussion—1-3 hours; laboratory—6-12 hours. Prerequisite: course 140 (may be taken concurrently). Theories of learning and development to interaction with children six months to five years at Early Childhood Laboratory. Applied skills in communication, discipline and curriculum. May be repeated for credit for a total of 12 units.

141. Field Studies with Children and Adolescents (4-5). The Staff Lecture—4 hours; field study—6-12 hours. Prerequisite: course 100B or the equivalent and consent of instructor. Study of children's affective, cognitive and social development within the context of family/school environments, hospitals and foster group homes. May be repeated for credit for a total of 12 units following consultation with and consent of instructor.

142. Field Studies with Exceptional Children (4-6) I. Bryant Discussion—1.5 hours; field study—6-12 hours. Prerequisite: consent of instructor and one course from courses 130, 131, or 132 (may be taken concurrently). Field study with children who are identified as developmentally disabled emotionally distressed, or intellectually gifted. May be repeated for credit for a total of 12 units following consultation with and consent of instructor.

143. Field Studies of the Elderly (4-5) I. Ober Fieldwork—6-12 hours; discussion—1.5 hours. Prerequisite: course 100C or 160 may be taken concurrently. To apply theory and research on adult development and aging, including older adults in a variety of settings, and to develop skills relevant to the application. Students will also develop a small research project. Offered alternately winter quarter of one year, then in spring quarter.

150. Supervision and Administration of Early Childhood Education Programs (4) I. Welker Lecture—40 hours total. Prerequisite: course 140 or prior experience in an early childhood education program. History of early childhood programs in California; federal, state and local regulations. Implications of different regulations for funds and budgets, policy making mechanisms, professional and legal responsibilities, staff development, and professional attitudes and issues. Offered in alternate years.

151. Shared Child Care (4) I. Welker Lecture—4 hours. Prerequisites: courses 100A or 110, Psychology 112, or Anthropology 131. Examine roles of caregivers other than parents in contemporary society; and the impact of grandparents, siblings, family day care providers, foster parents, church and employer-sponsored child care on children's development. Reviews child care legislation and social policy issues.

160. Social Aspects of Aging (4) II. Alldrin Lecture—4 hours. Prerequisite: course 100C or Psychology 115. How the social context affects adult development and aging. Emphasis on demography, social policy, culture, and adaptation: Oral histories as case projects.

162. Issues in Aging (3) II. Alldrin Lecture—2 hours; lecture/discussion—1 hour. Pre-
require: course 100C or 160. Research and policy issues concerning the elderly and aging in contemporary society.

190C. Introductory Research Conference (1) I, II, III. The Staff
Discussion—1 hour. Prerequisite: involvement in ongoing research. Lead discussion with undergraduate students who involve themselves in a research project. Research papers are reviewed and aspects of project proposals developed outside of class are presented and evaluated. May be repeated for credit. (P/NP grading only.)

191. Proseminar: Issues in Aging (2) I. The Staff
Seminar—2 hours. Prerequisite: upper division standing. Discussion of selected critical issues in aging.

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. Supervised internship off and on campus, in communities, and institutional settings. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses

200A. Early Development (4) I. Harper
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing; basic biology/psychology; one upper division course in psychology or a related field; one upper division or graduate course in developmental psychology (may be taken concurrently). Theory and research on the biological, social, cognitive, and cultural aspects of development from conception to the age of five years.

200B. Middle Childhood and Adolescence (4) II. Bryant
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing; basic biology/psychology, and at least two upper division courses in psychology or related fields. Theory and research on biological, cognitive, social, and cultural influences on developmental behavior from age five years until late adolescence.

200C. Development in Adulthood (4) III. Ober
Lecture/discussion—4 hour. Prerequisite: course 200A and 200B. Theory and research focusing on social, personal, cognitive, and biological development from early to late adulthood. Emphasis on theory and development and continuity and change.

201. Social-Emotional Development in Infancy (4) II. The Staff
Lecture/discussion—4 hours. Prerequisite: course 200A. Analysis of theory, methods, and research on social-emotional development in infancy. Emphasizes the development of primary and secondary emotions and the development of attachment. Other possible topics include infant temperament, sex differences, compliance, and self-regulation. Offered in alternate years.

202. Development in Middle Childhood (5) I. Bryant
Seminar—3 hours. Prerequisite: graduate standing; some background in developmental psychology or human development; consent of instructor. Critical evaluation of current theory and research regarding normal and "abnormal" development in middle childhood. Emphasizes social-emotional development in varying contexts (family, school, neighborhood) and considers the interplay of cognitive, biological, social, and emotional processes during middle childhood. Offered in alternate years.

210. Theories of Behavioral Development (5) III. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: graduate standing; proficiency in behavioral sciences. Consideration of enduring issues in theories of behavioral development; analysis of adequacy of major theoretical schools (e.g., social learning, Piagetian) as scientific theories. Offered in alternate years.

211. Psychological Correlates of Behavioral Development (5) I. Harper
Seminar—3 hours. Prerequisite: consent of instructor. An overview of mechanisms of organismic development and the implications of developmental biology for the analysis of behavioral ontogeny; considerations of parallels between processes of organismic development and behavioral development in children and infants.

212. Adaptation and Aging (3) I. Adrion
Lecture/discussion—3 hours. Prerequisite: course 200C. Interdisciplinary perspective of the ways biological, psychological, and sociocultural factors affect aging and adaptation in the life cycle. Focus is on the ways in which stressors, coping, and social support affect health and the factors which contribute to optimal aging. Offered in alternate years.

213. Cross-Cultural Study of Children (3) II. Werner
Lecture—2 hours; discussion—1 hour. Prerequisite: graduate standing in Human Development, Education, Anthropology, Psychology or Sociology. Current theory and research concerned with comparative child development. Introduction into the major areas and methods of cross-cultural research (e.g., biological, cognitive, and social development of children in different cultures and subcultures in U.S.A.). Offered in alternate years.

217. Development of Cortical and Perceptual Latencies (3) II. Kraft
Seminar—3 hours. Prerequisite: graduate standing in child or human development or consent of instructor. Current theory and research regarding the development of human cortical and perceptual latencies—emphasizing the relationship of this development to thinking and behavior. Offered in alternate years.

220. Research Methods in Human Growth and Development (3) II. Barton
Lecture—3 hours. Prerequisite: Statistics 13 or the equivalent and at least two upper division courses in human development or psychology. Theory and research methods in developmental psychology and cognitive and social/emotional development from prenatal period to death.

221. Psychological Assessment of Children (4) III. Barton
Lecture—2 hours; discussion—2 hours. Prerequisite: course 121 or consent of instructor. Study of children's behavior through examination, analysis and evaluation of perceptual-motor, cognitive, affective and social development. Problems in assessment of exceptional children considered. Assignments focus on preparation of a comprehensive report on one child.

225. Behavioral Development and Food Intake (4) III. Pollet
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Human Development (related fields) and Nutrition. Multidisciplinary view covering key theoretical and research issues in basic human development processes related to food intake.

231. Issues in Cognitive and Linguistic Development (3) III. Kraft
Seminar—3 hours. Prerequisite: consent of instructor. Study and evaluation of key issues in theoretical and empirical literature on cognitive and linguistic development.

232. Cognition and Aging (3) I. Ober
Lecture/discussion—3 hours. Prerequisite: course 200C. The manner in which cognitive processes are affected by aging as well as an understanding of the changes in the central nervous system occurring with aging. Offered in alternate years.

237. Parent-Child Interaction (3) III. The Staff
Seminar—3 hours. Prerequisite: consent of instructor; upper division course in the family recommended. Current theory and research. Emphasis on parental behavior in other animals and other cultures, and the effects of the parent-child interaction on the children's perception of parents, the differential influence of each parent on the child's psychological well-being, sex-role development, and moral development. Offered in alternate years.

241. Consultation Approaches to Child Development (3) II. Bryant
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: graduate standing; supervised field experience with children (e.g., course 140, 141, 142, may be taken concurrently); consent of instructor. Analysis and application of theories and approaches of consultation and child development to facilitate delivery of child-related services (e.g., educational and mental health). Develop working knowledge of consultation skills for working with adults directly interacting with children and adolescents. Offered in alternate years.

246. Sex, Evolution, and Development (4) I. Chisholm
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Human Development or related field. An evolutionary and cross-cultural perspective on the family, with special emphasis on life history theory and parental investment theory and their relevance for understanding the development of alternative mating and parenting strategies in humans.

299. Seminar (3) I, II, III. The Staff
Seminar—2 hours. Discussion and evaluation of theories, research, and issues in human development. Different topics each quarter.

290C. Research Conference (1) I, II, III. The Staff
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Supervising instructors lead research discussions with their graduate students. Research papers are reviewed and project proposals are presented and evaluated. May be repeated for credit. (SU/grade only.)

291. Research Issues in Human Development (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: graduate standing in the behavioral sciences. In-depth presentations of research issues in particular areas of behavioral development.

298. Group Study (1-5) I, Chisholm; II, III. The Staff (Chairperson in charge)
(SU/grade only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU/grade only.)

Humanities

(College of Letters and Science)
Clarence Walker, Ph.D., Program Director
Program Office, Humanities Institute (916-757-3470)

Committee in Charge
Kay Flavel, Ph.D. (Critical Theory)
Cathrin Kudlick, Ph.D., (History)
Jay Meichling, Ph.D. (American Studies)
Dario Melossi, Ph.D., (Sociology)
Carol Smith, Ph.D. (Anthropology)
George Van Den Abbeele, Ph.D. (French)

The Program of Study

Courses in the Humanities Program are designed to provide instruction in interdisciplinary areas which do not fit readily into existing departments or programs.

Courses in Humanities

Lower Division Course

40. Introduction to Computing in the Humanities (4) I. Rody
Lecture—3 hours; laboratory—3 hours. Survey of current approaches to use of computers in such fields as language, literature, history, art, music, and drama. Laboratory in text creation and analysis.
Hydrologic Sciences
(A Graduate Group)

Mark E. Grismer, Ph.D., Chairperson of the Group
Group Office, 113 Valmye Hall
(916)-752-3243/0453

Faculty. The Group consists of faculty members from the Departments of Civil and Environmental Engineering; Environmental Studies; Geography; Geology; and Land, Air and Water Resources.

Graduate Study. The Graduate Group in Hydrologic Sciences is a unique interdisciplinary program offering M.S. and Ph.D. degrees. Education in the Group is designed to broaden the skills and knowledge of the physical sciences or engineering student interested in the occurrence, distribution, circulation, and properties of water on earth. Because of water's ubiquity and importance to physical, chemical and biological processes, Hydrologic Science involves the geologic, atmospheric, and oceanic sciences, as well as engineering and other applied physical sciences. Basic to the Hydrologic Sciences program is a core curriculum of courses in fluid dynamics, hydrologic phenomena, hydrobiology, hydrogeochecmistry, hydrologic techniques, and hydrologic policy. The program has three degree options including Hydrobiology, Hydrology, Hydrogeochecmistry, and Hydrogeomorphology.

Preparation. Applicants to the program are expected to have completed or be in the process of completing an undergraduate degree in some aspect of the physical sciences, mathematics, or engineering. Undergraduate study must include one year of calculus, one year of physics with calculus, and one year of chemistry. Additional courses in advanced mathematics, applied statistics, and computer programming are recommended.

Specialization. Each student will pursue an individualized program of advanced study under the direction of a group of faculty members with similar interests but diverse backgrounds. Course work in addition to the above is typically taken in the most appropriate departments.

Courses in Hydrologic Sciences

Graduate Courses

200. Survey of Hydrologic Sciences (2)I. Grismer Lecture—2 hours; discussion—1 hour; paper. Prerequisite: open to students in the Hydrologic Sciences program. Introduction to concepts and principles to the area of interest. Students prepare a paper and presentation during the semester. May be repeated once for credit. (S/U grading only.)

201. Earth Science and Resources (3)II. Moos Lecture—3 hours; paper. Prerequisite: Physics 98, Chemistry 22C, Geology 4 or consent of instructor. Advanced study of the earth's structure and processes. Internal structure and plate tectonics. Principles of mineralogy and petrology. Igneous, and metamorphic processes. Sedimentation and stratigraphy. Deformation and regional structure. Energy, time and resources. Graduate students in Geology may enroll only with consent of instructor.

230. Introduction to Geostatistics (3)I. Fogg Lecture—3 hours; paper. Prerequisite: Statistics 130A and 130B, or equivalent. Statistical treatment of special data with emphasis on spatial hydrologic problems. Topics include: theory of random functions, variogram analysis, kriging, co-kriging, indicator geostatistics, and stochastic simulation of spatial variability. Demonstration and use of interactive geostatistical software included. Offered in alternate years.

240. Multi-phase Transport in Soils (3)II. Grismer Lecture—3 hours; paper. Prerequisite: Engineering 13, Civil Engineering 141, or Water Science 142. Aspects of multi-phase flow in soils and their application to infiltration and imbibition displacement problems. Gas phase transport and entrainment during infiltration, and oil-water-gas displacement will be considered. Offered in alternate years.

297 Seminar in Hydrologic Sciences (3)II. The Staff Seminar—3 hours. Prerequisite: graduate standing; consent of instructor. Seminar on current area of research in hydrology. Topic will change from year to year. May be repeated for credit.

298. Group Study (1-5)I, II, III. The Staff (Chairperson in charge) Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

299. Research (1-12)I, II, III. The Staff (Chairperson in charge) Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

Immunochemistry

(A Graduate Group)

M. Eric Gershwin, M.D., Chairperson of the Group
Group Office, 3146 Medical Sciences 1A
(916)-752-3392

Faculty. The faculty includes members from several colleges and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Immunology is a multi-disciplinary group offering programs of study leading to the M.S. and Ph.D. degrees in various aspects of immunology. Possible areas of specialization include molecular biology, immunology, immunogenetics, cellular immunology, and tumor and developmental immunology.

Preparation. Applicants for candidacy to these programs should have completed undergraduate preparation in general biology, zoology or biology, general microbiology or microbiology, general genetics, mathematics, general physics, chemistry and biochemistry.

For work leading to the Ph.D. degree, the requirements include cell biology, chemical immunology, cellular immunology, immunohematology, and advanced Immunology. In addition to the general requirements more specialized preparation in at least one of the following is required: (a) microbiological specialties (bacteriology, virology, parasitology, medical microbiology); (b) zoological specialties (cell biology, endocrinology, embryology, zoology, histology, cytology, physiologist); (c) medical specialties (pathology, radiology, clinical immunology, reproduction biology); (d) biochemistry/biochemistry specialties (biologically active molecules, control mechanisms); (e) genetic specialties (genetics, population genetics, genomics, molecular genetics).

Graduate Adviser. The Graduate Group Office.

Courses in Immunology

Additional courses are available and listed under the individual sponsoring departments. Contact the Group Office for information.

Graduate Courses

292. Immunotoxicology Seminar (3)II. Golub Seminar—2 hours. Prerequisite: graduate standing in Pharmacology/Toxicology, Immunology, Pathology, or Biochemistry. Seminar presentations dealing with principles of xenobiotic effects on immune system functions and specific examples of drugs and environmental chemicals exerting toxic effects on the immune system. Offered in alternate years. (S/U grading only.)

294. Advanced Topics in Immunology (3)EI. Chen Seminar—3 hours. Prerequisite: graduate standing. Presentation, discussion, and analysis of research topics in Immunology with emphasis on invertebrate bench research. (S/U grading only.)

Independent Study Program

Information:
Chairperson
Committee on Courses of Instruction
C/o Academic Senate Office (916)-752-2221

The Independent Study Program provides an opportunity for upper division students to design and pursue a full quarter (12-15 units) of individual study in an area of special interest.

A program qualifying as Independent Study will consist of one or more courses in the 195-199 series. While the theme of such a program may be reasonably broad, a recognizable common thread should unite all the academic work you undertake during an independent study quarter. Regularly offered formal courses will only be acceptable as part of such a program if they clearly fit its theme and contribute something essential toward the realization of its objectives. The program is not to be regarded as a way to take more variables courses than offered in any course.

*Course not offered this academic year.
The procedure for enrolling in an Independent Study Program is as follows:
1. Develop a general term, a plan of study;
2. Locate a faculty sponsor or panel of sponsors, and with their help and approval develop a detailed plan;
3. Complete a project proposal form (obtained from the Academic Senate Office) and submit it to the Academic Senate Committee on Courses of Instruction.

The deadline for applications is the end of the second week of the term prior to the term in which the project is to be undertaken. (See the Academic Calendar for the specific dates.) You must report the completion or termination of the project to the Committee on Courses of Instruction.

Individual Major
(Colleges of Agricultural and Environmental Sciences and Letters and Science)

The Major Program
The Individual Major, an integrated program composed of courses from two or more disciplines, is designed by the student and is subject to approval by faculty advisers and appropriate college committees. This major enables a student to pursue a specific interest which cannot be accommodated within the framework of an existing major. It must clearly and specifically meet the student's educational goals as well as meet university and college academic standards.

Proposals for individual majors should be submitted before the fourth quarter prior to graduation. Specific requirements for each college are shown below. Application forms are available in program offices.

College of Agricultural and Environmental Sciences
Program Office, 202 Mraik Hall (916-752-0610)

B.S. Major Requirements:

- **English Composition requirement**...........0-8

 See College requirements.

- **Preparatory Subject Matter**.................(variable)

 Lower division courses basic to the program or needed to satisfy prerequisites for upper division requirements.

- **Breadth/General Education**.........................6-24

 Satisfaction of General Education requirement.

- **Depth Subject Matter**.........................45

 An individualized program of 45 upper division units taken from two or more areas of study. At least 30 of the 45 units must be taken from courses provided by the College of Agricultural and Environmental Sciences.

- **Unrestricted Electives**....................(variable)

- **Total Units for the Degree**..................180

Integrated Studies
(Colleges of Letters and Science)
Nora A. McGuinness, Ph.D., Program Director Program Office, 816 Sproul Hall (916-752-3377)

Committee in Charge
Ed M. Bernauer, Ph.D. (Physical Education)
Robert D. Glauz, Ph.D. (Mathematics)
Robert M. Murphey, Ph.D., Chair (Psychology)
Peter M. Schaeffer, Ph.D. (German and Russian)

A.B. and B.S. Major Requirements

- **Preparatory Subject Matter**...........(variable)

 Lower division courses basic to the program or needed to satisfy prerequisites for upper division requirements.

- **Depth Subject Matter**............................45-54

 Upper division units must include:
 a. an integrated and complementary courses from two or more departments which provide a unified pattern and focus;
 b. at least 30 units from Letters and Science teaching departments or programs;
 c. no more than 10 units in courses numbered 194H, 198, and 199;
 d. for the A.B. degree, a maximum of 60 units toward the major; for the B.S. degree, a maximum of 110 units toward the major.

- **Total Units for Degree**.......................180

Student Proposal
A student submits to the Dean's Office a major proposal and an essay, discussing educational purposes, personal and professional objectives, along with faculty letters of recommendation. After initial review, the Faculty Committee on Individual Majors evaluates the proposal and provides final approval.

Major Advisers
A student is assigned a Major Adviser from the faculty. The major adviser must be involved in the academic program.

Honors Program
Program of study for the senior year, students potentially eligible for high or highest honors at graduation (see College section), may petition the Individual Majors Committee for tentative acceptance into an honors program.

Final admission will depend upon the Committee's approval of a senior thesis project that has been agreed upon by the student and faculty adviser. The project must be presented in the Committee during the first quarter of the senior year. Graduation with high or highest honors will be conditional upon both the maintenance of a required grade-point average and the satisfactory completion of the senior thesis project. Students who anticipate doing a senior honors thesis should allow up to 3 units of independent study in the program during each of the last quarters in the senior year as course options.

Integrated Studies
(Colleges of Letters and Science)
Nora A. McGuinness, Ph.D., Program Director Program Office, 816 Sproul Hall (916-752-3377)

Committee in Charge
Daniel R. Brown, Jr., Ph.D. (History)
Richard T. Curley, Ph.D. (Anthropology)
Kurt Keath, Ph.D. (Mathematics)
Nora A. McGuinness, Ph.D. (Integrated Studies)
Jay Meeching, Ph.D. (American Studies)
Daniel L. Wick, Ph.D. (Anthropology)

Faculty
John Boe, Ph.D., Lecturer (English)
Richard T. Curley, Ph.D., Associate Professor (Anthropology)
Dennis Dingemans, Ph.D., Associate Professor (Geography)

Course not offered this academic year.

The Program of Study
Integrated Studies is an invitational freshman Honors residential program offering specially designed courses in humanities, natural sciences, and social sciences. The program encourages cross-disciplinary interests in its faculty and students. It values close contact between student and professor both in the classroom and in the residence hall. Integrated Studies courses fulfill college breadth requirements and most of its courses fulfill the campus introductory General Education requirements. Enrollments are limited. (1992-93, 100 students will be admitted, class sizes are limited to 30.) Students enroll in at least three integrated Studies courses during the year. Students not admitted to the Program may not enroll for integrated Studies courses.

Courses in Integrated Studies

Lower Division Courses

- **1A. Nature and the Environment: Physics** (4) I. Fall
- **1B. Nature and the Environment: Astronomy** (4) II. Spring
- **1C. Nature and the Environment: Molecules to Humans** (4) II. Spring

2A. Civilization and Culture: Mathematics and Civilization** (4) I. Fall
Lecture—3 hours; discussion—1 hour. Prerequisite: high school mathematics. Interested for liberal arts students. Integrates the principles of chemistry, biology, physics and social sciences. Students are expected to achieve a fair scientific literacy in all of the subjects.

2B. Civilization and Culture: Buddhism** (4) I. Fall
Lecture—3 hours; discussion—1 hour. Prerequisite: high school mathematics and geometry. The history of the religion of Buddhism and its impact on the East, including China, Japan, and Korea.

2C. Civilization and Culture: Origins of Western Civilization** (4) III. Spring
Lecture—3 hours; discussion—1 hour. Civilizations of the ancient Near East and Greece: the problem of divine-human relations, problems of law and justice, and development of science and of logical thought. Readings include selections from Near Eastern texts and from Greek literature.
International Agricultural Development

(Students of Agricultural and Environmental Sciences)

The Major Program

The goal of international agricultural development is to improve food production, nutrition, marketing, and health in less technically advanced countries. Students in this major are trained in technical areas of agriculture that can be applied to the problems of world hunger and health.

The Program. International agricultural development majors may select their areas of technical specialization from any of the agricultural and environmental sciences, for example, agricultural economics, agricultural engineering, animal science, community development, food, science, plant science, or resource science. Students interested in international work also need to develop the qualities necessary for effective performance in developing areas of the world. Courses in social sciences, humanities, and economics work toward this end by providing an understanding of the broad cultural, social, and economic environments in which agriculture operates in countries outside of the United States.

Career Alternatives. The study of international agricultural development can lead to a variety of careers. Some students choose service through the Peace Corps. Others seek employment in international trade, while others choose to work for a government or private agency in a foreign country. Religious groups and organizations also employ university-trained individuals for agricultural work in conjunction with missions and other types of human service work overseas. The major is also preparation for further graduate work in agricultural development.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

English Composition Requirement ... 6

Preparatory Subject Matter .. 42-48

(Choose one of Social Sciences or Natural Sciences core)

Social Sciences core .. 4

- Chemistry (Chemistry 10) ..
- Science (Biological Sciences 10, Plant Science 2, Animal Science 1, Nutrition 10, Soil Science 10) ...
- Social sciences (Applied Behavioral Sciences 1, Anthropology 2, Political Science 2, Sociology 1, History 4G)

Course not offered this academic year.

Statistics (Agricultural Science and Management 180 or Statistics 13 or Sociology 46) ... 34

Natural Science core ..

- Animal Science (Biological Sciences 1, Biological Sciences 1A, 1B, 1C, 2, 103, 104, 106, 107) ... 15
- Chemistry (Chemistry 2A, 2B, 8A, 8B) 16
- Mathematics (Mathematics 164A or 211) 3-4
- Physics (Physics 6A) .. 4

Statistics (Agricultural Science and Management 180 or Computer Science Engineering 10) ... 15

Breadth/General Education Requirement 6-24

Satisfaction of General Education requirement requirement.

Depth Subject Matter ... 39

International Agricultural Development 101, 102, 103, 141, 190, 195, 196) ... 12

Primary Field of Specialization .. 60

Natural sciences or Social Sciences: Courses chosen by student, with an adviser in that specialization, to include additional preparation required for a particular specialization, depth subject matter, and supporting discipline.

Natural sciences: Student should include some course work in social sciences appropriate to the geographic area of personal interest (e.g., anthropology, geography, history, or political science area studies courses).

Unrestricted Electives ... 1-34

Students not possessing a reading/writing ability in a foreign language will be encouraged to use these electives for language study or to attend an intensive language school.

Total Units for the Degree .. 180

Specialization Advisers

A listing of faculty in the various areas of specialization and with interests in International Agricultural Development is available from the Major Adviser.

Major Adviser, S. B. Brush (Applied Behavioral Sciences)

Minor Program Requirements:

UNITS

International Agricultural Development 20

International Agricultural Development 101, 102, 110, 111) 16

Minimum of four units chosen from International Agricultural Development 103, 141, 190, 195, Economics 155A-155B, Vegetables 150, Agronomy 100, 100L, 112, 111, 112) ... 4

Minor Adviser, S. B. Brush (141 AOB 4).

Graduate Study. A program of study and research leading to the M.S. degree is available in International Agricultural Development. Detailed information regarding graduate study may be obtained by writing to the Coordinator of Graduate Recruitment (I.A.D.), Graduate Division, UC Davis.

Graduate Advisers, S.B. Brush, (Applied Behavioral Sciences); J.D. Boyd (Anthropology); K.S. Cassman (Agronomy and Range Sciences); J.S. Jarvis (Agricultural Economics).

Courses in International Agricultural Development

Questions pertaining to the following courses should be directed to the instructor or to the Department of Applied Behavioral Sciences, Advising Center in AOB 4 (916-752-2244).

Lower Division Courses

10. Introduction to International Agricultural Development: Food and Development

Lecture—3 hours; discussion—1 hour. Theories, practices and institutions relating to agricultural development; the interaction of social, cultural and economic organization through the stages of economic development; impact of new agricultural technology on underdeveloped regions. General Education credit: Contemporary Societies/Non-Intervention. Recommended GE preparation: Economics 1A-1B or Anthropology 1A.

92. Internship (1-2.5) I, II, III. The Staff (Chairperson in charge)

Internship—3-38 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

Upper Division Courses

101. Tropical Crop Agriculture (4) II. Buddehagen (Agronomy and Range Science)

Lecture—4 hours. Prerequisite: Plant Science 2 or Biological Sciences 1C, and Agronomy 100 or Agronomy 100G. Environmental and management factors affecting crop agriculture and farming systems in the tropics. Crops are considered in relation to shifting cultivation, rice-based cropping systems, annual cropping, polycropping and monoculture of perennial species.

102. Limited Resources Animal Agriculture (4) III.

Brown (Animal Sciences)

Lecture—3 hours; laboratory—3 hours; field work—1 Saturday. Prerequisite: Animal Science 2 or consent of instructor. Diverse production objectives of limited resource animal production systems in an environmentally and economically sound manner without compromising welfare of animals. Management theory, modeling, and practice in progressively more complex systems.

103. Social Change and Agricultural Development (4) III.

The Staff

Lecture/discussion—4 hours. Prerequisite: introductory social science course (Anthropology, Sociology, Economics, International Agricultural Development). How social and cultural factors influence technological change in agriculture; theories of diffusion of innovations; social impact analysis and technology assessment. Offered in alternate years.

110. Agricultural Production Economics (4) III.

The Staff

Lecture—4 hours. Prerequisite: upper division status and an introductory course in microeconomics (Economics 1A). Economic analysis of agricultural production in low-income countries, from field-level data collection to national food policy. Emphasis is given to construction and use of farm models in project evaluation.

111. Agricultural Marketing Systems (4) II.

The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: upper division status and an introductory course in microeconomics recommended (Economics 1A). Economic analysis of agricultural marketing systems in low-income countries, including the functions of transportation, storage, packaging, handling, grading and standardization, processing, and marketing. Emphasis is given to evaluation of interventions in marketing systems to speed economic development.

141. Technology for Agriculture in Developing Regions (3) I. Chancellor (Agricultural Engineering)

Lecture—1 hour; laboratory—2 hours; discussion—2 hours. Prerequisite: Physics 1A; upper division standing. Equipment used in tropical agriculture. Man-, animal-, and engine-powered devices. Energy requirements, size-scale, costs, land and labor requirements, and productivity of farming and forestry operations. Prerequisite: Agricultural Engineering Technology 141.

150. Seminar in International Agricultural Development (1) I, II, III. The Staff

Seminar—1 hour. Presentation and discussion of current topics in international agricultural development by visiting lecturers, staff, and students. May be repeated for credit. (P/NP grading only.)

151. Topics in International Agricultural Development (1) I, II, III. The Staff

Lecture/discussion—3 hours. Prerequisite: consent of instructor. Selected topics dealing with current issues in agricultural development in lesser developed nations—variable content. May be repeated for credit.

152. Internship (1-12) I, II, III. The Staff (Chairperson in charge)

Internship—3-38 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

155. Field Study in Agricultural Development (3) III.

The Staff

Lecture—2 hours total; seminar—2 hours total: field work—overnight trips to sites in California (four weekday visits) or Mexico (three day visits). Students will incur travel expenses. Observation of agricultural development strategies and impact on rural communities. Discussion with farmers, workers and organizational staff members. Study of farm commodities, institutions and experiences in dealing with agricultural development problems. International influence on United States agriculture. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff

Chairperson in charge. Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

(P/NP grading only.)

Graduate Courses

200. Analysis and Determinants of Crop Systems (4) III.

The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 101, Agricultural Science and Management 150 (or comparable statistics course). Crop systems as a function of farmer objectives, resource availability, environment, and yield potential; interactions among management strategies, resource use efficiency, and the agrosystem; stability, diversity, and sustainability of crop systems.

201. The Economics of Small Farms and Farming Systems (4) II.

The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics 100A. Economic perspective on small farm development. Establishes a basis for predicting farmers' response to changes in the economic environment, and for proposing government policies to increase farm production and improve farm and national welfare.

202. Social Systems and Agricultural Development (4) III.

The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: upper division course work in economic development, cultural anthropology, sociology, or political science (especially comparative politics or public administration), or consent of instructor. Social and cultural factors in agriculture and rural development: adaptation of rural people to development processes; agrarian movements and revolution; evaluation of theories of rural development application of social analysis to design and implementation of rural and agricultural policies and programs.

203. Management Systems for Agricultural Development (4) III. The Staff (Graduate Group Chairperson in charge)

Lecture—3 hours; discussion—1 hour. Prerequisites: courses 201, 202, and 203; or consent of instructor. Management of rural development process; strategies for program implementation; planning, staffing, and financing agricultural development; processes and structures of implementation; delegation, decentralization, devolution, and dispersal.

206. Food and Nutrition Strategies in Developing Countries (3) II.

Javins

Lecture—2 hours; discussion—1 hour. Prerequisite: Agricultural Economics 100A. Identifies important topical problems in food and nutrition policy. Develops theoretical frameworks suitable for analysis, examines the empirical information relevant to the problems and, using theory data, drives appropriate policy implications. Offered in alternate years.

290. Seminar in International Agricultural Development (1-2) I, II, III. The Staff

Seminar—1 hour. Prerequisite: consent of instructor. Discussion and critical evaluation of advanced topics and issues in international agricultural development. (SU grading only.)

291. Topics in International Agricultural Development (3) I, II, III. The Staff

Lecture—3 hours. Prerequisite: consent of instructor. Selected topics dealing with current issues in agricultural development in lesser developed nations. Variable content. May be repeated for credit.

292. Graduate Internship (1-12) I, II, III. The Staff

Internship—3-38 hours. Prerequisite: participation in H. L. Humprey Fellowship Program. Consent of instructor. Individualized designed supervised internship, off or on campus, in community, business or institutional setting. Developed with advice of faculty mentor and Humprey Coordinator. (SU grading only.)

298. Directed Group Study (1-5) II, III. The Staff

Graduate Group Chairperson in charge

(SU grading only.)

299. Research (1-12) I, II, III. The Staff

Graduate Group Chairperson in charge

(SU grading only.)

International Agricultural Development (A Graduate Group)

Steven R. Temple, Ph.D., Chairperson of the Group

Group Office, 1303 Haring Hall (916-752-1926)

Faculty. The Group includes faculty from the Colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science, and the School of Veterinary Medicine.

Graduate Study. The International Agricultural Development M.S. degree program prepares U.S. and foreign students for careers in agricultural and rural development around the world. Many of its faculty members have had international experience in development.

The philosophy guiding the program is that graduates must have strong preparation in a specific field within the agricultural and social sciences. Thirty different specializations are offered. In addition, to apply their specializations, graduates should be perceptive and understanding of people in developing nations, and have a comprehension of how technological, social, economic, and political variables affect the development process. They should have insight into individual and group motivations and be able to discern ways to influence them.

The program provides a multidisciplinary education designed to recognize these needs. It guides stu...
International Relations
(Conduct of Colleges and Letters of Science)

Miroslav Ninic, Ph.D., Program Director
Program Office: 351 Voorhis Hall (916-752-3063)

Committee in Charge
Daniel R. Broader, Jr., Ph.D. (History)
Michael R. Caputo, Ph.D. (Agricultural Economics)
Dennis J. Clupens, Ph.D. (Geography)
Vitaly Drzhnik, Ph.D. (Russian)
Robert W. Jackman, Ph.D. (Political Science)
Philip L. Martin, Ph.D. (Agricultural Economics)
Michelle Pape, Ph.D. (French)
Donald S. Riedel, Ph.D. (Political Science)
Randolph M. Siverson, Ph.D. (Political Science)
Janet S. Smith, Ph.D. (Anthropology)

The Major Program
Problems of security, human rights, energy and mineral resources, and the environment are increasingly confronted at a global rather than a national level. With its theoretical models and real-world application, the study of international relations has become an exciting and highly relevant interdisciplinary major.

The Program. Graduation with a major in international relations requires completion of introductory courses in political science, economics, geography, and history. Upper division work is composed of a core of courses in economics and political science required of all majors, and an additional set of eight courses chosen from one of four clusters which encompass major topical areas in combination with regional emphases: I. World Trade and Development, II. International Relations of the Third World, III. Global Resources and Environment, IV. World Politics. The major also requires fluency in English and a working knowledge (approximately 24-30 units of course credits or equivalent fluency) of one other modern language.

Program Alternatives. One program of special interest to international relations majors is the Education Abroad Program, which provides insights into the life and culture of other cultures. At UC Davis, the internship program assists students in obtaining legislative, legal, and business internships. In addition, the UC Davis Washington Center arranges summer internships in Washington, D.C. International relations graduates are prepared for employment in governmental agencies abroad (such as the Foreign Service), with state agencies, international or non-governmental organizations (such as the United Nations), foundations, and companies having interests in international business, trade, or finance. The stringent language requirement of the major program enhances career prospects in jobs which demand knowledge of the language and culture of other countries.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 1A, 1B</td>
<td>10</td>
</tr>
<tr>
<td>Political Science 3</td>
<td>4</td>
</tr>
<tr>
<td>History 1C</td>
<td>3</td>
</tr>
<tr>
<td>One course selected from Anthropology 2, Environmental Studies 30, Geography 2, History 4B, 9A, 9B, 10, 15, 17C, International Agricultural Development 90, Political Science 1, 2</td>
<td></td>
</tr>
<tr>
<td>Approximately 20 to 30 units (or the equivalent) in one modern foreign language (see adviser for details)</td>
<td></td>
</tr>
<tr>
<td>Recommended: one course in statistics (e.g., Sociology 46A, 46B, Statistics 13)</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>45-50</td>
</tr>
<tr>
<td>Economics 115A or 116B</td>
<td>4</td>
</tr>
<tr>
<td>Economics 116A or 116B (Cluster I) or 162</td>
<td>4</td>
</tr>
<tr>
<td>(Cluster II, III, IV)</td>
<td>4-8</td>
</tr>
<tr>
<td>Political Science 123</td>
<td>4</td>
</tr>
<tr>
<td>Political Science 130</td>
<td>4</td>
</tr>
<tr>
<td>Cluster emphasis</td>
<td>32</td>
</tr>
<tr>
<td>Choose one from the four clusters shown below</td>
<td></td>
</tr>
<tr>
<td>Courses must be in addition to those applied toward requirements above.</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>72-105</td>
</tr>
</tbody>
</table>

Course List for Cluster Emphasis

Cluster I: World Trade and Development
(Heavy economic emphasis; suitable particularly for students who seek careers in international business or international organizations)

Economics 100
Economics 105
Economics 160A/160B
Economics 160A fulfills one core requirement; Economics 160B fulfills a cluster requirement.

One course must be selected from:
Economics 115A or 115B (whichever course is not used to fulfill the core requirement above), 116
Two courses must be selected from:
Anthropology 122, 126, 131, 135
Geography 141, 142
Political Science 124, 178
Sociology 139, 141, 144, 145A

Two regional courses from Group A (History)

Cluster II: International Relations of the Third World
(Provides students with an opportunity to concentrate on problems of development of the Third World in recent times)

One course must be selected from each of four subjects:
Anthropology 122, 124, 126, 127, 131, 135
Sociology 116, 139, 141, 145A
Political Science 124, 126, 127, 128, 127
Economics 110B, 115A or 115B (whichever course is not used to fulfill the core requirement above), 116

Four regional courses focused on Third World:
Select two courses from Group A (History)
Select two courses from Group B (Anthropology, Economics, Geography, Political Science, and Sociology)

Cluster III: Global Resources and Environment
(Designed to familiarize students with major patterns of resource distribution in the world and the role resources play in international affairs)

Three courses to be selected from:
Agricultural Economics 147, 176
Political Science 123
Environmental Studies 100, 101

Geography 160
Environmental and Resource Sciences 100

Two additional courses to be selected from two of the following groups:
Energy—Agricultural Economics 169, Geology 130, Political Science 171
Food Resources—Geography 142, 175, Sociology 144
Population—Sociology 170

Course List for Cluster Emphasis

Cluster IV: World Politics
(Examines political relationships in international relations. The focus is on national governments and their activities in the global political system)

One course must be selected from:
Political Science 120, 121
Two courses to be selected from:
Economics 116
History 145, 146A, 146B, 147A, 147C
Political Science 112, 123, 132, 140, 177, 178
Sociology 119, 157, 165A

One course must be selected from:
Anthropology 123
Geography 143
Philosophy 118
Sociology 116

Four regional courses:
Select two courses from Group A (History)
Select two courses from Group B (Anthropology, Economics, Geography, Political Science, and Sociology)

Regional Courses—Group A

History 115A, 115B, 137C, 141, 143, 144, 146, 146A, 146B, 151D, 156A, 156B, 156C, 161B, 163B, 165, 166B, 168, 174B, 174C, 190C, 193C, 194B, 195B, 196B (History 102 with advance approval by faculty adviser; History 145, 146A, and 146B may be offered only once toward the major)

Regional Courses—Group B

Anthropology 131, 140A, 140B, 142, 144, 147, 148B, 149B
Economics 170, 171, 172, 173
Geography 122A, 122B, 123, 124, 125A, 125B, 126, 126C
International Culture courses:
French 107, Russian 130, 131
Political Science 133, 134, 136, 137, 138, 141, 146, 146A, 146B, 148C, 149, (Political Science 139, 147 with advance approval by faculty adviser)

Sociology 147

Majors Adviser. M. Ninic (Political Science).

Courses in International Relations

Lower Division Courses
98. Directed Group Study (1-5) I, II, III
Prerequisite: consent of instructor. (P/NP grading only)

99. Special Study for Undergraduates (1-5) I, II, III
Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses
190. Topics in International Relations (4) I, II, III
Lecture/discussion 4 hours. Prerequisite: consent of instructor. Selected topics in international relations. Variable content. May be repeated for credit when a different topic is studied.

192. International Relations Internship (1-12) I, II, III
The Staff (Comm. Professor in charge) Internship—3-36 hours (to be arranged). Prerequisite: upper division standing and consent of instructor. Work experience in international relations, with term paper summarizing the practical experience of the student. (P/NP grading only)

194HA-194HB. Special Study for Honors Students (4-4) I, II, III
Ninic and staff Seminar—2 hours, term paper. Prerequisite: open
only to majors of senior standing who qualify for honors program. Directed reading, research, and writing on topics selected by students and instructor culminating in preparation of a senior honors thesis under direction of a faculty adviser. (Deferred grading only, pending completion of course sequence.)

196. Directed Group Study (1-5) I, II, III. Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

Internship

See Internship Program below; also UC Davis Washington Center

Internship Program

Lawrence B. Coleman, Ph.D., Director
Jeanne B. Shelby, Associate Director
The Internship and Career Center 2nd Floor, South Hall (916-752-2857)

Program Areas

Agricultural and Environmental Sciences
Joe J. Asstalot, Program Manager

Education and Graduate Placement
Marg Lee, Coordinator
Kathi Sholt, Coordinator

Engineering and Physical Sciences
Linda P. Hughes, Program Manager

Health and Biological Sciences
Linda R. Hughes, Program Manager

Liberal Arts
Donald J. Hargrave, Program Manager

Internship Experience

The Internship and Career Center facilitates a campus-wide internship program. All internships, both credit and non-credit, can be taken for credit or can be arranged on an internship basis. Graduate students are engaged in internships as well. The Internship and Career Center assists students with finding internships, helps students prepare for internships, and provides on-going support during internships.

Course Credit

Internship courses (numbered 92 and 192) are available for credit on a variable-unit basis. A maximum of 12 units of credit and 192 units of course work may be counted toward the 180-unit minimum needed for graduation. To qualify for the 192 course, students must have acquired 84 units of credit. Credit awarded is based on the number of units of credit earned and the nature of the internship experience. Internship courses require approval and a written agreement with a faculty member from an appropriate discipline. Arrangements may be made through the department of the sponsoring faculty member and facilitated by The Internship and Career Center Staff.

Italian

(College of Letters and Science)
JoAnn Cannon, Ph.D., Program Director
Department Office (French and Italian), 516 Sproul Hall (916-752-0300)

Faculty
JoAnn Cannon, Ph.D., Professor
Dennis J. Cotschke, Ph.D., Professor
Gustavo Foscarini, M.A., Lecturer
Juliana Schiess, Ph.D., Assistant Professor

The Major and Minor Programs

The major in Italian is intended to provide a solid language background which will enable the student to develop an appreciation for Italian language and culture.

The Program. The Italian program is small and geared to the individual needs of the student. The use of Italian is stressed on all levels and a knowledge of the language is required for literature courses which are taught only in Italian. The Italian program actively participates in the Education Abroad Program, the International Internships Program, and the Summer Sessions Internazionali (Naples), all of which offer opportunities for travel and study in Italy.

Career Alternatives. Specific career opportunities for those students who have a background in foreign languages are abundant. In addition to the Foreign Service, jobs are available in business and education, both overseas and in the U.S. For example, those wishing to live (for brief or longer periods of time) and work in Italy have a choice of cities: Milan for business, Rome for international corporations in agriculture and culture, and Naples for retail commerce and the arts, just to name a few. In the U.S., foreign-owned companies or American companies with interests in the foreign market need qualified people who are also fluent in a foreign language.

A.B. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian 1</td>
<td>0-24</td>
</tr>
<tr>
<td>Italian 2</td>
<td>0-24</td>
</tr>
<tr>
<td>Italian 3</td>
<td>0-24</td>
</tr>
<tr>
<td>Italian 4</td>
<td>0-24</td>
</tr>
<tr>
<td>Italian 5</td>
<td>0-24</td>
</tr>
</tbody>
</table>

Depth Subject Matter

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian 60</td>
<td>8</td>
</tr>
<tr>
<td>Italian 61</td>
<td>8</td>
</tr>
<tr>
<td>Italian 62</td>
<td>8</td>
</tr>
<tr>
<td>Italian 63</td>
<td>8</td>
</tr>
<tr>
<td>Italian 64</td>
<td>8</td>
</tr>
<tr>
<td>Italian 65</td>
<td>8</td>
</tr>
<tr>
<td>Italian 66</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Units for Major

<table>
<thead>
<tr>
<th>Units</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-60</td>
<td></td>
</tr>
</tbody>
</table>

Recommended

One year of college Latin or a Romance Language.

Major Adviser, G. Foscarini

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian 101</td>
<td>20</td>
</tr>
<tr>
<td>Italian 102</td>
<td>20</td>
</tr>
<tr>
<td>Italian 103</td>
<td>20</td>
</tr>
<tr>
<td>Italian 104</td>
<td>20</td>
</tr>
</tbody>
</table>

Prerequisite Credit

Credit will not normally be given for a course if it is a prerequisite of a course already successfully completed. Exceptions can be made only by the Program Director.

Honor and Honors Program.

The honors program comprises two quarters of study under course 149H, which will include a research paper and a comprehensive examination. See also sections on University and College requirements.

Teaching Credential Subject Representative. See Major Adviser above and also the section on the Teacher Education Program in this catalog.

Courses in Italian

Lower Division Courses

Students entering high school language preparation as a prerequisite must take a placement test.

1. Elementary Italian (5) I, II, III. Foscarini's in charge Discussion—5 hours; laboratory—1 hour. Introduction to Italian grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Italian 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a pass grade must be achieved, the student's P/NP option is not required. All other students will receive a letter grade unless a P/NP petition is filed.)

2. Elementary Italian (5) I, II, III. Foscarini in charge Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of course 1 in areas of grammar and basic language skills.

3. Elementary Italian (5) I, II, III. Foscarini in charge Lecture/discussion—5 hours. Prerequisite: course 2. Continuation of grammar sequence, and practice of all language skills through cultural texts.

4. Intermediate Italian (3) I, II, III. Director in charge Lecture/discussion—3 hours. Prerequisite: course 3 or the equivalent. Review of grammar and syntax through written exercises, and readings of short prose works. Intended to develop the linguistic foundations of students who have completed the first-year language classes.

5. Intermediate Italian (3) I, II, III. Director in charge Lecture/discussion—3 hours. Prerequisite: course 4 or the equivalent. Review of grammar and syntax, readings of short prose works, and written exercises. Intended to prepare students to read, understand, and discuss modern Italian.

6. Italian Conversation (3) I, III. The Staff Discussion—3 hours. Prerequisite: course 3 or the equivalent. Course designed to offer practice in speaking Italian. May be repeated once for credit. (P/NP grading only)

7. Italian Conversation (3) II. The Staff Discussion—3 hours. Prerequisite: course 4A. Course designed to offer practice in speaking Italian. (P/NP grading only)

8. Reading Italian (3) I, II, III. Director in charge Lecture/discussion—3 hours. Prerequisite: course 5. Reading and discussion of modern Italian prose, including selections from creative, scientific and journalistic writings. Introduction to contemporary Italian literature and culture, as well as an analysis of strengthening the student's command of the Italian language.

9. Italian Literature in Translation (3) I. The Staff Lecture—1 hour; discussion—2 hours. Course intended to acquaint the non-major with representative works of Italian literature. Selected works will include major authors, genres, literary periods, movements, or special themes.

10. Studies in Italian Cinema (4) I, II. Cannon Lecture-2 hours; discussion—1 hour; term paper. Introduction to Italian cinema through its genres. Focus is on cinema as a reflection of and a comment on modern Italian history. Film will be studied as an art form and as a form of mass communication. General Education credit: Civilization and Culture/Introduction.

11. Directed Group Study (1-5) I, II. The Staff Primarily intended for lower division students. (P/NP grading only)

Course not offered this academic year.
Upper Division Courses
101. Advanced Conversation, Composition, and
Grammar (4) I. The Staff
Lecture—3 hours; weekly essays. Prerequisite:
knowledge of instructor.

102. Advanced Conversation, Composition, and
Grammar (4) I. The Staff
Lecture—3 hours; weekly essays. Prerequisite:
course 101 or consent of instructor.

104. Italian Translation and Style (4) III. Dutschke
Lecture/discussion—3 hours; two research papers;
term paper. Prerequisite: course 101 or consent of
instructor. Practice in translation from Italian to
English and Italian to English, using literary and
non-literary texts of different styles. Analysis of linguistic
problems and elements of style contained in the
Italian language material.

107. Survey of Italian Culture and Institutions (4)
III. Foscarini
Lecture—3 hours; term paper. Assessment of the
impact of regional autonomy on Italian culture from
the Middle Ages to the present. Special emphasis
will be placed upon achievements in literature,
the arts, philosophy, and socio-political institutions.
To be taught in Eng English.

109. The Image of Man in the Italian Renaissance
(4) III. The Staff
Lecture—3 hours; term paper or oral presentation.
Prerequisite: course 9 or consent of instructor. Pro-
cesses behind the naturalization of the concept of
man and emphasis on different perspectives of human
autonomy, self-determination and scientific
"curiosity." In three parts: (a) Renaissance man and his
environment; (b) humanitarian philosophy; (c) the
adversary evaluation of the concept of man; (c)
poetry and poetry. Offered in alternate years.

112. Medieval and Renaissance Poetry: St.
Francis to Petrarch (4) I. Dutschke
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Study of the
origins of Italian religious and secular poetry of the
13th and 14th centuries. A diversified poetry is illus-
trated in works of (a) Francis, Dante, Cavalcanti,
Petrarch, the Sicilian School, the Swabian New Style
Poets, and other authors. Offered in alternate years.

113. Dante Alighieri, Divina Commedia (Inferno,
Purgatorio, Paradise) (4) III. Dutschke
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Study of Dante
Alighieri's Divina Commedia, and its role in the
development of Italian language and literature.
Emphasis will be placed on reading the whole poem
within the context of the Middle Ages.

114. Boccaccio, Decameron, and the Renaissance
Novelli (4) II. Dutschke
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Study of the
development of the short story in Italy, as exemplified
in Giovanni Boccaccio's Decameron, in his prede-
cessors and Renaissance followers. Offered in alternate
years.

115A. Studies in the Cinquecento (4) III. Schiessi
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Analysis of key
texts from the high moment of the Italian Renais-
sance. The political and aesthetic legacy of human-
ism will be examined in relation to authors such as
Ficino, Ariosto, Machiavelli, Ariosto, Castiglione,
and Tasso. Offered in alternate years.

115B. Italian Literature of the Renaissance and
the Baroque: from Cellini to Marino (4) III. The Staff
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 115A. Continued examination into the
loss of an ideal. Emphasis on the conflicts in Mich-
avelli's thought leading to the creation of a new
"human" literature.

115C. Italian Drama from Machiavelli to the
Enlightenment (4) I. Schiessi
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Development
of comic and tragic form as creative representations
of their sociopolitical and historical contexts, i.e., Machi-
avelli and the logic of power, Baroque dramatists in
the service of court and religious ideology. Golden's
comedies and tragedy's social consciousness. Offered
in alternate years.

115D. Early Modern Italian Lyric (4) I. Schiessi
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Examination
of the poetic tradition influenced by Petrarch. Consider-
ation of the relation between gender and genre in
such poets as Petrarch, Tasso, della Casa, Longhi,
Marino, Gasparri, Stampa, Francesco, Isabella
di Morra. Offered in alternate years.

118. Italian Literature of the Eighteenth Century
(4) III. The Staff
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Development
of modern Italian literature. Emphasis on the work
of Gozoni, Betti, Betti, Parni, Aliferi and Vico.

119. Italian Literature of the Nineteenth Century
(4) II. The Staff
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Development
of modern Italian literature. Emphasis on the work
of Gozoni, Betti, Betti, Parni, Aliferi and Vico.

20A. Italian Literature of the Twentieth Century:
The Novel (4) III. Cannon
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Italian poetry
in the 20th century. The role of Luigi Pirandello in
the development of contemporary Italian literature.

131. Autobiography in Italy (4) II. Schiessi
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. The develop-
ment of storytelling and its role in the development of
contemporary Italian literature. The role of Luigi
Pirandello in the development of modern Italian
literature. Emphasis on the work of Gozoni, Betti,
Pitelli, Betti, Parni, Aliferi, and Vico.

20B. Italian Literature of the Twentieth Century:
Poetry and Drama (4) I. Cannon
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. The develop-
ment of storytelling and its role in the development of
contemporary Italian literature. Emphasis on the work
of Gozoni, Betti, Betti, Parni, Aliferi, and Vico.

139B. Italian Literature in English: Soccaccio,
Petrarch and the Renaissance (4) II. Dutschke
Lecture/discussion—3 hours; term paper. Prerequi-
tive: course 9 or consent of instructor. Study of the
development of the short story in Italy, as exemplified
in Giovanni Boccaccio's Decameron, in his prede-
cessors and Renaissance followers. Offered in alternate
years.

139C. Italian Literature in English: Modern Italian
Literature (4) III. Camon
Lecture/discussion—3 hours; term paper. The Romani-
co Movement in Italy and its relationship to
European Romanticism with emphasis on the work of
Foscolo, Leopardi, and Manzoni (offered in even-numbered
years); tenth-century Italian authors: offering
emphasis according to the needs of the students.

140. Italian Literature in English Translation:
Dante, Divine Comedy (4) I. Dutschke
Lecture/discussion—3 hours; term paper. Prerequi-
tive: any course from the GE Literature Preparation
List. Reading of Dante Alighieri's Divine Comedy,
translated into modern English. Emphasis on the
world view of the authors and their historical
context. The theme of love and its relationship to
literary

practices. General Education credit: Civilization and
Culture/Non-Introductory. Recommended GE prepara-
tion: any course from the GE Literature Preparation
List.

142. Masterpieces of Modern Italian Narrative
(4) III. Cannon
Lecture—1.5 hours; discussion—1.5 hours; term paper.
Prerequisite: either English 3, Comparative Literature
2, or History 4C. Analysis of major works of Italian
literary fiction from the end of the 19th century to
the present. Students will learn to use representative
methods and concepts which guide literary scholarship.
Consideration of works within the European social
and cultural context. Offered in alternate years. General
Education credit: Civilization and Culture/Non-Intro-
ductive. Recommended GE preparation: English 3,
Comparative Literature 2, History 4C.

145. Special Topics in Italian Literature (4) I, II, III.
The Staff (Director in charge)
Lecture/discussion—4 hours. Prerequisite: course 9
or consent of instructor. Study of special topics and
themes in Italian literature, such as comic literature,
epic poetry, pre-twentieth century theater, fascism,
futurism, women and literature, and the image of
America, etc. May be repeated for credit when
topics change.

152. Italian Internship (1-12) I, II, III, IV. The Staff
(Director in charge)
Internship—3-32 hours. Prerequisite: upper division
standing and consent of chairperson of Italian Depart-
ment. Participation in government and business
activities to gain work experience and to develop
a better knowledge of Italian language and cul-
ture. (P/NP grading only)

154H. Special Study for Honors Students (1-5)
I, II, III. The Staff
Independent study—1-5 hours. Prerequisite: open
to majors of senior standing who qualify for hon-
ors program. Guided research, under the direction
of a faculty member, leading to a senior honors thesis
in a topic in Italian literature, civilization, or
language studies. (P/NP grading only)

177T. Tutoring in Italian (1-4) I, II, III. The Staff
Seminary—1-2 hours; laboratory—1-2 hours. Prere-
quive: upper division standing and consent of
instructor. Tutoring in undergraduate courses, includ-
ing leadership in small voluntary discussion groups
affiliated with departmental courses. May be repeat-
ed for credit for a total of 6 units. (P/NP grading only)

197TC. Community Tutoring in Italian (1-5) I, II,
III. Foscarini
Discussion—1-2 hours; laboratory—2-4 hours. Prere-
quive: consent of instructor. Field experience as
Italian tutors or teacher's aide. May be repeated for
credit for a total of 10 units. (P/NP grading only)

198. Directed Group Study (1-4) I, II, III. The Staff
(Director in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates
(1-5) I, II, III. The Staff (Director in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Japanese
See Chinese and Japanese

Land, Air and Water Resources
(College of Agricultural and Environmental Sciences)
Robert G. Flochini, Ph.D., Chairperson of the Department
Landscape Architecture

(Effect of increased urbanization and suburbanization on the natural environment)

Faculty

William J. Carroll, Ph.D., Professor (Geography)
Robert M. Hagan, Ph.D., Professor (Geography)
Donald R. Nielsen, Ph.D., Professor (Geography)
Eugene G. Kinzel, Ph.D., Associate Professor (Geography)
Richard G. Burrett, Ph.D., Professor (Geography)
Karen L. Schmalz, Ph.D., Assistant Professor (Geography)

Emeriti Faculty

Francis C. Brooks, Ph.D., Professor Emeritus
C. C. Delwiche, Ph.D., Professor Emeritus
Emanuel Epstein, Ph.D., Professor Emeritus
Gordon L. Huntington, Ph.D., Professor Emeritus
Donald K. Murri, Ph.D., Professor Emeritus
Michael J. Singer, Ph.D., Professor Emeritus
Randall J. Southard, Ph.D., Professor Emeritus
Robert Zasak, Ph.D., Professor Emeritus

Graduate Study. Four graduate programs, Atmospheric Science, Hydrologic Sciences, Soil Science, and Water Resources are offered. Graduate programs are administered by the Department of Environmental Science.

Courses. See courses listed under Atmospheric Science, Hydrologic Sciences, Soil Science, and Water Resources.

Graduate Study. Graduate work offered in the area of resource sciences is Atmospheric Science, Hydrologic Sciences, Soil Science, and Water Science. Detailed information can be obtained from graduate advisors for these areas and the Graduate Announcements.

Landscape Architecture

(Effect of increased urbanization and suburbanization on the natural environment)

Faculty. See under Department of Environmental Design.

The Major Program

Landscape architecture is the planning and design of land areas where human use requires adaptation or conservation of the environment. Students who study landscape architecture are concerned about the welfare of the environment and the people who use it. They are capable of solving physical problems and are able to visualize and “think” in terms of spaces and three-dimensional concepts.

The Program. The curriculum balances creativity and visual and spatial skills with technical expertise and a thorough background in physical, natural, and social sciences. Students develop proficiency at problem-solving relating to design of parks, urban open spaces, energy-efficient neighborhoods, land reclamations projects, and landscape planning for wilderness and scenic regions, coastal and riparian environments, and other sensitive areas. A problem-oriented approach to design is stressed and environmental and community values are emphasized.

Preparatory Requirements. Students are admitted to the landscape architecture major only after submitting a portfolio for review and selection by the faculty. Contact the Environmental Design Advising Center or the Landscape Architecture major advisor for further information.

Career Alternatives. Graduates may find jobs in private landscape architectural firms or public agencies and corporations employing landscape architects. The landscape architecture major prepares students for graduate school or career development in a wide range of environmental and design-related fields.

B.S. Major Requirements:

For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.

UNITS

English Composition Requirement

Preparatory Subject Matter

Biological Sciences (Biology 1A, 1B, 1C).......
Biological Sciences 1C
Chemistry (Chemistry 2A, 10)..........
Physics (Physics 1A, 5A, 10)..........
Two-dimensional design (Art 16, Design 21, Engineering 4)..........
Three-dimensional design (Art Studio 121A, 12D, Design 134A-C, 135, 180A, 180C)..........
Earth sciences (Geology 1, Geology 10)..........
Economics (Economics 1A, 1B, Agricultural Economics 147)..........
Computer science (Computer Science and Management 21, Engineering 5, Computer Science Engineering 10, 40)..........
Mathematics (Mathematics 16A, 36, Statistics 13, Agricultural Science and Management 150)..........
Social science (Anthropology 2, Geography 1, Psychology 1, Sociology 1)..........
Humanities elective..........

Depth Subject Matter

Introduction to landscape architecture (Landscape Architecture 40)..........
Landscape architecture studio: introduction, recreational open space, site planning (Landscape Architecture 111, 112, 113)..........
Landscape graphic communication (Landscape Architecture 121)..........
Advanced communication for landscape architecture (Landscape Architecture 122)..........
Introduction to landscape construction, site engineering, construction details and drawings (Landscape Architecture 131, 132, 133, 134)..........
History of landscape architecture (Landscape Architecture 140)..........
Introduction to environmental Horticulture 6)..........
Taxonomy and ecology of ornamental plants (Environmental Horticulture 105)..........
Arboriculture (Environmental Horticulture 133)..........
Plant selection for environmental design (Landscape Architecture 135)..........
Landscape planting design (Landscape Architecture 156)..........

*Course not offered this academic year.
Landscape Architecture studio: planning and analysis, urban and community design (Landscape Architecture 181, 182)..................3
Senior project in landscape architecture (Landscape Architecture 190)..................1-5
Proseminar, three quarters (Landscape Architecture 190)..................3
Internship (Landscape Architecture 192)..................3

Breadth Subject Matter............................17-21
Resource sciences, two upper division courses with approval of adviser........6-8
Ecology (Environmental Studies 100, 110, Botany 117, Entomology 104, Zoology 114A, 114B, 125)..........................3-5
Environmental awareness (Psychology 144)..........................4
Related disciplines elective..........................4

Course program: a discipline general to landscape architecture (Environmental Biology and Management 110, 116, 122, 127, Environmental Studies 126, 161, 171, Agricultural Economics 18, Civil and Environmental Engineering 1, Design 1)

Unrestricted Electives............................27-43
Total Units for the Major..........................180

Major Adviser: S. McNeil.
Advising Center is located in 152 Walker Hall (916-752-1165).

Graduate Study, Refer to the Graduate Studies section in this catalog.

Courses in Landscape Architecture

Lower Division Course
11. Landscape Studio: Introduction (4) I. The Studio
Studio—8 hours. Prerequisite: courses 21 and 40 (may be taken concurrently). Introductory studio problems in landscape architectural design equally emphasizing exposure to design arts, human factors, and natural resource planning. Emphasis is placed on functional and aesthetic considerations for small scale projects.

21. Landscape Drafting and Visualization (4) I. The Studio
Studio—8 hours. Prerequisite: course in free-hand drawing recommended. Development of idea expression through graphic media and the use of drafting instruments for visual representation including perspective, orthographic, dimetric, isometric, line quality, and perspective construction.

31. Landscape Construction: Introduction (3) III. The Studio
Lecture—3 hours. Prerequisite: courses 11 and 40 (may be taken concurrently). Introductory analysis of materials and methods of technical landscape construction. Emphasis on structural, mechanical, electrical, functional, and aesthetic properties of materials and construction methods commonly used in landscape development.

40. Introduction to Landscape Architecture (3) I. Schenker
Lecture—3 hours. History, theory, philosophy, techniques and applications of landscape architecture and the analysts, planning, design, and management of outdoor spaces.

Upper Division Courses
111. Landscape Studio: Analysis, Function, and Process (4) I. Thayer and staff
Studio—8 hours. Prerequisite: course 11. Studio problems in the analysis of site and functional relationships relating to landscape development. Emphasis on inventory and analysis of natural and cultural site features, microclimate effects, pedestrian and vehicular circulation, and basic social needs and uses of outdoor space.

112. Landscape Architecture Studio: Landscape Form, Design, and Art (4) II. Schenker and staff
Studio—6 hours. Field trips. Prerequisite: course 111; major in Landscape Architecture. Studio problems in design of landscapes and outdoor places which rely on visual, spatial, aesthetic, and symbolic characteristics.

113. Landscape Architecture Studio: Site Planning (4) III. The Studio
Studio—8 hours; two all-day field trips. Prerequisite: course 112. Open to Landscape Architecture majors only. Studio problems in site planning, design of both site and urban landscapes, residential area planning, street system planning, parking and open spaces, and outdoor facilities. Emphasis on residential, institutional, and commercial site planning for scale and energy conservation.

120. Computer Graphics for Landscape Architects (4) I. McNeill and staff
Studio—8 hours. Prerequisite: course 21. Introduction to computer-aided design equipment and software applications, including computer-aided drafting, cut and fill calculations, road alignment, site engineering and landscape analysis.

121. Landscape Graphic Communication (4) II. The Studio
Studio—8 hours; two all-day field trips. Prerequisite: course 111. Studio work in graphic representation of landscapes and urban landscape architectural plans. Introductory work in sketching, rendering, lettering, sheet layout, color use, and presentation techniques relating to the professional practice of landscape architecture. Limited enrollment.

122. Advanced Communication for Landscape Architecture (4) III. Francis and staff
Studio—8 hours; two all-day field trips. Prerequisite: course 121. Open to Landscape Architecture majors only. Advanced concepts in multimedia and graphic presentation of landscape architecture projects, to include preparation of proposals, reports, audio-visual productions, and mixed-media presentations. Limited enrollment.

131. Landscape Architecture: Principles of Practice (3) I. The Studio
Lecture—3 hours. Prerequisite: course 31. Exposure to the legal, accounting, fiscal, and ethical responsibilities of the practice of Landscape Architecture. Subject matter covers marketing, office management, liability, licensing, contracts and specifications, professional skills and project management.

132. Landscape Construction: Site Engineering (4) II. McCully
Studio—8 hours; two all-day field trips. Prerequisite: course 131. Topographic and grading problems in landscape construction, drainage plans, grading plans, spot elevations, road alignment, sections and profiles and cut and fill calculations. Limited enrollment.

133. Landscape Construction: Details (4) III. McCully
Studio—8 hours; two all-day field trips. Prerequisite: course 132. Open to Landscape Architecture majors only. Advanced study of materials and methods in landscape construction. Emphasis on studio design and integration of details and specifications. Limited enrollment.

134. Landscape Construction: Drawings (4) I. McCully
Studio—8 hours; two all-day field trips. Prerequisite: course 133. Technical solution of an intensive landscape architectural design problem with emphasis on preparation of production drawings and construction implementation documents. Limited enrollment.

140. History of Landscape Architecture (3) III. Mohlen
Lecture—3 hours. History of landscape architecture as an art form, technology, and profession. Emphasizes design of gardens and outdoor spaces from prehistoric civilizations to the present. General Education credit: Civilization and Culture/Non-Introductory Recommended GE preparation: Art 1A, 1B, or History 3.

155. Plants in the Cultural Environment (3) III. The Studio

156. Landscape Planning Design (4) I. The Studio
Studio—8 hours; two all-day field trips. Prerequisite: course 111, 155, Environmental Horticulture 105. Application of aesthetic, functional, and horticultural principles to the composition of the planted landscape and the development of planting plans.

159. Public Garden Management (3) III. Dawson
Lecture—3 hours. Prerequisite: Biological Sciences 1, Plant Science 2, or Environmental Horticulture 6. Management of the collections, facilities and programs of public gardens. Emphasis is placed on the management skills and operational techniques utilized in public gardens.

181. Landscape Architecture Studio: Planning and Analysis (4) I. The Studio
Studio—8 hours; two all-day field trips. Prerequisite: course 113. Landscape architecture studio to include the solution of large-scale landscape architectural problems with emphasis on landscape planning and analysis and methods and environmental concerns. Limited enrollment.

182. Landscape Architecture Studio: Urban and Community Design (4) II. Francis
Studio—8 hours; two all-day field trips. Prerequisite: course 150. Landscape architecture and urban landscape design problems with emphasis on community and social processes, participatory design methods, and comprehension of behavioral factors relating to urban open space. Limited enrollment.

183. Landscape Ecology (4) I. Dawson
Studio—8 hours. Prerequisite: course 12 and Environmental Studies 100 or consent of instructor. Practical exercises in ecological design emphasizing conservation, habitat restoration, cultural and historical impacts, and biogeography. Emphasis is placed on the management techniques, restorative methodology, and physical land use planning.

184. Sustainable Landscape Architecture (4) II. Thayer
Studio—8 hours. Prerequisite: course 113 or consent of instructor. Planning and design of land areas for social and environmental stability creating sustainable landscapes which conserve water, energy, air quality, and biological diversity.

190. Proseminar in Landscape Architecture (1) I, II, III. Thayer, Owens, Francis Seminar—1 hour. Lectures and discussion of critical issues in landscape architecture. May be repeated three times for credit. (P/NP grading only)

192. Internship in Landscape Architecture (1-12) I, II, III. Owens Internship. Prerequisite: senior standing in Landscape Architecture major. Professional field experience in landscape architecture. May be repeated for a total of 12 units. (P/NP grading only)

193. Senior Project in Landscape Architecture (1-5) II, III. Owens Prerequisite: major standing in Landscape Architecture major. Directed design/research of a significant landscape architectural project under supervision of instructor. May be repeated for credit. (P/NP grading only)

197. Tutoring in Landscape Architecture (1-5) I, II, III. The Staff Tutoring—3-15 hours. Prerequisite: consent of instructor. Tutoring in landscape architecture courses. (P/NP grading only).

198. Directed Group Study in Landscape Architecture (1-5) I, II, III. The Staff (Master Adviser in charge)
Prerequisite: consent of instructor. Directed group study. (P/NP grading only).

*Course not offered this academic year.
198. Special Study for Advanced Undergraduates in Landscape Architecture (1-0, I, II, III, The Staff) (Master Adviser in charge)
Prerequisite: consent of instructor. (P/NP grading only)
Graduate Courses

*201. Theory and Philosophy of the Designed Environment (4)
Seminar—4 hours. Prerequisite: course 140 or the equivalent; graduate standing or consent of instructor. Examines the major theories of environmental design. Epistemology of design serves as framework to examine modern landscape architecture, architecture, urban design and planning. Normative theories of design are reviewed along with the social and environmental sciences. Offered in alternate years.

202. Methods in Design and Landscape Research (4) II. McNiel
Seminar—4 hours. Prerequisite: Statistics 102 or the equivalent; graduate standing or consent of instructor. Explores many of the research and applied design and planning methods employed in landscape architecture. Exercises provide the student with a vehicle for designing independent landscape research and creative activities. Lectures provide an historical overview of research methodology. Offered in alternate years.

*203. Perceptions of Environmental Quality (4)
Seminar—4 hours. Prerequisite: Psychology 144 or consent of instructor. Examines human perceptual responses to the physical environment beginning with aesthetics and leading to more complex cognitive evaluations and personal and social interpretations of environmental quality. Discusses means by which intervention by design can affect human/environmental perception, cognition, and behavior. Offered in alternate years.

204. Case Studies in Landscape Design and Research (4) II. Davis
Laboratory—8 hours. Prerequisite: contact department for prerequisite courses; graduate standing or consent of instructor. Case studies in landscape design and research have as their primary goal the exposure of the student to real-world, designed-environment situations where creative activity and/or basic research is the primary product. Offered in alternate years.

210. Advanced Landscape Architecture Studio (4) III. Schenker
Laboratory—8 hours. Prerequisite: course 113 or the equivalent; graduate standing or consent of instructor. Explores the public environment of cities including their streets, parks, and squares. Public life and culture of American cities is examined and design responses to this culture evaluated. Typology is used to identify spaces. Offered in alternate years.

*240. Rural Landscape Planning and Design (3)
Seminar—3 hours. Prerequisite: course 161 or the equivalent; graduate standing or consent of instructor. Addresses physical planning issues facing rural farms, subdivisions, commercial zones, and small communities in their challenge of economic and social change. Concern is with runaway growth, shrinking populations, shifting economies, and lack of public funds or consensus. Offered in alternate years.

250. Technology and Sustainable Landscape (3) III. Thayer
Seminar—3 hours. Prerequisite: course 164 or the equivalent; graduate standing or consent of instructor. Explores the relationship between technology and landscape quality. Typology of technological landscape adaptations is presented and impacts of these technologies are discussed. Emphasizes a theoretical understanding of technological change and a practical approach to sustainable technologies. Offered in alternate years.

*280. Landscape Conservation (3) II.
Seminar—3 hours. Prerequisite: contact department for prerequisite courses; graduate standing or consent of instructor. Focus is on land planning, design, and management techniques to further the goal of resource preservation. Examines current critical the
tories in the establishment and management of conserva
tion areas. Offered in alternate years.

290. Graduate Seminar in Landscape Architecture (2)
I. II. III. The Staff
Seminar—2 hours. Prerequisite: graduate standing and consent of instructor. Seminar on selected topics in landscape architecture research: analysis, planning, design, planning, communication, or education. May be repeated for credit. (SU grading only.)

297. Practicum in Landscape Architecture (1-10) I, II, III. The Staff
Independent study—1-10 hours. Prerequisite: graduate standing and consent of instructor. Opportunity for students to work directly in the field with academ
dics at other institutions or with professionals in an office setting. Gives experience beyond the confines of campus and allows direct interaction with the community. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff
Prerequisite: graduate standing and consent of instructor. (SU grading only.)

299. Directed Individual Research for Graduate Students (1-5) I, II, III. The Staff
Prerequisite: graduate standing and consent of instructor. (SU grading only.)

Latin
See Classics

Law, School of

Ellen R. Jordan, J.D., Dean
Edward H. Rabin, LL.B., Associate Dean (Academic Affairs and Regulations)
Judy James, J.D., Acting Director (Law Library)
Dean's Office, 1011 Martin Luther King, Jr. Hall (916-752-0243)

Faculty
Vickram Amr, A.B., J.D., Acting Professor
John D. Ayer, J.D., LL.M., Professor
Florian Bartsoc, B.C.L., LL.M., Professor
Antonia E. Bernalda, J.D., Lecturer
Alan E. Brownstone, J.D., Professor
Carol S. Bruch, J.D., Professor
Joel C. Dobbs, LL.B., Professor
Harrison C. Dunham, LL.B., Professor
Floyd F. Feeney, LL.B., Professor
David Wm. Fessler, J.D., S.J.D., Professor
Arturo Gandara, J.D., Acting Professor
Michael J. Glennon, J.D., Professor
Gary Goodpasture, J.D., Professor
Sarah D. Gray, Ph.D., Professor (Human Physiology)
Robert W. Hillman, J.D., Professor
James E. Hogan, LL.B., Professor
Edward J. Imwinkelried, J.D., Professor
Ellen R. Jordan, J.D., Professor
Margaret Z. Johnhs, J.D., Lecturer and Director of Legal Writing
Kevin R. Johnson, J.D., Acting Professor
Friedrich K. Juenger, J.D., Professor
Evelyn L. Kirkland, J.D., Acting Professor
Leslie A. Kurtz, Professor
Fred Lovitch, B.S., J.D., Lecturer
Arlene Mayerson, M.A., J.D., L.L.M., Professor
Miflett Murphy, B.A., J.D., Lecturer

E. Brad Nelson, J.D., Lecturer
John B. Oakley, J.D., Professor
Raymond L. Parnas, J.D., LL.M., S.J.D., Professor
Alex R. Perschbacher, J.D., Professor
John W. Poull, J.D., Professor
Edward H. Rabin, LL.B., Professor
Daniel L. Simmons, J.D., Professor
James F. Smith, J.D., Lecturer
Sidney Wolinsky, L.L.B., J.D., Lecturer
Bruce A. Wolk, J.D., Professor
Richard C. Wylick, LL.B., Professor

Emeriti Faculty
Horner G. Angelo, J.D., LL.M., Professor Emeritus
Edward L. Barrett, Jr., J.D., Professor Emeritus
Edgar Bodenheimer, J.U.D., LL.B., Professor Emeritus
Daniel J. Dykstra, LL.B., S.J.D., Professor Emeritus
Pierre R. Loiseau, LL.B., LL.M., Professor Emeritus
Mortimer D. Schwartz, J.D., LL.M., M.S., Professor Emeritus

Courses of Instruction
The following courses for students enrolled in the School of Law are set up for the semester-system basis only. Instruction dates may be found at the end of the School of Law section of the catalog. The symbols are I for Fall Semester and II for Spring Semester.

Courses in Law
Professional Curriculum
First Year Courses

200. Introduction to Law (1)
Discussion—1 hour. Introduction to basic concepts of the law, the historical roots of common law and equity, the precedent system in its practical operation, the modes of reasoning used by courts and attorneys, and the fundamentals of statutory interpretation. (SU grading only.)

201. Property (4) II. Dobris, Kirkland
Discussion—4 hours. Study of doctrines and concepts of property law with primary emphasis on real property. Course coverage includes the estates in land system, the landlord-tenant relationship, conveyancing, and private and public land use control.

202A-203B. Contracts (3-3)
II. Giannini, Imwinkelried
Discussion—3 hours. Course examines the sorts of promises that are enforced and the nature of performance given promissory obligations in both commercial and noncommercial transactions. Inquiry is made into the means by which traditional doctrinal adjustments—fail to adjust—to changing social demands. Deferred grading only, pending completion of sequence.

202A-203B. Civil Procedure (3-2)
II. Hogan, Johnson, Oakley, Perschbacher
Discussion—3-2 hours. Study of the fundamental and recurring problems in civil actions including the methods used by federal and state courts to resolve civil disputes. Among the topics covered are the relation between federal and state courts; the power of courts over persons, property, and subject matter (jurisdiction); the scope of litigation (pander of claims and parties); preparation for trial through pleading, discovery, and pretrial; devices for resolving actions and issues before and during trial; functions of judge and jury; and the finaility of the trial court's disposition. Deferred grading only pending completion of sequence.

204. Torts (5) I. Brownstone, Kurtz, Juenger
Discussion—5 hours. Legal concepts which apply to actions brought by litigants who seek relief for injury. Intentional and unintentional invasions of personality and property. Analysis of civil actions based upon wongs such as assault, battery, false imprisonment, negligence, strict liability, delification, invasion of privacy, and misrepresentation.

205. Constitutional Law (4) II. Glennon, Poulis
Discussion—4 hours. The principles, doctrines, and controversies regarding the basic structure of, and divisions of power, in American government. In particular, course meets judicial review, jurisdiction,
Bankruptcy Code. Focus is on the goals of a troubled debtor and the strategies or options available to meet them.

211. Negotiation and Dispute Resolution (2) I. Goodpasture Seminar—2 hours. Course reaches negotiation, mediation, arbitration skills, and theories. Students will do five or more practice negotiations, mediations, or arbitrations to develop skills, perception, and personal practice. Evidence and theory development are based on these exercises. Limited enrollment (24 students). (SUS grading only.)

212. Law, Medicine, and Ethics (2) I. Chief Discussion—2 hours. Analysis of the ethical and regulatory issues raised in medical knowledge and technology and the biomedical sciences. Examination of the nature of ethical decision-making and its special relationship to the law. Discussions on death and dying, new reproductive alternatives, abortion, maternal/fetal conflicts, AIDS, organ transplantation, and the right to health care. Emphasis on how individuals make determinations regarding what is "right" and "wrong" and how society should make decisions regarding what should be allowed or prohibited.

213. Business Organizations I (3) Discussion—3 hours. Focus on the legal problems of a business owners or a for profit firm. May seek to play an active role in the enterprise. Included within the survey are the problems of "close corporation" and the alternatives to incorporation for for profit firms. These alternatives include the sole proprietorship, general and limited partnerships, and joint ventures. Related agency concepts are integrated into this material.

214. Business Organizations II (3) Discussion—3 hours. Focus is on the public issue corporation. Both statutory and judge-made legal principles of state corporate law, and federal regulation of the corporation will be studied. Corporate governance and "<TResult>" stockholders" rights suite against corporations, regulation of the sale of securities and distribution of dividends, and the merger and acquisition of corporations will be covered.

215. Business Associations (4) I. Lovitch Discussion—4 hours. Course provides a broad survey of the legal rules and concepts applicable to business associations, both public and closely held. Principal attention is given the corporate form of organization. Although partnerships are also touched briefly. Topics surveyed include the planning of business transactions, the process of incorporation, the financing of corporations, the role of management and shareholders, and the federal securities laws and social responsibility.

216. Commercial Law: Article 9 (3) I. Ayer Discussion—3 hours. Prerequisite: course 243 recommended. Course covers security interests in personal property.

217. Outer Space and Telecommunications (2) I. Brownstein, Glannon, Poole Discussion—2 hours. Examines the impact of international law, treaties, and selected regional systems. Explores commercial law on the expanding fields of telecommunication and space law. Links between international organizations such as the ITU, CENIC, and national institutions such as NASA and FSC, and private entities will be studied. Special legal problems such as the protection of hardware and software, and intellectual property, piracy, freedom of information, restrict on competition, and protection of privacy will be examined. Limited enrollment.

218. Constitutional Law II (3) I. Goodpasture Discussion—3 hours. Course primarily covers the First Amendment and the Equal Protection Clause. The First Amendment study involves examination of freedom of speech and assembly, focusing on the various kinds of speech the courts have identified and their constitutional significance: political speech, commercial speech, offensive speech, obscenity, fighting words, and speech constituting a clear and present danger. Attention will also be directed to issues involving the forum in which speech occurs: public forum, overbreadth, vagueness doctrine, and the provocation provocation of speech expression. The equal protection study examines suspect class doctrine involving discrimination on the basis of race, gender, alienage, and other characteristics, affirmative action, the problem of "invidious motive," state action, and the relationship of equal protection clause prevents government from burdening the exercises of fundamental rights. If time permits, the Establishment Clause and the Free Exercise Clause will also be considered.

219. Evidence (4) I. Wylicki; I. Hogan Discussion—4 hours. The rules regarding the admissibility of testimonial and documentary proof during the trial of civil and criminal cases, including the concept of relevancy, the hearsay rule, the examination and impeachment of witnesses, the opinion rule, constitutional and statutory privileges.

220. Federal Income Taxation (4) I. Wol; I. Simmons Discussion—4 hours. Introduction to basic principles of federal income taxation. Topics include identification of income subject to tax, gains and losses from property transactions, deductions from income, the timing of income and assets (accounting), and the identity of persons subject to tax on particular items of income.

221. Trusts, Wills, and Estates (3) I. Dobr; I. Kirkland Discussion—3 hours. Study of the law of wills and trusts. Course coverage includes: testamentary succession, family protection and limits on the power of testamentary disposition, revocation and revocation of wills, contracts to make wills, substitutability, inter vivos and testamentary private trusts. Depending on the instructor, the course may also cover one or more of the following topics: class gifts; powers of appointment; the Rule Against Perpetuities; and introduction to the federal administration of estates, including probate, powers, duties, rights and liabilities of fiduciaries, and the management of assets.

222. Agricultural Law (3) Discussion—3 hours. Exploration and importation of agricultural products will be covered, including tariffs, quotas, and non-tariff barriers, the General Agreement on Tariffs and Trade (the GATT), United States trade legislation (escape clause, and antidumping and countervailing duties), and the General System of Preferences. The trading regimes of America's major agricultural trading partners, the European Community, Canada (the agricultural aspects of the Free Trade Agreement), and Mexico will be analyzed.

223. Estate Planning (2) I. Dobr Seminar—2 hours. Prerequisite: course 221. Selected topic(s) in the estates and trusts area. Class presentation and research paper will satisfy the legal writing requirement. Limited enrollment.

224. Consumer Transaction (3) Discussion—3 hours. Study of selected consumer law problems, including a survey of state and federal regulatory efforts. Course coverage may include the following: common law and statutory approaches to fraudulent or deceptive practices, disclosure of information, consumer credit regulation, equal credit opportunity, national legislation, consumer complaints, enforcement by the creditor, consumer remedies, and attorney fees for representing consumers.

225. Marital Property (3) I. Bruh Discussion—3 hours. The California community property system, including rights of spouses and the treatment of property during marriage; characterization, valuation, and division of property upon termination of marriage by dissolution, nullity, or death; and premarital contracts. Also covered are nonmarital cohabitation, creditor's rights, and spousal support.

226. Mass Media Law (2) I. Kurz Discussion—2 hours. Course will survey legal issues associated with the mass media. Topics covered will include legal problems of news media and news
gathering, the regulation of broadcasting, free press, trial, and cable television, and the effect of the new technologies.

227. Criminal Procedure (3) I. Polos; II. Feeney
Discussion—3 hours. The police function: arrest, search and seizure, electronic surveillance, entrapment, the interrogation and confessions, lineup, the exclusionary rule, the role of counsel.

228. Business Planning (3) Discussion—3 hours. Prerequisite: courses 220, and either courses 213 and 214 or course 215. Consideration of selected problems in business planning.

229. Regulation of Foods, Drugs, Devices, and Cosmetics (2) Discussion—2 hours. Will examine FDA's elaborate regulatory framework for foods, drugs, devices, and cosmetics, and the regulation of products by implication. The course will provide an overview of the legal framework for the regulation of biotechnology. Other current drug topics such as speeding the approval process for drugs to treat AIDS patients, creating new incentives for the development of treatments to treat rare diseases, the generic drug scandal and prescription to OTC switches will be addressed. The adequacy of federal regulation and the topicality of the food subject will also be covered with emphasis on developments in state law such as California's Proposition 65. Current food topics such as the marketing of foods with health claims will be covered. The practice of law in these pervasively regulated areas will be discussed.

230. International Law and World Order (2) II. Glennon
Seminar—2 hours. Examines the challenges posed to international law by the end of the cold war, including implications for international organization, collective security arrangements, international environmental safeguards, democratization, theories of international law, and related topics. Satisfies advanced legal writing requirement.

231. Legislative Process (3) Discussion—3 hours. Course covers fundamental elements of the legislative process, including legislative institutions, the legislative process as a legal institution; the legislative investigative power; lobbying; legislative-executive relations; and the legislature's constitutional powers and limitations.

232. Real Estate Finance (4) II. Rabkin
Discussion—4 hours. Examination of the problems involved in the acquisition, financing, and development of real estate, and of lender remedies and debtor default. The course is strongly oriented toward current California law and toward the practical applications of the law.

233. International Human Rights (2) II. Johnson
Seminar—2 hours. Prerequisite: course 228. Focus will be law concerning the admission of refugees into the United States. The course will study the Refugee Act of 1980, the major piece of legislation dealing with the admission of refugees into the country, and the various regulations promulgated by the Department of Justice implementing the law. Particular attention will be paid to recent decisions of the United States Supreme Court and the courts of appeals interpreting the Refugee Act, the impact of those decisions, and the resulting conflicts of law. The class will review international law Congress sought to bring domestic law in compliance through passage of the Refugee Act. Satisfies the advanced legal writing requirement.

234. Family Law Practice (3) Seminar—3 hours. Prerequisite: course 225; course 272 recommended. Combined seminar and clinic to provide marital-law counseling under the direct supervision of an attorney. Clinical participation required during semester. Students also participate in weekly 2-hour seminar which will cover a wide range of topics pertaining to family law practice. Limited enrollment. (SUJ grading only.)

235. Administrative Law (3) I. Gendron
Discussion—3 hours. State and Federal law related to administrative agencies. Topics include administrative due process, agency adjudication, rulemaking, delegation of authority, standing, and judicial review. Students will become conversant with the Federal Administrative Procedure Act and the 1981 Model State Administrative Procedure Act.

236. Securities Regulation I (2) II. Millman
Discussion—2 hours. Prerequisite: courses 213 and 215, or consent of instructor. Principle focus of this course is the interaction of federal and state securities regulation and the impact of legislation on securities liability. Will analyze FDA regulation of the new products of biotechnology. Other current drug topics such as speeding the approval process for drugs to treat AIDS patients, creating new incentives for the development of treatments to treat rare diseases, the generic drug scandal and prescription to OTC switches will be addressed. The adequacy of federal regulation and the topicality of the food subject will also be covered with emphasis on developments in state law such as California's Proposition 65. Current food topics such as the marketing of foods with health claims will be covered. The practice of law in these pervasively regulated areas will be discussed.

237. Business Tax (4) I. Simmons
Discussion—4 hours. Prerequisite: course 220. The owners of partnerships and subchapter S corporations (pass-through entities) are taxed on items of income, deduction, and loss, as if the owner incurred the item directly. Corporations and shareholders are subject to income tax at both the entity and shareholder levels. This course examines the identity, organization, and operation, and dissolution of pass-through entities in terms of the income tax impact of these transactions. Also examined are the formation, capitalization, operation, and liquidation of regular corporations subject to the double tax regime of subchapter S of the Internal Revenue Code.

240. Law of Elections and Political Campaigns (2) I. Feeney
Discussion—2 hours. Course covers constitutional, statutory, administrative and case law aspects of federal and state elections, including laws relating to primaries, general elections, initiatives, recalls, filing requirements, financial disclosures, and conflicts of interest.

241. Regulated Industry Seminar I (2) I. Fessler
Seminar—2 hours. The social, political, technological and economic forces implicated in the regulation of traditional public utility industries. Regulated private monopolies that were classically insulated from the pressures of competition are currently being restructured to accommodate and encourage competition at various levels of the supply and distribution chain. As the social contract is altered, the use of public and private monopolies to pursue redistributive social goals is scrutinized by the constraints of competitive market forces and the willingness of firms deprived of regulatory protection to provide services that are not cost effective on a stand alone basis. Examples will be followed by a sampling of philosophical, theoretical and social solutions to the problem of separating public utilities from the dictates of the market.

242. Conflict of Laws (Long Course) (3) I. Bruch
Discussion—3 hours. Discussion will be supplemented with multiple international contacts. The topics covered include jurisdiction, recognition of foreign judgments, and choice of applicable law. The course deals with problems that frequently encounter in a wide variety of fields, such as commercial law, family law and personal injury law.

243. Debtor-Creditor (3) I. Ayer
Discussion—3 hours. Survey of the rights and obligations of debtors, creditors, and of their creditors. Emphasis will be on the mechanics of the bankruptcy code system as it applies to both individuals and corporations.

244. Basic Human Physiology (2) I. Gray
Discussion—2 hours. Several medical basic science faculty give lectures on the basic anatomy and physiological functioning of the organ systems; basic word roots which underlie medical/scientific terminology are emphasized. Several clinical faculty give lectures on new technologies in medicine and some of the associated legal problems. Exams are in the format of simple, simulated medical/legal problems in which students are expected to evaluate medical/scientific data, as well as to determine the kinds of expert witnesses that might be valuable in particular cases. Limited to 25 students. (SUJ grading only)

245. Estate and Gift Taxation (3) II. Walk
Discussion—3 hours. Prerequisite: course 220. Study of the federal taxation of gifts and estates.

246. Federal Jurisdiction (3) I. Oakley
Discussion—3 hours. Study of the subject matter jurisdiction of federal courts. Statutory provisions for the federal district courts to adjudicate civil actions arising under federal law or between parties of diverse citizenship will be examined in contemporary detail, and from the perspective of history and the Constitution. Federal appellate jurisdiction, federal writs in the nature of habeas corpus, and miscellaneous matters affecting attorneys' decisions to seek a federal forum will also be discussed. In addition to careful study of the fine points of relevant legislation in light of their history, the class will develop the constitutional doctrines of separation of powers and federalism as guides to understanding the Supreme Court's leading opinions on the scope of federal jurisdiction.

247. Advanced Business Tax (3) I. Simmons
Discussion—3 hours. Prerequisite: course 220 and 238. Continued course 238. Focuses on the federal income tax considerations involved in the transfer of business assets including corporate liquidation as an asset acquisition technique, corporate reorganizations, divisive reorganizations, and the transfer of corporate attributes in a reorganization transaction. Also examines tax planning for affiliated groups of corporations.

248. International Law (3) I. Glennon
Discussion—3 hours. Prerequisite: course 217 recommended. This introductory course covers basic international law concepts such as statehood and recognition, treaty law and customary international law; use of force; human rights and war crimes; expropriation; the relationships between international law and national law; and the jurisprudence of international law.

249. Comparative Law (2) II. Juenger
Discussion—2 hours. Comparison of methods and sources of common and civil law; background and structure of the principal civil codes; analysis and study of problems arising in international transactions.

250. Jurisprudence (2) I. Oakley
Seminar—2 hours. Course considers the relationship between justice and law with special attention to the problem of how judges should decide hard cases where the content of the law is in doubt. To what extent should a judge's personal convictions about justice affect decision making? To what extent should the judge weigh the rights of the parties to a suit? Does it matter if the judge is interpreting precedent rather than legislation? Introductory readings of a general and synthetic nature will be followed by a sampling of readings, and seminar essays analyzing particular problems of adjudication. Grading will be based on active class participation and on an original paper which meets the standards of the advanced legal writing requirement.

251. Labor Law (4) II. Bartosic
Seminar—4 hours. Survey of the legislative, administrative, and judicial regulation of labor relations. Focus on the historical development of labor law, the rationale for national legislation on labor relations, and the recognition, the negotiation and administration of collective bargaining agreements, the union's duty of fair representation, legally of strikes, picketing, boycotts, and employer interference with employee-conducted activities. Emphasis on labor reform.

*Course not offered this academic year.
252. International Litigation (2) J. Juenger
Discussion—2 hours. Current developments in international law, conflict of laws, civil procedure, arbitration and comparative law in the context of international commercial transactions and across national boundaries. Topics covered include jurisdiction, the enforcement of judgments, the relative merits of arbitration and adjudication, international discovery and interpleader of foreign parties.

253. Products Liability (3) J. Hogan
Discussion—3 hours. Civil action for harm to the consumer resulting from dangerous and defective products.

254. American Legal History (2) I. Bartosic
Seminar study of the relationship between legal change and social and political movements. Between 1953 and 1969, the Warren Court made enormous changes involving civil rights, civil liberties, criminal procedure, federal-state relations, and legislative apportionment. These legal developments occurred in the midst of the McCarthy period and the Cold War, the civil rights struggle, the anti-war movement, the popularity of folk music and rock and roll, the beginning of the space age, the Great Society legislative program and economic prosperity. What is the relationship between legal change and social and political change? Focus on the modern Civil Rights Movement and assessment of the influence of law, lawyers, lower courts, and the movement itself on the Court and the elected branches of government. Emphasis on the need to understand law in a social and historical context. Satisfies advanced legal writing requirement. Limited enrollment.

255. Pension and Employee Benefit Law (3) II. Wolf
Discussion—3 hours. Federal regulation and taxation of private pensions and employee benefits. The course will focus on the Employee Retirement Security Act of 1974 (ERISA) and will deal with such topics as the funding of benefit plans, integration of private and public retirement security, funding, spousal interests (both during marriage and after divorce), retiree health and welfare plans, and preemption of state law. Fiduciary problems will also be examined, particularly in the area of corporate takeovers and plan investments. Problems surrounding plan terminations will also be considered, including bankruptcy issues. Pension Benefit Guaranty Corporation insurance, as well as the issue of asset reversions to employers in the case of overfunded plans.

256. Land Use Planning (3) J. Kirkland
Discussion—3 hours. Legislative, judicial, and administrative methods used to facilitate the rational use of land. Legal topics considered within this context will include zoning, subdivision regulation, nuisance, eminent domain, general plans, and environmental controls affecting land use.

257. Foreign Relations Law (3) Discussion—3 hours. Prerequisite: course 217 or consent of instructor. Seminar covers subjects such as the war power, the treaty power and executive agreements, and arms sales and military assistance, the recognition power, the negotiation power, the scope of the appropriations power as a check on executive activities, and other separation-of-powers issues generated by the establishment of international law and constitutional law. Class presentation and required seminar paper will satisfy the advanced legal writing requirement. Limited enrollment.

258. Professional Responsibility (1) J. Wylick; II. Perreault
Discussion—1 hour. Study of ethical duties and responsibilities under the American Bar Association Code of Professional Responsibility, the Model Rules of Professional Conduct and the Code of Judicial Conduct. Required of all students for graduation. (S/U grading only).

259. Disability Rights Law (2) I. Wolinsky
Discussion—2 hours. Survey of legal issues involving the disabled. (S/U grading only).

260. Employment Discrimination (3)
Discussion—3 hours. Consideration of employment discrimination based upon race, color, religion, sex, national origin, age, and sexual orientation. Course will focus on Title VII of the Civil Rights Act of 1964, and include coverage of Art. 1981, Art. 1983, the Equal Pay and Age Discrimination Acts. State fair employment laws will also be discussed.

262. Antitrust (3) I. Wylick
Discussion—3 hours. Study of the federal antitrust laws including price fixing, limits on distribution, tying arrangements, monopolization, and mergers.

263A. Trial Practice I (3) I. I. Nelson
Discussion—2 hours; laboratory—2 hours. Prerequisite: course 219. Introduction to the preparation and trial of cases, featuring lectures, videotapes, demonstrations and arguments in civil and criminal cases. Litigation in a civil or criminal case will be held on Tuesday, Wednesday, or Thursday evening. Limited enrollment. (S/U grading only).

263B. Trial Practice II (2) I. Nelson
Discussion—3 hours. (Intersession course 263A.) Advanced trial practice and litigation skills course featuring student preparation of and participation in mock trials with occasional class sessions. Limited enrollment. (S/U grading only).

264. Water Law (3)
Discussion—3 hours. Property rights in surface waters, including riparianism, prior appropriation and federal reserved rights; water administration institutions, including the federal reclamation program; the law of interstate water rights in ground water. Emphasis is placed upon California water law and policy.

265. Natural Resources Law (2) I. Dunn
Discussion—2 hours. An exploration of the origin, contemporary scope and potential of the public trust doctrine. This common law doctrine, long of significance with regard to the ownership and use of coastal lands, has recently also become very important for California water rights. Many in the environmental community have suggested applications of the doctrine in other areas, e.g., wildlife and wilderness protection. Students will read materials on the public trust doctrine and on the closely related doctrine of state sovereign ownership and will prepare several short papers. No final examination. Limited enrollment.

266. Wildlife Protection Law (2)
Discussion—2 hours. Course will encompass federal and state laws directed at wildlife protection, as well as international norms. Required paper will satisfy the advanced legal writing requirement.

267. Civil Rights Law (3) Discussion—2 hours. Course surveys racial patterns in American law. May include the following: history of racial discrimination in public facilities, voting, the administration of criminal justice, public schools, housing, and employment. In addition, consider remedies for race discrimination, including actions under: 42 U.S.C.A. §§ 1981, 1982, 1983 and 1985; the Civil Rights Act of 1964; Title V (programs receiving federal aid); Title VII (employment); the Voting Rights Act of 1965.

268. Jewish Law Seminar (2) I. Rabin
Discussion—2 hours. The term "Jewish Law" refers to those subjects that may be taught in an American law school as they have been approached by the Jewish legal system. This system is based primarily on the Talmud and on the commentaries and decisions that are derived from it. Jewish law is of interest to American lawyers not for its immediate practical value, but because it is a foreign legal system that is one of the oldest in the world, and one that has faced many of the problems now facing American law. The Jewish law is purportedly based on immutable religious law, changing conditions over the centuries have encouraged methods of adaptation that are reminiscent of American law. Each student will be required to prepare and present a paper that would fulfill the advanced legal writing requirement. Neither a knowledge of foreign language nor a previous exposure to Jewish law is necessary. Limited enrollment.

269. Corporate Finance (3) I. Ayer
Discussion—3 hours. Focuses on how businesses raise money. Consists of two parts: a study of elementary "finance theory" and consideration of how this theory is applied by courts and legislatures.

270. International Financial Transactions (2) Discussion—2 hours. Consideration of selected problems in international business transactions.

271. Labor Law Seminar (2) I. Bartosic
Seminar—2 hours. Prerequisite: course 251 or consent of instructor. Seminar will focus on a critical legal studies perspective, including cases pending before the Supreme Court, impasse resolution in the public and private sectors, union autonomy and individual rights. The right of collective bargaining is recognized, the assumptions and myths of American labor laws, labor relations of multinational corporations, and comparative industrial democracy (codetermination, work councils, Japanese labor relations, and self-management and ownership). Emphasis will be on law reform. Satisfies advanced legal writing requirement. Limited enrollment: 12 students.

272. Family Law (Long Course) (3) I. Brun
Discussion—3 hours. Designed for the student with a substantial interest in family law. Emphasizes the legal, social, and emotional aspects of parent-child relationships, including decisions concerning medical care, neglect, dependency, abuse, foster care, termination of parenthood, adoption, artificial insemination, surrogacy, paternity, legitimacy, surrogates, birth control, abortion, child support and child custody. How attorneys, mental health professionals and the judiciary in California should deal with these issues (e.g., interviewing, counseling, and mediation) are also considered.

273. Current Issues in Family and Marital Property (2) I. Brun
Seminar—2 hours. Prerequisite: course 225, course 230 or 272, or consent of instructor. Examination in depth of important current issues in the fields of family and marital property law. Heavy emphasis on law reform, including some legislative, and the legislative process. Each student will select one issue for development and presentation in the seminar. A research paper or draft bill and supporting analysis is required. A more lengthy paper with additional unit credit may be arranged with consent of instructor to satisfy the legal writing requirement.

274. Intellectual Property (3) I. Kurtz
Discussion—3 hours. Study of the protection of intellectual property and unfair competition. Topics considered include trade secrets, patents, trademarks, misleading and false advertising, and copyrights.

275. Complex Litigation (3)
Discussion—3 hours. Topics: issues that frequently arise in large, complex litigation involving multiple parties and multiple claims. The class will read and discuss materials, including case studies, raising issues of advanced civil procedure, including, but not limited to motion practice and sanctions, the complexities of litigating class actions, multidistrict litigation, judicial management of litigation, the attorney-client privilege and work product doctrine, discovery and "discovery abuse," and the settlement of multi-party actions. Although some of these issues are touched on in the first-year civil procedure course, we will develop these issues and discuss some of the issues currently being litigated. The class will also discuss personal moral dilemmas that attorneys may face in complex litigation.

276. The Juvenile Justice Process (2)
Discussion—2 hours. Conceptual and philosophical basis of a separate juvenile justice process; police investigation, apprehension, and diversion; probation intake and detention; juvenile court hearings and disposition; juvenile community corrections. Focus is on the emerging role of counsel at each phase of the process. Guest speakers and field trips.

277. Advanced Civil Procedure (2) I. Perschbach
Discussion—2 hours. Course treats in-depth topics included in the first-year course in a greater detail and characteristic of modern multi-party, multiaction litiga.
tion. Areas studies include jointers of parties in complex federal court litigation, class actions, discovery, judicial management of litigation, multidistrict litigation in federal courts, and preclusion (res judicata and collateral estoppel). Not all topics will be covered in any given year.

276. Pretrial Skills (3)
Discussion—3 hours. Not open to students who have completed course 297. Course uses a series of role-playing exercises and class discussions to introduce students to a set of non-trial skills basic to the practice of law. The course concentrates on client interviewing and counseling, but will also include exercises in witness interviewing, negotiation, drafting of pleadings, discovery, and dispositive motions. It is an expanded version of the client counseling course. Limited enrollment.

279. Public Sector Labor Law (2) Il. Barose
Seminar—2 hours. Prerequisite: course 251 or consent of instructor. Application of private sector labor law doctrines to the public sector. Emphasis is on the four California public sector statutes and the impact of constitutional law on public employees. Class presentations are based on advanced legal writing requirements. Limited enrollment.

280. Advanced Legal Writing Seminar (2) Il. Wydick
Seminar—2 hours. How to write a variety of legal documentation, including memoranda, contracts, briefs, and cases. Outside readings will be assigned weekly. Each student will complete an individual writing project in lieu of final examination. The writing project will satisfy the law school advanced legal writing requirements. Limited enrollment. (SU grading only)

281. A.I.D.S. and the Law (2)
Discussion—2 hours. This survey course will focus on the legal issues raised by A.I.D.S. in a variety of contexts, including medical treatment and public health, personal and financial affairs, and discrimination in employment, housing and public accommodations. Students will be required to participate in class presentations.

282. Remedies (1) Il. Amar
Discussion—3 hours. Study of common law remedies: damages, specific performance, injunctions, and replevin. Focus of course will be on the efficiency, fairness, and practicality of the alternative remedies available to the practitioner and the court.

284. Advanced Criminal Procedure (3) Il. Parnes
Discussion—3 hours. Essential to those who wish to handle criminal cases. In particular, it treats bail, pretrial proceedings, plea bargaining, trial by jury, and sentencing.

285. Environmental Law (3)
Discussion—3 hours. Introduction to the law dealing with environmental impacts, particularly the National Environmental Policy Act, to pollution control law. Particular emphasis is given to the Clean Water Act and various statutes on toxics in the environment. An introduction to the Clean Air Act is also provided.

286. Environmental Law Seminar (2) Il. Dunning
Discussion—2 hours. This seminar provides an in-depth exploration of important problems in contemporary environmental law. Often the seminar concentrates on how elements of discrete doctrinal areas of the statute English. Writing exercises and ecosystem protection in spring 1990, the ecosystem will be addressed with the San Francisco Bay-Sacramento/San Joaquin estuary, and the element of water quality and pollution control law, land use planning law, wetlands law (endangered species protection) will examined.

287. Public Land Law (2) Il. Dunning
Discussion—2 hours. Legal aspects of federal land management, including the history of public land law, authority over federal lands and specialized law dealing with particular natural resources and uses found on federal lands (mining, timber, range, recreation and preservation). Limited enrollment.

288. Advanced Constitutional Law Seminar (2) Seminar—2 hours; paper. Explores in-depth selected topics or problems in constitutional law and theory. Topics may include public choice theory, the public/private distinction, community-based theories of constitutional order, theories of judicial review, theories of the First Amendment, the nature of constitutional law, theories of democracy, equality, remedies, powers of speech, substantive due process, equal protection, affirmative action, and constitutional litigation. Satisfies advanced legal writing requirement. Limited enrollment.

289. Toxicology (2)
Discussion—2 hours. Government efforts to regulate the release of toxic chemicals to the environment and to clean up existing toxic dump sites. Toxic topics — personal injury actions related to toxics in the environment — are included.

290. Criminal Justice Administration Seminar (2) Il. Parnes
Seminar—2 hours. Consideration of current reform efforts in the criminal justice system. Emphasis will be on the pre-trial process. Selected topics will include bail reform and pre-trial detention, criminal discovery, and the charging process. Class presentations are based on advanced legal writing requirements.

291. International Trade Law and Latin American (3) Il. Smith
Discussion—3 hours. Covers the role of the executive, legislative, and judicial branches of the United States with respect to international trade policy as it relates to Latin America. International topics include the General Agreement on Tariffs and Trade (GATT), the GATT Codes, the Uruguay Round, the United States Free Trade Agreement, and the relationship between Latin American countries. Satisfies the advanced legal writing requirement.

292. Immigration Law and Procedure (3) Smith
Seminar—3 hours. Course will survey a brief history of U.S. immigration and policy and compare the policies of other countries; use of primary and secondary sources of immigration law; federal agency relationships (Department of Justice); status of nonimmigrants (temporary) and immigrants into the United States; the world-wide quota and preferential systems; family and employment relationship critical to securing favored immigrant status; status deferrals; deportation procedures, naturalization and citizenship status. Students will participate in mock deportation Hearing. Limited enrollment.

293. Public Interest Law (3) Il. Johnson
Seminar—2 hours. Examines the problems associated with providing legal services to people and interests in American society traditionally unable to afford such services. The class will discuss selected readings that review penal law; administrative law; judicial appeals; federal and state judicial relief; citizenship and naturalization. Students may also participate in mock mediation and asylum hearings.

294. Problems in Fiduciary Administration (2) Il. Oehler
Seminar—2 hours. Prerequisite: course 221. Select topics in the area of fiduciary administration of estates and trusts. Required class presentation and research paper will satisfy the advanced legal writing requirement. Limited enrollment.

295. Securities Regulation II (3)
Discussion—2 hours. Prerequisite: course 213 or 215, or consent of instructor; course 236 recommended. Principal focus is the Securities Exchange Act of 1934 and the regulation of securities markets. Topics include the oversight of the exchange and over-the-counter market, market efficiency, continuous reporting, institutional investors, franchise voting and going-private transactions, regulation of securities markets and securities professionals, responsibilities of securities lawyers, transactions, securities fraud, and enforcement of the securities acts.

296. Copyright and Entertainment Law (3)
Discussion—3 hours. First half of course will involve a comprehensive consideration of the law of copyright with emphasis on its applications to motion pictures, music, television, and theatre. Second half of course will involve a study of other legal problems in the entertainment industry, including misappropriation, protection of titles, characters, group names, slogans, and the rights of privacy and publicity.

297. Client Interviewing and Counseling (2) Il. Smith
Discussion—2 hours. Students who have taken course 278 cannot enroll in this course. Course uses a series of role-playing exercises and class discussions to introduce students to a set of non-trial skills basic to the practice of law. The course concentrates on client interviewing and counseling but may also include exercises in witness interviewing and negotiation. Limited enrollment.

298. Group Study (1-4) 1-1. The Staff
Guides students (not freshmen or sophomores) in an organized study dealing with one or more topics. The class is limited to 25 students. The class is limited to 25 students.

299. Research in Legal Problems (1-4) 1-1. The Staff
Students may receive credit for individual research projects, subject to the following regulations: (1) the project may extend over no more than two semesters; (2) the student must assemble the list of members of the group must be submitted to Dean's Office at least 4 weeks prior to opening of the semester in which the project is to begin; (3) the group must be approved by the faculty advisor and will have authority to approve the program and the amount of credit sought; (4) changes in the program or in membership of the group must be approved by the faculty advisor and normally will be approved only prior to the semester involved; (5) group members must conduct a weekly seminar session to be arranged by them; and (6) each member of the group must submit an individual paper or an approved alternative growing out of the seminar subject to the faculty advisor; (7) SU grading only unless the entire group requests letter grades in advance.

300. Research in Legal Problems (1-4) 1-1. The Staff
Students may receive credit for individual research projects, subject to the following regulations: (1) the project may extend over no more than two semesters; (2) the student must assemble the list of members of the group must be submitted to Dean's Office at least 4 weeks prior to opening of the semester in which the project is to begin; (3) the group must be approved by the faculty advisor and will have authority to approve the program and the amount of credit sought; (4) changes in the program or in membership of the group must be approved by the faculty advisor and normally will be approved only prior to the semester involved; (5) group members must conduct a weekly seminar session to be arranged by them; and (6) each member of the group must submit an individual paper or an approved alternative growing out of the seminar subject to the faculty advisor; (7) SU grading only unless the entire group requests letter grades in advance.
argue six times before a moot court. Both courses, 410A and 410B, must be taken in order to qualify for intercollegiate competitions. Limited enrollment. (SU/GR grading only.)

410B. Appellate Advocacy (Moot Court) (1) I, II. The Staff Prerequisite: course 410A. Continuation of course 410A. Participants in 410B research and write an appellate brief and argue the case twice before a moot court. Both courses, 410A and 410B, must be taken in order to qualify for intercollegiate competitions. Limited enrollment. (SU/GR grading only.)

413. Interschool Competition (1-3) I, II. The Staff Prerequisite: consent of appropriate faculty adviser. Participation in interschool moot court and lawyering skills competitions. Consent is limited to students actually representing the School in the interschool competitions. Competition must be authorized by the appropriate faculty adviser. The faculty adviser may condition the award of academic credit for any particular competition on the performance of such additional work as may be reasonable to justify the credit. May satisfy advanced legal writing requirement. (SU/GR grading only.)

414. Moot Court Board (1) I, II. The Staff Prerequisite: course 410A-410B. Members of Moot Court Board may receive one credit for each semester of service on the board, up to a maximum of two credits for each academic year after certification by the Moot Court Board and approval of the faculty advisers to Moot Court Board. Limited enrollment. (SU/GR grading only.)

415. Trial Practice Honors Board (1) I. Members of the Trial Practice Honors Board administer the Trial Practice II course. Students may receive one credit for service on the Board. Credit is awarded upon approval of faculty advisers. (SU/GR grading only.)

416. Law Review Writer (1-2) I and II. Writing of an editorial or opinion paper for a law review. Credit is awarded only upon a six-month status as a member of the Law Review. Limited to students who may be granted a substantive position on the Law Review. Limited enrollment. (SU/GR grading only.)

417. Law Review Editor (2) I, II. The Staff Editors must have completed an editorialship and must show editorial writing skills requiring a substantial time commitment. Credit awarded only after satisfactory performance by the Editor-in-Chief of the Law Review and approval of the faculty advisers to the Law Review. Students may receive credits only if they serve as an editor. [Exceptional cases, students may petition to participate for one semester only and receive two credits.] (SU/GR grading only. Deferred grading pending completion of sequence.)

418. Environ Editor (1) I, II. The Staff The Editor-in-Chief of Environ may receive one credit for each semester of service. Credit must be approved by the faculty adviser to Environ. Only one person may receive this credit in any one semester. (SU/GR grading only.)

419. Advanced Writing Project (1-4) I, II. The Staff Completion of a writing project under the active and regular supervision of a faculty member in satisfaction of the legal writing requirement. Writing project must be individually authored work of rigorous intellectual effort of at least 20 typewritten, double-spaced pages, excluding footnotes. Project may take several forms, for example, a research paper or student brief, a memorandum of law, a proposed statute, a statutory scheme or set of administrative regulations (with explanatory comments), or a will or agreement (with explanatory comments). Advanced writing pro-
ject may also be undertaken in connection with another course or seminar to satisfy the legal writing requirement. Number of units for the writing project shall be approved by the faculty supervisor and will depend upon the scope of the writing effort. (Grading may be on a SU or letter-grade basis at the faculty supervisor’s discretion.)

