PUBLISHED AT DAVIS, CALIFORNIA

Volume 36 June 1996 Number 2

A series of administrative publications of the University of California, Davis, California, 95616.

Five issues a year—one in March, one in June, two in July, and one in August.

Second-class postage paid at Davis, California.

POSTMASTER: Send changes of address to General Catalog, University of California Davis, CA 95616-8692.

Information herein is subject to revision.

CREDITS:

Cover design/Scott Ahrens
Design and editorial/Barbara Anderson
Editorial and production coordination/Barbara Anderson and Keitha Hunter
Catalog produced on Macintosh computers using QuarkXPress 3.3

Cover photo credits:
All photos except black-and-white on back cover by Neil Michel/Axiom;
black-and-white photo from UC Davis Public Communications files (photographer unknown).

IT IS THE RESPONSIBILITY OF THE INDIVIDUAL STUDENT TO BECOME FAMILIAR WITH THE ANNOUNCEMENTS AND REGULATIONS OF THE UNIVERSITY PRINTED IN THIS CATALOG AND THE CLASS SCHEDULE AND ROOM DIRECTORY.

The University of California, Davis, will provide assistance to the visually impaired regarding the information contained in this catalog. Questions should be directed to the office or department concerned.

Price $4.00. Cost by mail (includes price of catalog): first class $9.00, overseas: $24.00 airmail or $13.00 surface mail; pay by check or money order (payable to The Regents of the University of California); mail to Office of the Registrar, University of California, Davis, CA 95616-8692.
CONTENTS

Address Directory/4
Academic Calendar/5
Degrees Offered by UC Davis/6
Minor Programs Offered by UC Davis/8
Introduction/9
UC Davis, 10
Principles of Community, 11
The University of California, 12
Visiting the Campus, 12
Undergraduate Academic Programs, 12
College of Agricultural and
Environmental Sciences, 12
College of Engineering, 13
College of Letters and Science, 14
Academic Resources, 14

Undergraduate Admission/20
Preparing for University Work, 21
Admission as a Freshman, 21
Advanced Placement Examinations, 24
Admission as a Transfer Student, 24
Admission as an International Student, 26
Campus Selection Criteria, 27
Readmission, 28
Special Programs, 28
Admission Checklist, 29

Fees, Expenses and Financial Aid/30
Fees and Expenses, 31
Financial Aid, 33
Undergraduate Scholarships and Awards, 35

Student Life/37
Living at Davis, 38
Student Services, 38
Recreation and the Arts, 40
Associated Students (ASUCD), 43
Graduate Student Association, 44
Student Programs and Activities, 44
Judicial Affairs, 45
Alumni Association, 45

Academic Advising and Student Resources/46
Academic Advising, 47
The College of Agricultural and Environmental Sciences, 47
The College of Engineering, 47
The College of Letters and Science, 48
Division of Biological Sciences, 48
Other Academic Advising, 49
Academic Help, 50
Resolving Academic Problems, 50
Student Services, 51
Student Special Services, 53
Internships and Career Services, 54

Academic Information/55
Registration, 56
Enrolling in Courses, 56
Course Load, 57
Part-Time Student Status, 57
Academic Credit, 57
The Major, 58
The Minor, 60
Examinations, 60
Grades, 61
Honors and Prizes, 63
Withdrawals and Leaves of Absence, 65
Probation and Dismissal, 66
Summer Sessions, 67

Undergraduate Education/68
Undergraduate Programs and Degrees, 69
College of Agricultural and
Environmental Sciences, 69
Division of Biological Sciences, 70
College of Engineering, 71
College of Letters and Science, 72
Bachelor's Degree Requirements, 74
University Requirements, 74
General Education Requirement, 76
General Education Courses, 79
College Requirements for the Bachelor's Degree
College of Agricultural and
Environmental Sciences, 87
College of Engineering, 88
College of Letters and Science, 92

Graduate Studies/96
Preparing for an Advanced Degree, 97
Graduate Student Deadlines, 97
Applying for Admission, 98
Fees, 99
Program of Study, 99
Intercampus Exchange Program, 100
Fellowships, Assistantships, and Loans, 100
Graduate Certificate Program for Engineering, 100
Teacher Credential Programs, 101
Program in College Teaching, 101

School of Law/102
Preparation for the Study of Law, 103
Applying for Admission, 103
Program of Study, 104
Fees, 105
School of Law Calendar, 105

Graduate School of Management/106
Preparation for the Study of Management, 107
Applying for Admission, 107
Fees, 108
Program of Study, 108

School of Medicine/109
Preparation for the Study of Medicine, 110
Applying for Admission, 110
Fees, 111
Program of Study, 111
School of Medicine Calendar, 112

School of Veterinary Medicine/113
Preparation for the Study of Veterinary Medicine, 114
Applying for Admission, 114
Fees, 115
Program of Study, 116
School of Veterinary Medicine Calendar, 116

Programs and Courses/117
Course Designations, 118
Course Descriptions, 118
Major Programs and Courses of Instruction, 120

Appendix/426
Residence for Tuition Information, 426
University Policy on
Nondiscrimination, 427
Sexual Harassment, 428
Disclosures from Student Records, 428
Privacy Act, 428
Accreditation, 428
The Board of Regents, 429
Regents and Administrative Officers, UC, 429
Administrative Officers, Davis, 429
Proportion of UC Davis Graduates Finding Work in
Their Fields of Choice, 431
Retention Data and Graduation Rates at UCD, 431
Salary and Employment Information, 431

Index/432

Davis Campus Map/inside back cover
ADDRESS DIRECTORY

University of California
Davis, California 95616
916-752-1011 (main campus number)

Office of the Chancellor
Mrak Hall
916-752-2065

College of Agricultural and Environmental Sciences
228 Mrak Hall
916-752-0107

College of Engineering
1050 Engineering II
916-752-0553

College of Letters and Science
200 Social Sciences and Humanities Building
916-752-0392

Division of Biological Sciences
66 Briggs Hall
916-752-0410

Graduate Studies
252 Mrak Hall
916-752-0650

School of Law
1011 King Hall
916-752-0243

Graduate School of Management
106 AOB 4
916-752-7362

School of Medicine
Medical Sciences 1C
916-752-0331

School of Veterinary Medicine
112 Surge IV
916-752-1360

Office of Summer Sessions
44 Mrak Hall
916-752-1647

University Extension
1333 Research Park Drive
916-737-8777

Admissions
Undergraduate: Undergraduate Admissions and Outreach Services
173 Mrak Hall
916-752-2971

Graduate Studies Admissions
252 Mrak Hall
916-752-0655

Law:
School of Law Admissions
115 King Hall
916-752-6477

Management:
Graduate School of Management
106 AOB 4
916-752-7399

Medicine:
School of Medicine Admissions
Medical Sciences 1C
916-752-2717

Veterinary Medicine:
Admissions
125 Surge IV
916-752-1383

Office of the Registrar
124 Mrak Hall
916-752-2973
(for registration information, transcripts, the General Catalog)

Financial Aid Office
201 Voorhies Hall
916-752-2390
(undergraduate and graduate loans, grants, employment information)

Scholarship Office
207 Third Street, Suite B
916-757-3153
Mailing address:
Scholarship Office
University of California
Davis, CA 95616-8696
(undergraduate scholarships)

Fellowships and Graduate Scholarships
Graduate Studies
252 Mrak Hall
916-752-7481

Teaching and Research Assistantships
Write to department or group concerned.

Housing
Residence Halls: Student Housing Office
916-752-2033
Student Family Orchard Park/Solano Park Housing
916-752-4000

ASUCD (Associated Students UCD)
Basement, South Hall
916-752-1900

Disability Resource Center
160 South Silo
916-752-3184 (voice), 916-752-6833 (telephone device for the speech and hearing impaired)

Memorial Union Information Desk
916-752-2222

News Service
334 Mrak Hall
916-752-1930

Residency Matters, Legal Analyst
300 Lakeside Dr, 7th Floor
Oakland, CA 94612-3365

Student Health Service
54A Cowell Student Health Center
916-752-2300

Information Services Office
Buehler Alumni and Visitors Center
916-752-8111
(campus tours, maps and information)
Academic Calendar 1996-97*

<table>
<thead>
<tr>
<th>Date Range</th>
<th>FALL 1996</th>
<th>WINTER 1997</th>
<th>SPRING 1997</th>
<th>FALL 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Schedule and Room Directory available</td>
<td>May 20</td>
<td>Oct. 28, 1996</td>
<td>February 3</td>
<td>May 19</td>
</tr>
<tr>
<td>Students pick up RSVP, registration forms</td>
<td>May 20–21</td>
<td>Oct. 28–30</td>
<td>February 3–4</td>
<td>May 19–20</td>
</tr>
<tr>
<td>Faculty advisers available</td>
<td>May 23–24</td>
<td>Oct. 31–Nov. 1</td>
<td>February 6–7</td>
<td>May 22–23</td>
</tr>
<tr>
<td>RSVP Pass 1 (assigned appointments)</td>
<td>May 28–Aug. 22</td>
<td>November 4–17</td>
<td>February 10–21</td>
<td>May 27–Aug. 21</td>
</tr>
<tr>
<td>Final day to pay fees and register for classes without incurring a $50 late fee</td>
<td>September 6</td>
<td>December 13</td>
<td>March 14</td>
<td>September 12</td>
</tr>
<tr>
<td>Final day to petition for classification to resident status</td>
<td>September 6</td>
<td>December 13</td>
<td>March 14</td>
<td>September 12</td>
</tr>
</tbody>
</table>

Quarter begins

| Instruction begins | Sept. 23–25 | Jan. 2–3 | March 27–28 | Sept. 22–24 |

Instruction ends

| Quarter ends | Dec. 9–14 | Mar. 17–22 | June 7–13 | Dec. 8–13 |
| Academic and Administrative Holidays | Nov. 28–29 | Jan. 20 | May 26 | Nov. 27–28 |

Summer Sessions I and II, 1997

| Dates | June 23–August 1, 1997, and August 4–September 12, 1997 |

Filing for Graduation

Filing for Minor Program

Financial Aid Deadlines

| Filing period for grants, loans, work-study and California Student Aid awards for 1997-98 | January 1-March 2, 1997 |

* Dates are subject to change and should be checked with appropriate Class Schedule and Room Directory.
** RSVP (Register Students Via Phone) is the UC Davis telephone registration system.
† For students graduating September 1997, the filing period is May 26–July 3.
‡ For students graduating September 1997, the deadline to file a minor program with Dean's Office is July 3.
DEGREES OFFERED BY UC DAVIS

Undergraduate majors and professional studies are administered by the colleges and schools listed. All graduate programs are administered by Graduate Studies.