425. Judicial Clinics (2 to 6 or 12) I, II. The Staff The Clinical Program—to be arranged. Prerequisite: relevant substantive and procedural courses as recommended. Students may arrange individual judicial clerkship clinical programs with state and federal judges of their choice with the approval of the Clinical Co-Counsel and of an individual faculty member. An introductory orientation seminar is required. Otherwise, the requirements for the program are the same as for Individual Clinicals (course 420). (SU/GR grading only.)

430. Clinical Program in Federal Taxation (2-6) I, II. The Staff Clinical Program. Prerequisite: courses 219, 227 and 283A recommended. This program affords students the opportunity to gain practical experience working full- or part-time in a District Attorney’s or Public Defender’s office in one of several surrounding counties for a minimum of 13 office hours per week. Students enrolled in the program engage in the full range of activities associated with their specific office with emphasis on observation and participation in factual investigation, interviewing, counseling, negotiating, motion practice, and trials under State Bar rules. Journals and seminar attendance are required. Limited enrollment. May be repeated for a total of 12 units. (SU/GR grading only.)

440. Clinical Program in Immigration Law (2 to 6 or 12) I, II. Smith Discussion. 12-18 hours. Client clinic course will include a seminar on immigration law practice, individual weekly case conferences with faculty supervisor and assigned immigration law cases. Students may represent clients in administrative law hearings in San Francisco and Petaluma for the course as a whole and maximum is 12. Each unit assumes four hours a week, including participation in the seminar, conference, and case research and development. Student may take the clinic for a minimum of 2 units. Limited enrollment. (SU/GR grading only.)

450. Clinical Program in Environmental Law (2-6) I. Dunning Clinical Program. Practical experience in environmental law. Students will work under the direct supervision of a government or private lawyer engaged in some form of environmental law work for a minimum of 8 office hours per week. (For purpose of this course, "environmental law" includes land use control by public means.) Students also will be required to complete a bi-weekly journal, noting, commenting upon, and reflecting upon their clinical experience. The class meets in occasional meetings of students enrolled in program. (SU/GR grading only.)

455. Clinical Program in Employment Relations (2 to 6 or 12) I, II. The Staff Clinical Program. Prerequisite: prior or concurrent enrollment in course 251 or 260 or consent of instructor. Practical experience in employment relations: private and public sector labor law, or employment discrimination. Students will work under the direct supervision of a government or private lawyer and will have the opportunity to participate in a range of activities associated with their specific office, with emphasis on observation and participation in various legal writing. (SU/GR grading only.)

460. Clinical Program in Public Interest (2 to 6 or 12) I, II. Johnson Clinical—2 to 6 or 12 hours. Prerequisite: completion of concurrent enrollment in course 293 recommended. Students work in a public interest office in a nonprofit organization. Journals and attendance at group meetings are required. Full-time clinical students must complete an evaluative final paper of approximately 10 pages. Hours completed in this interest setting may be applied toward the practical requirement for the Public Interest Law Program. (SU/GR grading only.)

465. Clinical Program in Administrative Law (2-6) I, II. Gandara Clinical—24 hours. Prerequisite: course 235 (may be taken concurrently) or consent of instructor. For students interested in a work experience in an administrative law setting. Students will work under the direct supervision of an administrative law judge, hearing officer, or government attorney. Placement assistance will be provided by the instructor. A goal of this clinical will be a breadth of experience in the areas of formal adjudication, informal adjudication, rule-making, and judicial review. Students will be required to meet monthly as a group to share experiences and maintain observational journals. (SU/GR grading only.)

470. Clinical Program in the Administration of Criminal Justice (2 to 6 or 12) I, II. The Staff Clinical program. Prerequisite: courses 219, 227 and 283A recommended. This program affords students the opportunity to gain practical experience working full- or part-time in a District Attorney’s or Public Defender’s office in one of several surrounding counties for a minimum of 13 office hours per week. Students enrolled in the program engage in the full range of activities associated with their specific office with emphasis on observation and participation in factual investigation, interviewing, counseling, negotiating, motion practice, and trials under State Bar rules. Journals and seminar attendance are required. Limited enrollment. May be repeated for a total of 12 units. (SU/GR grading only.)

480. Clinical Program in Prison Law (2-6) I, II. The Staff Clinical Program. Provides practical experience in providing legal services to real clients who have various problems related to their incarceration in state prison. The services require analysis and application of Constitutional Law, state statutory law, agency regulations, and the rules of professional responsibility. Students will work under the direct supervision of the Prison Law Clinical Director, and will be assigned a portion of the director’s caseload. Students will be required to follow the law office procedure of the clinic and employ skills such as interviewing, research, writing, negotiating, and the preparation of legal documents to be filed in court. (SU/GR grading only.)

495. Instruction in Legal Research and Writing Skills (1-2) I. Bernhardt, II. Bernhardt, Jacobs, Johns Participants will assist in instructing legal research and writing for first-year students under the direction of the legal research and writing instructors. Approval of the research and writing instructors is required for enrollment. Participation must consist at least once in the legal research program and once in the legal writing program. One unit will be given in the fall semester for legal research instruction and two units in the spring for legal writing instruction. (SU/GR grading only.)

Linguistics

(College of Letters and Science)
Steven G. Lapointe, Program Director
Program Office, 922 Sproul Hall (916-752-9333)

Committee in Charge
Wilbur A. Benveniste, Ph.D. (Linguistics)
Diane Brentari, Ph.D. (Linguistics)
Patrick Farrell, Ph.D. (Linguistics)
Steven G. Lapointe, Ph.D. (Linguistics)
Mara I. Manolli-Manea, Ph.D. (French)
Edmundo C. Clevel, Ph.D. (Linguistics)
Lenora A. Temp, Ph.D. (Linguistics)
Maximo Torrebianca, Ph.D. (Linguistics)
Aram Yengoyan, Ph.D. (Anthropology)

Faculty
Wilbur A. Benveniste, Ph.D., Associate Professor
Diane Brentari, Ph.D., Assistant Professor
Nina F. Drenkens, Ph.D., Assistant Adjunct Professor
Patrick Farrell, Ph.D., Assistant Professor
James Gallant, Ph.D., Associate Professor
Steven G. Lapointe, Ph.D., Associate Professor
Mara I. Manolli-Manea, Ph.D., Professor (French)
Minor Program Requirements:
The minor in Linguistics is designed to provide the student with a basic knowledge of linguistic analysis. It would be appropriate for students interested in any aspect of language use.

Courses in Linguistics

Lower Division Course
2. Elementary American Sign Language (5) I. The Staff. Recitation—4 hours; discussion—1 hour. Prerequisite: course 1. Introduction to American Sign Language grammar and vocabulary, with emphasis on conversational use.
3. Intermediate American Sign Language (5) II. The Staff. Recitation—4 hours; discussion—1 hour. Prerequisite: course 1. 100. 120. Continuation of course 1.

Upper Division Courses
109. Languages of East Asia (4) I. Watschinger. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Survey of languages and language families of East Asia, their cultures and distributions.
110. Historical Linguistics (4) II. Bennewitz. Lecture—3 hours; discussion—1 hour. Prerequisites: courses 1 and 109. Description and methods of the historical study of language; sound change, morphological change, syntactic change, semantic change.
115. Phonetics (4) I. Brentari. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Introduction to articulatory phonetics with some attention to the fundamentals of acoustics.
116. Language, Gender and Society (4) II. Timm. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Investigation of real and putative (stereotyped) sex-linked differences in language structure and usage, with a consideration of some social and psychological consequences of such differences.

Focus is on English, but other languages are also discussed. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Linguistics 1 or Anthropology 4.

115. Chicano Sociolinguistics (4) I. Timm. Lecture—3 hours; term paper. Prerequisite: course 1 and Spanish 3, or the equivalent. Topics covered include the linguistic features of Chicano Spanish, Spanish-American code-switching, and role of language use, attitudes about Spanish and English, Chicano bilingualism and education. Offered in alternate years.

116. The Spanish Language in the United States (4) I. Timm. Lecture—3 hours; term paper. Prerequisite: Spanish 23 or the equivalent, and course 1 or Spanish 132. Linguistic features of the varieties of the Spanish language spoken in the United States. Prerequisites: knowledge of Spanish, English, and sociolinguistics.

210. Semantics (4) I. Ojeda. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Introduction to the study of meaning: the nature of the linguistic sign, the structure of the lexicon, and the semantics of sentence.

211. Introduction to Psycholinguistics (4) II. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Study of psychological issues relating to language and to the implications of research in psychology for linguistics.

212. Language Development (4) III. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. The study of language development: the influences of environment on language acquisition and development.

213. Phonological Analysis (4) I. Brentari. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Introduction to and application of phonological theory.

214. Grammatical Analysis (4) I. Lattouf, Farrell. Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. The study of syntactic analysis, an essay in types of syntactic and semantic phenomena in natural languages. Emphasis will be on developing skills and data analysis, rather than on investigating formal aspects of the theoretical framework to be employed.

216. Introduction to Phonological Theory (4) III. Brentari. Lecture—3 hours; discussion—1 hour. Prerequisite: course 13. A brief introduction to contemporary phonological theory, with emphasis on autosegmental, metrical, and lexical theory.

217. Introduction to Syntactic Theory (4) II. Farrell, Lappin. Lecture—3 hours; discussion—1 hour. Prerequisite: course 14. 150. 140. A brief introduction to syntactic analysis, an essay in types of syntactic and semantic phenomena in natural languages. Emphasis will be on developing skills and data analysis, rather than on investigating formal aspects of the theoretical framework to be employed.

219. Language Universals and Typology (4) II. The Staff. Lecture—3 hours; term paper. Prerequisites: course 215. May be taken concurrently.
common features of all human languages and the classification of languages in terms of their structural features; theories of universal grammar; detailed discussion of a non-Indo-European language and comparison with English.

172. Language Structures (4) III. The Staff Lecture—3 hours; term paper. Prerequisite: courses 102, 139, 140. In-depth study of the structure of a particular language or members of a language family or area. May be repeated for credit.

175. Biological Basis of Language (4) III. Drorkens Lecture—4 hours; laboratory—1 hour. Prerequisite: course 1 or consent of instructor. Overview of issues in the field of neurolinguistics and techniques used to explore representation of language in the human brain.

192. Internship in Linguistics (1-12) I, II, III. The Staff (Term in charge)
Internship—3-36 hours; two written reports. Prerequisite: course 1 or the equivalent. Internship applies linguistic-related skills to a fieldwork project in areas such as media, law, or industry, approved by organizations.

194H. Special Study for Honors Students (1-5) I, II, III. Staff (Direct in charge)
Individual study—1-5 hours. Prerequisite: open only to linguistics majors of senior standing who qualify for honors program. Guided research under the direction of a faculty member approved by the Program Director, leading to a senior honors thesis. (P/NP grading only.)

197T. Tutoring in Linguistics (1-4) I, II, III. The Staff (Chairperson in charge)
Prerequisite: upper division standing with major in linguistics or department chairperson. Leading small voluntary discussion groups affiliated with one of the department's regular courses. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: senior standing in Linguistics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II. The Staff (Term in charge)
Graduate Courses

209. Advanced Phonetics (4) II. Brentar Lecture—4 hours; discussion—1 hour. Prerequisite: course 109. Exploration of the physiological basis of speech articulation and an introduction to acoustic phonetics. Offered in alternate years.

210. Advanced Semantic Theory and Analysis (4) II. Ojeda Lecture—3 hours; term paper. Prerequisite: course 120, 139, 140. Advanced critical exploration of contemporary theories of semantic semantics. Offered in alternate years.

220. Romance Linguistics (4) III. Manes-Manuel Seminar—3 hours; term paper. Prerequisite: one course from the following: courses 102, 139, 140. The development of the major Romance languages from Proto-Romance to the modern era. Selected topics in the structure of modern Romance languages. Option of focus on phonology, syntax, or historical linguistics. Offered in alternate years.

225A. Modern Linguistic Theory: Structuralism (4). II. Manes-Manuel Lecture—3 hours; term paper. Prerequisite: courses 139, 140. Survey of the development of structural linguistics from de Saussure to the 1950s. Offered in alternate years.

225B. Modern Linguistic Theory: Generative Grammar (4) II. Ojeda Lecture—3 hours; term paper. Prerequisite: courses 139, 140. Survey of the development of generative grammar and its offshoots from the 1950s to the present. Offered in alternate years.

235. Advanced Phonological Theory and Analysis (4) III. Brentar Lecture—3 hours; term paper. Prerequisite: course 150, Critical overview of current phonological theories. Offered in alternate years.

250A-250B. 250C-250D. Topics in Linguistic Theory and Methods (4-4-4-4) II, III, IV. The Staff Seminar—3 hours; paper. Prerequisite: graduate standing and consent of instructor. Introduction to current problems and areas of linguistics.

265. Advanced Syntactic Theory and Analysis (4) III. Farrell Lecture—3 hours; term paper. Prerequisite: course 165. Critical survey of contemporary theories of syntax, with concentration on functionalist theories. Offered in alternate years.

280. Theory of English as a Second Language (4) I. The Staff Lecture—3 hours; term paper. Theoretical issues that have influenced the teaching of English as a second language. Contributions of various disciplines—psycholinguistics, sociolinguistics, and cognitive psychology— to English as a second language instruction.

281. Research on Second Language Acquisition (4) IV. Narko Lecture—2 hours; laboratory—1 hour; term paper; computer project. Prerequisite: upper division or graduate standing. Analysis of existing theories of language acquisition. Topics include contrasts of I/II, II acquisition: current theories of L2 such as the natural order and input hypotheses, as well as effects of individual variation, education, motivation on L2, research design and basic statistical analyses.

282. Individual and Social Aspects of Bilingualism (4) II. Tirm Lecture—3 hours; term paper. Broad overview of bilingual and multilingualism by theoretical analysis and descriptive research topics covered range from language processing in bilinguals to code-switching to language as a political issue in multilingual states.

287. English as a Second Language Teaching (Tutoring) (4) III. Clinic—4 hours. Prerequisite: course 300. English 302 and 303 may be taken concurrently. Teaching classes for ESL graduate students in the UC Davis ESL Clinic in pronunciation, listening, reading, writing, etc.; aiding the ESL undergraduate composition classes; tutoring foreign graduate student; TAs in pronunciation and observing and critiquing off-campus ESL classes. Does not fulfill any concentration toward the M.A. May be repeated for credit. (S/U grading only.)

289. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: graduate standing. (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (S/U grading only)
Professional Course
300. The Teaching of English as a Foreign Language (4)
Lecture—3 hours; laboratory—3 hours. Prerequisite: English 105A or course 109 or consent of instructor. Revised methods of teaching English as a foreign language. Option of focus on phonological analysis.

301. Materials of TESOL (4).
Lecture—4 hours. Prerequisite: course 300 or consent of instructor. Introduction to the language acquisition and teaching of ESL. Curricula and proficiency assessment instruments in all areas of language acquisition (pronunciation, reading, listening comprehension, etc.). Developing lessons, and teaching of selected language acquisition areas in the TESOL ESL clinic. Evaluating (and adapting) published ESL materials.

302. Recent Research and Special Projects in TESOL (4) III.
Lecture—4 hours. Prerequisite: course 300 and 301. Review of recent research in second language acquisition and the teaching of English to speakers of other languages. Continues teaching and tutoring in the TESOL ESL clinic. Each student also designs and reports on a classroom research project.

391. Oral English for ESL Students (3) I, II, III. The Staff Lecture—2 hours; laboratory—2 hours. Prerequisite: open only to non-native speakers of English students with priority enrollment to international student teaching assistant; completion of any required ESL course or consent of instructor. Course gives non-native English-speaking students, particularly international student teaching assistants, intensive work in oral English to increase fluency, accuracy, and use of appropriate discourse strategies in academic settings (e.g., seminar, discussion, laboratory). Course may be repeated for credit with consent of coordinator. (S/U grading only.)

Linguistics
(A Graduate Group)

Steven G. L. Sipos, Ph.D., Chairperson of the Group
Group Office, 922 Sprout Hall (916-752-3933/1219)

Faculty: The Group includes faculty from eleven departments in the College of Letters and Science.

Graduate Study: The Graduate Group in Linguistics offers a program of study leading to the M.A. or Ph.D. degree. There are two tracks within the program, one concentrating on applied linguistics and TESOL and the other on general linguistics. Within the general linguistics track, the following areas are emphasized:

- (a) grammatical analysis and theory in syntax, morphology, semantics, and phonology.
- (b) sociolinguistics.
- (c) psycholinguistics and neurolinguistics.
- (d) linguistic description (contemporary or historical) of a particular language or group of languages.

In general, the M.A. in Linguistics at UC is intended to serve as preparation for advanced graduate work at the Ph.D. level, as a supplement to studies in related fields—especially anthropology, psychology, philosophy, the various languages, or as a major component in the training for a professional career (such as TESOL, speech therapy, and foreign language teacher). It is recommended that the student prepare to take the national examination administered by the M.A. May be repeated for credit. (S/U grading only.)

Preparation: Applicants to the M.A. program who do not have a bachelor's degree in Linguistics must complete the following courses in Linguistics from the undergraduate program: 109 (phonetics), 122 (semantics), 120 (linguistics), and 140 (grammatical analysis), and 165 (introduction to syntactic theory).

Requirements: The requirements for the two tracks differ. The track in general linguistics lapses under the Plan I set of requirements. Thirty units of upper division and graduate course work are required, and at the end of the course work the student must pass a written comprehensive examination. Students in both tracks must pass a foreign language reading examination.

Graduate Adviser: L.A. Tirm (Linguistics)
Literature in Translation

The following courses are open to students throughout the campus. The readings can be in English. Refer to departmental listing for the course description.

Chinese
- **10.** Modern Chinese Literature (in English)
- **104.** Twentieth-Century Chinese Fiction (in English)
- **105.** Western Influences on Twentieth-Century Chinese Literature (in English)
- **106.** Chinese Poetry (in English)
- **107.** Traditional Chinese Fiction (in English)
- **108.** Poetry of China and Japan (in English)
- **109A-I.** Topics in Chinese Literature (in English)

Classics
- **140.** Homer and Ancient Epic
- **141.** Greek and Roman Comedy
- **142.** Greek and Roman Novel
- **143.** Greek Tragedy

Comparative Literature
1. Great Books of Western Civilization: From Myth to Faith
2. Great Books of Western Civilization: From Faith to Reason
3. Great Books of Western Civilization: The Modern Crisis
4. The Short Story and Novel
5. Fairy Tales, Fables, and Parables
6. Myths and Legends
7. Literature of Faraday and the Supernatural
8. Utopias and Their Transformations
9A-N. Master Authors of World Literature
10. Introduction to Women Writers
11. Dramatic Literature
12. *The Spiritual Quest
13. Man and the Natural World
14. Ethnic Minority Writers in World Literature
15. Literature of China and Japan
16. Literature of India and Southeast Asia
17. Women Writers
18. Thematic and Structural Study of Literature
19. Literary Theory and Criticism
20. Representations of the City
21. Myth in Literature
22. The Forms of Asian Literature
23. War and Peace in Literature
24A-G. Special Topics in Comparative Literature
25. The Modern Novel
26B. The Modern Drama
27A. Tragedy
28B. Comedy
29. Biography and Autobiography
30. The Middle Ages
31. The Renaissance
32C. Baroque and Neoclassicism
33. The Enlightenment
34. The Epic
35. The Novel
36. *Comparative Study of Major Authors
37A. Romanticism
38B. Realism and Naturalism
39. The Avant-Garde
40. The Contemporary Novel

Dramatic Art
- **20.** Introduction to Dramatic Art
- **156.** Theatre and Drama: Aeschyus to Machiavelli
- **157.** Theatre and Drama: Shakespeare to Schiller
- **158.** Theatre and Drama: Ibsen to Abebe
- **159.** Contemporary Experimental Theatre and Drama

English
- **171A.** The Bible as Literature: The Old Testament
- **171B.** The Bible as Literature: Prophets and New Testament

French
- **25.** Introduction to French Literature
- **112.** Masterpieces of French Drama
- **113.** Masterpieces of French Novel
- **114.** French Philosophical Literature

German
- **48.** Myth and Saga in the Germanic Cultures
- **49.** Freshman Colloquium
- **50.** Survey of German Culture
- **51.** Introduction to Literary Analysis
- **52A.** Great Books of German Culture in English Translation: Age of Faith
- **52B.** Great Books of German Culture in English Translation: Age of Reason
- **52C.** Great Books of German Culture in English Translation: Age of Relativity
- **110.** Older German Literature
- **111A-G.** Studies of Major Writers
- **112A-C.** Topics in German Literature
- **113.** Goethe's Faust
- **114.** The Faust Tradition before and after Goethe
- **115A.** German Literature since 1845
- **115B.** German Literature since 1945
- **116.** From Goethe's Werther to Today's Werthers
- **117A.** The Tristan Tradition: Medieval, Musical, Modern
- **117B.** The Nibelungen Tradition: Medieval, Musical, and Modern
- **117C.** The Parzival Tradition: Medieval, Musical, and Modern
- **198A.** Fin-de-siecle Vienna (The Swan Song of the Habsburg Empire)
- **198B.** Weimar Culture: Defeat, the Roaring Twenties, the Rise of Nazism
- **198C.** Germany of the Third Reich
- **119.** From German Fiction to German Film
- **140.** German Political Literature from the Middle Ages to the Present
- **141.** The Holocaust and Its Literary Representation
- **142C.** New German Cinema: From Oberhausen to the Present

Italian
- **25.** Italian Literature in Translation
- **139B.** Boccaccio, Petrarch and the Renaissance
- **139C.** Modern Italian Literature

Japanese
- **10.** Masterworks of Japanese Literature (in English)
- **115.** Introduction to Traditional Japanese Culture
- **116.** Japanese Literature in Translation: The Early Period
- **117.** Japanese Literature in Translation: The Middle Period
- **118.** Japanese Literature in Translation: The Modern Period
- **119.** Modern Japanese Literature: War and Revolution
- **120.** Modern Japanese Literature: Hero and Anti-Hero
- **121.** Japanese Culture through Films
- **122.** Poetry of China and Japan

Native American Studies
- **118A.** Native American Literature (the novel and fiction)
- **118B.** Native American Literature (non-fiction works by native authors)
- **118C.** Native American Literature (traditional literature and poetry)
- **118D.** Special Topics in Native American Literary Studies

Russian
- **41.** Survey of Nineteenth-Century Russian Literature
- **42.** Survey of Twentieth-Century Russian Literature
- **44.** Children's Literature in Russia
- **121.** Nineteenth-Century Russian Prose
- **122.** Twentieth-Century Russian Prose
- **126.** The Russian Theater
- **130.** Contemporary Soviet Culture
- **131.** Literature of Revolution
- **132.** Nature and Culture in the Soviet Union
- **137.** Dostoevsky
- **141.** Tolstoy
- **150.** Russian Culture
- **151.** Soviet Writers and Censorship
- **154.** Russian Folklore
- **156.** Representations of Sexuality in Russian Literature

Scandinavian
- **110.** Masterworks of Scandinavian Literature in Translation
- **111.** Swedish Film as Narrative

Spanish
- **34.** Mexico in Its Literature
- **35.** Survey of Mexican Culture
- **149.** Latin-American Literature in Translation
- **150.** Masterpieces of Spanish Literature

Management, School of

Robert H. Smiley, Ph.D., Dean
School Office, 106A OAG 4 (916-752-7362)

Faculty
- Peter Algert, Ph.D., Assistant Professor
- Brad Barber, Ph.D., Assistant Professor
- Nicole B. Biggar, Ph.D., Professor (Management, Sociology)
- George Bittlingmayer, Ph.D., Associate Professor
- David S. Bunch, Ph.D., Assistant Professor
- Richard P. Castanias, Ph.D., Associate Professor
- Peter Ciark, Ph.D., Professor
- Massimo Darragh, Ph.D., Associate Professor
- Scott Davis, Ph.D., Assistant Professor
- Richard C. Dorf, Ph.D., Professor (Management, Electrical and Computer Engineering)
- Paul A. Griffin, Ph.D., Professor
- Michael Hagerby, Ph.D., Associate Professor
- John Lyon, Ph.D., Assistant Professor
- Michael Maher, Ph.D., Professor
- Alexander F. McCauley, Ph.D., Professor (Agricultural Economics)
- Donald Palmer, Ph.D., Associate Professor
- David M. Rocke, Ph.D., Professor
- Jerome J. Saron, B.S., Ph.D. (hon.), Senior Lecturer (Management, Electrical and Computer Engineering)
- Donald M. Topka, Ph.D., Professor
- Chih-Ling Tsai, Ph.D., Associate Professor
- Gary M. Welton, Ph.D., Professor (Management, Economics)
- David Woodruff, Ph.D., Assistant Professor

Courses in Management

Lower Division Course
- **100.** Introduction to Financial Accounting (3) Griffin

Course not offered this academic year.
Graduate Courses
(Corp Courses)

201A. Financial Accounting and Reporting (3) Lyon
Lecture—3 hours. Introduction to the basic principles of accounting, financial reporting, and policy with special emphasis on analysis, evaluation, and evaluation of published corporate financial statements. Topics include income measurement and valuation, assets and liabilities, owner's equity and incorporate investments.

201B. Management Accounting and Control (3) Maher
Lecture—3 hours. Prerequisite: course 201A. Provides an introduction to the preparation, analysis, and evaluation of financial statements, cost accounting, management planning and control, budgeting, performance evaluation, and investment decision making.

202. Organizational Behavior (3) Palmer
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Introduction to analysis of social process within organizations. Topics include organization of microdynamics, informal relations, leadership theories, socialization processes, power and conflict, goal setting, decision-making and organizational culture. Consideration of alternative theoretical models.

203. Organization Theory (3) Biggart
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; course 202. Analysis of structuring of organizations including differentiation, integration, and alternative structural configurations. Examination of technological and sociotechnical constraints on organizations. Organizational processes, organizational change, and organizational roles.

204. Economic Analysis (3) Castanias
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; introductory knowledge of microeconomics. Economic reasoning applied to the analysis of economic situations, firms, and governmental bodies. Market forces and the price system. Corporate strategy and industrial organization.

205. Economic Analysis A (3) Bittlingmayer
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; course 204. Continuation of course 204. Analysis of forces behind the supply of capital and labor. Examination of market efficiency, externalities, market failure, and public-policy responses.

206. Evaluation of Policies and Programs (3) The Staff
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; courses 204, 205. Interpersonal allocation of economic resources by individuals, firms, and society when alternatives are risky. Factors which affect the valuation of risky stock, long-run real, and financial assets. Financial policy, financial planning for profit-seeking, and not-for-profit organizations.

207. Financial Theory and Policy (3) Algert
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; courses 204, 205, 209. Temporal allocation of resources by individuals, firms, and society when alternatives are risky. Factors which affect the valuation of risky stock, long-run real, and financial assets. Financial policy, financial planning for profit-seeking, and not-for-profit organizations.

208. Marketing Management (3) Davis
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Marketing management process, analysis of market opportunities, elements of marketing research, development of marketing strategies, market planning, implementation, and control systems. Consumer and industrial markets, market segmentation, pricing strategies, distribution channels, promotion, sales.

209. Computers and Information Systems (3) Topkis/Woodruff
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Introduces students to computer hardware and software programming and data handling skills. Studies use of computers in organizations, emphasis on managerial aspects of computing. Topics include standard and nonstandard uses of data files, centralization versus decentralization of computing, office automation, computer security.

210A. Statistics for Management (3) Rocke
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Introduction to descriptive statistics, sampling, statistical inference, hypothesis testing.

210B. Statistics for Management (3) Tasi
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; courses 209 and 210A. Regression analysis and time series. Stresses applications of the techniques to problems in public and private administration.

211. Quantitative Analysis for Decision Making (3) Bunch
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; courses 210A-210B. Quantitative decision making. Decision analysis and mathematical modeling of complex decision processes. Linear programming, optimization, and simulation. Stresses applications of decision analysis in public and private administration.

214. New and Small Business Ventures (3) Dorf
Lecture—3 hours. Emphasizes starting a new business venture or managing an ongoing business during its formative stages. The business plan, legal forms, financial considerations, the management team. The entrepreneur. Students develop a detailed business plan.

215. Law and Legal Process (3) The Staff
Lecture—3 hours. Prerequisite: courses 202, 205. Provides an introduction to the legal process and legal institution in the United States. Sources of law. Structure and operation of courts, federal-state relationships, fundamentals of administrative law, fundamentals of business law.

216. Public Budgeting and Finance (3) The Staff

223. Regulation and Policy in Agriculture (3) The Staff
Lecture—3 hours. Implications for regulation and public policy on agricultural production, prices, processing, and marketing; influences on management strategy, organization, business practices, and resource productivity. Trends in regulation and policy and their potential for management strategies are explored.

224. Management Policy (3) Suran
Lecture—3 hours. Interpretation of management the total organizational enterprise. Missions, objectives, strategies, policies, measurements and controls, case studies.

225. Managerial Decision Making (3) Bunch
Lecture—3 hours. Emphasizes applications for evaluating decisions and solving problems in various managerial settings. Emphasis is on problem structuring, decision analysis, and implementation. Course covers decision strategy, group processes, and organizational decision making.

226. Negotiation and Team Building (3) III. Hagerty

228. Statistical Quality Control and Productivity Improvement (3) Rocke
Lecture—3 hours. Prerequisite: courses 210A and 210B or the equivalent. Introduces concepts of quality and productivity, the standards and strategies of quality control. Methods covered include statistical quality control techniques such as control charts and acceptance sampling, reliability, and quality tools.

229. Urban Policy and Planning (3) The Staff
Lecture—3 hours. Analysis of public policy in an urban setting, focusing on the efficiency effects of such policies. Topics include urban spatial structure, growth and public policies, housing, transportation, environmental quality, local government finance, and urban planning.

*Course not offered this academic year.
271. Accounting and Reporting for Governmental and Nonprofit Entities (3) Mahan
Lecture—3 hours. Concepts, methods, and uses of accounting and financial reporting by governmental and nonprofit entities. Introduction to budgeting and performance evaluation, and accounting for entities such as hospitals, universities, and welfare agencies.

274. Auditing, Internal Control, and Public Accounting (3) Lyon
Lecture—3 hours. Special emphasis on role of the independent public accountant as auditor and consultant, from the perspective of an enterprise manager. Auditing standards, auditing procedures, and auditing control techniques are discussed. Emphasis is also given to current issues confronting the accounting profession.

275A-275B. Seminar in Finance and Accounting (3-3) Ill. Castanias, Barber, Lyon

280. Data and File Management (3) Topics
Lecture—3 hours. Concepts of information storage and retrieval on digital computers. Emphasis on file structures and their uses within organizations; applications drawn from both the public and private sector.

281. Systems Analysis and Design (3) Woodruff
Lecture—3 hours. Design and specification of computer-based information systems. Applications of systems development life cycle, user requirements and feasibility assessment, logical and physical design, program development and testing, conversion and implementation.

283. Optimization Theory and Applications (3) Topics
Lecture—3 hours. Introduces applied optimization theory. Examines linear, nonlinear, integer, and dynamic programming; optimization problems; transportation, networks, and large-scale systems; and computer implementation. Applications are made to problems in private and public management.

284. Applied Linear Models for Management (3) Tsiang
Lecture—3 hours. Covers regression, analysis of variance, and multivariate analysis. Topics will focus on applications to problems in management.

285. Time Series Analysis and Forecasting (3) Tsiang
Lecture—3 hours. Consider application of time series methods to evaluation and forecasting problems. Covers univariate and multivariate ARIMA models and transfer function models. Applications will be in such areas as economics, finance, budgeting, program evaluation, and industrial process control.

286. Telecommunications and Computer Networks (3) Topics
Lecture—3 hours. Prerequisite: course 280. Communication system components: common carrier services; design and control of communications networks; network management and distributed environments; local area networks; data security in computer networks. As of 201 A, 207.

287. Database Systems (3) Topics
Lecture—3 hours. Prerequisite: course 200B. Hierarchical, network, and relational models for database systems. Design and implementation of models. Performance evaluation and benchmarking. Query structures and languages. Data security and integrity. Application to managerial decision making and decision support systems.

298. Special Topics in Management Information Systems (3) Topics
Lecture—3 hours. Managerial aspects of information systems. Topics may vary among applications in organizations chosen from: economics of computers and information systems, decision support systems, management of computer-based information systems, office automation.

290. Seminar in Management (3) Seminar—3 hours. Interdisciplinary case study of a real business or government enterprise.
Mathematics is the study of abstract structures, space, change, and the interrelations of these concepts. It is also the language of the exact sciences. The Program. Students majoring in mathematics may follow a program leading to the Bachelor of Arts or the Bachelor of Science degree. After completing basic introductory courses such as calculus, students plan an upper division program in consultation with a faculty advisor. This individualized program can lead to graduate study in pure or applied mathematics, to elementary or secondary-level teaching, or to professional goals. It can also reflect a special interest such as computer science, statistics, or economics, or may be combined with a major in some other field.

Career Alternatives. A degree in mathematics provides entry to numerous careers in addition to teaching. For instance, operations research, systems analysis, computing, actuarial work, insurance, and financial services are only a few such careers. Mathematics is also a sound basis for graduate work in a variety of fields, such as law, engineering, and economics.

A.B. Major Requirements:

UNITS

Preparatory Subject Matter

- Mathematics 12...3-4
- Computer Science Engineering 30 or Engineering 5...3-4

Core Requirements

- Physics 9A...4
- Additional non-Mathematics courses chosen from natural sciences...8

- Mathematics 108...4
- Mathematics 127A, 127B...6
- Mathematics 149A, 149B, or 150A, 150B...8

- Choose one Track from the following two...16

Track 1: Secondary Teaching

- Mathematics 115A...3
- Mathematics 141...3
- Additional upper division units...10

Track 2: General Mathematics

- Mathematics 115C, 116, 167, 188; Mathematics 131 and Statistics 131B or Statistics 131A-131B or Statistics 130A-130B; Computer Science Engineering 110, 122

Total Units for the Major...73-77

B.S. Major Requirements:

UNITS

Preparatory Subject Matter

- Mathematics 12 (or high school equivalent)...3-4
- Computer Science Engineering 30 or Engineering 5...3-4
- Physics 9A, 9B, 9C (Tracks 1 and 2 only)...12
- Physics 9A (Track 3 only)...4
- Statistics 130 or 132 (Track 4 only)...4

Core Requirements

- Mathematics 108...45
- Mathematics 127A, 127B...8
- Mathematics 130A, 130B...4

Track 1: Preparation for Graduate Study in Mathematics

- Mathematics 17C...4
- Mathematics 250A, 250B, 250C...12
- One course from Mathematics 125, 126, 127...4

**Additional upper division units...14

Recommended Mathematics 118A, 118B, 119, 125, 126, 141, 147, 158A, 158B

Track 2: Applied Mathematics

- Mathematics 150A...6
- Mathematics 167...3
- Two courses from Mathematics 128A, 128B, 128C...12

**Additional upper division units...12

Recommended Mathematics 118A, 118B, 119, 145, 169, 158A, 158B

Track 3: Mathematics for Secondary Teaching

- Mathematics 115A...3
- Mathematics 149A, 149B, or 150A, 150B...8

**Additional upper division units...25

Total Units for the Major...75-76

Recommneded Language Preparation

*Course not offered this academic year.

*Trigonometric component. Students are responsible for finding out their scores, which are available with 72 hours of the examination, at the Learning Skills Center, and for retaining the printout of their scores. Students who do not pass the examination will be administratively dropped from the courses mentioned above. Dates and times when the examination is offered are posted at the Mathematics Department.

Statement of Objectives. As early as possible, but no later than the last quarter of the sophomore year, each prospective mathematics major should choose, in consultation with an advisor, one of the tracks as suggested by the advisor, prepare a statement of his or her mathematics objectives, and have a proposed program satisfying the requirements of the chosen track. The form is to be used for this statement is available from the Department, and must be submitted in time to receive final approval prior to the last day of instruction of the first quarter of the junior year. Prospective mathematics majors transferring to the University at the upper division level should consult an advisor immediately upon arrival.

Information for Undergraduates. Assistance in planning a program for the undergraduate course of study in mathematics should be obtained from a major adviser. In addition, students seeking information pertaining to the application of mathematics to the biological or social sciences or computer science may wish to contact the appropriate special area adviser.

Students desiring preparation towards an A.B. degree for secondary teaching or general mathematics, or a B.S. degree for graduate study, biological sciences, physical sciences, secondary teaching, or general mathematics should consult an undergraduate adviser.

Prerequisite Credit. No student may repeat a course, if that course is a prerequisite for a course which has already been completed with a grade of C- or better.

Minor Program Requirements:

UNITS

Mathematics

- Mathematics 108...3
- Mathematics 127A, 127B...6
- Mathematics 149A, 149B, or 150A, 150B...8

Total of these units could be from Mathematics...30

Teaching Credential Subject Representative, G.T. Salle. See also under Teacher Education Program.

Graduate Study. The Department offers programs of study and research leading to the M.A., M.A.T., and Ph.D. degrees in mathematics. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Mathematics.

Courses in Mathematics

Lower Division Courses

- B. Elementary Algebra (no credit). I. The Staff Lecture—3 hours. Basic concepts of algebra, including polynomials, factoring, equations, graphs, and inequalities. Offered only if sufficient number of students enroll. Offered to Concurrent student enrollment. (P.P. grading only) (No fee of $45.)

- C. Trigonometry (no credit). I, II. The Staff Lecture—2 hours. Basic concepts of trigonometry, including trigonometric functions, identities, inverse functions, and applications. Offered only if sufficient number of students enroll. (P.P. grading only) (No fee of $30.)

- D. Intermediate Algebra (no credit). I, II. The Staff Lecture—3 hours. Basic concepts of algebra,
Mathematics 273

98. Directed Group Study (1-5) I, II, III. The Staff
(Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

108. Introduction to Abstract Mathematics (4) I, II, III. The Staff
Lecture—3 hours. Discussion—1 hour. Prerequisite: course 21B or consent of instructor. Rigorous treatment of abstract mathematics with the emphasis on developing ability to understand and present mathematics arguments.

114. The Theory of Functions of a Real Variable I (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 21C, 22A, 108; or consent of instructor. Topics selected from the theory of convergence of sequences and series, uniform continuity, uniform convergence, completeness, uniform convergence, uniform continuity, and the relationship between the two.

115A. The Theory of Numbers (3) I. Alder
Lecture—3 hours. Prerequisite: course 108. Divisibility and related topics, diophantine equations, selected topics from the theory of prime numbers.

115B. The Theory of Numbers (3) II. Alder
Lecture—3 hours. Prerequisite: courses 22A, 22D; or consent of instructor. Vector analysis, curves and surfaces in three dimensions. Offered in alternate years.

116. Metric Differential Geometry (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 22D; or consent of instructor. Vector analysis, curves and surfaces in three dimensions. Offered in alternate years.

118A. Partial Differential Equations: Elementary Methods (3) I. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 22B, 210. C2; introduction to partial differential equations; separation of variables; equilibrium solutions and Laplace's equation; Fourier series; method of characteristics for the one-dimensional wave equation; solution of nonhomogeneous equations.

118B. Partial Differential Equations: Eigenfunction Expansions (3) II. The Staff
Lecture—3 hours. Prerequisite: course 118A. Sturm-Liouville theory; self-adjoint operators; bounded and unbounded operators; partial differential equations in two and three dimensions; eigenvalue problems in circular domains; nonhomogeneous problems and the method of eigenfunction expansions; Poisson's equation.

118C. Partial Differential Equations: Green's Functions and Transforms (3) III. The Staff
Lecture—3 hours. Prerequisite: course 118B. Green's functions for one-dimensional problems and Poisson's equation; Fourier transforms; Green's functions for time-dependent problems; Laplace transform and solution of partial differential equations.

118-119B. Ordinary Differential Equations and Dynamical Systems (3-3-3) I-II. The Staff

121A-121B. Advanced Calculus for the Sciences (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 22B, 21D. Multidimensional calculus, Fourier series, calculus of variations, special functions, distributions, integral transforms, estimation and inequalities. Intended primarily for students majoring in science, engineering, and applied mathematics.

125. Introduction to Mathematical Logic (3) I. Korn
Lecture—3 hours. Prerequisite: course 108. Propositional calculus, predicate calculus, normal forms, completeness. Offered in alternate years.

*Course not offered this academic year.
126. Introduction to the Theory of Sets (3) II, III. The Staff
Lecture—3 hours. Prerequisite: course 127A or 190A. Fundamental concepts including cardinal numbers, orders, types, ordinal numbers. Offered in alternate years.

127A-127B-127C. Advanced Calculus (4-4-4) I, II, III. The Staff
Lecture/discussion—4 hours. Prerequisite: courses 22A, 22B, 22C, or may be taken concurrently with consent of instructor. Real number system, continuity, differentiation and integration on the real line; vector calculus and functions of several variables; theory of convergence.

128A. Numerical Analysis (4) I. The Staff
Lecture—3 hours; term project. Prerequisite: course 21C; knowledge of a programming language such as Pascal, FORTRAN or BASIC. Error analysis, approximation, interpolation, numerical differentiation and integration.

128B. Numerical Analysis in Solution of Equations (4) II. The Staff
Lecture—3 hours; term project. Prerequisite: courses 21C and 22A, knowledge of a programming language such as Pascal, FORTRAN or BASIC. Difference equations, operators, numerical solution of ordinary and partial differential equations.

131. Methods of Mathematical Probability (4) II. The Staff
Lecture—4 hours. Prerequisites: courses 21C and 22A. Probability space, event, combinatorics; discrete, continuous distributions; random variables; joint, marginal, conditional densities; transformation; expectation; sums and moments; inequalities; laws of large numbers; central limit law; probability models via conditioning; tables. Students who have taken Statistics 131A may not receive credit for this course.

132A-132B. Introduction to Stochastic Processes (3-3) II, III. The Staff
Lecture—3 hours. Prerequisite: course 131 or Statistics 131A. Markov chains, Poisson process, birth and death processes, renewal theory, queueing theory, Brownian motion, stationary processes. Course 132B is offered in alternate years.

141. Euclidean Geometry (3) II. The Staff
Lecture—3 hours. Prerequisite: course 128. An axiomatic and analytic examination of Euclidean geometry from an advanced point of view. In particular, an extension of its relation to other geometries.

145. Combinatorial Mathematics (3) III. The Staff
Lecture—3 hours. Prerequisite: course 108. Combinatorial methods using basic graph theory counting methods, generating functions, and recurrence relations.

147. Topology (3) III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 108, 127A. Basic notions of point-set and combinatorial topology. Offered in alternate years.

149A-149B. Topics in Discrete Mathematics (4) II, III. The Staff (Chairperson in charge)
Lecture/discussion—4 hours. Prerequisite: course 22A and 108. Coding theory and counting theory and the algebraic concepts needed in their development.

150A-150B-150C. Introduction to Abstract Algebra (4-4-4) I, II, III. The Staff
Lecture/discussion—4 hours. Prerequisite: course 108. Basic concepts of groups, rings, and fields. Emphasizes the techniques used in the proofs of the ideas (Lemmas, Theorems, etc.) developing these concepts. Develops precise thinking, precise writing, and the ability to deal with abstraction.

Lecture—3 hours. Prerequisite: course 108 and familiarity with one high-level computer language. The relational model; relational algebra; relational calculus; normal forms; functional and multivalued dependencies. Separability. Cost benefit analysis of physical database design and reorganization. Performance via analytical modeling, simulation, and queuing theory. Block accesses, buffering, operating system contentions; CPU intensive operations.

154. Mathematical Foundations of Fifth Generation Computing (3) II. Milton
Lecture—3 hours. Prerequisite: course 108 and a modern high-level computer language. Study of the uses of predicate and various logics in knowledge-based systems. Resolution and non-resolution deduction, forward and backward deduction systems, logic programming, symbolic integration, problem solving strategies. Functions in search strategies, mathematical treatment of uncertainty in expert systems.

167. Linear Algebra and Applications (3) I, II, III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 22A. Introduction to linear algebra: linear equations, orthogonal projections, similarity transformations, quadratic forms, eigenvalues and eigenvectors. Applications to physics, engineering, economics, biology and statistics.

168. Mathematical Programming (3) III. The Staff
Lecture—3 hours. Prerequisites: courses 21C, and 22A or equivalent knowledge in linear algebra. Linear programming, simplex method. Basic properties of unconstrained nonlinear problems, descent methods, conjugate direction method. Constrained minimization.

180. Special Topics: Pure and Applied Mathematics (2-1-3) I, II, III. The Staff
To be arranged by students and instructor. Prerequisite: courses 22A, 22B and 21D or consent of instructor. Special topics leading to pure or applied mathematics. Topics selected based on mutual interests of students and faculty. May be repeated for credit in different subject area.

185A. Functions of a Complex Variable with Applications (3) II. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 21D. Complex number systems, analyticity and the Cauchy-Riemann equations, elementary functions, contour integration, power and Laurent series expansions, residue theory.

185B. Functions of a Complex Variable with Applications (3) III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 185A or consent of instructor. Analytic functions, elementary functions, and mapping properties, applications of Cauchy's integral theorem, conformal mapping and applications to heat flow and fluid mechanics. Offered in alternate years.

192. Internship in Applied Mathematics (1-3) I, II, III. The Staff (Chairperson in charge)
Internship. Internship. Field of special interest: upper division standing; project approval by faculty sponsor prior to enrollment. Supervised work experience in applied mathematics. May be repeated for credit for a total of 10 units (P/NP grade only).

194. Undergraduate Thesis (3-3) I, II, III. The Staff
Prerequisite: consent of instructor. Independent research under supervision of a faculty member. Student will submit written report in thesis form. May be repeated with consent of Vice Chairperson. (P/NP grade only.)

197TC. Tutoring Mathematics in the Community (1-5) I, II, III. The Staff (Chairperson in charge)
Seminar—1—2 hours; laboratory—2—6 hours. Prerequisite: upper division standing and consent of instructor. Special projects in mathematics education which involve the development of techniques for mathematics instruction and tutoring on an individual or small group basis. (P/NP grade only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

201A-201B-201C. Real and Complex Analysis (4-4-4) III-III. The Staff
Lecture—3 hours; discussion or paper (Instructor's option). Prerequisite: course 217C or 203C. Abstract integration, Lebesgue measures, LP spaces, complex measures, holomorphic functions, Cauchy's theorem, Riemann mapping theorem, and analytic continuation.

201D. Real and Complex Analysis (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 201C. Riemann mapping theorem and analytic continuation.

202A. Functional Analysis (4) II. The Staff
Lecture—3 hours; term paper. Prerequisite: course 201D. Introduction to topological vector spaces. Metrization, Banach-Steinhaus theorem, the open mapping theorem, the closed graph theorem, the Hahn-Banach theorem. Duality and convexity. Weak topologies. Applications. Offered in alternate years.

202B. Functional Analysis (4) III. The Staff (Chairperson in charge)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 202A. One of the following topics will be covered: (a) distribution and Fourier transform and their applications to partial differential equations; (b) theory of bounded and unbounded linear operators and their spectral decomposition; (c) non-linear functional analysis. Offered in alternate years.

203A-203B-230C. Modern Applied Analysis (3-3-3) I-III. The Staff
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Classical mathematical foundations leading to modern analysis. Linear and metric spaces; Hilbert space; operator theory. Applications to integral and differential equations. Variational methods.

203C. Modern Applied Analysis (3) III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: bachelor's degree in mathematics or consent of instructor. Topics in advanced geometry related to curriculum at all levels. Required for M.A.T. degree program for prospective teachers. May be repeated for credit with prior consent of instructor.

210AL. Topics in Geometry: Discussion (1) I. The Staff (Chairperson in charge)
Lecture/discussion—1 hour to be arranged. Prerequisite: course 210A (concurrently), consent of instructor. Special topics related to course 210A which are of special interest to teachers and candidates for M.A.T. degree program. May be repeated for credit.

210B. Topics in Algebra (3) II. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: bachelor's degree in mathematics or consent of instructor. Topics in advanced algebra related to curriculum at all levels. Required for M.A.T. degree program for prospective teachers. May be repeated for credit with prior consent of instructor.

210BL. Topics in Algebra: Discussion (1) I. The Staff (Chairperson in charge)
Lecture/discussion—1 hour (to be arranged). Prerequisite: course 210B (concurrently), consent of
instructor. Special topics related to course 210B which are of special interest to teachers and candidates for M.A.T. degree program. May be repeated for credit.

210C. Topics in Analysis (3-3-3-III). The Staff (Chairperson in charge)

Lecture—3 hours. Prerequisite: bachelor’s degree in mathematics or consent of instructor. Topics in advanced analysis related to curriculum at all levels. Required for M.A.T. degree program for prospective teachers. May be repeated for credit with prior consent of instructor.

210CL. Topics in Analysis: Discussion (1-1-I). The Staff (Chairperson in charge)

Lecture/Discussion—1 hour (to be arranged). Prerequisite: course 210C (concurrently); consent of instructor. Special topics related to course 210C which are of special interest to teachers and candidates for M.A.T. degree program. May be repeated for credit with prior consent of instructor.

213A-213B-213C. Stochastic Dynamics and Applications (3-3-3-3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: course 201C or 235C or consent of instructor. Stochastic processes including Gaussian, Markov and stationary processes, diffusion, martingales, stochastic differential equations. Applications and advanced topics. Offered in alternate years.

215A-215B-215C. Topology (4-4-4-I-II-III). The Staff (Chairperson in charge)

Lecture—3 hours; discussion—1 hour or paper (instructor’s option). Prerequisite: graduate standing in mathematics or consent of instructor. Topics selected from point-set topology, homology theory, and homotopy theory. Offered in alternate years.

218A-218B. Partial Differential Equations (3-3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: courses 22A, 127C. Topics from the theory of partial differential equations and integral equations. Offered in alternate years.

219A-219B. Ordinary Differential Equations (3-3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: courses 22A, 127C. Ordinary differential equations in the real and complex domains; existence and uniqueness theorems; linear systems; analysis of singular points; Sturm-Liouville theory; asymptotic expansions. Offered in alternate years.

221A-221B. Mathematical Fluid Dynamics (3-3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: course 118B. Dynamics of fluid motion, perfect fluids, rotational and irrotational motion, two-dimensional and three-dimensional unsteady flows, compressible and incompressible viscous fluids. Offered in alternate years.

225A-225B. Metamathematics (3-3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: course 126 or the equivalent. Axiomatizability, consistency, and completeness of the formalized mathematical theories; definability in formal languages; topics from the theory of models. Offered in alternate years.

228A-228B. Numerical Solution of Differential Equations (3-3-3-I-II-III). The Staff

229A-229B. Numerical Methods in Linear Algebra (3-3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: consent of instructor. Computational methods for the solution of linear algebraic equations and matrix eigenvalue problems. Analysis of direct and iterative methods. Special methods for sparse matrices. Offered in alternate years.

235A-235B-235C. Probability Theory (3-3-3-I-II-III). The Staff

Lecture—2 hours. Prerequisite: course 127C and Statistics 131A-131B or the equivalent. Measure theoretical foundations, abstract integrations, modes of convergence, limit theorems, independence, laws of large numbers, characteristic functions, central limit theorem, conditional expectations; topics from discrete time Markov and stationary processes, ergodic theory, Brownian motion, weak convergence, Wiener and Poisson processes. (Same course as Statistics 235A-235B-235C.)

240A-240B-240C. Differential Geometry (3-3-3-I-II-III). The Staff (Chairperson in charge)

Lecture—3 hours. Prerequisite: course 116 or consent of instructor. Introduction to differentiable manifolds, the tangent bundle, tensor fields, differential forms, De Rham cohomology, connections, Lie groups, Riemannian geometry. Offered in alternate years.

250A-250B-250C. Algebra (4-4-4-I-II-III). The Staff (Chairperson in charge)

Lecture—3 hours; discussion—1 hour or paper (instructor’s option). Prerequisite: graduate standing in mathematics or consent of instructor. Theory of groups, rings, and fields. Offered in alternate years.

257. Topics in Optimization (3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: graduate standing. Advanced topics in the theoretical foundations of optimization and applications such as: linear and nonlinear systems theory, stochastic programming, stochastic optimal control, approximation theory for optimization, advanced topics in numerical implementation of algorithms; shape optimization; large-scale optimization; semi-infinite and nondifferentiable optimization with applications to engineering design, global optimizations. Offered in alternate years. (Same course as Electrical and Computer Science Engineering 257.)

258A. Optimization I (3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: knowledge of FORTRAN C or C. Modeling optimization problems existing in engineering design and other applications, optimality conditions, linear programming and unconstrained optimization (gradient, Newton, conjugate directions and minimax algorithms), convergence and rate of convergence, selected topics. Offered in alternate years. (Same course as Electrical and Computer Science Engineering 256A.)

258B. Optimization II (3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: course 258A. Modeling constrained optimization problems existing in engineering design and other applications, optimality conditions, linearly and nonlinearly constrained optimization problems, projection, feasible directions and reduced gradient algorithms, interior point methods, Lagrangian theory, duality, augmented Lagrangians, sequential quadratic programming, selected topics. Offered in alternate years. (Same course as Electrical and Computer Science Engineering 256B.)

259. Optimal Control, Theory and Algorithms (3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: graduate standing. Optimal control and calculus of variations; existence of solutions to optimal control problems; necessary conditions of optimality, Pontryagin maximum principle; Euler equation; sufficient conditions of optimality, Hamilton-Jacobi-Bellman equation, linear quadratic regulator problem; algorithms for unconstrained and constrained optimal control problems. Offered in alternate years. (Same course as Electrical and Computer Science Engineering 259.)

280. Topics in Pure and Applied Mathematics (3-3-I-II-III). The Staff

Lecture—3 hours. Prerequisite: graduate standing. Special topics in various fields of pure and applied mathematics. Topics selected based on the mutual interest of students and faculty. May be repeated for credit in different subject area.

290. Seminar (1-6-I-II-III). The Staff (Chairperson in charge)

Advanced study in various fields of mathematics, including the following: algebraic theory of semi-groups, control theory, mathematical logic, mathematical statistics, ordinary differential equations, partial differential equations, theory of distributions, and univalent functions. (SU grading only.)

Course not offered this academic year.
Cameron Carter, M.D., Assistant Professor (Psychiatry)
Gregory Carrier, M.D., Assistant Professor of Clinical Physical Medicine and Rehabilitation (Physical Medicine and Rehabilitation)
James J. Castles, Jr., M.D., Professor (Internal Medicine)
Minyen Chang, M.D., Assistant Professor in Residence (Anaesthesiology)
R. Jeffrey Chang, M.D., Professor (Otolaryngology)
Robert S. Chaing, D.M., Sc., Professor (Medical Microbiology and Immunology, Family Practice)
Lon F. Chapman, Ph.D., Professor (Psychiatry)
Michael W. Chapman, M.D., Professor (Orthopaedic Surgery)
Barram Chehrazi, M.D., Professor (Neurological Surgery)
Anthony Cheung, Ph.D., Adjunct Professor (Pathology)
Richard A. Chole, M.D., Ph.D., Professor (Otolaryngology)
Michael Choy, M.D., Assistant Professor in Residence (Pediatrics)
Ronald Y. Chuang, Ph.D., Professor in Residence (Pharmacology)
J. Terry Cates, M.D., Assistant Professor of Clinical Medical Genetics (Internal Medicine)
Kent Cochrum, D.V.M., Associate Adjunct Professor (Surgery)
Stuart H. Cohen, M.D., Associate Professor (Internal Medicine, Pharmacology)
Matthew H. Conners, M.D., Associate Professor (Pediatrics)
Carroll E. Cross, M.D., Professor (Internal Medicine, Neurology, Ophthalmology)
Fitz-Roy C. Curry, Ph.D., Professor (Human Physiology)
Satya Dandekar, Ph.D., Associate Adjunct Professor (Internal Medicine)
Robert C. Davidson, M.D., Associate Professor (Family Practice)
Russell D. Davis, Ph.D., Assistant Adjunct Professor (Obstetrics and Gynecology)
Gerald L. DeNardo, M.D., Professor (Internal Medicine, Pathology, Radiology)
Sally J. DeNardo, M.D., Professor (Internal Medicine, Radiology)
Thomas A. Depper, M.D., Professor (Internal Medicine)
Robert W. Devens, M.D., Associate Professor of Clinical Internal Medicine (Internal Medicine)
Jawahar M. Desai, M.D., Assistant Professor of Clinical Internal Medicine (Internal Medicine)
Ralph D. DeVere, Ph.D., Professor (Urology)
Paul J. Donald, M.D., Professor (Otolaryngology)
Nira Dronkers, Ph.D., Assistant Adjunct Professor (Neurology)
Jonathan B. Dworkin, M.D., Associate Professor in Residence (Pediatrics)
Robert Efron, M.D., Professor in Residence (Neurology)
John H. Eiselle, M.D., Professor (Anesthesiology, Human Physiology)
William G. Ellis, M.D., Professor (Pathology, Neurology)
Allen C. Enders, Ph.D., Professor (Human Anatomy)
Richard K. Entikin, Ph.D., Associate Adjunct Professor (Physical Medicine and Rehabilitation, Pharmacology)
Kurt L. Enck, Ph.D., Professor (Human Anatomy)
Arthur T. Evans, M.D., Assistant Professor in Residence (Osteoanatomy and Gynecology)
Irwin Feinberg, M.D., Professor in Residence (Psychiatry)
Faith T. Fitzgerald, M.D., Professor (Internal Medicine, Pathology)
Paul G. Fitzgerald, Ph.D., Associate Professor (Human Anatomy)
Neal Filling, M.D., Ph.D., Assistant Professor in Residence (Pathology and Rehabilitation)
Mark P. Fletcher, M.D., Associate Professor (Internal Medicine)
Neil M. Flynn, M.D., Associate Professor of Clinical Internal Medicine (Internal Medicine)
David Follette, M.D., Assistant Professor in Residence (Surgery)
Garett E. Foulke, M.D., Associate Professor of Clinical Internal Medicine (Clinical Internal Medicine)
Jon Fay, M.D., Assistant Professor of Clinical Anesthesiology (Anesthesiology)
Edmund H. Frank, M.D., Assistant Professor in Residence (Neurological Surgery)
Charles F. Frey, M.D., Professor in Residence (Surgery)
William Fry, M.D., Assistant Professor in Residence (Surgery)
Dennis Pung, Professor of Clinical Radiology (Radiology)
Andrew J. Gabbar, M.D., Ph.D., Professor (Neurology)
David R. Gandara, M.D., Associate Professor in Residence (Internal Medicine)
Murray B. Gardner, M.D., Professor (Pathology)
Eugene Genshaft, M.D., Assistant Professor of Clinical Radiology (Radiology)
M. Eric Gershwin, M.D., Professor (Internal Medicine)
Kenneth Gies, M.D., Assistant Professor of Clinical Radiology (Radiology)
Boyd W. Goetzman, M.D., Ph.D., Professor (Pediatrics)
Ellen Gold, Ph.D., Associate Adjunct Professor (Internal Medicine)
Marvin Goldman, Ph.D., Professor (Radiology)
David S. Goldsmith, Ph.D., Associate Adjunct Professor (Internal Medicine)
Mari Golub, Ph.D., Assistant Adjunct Professor (Internal Medicine)
Michael Goodman, Ph.D., Associate Adjunct Professor (Internal Medicine)
James E. Goodrich, M.D., Professor of Clinical Surgery (Surgery)
Frederic A. Gorin, M.D., Associate Professor (Neurology)
Sidney M. Gosse, Jr., Ph.D., Ph.D., Associate Professor in Residence (Neurology, Pediatrics)
John Gould, M.D., Ph.D., Assistant Professor (Urology)
Ira M. Gray, D.V.M., Professor (Surgery)
Sarah D. Gray, Ph.D., Professor (Human Physiology)
J. Terry Green, Ph.D., Professor (Human Physiology)
Jon Green, M.D., Ph.D., Associate Professor in Residence (Internal Medicine)
Adam Greenspan, M.D., Professor of Clinical Radiology (Radiology, Orthopedics)
M. R. Greenwood, Ph.D., Professor (Internal Medicine)
Gabriel Gregoratos, M.D., Professor of Clinical Internal Medicine (Internal Medicine)
Gregory Grill, M.D., Assistant Professor of Clinical Pediatrics (Pediatrics)
Arthur Grim, M.D., Assistant Professor of Clinical Pediatrics (Pediatrics)
Gerald Groenert, M.D., Professor (Anesthesiology)
James M. Guarino, M.D., Professor in Residence (Surgery)
Paul F. Greevy, M.D., Professor (Internal Medicine)
Robert A. Gunther, Ph.D., Assistant Adjunct Professor (Surgery)
Georges Halpern, M.D., Adjunct Professor (Internal Medicine)
Charles H. Halsted, M.D., Professor (Internal Medicine)
Crystallina C. Halsted, M.D., Professor of Clinical Pediatrics (Pediatrics)
Anthony J. Hare, Ph.D., Associate Professor (Pharmacology)
Michael Hanley, Ph.D., Professor (Biological Chemistry)
Leland Hanowell, M.D., Assistant Professor of Clinical Anesthesiology (Clinical Anesthesiology)
Robin L. Hansen, M.D., Assistant Professor in Residence (Pediatrics)
Frederick W. Hanson, M.D., Professor (Obstetrics and Gynecology)
David J. Harris, M.D., Assistant Professor in Residence (Pathology)
Stephanie T. Hecht, M.D., Assistant Professor in Residence (Radiology, Neurological Surgery)
Ingrid L. Kwee, M.D., Associate Professor in Residence (Neurology)
Maurice B. Landers III, M.D., Professor in Residence (Ophthalmology)
Bo M. T. Lantz, M.D., Professor (Radiology)
Edward C. Larkin, M.D., Professor in Residence (Internal Medicine)
David Larson, M.D., Associate Professor in Residence (Surgery)
Lawrence J. Lattimore, M.D., Associate Professor of Clinical Internal Medicine (Internal Medicine)
Jerrold A. Levy, Ph.D., Professor (Internal Medicine, Biochemical Medicine)
H. Jeffrey Levinson, M.D., Associate Professor in Residence (Internal Medicine)
Ruth Lawrence, M.D., Associate Professor of Clinical Internal Medicine (Internal Medicine)
James C. Leek, Jr., M.D., Associate Professor of Clinical Internal Medicine (Clinical Internal Medicine)
Rebecca J. Leonard, Ph.D., Associate Adjunct Professor (Otolaryngology)
Patrick Leu, Ph.D., Assistant Adjunct Professor (Internal Medicine)
Norman B. Levy, M.D., Assistant Professor in Residence (Pathology)
Emmanuel L. Lewis, M.D., Professor of Clinical Urology, Obstetrics and Gynecology (Urology, Obstetrics and Gynecology)
Jerry P. Lewis, M.D., Professor (Internal Medicine, Pathology)
Glenn D. Lifton, M.D., Professor (Internal Medicine)
Karen E. Lindfors, M.D., Assistant Professor in Residence (Anesthesiology)
Daniel P. Link, M.D., Professor (Radiology)
Robert G. Loeb, M.D., Assistant Professor in Residence (Anesthesiology)
Bo Lonnert, Ph.D., Professor (Internal Medicine)
John C. Longhurst, M.D., Professor (Internal Medicine)
Samuel Louie, M.D., Assistant Professor in Residence (Pediatrics)
Paul A. Lucchin, Ph.D., Associate Professor in Residence (Pathology)
Hugh T. MacKay, M.D., Assistant Professor of Clinical Obstetrics and Gynecology (Obstetrics and Gynecology)
Malcolm R. Mackenzie, M.D., Professor (Internal Medicine)
Richard J. Maddock, M.D., Assistant Professor (Psychiatry)
Sudesh Makkor, M.D., Professor (Pediatrics)
Jean M. Mannis, M.D., Professor (Ophthalmology)
Richard M. Mangialaghi, M.D., Associate Professor in Residence (Orthopaedic Surgery)
Linda Marguelles, M.D., Assistant Professor of Clinical Ophthalmology
Robert C. Marsall, M.D., Associate Professor in Residence (Internal Medicine)
Eileen Martin, Ph.D., Assistant Adjunct Professor (Neurology, Human Physiology)
Robert Bruce Martin, Ph.D., Professor in Residence (Orthopaedic Surgery)
Ricardo Massell, M.D., Associate Professor (Pediatrics)
Harry R. Matthews, Ph.D., Professor (Biological Chemistry)
Joseph G. Matthews, II, M.D., Assistant Professor in Residence (Ophthalmology)
Theodora Mauro, M.D., Assistant Adjunct Professor (Dermatology)
Robert L. McColl, M.D., Associate Professor in Residence (Internal Medicine)
John McCann, M.D., Associate Professor of Clinical Pediatrics (Pediatrics)
Stephen A. McCormick, M.D., Associate Professor in Residence (Internal Medicine)
Ruth McDonald, M.D., Assistant Professor (Pediatrics)
John McGahan, M.D., Professor (Radiology)
Michael D. McCinn, Ph.D., Assistant Adjunct Professor (Otolaryngology)
Robert McIain, M.D., Assistant Professor in Residence (Neurosurgery, M.D. Surgery)
Arnold Meadow, Ph.D., Professor (Psychiatry)
Stanley Meisler, Ph.D., Professor (Human Anatomy)
Janet Mennis, R.N., Lecturer (Family Practice)
Thurman A. Merritt, M.D., Professor (Padiatrics)

Frederick J. Meyers, M.D., Associate Professor in Residence (Internal Medicine, Pathology)
Lorraine Millo, M.D., Assistant Professor in Residence (Obstetrics and Gynecology)
Clemmatis E. Miller, Ph.D., Professor of Clinical Pathology, Internal Medicine (Clinical Pathology, Internal Medicine)
Jay M. Milstein, M.D., Associate Professor in Residence (Pediatrics)
Anne E. Miskiv, M.D., Assistant Professor (Surgery)
Connie Mitchell, M.D., Assistant Professor of Clinical Internal Medicine (Internal Medicine)
H. David Moehring, M.D., Associate Professor of Clinical Orthopaedic Surgery (Orthopaedic Surgery)
Paul Mole, Ph.D., Associate Professor (Physical Education)
Pasquale M. Montesano, M.D., Assistant Professor in Residence (Orthopaedic Surgery)
Elizabeth Moore, Associate Professor (Radiology)
Patrick Moore, M.B.B.S., Associate Professor of Clinical Anesthesiology (Anesthesiology)
Michael Moran, M.D., Assistant Professor in Residence (Urology)
Walter Morgan, M.D., Associate Professor of Clinical Family Practice (Family Practice)
James Morrison, M.D., Associate Professor in Residence (Psychiatry)
Thomas L. Morrison, Ph.D., Professor in Residence (Psychiatry)
Lawrence Morse, M.D., Assistant Professor in Residence (Ophthalmology)
Rodney M. Moser, M.D., Assistant Professor (Family Practice)
Jerome Murphy, M.D., Assistant Professor in Residence (Pediatrics)
Tsutomu Nakada, M.D., Associate Professor in Residence (Neurology)
Steven T. Nakajima, M.D., Assistant Professor in Residence (Obstetrics and Gynecology)
Thomas Nebitt, M.D., Assistant Professor of Clinical Family Practice (Family Practice)
Thomas E. Nordahl, M.D., Ph.D., Assistant Professor (Psychiatry)
Robert H. Noll, M.D., Associate Professor of Clinical Internal Medicine (Internal Medicine)
Unyeme Nsewo, M.D., Assistant Professor in Residence (Urology)
Martha O'Donnell, Ph.D., Assistant Adjunct Professor (Human Physiology)
Lois F. O'Grady, M.D., Professor (Internal Medicine)
Padraig O'Neil, M.D., Assistant Professor in Residence (Internal Medicine)
Richard H. Oli, M.D., Professor of Clinical Obstetrics and Gynecology (Obstetrics and Gynecology, Pathology)
Claude Organ, M.D., Professor in Residence (Surgery)
Rosemary A. Orsgen, Ph.D., Assistant Adjunct Professor (Community Health)
Jamal Overstreet, M.D., Professor (Human Anatomy, Obstetrics and Gynecology)
Demosthenes Pappagianis, M.B., Ph.D., Professor (Medical Microbiology and Immunology)
Conrad Pepas, M.D., Assistant Professor (Neurological Surgery)
Mark Parish, M.D., Associate Professor (Radiology)
Andrew Parsons, M.B.B.S., Assistant Professor of Clinical Radiology (Clinical Radiology)
Glenn E. Parsons, M.D., Professor (Internal Medicine)
Edith Perez, M.D., Assistant Professor of Clinical Internal Medicine (Internal Medicine)
Richard Perez, M.D., Assistant Professor in Residence (Surgery)
Theodore Phillips, M.D., Professor (Surgery)
Steven D. Pfinney, M.D., Ph.D., Associate Professor in Residence (Internal Medicine)
Neville R. Pimstone, M.D., Professor (Internal Medicine)
Virginia C. Poirier, M.D., Assistant Professor of Clinical Radiology (Clinical Radiology)
Ernesto Politi, Ph.D., Professor (Pediatrics)
Jerry Powell, M.D., Associate Professor in Residence (Internal Medicine)
Lloyd Smith, M.D., Assistant Professor in Residence (Obstetrics and Gynecology)
Elizabeth M. Keating, M.D., Professor (Pediatrics)
J. Stuart Soelicker, M.D., Professor (Internal Medicine)
Robert C. Stanek, M.D., Professor (Radiology)
Larry G. Stark, Ph.D., Professor (Pharmacology)
Charles L. Stebbins, Ph.D., Assistant Professor in Residency (Internal Medicine, Human Physiology)
Darwin L. Stoff, Assistant Professor in Residence (Orthopaedic Surgery)
Judith Stern, Ph.D., Professor (Internal Medicine)
Thomas Stevenson, M.D., Associate Professor (Surgery)
Margaret S. Steward, Ph.D., Professor (Psychiatry)
Dennis Stewart, Ph.D., Assistant Adjunct Professor (Obstetrics and Gynecology)
Emma S. Stewart, M.D., Assistant Professor (Family Practice)
Anthony R. Stone, M.D., Assistant Professor (Otolaryngology)
Dale Strawn, M.D., Assistant Professor in Residence (Surgery)
Dennis Styroff, Ph.D., Professor (Pediatrics)
Arthur Swislocki, M.D., Assistant Professor in Residence (Obstetrics and Gynecology)
Garrin S. Tyrrast, Ph.D., Associate Professor in Residence (Internal Medicine)
Jonathan Sykes, M.D., Assistant Professor of Clinical Otolaryngology (Otolaryngology)
Michael Syrakos, Ph.D., Professor (Medical Microbiology and Immunology)
Robert A. Szabo, M.D., Associate Professor (Orthopaedic Surgery)
Robert C. Tilt, Ph.D., Assistant Adjunct Professor (Internal Medicine)
Jeffrey L. Tamblyn, M.D., Associate Professor (Family Medicine)
Raymond L. Wiltz, M.D., Professor (Pathology)
Thomas W. Schieble, Ph.D., Adjunct Professor (Chemistry)
Barbara Schiavon, Ph.D., Professor (Internal Medicine)
Scott Blanchard, M.D., Associate Professor in Residence (Internal Medicine, Obstetrics and Gynecology)
Boris Rabinov, M.D., Professor (Pathology)
Lilly Russell, M.D., Associate Professor of Pathology
Michael Russell, M.D., Assistant Professor of Clinical Anesthesiology
John Rutledge, M.D., Associate Professor in Residence (Internal Medicine, Pediatrics)
Amira Safwat, M.B.B.C.A., Professor of Clinical Anesthesiology (Anesthesiology)
Steven J. Samuels, Ph.D., Associate Adjunct Professor (Internal Medicine, Obstetrics and Gynecology)
Paul Schaefer, M.D., Associate Professor of Clinical Anesthesiology (Anesthesiology)
Michael Schmitt, M.D., Associate Professor of Clinical Anesthesiology (Anesthesiology, Pediatrics)
Ivan Schwartz, M.D., Associate Professor of Clinical Ophthalmology (Ophthalmology)
Marshall S. Schwartz, M.D., Professor (Surgery)
Robert J. Sciberras, Ph.D., Associate Professor (Medical and Immunology, Surgery)
Robert P. Scobey, Ph.D., Professor (Neurology)
Sidney A. Scudder, M.D., Assistant Professor in Residence (Neurology, Oncology)
James A. Selbert, Ph.D., Associate Professor in Residence (Radiology)
Craig W. Senders, M.D., Associate Professor (Anesthesiology)
Masoud Seyal, M.B.B.S., Associate Professor (Neurology)
Azad A. Sheikh, M.B.B.S., Assistant Professor of Pathology (Pathology)
Allan D. Sieffkin, M.D., Professor of Clinical Internal Medicine (Internal Medicine)
Karen A. Sigvard, Ph.D., Associate Adjunct Professor
Joseph Silva, M.D., Professor (Internal Medicine)
Helayne Silver, M.D., Assistant Professor in Residence (Obstetrics and Gynecology)
William Wara, M.D., Professor in Residence (Surgery)
Robert Weiss, M.D., Assistant Professor (Internal Medicine)
Jeanna Welborn, M.D., Assistant Professor in Residence (Internal Medicine)
Richard R. Wennberg, M.D., Professor (Pediatrics)
Robert T. Wertz, Ph.D., Adjunct Professor (Neurology)
Ronald G. Wheeler, M.D., Associate Professor in Residence (Dermatology)
Mark Wheeler, M.D., Assistant Professor in Residence (Pediatrics)
Thomas P. Whetzel, M.D., Assistant Professor in Residence (Surgery)
David A. White, M.D., Associate Professor (Anesthesiology)
Lynnda L. White, M.H.E., Lecturer (Family Practice)
Richard H. White, M.D., Associate Professor of Clinical Internal Medicine (Internal Medicine)
Lynn M. Wiley, Ph.D., Associate Professor in Residence (Obstetrics and Gynecology)
Siegfried William, M.D., Professor (Internal Medicine)
Mark C. Williams, M.D., Assistant Professor in Residence (Obstetrics and Gynecology)
Lowell D. Wilson, M.D., Ph.D., Professor (Internal Medicine, Biophysics, Surgery)
Karen Wintermutes, M.D., Associate Professor (Family Practice)
Wallace D. Winters, M.D., Ph.D., Professor (Pediatrics, Surgery)
David P. Wurster, M.D., Professor (Internal Medicine)
Bruce A. Wolfe, M.D., Professor (Surgery)
Eli F. Wolman, Jr., M.D., Professor (Surgery)
David L. Woods, Ph.D., Associate Adjunct Professor (Internal Medicine)
Marcie J. Wooley, M.D., Lecturer (Anatomy)
Reeve W. Wright, Ph.D., Associate Professor in Residence (Internal Medicine)
Jerome Zeldis, M.D., Associate Professor (Internal Medicine)
Vincenzo Zilio, Ph.D., Professor (Dermatology, Biological Chemistry)
Emeriti Faculty
Neil C. Andrews, M.D., Professor Emeritus
Lan H. Andrus, M.D., Professor Emeritus
Alexander Barry, Ph.D., Professor Emeritus
Robert J. Bolt, M.D., Professor Emeritus
Nemat O. Borhani, M.D., Professor Emeritus
Marion A. Carse, M.D., Professor Emeritus
William R. Centerwall, M.D., Professor Emeritus
Pierre M. Crowfoot, M.D., Professor Emeritus
William M. Fowler, M.D., Professor Emeritus
Michael A. Georas, M.D., Professor Emeritus
Elliot Goldstein, M.D., Professor Emeritus
Edward C. Gomez, M.D., Ph.D., Professor Emeritus
Paul G. Haldorsen, M.D., Professor in Residence Emeritus
Gordon Hawkes, Ph.D., Professor Emeritus
Paul D. Hoppich, M.D., Professor Emeritus
Robert L. Hunter, Ph.D., Professor Emeritus
Eva K. Killam, Ph.D., Professor Emeritus
Alvin E. Lewis, M.D., Professor Emeritus
Paul R. Lippscomb, M.D., Professor Emeritus
George H. Lowrey, M.D., Professor Emeritus
Kenneth R. Niewanger, M.D., Professor Emeritus
Ronan O’Donnell, M.D., Professor Emeritus
John M. Palmer, M.D., Professor Emeritus
Philip E.S. Palmer, M.D., F.R.C.P., Professor Emeritus
Ehloida N. Sassarib, M.D., Associate Professor in Residence Emeritus
Deborah A. Smith, M.D., Associate Professor Emeritus
Robert E. Smith, Ph.D., Professor Emeritus
C. John Tupper, M.D., Professor Emeritus
Vadim Waring, Ph.D., Professor Emeritus
Edward J. Watkinson, M.D., Professor Emeritus
Robert J. Wharton, M.D., Professor Emeritus
Seton R. Weller, M.D., Ph.D., Professor Emeritus
Theodore C. West, Ph.D., Professor Emeritus
Hiroshi Yamada, Ph.D., Professor Emeritus
Julian F. Young, M.D., Ph.D., Professor Emeritus

"Course not offered this academic year."
Admission Requirements and Professional Curriculum. Detailed information can be obtained from the School of Medicine. See also the School of Medicine section in the front portion of this catalog.

Courses in the School of Medicine

Curriculum for the School of Medicine

The curriculum for the M.D. degree at the University of California, Davis School of Medicine is a four-year program to provide comprehensive training for the practice of medicine. It offers a blend of basic science training and clinical experience with opportunities for research. While the first two years emphasize the basic science basis of medicine, the student is exposed even from the on-set to questions of patient management, thereby providing a natural transition to the entry pregraduate training into the clinical training of the first two years.

The first-year program is for three quarters, beginning in the Fall. The basic sciences (anatomy, physiology, biochemistry, histology, endocrinology, neuropsychology, immunology, general pathology) are blended with social sciences (the behavioral aspects of medicine), and students are introduced to the art of communicating with patients, and emergency medicine. The second-year program is for four quarters, but with the Summer Quarter abbreviated to six weeks. The Summer Quarter provides a transition between basic and clinical sciences with the presentation of systematic pathophysiology and courses on the integrative system and reproductive system. In the remaining three quarters, the students complete their training in basic sciences (pharmacology, microbiology) and are then, from an organ system approach, presented the pathophysiological basis of disease (endocrine, hematopoietic/lymphoreticular, gastrointestinal, nutritional, musculoskeletal, neurovascular, respiratory, nephrology). During the second year, training in physical diagnosis and is presented with issues in community health, occupational medicine, psychiatry, and human sexuality. The third-year program is comprised of required clerkship rotations in the clinical specialties: twelve weeks of surgery, twelve weeks of medicine, and eight weeks each of obstetrics/gynecology, pediatrics, and psychiatry.

In the fourth year of the M.D. curriculum, flexibility is built in to allow students to begin to individualize their medical career. Twenty-four weeks of flexible clerkships include four weeks of psychiatry and neurosurgery, four weeks of ambulatory care, and sixteen weeks of clinical electives. Each student is required to take two-week clerkships in physical medicine and rehabilitation, ophthalmology, otolaryngology, and a two-week required experience in responsibilities of medical practice (medical ethics, jurisprudence, medical economics). The fourth-year curriculum also allows for twelve weeks of undesignated time.

To satisfy the M.D. degree program, the student must successfully complete the required course work and clerkships. Students who enter the program with advanced training in one of the areas required for the program are permitted to substitute required courses with electives of equal credit. In addition to the fourth-year elective program available, there is some opportunity for selecting electives during the first two years, in particular during the interim period between the first and second years.

First-Year Required Courses

UNITS

Quarter I: Fall

Biological Chemistry 410A, molecular and cell biology .. 4.5

Family Practice 400A, introduction to patient evaluation .. 2

Cell Biology and Human Anatomy 400, development, gross, and radiologic anatomy 8

Psychiatry 401, medicine and the mind ... 2

Quarter II: Winter

Biological Chemistry 410B, cell biology and metabolism ... 3.5

Cell Biology and Human Anatomy 402, human microscopic anatomy 2

Human Physiology 400, human physiology ... 8

Family Practice 400B, introduction to patient evaluation .. 2

Quarter III: Spring

Biological Chemistry 410B, mammalian endocrinology and homeostasis 4.5

Human Anatomy/Human Physiology 403, neurology ... 5

Medical Microbiology 480A, basic and medical immunology .. 2.5

Pathology 410A, General Systemic Pathology .. 4.5

Family Practice 400C, introduction to patient evaluation .. 2

Second-Year Required Courses

Quarter IV: Summer

Pathology 410B, General Systemic Pathology ... 7.5

Obstetrics and Gynecology 420, reproduction/gynecology ... 2

Dermatology 420, integumentary system .. 2

Internal Medicine 400A, physical diagnosis ... 1

Quarter V: Fall

Medical Microbiology 480B, pathogenic microbiology .. 6.5

Internal Medicine 402A, hematopoietic lymphoreticular system 5

Orthopaedic Surgery 420, musculoskeletal system .. 2.5

Medical Pharmacology and Toxicology 400A, Principles of Pharmacology A 2.5

Community Health/Internal Medicine 402, epidemiology/community health/occupational medicine .. 2

Internal Medicine 400C, physical diagnosis ... 2

Quarter VI: Winter

Medical Pharmacology and Toxicology 400B, Principles of Pharmacology B 8

Internal Medicine 420C, respiratory system .. 4

Internal Medicine 420D, cardiovascular system ... 3.5

Neurology 420, clinical neurosciences .. 4

Psychiatry 403, psychopathology .. 3.5

Psychiatry 402, human sexuality ... 1

Internal Medicine 400D, physical diagnosis ... 2

Quarter VII: Spring

Internal Medicine 420F, metabolic-regulatory system .. 3.5

Internal Medicine 420B, gastrointestinal system ... 3

Internal Medicine/Biological Chemistry 419, basic and clinical nutrition 2

Internal Medicine 420E, nephrology ... 2

Internal Medicine 400D, physical diagnosis ... 2

Medical Sciences (core courses)

Third-Year Required Courses

Professional Courses

430. Required Surgery Clerkship (18) I, II, III, IV

The Staff

Clinical activity—full time (eight weeks); lecture—8 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. Restricted to medical students. Course consists of eight weeks of general surgery specialties and four weeks of orthopaedic surgery. Clinical material is presented through seminars and lectures and reading assignments involving the workup and care of the surgical patient.

431. Medicine Clerkship (18) I, II, III, IV

The Staff

Clinical activity—full time (12 weeks). Prerequisite: medical students with consent by Committee on Student Evaluation and Promotion. Two 6-week periods.

Fourth-Year Required Courses

440. Responsibilities of Medical Practice (3) II

Davidson and staff

Lecture/discussion—60 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. Students will address nonbiological components of the patient-physician relationship (medical ethics, medical jurisprudence, medical economics, alcoholism and drug abuse, etc.) and critically explore social, ethnic and cultural issues arising in medical practice. (SU grading only.)

Fourth-Year Required Courses

Responsibilities of medical practice ... 2

Physical Medicine and Rehabilitation clerkship .. 4

Ear, Nose and Throat/Otolaryngology clerkship .. 4

Fourth-Year Flexible Clerkships

Neurology and/or Neurosurgery ... 4

Ambulatory Care .. 4

Clinical Electives

The fourth-year curriculum also allows for twelve weeks of undesignated time (electives, interviews, free time, etc.).

Other Medical Sciences Courses

Professional Courses

450. Introduction to UCD Medical Center (1) III

The Staff

Seminar—20 hours total. Prerequisite: second-year medical student. Designed to assist medical student in transition from classroom to hospital setting. (SU grading only)

480. Insights in Clinical Research (1) II

Lecture—1 hour. Prerequisite: medical students in good standing. Clinical research presented by School of Medicine faculty; overview of pertinent issues, including research ethics, subject protection, and conductivity, etc. (SU grading only)

489. Directed Studies (9) IV

O’Grady

Independent study—40 hours weekly. Prerequisite:
individual directed studies in extended preparation for National Board Examination, Part I, and as required by Promotions Board. Independent studies to review material from Years I and II in the curriculum in preparation for taking National Boards in the fall, and for remediation course work directed by the Promotion Board. Students are expected to spend 8 to 12 hours per day on these studies. Faculty consultation and tutoring available on individual basis. (SU grading only.)

495. Medicine Literature Review (1-9) I, II, III, IV.

Walk-in Discussion—3 to 37 hours. Prerequisite: medical student in good academic standing and permission of the Associate Dean of Curricular Affairs. Independent studies and reading for selection include, but are not restricted to, medical ethics, economics and jurisprudence, culture and medicine, ethic and medicine, gender and medicine, history of medicine, health manpower, and medical education. A preparation paper on the selected topic will be required. (SU grading only.)

Departmental Courses:

Anesthesiology

492. Upper Division Course in Anesthesiology (1-6) I, II, III, IV. (The Staff, Bennett, Kien)

Internship—3 to 18 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in anesthesiology and related fields. (P/NP grading only.)

501. Professional Courses

460. Anesthesiology Clinical Clerkship (3-18) I, II, III, IV. (Parsons in charge)

Full-time clinical activity (3 full days per week). Prerequisite: second- and fourth-year medical students. Provides experience in total anesthetic management including application of physiologic and pharmacologic principles to preoperative, operative and postoperative management of patients. Consideration of management of general and regional anesthesia techniques, resuscitation, artificial ventilation, inhalation and fluid-electrolyte therapy and pain problems. Students electing portions of the course for credit must receive consent of instructor. Limited enrollment.

546. Anesthesiology Team Participation Martinez VA Medical Center (6-9) I, II, III, IV. (Inwin Clinical clerkship for 6 weeks; 4-8 weeks.) Prerequisite: third- and fourth-year medical student, completion of Medical Sciences 430. Instruction in: (1) pre- and post-anesthesia care, (2) induction and maintenance of anesthesia, (3) hazards and complications of anesthesia, (4) monitoring (including invasive), (5) record keeping, (6) surgery requirements of anesthesiologists. All training is under staff direction.

461. Airway and Mechanical Ventilation Management (3) III, IV. (Parsons in charge)

Clinical activity—full time (2 weeks). Introduces medicine student to endotracheal intubation, regulation of mechanical ventilators, and weaning from ventilatory support.

546. Insights in Anesthesiology (1-3) I, II, III, IV. (Fung)

Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students with good academic standing; consent of instructor. Observation of applied anatomy, physiology, and pharmacology; role of the anesthesiologists in the operating room as part of surgical team; preanesthetic and postanesthetic evaluation of patients. May be limited opportunity to be involved in clinical setting. (SU grading only.)

498. Individual or Group Study (1-5) I, II, III, IV. (Eisele and staff)

Discussion—1.5 hours; laboratory—2.0 to 10 hours. Prerequisite: interns and residents with consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics.

501. Anesthesiology Research (4-18) I, II, III, IV. (Gronet and staff)

Laboratory—12-54 hours. Prerequisite: third- to fourth-year medical students, advanced standing undergraduate and veterinary medicine students; consent of instructor. Problems in clinical and/or laboratory research. (SU grading only for medical students.)

Biological Chemistry

Lower Division Course

92. Internship in Biological Chemistry (1-12) I, II, III, IV. (The Staff)

Internship—3 to 36 hours; final report. Supervised work experience in biological chemistry and related fields. (P/NP grading only.)

502. Upper Division Courses

192. Internship in Biological Chemistry (1-12) I, II, III, IV. (The Staff)

Internship—3 to 36 hours; final report. Prerequisite: upper division standing; approval of project prior to internship by preceptor. Supervised work experience in Biological Chemistry and related fields. (P/NP grading only.)

519. Group Study (1-5) I, II, III, IV. (The Staff)

Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved. (P/NP grading only.)

519. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. (The Staff)

Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

209. Prostaglandins/Leukotrienes and Related Lipids (2) Ziboh (Dermatology)

214. Molecular Medicine (1) I. Hanley

Discussion—1 hour. Prerequisite: courses in biochemistry or the equivalent. Series of lectures on current topics in biochemistry related to medicine. Material covered stresses concepts derived from biochemical research which have potential clinical relevance, and are intended to be of interest to medical students. (SU grading only.) (Same course as 414.)

**216. Protein Structure (3) II. Benisek

Lecture—3 hours. Prerequisite: Biochemistry 201A or consent of instructor. Course designed to acquaint students at graduate level with currently applied techniques employed in determination of protein structure and significant results derived from them. Techniques which will be presented include amino acid sequence analysis, three-dimensional structure determination by X-ray diffraction, and nuclear magnetic resonance spectroscopy. Offered in alternate years. (SU grading only.)

217. Molecular Genetics of Fungi (3) II. Holland

Lecture—3 hours. Prerequisite: graduate standing in a biological science; Biochemistry 101B; Genetics 100, 102A; Botany 115; Plant Pathology 130, 215X; Microbiology 105, 106. Advanced treatment of molecule biology and genetics of filamentous fungi and yeasts, including gene structure, organization and regulation; secretion; control of reproduction; and evolutionary transformation; and gene manipulation. Offered in alternate years. (Same course as Plant Pathology 217.)

222. Mechanisms of Translational Control (2) II. Hershey

Lecture—1 hour; discussion—1 hour. Prerequisite: Biochemistry 201C or consent of instructor. Molecular mechanisms of protein synthesis and translational control in eucaryotic cells, with emphasis on mammalian cells and their viruses. An advanced graduate-level treatment of topics of current interest, with readings and discussion of selected papers from the literature. Offered in alternate years.

231. Topics in Cellular Biochemistry and Physiology (2) II. Traut, Sillman (Animal Physiology)

Seminar—2 hours. Prerequisite: one course in biochemistry; Physiology 100A or Zoology 121A or 121B. General physiology, cell biology and molecular biology of living systems, with emphasis on cell form and function. One topic, representing a timely and important area of research, will serve as the focus throughout the course. May be repeated for credit.

238. Group Study (1-5) I, II, III, IV. (The Staff)

Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved. (P/NP grading only.)

299. Research (1-12) I, II, III, IV. (The Staff)

Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

410A. Molecular and Cell Biology (4.5) I. Matthews, Hollander

Lecture—5 hours. Basic biochemistry of proteins and nucleic acids is presented, followed by molecular genetics, regulation of gene expression, enzymes and structural proteins. Applications to clinically relevant systems are emphasized. Particular emphasis is placed on the role of specific proteins and enzymes in cancer, haemoglobinopathies, immunoglobulins and monochlonal antibodies, oncogenes, cell proliferation control.

418. Cell Biology and Metabolism (3.5) II. Traut, Sillman

Lecture—4 hours (for 8 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. Introduction to transport of small molecules and ions across membranes is followed by study of energy metabolism and biosynthetic processes in cells. Membrane receptors are considered as they relate to basic metabolic processes. Correlation to human disease is made throughout.

411. Molecular Medicine (1) II. Hanley

Discussion—1 hour. Prerequisite: course in biochemistry or the equivalent. Series of lectures on current topics of biochemistry related to medicine. Material covered stresses concepts derived from biochemical research which have potential clinical relevance, and are intended to be of interest to medical students. (SU grading only.) (Same course as 214.)

414. Mammalian Endocrinology and Homeostasis (4.5) III. Walsh and staff

Lecture—6 hours; discussion—1 hour; student presentation. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiological and biochemical properties of the mammalian endocrine system both at the cellular and systemic level. Principles that regulate homeostasis, especially in organ interrelationships, metabolites, and minerals. Reproductive endocrinology. (Same course as Human Physiology 418.)

419. Introduction to Clinical Nutrition (3) III. Haletmal (Internal Medicine), Rucker, and staff

Lecture—5 hours; lecture/discussion—1.5 hours; laboratory/discussion—0.5 hour (for 4 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. A 28-hour course that integrates basic and clinical concepts of human nutrition. The course emphasizes normal nutrition homeostasis and regulation and current perspectives on the role of nutrition in disease. Format is partly lectures, partly discussion/case study. (Same course as Internal Medicine 419.)

477U. Tutoring in Biological Chemistry (1-5) I, II, III, IV. (The Staff)

Tutoring—3 to 15 hours. Prerequisite: advanced standing or consent of instructor. Assists instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.)
498. Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: medical students with consent of instructor. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: medical students with consent of instructor. (SU grading only.)

Cell Biology and Human Anatomy

Upper Division Courses

101. The Gross and Microscopic Structure of the Human Body (1-5) I. The Staff
Lecture—4 hours. Prerequisite: Biological Sciences 1A or 10; Physiology 2-2L or Biological Sciences 1B recommended. A study of the gross and microscopic structure of the human body with emphasis on function.

101L. The Gross and Microscopic Structure of the Human Body (2) II.
Laboratory—two 3-hour sessions. Prerequisite: course 101 (may be taken concurrently). Laboratory will be taught from prosthetics, models and slides to give students the opportunity to learn structure from direct experience.

192. Internship in Morphology (1-12) I, II, III, IV. The Staff
Internship—3-36 hours; final report. Prerequisite: upper division standing; laboratory science experience including some chemistry; approval of project by an instructor; period of internship. Experience of supervised internship in research laboratories of members of the department. (P(NP grading only.)

197T. Tutoring in Cell Biology and Human Anatomy (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Discussion—1 hour; laboratory—6-9 hours. Prerequisite: completion of course 101 with a grade of B or better and consent of instructor. Provides laboratory instruction in gross and microscopic human anatomy, with small groups of undergraduates under the supervision of the instructor. (SU grading only.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P(NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P(NP grading only.)

Graduate Courses

200. Gross Anatomy (8) I. Erickson
Lecture—3.5 hours; discussion—1 hour; laboratory—10-15 hours. Prerequisite: graduate student status and consent of instructor. To provide students with a vocabulary of human body structure and to acquaint them with structural relationships through dissection and lecture and to introduce them to functional aspects of gross anatomy, particularly as regards anatomical problem solving.

202. Human Microscopic Anatomy (5) II. Fitzgerald
Lecture—3 hours; laboratory—6 hours. Examine the normal microscopic structure of the basic cells, tissues, and organs of the body. Lectures emphasize morphology and structure-function relationships. Accompanying laboratories involve analysis and identification of sectional material at the light microscopic and ultrastructural levels.

203. Microanatomy (8) I, II, III, IV. Vijayan
Lecture—5 hours; laboratory—3 hours. Prerequisite: consent of instructor. Gross and microscopic anatomy of the central nervous system; motor and sensory pathways; neurophysiology, and cognitive functions.

290C. Research Group Conference (1-12) I, II, III. The Staff
Discussion—1 hour. Prerequisite: graduate student with research experience (may be taken concurrently); consent of instructor. Discussion of problems, progress and literature relevant to current research undertaken by laboratory groups in Human Anatomy. (SU grading only.)

292. Fertilization and Gamete Literature Critique (1) I, II, III. Meizel
Discussion—1 hour. Prerequisite: consent of instructor. Critical evaluation of current journal articles dealing with cell biology and biochemistry of gametes and fertilization. Selected papers will be presented and discussed in detail by students and faculty. May be repeated for credit. (SU grading only.)

298. Advanced Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

400. Developmental, Gross, and Radiologic Anatomy (9) I, II. Erickson and staff
Lecture—6 hours; laboratory—12 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Integrated presentation of developmental, gross, and radiologic anatomy. Four students are assigned to one cadaver and dissect the entire body. Embryology and radiology are correlated with the dissections. Embryology is covered from implantation to birth.

402. Human Microscopic Anatomy (5) II. Fitzgerald and staff
Lecture—3 hours; laboratory—6 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Examines the normal microscopic structure of the basic structures, tissues, and organs of the body. Lectures emphasize morphology and structure-function relationships. Accompanying laboratories involve analysis and identification of sectional material at the light microscopic and ultrastructural levels.

403. Neurobiology (5) III. Vijayan
Lecture—4 hours; laboratory—3 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiology and anatomy of the normal human nervous system in an integrated format. Focus on gross and microscopic brain structure, functional neuroanatomy, and the physiology, biochemistry, and pharmacology of the nervous system. (Same course as 404.)

497T. Tutoring in Human Anatomy (1-5) I, II, III, IV. The Staff
Prerequisite: advanced standing. (SU grading only.)

498. Advanced Group Study (1-12) I, II, III, IV. The Staff
Prerequisite: medical students, interns, and residents with consent of instructor. Directed reading and group discussion and laboratory experience on selected topics. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (SU grading only.)

Clinical Psychology

Graduate Course

299. Research (1-12) I, II, III, IV. Steward
Prerequisite: consent of instructor. Individual or group research on selected topics. (SU grading only.)

Community Health

Upper Division Courses

101. Perspectives in Community Health (3) I, II, III. Boucher
Lecture—3 hours. Prerequisite: undergraduate standing. Covers comprehensively the responsibilities, obligations, roles and professional activities of various health care disciplines in the community; provides students with perspectives on preventive medicine in society.

160. Health Education (1-5) I, II, III, IV. The Staff (Sulivan Health Center)
Lecture—1-3 hours; laboratory—3-15 hours. Prerequisite: consent of instructor. Preparation for field work in the area of health education. Planning and presentation of programs on health issues. Peer counseling in the areas of sexuality and alcohol/drug abuse. (P(NP grading only.)

180. Aging and Health (3) III. Orgen
Lecture—3 hours. Prerequisite: upper division standing and consent of instructor. Focuses on the nature and determinants of health in the elderly. Current social and personal strategies for enhancing and maintaining health in old age.

192. Internship in Community Health Practice (1-12) I, II, III, IV. The Staff
Internship—3-36 hours. Prerequisite: upper division and graduate students; consent of instructor. The student, through fieldwork in a community health agency, learns to apply theory and concepts learned in the classroom. (P(NP grading only.)

194. Practicum in Community Health Clinics (1-5) I, II, III, IV. Kuramagi and staff
Clinical activity—3-15 hours; written report. Prerequisite: upper division standing. Undergraduate, through active participation in the medical aspects of community health clinics, gains knowledge of their organization, administration, and problem-solving capabilities of these primary care facilities. (P(NP grading only.)

195. International Health Care (1) I. Boucher
Prerequisite: one or more courses in community health, health policy, sociology, or international relations recommended. Presentation of current health issues and health care systems in other countries. Topics include health care for refugees, the impact of political strife on health, the role of the health care professional in international settings. May be repeated for credit. (P(NP grading only.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff
Lecture/seminar—1-5 hours; occasional visiting lectures. Prerequisite: senior standing and consent of instructor. Directed group study on selected topics relating to community health. (P(NP grading only.)

199. Special Studies in Community Health (1-5) I, II, III. The Staff
Prerequisite: advanced undergraduate standing and consent of instructor. Directed individual study on selected topics relating to community health. (P(NP grading only.)

Graduate Courses

294. Practicum in Community Health Clinics (1-5) I, II, III, IV. The Staff
Clinical activity—3-15 hours. Prerequisite: open to all first- or second-year medical students, or graduate students with consent of instructor. Students are assigned to clinical settings on the basis of their interests and personal, cultural, ethnic, urban/rural or other related aspects of clinical community health. The students, through active participation in health care delivery, are able to relate conceptual with practical aspects of primary health care. (SU grading only for graduate students.)

298. Group Study in Community Health (1-5) I, II, III. The Staff
Prerequisite: medical, graduate, or veterinary students, or consent of instructor. Discussion/seminar/discussions or community investigations in issues or problems in community health. (SU grading only for graduate students.)

299. Research in Community Health (1-12) I, II, III, IV. Haan, Mungas, Boucher
Prerequisite: medical, graduate, or veterinary students, or consent of instructor. Directed education and research in selected topics in community health. (SU grading only for graduate students.)

*Course not offered this academic year.
Professional Courses
421. Principles of Epidemiology, Occupational Medicine, and Geriatrics (2-5) J. Haan
Lecture—7.5 hours for 4 weeks; discussion—1.5 hours. Prerequisite: approval by Committee on Student Evaluation. GEP. Fundamentals of epidemiology and epidemiologic study design, including measures of morbidity, mortality, and risk. Occupational medicine component covers the evaluation of occupational illness, and specific examples of occupational diseases. Geriatrics component covers the comprehensive geriatric assessment, treatment issues, and the long-term care system. (Same course as Preventive Medicine 421.)

455. Multidisciplinary Clinical Preceptorship (4.5)
IV. Ogren
Clinical activity—full time (3 weeks). Prerequisite: second-year student in good academic standing. Students will be introduced to basic principals of geriatric health care and provided with opportunities for clinical observation and experience in a variety of facilities that serve older adults. Multidisciplinary nature of geriatrics will be emphasized. (SU grading only.)

460. Geriatrics in Community Health (6-12) I, II, III, IV. Boucher, Ogren
Discussion—4 hours; clinical activity—full time (4-8 weeks) in community setting and needs assessment. Prerequisite: third-year medical student. Opportunity to participate in state-of-the-art geriatric programs ranging from well elderly to severely frail. Sites include Yolo, Sacramento, and Martinez counties.

461. Clerkship in Community Health Group Practice (3-9) I, II, III, IV. The Staff
Clinical activity—full time (2-6 weeks). Prerequisite: third- or fourth-year medical students. Overview of local community health in group practice settings. Students participate in treatment at several clinic sites in Yolo County. Topics include primary care, environmental health, maternal and child health, jail health, and preventive health care for the aged. (SU grading only.)

465. Community Health Preceptorship (2-18) I, II, III, IV. Boucher, Ogren, Tupper
Clinical activity—full time (2-12 weeks). Prerequisite: fourth-year medical students. Provides the opportunity, at the California Department of Health Services, to participate in ongoing investigations of current public health problems, i.e., birth defects, cancer control, diabetes, hypertension, injury control, infectious diseases, aging, Alzheimer's disease, and smoking and tobacco use control.

480. Insights in Community Health (1-3) I, II, III, IV. Boucher, Ogren
Clinical activity—3-9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Introduction to concepts involved in clinical practice of geriatrics. Participation in multi-disciplinary team conferences and teaching conferences, nursing home rounds, home health visits and hospice care, as well as other geriatric services. (SU grading only.)

Dermatology
Upper Division Courses
192. Internship in Cutaneous Biology (1-4) I, II, III, IV. Isseroff
Internship—8-20 hours; final report. Prerequisite: upper division standing or consent of instructor. Approval of project prior to internship by preceptor. Supervised work experience involving research on the skin. (PnP grading only.)

199. Special Study in Cutaneous Biology (1-4) I, II, III, IV. The Staff (Isseroff in charge)
Prerequisite: advanced undergraduate standing and/or consent of instructor. Special study by individual arrangement of specialized topics in biology of skin. Work may be assigned readings, laboratory research or a combination. (PnP grading only.)

Graduate Course
299. Research in Cutaneous Biology (1-12) I, II, III, IV. The Staff (Isseroff in charge)
Laboratory—3-36 hours. Prerequisite: consent of instructor. Independent research in cellular and biochemical aspects of experimental cutaneous biology and pathology. (SU grading only.)

Professional Courses
420. Integumentary System (2) W. Hultney and staff
Lecture/discussion—4 hours (for 6 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. Covers cell biology, pathology, and physical diagnosis of the skin. Fundamentals of the skin and is designed for preparing medical students for clinical service. Recognition of normal variations, and common or important dermatoses is emphasized. Patient demonstrations of selected conditions are included.

460. Dermatology Clinical Clerkship (6) I, II, III, IV. Wheeland
Clinical activity—40 hours for four weeks (inpatient/ outpatient service). Prerequisite: completion of three years of medical school, or consent of instructor. Observation and participation in dermatology clinics/practice and participation in Ward Rounds and Dermatology Clinics at UCD Medical Center, Kaiser, and private physician offices. Limited enrollment.

468. Insights in Dermatology (1-3) I, II, III, IV. Wheeland
Clinical activity—3-9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Clinical experience limited to observation of delivery of dermatologic care and attendance at some conferences. (SU grading only.)

498. Special Topics in Clinical Dermatology (1-6) I, II, III, IV. The Staff (Isseroff in charge)
Independent study—3-18 hours. Prerequisite: medical students with consent of instructor. Individually arranged study of special topics in clinical dermatology determined by student and instructor. Assigned readings and/or clinical examination of selected patients. (SU grading only.)

499. Research in Cutaneous Biology (1-12) I, II, III, IV. The Staff (isseroff in charge)
Laboratory—3-36 hours. Prerequisite: consent of instructor. Research either laboratory or clinical, on ongoing projects within the department under supervision of faculty. (SU grading only.)

Family Practice
Lower Division Courses
92C. Health Science Clinical Practicum (2) I, II, III, IV.
Field work—in clinic setting. Prerequisite: consent of instructor. Field experience to expose lower division students to health care delivery including: patient histories and physical examinations, health promotion and disease prevention; diagnosis and treatment of episodic, acute and chronic illness; basic laboratory testing; and appropriate referral and follow-up. (PnP grading only.)

Upper Division Courses
192A. Internship in Family Practice (1-12) I, II, III, IV. Davidson
Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. Work experience supervised in the Department of Family Practice. Upper division students provided an opportunity to acquire research experience in a clinical laboratory setting. (PnP grading only.)

192C. Health Science Clinic Practicum (2) I, II, III, IV. Arevalo
Field work—in clinic setting. Prerequisite: upper division standing and consent of instructor. Field experience to introduce upper division students to health care delivery including: patient histories and physical examinations, health promotion and disease prevention; diagnosis and treatment of episodic, acute and chronic illness; basic laboratory testing; and appropriate referral and follow-up. (PnP grading only.)

195. Health Care to Underserved Populations (1) I. Neubert
Lecture—1 hour. Prerequisite: sociology, political science, or applied behavioral science background recommended, or registration in medical school. Discussion of sociocultural perspectives of underserved population in California impacting their health; roles of family/interpersonal relationships in making health care decisions; and clinician's perspectives in treating people of culture not familiar or uncomfortable with Western medicine. (PnP grading only.)

Professional Courses
The following courses are for students enrolled in the Family Nurse Practitioner/Physician Assistant Program.

340A. 340B-340C-340D. Clinical Preceptorship for FNP/PA Students (3-12) III-IV. Stewart, White
Clinical activity—8-40 hours. Prerequisite: registered student in Family Nurse Practitioner/Physician Assistant Program. Student spends 8-40 hours per week with an approved physician preceptor in patient care to develop clinical skills necessary to assess and manage patients with common medical problems seen in primary care and long-term care facilities.

341A. 341B-341C-341D. Advanced Clinical Preceptorship for FNP/PA Students (3-12) III-IV. Moyer
Clinical activity—8-40 hours. Prerequisite: registered student in Family Nurse Practitioner/Physician Assistant Program, and course 340A-340B-340C. Student spends 8-40 hours per week in an approved clinical setting to build on clinical skills in primary care learned in course 340A-340B-340C. Assessment and management of patients with complex and multiple problems. (PnP grading only.)

343A. 343B-343C-343D. 343E-343F. Inpatient Clinical Experience for FNP/PA Students (5-5-5-5-5) I, II, III, IV. The Staff
Clinical activity—160 hours per quarter. Prerequisite: registered student in Family Nurse Practitioner/Physician Assistant Program. Application of principles of geriatric care in the inpatient setting and in hospital, and community settings that provide services for the elderly, including visits to patients' homes. (PnP grading only.)

350. Ethics and Trends in Health Care for FNP/PA Students (2) I. Trolinger
Lecture/discussion—2 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Trends and ethical issues in health care, review of the process and policies for ethical decisionmaking in patient care. These issues, trends, and processes will be related to the role of the Family Nurse Practitioner/Physician Assistant.

352A. 352B. Professional Development of the Physician Assistant (1-1) III. The Staff
Lecture/discussion—1 hour. Prerequisite: registered student in the Physician Assistant Program. Study of the role of the physician assistant and its historical evolution, and issues of professional, organizational responsibilities and legal considerations.

354A. 354B. 354C. Fundamentals of Primary Health Care for FNP/PA Students (5-5-4-4) III-IV. The Staff
Lecture/discussion—4.5 hours. Prerequisite: registered student in Family Nurse Practitioner/Physician Assistant Program and satisfactory completion of course 354A. Study of anatomy and physiology, pathophysiology, disease classification, approaches to assess and manage common medical problems seen in primary health care.

*Course not offered this academic year.
356A. 355B-355C. Advanced Principles of Health Care for FNP/PA Students (4-4-4) I-II-III. The Staff Lecture/discussion—4 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Study of anatomy and physiology, pathophysiology, diagnostic criteria and approaches to assess and manage patients with complex and/or multiple health care problems in primary care settings, and to learn the various techniques of competent patient care settings. (Deferred grading only, pending completion of sequence.)

356B. Pharmacology for FNP/PA Students (4) II. The Staff Lecture/discussion—4 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Study of pharmacokinetics and pharmacodynamics, the classifications of drugs and representative drugs within each class, and application of these principles to pediatric and geriatric patients, to pregnant or lactating women.

360A-360B-360C. Ethics and Trends in Health Care for FNP Students (1-1-1) H-I-II-III. Menink and staff Lecture/discussion—1 hour. Prerequisite: registered student in the Family Nurse Practitioner Program or consent of instructor. The student will learn about trends and ethics in health care, and review process and policies for ethical decision-making in patient care. The trends and processes will be related to the role of the Family Nurse Practitioner.

362A-362B. Professional Development of the Nurse Practitioner (1-1) III. The Staff Lecture/discussion—1 hour. Prerequisite: registered student in the Nurse Practitioner Program. Study of the role of the nurse practitioner and its historical evolution, and of the organizational responsibilities and legal considerations.

364A-364B-364C-364D-364E-364F. Behavioral Science for FNP/PA Students (3-3-3-3) I-II-I-II-IV-II-IV. The Staff Lecture/discussion—2-1-1-1-1-1 hours. Prerequisites: registered student in the Family Nurse Practitioner/Physician Assistant Program. Study of communication skills and interview techniques, of self-awareness and awareness of others, of assessment of patients' concerns and counseling skills to assist them to gain insight and reach their own solutions, of behavior modification concepts and techniques.

366A-366B-366C-366D. Family Practice and Community Health for FNP/PA Students (2-2-2-2) I-II-I-IIIV-IV-IV. Kulig, Blom, Stawan. Lecture—4 hours per week. Prerequisites: registered student in the Family Nurse Practitioner/Physician Assistant Program. Study of family dynamics, growth and development, health care in all age groups including newborns, children, and elderly; focus on family and geriatrics, health promotion and disease prevention, and cultural and community needs and concerns.

399. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. Davidson Prerequisite: consent of instructor. Flexibility to develop and pursue research and clinical interests to enhance education in Family Practice (PFN grading only.)

Professional Courses

400A-400B-400C. Introduction to Patient Evaluation (2-2-3) I-II-III. The Staff Lecture/discussion—18 hours total; clinical activity—6 hours total; conference or laboratory—4.5 hours total. Using a problem-based format and simulated patients, each student practices diagnostic and therapeutic skills in evaluating and resolving common patient problems.

401. Preceptorship in Family Practice (1-1) I, II, III, IV. Morgan Preceptorship—part-time (one 4-hour day per week; 10 weeks) or full-time (40-hour week per 1.5 units; 4 to 5 students per preceptor). Students work under the supervision of a registered nurse or nurse practitioner. Student preceptorship in family physician's office as an introduction to clinical medicine.

402. Introductory Medical Spanish (2) II, III, Mellet Lecture/discussion—2 hours. Prerequisite: restriction to medical students in good standing. Teaches the vocabulary needed to conduct a basic history and physical examination in Spanish. (SU grading only.) (Deferred grading only, pending completion of sequence.)

407. Davis Community Clinic (2) I, II, III, IV. Tanji Clinical activity—5 to 6 hours. Prerequisite: second-year medical student in good academic standing. Students learn to diagnose and treat common medical problems as seen at a community clinic. Under the supervision of a physician. (SU grading only.)

434A-434B-434C-434D-434E-434F-434G-434H. Primary Care at Clinica Tepati (3-3-3-3-3) I-II-I-II-IV-III-IV-Arenav. Clinical activity—four 8-hour days; group seminar/discussion—ten 1-hour sessions; training session/lecture—four 2-hour sessions. Prerequisite: first- and second-year (full-time) medical students with consent of instructor; pre-application processed. Exposure to epidemics and outbreak disease; learn immunization techniques, use of laboratory tests. Limited enrollment. (SU grading only.)

435A-435B-435C-435D-435E-435F-435G-435H. Primary Care at Clinica Tepati (3-3-3-3-3-3) I-II-I-II-IV-III-IV-Arenav. Clinical activity—four 8-hour days; group seminar/discussion—ten 1-hour sessions; training session/lecture—four 2-hour sessions. Prerequisite: first- and second-year (full-time) medical students with consent of instructor; pre-application processed. Counseling, diagnosis, and treatment of patients with chronic (long-term) and acute (short-term) disease under supervision of a physician; as well, exposure to other special health-care needs of ethnic groups, and poor people in general. (SU grading only.)

440. Ambulatory Medicine Clerkship (6 or 12) I, II, III, IV. Schorger, Nebl. Clinical activity—4 hours per week (4 or 8 weeks). Prerequisites: third-year medicine clerkship. Ambulatory medicine experience in family practice setting. Acquisition of skills to evaluate and develop a treatment plan for patients with common medical problems seen by prior family physicians in the outpatient setting.

450. Family Practice Preceptorship (3-18) I, II, III, IV. Schorger. Clinical activity—full time (3 days per week). Prerequisite: completion of third year of medical school or medical student with consent of instructor. Preceptors are fully trained physicians in a variety of settings. Involvement in direct patient care and daily activities under supervision of physician/preceptor.

453. Selected Readings in Family Practice (1-9) I, II, III, IV. The Staff Discussion—3 to 5 hours. Prerequisite: medical students in good academic standing. Increase understanding of the family practice through assigned reading and discussion with faculty member.

469. Family Practice Clerkship (3-18) I, II, III, IV. Nebl. Clinical activity—full time. Prerequisite: third- and fourth-year medical students with consent of instructor (third-year students may elect to enroll for second half of spring quarter). Involvement in comprehensive primary medical care of patients in a family setting and observation of the team approach to health care.

469. Insights in Family Practice (1-3) I, II, III, IV. Morgan, Schorger. Clinical activity—3 to 9 hours; required readings. Prerequisites: first and second-year medical students in good academic standing; consent of instructor. Exposure to family practice in outpatient clinical setting. Three to nine hours per week spent with a community physician preceptor who is a member of the clinical faculty. (SU grading only.)

489. Directed Group Study in Family Practice (1-9) I, II, III, IV. The Staff Discussion—3 to 37 hours. Prerequisite: medical students with consent of instructor. Directed study on selected topics relating to family medicine and primary health care delivery; visits to and written analysis of selected innovative health care programs. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff Prerequisite: medical students with consent of instructor. Research in various aspects of the health care delivery system. (SU grading only.)

Human Physiology

Upper Division Courses

192. Internship in Human Physiology (1-12) I, II, III, IV. The Staff (Curry in charge) Internship—3-36 hours; required. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in physiology and related fields. (FNP grading only.)

189. Directed Group Study (1-5) I, II, III, IV. The Staff (Curry in charge) To be arranged. Prerequisite: consent of instructor. Directed reading, discussion and/or laboratory experience on selected topics. (PDP grading only.)

189. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Curry in charge) Laboratory—3 to 15 hours; undergraduate research project. Prerequisite: senior standing in biology, chemistry, physics, psychology, or engineering. (FNP grading only.)

Graduate Courses

200. Human Physiology (8) I, II, Curry, Renken, and staff Lecture—48 hours total; discussion—12 hours total. Prerequisite: graduate standing and consent of instructor. Integrated study of general cellular and organ system physiology, including neural, cardiovascular, respiratory, gastrointestinal and urinary systems in the human. Lectures concurrent with course 400, research discussions and laboratory/demonstration sessions, and examinations separate.

210. Advanced General Physiology (3) I, II, Curry, Cale Lecture—4 hours. Prerequisite: Physiology 100B; Biochemistry 101B; Chemistry 107B; graduate standing and consent of instructor. Physicochemical basis of living systems with emphasis on membrane permeability characteristics at both the cellular and tissue level. Offered in alternate years.

211. Renal Physiology (3) I. Rabinowitz Lecture—3 hours. Prerequisite: Physiology 112, 113 or the equivalent; graduate standing. Topics in mammalian renal physiology and related areas of biological, toxicological, fluid and electrolyte homeostasis, comparative renal physiology, and pathophysiology of the kidney in man. Offered in alternate years.

250. Circulatory Transport and Fluid Exchange (3) I. Renken Lecture—2 hours; discussion—1 hour. Prerequisite: Physiology 112, 113 and 114, or courses 400, 403 and 418, or the equivalent; or consent of instructor. Lectures, assigned reading and discussion of principles of microcirculatory exchange, fluid and lymph dynamics; regulation of plasma and
interstitial fluid volume, disturbances of plasma and interstitial fluid exchange, fluid replacement. Offered in alternate years.

280. Pulmonary Function Evaluation (4) I, II, III, Cross Lecture—3 hours; laboratory—2 hours. Prerequisite: course 400 or the equivalent; consent of instructor. Clinical laboratory, physiological evaluations of pulmonary function. (Same course as 480.)

283. Periperal Circulation (3) III. Gray/O'Donnell Lecture—2 hours; discussion—2 hours. Prerequisite: Physiology 111A, 113, or course 200 and consent of instructor. Lectures and critical analysis of papers on peripheral vascular function, including: structure/function; and normal and abnormal relationships, innervation, receptor pharmacology, endothelial and smooth muscle interactions, signal transduction, ion transport, permeability, paracrine mediators and disease mechanisms. Offered in alternate years.

288. Group Study (1-5) I, II, III, IV. The Staff (Curry in charge) Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved.

299. Research (1-12) I, II, III, IV. The Staff (Curry in charge) Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

400. Human Physiology (B) I, II. Curry, Renkin, and staff Lecture—4 hours; laboratory—6 hours. Prerequisite: consent by committee on Student Evaluation and Promotion. General, cellular and systemic physiology of cardiovascular, respiratory, gastrointestinal and urinary systems.

403. Neurobiology (5) III. Vijayan, Carlsen, Watson Lecture—4 hours; laboratory—3 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiology and anatomy of the normal human nervous system in an integrated format. Focus on gross and microscopic brain structure, functional neuroanatomy, and the physiology, biochemistry, and pharmacology of the nervous system. (Same course as Cell Biology and Human Anatomy 403.)

418. Mammalian Endocrinology and Homeostasis (4.5) III. Turgeon and staff Lecture—4 hours; discussion—1 hour; student presentation. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiological and biochemical principles of the mammalian endocrine system both at the cellular and systemic level. Principles that regulate homeostasis, especially in organ-organ interrelationships, metabolites, and minerals. Reproductive physiology. (Same course as Biological Chemistry 418.)

480. Pulmonary Function Evaluation (4) I, II, III, Cross Lecture—3 hours; laboratory—2 hours. Prerequisite: course 400 or the equivalent; consent of instructor. Clinical laboratory, physiological evaluations of pulmonary function. (Same course as 480.)

497T. Tutoring in Human Physiology (1-5) I, II, III, IV. Curry Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.)

498. Directed Reading and Group Study (1-4) I, II, III, IV. Curry and staff Discussion—2-8 hours. Prerequisite: medical student. Direct reading and discussion on selected topics in human physiology. (SU grading only.)

499. Research (1-6) I, II, III, IV. Curry and staff Prerequisite: medical students with consent of instructor. Laboratory investigation on selected topics. (SU grading only.)

Internal Medicine

Upper Division Courses

192. Internship in Internal Medicine (1-12) I, II, III, IV. The Staff Internship—3-36 hours; final report. Prerequisite: upper division standing. Supervised work experience in internal medicine and related fields. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff, selected. Also: Graduate standing. Prerequisite: upper division standing; consent of instructor. (P/N grading only.)

Graduate Course

250. An Introduction to Clinical Research Design and Epidemiology (3) I. McCurdy, Hirsch, Faculty Division of General Medicine Lecture—1 hour; discussion—2 hours. Prerequisite: open to clinicians and those interested in gerontological research; graduate or postgraduate standing; consent of instructor; introductory statistics at undergraduate or graduate level. Students will learn basic clinical research design by preparing an original research proposal in parallel with lectures and readings. Small discussion groups organized by field of interest will allow students to receive constructive feedback on their proposals. (SU grading only.)

Professional Courses

401A-401B-410C-410D. Physical Diagnosis Practicum B (1-2-2-2) I, II, III, IV. Bonekemper. Fieldwork—2 hours; lecture—1 hour; laboratory/discussion—1 hour. Prerequisite: approval by Committee on Student Evaluation and Promotion. Provides students with an overall framework for performance of a history and physical exam and with identification of abnormal physical findings. (Deferred grading only, pending completion of sequence.)

419. Introduction to Clinical Nutrition (3) III. Halsted, Phinney, Tucker and staff Lecture—5 hours; lecture/discussion—1.5 hours; laboratory/discussion—6.5 hours for 4 weeks. Prerequisite: approval by Committee on Student Evaluation and Promotion. A 28-hour course that integrates basic and clinical concepts of human nutrition. The course emphasizes nutrient homeostasis and regulation and current perspectives on the role of nutrition in disease. Format is partly lectures, partly discussion/case study. (Same course as Biological Chemistry 419.)

420A. Hematology (4) I Wellborn Lecture—4 hours (for five weeks); laboratory—6 hours; discussion—2 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Topics include normal hematology and basic disorders of blood cells, transfusion therapy, immunoglobulin disorders, and hemostasis. Laboratory exercises cover normal and abnormal blood cells and the interpretation of common laboratory tests and are staffed by clinical hemotologists.

420B. Gastrointestinal System (3.5) III. Zeldis Lecture/discussion—36 hours (over a 4-week period). Prerequisite: consent by Committee on Student Evaluation and Promotion. Basic pathophysiologic principles of digestive diseases on which clinical concepts and judgements can be developed. Emphasis on pathophysiologic basis of gastroenterologic and related disorders. All classes discuss and symposia provided to exemplify basic principles.

420C. Respiratory System (4) II. Lillingston Lecture—36 hours, discussion—10 hours (48 hours total). Prerequisite: consent by Committee on Student Evaluation and Promotion. Lectures, demonstrations, and small group case discussions of respiratory pathophysiology, includes review of certain clinical aspects of respiratory pattern and physiology; introduction to diagnostic procedures; and description of the major respiratory diseases.

420D. Cardiovascular System (3.5) II. Laslett and staff Lecture—28 hours; discussion—8 hours (36 hours total). Prerequisite: medical student and consent of Committee on Student Evaluation and Promotion, or graduate student in Animal Physiology 113, Human Physiology 200, or the equivalent, and consent of instructor. Introduction to principles of etiology, mechanisms, diagnosis and management of the major diseases of the cardiovascular system, including ischemic, valvular, hyperplastic, cardiomyopathic, pericardial, and electrical disorders. Lectures and small group discussions are employed.

420E. Nephrology (2.5) II. Kayser Lecture—18 hours, discussion—2 hours; laboratory—2 hours (32 hours total over a 4-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion. Fundamental aspects of (a) disorders of body water, electrolytes and acid/base balance; (b) major categories and mechanisms of parenchymal renal diseases; (c) urinary tract infections.

420F. Metabolic Regulatory System (3.5) III. Soeldner Lecture—4 hours; discussion—2 hours (over 8-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion. Basic understanding of pathophysiological processes of organs and tissues primarily involved in metabolic regulation and sufficient factual base so that clinical and laboratory findings, diagnosis, and elementary management of patients with endocrinological disorders can be rationalized.

421. Principles of Epidemiology, Occupational Medicine, and Geriatrics (2.5) I. Scherker, Schwab Lecture—7.5 hours for 4 weeks; discussion—1.5 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Fundamentals of epidemiology and epidemiologic study design, including measures of morbidity, mortality, and risk. Occupational medicine component covers the evaluation of occupational illnesses and specific examples of occupational diseases. Geriatrics component covers the comprehensive geriatric assessment, treatment issues, and the long-term care system. (Same course as Community Health 421.)

440. Ambulatory Medicine Clerkship (3-12) I, II, III, IV. Fitzgerald Clinical activity—full time (2 to 8 weeks). Prerequisite: third-year medicine clerkship. Two- to eight-week ambulatory medicine clerkship in an internal medicine setting. Acquisition of skills to evaluate and develop a treatment plan for patients with common medical problems seen by primary care physicians. Several sites are available.

461. Problems in Internal Medicine (6 or 9) I, II, III, IV. Wong Clinical activity—full time (4 or 6 weeks). Prerequisite: satisfactory completion of third year of medical school; consent of instructor. Study of inpatients hospitalized on Medical Service. Experience in Internal Medicine at Woodland Clinic and Hospital. Daily rounds, mornings with instructor, Monday through Friday; afternoons patient assignments. Teaching conferences and combined radiology-pathology medicine seminars. Weekly student conference. (SU grading only.)

462. Externship in Medicine (1-21) I, II, III, IV. Fitzgerald and staff Externship—full time (4, 6, or 12 weeks). Prerequisite: Medical Sciences 431; demonstrated ability to accept responsibility; consent of instructor. Student assumes role of active member with the primary physician on medical ward under direction of medical resident and staff. Responsibility for patients admitted to acting intern and take call every fourth night. Also taken at Children's S.F. Hospital. Limited enrollment.

463. Acting Internship in Medicine Intensive Care Unit (MICU) (9) I, II, III, IV. Alberson Clinical activity—full time. Prerequisite: completion of third year in medical school; consent of Director of MICU. At UCD Medical Center, student functions as

Course not offered this academic year.
486. Internal Medicine and Subspecialties in Outpatient Clinic: VA Outpatient Clinic (6-18) I, II, IV White and staff. Clinical activity—full time (4 or 12 weeks); includes conference and lectures. Prerequisite: completion of third year of Medical School. Participation with members of specialty (internal medicine) and subspecialty (cardiology, gastroenterology, endocrinology, pulmonary and immunology-allergy) in the initial clinical evaluation, work-up, management and follow-up of patients in outpatient clinical setting. Limited enrollment.

498. Group Study in Internal Medicine (1-18) I, II, III, IV. The Staff (Silva in charge). Prerequisite: consent of instructor. Special study for medical students which may involve laboratory or library research, ambulatory or inpatient care responsibility on campus, at UCD Medical Center or off campus by specific arrangement. (SU grading only.)

Internal Medicine—Cardiology

Upper Division Course

192. Internship in Cardiology (1-12) I, II, III, IV. Longhurst and staff. Internship—336 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in cardiology. May be credited for credit up to 12 units. (P/NP grading only.)

Graduate Course

220. Basic Science in Cardiology (1) III. Kaufman Lecture—1 hour. Prerequisite: graduate or medical student status. Fundamentals underlying cardiovascular medicine, including hemodynamics, neural control of the circulation, biochemistry and some experimental design and statistics. Experts in each of these fields will give current information in their specialties. Offered in alternate years. (SU grading only.)

Professional Courses

401. Cardiology Clinical Clerkship: Kaiser (3-18) I, II, III, IV. The Staff. Clinical activity—full time (4 weeks) 8-10 hours (hospital); 5-7 hours (clinics). Prerequisite: third and fourth year medical students with advance approval by Division of Cardiology. Seminar—2 hours. Clinical conferences held on medical school. Special interest in cardiology. (SU grading only.)

460. Cardiology Clinical Clerkship (3-18) I, II, III, IV. The Staff. Clinical activity—full time (2-12 weeks). Prerequisite: Medical Sciences 431, third and fourth year medical students in good academic standing with consent of instructor. Participation with members of subspecialty consultation service in initial patient evaluation, work-up, management, and follow-up of patients with cardiologic disorders. Two outpatient clinics per week. May be repeated for credit. Limited enrollment.

461. Management of Coronary Artery Disease: Coronary Care Unit (3-18) I, II, III, IV. The Staff. Clinical activity (inpatient service)—full time (4 weeks). Prerequisite: completion of second year of medical school and advance approval by Division of Cardiology. Research in laboratory and exercise testing to be determined by instructor. Current methods of clinical research involving certain aspects of diagnosis and treatment. Includes acute coronary care, hemodynamic monitoring, stress testing, cardiac catheterization, pathologic correlations and the modern approach to therapy, both medical and surgical, based on pathophysiological mechanisms. May be repeated for credit. Limited enrollment.

464. Preventive Cardiology (3-8) I, II, III, IV. Amsterdam Seminar—2 hours (2-4 weeks). Prerequisite: completion of third year of medical school. Clinical experience, weekly seminar and reading on primary and secondary prevention of cardiovascular disease. Will be carried out in Loid and Hypertension Clinics, Exercise Laboratory, Cardiac Care Unit, Cardiac Catheterization, and Cardiac Service at UCD Medical Center.

480. Insights in Cardiology (1-3) I, II, III, IV. The Staff. Clinical activity—3-9 hours. Prerequisite: medical student in good academic standing and approval by Division of Cardiology. Student attends one or more cardiovascular medicine clinics; general; hypertension; arrhythmia. Introduction to the diagnosis/treatment of common cardiovascular problems. (SU grading only.)

498. Special Group Study: EKG Unit (1-12) I, II, III, IV. The Staff (Chairperson in charge). Prerequisite: 2-week sessions. Prerequisite: medical students with advance approval by monthly attending faculty. Special group study in cardiology for medical students in EKG unit. May include lectures, directed reading, and/or discussion groups. May be repeated for credit. (SU grading only.) Limited enrollment.

499. Research (1-12) I, II, III, IV. The Staff. Prerequisite: approval by Division of Cardiology. (SU grading only.)

Internal Medicine—Clinical Nutrition and Metabolism

Upper Division Course

192. Internship in Clinical Nutrition (1-12) I, II, III, IV. Halsted, Pinney, and staff. Internship—336 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in nutrition. May be credited for credit up to 12 units. (P/NP grading only.)

Graduate Course

290C. Clinical Nutrition Research Conference (1) I, II, III, IV. Halsted, Pinney, Davis Seminar—1 hour. Weekly seminar presented by a graduate student taking the form of research completed or in progress. Includes review of the literature and journal review from current journals. (SU grading only.)

Professional Courses

461. Nutrition Clinical Clerkship (3-18) I, II, III, IV. Halsted, Pinney, and staff. Lecture—2 hours; clinical activity—full time (2 to 12 weeks). In-depth experience in assessment and monitoring of nutritional status of adult patients at UCD Medical Center whose illnesses are complicated by malnutrition, and of patients attending the Nutrition Clinic with problems in under-nutrition due to various illnesses.

480. Insights in Clinical Nutrition (1-3) I, II, III, IV. Halsted, Pinney, and staff. Clinical activity—3-9 hours. Prerequisite: student in good standing; consent of instructor. Participation in on-going clinical and basic nutrition research. Student may devise own project depending upon time commitments.

Internal Medicine—Emergency Medicine

Upper Division Course

192. Internship in Emergency Medicine (1-12) I, II, III, IV. Delert and staff. Internship—336 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in emergency medicine. May be repeated for credit up to 12 units. (P/NP grading only.)

Professional Courses

401. Preceptorship in Emergency Medicine (1-6) I, II, III, IV. Mitchell Conference—2-4 hours; clinical activity—4-10 hours; term paper/discussion—2-10 hours. Prerequisite: Family Practice 400A, 400B, 400C or consent of instructor based upon previous equivalent experience. A broad range of emergency medical problems and management styles will be demonstrated. Participation in history taking and physical examination, based upon student experience. Submission of a literature review of an Emergency Medicine topic is required. (SU grading only.)

460. Emergency Medicine Clerkship (6) I, II, III, IV. Mitchell and staff. Clinical activity—full time (4 weeks). Prerequisite: third or fourth year medical student; satisfactory completion of Internal Medicine or Surgery clerkship; consent of instructor. Clinical work at UCD Medical Center or another area hospitals' emergency departments will be supplemented by didactic sessions. Students will be assigned appropriate emergency patients and will examine diseases and treat these patients.

485. Acting Internship in Emergency Medicine (6-12) I, II, III, IV. Mitchell and staff. Clinical activity—full time (4 to 8 weeks). Prerequisite: satisfactory completion of course 460. Acting internship provides clinical experience in emergency medicine. Students are assigned to the regular Emergency Department intern schedule and will be supervised by the attending physician. The goal is to familiarize students with the work-up and management of patients requiring emergency medical services.

498. Research (1-12) I, II, III, IV. Delert Laboratory—40 hours; research—full time (4 to 12 weeks). Prerequisite: consent of instructor. Elective where topics may be selected in either basic or clinical research areas of Emergency and/or Critical Care Medicine. The goal is to familiarize each student with individual research. Enrollment requires prior discussion and consent of instructor.

Internal Medicine—Endocrinology and Metabolism

Upper Division Course

192. Internship in Endocrinology (1-12) I, II, III, IV. Walter and staff. Internship—336 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in endocrinology. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course

290. Research (1-12) I, II, III, IV. The Staff (Walter in charge). Prerequisite: consent of instructor. Endocrinology research. (SU grading only.)

Professional Courses

460. Endocrinology Clinical Clerkship (5-18) I, II, III, IV. Walter and staff. Clinical activity (inpatient/outpatient service)—full time (3 days per week). Prerequisite: Medical Sciences 431 and consent of instructor. Participation with members of subspecialty service in the initial evaluation, work-up, management and follow-up of patients with endocrinologic disorders. Both inpatient and outpatient experience. Limited enrollment.

480. Insights in Endocrinology (1-3) I, II, III, IV. Walter. Clinical activity—3-9 hours; oral presentation. Prerequisite: student in good academic standing and consent of instructor. First- or second-year students observe in morning Endocrine and Diabetes clinics and attend bi-weekly noon and afternoon endocrine conferences. They also give brief endocrine physiol—
ogy oral presentation to the endocrine group. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Walter in charge)
Prerequisite: consent of instructor.

Internal Medicine—Gastroenterology

Upper Division Course

192. Intensive and Gastroenterology (1-12) I, II, III, IV. Trudeau and staff
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in Gastroenterology. May be repeated for credit up to 12 units. (P/NP grading only.)

Professional Courses

460. Clinical Clerkship (3-18) I, II, III, IV. Trudeau and staff

460. Insights in Gastroenterology (1-3) I, II, III, IV. Trudeau Clinical activity—3-9 hours. Prerequisite: student in good academic standing and consent of instructor. To gain insight in clinical activities of Gastroenterology Division through attendance at any of the following: endoscopic procedures, ward rounds, outpatient clinic, and G.I. grand rounds. (SU grading only.)

499. Research (1-12) I, II, III, IV. Pims tone, Trudeau, Pindiville
Clinical activity varied. Prerequisite: medical student status; consent of instructor. Part-time participation in active clinical and basic research projects. Some will involve both patient care and relevant laboratory procedures. Basic research includes liver metabolism, cancer markers, porphyrias diet and cancer, folate metabolism. (SU grading only.)

Internal Medicine—Hematology—Oncology

Upper Division Course

199. Research in Hematology—Oncology (1-15) I, II, III, IV. Powell and staff
Laboratory—hours variable. Prerequisite: upper division standing and consent of instructor. Experience in laboratory research. (P/NP grading only.)

Graduate Courses

298. Topics in Hematology (1-4) I, II, III, IV. The Staff (Lewis in charge)
Prerequisite: consent of instructor. Laboratory investigation contributing to a dissertation for a graduate degree. (SU grading only.)

Professional Courses

460. Hematology—Oncology Clinical Clerkship (6-18) I, II, III, IV. N. P. Lewis and staff
Clinical activity (inpatient-outpatient service)—full time (4-12 weeks). Prerequisite: Medical Sciences 431 and consent of instructor. Acting internship in inpatient Hematology-Oncology service. Participation with members of the subspecialty service in the initial clinical evaluation, work-up, management, and follow-up of patients with hematologic or oncologic disorders. May be repeated for credit. Limited enrollment.

461. Ambulatory and Consult Clerkship (6-12) I, II, III, IV. Lewis and staff
Clinical activity—full time (4 to 8 weeks). Prerequisite: fourth-year medical student in good academic standing. Outpatient rotations include general hematology/oncology clinic, hemophilia clinic, sickle cell clinic, and two medical/surgical joint clinics. In addition, students will work on inpatient hematology and oncology consult service, the bone marrow service, and will attend all conferences sponsored by the Division.

462. Hematology—Oncology Clinical Clerkship (6-18) I, II, III, IV. Gandara, Perez
Clinical activity (inpatient-outpatient service)—full time (4-12 weeks). Prerequisite: Medical Sciences 431 and consent of instructor. Clinical experience in hematology-oncology at the Sacramento VA Clinic with emphasis on evaluating new patients with anemia, coagulation disorders, bone marrow, and administering chemotherapy. Weekly tutorial sessions with faculty and attendance at division conferences. May be repeated for credit. Limited enrollment.

480. Practicum in Care for the Terminally Ill (6) I, II, III, IV. Meyers
Clinical activity—40 hour/week for 4 weeks. Prerequisite: fourth-year medical student and an interview with program Medical Director. Work with hospice team to gain experience in symptom relief; psychosocial care and bereavement counseling. A written report will be a major component used in grading. This course fulfills the Ambulatory Care requirement.

499. Research (1-12) I, II, III, IV. The Staff (Lewis in charge)
Prerequisite: consent of instructor. (SU grading only.)

Internal Medicine—Infectious Diseases

Upper Division Courses

192. Research Internship in Internal Medicine (1-12) I, II, III, IV. Jordan and staff
Internship—3-36 hours; final report. Supervised work experience in the division of Infectious Diseases. Undergraduates will have an opportunity to acquire research experience in clinical settings. May be repeated for credit up to 12 units. (P/NP grading only.)

199. Infectious Diseases Research (1-5) I, II, III, IV. The Staff (Jordan in charge)
Prerequisite: chemistry through organic chemistry (in addition, physical and biochemistry preferred), biologics through basic bacteriology (in addition, microbiology and immunology preferred); and consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results will be reviewed at intervals with the instructor and via seminar presentation. (P/NP grading only.)

Graduate Courses

280. Molecular Pathobiology for Diagnosis and Therapy of Human and Animal Diseases (3) III. Dandekar
Lecture—3 hours. Prerequisite: graduate standing. Presentation of molecular pathobiology of human and animal viruses. Emphasis on molecular diagnostics at cellular/tissue level, and therapy including vaccines and gene transfer using recombinant DNA technology.

299. Research in Infectious Diseases (1-12) I, II, III, IV. The Staff (Jordan in charge)
Prerequisite: consent of instructor. Laboratory investigation contributing to a dissertation for a graduate degree. (SU grading only.)

Professional Courses

400. Infectious Diseases Clinic (4-5) I, II, III, IV. Jordan and staff
Clinical activity—full time (3 to 4 weeks). Ambulatory patient care training. Prerequisite: Medical Sciences 431. Selected outpatients at UC Davis Medical Center with chronic respiratory or urinary tract infections will be worked up and followed.

460. Infectious Diseases Clinical Clerkship (6-18) I, II, III, IV. Jordan
Clinical activity—full time (4-12 weeks). Prerequisite: successful completion of two years of study at an accredited medical school. In addition to seeing patients ill with infectious diseases regarding whom consultation has been requested, students will have laboratory experience in clinical microbiology. Students will also attend and participate in infectious diseases conferences and rounds. Limited enrollment. Prior consent is required for those enrolled students.

480. Insights in Infectious Diseases (1-3) I, II, III, IV. Jordan
Clinical activity—3-9 hours. Prerequisite: student in
good academic standing and consent of instructor. Student will attend infectious diseases consult rounds and also have opportunity to observe outpatient infectious disease practice and clinically related research. Introduction to diagnosis and treatment of patients in Infectious Diseases. (SU grading only.)

490. Seminar in Infectious and Immunologic Diseases (2-12) I, II, III, IV. Jordan and staff Seminar—2 hours; library research. Prerequisite: Medical Sciences 431. Epidemiology, diagnosis and management of infectious diseases and immunologic diseases will be considered. Wherever possible, actual inpatients (UCD Medical Center) will be used to demonstrate evaluation of individual cases. (SU grading only.) Limited enrolment. (May enroll for two consecutive quarters.)

499. Research Topics in Infectious Disease (2-12) I, II, III, IV. The Staff (Jordan in charge) Prerequisite: successful completion of first year of study in School of Medicine. Graduate students (approved for graduate credit) and/or consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results will be reviewed at intervals with instructor and in seminar presentation. (SU grading only.)

Internal Medicine—Nephrology

Upper Division Course
192. Internship in Nephrology (1-12) I, II, III, IV. Kayser and staff Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in nephrology. May be repeated for credit up to 12 units. (P/NP grading only.)

Professional Courses
460. Nephrology—Fluid Balance (6-12) I, II, III, IV. Kayser and staff Clinical activity—full time. Prerequisite: completion of third year of medical school; consent of instructor. Active participation in inpatient/outpatient clinical activities, in addition to specific lectures and conferences at UCD Medical Center covering the field of nephrology and fluid-electrolyte disorders. Limited enrolment.

499. Research in Nephrology (3-18) I, II, III, IV. Kayser Prerequisite: individual arrangement and consent of instructor. Independent laboratory research on a specific problem related to biochemical or immunologic causes of renal disease or renal and/or uremic disorders in humans or animals. (SU grading only.)

Internal Medicine—Occupational and Environmental Health

Upper Division Courses
190C. Research Conference in Occupational and Environmental Health (1) I. Beaumont; II. Samuels; III. McCurdy; IV. Gold Discussion—2 hours per week. Prerequisite: consent of instructor. Weekly conference on research problems, progress and techniques in occupational and environmental health. Critical discussion of recent journal articles. May be repeated for credit. (P/NP grading only.)

193. Internship in Occupational and Environmental Health (1-12) I, II, III, IV. Schenker and staff Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in occupational and environmental health. May be repeated for credit up to 12 units. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
250. Pesticide Epidemiology (3-12) I, II. The Staff Discussion—1 hour; seminar—2 hours. Prerequisite: medical students; graduate students in biological or environmental health; sciences who have completed or are enrolled in Epidemiology and Preventive Medicine 465; upper division undergraduate who has completed Environmental Studies 126; consent of instructor. Examination of the human health effects and the risk of disease from occupational and environmental exposure to pesticides. Some of the clinical endpoints include cancer, neurotoxic effects, reproductive impairment, and dermatologic conditions.

255. Environmental Health Risk Assessment (3) I. Goldsmith, Beck Discussion—1 hour; lecture/discussion—1.5 hours. Prerequisite: course 250 or 251 or consent of instructor. The components of risk assessment include: hazard identification, dose-response, exposure assessment and risk characterization, extrapolation of toxicology, pharmacology, epidemiologic studies, risk management, comparison of cancer and non-cancer endpoints, and risk communication strategies for regulatory policy-making.

Professional Courses
466. Occupational and Environmental Medicine Elective (6-12) I, II, III. Schenker Clinical and laboratory experience—full time (4 to 6 weeks). Prerequisite: fourth-year student and consent of instructor. Participation in activities of Occupational and Environmental Medicine. Major activity is involvement in an epidemiologic research project of the University. Also participates in Ambulatory Occupational and Environmental Medicine Clinic at UCD Medical Center.

480. Insights in Occupational and Environmental Medicine (1-3) I, II, III. Schenker Clinical activity—3-9 hours; small research projects. Prerequisite: first- or second-year medical student in good standing; consent of instructor. Students will observe and participate in research and clinical activities in occupational and environmental medicine which include conferences, occupational and environmental medicine seminars and field visits. Students develop and present small individual research projects. (SU grading only.)

499. Research (1-12) I, II, III, IV. Schenker and staff Laboratory—40 hours; clinical activity—4 or 8 hours. Prerequisite: third- or fourth-year medical student or consent of instructor. Student participates in activities of Division of Occupational and Environmental Health. Major activity is involvement in an epidemiologic research project of the Division. Also participates in ambulatory Occupational and Environmental Medicine Clinic at UCD Medical Center.

Internal Medicine—Pulmonary Medicine

Upper Division Course
192. Internship in Pulmonary Medicine (1-12) I, II, III, IV. Albertson and staff Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in pulmonary medicine. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course
210. Grant and Scientific Paper Writing (1) I, II, III, IV. Last Discussion—2 hours. Basics of scientific writing for grants and papers. Each student will prepare a grant or paper for critique and tutorial feedback.

Professional Courses
460. Pulmonary Clinical Clerkship (3-18) I, II, III, IV. Alertson and staff Clinical activity—full time (2 to 12 weeks). Prerequisite: Medical Sciences 431. At UCD Medical Center participating providing Pulmonary fellowships and consultation staff. Also includes pulmonary function test interpretation, outpatient assignments in outpatient clinical clinic and preparation and presentation of material at weekly conferences.

462. Pulmonary Clinical Clerkship (3-18) I, II, III, IV. Kruppe and staff Clinical activity—full time. Prerequisite: completion of second year of medical school and/ or consent of instructor. Participation in Pulmonary Function Laboratory with members of the subspecialty service in clinical evaluation work-up, management, and follow-up of patients with pulmonary disorders. Includes exposure in Pulmonary Function Laboratory, Respiratory Care Unit, and pulmonary diagnostic processes. Limited enrolment.

480. Pulmonary-Critical Care Medicine Insights (1-3) I, II, III, IV. Albertson Clinical activity—3-9 hours per week. Prerequisite: student in good academic standing and consent of instructor. Student will attend respiratory critical patient clinics and e-patient; pulmonary consultation rounds and medical intensive care unit. Participation in diagnosis and treatment of common pulmonary problems. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Cross in charge) Prerequisite: consent of instructor. (SU grading only.)

Internal Medicine—Rheumatology-Allergy

Lower Division Course
99. Directed Research in Immunology (1-5) I, II, III, IV. Gershwin Laboratory—1-4 hours. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (P/NP grading only.)

Upper Division Courses
192. Internship in Rheumatology—Allergy (1-12) I, II, III, IV. Gershwin and staff Internship—3-56 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in rheumatology-allergy. May be repeated for credit up to 12 units. (P/NP grading only.)

199. Directed Research in Immunology (1-5) I, II, III, IV. Gershwin Laboratory—1-5 hours. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (P/NP grading only.)

Graduate Courses
200. Clinical Immunology and Immunopathology (4) I, II, III, IV. Gershwin, Robins Lecture—4 hours. Prerequisite: Medical Microbiology 107 or Veterinary Microbiology 270, or consent of instructor. Descriptive analysis of animal and human pathologic processes that interact with the immune system. Emphasis on infections, genetics, transplantation, allergy and autoimmune. Offered in alternate years.

209. Topics in Rheumatology and Clinical Immunology (1-5) I, II, III, IV. Gershwin Laboratory—1-5 hours. Prerequisite: consent of instructor, library and/or laboratory work as required. (SU grading only.)

299. Research in Autoimmune Disease (1-12) I, II, III, IV. Gershwin Laboratory—1-12 hours. Prerequisite: consent of instructor. Independent research will be encouraged in both animal models of human disease (including congenitally athymic nude, thymectomized, and New Zealand mice) and the cellular immune system of patients with systemic lupus erythematosus, Sjogren's syndrome, polyarthritis and drug hypersensitivity. (SU grading only.)

Professional Courses
460. Rheumatology Clinical Clerkship (1-18) I, II, III, IV. Leake and staff Clinical activity (inpatient-outpatient service)—full time. Prerequisite: Medical Sciences 431 and consent of instructor. Participation with members of the
subspecialty service in the diagnosis and therapeutic management of patients with rheumatic diseases.

461. Allergy Clinical Clerkship (3-18) I, II, III, IV. Gershwin and staff. Clinical activity—patient-outpatient service—full time (2 to 12 weeks). Prerequisite: completion of second year of medical school and consent of instructor. Student will work with practicing allergist in daily work with patients and participate in weekly allergy clinic and teaching conferences. Study of the literature. Will see patients with problems in clinical immunology, immunodeficiency, asthma, allergic rhinitis.

462. Insights in Rheumatology (1-3) I, II, III, IV. Leek. Clinical activity—3 to 9 hours. Prerequisite: student in good academic standing and consent of instructor. Participation in rheumatology consultation rounds, rheumatic disease clinics, and conferences with supervised readings in rheumatology. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Gershwin in charge). Prerequisite: medical student with consent of instructor. Part-time participation in active clinical and basic research projects which can involve both patient care and relevant laboratory procedures. Students can participate in a clinical medicine and clinical investigation. (SU grading only.)

Medical Microbiology

Upper Division Courses

107. Chemical and Cellular Immunology (4) I. Sciensibisi. Lecture—4 hours. Prerequisite: Biochemistry 101A, 101B or consent of instructor. Chemical and cellular basis of immunity: structure-function relationship of antigens, antibodies and their interactions; molecular basis of antibody diversity; cellular basis of immunity: immunoenzymatic and cellular aspects of hypersensitivity; immunogenetics and regulation of the immune response. (Same course as 407.)

115. Ecological Parasitology (2) I. Theis. Lecture—2 hours. Prerequisite: consent of instructor. Study of mankind’s influence on environmental factors that affect the development and spread of parasitic agents.

116. Parasitology for Wildlife Biologists (2) I. Theis. Lecture—2 hours. Prerequisite: consent of instructor. Study of wild life in biology or biological sciences or ecology. Emphasis on the role diseases and parasites play in wildlife dynamics. Lectures on techniques of collection, preservation and methods of surveying wildlife for parasites and the pathology, ecology, and zoological potential of parasites encountered by wildlife biologists.

130. Medical Mycology (2) II. Papagnulis. Lecture—2 hours. Prerequisite: consent of instructor. Study of fungi that infect humans. Various aspects of fungi in nature and their interactions with humans, will be discussed including epidemiology, pathology, and therapy. Offered in alternate years. (Same course as 430.)

192. Internship in Medical Microbiology (1-12) I, II, III, IV. The Staff (Bean in charge). Internship—3 to 36 hours; final report. Prerequisite: approval of project prior to period of internship. Supervised work experience in medical microbiology and related fields. (P/NP grading only.)

198. Group Study in Medical Microbiology (1-5) I, II, III, IV. The Staff (Bean in charge). Group Study—3 hours; in charge. Prerequisite: approval of project. (P/NP grading only.)

Graduate Courses

205. Frontiers in Immunology (2) I, II, III. Van de Water. Discussion—2 hours. Prerequisite: consent of instructor. Current developments in various aspects of immunology and immunoregulation (SU grading only). (Same course as 409.)

215. Medical Parasitology (5) I. Theis. Lecture—3 hours; laboratory—6 hours. Prerequisite: consent of instructor. Current developments in various aspects of parasitology. (SU grading only.) (Same course as 415.)

220. Current Concepts in Bacterial Ultrastructure (2) I. Beam. Seminar—2 hours; student presentations. Prerequisite: Microbiology 105 or consent of instructor. (SU grading only.)

228. Group Study in Medical Microbiology and Immunology (1-5) I, II, III, IV. The Staff (Bean in charge). Group Study—3 hours; in charge. (SU grading only.)

Medical Pharmacology and Toxicology

Lower Division Courses

92. Internship in Pharmacology (1-12) I, II, III, IV. The Staff (Chairperson in charge). Internship—3 to 36 hours; final report. Prerequisite: approval of project prior to period of internship. Supervised work experience in pharmacology and related fields. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge). Prerequisite: lower division standing. (P/NP grading only.)

Upper Division Courses

100. Survey of Pharmacology (2) I. Hollinger. Lecture—2 hours. Prerequisite: introductory physiology or the equivalent, or consent of instructor. Survey of the principles underlying the action of drugs. Consideration of the pharmacology of prescription and non-prescription drugs commonly used to treat medical conditions in children of school age; pharmacological aspects of drug dependency and related topics.

192. Internship in Pharmacology (1-12) I, II, III, IV. The Staff (Chairperson in charge). Internship—3 to 36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in pharmacology and related fields. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Advanced General Pharmacology (3). Lecture—3 hours. Prerequisite: upper division courses in biochemistry (101A-101B) and mammalian physiology (111A-111B and 112-113) or the equivalent. May be taken concurrently. Core course in human pharmacology designed for graduate and medical students. Principles of pharmacology, including pharmacokinetics and drug metabolism and the actions, use and toxicity of the major classes of drugs.

200B. Advanced General Pharmacology (4) I. Lecture—4 hours. Prerequisite: upper division courses in biochemistry (101A-101B) and mammalian physiology (111A-111B and 112-113) or the equivalent. Core course in human pharmacology designed for graduate and medical students. Principles of pharmacology, including pharmacokinetics and drug metabolism and the actions, use and toxicity of the major classes of drugs.
medical students. The actions, use and toxicity of major classes of drugs. Continuation of course 200A.

201. Pharmacology of the Nervous System I: Transmitter Substances (2) I. Hance Lecture—2 hours. Prerequisite: courses 200A-200B or 400A-400B, or the equivalent. Pharmacology of substances affecting nervous transmission. Offered in alternate years.

202. Pharmacology of the Nervous System II: Hypnotics, Sedatives and Anesthetics (2) II. The Staff (Chairperson in charge) Lecture—2 hours. Prerequisite: courses 200A-200B or 400A-400B, or the equivalent. Pharmacology of centrally-acting sedative, hypnotic, and anesthetic agents with special reference to alterations in brain function. Offered in alternate years. (SU/Grading only.)

203. Pharmacology of the Nervous System: Stimulants and Anticonvulsants (2) II. Stark Lecture—2 hours. Prerequisite: courses 200A-200B or 400A-400B, or the equivalent. Pharmacology of stimulant and convulsant agents, anticonvulsant agents and their evaluation in animal models. Offered in alternate years.

204. Pharmacology of the Nervous System IV: Drug Alteration of Learning and Memory (1-3) III. F.K. Killam Prerequisite: courses 200A-200B or 400A-400B, or the equivalent. Activity of drugs altering mood and behavior; psychopharmacologic agents, hallucinogens, antidepressants. Offered in alternate years.

206L. Pharmacokinetics Laboratory (2) I. Henderson Laboratory—6 hours. Prerequisite: course 206 (may be taken concurrently). Laboratory procedures for determining pharmacokinetic values in experimental animals. Exercises designed to follow subject matter sequence of course 206. Offered in alternate years.

208. Application of Computers to Pharmacology (1-2) I, II, III, The Staff Lecture—1 hour. Prerequisite: consent of instructor. Presentation of basic concepts and problems.

220. Statistical Approach to Pharmacological Research (2) III. Hance Lecture—2 hours. Prerequisite: course 200A or consent of instructor. Introduction to application of statistics in pharmacological research and therapeutics, basic concepts of distributions, measures of location, dispersion and correlation, significance, probability, uncertainty, design of experiments.

297T. Tutoring in Pharmacology (1-3) I, II, III, The Staff (Chairperson in charge) Tutorial—3-9 hours. Prerequisite: courses 200A-200B and 200AL-200BL, or the equivalent; consent of instructor. Under supervision of the instructor, students assist in preparation and teaching of courses in Pharmacology. (SU/Grading only.)

298. Group Study (1-6) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SU/Grading only.)

Professional Courses

400A. Principles of Pharmacology (2.5) I. Hance and staff Lecture—6 hours for 4 weeks; discussion—2 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Principles in pharmacology, including pharmacodynamics, drug metabolism and the actions, uses and toxicities of the major classes of drugs.

400B. Principles of Pharmacology (6) II. Stark and staff Lecture—39 hours total; discussion—28 hours total. Prerequisite: consent of Committee on Student Evaluation and Promotion. The actions, uses and toxicities of the major classes of drugs. Continuation of course 400A.

490. Seminar in Pharmacology for Medical Students (1) I, II, III, IV. The Staff (Chairperson in charge) Seminar—1 hour. Prerequisite: consent of instructor. Seminar in pharmacology for medical students.

497T. Tutoring in Pharmacology (1-5) I, II, III, IV. The Staff (Chairperson in charge) Tutoring—5-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU/Grading only.)

498. Special Study for Medical Students (1-5) I, II, III, IV. The Staff (Chairperson in charge) Lecture, directed reading, and/or discussion groups—5-15 hours. Prerequisite: consent of instructor. Special study in pharmacology for medical students. (SU/Grading only.)

499. Directed Research for Medical Students (1-12) I, II, III, IV. The Staff (Chairperson in charge) Laboratory—3-36 hours. Prerequisite: consent of instructor. Directed research in pharmacology for medical students. (SU/Grading only.)

Neurology

Upper Division Course

199. Individual Special Study and Research (1-4) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Individual special study in neurophysiology and biomedical engineering is offered to qualified students. Studies on psychophysiology, single-unit electrophysiology and instrumentation are offered in Davis. (FNP/Grading only.)

Graduate Courses

201. Human Behavioral Neurobiology (2) I. Jagust, Robertson Lecture/discussion—2 hours. Prerequisite: Cell Biology and Human Anatomy 203; Psychology 108 or 136. Neurobiology of normal and abnormal behavior of humans, based on specific neuroanatomical, neurophysiological, and cognitive parameters. Evaluation of these parameters will be, for example, by application of clinical neurologic, neuropsychologic, and neuromaging tests.

202. Visuomotor Neurobiology (2) III. Rafal Seminar—2 hours. Prerequisite: course 201, Cell Biology and Human Anatomy 203. An overview of neural mechanisms of visually guided behavior in humans, with particular emphasis on the integration of visual attention and eye movements. Performance of normal humans and neurologic patients in reflective orienting, visual search, reading and reaching will be considered. Offered in alternate years.

209. Seminar in Selected Topics (1) I, II, III, IV. Scobey, Gorin Seminar—1 hour. Prerequisite: consent of instructor. Selected topics in Neuroscience will be offered. (SU/Grading only.)

298. Group Study (1-6) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved. (SU/Grading only.)

299. Individual Special Study and Research (1-12) I, II, III, IV. Scobey Laboratory—3-36 hours. Prerequisite: consent of instructor. Individual special study and research in Neurophysiology and Biomedical engineering is offered at both Davis and Sacramento Medical Center. (SU/Grading only.)

Professional Courses

420. Clinical Neurosciences (4) II. Remler and staff Lecture—4 hours per week; discussion—4 hours (for five weeks total). Prerequisite: medical student with consent by Committee on Student Evaluation and Promotion. Lectures and case discussions of pathophysiology underlying neurological disorders including disorders of development, muscle, nerve, cerebral circulation, metabolism, myelin, cortical function, movement, cerebro-spinal fluid, autonomic function and special senses. Anatomical basis of clinical testing, nervous system infection, neoplasia and trauma will be discussed.

454. Electroencephalography and Evoked Potentials (18) I, II, III, IV. Gabor, Seyal Clinical activity—full time (12 weeks) technical and interpretation. Prerequisite: four-week Neurology clerkship and consent of instructor. Principles of electroencephalographic diagnosis including technical basis of electroencephalography and evoked potentials. Emphasis placed on how these studies are applied to neurological diagnosis.

455. Child Neurology (6) I, II, III, IV. Gospe Clinical activity—full time (4 weeks). Prerequisite: satisfactory completion of Medical Sciences 431, 432A and 432B and consent of instructor. Students will be exposed to children with disorders of the nervous system, both in outpatient and inpatient services. Cases presented to a member of full-time faculty who will discuss clinical findings, differential diagnostic, management and therapy. This course satisfies the fourth year neurosience requirement.

456. Cortical Neurology (3-18) I, II, III, IV. Remler, Knopman Clinical neurology research—full time (12 weeks at Martinez VA Hospital). Prerequisite: course 450 or the equivalent; consent of instructor. Students study areas of special interest in tutorial manner; use of supervising member of faculty with expertise and interest in elected field. Students may elect tutorial clinical experience with member of staff.

458. Introduction to Cognitive and Communication Disorders (3) I. Werfz Lecture—3 hours; observations, individual projects.
Prerequisite: consent of instructor. Introduction to cognitive and communication disorders. Includes a survey of disorders subsequent to brain damage; management by neurology, neuropsychology, and speech pathology, and current research on appraisal, diagnosis, and treatment. Offered in the Martinez VA Medical Center. (S/U grading only.)

459. Independent Study in Neurogenic Communication Disorders (1-3) I, II, III, IV. Wertz Conference, observation and data collection—3-9 hours. Prerequisite: consent of instructor. Independent study of neurogenic communication disorders—aphasia, dementia, apraxia of speech, dysarthria. Designed for individual interest and includes data collection, directed reading, research design, data collection, and preparation of results. Offered in the Martinez VA Medical Center. (S/U grading only.)

464. Clinical Neurology (3-18) IV, I, II, III. The Staff (Gabor in charge) Clinical activity—full time (minimum of one-half quarter). Prerequisite: fourth-year medical student or third-year medical student with completion of a medical clerkship, consent of Chairperson. Clerkship in neurology to be arranged at another institution with accredited residency programs in neurology under proper supervision. (S/U grading only.)

466. Special Clinical Elective in Neurology (9) IV, I, II, III. The Staff (Gabor in charge) Clinical activity—full time (4 to 12 weeks). Prerequisite: fourth-year medical students and third-year medical students with clerkship in medicine and permission from medical schools. Students will function as acting intern on neurology service. Emphasis will be on mastering neurologic examination and introduction to neurologic evaluation, diagnosis, and therapy. (S/U grading only.)

468. Insights in Neurology (1-3) I, II, III, IV. The Staff Discussion—3 hours; clinical activity—3 to 9 hours. Prerequisite: student in good academic standing; consent of instructor. Attendance at neurology grand rounds and regular rounds following. (S/U grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Richman in charge) Laboratory—2-24 hours. Prerequisite: consent of instructor. Approved for graduate degree credit. Laboratory investigation on selected topics. (S/U grading only for graduate and medical students.)

Neurosurgery

Upper Division Course

199. Special Study in Neurosurgery for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: advanced undergraduate standing with consent of instructor. Students may participate in ongoing neurosurgical projects or may pursue and design independent projects. (P/NP grading only.)

Graduate Course

299. Neurosurgery Research (3-12) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: graduate student with consent of instructor. Student may participate in ongoing neurosurgical projects or may pursue and design independent projects. (S/U grading only.)

Professional Courses

451. Neurosurgical Critical Care Clerkship (3) I, II, III. The Staff (Chairperson in charge) Clinical activity—full time (2 weeks). Prerequisite: third- or fourth-year medical student having completed a neurological clerkship or consent of instructor. Students participate in the care of neurosurgical patients in the NSICU and in the admission and surgical management of patients admitted through the Emergency Room.

464. Elective Clerkship (6-18) I, II, III, IV. The Staff (Chairperson in charge) Clinical activity—full time (4-12 weeks). Prerequisite: fourth-year medical student having completed a neurosurgical clerkship or consent of instructor. Clerkship in neurosurgery to be arranged at another institution with accredited residency program in neurosurgery under proper supervision.

470. Advanced Clinical Neurosurgery (6-18) I, II, III, IV. The Staff (Chairperson in charge) Clinical activity—full time (12 weeks). Prerequisite: fourth-year medical student in good academic standing. Students will function as acting intern on neurosurgery service. Admission and distribution of patients. Neurological history, examination, diagnostic procedures, and surgical management are emphasized. Students participate in meaningful aspects of surgical procedures and attend required conferences and rounds.

480. Insights in Neurosurgery (1-3) I, II, III, IV. The Staff Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in academic standing; consent of instructor. Observation of neurosurgical care in emergency room, operating room and hospital floors, including manner of treatment of a variety of common and acute neurological diseases. (S/U grading only.)

499. Neurosurgery Research (1-18) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: medical student with consent of instructor. Student may participate in ongoing neurosurgical projects or may pursue and design independent projects. (S/U grading only.)

Obstetrics and Gynecology

Upper Division Courses

180. Seminar in Early Mammalian Development (1) I, II, III, IV. Wily Seminar—1 hour: short paper. Prerequisite: Zoology 100 or the equivalent. Each student will present paper from recent scientific literature relevant to early mammalian development. Short paper will be required at end of course.

188. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

290. Current Topics in Research (1) I, II, III, IV. The Staff Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Selected topics in reproductive biology.

291. Seminar in Early Mammalian Development (1) I, II, III, IV. Wily Seminar—1 hour. Each student will be asked to present a paper on recent scientific literature in various research topics in early mammalian development. Short paper will be required at end of course.

298. Group Study (1-5) I, II, III, IV. The Staff Prerequisite: graduate standing; consent of instructor.

299. Research (1-12) I, II, III, IV. Overstreet Prerequisite: graduate standing; consent of instructor. (S/U grading only.)

Professional Courses

420. Reproductive System/Perinatology (2) IV. Oi Lecture—3.5 hours (for 6 weeks). Introduction to clinical obstetrics and gynecology and perinatology as an extension of material introduced in the sciences基本 to medicine in anatomy, reproductive physiology, and molecular biogenetics. (Same course as Pediatrics 420.)

465. Clinical Clerkship (4-18) I, II, III, IV. The Staff Clinical activity—full time (5 days per week). Prerequisite: third- and fourth-year medical students; consent of instructor. Active participation in inpatient and outpatient care. Attendance required; conferences; student-faculty member informal conferences. May be repeated for credit.

470. Acting Internship in Obstetrics and Gynecology (6-8) I, II, III, IV. Oi Clinical activity—full time (4-6 weeks). Prerequisite: third- and fourth-year medical students who have completed Medical Sciences 432A; consent of instructor. Student will perform as intern and expect the following experience: Obstetrics and Gynecology, 2 weeks each; perform inpatient care; be on call every third night; attend scheduled conferences one half-day per week. Round daily with attending.

471. Ambulatory Gynecology Obstetrics (6-8) I, II, III, IV. Mackay Clinical activity—full time (4-6 weeks). Prerequisite: third- and fourth-year medical students who have completed Medical Sciences 432A; consent of instructor. Student to participate in following clinics each week: General Gynecology, New and Return Obstetrical, Post-Partum, High-Risk Obstetrics, Pre-Operation Clinic, other specialty clinics as assigned. Student will conduct examinations, present patients to staff and will be able to discuss treatment regimen. Night call in Labor and Delivery Suite every third night.

499. Research in Obstetrics and Gynecology (4-18) I, II, III, IV. Chang and staff Prerequisite: medical student with consent of instructor. Student will pursue a research problem of her/his own choosing, selected with the help of the faculty. Integration with ongoing faculty research projects recommended. (S/U grading only.)

Ophthalmology

Upper Division Course

192. Research Internship (1-12) I, II, III, IV. The Staff Internship—3-36 hours. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervized work experience in ophthalmology research. Research staff in Ophthalmology have experience in research; electron microscopy, biochemistry, immunology and visual psychophysics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-0) I, II, III, IV. The Staff Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Course

299. Basic Research in Visual Science (1-12) I, II, III, IV. The Staff Prerequisite: consent of instructor. (S/U grading only.)

Professional Courses

440. Ophthalmology Required Clerkship (3) I, II, III, IV. J. Brandt Clinical activity—full time (2 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. Post-Partum; High-Risk Obstetrics, Pre-Operation Clinic, other specialty clinics as assigned. Understanding of treatment for eye problems manageable by a primary care physician; knowledge of what patients should be referred for ophthalmic care.

461. Basic Clinical Ophthalmology (4.5) I, II, III, IV. J. Brandt Clinical activity—be arranged (3 weeks). Prerequisite: third- and fourth-year medical students who have completed either Medical Sciences 430 or course 440 (in third or fourth year); consent of instructor. Provides an acquaintance with the fundamentals of routine clinical ophthalmology.

*Course not offered this academic year.
Clinical activity—to be arranged (4 weeks off campus or 6 weeks at UCD Medical Center). Prerequisite: medical students who have completed either Medical Sciences 430 or course 440 (in third or fourth year); consent of instructor. Participation in disciplines of neuro-ophthalmology/pediatric ophthalmology, diseases of the cornea and external eye, glaucoma and retina. Rotations at UCD Medical Center may be arranged in 5-week units of one service alone, or in combination, as arranged with instructors.

480. Insights in Ophthalmology (1-3) I, II, III, IV. J. Brandt and staff
Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Clinical exposure in ophthalmology including slide-tape program, patient exposure, and department conferences (i.e., grand rounds and subspecialty conference). (SU grading only.)

498. Group Study (1-3) I, II, III, IV. The Staff (J. Brandt in charge)
Prerequisite: medical students with consent of instructor. Directed reading and discussion. (SU grading only.)

499. Research in Ophthalmology (1-12) I, II, III, IV. The Staff
To be arranged—3-36 hours. Prerequisite: medical students with consent of instructor. Individual research on selected topics in optics and visual physiology, cornea and external disease. (SU grading only.)

Orthopaedic Surgery
Lower Division Course
*199. Special Study for Undergraduates (1-4) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: second-year student in good academic standing and consent of instructor. (P/NP grading only.)

Upper Division Course
*199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

Professional Courses
401A. Sports Medicine: Medical Aspects of Sports Injuries (3) I. Marter
Lecture—5 hours for 5 weeks; laboratory/discussion—3 hours. Prerequisite: consent of instructor. Consent of instructor. Introduction to the musculoskeletal system, sprains, strains, dislocations, head injuries, athletic injuries, and prevention. (SU grading only.)

428. Ambulatory Orthopaedics (3-6) I, II, III, IV.
Rodriguez
Clinical activity—full time (2 to 4 weeks). Prerequisite: third- or fourth-year student in good academic standing and consent of instructor. Introduction to general orthopaedic problems and their management in an outpatient environment. Students will conduct orthopaedic examinations, present patients to staff, and participate in discussion of treatment regimens. Emphasis placed on orthopaedic physical exam and interpretation of x-rays. Does not meet surgical specialty requirement. Limited enrollment.

492. Community Preceptorship (6) I, II, III, IV.
Rodriguez
Clinical activity—full time (4 weeks). Prerequisite: third- or fourth-year student in good academic standing and consent of instructor. Designed to acquaint student with private practice of orthopaedics in the community setting. Opportunity to observe and assist private practitioners in office, emergency room and inpatient environment. Preceptors' offices available in Sacramento and surrounding areas. Student must provide own transportation.

464. Acting Internship (4) I, II, III, IV. Rodrigo
Clinical activity—full time (4 weeks). Prerequisite: third- or fourth-year student in good academic standing; consent of instructor. Rotation designed to increase basic knowledge of musculoskeletal abnormalities at clinical level. Attention focused on selected case material. For those students who demonstrate proficiency, responsibility will be similar to that of intern.

480. Insights in Orthopaedic Surgery (1-3) I, II, III, IV. Szabo
Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Exposure to aims, methods and procedures in orthopaedic surgery via attendance at grand rounds, patient care conferences, and group discussions. (SU grading only.)

499. Orthopaedics Research (1-12) I, II, III, IV. The Staff (Rodriguez in charge)
Clinical activity—3 hours to full time (to be arranged with individual basis). Basic and clinical research: third- or fourth-year student in good academic standing, consent of instructor. Laboratory or clinical investigation on selected topics. (Does not meet surgical specialty requirement.) (SU grading only.)

Otolaryngology
Lower Division Courses
*192. Internship in Otolaryngology (1-12) I, II, III, IV. Chairperson in charge
Internship—3 to 36 hours. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in otolaryngology and related fields. Final project report. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study in Otolaryngology for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: advanced undergraduate with consent of instructor. (P/NP grading only.)

Graduate Courses
290C. Research Conference in Otolaryngology (1) I, II, III. The Staff
Lecture/discussion—1 hour. Prerequisite: graduate students; medical students; advanced undergraduates with consent of instructor. Presentation and discussion of faculty and student research in otolaryngology. (SU grading only.)

291. Principles of Speech, Hearing and Equilibrium (3) I, II, III. The Staff
Lecture/discussion—3 hours. Prerequisite: graduate students; medical students; advanced undergraduates with consent of instructor. Presentations by faculty and guest lecturers on anatomy, physiology, and behavior involved in speech production, hearing, and equilibrium. Each student will be expected to make one class presentation.

298. Group Study (1-5) I, II, III, IV. The Staff
(SU grading only.)

299. Individual Study in Otolaryngology for Advanced Undergraduates (1-12) I, II, III, IV. Chole and staff
Prerequisite: advanced graduate student with consent of instructor. (SU grading only.)

Professional Courses
401. Clinical Examinations in Otolaryngology (1) I, II, III, IV. Chole
Lecture—1 hour; laboratory—1 hour; practical—1 hour total. Prerequisite: second-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit.

Obtaining the history, applied anatomy of the regions, and the art of the examination. Head mirror required. (SU grading only.)

402. Otolaryngology in Family Practice (1) I, II, III, IV.
Lecture—10 hours total. Prerequisite: fourth-year medical students and family practitioners with consent of instructor; open to graduate students. Approved for graduate degree credit. Planned as a refresher course for those already possessing a background of knowledge in the specialty. (SU grading only.)

403. Basic Principles of Reconstructive Surgery (1) I, II, III, IV.
Lecture—four 2-hour sessions; laboratory—one 2-hour session (5 weeks). Prerequisite: third- or fourth-year medical student with consent of instructor. Formal presentations covering basic principles of reconstructive surgery, including wound healing, treatment of lacerations, skin and bone grafts, flaps, Z-plasties and revision of scars. Laboratory session utilizing animal tissues.

404. Otolaryngology Required Clerkship (3) I, II, III, IV. Brodie
Clinical activity—full time (2 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. Provides fundamental knowledge of otolaryngologic diagnosis and principles, develops facility with basic ear, nose and throat instruments, provides an understanding of treatment for ear, nose and throat problems manageable by a primary care physician, provides knowledge of what patients should be referred for otolaryngologic care.

460. Clinical Otolaryngology Elective (3-18) I, II, III, IV
Clinical activity—full time. Prerequisite: third- and fourth-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Total involvement in clinical activities of the department. (SU grading only.)

480. Insights in Otolaryngology (1-3) I, II, III, IV. Brodie
Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Individualized activities (depending upon time available and previous exposure to Ear, Nose and Throat) including observing patient exams, ward rounds and attendance at lectures and grand rounds. (SU grading only.)

*490. Journal Seminar (1) I, II, III, IV. Donald Chole
Lecture/discussion—10 hours total (course given bimonthly, one hour per quarter). Prerequisite: fourth-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Monthly review of current otorhinolaryngologic and related literature and recent advances.

498. Individual or Group Study (1-5) I, II, III, IV. The Staff
Lecture/discussion—1-2 hours; laboratory—1-4 hours. Prerequisite: consent of instructor. Introduction to basic research in Otolaryngology. Lectures, discussion and laboratory study of sensory and motor systems. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff
Prerequisite: medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Participation in ongoing projects. (SU grading only.)

Pathology
Upper Division Courses
192. Internship in Human Pathology (1-12) I, II, III, IV. The Staff
Internship—3-36 hours; final project report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in pathology and related fields. (P/NP grading only.)

199. Special Study in Pathology for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: advanced undergraduates and consent of instructor. (P/NP grading only.)
Graduate Courses
Seminar—2 hours. Prerequisite: consent of instructor. Discussion of current topics in tumor biology by invited speakers and members of the class. A forum for presentation of proposed and completed experiments by persons interested in tumor biology. (S/U grading only.)

207. Introduction to Nervous System Pathology (1-1) I, II, III, IV. Ellis
Seminar—1-4 hours. Prerequisite: consent of instructor; open to advanced undergraduate, graduate, veterinary medical, and medical students. Study of nervous system responses to injury, infection, neoplasia, and malformation in both the human and experimental animal. Seminars include correlation of clinical, gross, and microscopic findings. Discussions provide instruction in microscopic techniques. (S/U grading only for medical students.)

210. Introduction to Human Pathology (4.5) I. C. Miller
Lecture/discussion—9 hours; laboratory—4 hours. Prerequisite: graduate or upper division students with background in gross and microscopic anatomy, physiology and biochemistry. Lectures, laboratory, and computer-assisted learning, introduces basic human disease processes. Stresses mastery of pathophysiology and vocabulary. Examining gross and microscopic tissue sections is taught. (Course given twice a week during 9 weeks and taken in first-year medical students enrolled in course 410A.) Course not intended for veterinary medical or medical students.

298. Advanced Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor.

299. Research (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (S/U grading only.)

Professional Courses
404. Faculty Pathology (2) II. Willmert
Laboratory—60 hours total. Prerequisite: medical student or consent of instructor. Systematic study of current forensic cases with emphasis on differential diagnosis, preservation of evidence, and medicolegal procedures. Introduction to histopathologic diagnosis,ballistics, and toxicology. (S/U grading only.)

405. Brain-Clutching Conference (1-4) I, II, III, IV. Ellis
Prerequisite: third- and fourth-year medical students or consent of instructor. Current specimens are sections, discussed, and clinical correlations proposed.

407. Diseases of the Nervous System (1-3) II, III, IV. Ellis
Lecture—1 hour; discussion—1 hour; seminar—1 hour. Prerequisite: third- and fourth-year medical students or special training in pathology or neurologic sciences; consent of instructor. Study of human nervous system reactions to diseases including infection, neoplasia and maldevelopment; application of experimental models to human disease, and clinical correlations. Seminars emphasize microscopic findings in current cases; discussions include individual cases and experimental experience in neuropathologic techniques. Given jointly with the Departments of Neurology and Neurosurgery.

408. Anatomic Pathology Case Studies (1-12) I, II, III, IV. Ruebel
Discussion—1-4 hours, laboratory—3-24 hours. Prerequisite: medical student or consent of instructor. Participation and/or performance, under supervision, of complete autopsies and surgical pathology; with consent of instructor on clinical material, gross, microscopic and laboratory findings.

410A-410B. General/Systemic Pathology (4.5, 7.5) II-IV Cardick
Lecture—30, 30 hours total; laboratory/discussion—30, 30 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. In-dept study of disease and its causes related to the general mechanisms of disease and each of the specific human organ systems. One credit of postpathophysiologic application required and required for clinical diagnosis. (Deferred grading only, pending completion of sequence.)

464. Clerkship in Advanced Surgical Pathology (6-12) I, II, III, IV. Vogt
Clinical activity—full time (4-6 weeks). Prerequisite: third- or fourth-year medical student or consent of instructor. Designed to provide students with an intensive experience in surgical pathology. Participation in grossing of specimens, preparation of frozen sections, and teaching sessions. Students attend surgical pathology conferences and seminar sessions in which clinical correlation and diagnostic information is discussed.

485. Applied Clinical Laboratory Medicine (6-9) II, III, IV. Keppler
Clinical activity—full time (6-9 weeks). Prerequisite: consent of instructor. Emphasis upon laboratory techniques, procedures, and interpretation of laboratory results. Students will be expected to participate fully in and all laboratory operations including bench techniques, laboratory management, and quality control.

497. Tutoring in Pathology (1-5) I, II, III, IV. The Staff
Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (S/U grading only.)

498. Advanced Group Study (1-5) I, II, III, IV. The Staff
Medical student and consent of instructor. Group study in variety of advanced topics in general, special, experimental, or comparative pathology. (S/U grading only.)

499. Research (1-18) I, II, III, IV. The Staff
Prerequisite: medical student with consent of instructor. Research in experimental, molecular, comparative, and applied pathology. Limited enrollment. (S/U grading only.)

Pediatrics
Upper Division Course
199. Special Study in Pediatric Research (1-5) I, II, III, IV. The Staff
Prerequisite: undergraduate student with consent of instructor based upon adequate preparation as determined by instructor. (PNP grading only.)

Graduate Course
299. Pediatric Research (1-12) I, II, III, IV. The Staff
Prerequisite: graduate students who are candidates for a degree in some area of biology or behavioral sciences; consent of instructor. (S/U grading only.)

Professional Courses
401. Preceptorship in Pediatrics (2) I, II, III, IV.
Chairperson in charge.
Preceptorship—half time. Prerequisite: second-year medical student or first-year medical student with consent of instructor. Opportunity to observe and participate in primary medical care in a practicing pediatrics' office. Participation in history-taking and physical examination will be at discretion of preceptor and dependent on student's experience. Evaluation by student.

Clinical activity—full time (4 to 12 weeks). Prerequisite: third- or fourth-year medical student; Medical Sciences 432B, consent of preceptor and Chairperson. Opportunity to participate in practice of preceptor performing such tasks as history taking, physical examination, and patient management.

420. Reproductive System/Perinatology (2) IV. O'Leary
Lecture—5 hours (for 6 weeks). Introduction to clinical andrology and perinatology as an extension of material introduced in the sciences basic to medicine in anatomy, reproductive physiologic, and molecular biology/genetics. (Same course as Obstetrics and Gynecology 420.)

460A. Acting Internship: General Inpatient Pediatric Clerkship (6-18) I, II, III, IV. Hausted
Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of Medical Sciences 432B with grade of B or better, letter of recommendation from Pediatrics faculty member. The Ward Acting Intern functions in a manner similar to that of a pediatrics intern. The Acting Intern takes admissions in the regular sequence and is on call. The Acting Intern can expect to manage six to ten patients at a time. Limited enrollment.

460B. Acting Internship: Outpatient Pediatrics (5-18) I, II, III, IV. Betschamp
Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of Medical Sciences 432B with grade of B or better, letter of recommendation from Pediatrics faculty member. Superseded experience in pediatric care on outpatient service at UCSD Medical Center. Students function as “Acting Intern” with appropriate supervision by residents and attending faculty. Limited enrollment.

460C. Elective in Pediatric Hematology/Oncology (3-18) I, II, III, IV. Abikdield
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of Medical Sciences 432B; consent of instructor. Inpatient and outpatient experience in diagnosis and management of hematologic and neoplastic disorders in children. Experience and participation in clinical investigation may be arranged. Limited enrollment.

462. Elective in Pediatric Endocrinology (3-18) I, II, III, IV. Conors and staff
Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of second-year study or the equivalent; consent of instructor. Inpatient and outpatient experience in diagnosis and management of endocrine disorders in children. Experience and participation in clinical investigation may be arranged. Limited enrollment.

464. Acting Internship in Neonatology (5-18) I, II, III, IV. Merritt
Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of Medical Sciences 432B with grade of B or better; letter of recommendation from Pediatrics faculty member. Diagnostic and therapeutic aspects of the medical and surgical high-risk neonate. Student expected to take night call. Limited enrollment.

465. Pediatric Specialty Clinic Elective (3-18) I, II, III, IV. Beauchamp and staff
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of Medical Sciences 432B; consent of instructor. Supervised experience in a variety of pediatric subspecialty clinics. Limited enrollment.

466. Elective in Pediatric Cardiology (3-18) I, II, III, IV. Parrish
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of Medical Sciences 432B; consent of instructor. Inpatient and outpatient experience in diagnosis and management of cardiologic disorders in children. Laboratory experience and participation in clinical investigation may be arranged.

467. Elective in Pulmonary Medicine (3-18) I, II, III, IV. McDonald, Jackson
Clinical activity—full time (2 to 12 weeks); daily rounds, two weekly half-day clinics. Prerequisite: pediatric clerkship. Inpatient and outpatient management of pediatric patients with pulmonary diseases. These will include but will not be limited to cystic fibrosis, asthma, and other forms of chronic pulmonary diseases as well as congenital abnormalities.

468. Elective in Pediatric Nephrology (3-18) I, II, III, IV. Macker
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of Medical Sciences 432B; consent of instructor. Inpatient and outpatient experience in diagnosis and management of renal disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.
468. Elective in Pediatric Infectious Disease (3-18)
I, II, III, IV. Halsted
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of Medical Sciences 4323; consent of instructor. Experience in diagnosis and treatment of infectious disease of infants and children. Laboratory and clinical investigation may be arranged. Limited enrollment.

470. Elective in Pediatric Neurology (3-18) I, II, III, IV. N. Cannon
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of Medical Sciences 431, 432A, and 432B and consent of instructor. Inpatient and outpatient experience in diagnosis and management of neurological disorders in children. Students will also participate in other pediatric subspecialty clinics which serve children with neurological disorders. This course does not satisfy the fourth year neurology requirement. Limited enrollment.

471. Elective in Pediatric Gastroenterology (3-18) I, II, III, IV. Cannon
Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of Medical Sciences 432B; consent of instructor. Inpatient and outpatient experience in diagnosis and management of gastroenterology disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.

476. Acting Internship in Pediatric Intensive Care (6-18) I, II, III, IV. Sheik
Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of Medical Sciences 432B with grade of A or consent of instructor. Letter of recommendation from Pediatrics faculty member. Evaluation and support of critically ill infants and children. Clinical activity—full time (2 weeks). Prerequisite: Third- or fourth-year medical student; consent by Committee on Student Evaluation and Promotion. Rehabilitation medicine and geriatrics relating to comprehensive care of the physically disabled and the physical medicine management of neurologic and musculoskeletal disorders. Physiological, psychological, social, and ethical problems involved in the management of such patients. (Same course as Orthopaedic Surgery 4013.)

440. Rehabilitation Medicine Clerkship (3) I, II, III, IV. Klimer
Clinical activity—full time (2 weeks). Prerequisite: completion of third year in Medical School; Medical Sciences 430, 431, intended for non-UC medical students. Emphasis on evaluation of patients with neurological or orthopaedic problems requiring rehabilitative techniques for their management. Introduction to management of such patients. Fourth-year student may function as intern on Physical Medicine and Rehabilitation service.

461. Rehabilitation Medicine Clinical Elective (5-16) I, II, III, IV. Klimer
Clinical activity—full time. Prerequisite: completion of third year in Medical School; Medical Sciences 430, 431, intended for non-UC medical students. Emphasis on evaluation of patients with neurological or orthopaedic problems requiring rehabilitative techniques for their management. Introduction to management of such patients. Fourth-year student may function as intern on Physical Medicine and Rehabilitation service.

462. Rehabilitation Medicine Clinical Elective (5-16) I, II, III, IV. The Staff
Clinical activity—full time. Prerequisite: Medical Sciences 430, 431; completion of third year in Medical School. Emphasis on evaluation of patients with neurological or orthopaedic problems requiring rehabilitative techniques for their management. Introduction to management of such patients. Physical Medicine and Rehabilitation at off-campus facility must be approved by Chairperson.

480. Insights in Physical Medicine and Rehabilitation (1-3) I, II, III, IV. The Staff
Clinical activity—full time. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Exposure to acute rehabilitation medicine including incendiary therapies and related services. Development of knowledge and experience of musculoskeletal examination of patients. Observation of ward rounds and outpatient clinics. (SU grading only.)

488. Advanced Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. Study and experience for medical students in any of a number of areas in physical medicine and rehabilitation. (SU grading only.)

499. Research for Medical Students (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. Research on any of a variety of topics in physical medicine and rehabilitation. (SU grading only.)

Plastic Surgery

Professional Courses

Clinical activity—full time (approximately 40 hours per week). Prerequisite: third- or fourth-year medical students; Medical Sciences 430; consent of instructor. Total involvement in patient care including surgical preparation, treatment, operative care, and follow-up. Developing and understanding reconstructive and aesthetic plastic surgery. Microvascular surgery included. Student rotation.

461. Dentistry for Future Physicians and Surgeons (6-8) I, II, III, IV. Thaler
Discussion seminar—2 hours; laboratory—2 hour; clinical activity—full time (4-6 weeks). Prerequisite: consent of instructor. Students must demonstrate an ability to alleviate potential pain and be able to refer these problems for further definitive evaluation and treatment. Students will have basic knowledge of dentistry; recognize potential dental problems; provide emergency care; have knowledge of where to refer these problems. (SU grading only.)

Psychiatry

Upper Division Courses

196. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

Graduate Courses

226. Psychiatric Implications of Legal Intervention (2-6) I, II, Bauer
Discussion—2 hours. Prerequisite: consent of instructor. The influence of laws on human behavior, and vice versa, will be explored. Particular emphasis on youth and juvenile court procedure. Most court demonstrations.

299. Directed Group Study For Graduate Students (1-5) I, II, III, IV. The Staff (Blacker in charge)
Prerequisite: graduate standing and consent of instructor. (P/NP grading only.)

299. Special Study for Graduate Students (1-12) I, II, III, IV. The Staff (Blacker in charge)
Prerequisite: graduate standing and consent of instructor. (SU grading only.)

Professional Courses

401. Medicine and the Mind: An Introduction to Psychiatry (2) I. Steward
Laboratory/discussion—3 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Introduction to concepts and clinical applications of psychiatry throughout the human life cycle. Includes tutorials tailored to individual student interests which will explore the biological, psychosocial, and cultural factors influencing health and illness. Includes lecture and video presentations as well as group discussions.

402. Human Sexuality (1) I. Blacker
Lecture—2 hours; discussion—2 hours (4 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. Normal and variant human sexuality. The focus will be on understanding human sexual function in health and illness. (SU grading only.)

403. Psychophatology (3.5) V. Nordahl
Lecture—6 hours; discussion—7 hours (5 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. Introduction to basic aspects in mental/emotional dysfunction. Focus on understanding the development and symptomatology of major forms of psychiatric dysfunction.

412. Psychiatry Grand Rounds (1) I, II, III, IV. Carter and staff
Lecture—1 hour. Prerequisite: medical students or staff or other qualified mental health professionals with consent of instructor. Weekly conference at UCD Medical Center for presentation of selected clinical cases, presentation of lecture and research reports.

413. Outpatient Psychiatry Clerkship (6-12) I, II, III, IV. Carter and staff
Clinical activity—full time (4 to 8 weeks). Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of instructor. Clinical management of adult outpatients, including initial evaluation,
differential diagnosis, and treatment planning, in addition to brief psychotherapy and interviewing skills. Conferences, medication clinics, and videotaping under supervision.

414. Consultative-Psychiatric Clerkship (6-12) I, II, III, IV. Carter and staff
Clinical activity—full time (4 to 8 weeks). Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of instructor. Students functions as an integral part of the diagnostic evaluation, management, and psychiatric liaison with other medical specialties. Intensive supervision from senior staff and psychiatric residents.

415. Psychiatric Emergency Clerkship (6-12) I, II, III, IV. Carter and staff
Clinical activity—32 hours; lecture/conference—4 hours. Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of instructor. Outpatient care; conferences/lectures. Evaluation and treatment (under supervision) of patients at UCD Medical Center Psychiatry Emergency Services and affiliated hospitals. Participation in usual clinical activities of Emergency/Psychiatry Emergency Services.

416. Child Psychiatry Clerkship (5-12) I, II, III, IV. Carter and staff
Clinical activity—full time (4 to 8 weeks). Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of instructor. Clinical activity—full time (4 to 8 weeks). Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of instructor. Students gain experience under close faculty supervision, assessing acute and chronic mental illness in inpatient and clinic settings.

417. Jali Psychiatric Clerkship (6 or 12) I, II, III, IV. Carter and staff
Clinical activity—full time (4 to 8 weeks). Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of course coordinator. Students gain experience under close faculty supervision, assessing acute and chronic mental illness in both inpatient and outpatient settings.

418. Off-Campus Clinical Experience (6-12) I, II, III, IV. Carter and staff
Clinical activity—full time (4 to 8 weeks). Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of course coordinator. Students gain experience under close faculty supervision, assessing acute and chronic mental illness in both inpatient and outpatient settings.

419. Readings in Freud (1) I, II, III. The Staff
Seminar—2 hour sessions. Prerequisite: senior medical student, psychiatric residents, clinical psychology graduate students, or consent of instructor. Approval by instructor required. Credit: Elective. Spring; Freud's theoretical works with discussion of Freud's assumptions and statements of his development of psychoanalysis will be described and clarified. (SU grading only, for all students other than medical students.)

420. Acting Internship in Psychiatry (6-12) I, II, III, IV. Carter and staff
Clinical activity—full time (4 to 8 weeks). Prerequisite: Medical Sciences 433 (Psychiatry Core Clerkship) and/or consent of course coordinator. Acting Intern position on the UCD Medical Center Inpatient Unit. Close faculty supervision with emphasis on biological psychiatry, pharmacopsychiatry and psychodynamic aspects appropriate to diagnostic and long-term patient management.

421. Readings in Psychiatry (1-3) I, II, III, IV. Carter and staff
Regular readings discussion—3 to 9 hours. Independent reading of a selected topic in psychiatry. Supervision and discussion with a psychiatry faculty member. (SU grading only.)

480. Insights in Psychiatry (1-3) I, II, III, IV. Carter
Clinical activity—3 hours. Prerequisite: first or second-year medical student in good academic standing; consent of instructor. On individual basis, student provided with an opportunity for gaining insight into various clinical activities in the practice of psychiatry. (SU grading only.)

498. Directed Group Study (1-5) I, II, III, IV. Blacker and staff
Prerequisite: consent of instructor. Approved for graduate degree credit. Medical students desiring to explore particular topics in depth. (SU grading only for graduate and medical students.)

499. Research (1-12) I, II, III, IV. Carter and staff
Prerequisite: consent of instructor. Approved for graduate degree credit. Individual research on selected topics or research projects. (SU grading only for graduate and medical students.)

Radiation Oncology
Graduate Course
299. Independent Study and Research (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: enrollment with Biophysics Group for Ph.D. candidacy, and consent of group advisor and sponsor. (SU grading only.)

Professional Courses
Clinical activity—full time (2-6 weeks). Prerequisite: completion of Medical Sciences 430, 431; third-year clinical clerkship, consent of instructor required. Introduction to radiation oncology. Students will participate in workup and treatment planning for radiation oncology patients and will be introduced to the concepts involved in clinical radiation oncology. Radiation biology, and radiophysics.

498. Group Study in Therapeutic Radiology (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. Approved for graduate degree credit. (SU grading only for medical students.)

499. Research in Therapeutic Radiology (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Approved for graduate degree credit. (SU grading only for medical students.)

Radiology—Diagnostic
Professional Courses
413. Radiological Diagnosis II (Physics of Diagnostic Radiology) (5) Sebert, Leidholdt
Lecture—49 hours total; laboratory—6 hours total. Prerequisite: consent of instructor. Physics of diagnostic imaging; x-ray production and interaction; image formation and radiation transfer functions; fluoroscopy; cine fluoroscopy; stereoscopy; xeroradiography; computerized and geometrical tomography; magnetic resonance and ultrasonics. Principles of radiation protection in diagnostic radiology will be covered. Offered at UC Davis Medical Center. Offered in alternate years. (SU grading only.)

414. Medical Radiology Biology (3) II. Bushberg, Leidholdt
Lecture—27 hours total. Prerequisite: consent of instructor. Medical radiation biology; molecular cellular and organ system response to acute and chronic irradiation; radionuclide and radionuclide production; dose; radiation risk assessment; diagnostic ultrasound and magnetic resonance imaging health effects. Medical/legal considerations of radiation exposure. Offered at UC Davis Medical Center. Offered in even numbered years only. (SU grading only.)

415. Radiopharmacy (3) III. Vera
Lecture—3 hours. Prerequisite: consent of instructor. Fundamentals of radio-pharmaceutical science, including: nuclear physics, radiochemistry, radioactive decay; radiation dosimetry; attenuation; internal and external dosimetry; health physics; radiation detection and imaging; scintillation camera, computerized planar and tomographic imaging. Offered at UC Davis Medical Center. Offered in alternate years. (SU grading only.)

463. Clinical Clerkship in Nuclear Medicine (9 or 18) I, II, III, IV
Clinical activity—full time (3 days per week). Prerequisite: satisfactory completion of second year of Medical School or the equivalent; consent of instructor. Course correlates radiophotographic methods with clinical, pathophysiologic, and other diagnostic aspects of the patient's care. Each patient reviewed with student by faculty member. Reading assignments, informal projects, and research techniques available. Limited enrollment with preference to students enrolling for 18 units.

498. Group Study in Nuclear Medicine (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Approved for radiological procedures; includes fluoroscopy, vascular radiology and special investigations. Includes daily individual teaching sessions with faculty radiologists, radiology laboratory, and all-radiology conferences and seminars. Limited enrolment.

499. Research in Diagnostic Radiology (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only.)

Radiology—Nuclear Medicine
Upper Division Courses
101. Biomedical Radiochemistry (3) III. The Staff
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Course is designed to combine basic nuclear physics, chemistry, and biology into a comprehensive and vigorous lecture-laboratory experience in biomedical nuclear chemistry. Subjects include choice and purification of appropriate gamma and beta radioisotopes, compounding biological radionuclide and radiomunonoassay. (Same course as 401.)

186. Directed Group Study (1-5) I, II, III, IV. The Staff (DeNardo in charge)
Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

189. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Stadnik in charge)
Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

Graduate Course
299. Research: Special Study for Graduate Students (1-12) I, II, III, IV. The Staff (Director in charge)
Prerequisite: graduate standing and consent of instructor. (SU grading only.)

Professional Courses
401. Biomedical Radiochemistry (3) III. The Staff
Lecture—2 hours; laboratory—3 hours. Prerequisite: open to graduate and medical students; consent of instructor. Approved for graduate degree credit. Course is designed to combine basic nuclear physics, chemistry, and biology into a comprehensive and vigorous lecture-laboratory experience in biomedical nuclear chemistry. Subjects include choice and purification of appropriate gamma and beta radioisotopes, compounding biological radiochemistry and radiomunonoassay. (Same course as 101.)

411. Radiological Physics I (Physics of Nuclear Medicine) (5) I. Bushberg, Vera
Lecture—43 hours total; laboratory—12 hours total. Prerequisite: consent of instructor. Physics of diagnostic and therapeutic nuclear medicine, nuclear physics, radioactive decay; interaction of ionizing radiation; dosimetry; attenuation; internal and external dosimetry; health physics; radiation detection and imaging; scintillation camera, computerized planar and tomographic imaging. Offered at UC Davis Medical Center. Offered in alternate years. (SU grading only.)

463. Clinical Clerkship in Nuclear Medicine (9 or 18) I, II, III, IV
Clinical activity—full time (3 days per week). Prerequisite: satisfactory completion of second year of Medical School or the equivalent; consent of instructor. Course correlates radioisotopic methods with clinical, pathophysiologic, and other diagnostic aspects of the patient's care. Each patient reviewed with student by faculty member. Reading assignments, informal projects, and research techniques available. Limited enrollment with preference to students enrolling for 18 units.

498. Group Study in Nuclear Medicine (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Approved for
graduate degree credit. (S/U grading only for medical students.)

499. Research in Nuclear Medicine (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Approved for graduate degree credit. (S/U grading only for medical students.)

Surgery

Upper Division Courses

192. Internship in General Surgery (1-12) I, II, III, IV. The Staff
Internship—36 hours. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in general surgery and related fields. (P/N grading only.)

195. Special Study in General Surgery for Advanced Undergraduates (1-5) I, II, III, IV. The Staff
Prerequisite: advanced undergraduate student with consent of instructor. (P/N grading only.)

Graduate Course

299. Research (1-12) I, II, III, IV. Wolfe in charge
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

Professional Courses

419. Introduction to Clinical Surgery (1-6) I, II, III, IV. Ward
Clinical activity—full time. Prerequisite: second-year medical student with consent of instructor. Designed to introduce medical students to basic principles of surgical practice and the most common surgical diseases. Course will afford opportunity to review surgical patients and discuss them with members of staff.

460. Clinical Surgical Elective (3-9) I, II, III, IV. The Staff
Clinical activity—full time (2 to 6 weeks). Prerequisite: fourth-year medical student or third-year medical student with completion of Medical Sciences 430. Preparation of patients, treatment, operative care, and postoperative follow-up. Services include Surgery Clinics, Surgical Nutrition, Pediatric Surgery, Cardiothoracic Surgery, Gastrointestinal Surgery, and Burn Clinic.

461. Surgery Burn Unit Clerkship (6 or 9) I, II, III, IV. The Staff
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of Medical Sciences 430. Student functions as an extern in the eight-bed Burn Unit; learns principles of critical care, fluid and electrolyte resuscitation and management of surgical wounds.

462. Surgery Trauma Service Clerkship (6 or 9) I, II, III, IV. Blandes and staff
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of Medical Sciences 430. Student works as an extern on one of the two general surgery Trauma teams, participating in resuscitation and management of critically injured patients. Team hours consist of 24 hours on, and 24 hours off.

463. Surgery Intensive Care Unit (6 or 9) I, II, III, IV. Holcroft and staff
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of Medical Sciences 430. Student participates in direct supervision of critically ill surgical patients in a twelve-bed surgery ICU. Each student is closely supervised. Provides in-depth experience with management of critically ill patients.

464. General Surgery Clerkship: Kaiser Hospital (6 or 9) I, II, III, IV. The Staff
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of Medical Sciences 430. Student participates with University residents on the teaching services at Kaiser Hospital, Sacramento. Opportunity to see larger number of practical, general surgical problems and participate in their care.

466. General Surgery Clerkship: Travis AF Base Hospital (6 or 9) I, II, III, IV. Gilmore, Ward
Clinical activity—full time (4 or 6 weeks). Prerequisite: fourth-year medical student, or third-year medical student with completion of Medical Sciences 430. Opportunity to participate on the surgical service of our affiliated Air Force Hospital. The program has a large number of general surgery problems and provides a broad clinical experience in surgery.

467. Surgical Oncology (3-9) I, II, III, IV. Goodnight and staff
Clinical activity—full time (2 to 6 weeks). Prerequisite: fourth-year medical student or third-year medical student with completion of Medical Sciences 430. Exposure to medical and surgical principles applicable to cancer. Participation in the care and major surgical oncologic problems; and opportunity to learn the medical, radiologic, and surgical approaches to cancer therapy.

468. Cardiothoracic Surgery Clerkship (6-9) I, II, III, IV. Benfield
Variable clinical activity—full time (4 to 6 weeks). Prerequisite: fourth-year medical student or third-year medical student with consent of instructor. Student participates in the preoperative, operative and postoperative care of surgical patients under the supervision of attending staff.

478. Surgical Preceptorship: Off Campus (6-18) I, II, III, IV. Ward
Clinical activity—full time. Prerequisite: fourth-year medical student and consent of instructor. Students participate in the preoperative, operative, and postoperative care of surgical patients under the supervision of attending staff.

480. Insights in Surgery (1-3) I, II, III, IV. The Staff
Clinical activity—3 to 9 hours. Prerequisite: medical student in good academic standing and consent of instructor. Individualized activities, including ward rounds, subspecialty clinics and conferences, grand rounds, and observation of a variety of surgical procedures. (S/U grading only.)

494H. Fourth-Year Surgical Honors Program (18) I, II, III, IV. Wolfman
Prerequisite: completion of third year of Medical School with superior performance on Medical Sciences 430; consent of instructor. To provide intensive and comprehensive training in surgery to students interested in postgraduate surgical career, that would enable them to undertake during the internship and residency training. (S/U grading only.)

498. Group Study (1-5) I, II, III, IV.
Prerequisite: medical student; consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics. (S/U grading only.)

499. Laboratory Research (1-12) I, II, III, IV. Ward and staff
Laboratory—36 hours. Prerequisite: completion of second year of medical school; consent of instructor. Research laboratory work on surgical problems related to the following: burn, nutrition, oncology, transplant and others. (S/U grading only.)

Urology

Upper Division Course

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. DeVere White
Prerequisite: consent of instructor. (P/N grading only.)

Professional Courses

400. Office Urology (1) I, II, III, IV. DeVere White
Clinical activity—4 hours in afternoon (6 weeks). Prerequisite: fourth-year medical students with consent of instructor. Introduction to ambulatory care of urologic patients including basic therapeutic and diagnostic procedures from case material referred to private clinic. Management of urin tract infection will be emphasized.

460. Urology Clinical Clerkship (5-18) I, II, III, IV. DeVere White
Clinical activity—full time. Prerequisite: second-year medical student; physical diagnosis or the equivalent; consent of instructor. Clinical experience in diagnosis and treatment of urologic disease. Student will work closely with house staff, participate in conferences and surgery, and perform initial patient evaluation on new patients. May be repeated for credit. Limited enrollment.

461. Externship in Urology (5-18) I, II, III, IV. DeVere White
Clinical activity—full time. Prerequisite: fourth-year medical students with consent of instructor. Under supervision, student acting as intern will assume full responsibility including admitting, history, physical examination, management of hospitalization, and participate in surgical procedures, outpatient clinic and learning diagnostic and therapeutic procedures. May be repeated for credit.

499. Research in Urology (1-12) I, II, III, IV. DeVere White
Research—36 hours. Prerequisite: medical or veterinary medicine, students with consent of instructor. Research in oncology, male infertility, urodynamics, neurogenic bladder. Unique opportunity to apply recent technologies (nuclear medicine resonance, flow cytometry, recombinant DNA) in investigation, diagnosis and treatment of GU cancer, infectious disease, male infertility and development of genitourinary biophysics.

Medicine

(School of Veterinary Medicine)

Anthony A. Stiernard, D.V.M., Ph.D., Chairperson of the Department

Department Office, 1st202 Medical Science 1A
(SU 752-1263)

Faculty

Alexander A. Ardas, D.V.M., M.S., Professor
Jeffrey E. Barlough, D.V.M., Ph.D., Assistant Research Virologist
Dele L. Brooks, D.V.M., Ph.D., Lecturer
Gary P. Carlson, D.V.M., Ph.D., Professor
Larry D. Cowgill, D.V.M., Ph.D., Associate Professor
Nancy E. East, M.S., D.V.M., M.P.V.M., Associate Professor
Pamela K. Evenson, D.V.M., Assistant Clinical Professor
Lauren E. Evers, Pharm.D., Lecturer
Jeanine W. George, D.V.M., Ph.D., Assistant Professor
Lisa N. Hembree, D.V.M., M.S., Associate Professor
Ronald P. Hodrick, Ph.D., Associate Professor
Roy V. Hennickson, D.V.M., Lecturer
David E. Hinton, Ph.D., Professor
Charles A. Happe, D.V.M., Professor
Peter J. Irke, V.M.D., Professor
Mark D. Kittleson, D.V.M., M.S., Ph.D., Associate Professor
Gerald V. Long, D.V.M., Professor
John P. Maas, D.V.M., M.S., Assistant Professor of Clinical Diagnostic Medicine (California Veterinary Diagnostic Laboratory)
John MacGregor, M.S., D.V.M., Associate Professor of Clinical Diagnostic Medicine (California Veterinary Diagnostic Laboratory)
Richard W. Nelson, D.V.M., Assistant Professor of Clinical Diagnostic Medicine (California Veterinary Diagnostic Laboratory)
Nels C. Pederson, D.V.M., Ph.D., Professor
Edward A. Rhodes, D.V.M., Professor
Jeffrey K. Roberts, D.V.M., Assistant Clinical Professor
Bradford P. Smith, D.V.M., Professor
Sharon J. Spier, D.V.M., Ph.D., Assistant Professor
Anthony A. Stiernard, D.V.M., Ph.D., Professor
Charles A. Happe, D.V.M., Assistant Professor of Medicine, Pathology
Donald R. Strombeck, D.V.M., Ph.D., Professor
William P. Thomas, D.V.M., Associate Professor
Michael Torten, D.V.M., Ph.D., Research Virologist
Leon D. Weaver, V.M.D., Associate Professor
James F. Wilson, D.V.M., J.D., Lecturer
W. David Wilson, B.V.M.S., M.R.C.V.S., Associate Professor

Course not offered this academic year.
Courses in Medicine

Upper Division Course
199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

Graduate Courses
290. Seminar in Veterinary Medicine (1) I, II, III. The Staff (Chairperson in charge)
298. Group Study (1-5) I, II, III. The Staff
Prerequisite: student in School of Veterinary Medicine or consent of instructor. Group study in selected areas of the clinical sciences. (SU/GU grading only)
299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU/GU grading only)

Professional Courses
401. Small Animal Clinic (1 1/2 per week) I, II, III. The Staff (Long in charge)
Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the VM Teaching Hospital and outpatient clinic including physical examinations, history taking, laboratory tests, and consultations under the direction of the chief staff. May be repeated for credit. (SU/GU grading only)

402. Large Animal Medicine (1 1/2 per week) I, II, III. The Staff (Smith in charge)
Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical or surgical care of animals in the wards and outpatient clinic including physical examinations, history taking, physical examinations, laboratory tests, and consultations under the supervision of the staff. May be repeated for credit. (SU/GU grading only)

403. Small Animal Medicine (1 1/2 per week) I, II, III. The Staff (Lang in charge)
Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of animals in the wards and outpatient clinic including physical examinations, history taking, laboratory tests, and consultations under the supervision of the staff. May be repeated for credit. (SU/GU grading only)

404. Herd Health Management (1 1/2 per week) I, II, III. The Staff (Lang in charge)
Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of animals in the wards and outpatient clinic including physical examinations, history taking, laboratory tests, and consultations under the supervision of the staff. May be repeated for credit. (SU/GU grading only)

421. Veterinary Dermatology (3 per week) I, II, III. Stannard
Laboratory—25 hours. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the hospital and outpatient clinic including history taking, physical examination, and diagnostic procedures under the direction of the chief staff. (SU/GU grading only)

Medieval Studies
(College of Letters and Science)
Marjorie Osborn, Ph.D., Program Director
Program Office, 922 Sprout Hall (916.752.1219)

Committee in Charge
Samuel G. Armitstead, Ph.D. (Spanish)
Anna Maria Busse Burger (Music)
Ingeborg Henderson, Ph.D. (German)
Phyllis Jesner (History)
Winder McConnell, Ph.D. (German)
Marjorie Osborn, Ph.D. (English)
Larry Peterman (Political Science)
George vanDien Abbeke (French)

The Major Program
The major in medieval studies is designed to introduce students to the main features of European civilization during the period from the fall of Rome to the beginnings of the Renaissance. The program involves studies in history, art, philosophy, literature, drama, music, national languages, religion, rhetoric, and politics.

The Program. The major is designed to give students a broad view of the period and to allow for the flexibility necessary to accommodate their individual interests. The department offers a series of medieval studies courses providing an excellent introduction to the major, and preparation for advanced work within the individual disciplines. On the upper division level, each student completes course work in specific areas of history (the fall of Rome to the Renaissance), literature (Old and Middle English, Chaucer, romantic literature, including French, German, Italian, Russian, Latin, philosophy and religion, and political thought. In addition, each student must complete a senior thesis on some selected aspect of medieval culture.

Career Alternatives. The major in medieval studies is a liberal arts degree providing the student with a well-rounded education rather than specialized training, and is therefore excellent preparation for the rigors of the professional schools as well as for careers in law, library science, museology, journalism, and teaching.

A.B. Major Requirements:

Preparatory Subject Matter

Language proficiency is a necessity; courses in Latin and one other European language are strongly recommended, particularly for students planning to pursue graduate studies in the medieval field.

Depth Subject Matter
History: at least 12 units from History 102, 121A, 121B, 121C, 121D, 121E, 122
Literature: at least 16 units, including two courses from each of the following:
 (a) English 111, 113A, 113B, 150A, 165, 189.
 (b) French 115, 141.
 (c) German 120, 122.
 (d) Italian 113, 115A, 15B, 139B, 140.

Philosophy and religion, at least 8 units from Philosophy 105, 132, 145, 146, 190, Religious Studies 102, 116...

Minor Program Requirements:

Medieval Studies
The minor in medieval studies is designed to be a coherent program of interdisciplinary study. Medieval Studies units may be taken in one or more of the traditional fields of concentration, including art, drama, history, literature, music, national languages, philosophy, political theory, religious studies, and rhetoric. Courses must be upper division and chosen from at least two of these subject areas, and they must be within the three periods of Early Medieval Culture, culture of the High Middle Ages, and Medieval transformations. Students may also select a minor with a thematic emphasis.

There is no foreign language requirement for the minor, although knowledge of Latin or another language is recommended.

Minor Advisers: J. D. Dutschke (Italian), W. McConnell (German), M. Osborn (English), Kevin Roddy (Medieval Studies).

*Course not offered this academic year.
Courses in Medieval Studies

Lower Division Courses

20A. Early Medieval Culture (4). The Staff
Lecture—3 hours; discussion—1 hour. Readings (in translation) in early medieval culture, such as the Codes of Justinian, the Confessions of Saint Augustine, The Consolation of Philosophy of Boethius, Beowulf, the Nibelungenlied, and the Song of Roland. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Art History 1B, History 4A, or Comparative Literature 1 or 2.

20B. The Culture of the High Middle Ages (4). The Staff
Lecture—3 hours; discussion—1 hour. Readings (in translation) in the culture of the high Middle Ages, such as the Summa Theologica of Thomas Aquinas, the Chronicles of Froissart, The Canterbury Tales of Chaucer, and the Divine Comedy of Dante. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Art History 1B, History 4A, or Comparative Literature 1 or 2.

20C. Medieval Transformations (4). The Staff
Lecture—2 hours; discussion—1 hour; paper or formal presentation. Course deals with the great medieval transformations that took place before the Renaissance. Topics will be selected from various disciplines, such as literature, philosophy, religion, history, art, music, political thought, rhetoric, and other pertinent fields. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Art History 1B, History 4A, or Comparative Literature 1 or 2.

98. Directed Group Study (1-5). I, II, III. The Staff (Chairperson in charge) (P/NP grading only).

99. Special Study for Undergraduates (1-5). I, II, III. The Staff (Chairperson in charge) (P/NP grading only).

Upper Division Courses

129A-F. The Medieval World (4). I, II, III. The Staff (Chairperson in charge)
Lecture—2 hours; discussion—1 hour; term paper. Course deals with selected themes from the Middle Ages: the Fall of Rome to the beginning of the Renaissance. Subjects will vary from year to year and cover such topics as

(A) The Monastic Orders;
(B) Origins of Universities;
(C) The Seven Liberal Arts, and their Significance in the Middle Ages;
(D) Family and Society;
(E) Chivalry; and
(F) Chemistry.

100. Senior Thesis (4). I, II, III. The Staff
Seminar—4 hours. Prerequisite: senior standing and major in Medieval Studies. Preparation of a research paper dealing with a selected aspect of medieval culture, under supervision of three members of the Committee in Charge.

197. Tutoring in Medieval Studies (1-4). I, II. The Staff (Chairperson in charge)
Seminar—3 hours. Medieval lite: courses 20A and 20B, upper division standing; consent of instructor and chairperson of curriculum committee. Tutoring in Medieval Studies 20A and 20B, including leadership in small discussion groups affiliated with the course. May be repeated for credit for a total of 6 units. (P/NP grading only).

198. Directed Group Study (1-5). I, II, III. The Staff (Chairperson in charge) (P/NP grading only).

199. Special Study for Advanced Undergraduates (1-5). I, II, III. The Staff (Chairperson in charge) (P/NP grading only).

Microbiology

See Microbiology, below; Microbiology (A Graduate Group); Medical Microbiology (Medicine, School of); and Veterinary Microbiology and Immunology

Microbiology

Division of Biological Sciences
Mark L. Wheelless, Ph.D., Acting Chairperson of the Section

Section Office, 156 Hutchison Hall
(916)752-0202

Faculty
Stanley W. Arst, Ph.D., Professor
Paul B. Pfaff, Ph.D., Professor
Michele M. Igo, Ph.D., Assistant Professor
Daniel J. Klonsky, Ph.D., Assistant Professor
Stephen C. Kowalczykowski, Ph.D., Professor
John C. Meeks, Ph.D., Professor
Douglas G. Nelson, Ph.D., Associate Professor
William J. Pfeiffer, Ph.D., Senior Lecturer

(Microbiology)

Emeritus Faculty
Robert E. Huglatt, Ph.D., Professor Emeritus
John L. Inman, Ph.D., Professor Emeritus
Allen G. Morr, Ph.D., Professor Emeritus
Herbert J. Pfaff, Ph.D., Professor Emeritus
David Pratt, Ph.D., Professor Emeritus

The Major Programs

Microbiology is the branch of biology which deals with the smallest organisms, a group that includes bacteria, yeasts and other small fungi, algae, protozoa, and viruses. Despite their small size, these ubiquitous organisms are enormously important because of their effect on our environment, our food supply, and our health.

The Program. Both undergraduate major programs provide a balance of studies in microbiology, with appropriate courses in mathematics and physical sciences. The A.S. program emphasizes the biology of bacteria, while the B.S. program includes more biochemistry and related course work. Either program, with judicious course selection, is appropriate for students contemplating a career in medicine, various allied health professions including medical technology, or teaching. The B.S. program is especially well suited for students who want a professional career in microbiology, or who wish to pursue graduate education in a biological science discipline. The choice of a major program and its suitability for particular career options should be discussed with a major adviser.

Choice of College. The Bachelor of Arts degree is offered only by the College of Letters and Science. The Bachelor of Science degree is offered by both the College of Letters and Science and the College of Agricultural and Environmental Sciences. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the appropriate college sections in the front of this catalog for more information.

Students majoring in Microbiology in the College of Letters and Science may petition the Dean of the College to receive credit toward the 64 upper division units required for the major for specific courses in organic chemistry that have been taken at other institutions prior to first enrollment at UC Davis and that are judged by the Chemistry department to cover substantially the same material as upper division courses in the subject at UC Davis. Students in the College of Agricultural and Environmental Sciences must accumulate 54 units of upper division courses to graduate. Further information can be obtained from the Division of Biological Sciences Office, 66 Briggs Hall.

Career Alternatives. A bachelor's degree in microbiology is excellent preparation for a career in biotechnology, pharmacology, agriculture, and the food industry. It also provides a strong background for students wishing to continue on to professional studies in medicine and the other health sciences.

A.B. Major Requirements:

Preparatory Subject Matter

Biological Sciences 1A, 1B, 1C
Chemistry 2A, 2B
Chemistry 8A, 8B or 118A, 118B
Statistics 13
Mathematics 16A-16B or 21A-21B
Physics 1A, 1B, or 5A, 5B

Depth Subject Matter

Microbiology 102, 129, 129A, 130, 130A
Biochemistry 101A, 101B
Microbiology 162 or Veterinary Microbiology 128
Additional units from: Microbiology 110, 120, 120L, 130, 130L, 177, 177L; Biochemistry 107L; Botany 114, 118, 119; Veterinary Microbiology 126, 127

Total Units for the Major

35-101

B.S. Major Requirements:

Preparatory Subject Matter

Biological Sciences 1A, 1B, 1C
Chemistry 2A, 2B, 2C, or 2A1, 2B1, 2C1
Chemistry 8A, 8B or 118A, 118B, 119B
Statistics 13
Mathematics 16A, 16B, or 21A, 21B
Physics 5A, 5B, 5C

Depth Subject Matter

Microbiology 102, 129, 129A, 130, 130A
Biochemistry 101A, 101B, 101L
Genetics 107
Veterinary Microbiology 126
Additional units from: Microbiology 110, 120, 120L, 130, 130L, 177, 177L; Veterinary Microbiology 127
Recommended: Chemistry 107A, 107B, 107C; a course in computer programming.

Total Units for the Major

107-118

Breadth Subject Matter

College of Agricultural and Environmental Sciences

English and/or rhetoric
Social sciences and/or humanities

See also the College section for additional requirements.

Note: Not offered this academic year.
Courses in Microbiology

Lower Division Courses

120. Biology of Microorganisms (4) III. Wheelis
Lecture—3 hours; term paper. Prerequisite: Biological Sciences 1 or 101A. Survey of the diversity of microorganisms (viruses, bacteria, protists), their metabolism, genetics, and habitats. Emphasis on importance to humans—role of microorganisms in global element cycles, in food production, and in disease. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Biological Sciences 10.

98. Directed Group Study (1-5) I, II, III. The Staff
Chairperson in charge: Pfeiffer. Prerequisite: consent of instructor. Primarily for lower division students. (P/N grade only)

Upper Division Courses

102. General Bacteriology (4) I. Baumann; III. Marr
Lecture—4 hours. Prerequisite: Biological Sciences 1 or 101A. Survey of the diversity of bacteria and viruses, including bacterial structure, metabolism, physiology, genetics, and evolution; viral structure and replication; the role of bacteria in global element cycles; and their role in human health and in infectious disease. Only two units of credit allowed to students who have previously passed course 203.

102L. General Bacteriology Laboratory (2) Pfeiffer; II, III. The Staff
Lecture—6 hours. Prerequisite: course 203 (may be taken concurrently). Introduction to principles and laboratory methods employed in working with microorganisms. For students planning to continue study of microbiology, use microorganisms as tools for study of genetics and biochemistry. Only one unit of credit allowed if course 102 has been taken.

105. Bacterial Diversity (5) II. Nelson
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 105B (may be taken concurrently). Survey of the major groups of bacteria emphasizing diversity of energy metabolism, morphology, and natural history. Includes methods for determination of evolutionary relationships among groups. Isolation and characterization of bacterial strains from various habitats.

110. Bacteriology of Insects (3) II. Baumann
Lecture—3 hours. Prerequisite: course 2 or 102; Biology 101A or Physiological Sciences 101A. Physiological basis of pathogenic and symbiotic associations between prokaryotes and insects. Taxonomy, physiology, pathogenesis, and molecular biology of insect pathogens. Insect immunity. Nutritional associations between microorganisms and insects. Pertinent entomological background information will be included.

120. Microbial Ecology (3) III. Meeks
Lecture—3 hours. Prerequisite: course 105, Biochemistry 101A. Interactions between nonpathogenic microorganisms and their environment, emphasizing physiological and metabolic characteristics of various groups and their adaptation to and modification of specific habitats.

120L. Microbial Ecology Laboratory (2) III. Meeks
Lecture—6 hours; one optional overnight weekend trip. Prerequisite: course 120 (may be taken concurrently). Study of nonpathogenic microorganisms from certain habitats. One-half of laboratory effort will consist of organized experiments on ecologically important microbial activities. For remaining one-half, research projects will be done on subjects selected specifically by the instructor. Limited enrolment.

130A. Bacterial Physiology and Genetics (3) II. Igo
Lecture—3 hours. Prerequisite: course 2 or 102; Biochemistry 101B (may be taken concurrently). Mathematical theories of bacterial growth including the effect of the environment. Mapping techniques and use of mutants in problem solving.

130B. Bacterial Physiology and Genetics (3) III. Kowalski
Lecture—3 hours. Prerequisite: course 130A. Gene regulation. Prokaryotic nitrogen metabolism. Structure and function of the bacterial cell envelope; synthesis of peptidoglycan and lipopolysaccharide; active transport of nutrients; chemotaxis.

130L. Bacterial Physiology Laboratory (3) III. Kowalski
Lecture—9 hours. Prerequisite: course 130A and either course 102 or 203; consent of instructor. Study of bacterial and genetic and molecular biology and genetics of bacteria and viral viruses. Isolation and characterization of mutant strains. Mapping of mutations by conjugation and transduction. Studies on control of enzyme synthesis by induction, repression, and catabolite repression.

162. General Virology (4) I. Manning
Lecture—4 hours. Prerequisite: Biological Sciences 1 and Biochemistry 101A and 101B. Integrated presentations of the nature of animal, bacterial, and plant viruses, including their structure, replication, and genetics.

177. Metabolism of Anaerobic Bacteria (3) II. Macy (Animal Science)
Lecture—3 hours. Prerequisite: course 2 or 102; Biochemistry 101B (may be taken concurrently). Various groups of anaerobic bacteria, their metabolism and their environmental characteristics, with emphasis on energy yielding catabolic pathways.

177L. Laboratory in Metabolism of Anaerobic Bacteria (2) Macy (Animal Science)
Laboratory—6 hours. Prerequisite: course 2 or 102L; course 177 (may be taken concurrently). Isolation of anaerobic bacteria from number of different natural environments with certain characteristics. Physiological and metabolic aspects of anaerobic bacteria. Offered in alternate years.

190C. Undergraduate Research Conference (1) I, II, III. The Staff (Chairperson in charge: Discussion course-credit varies. Prerequisite: upper division standing, consent of instructor. Presentation and oral discussion of research staff and student activities; designated for advanced undergraduate students. May be repeated for a maximum of 3 units of credit when subject matter differs. (P/N grade only.)

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3.38 hours. Technical and professional experience on or off campus. Supervised by a member of the Microbiology Section faculty. (P/N grade only.)

194H. Microbiology Honors Research (2) I, II, III. The Staff
Independent study—6 hours. Prerequisite: senior standing; eligibility for college honors; completion of six units in microbiology; consent of instructor. Continuation of an individual microbiological research project culminating in writing of a senior thesis under a faculty director. (P/N grade only.)

197T. Tutoring in Bacteriology (1-5) I, II, III. The Staff (Chairperson in charge)
Tutoring—1 hour. Prerequisite: course 2 and upper division unit in microbiology; consent of instructor. Assist in undergraduate laboratory courses supervised by the instructor. In discussion sections supervised by faculty. (P/N grade only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/N grade only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/N grade only.)

Graduate Courses

200A-200B-200C. Microbiology for First-Year Graduate Students (3-3-3) II-III. The Staff (Chairperson in charge)
Lecture—6 hours. Prerequisite: first year graduate standing with interest in microbiology. A survey of general microbiology at the graduate level.