<table>
<thead>
<tr>
<th>Major or Discipline</th>
<th>Degree*</th>
<th>Administering School or College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>M.B.A.</td>
<td>Graduate School of Management</td>
</tr>
<tr>
<td>Aeronautical Science and Engineering</td>
<td>B.S.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>African American and African Studies</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Agricultural and Environmental Chemistry</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural and Managerial Economics</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agricultural Education</td>
<td>credential</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Agricultural Systems and Environment</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Agronomy</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>American Studies</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Animal Behavior</td>
<td>Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Animal Science</td>
<td>B.S., M.A.M., M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Animal Science and Management</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Anthropology</td>
<td>A.B. or B.S., M.A., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Applied Behavioral Sciences</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Art</td>
<td>M.F.A.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Art History</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Art Studio</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Atmospheric Science</td>
<td>A.B. or B.S., M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Avian Sciences</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology</td>
<td>A.B. or B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biological Systems Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biophysics</td>
<td>Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Cell and Developmental Biology</td>
<td>Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Chemical/Biochemical Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Chemical Engineering/Materials Science and Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Chemistry</td>
<td>A.B. or B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Chicana/Chicano (Mexican-American) Studies</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Child Development</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Chinese</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Civil Engineering/Materials Science and Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Classical Civilization</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Classics</td>
<td>M.A.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Community Development</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Comparative Literature</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Comparative Pathology</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Computer Science</td>
<td>B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Crop Science and Management</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Design</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Dietetics</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Dramatic Art</td>
<td>A.B., M.A., M.F.A., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>East Asian Studies</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Ecology</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Economics</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Education</td>
<td>M.A., M.Ed., Ph.D., Ed.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Endocrinology</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Engineering</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Engineering—Applied Science</td>
<td>M.Engr., M.S., D.Engr., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>English</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Entomology</td>
<td>B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental and Resource Sciences</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Biology and Management</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Horticulture and Urban Forestry</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Policy Analysis and Planning</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Environmental Toxicology</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Evolution and Ecology</td>
<td>A.B. or B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Exercise Science</td>
<td>A.B., B.S., M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Major</td>
<td>Degree(s)</td>
<td>College(s)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Fermentation Science</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Fiber and Polymer Science</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Food Biochemistry</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Food Engineering</td>
<td>B.S.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Food Science</td>
<td>B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>French</td>
<td>A.B. or B.S., M.A., M.A.T., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Genetics</td>
<td>B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences or Letters & Science</td>
</tr>
<tr>
<td>Geology</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>German</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Greek</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>History</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>History of Art</td>
<td>M.A.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Horticulture</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Human Development</td>
<td>B.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Hydrologic Science</td>
<td>B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Immunology</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Individual Major</td>
<td>A.B., B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>International Agricultural Development</td>
<td>B.S., M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>International Relations</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Italian</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Japanese</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Latin</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Law</td>
<td>J.D.</td>
<td>School of Law</td>
</tr>
<tr>
<td>Linguistics</td>
<td>A.B., M.A.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>B.S.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Mathematics</td>
<td>A.B. or B.S., M.A., M.A.T., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>B.S.</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Mechanical Engineering/Materials Science and Engineering</td>
<td>M.D.</td>
<td>College of Medicine</td>
</tr>
<tr>
<td>Medicine</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Medieval Studies</td>
<td>A.B. or B.S., M.S., Ph.D.</td>
<td>Colleges of Agricultural & Environmental Sciences or Letters & Science</td>
</tr>
<tr>
<td>Microbiology</td>
<td>A.B. or B.S., M.A., M.A.T., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Music</td>
<td>A.B., M.A., M.A.T., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Native American Studies</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Nature and Culture</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Nutrition</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Nutrition Science</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Pharmacology and Toxicology</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Philosophy</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Physical Education</td>
<td>M.A.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Physics</td>
<td>A.B. or B.S., M.S., Ph.D.</td>
<td>Colleges of Agricultural & Environmental Sciences or Letters & Science</td>
</tr>
<tr>
<td>Physiology</td>
<td>B.S., M.S., Ph.D.</td>
<td>Colleges of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Plant Biology</td>
<td>A.B. or B.S., M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Plant Protection and Pest Management</td>
<td>M.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Political Science</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Political Science—Public Service</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Population Biology</td>
<td>M.S., Ph.D.</td>
<td>School of Veterinary Medicine</td>
</tr>
<tr>
<td>Preventive Veterinary Medicine</td>
<td>M.P.V.M.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Psychology</td>
<td>A.B. or B.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Range and Wildlands Science</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Religious Studies</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Rhetoric and Communication</td>
<td>A.B., M.A.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Russian</td>
<td>A.B., M.A.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Sociology</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Sociology—Organizational Studies</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Soil Science</td>
<td>M.S., Ph.D.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Soil and Water Science</td>
<td>B.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Spanish</td>
<td>A.B., M.A., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Statistics</td>
<td>A.B. or B.S., M.S., Ph.D.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Textiles</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Textiles and Clothing</td>
<td>B.S.</td>
<td>College of Letters & Science</td>
</tr>
<tr>
<td>Textile Arts and Costume Design</td>
<td>M.A.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Vegetable Crops</td>
<td>M.S.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Veterinary Medicine</td>
<td>B.S.</td>
<td>School of Veterinary Medicine</td>
</tr>
<tr>
<td>Wildlife, Fish and Conservation Biology</td>
<td>A.B.</td>
<td>College of Agricultural & Environmental Sciences</td>
</tr>
<tr>
<td>Women's Studies</td>
<td>A.B.</td>
<td>College of Letters & Science</td>
</tr>
</tbody>
</table>

†Joint program between UCD and CSU, Fresno.
MINOR PROGRAMS OFFERED BY UC DAVIS

Minor programs are offered by both the College of Agricultural and Environmental Sciences (A&ES) and the College of Letters and Science (L&S). The College of Engineering does not offer any minors. The list below indicates the minor program, the offering department (if the department name is different than the name of the minor) and the college offering the minor.

African American and African Studies, L&S
Aging and Adult Development
 (Human & Community Development), A&ES
Agricultural and Managerial Economics
 (Agricultural and Resource Economics), A&ES
Agricultural Computing & Information Systems
 (Agronomy), A&ES
Agricultural Entomology (Entomology), A&ES
Agricultural Systems and Environment
 (Agronomy), A&ES
American Studies, L&S
Anthropology, L&S
Apiculture (Entomology), A&ES
Applied Biological Systems Technology
 (Biological & Agricultural Engineering), A&ES
Art History, L&S
Art Studio, L&S
Asian American Studies, L&S
Atmospheric Science
 (Land, Air and Water Resources), A&ES
Avian Sciences (Avian Sciences), A&ES
Biological Sciences, A&ES or L&S
Chicana/Chicano (Mexican-American) Studies, L&S
Chinese, L&S
Community Development
 (Human & Community Development), A&ES
Community Nutrition (Nutrition), A&ES
Comparative Literature, L&S
Computer Science, L&S
Dramatic Art, L&S
East Asian Studies, L&S
Education, L&S
Energy Policy (Environmental Studies), A&ES
English, L&S
Entomology, A&ES
Environmental Horticulture, A&ES
Environmental Policy Analysis
 (Environmental Studies), A&ES
Environmental Geology (Geology), L&S
Environmental Toxicology, A&ES
Exercise Science, L&S
Fiber and Polymer Science (Textiles and Clothing), A&ES
Film Studies (Humanities), L&S
Food Service Management (Nutrition), A&ES
French, L&S
Geographic Information Systems
 (Biological & Agricultural Engineering), A&ES
Geology, L&S
Geophysics (Geology), L&S
German, L&S
Greek (Classics), L&S
History, L&S
History and Philosophy of Science, L&S
Human Development
 (Human & Community Development), A&ES
Hydrologic Science
 (Land, Air and Water Resources), A&ES
Insect Ecology (Entomology), A&ES
International Agricultural Development
 (Human & Community Development), A&ES
Italian, L&S
Japanese (Chinese and Japanese), L&S
Latin (Classics), L&S
Linguistics, L&S
Mathematics, L&S
Medical-Veterinary Entomology (Entomology), A&ES
Medieval Studies, L&S
Music, L&S
Native American Studies, L&S
Nature and Culture, L&S
Nematology, A&ES
Nutrition and Food (Nutrition), A&ES
Nutrition Science (Nutrition), A&ES
Philosophy, L&S
Physics, L&S
Plant Biology, A&ES or L&S
Political Science, L&S
Psychology, L&S
Recreation (Environmental Studies), A&ES
Religious Studies, L&S
Rhetoric and Communication, L&S
Russian, L&S
Science and Society, A&ES
Social and Ethnic Relations (African American Studies, Asian American Studies, Native American Studies, Women's Studies), L&S
Sociology, L&S
Soil Science (Land, Air and Water Resources), A&ES
Spanish, L&S
Statistics, L&S
Textiles and Clothing, A&ES
War–Peace Studies (International Relations), L&S
Women's Studies, L&S
UC DAVIS