210. Molecular Mechanisms in Microbial Pathogenesis (3) II. Manning, Hirsh (Veterinary Microbiology and Immunology)
Lecture—3 hours. Prerequisite: course 105 or Veterinary Microbiology 127 and course 162 or Veterinary Microbiology 129 or the equivalent. Study of the molecular mechanisms involved in cytopathogenesis of higher eukaryotic organisms. Emphasis on the alteration or inhibition of cellular metabolism and function by bacteria and animal viruses. Offered in alternate years.

215. Recombinant DNA (2) I. Privalsky
Lecture—2 hours. Prerequisite: courses 130A-130B or Biochemistry 101A-101B. Genetics 100. Application of the recombinant DNA technology to modern problems in biology, biochemistry and genetics. Emphasizing molecular cloning strategies, choice of vectors, preparation of insert DNA and selection procedures. (Submit application, available from Microbiology Department Office, two weeks prior to first day of class.)

240. Biology of Autotrophic Prokaryotes (3) I. Meeks, Wheelis
Lecture—4 hours. Prerequisite: Biochemistry 101B. Biochemistry and ecology of photosynthetic and chemotrophic bacteria, and of methylotrophic bacteria, with special emphasis on the mechanisms of ATP and reductant autotrophic and chemotrophic bacteria. Offered in alternate years.

250. Biology of Yeasts (5) I. Bisson (Viticulture and Enology), C. Price (Food Science and Technology)
Lecture—8 hours; laboratory—6 hours. Prerequisite: consent of instructor. Survey of the genetics, physiology, regulatory mechanisms, structure, ecology and biology of yeasts and related organisms. Offered in alternate years.

260. Bacterial Genetic Regulatory Mechanisms (3) I. Arzt
Lecture—4 hours. Prerequisite: general knowledge of nucleic acid biochemistry and bacterial genetics. Analysis at the molecular level of gene regulation in selected bacterial systems. Specific
Military Science

(College of Letters and Science)

Reserve Officers’ Training Corps (ROTC), Army

Michael P. Tucker, Lt. Col., Chairperson of the Department

Department Office, 125 Hickey Gymnasium (916-752-0541)

Faculty

Lieutenant Colonel Michael P. Tucker, Professor
Captain Mark Macejko
Captain John Porter
Captain Melissa A. Stanley
Captain Alan Villanueva

Program of Study

The Military Science Department offers hands-on training in management and leadership. The program stresses the following leadership dimensions: oral and written communications, formal presentations (formatting briefings), initiative, sensitivity, influence, planning and organizing, delegation, administrative control, problem analysis, judgement, decisiveness, physical stamina, mission accomplishment, and following orders. Also stressed are current events, national and international politics, military affairs, ethics training, and human relations with emphasis on eliminating racial and gender discrimination. Management and leadership are taught using the U.S. Army as a model. Military skills (such as drill and ceremonies, map reading, and squad tactics) are taught to the extent necessary to create an environment where students can enter leadership positions and apply theories taught in the classroom. Students learn by doing. The program assists students in all academic fields to prepare for positions of leadership in military or civilian careers.

The department offers two program tracks: (1) a purely academic track, and (2) a pre-commissioning track for those desiring a commission in the U.S. Army. The academic track entails no obligation to the military and is open to all students. Students pursuing the academic track do not wear a uniform or otherwise participate in extra-curricular activities designed as part of the pre-commissioning process. Activities for all students include the Ranger Club (a club designed for adventure activities such as rappelling, white-water rafting, paintball wars, and patrolling) and other sports teams.

Students who desire a commission in the U.S. Army participate in both the academic portion of the program and in the leadership laboratories and extra-curricular activities designed to enhance their leadership and team building skills. Students are assigned to leadership laboratories and selected classes and become ROTC cadets. Students may be cadets in the lower division courses without incurring a military obligation. Students participating in the upper division pre-commissioning program incur a military obligation. See below for details. Extra-curricular activities for cadets include an intercollegiate sports team (Ranger Challenge), the university color guard, and a military honor society, a rifle/pistol team, and opportunities to participate in field training exercises.

Department Programs

Students are enrolled in military science under one of two programs:

Four-Year Program

Students are enrolled in the basic course (lower division) for the first two years as freshmen and sophomores. There is no military obligation associated with attendance in lower division courses. Admission to the advanced course (upper division) is by application from second-year students who have completed the academic, physical, and military aptitude requirements. Qualified veterans can enter the advanced course immediately because of their military service experience, upon approval by the Department Chair.

Upper division students receive $1000 subsistence per month after executing a contract agreeing to complete the course and accept a commission if offered. During the course all military science textbooks, uniforms, and equipment are provided without cost. Students are given leadership development experience at summer camp (advanced camp) between their third and fourth years of the course. Emphasis is on individual participation, leadership development and the capability to function effectively in positions of significant responsibility.

Two-Year Program

This program is designed for students who have not attended lower division Military Science classes. In lieu of lower division courses an applicant attends a six-week summer camp (basic camp) which is voluntary and carries no military obligation. Applicants are paid for camp attendance and transportation costs. Applications are accepted during the winter and spring terms of the year prior to beginning the two-year program. All other provisions explained above for the upper division course apply to the two-year program.

Scholarship Program

The U.S. Army offers four- and three-year Active Duty and two-year Reserve Forces Duty scholarships to students planning to attend or attending UC Davis. The U.S. Army ROTC scholarship pays $7000 or 80% of your annual college tuition plus laboratory fees, if on-campus and room fees, attendance at Advanced Camp, and a flat rate amount from which you may purchase textbooks, classroom supplies and equipment. Scholarship winners also receive a tax-free subsistence allowance of $100 a month for 10 months each year that the scholarship is in effect.

The Army Reserve Officers’ Training Corps four-year Active Duty merit scholarships are awarded to qualified high school seniors in a national competition each year. These are two cycles available for submission of the four-year scholarship application. High school juniors can compete for an Early Cycles scholarship by submitting their application complete and postmarked by 15 July between their junior and senior years. Applicants will receive notification of their final status by 1 November. As high school seniors, students compete for the Regular Cycle scholarship by submitting their application complete and postmarked by 1 December. Those applicants not selected in the Early Cycle are considered in the Regular Cycle competition. Applicants will receive notification of their final status by 1 March of their senior year in high school. Interested applicants should see their high school counselor for an application or contact UC Davis, Department of Military Science.

The three-year Active Duty and two-year Reserve Forces Duty scholarships are awarded to college students who are already attending UC Davis or transferring from a Junior College to UC Davis, and have between two years, and one to four years, of college attendance with a baccalaureate. Students interested in competing for these scholarships can submit their application beginning in November of each school year. The
Academic Credit

College of Letters and Science. The Bachelor of Arts degree requires completion of 180. Military Science courses are counted in the allowance for electives.

College of Agricultural and Environmental Sciences. The Bachelor of Science degree in agriculture requires the completion of 180. Military Science courses are counted in the unit allowance for electives.

College of Engineering. Military Science units are acceptable toward the requirements for the Bachelor of Science degree, depending on the number of unrestricted elective units available in the curriculum being followed.

School of Veterinary Medicine. The number of Military Science units acceptable toward the Bachelor of Science degree in Veterinary Medicine is on an individual program basis approved by the Dean of the School. Graduates with the D.V.M. degree may apply for direct commission in the United States Army Veterinary Corps.

Courses in Military Science

Lower Division Courses

11. Roles and Organization of the U.S. Army (1.1). Lecture—1 hour. Prerequisite: lower division status. Constitutional and legal basis of the Army, organization and strategic roles in times of war and peace, and "total Army" concept. Impact of political, economic, social, military, cultural, and political change on strategy and military organization. The nature of the D.O.V. degree may apply for direct commission in the United States Army Veterinary Corps.

12. Introduction to Military Leadership (2). Lecture—2 hours. Prerequisite: lower division standing, and consent of instructor. Introduction to leadership theories used in military organizations. Course surveys the duties and responsibilities of junior Army officers, the general environment in which they work, and leadership roles performed. Introduces military map reading skills.

13. Introduction to Basic Military Operations (1.1). Lecture—1 hour. Prerequisite: lower division status. Basic military tactical theories and their application at the individual and squad level. Course introduces tactical military operations, and covers military history and tactics. Principles of war as introduced in course 11 are applied to offensive and defensive tactics. (P/P grading only.)

14A. Introduction to Military Leadership Skills (1.1). Laboratory—2 hours. Prerequisite: lower division status and consent of instructor; completion of all previous laboratories. Personal and organizational leadership skills introduced in leadership laboratory. Extensive supervised leadership skills conducted in a military environment. Basic military skills necessary to function in leadership role are also covered. (P/P grading only.)

14B. Introduction to Military Leadership Skills (1.1). Lecture—2 hours. Prerequisite: lower division status and consent of instructor; completion of all previous laboratories. Development of leadership and military skills introduced in course 14A. Emphasis on leadership skills and concepts in the military environment. Basic military skills necessary to function in leadership role are also covered. (P/P grading only.)

14C. Introduction to Military Leadership Skills (1.1). Laboratory—2 hours. Prerequisite: lower division status and consent of instructor; completion of all previous laboratories. Development of leadership and military skills introduced in course 14A. Emphasis on leadership skills and concepts in the military environment. Basic military skills necessary to function in leadership role are also covered. (P/P grading only.)

21. Military History (1). Lecture—2 hours. Prerequisite: lower division status; course 11 or consent of instructor. Survey of military history from 1900 to present, focusing on World War I, World War II, the Korean War, and the Vietnam War.

Upper Division Courses

131. Advanced Military Leadership and Management (2). Lecture—2 hours. Prerequisite: upper division status; course 14A or consent of instructor. Course addresses different types of power and influence a military leader may use, reviews counseling techniques, and introduces basic management skills. Instruction provided on the "business" aspects of military leadership. Chaired by a senior officer, this course is designed for military leadership students. (P/P grading only.)

132A. Advanced Military Operations (1). Lecture—2 hours. Prerequisite: upper division status; course 14B or consent of instructor. First phase of advanced military tactical operations. Advanced work on topographical maps, navigation, and orientation techniques. Instruction is also provided on resource planning techniques and military intelligence.

132B. Advanced Military Operations (2). Lecture—2 hours. Prerequisite: upper division status; course 132A or consent of instructor. Continuation of course 132A. Military tactical theories and their application in offensive and defensive operations. (P/P grading only.)

134A, 134B. Military Organizations (1). Laboratory—2 hours. Prerequisite: upper division status; courses 22A-24B-24C or consent of instructor. Development of interpersonal and management skills in practical application of leadership of the military organizations in a supervised leadership laboratory. Advanced-level military skills presented. Students fulfill the roles of senior non-commissioned officers. (P/P grading only.)

*Course not offered this academic year.
Music

Music (College of Letters and Science)

David A. Nutter, Ph.D., Chairperson of the Department

Department Office, 112 Music Building (916-752-0666)

Faculty

Lawrence Anderson, Ph.D., Lecturer
Ross Bauer, Ph.D., Associate Professor
Robert S. Bloch, M.A., Professor
Anna Maria Busse Berger, Ph.D., Associate Professor
Andrew D. From, M.M., Professor
Paul Hillier, A.G.S.M., Assistant Professor
D. Kern Holoman, Ph.D., Professor
David A. Nutter, Ph.D., Associate Professor
Christine Ropp, Associate Professor
Wayne Slack, Ph.D., Professor
William E. Valentine, M.A., Professor

Emeriti Faculty

Sydney R. Charles, Ph.D., Professor Emeritus
Albert J. McNeil, M.S., Professor Emeritus
Jerome W. Rosen, M.A., Professor Emeritus
Richard G. Swift, M.A., Professor Emeritus

Facility Affiliate in Applied Music

Elizabeth Blumenstock, Lecturer

Faculty Affiliate in Jazz Studies

Phebe Craig, M.M., Lecturer

Aerospace Studies (Air Force)

Air Force ROTC is available to UC Davis students through a program offered at California State University, Sacramento (CSUS). UC Davis' participation is large, with about 30 percent of the corps commuting to CSUS from UC Davis. The CSUS Department of Aerospace Studies (APROT) offers a one-, two-, or four-year programs leading to a commission in the United States Air Force. All course work (12 or 16 semester units) is completed on the CSUS campus. Drills and courses are normally offered on Thursday mornings. Field Training is conducted during part of the summer at an active Air Force base where the student's sophomore and junior years. Upon completion of the program (integrated with UCDS's quarter system) and for the Bachelor's degree, cadets are commissioned as second lieutenants in the Air Force and serve a minimum of four years on active duty. Graduates who are qualified and selected may enter pilot or navigator training after graduation, or serve in a specialty consistent with their academic major, individual goals, and existing Air Force needs. Graduates may request a delay of one year on active duty to continue their education or may apply for Air Force sponsored graduate study to begin immediately upon entry on active duty. Due to firm scheduling requirements for the APROT program, students are encouraged to work closely with their academic advisors in planning this academic program.

Application to the APROT Program should normally be no later than the middle of a student's sophomore year. Upperclassmen and graduate students also apply under special conditions. Contact representatives in the Aerospace Studies Department at CSUS, telephone (916) 278-7315, for information on the program or processing of entry. (An APROT Program is also available within the UC system at Berkeley campus, Department of Aerospace Studies, (800) 852-5747.)

APROT offers 3-year and 2-year scholarships to qualified students. Applications are accepted in a variety of academic disciplines; however, particular emphasis will be given to applicants in the fields of engineering, meteorology, and nursing.

Music

Music 301

Preparatory Subject Matter

Music 30, 31 (or the equivalent as determined in consultation with major advisor), one year

Depth Subject Matter

Music 104A, 104B, 104C, 104D

At least 12 units selected from Music 121, 122, 190

A.B. Major Requirements:

UNITs

Music 30, 31 (or the equivalent as determined in consultation with major advisor), one year

Music 104A, 104B, 104C, 104D

At least 12 units selected from Music 121, 122, 190

Edward Higgins, M.M., Lecturer (stringed)
Steven Lehning, B.M., Lecturer (viola da gamba)
Stanley Lunetta, M.A., Lecturer (percussion)
Peter Nowlin, B.M., Lecturer (French horn)
Deborah Pittman, M.A., Lecturer (clarinet)
Stephen Schult, M.M., Lecturer (banjo)
Deborah Shidler, B.M.E. (oboe)

The UC Davis Contemporary Music Players

Ross Bauer, Director
Laurel Zucker, flute
Deborah Shidler, oboe
David Granger, bassoon
Peter Nowlin, French horn
Kamran Rezaian, piano
Trace Davis, percussion
Robert Samson, viola and viola
Rudolph Kremer, violin
Sarah Freberg, cello
Thomas Derick, bass

The UCD Faculty Woodwind Quintet

Deborah Shidler, oboe
David Granger, bassoon
Deborah Pittman, clarinet
Todd Broody, flute
Peter Nowlin, French horn

The Major Program

The Bachelor of Arts degree in music at UCD provides both a broad liberal arts education and thorough training for a career in music. A fundamental grounding in music theory, music history, and performance during the first two years of study permits a music major to focus upon a special interest area in composition, analysis, history, performance, or secondary school teaching during the last two years of undergraduate work. Approximately one-half of the music student's college course work is in music, including three years of music theory, two years of music history, and participation in performing groups.

Student Performing Activities

The UCD Department of Music offers performance opportunities in the UCD Symphony Orchestra, Early Music Ensemble, Concert Band, University Chorus, Chamber Singers, and in chamber music ensembles. The large performing groups regularly present three concerts each year, while chamber ensembles perform frequently in the weekly Thursday Noon Concerts sponsored by the department. The large performing groups also give concerts in off-campus locations, throughout Northern California, and abroad, including recent tours to Europe, China, the Soviet Union, France, Poland, and Austria.

Facilities

The Department of Music's facilities include a large collection of Renaissance, Baroque, and modern instruments, an electronic studio practice and rehearsal rooms, and an excellent music library. The library has holdings of over 11,000 records, tapes, and CDs, and the collection of books and scores in the main library offers exceptional coverage of all aspects of music.

Career Alternatives

Students graduating with a degree in music are well prepared for careers in teaching (high school, community college, or university level), research, performance, professional composing, concert management, and music librarianship.

A.B. Major Requirements:

UNITs

Preparatory Subject Matter

Music 30, 31 (or the equivalent as determined in consultation with major advisor), one year

Depth Subject Matter

Music 104A, 104B, 104C, 104D

At least 12 units selected from Music 121, 122, 190

*Course not offered this academic year.
At least 6 units selected from Music 137A, 107B, 107C (Note: only 3 units of 167, electronic music, may be counted toward the major), 108A, 108B, 111, 112, 113A, 135, 198, 199, 199A. At least 6 units in performance courses. 8
Select from Music 130 or 131, 141, 142, 143, 144, 145, 146.

Total Units for the Major: 32

Beginning and transfer students must take an audition in piano playing. Sufficient pianistic ability to perform four-part chorales and compositions comparable in difficulty with The Little Preludes of Bach is prerequisite to upper division courses in the major. Students with deficiencies will be required to pass Music 2A, 2B, 2C. All majors in music will be expected to perform the compositions cited above before a jury of faculty members prior to advancement into the upper division. Students transferring from other colleges should take the Placement Examination and consult with departmental major advisors before enrolling in any music course.

Language Requirement. Attention is called to the requirements in foreign languages for higher degrees in music.

Minor Program Requirements:

UNITS
Music 22
A minimum of sixteen units of upper division Music courses. 16
Courses chosen with adviser’s consent from Music 157, 110 128
A minimum of six units in upper division music performance courses (Music 141, 142, 143, 144, 145, 146) may count toward the minor. 8
Lower-division preparatory work to be determined in consultation with minor advisers.

Teaching Credential Subject Representative: L.E. Anderson. See also the section on the Teacher Education Program.

Graduate Study: The Department of Music offers programs of study and research leading to the M.A., M.A.T., and Ph.D. degrees. Detailed information regarding graduate study may be obtained from the Graduate Adviser.

Graduate Adviser: A. M. Bausch Berger.

Courses in Music

Lower Division Courses

1. Basic Musicianship (3) II, III. Anderson
Lecture—3 hours. Fundamentals of music, singing, ear-gaining and conducting for beginners in music. Designed for students with career plans where musical literacy is important, for example, primary level classroom teachers, actors, theatre directors, design in page managers. Not open to students who have successfully completed 3A, 4A, or the equivalent.

2A-2B-2C. Keyboard Competence (1-1-1) II-III. Bloch
Laboratory—1 hour. Prerequisite: concurrent enrollment in course 2A-4B-4C; keyboard diagnostic exam (not open for credit to students who have passed the exam). Designed to train students to meet the minimal piano requirements for the major in music. All music majors will be expected to perform scales, modulations, to realize figured basses, and to harmonize a given melody at sight.

3A. Introduction to Music Theory (4) I. Valentine, II. The Staff
Lecture—3 hours; laboratory—1 hour. Fundamentals of music theory, ear-training, harmony, counterpoint, and analysis directed toward the development of listening and writing techniques. Intended for the general student. General Education credit for two-course sequence of non-GE courses (3A-3B) which will satisfy requirement for one course: Civilization and Culture/Introductory.

3B. Introduction to Music Theory (4) I, II, III. The Staff
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 3A. Continuation of course 3A. Intended for the general student. General Education credit for two-course sequence of non-GE courses (3A-3B) which will satisfy requirement for one course: Civilization and Culture/Introductory.

4A-4B-4C. Elementary Theory (5-5-5) I, II, III. The Staff
Lecture/discussion—4 hours; practice—2 hours. Prerequisite: keyboard competence; keyboard diagnostic examination; students must pass the exam or take course 2A-2B-2C concurrently. Development of music writing and listening skill through the study of music fundamentals, tonal species counterpoint, harmony, score reading, analysis of repertoire. Intended primarily for majors and minors in music. Required for Music majors and minors in course 2A-2B-2C will receive only 4 units of credit for each quarter of course 4A-4B-4C.

5A-5B-5C. Intermediate Theory (4-4-4) I, II, III. Frank
Lecture/discussion—3 hours; practice—2 hours. Prerequisite: course 4C. Study of practical aspects of music notation. Required for Music majors and minors in course 2A-2B-2C will receive only 4 units of credit for each quarter of course 4A-4B-4C.

10. Introduction to Musical Literature (4) I, II, III. The Staff
Lecture—3 hours; listening section—1 hour. An introduction to composers and major styles of Western music. Lecture, listening sections, and selected readings. For non-majors. General Education credit: Civilization and Culture/Introductory.

24A. Introduction to the History of Music, I (4) I. Holoman
Lecture—3 hours; listening section—1 hour. Prerequisite: course 4A or 3A (concurrently). Intended primarily for majors in music. History of music from the late Baroque to the Classical Period.

24B. Introduction to the History of Music, II (4) II. Holoman
Lecture—3 hours; listening section—1 hour. Prerequisite: course 2A; 4B or 3B (concurrently). Intended primarily for majors in music. History of music from the Classical Period to the nineteenth century.

24C. Introduction to the History of Music, III (4) III. Holoman
Lecture—3 hours; listening section—1 hour. Prerequisite: course 2A; 4B or 3B (concurrently). Intended primarily for majors in music. History of music from the Romantic Period to the present.

25A. Introduction to the History of Music, IV (4) I. Hillier
Lecture—3 hours; listening section—1 hour. Prerequisite: course 4C and 24C; course 5A (concurrently). Intended primarily for majors in music. Historical survey of composers and musical styles from antiquity to around 1400.

25B. Introduction to the History of Music, V (4) II. Hillier
Lecture—3 hours; listening section—1 hour. Prerequisite: courses 5A and 25A; course 5B (concurrently). Intended primarily for majors in music. Historical survey of composers and musical styles from around 1400 to around 1600.

25C. Introduction to the History of Music, VI (4) III. Bloch
Lecture—3 hours; listening section—1 hour. Prerequisite: courses 5B and 25B; course 5C (concurrently). Intended primarily for music history majors. Historical survey of composers and musical styles from around 1590 to around 1680.

28. Introduction to Afro-American Music (4) II. The Staff
Lecture—3 hours; listening and discussion—1 hour. A study of the Afro-American rhythm, field hollers, work songs, spirituals, blues, gospel, and jazz; the contrast between West African, Afro-Caribbean, and Afro-Cuban musical traditions.

Performance instruction—1 hour. Prerequisite: open to Music majors with ability to perform scales and short compositions from standard repertoire, admission determined on audition and consent of instructor. One year instruction, arranged by section: (A) Voice (prerequisite of course 1 or the equivalent); (B) Piano; (C) Harpsichord; (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tuba; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit. (P/N grading only.)

Performance instruction—1/2 hour; independent practice—3 hours. Prerequisite: open to Music majors only; admission by audition and consent of instructor. Individual instruction in (A) Voice (prerequisite of course 1 or the equivalent); (B) Piano, (C) Harpsichord, (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tuba; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit.

41. University Symphony (2) I, II, III. Holoman
Rehearsal—4 hours. Prerequisite: admission subject to audition before the first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal, and performance of music from the orchestral literature. May be repeated for credit. (P/N grading only.)

42. University Chamber Singers (2) I, II, III. Hillier
Rehearsal—3 hours, plus sections—at least 1 hour. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of works for small choral group. May be repeated for credit. (P/N grading only.)

43. University Concert Band (2) I, II, III. Valente
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music. May be repeated for credit. (P/N grading only.)

44. University Chorus (2) I, II, III. Hillier
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of Medieval, Renaissance and Baroque music for vocal ensemble and historical instruments. May be repeated for credit. (P/N grading only.)

45. Early Music Ensemble (2) I, II, III. Nutter
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/N grading only.)

46. Chamber Music Ensemble (1) I, II, III. The Staff (Chairperson in charge)
Rehearsal—2 hours; student practice—1 hour. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/N grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/N grading only.)

Upper Division Courses

103. Workshop in Composition (3) I, II, III. Frank
Workshop—3 hours. Prerequisite: course 4C. Workshop in musical composition for undergraduates who are interested in pursuing serious compositional studies. Course will allow students to explore the techniques and materials of musical composition. May be repeated for credit. (P/N grading only.)

*Course not offered this academic year.
107A. Computer and Electronic Music (3) I. Slawson. Lecture—3 hours; laboratory—1 hour. Prerequisite: consent of instructor. Continuation of course 107A. (Limited enrollment.)

107B. Computer and Electronic Music (3) II. Slawson. Lecture—3 hours; laboratory—1 hour. Prerequisite: course 107A and consent of instructor. Continuation of course 107A. (Limited enrollment.)

107C. Computer and Electronic Music (3) III. Slawson. Lecture—3 hours; laboratory—1 hour. Prerequisite: course 107B and consent of instructor. Continuation of course 107B. (Limited enrollment.)

108A-108B. Orchestration (2-2), II. Bloch. Lecture—2 hours. Prerequisite: course 25C. Techniques of orchestration from study of basic instrumental techniques to analysis of orchestral scores and scoring for various instrumental combinations.

109. Masterworks in Performance (2). I. Holzman. Lecture—2 hours. Prerequisite: course 109 recommended. Thorough score study of a single masterwork to be performed on campus during the quarter. Guided listening, selected readings, analysis, and study of composer's milieu. Recommended especially for members of the performing ensembles scheduled to present the work.

110A. The Music of a Major Composer: Beethoven (4). II. Reynolds. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Beethoven will be studied in the context of his time and his contemporaries. Lectures, discussions, and selected readings. For non-majors. General Education credit: Civilization and Culture/Non-Introductory.

110B. The Music of a Major Composer: Stravinsky (4). I. Frank. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Stravinsky will be studied in the context of his time and his contemporaries. Lectures, discussions, and selected readings. For non-majors. General Education credit: Civilization and Culture/Non-Introductory.

110C. The Music of a Major Composer: Bach (4). I. Nutter. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Bach will be studied in the context of his time and his contemporaries. Lectures, discussions, and selected readings. For non-majors. General Education credit: Civilization and Culture/Non-Introductory.

110D. The Music of a Major Composer: Mozart (4). III. The Staff. Lecture—3 hours; discussion—1 hour. Prerequisite: concert 1A or 3A-3B. The work of Mozart will be studied in the context of his time and his contemporaries. Lectures, discussions, and selected readings. For non-majors. General Education credit: Civilization and Culture/Non-Introductory.

110E. The Music of a Major Composer: Haydn (4). II. Bloch. Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Haydn is the context of his time and his contemporaries. Lectures, discussions, and selected readings. For non-majors. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preperation: Music 10.

111. Choral Conducting (2) II. Hillier. Lecture—2 hours. Prerequisite: courses 4A-4B-4C and consent of instructor. Principles and techniques of conducting choral ensembles.

112. Instrumental Conducting (2) I. Holzman. Lecture—2 hours. Prerequisite: courses 4A-4B-4C and consent of instructor. Principles and techniques of conducting instrumental ensembles. Offered in alternate years.

121. Topics in Music History and Criticism (4). I. Blach. Seminar—4 hours (includes selected listening). Prerequisite: courses 4A-4B-4C, 2A-2B-4B-2A, and consent of instructor. Sources and problems of a historical period or musical style selected by the instructor and announced in advance. May be repeated for credit.

122. Topics in Analysis and Theory (4). II. Slawson; III. Bauer. Seminar—4 hours (includes selected listening). Prerequisite: courses 5C and 25C. Analysis of works of a composer or musical style selected by the instructor and announced in advance. Consideration of theoretical issues. May be repeated for credit.

130A-II. Applied Study of Music: Advanced (1) I. II. III. The Staff. Performance—1 hour. Prerequisite: open to Music majors with ability to perform scales and short compositions from standard repertoire; audition required for enrollment.

130B-II. Applied Study of Music: Advanced (1) I. II. III. The Staff. Performance—1 hour. Prerequisite: open to Music majors with ability to perform scales and short compositions from standard repertoire; audition required for enrollment.

130C-II. Applied Study of Music: Advanced (1) II. III. The Staff. Performance—1 hour. Prerequisite: open to Music majors with ability to perform scales and short compositions from standard repertoire; audition required for enrollment.

144. University Choir (2) I. II. III. Hillier. Rehearsal—4 hours. Prerequisite: audition admission to audition before first class meeting. Open to any student in the University Choir. Rehearsal and performance of choral music. May be repeated for credit. (PNP grading only.)

145. Early Music Ensemble (2) I. II. Nutter. Rehearsal—4 hours. Prerequisite: audition admission to audition before first class meeting. Rehearsal and performance of Medieval, Renaissance, and Baroque music for vocal ensemble and historical instruments. May be repeated for credit. (PNP grading only.)

146. Chamber Music Ensemble (1) I. II. III. The Staff (Chairperson in charge). Rehearsals—2 hours; student practice—1 hour. Prerequisite: audition admission to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (PNP grading only.)

190. Senior Seminar in Music (4). I. The Staff (Chairperson in charge). Lecture—4 hours. Prerequisite: courses 5C and 25C, and consent of instructor. Course 25C recommended. Intended primarily for seniors majoring in music intending to apply for graduate programs in music history, composition, or theory. Review of musical skills, issues in theory and analysis, and the history and literature of music.

198. Directed Group Study (1-3) I. II. III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (PNP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I. II. III. The Staff (Chairperson in charge). Prerequisite: consent of instructor. (PNP grading only.)

Graduate Courses:

200. Music Research (4). I. Reynolds. Seminar—3 hours; term paper. Introduction to problems and techniques of research; practical application of music bibliography to questions about significant issues in musicology, music theory, and performance practice.

201. Advanced Music Research and Criticism (4) II. Swift. Seminar—3 hours; term paper. Study and practice of expository writing about music. Application of advanced research techniques to extended writing purposes, ranging from essays for the general public to thesis proposals and articles for scholarly journals.

203A-203B. Composition (4-4-4) I. II. I. Baur; II. Frank; III. Valente. Seminar—3 hours. Technical projects and free composition.

204. Advanced Conducting (3) I. II. III. The Staff (Holman in charge). Tutorial—2 hours, practical—2 hours. Prerequisite: courses 111, 112, or the equivalent. Knowledge of technique appropriate to graduate standing. Technical aspects of conducting and the broader issues in music history and analysis that conductors must face before leading a rehearsal or performance.

207. Advanced Electronic and Computer Music (4) I. II. Slawson. Seminar—2 hours; plus individual student/instructor meeting—2 hours. Prerequisite: courses 107A-107B. Advanced composition using computer and electronic music with the Sun 3-based computer-music system and associated facilities.

210A. Proseminar in Music (Theory and Analysis) (4) I. Slawson. Seminar—3 hours; term paper. Voice-leading analysis of tonal music derived from Schenkerian and pitch-class set theory. Recent work on compositional design, generalizations of the concept of interval.
psychologically-oriented music theory, and theories of durational structure and timbre.

210B. Proseminar in Music (Musicology and Criticism) (4) I, II, III
Seminar—3 hours; term paper. Issues and concepts of music history, including performance practices, questions for specific repertoires and periods; principles, aims, and methods of archival study; historical development and evolution of musical styles; philosophical debates about goals and aims of the discipline in general.

210C. Proseminar in Music (Ethnomusicology) (4) II, III
Seminar—3 hours; term paper. Examination of major trends in ethnomusicology as exemplified by scholars working in several non-Western cultures. Ethnomusicological theory, ranging from ethnomusicological description to metemusical study (searching analysis of individual genres is sociological study).

221. Topics in Music History (4) I, II
Seminar—3 hours. Studies in selected areas of music history and theory. May be repeated for credit.

222. Techniques of Analysis (4) II, III
Frank Seminar—3 hours. Analytical and analytical techniques as applied to music of all historical periods. May be repeated for credit.

223. Ethnomusicology (Pacific Cultures) (4)
Seminar—3 hours; term paper. Court music, religious music, and popular forms of China, Japan, Korea, Melanesia, and Indo-China. Issues concerning historical, theoretical constructs, performance practice, and cultural settings of the music will be stressed. May be repeated for credit.

289. Individual Study (1-12) I, II, III
The Staff (Holman in charge). (SU grading only)

Teaching Methods Courses

300. The Teaching of Music (3) II, Anderson Lecture—3 hours. Prerequisite: course 1 or equivalent. Methods of teaching music in grades K-6.

301. The Teaching of Music (3) II, Anderson Staff Lecture—3 hours. Prerequisite: course 5 (or the equivalent). Methods of teaching music in grades 7-12.

Instrumental Methods. The courses in this series consider methods of teaching orchestra and band instruments, and include repertoire and program planning for secondary schools.

321A-321B. Stringed Instruments (1-1-3) The Staff Discussion—2 hours. Prerequisite: course 4C.

322A-322B. Percussion Instruments (1) III, Anderson Laboratory—2 hours. Prerequisite: course 4C. Offered in alternate years.

323A-323B. Woodwind Instruments (1-1-3) II-III, Anderson Lecture—2 hours. Prerequisite: course 4C.

324. Percussion Instruments (1) I, II, III, Anderson Laboratory—2 hours. Prerequisite: course 4C. Consider teaching of percussion instruments. Survey course. Offered in alternate years.

Native American Studies

(College of Letters and Science)

Jack D. Forbes, Ph.D., Program Director Program Office, TIB 131 (617-731-3537)

Committee in Charge

Steven J. Crump, Ph.D. (Native American Studies)
Irinas Hernandez, Ph.D. (Native American Studies)
Jack D. Forbes, Ph.D. (Anthropology, Native American Studies)

George C. Longfish, M.F.A. (Native American Studies)
Martha J. Macri, Ph.D., Assistant Professor
David Rosing, M.A., Emeritus (Native American Studies)
David A. Robertson, Ph.D. (English)
Dolbert L. True, Ph.D. (Anthropology)
Stefano Varate, Ph.D. (Native American Studies)

Faculty

Steven J. Crump, Ph.D., Assistant Professor
Jack D. Forbes, Ph.D., Assistant Professor
Irinas Hernandez, Ph.D., Assistant Professor
George C. Longish, M.F.A., Professor
Martha J. Macri, Ph.D., Assistant Professor
Stefano Varate, Ph.D., Professor

Emeriti Faculty

Carl N. Gorman, M.F.A., Lecturer Emeritus
Sarah Huchinson, M.F.A., Lecturer Emeritus
David Rosing, M.A., Lecturer Emeritus

The Major Program

Native American studies focuses upon the indigenous peoples of both North and South America. The program is interdisciplinary in its approach to the world of American Indian and offers a comprehensive and comparative perspective.

The Program. Students electing a major in Native American studies must complete one of the following plans: I, II, or III. Plan I focuses upon Native America with, however, some coursework in Hispanic America. Plan II focuses upon South America, with some coursework in Europe. Plan III focuses upon South America, with some coursework in Europe. Plan II focuses upon South America, with some coursework in Europe.

A.B. Major Requirements:

Preparatory Subject Matter

Two courses from Anthropology 134, 141B, 174, 175, Native American Studies 122, 122A, 122B, 122C, from 107, 108, 109, if specifically focused upon a South American language or topic.

Total Units for the Major, Plan I

222

Plan II (South American Emphasis)

Preparatory Subject Matter (see above).20
Depth Subject Matter (see above).16
Three courses from History 161A, 161B, 161C, Spanish 149, or from Native American Studies 107, 168, 191, if specifically focused upon a South American language or topic.

Total Units for the Major, Plan II

64

Minor Program Requirements:

The Native American Studies minor provides an introduction to the Native experience in the Americas through a range of exposure to courses in American Indian history, language, culture, and art.

Native American Studies

Lower division requirement.4

Upper division requirement.20

Five upper division courses, at least one of which is from each of the following groups:

Ethno-History, Native American Studies 130A, 130B, or 130C

Philosophy and values, Native American Studies 156, 167, 168

Politics andCurrent Affairs, Native American Studies 116, 117, 118, 122

Art and literature, Native American Studies 101, 101A, 101B, or 111C

Courses in Native American Studies

Lower Division Courses

1. Introduction to Native American Studies (4) I. The Staff, II, III
Lecture/discussion—4 hours. Introduction to Native American Studies with emphasis upon basic concepts relating to indigenous American tribal and reservation societies, including interregional relations.

10. Native American Experience (4) I. The Staff, II, III, Macri
Lecture—4 hours. Introduction to American Indian historical and socio-cultural development with emphasis upon the U.S. area and upon those processes such as relations with non-Indians which have contributed to the contemporary condition of Indian people. General Education credit: Contemporary Societies/Introductory.

32. Native American Music and Dance (4). The Staff, II, III, Macri
Lecture/discussion—4 hours. Introduction to the music and dance of the native peoples of the Americas. Students will study secular native music and dance from a cross-section of regions and tribes.

33. Native American Art in the U.S. (4) I. Longfish
Lecture—4 hours. Comprehensive survey of Native American art forms with emphasis upon design, culture, and function. Intent is to familiarize the student with the wide range of styles and techniques.

34. Native American Art Workshop (4) I, II, III
Longfish
Lecture—1 hour; laboratory—6 hours; to be arranged—3 hours. Prerequisite: consent of instructor.

*Course not offered this academic year.
5. Native American Studies 305

181A-181B-181C. Native American Literature (4-4-4) I-II-III. The Staff Lecture—4 hours. Prerequisite: English 3, Comparative Literature 1, 2, 3, or any course from the General Education Literature Preparation List. Analysis of works by or about Native Americans including novels and autobiographies, analysis of Native American poetry, oral literature, songs, and tales. (A) the novel and fiction; (B), nonfiction works by native authors; (C), traditional literature and poetry. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

188. Special Topics in Native American Literary Studies (4) I-II. The Staff Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing and consent of instructor. Special topics drawn from Native American literature may be repeated for credit when a different topic is studied.

190. Seminar in Native American Studies (2) III. The Staff (Forbes in charge) Discussion—2 hours. Prerequisite: senior standing. Seminar of critical issues faced by Native American peoples. (P/N grading only.)

191. Topics in Native American Studies (4) I-II. The Staff Lecture/discussion—4 hours; term paper. Prerequisite: upper division standing and consent of instructor. Topics in Native American history and culture, development, culture, and thought. May be repeated for credit when a different topic is studied.

195. Field Experience in Native American Studies (12) I-II. Forbes in charge Field work—36 hours. Prerequisite: senior standing and major in Native American Studies, completion of lower division major requirements, and course 161. Field work with governmental and community groups, under supervision of faculty adviser and support knowledge required of other courses to be applied in field work. (P/N grading only.)

196. Senior Project in Native American Studies (4) I-II. Forbes in charge Discussion—1 hour; independent study—3 hours. Prerequisite: senior standing and major in Native American Studies, course 195 (may be taken concurrently), and consent of instructor. Guided research project that enables student to apply the theory and research principles from major course work. Final product is to be a major senior project or thesis. (P/N grading only.)

197C. Community Tutoring in Native American Studies (1-1-1) I-II. Staff (Forbes in charge) Tutorial—3-15 hours. Prerequisite: consent of major committee; upper division standing with major in Native American Studies. Supervise tutoring in community. (P/N grading only.)

198. Directed Group Study (1-5) I-II. The Staff (Forbes in charge) Prerequisite: upper division standing; consent of instructor. (P/N grading only.)

Graduate Courses

202. Advanced Topics in Native American Studies (4) I-II. The Staff (Forbes in charge) Seminar—4 hours. Prerequisite: graduate standing. Advanced study of selected topics or themes relevant to the field of Native American studies. Topics will be presented.

Course not offered this academic year.
announced at the time of offering. May be repeated for credit when topic differs.

220. Colonialism/Racism and Self-Determination (4) III. Forbes and Varese
Seminar—3 hours; term paper. Prerequisite: graduate standing. Study of imperial/colonial systems and their psychosocial impacts upon oppressors and oppressed, of racism as the outgrowth of colonialism, and of nationalism, ethnic conflict and self-determination. Focus on indigenous peoples, but other groups will also be considered. Offered in alternate years.

280. Ethnohistorical Theory and Method (4) III. Forbes
Seminar—3 hours; term paper. Discussion of the ethnohistorical method; the utilization of diverse types of data, especially documentary sources, to reconstruct socio-cultural history. Particular attention to the applied area of ethnohistory in the solution of contemporary social problems. Offered in alternate years.

298. Group Study for Graduate Students (1-5) II, III. The Staff (Forbes in Charge)
Prerequisite: graduate standing, consent of instructor. (SU grading only.)

299. Special Study for Graduate Students (1-10) II, III. The Staff (Forbes in Charge)
Prerequisite: graduate standing, consent of instructor. (SU grading only.)

Nature and Culture

(College of Letters and Science)
David A. Robertson, Ph.D., Director
Program Office, 130 Titus Hall (916-752-1219)

Committee in Charge
Michael Barbou, Ph.D. (Botany)
Scott McLean, Ph.D. (Comparative Literature)
Ben Orlove, Ph.D. (Environmental Studies, Anthropology)
David Robertson, Ph.D. (English)
Art Shapiro, Ph.D. (Zoology)
Gary Snyder, Ph.D. (Hon.) (English)
Lenora Timm, Ph.D. (Linguistics)
Robert Terrance, Ph.D. (Comparative Literature)
Mark Wheelis, Ph.D. (Microbiology)

Faculty
Scott McLean, Ph.D., Lecturer (Comparative Literature)
Mark Wheelis, Ph.D., Senior Lecturer (Microbiology)

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Minor Program Requirements:</th>
<th>UNITS</th>
</tr>
</thead>
</table>

Courses in Nature and Culture

Lower Division Courses

1. Interactions of Nature and Culture (4) III. The Staff
Lecture/discussion—3 hours; term paper. Satisfac-
tion of Subject A requirement; Comparative Literature 1, 2 or 3, or English 3 recommended. Nature and culture as human constructs, conditioned by both time and place; importance of nature in human thought, both scientific and spiritual; scientific and literary view of the relation between nature and culture, including forms of observation and methods of analysis.

2. Nature and Culture 101

3. Environmental Studies 100, Zoology 125 or Botany 101

4. Anthropology/Environmental Studies 101

5. Anthropology/Environmental Studies 133

6. English 184 or Native American Studies 181A, 181B, or 181C

Total units for the minor—22-24

Courses in Nematology

Upper Division Courses

100. General Plant Nematology (4) I. Ferris
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A or 10. An introduction to the classification, morphology, biology, and control of the nematodes attacking cultivated crops.

110. Introduction to Nematology (2) II. Maggioni
Lecture—2 hours. Prerequisite: Biological Sciences 18 or the equivalent or consent of instructor. The relationship of nematodes to man's environment. Classification, distribution, and importance of nematodes occurring in water and soil as parasites of plants and animals.

199. Special Study for Advanced Undergraduates (1-5) I, II, III, summer. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

*Course not offered this academic year.

Graduate Courses

220. Principles and Techniques of Nematode Taxonomy and Morphology (4) III. The Staff
Lecture—2 hours, laboratory—6 hours. Prerequisite: course 100. Analysis and evaluation of the techniques used in the collection, extraction, and preparation of specimens, free-hand and histologic sections; presentation of illustrative material. Offered in alternate years.

222. Advanced Plant Nematology (3) III. Caswell, Jaffe, Williamsson
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 100 or the equivalent. Review and investigation of relationship between parasitic nematodes and plants, the relationship between nematodes and their environment, and the relationship between nematodes and other biota. Biology of systems explored at the population, organism, and cellular levels. Offered in alternate years.

225. Nematode Taxonomy and Comparative Morphology (5) III. Maggioni
Lecture—2 hours; laboratory—6 hours; 3 hours of laboratory to be announced. Prerequisite: course 220. The taxonomy, morphology, and comparative morphology of soil, freshwater, and marine nematodes as well as select plant and animal parasites. Offered in alternate years.

240. Biological Control in Insect and Plant Nematology (3) Jaffe, Kaya
Lecture—1 hour; laboratory—3 hours or field trips. Prerequisite: upper division course in entomology, nematology, or plant pathology. Biological control potential of nematodes against insects pests and of microorganisms against nematode pests. Offered in alternate years.

245. Field Nematology (1) I. The Staff
Fieldwork—6 days. Prerequisite: courses 100, 222. Six-day observation and study in applied nematology including diagnosis and prediction of nematode soil and field pests and nematode control for field plots, and supervision in association with diverse California crops. (SU grading only.)

290. Seminar (1-5) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. (SU grading only.)

290C: Advance Research Conference (1) (Research Faculty)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Planning and results of research programs, proposals, and experiments. Discussion and critical evaluation of original research being conducted by the group. Discussion led by individual research instructors for research group. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Neurobiology

(A Graduate Group)

Martin Wilson, Ph.D., Chairperson of the Group
Office, G06030 Floor (916-752-7188)

Faculty. The group includes the faculty members from fourteen departments in the College of Agricultural and Environmental Sciences, College of Letters and Science, and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Neurobiology offers programs of study leading to the Ph.D. degree. Neurobiology is a broad, interdisciplinary program with faculty interests ranging all the way from molecular architecture of membrane channel proteins to the acquisition of song by juvenile birds.
Nutrition

See Nutrition; Nutrition (A Graduate Group); Nutrition Science; and Clinical Nutrition and Metabolism (under Internal Medicine in Medicine, School of)

Nutrition

(College of Agricultural and Environmental Sciences)

Barbara O. Schneeman, Ph.D., Chairperson of the Department

Department Office, 3135 Meyer Hall (916-752-4630)

Faculty

Kenneth H. Brown, M.D., Professor
Andrew J. Clifford, Ph.D., Professor
Kathryn G. Dewey, Ph.D., Professor
M. R. C. Greenfield, Ph.D., Professor
Louis E. Grivetti, Ph.D., Professor (Nutrition, Geography)
Patricia Johnson, Adjunct Professor
Carl L. Keen, Ph.D., Professor (Nutrition, Internal Medicine)
Bo L. Lonnerdal, Ph.D., Professor (Nutrition, Internal Medicine)
Roger McDonald, Ph.D., Assistant Professor
Jo Ann Prephet, M.S., Lecturer
Robert B. Rucker, Ph.D., Professor (Nutrition, Biological Chemistry)
Barbara O. Schneeman, Ph.D., Professor (Nutrition, Food Science and Technology, Internal Medicine)
Judith S. Stern, Sc.D., Professor (Nutrition, Internal Medicine)

Emeriti Faculty

Fredric W. Hill, Ph.D., Professor Emeritus
William C. Weir, Ph.D., Professor Emeritus
Frances J. Zeman, Ph.D., Professor Emeritus

Related Major Programs. See the majors in Community Nutrition, Dietetics, and Nutrition Science.

Minor Program Requirements:

The Department of Nutrition offers four minor programs open to students majoring in other disciplines who wish to complement their study programs with a concentration in the area of food and nutrition.

Note: If the student's major program requires the same course in biochemistry and physiology, only one of the courses may duplicate credit toward the minor. Each program below lists replacement courses to fulfill the minimum unit requirement.

Community Nutrition

Preparation: plan in advance to include the required course prerequisites.

Nutrition 101 or 110, plus 111 9
Nutrition 118, 192 (2) 6
Nutrition 129 2
Physiology 110 5
Replacement courses (see note above):
Nutrition 114, 116A-116B, 116AL-116BL 0

Food Service Management

Preparation: plan in advance to include the required course prerequisites.

Food Science and Technology 100A-100B, 101A-101B 10
Food Service Management 120, 120L, 121, 122 11
Food Service Management 123 or Agricultural Economics 112 3-4

Nutrition Science

Preparation: plan in advance to include the required course prerequisites.

Biochemistry 101A-101B or Physiological Sciences 101A-101B 6
Physiology 110 5

Replacement courses (see note above):
Nutrition 114, 115, 116A-116B, 117, 120, 122, 123, 124, 201, 204

Food and Culture: An Introduction to Culture, Diet, and Cuisine

Preparation: plan in advance to include the required course prerequisites.

Anthropology 2, Geography 2, and course 10 recommended. Historical and contemporary overview of culture, food habits, and diet, exploration of major themes in food habit research; minority food habits; origin and development of dietary practices.

Nose: If the student's major program requires the same course in biochemistry and physiology, only one of the courses may duplicate credit toward the minor. Each program below lists replacement courses to fulfill the minimum unit requirement.

Community Nutrition

Preparation: plan in advance to include the required course prerequisites.

Nutrition 101 or 110, plus 111 9
Nutrition 118, 192 (2) 6
Nutrition 129 2
Physiology 110 5
Replacement courses (see note above):
Nutrition 114, 116A-116B, 116AL-116BL 0

Food Service Management

Preparation: plan in advance to include the required course prerequisites.

Food Science and Technology 100A-100B, 101A-101B 10
Food Service Management 120, 120L, 121, 122 11
Food Service Management 123 or Agricultural Economics 112 3-4

*Course not offered this academic year.

Nutrition Science

Preparation: plan in advance to include the required course prerequisites.

Biochemistry 101A-101B or Physiological Sciences 101A-101B 6
Physiology 110 5

Replacement courses (see note above):
Nutrition 114, 115, 116A-116B, 117, 120, 122, 123, 124, 201, 204

Food and Culture: An Introduction to Culture, Diet, and Cuisine

Preparation: plan in advance to include the required course prerequisites.

Anthropology 2, Geography 2, and course 10 recommended. Historical and contemporary overview of culture, food habits, and diet, exploration of major themes in food habit research; minority food habits; origin and development of dietary practices.

Nose: If the student's major program requires the same course in biochemistry and physiology, only one of the courses may duplicate credit toward the minor. Each program below lists replacement courses to fulfill the minimum unit requirement.

Community Nutrition

Preparation: plan in advance to include the required course prerequisites.

Nutrition 101 or 110, plus 111 9
Nutrition 118, 192 (2) 6
Nutrition 129 2
Physiology 110 5
Replacement courses (see note above):
Nutrition 114, 116A-116B, 116AL-116BL 0

Food Service Management

Preparation: plan in advance to include the required course prerequisites.

Food Science and Technology 100A-100B, 101A-101B 10
Food Service Management 120, 120L, 121, 122 11
Food Service Management 123 or Agricultural Economics 112 3-4

*Course not offered this academic year.
mineral; food utilization. Not open for credit to students who have taken courses 110 or 111.

110. Principles of Nutrition (5) II. Cailef (Animal Science) and Rucker (Nutrition); III. Hung (Animal Science) and Rucker (Nutrition).
Lecture—hours; Laboratory—hours. Prerequisite: Physical Sciences 101B (preferred) or Biochemistry 101B; a course in physiology or zoology. Fundamental principles of the nutrition of man and other animals. Physiological basis of nutrient requirements for growth, maintenance, and production. Physiological basis of nutritional disorders.

111. Human Nutrition (4) III. McDonald
Lecture—hours; discussion—1 hour. Prerequisite: course 101 or 110. Nutrition of humans; critical study of nutrient requirements at various phases of life cycle.

112. Nutritional Assessment: Dietary, Anthropometric, and Clinical Measures (2) II. Brown
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 101 or 111 (may be taken concurrently).
Methods of nutritional assessment in humans to evaluate dietary intake (dietary records and recalls, food frequency lists), body composition (anthropometry, physiological methods), and clinical signs of malnutrition. Emphasizes validity and reliability and interpretation of results.

113. Nutritional Assessment: Biochemical Measures (2) I. The Staff (McDonald in charge)
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 101 or 110. Physiological markers of nutritional status including hematological, urinal, and hair analyses of clinical importance will be demonstrated and evaluated. Emphasizes the precision, accuracy, reliability, and interpretation of the values.

114. Developmental Nutrition (4) II. Keen
Lecture—4 hours. Prerequisite: course 110 or 101; course 111. Role of nutritional factors in embryonic and postnatal development.

115. Animal Feeds and Nutrition (4) II. Brown (Animal Science)
Lecture—hours; laboratory—3 hours. Prerequisite: Chemistry 9B, Animal Science 41. Analyses and evaluation of feeds, influences of production, processing and storage methods on nutritive value of feeds, and animal nutrition. Diet formulation.

116A-116B. Diet Therapy (3-3) III.-II. The Staff
Lecture—3 hours. Prerequisite: course 111; Physiology 110 (or the equivalent). Biochemical and physiological basis of dietetic diets; protein in diet formulation. Daily planning diets for normal and pathological conditions.

116AL. Practicum in Diet Therapy (2) II. The Staff
Lecture—1 hour; laboratory—2 hours; extensive written assignments. Prerequisite: course 116A (may be taken concurrently); course 116AL. Planning and evaluation of dietetic diets; procedures in patient education. Coordinated with course 115A. (Deferral grading only pending completion of 116AL-116BL sequence.)

116BL. Practicum in Diet Therapy (1) II. The Staff
Lecture—1 hour; laboratory—1 hour; extensive written assignments. Prerequisite: course 116B (may be taken concurrently); course 116AL. Planning and evaluation of dietetic diets; procedures in patient education. Coordinated with course 116BL. Continuation of course 116AL. (Deferral grading only pending completion of 116AL-116BL sequence.)

117. Experimental Nutrition (5) I. Clifford
Lecture—hours; laboratory—6 hours. Prerequisite: course 111; Biochemistry 101B or Physiological Sciences 101B; a laboratory course in nutrition or biochemistry. Methods of assessing nutritional status. Application of chemical, microbiological, chromatographic, and enzymatic techniques to current problems in nutrition.

118. Community Nutrition (4) II. Dewey
Lecture—4 hours. Prerequisite: course 101 or 111, and 116A-116B. Varieties problems in contemporary communities and of selected target groups in the United States and in developing countries. Nutrition programs and policy, principles of nutrition education.

120. Food Habits and their Nutritional Implications (4) Grewet
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division or graduate standing; upper division course in nutrition or Biochemistry 101B; course 20 recommended.
Advanced themes exploring food habits and their nutritional implications; pica; toxicants naturally occurring in food; ethnic diet; food systems; dietary codes; overview and case histories.

122. Ruminant Nutrition and Digestive Physiology (3) III. Sanz and Macy (Animal Science)
Lecture—3 hours. Prerequisite: Physiology 110; Biochemistry 101A-101B or Physiological Sciences 101A-101B; Microbiology 2 recommended. Study of nutrient utilization as influenced by the unique aspects of digestion and fermentation in the ruminant.

122L. Ruminant Nutrition Laboratory (2) II. Macy (Animal Science)
Laboratory—6 hours. Prerequisite: course 122 concurrently. Students will conduct experiments in small groups and attend demonstrations on topics peculiar to ruminant digestive physiology and nutrition. The laboratory will deal with topics developed in lectures.

123. Nutrition of Non-Ruminant Animals (3) III. Klausing (Avian Sciences)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 110 or 111. Physiological Sciences 101A-101B or Biochemistry 101A; upper division standing in biological or agricultural sciences recommended. Comparative nutrition of non-ruminant animals including domestic animals, wildlife and zoo, relating nutrition to body composition, feed intake, growth, disease, exercise and stress. Discussion and laboratory exercises on the scientific method for answering questions in nutrition.

124. Nutrition and Feeding of Finfishes and Shellfishes (3) II. Hung and Cowkin (Animal Science)
Lecture—3 hours. Prerequisite: course 110 or 111. Application of principles of nutrition to feeding of finfishes and shellfishes; feeding habits, gastrointestinal anatomy, digestion, body composition, aquatic environment, nutrient requirements, diet formulation and quality control, and feeding practices of commercially cultured fishes.

129. Journalistic Practice in Nutrition (2) III. Stern
Discussion—2 hours. Prerequisite: course 111; a course in written or oral expression or consent of instructor. Critical analysis and discussion of current, controversial issues; use of instructor, techniques to interpret scientific findings for the lay public. Students will be required to write several articles for campus media. Course may be repeated once for credit.

190. Seminar in Nutrition (1) II., III. The Staff
Seminar—1 hour. Prerequisite: senior standing; course 111. Discussion of human nutrition problems. Each term will involve a different emphasis among experimental, clinical, and didactic problems of community, national and international scope. May be repeated for credit with consent of instructor. (P/NP grading only.)

190C. Nutrition Research Conference (1) II., I., II.
Lecture—1 hour. Prerequisite: upper division standing in Nutrition or related biological science; consent of instructor. Introduction to research findings and methods of research and dis- cussion of research by faculty and students. May be repeated for credit. (P/NP grading only.)

192. Internship (1-12) II., III. The Staff
Internship—3-36 hours. Prerequisite: upper division course in nutrition or consent of instructor. Work experience on or off campus in practical application of nutrition, supervised by a faculty member. (P/NP grading only.)

197T. Tutoring in Nutrition (1-2) I., II., III. The Staff
Lecture—discussion—3 hours. Prerequisite: Nutrition Science, Dietetics, Community Nutrition or related major. Completion of course 101 or 110 with a grade of B or better. Tutoring of students in nutrition courses, assistance with discussion groups or laboratory sections, weekly contact with instructor in charge of course: written evaluations. May be repeated if tutoring a different course. (P/NP grading only.)

198. Directed Group Study (1-5) I., II., III. The Staff (Schneeman in charge)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I., II., III. The Staff (Schneeman in charge) (P/NP grading only.)

Graduate Courses

201. Vitamin Metabolism (2) II. Rucker
Lecture—2 hours. Prerequisite: upper division nutrition or biochemistry course. Review of studies and relationships involving functions of vitamins. Comparative nutritional aspects and the metabolism and chemistry of vitamins and vitamin-like compounds emphasized.

202. Advanced Nutritional Energetics (2) II. Baldwin

203. Advanced Protein and Amino Acid Nutrition (2) II. The Staff (Rogers, Physiological Sciences, in charge)
Lecture—2 hours. Prerequisite: course 110, Physiological Sciences 101B, Physiology 110 or the equivalent. Nutritional significance of protein and amino acids, including studies of the influence of dietary protein on digestion, absorption, metabolism, resistance to disease, and food intake. Study of dietary requirements and interrelationships among amino acids.

204. Mineral Metabolism (2) II. Lorndeed, Keen
Lecture—2 hours. Prerequisite: upper division nutrition or biochemistry course. Studies of metabolic functions and nutritional interrelationships involving minerals.

216. Advanced Diet Therapy (3) III. The Staff
Lecture—3 hours. Prerequisite: course 116A-116B. Nutrition and disease interrelationships at cellular, tissue, and whole body levels with emphasis on human disease. Critical evaluation of methodology in the study of nutrition in disease states.

218. Advanced Field Work in Community Nutrition (2-12) I., II., III, extra session summer. The Staff
Discussion—1 hour; field work. Prerequisite: courses 111B, 119, graduate standing, consent of instructor. Directed experience in community nutrition. Organization and implementation of nutrition programs.

219A. International Nutrition (3) II. Brown, Dewey, Pollett (Pediatrics)
Lecture/discussion—3 hours. Prerequisite: upper division course in nutrition or consent of instructor. Epidemiology, etiology, and consequences of undernutrition in developing countries. Offered in alternate years.

219B. International Nutrition (3) III. Brown, Dewey, Pollett (Pediatrics)
Lecture/discussion—3 hours. Prerequisite: upper division course in nutrition or consent of instructor. Epidemiology, etiology, and consequences of undernutrition in developing countries. Offered in alternate years.

252. Nutrition and Development (3) III. Keen
Lecture—3 hours. Prerequisite: courses 201, 202, 203. Relationship of nutrition to prenatal and early postnatal development. Offered in alternate years.

253. Control of Food Intake (3) III. Stern (Nutrition)
Lecture—6 hours. Prerequisite: Nutrition Science, Dietetics, Community Nutrition or related major. Completion of course 101 or 110 with a grade of B or better. Tutoring of students in nutrition

*Course not offered this academic year.
Nutrition
(A Graduate Group)

Q.R. Rogers, Ph.D., Chairperson of the Group
Graduate Group Office, 1151 Meyer Hall (916-752-2512)
Faculty. Faculty are drawn from the Colleges of Agricultural and Environmental Sciences, and of Letters and Science, and the Schools of Medicine and of Veterinary Medicine.

Graduate Study. The Graduate Group in Nutrition offers programs of study and research leading to the M.S. and Ph.D. degrees. Research activities in nutrition include work with humans and with laboratory, domestic, and wild animals. Areas of specialization include: the effects of diet on energy and intermediate metabolism; studies on enzymatic adaptation, community nutrition, and dietary fiber; studies on amino acid and other nutrients; and work on nutritional needs and dietary intake patterns.

Nutrition Science
(College of Agricultural and Environmental Sciences)

The Major Program
The study of nutrition encompasses all aspects of the collection, preparation, and consumption of food. Also important in the study of nutrition is the biochemical reactions that take place within the body's cells to utilize these nutrients. This is the level at which the nutrition science major explores the general subject of nutrition.

The Program. While students may elect to take courses concerning the social, psychological, economic, or cultural aspects of nutrition, the bulk of the course work making up the major consists of courses in the sciences. Nutrition as it is taught on the Davis campus is a biological science and requires a complete background in chemistry and biology, along with physics and calculus. These courses are generally completed during the first two years, and along with biochemistry, must be completed before most nutrition classes can be taken. Nutrition science students go on to study nutrition in depth during their junior and senior years.

Career Alternatives. A nutrition science major is excellent preparation for technical work in nutrition in animal, food, and pharmaceutical industries. It also provides a strong background for technical writing or health education. Students who wish to continue their studies are well prepared for professional study in nutrition, dietetics, medicine, and other health sciences.

B.S. Major Requirements:
For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.

English Composition Requirement
See College requirement

Preparatory Subject Matter
Biological sciences (Biological Sciences 1A, 1B, 1C) Chemistry (2A-2B, 2C, and 8A-8B or 118A-118B or 128A-128B and 128A) Computer science (Computer Science Engineering 10 or 15 or Agricultural Science and Management 21)

Mathematics (Mathematics 1A-1B, 6A-6B, 6C, 6D, 6E, 6F, 6G, 6H, 6I, 6J, 6K, 6L, 6M, 6N, 6O, 6P, 6Q, 6R, 6S, 6T, 6U, 6V, 6W, 6X, 6Y, 6Z, 6AA, 6AB, 6AC, 6AD, 6AE, 6AF, 6AG, 6AH, 6AI, 6AJ, 6AK, 6AL, 6AM, 6AN, 6AO, 6AP, 6AQ, 6AR, 6AS, 6AT, 6AU, 6AV, 6AW, 6AX, 6AY, 6AZ, 6BA, 6BB, 6BC, 6BD, 6BE, 6BF, 6BG, 6BH, 6BI, 6BJ, 6BK, 6BL, 6BM, 6BN, 6BO, 6BP, 6BQ, 6BR, 6BS, 6BT, 6BU, 6BV, 6BW, 6BX, 6BY, 6BZ).

Breadth/General Education
See College requirement

Nutrition
See College requirement

Obstetrics and Gynecology
See Medicine, School of

Ophthalmology
See Medicine, School of
Organizational Studies
See Sociology

Orientation
(College of Agricultural and Environmental Sciences)

Course in Orientation
Questions pertaining to the following course should be directed to the instruction or to the Biochemistry and Biophysics, Department, 149 Briggs Hall.

Lower Division Course
1. Orientation (no credit) I, II, III. Chaykin (Biochemistry and Biophysics)
Discussion: First and the philosophy, purposes, significance, expectations and mechanisms of university education. (PAP grading only.)

Orthopaedic Surgery
See Medicine, School of

Otolaryngology
See Medicine, School of

Pathology
See Pathology (Medicine, School of); and Pathology (Veterinary Medicine), below

Pathology
(School of Veterinary Medicine)
Donald L. Dungworth, B.V.Sc., Ph.D., Chairperson of the Department
Department Office, 1126 Hering Hall (916-752-1385)

Faculty
Mark L. Anderson, D.V.M., Ph.D., Associate Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Bradd C. Barr, D.V.M., Ph.D., Associate Adjunct Professor (California Veterinary Diagnostic Laboratory)
Arthur A. Bickford, V.M.D., Ph.D., Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Patricia C. Blanchard, D.V.M., Ph.D., Assistant Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
James S. Cullor, D.V.M., Ph.D., Associate Professor
Donald L. Dungworth, B.V.Sc., Ph.D., Professor
Robert J. Higgins, B.V.Sc., M.Sc., Ph.D., Associate Professor
Charles A. Hohnberg, D.V.M., Ph.D., Professor
Bill Johnson, D.V.M., Ph.D., Assistant Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)

Peter C. Kennedy, D.V.M., Ph.D., Professor
Linda J. Lowenstein, D.V.M., Ph.D., Associate Professor
Milton M. McAllister, D.V.M., Ph.D., Assistant Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
N. James MacLachlan, B.V.Sc., Ph.D., Associate Professor
Carol U. Meteyer, D.V.M., B.S., Assistant Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Christopher J. Miller, D.V.M., D.V.M., Ph.D., Assistant Adjunct Professor (Pathology, California Primate Research Center)
F. Charles Mohr, D.V.M., Ph.D., Assistant Professor
Peter F. Moore, B.V.Sc., Ph.D., Associate Professor
Harvey J. Olander, D.V.M., Ph.D., Professor
Bennie I. Osburn, D.V.M., Ph.D., Professor
Roy R. Pool, Jr., D.V.M., Ph.D., Professor
Deryck H. Read, B.V.Sc., Ph.D., Assistant Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
H.S. Shivaradass, M.S., B.V.Sc., Ph.D., Assistant Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Anthony A. Stammard, D.V.M., Ph.D., Professor (Pathology, Medicine)
Dennis W. Watson, D.V.M., M.S., Ph.D., Associate Professor

Emeriti Faculty
Donald R. Cordy, D.V.M., Ph.D., Professor Emeritus
Jack E. Moulton, D.V.M., Ph.D., Professor Emeritus

Courses in Pathology
Upper Division Course
199. Special Study for Advanced Undergraduate (1-6) I, II, III. The Staff (Chairperson in charge) (PAP grading only)

Graduate Courses
281. Foreign Animal Diseases (3) III. Olander Lecture—3 hours. Prerequisite: Veterinary Medicine 452 and 453 or 453. Designed for students interested in research and teaching in topical veterinary medicine. Diseases studied are the most important ones that currently ravage Third-World countries, particularly in Africa and Latin America. Offered in alternate years. (SU grading only)

282. Tumor Pathology (3) II. The Staff (Dungworth in charge)
Lecture—3 hours. Prerequisite: graduate standing or final-year veterinary student and consent of instructor. The disease, incidence, geographical distribution, etiology, transmission, immunity, host response, gross and microscopic structure, and metastasis of the neoplasms of domestic animals. Offered in alternate years.

284. Pathogenesis of Infectious Disease (2) III.
Cullor Lecture—2 hours. Prerequisite: upper division or graduate standing in biology or the medical sciences and introductory courses in microbiology, immunology, hematology, or consent of instructor. Features of pathogenicity and host defense mechanisms common to infection with bacteria, viruses, fungi, and protozoa are emphasized, as well as the important species differences. Perinatal immune responses to infections and disease are also covered. Offered in alternate years.

2864-2865-2866. Selected Topics in Advanced Special Pathology (2-11) I, II, III. The Staff (Dungworth in charge)
Lecture—variable. Prerequisite: graduate standing, DVM degree, or final-year veterinary student. Varied topics. See department for details. Offered in alternate years. (Deferred grading only, pending completion of sequence.)

287. Comparative Pathology of Laboratory Animals (3) III. Lowenstein Lecture—3 hours. Prerequisite: graduate standing, DVM degree, or final-year veterinary student; consent of instructor in charge. The pathology of diseases of animals commonly kept in laboratory settings including cold-blooded vertebrates as well as rodents, lagomorphs, and non-human primates. Emphasis will be recognition of lesions and understanding of pathogenesis. Offered in alternate years.

288. Seminar in Veterinary Pathology (1) I, II, III. The Staff Seminar—1 hour. (SU grading only)

291. Histopathology Conference (1) I, II, III. The Staff (Wilson in charge)
Discussion—1 hour. Prerequisite: graduate standing or final-year veterinary student; consent of instructor. Discussion of selected cases based on records and slides. Defense of diagnoses. (SU grading only)

292. Surgical Pathology Conference (1) I, II, III. The Staff (Pool in charge)
Discussion—1 hour. Prerequisite: graduate standing or final-year veterinary student; consent of instructor. Diagnosis and discussion of current surgical pathologic cases based on clinical records and microscopic study. (SU grading only)

293. Necropsy and Surgical Pathology (1-4) I, II, III. The Staff (Olander in charge)
Discussion—1 hour. Laboratory—32 hours. Prerequisite: graduate standing; consent of instructor. Responsible diagnostic casework. Performance of necropsies, slide reading, and case reporting. (SU grading only)

294. Comparative Pathology Conference (1) I, II, III. Lowenstein Discussion—1 hour. Prerequisite: graduate standing or final-year veterinary student; consent of instructor. Discussion of selected topics in comparative pathology based on currently available case materials from farm, laboratory animals, zoo and wild animals and non-human primates. Given jointly by the Departments of Pathology in the Medical and Veterinary Schools and the California Primate Research Center. (SU grading only)

299. Research in Veterinary Pathology (1-12) I, II, III. The Staff (SU grading only)

Pediatrics
See Medicine, School of

Pharmacology and Toxicology
See Medical Pharmacology and Toxicology (under Medicine, School of); Pharmacology and Toxicology (A Graduate Group), below; and Veterinary Pharmacology and Toxicology

Pharmacology and Toxicology
(A Graduate Group)
David E. Hinton, Ph.D., Chairperson of the Group
Group Office, 4111 Meyer Hall (Department of Environmental Toxicology, 916-752-4516)
Courses in Pharmacology and Toxicology

Graduate Courses

201. Principles of Pharmacology and Toxicology I (4) I. Miller (Environmental Toxicology)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biochemistry 1018, Physiology 110. Basic concepts underlying metabolism of xenobiotics, receptors, pumps, and cell biology, and chemotherapy for cancer and infectious disease. Specific topics include fate processes, disposition kinetics, dose-response relationships, cellular toxicity and oncogenesis.

202. Principles of Pharmacology and Toxicology II (4) II. Buckpitt (Veterinary Pharmacology and Toxicology)
Lecture—3 hours; discussion—1 hour. Prerequisites: satisfactory completion of course 201. Mechanisms of action, pharmacokinetics, toxic effects, and pathologic changes produced by drugs and other chemical substances on various body systems and their associated organs.

203. Principles of Pharmacology and Toxicology III (4) III.
Lecture—3 hours; Discussion—1 hour. Prerequisite: courses 201 and 202. Mechanisms of action, pharmacokinetics, toxic effects, and pathologic changes produced by drugs and other chemical substances on various body systems and their associated organs. Ecotoxicity, risk assessment, and epidemiology.

230. Advanced Topics in Pharmacology and Toxicology (1-3) I, II, III. The Staff
Lecture/discussion/seminar—1 hour each course (format can vary at option of instructor). Prerequisites: course 201 and consent of instructor. In-depth coverage of selected topics for graduate students in Pharmacology-Toxicology and related disciplines. Topics determined by instructor in charge for each quarter.

290. Seminar (1) I, II, III. The Staff
Current topics in pharmacology and toxicology. (SU grading only.)

Philosophy

(College of Letters and Science)

Michael V. Wedin, Ph.D., Chairperson of the Department
Department Office, 409 Surge IV (916-752-0607)

Faculty
William H. Bossart, Ph.D., Professor
David I. Cooper, Ph.D., Professor
Michael R. Dietrich, Ph.D., Assistant Professor
Joel I. Friedman, Ph.D., Professor
James R. Griesemer, Ph.D., Associate Professor

Michael Jubien, Ph.D., Professor
Jeffrey King, Ph.D., Associate Professor
John F. Malcolm, Ph.D., Professor
George J. Mattey II, Ph.D., Associate Professor
Paul Teiler, Ph.D., Professor
Michael V. Wedin, Ph.D., Professor
Richard A. Wollheim, M.A., Visiting Professor

Emeriti Faculty
Ronald A. Arbini, Ph.D., Professor Emeritus
Neal W. Gilbert, Ph.D., Professor Emeritus
Marjorie Grenne, Ph.D., Professor Emeritus

The Major Program

Philosophy is the study of conceptual problems that pertain to the nature of knowledge, reality, and human conduct.

The Program. The Department of Philosophy offers courses in such areas as the theory of knowledge, metaphysics, logic, ethics, and aesthetics. In addition, upper division course work is given in the fields of philosophy of mathematics, moral and political philosophy, philosophy of religion, philosophy of the natural and social sciences, and philosophy of language.

Philosophy is also a subject in which the problems discussed recur, or have important roots in a broad discussion. The history of philosophy is thus important not only as part of the heritage of educated persons, but also because it is relevant to contemporary issues. The department therefore places great emphasis on the history of philosophy, and provides courses in the major figures and traditions of western philosophy, as well as in the influential contemporary schools of the continental and analytic varieties.

Career Alternatives. Many students major in philosophy with a plan to do graduate work and teach philosophy, or as background training for other professions. Philosophy majors have done extremely well in law schools and medical schools, for example. Also, many philosophy majors go on to advanced work in other academic areas in the humanities and social sciences; graduates may also go into such fields as government, the ministry, publishing, social work, and even business.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Major Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>16</td>
</tr>
<tr>
<td>Philosophy 12, 21, 22, 23</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36</td>
</tr>
<tr>
<td>Upper division units in Philosophy selected with approval from the major adviser</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>52</td>
</tr>
</tbody>
</table>

Minor Program Requirements:

Students wishing to minor in Philosophy may choose a general minor or a minor specializing in logic. There are no specific courses required for the general minor, so students may create a program to suit their own interests, subject to the approval of the minor adviser. The range of choice in the logic specialization is limited to the courses listed.

<table>
<thead>
<tr>
<th>Major Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophy—General</td>
<td>20</td>
</tr>
<tr>
<td>20 upper division philosophy courses, chosen in consultation with the minor adviser. At most, 4 units may be lower division if the student has taken two lower division philosophy courses, one of which is drawn from the following: Philosophy 12, 21, 22, 23.</td>
<td></td>
</tr>
<tr>
<td>Philosophy—Logic</td>
<td>20</td>
</tr>
<tr>
<td>Philosophy 12, 21, 22, 23</td>
<td>4</td>
</tr>
<tr>
<td>Philosophy 112</td>
<td>20</td>
</tr>
<tr>
<td>Philosophy 112, 121, 131, 132, 133, 134, 135</td>
<td>4</td>
</tr>
<tr>
<td>Minor Adviser. J.C. King.</td>
<td></td>
</tr>
</tbody>
</table>

Course not offered this academic year.

Courses for Non-Majors. The department offers a range of courses for non-majors. Philosophy 1 is a General Education course for the non-major. Students pursuing careers in agriculture and engineering might find Philosophy 5 and 10A-G especially useful, since these courses provide practice in conciseness and logical writing. Science and mathematics students may find these courses useful, as well as Philosophy 12, 107, 108, and 112. Pre-law students and students planning careers in medicine or in the various health sciences may be interested in Philosophy 14, 114, 115, 118 and 119. The offerings at the upper division level include courses of direct relevance to students in psychology, history, art, sociology, anthropology, and political science.

Department Activities. The Philosophy department sponsors a lecture-seminar series of well-known philosophers who present papers in their fields of expertise. The department also operates an ongoing faculty-student colloquium. Undergraduate students are welcome to attend and join these discussions. Information can be obtained in the department office.

Graduate Study. The Department of Philosophy offers a program of study leading to the M.A. and Ph.D. degrees. In association with the Program in Economic, Justice and Society, the department also offers the Ph.D. in Philosophy with designated emphasis in Economy, Justice and Society. Detailed information may be obtained by writing to the Graduate Adviser.

Graduate Adviser. M. Jubien.

Courses in Philosophy

Lower Division Courses

1. Introduction to Philosophy (4) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour. Problems of philosophy through major writings from various periods. Problems are drawn from political, aesthetic, religious, metaphysical, and epistemological concerns of philosophy. General Education credit: Civilization and Culture/Introduction.

5. Critical Reasoning (4) I, II. The Staff
Lecture—3 hours; discussion—1 hour. Criteria of good reasoning in everyday life and in science. Topics to be covered may include basic principles of deductive and inductive logic; fallacies in reasoning; techniques and aids to reasoning; philosophy of scientific investigation; aids to clarity. Not open to students who have completed course 6.

6. Creative Thinking and Writing (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Topics to be covered may include criteria of good reasoning in everyday life and in science: basic principles of deductive and inductive logic; fallacies in reasoning; techniques and aids to reasoning; philosophy of scientific investigation; aids to clarity. Critical papers emphasized. Not open to students who have completed course 5. Offered in alternate years.

10A-G. Themes in Philosophy (4) I. The Staff
Lecture/discussion—3 hours; papers or written reports. Introductory study of related problems in an area of philosophical interest. Sections to be offered: (A) Knowledge and Existence; (B) Self and Mind; (D) Morals and Politics; (E) Philosophy East and West; (G) Science and Human Nature. General Education credit for courses 10B, 10D: Civilization and Culture/Introduction.

12. Introduction to Symbolic Logic (4) I, II. The Staff
Lecture—3 hours; discussion—1 hour. Sentence logic: syntax and semantics. Truth tables, translation; sentence logic and English. Logical equivalence; validity; Proof techniques.

13. The Person (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Examination of the concept of the person. A specific focus on our assumptions about what persons are, e.g., that persons are agents, that they have a distinct psychology, that they are rational, that they are language-users, that they are moral. General Education credit: Civilization and Culture/Introduction.
103. Philosophy of Mind (4 I). The Staff Lecture/discussion—3 hours; term paper. The relation between mind and body, our knowledge of other minds, and the explanation of mental acts. Discussion of such concepts as action, intention, and causation.

104. Introduction to Philosophy of Science (4 I). Teller Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy or a science background recommended. Basic problems in the philosophy of science, common to the physical, biological, and social sciences: Analysis of explanation, confirmation theory, observational and theoretical terms, the nature of theories, operationalism and behaviorism, realism, reduction. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: one course in philosophy (Philosophy 1 or 31) or an introductory course in the physical, biological or social sciences.

105. Philosophy of Religion (4 I). III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy recommended. Logical, metaphysical, epistemological, and existential aspects of selected religious concepts and problems. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Philosophy 1 or Religious Studies 1, 2, 21, or 40.

106. Science (4 I). The Staff Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy or consent of instructor. Intensive study of topics in metaphysics to which the results of modern science are or appear to be relevant: the nature of time, causation, determinism, physicalism, realism.

107. Philosophy of the Physical Sciences (4 II). The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: one philosophy course or a science background recommended. Nature of testability and confirmation of scientific hypotheses; nature of scientific laws, theories, explanations, and models. Problems of causality, determinism, induction, and probability; the structure of scientific revolutions. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Philosophy 1, 22, or 23.

109. Philosophy of the Social Sciences (4 II). The Staff Lecture/discussion—4 hours. Prerequisite: one philosophy course or a social science background recommended. The nature and behavior of explanation of behavior. Nature of laws and explanation in the social sciences. Problems in the social sciences such as: 'Interpretive understanding,' role of prediction, behaviorism, reducivism, role of value judgments, and social rules.

110. An Historical Introduction to the Philosophy of Science (4 II). The Staff Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy. Several general topics in the philosophy of science introduced and discussed in the context of actual episodes in the development of the natural sciences. Impact of these scientific developments on philosophical thought of the immediately following historical period.

111. Philosophy of Space and Time (4 II). The Staff Lecture/discussion—3 hours; term paper. Prerequisite: one upper division philosophy course. Philosophical problems of space and time. The philosophical implications of space-time theories, such as those of Newton and Einstein. Topics may include the nature of geometry, conventionalism, absolutist versus relational views of space and time, philosophical impact of relativity theory.

112. Intermediate Symbolic Logic (4 II). Teller Lecture—3 hours; discussion—1 hour. Prerequisite: course 12 or consent of instructor. Predicate logic syntax and semantics. Translation between predicate and English. Identity, functions, and definite descriptions. Introduction to concepts of metatheory.

113. Advanced Logic (4 II). Friedman Lecture/discussion—4 hours. Prerequisite: course 12 or 'Symbolic Logic.' Topics will vary between metalogic of First-Order logic through the Completeness and Lowenheim-Skolem theorems; or Zermelo-Fraenkel set theory typically axiomatized as a First-Order theory. May be repeated once when subject area differs.

114. History of Ethics (4 I). The Staff Lecture—3 hours; term paper. Prerequisite: one philosophy course. Study of some classic texts from the history of philosophy concerning central problems of ethics, taking the form either of a survey or a concentrated examination of selected historical figures. Readings from such philosophers as Aristotle, Butler, Hume, Kant.

115. Problems in Normative Ethics (4 I). The Staff Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy. Moral philosophy studied through examination of moral problems and the moral principles and common sense intuitions that bear on them. Problems of interest may include: animal rights, fetal rights, euthanasia, justice and health care, war, nuclear deterrence, world hunger, environmental protection.

116. Ethical Theories (4 II). Copp Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy; one course in ethics recommended. Study of fundamental concepts and problems in ethical theory through an examination of classical and contemporary philosophical theories of ethics. Among the theories that may be discussed are utilitarianism, virtue theory, theories of natural rights, Kantian ethical theory, and contractarianism.

117. Foundations of Ethics (4 II). Copp Lecture/discussion—3 hours; term paper. Prerequisite: one of courses 114, 115, 116, 101, or 137. Advanced investigation of questions about the nature and foundations of morality. Among the topics that may be discussed are moral realism and anti-realism, cognitivism and non-cognitivism, types of relativism, moral skepticism, normative language and normative belief.

118. Political Philosophy (4 III). The Staff Lecture/discussion—4 hours; term paper. Prerequisite: one course in philosophy. Intensive examination of some central concepts of political thought such as the state, sovereignty, rights, obligation, freedom, law, authority, and responsibility. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Political Science 2. (Former course 117.)

119. Philosophy of Law (4 II). Copp Lecture—3 hours; term paper. Prerequisite: one course in philosophy or consent of instructor. Philosophical theories of the nature of law, legal obligation, the relation of law and morals. Problems for law involving liberty and justice; freedom of expression, privacy, rights, discrimination and fairness, responsibility, and punishment. (Former course 116.)

120. Topics in Metaphysics (4 II). Jubien Lecture/discussion—4 hours. Prerequisite: course 12 or consent of instructor. Examination of various topics in meta- metaphysics, e.g., fatalism, necessity, identity, ontological categories; minds, bodies, and persons; space and time; freedom and determinism.

121. Topics in Theory of Knowledge (4 III). Matty Lecture/discussion—4 hours. Prerequisite: course 120. Examination of one or more topics in theory of knowledge, such as belief, skepticism, justification.
123. Aesthetics (4) II. Wolfheim
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy recommended. Nature of art, of artistic creation, of the work of art, and of aesthetic experience; nature and validity of criticism; relations of art to life and society.

127. Philosophy and Economics (4) III. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: one upper division course in philosophy. Study of issues at the intersection of economics and moral and political philosophy, e.g., the nature of value, the nature of justice, the nature of rationality, the measurability of human well-being.

131. Philosophy of Logic and Mathematics (4) II. Jubien
Lecture/discussion—3 hours; term paper. Prerequisite: course 12 or course for credit in mathematics. Nature of formal systems and mathematical theories. Selected topics include logical and semantical paradoxes; foundations of mathematics; set theory; type theory; and intuitionistic theory. Philosophy of geometry; philosophical implications of Gödel's incompleteness results.

132. History of Logic (4) II. Friedman
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy or logic recommended. Overview of the chief developments in the history of logic.

133. Topics in Mathematical Logic (4) III. The Staff
Lecture/discussion—4 hours. Prerequisite: course 112 or Mathematics 108 or the equivalent. Survey of the main systems of modal logic, including Lewis systems S4 and S5. "Possible worlds" semantics and formal proofs. Applications to epistemology, ethics, or temporality. Offered in alternate years.

135. Alternative Logics (4) II. Mathey
Lecture/discussion—4 hours. Prerequisite: course 12, Mathematics 108, or the equivalent. Alternatives to standard truth-functional logic, including many-valued logics, intuitionistic logics, relevance logics, and non-monotonic logics.

137. Philosophy of Language (4) I. King
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy or linguistics. Discussion of philosophical theories of how languages work and philosophical problems arising from thinking about language. Emphasis on modern (1879 to present) philosophical views on language.

143. Hellenistic Philosophy (4) I. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 21.

145. Medieval Philosophy (4) III. Malcolm
Lecture/discussion—3 hours; written reports. Prerequisite: course 21. Study of major philosophers in the medieval period.

151. Philosophy of the Nineteenth Century (4) I. The Staff
Lecture/discussion—4 hours. Prerequisite: courses 21, 22, or 23 recommended. Idealism of Hegel, the pessimism of Schopenhauer, Marxism, the irrationality of Nietzsche, and Dostoevsky. General Education credit: Civilization and Culture/Non-Introductory. Recommended OE preparation: Philosophy 1, 22, 23, History 474A or 474B.

155. American Philosophy (4) I. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy recommended. Study of such American thinkers as Peirce, James, Royce, Dewey, Santayana, Whitehead, and C.J. Lewis.

156. Contemporary Analytic Philosophy (4) II. King
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy. Consideration of central issues such as meaning/reference, analytic/synthetic, reductionism, formal and ordinary language, essential properties, ontological commitment, possible world semantics; influential works by philosophers such as Burge, Moore, Wittgenstein, Austin, Carnap, Quine, Putnam, Kripke, and Van Fraassen.

158. Phenomenology and Existentialism in Germany (4) I. Bossart
Lecture—3 hours. Term paper. Prerequisite: course 23 recommended. Twentieth-century German thinkers such as Husserl, Heidegger, Jaspers.

159. Phenomenology and Existentialism in France (4) II. Bossart
Lecture—3 hours. Term paper. Prerequisite: course 23 recommended. Twentieth-century French thinkers such as Sartre, Marcell, Marcel, Merleau-Ponty.

160. Pre-Socratic (4) III. Malcolm
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Study of the metaphysical views of such pre-Socratic figures as the Milesians, the Pythagoreans, Heracleitus, Parmenides, Empedocles, Anaxagoras, and the atomists.

161. Plato (4) I. Malcolm
Lecture/discussion—3 hours. Prerequisite: course 21.

162. Aristotle (4) III. Malcolm
Lecture/discussion—4 hours. Prerequisite: course 21 or consent of instructor.

166. Descartes (4) III. Friedman
Lecture/discussion—4 hours. Prerequisite: course 22.

169. Spinoza (4) III. Friedman
Lecture/discussion—4 hours. Prerequisite: course 22.

170. Leibniz (4) III. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 22.

172. Locke and Berkeley (4) I. Mathey
Lecture—4 hours. Prerequisite: course 23. Examination of Locke's Essay Concerning Human Understanding and Berkeley's Principles of Human Knowledge and Three Dialogues. Topics include abstract ideas, existence of matter, primary and secondary qualities, the existence of God, and the nature of scientific knowledge.

174. Hume (4) II. Mathey
Lecture/discussion—4 hours. Prerequisite: course 23 recommended.

179. Kant (4) I. Bossart
Lecture/discussion—4 hours. Prerequisite: course 23. Intensive examination of the Critique of Pure Reason. Topics include the extent and limitations of human cognition, space and time, substance and causality, freedom and determinism, and the existence of God. Offered in alternate years.

177. Hegel (4) II. Bossart
Lecture/discussion—4 hours. Prerequisite: course 23 and 175 recommended.

190. Special Topics in the History of Philosophy (4) III. The Staff
Lecture—3 hours; term paper. Intensive study of special topic, problem, or authors in the history of philosophy. May be repeated for credit.

198. Directed Group Study (1-5) I, II, III. The Staff
(Lecture in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
(Lecture in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Metaphysics (4) III. Jubien
Seminar—4 hours.

202. Theory of Knowledge (4) I. Friedman
Seminar—4 hours.

206. Philosophical Argumentation (4) I. The Staff
Seminar—4 hours. Short papers. Prerequisite: graduate standing. Investigation and evaluation of philosophical arguments. Critical discussion of student papers on various aspects of philosophical disputes.

207. Philosophy of Science (4) I. The Staff
Seminar—4 hours. Term paper. Prerequisite: graduate standing in philosophy or consent of instructor. An intensive treatment of one (or more) topic(s) in the philosophy of science, such as foundations of spacetime theories, the interpretation of quantum mechanics, foundations of statistical mechanics. May be repeated for credit with consent of instructor.

208. Philosophy of Biology (4) I. Giesemer
Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Intensive treatment of one or more general topics in the philosophy of biology, such as foundations of evolutionary theories, reductionism in biology, sociobiology, and cultural evolution. May be repeated for credit with consent of instructor.

210. Philosophy of Science (4) I. Dietrich
Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Treatment of one or more general topics of current interest in the philosophy of science, such as scientific explanation, theories of confirmation, scientific realism, reduction in physics and biology. Course may be repeated for credit with consent of instructor.

212. Philosophy of Logic and Mathematics (4) II. Friedman
Seminar—3 hours; term paper. Prerequisite: course 112 or Mathematics 108 or 125, or the equivalent. Philosophical issues in logic and mathematics. Topics may include nature of logical and mathematical truth or knowledge, completeness of logical systems, foundations of mathematics, metaphysical and epistemological presuppositions, applications to philosophical problems and formalization of philosophical theories.

214. Ethics (4) III. Copp
Seminar—3 hours; term paper.

217. Political Philosophy (4) I. The Staff
Seminar—3 hours; term paper. Prerequisite: graduate student standing. Advanced study of issues in political philosophy. May be repeated for credit with consent of instructor.

237. Philosophy of Language (4) III. King
Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Study of philosophical issues raised by language, such as the nature of semantic content, proper semantics for verbs of propositional attitude, feasibility and limitations of formal semantics and pragmatics for natural languages. May be repeated for credit with consent of instructor when the content is sufficiently distinct.

251. Plato (4) II. Malcolm
Seminar—3 hours.

252. Aristotle (4) III. Wedin
Seminar—3 hours.

257. Kant (4) I. Mathey
Seminar—3 hours.

290. History of Philosophy (4) II. Bossart
Seminar—3 hours. Special topics in the history of philosophy.

293. The Emotions (4) II. Wolfheim
Seminar—3 hours; term paper. Prerequisite: graduate standing; open to undergraduates with consent of instructor. Considers the emotions in their full variety. Relates emotion to desire, to belief, to sensation, to behavior, and to rationality. Cultural interpretations of emotion will be reviewed. Ancient and modern writers will be read. Offered in alternate years.

298. Group Study (1-5) I. Teller; II. Wolfheim
Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

Physical Education

(Philadelphia Department of Public Parks)

313. Physical Education

Department Office, 264 Hickey Gymnasium

(916-752-5611)
Minimum of 12 upper division units in physical education chosen with approval by a major adviser. 12

Students electing this emphasis must select a minimum of 6 units from Physical Education 110, 111, 112, 113, 115, 117, or 118.

Psychological emphasis.

Students electing this emphasis must select a minimum of 7 units from Physical Education 120, 121, 122, or 125.

Minimum of 4 upper division non-physical education units in either the biological or the psychological area selected from the following list. Substitutes may be made only with the prior written approval of a major adviser.

Biology emphasis: Anthropology 101, 102, 103, 110, 113, Environmental Studies 129, Genetics 100, or Nutrition 104.

Psychological emphasis: Psychology 114, 115, 136, 143, 145, or 161.

No variable-unit course work or non-letter-graded courses may be used to fulfill this requirement. Consult your adviser regularly.

Total Units for the Major: 75-77

B.S. Major Requirements:

Preparatory Subject Matter

Units

Biological Sciences 1A, 1B: 6

Chemistry 1A, 1B: 6

Physical Education 45: 3

Psychology 1A: 3

Statistics 13: 4

Additional requirements: Biological emphasis—Biological Sciences 1B: 5

Psychological emphasis—Psychology 41: 4

Depth Subject Matter

Cell Biology and Human Anatomy 101: 4

Cell Biology and Human Anatomy 101L: 4

Physical Education 101, 101L, 102, 103, 104, 105, 106: 16

Physical Education 107: 5

Honors Program

Students those with outstanding records in the major requirements may elect to enter the Honors Program with the consent of an adviser. A senior project must be completed, for which up to 10 units (minimum of 6 units) of Physical Education 199 (split over two quarters) may be counted. These units are taken in addition to the major requirements, and it should be realized that only a maximum of 10 units may be counted toward the B.S. degree total unit requirement.

Teaching Major. The teacher-training curriculum in physical education requires courses in addition to the departmental major requirements.

Minor Program Requirements:

Units

Physical Education: 18

At least 18 upper division units in physical education from one of three options: 18

a. Biomechanics

1) Physical Education 103 and one course from 101, 102, 104, 105

2) Minimum of two courses from Physical Education 113, 115, 125

3) Additional courses to complete a total of 18 upper division units

b. Exercise Physiology

1) Physical Education 101 and 101L, and one course from 102, 103, 104, 105

2) Minimum of two courses from Physical Education 110, 111, 112, 113, 117, 118

3) Additional courses to complete a total of 18 upper division units

Minor Advisers. Same as major advisers.

Teaching Credential Subject Representative. See also the section on the Teacher Education Program.

Graduate Study. A program of study and research leading to the M.A. or M.S. degree is available in physical education. For detailed information regarding graduate study, write to the Graduate Adviser, Department of Physical Education. See also the Graduate Studies section in this catalog.

Graduate Adviser. W.C. Adams.

Classroom and Laboratory Use of Facilities. The incidental fee payable by all students at the time of registration, entitles students to the use of gymnasium, showers, towels, lockers, tennis courts, and the athletic fields. Certain equipment for games and sports is available for exercise and recreation, either with or without instruction. Lockers will be turned in on the last day of class, i.e., before the final examination period.

Fines are imposed for each form/transaction necessitated by failure of the student to comply with the regulations of the department.

Courses in Physical Education

Lower Division Courses

1. Physical Education for Men and Women (120 I, II, III). The Staff (Chairperson in charge)

Laboratory—2 hours. Sections in: (a) sports skills, rules, and strategy; (b) exercise and personal health; (c) recreation; (d) dance; and (e) intercollegiate athletics. May be repeated for a total of 6 units. (P/NP grading only.)

2. Principles of Basic Exercise Conditioning (21). (Swimley, in charge)

Lecture—1 hour; laboratory—2 hours. A survey of the basic concepts, facts, and accepted approaches current in selected exercise training regimens, e.g., theory of aerobic function and capacity, exercise and diet in weight control, muscular strength...
development and maintenance, and limitations of environment, age, and gender on fitness levels. (P/NP grading only.)

5. Foundations of Emergency First Aid Services
(2) I, II, III. The Staff (in charge).
Lecture—1 hour; laboratory—1 hour. Introduction to the basic principles and practices that fulfill the prerequisites for advanced study in First Aid and Emergency Medical Services. Upon successful completion of course the Standard Red Cross Certificate is awarded.

6. Preparation and Participation in ICA Competition
(1), I, II, III. ICA Staff (Director in charge).
Discussion—laboratory—10—20 hours. Prerequisite: consent of Director and participation in Intercollegiate Athletics. Development of fundamental and advanced individual and team skills, in-depth knowledge of rules and strategy. Development necessary to provide for water safety and save higher own life or the life of another in an aquatic emergency. (American Red Cross Advanced Lifesaving Certificate awarded upon successful completion of necessary requirements.)

7. Professional Physical Education Activities: Men and Women
(1), I, II, III. The Staff (Chairperson in charge).
Lecture—1 hour, or laboratory—2 hours. Fundamental skills for (a) athletic competitive activities; (b) classroom teaching and coaching, and (c) classroom teaching and officiating. May be repeated for a total of six units.

15. Administration of Intramural Sports
(2) I. Colberg
Lecture—2 hours. Planning and administering intramural sports programs at the high school and college level.

25. Theory of Lifesaving and Water Safety
(2) I, II, III. Hinsdale, Jahm
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 5; sound physical condition, and no physical handicap that would render student unable to perform the required skills and ability to pass preliminary swimming test. Provides the student with the knowledge, organizational procedures, and skill development necessary to provide for water safety and save higher own life or the life of another in an aquatic emergency. (American Red Cross Advanced Lifesaving Certificate awarded upon successful completion of necessary requirements.)

27. Training Course for Water Safety Instructors
(2) I. Hinsdale
Lecture—1 hour, laboratory—2 hours. Prerequisite: course 5; consent of instructor and current Advanced Lifesaving Certificate. Theoretical knowledge and practical experience necessary for the organization and teaching of swimming and lifesaving classes. (American Red Cross Water Safety Instructor's Certificate awarded upon successful completion of necessary requirements.)

29. Basic Scuba
(2) I, II, Morris
Lecture—2 hours; laboratory—2 hours. Prerequisite: good physical condition, ability to pass preliminary swim test. Introduction to basic knowledge required for scuba diving, function and maintenance of equipment, physical and physiology of diving, diver first aid and CPR, oceanography and marine life, and underwater communication. Pool and open water sessions available for certification. (P/NP grading only.)

35C. Dance Composition
(2) II. Boden
Laboratory—5 hours. Prerequisite: course 35A or consent of instructor. To learn the elements of dance production and choreographic composition with focus on lighting, costume, design, music, and building of stage props.

35D. Dance Composition
(2) II. Boden
Laboratory—5 hours. Prerequisite: course 35A or consent of instructor. To learn the elements of dance production and choreographic composition with focus on lighting, costume, design, music, and building of stage props.

102. Physiological Adaptations to Exercise
(2) II. Adams
Lecture—2 hours. Prerequisite: course 101 or consent of instructor. Study of physiological capacities with reference to genotypic and adaptive aspects. Analysis of physiological adaptations to chronic physical activity and selected environmental stresses.

103. Analysis of Human Movement
(4) III. K. Williams
Lecture—3 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisite: Cell Biology and Human Anatomy 101 and Physics 1A. Physical sciences recommended. Analytical and mechanical fundamentals of human motion. Qualitative and quantitative application of physiological principles to a variety of movement situations.

104. Introduction to Motor Control and Skill Acquisition
(3) I. Jennings
Lecture—2 hours; discussion—1 hour to alternate weekly with laboratory—3 hours. Prerequisite: upper division standing; Psychology 1 or 15, and course 45. Analysis of variables affecting the ability to produce, learn, and retain movement skills. Basic neurophysiological and behavioral accounts of motor control processes are examined. Theories of movement retention and motor learning are covered.

105. Psychosocial Factors in Motor Performance
(3) I. Jennings
Lecture—3 hours. Prerequisite: Psychology 1, 15, or 16. Survey of theories and experimental findings from social psychology and human motivation and their application to motor performance, including sex differences, success and failure, expectations, anxiety, competition, and aggression.

110. Exercise Metabolism
(3) II. Molé
Lecture—2 hours; laboratory—five 4-hour sessions. Prerequisites: courses 101, 102, Chemistry 2A. Focus on energy metabolic pathways and fuels used during different modes of exercise. Also, exercise-induced adaptations which affect metabolism and performance will be discussed. Experiments in laboratory will utilize a variety of techniques to characterize the metabolic responses to exercise.

111. Environmental Effects on Physical Performance
(3) III. Adams
Lecture—2 hours; laboratory—3 hours, with discussion—1 hour (alternate weeks). Prerequisite: courses 101 and 102, or consent of instructor. The effects of thermal, barometric and gravitational conditions on physiological function and physical performance of humans. Acute and chronic effects, emphasizing physiological adaptations and limitations, will be studied.

112. Clinical Exercise Physiology
(4) III. Molly
Lecture—3 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisites: courses 101 and 102, or consent of instructor. Physical activity as a therapeutic modality is examined in normal and diseased populations (cardiovascular, pulmonary, diabetic). Assessment (graded exercise testing), exercise prescription and effects of exercise conditioning are examined in detail.

113. Growth and Development in Human Performance
(3) III. Adams
Lecture—4 hours. Prerequisite: Biological Sciences 1A; Cell Biology and Human Anatomy 101, and Physiology I. Development of human performance potential from conception to old age, including exercise, athletic participation, and preventive medicine. Alterations in motor skill patterns, morphology, and body composition, and physiological capacities with aging.

115. Biomechanical Bases of Movement
(3) I. K. Williams
Lecture—2 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisite: course 103 or consent of instructor. Biomechanical bases of human movement investigated; topics include muscular and skeletal mechanics, electromyography, and measurement and analysis techniques. Application made to sport, clinical, and work environments, including extensive analysis of locomotion.

*Course not offered this academic year.
117. Exercise and Aging in Health and Disease (3) II. Edly. Lecture—2 hours; discussion—1 hour. Prerequisite: course 101 or 102 (concurrently) or 113 (concurrently). Etiology of and standard therapy for various diseases related to aging (e.g., cardiovascular, pulmonary and renal diseases, diabetes, obesity, lipomas, etc.). Exercise will then be considered as a protective and therapeutic modality.

118. Physical Fitness in the Workplace (3) III. The Staff. Lecture—2 hours; discussion—1 hour. Explores principles and practices of health promotion in the workplace. Established assessment procedures including validity of existing standards are presented. Cost and health benefits are examined with respect to onsite and offsite programs of fitness maintenance and remediation.

120. Sports in American Society (4) I. Gill Lecture—3 hours; discussion—1 hour. Historical development of sport in American society. Relationship and interaction of sport and politics, economics, religion, art, sexism, racism, and education; current social problems.

121. Sports Psychology (4) II. Jennings. Lecture—3 hours; discussion—1 hour. Prerequisite: course 105 and Psychology 145. Consideration of major theories, research findings and methods of data collection in sport psychology through a critical examination of relevant experimental, clinical, and field data.

122. Psychological Effects of Physical Activity (3) II. Jennings. Lecture—3 hours. Prerequisite: Psychology 101 or 15, and upper division standing. Physical activity is evaluated in terms of its ability to enhance the quality of life. Topics studied include: individual factors (self concept, type A); special populations (elderly, cardiovascular patient and mental health changes (depression, anxiety).

125. Neuro muscular and Behavioral Aspects of Motor Control (3) II. Jennings. Lecture—2 hours; discussion—1 hour to alternate weekly with laboratory. Prerequisite: course 104. Factors which affect control of movement from neurophysiological, physiological, behavioral, and mechanical viewpoints. Topics include central vs. peripheral control mechanisms, the open and closed loop theories, motor programming, cognitive learning strategies, and the effects of biochemical and biomechanical influences.

128A. Research Diving: 65 Feet (1) I. II. Bell, Morris. Lecture—1 hour; laboratory—1 hour. Prerequisite: basic scuba certification from approved agency (course 29 or the equivalent), 10 logged open-water dives since certification, consent of instructor. Lec- ture covers dive rescue and resuscitation, navigation, search and light salvage, night diving, research methods, work performance under water, cold-water diving, blue-water diving, introduction to deep diving. Pool and open water sessions available for certification (contact Department Office for details). (P/NP grading only.)

128B. Research Diving: 65 Feet (2) I. II. Bell, Morris. Lecture—1 hour; laboratory—2 hours. Prerequisite: course 104 and consent of instructor. Lectures in dive rescue and resuscitation, navigation, search and light salvage, night diving, research methods, work performance under water, cold-water diving, blue-water diving, introduction to deep diving. Pool and open water sessions available for certification (contact Department Office for details). (P/NP grading only.)

131. Physical Education for the Handicapped (4) II. V. Lecture—3 hours; laboratory—3 hours. Prerequisite: course 103 and consent of instructor. The role of exercise, physical retraining and remedial work in the improvement of movement for handicapped individuals. *132. First Aid Leadership and Accident Management (3) I, II. Lecture—2 hours; students assist in teaching course 5—1 hour to be arranged. Prerequisite: course 5 or American Red Cross Advanced First Aid Card. Administration, organization and supervision of safety and first aid programs in school and community sports, recreation, and all types of group activities. The study and practice of first aid leadership skills. The American Red Cross First Aid Instructor card will be awarded upon successful completion of the course.

133. Prevention and Care of Sports Injuries (3) II. The Staff. Lecture—1 hour; laboratory—6 hours. Prerequisite: upper division standing; Cell Biology and Human Anatomy 101 (may be taken concurrently). Participation, care, and rehabilitation of injuries incurred by athletes. Laboratory on anatomy, emergency care, physical therapy methods, and taping techniques.

135. Advanced Procedures in Evaluation and Management of Athletic Injuries (4) I. The Staff (Chairperson in charge). Lecture—3 hours; laboratory—3 hours. Prerequisite: course 133, Cell Biology and Human Anatomy 101, and consent of instructor. Advanced study of athletic injuries, their evaluation and management, with the laboratory work in biomechanics and pathophysiology. In-depth study of selected current topics in athletic training.

142. Physical Education in the Public Schools (3) II. Piper Lecture—3 hours. Analysis and study of the principles and methods basic to teaching physical education at the elementary and secondary levels.

143A. Coaching Effective Teams (3) I. Singleton. Lecture—2 hours. Prerequisite: consent of instructor. Synthesis and application of basic components of sport psychology, sport pedagogy, and sport physi- ology to coaching. (P/NP grading only.)

143B. Coaching Effective Teams (2) II. Course 143A. Application of general principles of management and administration to athletic coaching in high school. (P/NP grading only.)

144. Principles of Health Education (2) I. II. Lotter. Lecture—2 hours. Prerequisite: course 44 and upper division standing or consent of instructor. Principles of teaching health education in the public schools. (P/NP grading only.)

145. Administration of Health/Fitness Programs (2) III. Lecture—2 hours. Principles of organizing and directing health/fitness programs. Includes selection and training of personnel, methods of evaluating personnel and programs, and elements of planning.

146. Theory and Practice of Exercise Training (1) I, II, III. Jennings. Lecture/discussion—1 hour. Prerequisite: course 2 or 45 or 102. Physiological adaptations, exercise program- ming and behavioral techniques focusing on young and middle-aged adults. Topics include exercise prescription, nutrition, psychological effects of exercise, stres management techniques, and exercise adherence techniques. (P/NP grading only.)

146L. Shape-Up Testing and Training Laboratory (1) I, II, III. Jennings. Laboratory—3 hours. Prerequisite: course 146 (may be taken concurrently). Involves leading shape-up classes, educating workshops, testing sessions, and completing final reports. May be repeated once for credit. (P/NP grading only.)

147L. Adult Fitness Training Laboratory (1) I, II, III. Jennings. Laboratory—3 hours. Prerequisite: courses 146, 146L, and 102 (may be taken concurrently); current CPR. Involves attending and assisting with aerobic training sessions, pool and water activities, and assisting with physiological testing sessions. (P/NP grading only.)

148. Theory and Practice of Exercise Testing (1) I, II, III. Holly. Lecture/discussion—1 hour. Prerequisite: courses 101, 102, 112 (may be taken concurrently), and 146; current CPR. Theory and practice of exercise testing applied to older adult populations. Physiological responses to and limitations of exercise testing. Application of exercise testing and training to healthy and diseased populations. (P/NP grading only.)

148L. Adult Fitness Testing Laboratory (1) I, II, III. Jennings. Laboratory—3 hours. Prerequisite: courses 146, 148 (concurrently); current CPR. Testing symptomatic and asymptomatic older adults for functional aerobic capacity, body composition, blood lipids, pulmonary function, and cardiovascular disease risk. Counseling older adults in appropriate exercise programs and lifestyle modifications. Two quarters minimum; third quarter permitted. (P/NP grading only.)

149L. Cardiopulmonary Rehabilitation Laboratory (1) I, II, III. Holly Laboratory—3 hours. Prerequisite: courses 146 and 148L; current CPR certification. Testing and training of cardiac patients or individuals at high risk of developing heart disease. Present mini-lectures to program participants, maintain patient records, and present patients’ cases in rounds. Two quarters minimum; third quarter permitted. (P/NP grading only.)

150. Recreation in the Community (3) III. Jahn Lecture—3 hours. Discussion—1 hour. Saturdays, 9:30-1:30. Saturday field trips—8 hours. The nature and scope of community recreation programs in California emphasizing low income, highly populated areas, and poor rural communities.

152. Physical Education Internship (2-12) I, II, III. The Staff (Chairperson in charge) Internship—6-36 hours; written project proposal and evaluation Prerequisite: upper division standing and consent of instructor; enrollment dependent on availability of internships given to Physical Education majors. Work experience in the application of physical activity programs to teaching, recreational, clinical or research situations under department faculty supervision. May be repeated for credit for total of 12 units (including course 92), but no internship units will be counted toward Physical Education major. (P/NP grading only.)

157T. Tutoring in Physical Education (1-5) I, II, III. The Staff (Chairperson in charge) Tutoring—1-5 hours. Prerequisite: consent of chairperson. Tutoring of students in lower division physical activity courses. Written reports on methods and materials required. May be repeated once for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor and Department Chairperson. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of Department Chairperson. (P/NP grading only.)

Graduate Courses

200A. Introduction to Research: History and philo- sophy in Physical Education (2) I. Mole, — Discussion—1 hour; seminar—1 hour. Prerequisite: consent of instructor. Fundamental tenets of science and their application to current research in human performance; benchmark studies in the evolution of the field.

200B. Problem Solving and Research Design in Physical Education (2) II. Jennings. — Discussion—1 hour; seminar—1 hour. Prerequisite: course 200A. Conventional approaches to problem solving; processes in research design and analysis; written and oral presentation of a thesis proposal.

*201A. Sports Medicine: Medical Aspects of Sports Injuries (3) I. Lecture—2 hours; laboratory—1 hour. Prerequisite: graduate students with upper division course in systemic physiology or anatomy, and medical students. Multidisciplinary course introducing student to the pathophysiology of sports injuries, physical examination of the injured athlete, and management of sports injuries. Specific injuries, taping, and use of physical modalities will be discussed. (Same course as Physical Medicine and Rehabilitation 201A.)
220. Research Topics in Biomechanics (3) III. K. Williams
Lecture—2 hours; seminar—1 hour. Prerequisite: graduate standing; course 115 recommended. Survey of current research into diverse areas of biomechanics of human movement. Topics include locomotion, sport biomechanics, electromyography, musculo-skeletal and tissue mechanics, advances in measurement technology, and clinical biomechanics. Offered in alternate years.

221. Anthropometry in Physical Activity (3) III. Adams
Lecture—2 hours; laboratory—five 3-hour sessions to alternate weekly with five 1-hour discussion sessions; laboratory—3 hours. Prerequisite: course 102, Physiology 114. Review of current anthropometric literature and human metabolic responses to exercise in man; laboratory survey of respiratory response, metabolic and water balances, blood gas adjustments and acid-base balance, with particular reference to the effect of environmental conditions.

223. Physiological Basis of Physical Fitness (2) II.
Seminar—2 hours. Prerequisite: graduate standing. Review of recent current research topics concerned with the physiological aspects of physical training and adaptation. Offered in alternate years.

224. Exercise Electrocardiography (2) I. Holy
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 112 or consent of instructor. Physiological bases and clinical implications of normal and abnormal exercise electrocardiograms (ECG) are treated in detail. Exercise prescription is considered as is the predictive significance of normal and abnormal ECG.

225. Seminar in Cardiac Rehabilitation (2) II. Holy
Seminar—2 hours. Prerequisite: course 112 or graduate standing and consent of instructor. Critical examination of literature dealing with the causes, prevention and treatment of cardiovascular disease and the role of rehabilitation in intervention through cardiac rehabilitation. Both the theoretical bases and practical approaches to cardiac rehabilitation will be examined.

226. Measurement of the Biological Aspects of Human Performance (3) I. The Staff (Adams in charge)
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 101, consent of instructor. Introduction to primary measurement techniques used to investigate the physiological bases of human performance. Emphasis placed on the critical selection of the most valid tests and on obtaining the most accurate and reliable results.

227. Research Techniques in Biomechanics (3) III. K. Williams
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor; course 115 recommended. Experimental techniques for biomechanical analyses of human movement are examined. Techniques evaluated include data acquisition and analysis by computer, force plate analysis, strength assessment, planar and three-dimensional cinematography, data reduction and smoothing, body segment parameter determination, electromyography, and biomechanical modeling. (Same course as Biomedical Engineering 227.)

230. Human Performance: Psychological Aspects (3) II.
Seminar—3 hours. Prerequisite: course 105 or consent of instructor. Critical review of current literature on learning with emphasis on social learning theory and its application to clinical problems related to exercise and sport.

232. Health Psychology: Effects of Physical Activity (3) I. Jennings
Seminar—3 hours. Prerequisite: course 122 or consent of instructor. Analysis of research on the role of physical activity in developing, maintaining, or changing personality and affective states. Special attention will be paid to the potential effect of exercise on mental health.

240. Seminar in Physical Education (1) II. The Staff
Seminar—1 hour. Prerequisite: graduate standing; required of all first year students for first two quarters. Presentation and discussion of topics of interest and the analysis of research in physical education. (SU grading only)

260. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: graduate standing; consent of instructor. (SU grading only)

290. Research (1-12) I, II, III. The Staff (Chairperson in charge)
Prerequisite: graduate standing; consent of instructor and Department Chairperson. (SU grading only)

Professional Courses

300. The Elementary Physical Education Program (2) I. Goldobar
Lecture—1 hour; laboratory—2 hours; field trips to selected programs. Prerequisite: senior standing or graduate standing and completion of the methods of teaching group and individual activities for grades K-12; program planning, class management, organization, and evaluation. FNAP grading only)

Physical Medicine and Rehabilitation

See Medicine, School of

Physics (College of Letters and Science—Chair, Department of Physics)

Wendell H. Potter, Ph.D., Vice Chairperson of the Department

Department Office, 225 Physics-Geology Building (916-752-1500)

Faculty
Robert H. Becker, Ph.D., Professor
Franklin P. Brady, Ph.D., Professor
Thomas A. Canas, Ph.D., Professor
Steven Cartl, Ph.D., Assistant Professor
Liu-Chieh Chou, Ph.D., Professor
Lawrence B. Coleman, Ph.D., Professor
Linton R. Curran, Ph.D., Professor
James E. Draper, Ph.D., Professor
Winston T. Ho, Ph.D., Professor
Joseph L. Lander, Ph.D., Professor
Sudhima Maurya, Ph.D., Assistant Professor
Douglas W. McColm, Ph.D., Associate Professor
Stephen W. Pfeffer, Ph.D., Associate Professor
Roderick V. Reid, Jr., Ph.D., Associate Professor
Richard T. Scattolin, Ph.D., Assistant Professor
Robert N. Shelton, Ph.D., Professor
Rajiv R. Singh, Ph.D., Assistant Professor
David J. Webb, Ph.D., Assistant Professor
Philip M. Yager, Ph.D., Professor
Xiangdong Zhu, Ph.D., Assistant Professor
Gregory Zimanyi, Ph.D., Assistant Professor

Emeriti Faculty
James P. Hurley, Ph.D., Professor Emeritus
John A. Jungenman, Ph.D., Professor Emeritus
William J. Knox, Ph.D., Professor Emeritus
Neal Peck, Ph.D., Senior Lecturer Emeritus
William W. True, Ph.D., Professor Emeritus

The Major Program
From the smallest subatomic particles to atoms, molecules, stars, and galaxies, the study of physics is the study of what makes the universe tick. Information learned from high-energy particle accelerators and nuclear reactors teaches us not only what holds the nucleus and the atom together but also why stars shine and how radiation therapy fights cancer.

The Program. The Department of Physics offers three degree programs: the Bachelor of Arts in Physics, and the Bachelor of Science in Physics and in Applied Physics. The Bachelor of Science degree provides a broad coverage of classical and modern physics while permitting a broader liberal arts education than is possible with the other two programs. The B.S. degree in either Physics or Applied Physics should be followed by the student who plans to enter physics as a profession. The B.S. in Applied Physics provides the student with a solid introduction to a particular applied physics specialty. For the student who plans to enter the job market on completing his B.S. degree, the applied physics orientation would be an asset. Either B.S. program provides a solid foundation in physics for the student interested in graduate work in either pure or applied physics.

Career Alternatives. Careers in physics and applied physics include research and development, either in universities, government laboratories, or industry; teaching in high schools, junior colleges, and universities; management and administration in industrial laboratories and in government agencies; and in production and sales in industry. A major in physics also provides a strong base for graduate-level work in such interdisciplinary areas as chemical physics, biophysics and medical physics, geophysics and environmental physics, astrophysics and astronomy, computer science, and materials science.

Applied Physics

B.S. Major Requirements: UNITS
Preparatory Subject Matter66
Physics 9A, 9B, 9C, 9D16
Mathematics 21A, 21B, 21C, 21D, 22A, 22B12
Chemistry 4A-2B-2C or 2AH-2BH-2CH15
Any recommended courses for particular concentration

Depth Subject Matter (Common Core)54
At least 18 units from approved courses within one of the following concentration choices:

Materials science, physical electronics, quantum optics, energy, chemical physics, atmospheric physics, geophysics, physical oceanography (Lists of approved courses in each concentration with representative programs are available from the Physics Department.)

Total Units for the Major 110

*Course not offered this academic year.
A.B. Major Requirements:

Preparatory Subject Matter

Physics 9A, 9B, 9C, 9D
Mathematics 21A, 21B, 21C, 21D
Engineering 5 (or equivalent programming course)

Depth Subject Matter

At least 4 additional upper division units in physics

Total Units for the Major

Recommended Chemistry 2A-2B-2C or 2AH-2BH-2CH. See also recommended elective courses following the B.S. program below.

B.S. Major Requirements:

Preparatory Subject Matter

Physics 9A, 9B, 9C, 9D
Mathematics 21A, 21B, 21C, 21D, 22A, 22B
Engineering 5 (or equivalent programming course)

Chemistry 2A-2B-2C or 2AH-2BH-2CH

Depth Subject Matter

At least 7 units from Physics 105B, 105C, 110C, 112B, 127, 140A, 140B, 199

Total Units for the Major

Recommended Electives

Astronomy: Astronomy 2.
Computer and numerical analysis: Mathematics 126A or Applied Science Engineering 115.
Statistics: Statistics 131A.
Physics 10 (history and philosophy of physics). No credit after any other physics course (except 137, 170).

Program Variance. Courses from other departments may be submitted for courses in the depth subject matter requirements by obtaining written permission from the Undergraduate Curriculum Committee chairperson, as approved by the Department.

Major Adviser: Contact Departmental Undergraduate Majors Office, 231 Physics-Geology Building, for advisor assignment.

Minor Program Requirements:

Three distinct minors are offered, all requiring prerequisites equivalent to Mathematics 21A-21B-21C-21D and 22A-22B and Physics 9A-9B-9C-9D. Students considering the possibility of becoming a Physics major should consult with a Physics major advisor before beginning work in one of these minor programs.

Courses in Astronomy

Lower Division Courses

2. Introduction to Modern Astronomy and Astrophysics

Lecture—3 hours; laboratory—discussion—2 hours. Prerequisite: good facility in high school physics and mathematics (algebra and trigonometry). Description and interpretation of astronomical phenomena using the laws of modern physics. Modern astronomical instrumentation. Gravitation, relativistic, electromagnetic radiation, atomic and nuclear processes in relation to the structure and evolution of stars, galaxies, and the Universe. The Sun and the solar system. Optional topics include pulsars, black holes, quasars, and extra-terrestrial communications. Not open to students who have received credit for course 2 or any physics course (except 10, 137, 160). General Education credit: Nature and Environment Introductory.

Courses in Physics

Physics 10 is primarily a concept-orientation quarter course requiring relatively little mathematical background.

Physics 1 is a four-semester sequence requiring some mathematics (trigonometry). Either 1A alone or both quarters may be taken. The sequence is not intended to satisfy entrance requirements of a year of physics for professional schools, but will satisfy requirements of many other fields.

Physics 5 is a three-semester sequence using some calculus (mostly concepts rather than calculations) and including laboratory work as an integral part. The entire sequence is recommended, rather than just 1 or 2 quarters.

Physics 9 is a four-semester sequence using calculus throughout and including laboratory work as an integral part. The course is designed primarily for students in the physical sciences and engineering.

Note: Faculty listed for each course are well acquainted with the course, but may not teach it this year.

Lower Division Courses

1A. Principles of Physics (Physics 318)

Lecture—3 hours. Prerequisites: trigonometry or consent of instructor. Mechanics. Introduction to general principles and analytical methods used in physics with emphasis on applications in physical and biological sciences and in physiology. Not open for credit to students who have completed course 5A or 9A (or former 6A or 8A).

1B. Principles of Physics (Physics 32)

Lecture—3 hours. Prerequisites: course 1A or 5A (or former 6A); and consent of instructor. Continuation of course 1A. Heat, optics, electricity, modern physics. Not open for credit to students who have completed course 5B, 5C, 9B, 9C, or 9D (or former 6B, 6C, 9B, 9C, 9D).

5A. General Physics (Physics 41)

Lecture—3 hours; laboratory—2 1/2 hours. Prerequisite: Mathematics 16B (may be taken concurrently). Mechanics and fluids. Introduction to general principles and analytical methods used in physics. Primarily for biological science majors. Students who have had course 6B or 9A (or former 6A) may not receive credit for 5A. Those who have had course 1A may receive only 2 units of credit. (Course 5A is former course 6A.)

5B. General Physics (Physics 42)

Lecture—3 hours; laboratory—2 1/2 hours. Prerequisite: course 5A (forbidden) with consent of instructor and Mathematics 16B; or Physics 9A (formerly 8A). Continuation of course 5A. Kinetic theory and thermodynamics, wave phenomena, optics. Students who have had course 9B (formerly 9C) or 9D may not receive credit for course 5B. Those who have had course 1B may receive only three units of credit. (Course 5B is former course 6C.)

5C. General Physics (Physics 43)

Lecture—3 hours; laboratory—2 1/2 hours. Prerequisite: course 5B (former 6C). Continuation of course 5B. Electricity and magnetism, modern physics. Students who have had course 9B or 9C (former 9B) may not receive credit for course 5C. Those who have had course 1B may receive only three units of credit. (Course 5C is former course 6B.)

9A. Classical Physics (Physics 49)

Lecture—3 hours; laboratory—2 1/2 hours; discussion—1 hour. Prerequisite: course 9B (former 6B) or 9A (former 6A) with consent of instructor; Mathematics 21C. Mathematics 22C may be taken concurrently. Continuation of course 9A. Fluid mechanics, thermodynamics, wave phenomena, optics. Not open for credit to students who have completed course 10A. Only 1 unit of credit allowed for those who have completed course 5B (former 6C). (Course 9A is former course 8A.)

9B. Classical Physics (Physics 51)

Lecture—3 hours; laboratory—2 1/2 hours; discussion—1 hour. Prerequisite: course 9A (former 8A) or 5A (former 6A) with consent of instructor; Mathematics 21C. Mathematics 22C may be taken concurrently. Continuation of course 9B. Electricity and magnetism including circuits and Maxwell's equations. Only one unit allowed to those who have completed course 5C (former 8B). (Course 9C is former course 8B.)

9C. Classical Physics (Physics 52)

Lecture—3 hours; laboratory—2 1/2 hours; discussion—1 hour. Prerequisites: course 9C and Mathematics 22B; Mathematics 22A recommended (may be taken concurrently). Introduction to physics since 1900. Special relativity, quantum mechanics, atoms, molecules, condensed matter, nuclei, particle physics. Only two units of
credit allowed to students who have completed course 2C (or former course 6C). (Course 95 is for
former course 6A.)

10. Basic Concepts of Physics (4) I, II. The Staff Lecture—2 hours; discussion—1 hour. Prerequisite:
high school algebra. Survey of basic principles: motion, gravitation, electricity and magnetism, light,
relativity, some current developements, elementary particles. Includes lecture demonstrations and elementary
problem solving. Check with the department office for the emphasis (history/philosophy, energy/environment,
natural phenomena, etc.) each quarter. Students who have had any other physics course
(except 137, 160) will not receive credit for course 10. General Education credit: Nature and
Environment/Introductory.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

104A-104B. Introduction to Methods of Mathematical Physics (3-3) I-II. Erickson
Lecture—3 hours. Prerequisite: courses 9B, 9C, 9D, Mathematics 22A, 22B, 22C passed with grade of C-
or better, consent of department. Elements of vector and tensor analysis, matrix methods, boundary value
problems, integral transforms with applications to physics.

105A-105B. Analytical Mechanics (3-3) I, II. Ko
Lecture—3 hours. Prerequisite: courses 9B, 9C, 9D, Mathematics 22A, 22B, 22C passed with grade of C-
or better, consent of department. Principles and applications of Newtonian mechanics; introduction to
Lagrange's equations.

105AL. Computational Laboratory in Mechanics (1) I, Ko
Lecture—3 hours. Prerequisite: Engineering 5 or the equivalent; course 105A Concurrently. Introduction
to the application of computers to solving physics problems. Introduction to numerical and
graphical methods in mechanics. (P/NP grading only.)

105BL. Computational Laboratory in Mechanics (1) I, Ko
Lecture—3 hours. Prerequisite: course 105AL; course 105B Concurrently. Computer application of
numerical and graphical methods in mechanics. (P/NP grading only.)

105C. Continuum Mechanics (3) III. Yager
Lecture—3 hours. Prerequisite: courses 104A, 104B, 105A. Continuum mechanics.

138. Optics (3) III. Cahil
Lecture—3 hours. Prerequisite: course 9 or 5 sequence and Mathematics 21 sequence or consent of
instructor. The phenomena of diffraction, interference, and polarization of light, with applications to
current problems in astrophysics, material science, and atmospheric science. Study of modern optical
instrumentation. Open to non-majors.

108L. Optics Laboratory (1) III. Cahil
Lecture—3 hours. Prerequisite: course 108 concurrently. Laboratory will consist of one major
project pursued throughout the quarter, based on modern applications of optical techniques.

110A-110B-110C. Electricity and Magnetism (3-3-
3) I-II-III. Reid
Lecture—3 hours. Prerequisite: courses 9B, 9C, 9D, Mathematics 22A, 22B, 22C passed with grade of C-
or better, or consent of department. Theory of electostatics, electromagnetism, Maxwell's equa-
tions, electromagnetic waves.

112A-112B. Thermodynamics and Statistical Physics (3-3) I-II. Zh
Lecture—3 hours. Prerequisite: courses 9A, 9B, 9C, 9D, Mathematics 22C and course 105B or 115A or
the equivalent. Introduction to statistical mechanics and thermodynamics.

115A-115B. Introduction to Quantum Mechanics (3-3) III-IV. Fong
Lecture—3 hours. Prerequisite: courses 104B and 105B passed with grade of C- or better, or consent of
chairperson. The classical background, basic ideas, and methods of quantum mechanics, with applica-
tions to atomic physics.

116A. Electronic Instrumentation (4) II. Pellett
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 9C, Mathematics 22B. An experimental and
theoretical study of important electronic circuits commonly used in experimental physics.

116B. Electronic Instrumentation (4) III. Pellett
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 9D, 116A. Continuation of course 116A.
Introduction to the use of digital electronics and microcomputers in experimental physics.

121. Foundations of Atomic and Molecular Physics (4) I, III. McCollum
Lecture—3 hours; outside work—9 hours. Prerequisite: course 9D, Mathematics 21C. The phenomena of
atomic physics; introduction to quantum mechanics and quantum mechanics; selected topics dealing
with atoms, molecules, nuclei, and the solid state.

122A. Advanced Physics Laboratory: Atomic/ Solid-State (3) III, Webb
Lecture—8 hours. Prerequisite: course 9D. Experimental techniques and measurements in atomic and
solid-state physics; e.g., spectroscopy, optical pumping, magnetic resonance, superconductivity,
semiconductors, ferroelectricity. The student performs three to six experiments depending on
individual work stress.

122B. Advanced Physics Laboratory: Nuclear/High Energy (3) III, Sender
Lecture—8 hours. Prerequisite: course 9D. Similar to course 122A with experiments in gamma-ray
coincidence, Geiger-Muller counter, Nuclear scattering, neutron lifetime, others. Student performs three
to six experiments; some of these may be chosen from course 122A.

127. Introduction to Astrophysics (3) III. Becker
Lecture—3 hours. Prerequisite: course 105A. Celestial mechanics, radiation, astrophysical measure-
ments, electron-positron annihilation, the sun, binary and variable stars, stellar structure and evolution,
galaxies, cosmology. Offered in alternate years.

129A. Introduction to Nuclear Physics (3) III. Brady
Lecture—3 hours. Prerequisite: course 115A. Survey of basic nuclear properties emphasizing
introductory knowledge of quantum mechanics.

129B. Nuclear Physics (4) II. Brady
Lecture—3 hours; outside work—9 hours. Prerequisite:
courses 115B, 129A. Continuation of course 129A.

130A-130B. Elementary Particle Physics (3-4)
II-III. Rouse
Lecture—3 hours; term paper required for 130B. Prerequisite: course 115A. Properties and classification
of elementary particles and their interactions. Experimental techniques. Conservation laws and symme-
tries. Strong, electromagnetic, and weak interactions. Introduction to Feynman calculus.

137. Science and Technology of Nuclear Arms Effects and Control (3) I. Jungnerman, Craig
(Applied Science)
Lecture—3 hours. Prerequisite: upper division standing;
one course from courses 1A, 5C, 9D, 10. Scientific and technical aspects of nuclear arms effects and
nuclear arms control including nuclear physics of atomic and hydrogen bombs, blast and radiation
effects, radioactivity, electromagnetic pulse, electromagnetic pulse, CDEB accuracy, laser weapons, verification safeguards, biological and ecological effects. Emphasis on emphasis on
measurement of results. General Education credit: Natural and Environmental Studies. Recommended
GE preparatory: Physics 10. (Same course as Applied Science Engineering 137.)

140A. Introduction to Solid-State Physics (3) III. Zhu
Lecture—3 hours. Prerequisite: course 115A or 9D, and consent of instructor. Survey of basic concepts

141A. Introduction to Solid-State Physics (4) II. Zhu
Lecture—3 hours; outside work—9 hours. Prerequisite:
course 140A. Discussion of the following: ener-
gy bands and Fermi surfaces, transport phenomena, semiconductors, ferromagnetism, magnetic reso-
nance.

160. Environmental Physics and Society (3) I, Jungnerman
Lecture—3 hours. Prerequisite: course 9D or 5C; or course 10B and Mathematics 168A or the equiv-
alent. Impact of human activity on the environment will be discussed from the point of view of the physical
sciences. Calculations based on physical principles will be made, and the resulting policy implications will be
considered. (Same course as Engineering 160) General Education credit: Nature and Environment/Non

194H. Special Study for Honors Students (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: open only to seniors who qualify for the honors program. Independent research or/and reading
on selected topics.

195. Senior Thesis (5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: physics major or senior standing. Preparation of a senior thesis in a topic selected by the student with the approval of the department. May be repeated for a total of 16 units and for no more than 5 units in any one quarter without Departmental approval.

197T. Tutoring in Physics and Astronomy (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor and department chairperson. Tutoring of students in lower division course. Weekly meetings with instructor. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses

205A. Theoretical Mechanics and Electromagnetics (3) I. Scattering
Lecture—3 hours. Prerequisite: courses 104A, 105B, and 110C or the equivalent; course 204A (c uncon-
currently). Special topic of relativity, covariant formulation of mechanics and electromagnetic theory.
Lagrange's equations, variational principles for discrete and continuous mechanical and electromagnetic
systems.

205B. Theory of Mechanics and Electromagnetics (3) II. Scattering
Lecture—3 hours. Prerequisite: course 200A; course 204B (concurrently). Hamilton's equations. Hamilton-Jacoby theory and contact transformations, action-angle variables and perturbation theory, selected topics in mechanics of continuous media; incompressible and compressible flow, gravity waves and shock theory.

205C. Theoretical Mechanics and Electromagnetics (3) III. Yager
Lecture—3 hours. Prerequisite: course 200B. Brief review of static electromagnetic fields; Maxwell's equations; plane waves in various media; magneto-
hydrodynamics.

206D. Theory of Mechanics and Electromagnetics (3) I. Yager
Lecture—3 hours. Prerequisite: course 200C. Diffraction theory. Radiating systems and electron theory.

207A. Matrix Methods of Mathematical Physics (3-3)
III. H. Chua
Lecture—3 hours. Prerequisite: courses 104A and 104B or the equivalent. Linear vector spaces, opera-
tors and their spectral analysis, complete sets of functions, complex variables, functional analysis,
Green's functions, calculus of variations, introduction to numerical analysis.

215A. Quantum Mechanics (3). The Staff
Lecture—3 hours. Prerequisite: course 115B. Nonrelativistic quantum mechanics. Formal development and interpretation of quantum mechanics, including the Schrödinger equation, matrix mechanics, and use of state vectors in describing a dynamical system.

215B. Quantum Mechanics (3) II. The Staff
Lecture—3 hours. Prerequisite: course 215A. Wave packets, Wentzel-Kramers-Brillouin approximation, and perturbation methods applied to atomic, nuclear, molecular, and solid-state problems.

215C. Quantum Mechanics (3) III. The Staff
Lecture—3 hours. Prerequisite: course 216B. Scattering theory, radiation theory, and a brief introduction to relativistic quantum mechanics and the Dirac equation.

219A. Statistical Mechanics (3) I. Singh
Lecture—3 hours. Prerequisite: courses 112B and 115B. Foundations of classical and quantum statistical mechanics.

219B. Statistical Mechanics (3) II. Singh
Lecture—3 hours. Prerequisite: course 219A. Applications to properties of solids, real gases, nuclear matter, fluctuations about the equilibrium state.

221. Atomic Physics (3) III. M. M. Coon
Lecture—1-2 hours. Prerequisite: course 215A-215B. Term structure of atoms using the angular momentum formalism; methods of computing wave functions and radial integrals; splitting in external fields; term structure in crystals, scattering and collisions. Not offered every year.

223. Group-Theoretical Methods of Physics (3) III. Kiskis
Lecture—3 hours. Prerequisite: courses 215A-215B-215C or consent of instructor. Theory of groups and their representations with applications in selected areas of physics.

224A. Nuclear Physics (3) II. Draper
Lecture—3 hours. Prerequisite: course 215B. Comprehensive study of the nuclear-nucleon interaction including shell model, nuclear-nucleon scattering, polarization, determination of r parameters of S-matrix, and related topics.

224B. Nuclear Physics (3) III. Draper
Lecture—3 hours. Prerequisite: course 224A. Advanced topics in nuclear theory; theory of quanton-mechanical scattering processes. Exact formal theory and models for two-body scattering. Not offered every year.

*229A. Advanced Nuclear Theory (3) II. Brady
Lecture—3 hours. Prerequisite: course 224A. Advanced topics in nuclear theory; theory of quanton-mechanical scattering processes. Exact formal theory and models for two-body scattering. Not offered every year.

*229B. Advanced Nuclear Theory (3) III. Brady
Lecture—3 hours. Prerequisite: course 224C. Advanced topics in nuclear theory; theory of quanton-mechanical scattering processes. Exact formal theory and models for two-body scattering. Not offered every year.

230A. Quantum Theory of Fields (3) I. Gurion
Lecture—3 hours. Prerequisite: course 215C. Relativistic quantum mechanics of particles, techniques and applications of second quantization; Feynman diagrams, renormalization.

230B. Quantum Theory of Fields (3) II. Gurion
Lecture—3 hours. Prerequisite: course 230A. Continuation of 230A with selected advanced topics, such as S-matrix theory, dispersion relations, axiomatic formulations.

239A. Quantum Many-Body Systems (3) I. Singh
Lecture—3 hours. Prerequisite: courses 215C and 215B. The quantum theory of many-body systems. Theoretical analysis of superfluids, superconductors, and nuclear matter. Not offered every year.

240A-240C. Solid-State Physics (3-3-3) II-III-IV. Concorci, Zimany
Lecture—3 hours. Prerequisite: courses 215B-215B-215C and 140A. One electron model of solids; transport properties; optical properties; properties of lattice waves; electron-phonon interaction; superconductivity; magnetism; non-crystalline solids.

245A. High-Energy Physics (3) II. Kissas
Lecture—3 hours. Prerequisite: course 230A. Phenomenology and systems of strong, electromagnetic, and weak interactions of hadrons and leptons; determination of quantum numbers; quarks and quarkonia; deep inelastic scattering; the quark parton model; experiments at hadron colliders and electron-positron accelerators.

245B. High-Energy Physics (3) III. Mani
Lecture—3 hours. Prerequisite: course 245A. Electroweak interactions: phenomenology of the Standard Model; electroweak gauge bosons; quark interactions with W and Z vector bosons; Glashow-Weinberg-Salam model and the Higgs boson; introduction to supersymmetry and other superconcepts.

250A. Special Topics in Physics (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: consent of instructor. Topical varies from year to year. May be repeated three times for credit. Not offered every quarter.

252A. Techniques of Experimental Physics (3) III. The Staff
Lecture—3 hours. Introduction to techniques and methods of designing and executing experiments. Problems and examples from condensed matter research will be utilized.

252B. Techniques of Experimental Physics (3) III. The Staff
Lecture—3 hours. Introduction to techniques and methods of designing and executing experiments. Problems and examples from nuclear and particle research will be utilized.

290. Seminar (1-3) I, II, III. The Staff (Chairperson in charge)
Seminar—1-3 hours. (SU grading only.)

291. Seminar in Nuclear Physics (1-2) I, II, III.
The Staff (Chairperson in charge)
(SU grading only.)

292. Seminar in Elementary Particle Physics (1-2) I, II, III. The Staff (Chairperson in charge)
Seminar—1-2 hours. Prerequisite: graduate standing in Physics. Presentation and discussion of any topic of current research interest in experimental or theoretical particle physics. Topics vary weekly. (SU grading only.)

293. Seminar in Solid-State Physics (1-2) I, II, III. The Staff
Seminar—1-2 hours. (SU grading only.)

295. Introduction to Departmental Research (1) I. The Staff (Chairperson in charge)
Seminar—1 hour. Seminar to introduce first- and second-year graduate students to the fields of specialty and research of the Physics staff. (SU grading only.)

297. Techniques of Teaching Physics (3) III. Potter
Prerequisite: consent of instructor and Department Chairperson. Study of devices and methods used to teach physics at the college level. Participation in lectures and discussions in undergraduate classes. Preparation of new material for lectures and laboratories. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

*Course not offered this academic year.

Professional Course 390. Methods of Teaching Physics (1-3) I, II, III. The Staff
Lecture-discussion—1 hour. Prerequisite: graduate standing in Physics; consent of instructor. Practical experience in methods and problems related to teaching physics laboratories at the university level, including discussion of teaching techniques, analysis of quizzes and laboratory reports and related topics. Required of all Physics Teaching Assistants. May be repeated for credit. (SU grading only.)

Physiological Sciences

(School of Veterinary Medicine)

Richard A. Freedland, Chairperson of the Department.

Department Office, 1094 Haring Hall (916-752-3737)

Faculty

Michael L. Bruss, D.V.M., Ph.D., Professor
Donald L. Curry, Ph.D., Professor
Richard A. Freedland, Ph.D., Professor
Walter W. Getzev, Ph.D., Assistant Professor
Robert J. Hare, Ph.D., Professor
Benjamin L. Hart, D.V.M., Ph.D., Professor
Alfred A. Hunsler, D.V.M., Assistant Professor
James H. Jones, Ph.D., D.V.M., Assistant Professor
Charles C. Morris, Ph.D., Professor
Quinton R. Rogers, Ph.D., Professor

Emeriti Faculty

Arthur M. Black, Ph.D., Professor Emeritus
Victor W. Burns, Ph.D., Professor Emeritus
Charles E. Cornelius, D.V.M., Ph.D., Professor Emeritus

Courses in Physiological Sciences

Upper Division Courses

101A-101B. Physiological Chemistry (4-3) I-II.
Freedland
Lecture—4-3 hours. Prerequisite: organic chemistry. Recommended: a course in physiology (may be taken concurrently) and quantitative analysis. Chemical and physical properties of substances comprising the animal body, with major emphasis on the changes during metabolism and factors influencing these reactions. Biochemistry of the endocrine glands and other specialized tissues and body fluids; chemistry of respiration, energy metabolism and nutrition.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(PIN required.)

Graduate Courses

225A. Introduction to Metabolism of Animals (4) I.
Freedland, Baldwin (Animal Science); Schneeman (Nutrition)
Lecture—4 hours. Prerequisite: a course in biochemistry or physiological chemistry or consent of instructor; a course in physiology recommended. Biochemical data as related to metabolism of insect animals. Pathways and control in biosynthesis and degradation of carbohydrates and lipids; includes hormonal, nutritional, and genetic effects. Dynamics of animal metabolism including pools and turnover rates. Offered in alternate years.

258B. Interdisciplinary Metabolism of Animals (3) II.
Rogers, Hansen, Herath (Biological Chemistry); Rucker (Nutrition)
Lecture—3 hours. Prerequisite: course 258A or consent of instructor. Pathways and control in animals of the biosynthesis and degradation of amino acids, proteins, nucleic acids and purines; includes hormonal, nutritional, and genetic effects. Offered in alternate years.
220. Physiology of the Liver (3) I. Bruss
Lecture—2.6 hours; laboratory—1.2 hours. Prerequisite: systemic physiology; biochemistry or physiological chemistry; consent of instructor. Topics in functional morphology, physiology, intermediary metabolism, pharmacology, and disorders of the liver. Emphasis on bile formation, bile pigments, bile acids, drug and toxin metabolism; circulation; carbohydrate, lipid, and protein metabolism; ion transport; and function tests.

225. Comparative Neural Function in Domestic Animals (2) III. Gietzen
Lecture—1 hour; discussion—1 hour. Prerequisite: Biological Sciences 1B or the equivalent, and Psychology 108 or Veterinary Medicine 421 or the equivalent. Basic function of several neural systems will be described, using a general model. Discussions will cover species differences for each system. Mammals, birds, and amphibians that are commonly kept as companion or production animals will be compared. (Same course as 425.)

230. The Secretory Process (2) I. Curry
Lecture—2 hours. Prerequisite: graduate standing or consent of instructor. Structural and intracellular events involved in secretion with emphasis on physiological initiators and modifiers. All secretory systems, but emphasis on the beta cell of the endocrine pancreas as role model. Offered in alternate years.

238. Behavioral Adaptations to Parasites and Pathogens (2) II. Hart
Lecture—2 hours. Prerequisite: Veterinary Medicine 406; or graduate standing and upper division course in animal behavior; or consent of instructor. Examination of the ways in which animals use behavioral strategies to avoid debilitating viral, bacterial and parasitic diseases, or to overcome such diseases once they are sick. Main emphasis is on vertebrates, especially wild and domestic mammals.

243A. Isotopes as Tracers in Biological Research (2) I. Bruss
Lecture—2 hours. Prerequisite: biochemistry or physiological chemistry; elementary calculus and physics; or consent of instructor. Study of the properties of isotopes and their detection with emphasis on biological applications. Offered in alternate years.

243B. Isotopes as Tracers in Biological Research (2) II. Bruss
Lecture—18 hours total; laboratory—2 hours total. Prerequisite: course 243A or consent of instructor. Study of in vivo and in vitro techniques for using isotopes in biological research. Offered in alternate years.

260. Comparative Bioenergetics (4) II. Housner
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 107A. Fundamentals of thermodynamics and biophysics: entropy, probability, information, and thermodynamic potentials. Theory of biological similarity; dimensional analysis, poikilothermy, heterothermy, homeothermy, and biological similarity.

280. Structure and Function of the Mammalian Respiratory System (4) II. Jones
Lecture—3 hours; discussion—1 hour. Prerequisite: Biochemistry 101A-101B, Mathematics 16A, 16B, and 16C, Physics 5A and 5B. Advanced study of respiratory physiology and morphometry with emphasis on principles of alveoli, ventilation and perfusion, gas distribution, exchange, transport, and delivery of gases, during exercise, and at high altitude. Offered in alternate years.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Professional Course

397T. Tutoring in Physiological Sciences (1-5) I, II, III. The Staff
Prerequisite: graduate or professional student stand-
ing and consent of instructor. Designed for graduate or professional students who desire teaching experience, but are not teaching assistants. (SU grading only.)

425. Comparative Neural Function in Domestic Animals (2) III. Gietzen
Lecture—1 hour; discussion—1 hour. Prerequisite: Biological Sciences 1B or the equivalent, and Psychology 108 or Veterinary Medicine 421 or the equivalent. Basic function of several neural systems will be described, using a general model. Discussions will cover species differences for each system. Mammals, birds, and amphibians that are commonly kept as companion or production animals will be compared. (Same course as 425.)

Physiology

See Animal Physiology; Human Physiology (Medicine, School of); Physiology (below); and Plant Physiology

Physiology

(College of Agricultural and Environmental Sciences)

Faculty

See under Departments and Sections of Animal Physiology, Animal Science, and Avian Sciences.

The Major Program

The study of physiology is concerned with understanding the mechanisms that control and carry out the vital functions of living organisms. From the single cell and its parts, through the various organ systems, to the whole animal and its relationship to its environment—entire range of function of living matter is investigated.

The Program. An understanding of physiology must be built on a broad scientific background. In the freshman and sophomore years, physiology majors take courses in chemistry, biology, physics, and mathematics. As juniors and seniors, majors can enroll in a variety of physiology courses along with upper division courses in related sciences. With this background, students can participate in a number of undergraduate laboratory courses or may design an individual, independent project guided by a member of the faculty.

Choice of College. The Bachelor of Science degree is offered in both the College of Agricultural and Environmental Sciences and College of Letters and Science. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the appropriate college sections in the front of this catalog for more information.

Career Alternatives. Completion of the physiology major provides the foundation for a challenging career in physiology and also serves as a basis for further training in schools of human and veterinary medicine, medical technology, pharmacy, dentistry, optometry, and other health sciences. Students interested in research and advanced teaching may use the program as preparation for continued study leading to advanced degrees.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>61-70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>15</td>
</tr>
</tbody>
</table>

*Course not offered this academic year.

Chemistry 2A-2B-2C (or 2A1H-2B1H-2CH); 8A-8B (or 11B1A-11B1C); 12A-12B-1C-1D

Mathematics 16A-16B-16C (or 21A-21B-21C)...........9-12

Physics 5A-5B-5C.................................12

21A-21B-21C

Subject Matter Requirements

Physiology Core Requirements: 27

Physiology 100A, 100B, 100C..............8

Physiology 110, 110L..................7

Physiology 111A or 111B or 111C...........3

Additional Physiology Depth Unit Requirements: 9 Courses 106A, 106B, 190, 190C, 194A, 194B, 194HC, 196A, 196B, 197, 198, 199 may not be used to meet Physiology Depth Requirements.

Restricted Electives

Upper Division Science units to include:

a. Biochemistry Requirement:

 Physiological Sciences 101A-101B or Biochemistry 101A-101B

b. Morphology Requirement:

 Cell Biology and Human Anatomy 101, 101L; or Zoology 100-100L or Zoology 122; or Anatomy 100; or Anthropology 155

Courses 106A, 106B, 190, 190C, 194A, 194B, 196A, 196B, 197, 198, 199 may not be used for Restricted Electives.

Breadth Subject Matter

Refer to appropriate College section for a description of requirements to be completed in addition to those for the major.

Total Units for the Major

104-113

Master Adviser: J. Goldberg

Advising Center: 196 Briggs Hall (916-752-9696)

Graduate Study. The Graduate Group in Physiology offers programs of study and research leading to the M.S. and Ph.D. degrees. Information on graduate study may be obtained by writing the Graduate Adviser, Section of Animal Physiology. See also the Graduate Division section in this catalog.

Courses in Physiology

Lower Division Courses

1. **Introductory Physiology (4)** I. The Staff
Lecture—4 hours. Prerequisite: Biological Sciences 1A. Physiology of muscular contraction, nervous integration, sensation, circulation, respiration, excretion, and digestion.

2. **Introductory Physiology Laboratory (2)** II. The Staff
Laboratory—6 hours. Prerequisite: course 2 (completed or in progress).

3. **Elementary Physiology (4)** I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: not open for credit to students who have had Biological Sciences 1B. Introductory course in physiology for nonscience majors.

Upper Division Courses

100A. **Cellular Physiology (3)** I. Horwitz
Lecture—3 hours. Prerequisite: Biological Sciences 1A and Chemistry 8B. Interaction of intracellular compartments in the functioning of animal cells. The metabolic basis and regulation of cellular function; relation of cell and tissue structure to physiological mechanisms.

100B. **Cellular Physiology (3)** II. Papone
Lecture—3 hours. Prerequisite: course 100A; Physics 5C recommended. Continuation of course 100A, with emphasis on transport processes, generation and communication of information between the environment and cells and between cells. Cellular aspects and immune-system function.

100L. **Cellular Physiology Laboratory (2)** I. Horwitz, Horwitz
Laboratory—five 6-hour sessions to alternate weekly
with discussion—five 2-hour sessions. Prerequisite: course 100A; course 100B (may be taken concurrently); or consent of instructor. Experiments in the physical and chemical processes of cells and tissues.

106A. Experiments in Physiology: Design and Execution (3) I, II, III. The Staff (Barkey in charge) Laboratory—7-9 hours; discussion—total of 6 hours. Prerequisite: course 110, 100A, 100B, 100L, or the equivalent of an instructor. Experiments in current physiological problems. Discussion of approaches in experimental design. Students will choose a project and independently, or in groups of 2-3, design an experimental protocol, carry out the protocol, and report on their findings. (P/NP grading only.)

106B. Experiments in Physiology: Design and Execution (3) I, II, III. The Staff (Barkey in charge) Laboratory—5 hours; discussion—4 hours total. Prerequisite: course 106A and consent of instructor. Continuation of course 106A. May be repeated once for credit. (P/NP grading only.)

110. Systemic Physiology (5) I, II, III. Barkey, Fuller, Goldberg, Ishida, Silman, Weidner Lecture—4 hours; prerequisite: Biological Sciences 1A; Physics 1B or 5C recommended. Organ systems. Concepts of integrative and homeostatic mechanisms.

110L. Cellular Physiology Laboratory (2) I. Adanson; III. Ishida Laboratory—3 hours; discussion—1 hour. Prerequisite: course 110 prior to taking 110L recommended, but 110 may be taken concurrently. Selected experiments to illustrate functional characteristics of organ systems discussed in course 110.

111A. Advanced Systemic Physiology Laboratory (3) I. Adanson Lecture—1 hour; discussion—five 2-hour sessions to alternate weekly with laboratory—five 6-hour sessions. Prerequisite: courses 110, 110L; course 113, 114 recommended. Course 111A is not a prerequisite for course 111B. Selected comprehensive experiments on the nervous and muscular systems. Emphasis on conceptual and methodological approaches using several species in demonstrating the physiology of organ systems.

111B. Advanced Systemic Physiology Laboratory (3) II. Adanson Lecture—1 hour; discussion—five 2-hour sessions to alternate weekly with laboratory—five 6-hour sessions. Prerequisite: courses 110, 110L; course 112 recommended. Course 111A is not a prerequisite for course 111B. Selected comprehensive experiments on the nervous and muscular systems. Emphasis on conceptual and methodological approaches using several species in demonstrating the physiology of organ systems.

111C. Advanced Systemic Physiology Laboratory (3) III. Adanson Lecture—1 hour; laboratory—6 hours. Prerequisite: course 110, 110L; Statistics 13; course 112, 113, or 114 recommended. Interfacing physiological recording equipment with microcomputers; data acquisition and analysis using the microcomputer; data interpretation within the framework of physiological concepts.

112. Cardiovascular, Respiratory, and Renal Physiology (4) II. Goldberg, Weidner Lecture—4 hours. Prerequisite: course 110; Chemistry 88, Physics 53 recommended. An intense and advanced presentation of concepts in cardiovascular, respiratory, and renal physiology including discussion of acid-base balance. Recommended for Physiology students, graduate students, and others in allied interests.

114. Gastrointestinal Physiology (3) II. Mendez Lecture—3 hours; term paper. Prerequisite: course 110; Biochemistry 101B or Physiological Sciences 101B recommended. Advanced gastrointestinal physiology covering absorption, secretion, motility, and special emphasis on endocrinology and innervation. Emphasis will be on physiology of the gastrointestinal tract; some pathology and nutritional items will be covered.

117. Avian Physiology (3) III. Lecture—3 hours. Prerequisite: course 110 or Biological Sciences 1B. Physiology of the various systems of birds with emphasis on digestion, respiration, excretion, and endocrine system.

120A. Comparative Physiology: Neurointegrative Mechanisms (3) III. Woolley Lecture—3 hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom: neurointegrative mechanisms of integration including aspects of phylogenetic development at both neuronal and systemic levels.

120B. Comparative Physiology: Circulation (3) III. Lecture—3 hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom: circulation. Comparative approach to cardiovascular function in vertebrates and invertebrates.

120C. Comparative Physiology: Endocrinology (3) III. Barkey Lecture—3 hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom: animal hormones and their functions.

120E. Comparative Physiology: Respiratory (3) III. Otch Lecture—3 hours. Prerequisite: course 110. Comparisons of physiological functions in the animal kingdom: respiration. Offered in alternate years.

120F. Comparative Physiology of Sensory Systems (3) III. Silman Lecture—3 hours. Prerequisite: course 110. Basic physiological mechanisms involved in sensory systems. Comparative approach to considerations of mechanosensory systems (audition, lateral lines, touch, echo location, equilibrium), chemosensory systems (olfaction, taste, pheromones), photosensory systems (vision, infrared detection, UV detection), electroreception, and pain. Emphasis on receptors.

121. Physiology of Reproduction (3) II. Anderson Lecture—3 hours. Prerequisite: course 110. Physiological mechanisms related to reproduction, breeding, and infant care, with special reference to domestic animals.

121L. Physiology of Reproduction Laboratory (1) I. Anderson Laboratory—3 hours. Prerequisite: course 121 recommended. Experiments on the reproductive systems of domestic animals including male and female gametes. (P/NP grading only.)

130. Physiology of the Endocrine Glands (4) I. Mason Lecture—4 hours. Prerequisite: course 110. Advanced presentation of concepts in endocrinology with emphasis on the role of hormones in reproduction, metabolism, and disease.

147. Aviation Physiology (3) III. Smith Lecture—3 hours. Prerequisite: course 110. The nature and physiological consequences of the aviation environment (altitude, acceleration, motion, etc.) and of protective devices (oxygen equipment, G-suits, etc.). Field trips will be available (as course 198) to visit operational aviation physiology installations. Offered in alternate years.

148. Principles of Environmental Physiology (3) II. Fuller Lecture—3 hours. Prerequisite: courses 110 and 100A, or Biochemistry 101A or the equivalent. Physiological aspects of interactions of organisms and environment at cellular, system, and organismal levels. Emphasis on regulatory responses/mechanisms of organisms to changes in their environment.

*Course not offered this academic year.

149. Environmental Physiology of Domestic Animals (3) III. Milham Lecture—3 hours. Prerequisite: courses 110-110C, or Biological Sciences 1B. Influences of environmental factors on health and welfare of all animals, including man. The nature of environmental variations which influence physiological responses are given emphasis.

150. Prosemir in Physiology (3) I, II, III. The Staff (Champion in charge) Seminar—3 hours. Prerequisite: courses 110 and 100A, one additional upper division course in physiology or a related course in science, and consent of instructor. Selection of topics, discussion, and critical evaluation of material important to areas of physiology. Topics may vary from year to year. Limited enrolment.

190C. Introduction to Physiological Research (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: upper division standing in physiology or related biological science; consent of instructor. Introduction to research findings and methods in physiology. Presentation and discussion of original physiological research by students. May be repeated for credit. (P/NP grading only.)

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—1-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in physiology. (P/NP grading only.)

194A-194B-H194CH. Physiology—Honorcoh (1-4) I, II. Laboratory—3-12 hours. Prerequisite: senior standing; minimum 3.5 GPA; approval by the student's Honors Committee. Honors project in physiology. Laboratory research in physiology on a specific question. Project developed with a sponsoring faculty member (Physiology Graduate Group member) and approved by the student's Honors Committee. Honors thesis submitted upon completion of the project. (P/NP grading only.)

196A. Voluntary Control of Physiological Processes (2) I, II, III. Lorenz Seminar—1 hour; laboratory—3 hours. Prerequisite: adequate upper division preparation in at least one of the following: physiology, behavioral science, computer science, physics, electrical engineering, consent of instructor. Individual or team projects in voluntary control of physiological processes emphasizing application of microcomputer-assisted biofeedback technology. May be repeated for credit with a maximum of 6 units for 196A-196B course sequence. (P/NP grading only.)

197. Tutoring in Physiology (1-5) I, II, III. The Staff (Chairperson in charge) Discussion—2-6 hours. Prerequisite: upper division standing and consent of instructor. Assisting in courses in physiology under the direction of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

200L. Animal Cell Culture Laboratory (4) I, II, B. Wilkie Discussion—2 hours; laboratory—6 hours. Prerequisite: courses in undergraduate biochemistry, cell biology, or general physiology, or consent of instructor. Technological procedures with emphasis on cell physiology and the actions of drugs and toxins on cultured somatic cells. Design, performance and interpretation of experiments with animal cells in vitro.
213. Principles of Electronics for Biologist (2) Ill. Horowitz, Scober
Lecture—1 hour; laboratory—3 hours. Prerequisite: Physics 5A, 5B, 5C, and Mathematics 16A, 16B, 16C or the equivalent. Principles of electronics applied to biological measurements. Focus on interfacing of laboratory instruments including filters and computers. Topics covered include: RC networks; operational amplifiers; digital gates; computer interfacing; and other topics.

214. Neurophysiology (4) II. Carsten
Lecture—4 hours. Prerequisite: courses 111B, 112; consent of instructor. Electrical activity of neurons and neuroeffector junctions; physiology of the nervous system as studied by its electrical activity.

215. Neurophysiology Laboratory (3) III. Horowitz, Scober
Discussion—3 hours; laboratory—9 hours. Prerequisite: course 214 may be taken concurrently. Selected experiments based on modern techniques to illustrate in depth, surgical techniques, stimulating and recording techniques in neuroscience research.

216. Neurophysiology Literature (2) I. Pappone
Discussion—2 hours. Prerequisite: course 214. Critical reading and group discussion of current and classic original papers in neurophsiology.

217. The Vertebrate Eye (3) III. Slitman
Lecture—2 hours; laboratory—1 hour or the equivalent. The vertebrate eye will be considered from the standpoint of its physiology, biochemistry, and biology. Retinal functions and mechanisms will be stressed, with particular emphasis on the photoreceptors. Offered in alternate years.

218. Topics in Circulatory Pathophysiology (3) II. Weidner
Lecture—1 hour; discussion—2 hours. Prerequisite: course 113 or the equivalent; consent of instructor. Selected topics in circulatory or cardiopulmonary physiology will be addressed each offering. Topics will include pathophysiology, lecture and discussion based on the current literature in this field. May be repeated with consent of instructor. Offered in alternate years.

219. Muscle Growth and Development (3) I, II. Carsten (Human Physiology)
Lecture—1 hour; seminar—1 hour. Prerequisite: Biochemistry 101B; Zoology 100, 121A; or consent of instructor. Integration of growth and development of skeletal muscle morphology, biochemistry, neural control mechanisms, circadian factors, and hormonal factors. Presynaptic and neurotransmitter differentiation of fiber types. Experimental and hereditary myopathies. Offered in alternate years.

220. General Comparative Physiology of Reproduction (5) I. Anderson (Animal Science)
Staberfeldt (Reproduction), Lasky (Reproduction)
Lecture—3 hours. Prerequisite: courses 110, 110L, Biochemistry 101B; Genetics 100. Basic phenomena of sexual and asexual reproduction and comparison of processes in a wide variety of animals; gamete formation, structure, and metabolism; fertilization; neuroendocrine mechanisms in maturation and reproductive cycles; behavioral aspects.

222. Mammalian Gametogenesis and Fertilization (3) II. Berger
Lecture/discussion—3 hours. Prerequisite: course 121 or equivalent. Course will emphasize our current understanding of events in mammalian gametogenesis and the fertilization process. Published results, conclusions drawn from these results, and their implications will be discussed.

230. Advanced Endocrinology (2) II. Moberg
Lecture—2 hours. Prerequisite: course 130 or the equivalent, and graduate standing. Focus on timely topic of endocrine research. Critical review of current literature and discussion of future research strategies in the area. May be repeated for credit when topic differs.

231. Neuroendocrinology (3) II. Woolley
Lecture—3 hours. Prerequisite: course 170 or the equivalent course in systemic physiology; course 130 or the equivalent course in endocrinology. Neural-endocrine interactions; neural regulation of the endocrine system, especially in relation to reproduction; the role of hormones and growth factors in sexual differentiation of the brain.

234. Neurophysiological Basis of Neurotoxicology (3) I. Woolley
Lecture—3 hours. Prerequisite: course 110 or the equivalent; basic understanding of neurophysiology. Mechanisms of action at the cellular and systemic level of a number of different neurotoxins and toxicants. Examples of ways toxins may act on the nervous system and techniques for study of neurotoxicology. (Same course as Environmental Toxicology 264.)

242. Biological Rhythms (3) I. Fuller
Lecture—2 hours; lecture/discussion—1 hour. Prerequisite: course 110 or the equivalent. General aspects and basic mechanisms of biological rhythms; the importance of rhythm desynchronization in areas of pharmacology and space medicine; telemetry; mathematical methods; chronometry; daily, reproductive, and annual periods; shift-work, jet lag and sleep disorders. Offered in alternate years.

275. Neurohumoral Regulatory Mechanisms of Thermogenesis (3) III. Horowitz, Horowitz
Lecture—2 hours; laboratory—1 hour. Prerequisite: course 100A or the equivalent; Biochemistry/Physiological Sciences 101A or the equivalent; consent of instructor. Designed for graduate and advanced undergraduate students. Examination of thermogenic systems in homeotherms (primarily mammals) with respect to regulation (hormonal and central nervous control) and effectors mechanisms (basis of heat generation at the target cell).

290. Seminar (I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Discussion and critical evaluation of advanced topics and current trends in research. (SU grading only)

290C. Research Conference in Physiology (I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Presentation and discussion of faculty and graduate student research in physiology. May be repeated for credit. (SU grading only)

291A. Selected Topics in Visual Science (2) III. Chalupa (Psychology), Johnson (Ophthalmology), Scober (Neural Physiology)
Seminar—2 hours. Prerequisite: graduate student standing and consent of instructor; course 217 recommended. Vision from the standpoint of biology, chemistry, morphology and psychophysics. Consideration of all levels of the visual system from periphery to highest brain centers. Emphasis on recent research. Topics vary each year. May be repeated for credit. (SU grading only)

291B. Seminar in Cellular Mechanisms of Adaptation (I), II, III, Horowitz
Discussion—0.5 hour; seminar—0.5 hour. Prerequisite: course 100B; Biochemistry 101B or Physiological Sciences 101B; consent of instructor. Review and evaluation of current literature and research in cellular adaptations to the environment. May be repeated for credit when a different topic is selected. (SU grading only)

291D. Research Approaches in Physiology (2) I. The Staff (Chairperson in charge)
Seminar—2 hours. Prerequisite: graduate standing in Graduate Group in Physiology or consent of instructor. Current research in physiology. Overall design of experiments and particular research areas. (SU grading only)

297T. Tutoring in Physiology (3) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour; tutorial—2 hours. Prerequisite: completion of course 217 (with a grade of A) and consent of instructor. Advanced study of systemic physiology through leading small discussion groups in upper division courses (students are required to attend lectures in the course which they are tutoring). May be repeated for credit by tutor in rotation or in the continuation of a course (e.g., courses 112, 113, 114). (SU grading only)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only)

Professional Course

300A-300B. Pedagogical Aspects of Physiology in Higher Education (3-3) I, II, III. The Staff (Chairperson in charge)
Lecture, discussion, or laboratory, or combination. Prerequisite: meet qualifications for teaching assistant in physiology. Participation as a teaching assistant for one quarter in a designated physiology course. Instruction in methods of leading discussion groups, leading laboratory sections, writing and grading quizzes, operation and use of laboratory equipment, and reading and grading laboratory reports. Course meets teaching requirements for Ph.D. program in Physiology. (SU grading only)

390. The Teaching of Physiology (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: Teaching Assistant assignment to a physiology lecture course and consent of instructor. Practical experience in methods and problems of teaching physiology lecture courses. May include analyses of tests and supporting materials, discussion of teaching techniques, preparing for and conducting discussion sections, and formulation of topics and questions for examination under supervision of instructor. May be repeated for credit. (SU grading only)

Physiology (A Graduate Group)

Charles A. Fuller, Ph.D., Chairperson of the Group

Gross Office, 196 Briggs Hall, (916-752-9696)

Faculty: Consists of more than 70 faculty members drawn from 25 departments in the College of Agriculture and Environmental Sciences, the College of Letters and Science, the School of Medicine, and the School of Veterinary Medicine.

Graduate Study. The Graduate Group in Physiology offers programs of study and research leading to the M.S. and Ph.D. degrees and participates in joint Ph.D./M.D. and Ph.D./V.M.D. programs. The programs emphasize broad training in the fundamental principles of physiology and in-depth specialization in cardiorespiratory, cellular, comparative, endocrine, reproductive, exercise, metabolic, neuro-, systemic and domestic animal physiology. For information regarding these programs, address the Program Staff person at the above location.

Graduate Advisers. J.M. Horowitz (Animal Physiology), J.H. Jones (Physiological Sciences), and T. Adams (Animal Science).

Graduate Admissions Officer. B.A. Horowitz (Animal Physiology).

Plant Biology (A Graduate Group)

Fred Bliss, Ph.D., Chairperson of the Group

Group Office, 152 Robbins Hall (916-752-7094/ Fax 916-752-5410)

Faculty: Includes 108 faculty members from 13 departments in the field of plant biology.

Course not offered this academic year.
Graduate Study. The Graduate Group in Plant Biology offers programs of study and research leading to the M.S. and Ph.D. degrees. The program is designed to prepare students for careers in teaching and research at colleges and universities, government or industrial laboratories. The graduate curriculum involves both a broad overview of the discipline and in-depth study and research in one of four areas of specialization: cell and molecular biology; ecology, systematics, and evolution; integrative plant and crop physiology; and plant development and structure. These areas of specialization permit individual study and research into diverse aspects of plant biology, including anatomy, biochemistry, cell biology, cytology, developmental biology, ecology, genetics, molecular biology, morphology, mycology, palaeobotany, physiology, systematics, and weed science.

Preparation. For both the M.S. and Ph.D. programs, a level of scholastic development equivalent to that of a Bachelor's degree in biological sciences from a recognized college or university is required. Courses in the following areas are considered to be prerequisite to the advanced degrees in Plant Biology: inorganic chemistry, organic chemistry, introductory physics, genetics, structural botany, biochemistry, introductory physiology, introductory plant physiology laboratory, introductory statistics, plant ecology/systematics/evolution, genetics, and plant cell/molecular biology. Limited deficiencies can be made up after admission. The graduate advisor, the major professor, and the student will design a program of advanced courses to meet individual academic needs within one of the specializations.

Graduate Adviser: Contact the Group office.

Courses in Plant Biology

Graduate Courses

201. Plant Senescence: Cellular and Molecular Aspects (4) I. Bennett (Vegetable Crops), Huffaker (Agronomy and Range Science), Labavitch (Botany), Romani (Pomology), Yang (Vegetable Crops)

202. Advanced Physiology of Cultivated Plants (3) I. Sachs (Environmental Horticulture), Labavitch (Pomology)

208. Plant Hormones and Regulators (3) I. Labavitch (Pomology), Yang (Vegetable Crops)

214. Higher Plant Cell Walls (3) I. Labavitch (Pomology), Nevin (Vegetable Crops)

216. Advanced Topics in Mineral Nutrition (4) III. Lü Dahl (Land, Air, and Water Resources)

217. Membrane Biology of Plants (3) I. Bennett (Vegetable Crops)

219. Plant Developmental Biology (4) I. Rost, Jernstedt, Sikk

220. Plant Senescence: Cellular and Molecular Aspects (4) I. Bennett (Vegetable Crops), Huffaker (Agronomy and Range Science), Labavitch (Botany), Romani (Pomology), Yang (Vegetable Crops)

221. Plant Biotechnology (3) I. Bennett (Vegetable Crops)

222. Advanced Physiology of Cultivated Plants (3) I. Sachs (Environmental Horticulture), Labavitch (Pomology)

228. Plant Hormones and Regulators (3) I. Labavitch (Pomology), Yang (Vegetable Crops)

Plant Pathology

Plant Pathology

(College of Agricultural and Environmental Sciences)

John M. Dunaway, Ph.D., Chairperson of the Department

Department Office, 354 Hutchinson Hall

916-752-0300

Faculty

Richard M. Bostock, Ph.D., Associate Professor

George Bruening, Ph.D., Professor

Robert N. Campbell, Ph.D., Professor

Michael R. Davis, Ph.D., Lecturer

John M. Dunaway, Ph.D., Professor

Bryan W. Falk, Ph.D., Professor

Robert L. Gilbertson, Ph.D., Assistant Professor

Deborah A. Golino, Ph.D., Lecturer

W. Douglas Gubler, Ph.D., Lecturer

C. R. Kado, Ph.D., Professor

Bruce D. McCandless, Ph.D., Assistant Professor

James D. McDonald, Ph.D., Professor

Plant Pathology, Environmental Horticulture

James J. M. Marois, Ph.D., Professor

Siegfried John M. Kresnovich, Ph.D., Lecturer

Pamela C. Donald, Ph.D., Assistant Professor

Ariena H.C. van Bruggen, Ph.D., Assistant Professor

Robert K. Webster, Ph.D., Professor

Emeriti Faculty

Edward A. Butler, Ph.D., Professor Emeritus

James E. DeVay, Ph.D., Professor Emeritus

W. Harley English, Ph.D., Professor Emeritus

Raymond G. Flesher, Ph.D., Professor Emeritus

William B. Hewitt, Ph.D., Professor Emeritus

Bert L. Land, Ph.D., Professor Emeritus

George Nyland, Ph.D., Professor Emeritus

Joseph M. Ogawa, Ph.D., Professor Emeritus

Related Major Programs. See the major in Plant Science.

Graduate Study. The Department of Plant Pathology offers programs of study and research leading to the M.S. and Ph.D. degrees. Information can be obtained from the graduate adviser. See also the Graduate Division section in this catalog.

Graduate Advisers. B. Kirkpatrick, J. Marois, M. B. Tyler, A. H. C. van Bruggen.

Courses in Plant Pathology

Upper Division Courses

120. Introduction to Plant Pathology (4) I. Gilbertson, Falk, Jr., Campbell

123. Diagnosis and Control of Plant Diseases (4) III. McDonald

125. Pathology of Fungi (4) I. Gilchrist, Bostock

128. Plant Pathology (4) I. III. The Staff (Chairperson in charge)

129. Plant Pathology (4) I. III. The Staff (Chairperson in charge)

132. Plant Pathology (4) I. III. The Staff (Chairperson in charge)

134. Plant Pathology (4) I. III. The Staff (Chairperson in charge)

136. Plant Pathology (4) I. III. The Staff (Chairperson in charge)

138. Plant Pathology (4) I. III. The Staff (Chairperson in charge)

140. Plant Pathology (4) I. III. The Staff (Chairperson in charge)

142. Plant Pathology (4) I. III. The Staff (Chairperson in charge)
and vine crops diseases with emphasis on ecology, epidemiology, diagnosis, and control. (Deferred grading only; pending completion of sequence.) Course 205 may be taken concurrently.

208. Ecology of Plant Pathogens and Epidemiology of Plant Diseases (4) L. Dunway
Lecture—3 hours; discussion—1 hour. Prerequisite: course 120 or the equivalent. Interaction between higher plants, plant pathogens, and the environment which is important in the occurrence and severity of plant disease. Emphasis is placed on the population dynamics and ecology of plant pathogens in the agricultural and soil environment. Offered in alternate years.

209. Principles of Plant Disease Control (3) L. Bostock
Lecture—3 hours; discussion—1 hour. Prerequisite: course 120 or the equivalent. Discussion of the underlying principles and methods used for the control of plant diseases. Emphasis placed on application of epidemiological principles, biological (including host resistance), and chemical strategies to achieve disease control. Offered in alternate years.

210. Physiology and Biochemistry of Host-Pathogen Interaction (4) L. Gilchrist, L. Bostock
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130 or the equivalent; Biochemistry 101B. Discussion of the nature of host-pathogen interactions, metabolic alterations in plant disease, biochemistry of disease resistance, toxins in plant disease. Offered in alternate years.

215X. Genetics and Molecular Biology of Plant Pathogens (4) L. Tyler
Lecture—3 hours; laboratory/discussion—3 hours. Prerequisite: course 120 and Genetics 100. Genetic analysis of pathogenicity, cultivar specificity, and host specificity in plant pathogens, particularly fungi; application of molecular biology to the isolation and characterization of the genes involved; and to aspects of pathogen identification; emphasis on research techniques and problem-solving. Offered in alternate years.

217. Molecular Genetics of Fungi (3) L. Hollander, L. Tyler
Lecture—3 hours. Prerequisite: graduate standing in a biological science, Biochemistry 101B, Genetics 100, 102A, Botany 119, courses 130, 215X; Microbiology 215 recommended. Advanced treatment of molecular biology and genetics of filamentous fungi and yeasts, including gene structure, organization and function, protein production, genetic mapping, mating and sexual processes; determination. Offered in alternate years.

222. Pathogenic Fungi (5) L. III. The Staff
Lecture—3 hours; laboratory—6 hours. Prerequisite: consent of instructor. Viruses as causal agents of plant diseases; chemical and physical properties of viruses; methods of transmission; procedures for assay and diagnosis; replication; virus structure and anatomy; uses of biological control agents; techniques used in research. Offered in alternate years.

228. Plant Bacteriology (5) L. I. Kadjo
Lecture—2 hours; laboratory—9 hours. Prerequisite: course 120; Microbiology 2 or the equivalent; Biochemistry 101A, 101B. Study of bacterial which have a saprophytic, symbiotic, or parasitic association with higher and lower plants. Clinical and molecular methods for identification and classification of these bacteria. Offered in alternate years.

290. Seminar (1) L. I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Review and evaluation of current research in plant pathology. (SU grading only)

280C. Advanced Research Conference (1) L. I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: course 120 or consent of instructor. Presentation, evaluation, and critical discussions of research activities in the area of advanced plant pathology; primarily designed for graduate students. (SU grading only)

291. Seminar in Host-Parasite Physiology (1) L. I, II. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: course 120. Review and evaluation of current literature and research in host-parasite physiology. (SU grading only)

292. Seminar in Plant Virology (1) L. III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: course 226. Review and evaluation of current literature and research in virology. (SU grading only)

295. Seminar in Mycology (1) L. I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Review and evaluation of current literature and research in mycology. (SU grading only)

298. Special Group Study (1-5) L. I, II, III. The Staff (Chairperson in charge)
(SU grading only)

299. Research (1-12) L. I, II, III. The Staff (Chairperson in charge)
(SU grading only)

Plant Physiology

See Botany for undergraduate majors; and Plant Biology (A Graduate Group) for graduate study.

Plant Physiology (A Graduate Group)

Students admitted into the Plant Physiology Graduate Group before June 30, 1989 will be allowed to complete their degree in this subject. New students, however, should see the Plant Biology Graduate Group section in this catalog.

Information. 152 Robbins Hall (916-752-7094)

Plant Protection and Pest Management (A Graduate Group)

Bruce Jaffee, Ph.D., Chairperson of the Group
Group Office, 367 Briggs Hall (916-752-0475)

Faculty. Includes faculty members from the Colleges of Agricultural and Environmental Sciences, and Letters and Science.

Graduate Study. The Graduate Group in Plant Protection and Pest Management offers programs of study and research leading to the M.S. degree. Students may conduct independent research or participate in on-going projects on integrated crop management and sustainable agriculture. Weeds, insects, plant pathogens, nematodes, rodents, and other pests are treated as parts of complex ecosystems and not as isolated problems. Courses include concepts and systems of plant protection and pest management; diagnosis and control of plant pest problems; toxicology and legal ramifications; and equipment for chemical applications. Detailed information can be obtained from the Group Chairperson and the Graduate Announcement.

202. Concepts and Methods of Plant Protection and Pest Management (4) I. Masen (Plant Pathology)
Lecture—2 hours; discussion—1 hour; laboratory—2 hours. Prerequisite: Agricultural Science and Management 150, Entomology 110, Plant Pathology 120, Botany 120 (may be taken concurrently). Nematology 100, Botany 117 or Zoology 125 recommended. Ecological perspectives of agricultural systems, the role of pests and pest management in these systems, and the monitoring and modeling of the systems.

202A-202B. Diagnosis of Plant Pest Problems and the Control of Causal Agents (4-4) I. Norris (Botany); III. Rosenheim (Entomology)
Discussion—1 hour; fieldwork—9 hours. Prerequisite: Entomology 110, Plant Pathology 120, Botany 120, Nematology 100 (may be taken concurrently). Problems and assessment of losses caused by insects, pathogens, weeds, nematodes, and other pests. Methods of determining infestation and establishing economic thresholds, and control of these pests with emphasis on integration of available management practices into programs.

290. Seminar (1-2) L. I, II, III. The Staff (Chairperson in charge)
(SU grading only)

298. Group Study (1-5) L. I, II, III. The Staff (Chairperson in charge)
(SU grading only)

299. Research (1-12) L. I, II, III. summer. The Staff (Chairperson in charge)
(SU grading only)

Plant Science

(College of Agricultural and Environmental Sciences)

Faculty. For faculty in departments offering areas of specialization (Depth Subject Matter) in Plant Science, see under Departments of Agronomy and Range Science; Botany; Environmental Horticulture; Land, Air and Water Resources; Plant Pathology; Pomology; Vegetable Crops; and Viticulture and Enology.

The Major Program

The plant science major trains students in the biological and natural sciences as they apply to the production, protection, and maintenance of crop plants, and their quality following harvest.

The Program. Students majoring in plant science expand the first two years of study developing the scientific and general background necessary for upper-division work. The science courses include chemistry, biology, botany, physics, and mathematics. General background is provided by course offerings in the social sciences/humanities area (English, rhetoric, and economics) and by courses in areas supportive of plant science, such as entomology (the study of insects), weed science, genetics, water science, plant pathology (plant diseases), and plant physiology (plant processes and functions). At the upper division level, students may choose to specialize in one of the seven departmentally associated options or may choose general education by electing the general Plant Science option.

Internships and Career Alternatives. Internships are available with local seed companies in farm production, and in extension work with farm advisors. For graduates, job opportunities exist in nursery and greenhouse management, farming, technical, and sales positions in agricultural businesses and associated enterprises, such as banking and equipment.

*Course not offered this academic year.
and supply companies, as well as in private, state, and federal service in consulting and research.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses may be taken by your adviser's approval. Courses shown without parentheticals are required.)

English Composition Requirement..................3-11
 See College requirement.......................0-6
 Additional English (English 102 in plant science or related area, or English 104)......0-3
Preparatory Subject Matter.....................59-61
 Core courses (Agricultural Science and Management).............3
 Economics (Economics 1A or 1B)..................5
 Physics (Physics 1A-1B)...........................6
 General chemistry (Chemistry 2A-2B)..................10
 Organic chemistry (Chemistry 3A-3B)..................10
 Biological sciences (Biology 1A, 1B, 1C)..................15
 Plant science (Plant Science 2).....................5
 Mathematics (Math 125, 126)........................6

Depth Subject Matter..................36-37
 Statistics (Agricultural Science and Management 150)..............4
 Soil science (Soil Science 100)..........................4
 Water balance (Soil Science 125).....................4
 Entomology (Entomology 110)..........................4
 Plant pathology (Plant Pathology 120)....................4
 Plant physiology (Botany 111, 112).....................6
 Genetics (Genetics 100)..............................4
 Water science (Water Science 104 or 110).....................3-4
 Plant nutrition (Botany/Plant Science 135 or Soil Science 109)...........4

Select one of the following eight options........38-49

Agronomy Option
 Specific course requirements..................20-21
 Agronomy 100, 101, 102..................................10
 Agronomy 111, 112, 113 (any two courses)..................7-8
 Plant Science 101......................................4
 Soil Science 109......................................4

Additional courses to be selected with consent of the adviser from the following........24-25
 Agricultural Economics 130, 140, 150
 Agricultural Engineering Technology 103, 104, 107, 113
 Agricultural Practicals 49, 149
 Animal Science 2, 114, 116
 Atmospheric Science 105, 110, 112
 Plant Pathology 125, 127
 Plant Science 102, 103, 113, 120, 124
 Soil Science 102, 120, 150
 Water Science 103, 110, 112

Courses offered in other production departments (e.g., Vegetable Crops, Pomology, Viticulture and Enology, etc.) or in Range Science may be selected in consultation with adviser to satisfy specific individual goals.

Natural sciences electives, not to exceed 8 units, may also be included.

Floriculture/Nursery Management Option
 Specific course requirements..................27
 Environmental Horticulture 6, 105, 120, 125, 133..........................19
 Plant Science 102, 109.................................8

Additional courses to be selected with consent of the adviser from the following........18
 Agricultural Economics 130, 140, 150
 Agricultural Engineering Technology 114
 Agronomy 100, Botany 105, 111L, 111L1
 Economics 11A, 11B, Environmental Horticulture 110, 125
 Geography 3, Landscape Architecture 40, 131, 155
 Microbiology 3, Plant Pathology 125, Plant Science 101, 112, 112L, 113, Pomology 102, Psychology 144
 Soil Science 105, Vegetable Crops 101, Viticulture and Enology 101B, 110, 116

Courses offered in the natural sciences may be selected in consultation with adviser.

Landscape Horticulture Option
 Specific course requirements..................30
 Environmental Horticulture 106, 120, 130, 133..........................17
 Landscape Architecture 40, 131, 155, 190
 Plant Science 102..................................4

Additional courses to be selected with consent of the adviser from the following........15
 Agricultural Economics 18, 112, Agronomy 100, Botany 105, Economics 11A, 11B, Environmental Horticulture 107, 125
 Geography 3, Landscape Architecture 112, Plant Science 101, 109, 113
 Pomology 101; Plant Science 109; Vegetable Crops 101; Wildlife and Fisheries Biology 10

Natural sciences electives, not to exceed 8 units, may also be included.

Viticulture Option
 Specific course requirements..................34-35
 Biochemistry 101A, 101B..............................6
 Plant Science 101, 102, 109..........................12
 Viticulture and Enology 2, 101A, 101B, 101C, 110 or 111, 115 or 116
 118..16-17

Additional courses to be selected with consent of the adviser from the following........10-11
 Agricultural Economics 18, 140, 150
 Agricultural Engineering Technology 101A, 101B
 Agricultural Practices 49, 149
 Atmospheric Science 105, 110, 112
 Botany 105, 110, 112, 113, 122, 202, Soil Science 102, 109, 150, Viticulture and Enology 110, 111, 210, 216, 217, 219
 Water Science 103, 110, 112

Natural sciences electives, not to exceed 8 units, may also be included.

Unrestricted Electives..........................0-30

Total Units for the Major..........................180

Major Adviser: D. Reins

Advising Center: The major is located in 137 Hunt Hall (916-752-1151)

Related Courses: See under Agronomy, Environmental Horticulture, Plant Pathology, Pomology, Vegetable Crops, and Viticulture and Enology.

Courses in Plant Science

Questions pertaining to the following courses should be directed to the instructor or the Advising Center (see above).

Lower Division Courses

2. Production of Cultivated Plants (5) I. Salvetti, III. Jackson, Quiros (Vegetable Crops)
 Lecture—3 hours; laboratory—6 hours; 2 three-hour field trips required. Prerequisite: high school courses in biology and chemistry recommended. Introduction to and application of principles of plant science to production of cultivated crops, including: how the quality of products are affected by climate, propagation, culture, harvesting, storage, and marketing. Laboratories include demonstrations, discussions, and individual field plot experiments.

10. Plants and People (5) I. Navres, II. Bradford (Vegetable Crops)
 Lecture—3 hours. Prerequisite: high school biology. Plants as a resource for food, recreation, and environmental enhancement. Emphasis on the relationship of plants to the environment and how the growth and development of plants affects their utility. General Education credit: Nature and Environment/Introduction

92. Plant Science/Interim (1-4) I, II, III, summer. The Staff (Agriculture and Range Science in charge)
 Internship—3-18 hours. Prerequisite: consent of instructor. Work experience off or on campus in all subject areas related to plant science. Internships supervised by a member of the faculty. (P/NP grading only)

98. Directed Group Study (1-5) I, II, III. The Staff (Agriculture and Range Science in charge)
 Prerequisite: lower division standing. (P/NP grading only)
Upper Division Courses

101. Ecology of Crop Systems (4) III. Bloom (Vegetable Crops). Lecture—3 hours; discussion—1 hour. Prerequisite: courses 2, 10 or Soil Science 100, or consent of instructor. Ecological processes governing the structure and behavior of managed ecosystems. Emphasis on mechanistic and systems views of the physical environment, plant, animal, and microbial relationships, adaptation, nutrient cycling, energy relations and contemporary issues such as climate change.

102. Physiology of Cultivated Plants (4) III. Sachs (Environmental Horticulture). Lecture—3 hours; discussion—1 hour. Prerequisite: courses 2 and/or 4. The plant as a dynamic unit; physiological processes in the vegetative growth, development, flowering and fruiting of cultivated plants.

103. Evolution of Crop Plants (3) II. Jain (Agronomy and Range Science). Lecture—3 hours. Prerequisite: course 10, Genetics 100. Diversity and domestication of economic plants; principles of plant evolution; centers of origin, genetic diversity and germ plasm collections; implications in new agricultural developments. Offered in alternate years.

104. Conservation of Plant Genetic Resources (4) I. Bliss (Botany). Lecture—3 hours; discussion—1 hour. Prerequisite: Genetics 10 or Biological Sciences 10. Biological, social, and ethical issues involved in plant genetic resources will be studied beginning with their historical importance to human welfare and covering germplasm utilization, property rights and strategies for conservation, both on an international and a personal scale. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Genetics 10 or Biological Sciences 10. Offered in alternate years.

105. Plant Genetics (4) I. Wilkins. Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: Biological Sciences 1A. Application of basic principles in transmission genetics; cytokinetics, population and quantitative genetics, and molecular genetics to plant reproduction. Practical aspects of genetic crosses and analysis of segregating populations.

107. Plant Cell, Tissue, and Organ Culture (4) II. Burger (Environmental Horticulture), Sutter (Botany). Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Botany 111. 112 may be taken concurrently or consent of instructor. Basic principles of plant tissue culture including micropropagation, embryogenesis, anther culture, protoplast culture and transformation. Offered in alternate years.

109. Plant Propagation (4) II. Sutter (Botany). Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 2 or Biological Sciences 1C. Principles and practices of propagating plants covering anatomical, physiological, and practical aspects.

112. Postharvest Physiology and Handling of Horticultural Commodities (3) I. Kader (Botany), Reid (Environmental Horticulture), Saltveit (Vegetable Crops). Lecture—3 hours. Prerequisite: general plant science background recommended (e.g., course 2, 10 or Food Science and Technology 2); concurrent enrollment in course 112, recommended. Physiological processes related to the maturation and senescence of fruits, vegetables, and ornamentals; fundamentals involved in handling, transportation, storage, and marketing practices, e.g., temperature and humidity control, protective treatments, controlled atmospheres.

112L. Postharvest Physiology and Handling Laboratory (2) I. Kader (Botany), Saltveit (Vegetable Crops). Discussion—1 hour; laboratory—3 hours. Prerequisite: course 112 (may be taken concurrently). Demonstrations and exercises following the subject matter of course 112. One or more field trips to observe commercial practices.

113. Plant Breeding (4) II. St. Clair (Vegetable Crops). Lecture—3 hours; demonstration-discussion—9 hours. Prerequisite: Genetics 100 (may be taken concurrently). The principles of plant breeding applied to economic crops.

122. Physiological Genetics of Crop Plants (3) I. Jones (Vegetable Crops). Lecture—3 hours; discussion—1 hour. Prerequisite: Genetics 100, Botany 111, 112 or consent of instructor. Principles and recent advances in the physiological genetics of plants. Plant developmental processes related to yield will be considered at several levels; genetic control, biochemical regulation and the impact of the environment on development of plants. Offered in alternate years.

126. Physiology of Environmental Stresses in Plants (3) II. Lüechi (Land, Air and Water Resources). Lecture—2 hours; discussion—1 hour. Prerequisite: Botany 112 (may be taken concurrently) or the equivalent. Four separate topics and selected topics in physiology of environmental stresses in plants. Areas emphasized are general stress concepts, physiological responses of plants to selected environmental stresses and development of environmental stresses.

135. Mineral Nutrition of Plants (4) III. Richards (Land, Air, and Water Resources), Brown (Botany). Lecture—3 hours; laboratory—3 hours. Prerequisite: Botany 111 or the equivalent. Evolution and scope of plant nutrition, essential and other elements; mechanisms of absorption and translocation; mineral metabolism; deficiencies and toxicities; genetic and ecological aspects of plant nutrition. (Same course as Botany 135.)

140. Principles of Plant Biotechnology (3) II. Dan ISar (Botany). Lecture—3 hours. Prerequisite: Biological Sciences 1A and Genetics 100. Principles and concepts of plant biotechnology including recombinant DNA technology, plant molecular biology, plant cell and tissue culture, and crop improvement.

196. Postharvest Technology of Horticultural Crops (3) III. Mann (Crop Science). Lecture/discussion/demonstration—5 days; field trip—5 days. Prerequisite: upper division or graduate student standing. Intensive study of current procedures for postharvest handling of fruits, nuts, vegetables, and ornamentals in California. Scheduled for two weeks immediately following last day of spring quarter. Considered a spring course for preenrollment. (PINP grading only.)

197T. Tutoring in Plant Science (1-4) I, II, III. The Staff (Agronomy and Range Science) in charge. Prerequisite: upper division standing; completion of course 112 or Botany 111, 112 or consent of instructor. Leading discussion sections, conducting laboratory exercises or procuring in personalized-system-of-instruction-form classes under faculty guidance. May be repeated once for credit if different course is tutored. (PINP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Agronomy and Range Science) in charge. Prerequisite: consent of instructor. (PINP grading only.)

Graduate Courses

221A-221B. Applied Crop Physiology (4-4) III. The Staff. Lecture—1 hour; seminar—1 hour; laboratory—6 hours. Prerequisite: courses 101 and 102 or Botany 111, 112 or consent of instructor. Research methods in applied plant physiology with examples drawn primarily from agronomic and vegetable crops. Field and laboratory projects, data reduction, and preparation of suitable reports.

270. Reproductive Biology of Flowering Plants (3) I. Wu (Environmental Horticulture). Lecture—2 hours; discussion—1 hour. Prerequisite: Botany 111 and Genetics 100. Fundamental mechanisms of reproductive biology of flowering plants and their influence on genetic variation, evolution, and cultural practices. Offered in alternate years.

291. Seminar in Postharvest Biology (1) I, II, III. Saltveit (Vegetable Crops) in charge. Discussion—1 hour. Prerequisite: consent of the instructor, open to advanced undergraduates. Intensive study of selected topics in the postharvest biology of fruits, vegetables and ornamentals. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff To be arranged.

Plastic Surgery

See Medicine, School of

Political Science

(College of Letters and Science)

Larry Berman, Ph.D., Chairman of the Department
Department Office, 227 Voorhees Hall (916-752-0966)

Faculty

Donna L. Bahy, Ph.D., Professor
Larry Berman, Ph.D., Professor
Edmond Costantini, Ph.D., Professor
Scott S. Gartner, Acting Assistant Professor
John B. Gates, Ph.D., Associate Professor
Emily O. Goldman, Ph.D., Assistant Professor
Alexander J. Groth, Ph.D., Professor
Stuart L. Hill, Ph.D., Associate Professor
Robert W. Jackman, Ph.D., Professor
Bruce W. Jones, Ph.D., Associate Professor
Joyce K. Kallgren, Ph.D., Professor
Miron Nocin, Ph.D., Professor
Larry I. Peterman, Ph.D., Professor
Donald S. Rothchild, Ph.D., Professor
Gary M. Segura, Acting Assistant Professor
Richard Sinopoli, Ph.D., Assistant Professor
Randolph M. Siverson, Ph.D., Professor
Andrew Skalabinski, Ph.D., Assistant Professor
Larry L. Wade, Ph.D., Professor
Geoffrey A. Wandsaum-Smith, Ph.D., Associate Professor
(Coal Science, Environmental

Emeriti Faculty

Richard W. Gabie, Ph.D., Professor Emeritus
Charles M. Hardin, Ph.D., Professor Emeritus
Charles E. Jacobs, Ph.D., Professor Emeritus
Lloyd D. Musser, Ph.D., Professor Emeritus
John R. Owens, Ph.D., Professor Emeritus
Marvin Zetterbaum, Ph.D., Professor Emeritus
Paul E. Zinner, Ph.D., Professor Emeritus

The Major Programs

Political science is the study of politics and political systems at the local, national, and international levels. It concerns not only the institutions of government but also the analysis of such phenomena as political behavior, political values, political change and stability, parties, pressure groups, bureaucracies, administrative behavior, justice, national security, and international affairs.

The Program. The Department of Political Science offers two major programs: political science and
political science—public service. The political science major aims to provide the student with a broad understanding of political concepts, political institutions, political behavior, and political processes. The political science—public service major is designed for students who desire opportunities for practical hands-on experience in their major. It differs in particular from the political science major in its internship requirement and its focus on the American political system.

Internships and Career Alternatives. The proximity of UC Davis to the state capital affords exceptional internship opportunities in local, state, and national government offices, providing students with actual experience in politics and government service while still attending school. A student who majors in political science acquires research and analytic skills relevant to many professional fields. Consequently, the majors offered in political science are valuable not only in providing students with a better understanding of politics and political systems, but also as a first step toward careers in teaching, law, management, government, urban planning, journalism, politics, administration, or for graduate studies in numerous fields.

Political Science

A.B. Major Requirements:

Preparatory Subject Matter

Three courses from Political Science 1, 2, 3, 4, 5, 7 (Course 7 may not be taken if course 5 is taken.)

Depth Subject Matter

Select two courses in each of three fields listed below. The fields may be chosen from at least two Groups, A, B, or C... 24

Field (1) Political theory: Political Science 111-119

Field (2) American government: Political Science 100-109, 171, 173-175, 191, 195

Field (3) Parties and political behavior: Political Science 160-170

Field (4) Public law: Political Science 150-156

Field (5) Public administration: Political Science 180-189

Field (6) Comparative government: Political Science 140-142, 145-149, 177-179

Field (7) International relations: Political Science 120-139

Additional upper division units in political science to achieve a total of 36... 12

Only 5 units of Political Science 192 (internship) may be counted towards the 36-unit requirement; and Political Science 192A, 192B, or 192W or Math 191W may not be counted toward a field requirement.

Total Units for the Major... 45-56

Political Science—Public Service

A.B. Major Requirements:

Preparatory Subject Matter

One course from Political Science 1, 5, or 7... 3-4

Two courses from Political Science 2, 3, or 4... 8

Recommended: Economics 1A-1B.

Depth Subject Matter... 12

Two courses chosen from Political Science 100, 104, 105, 106, 110, 116, 161, and one course from Political Science 108, 109, 114.

Internship, Political Science 192A, 192B, or 192W... 10

Research paper, Political Science 193... 2

Fields of concentration... 24

Select six upper division courses from two or three fields of concentration listed below; at least two in each field selected: at least 16 of the units must be in political science. (Core Program courses may not be counted toward this requirement.)

Fields of Concentration

(2) Policy implementation and evaluation: Political Science 156, 160, 181, 182, 183, 187, 188, 189; Economics 131

(4) Policy areas:

a) Urban policy and implementation: Political Science 100, 101, 102, 191, Economics 110, Environmental Biology and Management 110, Environmental Studies 162, 173.

b) Environmental policy and implementation: Political Science 107, Economics 123, Environmental Studies 160, 161, 166, 168A-168B, 179.

c) Policy and implementation: open field that might include courses relevant to health care, welfare, education, community development, transportation, science and technology, etc. (Requires approval of Political Science-Public Service adviser).

Total Units for the Major... 59-60

Minor Advisers. Consult Departmental Office.

Minor Program Requirements:

Students electing a minor in Political Science may choose one of two plans:

UNITS

Political Science... 24

Plan 1: Upper division units in political science (may include 4 units of lower division course work) distributed among at least two of the three Groups, A, B, and C, or a 24-unit plan approved by a faculty advisor. Five units of internship may count toward the minor.

Teacher Credential Subject Representative. Consult Departmental Office also the section on the Teacher Education Program.

Graduate Study. The Department offers programs of graduate study and research leading to the M.A. and Ph.D. degrees. Information concerning admission to these programs and requirements for completion are available in the departmental office.

Graduate Adviser. Consult Departmental Office.

Public Affairs Internship Program. This program is open to upper division students in any major who want to obtain an internship in the area of government and public service. Information and applications are available in the Intern Coordinator, Political Science Department, 226 Voorhis Hall, 752-1989.

American History and Institutions. This University requirement may be satisfied by passing any one of the following Political Science courses: 1, 5, 100, 101, 102, 103, 104, 105, 106, 108, 109, 113, 130, 131, 160, 163. (See also Undergraduate requirements.)

Courses in Political Science

Lower Division Courses

1. American National Government (4) I. Hill; II. Constantini; III. Berresford

Lecture—3 hours; discussion—1 hour. Survey of American national government, including the constitutional system, political parties, elections, the presidency, Congress, and the courts. General Education credit: Contemporary Societies/Introductory.

2. Introduction to Comparative Politics (4) I. Groth

Lecture—3 hours; discussion—1 hour. Introduction to basic concepts in political science, analysis and applications of comparative political systems of selected countries. Coverage is given to political and governmental structures. General Education credit: Contemporary Societies/Introductory.

3. International Relations (4) I. Garner; II. McNicoll, III. Silvers

Lecture—3 hours; discussion—1 hour. International conflict and cooperation, including the cold War, nuclear weapons, and new techniques for understanding international politics.

4. Basic Concepts in Political Theory (4) I. Peterson

Lecture—3 hours; discussion—1 hour. Analysis of such concepts as the individual, community, liberty, equality, justice, and natural law as developed in the works of the great American political philosophers. General Education credit: Civilization and Culture/Introductory.

5. Contemporary Problems of the American Political System (4) I. The Staff

Lecture—3 hours; discussion—1 hour. In-depth treatment of selected problems and issues of American political, governmental institutions, and policies.

7. Contemporary Issues in Law and Politics (4) I. Gates

Seminar—4 hours. A seminar which focuses on the political dimensions of American law and institutions. Examination of the role of courts in resolving contemporary issues of law and politics including abortion, capital punishment, and civil rights. Limited enrollment. Open to students having no more than 40.1 units.

Supplementary Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Local Government and Politics (4) II. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing or consent of instructor. Politics and government of local communities in the United States, including cities, counties, and special districts. Emphasis on sources and varieties of community conflict, legislative and executive patterns, expertise, decision making, and the politics of structure. Observation of local governing boards.

101. Urban Political Economy (4) I. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or consent of instructor. Historical development of urban political economies. Focuses on ways in which different groups have tried to use local government power to achieve their objectives and why they succeeded or failed.

102. Urban Public Policy (4) I. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Political and economic relationships among state and local government officials, and the standard of living for inner city poor. Focuses on policy areas such as poverty, transportation, welfare, and housing, and upon who governs and who benefits from the policies in these areas.
103. American Federalism (4) I. The Staff
Lecture—3 hours; research paper. Prerequisite: consent of instructor. An examination of American political institutions and policy in the context of national-state-local relations. Constitutional roots of Federalism, centralizing and decentralizing tendencies, fiscal relations, current policy issues, and management of intergovernmental programs.

*104. California State Government and Politics (4) I. The Staff
Lecture—3 hours; research paper. The California politics system. Political culture, constitution, elections and parties, direct democracy, legislature, governor, executive branch, courts, finances, state-local relations, and policy issues.

105. The Legislative Process (4) I. Segura
Lecture—3 hours; discussion—1 hour. Analysis of the legislative process with emphasis on the United States Congress; legislative organization and procedures, legislative leadership and policy making, legislators and constituents, relations between Congress and other agencies.

106. The Presidency (4) III. The Staff
Lecture—3 hours; discussion—1 hour; optional term paper. The American presidency: origins and development; the influence of the presidency as manifest in relationships with Congress, courts, parties, and public in the formulation and administration of foreign and domestic policy; nominations, campaigning, and policy making.

107. Environmental Politics and Administration (4) I. Wandesforde-Smith
Lecture—3 hours; discussion—1 hour. Introduction to the environment as a policy issue in the United States and to the development of administrative mechanisms for handling environmental problems. Changing role of Congress, the presidency, the bureaucracy, and the courts in environmental policy formulation and implementation.

*108. Policy Making in the Public Sector (4) I.
Lecture—3 hours; research paper. The theoretical rationale for governmental activity, program evaluation, PPBS, positive theories of policy making, the quantitative study of policy determinants, implementation, and proposals for improved decision making.

109. Public Policy and the Governmental Process (4) II. Wade
Lecture—3 hours; research paper. The processes of formulating public policy, including individual and collective decision making, political exchange, competition, bargaining, coalition formation and the allocation of public goods, resources and opportunities.

*110. Modern Political Science (4) II. The Staff
Lecture/discussion—4 hours. Philosophical basis of modern political science; major specific approaches; selected concepts relevant to modern political concepts; and research design and execution.

112. Contemporary Democratic Theory (4) II. Wade
Lecture—3 hours; discussion—1 hour. Major contemporary attempts to reformulate traditional democratic theory; attempts to replace traditional theory by conceptual models derived from modern social science findings. Offered in alternate years.

113. American Political Thought (4) I. Sinopoli
Lecture—3 hours; term paper. Prerequisite: upper division standing in Political Science or consent of instructor. Origins and nature of American political thought. Principles of American thought as they emerge from the founding period to the prewar.

114. Quantitative Analysis of Political Data (4) I. Segura
Lecture—3 hours; term paper. Logic and methods of analyzing quantitative political data. Topics covered include central tendency, probability, correlation, and non-parametric tests. Emphasis will be placed on understanding the use of statistics in political science research. Offered in alternate years.

*115. Medieval Political Thought (4) I. Perelman
Lecture—3 hours; term paper. Prerequisite: course 114. Medieval political thought, its ideas central to medieval political thinking. Emphasis will be upon the thoughts of the major political thinkers of the period, rather than upon political activities.

*116. Foundations of Political Thought: A Study in Depth of Major Political Philosophers (4) III. Peterman
Lecture/discussion—3 hours; term paper. Intensive analysis and evaluation of the seminal works of a major political philosopher.

117. Marxism (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Examination of the political and social philosophy of Karl Marx, with reference to the evolution of Marxism in the nineteenth and twentieth centuries.

118A. History of Political Theory (4) I. Peterman
Lecture—3 hours; term paper. Critical analyses of the works of major political philosophers. Classical and modern political philosophies—Plato, Aristotle, Cicero, St. Thomas.

118B. History of Political Theory (4) II. Peterman
Lecture—3 hours; special assignments. Critical analyses of the works of major political philosophers. Modern political philosophy— Machiavelli, Hobbes, Locke, Rousseau, Burke.

118C. History of Political Theory (4) II. Sinopoli
Lecture—3 hours; term paper. Critical analyses of the works of major political philosophers. Nineteenth and twentieth centuries: Hegel, Toqueville, Mill, Marx, Nietzsche, Sartre.

119. Modern Political Thought (4) III. The Staff
Lecture—3 hours; term paper. Prerequisite: upper division standing in Political Science or consent of instructor. Study of the thought of philosophers considered central to modern political thought, especially nineteenth and twentieth century political thought. Emphasis will be upon an individual philosopher or concept rather than upon a survey of modern political thought.

120. Theories of International Politics (4) I. Siverson
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing or consent of instructor. Major contemporary theories of international politics, including balance of power, game theory, Marxist-Leninist systems theory, systems theory and decision-making analysis.

121. War (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 recommended. An analysis of political processes involved in the initiation, conduct, and termination of modern international wars.

122. International Law (4) II. Wandesforde-Smith
Lecture—4 hours; term paper. Prerequisite: upper division standing or consent of instructor. An examination of international law; territory, sovereignty immunity, responsibility, the peaceful settlement or non-settlement of international disputes.

123. The Politics of Interdependence (4) I. I. III. The Staff
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. In the past several decades, growing economic interdependence has generated new problems in international relations. Course deals with difficulties in managing complex interdependence and its implication on national policies and politics.

124. The Politics of Global Inequality (4) II. The Staff
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. In the past several decades, growing economic interdependence has generated new problems in international relations. Course deals with difficulties in managing complex interdependence and its implication on national policies and politics.

*125. Ethnic Self-Determination and International Conflict (4) III. Rothchild
Lecture—3 hours; individual meetings with students to discuss term papers. Prerequisite: one international relations course recommended. Compares the claims of the state and ethnic peoples in countries undergoing internal conflicts, e.g., South Africa, Northern Ireland. Analyzes the role of the international community in facilitating the peaceful resolution of conflicts.

127. Nationalism and Imperialism (4) II. Kaligren
Lecture—4 hours. Prerequisite: upper division standing; course 3 recommended. Theories of nation building illustrated by Western and non-Western experience. Offered in alternate years.

128. International Communism (4) II. Bahry
Lecture—4 hours. Prerequisite: upper division standing; course 2 or 3, or consent of instructor. International communist movement; ideology, organization, strategy. Relations among communist states; problems of leadership and social composition; the Soviet threat and its effects on revolutionary struggle. Offered in alternate years.

129. Special Studies in International Politics (4) III. The Staff
Lecture—3 hours; term paper. Prerequisite: upper division standing. Intensive examination of one or more special problems in international politics. May be repeated once for credit when different topic is studied.

130. Recent U.S. Foreign Policy (4) I. Nincic; III. Garther
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Broad survey of the development of U.S. foreign policy in the twentieth century with emphasis on transformation of policy during and after World War II, and the introduction to analytic tools useful for understanding current foreign policy issues.

131. Analysis of U.S. Foreign Policy (4) I. The Staff
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Detailed presentation and examination of the formulation and execution of U.S. foreign policy. Survey of numerous facts influencing policy outcomes and how such determinants vary according to policy issues areas.

132. National Security Policy (4) III. Garther
Lecture—3 hours; term paper. Prerequisite: upper division standing. Development of national security policies since 1945. Analysis of deterrence and assumptions upon which it is based. Effects of nuclear weapons upon conduct of war, alliance systems, and the international system. Prospects of security and stability through arms control.

*133. The American Role in East Asia (4) I. Kaligren
Lecture—4 hours. Prerequisite: upper division standing; course 3 recommended. Survey of the role the United States has played in East Asia. Influence on Asian westernization of U.S. governmental East Asia policy, missionary activities, and reuniting students. Offered in alternate years.

134. Africa and U.S. Foreign Policy (4) I. Rothchild
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Overview of American foreign policy toward Africa. Relationship to global adversities. Legacies of colonialism. Challenge of national self-determination and white racism. Policies on non-alignment, production, arms race, multinational corporations, international integration, and trade aid relations.

135. Soviet Foreign Policy (4) II. Bahry
Lecture—4 hours. Prerequisite: upper division standing or consent of instructor. Conduct of Soviet foreign relations in contemporary world affairs; ideology and power as manipulations of policy; foreign policy as an instrument of revolution; the role of diplomacy, economic aid and nuclear arms.

*137. International Relations in Western Europe (4) II. The Staff
Lecture—4 hours. Prerequisite: upper division standing. Analysis of European unity, problems of the Atlantic Alliance, Atlantic political economy, East-West relations, Communism in Western Europe and the relationship between domestic politics and foreign policy.

138. International Relations: East Asia (4) I. Kaligren
Lecture—4 hours. Prerequisite: upper division standing; course 3 recommended. Analysis of international
al relations and diplomacy in East Asia. Emphasis upon twentieth-century problems with examples from China, Japan, Korea, and Southeast Asia.

139. Special Studies in Foreign Policy (4) III. The Staff
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Extensive examination of one or more special problems in foreign policy. May be repeated once for credit when different topics are studied.

140. Comparative Public Policy (4) I. The Staff
Lecture—3 hours; term paper. Ideological orientations, institutions, processes, and public policies of modern states. Emphasis on democratic, socialist, communist and fascist experience.

141. Communist Political Systems (4) III. Bahn
Lecture—3 hours; term paper. Development and evolution of communist political systems with emphasis on the Soviet Union and the states of Eastern Europe.

142. Politics and Inequality (4) II. Jackman
Lecture—3 hours; term paper or discussion—1 hour. Examines the linkages between politics and the distribution of social and economic goods. Topics include the impact of civil rights legislation, the politics of welfare states, and the effects of political participation on the distribution of goods.

145. Government and Politics in Emergent Nations (4) III. The Staff
Lecture—3 hours; term paper. Prerequisite: course 2. Conceptual study of problems of political organization and procedure in the context of rapid change engendered by social revolution in "emerging countries" and liberation from colonial oppression. Offered in alternate years.

146. Contemporary African Politics (4) I. Rothchild
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Political Science or consent of instructor. Analysis of party systems, military coups, bureaucracy, regional integration, and disintegration, and economic development in Africa south of the Sahara.

147. Politics and Policy in Western Europe (4) II. The Staff
Lecture—4 hours. The evolution, politics, and contemporary problems of selected political systems of Western Europe.

148A. Government and Politics in East Asia:
 China (4) II. Kaligren
Lecture—4 hours. Prerequisite: course 2 recommended. Establishment and evolution of political cultures and establishment of political institutions in selected countries of the Pacific Rim, namely Japan, Korea, Taiwan. Emphasis on post World War II.

148B. Government and Politics in East Asia:
 Pacific Rim (4) I. Kaligren
Lecture—4 hours. Prerequisite: course 2 recommended. Evolution of political institutions and political cultures in China, Japan, Korea, and Southeast Asia during the post-1949 period. Primary attention to nationalism, modernization and political efficiency.

149. Government and Politics in East Asia:
 Southeast Asia (4) III. Kaligren
Lecture—3 hours; term paper. Prerequisite: course 2 recommended. Evolution of political culture, institutions, and economy of selected nations in Southeast Asia including Vietnam plus two or three other examples. Emphasis on imperially legacy, nation building in multi-ethnic communities, contrasts between socialism and market, and political development models. Offered in alternate years.

149. Politics of Development in Africa (4) II. Rothchild
Lecture/discussion—4 hours. Prerequisite: course 133 recommended. Analysis of the developmental process in sub-Saharan Africa. Emphasis will be placed upon state and state institution, state-society relations, ethnicity, socioeconomic class, women, ideology, party systems, bureaucracy, military and developmental choices.

150. Judicial Politics and Constitutional Interpretation (4) I. Segura
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Politics of judicial policymaking; issues surrounding constitutional interpretation and decision; the role of the judiciary in the politics of constitutional law.

151. The Constitutional Politics of the First Amendment and the Right to Privacy (4) III. Gates
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. The constitutional politics surrounding such issues as the right to free expression, association, and the right to free exercise of religious beliefs, and the right to privacy.

152. The Constitutional Politics of Equality (4) II. Gates
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. Constitutional politics of equality in the American political system; issues surrounding constitutional doctrine and judicial policymaking; special attention on racial and sexual equality. Offered in alternate years.

153. The Constitutional Politics of the Justice System (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Analysis of the nature and functions of law, as an instrument of social control and the relationship between law and morality. Offered in alternate years.

154. Legal Philosophy (4) II. Sinopoli
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Analysis of the nature and functions of law, as an instrument of social control and the relationship between law and morality. Offered in alternate years.

155. Judicial Process and Behavior (4) I. Segura
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Analysis of the nature and functions of law, as an instrument of social control and the relationship between law and morality. Offered in alternate years.

156. Law and Society (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Social basis and origins of law, relationship between law, institutions, and social change. Offered in alternate years.

160. American Political Parties (4) I. Costantini
Lecture—3 hours; discussion—1 hour. Analysis of the structured operations of the party system in the United States; party functions and organizations, nominating conventions, and other campaigns and elections, party trends and reforms.

161. Comparative Political Parties (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Organization, operation, governmental function and social bases of political parties especially in Great Britain and France but with some reference to other Western European countries.

162. Elections and Voting Behavior (4) I. Segura
Lecture—3 hours; discussion—1 hour. Groups, institutions, and individuals, especially in American politics. Historical and analytical treatment of group theory as applied to interest groups (especially labor, business, agriculture, science, military); to racial, ethnic, and sectoral groups; to parties, public and legislative groups, bureaucracies.

164. Public Opinion (4) II. Jackman
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing and course 1 or 5, or consent of instructor. Nature of public opinion in America as it is "supposed to be" and as it is. Distribution of opinions among different publics and the significance of that distribution for system stability and institutions, opinion polling and its problems.

165. Mass Media and Politics (4) I. Costantini
Lecture—3 hours; discussion—1 hour. Organization of and decision making within the media; media audiences and the effect of the media on attitudes and behavior; the relationship of the government to the media (censorship, secrecy, freedom of the press, government regulation); the media in election campaigns.

166. Women in Politics (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 164 or consent of instructor. Who learns what about politics, and when and how they learn it. The process, content and sources of political learning, particularly in preadulthood, and the significance of such factors for the political system as well as for the development of the political self.

167. Chicanos Politics (4) II. Riddle (Chicana Studies)
Lecture—3 hours; discussion—1 hour. Political aspects of Chicano life in America; examines the Chicanos political role as it has been historically defined by different groups in society and the Chicano's responses to his/her political environment.

169. Political Elites (4) I. II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1, 2, or 4, or consent of instructor. Background, careers, motives and beliefs of political leaders. Place of elites in a democratic polity; elite-mass differences; conflict and consensus among elites.

170. Politics and Personality (4) III. Berman
Lecture—3 hours; discussion—1 hour. How is conduct of politics related to personal qualities of political actors? Course focuses on developing criteria for analyzing political phenomena in psychological terms by examining selected writings of twentieth-century theorists and psychologists.

171. The Politics of Energy (4) I. Wandesforde-Smith
Lecture/discussion—4 hours. Prerequisite: upper division standing. Analysis of nature and performance of political systems and their relationship to energy and power, and policy outputs in the United States. Alternative models of community political change are presented.

174. Government and the Economy (4) I. Skalabrin
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Political basis of economic policy (taxation, spending and regulation); impact of prices, employment and growth on political systems; elite responses to economic conditions; policy alternatives and the public interest.

175. Science, Technology, and Policy (4) III. Hill
Lecture—3 hours; discussion—1 hour. Analysis of policy-making for science and the use of scientific expertise for making decisions about technology. Topics include funding of basic research, relationship of science to technological development, science and military policy, technological demands; elite responses to economic conditions; policy alternatives and the public interest.

176. Power and Coercion (4) II. Jackman
Lecture—4 hours. Prerequisite: course 1 or Sociology 1 recommended. Examination of the meaning, sources, and diverse expressions of power and coercion in our lives. Concepts are explored by...
applying them to a broad range of issues, as such sexual harassment, racial subordination, legislative policy making, and ideological hegemony.

177. Modern Dictatorships (4) III. Groth
Lecture—3 hours; term paper. Prerequisite: upper division standing in Political Science or consent of instructor. Research and writing emphasis on the role of dictatorial regimes and institutions in dictatorship in Germany, Italy, Russia, Spain, Japan, and other states. Topics include authoritarianism, National Socialism, Fascism, and totalitarianism. The course examines the comparative importance of different factors in the stability and dissolution of dictatorial regimes. Readings drawn from recent academic and non-academic periodicals.

179. Special Studies in Comparative Politics (4) II. Sahry
Seminar—4 hours. Prerequisite: consent of instructor and one prior course in the major. Research emphasis on one or more special topics appropriate to comparative politics. May be repeated once for credit.

180. Bureaucracy in Modern Social (4) II. Vander-
dorse-Smith
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Role of bureaucracy in a complex society, with emphasis upon changing relationships between bureaucratic and non-bureaucratic organizations; consequences of rapid technological and social change for bureaucratic structures and processes; the problems of reconciling expertise and democracy and increasing the responsiveness of public bureaucracy.

181. The American Administrative System (4) II.
The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Introduction to the development and organization of administrative institutions in the American federal system; focus on design and reorganizational issues; the relationship of structure to performance, at the national, subnational, and local levels.

182. Administrative Decision Making and Public Policy (4) III. The Staff
Lecture—3 hours; special assignments. Approaches to and models of administrative decision making; techniques of substantive policy analysis; problems and developments in planning, budgeting, personnel, and administrative reform.

183. Administrative Behavior (4) III. The Staff
Lecture—3 hours; discussion—1 hour. The implications of American public administration of evolving concepts about behavior in organizations.

187. Administrative Theory (4) II. Hill
Lecture—3 hours; discussion—1 hour. Historical and critical analysis of the principal theories of organization and management of public agencies in the light of such concepts as decision making, bureaucratic authority and power, communication and control; an examination of the role of government in the modern economy.

188. Manpower Policy and Personnel Administra-
tion (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Politics and economics of effective manpower programs; planning and manpower needs; recruitment, selection, and administration of public personnel; training and development; unions and collective bargaining; affirmative action; ethics and morality in the public service.

189. Politics of Budgeting and Finance Administra-
tion (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Fiscal role of government in mixed economy and democratic societ, the politics of revenue and resource allocation, tax policy, inter-governmental financial relations, budget formulation and execution, alternative models of resource allocation, budget as a tool of management.

190. International Relations (4) I. The Staff
Lecture—2 hours; discussion—2 hours. Prerequisite: open to majors in International Relations, or consent of instructor. Analysis and evaluation of substantive issues in contemporary international relations. Readings drawn from recent academic and non-academic periodicals.

191. Special Studies in Local Government and Politics (4) II. The Staff
Lecture—3 hours; fieldwork—1 hour. Prerequisite: consent of instructor and one prior course in advanced students. Intensive study of one or more topics relating to urban policy and politics, designed for advanced students. Group projects and field work in one or more communities.

192. Internship in Public Affairs (5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: enrollment dependent on availability of intern positions with highest priority assigned to students with Political Science-Public Service major; upper division standing. Supervised internship and study in public, governmental, or related organizations. (P/NP grading only)

192B. Internship in Public Affairs (5) II, III. The Staff (Chairperson in charge)
Prerequisite: course 192A; enrollment dependent on availability of intern positions with highest priority assigned to students with Political Science-Public Service major; upper division standing. Supervised internship and study in public, governmental, or related organizations. (P/NP grading only)

192W. Internship in the UC Davis Washington Center Program (6-8) I, II, III. Jentleson and staff
Internship—4 hours. Prerequisite: junior or senior standing and admission into the UC Davis Washington Center undergraduate program. Internship in Washington, D.C. with associated research program, under the supervision of a faculty sponsor. (P/NP grading only)

193. Research in Political Practice (2) I, II, III. The Staff
Research project—6 hours. Prerequisite: courses 192A, 192B; open only to Political Science-Public Service majors. Research and writing emphasis in the preparation of an extensive paper relating internship experience to concepts, literature, and theory of political science.

194A-194B-194HC. Special Study for Honors Students (2-3-5) I, II, III. The Staff
Directed research. Prerequisite: major in Political Science or Political Science-Public Service with junior standing and overall grade-point average of 3.5. Directed reading, research, and writing emphasis in the preparation of a senior honors thesis under direction of faculty adviser. (Deferred grading only, pending completion of sequence.)

195. Special Studies in American Politics (4) I. Wedesforde-Smith
Seminar—4 hours. Prerequisite: consent of instructor and upper division standing. Intensive examination of one or more special problems appropriate to American politics. May be repeated once for credit when different subject matter studied.

198. Directed Group Study (1-3) I. Siverson
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only)

Graduate Courses

201. Urban Government and Politics (4) III. The Staff
Seminar—4 hours. Survey and analysis of the literature in the field of local government and politics in the United States. Approaches to the study of political reform, local autonomy, community power, representation, expertise, service delivery, policy making and political change. (May be repeated once for credit).

202. American State Government and Politics (4) I. The Staff
Seminar—4 hours. Survey and analysis of the literature in the field of state government, politics, and policy. Approaches to the study of the American states as political systems, including their governing institutions and processes and their role in the Federal system. Offered in alternate years.

205. Field Research in Urban Politics and Policy (4) III. The Staff
Seminar—2 hours; field research—2 hours. Examination of research design and methodologies appropriate research and research in community-level politics and policy, with an emphasis on elite interviewing and observation. Analysis of illustrative study. Team participation in design, execution, and analysis of a field research.

207. Environmental Public Policy (4) II. Wandes-
forde-Smith
Seminar—4 hours. Analysis of the interface between the world of academic reflection about ecological and environmental problems and the world of political action. Evaluation of alternative approaches to policy analysis and recommendation. Individual research, including field work, will parallel discussion of the literature.

208. Policy Analysis (4) II. Hill
Seminar—4 hours. Social science techniques applied to public policy formation and evaluation.

209. The American Political System (4) I. Wade Seminar—4 hours. Analysis of selected theoretical and empirical issues posed by contemporary research in American government and politics.

211. Research Methods in Political Science (4) I. Jackson Seminar—4 hours. Prerequisite: Statistics I. Graduate standing or permission in introduction to philosophy of science, research design for experimental and quasi-experimental settings, and data analysis. Topics include: logic of empirical research, measurement problems, research design, sampling, descriptive statistics, tabular analysis, measures of association, and introduction to correlation and regression.

212. Quantitative Analysis in Political Science (4) II. Jones Seminar—4 hours. Prerequisite: course 211. Topics usually covered in an introductory statistics course with an emphasis on applications in political science. Empirical analysis of political theories, probability and hypothesis testing, ANOVA, regression, and introduction to multiple regression.

214. Quantitative Analysis in Political Science II (4) I. Hill Seminar—4 hours. Prerequisite: courses 211, 212. More advanced topics in the use of statistical methods, with emphasis on political applications. Topics include: properties of least squares estimates, problems in multiple regression, and advanced topics (probit analysis, simultaneous models, time-series analysis, etc.).

218. Political Theory (4) III. Peterman Seminar—3 hours; term paper.

223. International Relations (4) I. Siverson Seminar—3 hours; term paper.

225. The International System (4) I. Siverson Seminar—3 hours; term paper. Analysis of the international system by means of theory formulation and international conflict; critique of realist; use of various techniques of data generation and analysis.

230. American Foreign Policy (4) II. III. Nino Seminar—2 hours; term paper.

231. U.S. Political Culture and Foreign Relations (4) III. Rathje Seminar—3 hours; term paper. Relation U.S. political culture to formulation of foreign policy. Analyzes American ideological preferences in historical perspective, contemporary public opinion, decision-
making and implementation. Concludes by examining stages of modern policy behavior and democratic process. Offered in alternate years.

241. Communist Political Systems (4) III. Bahry
Seminar—4 hours. Prerequisite: course 141 or the equivalent, or consent of instructor. Systematic analysis of the party system and government of the political systems of the Communist countries. Offered in alternate years.

242. Seminar in Comparative Politics (4) II, Groth
Seminar—3 hours; term paper. Prerequisite: graduate status or consent of instructor. Systematic survey of theories and methods used in the study of Comparative Politics.

246. Policymaking in Third-World Societies (4) II. Rothchild
Seminar—3 hours; term paper. Selected topics of contemporary problems in Latin American and international relations in Third-World areas. Offered in alternate years.

248. Politics of East Asia (4) III. Kalgren
Seminar—3 hours; term paper. Selected contemporary problems of government and international relations in East Asia. Offered in alternate years.

250. Political Parties (4) II, III. Costantini
Seminar—3 hours; term paper. Survey of selected topics in American and comparative parties.

251. Political Behavior (4) II, III. Costantini
Seminar—3 hours; term paper. Survey of selected topics in political behavior and public opinion.

282. Concepts and Problems in Public Administration (4) I. The Staff
Seminar—4 hours. Nature of administrative processes in modern society; analysis of complex organizations, contemporary management principles and processes, means of controlling bureaucracy. Offered in alternate years.

283. Organizational Behavior (4) II. The Staff
Seminar—4 hours. Organizational behavior as it relates to public sector decision-making.

286. Administrative Values (4) III. The Staff
Seminar—3 hours; term paper. Examination of American administrative values. Offered in alternate years.

290A. Research in American Government and Public Policy
Seminar—4 hours. Special research seminar on selected problems and issues in the study of American political and public policy.

290B. Research in Political Theory (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of political theory.

290C. Research in International Relations (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of international relations.

290D. Research in Judicial Politics (4) I, II, III. The Staff
Seminar—4 hours. Prerequisite: graduate standing in political science or consent of instructor. Contemporary research on judicial politics, judicial institutions, jurisprudence, and judicial behavior.

290E. Research in Political Parties, Politics, and Political Behavior (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of political parties, politics, and political behavior.

290F. Research in Comparative Government and Policy (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of comparative government and policy.

290G. Research in Public Administration (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of public administration.