Unique within the University of California system, UC Davis offers a full range of undergraduate and graduate programs, as well as professional schools of law, management, medicine and veterinary medicine. With 5,200 acres, UC Davis is the largest of the nine University of California campuses, and third in budget, total expenditures and enrollment. UC Davis stands 22nd in research funding among universities in the United States, according to the most recent information from the National Science Foundation. In 1996, *U.S. News & World Report* ranked UC Davis among the top 10 public universities nationally, just four years after the magazine identified the campus as one of the five “up and coming” national universities.

The university’s reputation for excellence has attracted a distinguished faculty of scholars and scientists in all fields of scholarship. UC Davis faculty rank 16th in quality among comprehensive public universities nationwide, according to a multi-year study of U.S. doctoral programs reported in 1995 by the National Research Council. Creative teaching and academic innovation are encouraged by several programs, including the $30,000 Prize for Teaching and Scholarly Achievement, believed to be the largest award of its kind in the country.

The Davis campus has undergraduate colleges of Agricultural and Environmental Sciences, Engineering and Letters and Science. Undergraduate enrollment is more than 18,000 students. Graduate Studies administers graduate study and research at all schools and colleges. Professional studies are carried out at the schools of Law, Management, Medicine and Veterinary Medicine; nearly 5,100 students are engaged in graduate or professional study. The campus supports numerous laboratories, extension centers and special off-site facilities, such as the UC Davis Medical Center (Sacramento), Veterinary Medicine Teaching and Research Center (Tulare), Bodega Marine Laboratory (Bodega Bay), College of Engineering’s Applied Science Department (Livermore), and the UC Davis Washington Center.

A Small-Town Setting

Davis is surrounded by open space—including some of the most valuable agricultural land in the state. Outdoor sports enthusiasts will find many beautiful recreational areas within a 70-mile drive from campus: Folsom Lake, Clear Lake, Lake Berryessa, the Napa and Sonoma valleys and the historic Mother Lode country. The Sierra Nevada, Lake Tahoe ski resorts and coastal areas of Mendocino and Monterey are about 150 miles from Davis.

If you prefer city life, Sacramento, the state capital, is 15 miles to the east, and San Francisco is just 72 miles to the southwest. Both cities offer the symphony, the ballet, sporting events, theater, shopping and other entertainment.

For long-distance travel, Davis has a Greyhound bus terminal and an Amtrak station. If you travel by plane, the Sacramento Metropolitan Airport is an easy 20-minute drive from downtown Davis. Within Davis, bicycles are a favorite mode of transportation. The terrain is flat and 50 miles of bike paths crisscross the city. With more bicycles per capita than any other city in the nation, Davis has earned the title “City of Bicycles.”

Winters in Davis are generally mild. It rarely snows, but you should get good use from your rainwear. Summers are sunny, hot and dry. Although on some days the thermometer can exceed 100 degrees, summer days are usually in the low 90s, with overnight temperatures in the 60s. Spring and fall weather is among the most pleasant in the state.

The City of Davis

Ecologically aware and socially innovative, Davis has a small-town friendliness and spirit of volunteerism that distinguishes it from cities of similar size. Residents are active in local, national and international political causes, in the arts, and in community organizations ranging from Little League to the Rotary Club.

Students compose a large portion of the city’s population of 53,000, making Davis one of the state’s few remaining “college towns.” You’ll find an abundance of bookshops, coffee houses and restaurants catering to students in the bustling downtown area adjacent to campus.

Though closely linked to the university, the city maintains a strong identity of its own. The Davis Art Center, Comic Opera Company, Musical Theatre Company and several local galleries provide creative outlets for people in the community and supplement the cultural events presented by the university.

The city has long recognized the importance of open space in maintaining its small-town atmosphere and has created 31 city parks offering a variety of attractions: tennis courts, playgrounds, swimming pools, playing fields and even a skateboard facility.

Campus Life

Like the city of Davis, the campus has a relaxed, country atmosphere, with plenty of open space, trees and lawns. Even as the student population grows, the campus manages to maintain its informal, friendly ambience.

Underlying the casual style of Davis students, however, is a fundamental seriousness and a dedication to academic excellence. Davis students do study hard. After your studying is done, however, you can relax at a movie, public lecture, dance recital or concert. For the energetic, intercollegiate sports, club sports and one of the largest intramural programs in the country offer athletics for fun or competition.

Davis welcomes the exchange of opinions and ideas and is committed to advancing the diversity of its students, faculty, staff and administrators. UC Davis’ commitment to a learning environment characterized by mutual respect and understanding is reflected in the “Principles of Community” (see the opposite page).

The University Farm

UC Davis was founded in 1905 as the University Farm, where students from the first UC campus in Berkeley learned the latest in agricultural methods and technology. This beginning gained Davis students their nickname, “Cal Aggies.” As the state’s population grew, so did demand for higher education, and in 1922, in conjunction with the UC Berkeley College of Agriculture, the degree of Bachelor of Science in Agriculture was awarded to stu-
The University of California, Davis, is first and foremost an institution of learning and teaching, committed to serving the needs of society. Our campus community reflects and is a part of a society comprising all races, creeds, and social circumstances. The successful conduct of the University’s affairs requires that every member of the University community acknowledge and practice the following basic principles:

We affirm the dignity inherent in all of us, and we strive to maintain a climate of justice marked by respect for each other. We acknowledge that our society carries within it historical and deep-rooted misunderstandings and biases, and therefore we will endeavor to foster mutual understanding among the many parts of our whole.