297. Internships in Political Science (2) I, II, III. The Staff
Seminar—2 hours. Prerequisite: open only to persons who have internships or other positions in government or political parties, etc. Deals with the application and evaluation of theoretical concepts through work experience or systematic observation in public and political agencies. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(S/U grading only)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only)

300. Directed Reading (1-12) I, II, III. The Staff
(S/U grading only)

Professional Course

300. The Teaching of Political Science (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate student standing in Political Science. Methods and problems of teaching political science at the undergraduate level. (S/U grading only)

Pomology

(College of Agricultural and Environmental Sciences)

F. A. Bliss, Ph.D., Chairperson, Department of Pomology, 1045 West Hill Rd, 916-752-2012

Faculty
Fredrick A. Bliss, Ph.D., Professor
Patrick H. Brown, Ph.D., Assistant Professor
Robert M. Carlson, Ph.D., Lecturer
Peter C. Catlin, Ph.D., Lecturer
Carlos H. Ciris, Ph.D., Lecturer
Abha M. Dadbakh, Ph.D., Associate Professor
Theodore M. De Jong, Ph.D., Professor
Louise Ferguson, Ph.D., Lecturer
Thomas M. Gradziel, Ph.D., Assistant Professor
Paul E. Hanzo, Ph.D., Professor
Scott Johnson, Ph.D., Lecturer
Adel A. Kader, Ph.D., Professor
John H. Labavich, Ph.D., Professor
George C. Martin, Ph.D., Professor
Gale McGrath, Ph.D., Lecturer
Warren C. Mize, M.S., Lecturer
Dan E. Parlett, Ph.D., Lecturer
Vito S. Polito, Ph.D., Professor
David E. Ramos, Ph.D., Lecturer
Roger J. Romani, Ph.D., Professor
Kenneth A. Shackel, Ph.D., Assistant Professor
Douglas V. Shaw, Ph.D., Assistant Professor
Stephen M. Soutthchuk, Ph.D., Lecturer
Ellen G. Sutter, Ph.D., Associate Professor
Steven A. Weinbaum, Ph.D., Professor

Emeriti Faculty
Royce S. Bringhurst, Ph.D., Professor Emeritus
Dillon S. Brown, Ph.D., Professor Emeritus
Julian C. Crane, Ph.D., Professor Emeritus
William H. Grigsby, Ph.D., Professor Emeritus
Hudson T. Hartmann, Ph.D., Professor Emeritus
Dale E. Kester, Ph.D., Professor Emeritus
Owen L. Little, Ph.D., Professor Emeritus
F. Gordon Miller, Ph.D., Professor Emeritus
Kary Ryugo, Ph.D., Professor Emeritus
Noel F. Sommer, Ph.D., Lecturer Emeritus
Kyoto Uru, Ph.D., Professor Emeritus

Related Majors and Programs
See the majors in Plant Science and in Agricultural Science and Management (Plant Science option).

Graduate Study. For graduate study related to the field of pomology, see the M.S. degree program in Horticulture. See also the Graduate Division section in this catalog.

Courses in Pomology

Lower Division Courses

10. The Art and Science of Fruit Production (3) I. The Staff (Chairperson in charge)
Lecture—3 hours. Introduction to pomology including: orchard establishment, development, physiology, and management of the crop through harvest and storage. Two field exercises, on the second and seventh Saturdays of the quarter. General Education credit: Nature and Environment/Introductory.

92. Internship in Pomology (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—36 hours. Prerequisite: consent of instructor. Work experience on and off campus in the production and management of orchard crops or closely related enterprises. (P/N grading only)

Upper Division Courses

101. Tree Growth and Development (4) II. De Jong, Catlin
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Plant Science 102 or consent of instructor. Physiology of fruit production and maintenance; species adaptation; responses to environmental and cultural practices (pollination, soil and water management, etc.).

102. Principles of Fruit Production (4) III. Weinbaum, Gradziel
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1C or Plant Science 102. The course covers principles underlying cultural practices associated with fruit and nut production, including morphology and physiology of the developing fruit, flowers and fruit. The course emphasis is on commercially important temperate zone species.

103. Citrus and Other Subtropical Fruits (3) II.
Shackel in charge
Lecture—3 hours. Prerequisite: Biological Sciences 1C. Subtropical fruits, particularly citrus, as important economic and nutritional resources; their origin, distribution, botanical, nature, culture, production, and utilization. Offered in alternate years.

107. Small Fruit Production (2) II. Shaw
Lecture—2 hours; two field trips arranged at mutual convenience. Prerequisite: Biological Sciences 1C or the equivalent. Strawberries (Fragaria), blackberries-rasberries (Rubus), blueberries-cranberries (Vaccinium), and currants-gooseberries (Ribes) as important nutritional resources; their origin, production and utilization with emphasis on recent progress in integrated management. Offered in alternate years.

170A-170B-170C. Applied Pomology (2-2-2) II-III-III.
Ramos, Southwick, Mack, Martin
Lecture—seven 2-hour sessions; two full-day field trips. Prerequisite: introductory course in pomology or consent of instructor. Overview of production and handling of major pomological crops including a clinical study of important cultural and harvesting activities and problems associated with commercial fruit growing. Offered in alternate years.

192. Internship in Pomology (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—36 hours. Prerequisite: consent of instructor. Work experience on and off campus in the production and management of orchard crops or closely related enterprises. (P/N grading only)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor (P/N grading only)

199. Special Study for Advanced Undergraduates (1-5)
I, II, III. The Staff (Chairperson in charge)
(P/N grading only)

Graduate Courses

203. Current Perspectives in Fruit Tree Physiology (3) I. Weinbaum, De Jong
Lecture—2 hours; discussion—1 hour. Prerequisite:
Psychiatry
See Medicine, School of

Psychology

(Graduate of Colleges and Science)
Donald H. Owings, Ph.D., Chairperson of the
Department
Office, 149 Young Hall (916-752-1800)
Faculty
Linda F. Acedrolo, Ph.D., Professor
Leo M. Chalupa, Ph.D., Professor
Richard G. Cos, Ph.D., Professor
Rebecca A. Eder, Ph.D., Assistant Professor
Alan C. Elms, Ph.D., Professor
Robert A. Emmore, Ph.D., Associate Professor
Karen P. Elms, Ph.D., Professor
Alburt A. Homan, Ph.D., Professor
Kenneth A. Henry, Ph.D., Professor
Joel T. Johnson, Ph.D., Associate Professor
Neal E.A. Kolt, Ph.D., Professor
Debra K. Loy, Ph.D., Assistant Professor
Peter K. Mese, Ph.D., Professor
Sally P. Mendoza, Ph.D., Associate Professor
G. Mitchell, Ph.D., Professor
Robert D. Murphy, Ph.D., Professor
Thomas R. Past, Ph.D., Professor
Donald H. Owings, Ph.D., Professor
Theodore E. Parkes, Ph.D., Professor
Robert B. Post, Ph.D., Associate Professor
Stephanie A. Sheid, Ph.D., Professor
Dean K. Simonson, Ph.D., Professor
Robert Sumner, Ph.D., Professor
Charles T. Tart, Ph.D., Professor
Nels G. Weller, Ph.D., Assistant Professor
Emeriti Faculty
Jarvis R. Bastian, Ph.D., Professor Emeritus
William F. Dukes, Ph.D., Professor Emeritus
Joseph Lyons, Ph.D., Professor Emeritus
William A. Mese, Ph.D., Professor Emeritus

The Major Programs
Psychology provides knowledge and means of studying human and animal behavior.
The Program. The department offers the Bachelor of Arts degree for the student interested in the liberal arts and the Bachelor of Science program designed for students with an interest in either biology or mathematics. The psychology program is extremely broad and represents a wide variety of topics. The courses are organized around three focal points: Personality/Behavioral emphasizes the individual in the social environment and includes such topics as personality theory, social psychology, abnormal psychology, individual differences, developmental psychology, humanistic psychology, and motivation. Psychobiology emphasizes the biological correlates of behavior and includes such topics as sensory psychology, physiological psychology, and comparative psychology. Perception/Cognition emphasizes how information from the physical world is sensed, perceived and used, and examines the roles of consciousness, language, perception, and learning in behavior.

Preparatory Requirements. The student must complete the following courses with a combined grade point average of at least 2.50 (all courses must be taken for a letter grade):
Psychology 1, 41..................8 units
Statistics 13 or 102..................4 units

Biological Sciences 10 and one course from:
Anthropology 1, Genetics 10, 10..................5 or 8 units
Sociology or cultural anthropology..................4 units

Career Alternatives. A degree in psychology provides broad intellectual foundations which are useful to the graduate for the development of careers in a variety of areas, including social work, the ministry, teaching, business, and counseling. An undergraduate education in psychology also provides excellent preparation for graduate study. Individuals with degrees in psychology may enter graduate programs to prepare for teaching, research, or counseling in psychology, or may go on to professional schools for training in veterinary and human medicine, law, and other professions.

A.B. Major Requirements:
Preparatory Subject Matter..................21-25
Psychology 1 or the equivalent..................4
Psychology 41 or the equivalent..................4
Statistics 13 or 102..................4
Biological Sciences 1A..................4
Biological Sciences 10 and one course from: Anthropology 1, Physiology 10, Genetics 10..................5-8

One course in anthropology (may be lower or upper division), minimum of 4 units..................4-6

(Strongly recommended that Psychology 41, Statistics 13, or 102 be completed before enrolling in upper division courses.)

Depth Subject Matter..................40
Two courses from two of the following three groups and one course from the remaining group:
A. Group A: Psychology 130, 131, 132, 135, 136
B. Group B: Psychology 108, 129, 134, 150
C. Group C: Psychology 112, 143, 145, 147, 160

Additional units to achieve a total of 40 upper division units in psychology..................18-19

Total Units for the Major..................61-65

B.S. Major Requirements:

Biology Emphasis

Preparatory Subject Matter..................46-53
Psychology 1 or the equivalent..................4
Psychology 41..................4

Statistics 13 or 102..................4
Mathematics 16A-16B or 21A-21B..................6-8

Physics 10 or 5A-5B..................4-8

Biological Sciences 1A, 1B..................10

Chemistry 2A, 2B..................10

One course in sociology or cultural anthropology (may be lower or upper division), minimum of 4 units..................4-6

(Strongly recommended that Psychology 41 or Statistics 13 be completed before enrolling in upper division courses.)

Depth Subject Matter..................52-53
Seven Psychology courses distributed as specified: Group A: two courses from 130, 131, 132, 135, 136..................8

Group B: three courses from 108, 129, 134, 150, 160..................15

Group C: two courses from 112, 143, 145, 147, 168..................8

Additional units to achieve a total of 40 upper division units in psychology..................9

Genetics 10, 10..................4

Zoology 125 or 148..................3-4

Physiology 110..................5

Total Units for the Major
(Biology Emphasis)..................98-106

Preventive Veterinary Medicine
See Medicine, School of

Preventive Veterinary Medicine

(Graduate Program)

Group Office, 112 Surgeon-IV (916-752-2375/9174)

Graduate Study. The School of Veterinary Medicine offers a program of study and research leading to the Master’s degree in Preventive Veterinary Medicine (M.P.V.M.). Detailed information on this program may be obtained by writing the Director, Department of Epidemiology and Preventive Veterinary Medicine.

Director. Thomas B. Farver (Epidemiology and Preventive Medicine).

*Course not offered this academic year.
Recommmended: Psychology 154, 1808, 199 (on a psychology major topic), Zoology 105, Anthropology 154A, Environmental Studies 110.

Mathematics Emphasis

Preparatory Subject Matter 44-58
Psychology 1 or the equivalent 4
Psychology 41 4
Statistics 13 or 107 4
Mathematics 21A, 21B, 21C, 12
Computer Science Engineering 30 or Engineering 5 5
Chemistry 24H-28H 5
Physics 10 or 24H-28H 4-6
Biological Sciences 1A or a combination of Biological Sciences 10 and one course from Anthropology 1, Physiology 10, Genetics 10, 5-8
One course in sociology or cultural anthropology (may be lower or upper division), minimum of 4 units 4-6
(Strongly recommended that Psychology 41 or Statistics 13 be completed before enrolling in upper division courses.)

Depth Subject Matter 47-48
Five Psychology courses, distributed as specified:
Group A: two courses from 130, 131, 132, 135, 136 8
Group B: two courses from 108, 129, 154, 156 8
Group C: one course from 112, 143, 145, 147, 168 4
Psychology 103 4
One course from Psychology 105, 206, 207, 4-10
Additional units to achieve a total of 40 upper division units in psychology 9
One course sequence from Statistics 106-108, 130A-130B, 131A-131B 7-8
Total Units for the Major (Mathematics Emphasis) 91-106

Recommended for All Majors
Psychology 103 is strongly recommended for students who plan to do graduate work in any area of psychology. Psychology 41 is a prerequisite for most upper division courses.

Honors and Honors Program. In order to be eligible for high or higher honors in Psychology, the student must both meet the college criteria and complete a research project involving a minimum of six units of course work over at least two quarters which represents an original analysis of data on psychological phenomena. This project is to be written in thesis form and approved by the department. The quality of the thesis work will be the primary determinant for designating high or highest honors at graduation.

Minor Program Requirements: 24

Psychology 1 or the equivalent 4
One course from each of the following three groups 13
Group A: Psychology 130, 131, 132, 135, 136
Group B: Psychology 108, 129, 134, 150
Group C: Psychology 112, 143, 145, 147, 168
Additional units to achieve a total of 20 upper division units

Graduate Study. The Department offers programs of study and research leading to the Ph.D. degree in psychology. Detailed information regarding graduate study may be obtained by writing the Graduate Adviser, Department of Psychology.

Graduate Adviser. See Class Schedule and Room Directory.

Courses in Psychology

Lower Division Courses

1. General Psychology (4) I, II, III. The Staff Lecture—4 hours. Introduction emphasizing empirical approach. Focus on perception, cognition, personality and social psychology, and biological aspects of behavior. Only 2 units allowed to those who have taken course 15 or 16; no credit allowed to those who have taken both courses 15 and 16.

15. Introduction to Psychology (3) I, II, III. The Staff Lecture—3 hours. Survey of genetic, evolutionary and physiological factors affecting behavior. Emphasis on biological and biosocial mechanisms for understanding people and their interaction with the environment. No credit allowed to students who have completed course 1. General Education credit for two-course sequence of non-GE courses (15-16) which will satisfy requirement for one GE course. Contemporary Societies/Introductory.

16. Psychology and Modern Life (3) I, II, III. The Staff Lecture—3 hours. Personality development, interpersonal relationships, and the relevance of psychology to social processes. No credit allowed to students who have completed course 1. General Education credit for two-course sequence of non-GE courses (15-16) which will satisfy requirement for one GE course. Contemporary Societies/Introductory.

20. Freshman Psychology Seminar (4) I, II, III. The Staff Seminar—4 hours. Prerequisite: freshmen standing. Instructor will acquaint students with his or her program of research, the development of scientific questions from the literature, and the application of research methods to examine these questions. Critical thinking will be encouraged via expository writing and brief presentations.

41. Research Methods in Psychology (4) I, II, III. Mitchell Lecture—4 hours. Prerequisite: course 1 or the equivalent; completion of Statistics 13 or 102 strongly recommended. Introduction to experimental design, interviews, questionnaires, field and observation methods, reliability and statistical inference.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Primarily for lower division students. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

104. Applied Psychometrics: An Introduction to the Measurement Theory (4) II. Kroll Lecture—4 hours. Prerequisite: course 41 and course 3. Examination of the basic principles and applications of classical and modern test theory. Topics include: reliability, validity, factor analysis, and validity theory.

105. Statistical Inference from Psychological Experiments (4) II. Kroll Lecture—4 hours. Prerequisite: course 41 or course 3 or consent of instructor. Prediction theory, sampling distributions, hypothesis testing, statistical inference, and nonparametric statistics, with applications in sensory, perceptual, comparative, physiological, and other areas of research.

108. Psychological Psychology (5) I, II, III. Chalupa, Henry, Mendoza Lecture—4 hours. Laboratory—2 hours. Prerequisite: courses 1, 41; at least one zoology or physiology course recommended. Relationship of brain structure and function, motivation, perception, states of consciousness, language, learning, and memory in humans and other animals; introduction to methods of physiological psychology.

112. Developmental Psychology (4) I, II, III. Mitchell, Shields, Acredolo, Eder Lecture—4 hours. Prerequisite: courses 1, 41. An ontogenetic account of human behavior through adolescence with emphasis on motor skills, mental abilities, language, social interaction and emotional development.

114. Gender and Social Development (4) II. Shields Lecture—4 hours. Prerequisite: courses 1, 41. Biological and social factors that influence when and how psychological sex-related differences will be expressed in human development. Attention to the scientific and social rationales which underlie the study of gender.

115. Maturity and Aging (4) Lecture—4 hours. Prerequisite: courses 41, 112. Biological, cognitive, personality, and social aspects of the human life span between early maturity and death, in its theoretical, methodological, and empirical aspects.

120. History of Psychology (4) I, II, III. The Staff Lecture—3 hours. Required: Psychology courses 1, 41; upper division standing or consent of instructor. Development of psychological thought and research in context of history of philosophy and science.

129. Sensory Processes (5) I, III. Henry, Mendoza Lecture—4 hours; discussion, project, or term paper—1 hour. Prerequisite: course 1 or Biological Sciences 1B or consent of instructor, and course 41. Psychological study of sensory systems in man and other animals. Relationship of behavior to physiological structure and function of the senses.

130. Human Learning and Memory (4) I, II, III. Kroll, Parks Lecture—3 hours; discussion—1 hour. Prerequisite: course 1, 41, and either Statistics 13 or 102, or consent of instructor. Consideration of major theories of human learning and memory with critical examination of relevant experimental data.

131. Perception (4) I, II. Natouloos, Parks, Post Lecture—3 hours; Independent study work. Prerequisite: courses 1, 41. The cognitive organizations related to measurable physical energy changes mediated through sensory channels. The perception of objects, space, motion, events.

132. Language and Cognition (4) II. Long Lecture—4 hours. Prerequisite: course 1 or the equivalent, course 41, and 6 units of upper division work in psychology, linguistics, Zoological, cultural, and individual perspectives of linguistic actions; their production, reception, cognitive significance, and their role in human conduct, enculturation, and cognitive development.

134. Animal Learning and Motivation (5) I, III. Coss Lecture—5 hours. Prerequisite: course 1 or 15 or consent of instructor, course 41. General theories of phycetsic differences in learning and motivation drawing upon data from laboratory and field observations. Innate physiological mechanisms, development changes, effects of conditioning and other contraints on these processes are examined.

135. Psychology of Consciousness (4) I, II, III. Natouloos Lecture—4 hours. Prerequisite: courses 1, 41. Consideration of major theories of consciousness, with critical examination of relevant experimental, clinical, and field data.

136. Cognitive Psychology (4) I, III. Kroll, Long Lecture—3 hours; term paper. Prerequisite: courses 1, 41. Introduction to human information processing, mental representations, transformation, imagery, attention, concept formation, problem solving, and computer simulation.

137. Altered States of Consciousness (4) I, II. Tart Lecture—4 hours. Prerequisite: courses 1, 41. Characteristics, uses, and abuses of altered states of
consciousness from experiential, behavioral, physiological, and methodological perspectives. Topics typically include sleep, borderline states, dreams, meditation, hypnosis, autophrenics, marijuana intoxication, psychodrama, and mystical experiences.

143. Human Emotion and Feeling (4) (I, III). Natoukas, Shields
Lecture—4 hours. Prerequisite: Introductory psychology course, and course 41. An introduction to current theories and research in emotions and bodily feelings with special reference to self-knowledge.

144. Environmental Awareness (4) (I, II, III). Sommer, Coss
Lecture—4 hours. Prerequisite: course 1. Interactions of people with built environments. Research methods for evaluating designed environments and reviews of current research in environmental psychology.

Lecture—4 hours. Prerequisite: courses 1, 41. Behavior of the individual in the group. Examination of basic psychological processes in social situations, surveying various problems of social interaction: group norms, norm development, attitudes, values, public opinion, status.

147. Personality Theory (4) (I, II, III). Emms, Eisenkern, Erickson
Lecture—4 hours. Prerequisite: courses 1, 41. The theories of Freud, Erikson, and other major twentieth-century approaches to personality.

149. Gender and Human Reproduction (4) (II). Erickson
Lecture—4 hours. Prerequisite: courses 1, 41. The social psychology of human reproduction. Examines gender relations over the course of the individual's reproductive cycle.

Lecture—4 hours: discussion or project—1 hour. Prerequisite: course 1 or 15 or consent of instructor; course 41. Perspectives in animal behavior: psychological, ethological, and social systems, with an emphasis on functional behavioral categories from the standpoint of adaptation and evolution.

*154. Primate Psychology (4)
Lecture—4 hours. Prerequisite: course 41; course 15 or 150 or an equivalent course in biological sciences, and consent of instructor. Comparative survey of primate-based, primarily on laboratory experimentation in learning, communication, cognition, sensation, motivation, emotion, perception, and effects of early experience in many species of primates.

160. Health Psychology (4) (I, III). Emms
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 15, course 41 Psychological factors influencing health and illness. Topics include stress and coping, personality and health, symptom perception and reporting, heart disease, cancer, compliance, and health maintenance and promotion. Application of principles in laboratory exercises.

165. Introduction to Clinical Psychology (4) (I, II, III). The Staff
Lecture—4 hours. Prerequisite: courses 1, 41, 168, and course 112 or 145. Major theoretical formulations in the history of clinical psychology, from classical psychoanalysis to contemporary existentialism and behavior modification. A survey, based on lectures, films, and tapes, of various clinical psychologists' doings, including methods of appraisal, professional roles, and approaches to treatment.

168. Abnormal Psychology (4) (I, II, III). Emms, Murphoy, Sommer, Waller
Lecture—4 hours. Prerequisite: courses 1, 41. Descriptive and functional account of behavioral disorders, with primary consideration given to neurotic and psychotic behavior.

171. Humanistic and Transpersonal Psychology (4) (I, II, III). The Staff
Lecture—4 hours. Prerequisite: courses 41; course 165 or the equivalent and consent of instructor. Survey, including lectures and demonstrations, of humanistic, and transpersonal movements in contemporary psychology. Theory, data, and techniques in the work of Maslow and others who emphasize creativity, self-actualization, and realization of human potential.

175. Genius, Creativity, and Leadership (4) (III). Smart
Lecture—4 hours. Prerequisite: course 1 or 16; course 41. The phenomenon of genius is examined from the viewpoints of biological, psychological, and disciplinary perspectives, with an emphasis on outstanding creativity and leadership in art, music, literature, philosophy, science, war, and politics. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Psychology 15 and 16.

177. Psychobiography and Life History (4) (III). Emms
Lecture—4 hours. Prerequisite: course 1 or 16 or consent of instructor; course 41. Case-history research as a nonquantitative approach to studying personality. Psychobiographical interpretation of life histories of outstanding individuals in the arts, politics, science and other areas. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Psychology 15 and 16.

180A. Research in General Experimental Psychology (4) (II). The Staff
Lecture—2 hours: laboratory—4 hours. Prerequisite: course 41, and four upper division Psychology courses and consent of instructor. Empirical research on selected topics in General experimental psychology (general research design and analysis, perception, cognition, cognitive development, etc.). Specific content will vary from quarter to quarter. May be repeated once for credit when the specific content differs.

180B. Research in Psychobiology (4) (III). The Staff
Lecture—2 hours: laboratory—4 hours. Prerequisite: course 41, and four upper division Psychology courses and consent of instructor. Empirical research on selected topics in Psychobiology (animal learning and motivation, comparative psychology, physiological psychology, sensory psychology, etc.). Content will vary from quarter to quarter. May be repeated once for credit when the specific content differs.

180C. Research in Personality and Social Psychology (4) (II). The Staff
Lecture—2 hours: laboratory—4 hours. Prerequisite: courses 41, and four upper division Psychology courses and consent of instructor. Empirical research on selected topics in personality and social psychology (personality, social psychology, organizational psychology, etc.). Content will vary from quarter to quarter. May be repeated once for credit when the specific content differs.

181. Interactive Computer Programming for Psychological Experiments (4) (III). Kroll
Lecture—2 hours; laboratory—4 hours. Prerequisite: consent of instructor, course 41 and one of courses 130, 132, or 136. Instruction in programming with an emphasis on programming desk-top computers as an interactive research tool.

183. Organizational Psychology (4) (II). Harrison
Lecture—4 hours. Prerequisite: introductory psychology course; course 41. Survey of interrelationships among psychological principles, interpersonal dynamics, and organizational forms. Topics include motivation, communication, decision making, leadership, personnel selection and training, stress and conflict, career development, and organization-community relations.

190. Seminar in Psychology (4) (I). The Staff
Seminar—4 hours. Prerequisite: junior or senior standing; major in psychology or consent of instructor. Intensive treatment of a special topic or problem of psychological interest. May be repeated for credit in different subject area.

192. Fieldwork in Psychology (1-6) (I, II, III). Murphoy
Internship—3-18 hours; term paper. Prerequisite: upper division standing in psychology and consent of instructor. Supervised internship, off- and on-campus, in community and institutional settings. Credit not applicable toward 40 units of upper division psychology required of majors. May be repeated once for credit. Limited enrollment. (P/NP grading only.

197. Tutoring in Psychology (1-3) (I, II, III). The Staff
Prerequisite: upper division standing and consent of instructor. Tutoring in Psychology Department courses. This course is intended for advanced undergraduate students who will lead discussion sections in Psychology courses. May be repeated for credit for a total of 5 units. No more than 6 units may count toward the Psychology major requirement. (P/NP grading only)

198. Directed Group Study (1-5) (I, II, III). The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) (I, II, III). The Staff (Chairperson in charge)
(P/NP grading only)

Graduate Courses

201. Current Research Topics in Psychology (1) (I).
The Staff
Seminar—1 hour. Prerequisite: consent of instructor. A seminar designed to introduce students entering graduate work in the department to its ongoing research activities. (SU grading only)

201. Research Preceptorship (4) (I, II, III). The Staff
Laboratory discussion—6-9 hours. Prerequisite: consent of instructor. (SU grading only)

Lecture—4 hours. Prerequisite: course 41, 103. Statistics 13. Examination of the basic principles and applications of classical and modern test theory. Topics include test construction, reliability theory, validity theory, factor analysis and latent trait theory.

205. Advanced Statistical Inference from Psychological Experiments (5) (II). Kroll
Lecture—5 hours; project and term paper. Prerequisite: graduate student standing and consent of instructor. Probability theory, sampling distributions, nonparametric statistics, statistical inference, and hypothesis testing. A term paper will be required which develops a research proposal with a detailed discussion of the statistical techniques to be employed.

206. Statistical Analysis of Psychological Experiments III (4)
Lecture—4 hours. Prerequisite: course 103 or consent of instructor. Statistical analysis of data obtained with various experimental designs; analysis of variance and covariance, factorial and repeated measures, Latin square designs, and tests of trends.

207. Multivariate Analysis of Correlational Data (4) (II). Sminton, Waller
Lecture—4 hours. Prerequisite: course 105 or 205. Because the techniques are implemented using statistical software, prior experience with computers is strongly recommended. Competence in basic algebra is assumed. Application of multiple regression, path analysis, factor analysis, and related methods to infer causal models from correlation matrices.

208. Physiological Psychology (4) (II). Chalupa, Henry
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. A conceptual analysis of the contributions of neuroanatomy, neurophysiology and neurochemistry to an understanding of animal and human behavior.

212. Developmental Psychology (4) (I). Acredolo, Shields
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. The original behavioral repertoire of the child and its subsequent development.

220. Topics in the History of Psychology (4) (III).
The Staff
Lecture—2 hours; seminar—2 hours. Prerequisite: graduate standing in Psychology or consent of instructor. A lecture-seminar on selected topics in the...
Radiological Sciences

See Medicine, School of

Radiological Sciences

(School of Veterinary Medicine)

Timothy R. O'Brien, D.V.M., Ph.D., Chairperson of the Department

Department Office, 1114 Medical Science-1A

(916-752-0184)

Faculty

William J. Honof, D.V.M., M.S., Associate Professor
Philip D. Kobik, D.V.M., M.S., Associate Professor
Joe P. Morgan, D.V.M., Vet. med. dr., Professor
Thomas G. Nyland, D.V.M., Professor
Timm R. O'Brien, D.V.M., Ph.D., Professor
Aman P. Tihon, Dr. Med. Vet., Assistant Professor

Emeritus Faculty

Marvin Goldman, Ph.D., Professor Emeritus

Part-Time Clinical Faculty

Larry V. Kor, D.V.M., Associate Clinical Professor
Sam Silverman, D.V.M., Ph.D., Clinical Professor
James Ticer, D.V.M., Ph.D., Associate Clinical Professor

Courses in Radiological Sciences

Upper Division Course

199. Special Study for Advanced Undergraduates
(1-5) I, II, III. Radiology Staff
(PNP grading only)

Graduate Courses

265A. Principles and Practice of Veterinary Radiation Oncology - A (1.5) I, II. Theon
Lecture—1 hour, laboratory—3 hours. Prerequisite: graduate students in the School of Veterinary Medicine; third-year veterinary students. Principles and practice of veterinary radiation therapy. The topics will include a series of lectures on physical methods of radiation therapy, biologic effects of therapeutic radiation, and applications in veterinary patients. (Same course as 465A.) (SU grading only.)

265B. Principles and Practice of Veterinary Radiation Oncology - B (1.5) I, II. Theon
Lecture—1 hour. Prerequisite: course 265A. Principles and practice of veterinary radiation therapy. The topics will include a series of lectures on physical methods of radiation therapy, biologic effects of therapeutic radiation, and applications in veterinary patients. (Same course as 465B.) (SU grading only.)

269. Medical Radiobiology (3) II. Lecture—3 hours. Prerequisite: introductory courses in physics, biology, and biology, or consent of instructor. Biological effects of radiation including genetic, teratogenic, carcinogenic responses in terms of dose quality and quantity. Included are discussions of dose-effect relationship, radiation therapy, environmental radioactivity, and radiation-protection criteria. Offered in alternate years.

299. Group Study (1-5) I, II, III. Radiology Staff
(SU grading only)

299. Research (1-12) I, II, III. Radiology Staff
(SU grading only)

*Course not offered this academic year.

Professional Courses

408. Special Procedures Rounds (2) I, II, III. The Staff
Discussion—6 hours. Prerequisite: a DVM degree and consent of instructor. Approved for graduate degree credit. Review of selected radiology cases from previous day. Specific radiographic changes and differential diagnosis are discussed, with participants leading the discussions. Special procedures such as angiography, nuclear medicine and ultrasound examinations are reviewed. May be repeated for credit. (SU grading only.)

409. Known Case Conference (1.5) I, II, III. The Staff
Discussion—demonstration—1.5 hours. Prerequisite: a DVM degree and consent of the instructor. Approved for graduate degree credit. Film review of current VM Teaching Hospital proven cases. Intended for radiology residents and others with background in diagnostic radiology. May be repeated for credit. (SU grading only.)

410. Current Topics in Radiological Sciences (1.5) I, II, III, IV. The Staff
Lecture—1.5 hours. Prerequisite: DVM degree or consent of instructor. Fundamentals of radiological sciences for radiology residents. Topics will include series of in-depth lectures covering the broad spectrum of veterinary radiology/radiological sciences and related alternate imaging modalities. Clinically oriented but also including relevant research material. (SU grading only.)

465A. Principles and Practice of Veterinary Radiation Oncology - A (1.5) I, II. Theon
Lecture—1 hour; laboratory—3 hours. Prerequisite: graduate students in the School of Veterinary Medicine; third-year veterinary students. Principles and practice of veterinary radiation therapy. The topics will include a series of lectures on physical methods of radiation therapy, biologic effects and applications in veterinary patients. (Same course as 465A.) (SU grading only.)

465B. Principles and Practice of Veterinary Radiation Oncology - B (1.5) I, II. Theon
Lecture—1 hour. Prerequisite: course 465A. Principles and practice of veterinary radiation therapy. The topics will include a series of lectures on physical methods of radiation therapy, biologic effects of therapeutic radiation, and applications in veterinary patients. (Same course as 465B.) (SU grading only.)

Radiology

See Medicine, School of

Range and Wildlands Science

See Range and Wildlands Science, below; and Range Science

Range and Wildlands Science

(College of Agricultural and Environmental Sciences)

The Major Program

Range and wildlands science is the study of the biological and physical components of land resources which are used mostly for grazing domestic livestock, but which also provide wildlife habitats, watersheds, recreation, and open space.
Range Science 192, 198, 199 (not more than a total of 3 units can be counted)
Aerial photo interpretation and remote sensing (Geography 106) 4

Restricted Electives .. 6-8
Two upper division natural science or applied biological science courses in one or two of the following: animal science, botany, entomology, genetics, geography, mathematics, meteorology, plant pathology, plant science, environmental and resource sciences, water science, or weed science

Unrestricted Electives 17-47
Total Units for the Major 180

Major Adviser, C. A. Ragus (Agronomy and Range Science)
Advising Center for the major is in 137 Hunt Hall.
Graduate Study. See under Ecology Graduate Group.

Range Science

(College of Agricultural and Environmental Sciences)
Faculty. See under the Department of Agronomy and Range Science.

Major Program. See the major, Range and Wildlands Science.

Related Courses. See Agronomy 112, Nutrition 115, Resource Sciences 100, Soil Science 105, 120, Wildlife and Fisheries Biology 151.

Courses in Range Science

Questions pertaining to the following courses should be directed to the instructor or to the Advising Center, 137 Hunt Hall.

Lower Division Course
The Staff (Department Chairperson in charge)
Internship—3-36 hours. Prerequisite: completion of 64 units and consent of instructor. Work experience off campus in all subject areas pertaining to range management. Internships supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses
100. Range and Wildlands Plans (4) III. Rice Lecture—2 hours; laboratory—6 hours; two Saturday field trips. Prerequisites: Biological Sciences 103 and junior standing recommended. Systematics, evolution, ecology and use of plants within range and wildland ecosystems. Taxonomy and identification of range and wildland grasses, woody perennials, legumes, and forbs.

105. Field Course (3) III. Merke
Lecture—10 hours total; laboratory—30 hours total (given week following end of spring quarter). Prerequisite: course in plant or range ecology. Field studies of rangeland vegetation as a livestock grazing resource and as wildlife habitat. Range management and improvement strategies for enhancing multiple-use carrying capacity; grazing systems, water developments, seeding of improved species, and prescribed fire. Considered a spring quarter course for preenrollment. Offered in alternate years.

132. Grassland Ecology (3) III. Ragus
Lecture—3 hours, one Saturday field trip. Prerequisites: course in plant ecology or consent of instructor. Structure, function and environment of North American grasslands, with emphasis on the California annual type. Concepts and problems in measuring primary and secondary productivity. Principles of grassland and management including vegetation improvement, utilization by animals, and recreation and aesthetic values. Offered in alternate years.

134. Comparative Ecology of Major Rangeland Systems (3) II. Merke
Lecture—3 hours; one Saturday field trip. Prerequisite: course 100 or the equivalent. General ecology course recommended. Study of vegetation structure, composition, and successional patterns in representative North American rangeland plant communities. Description and comparison of interactions between vegetation and grazing animals on grassland, desert, forested, and tundra rangelands. Discussion of management strategies used in these systems today. Offered in alternate years.

135. Ecology and Community Structure of Grassland and Savanna Herbivores (3) I. Demient
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, or the equivalent; general ecology course recommended. Feeding ecology of grassland and savanna herbivores and its importance in evolution of herbivore communities and social systems. Optimal foraging, interspecific interactions, and primary productivity are considered as factors structuring natural and managed grassland and savanna systems. Offered in alternate years.

The Staff (Department Chairperson in charge)
Internship—3-36 hours. Prerequisite: completion of 64 units and consent of instructor. Work experience off campus in all subject areas pertaining to range management. Internships supervised by a member of the faculty. (P/NP grading only.)

196. Directed Group Study (1-5) I, II, III. The Staff (Department Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Department Chairperson in charge)
Prerequisite: senior standing and consent of instructor. (P/NP grading only.)

Graduate Courses
206. Computer Modelling in Range and Crop Management (3) I. The Staff
Lecture—3 hours. Prerequisite: one course from Agronomy 206A, Agricultural Science and Management 121, Animal Science 128, or Environmental Studies 128. Development of computer models involving dynamic simulation and optimization modules for range and crop management problems. Modeling philosophy, assumptions, implementation, validation, and experimentation emphasized. Offered in alternate years.

290. Seminar in Range Science (1-2) I. The Staff
Seminar—1-2 hours. Topics of current interest in grassland ecology, range and wildlands management, and related modeling and systems analysis.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Religious Studies

(College of Letters and Science)
Walen W. Lai, Ph.D., Program Director
Program Office, 922 Sprout Hall (916-752-3932)

Committee in Charge
William Bossart, Ph.D. (Philosophy)
John R. Hall, Ph.D. (Sociology)
Lincoln D. Hunt, Ph.D. (Religious Studies)
Naomi Janowitz, Ph.D. (Religious Studies)
Phylis Jesteit, Ph.D. (History)
Smadar Lavev, Ph.D. (Anthropology)
Jay Meschling, Ph.D. (American Studies)
Lynn Roller, Ph.D. (Classics)
Art Shapiro, Ph.D., Professor (Zoology)
Faculty
Lincoln D. Hurst, Ph.D., Associate Professor
Naomi Janowitz, Ph.D., Associate Professor
Walter W. Lai, Ph.D., Professor
Barbara Metcalf, Ph.D., Professor (History)

The Major Program
Majoring in religious studies provides an opportunity to explore and analyze the great written and oral traditions of the world's religions: Eastern (Hinduism, Buddhism, Confucianism), Western (Judaism, Christianity, Islam), ancient (Egypt, Mesopotamia) and modern (contemporary religious groups in the U.S.).

The Program. The religious studies major offers a broad choice of courses including history, philosophy, sociology, anthropology, American studies, classics, and medieval studies. For some students, religious studies is an appropriate second major and might combine well with anything from philosophy to international agricultural development, from history to international relations. The religious studies program has also designed four options for minor programs: religious studies, oriental religions, Judaism, and Christian studies.

Career Alternatives. The emphasis in religious studies courses on developing analytical thinking skills and clear written expression is an asset for many career goals. As a strong liberal arts program, the major can lead to professional schools including law, business, and foreign service.

A.B. Major Requirements:

Preparatory Subject Matter

<table>
<thead>
<tr>
<th>Religious Studies</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Religious Studies 1, 2</td>
<td></td>
</tr>
<tr>
<td>(b) Religious Studies 21, 23, 40, 60, 70</td>
<td></td>
</tr>
<tr>
<td>Additional requirements</td>
<td>4</td>
</tr>
<tr>
<td>Anthropology 2 or, with approval from adviser, a lower division course related to religion from Native American Studies, African-American and African Studies, American Studies, or other departments</td>
<td></td>
</tr>
</tbody>
</table>

Religious Studies

<table>
<thead>
<tr>
<th>Religious Studies</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five upper division courses plus Religious Studies 100 to be taken in junior/senior year</td>
<td></td>
</tr>
</tbody>
</table>

History

<table>
<thead>
<tr>
<th>History</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two upper division courses related to religion</td>
<td></td>
</tr>
</tbody>
</table>

Sociology, philosophy, anthropology

<table>
<thead>
<tr>
<th>Sociology, philosophy, anthropology</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two upper division courses related to religion in the above disciplines such as Philosophy 105, 145, Sociology 146, 149, Anthropology 124; or, with approval from adviser, in other disciplines such as Medieval Studies, Native American Studies, African-American and African Studies, Classics, or other departments</td>
<td></td>
</tr>
</tbody>
</table>

Total Units for the Major

| 64 |

Course Equivalents

The major advises students to have a list of lower and upper division courses that can be substituted for courses suggested above.

Recommended

A reading knowledge of a foreign language is highly recommended. Consult major adviser for a complete list of recommended upper division courses.

Minor Program Requirements:

The following four minor program options and others responsive to students' needs are subject to approval by the minor adviser or the Curriculum Committee. The four areas of emphasis are Religious Studies, Oriental Religions, Judaism, and Christian Studies.

Religious Studies

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Lower division courses

| 16 |

Religious Studies 100 recommended.

Some substitutions from other departments or programs allowed with consent of adviser.

Preministerial Training:

Semina and professional theological schools, as a rule, do not prescribe any specific major program and give equal consideration to all qualified applicants completing a course of study that gives them a broad cultural background. A program combining the Preparatory Subject Matter for the A.B. degree in Religious Studies, with one of the A.B. degree curricula in the College of Letters and Science is an excellent preparation for most seminaries and professional theological schools. A reading knowledge of a foreign language is highly recommended.

Students interested in applying for admission to a theological school should consult the Religious Studies office and make an appointment with the preministerial adviser.

Students are encouraged to take as part of their preministerial training one of the canonical languages: Hebrew, Greek, or Latin.

Preministerial Adviser. L. D. Hurst.

Courses in Hebrew

Lower Division Courses

1. Elementary Classical Hebrew (5 I). The Staff Lecture—4 hours; discussion—1 hour. Introduction to Hebrew alphabet, basic vocabulary, orthography, morphology and syntax. Readings from the Bible. (Students who have successfully completed a C- or better, Hebrew 2 or 3 in the 10th or 11th grade high school may receive unit credit for this course on a P/NP grading basis only. Although another grade will be charged to the student's P/NP option, no petition is required for all other students will receive a letter grade (pass a P/NP petition is filed.)

2. Elementary Classical Hebrew (5 II). The Staff Lecture—4 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Hebrew alphabet, basic vocabulary, orthography, morphology and syntax. Readings from Hebrew Bible. Continuation of course 1.

3. Elementary Classical Hebrew (5 III). The Staff Lecture—4 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Hebrew alphabet, basic vocabulary, orthography, morphology and syntax. Readings from Hebrew Bible and from post-Biblical Hebrew texts. Continuation of course 2.

Courses in Religious Studies

Lower Division Courses

1. Survey of Religion (4) I, II. Lai Lecture—3 hours; discussion—1 hour. Basic concepts introduced through readings of the primary religious literature. Discussion of central ideas (creation, history, law, prophecy, suffering, mysticism, asceticism, faith, knowledge, life, death, afterlife), reading from the Bible, Bhagavad Gita, the Koran, selections from Plato and early Buddhist writings. General Education credit: Contemporary Societies/Introductory.

2. Myths, Ritual, and Symbolism (4) I, II. Janowitz Lecture—3 hours; discussion—1 hour. Myths, rituals and religious symbols found in a variety of religious traditions including examples from ancient and contemporary religious life. Variety of religious phenomena; validity of different approaches to the study of religion. General Education credit: Contemporary Societies/Introductory.

3A. Topics in Comparative Religion (4) II. Janowitz and staff Lecture—3 hours; discussion—1 hour. Introduction to the methods used in comparative religion, focusing on a particular theme in a number of religious traditions: (A) The Experiential Dimension: Pilgrimage; (B) The Mythic Dimension: Death and the Afterlife; (C) The Ritual Dimension: Sacrifice. May be repeated for credit in a different subject area. General Education credit for 3A. Civilization and Culture/Introductory.

4. Eastern Religions (4) I. Lai Lecture—3 hours; discussion—1 hour. Eastern religions, including Hinduism, Buddhism, and Taoism from their origins to the present.

10. Introduction to Religious Studies (2) I, II. Lai Lecture—2 hours; discussion—1 hour. General overview of the fundamental ideas and values of Judaism, Christianity, and Islam.

20. Old Testament (4) I. Janowitz Lecture—3 hours; discussion—1 hour. Religion of Ancient Israel from the time of Abraham to the post-exilic period, as contained in the Hebrew Bible. Emphasis on such key Biblical themes and institutions as: monotheism, revelation, law, covenant, holiness, creation, prophecy, priesthood, wisdom, and apocalyptic. General Education credit: Civilization and Culture/Introductory.

60. Introduction to Islam (4) III. Metcalf Lecture—discussions—4 hours. Introduction to topics at core of Islamic tradition including Muhammad, the Qur'an, Islamic law, Sufism and sects as well as to selected topics from the modern period. General Education credit: Civilization and Culture/Introductory.

70. Introduction to Buddhism (4) I. Lai Lecture—3 hours; term paper (30 hours minimum preparation). Lectures, readings, and discussions on the development of Buddhism in India, China, and Japan; its influence on East Asian culture.

75. Chinese Philosophy: An Introduction (3) I. Lai Lecture—2 hours; discussion—1 hour. Introduction to Chinese philosophy from classical to modern times: emphasis on basic metaphysics and its change over time, including Confucian humanism, Taoist cosmology, the Han synthesis of Tao, Yin-Yang and Five Elements; its impact on Buddhism, Sung new synthesis and conflict with the West. Offered in alternate years.

96. Directed Group Study (1-5), I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only.)

99. Special Study for Lower Division Undergraduates (1-5). I, II, III. The Staff (Chairperson in charge)

Upper Division Courses

102. Christian Origins (4) III. Hurst Lecture—discussions—3 hours; term paper. Prerequisite: course 46; course 23 recommended. Beginning of the Christian faith seen in relation to milieu in which it originated. Offered in alternate years.
110. Life, Meaning and Identity. 4 (II) Lai
Lecture/Discussion—3 hours; term paper. Prerequisite: course 1 or 2 or upper division standing. Study of religious lives, the quest for meaning and for personal identity; how religions frame the problems of life; how cultural and personal crises affect youthful identity; the nature and structure of dreams, myths, and ideals. Offered in alternate years.

115. Mysticism. 4 (I) The Staff
Lecture/discussion—4 hours. Prerequisite: one lower division Religious Studies course (except 10, 98, or 99). Course intended primarily for Religious Studies majors with others admitted. Historical and descriptive analysis of selected mystical traditions, and of selected key figures; readings of representative mystical authors.

122. Studies in Biblical Texts. 4 (I) Janowitz
Lecture—3 hours; term paper. Prerequisite: course 21. Study of a book from the Prophets or writings from critical, historical, and religious perspectives. May be repeated once for credit in different subject areas.

*124. Topics in Judaism. 3 (II) Janowitz
Lecture—3 hours; term paper. Prerequisite: course 23. Examination of selected aspects of Jewish life, religion, or literature. May be repeated once for credit in different subject areas.

130. Topics in Religious Studies. 4 (II) The Staff (Chairperson in charge)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 2 or consent of instructor. Thematic study of a phenomenon in more than one religious tradition or of the relationship between religion and another cultural phenomenon; review of theory and method included. May be repeated twice for credit in different subject areas.

140. Christian Theology. 4 (II) Hurst
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 2 or consent of instructor. Thematic study of a phenomenon in more than one religious tradition or of the relationship between religion and another cultural phenomenon; review of theory and method included. May be repeated twice for credit in different subject areas.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Life and thought of the early Church as reflected by the Synoptic Tradition—Matthew, Mark, Luke, and Acts. Offered every third year to alternate with 141B, 141C. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Comparative Literature 1, Integrated Studies 28, Philosophy 1, or Religious Studies 40.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Life and thought of the early Church as reflected by the Johannine Tradition—the Gospel and letters of John. Offered every third year to alternate with 141A, 141C. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Comparative Literature 1, Integrated Studies 28, Philosophy 1, or Religious Studies 40.

Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Life and thought of the early Church as reflected by the Pauline Tradition—the letters of Paul. Offered every third year to alternate with 141A, 141B. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Comparative Literature 1, Integrated Studies 28, Philosophy 1, or Religious Studies 40.

*145. Contemporary American Religion. 4 (II) The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 40 and History 17B recommended. Examination of several major movements and phenomena in twentieth-century American religion. Offered in alternate years.

*150. Religious Ethics. 4 (II) Lai
Lecture/discussion—4 hours. Prerequisite: course 4. Study of the religious bases to ethics through concern on the ethical aspects of one major tradition, or through a comparison of the attitudes of two or more traditions to a common ethical issue. Offered every three years.

*168. Hinduism. 4 (II) The Staff
Lecture—3 hours; term paper. Prerequisite: course 4. Hindu tradition from ancient to modern times. Multiplicity of religious forms within Hinduism with mention of Jainism, Buddhism, and Sikhism and their relation to the mainstream of Hindu religion. Offered in alternate years.

*172. Ch'an (Zen) Buddhism. 4 (II) Lai
Lecture/discussion—3 hours; term paper. Prerequisite: course 4 recommended. Doctrines and methods of the patriarchs and great masters, both ancient and modern, in the framework of the orthodox Buddhist tradition. Doctrinal basis of meditational techniques.

178A-E. Undergraduate Prossem IPL in Religion and Culture. 2 (I) Ceaseffrano
Lecture/discussion—4 hours. Prerequisite: upper division standing and one course in religious studies or consent of instructor. Individual topics are discussed by lecturers from this campus and elsewhere. Each student writes a term paper in one of these areas. Groups of three: (A) Idioms of Religion, (B) Cultural and Social Context of Religion, (C) Religion and Mind, (D) Religion and Visual Arts, (E) Religion, Music, and Drama. (I, P, N) Grading only.

189. Senior Colloquium I (4) II. The Staff (Chairperson in charge)
Seminar—3 hours; term paper. Prerequisite: consent of instructor. Primarily for seniors in Religious Studies. Discussion in depth of a problem in religion which requires the methods of several disciplines and is important in the encounter between religions.

198. Directed Group Study I (1-5) II, II, III. The Staff (Chairperson in charge)
Prerequisite: upper division standing and consent of instructor. (P, N) Grading only.

199. Special Study for Advanced Undergraduates I (5-1) II, III. The Staff (Chairperson in charge) (P, N) Grading only.

Reproduction
(School of Veterinary Medicine)

Irwin K. M. Liu, D.V.M., Ph.D., Acting Chairperson of the Department
Department Office, 1136 Medical Science 1A
916-752-1306

Faculty
Domenico Bernocco, D.V.M., Libera Docenza, Associate Professor
Robert H. Bondurant, D.V.M., Professor
Ann Trommershausen Bowling, Ph.D., Adjunct Professor
Emma Z. Dobris, Ph.D., Assistant Adjunct Professor
Edward C. Feldman, D.V.M., Professor
Bill L. Lasley, Ph.D., Professor in Residence
Irwin K. M. Liu, M.D., Professor
James Murray, Ph.D., Associate Professor (Reproduction, Animal Science)
Don A. Rowe, D.V.M., Ph.D., Assistant Professor
George H. Staufenberg, D.V.M., Ph.D., Professor
Emeriti Faculty
John P. Hughes, D.V.M., Professor Emeritus
Clyde J. Sturmon, Ph.D., Professor Emeritus

Courses in Reproduction

Lower Division Course
92. Internship in Veterinary Science (1-4) II, III. The Staff (Stabenfeldt in charge)
Discussion laboratory—1-4 hours; clinic—3-36 hours; final report. Prerequisite: approval of project prior to period of internship by faculty sponsor.

Rhetoric and Communication

(Office of Letters and Science)

John L. Vohs, Chairperson of the Department
Department Office, 224 ACB 4 (916-752-1221)

Faculty
Don P. Abbott, Ph.D., Associate Professor
Reina Alcalay, Ph.D., Assistant Professor
Leslie A. Baxter, Ph.D., Professor
Robert A. Bell, Ph.D., Associate Professor
Charles P. Berger, Ph.D., Professor
Carole Britz, Ph.D., Associate Professor
Michael T. Molley, Ph.D., Professor
John L. Vohs, M.A., Senior Lecturer

Emeriti Faculty
James J. Murphy, Ph.D., Professor Emeritus
Ralph S. Pomeroy, Associate Professor Emeritus

The Major Program

The major in rhetoric and communication centers on human beings as communicators, on the ways in which messages and their use influence our lives.
The Program. The program of study in rhetoric and communication examines communication from several points of view. Courses are offered which deal with both historical and contemporary perspectives. Other classes focus on language and the symbolic components of messages. Persuasion and argumentation are studied as well. In addition, it is important to examine communication as it occurs in various kinds of social settings, and therefore the department also offers courses in public communication, mass communication, interpersonal communication, and organizational communication.

Career Alternatives. Rhetoric and communication graduates have found careers in such fields as broadcasting, journalism, administration, sales, management, politics and government, education, social work, and public relations. A rhetoric and communication degree is also excellent preparation for law school or other graduate programs.

A.B. Major Requirements:

Preparatory Subject Matter 8
- Rhetoric and Communication 1, 3, 5, 8

Depth Subject Matter 44
- Rhetoric and Communication 110, 114, 115, 116
- One course from each of the following five groups 20
 - (a) Rhetoric and Communication 103, 105, 106, 107
 - (b) Rhetoric and Communication 111, 112, 113
 - (c) Rhetoric and Communication 121, 122, 123, 125
 - (d) Rhetoric and Communication 130, 134, 136, 139
 - (e) Rhetoric and Communication 140, 141, 143

Two additional upper division courses in Rhetoric and Communication 8

Total Units for the Major 52

Letter Grades. Courses to satisfy major requirements should be taken with letter grades, except for variable unit courses.

Advising Office. Room 218, AOB 4

Minor Program Requirements:

Units
- Rhetoric and Communication 24
 - One course from Rhetoric and Communication 1, 3, 5, 8
 - A coherent sequence of at least five upper division courses in rhetoric and communication selected with the approval of a minor adviser 20

Graduate Study. The Department of Rhetoric and Communication offers programs of study and research leading to the M.A. degree in Rhetoric and Communication. Detailed information may be obtained from the Graduate Adviser, Department of Rhetoric and Communication.

Graduate Adviser. J.L. Vols.

Courses in Rhetoric and Communication

Subject A. Students must have passed the Subject A requirement before taking any course in Rhetoric and Communication.

Lower Division Courses

1. Introduction to Public Speaking (4) I, II, III. The Staff
 - Lecture—1 hour, discussion—3 hours. Practice in the broadcast delivery of speeches with an introduction to rhetorical theory and criticism as applied to public address.

2. Group Communication (4) I, II, III. The Staff
 - Chairperson on charge. Lecture/discussion—4 hours. Study of communication in small group situations. Role of communication in various group processes, including leadership and decision-making. Participation in group activities and simulation exercises.

50. Introduction to Argument (4) II, III. The Staff

99. Special Study for Undergraduates (1-5) I, II, III. The Staff
 - Chairperson in charge. Prerequisite: consent of instructor. (P/NP grading only)

Upper Division Courses

100. Analysis of Massage Systems (4) I, II. Baxter
 - Lecture—4 hours. Examination of elements of the communication process, including sources, messages, media, and receivers. Study of the role of these elements as they are influenced by various communicative situations.

105. Semantic and Pragmatic Functions of Language (4) I. Motley
 - Lecture—4 hours. Prerequisite: course 115. The role of language in shaping attitudes and perceptions of self and others. The use and abuse of verbal symbols in communicative situations. Concepts of meaning in discourse.

110. Origins of Rhetoric (4) II, III. Abbott

113. Current Humanistic Trends in Rhetorical Theory (4) I. The Staff
 - Lecture—4 hours. Contemporary developments in traditional rhetorical concepts such as style, meaning, theory of argument, and persuasion.

114. Contemporary Theories of Human Communication (4) I. Williams, III. Olsen
 - Lecture/discussion—4 hours. Rhetoric as a social science, characteristics of social theories, components of theory, development and testing of hypothesis, general models, theories, and research.

115. Empirical Methods in Communication (4) I. Motley, L. Berger
 - Lecture—4 hours. Interpretation of formal and informal scientific reports via the logic and methods of scientific inquiry, with emphasis on experimental and descriptive research in communication.

120. Rhetorical Criticism (4) II. The Staff, III. Blair
 - Lecture—4 hours. Survey of critical methods and their use in the interpretation of rhetorical discourse.

121. Public Address in Western Culture (4) II. The Staff
 - Lecture/discussion—4 hours. Notable and representative speeches from antiquity to the present. Speeches are examined both as dynamic and significant events in their historical contexts, and as noted instances of rhetorical art.

122. Public Discourse in American Culture (4) III. The Staff
 - Lecture—4 hours. Major individuals, movements, and media. Case studies of rhetoric as it has contributed to and is influenced by American culture. Variables of content, context, and audience over time.

124. Rhetoric of Social Issues (4) I. Brown

125. Freedom of Speech (4) III. Abbott
 - Lecture/discussion—4 hours. Historical developments of and contemporary controversies in freedom of speech. Political dissent, symbolic speech, slander and obscenity. Offered in alternate years.

126. Rhetorical Criticism Practicum (4) I, II. The Staff
 - Lecture—4 hours. Prerequisite: course 120. Practice in critical analysis and evaluation of rhetorical situations. Application of various critical theories and perspectives in understanding rhetorical situations. Techniques for the analysis of a variety of genres: ideological positions, effects, and language functions.

130. Group Communication Processes (4) I, II. Vols
 - Lecture—4 hours. Examination of current theories of group formation and leadership, as they relate to communication processes.

134. Interpersonal Communication (4) II, III. Baxter
 - Lecture—4 hours. Prerequisite: course 1, 3, or 10, or the equivalent. Examines between two individuals in social and task settings. One-to-one communication, verbal and nonverbal, in developing relationships. Consideration of theory and research on relevant variables such as shyness, self-disclosure, reciprocity, games, and conflict.

135. Nonverbal Communication (4) I. Berger Seminar—4 hours. Examination of the interaction between nonverbal communication and verbal communication channels in influencing outcomes in interpersonal and mass mediated communication contexts. Understanding of how nonverbal communication will also be considered.

136. Organizational Communication (4) I. Vols
 - Lecture—4 hours. Examines communication in various organizational situations. Focuses on the use of effective communication strategies for achieving organizational and individual goals. Emphasis is placed on identifying and ameliorating ineffective communication within organizations.

138. Communication and Cognition (4) III. Berger Seminar—4 hours. Prerequisite: upper division standing. Relationships between communication and cognition. Models of discourse comprehension and production, the influence of language attitudes on social judgments, and the effects of information processing on decision making are explored. Offered in alternate years.

140. Mass Communication and the Public (4) I. Marshall
 - Lecture—4 hours. Current issues in mass communications policy, with emphasis on the broadcast media. Examination of the economic and legal influences on media performance; the role of public broadcasting; the social impact of technological advances, including cable television and communica-

141. Mass Communication Theory and Research (4) III. Alcott
 - Lecture—4 hours. Prerequisite: course 115, or the equivalent course in social science research methods. Recent developments in the study of mass communications content and effects, with emphasis on the broadcast media. Special attention to the function of television for selected audiences: children, minorities, the aged.

142A. News Politics and Practices in Television (2) I. The Staff (Chairperson in charge)
 - Lecture—2 hours. Prerequisite: course 140 or 141, or consent of instructor. Prerequisite or constraints in gathering, editing, and reporting the news in the broadcast media, as examined by a practicing professional.

142B. News Politics and Practices in the Press (2) I. The Staff (Chairperson in charge)
 - Lecture—2 hours. Prerequisite: course 140 or 141, or consent of instructor. Processes and constraints in gathering, editing, and reporting the news in the print media, as examined by a practicing professional.

143. Media Criticism: Broadcast (4) III. The Staff
 - Lecture—4 hours. Prerequisite: two or one major writing assignments. Analysis, interpretation and evaluation of broadcast media content, employing various critical frameworks including genre stud-
lies, mythological and dramaturgical criticism, linguistic analysis, iconographic criticism, and theories of popular culture.

145. Mass Communication and Social Change (4) I. Alcalay
Lecture—4 hours. Prerequisite: course 115 or the equivalent. Study of communication campaigns as a way to effect social change. Effect on people's behaviors which occur via mass media and interpersonal communication. Focus on the theory and practice of campaigns in such areas as health, intercultural and international communication.

151. Methods of Advocacy (4) I. II. The Staff
Lecture—4 hours. Prerequisite: course 51 or consent of instructor. Studies methods and techniques employed in the effective advocacy of positions on current controversial issues. Relation of inquiry and explanation to advocacy. Consideration of logical and nonlogical means of argumentation.

152. Theories of Persuasion (4) I. III. Bell
Lecture—4 hours. Prerequisite: course 114 or 115 recommended. Theory and research on the effectiveness of various communicative techniques used to influence the perceptions and behaviors of others. Focus on scientific research into the processes of persuasion and resistance to persuasion in various contexts. General Education credit: Contemporary Societies/Non-Introductory. Recommended GE preparation: Sophomore 2 or 3.

180. Current Topics in Rhetoric (4) I. II. III. The Staff
Seminar—4 hours. Prerequisite: upper division standing with a major in Rhetoric and Communication or consent of instructor. Group study of a special topic in Rhetoric and Communication. May be repeated once for credit. Enrollment limited.

192. Internship in Rhetoric and Communication (1-6) I. II. III. The Staff
Internship—3-18 hours. Prerequisite: declared major in Rhetoric and Communication and 20 units of upper division Rhetoric and Communication courses. Work-research projects, usually off-campus sites under departmental supervision. May be repeated for credit up to 12 units. Units do not count toward major requirement. (P/NP grading only)

194H. Senior Honors Thesis (4) I. II. III. The Staff (Chairperson in charge)
Seminar—1 hour; individual tutoring on research project—3 hours. Prerequisite: senior standing and approval by Honors Committee. Directed reading, research, and writing culminating in the preparation of honors thesis under direction of faculty adviser.

197T. Tutoring in Rhetoric and Communication (2-4) I. II. III. The Staff (Chairperson in charge) Seminar — 2-4 hours. Prerequisite: upper division standing with major in Rhetoric and Communication and consent of Department Chairperson. Tutoring in undergraduate Rhetoric and Communication courses, including leadership in small voluntary discussion groups affiliated with departmental courses. May be repeated for credit up to six units. (P/NP grading only)

198. Directed Group Study (1-5) I. II. III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I. II. III. The Staff (Chairperson in charge) (P/NP grading only)

Graduate Courses
Seniors may take graduate courses with consent of instructor.

210. Contemporary Rhetorical Theory (4) I. Abbott
Lecture—4 hours. Prerequisite: upper division course in rhetorical theory/criticism or the equivalent. Rhetorical thought in the twentieth century. Processes of rhetorical invention, arrangement, style, and delivery. In the works of Kenneth Burke, I.A. Richards, Richard Weaver, Chaim Perelman, and Stephen Toulmin.

212. Perspectives on Rhetorical and Communication Theory (4) I. Blair
Seminar—4 hours. Prerequisite: graduate standing in Rhetoric and Communication. Nature and role of paradigms and theories in developing knowledge about communication. Examination of current theoretical perspectives in rhetoric and communication.

214. Mass Communication Theory and Research (4) I. Alcalay
Seminar—4 hours. Prerequisite: course 220 or the equivalent. Examines the basic theories, models, and assumptions of mass communication. Reviews the major theories of the discipline and major research developments. Special emphasis on research regarding media and violence, women and minorities, political communication, and new technologies.

215. Mass Communication and Social Change (4) I. Alcalay
Seminar—4 hours. Prerequisite: course 220 and 214, or the equivalent. To gain an understanding of current theories and concepts in persuasion and mass communication. To explore how principles of persuasion are used in communication campaigns. To acquire skills in the planning, implementation, and evaluation of campaigns. Offered in alternate years.

220. Empirical Methods in Communication (4) I. II. Bell
Lecture—4 hours. Prerequisite: course 115 or consent of instructor. Introduction to the use of experimental and descriptive research methods in communication research. Topics include survey research, interviewing, and quasi-experimental design, and statistics.

222. Practicum in Rhetorical Criticism (4) I. III. The Staff
Seminar—4 hours. Prerequisite: course 120, an equivalent course in criticism, or consent of instructor. Analysis of selected persuasive messages. Particular attention to the rhetorical situation and to elements in the rhetorical process.

240. Advocacy in Contemporary Society (4) I. III. The Staff
Seminar—4 hours. Prerequisite: course 151 or the equivalent. Rhetorical and communication theories of argumentation and advocacy stance. Analysis of the persuasive impact of argumentation occurring in current public controversies. Offered in alternate years.

242. Proseminar in Symbolic Behavior (4) I. III. Motley
Seminar—4 hours. Prerequisite: course 220. Examination of language and other symbolic codes in communication. Investigated phenomena may include stylistic variation, speech acts, cognitive processing, communication rules, and audience effects. Offered in alternate years.

243. Persuasion Theory (4) I. III. Bell
Lecture/seminar—4 hours. Prerequisite: course 152, 212, or consent of instructor. Major scientific theories of persuasion. Research programs related to persuasion theories.

244. Organizational Communication (4) II. Voehl
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Theory and research on communication processes in organizations.

245. Classical Rhetorical Theory (4) I. Abbott
Lecture/seminar—4 hours. Prerequisite: course 110 or the equivalent. Recurrent issues in Greek and Roman rhetorical theory, particularly those in the works of Plato, Aristotle, Cicero, and Quintilian. Special attention to problems of invention and style. Frequent seminar reports including propositions derived from readings.

246. Perspectives on Relation Communication (4) I. III. Baker
Seminar—4 hours. Prerequisite: course 212. Critical survey of the current state of inquiry on communication in personal relationships, i.e., friendship, romantic, and marital relationships. Issues examined include the role of communication in constructing, maintaining, and dissolving relationships.

247. Theories of Rhetorical Criticism (4) I. Blair
Discussion/seminar—4 hours. Prerequisite: one course in rhetorical theory and/or criticism. Historical evolution of critical standards from the pre-Socratic to the twentieth century. Emphasis on contemporary questions of textuality, objectivity, intentionality, and justification.

248. Media Criticism (4) III. The Staff
Seminar—4 hours. Prerequisite: course in criticism. Examine broadcast, print, and visual media by means of rhetorical, psychological, sociological, and cultural studies and perspectives. Comparison of media and of critical theory scope in understanding media messages. Offered in alternate years.

249. Interpersonal Communication Theory (4) I. Baxter
Lecture/seminar—4 hours. Prerequisite: course 134, 211, or consent of instructor. Major theories of interpersonal communication and related research.

250. Special Topics in Rhetoric (4) I. III. The Staff
Conference—4 hours. Selected topics in rhetoric and communication. May be repeated for credit when a different topic is studied.

251. Special Topics in Interpersonal Communication (4) I. Berger
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Selected topics in interpersonal communication. May be repeated for credit when topics change.

252. Special Topics in Mass Communication (4) I. III. The Staff
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Selected topics in mass communication theory and research. May be repeated for credit when topic changes.

253. Negotiation (4) II. Vohs
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Theory and research on negotiating. Offered in alternate years.

255. Medieval and Renaissance Rhetorical Theory (4) I. III. The Staff
Seminar—4 hours. Prerequisite: course in ancient Greek and Roman rhetoric. Rhetorical theory from time of St. Augustine (A.D. 430) to end of Renaissance (A.D. 1700). Three medieval rhetorical genres: Rise of universities. Effect of Renaissance humanism, printing, and science. Influence of major theorists such as Erasmus, Melanchthon, Ramus, and Bacon.

256. Early Modern Rhetorical Theory (4) I. II. III. The Staff
Seminar—4 hours. Prerequisite: course in Classical or Renaissance rhetoric. Development of English and continental theories of rhetoric, 1700-1900. Emphasis upon the works of Priscian, Reid, Campbell, Blair, and Whately. Special attention to psychological, epistemological, and belletristic elements. Offered in alternate years.

260. Communication Applications (2-4) I. II. III. The Staff (Chairperson in charge)
Discussion—1 hour; supervised field work—3-9 hours. Prerequisite: course 220. Field work in communication. Organization and implementation of a research project for a specific application of a communication program. May be repeated once for credit. (SU grading only)

266. Group Study (1-5) I. II. III. The Staff (Chairperson in charge)
Lecture—3 hours.

299. Individual Study (1-12) I. II. III. The Staff (Chairperson in charge)
(SU grading only)

299R. Thesis Research (1-12) I. II. III. The Staff (Chairperson in charge)
Independent study—3-36 hours. Prerequisite: graduate standing in Rhetoric and Communication. (SU grading only)

Professional Course

390. Teaching Communication Skills at the College Level (4) I. The Staff (Chairperson in charge)
Lecture—2 hours; discussion—1 hour; laboratory—4 hours. Prerequisite: graduate standing or consent of instructor. Problems of teaching basic communication skills courses at the college level. (SU grading only)

*Course not offered this academic year.
Russian

Russian (College of Letters and Science)
James Gallant, Ph.D., Program Director
Program Office, 422 Sproul Hall (914-752-4171)

Committee in Charge
Robert O. Crumney, Ph.D. (History)
James Gallant, Ph.D. (Russian)
Lawrence J. Grant, M.A. (Russian)
Harriet Murav, Ph.D. (Russian)
Daniel Rancou-Lafriere, Ph.D. (Russian)

Faculty
Yuri Druzhnikov, Ph.D., Associate Professor
James Gallant, Ph.D., Lecturer
Lawrence J. Grant, M.A., Lecturer
Harriet Murav, Ph.D., Associate Professor
Daniel Rancou-Lafriere, Ph.D., Professor
Valerie A. Tumin, Ph.D., Professor Emeritus

The Major Program
The Russian major exposes students to a culture rich in art, language, and literature and presents an important skill needed to enter the fields of foreign affairs, world politics, and international trade, or to begin graduate work in literature, history, and international relations.

The Program. The department offers a choice of three emphases. The common basis for the first two is an extensive training in the Russian language. The Russian Literature emphasis concentrates on the evaluation of Russian literary movements and cultural trends. The second area of study, the Russian Language emphasis, focuses on linguistics and practical language skills. The third area, the Russian Area Studies emphasis, provides an interdisciplinary program offering training in the Russian language and literature and in the historical development and contemporary social, political, and economic conditions of the former Soviet Union.

Internships, Study Abroad, and Career Alternatives. Students who have completed two years of Russian language study can participate in the Education Abroad Program at the Pedagogical Institute in St. Petersburg, Russia. Many of our students also participate in summer, semester, and year programs, sponsored by CIEE and ACT, in St. Petersburg and Moscow. Russian majors may participate in internships in which they can serve as translators and interpreters for schools and businesses in the former Soviet Union. The department encourages students to supplement their Russian studies with courses in related fields such as international relations, political science, computer science, or economics in order to maximize their career possibilities.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>0-38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature/Language emphasis</td>
<td>Russian 1 through 6 (or the equivalent)</td>
</tr>
<tr>
<td>Area Studies emphasis</td>
<td>Russian 1 through 6 (or the equivalent)</td>
</tr>
<tr>
<td>Russian Literature emphasis</td>
<td>Russian 41 or 42 or the equivalent course in basic literary analysis</td>
</tr>
<tr>
<td>Russian Language emphasis</td>
<td>Russian 101A, 101B, 101C</td>
</tr>
<tr>
<td>Russian 102 or 103</td>
<td>4</td>
</tr>
<tr>
<td>Russian 103 or 104</td>
<td>4</td>
</tr>
<tr>
<td>Russian 160</td>
<td>4</td>
</tr>
<tr>
<td>Additional upper division units chosen in consultation with advisor</td>
<td>8</td>
</tr>
</tbody>
</table>

Russian Area Studies emphasis	Russian 105	4
Russian 101A, 102, or 104	4	
Russian 150	3	
Three literature courses to be chosen from Russian 121, 123, 126, 128, 140, 141	12	
History 137B, 137C	8	
Three courses, with no more than two in one area, to be chosen from the following two areas:	(a) History 137A, 138, 102F, (b) Social sciences - Political Science 136, Economics 117, Geography 124	12
To meet special interest course needs, a student should obtain written approval from an advisor	4	

Total Units for the Major: 44-78

Major Adviser: L.J. Grant

Honors and Honors Program. The honors program comprises at least one quarter of study under course 194H, which will include a research paper. See also the University and College requirements.

Minor Program Requirements:
Two minor programs are available to students interested in obtaining a solid background in Russian language or literature. The literature minor does not require a knowledge of the Russian language. Individual minor programs may be designed in consultation with the undergraduate adviser.

Russian Language emphasis	20
Russian Literature emphasis	20
Russian Area Studies emphasis	20

Courses in Russian

Upper Division Courses

Russian Language emphasis	Russian 101A, 101B, 101C	12
Russian 102 or 103	4	
Russian 103 or 104	4	
Russian 160	4	

Additional upper division units chosen in consultation with advisor | 8 |

Russian Area Studies emphasis	Russian 105	4
Russian 101A, 102, or 104	4	
Russian 150	3	
Three literature courses to be chosen from Russian 121, 123, 126, 128, 140, 141	12	
History 137B, 137C	8	
Three courses, with no more than two in one area, to be chosen from the following two areas:	(a) History 137A, 138, 102F, (b) Social sciences - Political Science 136, Economics 117, Geography 124	12
To meet special interest course needs, a student should obtain written approval from an advisor	4	

Total Units for the Major: 44-78

Major Adviser: L.J. Grant

Honors and Honors Program. The honors program comprises at least one quarter of study under course 194H, which will include a research paper. See also the University and College requirements.

Minor Program Requirements:
Two minor programs are available to students interested in obtaining a solid background in Russian language or literature. The literature minor does not require a knowledge of the Russian language. Individual minor programs may be designed in consultation with the undergraduate adviser.

Russian Language emphasis	20
Russian Literature emphasis	20
Russian Area Studies emphasis	20

Courses in Russian

Lower Division Courses

Course Placement. Students with two years of Russian in high school normally continue in Russian 2; those with three years, Russian 3; those with four years, Russian 4.

1. Elementary Russian (5) I, II. Grant in charge. Discussion—5 hours, laboratory—1 hour. Introduction to Russian; development of oral and written skills in Russian 1. Students must have successfully completed Russian 2 or 3 in the 10th or 11th grade in high school. May receive unit credit for this course on a P/NP grading basis only. A passing grade will be charged to the student's P/NP option. A student who is not a major cannot register for this course.

2. Intermediate Russian (5) II. Grant in charge. Discussion—5 hours, laboratory—1 hour. Prerequisite: course 1. Introduction to oral and written skill developed in course 1.

3. Elementary Russian (5) III. Grant in charge. Discussion—5 hours, laboratory—1 hour. Prerequisite: course 2. Introduction to oral and written skills developed in course 2.

4. Intermediate Russian (4) I. Grant and staff. Discussion—4 hours, laboratory—1 hour. Prerequisite: course 3. Grammar review and conversational practice.

6. Intermediate Russian (4) III. Grant and staff. Discussion—4 hours, laboratory—1 hour. Prerequisite: course 5. Grammar review. Conversation and continued reading in literature.

7. Elementary Conversation (4). I, II, III, IV. The Staff. Discussion—4 hours. Prerequisite: courses 2, 3, or 4 (concurrently). Conversational practice to improve pronunciation and master spoken idioms. May be repeated for credit up to a maximum of 6 units.

8. Survey of Nineteenth-Century Russian Literature (in English) (4) E. Lecture—3 hours. Introduction to major literary trends, major literary figures, and landmarks of Russian prose and poetry from the period of Sentimentalism through Realism and Realism to the beginnings of Modernism. Offered in alternate years.

9. Survey of Twentieth-Century Russian Literature (in English) (4) E. Rancou-Lafriere Lecture—3 hours. Introduction to major literary trends such as Symbolism, Romanticism, Futurism, Neo-realism, and Socialist Realism. Readings from representative writers such as Gorky, Bely, Pasternak, Solzhenitsyn, and Terz. Offered in alternate years.

11. Directed Group Study (1-5) F, G, III, IV. The Staff. Discussion—1.5 hours. (P/NP grading only)

12. Special Study for Undergraduates (1-5) I, II, III. The Staff (In person). Credit for this course is limited to the General Education credit; Civilization and Culture.
sian. One composition on a different topic each week. Topics include: history, geography, politics, and literature of Russia; comparison of Soviet and American lifestyles; current events. Conducted in Russian. Offered in alternate years.

103. Literary Translation (4) III. Murav
Discussion—3 hours; individual translation projects—1 hour. Prerequisite: course 101A. Techniques of translating Russian scientific texts. Science students will select articles from their fields of interest. Russian students will work on materials assigned by instructor. Offered in alternate years.

*104. Scientific Translation (4) III. Rancour-Laferie
Discussion—3 hours; preparation of texts—1 hour. Prerequisite: course 6. Intensive conversational practice and discussion based on current events and contemporary texts. Offered in alternate years.

121. Nineteenth-Century Russian Prose (in English) (4) II. Druzhnikov
Lecture—3 hours; term paper. Development of prose from Pushkin and Gogol, through Dostoevsky and Tolstoy, to Maxim Gorky. Other writers are selected sequentially: Turgenev, Goncharov, Pisemsky, Saltykov, Chekhov, Dostoevsky, and Tolstoy. An introduction to the concept of realism and a brief historical perspective. Offered in alternate years.

*122. The Russian Theater (in English) (4) III. The Staff
Lecture—3 hours; discussion—1 hour. The works of Russian authors from Gogol to the present, including Turgenev, Tolstoy, Chekhov, Gorky, Mayakovsky, Bulgakov, Shvarts. Offered in alternate years.

127. Nineteenth-Century Russian Poetry (4) I. Rancour-Laferie
Discussion—3 hours; term paper. Prerequisite: course 6. Introduction to the principles of Russian versification followed by historical and poetic analysis of the following figures: Pushkin, Gogol, A. Chekhov, Nekrasov, Turgenev, and Saltykov. Offered in alternate years.

128. Twentieth-Century Russian Poetry (4) I. Rancour-Laferie
Discussion—3 hours; term paper. Prerequisite: course 6. Introduction to the principles of Russian versification followed by historical and poetic analysis of the following figures: Pushkin, Gogol, A. Chekhov, Nekrasov, Turgenev, and Saltykov. Offered in alternate years.

130. Contemporary Soviet Culture (4) III. Murav
Lecture—3 hours; written work. Prerequisite: upper division standing or consent of instructor. Knowledge of Russian not required. Investigation of current trends in Soviet culture and the intricate relationship between artists and the government. Topics include: history of censorship, official and dissident art, recent changes in the cultural scene. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from GE Literature Preparation List.

*131. Literature of Revolution (4) II. Murav
Lecture—3 hours; essays. Prerequisite: History 3 or 4C, and/or any introductory literature course. Study of impact of revolution on society and culture; the major artistic, political and historical works surrounding the Russian revolutions of 1905 and 1917. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List, or History 3 or 4C.

Lecture—3 hours; discussion—1 hour. Prerequisite: introductory course in environmental studies. Lectures and discussions on the history of the Soviet environmental movement from the 1920s to the present, showing the interaction between environmental concerns and society, and how these concerns are reflected in Soviet culture; the role of the environment in Soviet society and culture; the relationship between Soviet culture and the environment; and comparison of Soviet and Russian environmental policies. Offered in alternate years.

140. Dostoevsky (in English) (4) III. Murav
Lecture—3 hours; reading and analysis of Dostoevsky's primary works such as Crime and Punishment, The Idiot, The Brothers Karamazov, and The Diary. Study of social and political views as reflected in Dostoevsky's works. Offered in alternate years.

*141. Tolstoy (in English) (4) II. Druzhnikov
Lecture—3 hours; term paper. Study of Tolstoy's literary evolution and moral quest. Readings include his Confession, a major novel such as War and Peace or Anna Karenina, and representative shorter fiction. Offered in alternate years.

142. Women's Autobiography (in English) (4) II. Murav
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: introductory course in literature. An examination of Russian women's autobiography from the 18th through the 20th centuries, emphasizing the way in which the genre of autobiography serves as a means of the writer's creation of herself, as opposed to her definition by others. Offered in alternate years.

150. Russian Culture (4) III. The Staff

151. Soviet Writers and Censorship (4) II. Druzhnikov
Lecture—3 hours; discussion—1 hour. Prerequisite: introductory course from the GE Literature Preparation List or consent of instructor. Literature and censorship in the Soviet Union. Personal responsibility of the author for the content and morality. Soviet myths and Soviet realities. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: any course from the GE Literature Preparation List.

154. Russian Folklore (4) III. Rancour-Lafriere
Lecture—3 hours; term paper. Knowledge of Russian not required. Russian folklore, rituals, and history will be analyzed and compared with folklore of other peoples. Sociological implications of attitudes toward family unit, children, etc. Influences of folklore on Russian literature and historiography. Offered in alternate years.

160. Russian Phonology and Morphology (4) II. Gallant
Lecture—3 hours; laboratory—1 hour. Prerequisite: courses 101A, 101B, or consent of instructor. Linguistic analysis of the Russian sound system and of Russian word formation. Offered in alternate years.

166. Representations of Sexuality in Russian Literature (4) I. Rancour-Lafriere
Lecture—3 hours; term paper. Prerequisite: Women's Studies 52, or introductory psychology. Sexuality in Russian oral and written literature from a dual, feminist psychoanalytic perspective. Monogamy, free love, sexism, homosexuality, incest, androgyny, and other sexual behaviors as defined by such writers as Pushkin, Gogol, Tolstoy, Dostoevsky, Akhmatova, Blok, Tolstoy, and others. General Education credit: Civilization and Culture/Non-Introductory. Recommended GE preparation: Women's Studies 50 or introductory psychology.

192. Research Essay (3) I, II, III. The Staff
Prerequisite: Russian literature course (may be taken concurrently). A research essay, based on primary and secondary sources, dealing in depth with a topic selected in consultation with written in Russian. May be repeated for credit.

194H. Special Study for Honors Students (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: open only to honors students. Guided research with written in Russian. May be repeated for credit.

196. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(P/F grade only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/F grade only.)

Graduate Courses

200. Old Church Slavonic (4) I. Gallant
Lecture—3 hours; readings projects. A synchronic and diachronic analysis of Old Church Slavic. Offered in alternate years.

202. History of the Russian Language (4) II. Gallant
Seminar—3 hours; individual reading projects—1 hour. Prerequisite: course 200 or consent of instructor. Survey of Russian historical grammar and development of Russian literary language. Reading in the orijinal texts from eleventh to eighteenth century. Offered in alternate years.

204. Descriptive Russian Grammar (4) III. Gallant
Lecture—3 hours; reading projects—1 hour. Introduction to modern Russian phonology and morphology. Offered in alternate years.

210A. Style and Syntax (4) I. Druzhnikov
Discussion—3 hours; reading projects—1 hour. Prerequisite: course 204 or consent of instructor. Examination of stylistic differences between spoken and written Russian.

210B. Style and Syntax (4) II. Druzhnikov
Discussion—3 hours; reading projects—1 hour. Prerequisite: course 204 or consent of instructor. Examination of stylistic differences between spoken and written Russian.

210C. Russian Style and Syntax (4) III. Druzhnikov
Discussion—3 hours; term paper. Prerequisite: course 210B or consent of instructor. Students present formal papers and talks on political, economic, social, and cultural topics, and present in Russian. Conducted in Russian.

220. Old Russian Literature (4) II. The Staff
Seminar—3 hours. Advanced study of intellectual movements and literary styles of works such as The Song of Igor's Campaign, Zadonshchina, Epiphany's Life, Ivan IV's cycle of epistles. May be repeated for credit when different topics are studied. Offered in alternate years.

221. Eighteenth-Century Russian Literature (4) II. The Staff
Seminar—3 hours. Advanced study of literary movements and styles in prose or poetry. Prerequisite: course 220 or consent of instructor. Conducted in Russian. May be repeated for credit when different topics are studied. Offered in alternate years.

222. Nineteenth-Century Russian Literature (4) I. Rancour-Lafriere, Murav
Seminar—3 hours. Advanced study of the works of one or several writers or movements of the period. May be repeated for credit with consent of instructor when different topics are studied. Offered in alternate years.

223. Early Twentieth-Century Russian Literature (4) I. Rancour-Lafriere
Seminar—3 hours. Advanced study of one or more of the modernist movements in Russian literature, including Symbolism, Achronism, and Futurism. May be repeated for credit when different topics are studied. Offered in alternate years.

*Course not offered this academic year.
Scandinavian

224. Soviet Russian Literature (4) I. Raccoon-Larner, Dzhuinukov Seminar—3 hours. Analysis of selected works of Russian prose and poetry with particular emphasis on works of extraordinary literary merit or of unusual importance in the development of genres, schools, styles, techniques, and various formal elements. May be repeated for credit when different topics are studied. Offered in alternate years.

230. Pushkin Studies (4) I. Dzhuinukov Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: graduate standing or consent of instructor. The life and works of Pushkin; the history of Pushkin studies up to and including present-day controversies about Pushkin. Evaluations of Pushkin by both Russian and Western scholars. Images of Pushkin and the official myths that surround him. Conducted in Russian; readings in Russian and English.

250. Languages of Culture: Formalism, Semiotics, and Dialogue (4) A. Murav Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Critical paradigms of formalism, semiotics, and "post-structural" methods of M. Bakhtin, viewed in their historical and philosophical contexts. Extensions and critical evaluations of these paradigms in literary criticism, history, anthropology.

260. Group Study I (1-5) I, II, III. The Staff (Director in charge)

299. Research I (1-12) I, II, III. The Staff (Director in charge) (SU grading only)

Professional Course

300. The Teaching of Russian (2) I. Grant Discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Workshop in language teaching methods. Students audit classes in progress and teach under faculty supervision. Required of new and prospective teaching assistants.

Social Theory and Comparative History

William W. Hagen, Ph.D., Program Director
Program Office: 204 Regency Square (2nd and D St.), 757-3250
Graduate Study. The program offers study and research leading to the Ph.D. with a designated emphasis in Social Theory and Comparative History. The program provides theoretical emphasis and interdisciplinary perspective to students already preparing for the Ph.D. in one of the participating departments. The additional requirements leading to the designated emphasis consist of three core courses (History 204, Sociology 242A, Social Theory and Comparative History 250), one additional graduate seminar outside the students' Ph.D. department (which may be Social Theory and Comparative History 290), and a special examination. Graduate Advisor: Consult the Program Office for advising and detailed information on application and requirements.

Courses in Social Theory and Comparative History

250. Research in Social Theory and Comparative History (4) I. The Staff Seminar—3 hours; term paper. Prerequisite: admission to Social Theory and Comparative History Designated Emphasis. Theoretically informed research in comparative history. Students read exemplary works and learn to frame their own research projects. Presentations include Center for Comparative Research faculty and visitors discussing current research.

*Sociology

(College of Letters and Science)

Ph.D., Chairperson of the Department
Department Office, 113 Young Hall (916-752-0782)
Advising Office, 108 Young Hall (916-752-0786)

Faculty
Nicole W. Biggar, Ph.D., Professor (Sociology Management)
Fred Block, Ph.D., Professor
Lawrence E. Cohen, Ph.D., Professor
James C. Cramer, Ph.D., Associate Professor
Diane H. Felmlee, Ph.D., Associate Professor
Jack A. Goldstone, Ph.D., Professor
Bruce M. Hackett, Ph.D., Associate Professor
John R. Hamilton, Ph.D., Professor
Gary G. Holland, Ph.D., Professor
Frank Hirtz, Ph.D., Assistant Professor
Mary Jackman, Ph.D., Professor
Carole E. Joffe, Ph.D., Professor (Sociology Women's Studies)
Carl C. Jorgensen, Ph.D., Associate Professor
John F. Lofland, Ph.D., Professor
Ily H. Lofland, Ph.D., Professor
Leon H. Mayhew, Ph.D., Professor
Dario Melossi, Ph.D., Associate Professor
Belinda Robnett, Ph.D., Assistant Professor
Julius A. Roth, Ph.D., Professor
John F. Scott, Ph.D., Professor
Judith Stacey, Ph.D., Professor (Sociology Women's Studies)
John T. Walton, Ph.D., Professor (Anthropology Sociology)
Diane L. Wolf, Ph.D., Assistant Professor

Emeriti Faculty
Edwin M. Lerner, Ph.D., Professor Emeritus

The Major Programs

Sociology is the study of human society in all its manifestations. Its aim is to discover the process and structure of human interaction, to identify the main forces that sustain or weaken social groups, and determine the conditions that transform social life. Sociology, like any science, is a disciplined, intellectual quest for knowledge about the fundamental nature of things.

The Program. The Department of Sociology offers two major programs: Sociology and Sociology-Organizational Studies. Students selecting the Sociology major may choose from four options offered within this major. The General Sociology emphasis allows students to obtain a broad understanding of the concepts, methods, and theories of sociology. This option is designed for students desiring a solid liberal arts education as well as those interested in graduate work in the social sciences. Students with a special interest in the areas of Law and Society or Social Services may choose a more specialized program of courses and practical experience within the sociology major. These options are designed to prepare students for careers in such areas as law, corrections, social work or counseling.

The Comparative Studies and

*Course not offered this academic year.
World Development emphasis provides a sociological perspective on social and economic changes throughout the world, with a focus on relations between "developed" and "underdeveloped" societies. It can prepare students for graduate training leading to careers in international fields. Students are encouraged to consider the Education Abroad Program for their junior year, especially in countries developing.

The Sociology-Organizational Studies major is designed to develop a broad understanding of the political, social, and economic organizations that comprise modern society. This major emphasizes a sociological perspective, but incorporates a multidisciplinary field of study. The major introduces students to a range of theories and methods that social scientists use in the analysis of organizations. Majors in Sociology-Organizational Studies will be prepared for a variety of career options, particularly in the field of management. The major has been specifically designed to meet entry requirements for programs of professional training leading to a Masters degree in public or private management, and may also lead to further study in any of the disciplinary areas incorporated in the major.

The Department of Sociology sponsors the inter-disciplinary minor in War-Peace Studies. Composed of courses from several departments, it is not a minor in Sociology and is entered in transcripts as "War-Peace Studies." For requirements and other details see War-Peace Studies.

SOCIOLGY MAJOR

A.B. Degree Requirements:

General emphasis:

- **Preparatory Subject Matter**
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
 - Select units from Anthropology 1, 2, 3, 4
 - Select units from History 1
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
 - Select units from Philosophy 1
 - Political Science 4

- **Depth Subject Matter**
 - Sociology 126, 127, 128, 129, 130, 131, 132, 133
 - Select two courses each from two of the following seven clusters and one additional course from a third cluster

- **Race and Ethnicity**
 - Sociology 102, 123, 124, 142, 143, 145, 147, 148, 156, 157, 168, 180, 181, 182
 - Select units from Anthropology 1, 2, 3, 4
 - Select units from History 1, 2, 3, 4
 - Sociology 110, 129, 130, 134, 169, 172

- **Power and Politics**
 - Sociology 118, 119, 133, 139, 144, 149, 159, 183

- **Knowledge and Communication**
 - Sociology 124, 125, 126, 135, 136, 175, 176

- **Methodology**
 - Sociology 103, 106 (or the equivalent)
 - Sociology 193, 194A, 194B

- **Total Units for the Major**
 - 68-69

Law and Society emphasis

- **Preparatory Subject Matter**
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
 - Select units from Anthropology 1, 2, 3, 4
 - Select units from History 3, 4, 5, 6, 7, 8
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

- **Depth Subject Matter**
 - Sociology 126, 127, 128, 129, 130, 131, 132, 133

- **Total Units for the Major**
 - 68-69

- **Social Services emphasis**

- **Preparatory Subject Matter**
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

- **Depth Subject Matter**
 - Sociology 131, 140, 145

- **Total Units for the Major**
 - 68-69

- **Social Issues**

- **Preparatory Subject Matter**
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

- **Depth Subject Matter**
 - Sociology 132, 133

- **Total Units for the Major**
 - 68-69

- **Race and Ethnicity**

- **Preparatory Subject Matter**
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

- **Total Units for the Major**
 - 68-69

- **Comparative Studies and World Development emphasis**

- **Preparatory Subject Matter**
 - Sociology 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

- **Depth Subject Matter**
 - Sociology 141, 145, 165, 170

- **Total Units for the Major**
 - 68-69

- **Economics 100 or Agricultural Economics 100**

- **Total Units for the Major**
 - 68-69

- **Consult a major adviser to determine equivalents.**

Major Advisers: Consult the Departmental Advising Office, 109 Young Hall.

Honors Program: An Honors Program is available to Sociology and Sociology-Organizational Studies majors who have demonstrated excellence in their field of study. To be eligible for the program, students must have a grade-point average of 3.5 in the major and the recommendation of a faculty sponsor familiar with their work. In addition to meeting the standard major requirements, the honors program includes an honors thesis and participation in a two-semester honors seminar (course 194A-194B). Successful completion of the honors program, when combined with College GPA requirements, enables the student to graduate with Highest Honors or with High Honors.

Minor Program Requirements:

- The Department of Sociology has established the following minor programs of study.

- **Sociology—General**
 - Sociology 126, 127, 128, 129, 130, 131

- **Sociology—Organizational Studies**
 - Sociology 180 and 180B

- **Sociology—Social Service**
 - Sociology 185, plus 4 units selected from Sociology 121, 134, 135

- **Four units from Sociology 143A, 143B, 150, 156B, 180A or 180B, 181**

Course not offered this academic year.
Courses in Sociology

Lower Division Courses

1. Introduction to Sociology (5) II. III. Hackett, Wolf Lecture—4 hours; discussion—1 hour. Principles and basic concepts of sociology. The study of groups, culture, collective behavior, classes and caste, community and ecology, role, status, and personality.

2. Self and Society (4) I. The Staff; II. Felmlee Lecture—3 hours; discussion—1 hour. Principles and basic concepts of sociological psychology. Includes the study of the character of the self, identity, roles, socialization, identity change, emotion and social interaction. General Education credit: Contemporary Societies/Introductory.

46A. Introduction to Social Research (4) I. III. The Staff Lecture—3 hours; discussion—1 hour or term paper or project. Selection and definition of problems of social research. Data analysis techniques, measurement, scales, multivariate analysis, and quantitative measures of association.

46B. Introduction to Social Research (4) I. The Staff; II. Felmlee Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Examination of the methodological problems of social research. Selection and definition of problems of social research. Data analysis techniques, measurement, scales, multivariate analysis, and quantitative measures of association.

96. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Primarily intended for lower division students. (P.N.P. grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P.N.P. grading only.)

Upper Division Courses

102. Evaluation Research Methods (4) I. The Staff; II. Hall Lecture—3 hours; discussion—1 hour or field research (decided by instructor each time course offered). Prerequisite: course 46A or 46B, or Statistics 156, 156B, 160A, or 160B, equivalent. Surveys applications of research methods to the evaluation of social programs, primarily emphasizing methodological issues, e.g., research design and data collection. Uses of evaluation research are also discussed and placed in theoretical context. Participation in an evaluation project.

106. Intermediate Social Statistics (4) I. Cramer, II. Cohen Lecture—3 hours; discussion—1 hour. Prerequisite: course 46B or Statistics 13 or the equivalent. Intermediate level course in statistical analysis of social data. Emphasis on understanding and use of basic statistical measures, procedures, and mathematical models especially relevant to sociological analysis.

107. Seminar in Sociological Analysis (4) I. Jorgensen Seminar—3 hours; to be arranged—1 hour. Research and analysis using basic concepts of sociology, social organization, culture, socialization, stratification in application to specific problems. May be repeated for credit with consent of instructor. Limited enrollment.

110. Sociology of the Chicano Experience (4) I. Pesquera Lecture—3 hours; term paper. The Chicano experience in the American society and economy viewed from theoretical perspectives. Immigration, history of integration of Chicanos into American culture, socialization of the Chicanos, ethnicity, the family, and Chicano politics. Offered in alternate years.

118. Political Sociology (4) I. Jackman, II. Block Lecture—3 hours; discussion—1 hour or term paper or research project. Relating of social cleavages and social cohesion to the functioning of political institutions; the social bases of local and national power structures; social sources of political movements, analysis of concepts of alienation, revolution, ideology, and political class, and elite.

119. Peace Institutions (4) I. J. Lofland Lecture—3 hours; discussion—1 hour or term paper or project. Survey of private and public organizational forms and structures for world peace by means other than preparing for war or supporting such preparations. Particular focus on peace institutions in the political, economic, scientific, religious, and educational realms.

120. Deviation and Society (4) I. Molossi Lecture—3 hours; discussion—1 hour or term paper or research project. Theory and studies of deviation in relation to societal reaction, group processes and social roles. Deviance and conformity. Deviation and social control. Analysis of alleged crimes, mental disorders, and social control.

122. Sociology of Adolescence (4) I. Scott Lecture—3 hours; discussion—1 hour or term paper or research project. The sociological and psychological processes of socialization and socialization of children. Emphasis on sociological correlates of socialization and social roles. Attention to selected social and educational changes.

123. American Society (4) I. Scott Lecture—3 hours; discussion—1 hour or term paper or research project. The sociological and psychological processes of socialization and socialization of children. Emphasis on sociological correlates of socialization and social roles. Attention to selected social and educational changes.

124. Sociology of Education (4) I. Scott Lecture—3 hours; term paper or discussion—1 hour (instructor’s option). Education and the social structure. Class size, curriculum, and economies of scale. Relations between families and schools in socialization, familial ascription and educational achievement. Education and industrialization. Organizational and occupational structure of schools. Discussion of selected controversial issues.

125. Social Interaction (4) I. Lofland Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 2. Everyday interaction in natural settings, ethnographic approaches to understanding of social meanings, situations, personal identity and human relationships.

Particular attention to the work of Erving Goffman and to principles of field observation and qualitative analysis.

127. Sociology of Death (4) III. L. Lofland Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: course 1 or equivalent. Emphasis on sociological theories toward structural effects of, and methods of coping with death and death-related behaviors. Particular attention to social psychological aspects of death and dying, death rituals, and to death rituals in various cultures.

128. Interracial Personal Dynamics (4) I. Jorgensen Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Survey of theoretical and empirical research on the Black experience in the United States. Emphasis on comparisons of Black sociopolitical perspectives and mainstream perspectives of specific sociologists.

130. Race Relations (4) I. Jorgensen Lecture—3 hours; discussion—1 hour or term paper or research project. Functions of the social definition of race and racial groups. Analysis of racial conflict, oppression, and other forms of ethnic stratification. Models of ethnic interaction and social change. Emphasis on racial relationships within the U.S.

131. The Family (4) I. Stacey, III. Wolf Lecture—3 hours; discussion—1 hour. Contemporary family life in historical and cross-cultural perspective. How different family forms arose, their significance today and prospects for further family change. Attention to power relations within and beyond the family and to the social implications of family transformation.

132. The Sociology of Gender (4) I. Joffe, III. Felmlee Lecture—3 hours; discussion—1 hour. Analysis of biological, psychological, cultural and structural conditions underlying the status and roles of men and women in contemporary society, drawing on a historical and comparative perspective. Offered in alternate years.

133. Sexual Stratification and Politics (4) I. Joffe Lecture—3 hours; discussion—1 hour. Prerequisite: course 132 or the equivalent or consent of instructor. Analysis of origins, dynamics, and social implications of sexual stratification. Examination of the sociological and contemporary theorists such as Engel, Freud, J.S. Mill, de Beauvoir, Juliet Mitchell, D. Dinnerstein. Attention to selected issues in social movements for and against sexual equality.

134. Sociology of Racial Ethnic Families (4) I. Robnett Lecture—3 hours; discussion—1 hour or term paper. Asian American, Black, Chicano, and Native American families in comparative historical perspective. Family structure and gender roles are considered in relation to socio-historical dynamics. Offered in alternate years.

135. Corporations and Society (4) I. Block Lecture—3 hours; research project. The study of the history and political economy of the modern corporation; corporate organization; politics, the state, and the corporation; labor unions and the labor process; competition, regulation and international markets; the multinational and domestic corporation; and mass markets and consumerism.

*Course not offered this academic year.
140. Social Stratification (4) L. Jackman; III. Scott
Lecture—3 hours; discussion—1 hour or term paper or research project (instructor's option). Systems of social ranking, theories of stratification; power, prestige, culture, and styles of life of various social classes; social mobility and its consequences for social structure.

141. Industrialization and Social Change (4) II. Hirtz
Lecture—3 hours; discussion—1 hour or term paper or research project. Selected technological and social factors. Preconditions of economic development and industrialization. Social, political, and cultural issues of industrial development. Major historical differences and major current trends. Emphasis either on highly industrialized countries or on less developed countries.

142. Sociology of Transportation (4) II. Scott
Lecture—3 hours; discussion—1 hour or term paper or research project. Sociological factors in transportation. Consequences of transport mode development on social organization, sociological influences in transport mode choice, Transportation issues in public policy.

*143. A Sociology of City Life (4) II. I. L. Lofland
Lecture—3 hours; discussion—1 hour or term paper or project (instructor's option). Prerequisite: course 1 or the equivalent. Theories of city origins. Analysis of the historical development and variation of urban city types. Comparison of American and European experience of metropolization, counterurbanization, and neighborhood change. Consideration of competing forces of growth and change and competing visions of the urban future. Offered in alternate years.

143A. Sociology of City Life (4) I. I. Lofland
Lecture—3 hours; discussion—1 hour or term paper or project (instructor's option). Prerequisite: course 1 or the equivalent; course 143A recommended. Critical dissection of the "loss of community" issue. Analysis of the organization of primary ties in the city, of the culture of urban public life, and of the learning of city skills. Offered in alternate years.

144. Agriculture and Society (4) Walton; Wolf
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: advanced standing in the social sciences or one year of course work in agricultural and environmental sciences. Development of agriculture as a major enterprise in modern society with the concomitant reduction in the labor force and changes in the social and political aspects of agricultural life. Emphasis on mechanization, migrant labor, corporate farming, and public resource policy. Offered in alternate years.

145A. Sociology of Third World Development (4) Walton
Lecture—3 hours; discussion—1 hour; prerequisite: course 1; upper division standing. Introduction to theories and contemporary issues in the sociology of development. Topics such as urbanization, rural-urban migration, class, status groups, international division of labor, sectoral shifts, international capital, informal economy, gender, and political processes are analyzed within a comparative-historical framework.

145B. Gender and Rural Development in the Third World (4) II. Wolf
Seminar—4 hours. Prerequisite: course 1; upper division standing. Political-economic analysis of women and women's work during the process of socioeconomic change in the world with particular attention to the family/household context. Offered in alternate years.

146. Sociology of Religion (4) P. H. Hall
Lecture—3 hours; discussion—1 hour or term paper or research project. Historical relationship between social structures and religions. The social setting of the major world religions. Religious innovators and institutionalization (churches, sects, cults). Secularization in the modern world and the rise of secular ideologies. Offered in alternate years.

147. Sociological Perspectives on East Asia (4) II. Hamilton
Lecture—3 hours; discussion—1 hour or term paper or research project. Sociological theories and concepts applied toward understanding East Asian society. Emphasis on the political structure, stratification, and economy in China and Japan. Analysis of historical and contemporary similarities and differences. Offered in alternate years.

*148. Collective Behavior (4) The Staff
Lecture—3 hours; discussion—1 hour or term paper or project (instructor's option). Prerequisite: course 1 or the equivalent. Study of behavior of human crowds (e.g., extraordinary circumstances, including crowd panics, mass scares, collective protests, riots, revolutionary situations, acquittal ofEarhart's killers, fads, and fashions.

149. Religion and American Society (4) III. Hall
Lecture—3 hours; discussion—1 hour or term paper or research project. Historical survey of religious traditions and organizations in their relation to U.S. social and cultural patterns. Civil religion, religious pluralism, minority and majority communities, religious migration, U.S. religion as a social institution, and religion, politics, and social stratification. Offered in alternate years.

150. Criminology (4) I. II. Cohen
Lecture—3 hours; discussion—1 hour or term paper or research project. Overview of sociological research in medicine and health care, with emphasis on the organizational, institutional, and social psychological aspects.

151. Sociology of Law (4) II. Melossi
Lecture—3 hours; discussion—1 hour or term paper or research project. Law considered as social control; role of legal institutions in society as affecting judicial decision making and administration of justice. Lawyers as an occupational group. Legal reform.

152. Social Movements (4) I. I. Lofland
Lecture—3 hours; discussion—1 hour or term paper or project (instructor's option). Analysis of social movements; mobilization; formation of organizations; ideology, recruitment, leadership, strategies and tactics, development, effectiveness. Frequent use of social and film materials.

153. Social Conflict (4) II. Lofland
Lecture—3 hours; discussion—1 hour or term paper or project. Analysis of the causes, dynamics, and regulation of social conflict within and between various kinds of social groups with particular reference to invidious methods of waging and regulating conflict.

154. Consumer-Vendor Relationships (4) III. Roth
Lecture—3 hours; discussion—1 hour. Examine the relationship between consumers and the vendors of goods and services using case materials, student projects, and relevant literature in sociology and related fields. Emphasis will be on organizational structure and behavior.

155. Sociology of Occupations (4) III. Roth
Lecture—3 hours; discussion—1 hour or term paper or research project. Natural history of occupations; the institutional matrix of occupations; collaborative and client relationships; occupational social controls; career lines, and occupational-related self-definition; occupational politics.

156A. Sociological Theory (4) I. Melossi
Lecture—3 hours; discussion—1 hour or term paper or research project. Historical introduction to sociological theory with special reference to European origins. The development of modern sociological theory in Europe by Durkheim, Weber, Simmel, Pareto, Mosca, and others.

168B. Sociological Theory (4) I. Block
Lecture—3 hours; discussion—1 hour or term paper or research project. Contemporary sociological theory with special reference to the history of American sociology and the emergence of contemporary schools of thought in the United States. Schools discussed will include functionalism, structuralism, symbolic interactionism, exchange theory, and ecology.

170. Population (4) I. Cramer
Lecture—3 hours; discussion—1 hour or term paper or research project. Introduction to the study of human population, including mathematical measures, social causes and consequences of population trends; changes in population structure; geographical distribution, migration, sociological factors affecting fertility.

172. Ideology of Crime, Race and Gender (4) II. Jackman
Lecture—4 hours. Examination of popular belief systems that accompany relations between social classes, whites and blacks, and men and women in the United States. How do dominant groups attempt to justify each relationship, and is there ideological conflict or consensus between groups.

173. Sociology Through Literature (4) Walton
Lecture—3 hours. Introduction to reading, discussion—1 hour or term paper or research project. Introduction to analysis of literature as sociological data. Reading of numerous works on American and other societies by authors such as Steinbeck, Lawrence, Flannery O'Connor, Orwell, etc. Offered in alternate years.

175. Mass Communication (4) Lofland
Lecture—3 hours; term paper. Prerequisite: course 1 or 2. Examines the relationship between the media and social structures. History of media-state relations. Media as reflector and shaper of values. Emphasis on culture in Europe and Marxist and pluralist theories rather than on content analysis. Offered in alternate years.

176. Sociology of Knowledge (4) I. The Staff
Lecture—3 hours. Critical analysis of the social foundations of knowledge in society. The history, problems, and dilemmas in classical sociology of knowledge. Contemporary applications. Natural and social sciences as social systems. Sociology of personal knowledge in everyday life.

180A. Complex Organizations (4) I. Hamilton; II. Hackett
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 1; Economics 1A and 1B recommended. develops a sociological approach to organizations theory. Design to introduce sociological concepts, address the alternative psychological alternative viewpoints, and involve students in the practice of organizational analysis.

180B. Complex Organizations (4) I. Hamilton; II. Hackett
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 180A or consent of instructor. Exclusively on concepts and skills developed in course 180A. Deals with issues of organizational decision making, design, and survival. Emphasis on relations between organizations and the effects of those relations in both the public and private sectors.

181. Social Change Organizations (4) III. Lofland
Lecture—3 hours; discussion/term paper—1 hour. Prerequisite: course 1. Analysis of organizations with social change and improvement goals and programs, emphasizing voluntary associations and grassroots citizen groups. Topics treated include formation, decision-making and leadership, strategies and tactics, factionalism and coalitions, effectiveness. Offered alternate years.

182. Experimental and Utopian Communities (4) III. Hackett
Lecture—3 hours; discussion—1 hour. The social structure of intentional, experimental or utopian settlements and communal movements, including comparison with other small settlement forms: villages, neighborhoods, monasteries, encampments and nonsettiment communities based on occupation, ethnicity, and religion.
*183. Comparative Organizations (4) U. Biggart Lecture/discussion—3 hours; term paper. Prerequisite: course 180A or 180B; upper division standing. Examination of economic and political organizations of major industrial nations. Discussion of historical, cultural, social, and political influences on industrial practices and alternatives, theoretical models for explaining differential development. Societies may include Sweden, Japan, Germany, Taiwan, and South Korea. Offered in alternate years.

185. Sociology of Social Welfare (4) U. Joffe Lecture—3 hours; discussion—1 hour or term paper or research project. Sociological analysis of the evolution and current organization of welfare functions in modern societies.

189. Social Science Writing (4) U. Walter Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 46A, upper-division standing, and 12 units of social science. Improved analytic writing and methods for reporting social science research to a wider public. Sociological analysis of the conditions of good and bad writing. Offered in alternate years.

192. Internship and Research Practicum (2-12) U. Jorgensen; II. The Staff Internship: participation—3-35 hours. Prerequisite: upper division standing; course 46A; approval of proposed internship. Supervised internships with agencies, organizations, or institutions that can provide meaningful work experience. May be repeated for credit only by permission. Maximum of 4 units of 192 may be counted toward the Sociology major. (PINP grading only.)

194HA-194HB. Special Study for Honors Students (4-4) L. Lofland Seminar—3 hours; term paper. Prerequisite: senior standing and admission to the Honors Program. Directed reading, research and writing culminating in the preparation of a Senior Honors Thesis under direction of faculty advisor. (Deferred grading only pending completion of course sequence.)

197T. Tutoring in Sociology (1-4) U, II, III. The Staff Tutoring—3-12 hours. Prerequisite: upper division standing; completion of appropriate course with distinction. Activities vary depending on the nature of the course assignment. May include (but not limited to) tutoring on course material, advising on projects and papers, and leading discussion groups. (PINP grading only.)

198. Directed Group Study (1-5) U, II, III. The Staff Hamilton in charge Prerequisite: consent of instructor. (PINP grading only.)

199. Special Study for Advanced Undergraduates (1-5) U, II, III. The Staff (Hamilton in charge) Prerequisite: open to seniors only. (PINP grading only.)

Graduate Courses

207A-207B. Methods of Quantitative Research (4-4) II-III. Cohen Lecture—3 hours; paper. Prerequisite: course 106 or the equivalent. Principles of study design, examination of measurement, survey research methods and multivariate analysis with emphasis on actual data collection and analysis techniques. Students will carry out quantitative data analysis using packaged computer programs. (Deferred grading only, pending completion of sequence.)

215. Economy, Polity, and Society (4) L. Block Seminar—3 hours; paper. Prerequisite: consent of instructor. Open to graduate students in sociology and related disciplines. Course introduces students to topics and selected issues in the related fields of economic and political sociology and political economy.

220. Deviance, Law, and Social Control (4) L. Cohen Seminar—3 hours; projects. Prerequisite: course 120 or consent of instructor. Report and discussions of literature on selected forms of deviance in relation to law and formal social control. Agency contacts and exploratory research projects.

*226. Sociological Social Psychology (4) L. Lofland Lecture—3 hours; seminar paper—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced study of the varying approaches, methods, issues and topical concerns of sociological social psychology. Analysis of central and representative historical and contemporary works.

*227. Sociology of Reproduction (4) L. Joffe Lecture—3 hours; discussion—1 hour. Recent social science scholarship in social areas as teenage pregnancy, family planning, abortion, adoption, AIDS, and new reproductive technologies; focus on the current situation in the United States. Offered in alternate years.

*230. Ethnic (Race) Relations (4) U. Jorgensen Lecture—3 hours; paper. Advanced study of the determinants of ethnic groupings and their interactions. Major theme will be the patterns of ethnic stratification and causes of ethnic conflict. Specific focus upon dominance and resistance to dominance. Influence of social science research.

234. Gender, Family, and Society (4) Stacey Seminar—3 hours; seminar paper. Prerequisite: graduate standing or consent of instructor. Major theoretical traditions and concerns in family sociology and sociology of gender. Analysis of selected classical and contemporary works representative of functionalist, conflict, psychoanalytic, feminist and critical theories applied to all the topics in sociology. (Engels, Parsons, Freud, Horkheimer, Goode, Lasch, Mitchell). Emphasis on macro and historical questions.

242A-242B. Comparative Methods in Historical Sociological Research (4-4) II. Hamilton Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Comparative approaches to major historical phenomena such as nationalism, bureaucratization, feudalism, and capitalism; the relevance of psychological and sociological theories to historical interpretation; the verifiability of historically grounded hypotheses; the meaning of analogy, correspondence and causality. Offered in alternate years. (Deferred grading only pending completion of sequence.)

243. Urban Society (4) L. Lofland Seminar—3 hours; paper. Broad overview of the issues and concerns of the field of urban sociology. Special emphasis on the human experience of urban living in contemporary, cross-cultural or historical settings.

245. Developing Societies (4) U. Lofland Seminar—3 hours; paper or project. Prerequisite: graduate student status or familiarity with problems of developing societies. Analysis of social and economic problems of developing societies from the standpoint of theory and research on modernization and underdevelopment. Nature of third world dependency and independence in the global political economy. Offered in alternate years.

246. Social Movements (4) J. Lofland Seminar—3 hours; paper. Analysis of current issues in and contributions to the study of collective behavior and social movements; particular focus upon the strategies and tactics of social movements.

254. Sociological Issues in Health Care (4) L. Roth Seminar—3 hours; term paper or project. Prerequisite: open to graduate or professional students. Sociological perspectives and methods directed to health care issues. Students select topics for supervised research. The course will have a theme (described in advance) each time it is offered. Paper on research will be required. (SU grading only.)

255. Sociology of Law (4) III. Melossi Seminar—4 hours. Prerequisite: consent of instructor. Analysis of the sociolegal field and its impact on social behavior. Will consider (1) nature and functions of law, (2) the organization and administration of law, and (3) the capacity of law to affect social behavior.

265A. Classical Sociological Theory (4) L. Biggart Lecture—3 hours; discussion—1 hour. Introduces graduate students to the work of the major classical thinkers in the tradition of social theory, such as Marx, Durkheim, Webers, Simmel, Freud, G.H. Mead, and Parsons, locating them within the historical, cultural, and philosophical milieu in which their ideas originated.

265B. Theory in Contemporary Sociology (4) II. Hamilton Lecture—3 hours; discussion—1 hour. Prerequisite: course 265A. Explores the uses of theories in contemporary sociological contexts, focusing on the connections between classical sociological writings and their relations to broader theoretical concerns of contemporary social thought, with particular emphasis on relevance to the current historical, cultural and social milieu.

270. Social Demography (4) L. Cramer Seminar—4 hours. Prerequisite: course 170 or consent of instructor. How social institutions affect and are affected by the level and variation of mortality, migration, and fertility. Special emphasis on the determinants of fertility-related attitudes and behaviors on less-developed countries, and on contemporary empirical studies.

286. Organizations and Institutions (4) III. Hackett Seminar—4 hours. Theory of formal organizations and bureaucracies. Methods of research in organizational and institutional studies. Historical and comparative analysis of political, religious, educational, military, and economic structures.

290. Seminar (4) I, II, III. The Staff (Chairperson in charge) Seminar—3 hours; term paper. (SU grading only.)

292A-292B. Field Research (4-4) II-III. L. Lofland, L. Hamilton Seminar—3 hours; field trips. Prerequisite: graduate standing in Sociology or consent of instructor. The process of collecting, analyzing and reporting qualitative social data. Techniques of intensive interviewing, participant-observation and document analysis; generating, developing, and evaluating analytic frameworks; recording, storing, retrieving, and writing up qualitative data. Emphasis on application of principles; each participant completes a field work project. Offered in alternate years. (Deferred grading only pending completion of sequence.)

293. Proseminar in Sociology (2) I. L. Lofland Seminar—2 hours. Prerequisite: first-year Sociology graduate students only. Introduction to graduate training in sociology. A seminar designed to introduce students entering graduate work in the department to its ongoing research activities. (SU grading only.)

295. Special Topics Seminar (4) I, II, III. The Staff (Chairperson in charge) Lecture/discussion—3 hours; term paper. Prerequisite; graduate standing or consent of instructor. Research topics in sociology. Topic will vary according to faculty interest and student demand.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SU grading only.)

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

Soil and Water Science (College of Agricultural and Environmental Sciences)

The Major Program

Soil and water science is concerned with the use and protection of our land and water resources. The major teaches graduates sound scientific principles for managing soil and water resources to benefit both agriculture and the environment.

The Program Major programs are designed to include land use, soil survey, soil management and
Graduate Study. Graduate programs are available in Soil Science as well as Water Science. Detailed information can be obtained from the Graduate Adviser and the Graduate Announcement. See also the Graduate Studies section in this catalog.

Related Courses. See courses in Agricultural Economics, Agricultural Science and Management, Agronomy, Botany, Chemistry, Agricultural Engineering, Civil and Environmental Engineering, Environmental Studies, Environmental Toxicology, Geology, International Agricultural Development, Range Science, and Vegetable Crops.

Soil Science
See Soil Science, below; Soil Science (A Graduate Group); and Soil and Water Science

Soil Science
(College of Agricultural and Environmental Sciences)

Faculty
See under the Department of Land, Air and Water Resources.

Graduate Study. Programs of study leading to the M.S. and Ph.D. degrees in Soil Science are available. Information regarding these programs can be obtained from the graduate adviser and the Graduate Announcement. See also the Graduate Division section in this catalog.

Courses in Soil Science
Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 122 Haagshill Road (916-752-1669).

Lower Division Courses
10. Principles of Soil Science (4). Zasoski Lecture—3 hours, laboratory—3 hours. Prerequisite: Chemistry 1A-1B, Physics 1A-1B, Biological Sciences 1A, and consent of instructor. Geology 50, Biological Sciences 1C, Microbiology 2, and Chemistry 9A recommended. Preparation for professional studies in soil science. 100 units of general education. 9.000 hours. 6.000 units of total credit.

Upper Division Courses
102. Soil and Water Chemistry (5). S. Burau. Lecture—3 hours, discussion—1 hour, laboratory—3 hours. Prerequisite: course 100 or the equivalent preparation in introductory earth science or consent of instructor. Chemical nature of the mineral and organic constituents of soil and of the soil solution; ion exchange and other colloidal phenomena; effect of soil amendments and fertilizers; microbiological processes in soils.

105. Field Studies of Soil Resources (6). Extra-credit course. Instructor: D. Singer. Lecture—3 hours, laboratory—6 hours. Prerequisite: course 100. Water Science 100, Mathematics 16A, or the equivalent. Description of soil physical properties. Principles of water, gas, heat, and solute movement in soil with selected examples related to soil and water management. Influence of soil physical properties on transfer processes.

108. Soil Fertility and Fertilizers (4). Instructor: R. D. E. G. Lecture—4 hours, laboratory—2 hours. Prerequisite: course 100 or the equivalent preparation in soil science. Forms and availability of plant nutrient elements in soils; effects of fertilizers and soil amendments on crop and soil characteristics; conduct and interpretation of soil fertility tests.

111. Soil Microbiology (4). S. Singer. Lecture—4 hours, laboratory—2 hours. Prerequisite: Chemistry 1C and Biological Sciences 1C. Major groups of microorganisms in soil, their relationships, and their responses to environmental variables. Role of microorganisms in cycling of nutrients. Plant-microbe relationships. Transformations of organic and inorganic pollutants.

118. Soils in Land Use and the Environment (4). R. E. S. Lecture—4 hours, discussion—1 hour. Prerequisite: course 100 or consent of instructor. Soils are considered as elements in land use planning and environmental quality. Topics include soil survey, weathering, soil fertility, soil-macroorganisms, soil-capacity classification, soil erosion, and the effects of soil use and soil management on the environment.

120. Soil Genesis, Morphology, and Classification (5). Instructor: R. D. E. S. Lecture—4 hours, laboratory—3 hours (includes five one-day weekend field trips). Prerequisite: course 100 and Geology 1 or consent of instructor. Recognition and description of soils; chemical and physical properties of soil formation, including soil-geochemical factors; factors of soil formation, and soil classification with emphasis on soil taxonomy.

123. Soil Taxonomy (3). S. Singer. Lecture—1 hour, discussion—1 hours. Prerequisite: course 100 or consent of instructor. Intermediate course in soil classification. Study and analysis of the current system of classification used by the National Cooperative Soil Survey of the United States. Practice in classifying soil individuals with emphasis on evaluating their placement in the soil classification system. Offered in alternate years.

127. Soil Science Internship (1-12) I. II. III. The Staff (Chairperson in charge). Internship—1-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience and on campus in soil science. Internship supervised by a member of the faculty. (P/NP grading only.)

128. Directed Group Study (1-5) I. II. III. The Staff (Chairperson in charge). (P/NP grading only.)

129. Special Study for Advanced Undergraduates (1-60) I. II. III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses
Physical and mathematical description of nonsteady transport processes in soil and the unsaturated zone. Emphasis on analytical and numerical solutions to water, gas, solute (contaminants), and heat transport processes and the chemical and biological reactions attendant to soil movement. Offered in alternate years.

208. Soil-Plant Interrelationships (3) II. Richards Lecture—3 hours. Prerequisite: course 100, Botany 112, or consent of instructor. Plant needs, occurrence and use of water, mineral nutrients in soils; root systems and their growth in soils; mass flow and diffusion mechanisms in nutrient acquisition; models relating nutrient uptake to soil and plant characteristics; nutrient assimilation and crop quality. 211. Advanced Soil Microbiology (2) II. Scow Lecture—2 hours. Prerequisite: Chemistry 8A-8B; course 111; Biochemistry & Biophysics 101A, 101B, or an equivalent course recommended. Microbial metabolism of organic chemicals in soil, both natural and xenobiotic. Decomposition of organic matter. Kinetics of microbial processes in soil. Offered in alternate years.

214. Soil Mineralogy (5) III. Dahlgren Lecture—3 hours; laboratory—6 hours. Prerequisite: course 102 or consent of instructor and consent of instructor. Nature, properties, and occurrence of the common minerals in soils and rocks. Weathering reactions and stability of minerals in the weathering environment. Application of analytical methods in mineral analysis, including x-ray, microscopic, and chemical analysis for identification of mineral systems. Offered in alternate years.

215. Physical Chemistry of Soils (5) III. Burau Lecture—3 hours. Prerequisite: Chemistry 107/108 or 110/113, or consent of instructor. Structure, properties, and behavior of soil colloids, and characteristics of the soil system. Offered in alternate years.

216. Disequilibrium and Aqueous Geochemistry (3) I. Case Lecture—3 hours. Prerequisite: course 102 or Chemistry 110A or Geology 115, and Mathematics 119. First half emphasizes equilibrium thermodynamics, including the consideration of standard states, ideal solutions, and solubility and use of the Gibbs-Duhem relation. Second half covers geochemical kinetics including simple rate laws, transition state theory, solute diffusion, and experimental methods.

218. Soil Erosion and Conservation (3) I. Singer Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing; courses 118, 120. Processes of soil erosion by wind and water in agricultural areas, and methods of soil conservation will be discussed. Methods of predicting rates of soil erosion will be considered. Offered in alternate years.

220. Pedology (3) III. Southard Lecture—1 hour; discussion—2 hours. Prerequisite: courses 120 and 123 or the equivalent, or consent of instructor. Origin, characteristics, and uses of soils. Emphasis given to soil-forming processes, soil-geochemical relations, and the importance of soil genesis and morphology to classification and interpretation. Offered in alternate years.

290. Special Topics in Soil Science (1, 2, 3) I, II, III. The Staff Seminar—1 hour. Prerequisite: graduate standing. Oral presentation and discussion of scientific material and procedures for review. All courses are eligible for independent studies. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

Soil Science (A Graduate Group)

Randal J. Southard, Ph.D., Chairperson of the Group Office, 122 Hoagland Hall (916-752-1669)

Faculty includes faculty members from the Departments of Agricultural Engineering; Agronomy and Range Science; Civil and Environmental Engineering; Land, Air, and Water Resources; Geology; and Plant Sciences.

Graduate Study. The Graduate Group in Soil Science offers programs of study and research leading to the M.S. and Ph.D. degrees. Soil science focuses on the physical, chemical, and biological processes that govern the quality and distribution of the solids relative to landform evolution, geochanical and environmental processes, and organisms. Research in soil science includes the study of soils as a global natural resource, as a critical component of the environment, and as a resource to sustain agricultural and wild-land ecosystems. Students may specialize in: environmental quality; soil physics; soil chemistry; soil genomics; morphology and classification; soil fertility and plant nutrition; soil pedology and biochemistry; soil-water-plant relationships; or general soil science. For detailed information regarding the programs, address the chairperson of the group.

Graduate Advisers. Consult the Group Office.

Spanish

(Graduate Faculty Chairperson: Richard A. Sainz)

Ph.D., Chairperson of the Department Office Spanish and Classics, 616 S. Bouquet Hall (916-752-1035)

Faculty

María E. Atienza, Ph.D., Associate Professor
Samuel G. Armitstead, Ph.D., Professor
Angie C. Chabram, Ph.D., Associate Professor
Zurbita Garetti, Ph.D., Professor
Germán Gutiérrez, Ph.D., Professor
Almendra O. Ojeda, Ph.D., Associate Professor
Fabián A. Sánchez, M.A., Senior Lecturer
Robert M. Scari, Ph.D., Professor
Máximo Torreblanca, Ph.D., Professor (Lingüistics)
Hugo J. Verani, Ph.D., Professor

Emeritus Faculty

Donald G. Castañeda, Ph.D., Professor Emeritus
Mario González, Ph.D., Lecturer Emeritus
Didier T. Jolen, Ph.D., Professor Emeritus
Daniel S. Keller, Ph.D., Professor Emeritus
Antonio Sánchez-Romero, Ph.D., Professor Emeritus

The Major Program

The major in Spanish is designed to develop competence in the spoken and written language. Depending on their professional goals, students may emphasize either language or literature. The Program. The department's lower division program gives students a solid foundation in the Spanish language. Then, at the advanced level, students are able to emphasize the study of either language or literature, or a combination of both. Courses at the advanced level give students the opportunity for close study of the great works of the Spanish literature and a more detailed understanding of the language's sound system and grammatical structure. Other courses provide a broad overview of the major currents in Spanish and Spanish-American literature and culture. Many students combine the Spanish major with another academic major such as Chicano studies, linguistics, international relations, comparative literature, economics, a social science, or another foreign language. The department encourages its majors to consider summer study in a Spanish-speaking country or to spend their junior year in Spain, Mexico, or other Spanish-speaking countries, with the University of California's Education Abroad Program.

Career Alternatives. The program, alone or in combination with other major programs, may lead to advanced study of the language or literature of Spain and Spanish America, and careers not only in teaching, but also in other professions such as library science, law, medicine, and government, social services, or business. Spanish majors are strongly encouraged to complement their work in the department through studies in related areas such as Chicano studies, international relations, linguistics, comparative literature, art, history, and philosophy.

A.B. Major Requirements: UNITS

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>0-33</td>
</tr>
<tr>
<td>Spanish 1, 2, 3, 21 or 71A, 22 or 7B, and 23</td>
<td>0-31</td>
</tr>
</tbody>
</table>

B. Subject Matter: UNITS

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 100</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 103A-103B</td>
<td>8</td>
</tr>
<tr>
<td>Spanish 110A or 110B</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 131</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 136</td>
<td>3</td>
</tr>
<tr>
<td>Additional upper division units to be selected as follows: 23-24</td>
<td></td>
</tr>
</tbody>
</table>

Plan 1: Spanish Literature Emphasis

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 134</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 104A-104B</td>
<td>8</td>
</tr>
<tr>
<td>Three electives in literature (at least one must be in Spanish-American literature)</td>
<td>12</td>
</tr>
</tbody>
</table>

Plan 2: Spanish-American Literature Emphasis

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 135 or 136</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 105A-105B</td>
<td>8</td>
</tr>
<tr>
<td>Three electives in literature (at least two must be in Spanish-American literature)</td>
<td>12</td>
</tr>
</tbody>
</table>

Plan 3: Chicano Literature Emphasis

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 124</td>
<td>4</td>
</tr>
<tr>
<td>Chicano Studies 154, 155, 156</td>
<td>12</td>
</tr>
<tr>
<td>Spanish 129 or 135</td>
<td>4</td>
</tr>
<tr>
<td>One course from Spanish 105A-105B, 108A-108B, 137</td>
<td>4</td>
</tr>
</tbody>
</table>

Plan 4: Spanish Language Emphasis

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 133</td>
<td>3</td>
</tr>
<tr>
<td>Spanish 134, 135, or 136</td>
<td>4</td>
</tr>
<tr>
<td>Spanish 136</td>
<td>3</td>
</tr>
<tr>
<td>Three electives (at least one must be in literature)</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units for the Major: 45-79

Major Advisers

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td>24-27</td>
</tr>
</tbody>
</table>

Minor Program: UNITS

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish 100</td>
<td>4</td>
</tr>
<tr>
<td>One course in Hispanic literature (any course)</td>
<td>4</td>
</tr>
<tr>
<td>One course in culture from Spanish 134, 135, 136</td>
<td>4</td>
</tr>
<tr>
<td>One course in advanced composition from Spanish 110A, 110B</td>
<td>4</td>
</tr>
<tr>
<td>One course from Spanish 131, 132, or 133</td>
<td>4</td>
</tr>
</tbody>
</table>

Two elective courses acceptable for the Spanish major when taken with a minor advisor. Note: Students majoring in Linguistics or Chicano studies and minoring in Spanish should bear in mind that if Spanish courses are used to satisfy the major requirements, only one of these courses may be applied to the minor.

Teaching Credential Subject Representative

The Staff. See also under Teacher Education Program.

Course not offered this academic year.
The Master of Arts Degree. The Department offers courses leading to the M.A. degree in Spanish to students who have completed with distinction the A.B. degree in Spanish, or the equivalent. Candidates will be recommended for admission to graduate studies in Spanish provided they meet the requirements of the Graduate Division and the Department of Spanish. Detailed information may be obtained by writing to the Chairperson of the Spanish Department.

The Degree of Doctor of Philosophy. The Department offers programs of study and research leading to the Ph.D. degree. Detailed information may be obtained by writing to the Chairperson of the Spanish Department.

Graduate Adviser: [Name]

Courses in Spanish

Lower Division Courses

1. Elementary Spanish (5) I, II, III. The Staff
 Discussion—5 hours; laboratory—1 hour. Introduction to Spanish grammar and development of all language skills in a cultural context with special emphasis on communication. Students who have successfully completed Spanish 2 or 3 in the 10th or Higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.

2. Elementary Spanish (5) I, II, III. The Staff
 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of course 1 in the areas of grammar and basic language skills.

3. Elementary Spanish (5) I, II, III. The Staff
 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Completion of grammar sequence and continuing practice of all language skills through cultural contexts.

7A-7B. Grammar and Composition for Native Speakers (4-4) I-II. The Staff
 Discussion—3 hours; compositions. Prerequisite: course 3 or the equivalent, or content of instructor. Intensive grammar review and composition. Open to students whose native language is Spanish or those who are bilingual. Not open to graduates of high schools where Spanish was the language of instruction. Open to majors and non-majors.

7C. Reading and Composition for Native Speakers (4) I. The Staff
 Discussion—3 hours; term paper. Prerequisite: course 5 or 79 before enrolling in this course. Reading and composition in selected Chicano and Latin American prose masterpieces, to acquaint bilingual students, or students whose native language is Spanish, with a variety of writing styles in prose. Written essays will be assigned regularly. Open to majors and non-majors.

8. Elementary Spanish Conversation (2) I, II, III. The Staff
 Discussion—3 hours. Prerequisite: course 2. Designed to develop oral communication skills. Emphasis on increasing vocabulary, improving listening comprehension, pronunciation, accuracy, and grammar control. Practice of everyday situations. Not open to native speakers or upper division students.

9. Intermediate Spanish Conversation (2) I, II, III. The Staff
 Discussion—3 hours. Prerequisite: course 8 or 22; course 23 (concurrently) recommended. Continuation of course 8. Designed to develop oral communication skills at a more advanced level. Practice of more complex situations. Not open to native speakers or upper division students.

 Lecture/discussion—5 hours; laboratory—1 hour. Prerequisite: course 3. Designed to review and develop the grammar, vocabulary and composition acquired in the first year through exercises and reading of authentic materials. It is recommended that students transferring from other institutions start the second-year program at this point. (Former course 4.)

22. Intermediate Spanish (5) I, II, III. The Staff
 Lecture/discussion—5 hours; laboratory—1 hour. Prerequisite: course 21. Continuation of Spanish 22. Focus on more difficult grammatical concepts and further practice on composition. Development of all language skills through exercises and reading of modern texts.

23. Spanish Composition (4) I, II, III. The Staff
 Lecture/discussion—3 hours. Prerequisite: course 22. Development of writing skills by way of writing original compositions, preparing summaries from original texts, and further grammar review, limited enrolment.

24. Introduction to Literature (3) I, II, III. The Staff
 Lecture/discussion—3 hours. Prerequisite: course 22; course 23 (concurrently) recommended. Reading and discussion of selected masterpieces—drama and prose—to acquaint the student with a variety of writing styles and literary genres. Written essays will be assigned. (Former course 6.)

34. Mexico in its Literature (3) I. Chabram
 Lecture—3 hours. A study of the main literary trends in Mexican literature. Lectures and discussions in English, readings in either English or Spanish of representative works by major contemporary authors. May be counted as part of the major or minor in Spanish.

35. Survey of Mexican Culture (3) I. Chabram
 Lecture—3 hours. Indian cultural patterns before the discovery of Mexico; development of Mexican civilization during the Spanish conquest, the national period, and the Revolution of 1910. Conducted in English. May not be counted as part of the major or minor in Spanish.

98. Directed Group Study (1-5) I, II, III. The Staff
 Prerequisite: consent of instructor and Department Chairperson. Primarily for lower division students. (P/NP grading only.)

Upper Division Courses

Course 100 is prerequisite to all upper division literature courses.

100. Introduction to Principles of Criticism (3) I, II, III. Amsden in charge
 Lecture—3 hours. Prerequisite: course 23. Designed to provide students with the skills to recognize the basic principles involved in literary criticism and a useful terminology to analyze the different genres of Hispanic literature.

103A. Hispanic Literature I: Medieval and Golden Age (4) I, II, III. Armestead
 Lecture—3 hours; written reports. Prerequisite: course 100. Introduction to the study of the principal authors, works, and movements of Medieval and Golden Age literature of Spain, and of Spanish-American colonial literature.

103B. Hispanic Literature I: Medieval and Golden Age (4) I, II, III. Armestead
 Lecture—3 hours; written reports. Prerequisite: course 100. Introduction to the study of the principal authors, works, and movements of Medieval and Golden Age literature of Spain, and of Spanish-American colonial literature.

104A. Hispanic Literature II: Modern Peninsular (4) I. Aultson, Guillén, Scari
 Lecture—3 hours; written reports. Prerequisite: course 100. Introduction to the study of the principal authors, works, and movements of modern Spanish literature from 1700 to 1900. Offered in alternate years.

104B. Hispanic Literature II: Modern Peninsular (4) I. Aultson, Guillén, Scari
 Lecture—3 hours; written reports. Prerequisite: course 100. Introduction to the study of the principal authors, works, and movements of modern Spanish literature from 1900 to the present. Offered in alternate years.

105A. Hispanic Literature III: Modern Spanish-American (4) I. Gerstl, Jahn, Velasquez
 Lecture—3 hours; written reports. Prerequisite: course 100. Introduction to the principal authors, works, and movements of Spanish-American literature of the nineteenth and twentieth centuries. Offered once every four quarters.

105B. Hispanic Literature III: Modern Spanish-American (4) III. Gertel, Jahn, Velasquez
 Lecture—3 hours; written reports. Prerequisite: course 100. Introduction to the principal authors, works, and movements of Spanish-American literature of the nineteenth and twentieth centuries. Offered in alternate years.

105A. Spanish-American Prose of the Twentieth Century (4) I. Gertel, Velasquez
 Lecture—3 hours; conferences and reports. Prerequisite: course 100. Emphasis on the development of the novel. Offered in alternate years.

105B. Spanish-American Prose of the Twentieth Century (4) III. Gertel, Velasquez
 Lecture—3 hours; conferences and reports. Prerequisite: course 100. Emphasis on the development of the novel. Offered in alternate years.

109. Spanish Drama of the Golden Age (4) I, II. The Staff
 Lecture—3 hours; conferences and reports. Prerequisite: course 100. Offered in alternate years.

110A. Advanced Spanish Composition I (4) I, II. The Staff
 Discussion—3 hours; written reports. Prerequisite: course 23. Practice in expository writing, with an aim toward refinement and expansion of vocabulary.

110B. Advanced Spanish Composition II (4) I, II. The Staff
 Discussion—3 hours; written reports. Prerequisite: course 23. Practice in creative writing, with an aim toward refinement and appreciation of written expression and expansion of vocabulary.

111. Don Quijote (4) I, II. The Staff
 Lecture—3 hours; written reports. Prerequisite: course 100.

112. Medieval Masterworks (4) I. Armestead
 Lecture—3 hours; term paper. Prerequisite: course 100. Study of major works of Medieval Spanish literature from its origins up to the fifteenth century. Offered in alternate years.

114. Spanish Romantic Literature (4) I. Guillon, Scari
 Lecture—3 hours; conferences and reports. Prerequisite: course 100. Reading and division of the major Spanish Romantic writers of the first half of the nineteenth century with emphasis on drama and poetry. Offered in alternate years.

115. Lyric Poetry of the Golden Age (4) I, II. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 100. Offered in alternate years.

119. Spanish Novel of the Nineteenth Century (4) I, II. Guillén, Scari
 Lecture—3 hours; prerequisite: course 100. Offered in alternate years.

120A. Twentieth-Century Spanish Fiction (4) I. Aultson, Guillon
 Lecture—3 hours; term paper. Prerequisite: course 100. Study of the main literary trends and authors of the modern Spanish novel and short story. Selected works by Unamuno, Valle-Inclán, Blasco Ibáñez, and others will be covered.

120B. Twentieth-Century Spanish Drama (4) I, II. Aultson
 Lecture—3 hours; term paper. Prerequisite: course 100. Offered in alternate years.

125C. Twentieth-Century Spanish Poetry (4) I. Aultson
 Lecture—3 hours; term paper. Prerequisite: course 100. Offered in alternate years.

124. Chicano Culture (4) I. Chabram
 Lecture—3 hours; term paper. Prerequisite: course 2 or consent of instructor. Study of Chicano culture in the Southwest from 1958 to the present, emphasis

*Course not offered this academic year.
on the period after 1648. Lectures and discussions in English readings in English and/or Spanish. May not be counted as part of major in Spanish. Offered in alternate years.

125. Spanish-American Modernism (4) II. Gertel, Jaén, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Study of the poetry and prose of Spanish-American Modernismo (1880-1916). Offered in alternate years.

127. Contemporary Spanish-American Poetry (4) III. Gertel, Jaén, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Development of Spanish-American poetry from the end of Modernism to the present. Emphasis on works by Neruda, Vallejo, Borges, García Márquez, Paz, and others. May not be counted toward major in Spanish. Offered in alternate years. General Education credit: Civilization and Culture/Non-Introducory. Recommended GE preparation: Comparative Literature 1, 2, or 3.

150. Masterpieces of Spanish Literature (4) I. Arriola, Gullón, Scan
Lecture—3 hours; paper. Readings, lectures, and discussion in English. May not be counted as part of the major in Spanish.

151. Study of a Major Writer (4) I, II, III. The Staff
Lecture—3 hours; term paper. Prerequisite: course 100. May be repeated for credit with consent of instructor.

196. Internship in Spanish (1-12) I, II, III, The Staff
Chairperson in charge.
Independent study—3-36 hours. Prerequisite: course 23; junior or senior in Spanish; related experience; permission of the Chairperson. May be repeated for a total of 8 quarters. May not count toward the Spanish major. (PINP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff
Chairperson in charge.
Prerequisite: consent of instructor and Department Chairperson. (PINP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Chairperson in charge.
Prerequisite: consent of instructor. (PINP grading only.)

220. History of the Spanish Language (4) I. Torreblanca
Seminar—3 hours; term paper. Prerequisite: course 205 or consent of instructor. Historical study of the distinctive features of Peninsular and American Spanish dialects.

225. A. Masterworks of Medieval Spanish Literature (4) II. Arriola
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of early medieval Spanish literature: epic poetry, clerical poetry and the origins of Castilian prose. Offered in alternate years.

226. Masterworks of Medieval Spanish Literature (4) II. Arriola
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of late medieval prose works: didactic prose; sentimental and chivalric novel. La Celestina Offered in alternate years.

225C. Medieval Spanish Epic (4) III. Arriola
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of major works of Medieval Castilian heroic poetry from its origins through the decline of the genre in the fifteenth century. Offered in alternate years.

2260. Medieval Lyric (4) I. Armstead
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of representative early lyric poetry in the various peninsular languages. Offered in alternate years.

226L. El libro de buen amor (4) II. Armstead
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of the fourteenth-century didactic poem, El libro de buen amor (The Book of Good Love) by Juan Ruiz, Archpriest of Hita. Offered in alternate years.

227L. El Romancero (4) II. Armstead
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of the Hispanic ballad literature from the fifteenth century to the present. Offered in alternate years.

228L. Folk Literature of the Hispanic World (4) I. Armstead
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of the various genres of oral traditional literature among the Hispanic peoples. Offered in alternate years.

229L. Spanish Literature of the Early Renaissance (4) I. Armstead
Seminar—3 hours; term paper. Spanish literature, 1450-1550, with emphasis on La Celestina.

231L. Spanish Literature of the Golden Age: Lyric Poetry (4) I. The Staff
Seminar—3 hours; term paper. Sixteenth-century currents in Spanish poetry. Offered in alternate years.

231B. Spanish Literature of the Golden Age: Lyric Poetry (4) II. The Staff
Seminar—3 hours; term paper. Seventeenth-century currents in Spanish poetry. Offered in alternate years.

231C. Spanish Literature of the Golden Age: Literature of Ideas (4) II. The Staff
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Offered in alternate years.

231D. Spanish Literature of the Golden Age: Narrative (4) II. The Staff
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Offered in alternate years.

231E. Spanish Literature of the Golden Age: The Drama (4) II. The Staff
Seminar—3 hours; term paper. From 1586 to the Generation of 1927.

234L. Twentieth-Century Spanish Poetry (4) I. The Staff
Seminar—3 hours; term paper. From 1945 to the present.

234B. Twentieth-Century Spanish Poetry (4) II. The Staff
Seminar—3 hours; term paper. New trends in Spanish poetry from 1927 to the present.

235A. Twentieth-Century Spanish Novel (1900-1936) (4) I. Armstead, Gullón
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of the modern Spanish novel until the Civil War. Emphasis on Modernism, Generation of 1898, Vanguardism, and other literary trends through selected works by Valle-Inclán, Baroja, Unamuno, Azorín, Gómez de la Serna, and others. Offered in alternate years.

238B. Twentieth-Century Spanish Novel (4) II. Armstead, Gullón
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of the main narrative trends in the contemporary Spanish novel through discussion of works by Cela, Goyasoilo, Martín Santos, Sánchez Ferroso, Benet, and others. Offered in alternate years.
Preparatory Requirements. Before applying for either the A.B. or B.S. major in Statistics, students must ordinarily complete the following courses with at least C grades:
Statistics 21A, 21B, 21C
Mathematics 22A, 22B
Computer Science Engineering 30 or Engineering 5 or Statistics 32.

In addition, due to space limitations in the B.S. major, students admitted to this major will normally be chosen from those having at least 3.0 grade-point average in the above courses. For further information, please contact the Statistics adviser.

Career Alternatives. Probability models and statistical methods are used in a great many fields, including the biological and social sciences, business, and engineering. The wide applicability of statistics has created in both the public and private sectors a strong demand for graduates with statistical training. Current employment opportunities include state and federal government positions with a statistician designation, industrial positions (e.g., in the actuarial series within an insurance company or in the data management unit in a health science facility), and teaching positions.

A.B. Major Requirements:

STATISTICS

Preparatory Subject Matter
Calculus, Mathematics 21A, 21B, 21C... 12
Linear algebra, differential equations, Mathematics 22A, 22B... 6
Computer science, Computer Science Engineering 30 or Engineering 5 (or the equivalent)... 3-4

Statistics

Statistics courses with Statistics 131B as a prerequisite... 9-10
Related elective courses... 9

Total Units for the Major... 82-84

B.S. Major Requirements:

Statistics

Preparatory Subject Matter
Calculus, Mathematics 21A, 21B, 21C... 12
Linear algebra, differential equations, Mathematics 22A, 22B... 6

Computer science, General option... 3-4

Computer Science Engineering 30 or Engineering 5 (or the equivalent)... 10

Computer Science option... 10

Computer Science Engineering 30 and 40 and Electrical and Computer Science Engineering 70

Statistics through computers, Statistics 32... 3

Statistics (general) option

Depth Subject Matter

Analysis of variance, multiple regression, Statistics 106, 108 or the equivalent... 8
Introduction to probability, mathematical statistics, Statistics 131A, 131B, 131C or the equivalent... 12

Four Statistics courses having Statistics 131B as a prerequisite... 12-13

Linear algebra, Mathematics 167... 3

Three upper division Mathematics courses selected from 108, 127A-127B-127C.
13. Elementary Statistics (4) I, II, III. The Staff
Lecture—4 hours. Prerequisite: two years of high school algebra. Measures of central tendency and dispersion; binomial, normal, Student-t, and chi-square distributions; testing hypotheses; nonparametric statistics; regression and correlation theory. (Students who have had courses 130A or 131A may not receive credit for Statistics 13.)

13AT. Self-Paced Modular Instruction in Elementary Statistics (4) I, II. Wiggins
Autotutorial—4 hours. Prerequisite: two years of high school algebra, no prior knowledge of computers assumed. Computer tutorial corresponds to course 13. Students working at computer solve randomly chosen problems and take exams to determine if course is complete. Computer-timed exams present a fixed number of problems for solution. Exams may be repeated.

32. Biostatistical Analysis Through Computers (3) III. III. The Staff
Lecture—3 hours. Prerequisite: Statistics 16B or 21B; ability to program in a high-level computer language such as Pascal. Overview of probability modeling and statistical inference: Problem solving through mathematical analysis and computer simulation. Recommended as alternative to course 13 for students with some knowledge of calculus and computer programming.

98. Directed Group Study (1-5) I, II, III. The Staff
Chairperson in charge
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

102. Introduction to Probability and Statistical Inference (4) I, II. III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: two years high school algebra, and upper division standing. Introduction to probability and statistics at a rigorous yet accessible level. Topics include: probability models—binomial, Poisson, geometric, normal, chi-square; sampling distributions; hypothesis testing; correlation; linear regression; multiple regression; correlation; and statistical inference.

103. Applied Statistics for Business and Economics (4) I, II. III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13, 32, or 102. Descriptive statistics: probability; random variables, expectation, binomial, normal, Poisson, other distributions; joint distributions; sampling distributions, central limit theorem; probabilities of estimators, linear combinations of random variables, testing and estimation; Multivariable regression and ANOVA package Stage II.

104. Applied Statistical Methods: Nonparametric Statistics (3) III. The Staff

106. Applied Statistical Methods: Analysis of Variance (4) I, II. III. The Staff
Lecture—4 hours. Prerequisite: course 13, 32, or 102. One-way and two-way fixed effects analysis of variance models. Randomized complete and incomplete block designs. Latin squares. Multiple comparison procedures. One-way random effects models.

108. Applied Statistical Methods: Regression Analysis (4) I, II. III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13, 32, or 102. Simple linear regression, variable selection techniques, regression, analysis of covariance, influence measures, computing packages.

*110. Applied Statistical Methods: Multivariate Analysis (4) I, II. The Staff
Lecture—3 hours. Prerequisite: courses 13, 32, or 102, and 106 or 108. Estimation of the mean vector and covariance matrix of a multivariate population. Multiple comparison methods. Estimation of simple, multiple, and partial correlation coefficients. One-way MANOVA. Linear discriminant functions. Principal component analysis. Factor analysis. Offered in alternate years.

120. Probability and Random Variables for Engineers (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 21A, 21B, 21C, and 22A. Basic concepts of probability theory, applications to electrical engineering, discrete and continuous random variables, conditional probability, combinations, binomial distributions, transformation of random variables, law of large numbers, central limit theorem, and applications.

130A. Mathematical Statistics: Brief Course (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16B. Concepts of a probability space, conditional probability and independence, discrete and continuous random variables, moments and moment generating functions, transformation of random variables, commonly used probability models, joint distribution of random variables, marginal and conditional distributions.

130B. Mathematical Statistics: Brief Course (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16B and course 130A. Sampling distributions, sums of random variables, the t, F, and X² distributions, central limit theorem and applications, fundamental points of interval estimation, one-sample and two-sample hypothesis testing. Introduction to regression analysis, and analysis of variance.

131A. Introduction to Probability Theory (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16B and course 130A. Sampling distributions, sums of random variables, the t, F, and X² distributions, central limit theorem and applications, fundamental points of interval estimation, one-sample and two-sample hypothesis testing. Fundamental concepts of probability theory, discrete and continuous random variables, standard distributions, moments and moment generating functions, laws of large numbers and the central limit theorem. Students who have had Mathematics 131A may not receive credit for Statistics 131A.

131B-131C. Introduction to Mathematical Statistics (4-4) I-III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131A, or Mathematics 22A and 131. Sampling methods of estimation, sampling distributions, confidence intervals, testing hypotheses, linear regression, analysis of variance, elements of large sample theory, and nonparametric inference.

132. Engineering Statistics (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing; one course from courses 130A, 130B, 131A, Engineering 118, or Mathematics 131. Not open to Statistics majors. Statistical estimation, hypothesis testing, correlation, simple linear regression, least squares estimation, confidence intervals, prediction intervals, multiple regression, goodness-of-fit, analysis of variance, factorial design, contingency tables, chi-square tests, applications to engineering problems.

133. Mathematical Statistics for Economists (4) I. Samaniego
Lecture—3 hours; discussion—1 hour. Prerequisite: course 103 and Mathematics 16B, or their equivalents; no credit will be given to students majoring in Statistics. Probability, basic properties, discrete and continuous random variables (binomial, normal, t, chi-square); expectation and variance of a random variable; bivariate random variables (bivariate normal); sampling distributions; central limit theorem; estimation, maximum likelihood principle; basic of hypotheses testing (one-sample).

*134. Nonparametric Inference (3) II. The Staff
Lecture—3 hours. Prerequisite: course 130B or 131B. Selected topics in nonparametric statistics. Nonparametric statistical inference from a one-sample and a k-sample point of view. Topics include Kolmogorov-Smirnov type tests; confidence intervals for quantities, location and scale parameters; rank tests: dispersion tests, efficiency. Offered in alternate years.
135. Multivariate Data Analysis (3) III. The Staff
 Lecture—3 hours; prerequisite: course 130B or 131B. Quantitative description and analysis of social and biological problems. Multivariate statistical procedures. Cross-validation, factor analysis, cluster analysis, discriminant function analysis. Applied time series, factor and cluster analysis. Offered in alternate years.

136. Applied Linear Models: Analysis of Variance (4) II. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22A and any one of courses 130B, 131B, 132, or 133. Review of linear algebra and statistics, problem in linear model, analysis of variance, advanced topics in analysis of variance, variance components model.

137. Applied Time Series Analysis (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 130B or 131B or the equivalent. Cross-sectional, time-series, and cross-sectional, time-series analysis, multiple regression, autoregressive moving average models, forecasting, Box-Jenkins methods, spectral analysis, analysis of variance, and signal detection and discrimination methods.

138. Analysis of Categorical Data (4) I. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 130B or 131B, or courses 106 and 108. Varieties of contingency tables, goodness-of-fit tests, test of independence. Multidimensional tables and log-linear models, maximum likelihood estimation, tests of goodness-of-fit. Logit models, linear logistic models. Analysis of incomplete tables. Packaged computer programs, analysis of real data.

139. Applied Linear Models: Regression Analysis (4) I. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22A and any one of courses 130B, 131B, 132, or 133. Simple linear regression, general linear model and examples, point estimation, tests of hypotheses, multiple regression, advanced topics in regression. Limitations and uses of covariance.

140. Introduction to Biostatistics (4) III. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 106 and 108, or any one of courses 130B, 131B, 132, or 133. Clinical trials, diagnostic tests, epidemiology, observational studies, epistemology of infectious diseases, longitudinal studies, survival analysis, analysis of variance, and dose-response analysis.

141. Statistical Computing (3) II. The Staff
 Lecture—3 hours. Prerequisite: course 131A or 131B or the equivalent. Introduction to Computer Science Engineering 30D or Engineering 5; knowledge of regression analysis and matrix algebra. Computational aspects of linear models and nonlinear models; development and implementation of statistical programs; simulation techniques; graphics.

142. Reliability (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 130B or 131B or consent of instructor. Stochastic modeling and inference for reliability systems. Topics include: coherent systems, statistical failure models, notions of aging, maintenance policies and their optimization. Offered in alternate years.

144. Sampling Theory of Surveys (3) II. The Staff
 Lecture—3 hours. Prerequisite: course 131B or 131B. Description and analysis of sample surveys with applications in the social and biological sciences. Stratified sampling, sample size and estimation, Problem of nonresponse. Offered in alternate years.

145. Bayesian Statistical Inference (3) II. The Staff
 Lecture—3 hours. Prerequisite: courses 130A-130B or (131A-131B-131C or the equivalent. Subjective probability, Bayesian theorem, conjugate priors, noninformative priors, decision theory, estimation, testing, prediction, empirical Bayes methods, Bayesian robustness, properties of Bayesian procedures, comparison of frequentist and Bayesian procedures, approximation techniques, hierarchical Bayesian analysis, applications. Offered in alternate years.

192. Internship in Statistics (1-12) II, III. The Staff (Chairperson in charge)
 Internship—3-36 hours; term paper. Prerequisite: upper division standing and consent of instructor. Work experience in statistics. (P/NP grading only.)

198. Directed Group Study (1-5) II, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) II, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. (P/NP grading only)

205. Statistical Methods for Research (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 106 or the equivalent. Topics in experimental design include: Latin squares, Youden squares, balanced and partially balanced incomplete block designs, factorial experiments, confounded designs, split-plot designs, lattice designs, fractional factorial designs, repeated measurements designs; optimal designs based on various criteria, analysis of covariance.

221. Biostatistics I (3) I. Mueller
 Lecture—3 hours. Prerequisite: one of the following courses: 231A, 131B, 130B, 133, or both courses 130C and 130D. Clinicos, trials, cross-over design, randomization models, sequential clinical trials, observational studies, case-control and cohort studies, estimation of risks, diagnostic procedures, dose-response relationships, combination of drugs, low-dose effects.

222. Biostatistics II (3) I. Mueller
 Lecture—3 hours. Prerequisite: course 231A, 231B, and 231C, or course 230 and consent of instructor. Parametric survival models, nonparametric survival models, semiparametric survival models, applications of survival methods in epidemiology, data analysis, computer packages.

223. Biostatistics III (3) II. Mueller
 Lecture—3 hours. Prerequisite: course 231A, 231B, and 231C, or courses 130A-130B. Generalized linear models, longitudinal studies, stochastic models in epidemiology and medicine, advanced biostatistical topics, advanced biostatistical data analysis.

230. Brief Advanced Mathematical Statistics (4) I. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: courses 151A, 131B, 131C, and Mathematics 167, or the equivalent. Decision theory, modes of convergence, laws of large numbers, central limit theorem, Slutsky’s theorem, 8-method, consistency and asymptotic normality of maximum likelihood estimation, methodology, hypothesis testing based on likelihood, Bayes’ theorem, concepts of decision theory, Bayesian inference. Students who have received credit for courses 231A, 231B, or 231C need receive only 2 units, 1 unit, or no credit, respectively, for course 230.

231A-231B-231C. Mathematical Statistics (4-4-4) I-III. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 131C and Mathematics 127A-127B or the equivalent. Distribution theory, decision theoretic methods, estimation and hypothesis testing, multivariate techniques, large sample theory.

232A-232B. Linear Model Theory (4-4) II-III. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 131C. Estimation and testing for the general linear hypothesis, components of variance, multiple comparison. Offered in alternate years.

233. Design of Experiments (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 131C. Topics from balanced and partially balanced incomplete block designs, fractional factorials, and response surfaces. Offered in alternate years.

234. Advanced Regression Analysis (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 131C or 130B, course 106, or consent of instructor. Techniques of variable selection. Problems of multicollinearity, non-linear regression, special topics. Offered in alternate years.

235A-235B-235C. Probability Theory (3-3-3) I, II, III. The Staff
 Lecture—3 hours. Prerequisite: Mathematics 127C and courses 131A-131B or the equivalent. Measure theoretic foundations, abstract integration methods of convergence, limit theorems, independence, laws of large numbers, characteristic functions, central limit theorem, conditional expectations; topics from discrete time, Markov and stationary processes, ergodic theory, Brownian motion, weak convergence, Wiener and Poisson processes. (Same course as Mathematics 235A-235B-235C.)

236. Advanced Mathematical Statistics: Sequential Analysis (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 231C. Sequential decision functions, Bayes and minimax rules, backward induction, sufficiency and invariance under sequential sampling. Wald SRPT and its optimality, continuous time SRPT, repeated significance tests, confidence intervals. Offered in alternate years.

237A. Time Series Analysis: Foundations (3) I. The Staff
 Lecture—3 hours. Prerequisite: course 131A or Mathematics 131 or the equivalent. Basic structure of stationary and non-stationary time series. Differentiation, interpolation, spectral representation, autocorrelation, mean square estimation, the discrete Fourier transform, laws of large numbers, autoregressive moving average processes. Offered in alternate years.

237B. Time Series Analysis: Statistical Inference (3) III. The Staff
 Lecture—3 hours. Prerequisite: courses 131B-131C and 237A. Multivariate normal processes, spectral estimation, laws of hypotheses, regression, discrimination filtering, spectral analysis of variance, ARIMA processes, state space models, and maximum likelihood estimation. Offered in alternate years.

238A. Theory of Multivariate Analysis I (3) II. The Staff
 Lecture—3 hours. Prerequisite: course 231C or consent of instructor. Review of matrix algebra; Jacobians; standard multivariate normal distribution theory; multiple, partial, and canonical correlations; maximum likelihood estimation; properties of the Wishart distribution; Hotelling’s T2 test; union intersection principle; simultaneous linear compounds; likelihood ratio testing procedure; multivariate regression analysis. Offered in alternate years.

238B. Theory of Multivariate Analysis II (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 238A. Multivariate analysis of variance; profile analysis; growth curve analysis; principal component analysis, inference on covariances, factor analysis, discriminant analysis, and multivariate analysis of variance. Offered in alternate years.

*Course not offered this academic year.

239A. Advanced Mathematical Statistics: Non-Parametric Theory (3) III. The Staff
 Lecture—3 hours. Prerequisite: course 134 and 231C. Locally most powerful rank tests, asymptotic distribution theory under null hypothesis and under local alternatives, empirical process, Kolmogorov-Smirnov and Cramer-von Mises tests, representation of sample quantiles, nonparametric density estimation and nonparametric regression. Offered in alternate years.

250. Advanced Data Analysis (4) I. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: courses 141, 2324, and either course 230 or 231A. Resampling methods and one to three additional topics selected from nonparametric and semiparametric methods, incomplete data analysis, diagnostics, nonstandard multivariate and time series analysis, applied Bayesian methods, sequential analysis and quality control. Categorical data analysis. Offered in alternate years.

260. Seminar in Statistics (1-6) II, III, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. Seminar on
Statistics
(A Graduate Group)

George G. Roussas, Ph.D., Chairperson of the Group

Group Office, 469 Kerr Hall (916-752-2381)

Faculty. The Group has approximately thirty faculty members from all colleges, schools, and divisions, including 13 from the Intercollegiate Division of Statistics.

Graduate Study. The Graduate Group in Statistics offers programs of study and research leading to the M.S. and Ph.D. degrees. The M.S. is designed to give students a strong foundation in the theory of statistics as well as substantial familiarity with the most widely used statistical methods. Faculty in computer programming is essential for some of the course work. The supervised statistical consulting required of all M.S. students has proven to be a valuable educational experience. The Ph.D. program combines advanced course work in statistics and probability with the opportunity for in-depth concurrent study in an applied field. The Biostatistics Affinity Group, a subgroup of the Graduate Group in Statistics, has been formed to oversee the recently approved emphasis in biostatistics in the Ph.D. program. For detailed information, see the Graduate Announcement, or contact the Chairperson of the Group.

Preparation. For admission to the Ph.D. program, course work requirements for the master's degree, and at least one semester/two quarters of advanced calculus must be completed.

Graduate Adviser. R.H. Shumway.

Subject A
See under University Requirements; and English A.

Surgery
See Surgery (Medicine, School of); and Surgery (Veterinary Medicine), below

Surgery (School of Veterinary Medicine)
Eugene P. Steffey, V.M.D., Ph.D., Chairperson of the Department

Department Office, 2112 Medical Science 1A
(916-752-3599)

Faculty
Cleta S. Bailey, D.V.M., Ph.D., Professor
Roy W. Bellhorn, D.V.M., M.S., Professor
Eugene M. Brachman, D.V.M., Ph.D., Professor
Nedim C. Buyukmihhi, V.M.D., Associate Professor
Clare R. Gregory, D.V.M., Associate Professor
Steve C. Haskins, D.V.M., M.S., Professor
Susan V. Halsebrand, D.V.M., Associate Professor
Janet E. Ilow, B.V.Sc., Ph.D., Associate Professor
Robert L. Linford, D.V.M., Ph.D., Assistant Professor
Bruce R. Madewell, V.M.D., M.S., Professor
Dennis M. Meagher, D.V.M., Ph.D., Professor
John R. Pascoe, B.V.Sc., Ph.D., Associate Professor
Peter J. Pascoe, B.V.Sc., Assistant Professor
Jack R. Snyder, D.V.M., Ph.D., Assistant Professor in Residence
Arden P. Steffey, V.M.D., Ph.D., Professor
Gordon H. Theilen, D.V.M., Professor
Philip B. Vasseur, D.V.M., Professor
Alida F. Wind, M.V.D., Senior Lecturer

Emeriti Faculty
Robert M. Cello, D.V.M., Professor Emeritus
Ira M. Goggin, D.V.M., Professor Emeritus
Terrell A. Holland, D.V.M., Ph.D., Professor Emeritus
Robert L. Leighton, V.M.D., Professor Emeritus
Herold R. Perk, D.V.M., Ph.D., Professor Emeritus
John D. Wheat, D.V.M., Professor Emeritus

Part-Time Clinical Faculty
Gregory L. Ferraro, D.V.M., Associate Clinical Professor
Dennis V. Hacker, D.V.M., Assistant Clinical Professor
George M. Peavy, D.V.M., Assistant Clinical Professor
Randall H. Scaglioni, D.V.M., Assistant Clinical Professor
Leigh West-Hyde, D.V.M., Assistant Clinical Professor
Pauline L. Wong, D.V.M., Lecturer

Courses in Surgery
Upper Division Course
199. Special Study for Advanced Undergraduates
(1-5) I, II, III. The Staff (Steffey in charge; (P/NP grading only)

Graduate Courses
200. Principles of Anesthesia and Surgery (2) I, Steffey
Lecture—2 hours. Prerequisite: graduate or professional student or consent of instructor. Presentation and integration of principles and techniques of anaesthesia and surgery for laboratory animals. Course is not restricted to student numbers. Offered in alternate years.

200L. Principles of Anesthesia and Surgery (2) II, Steffey
Laboratory—4 hours. Prerequisite: course 200 concurrently. Laboratory to complement course 200. Limited enrollment. Offered in alternate years. (SU/G grading only)

201. Anesthesia/Critical Care Basic Science Conference (1) I, II, III. The Staff (Pascoe in charge)
Discussion—1 hour. Prerequisite: postdoctoral, medical, or graduate student; consent of instructor. Advanced course in scientific foundations of animal anesthesia and critical care. Format is directed by discussion following reading of assigned material. (SU/G grading only)

202. Anesthesia/Critical Care Case Management Conference (1) I, II, III. The Staff (Steffey in charge)
Discussion—1 hour. Prerequisite: postdoctoral, medical, or graduate student; consent of instructor. Discussion of veterinary medical teaching hospital case material to illustrate specific medical problems and their preventive and corrective management. (SU/G grading only)

208. Group Study (1-5) I, II, III. The Staff (Steffey in charge)

209. Research (1-2) I, II, III. The Staff (SU grading only)

240. Methods in Statistical Consulting (3) I, II. The Staff
Supervised consultation—3 hours. Prerequisite: graduate standing in Statistics. Students observe faculty consulting with clients and discuss with faculty methods of analyzing data or designing their experiments. Students may also perform data analysis. Following this, students do supervised, then unsupervised, then reviewed, statistical consulting. May be repeated once for credit. (SU/G grading only)

241. Small Animal Surgery (1 1/2 per week) I, II, III.
The Staff (Vasseur in charge)
Laboratory—50 hours. Prerequisite: professional standing. House Officer in Veterinary Medical Teaching Hospital, or consent of instructor. House Officers responsible for care of small animal patients in the hospital including physical examinations, presurgical work-ups, surgery, postoperative care and follow-up under the supervision of the senior surgical staff. May be repeated for credit. (SU/G grading only)

412. Large Animal Surgery (1 1/2 per week) I, II, III.
The Staff (Pascoe in charge)
Laboratory—50 hours. Prerequisite: professional standing. House Officer in Veterinary Medical Teaching Hospital, or consent of instructor. House Officers responsible for care of farm animal surgical patients in the hospital and outpatient clinic including physical examinations, presurgical work-ups, assistant at operations, surgery, postoperative care and follow-up under the supervision of the senior surgical staff. May be repeated for credit. (SU/G grading only)

413. Foundations in Veterinary Dentistry (2) II.
West-Hyde Lecture—50 hours total. Prerequisite: second-, third- or fourth-year veterinary students; residents in specialty training; or graduate students. Overview of current knowledge and practical techniques used in small animal dentistry. (SU/G grading only)

414. Veterinary Anesthesiology (1 1/2 per week) I, II, III.
The Staff (Steffey in charge)
Laboratory—50 hours. Prerequisite: professional standing. House Officer in Veterinary Medical Teaching Hospital, or consent of instructor. House Officers responsible for anesthetic care of patients in the operating rooms under the supervision of the senior staff. May be repeated for credit. (SU/G grading only)

420. Veterinary Neurology (1 1/2 per week) I, II, III.
Bailey Laboratory—50 hours. Prerequisite: professional standing. House Officer in Veterinary Medical Teaching Hospital, or consent of instructor. House Officers responsible for care of hospital and outpatient patients including history taking, neurologic examinations and special diagnostic and therapeutic procedures under the direction of the staff neurologists. (SU/G grading only)

422. Veterinary Ophthalmology (3/4-1 1/2 per week) I, II, III.
Bellhorn Laboratory—25-50 hours. Prerequisite: professional standing. House Officer in Veterinary Medical Teaching Hospital, or consent of instructor. House Officers...
Textile Science
See Fiber and Polymer Science

Textiles (A Graduate Group)

S. Haig Zeronian, Ph.D., D.Sc., Chairperson of the Group
Group Office, 129 Eversen Hall (916-752-6650)
Faculty: The Group includes the faculty from the Division of Textiles and Clothing as well as from a variety of other departments representing related disciplinary fields.

Graduate Study: The Graduate Group in Textiles offers a program of study and research leading to the M.S. degree. Students in the program can emphasize either the physical or behavioral science aspects of textiles. Research areas include: structure, modification, and properties of fibers and related polymers as well as fibrous assemblies, and psychological and sociological factors relating to perception and consumption of textiles and apparel. Extensive specialized textiles research facilities are available. For detailed information regarding the program, address the Chairperson of the Group.

Graduate Adviser, S. H. Zeronian (Textiles and Clothing).

Textiles and Clothing
(College of Agricultural and Environmental Sciences)
Margaret H. Rucker, Ph.D., Chairperson of the Division
Division Office, 129 Eversen Hall (916-752-6650)
Faculty: YouLo Heiseh, Ph.D., Associate Professor
Susan B. Kaiser, Ph.D., Associate Professor
Emory Manefee, Ph.D., Adjunct Professor
Howard L. Needles, Ph.D., Professor
Ning Pan, Ph.D., Assistant Professor
Margaret H. Rucker, Ph.D., Professor
S. Haig Zeronian, Ph.D., D.Sc., Professor
Emeriti Faculty:
Mary Ann Morris, Ph.D., Professor Emeritus

Multidisciplinary Option Depth Subject Electives

Agricultural Economics (Agricultural Economics 112, 113)...
Design (Design 143)...
Psychology or Consumer Science (Psychology 145 or 185, or Consumer Science 100)...

Marketing/Economics Option Electives...

Electives...

Multidisciplinary Option Restricted Electives...

Courses selected from the following:
Agricultural Economics 112, 113, 142, 155, 157, 171A, 171B, Anthropology 122, 126, Consumer Science 100, Design 77A, 77B, 143, Economics 101, 121A, 121B, 134, 162, and other relevant course work. Foreign language units may be used to satisfy any or all of the required 12 units, Mathematics 16C, Psychology 143, Sociology 123, 126, 140, 141, 145, Textiles and Clothing 100A, 100B, 230, 293, with consent of instructor, and a maximum of 5 units in either Textiles and Clothing 102 or 199.

Multidisciplinary Option Restricted Electives...

Courses selected from the following:

Marketing/Economics Option Unrestricted Electives...

Electives...

Major Adviser, H.L. Needles.
Advising Center for the major is located in 129 Eversen Hall (916-752-6417).

The Minor Program:
The Division of Textiles and Clothing offers a minor program for non-majors interested in satisfying secondary career objectives. For acceptance into the program see the staff advisor in 129 Eversen Hall.

Textiles and Clothing...

Electives...

One course from Textiles and Clothing 8...

Courses selected from Fiber and Polymer Science 100, 110, 161, 161L, Textiles and Clothing 107, 108, 162-163, 162L-163L, 164, 165, 171, 173, 174, 177...

Minor Adviser, H.L. Needles.

Courses in Textiles and Clothing...

Questions pertaining to the following courses should be directed to the instructor or to the Division of Text-
tiles and Clothing. See also courses in Fiber and Polymer Science.

Lower Division Courses

6. Introduction to Textiles (4) L. Needle Lecture—3 hours; laboratory—3 hours. Introduction to the structure and properties of textiles. Consumer use and fabric characteristics are emphasized.

8. The Textile and Apparel Industries (4) L. Rucker Lecture—4 hours. Study of the textile and apparel industries including fashion theory, production, distribution, and consumption of textile goods.

92. Internship in Textiles and Clothing (1-12) I, II, III. The Staff (Rucker in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Rucker in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Rucker in charge)

(P/NP grading only)

Upper Division Courses

162. Textile Fabrics (3) III. Pan Lecture—3 hours. Prerequisite: course 6. Properties of fabrics as related to serviceability, comfort, and appearance.

162L. Textile Fabrics Laboratory (1) III. Pan Laboratory—3 hours. Prerequisite: course 162 may be taken concurrently. Laboratory methods and procedures employed in studying properties of textile fabrics as related to serviceability, comfort, and appearance.

163. Textile Coloration and Finishing (3) III. Needles Lecture—3 hours. Prerequisite: course 6. Fibre and Polymer Science 110, or Chemistry 88. Basic principles of textile dyeing, printing, and finishing; color theory; structure, properties, and application of dyes and finishes; factors affecting application and fastness; maintenance of dyed and finished textiles.

163L. Textile Coloration and Finishing Laboratory (1) III. Needles Laboratory—3 hours. Prerequisite: course 163 may be taken concurrently. Demonstrates various aspects of dyeing, printing, and finishing of textile substrates including the effect of fiber and finish type, and physical and chemical variables on dyeing and finishing processes and on the properties of the resultant textiles.

164. Principles of Apparel Production (3) III. Hsieh Lecture—3 hours. Prerequisite: course 6 or 8. Overview of characteristics, technology, processes, and research in apparel manufacturing industries including study of government statistics, material utilization and fabrication, mechanization, management, and production engineering.

171. Clothing Materials Science (4) I. Hsieh, Pan Lecture—3 hours; laboratory/discussion—3 hours. Prerequisite: course 6, 8, and senior standing. The properties, characterization, and performance evaluation of clothing materials and structures for specific functional applications. Principles and methodologies related to wetting and transport properties, fabric hand and aesthetic properties, clothing comfort, and material and assembly technology.

173. Principles of Fashion Marketing (3) II. Rucker Lecture—3 hours. Prerequisite: course 8. Economics 1A, Agricultural Economics 113 or 136. Study of basic elements of fashion marketing including philosophy and objectives, organization merchandising, pricing, promotional techniques, and distribution.

174. Introduction to World Trade in Textiles and Clothing (2) I. Rucker Lecture—2 hours. Prerequisite: course 8. Structure of the global fiber/textile/apparel complex and its distribution. Includes an overview of political, economic, and technological factors that are changing these industries and their markets.

177. Clothing and Social Perception (3) I. Kaiser Lecture—3 hours. Prerequisite: course 107; Sociology 2. Psychology 1. Social and cognitive processes related to the meanings people assign to clothing cues when perceiving one another. Particular attention to the following appearance-related stereotypes: age, sex, physical attractiveness, status, ethnicity. Influences of clothing and appearance on social interactions.

180A-180B. Introduction to Research in Textiles (2-2) I, II, III. The Staff (Rucker in charge)

Laboratory—6 hours. Prerequisite: senior standing with textile-related major, and consent of instructor. Senior thesis on independent problems. Research begun in course 180A will be continued and completed in course 180B. (Deferred grading only, pending completion of sequence.)

192. Internship in Textiles and Clothing (1-12) I, II, III. The Staff (Rucker in charge)

Internship—3 to 36 hours. Prerequisite: consent of instructor. Work experience off campus in a textiles or clothing-related area. Supervision by a member of the Textiles and Clothing faculty. (P/NP grading only.)

197. Tutoring in Textiles and Clothing (1-5) I, II, III. The Staff (Rucker in charge)

Discussion laboratory—3 to 15 hours. Prerequisite: upper division textiles-related major and consent of instructor. Tutoring of students in Textiles and Clothing courses. Assistance with discussion groups and laboratory sections under supervision of instructor. May be repeated for credit if tutoring another textiles course. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Rucker in charge)

(P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Rucker in charge)

(P/NP grading only)

Graduate Courses

230. Behavioral Science Concepts in Textiles (3) III. Kaiser Lecture—3 hours. Prerequisite: course 107, upper division or graduate course in statistics (e.g., Agricultural Science and Management 150) and one in a behavioral science (e.g., Psychology 145). Examination of theories and research concerning relationships between clothing and human behavior, with emphasis on research techniques, including methods of measuring clothing variables. Offered in alternate years.

250A-F. Special Topics in Polymer and Fiber Science (3) I, II. Zeronian Lecture—3 hours. Prerequisite: Fiber and Polymer Science 100 or consent of instructor. Selected topics of current interest in polymer and fiber science. Topics will vary each time course is offered. Same course as Materials Science and Engineering 250A-F.

250C. Research Conference (1) I, II, III. The Staff Seminar—1 hour. Critical review of selected topics of current interest in textiles. (SU grading only.)

290C. Research Conference (1) I, II, III. The Staff (Rucker in charge)

*Course not offered this academic year.

Discussion—1 hour. Prerequisite: graduate standing; consent of instructor. Faculty members meet with their graduate students. Presentations of original research are made by graduate students. Research activities are planned. Discussions are led by major professors for their research groups. (SU grading only)

293. Recent Advances in Textiles (3) I. The Staff (Zeronian in charge)

Lecture—3 hours. Prerequisite: two upper division courses in Textiles and Clothing or consent of instructor. Critical reading and evaluation of selected topics of current interest in textiles. Multidisciplinary aspects of the topics selected will be stressed. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Rucker in charge)

(P/NP grading only)

Urology

See Medicine, School of

Vegetable Crops

(College of Agricultural and Environmental Sciences)

Alan B. Bennett, Ph.D., Chairperson of the Department

Department Office, 148 Amsunson Hall (916-752-0516)

Faculty

M. Joseph Ahrens, Ph.D., Lecturer

Alan B. Bennett, Ph.D., Professor

Arnold J. Bloom, Ph.D., Associate Professor

Kent J. Bradford, Ph.D., Professor

Marita Cartwell, Ph.D., Lecturer

Louise E. Jackson, Ph.D., Assistant Professor

Richard A. Jones, Ph.D., Professor

Richard W. Michelson, Ph.D., Associate Professor

Donald J. Navina, Ph.D., Professor

Carlos F. Quirolo, Ph.D., Professor

Vincent Rubaszky, Ph.D., Lecturer

Dina S. Ciar, Ph.D., Assistant Professor

Mikal E. Saltveit, Jr., Ph.D., Associate Professor

Carol Shennan, Ph.D., Assistant Professor

Ronald A. Voss, Ph.D., Lecturer

Shang-Fa Yang, Ph.D., Professor

John I. Yoder, Ph.D., Associate Professor

Emeriti Faculty

James F. Harrington, Ph.D., Professor Emeritus

Oscar A. Lorenz, Ph.D., Professor Emeritus

James M. Lyons, Ph.D., Professor Emeritus

Leonard L. Morris, Ph.D., Professor Emeritus

Harlan K. Pratt, Ph.D., Professor Emeritus

Lawrence Pappas, Ph.D., Professor Emeritus

Charles M. Rick, Ph.D., Professor Emeritus

Paul G. Smith, Ph.D., Professor Emeritus

Arthur R. Spurr, Ph.D., Professor Emeritus

Herman Timm, Lecturer Emeritus

James E. Welch, Ph.D., Lecturer Emeritus

Masatochi Yamaguchi, Ph.D., Professor Emeritus

Graduate Study

A program of study is offered leading to the M.S. degree in Vegetable Crops. Information can be obtained from the graduate advisor. Also see the Graduate Studies section in this catalog.

Related Courses. See Plant Science 2, 101, 102, 112, 112L, 113, 212A, 212B.
Courses in Vegetable Crops
Questions pertaining to the following courses should be directed to the instructor or to the Vegetable Crops Office, 113 Mann Laboratory.

Lower Division Course
92. Internship in Vegetable Crops (1-6) I, II, III. The Staff (Department Chairperson in charge)
Internship—3-30 hours. Work experience off or on campus in all subject areas pertaining to vegetable crops. Internships supervised by a member of the faculty. Maximum of 12 units permitted in the Vegetable Crops 92-192 series. (P/NP grading only.)

Upper Division Courses
101. Principles of Vegetable Crops Production (4) III. Jones Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C and/or Plant Science 2. Fundamental of vegetable crop production, handling, processing, storage and distribution.

105. Vegetable Biology, Evolution, and Systematics (4) I. Yoder Lecture—2 hours; laboratory—6 hours; field trip(s) and written and oral reports. Prerequisite: Biological Sciences 1B. Botany 108 recommended. Taxonomic and horticultural classification of the more important vegetable cultivars, their origin, morphology, nomenclature, and description; wild vegetable species, minor and exotic vegetables, and trends in development of new cultivars. Offered in alternate years.

118. Seed Production, Technology, and Physiology (4) III. Bradford Lecture—3 hours; laboratory—3 hours. Prerequisite: Botany 112; Genetics 100 or Plant Science 113 recommended. Principles of crop seed production, storage, and utilization. Physiological, developmental, genetic, and environmental factors influencing seed quality. Biological and technological aspects of crop establishment from seeds. Laboratory sessions include field trips to seed industry facilities.

150. Vegetables in World Food Production Systems (4) II. Shenman Lecture—3 hours; discussion—1 hour. Prerequisite: Plant Sciences 2 or Biological Sciences 1C; course 101 recommended. World food production, evaluation of cropping systems and priorities for agricultural research. Examination of selected systems in tropical, subtropical, arid and temperate regions, emphasizing usage, cultural practices, handling, nutritional importance and current research goals for significant vegetable crops.

190. Topics in Plant Science Research (1-15) I, II. The Staff Discussion—1 hour. Prerequisite: undergraduate standing in the plant or biological sciences. Discussion and critique of current research by faculty, graduate students and undergraduate students. May be repeated for a maximum of 3 units. (P/NP grading only.)

191. Undergraduate Research: Proposal (3) I. The Staff Lecture—1 hour; discussion—1 hour; independent study—3 hours. Prerequisite: upper division standing and consent of instructor. Faculty sponsor will individually assist each student to define a problem, conduct an investigation, identify objectives, generate testable hypotheses, design experiments, plan data analysis, prepare a working outline, and write and revise a draft proposal. (P/NP grading only.)

191L. Undergraduate Research: Experiment (1-5) I, II, III. The Staff Laboratory—3 to 15 hours. Prerequisite: course 191 may be taken concurrently) and consent of instructor: Experimental testing of the hypothesis developed in course 191. May be repeated for credit. (P/NP grading only.)

192. Internship in Vegetable Crops (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: consent of instructor. Experience off or on campus in all subject areas pertaining to vegetable crops. Internships supervised by a member of the faculty. Maximum of 12 units permitted in the Vegetable Crops 92-192 series. (P/NP grading only.)

194H. Senior Honors Thesis (1) I, II, III. The Staff Independent study—3 hours. Prerequisite: course 191L and consent of chairperson. Preparation and submission of honors thesis and presentation of the results in a seminar. (P/NP grading only.)

195. Field Study of Vegetable Industry (1) III. Jackson Field Study. Prerequisite: consent of instructor. Field study illustrating various aspects of California agriculture, including research institutions, farm operations, field stations, Extension Service, marketing, processors, equipment, etc. To be given between winter and spring quarters. Considered a spring course for preenrollment. (P/NP grading only.)

197T. Tutoring in Vegetable Crops (1-3) I, II, III. The Staff (Chairperson in charge) Tutoring—2 hours. Prerequisite: consent of instructor. Voluntary tutoring for upper division students who desire teaching experience. Under supervision students may prepare laboratory materials, experiments, and aututorial modules, conduct discussions and demonstrations, and be involved in testing. May be repeated up to a total of 6 units. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Directed Study—1 hour. Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Special Study—1 hour. Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
201. Management of Vegetable Production Systems (3) III. Jackson Lecture/discussion—3 hours. Prerequisite: course 101 or consent of instructor. Overview of management practices utilized in vegetable production systems, emphasizing the balance between resource inputs and crop productivity. Topics include management of water, nutrients, energy, pest management, economic, and environmental factors. Strategies and comparative analysis of contemporary systems for fresh market and processing production.

212. Postharvest Physiology of Vegetables (4) II. Saltveit and Yang Lecture—2 hours; laboratory—6 hours. Prerequisite: Botany 112 or Plant Science 112. Comparative physiology of harvested vegetables; emphasis on maturational, senescence, compositional changes, physiological disorders and effects of environmental factors. Laboratories stress concepts and research procedures. Offered in alternate years.

220. Biotechnology and Genetics of Crop Improvement (3) I. Michelmore Lecture—3 hours. Prerequisite: Genetics 100, Plant Science 113; Genetics 102A, 102B recommended. Focuses on the integration of modern biotechnology and classical plant breeding including: transgenic elements, genetic mapping, gene identification, transformation, tissue culture, incompatibility mechanisms, male sterility, gametophyte selection, disease and stress resistance.

220L. Biotechnology and Genetics of Crop Improvement Laboratory (1) I. Michelmore Laboratory—3 hours. Prerequisite: course 220 concurrently. Several class projects in plant genetics and biotechnology: tomato genetics, isozyme segregation, Agrobacterium mediated plant transformation, self-incompatibility in Brassica species, mapping and resistance genes.

221. Genetics and Cytogenetics of Vegetable Crops (3) III. Quiros Lecture—3 hours. Prerequisite: Plant Science 113 or the equivalent. Genetics and cytoecogenics of the principal vegetables on a crop by crop basis. Current advances in the understanding of genetics, genes, germplasm and applications to practical breeding problems.

221L. Genetics and Cytogenetics of Vegetable Crops Laboratory (2) III. Quiros Laboratory—6 hours. Prerequisite: course 221 (may be taken concurrently). Genetic and cytoecogenics techniques applicable to vegetable crops. Includes chromosome squashes preparations for pachytene analysis, segregation and linkage analysis of quantitative traits in interspecific hybrids, gene-cis/trans mapping, and aneuploid segregations.

225. Transposable Elements in Higher Plants (3) II. Yoder Lecture—1 1/2 hours; discussion—1 1/2 hours. Prerequisite: graduate standing or consent of instructor. Examines the classical and molecular genetic information about plant transposable elements. Topics include the discovery, molecular structure, evolutionary significance and practical uses of these fascinating genetic entities. Offered in alternate years.

228. Plant Molecular Biology Laboratory (5) II. Bennett, Harada (Botany) Lecture—2 hours; laboratory—10 hours. Prerequisite: Biochemistry 101L, a course in molecular genetics, and consent of instructors. Research methods in plant molecular biology. Topics include analysis of gene expression, characterization of gene structure, and gene transfer technology. Emphasis will be placed on analysis of developmental regulated gene expression. (Same course as Botany 228.)

230. Selected Methods in Vegetable Research (3) II. Barratt Lecture—1 hour; laboratory—6 hours. prerequisite: one course from Plant Science 102, Botany 111, 112, Biochemistry 101A-101B or 101L. Survey of the theory and practice of certain laboratory methods and techniques used in vegetable/plant research. Preevaluation of vegetable/plant constituents, physiological function, cell/tissue culture. Offered in alternate years.

290. Seminar (1) I, II, III. The Staff Discussion—1 hour. (SU grading only.)

291. Special Topics in Vegetable Crops (2) I. The Staff (Chairperson in charge) Lecture—1 hour; discussion—1 hour. Prerequisite: graduate standing. In-depth coverage of selected topics in vegetable crops and related disciplines. Topics and speakers determined by instructor in charge. Assignments include brief evaluation of a lecture, and pertinent narrative or grant proposal. May be repeated for credit. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

Professional Course
300. Tutoring in Vegetable Crops (1-3) I, II, III. The Staff (Chairperson in charge) Tutoring—3-9 hours. Prerequisite: consent of instructor. Voluntary tutoring for graduate students who desire teaching experience, but who are not teaching assistants. Students under supervision may give lectures, prepare laboratory materials, experiments, and written reports. Conduct discussions and demonstrations, and be involved in testing. May be repeated for a total of 6 units. (SU grading only.)

Veterinary Anatomy and Cell Biology
(School of Veterinary Medicine)
Dallas M. Hyde, Ph.D., Chairperson of the Department
Department Office, 1231 Haring Hall (916-752-1174)

Faculty
George H. Cardinet III, D.V.M., Ph.D., Professor
Sharon L. Cummings, Ph.D., Assistant Professor
Leslie J. Faulkin, Jr., Ph.D., Professor
Courses in Veterinary Anatomy and Cell Biology

Upper Division Courses
100. Comparative Organology of Vertebrates (4) II. Popper Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 19. Introductory study of the organization of cells and tissues into organs and organ systems in vertebrates. The following organ systems will be compared between fish, birds, and mammals: musculoskeletal, gastrointestinal, cardiovascular, respiratory, integumentary, urinary, reproductive, and nervous systems.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (PINF grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (PINF grading only)

Graduate Courses
202. Organology (2) II. The Staff (Chairperson in charge) Lecture—2 hours. Prerequisite: course 100 or the equivalent and consent of instructor. Comparative development, growth patterns, and composition of selected organs: liver, kidney, lung, mammary gland, brain, and a skeletal muscle. Offered in alternate years.

205. Ultramicroscopic Anatomy (3) III. The Staff (Tyler in charge) Lecture—3 hours. Prerequisite: histology. The electron microscopic appearance of cells, tissues, and organs of animals emphasizing the structural basis for their physiological functions. Offered in alternate years.

207. Perspectives in Morphological Research (3) III. The Staff (Wu, Tabbin in charge) Lecture—2 hours; discussion—1 hour. Consideration of the principles and applications of modern morphological methods and their role in biomedical research. Examples of specific methods include stereology, computer analysis of images, scanning and transmission electron microscopy, histochemistry, autoradiography, rapid freezing, and vascular injection. Offered in alternate years.

215. Veterinary Histology (6) II. The Staff (Faulk in charge) Lecture—3 hours; laboratory—9 hours. Prerequisite: biological sciences 18. The microscopic anatomy of tissues and organs of mammalian and avian species of veterinary significance.

283. Tumor Biology (3) I. The Staff (Faulk in charge) Lecture—3 hours. Prerequisite: graduate standing and consent of instructor. Tumor growth, invasion and metastasis of tumors; mechanisms of carcinogenesis; intrinsic and extrinsic etiologic factors. Offered in alternate years.

291. Topics in Biology of Respiratory System (1) I, II, III. Tyler, Hyde, Popper, St. George, Wu, Pinkerton Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Topics concerning structure and function of respiratory system. Possible topics include lung growth, pulmonary reaction to toxicants, pulmonary inflammation, lung metabolism, biology of lung cells, tracheobronchial epithelium, nasal cavity structure and function. May be repeated for credit. (SU grading only)

292. Topics in Neuroscience Research (1) III. Cummings Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Students will examine current topics in neuroscience research literature, as well as evaluate rationale, methods, results, interpretation of data, and relevance of studies. Possible topics include pain, autonomic nervous system, neuroendocrine, neurotransmitter regulation of gene expression, neuroendocrine-immune interactions, stress. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Laboratory—6-15 hours. Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) Laboratory—6-36 hours. Prerequisite: consent of instructor. (SU grading only)

Vetinary Medicine, School of

Frederick A. Murphy, D.V.M., Ph.D., Dean of the School

George H. Cardinet III, D.V.M., Ph.D., Associate Dean—Instruction

Bennie L. Gistam, D.V.M., Ph.D., Associate Dean—Research

Donald G. Low, D.V.M., Ph.D., Associate Dean—Public Programs

Robert J. Hansen, Ph.D., Associate Dean—Student Services

William J. Winchester, D.V.M., Assistant Dean School Office, 1018 Harrington Hall (916-752-1300)

Courses in Veterinary Medicine

Lower Division Course
92. Internship in Veterinary Science (1-12) I, II, III, summer. Cardinet Discussion-laboratory—1-4 hours; clinical experience—3-36 hours. Prerequisite: approval by faculty sponsor of internship. Students in this program will be under the supervision of faculty in the School of Veterinary Medicine whose expertise is applicable for the proposed project. (PINF grading only)

Upper Division Course
170. Ethics of Animal Use (3) I, II, III. Byrd, Dundon, Price Lecture—3 hours. Prerequisite: one basic course in composition or speech. Applied ethical methodology, respect for divergent views, for forming personal and professional ethics toward animals. Examination of current ethical codes, case histories and problem areas and pursue consensus policy to protect animal and related human values. General Education credit: Civilization and Culture/Non-Introductory; or Contemporary Societies/Non-Introductory.

192. Internship in Veterinary Science (1-12) I, II, III, IV. Cardinet Discussion-laboratory and clinic—3-36 hours; final report. Prerequisite: upper division standing; approval of project prior to internship by preceptor. Supervised work experience in Veterinary Medicine. (PINF grading only)

Professional Courses
400. Informatics (1-0) I. Cardinet Discussion—2 hours; laboratory—8 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Acquisition of elementary skills and proficiency in the use of microcomputers will be achieved through the "real time" use of microcomputers within the science laboratories of instruction. (SU grading only)

401. Microscopic and Gross Veterinary Anatomy (10.4) III. Hyde Lecture—54 hours; laboratory—50 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Normal interrelationships of structure and function through an integrated presentation of molecular, cellular, tissue, organ, and whole animal structures; principles of developmental biology and organogenesis, and comparative structure of animals and their organs. (Deferred grading only, pending completion of two-quarter sequence.)

402A. Systemic Physiology: Cardiovascular System (1.9) J. Heusner Lecture—14 hours; laboratory—5 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic principles of normal physiological function of the cardiovascular system. Principles are essential for understanding disorders of the cardiovascular system.

402B. Systemic Physiology: Gastrointestinal System (1.3) I. Curry Lecture—11 hours; laboratory—2 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic principles of normal physiological function of the vertebrate gastrointestinal system. Principles are essential for understanding disorders of the gastrointestinal system.

402C. Systemic Physiology: Respiratory System (1.9) II. Jones Lecture—12 hours; laboratory—6 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Provides a basic understanding of normal physiological function of the respiratory system.

402D. Physiology of the Urinary System (1.7) III. Bruns Lecture—12 hours; laboratory—5 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Provides an understanding of the various functions of the kidney and the urinary system; body fluid and acid-base physiology and mammalian physiology.

403. Physiological Chemistry (6.6) I. Hansen Lecture—57 hours; laboratory—9 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Emphasizes biochemical concepts used to analyze problems and evaluate metabolic relationships important in animal health and disease.

404. Fundamentals of Radiography (2.7) II. Morgan Lecture—23 hours; laboratory—4 three-hour sessions. Prerequisite: second year standing in School of Veterinary Medicine. introductory to alternate imaging procedures and therapeutic radiology of small animals. (Deferred grading pending completion of sequence.)

405. Veterinary Parasitology (3.6) III. Conrad, Boyce Lecture—26 hours; laboratory—10 three-hour sessions. Prerequisite: first year standing in School of Veterinary Medicine. Approved for graduate degree credit. Provides an understanding of the important biological and clinical aspects of parasites and the disease they cause in animals.
405B. Clinical Veterinary Parasitology (2) III.
Boyle and Conant
Lecture—20 one-hour sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Provides an understanding of the important biological and clinical aspects of parasites and the disease they cause in animals.

406. Principles of Behavior (0.7) I. Hart
Lecture—7 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Overview of animal behavior with relevance to veterinary medicine.

407A. Principles of Operative Surgery (0.8) III.
Virnich
Lecture—7 hours; laboratory—1 three-hour session. Prerequisite: second-year standing in the School of Veterinary Medicine. Principles of operative surgery, including such topics as aspesis, sepsis, instrumentation, hemostasis, wound healing, and others.

407B. Principles and Techniques of Surgery (2) I.
Pascoe
Lecture—8 hours; laboratory—9 three-hour sessions; discussion—3 three-hour sessions. Prerequisite: second-year standing in School of Veterinary Medicine. Continuation of 407A. Introduces the veterinary student to technical aspects of surgical science. Specific operative procedures performed by the student will provide opportunity to learn fundamental skills of sterile technique, identification and manipulation, knot tying, hemostasis and tissue dissection.

407C. Surgical Anatomy (1) I. Sower
Lecture—10 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Study of anatomical topics as applied to selected surgical operations. Topographical features useful to approaching organs and structures described. Tissues and structures basic to surgery emphasized.

408. Nutrition and Nutritional Diseases in Animals (2.9) II. Morris
Lecture—27 hours; laboratory—2 three-hour sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Principles of nutrition and their application to the solution of nutritional disorders of animals.

409. Epidemiology (1.7) III. Gardner
Lecture—11 hours; discussion—6 hours. Prerequisite: first-year standing in School of Veterinary Medicine. Epidemiology and its application in veterinary medicine.

410. Veterinary Toxicology (2.9) III. Mount
Lecture—18 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Diseases of animals produced by chemical poisons, organic and inorganic. The prevalence of the environment and exposure of animals to them; the inci-dence, pathology, pathogenesis, diagnosis and treatment of diseases produced by poisons will be discussed.

411A. Laboratory Animal Medicine (2) II. Brooks
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Diagnostic, therapeutic and preventive methods for diseases in rabbits, guinea pigs, hamsters and other rodents. Subjects and rodents will be presented to serve the needs of clinical and research veterinarians. Lecture demonstrations with subject species will be provided.

411B. Laboratory Animal Medicine (2) III. Brooks
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Preventive, diagnosis and therapy of medical problems in rabbits, guinea pigs, hamsters, mice, rats and other rodent species. Emphasis will be placed on animal colony health management, techniques and concepts of preventive disease control by veterinarians in charge of research facilities.

413. Medical Primatology (2) III. Roberts
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Major diseases, medical management and husbandry of captive nonhuman primates. (SU grading only.)

414A. Principles of Veterinary Pharmacology and Toxicology (2.4) I. Joy
Lecture—22 hours; laboratory—two 3 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Provides a basic foundation for understanding of pharmacology and toxicology. Introduces principles of pharmacology and begins an introduction to the pharmacology and toxicology of several classes of drugs which are of major importance in veterinary medicine.

414B. Veterinary Pharmacology (1.8) I. GirL
Lecture—17 hours; laboratory—one 3 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Provides a basic understanding of pharmacology and toxicology. Introduces principles of pharmacology and begins a consideration of drugs by pharmacological class.

417. Cage Bird Medicine (2) II. The Staff
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Zoonotic, pathology, diagnosis, treatment and prevention of diseases of fish and of some aquatic arthropods and invertebrates. Preventive management of diseases in aquaculture.

419. Virology (2.7) III. Zieba
Lecture—19 hours; laboratory—8 three-hour sessions. Prerequisite: first-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Introduction to the classification, morphology, and the replication of replication of animal viruses, including the molecular pathogenesis of animal viruses, at the cellular level with emphasis on the genetic basis of infectious diseases of animals.

420. Immunology (3.0) III. Gershwin
Lecture—20 hours; laboratory—10 three-hour sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Concepts of immunology. Emphasis is on the principles of vaccination, responses to pathogenic agents, and the development of hypersensitivity and allergic reactions.

421. Principles of Neurosciences (2.7) II. Cummings
Lecture—22 hours; laboratory—5 three-hour sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Concepts of immunology. Emphasis is on the principles of vaccination, responses to pathogenic agents, and the development of hypersensitivity and allergic reactions.

422. Veterinary Ophthalmology (2.5) II. Bellhorn
Lecture—21 hours; laboratory—4 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Normal structure and function of the eye and the response of the eye to disease. All species of domestic animals will be included. Discussion of selected ocular diseases of various species.

423. Small Animal Ophthalmology (2) III. Byun
Lecture—20 hours. Prerequisite: third-year standing in the School of Veterinary Medicine or consent of instructor. Diagnosis and treatment of common ocular diseases in small animals and domestic animals.

423L. Small Companion Animal Ophthalmology Laboratory (0.3) I. Byun
Lecture—2 four-hour sessions. Prerequisite: course 422 or the equivalent and concurrent enrollment in course 423. Approved for graduate degree credit. Ocular surgery laboratory rotations only.

424. Case Studies in Veterinary Ophthalmology (1) L. Madewell
Lecture—10 hours. Prerequisite: second-year student of Veterinary Medicine elective course offering. By use of clinical case material, the student will be introduced to the Internal Medicine Subspecialty of Ophthalmology. Course will highlight clinical considerations, but will also serve to introduce basic tenets of veterinary ocular surgery.

425. Introduction to the Abnormal Musculoskeletal System (3) III. Pool
Lecture—24 hours; laboratory—6 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Introduction to the principles of orthopedic diseases of animals, including etiology and pathogenesis, basic responses of musculoskeletal tissues to major types of injuries and diseases.

425B. Pulmonary Medicine (2.9) I. George
Lecture—23 hours; laboratory—6 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Introduction to pulmonary medicine. Includes basic understanding of nature, causes, clinical expression, diagnosis and treatment of the important respiratory diseases of dogs, cats, horses, and food animals.

425C. Cardiovascular Medicine (2.6) I. Thomas
Lecture—21 hours; laboratory—5 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Principles of cardiovascular medicine (pathophysiology, diagnosis, and treatment) in animals.

425D. Urinary System, Abnormal (2.5) II. Cowell
Lecture—22 hours; laboratory—5 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Abnormal function of urinary system and diseases affecting this system in animals. Manifestations, pathogens, pathophysiology, pathology, diagnosis and medical and surgical treatment of urinary system disorders.

426. Principles of Veterinary Anesthesiology and Critical Patient Care (1.7) III. Steffey
Lecture—15 hours; laboratory—2 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Offers basic principles of veterinary anesthesia including techniques monitoring and management of animals under anesthesia.

427. Equine Internal Medicine (3) III. Madigan
Lecture—30 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Advanced equine medical diseases including sections on gastrointestinal disease, endocrinology, and gastrointestinal diseases, cardiology, anesthesiology, neurology, oncology, and ophthalmology.

428. Food Animal Surgery (1.6) III. Smith
Lecture—16 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Selected topics in surgical diseases of food animals offered in detail. (SU grading only.)

428L. Food Animal Surgery Laboratory (0.7) III. Smith
Laboratory—7 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine;
347A. Issues in Veterinary Medicine: Ethics, Animal Use, Professional Standards, and Communications (0.6) I. Brooks
Discussion—8 hours. Prerequisite: second-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Introduction to the important responsibilities of veterinarians to society through their role as health care providers. (S/U grading only.)

466C. Food Animal Reproduction (1) III. BonDurant
Lecture—6 hours; laboratory—4 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Conditions affecting the reproductive system in domestic species. Special emphasis on symptomatology, pathophysiology, treatment, control, prevention, and herd health applications.

466D. Equine Reproduction (1) III. Liu
Lecture—6 hours; laboratory—4 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Discussion of special problems of equine reproduction with emphasis on methods of diagnosis and the interpretation of clinical and laboratory findings.

467. Basic Medicine of Domestic Animals (5.3) III. Cowgill
Lecture—51 hours; laboratory—2 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Fundamental principles, clinical manifestations, diagnostic methods and therapeutic approaches common to medical diseases of domestic animals. Preparation for advanced course work in medical diagnosis and therapeutics with specific species focus and orientation.

451. Veterinary Bacteriology and Mycology (4.9) I. Harish
Lecture—34 hours; laboratory—15 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Introduction to the bacterial and fungal agents of animal diseases. Specifically, each microorganism will be discussed with respect to overall significance to animal disease; structural and functional aspects including morphology, cellular composition, and products of medical interest.

452. General Pathology (3.1) I. Moore
Lecture—18 hours; laboratory—13 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic principles of disease and in particular the fundamental mechanisms responsible for creating a disease situation. Illustrations of how the application of general pathological principles is used to determine disease pathogenesis and prognosis.

454. Clinical Immunology (2) I. Pedersen
Lecture—14 hours; laboratory—6 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Immune mediated diseases of domestic animals with emphasis on mechanism of disease production, diagnosis, and therapy. Relevant disease tests, their interpretations, and sampling techniques.

455. Integumentary System (4.9) I-II. Stannard
Lecture—49 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Introduction to principles of veterinary medical jurisprudence and legal concepts pertinent to professional activities. (S/U grading only.)

457. Veterinary Business Management (2) I. Wilson
Lecture—12 hours; laboratory—8 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Course presents a groundwork of information which is essential to the successful management of a veterinary practice. Topics to be covered include basic accounting, medical record-keeping, money management, business and personal insurance, client relations and tax law. (S/U grading only.)
458. Behavioral Therapy (1) III. Hart
Lecture—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Clinical application of management, conditioning procedures, hormonal manipulation and drug therapy to resolve common behavioral problems of dogs and cats.

459. Systemic Pathology (4.9) II. MacAulachan
Lecture—17 laboratory—17 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Presents a basic understanding of the pathogenesis of systemic diseases, with a focus on a variety of animal species. Emphasis will be on mechanisms of injury, patterns of response to injury and on balance between damage and repair.

460. Emergency and Critical Patient Care (2) III.
Haskins
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Introduction to the essential and practical concepts of care for emergency and critically ill patients.

461. Small Animal Orthopedics (1.7) II. Wind
Lecture—14 hours: laboratory—3 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Surgical approaches to joints of the shoulder, hip and stifle and fractures of the humerus, scapula, radius, ulna, pelvis, femur, tibia, and meta carpal/tarsals.

462. Radiographic Diagnosis: Small Animal (2.5) Ill.
Nyland
Lecture—16 hours: discussion—8 two-hour and 1 one-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine. Diagnostic radiography of small animals for the student electing small animal and mixed track. Non-radiology and special procedures will be discussed as they relate to the thorax, abdomen, and musculoskeletal system.

463. Soft Tissue Surgical Diseases of Small Animals (1.0) III. Gregory
Lecture—10 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Pathophysiology and surgical treatment of selected soft tissue disease processes in small animals.

466. Mixed-Large Animal Anesthesia (1.5) I.
Hildebrand
Lecture—15 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Applied clinical anesthesia for junior veterinary students. Special techniques and consideration for anesthetizing a variety of species including horses, swine, ruminants, large non-domestic species, cats and dogs. (SU grading only)

467. Small Animal Anesthesia (1.5) II. Ikiv
Lecture—15 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Presentation of material which is basic to safe clinical administration of anesthetic drugs to small animals. Clinical applications, indications and contraindications, and methods of use of common anesthetic drugs and techniques will be discussed.

468. Equine Lameness and Radiology (4) III.
Meagher, O'Brien, Poo
Lecture—40 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Principles in the radiologic diagnosis of conditions that cause lameness in the equine will be emphasized. Methods used in large-animal radiography will be illustrated and latest techniques for treating equine lameness will be discussed. Anatomy and pathology of some areas of the musculoskeletal system will also be presented.

468L. Equine Lameness and Radiology (1) III.
Meagher, O'Brien, Poo
Laboratory—10 three-hour sessions. Prerequisite: course 468 (concurrently). Priority enrollment for students in equine track; others with consent of instructor. Limited enrollment.

469. Equine Surgery (2) III. Pascoe
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Designed to allow third-year veterinary students additional training and experience with surgical procedures in the horse.

469L. Equine Surgery Laboratory (1) III. Pascoe
Lecture—10 three-hour sessions. Prerequisite: course 469 (concurrently). Specific surgical procedures on the horse are demonstrated and performed under the direction of students. Participants in the course work in groups of three on rotating basis. Limited enrollment.

470A-470B-170C. Hospital Practices (2-2-2) II-III.
The Staff (Director Veterinary Medicine Teaching Hospital in charge)
Veterinary clinical practices—40 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Assignments in the medical and surgical services and clinical diagnostic laboratories of the VM Teaching Hospital. (SU grading only, pending completion of three-quarter sequence.)

471. General Practice Clinics (2.5-15) I-III; sum-
mer (Sessions I and II) and I, Hjerpe
Veterinary clinical practices—40 hours, plus animal patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Assignments in the medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on small and large animal species. Students as combined DVM/MPVM program enroll for the summer-fall sequence. (SU grading only, pending completion of three-term sequence.)

472. Urban Practice Clinics (2.5-15) I-III-III. Hjerpe
Veterinary clinical practices—40 hours, plus animal patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Assignments in the medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to urban veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the summer Session I and I sequence. (SU grading only, pending completion of three-term sequence.)

473. Large Animal Practice Clinics (2.5-15) I-III-III.
Hjerpe
Veterinary clinical practices—40 hours, plus animal patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to large animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I and I sequence. (SU grading only, pending completion of three-term sequence.)

474. Equine Practice Clinics (2.5-15) I-III-I-III. Hjerpe
Veterinary clinical practices—40 hours, plus animal patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to equine veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the summer Sessions I and I sequence. (SU grading only, pending completion of three-term sequence.)

475. Food Animal Practice Clinics (2.5-15) I-III-III.
Hjerpe
Veterinary clinical practices—40 hours, plus animal patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on small and large animal species. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I and I sequence. (SU grading only, pending completion of three-term sequence.)

476. Zoological Practice Clinics (2.5-15) I-III-I-III.
Hjerpe
Veterinary clinical practices—40 hours, plus animal patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to zoological veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I and I sequence. (SU grading only, pending completion of three-term sequence.)

477. Companion Animal Practice Clinics (2.5-15) I-
III, II, summer. Hjerpe
Veterinary clinical practices—40 hours, plus animal patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Assignments in medical and surgical services and clinical diagnostic laboratories of the VM Teaching Hospital with emphasis on small and large animal species. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I and I sequence. (SU grading only, pending completion of three-term sequence.)

478. Small Animal/Food Animal Practice Clinic (2.5-15) I, II, III, summer. Hjerpe
Veterinary clinical practices—7.5-45 hours per week. Prerequisite: fourth year standing in the School of Veterinary Medicine. Clinical training in veterinary medicine. Students will have assignments in the medical and surgical services and clinical diagnostic laboratories of the Veterinary Medical Teaching Hospital with emphasis on small and food animal species. May be repeated for credit. (SU grading only.) (Deferred grading, pending completion of sequence.)

481A-481B-481C. Clinic Rounds (1-1-1) I-III.
Ling, Smith
Discussion—1 hour. Prerequisite: first or second year standing in the School of Veterinary Medicine. Discussion of selected small and large animal cases from the Veterinary Medicine Teaching Hospital. (SU grading only)

Discussion—1 hour. Prerequisite: first or second year standing in the School of Veterinary Medicine. Discussion of complex cases in veterinary medicine. (SU grading only)

485. Introduction to Clinical Veterinary Medicine (1)
Hjerpe
Lecture—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine. An introduction to clinical veterinary medicine, and an understanding of the relationship between basic sciences and clinical veterinary medicine. (SU grading only)

486A. Equine Clinical Neontology (1) I. Madigan
Discussion—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Discussion of the physiology of equine neonatal intensive care and disease pathophysiology in a case format. (SU grading only)

488B. Equine Clinical Neonatology (1) III. Madigan
Discussion—1 hour. Prerequisite: first year standing in the School of Veterinary Medicine or consent of instructor. Discussion of methods of equine neonatal training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to food animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I and I sequence. (SU grading only, pending completion of three-term sequence.)
Veterinary Pharmacology and Toxicology
(School of Veterinary Medicine)
Shri N. Giri, B.V.Sc., Ph.D., Chairperson of the Department
Department Office, 2165 Haring Hall (916-752-1059)
Faculty
J. Desmond Baggett, M.V.M., Ph.D., D. Sci., Adjunct Professor
Richard A. Becker, Ph.D., Assistant Adjunct Professor
Alan R. Buckpitt, Ph.D., Professor
Francis D. Galey, D.V.M., Ph.D., Assistant Professor
(Veterinary Pharmacology and Toxicology, California Veterinary Diagnostic Laboratory)
Shri N. Giri, B.V.Sc., Ph.D., Professor
Arthur D. Jones, Ph.D., Assistant Adjunct Professor
Robert M. Joy, Ph.D., Professor
James B. Kinah, Ph.D., Associate Professor
Michael E. Mount, D.V.M., Ph.D., Associate Professor
Isaac N. Pessah, Ph.D., Assistant Professor
Otto G. Raabe, Ph.D., Professor in Residence
(Veterinary Pharmacology and Toxicology, Civil and Environmental Engineering)
Harry J. Segall, Ph.D., Professor
Philip R. Vulliet, D.V.M., Ph.D., Associate Professor
Hansperter Witschi, M.D., Professor (Medicine, Internal Medicine)
Emeriti Faculty
Gaylord M. Conzeiemen, Jr., Ph.D., Professor Emeritus

Courses in Veterinary Pharmacology and Toxicology
Upper Division Course
119. Special Study for Advanced Undergraduates (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses
223. Clinical Pharmacokinetics: Concepts and Applications in Comparative Medicine (2) III, Vulliet
Lecture—1 hour; discussion—1 hour. Prerequisite: comparative veterinary physiology and general pharmacology. Conceptual pharmacokinetics. Absorption and disposition of various drugs, which are used as therapeutic agents, will be compared in different species (man and domestic animals). Course will provide background for research in clinical pharmacology.

243. Heavy Metal Toxicity and Metabolism (2) II, Raabe
Lecture—2 hours. Prerequisite: Biochemistry 101A-101B after Physiology 100A-100B. Toxicity and metabolism of inorganic compounds with emphasis on heavy metals. Examines the relationship between chemical properties and biologic activity of various metals. Includes discussion on metal-protein interactions, genetic disorders in metabolism, chelation therapy, and inorganic carcinogenesis. Offered in alternate years.

247. Natural Toxicants (2) III, Segall
Lecture—2 hours. Prerequisite: organic chemistry, Biochemistry 101A-101B, or consent of instructor. Toxicity and metabolism of natural toxicants with emphasis on the toxic plants present in the western United States. General pathways of metabolism plus the relationship between chemical properties and biologic activity of natural toxicants are discussed. Offered in alternate years.

253. Drug Metabolism (2) III, Buckpitt
Lecture—2 hours. Prerequisite: Biochemistry 101A-101B or Physiological Sciences 101A-101B, consent of instructor. General pathways of drug metabolism and factors influencing the drug metabolism. Emphasis laid upon the species, age, and genetic
Viticulture and Enology

(College of Agricultural and Environmental Sciences)
Linda F. Blisson, Ph.D., Chairperson of the Department
Department Office. 1023 Wickson Hall
(916-752-0380)

Faculty
Douglas O. Adams, Ph.D., Associate Professor
Linda F. Blisson, Ph.D., Associate Professor
Roger B. Boulton, Professor (Viticulture and Enology, Chemical Engineering)
W. Mark Kleier, Ph.D., Professor
Mark A. Matthews, Ph.D., Associate Professor
Carole P. Meredith, Ph.D., Associate Professor
Janice C. Morrison, Ph.D., Assistant Professor
Ann C. Noble, Ph.D., Professor
M. Andrew Walker, Ph.D., Assistant Professor
Andrew L. Waterhouse, Ph.D., Assistant Professor
Larry E. Williams, Ph.D., Associate Professor
Emeriti Faculty
Maynard A. Amerling, Ph.D., Professor Emeritus
James A. Cook, Ph.D., Professor Emeritus
Richard E. Kneser, Ph.D., Professor Emeritus
Ralph E. Kunke, Ph.D., Professor Emeritus
Lloyd A. Linder, Ph.D., Professor Emeritus
Harold P. Olmo, Ph.D., Professor Emeritus
Cornelius S. Ough, D.Sc., Professor Emeritus
Vernon L. Singleton, Ph.D., Professor Emeritus
Robert J. Wea-hi, Ph.D., Professor Emeritus
A. Dinsmore Webb, Ph.D., Professor Emeritus

The Program of Study
Enology is a specialization under the Feination Science major; and viticulture is a specialization under the Plant Science and the Agricultural Science and Management (Plant Science option) majors.

Graduate Study. Various graduate groups offer programs of study leading to advanced degrees in the fields of viticulture and enology. For the M.S. or Ph.D. degree see agricultural and Environmental Chemistry, Chemical Engineering, Ecology, Food Science, Genetics, Horticure, Microbiology, Plant Biology, Plant Pathology, and Soil Science.

Courses in Viticulture and Enology

Lower Division Courses
2. Introduction to Viticulture (2) III. Williams
Lecture—2 hours. Fundamental principles of biology and culture of the grapevine including taxonomy, morphology, physiology, distribution, domestication, utilization, propagation, production systems, harvesting, and storage and processing of grapes. Successful completion of the course should prepare students for upper division courses in viticulture.

3. Introduction to Wine Making (3) I. Noble; II. Meredith; III.
Lecture—3 hours; term paper; this broad overview of wines introduces students having a general interest (or potential fermentation science [enology] major) to history of wine, physiology of alcohol, wine appreciation, viticulture, fermentation, and wines produced in California and other areas of the United States and world. General Education credit: Civilization and Culture/Introductory or Nature and Environment/Introductory.

Special Study for Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge) (PINF grading only)

Upper Division Courses
101A. Viticultural Practices (2) I. Walker
Discussion-laboratory—4 hours. Prerequisite: course 2. Provides the information required to identify the major wine, raisin, and table cultivars grown in California and elsewhere. Also provides experience in vineyard sampling techniques and vine disease identification.

101B. Viticultural Practices (2) II. Kleier
Discussion-laboratory—4 hours. Prerequisite: course 2. Field-oriented experience in the principles and practices of grapevine production, including pruning, propagation, weed identification and control, frost protection, and physical examination of soil profiles and root distribution patterns.

101C. Viticultural Practices (2) III. Walker
Discussion-laboratory—4 hours. Prerequisite: course 2. Field-oriented experience in the principles and practices of grapevine production, including vineyard establishment, vine training, trellising, canopy management practices, irrigation and water management, and methods for crop adjustment for improvement of fruit quality.

110. Grapevine Growth and Physiology (3) I.
Lecture—3 hours. Prerequisite: course 2. Botanical aspects including morphology and domestication will precede lectures covering flower development and energy budget concepts. Impact of physiological variables such as photosynthesis translocation, mineral nutrition, and water relations on fruit ripening and composition will be covered.

111. World Viticulture (3) I. Meredith
Lecture—3 hours. Prerequisite: upper division standing. Study of the diversity of viticulture, both geographical and historical. History of grape growing and its spread throughout the world will be covered, along with discussions of current viticultural practices in different parts of the world, including California.

115. Raisin and Table Grape Production (2) I.
Williams
Lecture—2 hours. Prerequisite: course 2. Overview of the raisin and table grape industries in California and other production areas of the world. Cultural practices associated with raisin and table grape production will also be discussed. Offered in alternate years.

116. Winegrape Production (2) II. Kleier
Lecture—3 hours. Prerequisite: course 2. Covers principles underlying cultural practices associated with winegrape production, including establishing and planting, training, summer and winter pruning, canopy management, irrigation, mineral nutrition, weed control, frost protection, crop regulation, and harvesting.

118. Grapevine Pests, Diseases and Disorders (3) III. Williams
Lecture—3 hours. Prerequisite: course 2. Describes the various pests and diseases of vineyards throughout California. Pest/disease identification and control methods (to include sampling techniques) also will be discussed. Integrated management approach to pest control methods will be emphasized. Offered in alternate years.

123. Analysis of Musts and Wines (3). Waterhouse
Lecture—2 hours, laboratory—3 hours. Prerequisite: Chemistry 5, 9A, and 9B. Open to undergraduate students in fermentation Science and Plant Science, and graduate students in Agricultural and Environmental Chemistry, Food Science, Horticure, and Microbiology. Principles and methods of grape growing analysis, and the reasons for use of such analysis. Analyses of a practical and useful nature are chosen for the laboratory exercises demonstrating various chemical, physical, and biochemical methods.

124. Wine Production (3) I. Blisson
Lecture—2 hours, laboratory—3 hours. Prerequisite: course 3, Biochemistry 101A; course 123 may be taken concurrently. Open to undergraduate students in fermentation Science and Plant Science, and graduate students in Agricultural and Environmental Chemistry, Food Science, Horticure, and Microbiology. Principles and practice of making the various standard types of wines, with special reference to the grape varieties used and the method of vinification required for each.

Course not offered this academic year.
125. Wine Types and Sensory Evaluation (3) III. Noble Lecture—2 hours; laboratory—3 hours. Prerequisite: course 124, Agricultural Science and Management 150, and consent of instructor. Open to upper division students in Fermentation Science and Plant Science, and graduate students in Agricultural and Environmental Chemistry, Food Science, Horticulture, and Microbiology; or consent of instructor. Major topics: factors influencing their quality; principles of sensory evaluation.

126. Wine Processing (4) II. Boulton Lecture—2 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 124. Principles of equipment and procedures for physical and chemical reactions in wines; treatment of unstable components in wines by adsorption, ion exchange, refrigeration, filtration, and membrane processes.

127. Wine Aging: Effects and Reactions (1) III. Lecture—seven 1 1/2 hour evening sessions. Prerequisite: course 124. Survey of the methods, chemistry, sensory effects, and management of storage and aging of the major classes of wine.

135. Wine Processing Equipment (1) I. Boulton Lecture—1 hour. Prerequisite: course 124, 126, Food Science and Technology 110A, 110B recommended. A course for undergraduates which provides a systematic description of unit operations and processing equipment used in modern commercial wineries. Emphasis is given to the principles and techniques of operation and to the performance of this equipment with grapes, juices, and wines.

140. Distilled Beverage Technology (3) III. Lecture—3 hours. Prerequisite: Chemistry 6B, Food Science and Technology 110A. Distillation principles and practices; production technology of brandy, whiskey, rum, vodka, gin, and other distilled beverages; characteristics of raw materials, fermentation, distillation, and aging. Offered in alternate years.

145. Critical Evaluation of Wines of the World (1) III. Noble, Meredith Laboratory/discussion—2 hours. Prerequisite: course 125, course 111 (may be taken concurrently). Critical analysis of non-California wines; several vintages from specific regions will be evaluated in weekly meetings. Assigned students will provide reading for each session, with emphasis on the relationships between sensory properties of the wines and factors associated with their place of origin.

186. Fermentation Science (3) III. Ogroziahi (Food Science and Technology) Lecture—3 hours. Prerequisite: Microbiology 102, Biochemistry 101A. Basic principles of fermentation science and biotechnology with emphasis on industrial fermentation processes that generate useful products including fermented food and beverages, pharmaceuticals, fine chemicals, and other gene products. Offered in alternate years.

192. Internship (1-12) I, II, III, summer. The Staff (Chairperson in charge) Internship—3-60 hours. Prerequisite: completion of 84 units. Work experience related to Fermentation Science (Enology) or Plant Science (Wine Viticulture) majors. Internships must be approved and supervised by a member of the department or major faculty, but are arranged by the student. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

210. Grape Development and Composition (4) III. Adams, Morrisson Lecture—3 hours; discussion—1 hour. Prerequisite: Botany 110A, 110B and Biochemistry 101A, 101B recommended. Anatomy, physiology and biochemistry of grape berry development, with emphasis on the development of grape composition relevant to wine-making.

215. Vineyard Establishment and Development (3) I. Kleiner Lecture/discussion—2 hours; fieldwork—3 hours. Prerequisite: courses 110, 115 or 116, or consent of instructor. Application of basic knowledge in viticulture, meteorology, soil, water, plant, and biological sciences to establishment and development of vineyards. To prepare for comprehensive feasibility study of a given piece of property for growing wine, raisin, or table grapes. Offered in alternate years.

217. Microbiology of Wine Production (3) III. Bisson and staff Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 123, 124, Microbiology 3, Biochemistry 101A, and Chemistry 6B. Courses 125, 126 recommended. Nature, development, physiology, biochemistry, and control of yeasts and bacteria involved in the making, aging, and spoilage of wines.

220. Plant Phenolics (3) II. Lecture—3 hours. Prerequisite: Biochemistry 101A, 101B or the equivalent and consent of instructor. Flavanoids and other natural phenolic substances of plants, their chemistry, natural occurrence, biochemistry, relation to animal diets, and relation to properties of foods and other products.

235. Winery Design and Economics (2) II. Boulton Lecture—3 hours; 4 design classes; field trip. Prerequisite: course 136, Food Science and Technology 110A, 110B, and Computer Science Engineering 16 or Engineering 5. Specialization in the design and economic evaluation of modern commercial wineries. Emphasis is given to the design of new wineries and the interaction of size, grape and bottle prices on the economic feasibility of the venture. Offered in alternate years.

290. Seminar (1) I, II, III. Adams Seminar—1 hour. Prerequisite: consent of instructor. (SU grading only.)

290C. Advanced Research Conference (1) I, II, III. Research Faculty Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Planning and results of research programs, proposals, and experiments. Discussion and critical evaluation of original research being conducted by the group. Discussion led by individual research instructors for research groups. May be repeated for credit. (SU grading only.)

291. Advances in Viticulture (1) II. Matthews Seminar—1 hour. Prerequisite: consent of instructor. Experts in various fields of viticulture will lead discussions on recent advances in their fields of expertise. Emphasis and topics will vary from year to year and course may be repeated for credit. (SU grading only.)

292. Advances in Enology (1) III. Waterhouse Discussion—1 1/2 hours, seven to ten weeks. Prerequisite: courses 123, 124, 125, 126. Discussions of previously assigned reading material, usually in the form of two to three reprints. Discussions led by faculty to acquaint students with current research interests. May be repeated for credit. (SU grading only.)

297T. Tutoring in Viticulture and Enology (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: graduate standing and consent of instructor. Designed for graduate students who desire teaching experience, but are not teaching assistants. Student contact primarily in laboratory or discussion sections, and under direction of a faculty member. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

*Course not offered this academic year.

War-Peace Studies

(College of Letters and Science)

The interdisciplinary minor in War-Peace Studies examines the causes and dynamics of intra- and international wars and efforts to prevent and settle such conflicts. Students in the minor are encouraged to participate in the educational activities of the Davis Program of the UC Institute on Global Conflict and Cooperation (IGCC). For more information on Davis IGCC, call 916-752-6992.

The minor is sponsored by the Department of Sociology, 130 Young Hall. The faculty advisor is Prof. John Lofland, Department of Sociology 102B Young Hall, 916-752-1580.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Approaches</td>
</tr>
</tbody>
</table>

One or two courses from the following:

- Anthropology 131
- Comparative Literature 157
- Economics 120
- Philosophy 114B, 117
- Physics/Appplied Science 137
- Political Science 121, 122, 123, 124, 132, 134
- Sociology 119
- Women's Studies 102

Northern and Western Regions

One or two courses from the following:

- Geography 124
- Native American Studies 130B
- Political Science 130, 131, 136

Southern and Eastern Regions

One or two courses from the following:

- Anthropology 142, 143, 144
- Economics 170
- History 165, 190C, 194C
- Native American Studies 120
- Political Science 126, 134, 145, 149, 178

Restriction: No more than two courses from a single department may be offered in satisfaction of the minor requirements.