We affirm the right of freedom of expression within our community and also affirm our commitment to the highest standards of civility and decency towards all. We recognize the right of every individual to think and speak as dictated by personal belief, to express any idea, and to disagree with or counter another’s point of view, limited only by University regulations governing time, place, and manner. We promote open expression of our individuality and our diversity within the bounds of courtesy, sensitivity, and respect.

We confront and reject all manifestations of discrimination, including those based on race, ethnicity, gender, age, disability, sexual orientation, religious or political beliefs, status within or outside the University, or any of the other differences among people which have been excuses for misunderstanding, dissension, or hatred. We recognize and cherish the richness contributed to our lives by our diversity. We take pride in our various achievements, and we celebrate our differences.

We recognize that each of us has an obligation to the community of which we have chosen to be a part. We will strive to build a true community of spirit and purpose based on mutual respect and caring.

The “Principles of Community” were prepared and adopted after extensive discussion within the campus community about the need for a statement that reflects UC Davis’ commitment to a learning environment characterized by diversity, understanding, and the acceptance of all people. This statement of common principles was published on April 20, 1990, carrying the endorsement of Chancellor Theodore L. Hullar and the leadership of the Davis Division of the Academic Senate, the Academic Staff Organization, the UCD Staff Assembly, the UCDMC Staff Assembly, the Associated Students of UC Davis (ASUCD), and the Graduate Student Association.
...dents completing the Davis program. A few years later, the Davis campus had its own College of Agriculture. In 1948, California’s only School of Veterinary Medicine was established at Davis. The College of Letters and Science was founded in 1951, bringing degree programs in the humanities to add to the campus’ strong scientific foundation. By 1959, Davis had expanded enough to be declared a general campus of the university by the regents, and the campus continued to grow. The College of Engineering came into being in 1962. The School of Law held its first classes in the fall of 1966, and the School of Medicine admitted its first students in the fall of 1968. Davis’ newest addition, the Graduate School of Management, opened its doors in 1981.

From its beginning as a 778-acre teaching farm, UC Davis has grown and diversified, establishing an international reputation for teaching and research.

THE UNIVERSITY OF CALIFORNIA

The University of California began in 1868, when Governor Henry H. Haight signed the Organic Act, thus providing for California’s first “complete University.” Classes began the following year at the College of California in Oakland. The first buildings on the Berkeley campus were completed in 1873, and the university moved into its new home. The following June, the University of California conferred bachelor’s degrees on 12 graduates.

Today the university is one of the largest and most renowned centers of higher education in the world. Its nine campuses span the state, from Davis in the north to San Diego in the south. In between are the Berkeley, San Francisco, Santa Cruz, Santa Barbara, Riverside, Irvine and Los Angeles campuses.

All UC campuses adhere to the same admission guidelines and high academic standards, yet each has its own distinct character, atmosphere and academic individuality. Together, the nine campuses have an enrollment of more than 163,000 students, 90 percent of them California residents.

Some 150 laboratories, extension centers, and research and field stations strengthen teaching and research while providing public service to California and the nation. The collections of the more than 100 UC campus libraries are surpassed in size in the United States only by the Library of Congress collection.

The faculty of the University of California is internationally respected for its distinguished scholarly and scientific achievements. The faculty on its nine campuses currently includes 18 Nobel laureates, and membership in the National Academy of Sciences is the largest of any university in the country. More UC academic programs are consistently rated among the top 10 nationally than those of any other public or private university.

UNDERGRADUATE ACADEMIC PROGRAMS

The College of Agricultural and Environmental Sciences

The College of Agricultural and Environmental Sciences offers a unique combination of diverse programs that has grown from a shared commitment to improve the quality of life in all of its facets. The college is committed to creative education that emphasizes a spirit of discovery, based on the premise that tomorrow’s citizens will need to anticipate, understand and solve emerging societal problems and contribute to the discovery and application of new knowledge. Hence, education in the college aims to foster:

• critical thinking and an appreciation for diversity in thought and in approaches to problem solving
• an ethos of lifelong learning—of teaching oneself and others while confronting challenges and solving problems
• an ability to move beyond either/or thinking and to pursue innovative and integrative understandings of the biological, social and physical sciences
• intellectual skills that will prepare individuals to secure a healthful physical and cultural environment based on a sound, respectful management of all resources
• a commitment to serving the public with an informed and open-minded dedication to understanding, critiquing and addressing complex societal needs and interests

The college is proud of its rich agricultural history and is world-renowned today for its accomplishments. Yet its sense of shared commitment has led it to expand the scope of its educational offerings to encompass a wider range of programs that highlight interconnections among....
the environment, plant and animal biology, and human health and well-being. Through a wide array of major programs, the college prepares high potential students for advanced studies in diverse disciplines and leadership in such arenas as public policy; research and development; managerial and natural resource economics; agricultural systems; environmental protection, safety and design; human nutrition, health and development; and the food, fiber, textile and apparel industries.

Students are brought into early contact with faculty advisers, graduate students and post-graduate researchers. A symbiotic relationship is developed in which undergraduate students bring new perspectives and join in the excitement of discovery. This enriches and broadens the educational experience of all.

Available to students are several levels of academic advising designed to enhance the student's undergraduate experience. Advisers assist students in course planning, meeting degree requirements and in taking maximum advantage of the resources available at the university. Students are encouraged to meet regularly with their assigned faculty adviser and with the Advising Associates and peer advisers housed in departmental offices. Through a shared commitment to education for service to society, college faculty, staff and students work together to improve the relationship between humanity and the natural world.

Information: College Office, 228 Mrak Hall, 916-752-0108

The College of Engineering

The College of Engineering has a tradition of excellence in instruction, in research and in public service. To its undergraduate enrollment of approximately 2,500 and graduate enrollment of 700, the college offers both a friendly atmosphere and the varied academic programs in basic sciences and engineering that have made UC Davis engineering graduates highly valued in private practice and research. The college has seven departments; each has outstanding programs of instruction.