UC Davis Washington Center

Prof. Bruce W. Jentleson, Director

UC Davis Washington Center, 1300 19th Street, NW, #303, Washington, D.C. 20036 (202-396-8021)

Information: UC Davis Washington Center

Internship and Career Center

2nd Floor, South Hall, 916-752-7260

The UC Davis Washington Center began operations in the 1990-91 academic year. Its central objective is to provide students and faculty new and expanded opportunities to enrich their education and research. Its principal activities are an undergraduate academic-internship program and a research program for faculty and graduate students.

Undergraduate Academic Internship Program

The UC Davis Washington Center undergraduate program is open to students from all majors in the Colleges of Letters and Science, Agricultural and
Environmental Sciences, and Engineering who have completed 84 units towards graduation. Students earn 12-16 units of academic credit, continue to be registered as full-time students, and fulfill university residency requirements. A GPA of approximately 3.0 is recommended for admission. Applicants also are evaluated based on a written statement, letters of recommendation and personal interviews.

The undergraduate program runs fall and spring quarters, a 12-13-week "extended quarters" basis. It has three principal components:

- Internships/Research Projects (6-8 units): Students work three to four days per week as interns in Congress, federal agencies, interest groups, trade associations, research institutions, the media, museums or in other organizations related to policy, politics, science and culture and geared to the interests and objectives of individual students. Drawing on the internship experience, each student will develop an independent research project, under the supervision of a member of the faculty.

- Policy-Process Seminar (4 units): Each student must enroll in one or two upper division seminars. Most of these courses focus on a particular area of policy (e.g., foreign policy, science policy, economic policy, agricultural policy) and the key issues, the policies, the principal institutions, and the dynamics of the process within that policy area. Some are of more general interest, designed to draw on some of the unique historical, scientific, cultural and artistic resources of Washington. In addition to regular instruction, seminars are likely to include guest speakers, observations of congressional committees and federal agencies, and other relevant Washington experiences.

Courses are taught by UC Davis faculty in residence, faculty from the UCLA and UC Santa Barbara Washington programs, or visiting faculty from the Washington area.

Financial aid eligibility is maintained, and the aid package can be adjusted to reflect the additional costs of the Program. Some additional financial awards also are offered directly by the Washington Center, including the University of California President's Washington Scholarship Program. Students live in university-sponsored housing, convenient to public transportation. Arrangements also are made to cover health services and other aspects of student life. The Program also includes many educational, cultural and social events in the Washington area.

The Washington Center also has two positions for graduate students as Graduate Fellows (combination of a predoctoral research fellowship and a teaching assistantship). More information is available from the Washington Center or Graduate Studies.

Water Science
(College of Agricultural and Environmental Sciences)

Faculty. See under the Departments of Land, Air and Water Resources, Agricultural Engineering, Civil and Environmental Engineering, Geology, and Geophysics.

Related Major Program. See the major in Soil and Water Science.

Graduate Study. A program of study is offered leading to the M.S. degree in Water Science. Detailed information can be obtained from the graduate adviser. Also see the Graduate Division section in this catalog.

Graduate Adviser. T.C. Hsiao (Land, Air and Water Resources).

Courses in Water Science

Questions pertaining to the following courses should be directed to the instructor(s) to the Resource Sciences Teaching Center, 122 Haagland Hall (916-752-8699).

Lower Division Courses

10. Water and Society (3) III. Silk

41. Ecology of Polluted Waters (3) II. Knight
 Lecture—3 hours. Prerequisite: Biological Sciences 1A or the equivalent. Causes and nature of various types of pollution in air or water. Test their effects upon aquatic biota. Particular emphasis on biological effects of toxic compounds, inorganic compounds, suspended matter, organic matter, salts and heated water on aquatic life.

92. Water Science Internship (1-12) I, II, III. The Staff (Chairperson in charge)
 Internship—36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in water science. Internship supervised by a member of the faculty (P/NP grading only.)

Upper Division Courses

100. Principles of Water Science (4) I. Grimer
 Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 1A, Physics 1A, and Biological Sciences 3C or Plant Science 2; Chemistry 1B and Physics 5C recommended. Introduction to scientific principles as applied to water and water problems. Topics include hydrology (surface and ground water), flow through porous media, water in soil-plant-atmosphere continuum, water quality, flow through pipes and channels, and representative water-resource problems. General Education credit: Nature and Environment/Non-Introductory. Recommended GE preparation: Chemistry 10 and Physics 10.

103. Water Quality, Salt Control and Reclamation (4) I. Biggs
 Lecture—3 hours; laboratory—3 hours. Prerequisite: course in soil or water chemistry or consent of instructor. Water quality parameters, water analysis and salinity control in relation to soil and plant factors; reclamation of soil and disposal of waste water and their effects on receiving waters; localized and regional river basin problems in relation to salinity control and water quality.

104. Plant-Water-Soil Relationships (4) II. Hsiao
 Lecture—3 hours; discussion—1 hour; two mid-quarter examinations to be arranged. Prerequisite: course 100 or the equivalent preparation in elements of water in soil and plants, Soil Science 100 and one additional course in soil or plant physiology; or consent of instructor. Principles of plant interactions with soil and water environments and their applications in crop and environmental management. Including nutrient and water uptake and transport; transpiration; soil processes affecting supplies; deficiencies and plant responses.

110. Irrigation Principles and Practices (3) III. Schwartz
 Lecture—3 hours; laboratory—3 hours. Prerequisite: Principles 5A; Soil Science 100 recommended. General course for agricultural and engineering students dealing with soil and plant aspects of irrigation and drainage. Soil-water movement and storage, plant response to irrigation regimes, water use by crops, evapotranspiration, methods for determining frequency and depth of irrigation, drainage.

122. Biology of Running Waters (3) I. Knight
 Lecture—2 hours; discussion—1 hour. Prerequisite: introductory course in biology and junior standing. The study of aquatic animals and plants in relation to their environment; various factors affecting the distribution of freshwater plants and animals. Emphasis is placed on the particular suitability for students of freshwater ecology, soil and water science, and renewable natural resources.

122L. Biology of Running Waters Laboratory (2) I. Knight
 Laboratory—2 hours (including 2 or 3 weekend field trips). Prerequisite: introductory course in biology or consent of instructor and junior standing; course 122 (or equivalent). Course allows students to obtain experience in sampling, processing, and synthesizing field data. Field trips will allow students to obtain an understanding of the structure and function of river ecosystems.

141. Hydrology (3) II. Puente
 Lecture—3 hours. Prerequisite: consent of instructor. Principles of hydrologic analysis including consideration of precipitation, stream flow, and ground water phenomena.

142. Hydraulics (3) I. Parlangie
 Lecture—2 hours, laboratory/discussion—3 hours. Prerequisite: Physics 1A; course 100 recommended. An introductory course for non-engineers. Physical properties of water; fluid statics; principles and equations of flow, continuity and conservation; flow in pipes and open channels; flow measurements; and pump performance and selection.

145. Irrigation and Drainage Systems (4) II. Welander, Grosser, Hillis
 Lecture—4 hours. Prerequisite: Engineering 103A or course 142. Engineering and scientific principles applied to the design of surface, sprinkle and micro irrigation systems and drainage systems with respect to economic, biological, and environmental constraints. Interactions between irrigation and drainage will be emphasized. (Same course as Agricultural Engineering 145.)

149A. Groundwater Hydrology (3) I. Marini
 Lecture—3 hours. Prerequisite: Mathematics 16B and course 100; course 142 or Engineering 103A recommended. Occurrence, distribution, and movement of groundwater. Steady and transient groundwater flow systems. Aquifer tests. Well construction, operation, and maintenance. Groundwater exploration, quality, and contamination.

149B. Groundwater Hydrology (3) II. Fogg
 Lecture—3 hours. Prerequisite: course 149A or Civil and Environmental Engineering 144. Groundwater geology and chemistry. Physical and chemical processes in contaminant transport, with emphasis on effects of aquifer complexity. Fundamentals of groundwater flow and transport modeling. Geophysical methods in groundwater.

149L. Groundwater Hydrology Laboratory (1) II. Fogg
 Laboratory—3 hours. Prerequisite: course 149A or Civil and Environmental Engineering 144; course 149B (concurrently). Groundwater flow and transport. Processes are illustrated in experiments carried out in the lab apparatus, and/or computer models. Well-test analysis in non-ideal aquifers, computer modeling of flow and transport, and field-testing of wells.

150. Water Law and Water Institutions (3) II. The Staff

154. Water and Related Resource Allocation from Economic Perspectives (3) I. Fogg
 Lecture—2 hours. Prerequisite: Mathematics 16A or consent of instructor. An examination of information needed for analysis and basic procedures of production and consumption economics used for an appropriate alloca-

*Course not offered this academic year.
ion, water and related resources in agriculture. Cost containment and production and alternative goals are considered. Offered in alternate years.

172. Farm Irrigation Management (3) III. Hipkows Lecture—3 hours; field trip. Prerequisite: course 104 or 110, or consent of instructor. The water budget gets a major role in orderly analysis of plant, soil, climatic, systems, and operational factors to develop a rationale for farm irrigation practices. Plant and soil factors are emphasized.

180. Chemistry of the Hydrosphere (3) III. Tani Lecture—2 hours. Prerequisite: Chemistry 5 and introductory courses in geology, soils, hydrology or limnology. To provide an understanding of various mechanisms and processes regulating the chemistry of natural waters. Linkage between hydrologic and geochemical cycles is stressed. Covered are chemical characteristics of rainwater and snow, streams and rivers, lakes, ground waters, estuaries, and oceans.

192. Water Science Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience on and off campus in water science. Internship supervised by a member of the faculty. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Group Study—1-5 hours. Prerequisite: senior standing. (P/NP grading only)

Graduate Courses

200. Modeling of Soil-Water-Plant Continuum (3) III. Hopmans Lecture—2 hours; discussion—1 hour. Prerequisite: Mathematics 228, Soil Science 107, knowledge of a programming language. Principles of soil water and solute transport, root water and nutrient uptake. Emphasis on applications of these principles in irrigation water management. Use of computer programming to simulate transport processes in soils and plants. Offered in alternate years.

201. Advanced Plant-Water Relations (3) I. Hsiao Lecture—3 hours; discussion sessions. Prerequisite: course 104 or Plant Science 101 or Botany 111; elementary knowledge of metabolism and nutrients of thermodynamics or concurrent enrollment in 1 unit of course 298 with instructor. Chemical and component potentials of water, quantitative aspects of water transport, with emphasis on flux from plants; dynamic, regulation, and environmental factors affecting plant water status, metabolic and other characteristics associated with efficient water use, and xerophytes responses to water deficiency and salinity. Offered every fourth quarter.

206. Water Resource Planning and Management (3) I. Manfo Lecture—3 hours. Prerequisite: course 141 or the equivalent. Applications of deterministic and stochastic mathematical programming techniques to water resource planning, analysis, and design. Water allocation, capacity expansion, and reservoir operation. Emphasis on use of surface water and groundwater. Water quality management, irrigation planning and operation models.

215. Advanced Topics in Water and Soil Chemistry (3) III. Biggs Lecture—3 hours. Prerequisite: course in physical chemistry and soil chemistry or consent of instructor. Advanced course in water chemistry emphasizing principles governing interactions of ionic constituents of water with soil and sediments. Topics include electrokinetic properties of clays, membrane phenomena, rate processes and thermodynamic applications to the water soil system. Offered in alternate years.

217. Hydrochemical Models (3) III. Tani Lecture—3 hours; laboratory—3 hours. Prerequisite: physical chemistry, calculus and computer programming or consent of instructor. Mathematical and computer modeling of chemical state variables and terrestrial and aquatic systems. Equilibrium and rate models; transport models; systems assessment and simulations.

222. The Biology of Streams (5) III. Knight Discussion—2 hours; seminar—1 hour, laboratory—6 hours (includes field trips). Prerequisite: courses in aquatic ecology, limnology, and physiology. Course will relate various environmental factors to the ecology and productivity of freshwater systems. Emphasis is placed on relationships between stream organisms and their environment by means of integrated field and lecture activities. Offered in alternate years.

250. Advanced Soil Physics (3) III. Neilson Lecture—3 hours. Prerequisite: Mathematics 228 or consent of instructor, Soil Science 107 and 207 recommended. Theoretical and applied aspects of the simultaneous transport and retention of water, solutes, heat, and gases in unsaturated soils. Microporous and immiscible displacement theories. Emphasis given to current soil physics research topics of general interest in soil, water, and engineering sciences. Offered in alternate years.

255. Analysis of Random Fields (3) III. Puente Lecture—3 hours. Prerequisite: upper division course in probability and statistics. Covers techniques used to describe random phenomena in two or three dimensions. Of particular interest are covariance and spectrum methods, local averaging, extremes, and interpolation. Course to show applications in water and soil sciences. Offered in alternate years.

259. Seminar (1) I. Knight Seminar—1 hour. Prerequisite: graduate standing. Critical review of relevant soil water quality problems and recent water quality research and literature.

261. Seminar in Water-Soil-Plant Relations and Irrigation (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: standing and background in water-soil-plant relations. Informal presentation on current developments in water-soil-plant relations, plant water use, and irrigation management. Associated discussion analyzes research approaches and techniques and data interpretations. (SU grading only)

288. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) Research—1-12 hours. (SU grading only)

Water Science (A Graduate Group)

Miguel A. Marfife, Ph.D., Chairperson of the Group (916-752-0664/0545)

Group Office, 122 Hoagland Hall (916-752-1669)

Faculty. The Group includes faculty from four departments in three colleges and schools in the areas of hydrology, hydrogeology, water quality, irrigation, drainage, plant physiology, soil and atmospheric sciences, and other disciplines.

Graduate Study. The Graduate Group in Water Science offers the M.S. degree in five broad areas of specialization: (1) hydrology, (2) irrigation and drainage, (3) water quality and pollution, (4) water resources management, and (5) biometeorology. These options focus on either the physical, chemical, and biological processes that interact within water systems or on the integrated behavior of water systems as a whole.

*B. S. Major Requirements:

UNITS

English Composition Requirement 4-12
See College requirement 0-8
Additional oral expression (Rhetoric and Communication) 1
Preparatory Subject Matter .. 47-53
Biological sciences (Biological Sciences 1A, 1B, 1C) 15
Chemistry (Chemistry 2A, 2B, and 8A) 13

Preparation. Students may enter this program with undergraduate training in biology, mathematics, chemistry, physics, soils, environmental sciences, and related areas. The curriculum consists of core courses in hydrology, fluid flow, hydrochemistry, hydrobiology, and social and economic aspects of water.

Graduate Adviser. T.C. Hisao (Land, Air and Water Resources), 133 Veblen Hall (916-752-6810)

Wildlife and Fisheries Biology

(College of Agricultural and Environmental Sciences)

Daniel W. Anderson, Ph.D., Chairperson of the Department

Department Office, 66 Briggs Hall (916-752-6586)

Faculty

Daniel W. Anderson, Ph.D., Professor

Louis W. Botsford, Ph.D., Professor

Timothy M. Calo, Ph.D., Assistant Professor

Joseph J. Czech, Jr., Ph.D., Professor

Ronald E. Cole, B.S., Lecturer

Chris Dewees, Ph.D., Lecturer

Nadine K. Jacobsen, Ph.D., Associate Professor

Dale F. Lott, Ph.D., Professor

Rex E. Marsh, A.B., Lecturer

Peter B. Moyle, Ph.D., Professor

Dirk Van Vuren, Ph.D., Assistant Professor

Emeritus Faculty

Walter E. Howard, Ph.D., Professor Emeritus

Robert G. Schwab, Ph.D., Professor Emeritus

The Major Program

The wildlife and fisheries biology major deals with the relationships between the needs of people and the requirements of fish and wildlife. Understanding these relationships is vital for the maintenance of ecological diversity, recreational resources, and food supplies for future generations.

The Program. Because of the diversity of problems in the field, emphasis in the major is placed on broad training in biological and physical sciences, with specialization in one or several areas. The major is designed primarily for students interested in eventually becoming professionals in wildlife and fisheries biology, but its breadth of core requirements, when combined with suitable electives, also makes it suitable as a preparatory major for such areas as veterinary medicine and secondary school teaching. Certification by professional societies such as The Wildlife Society, American Fisheries Society, or the Ecological Society of America or preparation for specialized resource-related graduate studies may also be achieved by careful planning of electives with a faculty advisor.

Career Alternatives. Positions now held by graduates in this major include wildlife, fisheries, animal control, and resource biologists and managers with local, state and federal agencies. Some graduates are biologists or consultants with private industries such as commercial fishing businesses, electrical utilities, sportsmen’s clubs, agriculture operations, and environmental consulting firms. Also, some are veterinarians, medical physicians, and professors/researchers who teach and/or conduct research in academic institutions.

Preparatory Subject Matter 47-53
Biological sciences (Biological Sciences 1A, 1B, 1C) 15
Chemistry (Chemistry 2A, 2B, and 8A) 13
Computer science (Agricultural Science and Management 21) 3
Mathematics (Mathematics 16A, 16B) ... 6
Physics (Physics 1A, 1B or 5A, 5B, 5C) .. 6-12
Statistics (Statistics 102 or Agricultural Science and Management 120) 4
Breadth/General Education ... 6-24
Depth Subject Matter ... 55-68
Chemistry (Biochemistry and Biophysics 101A-101B or Physiological Sciences 101A-101B) .. 3
Ecology (Environmental Studies 100 or Zoology 125) 3-4
Evolution (Genetics 103 or Zoology 148) 3-4
Genetics (Genetics 100) ... 4
Physiology (Physiology 110) ... 5
Vertebrate anatomy (Anatomy 100 or Zoology 105) 4

Organismal Biology: Choose three lecture courses and two (laboratory) courses. (Wildlife and Fisheries Biology 110, 111, 111L, 120, 120L, or Zoology 134, 134L) 11-14
Disciplinary core (Wildlife and Fisheries Biology 122, 140, and 121 or 130) 12
Statistics: Choose one course (two recommended) from Statistics 104, 106, 108, 110, 115, 115L, 116, or 118 3-8
Research methods (Wildlife and Fisheries Biology 100 or 102) 3-6

Restricted Electives ... 8-17
Choose one from the seven Areas of Specialization shown below.

Unrestricted Electives ... 6-60
Total Units for the Degree (minimum) 180

Areas of Specialization

1. Behavioral ecology: Choose one course from each group:
a. Zoology 155 or Psychology 134;
b. Entomology 104, Environmental Studies 101 or Anthropology 154A-154B; and

2. Conservation biology: Complete Wildlife and Fisheries Biology 14A and Genetics 105. Choose one course from each group:
a. Botany 141, Entomology 147, Geography 173, Zoology 147, or 148;
b. Ecology 123, Environmental Studies 161, 166 or Geography 161.

3. Ecotoxicology and disease ecology: Complete Wildlife and Fisheries Biology 153. Choose two courses from a and one from b or one from a and two from b:
a. Environmental Toxicology 101, 112A (112B recommended), 132, 138 or Water Science 41; and
b. Clinical Pathology 101, Medical Microbiology 111 or 119.

4. Fisheries biology: Complete Wildlife and Fisheries Biology 102, 120, 120L, 121 and:
a. One course from Entomology 116 or Zoology 112-112L; and
b. Two courses from Environmental Studies 116 (or 150C), 151 or Water Science 122.

5. Physiological ecology: Complete Wildlife and Fisheries Biology 121 and 130. Choose two courses from Biological Sciences 121, Environmental Studies 129-129L, or Physiology 148.

6. Vertebrate pest ecology: Complete Wildlife and Fisheries Biology 151, Agronomy 100 and choose one course from Botany 120, 121, Entomology 110 or 115.

7. Wildlife biology: Complete Wildlife and Fisheries Biology 100, 110, 111-111L, 130, 151 and:
a. Choose two courses from Botany 102 (or 109), 117, Range Science 133, 134;
b. Choose one course from Wildlife and Fisheries Biology 131 or Range Science 135.

Major Adviser: Students transferring to Davis from another institution or new students declaring the major in Wildlife and Fisheries Biology must consult the Major Adviser so that the program can be evaluated and a faculty adviser assigned.

Graduate Study: See the Graduate Division section in this catalog.

Courses in Wildlife and Fisheries Biology

Lower Division Courses

10. Wildlife Ecology and Conservation (4) I. Lott, Moyle

20. Internship (1-6) II, III, The Staff (Department Chairperson in charge)
 Internship—3-18 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the department. Internships supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses

100. Field Methods in Wildlife Biology (3) III, The Staff (Chairperson in charge)
 Lecture—10 hours total; laboratory—40 hours total (5 days). Prerequisite: course 110 or 111-111L; Zoology 125 or the equivalent; consent of instructor. Intensive course on methods of studying and reporting data obtained from free-ranging wildlife. Held between winter and spring quarters; considered a spring course for preenrollment. Limited enrollment. (P/NP grading only.)

102. Field Studies in Fisheries Biology (6) Extra
 Discussion—1 hour; laboratory—40-60 hours. Prerequisite: upper division course in each in ecology and fish biology; consent of instructor. Special session course emphasizes field investigations in fisheries biology including monitoring methods and individual research projects on ecology, behavior, physiology, or population biology of fishes at the field site in relation to their habitats. Offered in alternate years.

110. Biology and Conservation of Wild Animals (3) III, The Staff (Chairperson in charge)
 Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; course in ecology recommended. Biology and conservation of wild mammals. Natural history, taxonomy, geographical-ecological distribution; anatomical-physiological-behavioral adaptations of mammals to their environment; and research techniques are emphasized.

110L. Laboratory in Biology and Conservation of Wild Mammals (2) II, III, The Staff
 Laboratory—6 hours. Prerequisite: course 110 (may be taken concurrently) and consent of instructor. Laboratory exercises in the morphology, systematic, species identification, anatomy, and adaptations of wild mammals to different habitats. Limited enrollment.

111. Biology and Conservation of Wild Birds (2) II, III, Anderson
 Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, and Zoology 125. Phylogeny, distribution, migration, reproduction, population dynamics, behavior and physiological ecology of wild birds. Emphasis on adaptation to environments, species interactions, management, and conservation.

*Course not offered this academic year.
153. Wildlife Ecotoxicology (4) II. Anderson
Lecture—3 hours; discussion—1 hour. Prerequisite: introductory courses in organic chemistry, ecology, and physiology, or consent of instructor; Environmental Toxicology 101 recommended. Various forms of environmental pollution in relation to fish and wildlife, the effects and mechanisms of pollutants, effects on individuals and systems, laboratory and field ecotoxicology, examples/case histories, philosophical/managerial considerations. Offered in alternate years.

154. Conservation Biology (3) II. Caro
Lecture—3 hours. Perea/est: Zoology 125 or Environmental Studies 100. Introduction to conservation biology. Background to the biological issues and controversies surrounding loss of species and habitats.

190. Proseminar in Wildlife and Fisheries Biology (1), II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: upper division standing in biological sciences or consent of instructor. Reports and discussions of recent advances related to wildlife and fisheries biology. May be repeated twice for credit. (P/NP grading only)

190C. Research Group Conference (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in wildlife and fisheries biology. May be repeated for credit. (P/NP grading only)

191. Museum Science (2) II. Cole
Lecture—1 hour; laboratory—3 hours. Prerequisite: upper division standing and consent of instructor. Principles and methods required to preserve and present biological specimens for research, teaching, collections, and museums. Offered in alternate years. (P/NP grading only)

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: completion of 64 units and consent of instructor. Work experience off and on campus in all subject areas offered in the department. Internships supervised by a member of the faculty. (P/NP grading only)

197. Tutoring in Wildlife and Fisheries (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: major in Wildlife and Fisheries Biology and consent of instructor. Experience in teaching under guidance of faculty member. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only)

Graduate Courses

201. Field Research in Wildlife Biology (6) Extra-
session summer. The Staff (Chairperson in charge)
Lecture—1 hour; laboratory—40 hours; individual research projects and oral and written reports. Prerequisite: courses 140, 110, or 111-111L, Zoology 125, Statistics 102, or the equivalent; consent of instructor. Field research in wildlife biology; formulation of testable hypotheses, experimental design, execution of the study, data reduction, and preparation of suitable written and oral reports. Limited enrollment. Prerequisite given to graduate students in wildlife areas of study. (SU grading only)

222. Advanced Population Dynamics (3) II. Botldor
Lecture—3 hours. Prerequisite: graduate standing; advanced course in ecology (e.g., Zoology 125), population dynamics (e.g., course 122), and one year of calculus, familiarity with matrix algebra and partial differential equations recommended. Logical basis for population models, evaluation of simple ecological models, construction of population models with age, size, and stage structure, theoretical basis for management and exemplary case histories. Emphasis on development and use of realistic population models in ecological research.

Women's Studies

(370) Women's Studies

Women's Studies

College of Letters and Science

Judith Newton, Ph.D. Program Director
Program Office, 277 Kerr Hall (916-752-4686)

Committee in Charge

Rosa Linda Fregoso, Ph.D. (Chicana Studies, Women's Studies)
Wendy Ho, Ph.D. (Asian American Studies, Women's Studies)
Carole Joffe, Ph.D. (Sociology, Women's Studies)
Lata Mani, Ph.D. (Women's Studies)
Jay Mehlch, Ph.D. (American Studies)
Linda A. Morris, Ph.D., ex officio (English)
Belinda Robnett, Ph.D. (Sociology, Women's Studies)
Juliana Schieers, Ph.D. (Italian)
Judith Stacey, Ph.D. (Sociology, Women's Studies)
Celeste Beimer (Program Assistant)

Faculty

Charlene Altman, Lecturer (Classics)
Emily Apter, Ph.D., Associate Professor (French and Italian)
Phillip Barrish, Assistant Professor (English)
Cynthia Bartknecht, Ph.D., Associate Professor (History)
Angie Chobram, Ph.D., Associate Professor (Chicana Studies)
Doris Eshenrau, Ph.D., Lecturer (Comparative Literature)
Karen P. Eriksen, Ph.D., Professor (Psychology)
Diane Fennell, Ph.D., Associate Professor (Sociology)
Paula Findlen, Ph.D., Assistant Professor (History)
Yvette Flores-Oroz, Ph.D., Assistant Professor (Chicana Studies)
Mary Fong, Ph.D., Professor (Art)
Zuniida Gertel, Ph.D., Professor (Spanish and Classics)
Rosa Linda Fregoso, Ph.D., Assistant Professor (Chicana Studies, Women's Studies)
Sandra Gilbert, Ph.D., Professor (English)
Gary Goliber, Ph.D., Lecturer (English)
Karen Hallutan, Ph.D., Professor (History)
Unis Hernandez, Ph.D., Assistant Professor (Native American Studies)
Wendy Ho, Ph.D., Assistant Professor (Asan American Studies, Women's Studies)
Sarah B. Hidy, Ph.D., Professor (Anthropology)
Mary Jachman, Ph.D., Professor (Sociology)
Carole Joffe, Ph.D., Professor (Sociology, Women's Studies)
Suad Joseph, Ph.D., Associate Professor (Literature)
Cathy Kudlick, Ph.D., Assistant Professor (History)
Anna K. Kuhn, Ph.D., Associate Professor (German)
Kari Loke, Ph.D., Assistant Professor (Comparative Literature)
Diane Macbool, Ph.D., Associate Professor (Art History)
Martha Macri, Ph.D., Assistant Professor (Native American Studies)
Lata Mani, Ph.D., Assistant Professor (Women's Studies)
Susan Mann, Ph.D., Professor (History)
Sandu J. McPherson, Ph.D., Professor (English)
Jay Mehlch, Ph.D., Professor (American Studies)
Janet Molsen, Ph.D., Acting Professor (Geography)
Patricia Moran, Ph.D., Assistant Professor (English)
Linda Morris, Ph.D., Senior Lecturer (English)
Judith Newton, Ph.D., Assistant Professor (Women's Studies)
Beatrix M. Pesquera, Ph.D., Assistant Professor (Sociology, Chicano Studies)
Michele Prager, Ph.D., Assistant Professor (French and Italian)
Donna Reed, Ph.D., Lecturer (Comparative Literature)
Ada Riddell, Ph.D., Professor (Chicana Studies)
Belinda Robnett, Assistant Professor (Sociology, Women's Studies)
Inti Ruggoff, Ph.D., Assistant Professor (Art Studio)
Ruth E. Rosen, Ph.D., Associate Professor (History)
Vicki L. Ruiz, Ph.D., Associate Professor (History)
Stephanie A. Shields, Ph.D., Associate Professor (Psychology)
Juliana Schieers, Ph.D., Assistant Professor (French and Italian)
Carol Smith, Ph.D., Professor (Anthropology)
Barbara Sommer, Ph.D., Lecturer (Psychology)
Judith Stacey, Ph.D., Professor (Sociology, Women's Studies)
Margit Stange, Ph.D., Assistant Professor (English)
Lenora A. Timm, Ph.D., Professor (Linguistics)
Patricia Turner, Ph.D., Assistant Professor (African American Studies, American Studies)
Marin B. Ury, Ph.D., Professor (Comparative Literature)
Diane Wolf, Ph.D., Assistant Professor (Sociology)
The Major Program

Women's Studies is an interdisciplinary major founded on the premise that women's studies is a historically validated construction that centrally shapes the historical experience and everyday lives of women as well as men. Women's Studies also assumes that gender, race, class, and sexual and national identities are constructed in relation to each other. The intersections of these categories of experience as well as the history of debate over what these categories mean is an important strand of Women's Studies curriculum. Women's studies at UCD is particularly rich in faculty doing comparative, cross-cultural work on women and gender. Among the faculty offering courses in this major, there are scholars working on women and gender in Africa, the Caribbean, the Americas, China, Europe, Japan, India, various countries of the Middle East, Southeast Asia, and the United States.

The Program. Students majoring in this field may take courses in African American and African studies, American studies, anthropology, comparative literature, English, history, linguistics, Chicano studies, political science, psychology, sociology, Asian American studies, Native American studies, textiles and clothing, and other related disciplines. Depending on individual career goals, each student will design a program of their own.

Career Alternatives. Women's Studies prepares undergraduates for a variety of careers. The B.A. degree in Women's Studies, for example, provides excellent grounding for undergraduates with career aspirations in law, medicine, public administration, and social services. Students wishing to pursue doctoral work will also find that interdisciplinarity training in Women's Studies equips them with theoretical and methodological strengths in most disciplines and applied research skills. Increasingly, too, specialists in Women's Studies are being used as consultants in industry, higher education, insurance companies and personal firms. State and federal government agencies, and many people who have special training in understanding gender relations. Finally, educational institutions need specialists to develop and administer women's studies programs, women's centers, and other institutional structures designed specifically to study and assist women.

A.B. Major Requirements:

Plan I (Disciplinary)

Preparatory Subject Matter

Five lower-division courses, including one from group a, two from group b, and two from group c.

a. Women's Studies 20, 50, 50, 70, 70
b. Discipline-based courses: Anthropology 2; Art 15; History 72A, 72B; English 30A, 30B, 45, 45A–45D; Psychology 1; Sociology 1, 3.
c. Interdisciplinary courses: American Studies 1A, 1B, 1C, 1D, 1E, 1F; Afro-American Studies 10, 15; Asian American Studies 1, 2; Chicano Studies 10, 20; Comparative Literature 1; Native American Studies 1, Religion Studies 96; Women's Studies 60.

Depth Subject Matter

Women's Studies courses numbered 100 to 299.

Electives

Electives within the major to bring upper-division units to a total of 44. These must be designated as appropriate for the Women's Studies major (available in the Women's Studies Office, 277 Kerr Hall). (See below for a partial list of options.) These courses must include:

One women's studies course focused on gender.

One course incorporating substantial historical material on gender prior to 1900.

Total Units for the Major, Plan I

44

Plan II (Thematic)

Preparatory Subject Matter

Five lower-division courses, including one from group a, two from group b, and two from group c.

a. Women's Studies 20, 50, 70.
b. Discipline-based courses: Anthropology 2; Art 15; History 72A, 72B; English 30A, 30B, 45, 45A–45D; Psychology 1; Sociology 1, 3.
c. Interdisciplinary courses: American Studies 1A, 1B, 1C, 1D, 1E, 1F; Afro-American Studies 10, 15; Asian American Studies 1, 2; Chicano Studies 10, 20; Comparative Literature 1; Native American Studies 1, Religion Studies 96; Women's Studies 60.

Depth Subject Matter

Women's Studies courses numbered 100 to 299.

Electives

Electives and those listed as appropriate for the Women's Studies major which focus on a topic or area of inquiry approved by a Women's Studies faculty adviser (for example, women in the "Third World", women of color in the U.S., cultural representations of women, etc.).

1) Women of Color in the U.S.

b. Women Outside the U.S.

Minor Program Requirements:

Women's Studies

Preparatory Subject Matter

Two lower-division courses.

Electives

Electives and those listed as appropriate for the Women's Studies major which focus on a topic or area of inquiry approved by a Women's Studies faculty adviser (for example, women in the "Third World", women of color in the U.S., cultural representations of women, etc.).

Electives

Electives and those listed as appropriate for the Women's Studies major which focus on a topic or area of inquiry approved by a Women's Studies faculty adviser (for example, women in the "Third World", women of color in the U.S., cultural representations of women, etc.).

Minor Adviser: See Class Schedule and Room Directory.

Courses in Women's Studies

Lower Division Course

20. Cultural Representations of Gender (4) I, III

50. Introduction to Women's Studies (4) I, II, III

Stacey Joffe, Mani

Lecture—discuss, 3 hours; discussion—1 hour or term paper (instructor's option). Interdisciplinary introduction which will survey and integrate literary, anthropological, psychological, historical and sociological perspectives on the study of sex roles. General Education credit: Contemporary Societies/Introductory.

70. Theory and History of Sexualities (4) I

Stacy Joffe, Mani

Lecture—discussion—4 hours. Key issues in the social construction, organization, and reproduction of sexualities such as the intersection of sexual identity with gender, race, ethnicity, and class, and the
relation between movements for sexual liberation and the regulation of the body.

80. Special Topics in Women's Studies (4) I, II, III. The Staff
Lecture/discussion—4 hours. In-depth examination of a woman's studies topic related to the research interests of the instructor. May be repeated for credit when topic differs. Limited enrollment.

102. Colonialism, Nationalism, and Women (4) III. Mani
Lecture/discussion—4 hours. Prerequisite: one course specified for Women's Studies major. Explores key dimensions of women's relationship to colonialism and nationalism in one or more societies.

103. Introduction to Feminist Theory (4) II, III. Meri
Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. Introduction to the emergence of feminist theory and to key concepts in feminist theorizing. Examination of past and current debates over sexuality, race, identity politics, and the social construction of women's experience.

104. Feminist Approaches to Inquiry (4) I. Newton
Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. Feminist applications and transformations of traditional disciplinary practices; current issues and methodologies in feminist interdisciplinary work.

Upper Division Courses

190. Senior Seminar (4) I, II. The Staff
Seminar—4 hours. Prerequisite: Women's Studies senior seminar, Capstone course for senior Women's Studies majors, which focuses on current issues on feminism as they impact on theory, public policy, and practice.

192. Internship in Women's Studies (1-12) I, II, III. The Staff
Internship—3-36 hours; written report. Prerequisite: completion of a minimum of 84 units and consent of instructor; enrollment dependent on availability of internship positions and priority to Women's Studies majors. Supervised internship and study in position/ institutional settings dealing with gender-related problems or issues, as for example, a women's center, affirmative action office, advertising agency, or social welfare agency. Final written report on internship experience. (P/N grading only.)

195. Thematic Seminar in Women's Studies (4) I, II, III. The Staff
Seminar—4 hours. Prerequisite: two courses specified for women's studies major. Group study of a topic, issue, or area in feminist theory and research involving intensive reading and writing. May be repeated for credit when topics differ. Enrollment limited.

197. Tutoring in Women's Studies (1-4) I, II, III. The Staff
Tutoring—3-12 hours. Prerequisite: upper division standing; completion of course to be tutored with grade of A- or better. Activities vary depending on the nature of the course assignment. May include (but are limited to) tutoring on course material, advising projects and papers, leading discussion groups. (P/N grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff
Prerequisite: upper division standing; consent of instructor. (P/N grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Prerequisite: upper division standing; consent of instructor. (P/N grading only.)

Graduate Course

200A. Current Issues in Feminist Theory (4) I. The Staff
Seminar—4 hours. Current issues in feminist theory; techniques employed to build feminist theory in various fields.

200B. Problems in Feminist Research (4) III. The Staff
Seminar—4 hours. Prerequisite: course 200A with a grade of B+ or better. Application of feminist theoretical perspectives to the interdisciplinary investigation of a problem or question chosen by the instructor(s). May be repeated for credit when subject area differs.

201. Special Topics in Feminist Theory and Research (4) I, II, III. The Staff (New topics in charge) Lecture/discussion—4 hours. Explores in depth a topic in feminist theory and research related to the research interests of the instructor. May be repeated as often as desired for credit in different subject areas. Limited enrollment.

Zoology

(Division of Biological Sciences)

John H. Crowe, Ph.D., Chairperson of the Section
Carol A. Erickson, Ph.D., Vice-Chairperson of the Section
Catherine A. Toft, Ph.D., Vice-Chairperson of the Section
Section Office, 2230 Storer Hall (916-752-1272)

Faculty
Peter B. Armstrong, Ph.D., Professor
Ronald J. Baskin, Ph.D., Professor
James S. Clagg, Ph.D., Professor
John H. Crowe, Ph.D., Professor
David W. Deamer, Ph.D., Professor
Olaf Eilers, Ph.D., Assistant Professor
Carol A. Erickson, Ph.D., Professor
Robert D. Gay, Ph.D., Professor
Richard K. Gosberg, Ph.D., Associate Professor
William R. Jeffery, Ph.D., Professor
Roger J. Leslie, Ph.D., Assistant Professor
Marc S. Mangel, Ph.D., Professor
Peter R. Marler, Ph.D., Professor
Brian Mulloney, Ph.D., Professor
Jeanette E. Nault, Ph.D., Assistant Professor
Richard L. Nuccitelli, Ph.D., Professor
Thomas W. Schoener, Ph.D., Associate Professor
Jonathan M. Scholey, Ph.D., Associate Professor
H. Bradley Shaffer, Ph.D., Associate Professor
Arthur M. Shapiro, Ph.D., Professor
Karen E. Stamps, Ph.D., Professor
Donald R. Strong, Jr., Ph.D., Professor
Catherine A. Toft, Ph.D., Professor
Kenneth E. Ward, Ph.D., LL.D., Professor
Marvin Wilson, Ph.D., Professor

Emeriti Faculty
Milton Hildebrand, Ph.D., Professor Emeritus
Everett W. Jameson, Jr., Ph.D., Professor Emeritus
Miton A. Miller, Ph.D., Professor Emeritus
Lauren E. Rosenthal, Ph.D., Professor Emeritus
Robert L. Rudd, Ph.D., Professor Emeritus
George W. Salt, Ph.D., Professor Emeritus
Stephen L. Wolfe, Ph.D., Emeritus Lecturer

The Major Programs

Zoology is the biology of animals from the molecular level up to the ecosystem. It is a field that offers almost limitless opportunities to explore and combine different approaches to animal biology in the field and in the laboratory.

The Program. Zoology majors may earn either a Bachelor of Science or a Bachelor of Arts degree. The requirements for the B.S. include more science courses, such as biochemistry, whereas those for the B.A. degrees allow room for more electives within the humanities and social sciences. The B.A. degree is especially appropriate for those students who wish to combine arts or languages with zoology for career preparation in such areas as scientific writing and translating or illustration. The major is structured to ensure breadth of preparation while still allowing individualization of each student's program in accordance with his or her interests. Beyond the basic upper division requirements for biology, genetics, evolution, cell biology, and statistics, elective course work is selected in consultation with the undergraduate advisor.

Choice of College. The Bachelor of Arts and the Bachelor of Arts and Science degrees are offered only in the College of Letters and Science. The Bachelor of Science degree is offered in both the College of Letters and Science and the College of Agricultural and Environmental Sciences. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the appropriate college sections in the front of this catalog for more information.

Students majoring in Zoology in the College of Letters and Science may petition the Dean of the College to receive credit toward the 64 upper division units required for the major for certain graduate courses in organic chemistry that have been taken at other institutions prior to first enrollment at UC Davis and that are judged by the Chemistry department to cover substantially the same material as upper division courses in the subject at UC Davis. Students in the College of Agricultural and Environmental Sciences must accumulate 54 units of upper division courses to graduate.

Internships and Career Alternatives. Many students gain experience in the field through internships in research laboratories in academia or industry, in practices of doctors or veterinarians, or in government agencies. Many zoology majors go on to graduate work in the life sciences as preparation for academic careers. A considerable proportion of the zoology majors on the Davis campus are pre-medical, pre-technical, and pre-veterinary students. Zoology graduates may also go on to careers in wildlife biology and management, in environment assessment, and in a wide range of similar fields. Davis graduates are currently serving in research, teaching, management, and policy-making positions in both public and private institutions and agencies in California and throughout the world, including many of the nation's foremost universities and research laboratories.

A.B. Major Requirements:

Preparatory Subject Matter..........................41-45
Chemistry 2A, 2B, 8A, 8B..................................16
Biological Sciences 1A, 1B, 1C..............................15
Mathematics 16A-16B or Statistics 1024-6
Physics 1A-1B or 5A-5C.................................6-8

Depth Subject Matter.................................36
Genetics 100..4
Zoology 130 or 121A-121B.............................4-8
One course from Zoology 149, Genetics 103, Geology 107, 111A, Anthropology 151...........3-4
Additional upper division course work in biologi
cal sciences to total of 36 units or more........20-25
Include at least (a) 15 units in zoology, and (b) one course from two of the four Areas of Study shown below.

Total Units for the Major..............................77-81

Recommended
Geology 3, Physics 58B, Biochemistry 101A-101B or Psychological Sciences 101A-101B.

B.S. Major Requirements:

Preparatory Subject Matter..........................54-62
Chemistry 2A, 2B, 2C......................................16
Chemistry 8A-8B or 118A-118B, 118C or 11B-128B-128C.................................6-12
Biological Sciences 1A, 1B, 1C..........................15
Mathematics 16A-16B or 21A-21B..................6-8
Physics 8A, 8B, 58C......................................12

Depth Subject Matter.................................49
Biochemistry 101A-101B or Psychological Sciences 101A-101B..........................7
Genetics 100..4
Statistics 102..4
Zoology 130 or 121A-121B.............................4-8

*Course not offered this academic year.
One course from Zoology 14B, Genetics 103, Geology 107, 111A, Anthropology 151. 3-4
Additional upper division course work in biol-
ogy to achieve a total of 49 or more units
include at least
(a) 15 units in zoology,
(b) 6 units (or 18 hours) of laboratory, and
(c) one course from three of the four Areas of
Study shown below.

Breadth Subject Matter
College of Agricultural and Environmental Sci-
ces students ...23
English and/or rhetoric7
Social sciences and/or religion16
See also the College section for additional
requirements.

College of Letters and Science students:
Refer to the College section for a description of requirements to be com-
pleted in addition to the major.

Total Units for the Major103-111

Recommended
Chemistry 5, Mathematics 16C or 21C, Geology 3.

Areas of Study
1. Ecology and behavior: Zoology 125, 147, 149, 151, 152, 153, 154A, 154B, 155, 156
Biomechanics and Biochemistry, all upper division
courses
2. Systematics, morphology, and natural history:
Zoology 105, 112, 133, 134, 134L, 136, 136L,
137L, Entomology 100.
4. Physiology: Zoology 121C, 142L, 143L, Phys-
iology 110, 110L.

Note: A maximum of 5 units of variable- unit courses (numbered 192, 196, and 199) may be applied to upper division elective unit requirements. Zoology majors may not substitute course 192 for the upper division laboratory requirement. Courses numbered 197 are not applicable to the upper division elective unit requirement.

Biological Sciences Electives. The following courses
are acceptable toward the fulfillment of the upper-
division biological sciences requirement in the major
programs and may be selected without advisor
approval. Other elective courses are approved on
an individual basis by petition through an advisor.

Anatomy 100
Anthropology 151, 152, 153, 154A, 154B, 155, 156
Biochemistry and Biophysics, all upper division
courses
Botany all upper division courses
Chemistry 10A, 107B
Clinical Pathology 101, 101L, 102
Entomology, all upper division courses except 110,
115
Environmental Studies 110, 116, 121, 123, 150C,
151, 151L
Geology, all upper division courses
Geology 106, 107, 107L, 111A, 111B, 145, 146, 150C
Microbiology, all upper division courses
Nematology 110
Nutrition 110, 111, 114
Physical Anthropology 101A, 101B
Physiology, all upper division courses
Psychology 106, 129, 134, 150
Veterinary Microbiology and Immunology 126, 126A,
126B, 132
Wildlife and Fisheries Biology 120, 120L, 121

Major Advisers. Students transferring to Davis from
another institution and majoring in Zoology must con-
sult an advisor immediately upon matriculation so
that their transfer credits can be applied to the major
requirements. At new students in the major should
contact the Zoology Section Office for advisor
assignment. Substitutions of courses not on the above
list of major requirements are arranged through the
advisor.

Preprofessional students should establish contact
with the Health Sciences Advising Office, in South
Hall, to learn what specific courses are required on
their transcripts.

Teaching Credential Subject Representative. Stu-
dents planning for a teaching career should consult
the Department of Education in regard to preparation
for certification. See also the section on the Teacher
Education Program.

Graduate Study. The Section of Zoology offers pro-
grams of study and research leading to the M.A. and
Ph.D. degrees. For detailed information regarding
graduate study, write to the Graduate Adviser, Sec-
tion of Zoology. See also the Graduate Division
sec-
tion in this catalog.

Graduate Advisers. P.B. Armstrong, C.A. Erickson,
M.S. Mangal, J.E. Nazlie, J.A. Stampe, C.A. Toft.

Courses in Zoology

Lower Division Courses
Lecture—3 hours. Principal issues of modern zoolo-
ogy for nonscience majors. Diversity, its causes and
consequences, self-stabilization, evolution, levels of
organization. Implications of zoology for the human
situation.
92. Internship (1-12) I, II, III. Staff (Chairperson
in charge)
Internship—3 units. Prerequisite: lower division
standing and consent of instructor. Work experience
off and on campus in all subject areas offered in the
Department of Zoology. Internships supervised by a
member of the faculty (PIN grading only).
99. Special Study for Lower Division Students (1-
3). II, III. Staff (Chairperson in charge)
(PIN grading only)

Upper Division Courses
100. Embryology (4) I. Armstrong; II. I. Watt; III. Eri-
ckson
Lecture—4 hours. Prerequisite: Biological Sciences
1A, 1B; consent of instructor. Course 100L
concurrent enrollment in course 100L. Events and
mechanisms of embryonic development, including
fertilization, morphogenesis, cell differentiation
and organogenesis, with emphasis on verte-
brates.
100L. Laboratory in Vertebrate Embryology (1)
I. Armstrong; II, III. Erickson
Laboratory—3 hours. Prerequisite: course 100 (con-
current). Comparative analysis of the embryonic
development of selected species (PIN grading only).
101. Advanced Developmental Biology (4) III.
Erickson, Jeffery, Natley, Nuccitelli
Lecture—2 hours; laboratory—6 hours. Prere-
quisite: courses 100, 100L; Biochemistry 101A,
101B; consent of instructor. Leucocytes and the
endocrine system. Random and pattern formation in
developmental biology will be followed by
sophisticated laboratory exercises that demonstrate
lecture topics. Students conduct their own indepen-
dent studies during last four weeks of quarter. A writ-
ten report due at end of quarter.
102. Senior Colloquium in Developmental Bio-
logy (3) II. Grey
Lecture—1 hour; seminar—2 hours. Prerequisite:
consent of instructor. Analysis of major topics in develop-
mental biology, including fertilization and activation of
development, morphogenesis, cell differentiation, and
pattern formation. Lab and enrollment.
106. Phylogenetic Analysis of Vertebrate Struc-
ture (4) I. The Staff
Lecture—2 hours; laboratory—6 hours. Prerequisite:
Biological Sciences 1A, 1B. The structure of the
classes and subclasses of vertebrates is described
and interpreted in terms of phylogeny.
112. Invertebrate Zoology (4) II. Ellers
Lecture—4 hours. Prerequisite: Biological Sciences
1A, 1B; course 112L (concurrently); courses in sys-
tematics, ecology, and evolution recommended. Sur-
vey of the invertebrate phyla emphasizing aphytic
forms and focusing on morphology, development,
natural history, and phylogenetic relationships.

*Course not offered this academic year
139. Mammalogy (3) I. The Staff Lecture—2 hours. Prerequisite: course 125 or equivalent general course in ecology. Systematics, life history, reproduction, distribution, and physiology of wild mammals.

150L. Mammalogy Laboratory (3) I. The Staff Laboratory—6 hours; extensive weekend field-trips. Prerequisite: course 125 or 136, and consent of instructor. Systematics of California mammals; techniques of natural mammalogy. May be taken concurrently with course 136.

137. Ornithology (2) III. Marler Lecture—2 hours. Prerequisite: course 125 or the equivalent course in ecology. Systematics, distribution, organization, and evolution of birds. Students who have had Wildlife and Fisheries Biology 111 may not receive credit for this course.

137L. Ornithology Laboratory (3) III. Marler Laboratory—6 hours. Prerequisite: course 125 or 137 (may be taken concurrently) and consent of instructor. Individual study and field trips strongly emphasized. Systematics, behavior, population dynamics, and reproduction of California birds.

*138. Ecology of Tropical Latitudes (3) III. Shapiro Lecture—2 hours; required of any one of the following: Biological Sciences 1A, 1B, or 10; Botany 10, Geography 2 or 23, or Wildlife and Fisheries Biology 10. Biological, physical, and human-related aspects of the ecology of low latitudes. Discussion, numbers, and relationships of tropical organisms. Problems of development and conservation in the context of ecological and evolutionary theory. General Education credit: Nature and Environment/Non-Introductory. Recommended: GE preparation: Biological Sciences 10, Botany 10, or Wildlife and Fisheries Biology 10. Offered in alternate years.

*141. Principles of Systematic Zoology (3) III. Shapiro Lecture—2 hours; biweekly research projects. Prerequisite: Biological Sciences 1B or 1C; course 148 or Genetics 103 recommended. Historical background, philosophical rationale, contemporary approaches; and working rules of animal biosystematics, including International Code of Zoological Nomenclature. Offered in alternate years.

*142. Vertebrate Physiology (4) II. Crowe Lecture—3 hours; term paper; individual conferences. Prerequisite: course 112, Chemistry 1A, 1B, Physics 5C; Biochemistry 101A. 101B recommended. Comparative physiology of invertebrate animal systems.

*142L. Vertebrate Physiology Laboratory (3) II. Crowe Laboratory—6 hours (includes research project). Prerequisite: course 142 (may be taken concurrently). Experiments on the physiological mechanisms of invertebrate organ systems. Design and execution of research project.

143. Neurobiology (4) I. Muenjoy, Wilson Lecture—3 hours; extensive reading. Prerequisite: Biological Sciences 1A, 1B, 1C; Biochemistry 101A- 101B (or equivalent). Neuronal structure, impulse transmission; synapses; transmitters and transmitter pharmacology; receptors; growth and differentiation of neurons and nervous systems; genetics of behavior.

143L. Neurobiology Laboratory (6) I. Muenjoy Lecture—1 hour, discussion—1 hour, laboratory—12 hours. Prerequisite. course 143 and consent of instructor; Physics SC recommended. Students will learn to record action potentials and synaptic circuits, to interpret quantitatively their recordings, and to use vital dyes and intracellular stains. Limited enrollment.

147. Zoogeography (4) I. Shapiro Lecture—3 hours; term paper. Prerequisite: Biological Sciences 1A, 1B. Movement of the animals. The role of geologic, climatic, and biologic changes in the geographic distribution of animals. Offered in alternate years.

148. Animal Physiogeny and Evolution (4) II. The Staff Lecture—4 hours. Prerequisite: Biological Sciences 1A, 1B; Genetics 100; ecology and biogeography recommended. Introduction to current evolutionary theory. The places of evolution as the central unifying theory to biology will be emphasized.

149. Evolution of Ecological Systems (4) III. Shapiro Lecture—3 hours; term paper. Prerequisite: course 125 or Environmental Studies 100 (or the equivalent) and course 149 or Genetics 103 (or the equivalent). Evolution as an organizing force in nature communities. Coadaptation to biotic and abiotic environments. Ecological systematics, community stability, and evolutionary dynamics. Emphasis on population biology.

159. Behavior of Animals (5) P. Stamps Lecture—3 hours; discussion—1 hour; term paper. Prerequisites: Biological Sciences 1A, 1B. Basic principles, mechanisms and evolution of behavior, with special reference to the significance of behavior under natural conditions. Students who have had Animal Behavior 104 may receive only 4 units of credit for this course.

170. Comparative Biochemistry (3) I. Elgers Lecture—3 hours. Prerequisite: Physics 5A and 5B, Mathematics 16A, 16B, and 16C, Biological Sciences 1B, 1C. Biochemistry and functional morphology of vertebrates and invertebrates. Emphasis on physical laws that provide design principles for a wide range of organisms. Principles from fluid and solid mechanics, and linear and nonlinear mechanics.

170L. Comparative Biochemistry Laboratory (3) I. Elgers Laboratory—6 hours; term paper. Prerequisite: Physics 5A and 5B, Mathematics 16A, 16B, and 16C, Biological Sciences 1B, 1C; course 170 recommended to be taken concurrently. Experimental techniques for measuring physical quantities relevant to organismal designs. Demonstrations of principles in fluid, solid, and acoustical mechanics. Emphasis on the use of electronic transducers and computerized data collection. Includes a student-designed research project.

199. Introduction to Biological Research (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: upper division standing in Zoology or related biological science; consent of instructor. Instruction to research methods in biology. Presentation and discussion of research by faculty, graduate, and undergraduate students. May be repeated for credit to a total of 3 units. (P/NP grading only)

190. Undergraduate Seminar in Zoology (2) II. Deamer; II, III. Mangel Seminar—2 hours. Prerequisite: upper-division standing in Zoology or related discipline. Student reports current topics in zoology. Broadly construed, with emphasis on integration of concepts, synthesis, and state-of-the-art research approaches. Reviews of literature and reports of undergraduate research may be included. May be repeated for credit. (P/NP grading only)

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—9–36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in the Section of Zoology. Internships supervised by a member of the Zoology faculty. (P/NP grading only)

194A-194H. Research Honors in Zoology (2) I, II, III. The Staff (Chairperson in charge) Laboratory—6 hours. Prerequisite: students majoring in Zoology who have completed 135 units and qualify for the honors program in the current catalog. Zoology majors pursuing intensive research under guidance of a faculty adviser. Students are expected to complete the full three-quarter sequence culminating in the writing of an honors thesis. (Deferred grading only, petition completion of sequence.)

197T. Tutorial in Zoology (1-5) I, II, III. The Staff (Chairperson in charge) Discussion—1–2 hours. Prerequisite: upper division standing. Experience in teaching zoology under guidance of staff. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

Graduate Courses

200. Current Techniques in Cell Biology (2) I. Wu Lecture—2 hours. Current techniques used in cell biology research including microscopy, spectroscopy, electron microscopy, immunocytochemistry, histology, and automated single cell analysis and gel electrophoresis. Lectures presented by experts on each technique, with emphasis on pitfalls to avoid when using the technique. (Same course as Cell and Developmental Biology 20X.) (SU grading only)

200L. Cell and Developmental Biology Laboratory (6) I, II, III. The Staff (Chairperson in charge) Laboratory—18 hours (two five-week assignments). Prerequisite: course 200 (may be taken concurrently). Assignments in research laboratory of a Cell and Developmental Biology Graduate Group member. Individual research problems with emphasis on methodological/procedural experience and experimental design. (Same course as Cell and Developmental Biology 200A.) May be repeated for credit.

200B. Cell and Developmental Biology Laboratory (6) I, II, III. The Staff (Chairperson in charge) Laboratory—18 hours (two five-week assignments). Prerequisite: course 200 (may be taken concurrently). Assignments in research laboratories of Cell and Developmental Biology Graduate Group members. Individual research problems with emphasis on methodological/procedural experience and experimental design. (Same course as Cell and Developmental Biology 200B.)

202. Biomathematics (4) II. Watt Lecture—4 hours; laboratory—6 hours. Prerequisite: two courses in calculus, three courses in statistics. Mathematical aspects of physiology, ecology, and epidemiology; development and testing of models, mathematical description of biological systems; measurement, analysis, simulation and optimization in biology.

203. Global and Regional Modeling (4) II. Watt Lecture—1 hour; discussion—1 hour; seminar—3 hours; laboratory—3 hours. Prerequisites: Mathematics 16A-16B; Statistics 131A-131B, or 131C; FORTRAN. Use of statistical analysis of data, mathematical modeling, and computer simulation of the world or regions to provide basis for policy recommendations and new legislation.

204. Cellular Basis of Morphogenesis (4) III. Armstrong Lecture—3 hours; term paper. Prerequisite: course 100. Development of form and structure, morphogenetic movement, mechanisms of cellular motility, cell adhesion, intercellular invasion, interaction of cells and tissues; in development. Offered in alternate years.

205. Pattern Formation (4) II. Nuccitelli Lecture—3 hours; term paper. Prerequisite: course 100 or 121A or the equivalent, and consent of instructor. Morphology and mechanism of pattern formation in biology, with emphasis on both genetic and stochastic factors. Emphasis will be on cell polarity but some more general and less cellular systems will also be covered. Offered in alternate years.

206. Mechanisms of Organogenes (4) II. Erickson Lecture—3 hours; term paper. Prerequisite: course 100. Course will demonstrate the various means by which several cell types become organized and differentiate to form a functional unit, using five selected organ systems. Offered in alternate years.

208. Molecular Mechanisms in Animal Development (3) I. Natzie Lecture—1.5 hours; seminar—1.5 hours. Prerequisite: graduate standing or consent of instructor; intro-
uctose background in developmental biology and molecular genetics recommended. Analysis of the molecular mechanisms that control animal development with a special focus on multiple levels of gene regulation. Experimental systems including Drosofila, amphibians, C. elegans, and mice will be discussed. Readings will be taken from the current literature. Offered in alternate years.

212. Topics in Invertebrate Evolution (2) III. Grosberg Seminar—2 hours. Prerequisite: graduate standing or consent of instructor and course 112-1/2; courses in evolutionary biology, systematics, and ecology highly recommended. Advanced seminar that critically examines problems relevant to evolutionary patterns among the invertebrates. May be repeated for credit when topics differ. (SU grading only)

221. Behavioral Ecology (3) III. Mangels, Stampe Lecture—3 hours. Prerequisite: course 152 or 155, or the equivalent, and graduate standing. Introduction to the man issues treated in modern behavioral ecology, the mathematical techniques used to test these issues and the major theoretical methods used to develop predictive models. Offered in alternate years.

223. Modeling in Behavioral and Evolutionary Ecology (5) I. Mangels Lecture—3 hours. Prerequisite: graduate standing or consent of instructor; course 125 or 155, or the equivalent; Mathematics 131 or Statistics 136A, or the equivalent. Advanced course in theoretical behavioral and evolutionary theory to introduce students to methods that can be used to model the fitness associated with different behavioral and developmental adaptations. Will enable students to develop and apply models. Offered in alternate years.

225. Biology of Fertilization (3) I. Clark, Hedin, Mezukel, Nuccitelli Lecture—2 hours; term paper. Prerequisite: course 121A or the equivalent and consent of instructor. The morphology, physiology, and biochemistry of gametes and the mechanism and consequences of their union. Offered in alternate years.

226. Cell and Molecular Biology of Cancer (1) I. Armstrong Lecture—2 hours (first five weeks of quarter). Prerequisite: course 100 or one course from courses 121A, 121B, or 130, or Biochemistry 101A-101B or Physiology 101A-101B. Analysis at the cellular and molecular levels of the regulation of normal and neoplastic growth, tumor dissemination, identification and characterization of oncogenic agents, and identification and characterization of neoplastic agents.

236. Muscles Physiology (4) I. Bashir Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: Biochemistry 101A-101B and Mathematics 16B or 101B, or consent of instructor. The physical and chemical aspects of muscle function.

240. Topics in Cell Biology (3) I. Deamer Lecture—2 hours, discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Discussions and review of current topics in the area of cell biology. May be repeated for credit.

241. Membrane Biology (3) II. Deamer Lecture—3 hours. Prerequisite: courses 121A-121B or Biochemistry 101A-101B recommended, or consent of instructor. Experimental emphasis on biological aspects of membrane function and structure. The general approach will be to discuss cell biology from the viewpoint of membrane components of cells. Offered in alternate years.

242. Research Conference in Cell Biology (1) I. Schoelley; III. Leslie; III. Nitzke Seminar—1 hour. Prerequisite: consent of instructor. Preparation and presentation of faculty and graduate student research in cell biology. May be repeated for credit. (SU grading only)

243. Topics in Cellular and Behavioral Neurobiology (2) III. Wilson Discussion—1 hour; seminar—1 hour. Prerequisite: consent of instructor. An advanced examination of several current problems in neurobiology. Topics will vary in different years; may be repeated for credit. (Same course as Neurobiology 243.) (SU grading only)

254. Ecology of Parasites (2) III. Toft Lecture—1 hour; seminar—1 hour. Prerequisite: course 125 or Entomology 104, or the equivalent; graduate-level background in ecology recommended. Population dynamics of parasites and parasitoids, emphasizing species of ecological importance but also including species of medical and economic interest. Offered in alternate years. (SU grading only)

265. Seminar in Cell Biology (2) III. Leslie Seminar—2 hours. Prerequisite: consent of instructor. Discussion of recent literature on the physical and chemical aspects of organization and function of living systems, topics of current interest in virus structure and function of cells. Organizational and functional properties of the molecular and cellular levels of biological systems.

269. Research Conference in Developmental Biology (1) I. II. III. Armstrong, Erickson Seminar—1 hour. Prerequisite: consent of instructor. Presentation and critique of faculty and graduate student research in developmental biology. Intended primarily for graduate students. (SU grading only)

270. Research Conference in Evolutionary Biology (1) I. II. III. Grosberg Seminar—1 hour. Prerequisite: consent of instructor. Critical presentation and evaluation of current literature and ongoing research in evolutionary biology. (SU grading only)

283. Neurobiological Literature (1) I. II. III. Muloney, Wilson Seminar—1 hour. Prerequisite: consent of instructor. Critical presentation and analysis of recent journals articles in neurobiology. (Same course as Neurobiology 283.) (SU grading only)

287. Seminar in Animal Behavior (2) III. Stampe Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on the principles and recent developments in invertebrate and vertebrate animal behavior.

290. Current Topics in Zoology (1) I. II. III. The Staff (Chairperson in charge) Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Seminars presented by guest lecturers describing their research activities. May be repeated for credit. (SU grading only)

290C. Research Conference in Zoology (1) I. II. III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: graduate standing in Zoology and consent of instructor. Presentation and discussion of faculty and graduate student research in zoology. May be repeated for credit. (SU grading only)

292. Seminar in Development (2) III. Armstrong, Erickson Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on embryology, morphogenesis, and developmental mechanisms.

294. Seminar in Animal Ecology (2) III. Toft Seminar—3 hours. Prerequisite: course 125 and graduate standing. Readings and discussions of advanced topics in the population and community ecology of animals.

296. Seminar in Geographical Ecology (2) I. Shaprio Seminar—2 hours. Prerequisite: course 125 or 148 or Genetics 103, or consent of instructor. Recent developments in environmental and experimental biogeography, historical biogeography, and related topics in systematics, the biology of colonizing species, and related topics. May be repeated for credit. (SU grading only)

298. Group Study (1-5) I. II. III. The Staff (Chairperson in charge) (SU grading only)

299. Research (1-12) I. II. III. The Staff (Chairperson in charge) (SU grading only)

*Course not offered this academic year.
Tuition Fee for Nonresident Students
If you have not been living in California with intent to make it your permanent home for more than one year immediately before the residence determination date for each term in which you propose to attend the University, you must pay a nonresident tuition fee in addition to all other fees. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter, and for schools on the semester system, the day instruction begins for the semester.

Law Governing Residence
The rules regarding residence for tuition purposes at the University of California are governed by the California Education Code and implemented by Standing Orders of the Regents of the University of California. Under these rules, adult citizens and certain classes of aliens can establish residence for tuition purposes. There are particular rules that apply to the residence classification of minors (see below).

Who is a Resident?
If you are an adult who is not an alien present in the U.S. in a nonimmigrant status which precludes you from establishing domicile in the U.S. (e.g., a B, C, D, F, H2, H3, J, M, O2, O3, P or Q visa) and you want to be classified as a resident for tuition purposes, you must have established residence in California more than one year immediately preceding the residence determination date for the term during which you propose to attend the University, and you must have given up any previous residence. You must also present objective evidence that you intend to make California your permanent home. If these steps are delayed, the one-year durational period will be extended until you have demonstrated both presence and intent for one full year. Physical presence within the state solely for educational purposes does not constitute the establishment of California residence, regardless of the length of your stay. Your residence cannot be derived from your spouse or your parents.

Establishing Intent to Become a California Resident
Indications of your intent to make California your permanent residence can include the following: registering to vote and voting in California elections; designating California as your permanent address on all school and employment records, including military records if you are in the military service; obtaining a California driver’s license or, if you do not drive, a California Identification Card; obtaining California vehicle registration; paying California income taxes as a resident, including taxes on income earned outside California from the date you establish residence; establishing a California residence in which you keep your personal belongings; and licensing for professional practice in California. The absence of these indications in other states during any period for which you claim residence can also serve as an indication of your intent. Documentary evidence is required and all relevant indications will be considered in determining your classification. Your intent will be questioned if you return to your prior state of residence when the university is not in session.

General Rules Applying to Minors
If you are an unmarried minor (under age 18), the residence of the parent with whom you live is considered to be your residence. If you have a parent living, you cannot change your residence by your own act, by the appointment of a legal guardian, or by the relinquishment of your parent’s right of control. If you lived with neither parent, you residence is that of the parent with whom you last lived. Unless you are a minor alien present in the U.S. under the terms of a nonimmigrant visa which precludes you from establishing domicile in the U.S., you may establish your own residence when both your parents are deceased and a legal guardian has not been appointed. If you derive California residence from a parent, that parent must satisfy the one-year durational residence requirement.

Specific Rules Applying to Minors
1. Divorced/Separated Parents
You may be eligible to derive California resident status from a resident parent if you move to California to live with your parent before your 18th birthday. If you begin residing with your California parent after your 18th birthday, you will be treated like any other adult student coming to California to establish residence.

2. Parent of Minor Moves From California
You may be entitled to resident status if you are a minor U.S. citizen or eligible alien whose parent(s) is a resident of California who left that state within one year of the residence determination date if: 1) you remained in California after your parent(s) left; 2) you declare in a California public postsecondary institution within one year of your parent(s) departure; and 3) you maintain continuous attendance in that institution.

3. Self-Support
You must be a resident if you are a U.S. citizen or eligible alien and either a minor or age 18 and can prove the following: 1) you lived in California for the entire year immediately preceding the residence determination date; 2) you have been self-supporting for that year; and 3) you intend to make California your permanent home.

4. Two-Year Care and Control
You may be entitled to resident status if you are a U.S. citizen or eligible alien and you have lived continuously with an adult who is not your parent for at least two years prior to the residence determination date. The adult with whom you are living must have been responsible for your care and control for the entire two-year period and must have been residing in California during the one year immediately preceding the residence determination date.

Exemptions from Nonresident Tuition
1. Member of the Military
If you are a member of the U.S. military stationed in California on active duty, unless you are assigned for educational purposes to a state-supported institution of higher education, you may be exempt from the nonresident tuition fee until you have lived in California long enough to become a resident. You must provide the residence deputy on campus with a statement from your commanding officer or personnel officer stating that your assignment to active duty in California is not for educational purposes. The letter must include the dates of your assignment to the state.

2. Spouse or Other Dependents of Military Personnel
You are exempt from payment of the nonresident tuition fee if you are a spouse or a natural or adopted child or stepchild who is a dependent of a member of the U.S. military stationed in California on active duty. The exemption is available until you have lived in California long enough to become a resident. You must petition for a waiver of the nonresident tuition fee each term you are eligible. If you are enrolled in an educational institution and the member of the military is transferred on military orders to a place outside California where he or she continues to serve in the armed forces, or the member of the military retires from active duty immediately after having served in California on active duty, you may retain this exemption under the conditions listed above.

3. Child or Spouse of Faculty Member
To the extent funds are available, if you are an unmarried dependent child under age 21 or the spouse of a member of the University faculty who is a member of the Academic Senate, you may be eligible for a waiver of the nonresident tuition fee. Confirmation of the faculty member’s membership on the Academic Senate must be secured each term this waiver is granted.
4. Child or Spouse of University Employee

You may be entitled to resident classification if you are the unmarried dependent child or the spouse of a full-time University employee whose assignment is outside of California (e.g., Los Alamos Scientific Laboratory). Your parent’s or spouse’s employment status with the University must be ascertained each term.

5. Child of Deceased Public Law Enforcement or Fire Suppression Employee

You may be entitled to a waiver of the nonresident tuition fee if you are the child of a deceased public law enforcement or fire-suppression employee who was a California resident at the time of his or her death and who was killed in the course of fire suppression or law enforcement duties.

6. Dependent of a California Resident

A student who has not been an adult resident of California for more than one year and who is the dependent child of a California resident who has been a resident for more than one year immediately prior to the residence determination date may be entitled to resident classification until the student has resided in California for the minimum time necessary to become a resident so long as continuous attendance is maintained at an institution.

7. Native American Graduate of BIA School

A student who is a graduate of a California school operated by the Federal Bureau of Indian Affairs (BIA), i.e., Sherman Indian High School, and who enroll at the University of California may be eligible for an exemption of the nonresident fee.

Temporary Absence

If you are a nonresident student who is in the process of establishing a residence for tuition purposes and you return to your former home during non-instructional periods, your presence in the state will be presumed to be solely for educational purposes and only convincing evidence to the contrary will rebut this presumption. (A student who is in the state solely for educational purposes will NOT be classified as a resident for tuition purposes regardless of the length of time he or she stays.) If you are a student who has been classified as a resident for tuition purposes and you leave the state temporarily, your absence could result in the loss of your California residence. The burden will be on you (or your parents if you are a minor) to verify that you did nothing inconsistent with your claim of a continuing California residence during your absence. Steps that you (or your parents) should take to retain a California residence include:

1. Continue to use a California permanent address on all records—educational, employment, military, etc.
2. Satisfy California resident income tax obligations. (Note: If you are claiming California residence, you are liable for payment of income taxes on your total income from the date you establish California residence. This includes income earned in another state or country.)
3. Retain your California voter’s registration and vote by absentee ballot.
4. Maintain a California driver’s license and vehicle registration. If it is necessary to change your driver’s license and/or vehicle registration while you are temporarily residing in another state, you must change them back to California within the time prescribed by law.

Reclassification

All changes of status must be initiated prior to the first day of class for the term which you intend to be reclassified. In addition to the indications listed above, California law requires that financial independence be included among the factors considered if you are seeking reclassification. If you are financially dependent in the current and preceding calendar years, you will be considered a California resident for reclassification purposes only if no factors exist which give evidence of your continuing residence in another state. Financial independence will not be considered for graduate students who are graduate student instructors, teaching assistants, research assistants, or teaching associates employed at 49 percent time or more.

Incorrect Classification

If you were incorrectly classified as a resident, you are subject to recategorization and to payment of all nonresident tuition fees not paid. If you concealed information or furnished false information and were classified incorrectly as a resident, you are also subject to University discipline. Resident students who become nonresidents must immediately notify the campus residence deputy.

Inquiries and Appeals

Inquiries regarding residence requirements, determination and/or recognized exceptions should be directed to the Residence Deputy or Assistant Residence Deputy, Office of the Registrar, 12 Mrak Hall, Davis, California 95616, (916) 752-0870. NO OTHER UNIVERSITY PERSONNEL ARE AUTHORIZED TO SUPPLY INFORMATION RELATIVE TO RESIDENCE REQUIREMENTS FOR TUITION PURPOSES. You are cautioned that this summary is not a complete explanation of the law regarding residence. Please note that changes may be made in the residence requirement between the publication of this statement and the relevant residence determination date. Any student, following a final decision on residence classification by the residence deputy, may appeal in writing to the legal analyst (Legal Analyst—Residence Matters, 300 Lake-Side Dr., 7th Floor, Oakland, CA 94612-3565) within 90 days of notification of the residence deputy’s final decision.

UNIVERSITY POLICY ON NONDISCRIMINATION, SEXUAL HARASSMENT, STUDENT RECORDS, AND PRIVACY

Non-discrimination. The University of California, in compliance with Title V and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Sections 503 and 504 of the Rehabilitation Act of 1973, the Age Discrimination in Employment Act of 1967, and the Age Discrimination Act of 1975, does not discriminate on the basis of race, color, national origin, religion, sex, handicap, or age in any of its policies, procedures, or practices; nor does the University, in compliance with Section 402 of the Vietnam Era Veterans Readjustment Act of 1974, and Section 12940 of the State of California Government Code, discriminate against any employees or applicants for employment because they are disabled veterans or veterans of the Vietnam era, or because of their medical condition (cancer-related) as defined in Section 12926 of the California Government Code, their ancestry, or their marital status; nor does the University discriminate on the basis of citizenship, within the limits imposed by law or University policy; nor does the University discriminate on the basis of sexual orientation. This nondiscrimination policy covers admission, access, and treatment in University programs and activities, and application for and treatment in University employment.

In conformance with University policy and pursuant to Executive Orders 11246 and 11375, Section 503 of the Rehabilitation Act of 1973, and Section 402 of the Vietnam Era Veterans Readjustment Act of 1974, the University of California is an affirmative action/equal opportunity employer.

Inquiries regarding the University’s equal opportunity policies may be directed to the Vice Chancellor of Academic Affairs and Affirmative Action Officer, 325 Mrak Hall, 916-752-2070. Speech and hearing impaired persons may dial (TDD) 916-752-7320.

Sexual Harassment. Sexual harassment of students, staff, or faculty members is prohibited by law and by University regulation. Sexual harassment is unacceptable and will not be condoned on the UCD campus. The campus community will take all necessary and appropriate steps to protect students, staff, and faculty from sexual harassment and all forms of sexual
intimidation and exploitation. The Sexual Harassment Education Program (752-2585) provides information and assists students in resolving complaints of sexual harassment informally. Formal grievance procedures for student complaints charging legally impermissible discrimination (Policy 250-0) are available in the Office of Student Judicial Affairs and may be used to bring complaints of sexual harassment or other discrimination. Students may receive informal counseling and formal assistance by contacting any of the following offices: Vice Chancellor's Office, Deans of the Schools and Colleges, or the Office of Student Judicial Affairs. In addition, the ASUCD Student Grievance Center, Counseling Center, and the Women's Resources and Research Center are available to provide referral service.

Disclosures from Student Records. In accordance with the Federal Family Educational Rights and Privacy Act of 1974 and campus procedures implementing the University of California Policies Applying to the Disclosure of Information from Student Records, students at the Davis campus of the University have the right:

- To inspect and review records pertaining to themselves in their capacity as students;
- To have withheld from disclosure, absent their prior consent for release, personally identifiable information from their student records, with exceptions as noted in Section 10.70 of the University's policies;
- To inspect records maintained by the campus of disclosure of personally identifiable information from their student records;
- To seek correction of their student records through a request to amend the records or a request for a hearing; and
- To file complaints with the Department of Education regarding alleged violations of the rights accorded them by the Federal Act.

These rights are implemented on the Davis campus by UCD Policy and Procedure Manual, Section 320-21, "Disclosure of Information from Student Records."

Questions about these rights should be referred to Jeannine Wilson, Office of Student Judicial Affairs, telephone 916-752-1128. Copies of the Federal Act, the full text of the UC Policies and the UCD Policy and Procedure Manual, Section 320-21, may be consulted at the Reference Desk of the Shields Library. Copies of the UC policies may be obtained at the Office of Student Judicial Affairs.

Categories of personally identifiable information designated by the campus as public information are: name, address (campus and/or permanent), telephone numbers, date of birth, major field of study, dates of attendance, degrees and honors, and all records of the student's academic record and activities, including intercollegiate athletics and the name, weight, and height of the participants on intercollegiate University athletic teams provided, however, that addresses and telephone numbers are not public information with respect to internships, residents and fellows and that with respect to these students public information also includes primary hospital assignment, field of residency training, and name of medical school awarding the M.D. degree.

Parental/guardian information is confidential. It is used by the University only for notification of events, ceremonies, awards, and development or in case of an emergency involving the student.

Students may request in writing by the last day of registration that their addresses and telephone listings or all personally identifiable information from their record not be regarded as public information. Students who desire to withhold their addresses and telephone listings may so indicate on the Student Address Form included with registration materials. If a student does not indicate that he or she wishes to keep his or her address and telephone number confidential, then the information may be released as a matter of public record and will be included in a campus Student Directory. Students who desire to withhold all information from the category of public information must file a form in the Registrar's Office. Students availing themselves of this right should understand what the consequences of such action may be. For example, if all information is designated non-public information, the campus cannot make public any honors received by the student (e.g., the award of a Regents' Scholarship or election to Phi Beta Kappa) and cannot include the student's name and degree earned in the campus commencement program without the student's written consent. Similarly, the student's status as a student cannot be verified for potential employers without the student's written consent. Finally, any degrees earned and the dates they were conferred may not be confirmed for any third party in connection with the appointment of that graduate to a new position or published in connection with an honor that individual subsequently receives. Students may reverse the decision to withhold their address and phone number at registration for a new quarter on the Student Address Form. The decision to withhold address and phone number or all information can be reversed at any time by filing a form with the Registrar's Office.

Privacy Act. A student's Social Security number is used to verify personal identity in the UCD Student Records System. In accordance with the Federal Privacy Act of 1974, students are hereby notified that disclosure of their social security number is mandatory. This recordkeeping system was established prior to January 1, 1975 pursuant to the authority of The Regents of the University of California under Art. IX, Sec. 9, of the California Constitution.

ACCREDITATION

The University of California, Davis is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges, an institutional accrediting body recognized by the Council on Postsecondary Accreditation and the U.S. Department of Education. UC Davis is also accredited by the Association of American Law Schools, American Bar Association, Association of American Medical Colleges, Accreditation Council for Graduate Medical Education, Council on Education of the American Veterinary Medical Association, Engineering Accreditation Commission of the Accreditation Board of Engineering and Technology, American Chemical Society, American Assembly of Collegiate Schools of Business, American Society of Landscape Architects, the Commission on Teacher Credentialing, and the Joint Commission on Accreditation of Hospitals. Students interested in reviewing the accreditation documents may do so by scheduling an appointment with the office of the Provost, Mrk Hall.

THE BOARD OF REGENTS

Governance of the University is entrusted to a corporation called The Board of Regents. Of the individuals composing the board, 19 are prominent California citizens appointed by the Governor; and seven, including the President of the University and the Governor of California, serve ex officio. A Student Regent is selected each year from a list of names submitted to the board by the Student Body Presidents' Council.

The Regents have delegated authority in academic matters to the Academic Senate of the faculty, which determines academic policy and supervises the instructional activities of the entire University. All of the permanent faculty, as well as key administrators, are members of the Senate.

The Regents have delegated authority for the organization of the University to the president. David P. Gardner is president and head of the Universitywide administration. Authority for the administration of each campus has been delegated to a chancellor.
RETENTION DATA: AND GRADUATION RATES AT UC DAVIS

Freshmen

(Retention and graduation rates through Spring 1991 for regularly admissible undergraduates entering UC Davis as freshmen.)

<table>
<thead>
<tr>
<th>Fall Quarter of Initial Enrollment</th>
<th>Number of Students</th>
<th>Percent Enrolled 4 Quarters</th>
<th>*Percent Graduating in 12 Quarters</th>
<th>*Percent Graduating in 15 Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>2,611</td>
<td>90%</td>
<td>34%</td>
<td>69%</td>
</tr>
<tr>
<td>1982</td>
<td>2,352</td>
<td>91%</td>
<td>36%</td>
<td>73%</td>
</tr>
<tr>
<td>1983</td>
<td>2,283</td>
<td>92%</td>
<td>33%</td>
<td>72%</td>
</tr>
<tr>
<td>1984</td>
<td>2,780</td>
<td>93%</td>
<td>30%</td>
<td>73%</td>
</tr>
<tr>
<td>1985</td>
<td>2,515</td>
<td>92%</td>
<td>30%</td>
<td>68%</td>
</tr>
<tr>
<td>1986</td>
<td>2,271</td>
<td>93%</td>
<td>29%</td>
<td>64%</td>
</tr>
</tbody>
</table>

Transfer Students

(Retention and graduation rates through Spring 1991 for undergraduates transferring to UC Davis as juniors.)

<table>
<thead>
<tr>
<th>Fall Quarter of Initial Enrollment</th>
<th>Number of Students</th>
<th>Percent Enrolled 4 Quarters</th>
<th>*Percent Graduating in 6 Quarters</th>
<th>*Percent Graduating in 9 Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>633</td>
<td>86%</td>
<td>39%</td>
<td>71%</td>
</tr>
<tr>
<td>1983</td>
<td>616</td>
<td>89%</td>
<td>36%</td>
<td>75%</td>
</tr>
<tr>
<td>1984</td>
<td>704</td>
<td>89%</td>
<td>35%</td>
<td>72%</td>
</tr>
<tr>
<td>1985</td>
<td>631</td>
<td>90%</td>
<td>35%</td>
<td>72%</td>
</tr>
<tr>
<td>1986</td>
<td>598</td>
<td>91%</td>
<td>32%</td>
<td>75%</td>
</tr>
<tr>
<td>1987</td>
<td>683</td>
<td>91%</td>
<td>28%</td>
<td>72%</td>
</tr>
<tr>
<td>1988</td>
<td>776</td>
<td>90%</td>
<td>27%</td>
<td>64%</td>
</tr>
</tbody>
</table>

*These are not necessarily quarters of continuous enrollment. Students may drop out or go on Planned Educational Leave for a quarter or longer, and then resume their studies. (There are three quarters in each academic year.)

Source: Student Affairs Research and Information, UC Davis (January 1992).

AVERAGE MONTHLY SALARY OFFERED TO GRADUATES WITH BACHELOR'S, MASTER'S, AND DOCTORATE DEGREES:

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Bachelor's</th>
<th>Average Monthly Salary</th>
<th>Doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>$2795</td>
<td>$31,34</td>
<td>$4564</td>
</tr>
<tr>
<td>Humanities/ Social Sciences</td>
<td>1745</td>
<td>1983</td>
<td>2231</td>
</tr>
<tr>
<td>Health Sciences/Life Sciences</td>
<td>2211</td>
<td>2037</td>
<td>—</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>2254</td>
<td>3012</td>
<td>3935</td>
</tr>
</tbody>
</table>

Source: 1991 National Salary Survey data provided by the College Placement Council.
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

Regents Ex Officio
Pete Wilson
Governor of California and President of The Regents

Leo T. McCarthy
Lieutenant Governor of California

Willie L. Brown, Jr.
Speaker of the Assembly

Bill Honig
State Superintendent of Public Instruction

Ralph M. Ochoa
President of the Alumni Association of the University of California

Gail G. Anderson
Vice President of the Alumni Association of the University of California

David Pierpont Gardner
President of the University

Paul J. Howl
Carl J. Storey, Jr.

Appointed Regents
(Current term expires on March 1 of year indicated)

William T. Bagley (2002)
Roy T. Brophy (1998)
Clair W. Burgener (2000)
Yvonne Brodhaut Burke (1993)
Glenn Campbell (1996)
Frank W. Clark, Jr. (2000)
John Davies (2004)
Tirso del Junco, M.D. (1997)
Alissa J. Gonzales (1998)
Jeremiah F. Hallisey (1993)
S. Sue Johnson (2002)
Meredith J. Khachigian (2001)
Leo S. Kolligian (1997)
Howard H. Leach (2001)
Dean A. Watkins (1996)
Harold M. Williams (1994)
Jacques S. Yeager (1994)

Student Regent
Alex Wong (June 30, 1993)
(UCB)

Faculty Representatives
W. Elliot Brownlee
Martin Trow

Principal Officers of The Regents
James E. Holst
General Counsel
Herbert M. Gordon
Treasurer
Bonnie M. Smotony
Secretary

ADMINISTRATIVE OFFICERS OF THE UNIVERSITY
David Pierpont Gardner
President of the University
William R. Frazer
Senior Vice President—Academic Affairs
Ronald W. Brady
Senior Vice President—Administration
William B. Baker
Vice President—Budget and University Relations

Cornelius L. Hopper, M.D.
Vice President—Health Affairs
Kenneth R. Farrell
Vice President—Agriculture and Natural Resources

UNIVERSITY CHANCELLORS
Chang-Lin Tien
Chancellor at Berkeley
Theodore L. Hullar
Chancellor at Davis
Jack W. Peltason
Chancellor at Irvine
Charles E. Young
Chancellor at Los Angeles
Raymond L. Orbach
Chancellor at Riverside
Richard C. Atkinson
Chancellor at San Diego
Julius R. Krevans, M.D.
Chancellor at San Francisco
Barbara S. Uehling
Chancellor at Santa Barbara
Karl S. Pister
Chancellor at Santa Cruz

ADMINISTRATIVE OFFICERS—DAVIS
Chancellor
Theodore L. Hullar, Ph.D.
Chancellor Emeritus
James H. Meyer, Ph.D.

Vice Chancellors
Larry N. Vanderhoof, Ph.D.
Executive Vice Chancellor and Provost
Richard E. Matheny, Ed.D.
Vice Chancellor—University Relations
Darrell P. Ralls, A.B.
Vice Chancellor—Facilities
Frank L. Rincon, Ph.D.
Vice Chancellor—Student Affairs
Robert N. Shelton, Ph.D.
Vice Chancellor—Research
Janet C. Hamilton, B.S.
Vice Chancellor—Administration

Vice Provosts
Vice Provost—Academic Programs and Dean—Undergraduate Studies
Carol Tomlinson-Keasey, Ph.D.
Vice Provost—Facility Relations

Executive Assistant to the Chancellor
Sally P. Springer, Ph.D.

Associate/Assistant Vice Chancellors
Carole A. Barone, Ph.D.
Associate Vice Chancellor—Information Technology
Trevor L. Chandler, Ph.D.
Assistant Vice Chancellor—Campus Diversity
Robert E. Chason, M.Ed.
Associate Vice Chancellor—Student Affairs (Business Management and Operations)
Anthony B. Flores, M.P.A.
Assistant Vice Chancellor—Finance, Accounting Officer
Robert G. Franks, Ph.D., J.D.
Assistant Vice Chancellor—Student Affairs (Student Relations)
Gerald R. Halle, M.P.A.
Assistant Vice Chancellor—Offices of Chancellor/Provost
College of Letters and Science
Robert O. Crummey, Ph.D., Dean
Albert A. Harrison, Ph.D., Executive Associate Dean
James C. Cramer, Ph.D., Associate Dean
William M. Jackson, Ph.D., Associate Dean
George G. Roussas, Ph.D., Associate Dean (Division of Statistics)
Jon C. Wagner, Ph.D., Acting Associate Dean (Division of Education)
Carolyn F. Wall, Ph.D., Associate Dean
Fred E. Wood, Ph.D., Associate Dean

Division of Biological Sciences (Intercollege)
Robert D. Grey, Ph.D., Dean
Merna R. Villarejo, Ph.D., Associate Dean
Ronald J. Baskin, Ph.D., Associate Dean

Graduate School of Management
Robert H. Smiley, Ph.D., Dean
Richard Castanias, Ph.D., Associate Dean

School of Law
Ellen R. Jordan, J.D., Dean
Edward H. Rabin, LL.B., Associate Dean
Martha S. West, J.D., Associate Dean

School of Medicine
Hibbard E. Williams, M.D., Dean
James J. Castles, M.D., Executive Associate Dean
Edward J. Hurley, M.D., Associate Dean
Ernest L. Lewis, M.D., Associate Dean
Frank J. Loge, M.B.A., Associate Dean
Donal A. Walsh, Ph.D., Associate Dean

School of Veterinary Medicine
Frederick A. Murphy, D.V.M., Ph.D., Dean
George H. Cardinet III, D.V.M., Ph.D., Associate Dean
Robert J. Hansen, Ph.D., Associate Dean
Donald G. Low, D.V.M., Ph.D., Associate Dean
Bennie I. Osburn, D.V.M., Ph.D., Associate Dean
Philip R. Vulliet, Ph.D., Associate Dean

Graduate Studies
M.R.C. Greenwood, Ph.D., Dean
Donald L. Curry, Ph.D., Executive Associate Dean

University Extension
Charles A. Lacy, Ph.D., Acting Dean
Index

Academic calendar, 5
Academic credit, 57
Academic options program, 48
Academic Reentry Program, 28, 49
(see also Reentry Student Services)
Accreditation, 379
Adding courses, 56
Address, change of, 55
Address directory, 4
Administrative officers, 381–382
Admission
acceptance, 24
application filing and fees, 21
checklist, 29
deadlines, 21
entrance requirements, 21–23
by examination, 24
as a freshman, 21–24
to graduate study, 84–85
as an international student, 26–27
limited status, 28–29
notification, 24
out-of-state applicant, 24
preparing for university work, 21
to professional school, 89–90
(Law), 93 (Management), 95–96
(Medicine), 99–100 (Veterinary Medicine)
selection criteria, 27–28
special status, 29
as a transfer student, 24, 26
Adult Fitness Program, 16
Advanced Placement Examinations, 24–25
Advising, 46–49
academic, 46–47 (Agricultural and Environmental Sciences), 47
(Engineering), 47–48 (Letters and Science)
peer, 48
preprofessional, 49
Advising Services, 49
Aeronautical Science and Engineering, 175–176, 199, 201–202
Aerospace Studies (Air Force), 301
Affirmative Action, 28, 48, 50
African-American and African (Afro-American) Studies, 104–105
Agrarian Studies, 105
Agricultural and Environmental Chemistry (A Graduate Group), 105–106
Agricultural and Environmental Sciences, College of, 12–13
Agricultural and Managerial Economics, 106
Agricultural Economics, 106–109
Agricultural Education, 109–110
Agricultural Engineering, 110, 175, 176–177, 183–184
Agricultural Engineering Technology, 110–111
Agricultural History Center, 15
Agricultural Practices, 111
Agricultural Science and Management, 111–112
Agronomy, 112–113
Agronomy and Range Science, 113
(see also Range Science)
Allergy (see Rheumatology–Allergy)
Alumni Association, 44
American History and Institutions requirement, 68–69
American Studies, 113–114
Anatomy (see Cell Biology and Human Anatomy; Veterinary Anatomy and Cell Biology)
Anesthesiology, 280
Animal Behavior (A Graduate Group), 115
Animal Genetics, 115
Animal Nutrition (see Nutrition)
Animal Physiology, 116
Animal Science, 116–118
Animal Surgery Laboratory, 16
Anthropology, 118–122
Application filing and fees, 21
Applied Behavioral Sciences, 122–125
Applied Mathematics (A Graduate Group), 125
Applied Physics (see Physics)
Applied Science Engineering, 181–184
Aquaculture (see Agricultural Engineering Technology; Animal Science; Wildlife and Fisheries Biology)
Arboretum, University, 15
Archeology (see Anthropology)
Architecture (see Art History; Landscape Architecture)
Area requirement, 80–81
Art History, 125–127
Art Studio, 127–129
Arts at Davis, 41–42
Asian American Studies, 129–130
Asian Studies (see Asian American Studies; East Asian Studies)
Associate Dean of Students, 51
Associated Students (ASUCD), 42–43
Astronomy, 318
ASUCD, 42–43
Athletics, 41 (see also Physical Education)
Atmospheric Science, 130–131
Atmospheric Science (A Graduate Group), 132
Avian Medicine (see Epidemiology and Preventive Medicine)
Avian Sciences, 132–133
Avian Sciences (A Graduate Group), 133
Bachelor's degree requirements, 68
second baccalaureate, 29
Bacteriology (see Microbiology)
Basement Gallery, 42
Bicycles, 10, 31
Biochemistry, 133–134
Biochemistry and Biophysics, 134–135
Biochemistry and Molecular Biology (A Graduate Group), 135
Biochemistry and Special Instrumentation Laboratory, 18
Biological Chemistry, 260–261
Biological Sciences, 46, 48, 135–137
Biological Systems Engineering, 175, 176–177
Biomedical Engineering (A Graduate Group), 137–138
Biophysics (A Graduate Group), 138
(see also Biochemistry and Biophysics)
Bodega Marine Laboratory, 16–17, 137
Bodega Marine Reserve, 16–17
Botany, 138–141
Botany (A Graduate Group), 141
Buses, 39
Cal Aggie Marching Band, 44
Calendar, 5 (academic), 91 (Law), 97
(Medicine), 101 (Veterinary Medicine)
California Agricultural Experiment Station, 15
California Regional Primate Research Center, 17
Campus tours, 12
Candidate, filing for, 5, 69
Cantonese, 130
(see also Asian American Studies)
Cardiology, 285
Career Planning and Placement (see Internship and Career Center)
Carnegie unit, 57
Carpooling, 39
Cell and Developmental Biology (A Graduate Group), 141–142
Cell Biology and Human Anatomy, 281
Certification program for engineers, 86–87
Certification of full-time status, 56
Chancellors, 381
Chemical Engineering, 175, 177–178, 187–188
Chemistry, 142–145
(see also Agricultural and Environmental Chemistry)
Chicano Studies, 145–146
Child Care Programs, 38–39
Child Development (A Graduate Group), 146 (see also Human Development)
Chinese and Japanese, 146–149
(see also Asian American Studies; East Asian Studies)
Civil and Environmental Engineering, 175, 178–179, 186–192
Class level, 55
Classics, 149–151
Clinical Nutrition and Metabolism, 285
Clinical Pathology, 151–152
Clinical Psychology, 281
Communication (see Rhetoric and Communication)
Community Development (A Graduate Group), 152 (see also Applied Behavioral Sciences)
Community Health, 281–282
Community Housing Office, 37, 38
Community Nutrition, 152–153
Comparative Literature, 153–155
Comparative Literature (A Graduate Group), 155
Comparative Pathology (A Graduate Group), 156–157
Computer Science, 156, 175, 179–180, 196–199

Index 383
Computer Science (A Graduate Group), 156
Computing Services, 15
Concurrent credit, 57
Concurrent enrollment, 28
Consumer Economics, 156
Consumer Food Science, 156-157
Consumer Research, Center for, 19
Consumer Science, 157
Consumer Technology, 157
Counseling (see Advising)
Counseling Center, 51
Courses
adding and dropping, 56
alternate year designation, 103
classification and numbering, 55-56
credit for (units), 57
everest in, 55
expanded descriptions, 103
grading, 61-63
load, 56
prerequisites, 56
repetition of, 62-63
Craft Center, 40
Credit by examination, 57
Critical Theory, 157-158
Crocker Nuclear Laboratory, 18
Cultural Days, 44

Dance (see Physical Education)
Davit, campus and community, 10-12
Degree check, 78, 82
Degree requirement changes, 74, 78, 82
Degree requirements
Agricultural and Environmental Sciences, College of, 74
Engineering, College of, 75-78
Graduate Division, 86-87
Letters and Science, College of, 79-82
Veterinary Medicine, School of, 100-101
Degrees offered by UC Davis, 6-7
Dermatology, 282
Design and Emphasis, 86
Design, 158-159
(see also Art, Landscape Architecture)
Design Gallery, 42
Dietetics, 158-159
Disability Resource Center, 51-52
Disclosures from student records, 379
Discrimination, University policy prohibiting, 379-379
Dismissal, 65-66
Disqualification, 65-66
Dorms, 37
Draft Information, 52
Dramatic Art, 42, 160-162
Dropping courses, 56

Early Childhood Laboratory, 19, 38
Earth Sciences and Resources (A Graduate Group), 162
East Asian Studies, 162-163
Ecology (A Graduate Group), 163-164
Ecology, Institute of, 15
Economics, 164-167
(see also Agricultural Economics; Applied Economics; Consumer Economics)

Economy, Justice, and Society, 167
Education, 168-171
(see also Agriculture Education; Applied Behavioral Sciences; Human Development)
Education, Master of, graduate group, 271
Education Abroad Program, 171-174
Education and Graduate Placement Services, 53
Educational Opportunity Program (EOP), 28, 33, 49, 50
Electrical and Computer Science Engineering, 175, 179-180, 192-199
Electron Microscopy Laboratory, 18
Emergency Medicine, 285
Employment, student, 35, 38, 39
Endocrinology and Metabolism, 285-286
Endocrinology (A Graduate Group), 174
Engineering, College of, 13-14, 174-204
Aeronautical Science and, 175-176, 199, 201-202
Agricultural, 175, 176-177, 183-184
Applied Science, 184-187
Chemical, 175, 177-178, 187-188
Civil and Environmental, 175, 178-179, 188-192
Computer Science, 175, 179-180, 196-199
Electrical and Computer Science, 175, 179-180, 192-199
Environmental Science and, 175-176, 179-181, 182, 199, 202-204
Mechanical, 175-176, 181-182, 199-201
Engineering design requirement, 76
Engineering electives, 76-78
English, 204-205
English composition examination, 74, 76, 79
English composition requirement, 74, 76, 80
English proficiency requirement, 22, 85
Entomology (Viticulture and Entomology), 365-366
Entomology, 209-211
Environmental and Resource Sciences, 211-212
Environmental Biology and Management, 212-213
Environmental Design, 213
Environmental Geology, 213
Environmental Health Research, Institute for, (see Toxicology and Environmental Health, Institute of)
Environmental Horticulture, 213-214
Environmental Planning and Management
(see Environmental Biology and Management; Environmental Horticulture)
Environmental Policy Analysis and Planning, 214-215
Environmental Studies, 215-216
Environmental Toxicology, 218-219
EOP/SAA, 28, 33, 49, 50
Epidemiology (A Graduate Group), 219-220
Epidemiology and Preventive Medicine, 220-221
Equestrian Center, 40
Examinations
Advanced Placement, 24-25
credit by, 57
final, 60-61
High School Proficiency, 24
midterm, 59-60
requirement (ACT and SAT), 23
Expenses
annual, 31
housing, 37
Exploratory program, 47
Extension courses (see University Extension)

Facility for Advanced Instrumentation, 18
Family Practice, 282-283
Fee
employee-student, 31
exceptions, 31
refunds, 32
Fees and expenses, 31-32
Fellowships, 86
Feminist Theory and Research, 221
Fermentation Science, 221-222
Fiber and Polymer Science, 222
Financial aid, 32-35, 38
Fine Arts Collection, 42
First Resort, The, 48-49
Fisheries (see Animal Science; Wildlife and Fisheries Biology)
Floriculture (see Plant Science major)
Food Biochemistry, 222-223
Food Engineering, 175, 177
Food Intake Laboratory, 17
Food Science, 223
Food Science (A Graduate Group), 223
Food Science and Technology, 223-225
Food Service Management, 225-226
Footnotes, key to symbols, 103
Foreign language requirement, 81
Foreign student (see International student)
Forest Engineering, 175-176
French, 226-228
Freshman Seminar Program, 229

Galleries, art, 40, 42
Games Area, 40
Gastroenterology, 286
General Education Requirement, 69-73, 74 (Agricultural and Environmental Sciences), 77 (Engineering), 80-81 (Letters and Science)
General Education courses for 1992-93, 73
General Education Preparation List, 72
General Medicine, 296
Genetics, 229-230
Genetics (A Graduate Group), 230-231
Geography, 231-233
Geology, 233-238
Geophysics, 238
Geotechnical Modeling, Center for, 18
German, 238-242
Gorman Museum, 42
Governmental Affairs, Institute of, 19
Grade point average (GPA), 61
Grades, 61-63
change of, 50, 62
final, 63
incomplete, 62
in-progress, 62
Passed/Not Passed, 61-62
repeated course, 62–63
Satisfactory/Unsatisfactory, 62
Graduate
admission, 84–85
advising, 49
certificate program for engineers, 86–87
deadlines, 84
degrees, 85–86
Studies, 83–87
fees and expenses, 31
placement services, 53
program of study, 85–86
Student Association, 43–44
Grades, 33
Greek, 151
(see also Classics)
Grievances, resolving, 50–51

H
Handicapped Students, services to,
(see Disability Resource Center)
Health
education, 51
insurance, 31, 32, 38
Sciences Advising Office, 49
services, 37–38, 51
Health Sciences Research Labs, 17–18
Hebrew, 338
(see also Religious Studies)
Hematology-Oncology, 286
Herbarium, J.M. Tucker, 16
High school proficiency examination, 24
History, 242–248
History and Philosophy of Science, 248–249
Honorary societies, 64
Honors and Prizes, 63–64
Horticulture (A Graduate Group), 249
(see also Environmental Horticulture)
House, The, 51
Housing, 37
Human Anatomy (see Cell Biology and Human Anatomy)
Human Corps Program, 53
Human Development, 249–252
Human Performance Laboratory, 18
Human Physiology, 283–284
Humanities, 251–252
Humanities Institute, 19
Hydrological Sciences (A Graduate Group), 252

I
Immunology (A Graduate Group), 252
(see also Veterinary Microbiology and Immunology)
Incomplete grades, 62
Independent Study Program, 252
Individual major, 59, 72, 253
Infectious Diseases, 286–287
In-Progress grading, 62
Integrated Studies Program, 253–254
Intercampus exchange program, 86
Intercampus Institute for Research at Particle Accelerators, 19
Intercollegiate athletics, 41
Internal Medicine, 284–288
International Agricultural Development, 254–255
International Agricultural Development (A Graduate Group), 255–256
International Relations Program, 256–257
International student admission, undergraduate, 26–27
admission to Graduate Studies, 85
expenses, 31–32
Services, 51
Internship and Career Center, 53
Internship Program, 53, 257
Intramuscular and club sports, 41
Irrigation (see Engineering: Civil; Soil and Water Science)
Italian, 257–258

J
Japanese, 146–147, 148–149
Jepson Prairie Reserve, 16
Judicial Affairs, 43, 44, 50–51

L
Land, Air and Water Resources, 258–259
Landscape Architecture, 259–261
LaRue Park Children's House, 38
Latin, 151
(see also Classics)
Law School Admission Test (LSAT), 89–90
Law, School of, 89–91, 261–266
Learning Skills Center, 49–50
Learning Resources Center, 50
Leave of absence, 64–65
Letters and Science, College of, 14–15
Library, University, 15
Linguistics, 266–268
Linguistics (A Graduate Group), 268
Literature in Translation, 269
Living accommodations, 37
Loans, 33–34

M
Majors
change of, 58
cross-college, 59
declaration of, 57–58
degree certification, 69, 74
individual, 59, 72
list of, 6–7
multiple, 58–59, 72
Management, Graduate School of, 92–93,
269–271
Mann Laboratory, 16
Marine Resources, Institute of, 18
Master of Education (A Graduate Group), 271
Master of Preventive Veterinary Medicine, 100
Materials Science and Engineering, 175–176, 179–181, 182, 199, 202–204
Mathematics, 271–275
Mechanical Engineering, 175, 176,
181–182, 199–201
Medical Microbiology, 288

Medical Pharmacology and Toxicology, 288–289
Medical Sciences, 279–280
Medicine, Department of (Veterinary Medicine), 295–296
Medicine, School of, 94–97, 275–295
Medieval Studies, 296–297
Memorial Union, 39–40
Memorial Union Art Gallery, 40, 42
Mexican-American (Chicano) Studies
(see Chicano Studies)
Microbiology, 297–299
(see also Medical Microbiology; Veterinary Microbiology and Immunology)
Microbiology (A Graduate Group), 299
Military Science, 299–301
Minimum progress, 56, 65–66
Minor programs, 8, 59
Music, 41–42, 301–304

Name change, 55
Native American Studies, 304–306
Nature and Culture, 306
Nelson Gallery, 42
Nematology, 306
Nephrology, 287
Neurobiology (A Graduate Group), 306–307
Neurology, 289–290
Neurosurgery, 290
Nondiscrimination, 378–379
Nuclear Magnetic Resonance Facility, 19
Nutrition, 307–309
Nutrition (A Graduate Group), 309
Nutrition (Medicine, see Clinical Nutrition and Metabolism)
Nutrition Science, 309

Obstetrics and Gynecology, 290
Occupational and Environmental Health, 287
Ophthalmology, 290–291
Organizational Studies, 345
Orientation, 47, 49, 310
Orthopaedic Surgery, 291
Otolaryngology, 291
Outdoor Adventures, 40

Parking Services, 39
Part-time status, 56
Passed/Not Passed grading, 61–62
Pathology (Medicine), 291–292
Pathology (Veterinary Medicine), 310
Pediatrics, 292–293
PELP, 64–65
Perfect Tender, The, 39
Pharmacology (see Medical Pharmacology and Toxicology)
Pharmacology and Toxicology (A Graduate Group), 310–311
Philosophy, 311–313
Physical Education, 313–317
Physical Medicine and Rehabilitation, 293
Physics, 317–320
Physiological Sciences, 320–321
Phyiology, 321-323
 (see also Animal Physiology; Human Physiology; Plant Physiology)
Physiology (A Graduate Group), 323
Planned Educational Leave Program, 64-65
Plant Biology (A Graduate Group), 323-324
Pathology, 324-325
Plant Physiology (A Graduate Group), 325
 (see also Plant Biology)
Plant Protection and Pest Management
 (A Graduate Group), 325
Plant Science, 325-327
Plastic Surgery, 293
Political Science, 327-332
Pomology, 332-333
Preventive Veterinary Medicine
 (A Graduate Group), 333
Primate Research Center, California Regional, 17
Principles of Community, 11
Privacy Act, 373
Probation, 65-66
Proficiency examination, high school, 24
Protein Structure Laboratory, 18
Psychiatry, 293-294
Psychology, 333-336
Pulmonary Medicine, 287
Putah Creek Campus Reserve, 16
Putah Creek Lodge, 40

Quarters
 - explanatory note, 103
 - how to convert units, 57

Radiation Oncology, 294
Radiological Sciences, 336
Radiology
 - Diagnostic, 294
 - Nuclear Medicine, 294-295
Range and Wildlards Science, 336-337
Range Science, 337
Rape Prevention Education Program, 52
Readmission
 - after an absence, 28
 - in graduate standing, 85
 (see also Academic Reentry Program)
Rec Pool Lodge, 40
Records, disclosures from, 379
Recreation Hall, 40-41
Recreation Swimming Pool, 40
Recreational facilities and programs, 39-42
Reentry Student Services, 52
 (see also Academic Reentry Program)
Refunds, fee, 32
Regents, 379, 381
Register, Statement of Intent To, 24
Registration procedures, 55
Registration Fee Child Care Subsidy Program, 38
Religious Studies Program, 337-339
Repeated courses, 62-63
Reproduction (Veterinary Medicine), 339
Requirements, bachelor's degree, 68-82
Residence halls, 37
Residence requirement, 69, 75, 80, 377-378
Retention data, 380

Rhetoric and Communication, 339-341
Rheumatology-Allergy, 287-288
Ridesharing, 39
ROTC (see Military Science), 301
Russian, 342-344

Satisfactory/Unsatisfactory grading, 62
Satisfactory academic progress, 56, 65-66
Scandinavian, 344
Scholarship deficiencies, 65-66
Scholarship requirement, 22-23, 69, 74, 76, 80
Scholarships, 35, 63
Sexual harassment, policy against, 378-379
Shuttle, campus, 39
Silo Union, 40
Social Science Data Service, 19
Social Theory and Comparative History, 344
Sociology, 344-348
Soil and Water Science, 348-349
Soil Science, 349-350
Soil Science (A Graduate Group), 350
Spanish, 359-353
Special Transitional Enrichment Program (STEP), 50
Speech (see Rhetoric and Communication)
Spirit Squad, 44
Statement on Legal Residence, 377-378
Statistics, 353-356
Statistics (A Graduate Group), 356
Stebbins Cold Canyon Reserve, 16
STEP, 50
Student
 - Activities, 44
 - Affirmative Action, 28, 49, 50
 - conduct and discipline, 44
 - employment, 35, 36, 39
 - Experimental Farm, 16
 - family housing, 37
 - government, 42-43
 - health services, 37-38
 - housing, 37
 - judicial affairs, 43, 44, 50-51
 - records, disclosures from, 379
 - responsibilities, 44
 - services, 37-39
 - Special Services, 52-53
Study plan approval, 74
Subject A (English requirement), 68
Subject requirements, 22
Summer Advising, 49
Summer Sessions, 66, 70
Surgery (Medicine), 295
Surgery, (Veterinary Medicine), 356-357
Sustainable Agriculture Program, 16
Swedish, 344
Swimming pools, 40-41

Teacher Credential Program, 87
Textile Science (see Fiber and Polymer Science)
Textiles (A Graduate Group), 357
Textiles and Clothing, 357-358
 (see also Fiber and Polymer Science)
Theoretical Dynamics, Institute of, 19
Tours, 12

Toxicology (see Environmental
Toxicology, Veterinary Pharmacology and Toxicology)
Toxicology and Environmental Health, institute of, 15
Transcripts, 63
Transfer
 - admission, 24, 26, 28
 - credit, 24, 26, 70, 80
 - intercampus, 26
 - scholastic deficiencies, 66
 - Student Services, 52-53
 - to College of Engineering, 26
Transportation and Parking, 39
Tuition, 31, 377-378

UC Agricultural Issues Center, 16
UC Davis Presents, 41
UC Davis Washington Center, 366-367
Units
 - limitations, 55, 78-80
 - quarter to semester, 57
 - requirements, 69, 74, 75, 78
 - value, 57
UNITPANS, 39
University Extension, 28, 69, 74, 75, 79
University of California, 12
Urology, 295

Variable-unit courses, 55
Vegetable Crops, 358-359
Veterans affairs, 53
Veterinary Anatomy and Cell Biology, 359-360
Veterinary Genetics Laboratory, 18
Veterinary Medicine, School of, 98-101, 360-364
Veterinary Medicine Teaching and Research Center, 18
Veterinary Microbiology and Immunology, 364 (see also Microbiology)
Veterinary Pharmacology and Toxicology, 364-365
Viticulture and Enology, 365-366

War-Peace Studies, 366
Washington Center, 366-367
Water Resources Center, 16
Water Science, 367-368
Water Science (A Graduate Group), 368
Wildlife and Fisheries Biology, 368-370
Withdrawals, 32, 64-65
Women's Resources and Research Center, 39, 53
Women's Studies Program, 370-372
Work-learn (see Internship and Career Center)
Work-Study, 34-35

X-Ray Crystallographic Facility, 19

Zoology, 372-375
About the Cover

Ground was broken for Engineering Unit II, featured on the cover, in fall 1990. The building will provide more than 100,000 square feet of space for undergraduate teaching and graduate research laboratories, as well as for offices of electrical engineering, computer science, and materials science. The large cover photo and the four small inset photos were taken in September 1991 while the steel framework was being erected. Engineering II is scheduled for completion in 1993.

Although the College of Engineering was formally organized in 1962, agricultural engineering has been part of UC Davis since 1915. The department was originally in Walker Hall (opposite top), completed in 1928. Engineering has outgrown Walker Hall, but the building is still in use, presently housing the Departments of Civil and Environmental Engineering, Applied Science, and Environmental Design.

The black and white photo inset on the front cover shows students attending a 1929 short course lecture on electric motors. According to A.H. Hoffman, director of research in agricultural engineering during the 1920s, "The purpose of the demonstration was to show members of the poultry short course how electricity could be used on the farm for heat, light and power." Students work with electrical equipment in the lab portion of the course (opposite middle). The color photo inset on the front cover (also opposite bottom) shows current engineering students in the lab section of a course on electric power equipment. Comments the instructor, "The electric motors my students are studying today haven't fundamentally changed over the last 60 years, although their control circuits are significantly different."

(Our thanks to Professor Michael Delwiche and the Engineering 111 Thursday lab students.)