- The Department of Applied Science instructs engineering graduate students in broad areas of scientific technology.
- The Department of Biological and Agricultural Engineering combines study in engineering with instruction in the biological processes used to solve challenging environmental and technical problems.
- The Department of Chemical Engineering and Materials Science offers curricula integrating an effective knowledge of chemistry, biological sciences, or materials science engineering to enable students to solve problems in both current and future manufacturing technologies or to analyze the structure, properties and behaviors of materials.
- The Department of Civil and Environmental Engineering educates students to plan and design systems that have a direct impact on health and human productivity and on the quality of human life.
- The Department of Computer Science offers programs of study that educate students in all aspects of design and use of computer hardware and software systems. The department also plays a significant service role for programs throughout the campus.
- The Department of Electrical and Computer Engineering offers programs in research and education crucial for the continued success of high technology industries in California and the nation, preparing students to design, analyze and use electronic and computer systems effectively.
- The Department of Mechanical and Aeronautical Engineering educates students to design and manufacture complex engineering systems for transport, industry or energy and to design, manufacture and operate aircraft and aeronautical structures.

Every effort has been made to provide students in engineering with the maximum flexibility consistent with rigorous professional education standards. The key to flexibility is academic advising. Incoming students are assigned to a faculty adviser during their first term on campus. Faculty advising is supplemented by a well-developed peer advising system and by staff advising in the dean's office and in departments.

Undergraduate education in engineering at Davis is intended to serve as a sound basis for beginning professional practice in engineering design and development, as a preparation for careers in corporate or governmental operations, or as a foundation for graduate study. To these ends, the college emphasizes fundamental sciences
to give the student the maximum postgraduate flexibility. Technological developments in recent years have made it clear that engineering education must be based on fundamentals or rapidly become obsolete.

Engineers will continue to face new challenges as society continues its demand for improvements in the quality of life, and as our state and nation demand greater participation by engineers in efforts toward competitiveness in a global market. As a unit in a land-grant institution, the UC Davis College of Engineering must help maintain the technological leadership long enjoyed by the United States, while advancing technology for the benefit of all.

Information: Dean's Office, 1050 Engineering II, 916-752-0557

The College of Letters and Science

The College of Letters and Science is the largest of the three undergraduate colleges at UC Davis. Through its nearly 500 faculty members, the college offers more than 50 major programs of study and thousands of courses per year across a broad range of subject matter areas. The faculty of the college reside in academic departments and programs organized into three Divisions—Humanities, Arts and Cultural Studies, Mathematical and Physical Sciences, and Social Sciences—as well as in the affiliated intercollege Division of Biological Sciences. The college confers Bachelor of Arts (A.B.), Bachelor of Science (B.S.) and Bachelor of Arts and Science (B.A.S.) degrees.

The College of Letters and Science is a community of scholars and students sharing a commitment to liberal education rather than to specialized, vocationally oriented training. The college seeks to expose students to the worlds of human experience, ideas, and artistic achievements and of matter and things. Although separate and distinct to the casual observer, these realms are interconnected and may be studied in a coherent curriculum. It is within this curriculum that students are able to explore a variety of academic fields, engage in the pursuit of fundamental knowledge, and gain the capacity for independent study and thought. By learning to think carefully and critically, students will be able to continue the ongoing process of education that begins in the classroom but continues over a lifetime. They will have learned how to learn—the ultimate objective of a liberal arts education.

The educational goals of the college are reflected in the three primary groups of requirements established by the faculty: the English Composition Requirement, the Foreign Language and Area Requirements and the Major Requirements.

The English Composition Requirement is designed to ensure that students are well versed in the skills of written communication.

The Foreign Language and Area Requirements provide students with a broad background of knowledge, guide them in an exploration of the interdependencies of knowledge, and acquaint them with other cultures.

The Major Requirements are designed to provide students intellectual depth and competence in a selected area of study.

The College of Letters and Science recognizes and affirms the importance of perceptive and knowledgeable academic advising. The college has a well-developed system of faculty advisers, student peer advisers and professional staff advisers who are available for individual consultations with undergraduates in a variety of settings ranging from the dean’s office to departmental offices to campus residence halls.

Woven throughout the tapestry of diversity that is the College of Letters and Science is a fundamental and unswerving commitment to excellence. The faculty of the college are dedicated to advancing the frontiers of human knowledge through research, artistic expression and other creative endeavors, and to the effective communication and application of that knowledge through teaching and public service. Together, faculty and students in the College of Letters and Science pursue these goals and ideals with enthusiasm and excitement.

Information: Dean’s Office, 200 Social Sciences and Humanities Building, 916-752-0392
World Wide Web: http://www-lsdo.ucdavis.edu/

ACADEMIC RESOURCES

Central Support

The University Library

The General Library at UC Davis is composed of the Peter J. Shields Library, the Physical Sciences Library, the Loren D. Carlson Health Sciences Library, the Agricultural Economics Library and the library at the UC Davis Medical Center in Sacramento. The Law Library is located at the King Hall Law School.

The libraries contain over 2.7 million volumes and receive about 47,000 periodical and journal titles annually. UC Davis collections are accessible via the MELVYL on-line catalog. The libraries also offer access to databases and numerous other electronic resources onsite as well as via UCD Network. Shields Library houses the collections in the humanities, arts, social sciences, biological sciences, agricultural sciences, mathematics and computer science. Also located in Shields Library is the Center for Advanced Information Technology (CAIT). The collections of the Physical Sciences Library support teaching and research in engineering, chemistry, geology and physics. The Carlson Health Sciences Library serves the Schools of Medicine and Veterinary Medicine with a collection of approximately 250,000 volumes. The library at the UC Davis Medical Center provides a clinical collection of 27,000 volumes.

Information: 916-752-6561

Davis Arboretum

The 150-acre Davis Arboretum, located along Putah Creek’s historic north fork, maintains a large documented collection of trees, shrubs and perennials for use in teaching and research. Outstanding plant collections include the Shields Oak Grove, the Mary Wattis Brown Garden of California native plants, the Ruth Storer Garden of drought-tolerant flowering perennials and the T. Elliot Weier Redwood Grove. The Arboretum program of seed exchange is international in reputation, serves to distribute California native plants throughout the world, and has provided the university with numerous exotic plant specimens. Internships are available in nursery management, landscape design and maintenance, envi-
Information Technology

The Division of Information Technology (I.T.) provides computing, communications and media services in support of research and instruction. A central campus access point— I.T. Express— offers information and consulting on all aspects of information technology use at UC Davis. I.T. also provides academic access to microcomputing, workstation computing and supercomputing (at various sites nationally). Students have access to media production equipment and to taped lectures and slide/tape programs at media resource centers. Microcomputer labs, both PC and Macintosh, have Internet access and are available for student use. Student Easy Access (EZ) computer accounts allow students to exchange e-mail, transfer files and use other network services, including the World Wide Web. Computer account holders also have access to central computing systems available for academic use. Campus computer accounts are available to all registered students. Students can activate their accounts at I.T. Express, located with the copy center on the first floor of Shields Library.

Information: 916-752-2548; e-mail: ithelp@ucdavis.edu

Agricultural and Environmental Sciences

Agricultural History Center

The center coordinates and administers several research and publication programs that further the study of agricultural and natural-resource history. Research activities include studies of comparative farm policy, migration and agricultural development, the history of farm land values, the agricultural-environmental border, the causes and consequences of agricultural mechanization and other sources of productivity improvements in the nineteenth and twentieth centuries, and the impact of scientific research.

Information: 5202 Social Sciences and Humanities Building, 916-752-1827

California Agricultural Experiment Station

The California Agricultural Experiment Station has branches in Davis, Riverside and Berkeley. The Davis branch includes 500 faculty in over 30 departments in the College of Agricultural and Environmental Sciences, the Division of Biological Sciences and the School of Veterinary Medicine. In addition to laboratory facilities, it has approximately 3,000 acres devoted to agricultural research in the areas of experimental crops, orchards and animal facilities. The Experiment Station facilitates research in agricultural production, food processing, nutrition, animal care and disease prevention, consumer sciences and community development and environmental quality, with emphasis on resource conservation and management, water and soil pollution and regional planning.

Information: College of Agricultural and Environmental Sciences, 916-752-1610

Institute of Toxicology and Environmental Health (ITEH)

ITEH coordinates interdisciplinary research on biomedical and toxicological problems related to exposure to chemical, physical and biological toxic agents or to ionizing radiation. This research aims to determine basic mechanisms of toxic effects and to predict hazards to human and animal health from continual exposure to realistic levels of toxic substances in the environment or at the workplace. Studies on toxic, radioactive, mutagenic, carcinogenic and teratogenic compounds are carried out in special animal holding facilities. Laboratories are equipped for studies in analytical chemistry, bio-chemical toxicology, cell and molecular biology, endocrinology, inhalation toxicology, morphology and reproductive and developmental biology. The institute houses federally funded centers in toxicology and occupational health.

Information: Institute of Toxicology and Environmental Health, 916-752-1340

J.M. Tucker Herbarium

The J.M. Tucker Herbarium is a resource for research in plant systematics and ecology and for handling public service requests. The herbarium contains more than 120,000 vascular plant specimens. It also houses 30,000 specimens of the Beecher Crampton Herbarium Collection of grasses and other range plants. Various plant science departments on campus house smaller teaching herbaria.

Information: Section of Plant Biology, 916-752-1091/0617

John Muir Institute of the Environment (JMIE)

The John Muir Institute of the Environment facilitates research and exchange of information to improve the scientific basis for decisions on environmental issues. The institute encourages and facilitates multidisciplinary research focused on environmental topics, acts as administrative coordinator for specific programs of organized environmental research, and facilitates communication between policy makers, resource agencies, academic scientists and the public through outreach programs.

Information: Robert G. Flocchini, 916-752-1460
Mann Laboratory

Plant scientists in the Mann Laboratory study the physiology, biochemistry and molecular biology of harvested horticultural crops. They train students and disseminate information about postharvest biology and technology to growers, shippers, marketers and consumers. The facility is part of the Department of Vegetable Crops, houses six faculty and is equipped with 16 controlled-temperature rooms, seven research laboratories, a teaching laboratory and a conference room.

Information: 104 Mann Laboratory, 916-752-1410; fax: 916-752-4554

Natural Reserve System

The Davis campus administers seven natural reserves that are available for teaching and research.

- Bodega Marine Reserve, located at Bodega Bay, 100 miles west of campus, consists of coastal dune vegetation and bay and coastal tidal areas with facilities for overnight and longer stays. (See Bodega Marine Laboratory below.)
- Eagle Lake Field Station is on the shore of Eagle Lake in northeastern California and has boats, a small laboratory and facilities for overnight and longer stays.
- Jepson Prairie Reserve, located in Solano County fifteen miles south of the campus, consists of native California bunchgrass grasslands and vernal pools.
- Donald and Sylvia McLaughlin Reserve, located near Clear Lake about 70 miles northwest of campus, consists of intercoastal range habitat and serpentine soil habitat.
- Putah Creek Campus Reserve is a 150-acre corridor along the north bank of Putah Creek with a remnant of the riparian (streamside) ecosystem.
- Quail Ridge Reserve consists of intercoastal range habitat located about 25 miles west of campus on a peninsula jutting into Lake Berryessa. The reserve has a small facility plus camping for overnight stays.
- Stebbins Cold Canyon Reserve, located about 24 miles west of campus, consists of several different plant communities found in California's inner and outer coast ranges.

The university maintains over 30 reserves throughout the state, many of which are available for teaching and research. Additional information is also available on the Natural Reserve System home page.

Natural Reserve System: http://www.ucop.edu/DANR/nrs/nrs.html

Sustainable Agriculture Program: Student Experimental Farm

The Student Experimental Farm is an innovative teaching and research facility located on 25 acres of university land, and is the main focus of the Sustainable Agriculture Program. Since its inception, the Student Experimental Farm has provided students with unique opportunities to explore alternative agricultural technologies and philosophies through classes, special projects, internships, work study jobs and original research. Because the farm includes several acres of land that have been managed organically for two decades, it provides researchers with a facility for conducting field research into sustainable agriculture.

Information: Student Experimental Farm, 916-752-7645

UC Agricultural Issues Center

The UC Agricultural Issues Center, headquartered at Davis, is a universitywide research and outreach unit that draws on expertise from many disciplines. The center is particularly interested in issues such as the impacts of demographic change on agriculture, natural resources and rural life in California; the social, economic and environmental effects of agricultural technologies; food consumption and international trade; and local and national policies that affect Western agriculture or its workers.

Information: 132 Social Sciences and Humanities Building, 916-752-2320

Water Resources Center

The center supports aquatic-related research in such areas as agricultural and biological sciences, economics, engineering, history, geography, law, meteorology, physical sciences and political science. Research interests include drought responses, aquatic ecosystem structure and function, water resource systems engineering, economic evaluation of water development and conservation, political strategy in water resources development, environmental and energy relationships in water resources management, watershed hydrology, ground water use, soil and land use management in relation to water resources use, and maintenance and improvement of water quality.

Information: 1323 Academic Surge, 916-752-8070

Wildland Resources Center

The center coordinates activities among the university’s research and extension programs and stimulates research into conservation, management and utilization of wildland resources with a view toward the optimum present and future uses of wildlands. Projects focus on such topics as habitat conservation, assessment and management of timber resources and old-growth forests, and development of a system for evaluating California’s environmental resources. The center increases awareness of and advances the university’s research and extension programs related to wildlands. The center serves as liaison between the university and state and federal agencies and other organizations concerned with wildland resources and problems.

Information: 1323 Academic Surge, 916-752-8070

Biological and Life Sciences

Adult Fitness Program

The Adult Fitness Program serves as an educational laboratory for undergraduate and graduate students engaged in advanced study of the role of exercise and nutrition in the management of optimal physiological function. Basic and clinical research studies focus on the areas of cardiovascular, respiratory and metabolic functions. The program emphasizes risk reduction for cardiovascular disease and development of cardiorespiratory endurance. Studies stress fitness, relaxation, and weight reduction and control through appropriate diet and exercise programs that are individually prescribed after extensive medical and physiological testing.

Information: Department of Exercise Science, 916-752-2540
Bodega Marine Laboratory and Reserve
The Bodega Marine Laboratory is an organized research unit dedicated to research and teaching in marine biology and related fields. Research areas include population biology/ecology, cell and developmental biology, and aquaculture and fisheries. Well-equipped facilities contain running seawater to two classrooms and most laboratories, a marine science library, lecture hall, housing facilities, greenhouses, aviary, experimental freshwater system for anadromous fish studies, and a dive locker and air station. Faculty teach a number of undergraduate courses during the academic year and summer session. The laboratory is located in Bodega Bay, Sonoma County, 100 miles west of Davis.

The Bodega Marine Reserve, part of the UC Natural Reserve System, is 362 acres of remarkably diverse habitats, including an excellent rocky intertidal zone, sand beaches, saltmarsh, lagoon tidal flats, freshwater marsh, coastal prairie and dunes. The reserve also administers adjacent subtidal sand and rock habitats in a marine life refuge. Areas of research include a broad spectrum of field studies of plants and animals in coastal marine, intertidal and terrestrial ecosystems.

Information: Bodega Marine Laboratory, P.O. Box 247 Bodega Bay, CA 94923, 707-875-2211 fax: 707-875-2089; e-mail: ucdbml@ucdavis.edu

California Regional Primate Research Center (CRPRC)
The research staff of the California Regional Primate Research Center investigates selected human health problems for which the nonhuman primate is the animal model of choice. Research programs include behavioral and neurobiology, developmental and reproductive biology, respiratory diseases, virology and immunology, genetics, and a variety of biomedical collaborative research projects. Self-sustaining breeding colonies of macaques, squirrel and titi monkeys are available for study of spontaneously occurring disorders.

Information: Primate Center, 916-752-0447

Food Intake Laboratory
The Food Intake Laboratory supports predoctoral and postdoctoral research in nutrition and behavior, emphasizing studies on the control of food intake and the nature of the factors that govern feeding choices. The laboratory promotes collaborative research involving the roles of metabolic, psychological, neurochemical, hormonal, gender, genetic and sensory inputs in the feeding behavior of experimental animals.

Information: TB 33, 916-752-7516

Health Sciences Research Laboratories
The Health Sciences Research Laboratories are biological science facilities with research staff and assistance for faculty, staff and students. These include:

• Animal Surgery Laboratory—provides facilities in compliance with NIH/AAALAC standards for researchers who perform both survival and non-survival experimental animal surgeries.

Information: Buildings H and J—ARS, 916-752-7756

• Biochemistry and Special Instrumentation Laboratory—a central facility providing investigators access to certain common but expensive laboratory equipment. Equipment includes ultracentrifuges and high speed centrifuges with rotors, scintillation and gamma counters, UV/VIS spectrophotometers, densitometers, Betaplate and Elisa readers.

Information: TB 161, 916-752-3286

Human Performance Laboratory
The Human Performance Laboratory houses equipment for the study of blood and muscle chemistry and enzymology, metabolism and energetics, muscle mechanics and electromyography, movement kinetics and kinematics, body composition and anthropometry, cardiorespiratory function during exercise in a controlled environment, control and acquisition of motor skills and the psychosocial aspects of human performance. The laboratory has Apple Macintosh and IBM microcomputers.
that can be used for data collection, reduction, graphing and statistical analysis as well as for biomechanical, physiological systems and human performance modeling.

Information: 164 Hickey Gym, 916-752-0965/ 916-754-8675

Protein Structure Laboratory

The Protein Structure Laboratory provides instrumentation for protein sequencing, amino acid analysis, and protein and DNA synthesis. Also available are a microbore HPLC for high sensitivity peptide mapping and a preparative HPLC for large scale purification.

Information: 1145 Surge 1, 916-752-6228

Veterinary Genetics Laboratory

The laboratory is recognized for its pioneering research on animal blood groups and biochemical polymorphisms. Current research activities include gene mapping and discovery and screening of DNA markers and biochemical polymorphisms. Knowledge acquired is applied to detecting disease relationships, parentage and solving questionable parentage cases arising from the breeding of horses, cattle, sheep, goats, llamas, alpacas and dogs. The laboratory continues to utilize red cell, serum and karyotyping for diagnosis of clinical diseases.

Information:
Horse Bloodtyping Laboratory, Armstrong Tract, 916-752-2211;
Cattle Bloodtyping Laboratory, Armstrong Tract, 916-752-7383

Veterinary Medicine Teaching and Research Center (VMTRC)

VMTRC is a clinical teaching and research center within the UC Davis School of Veterinary Medicine. The center offers a forum for teaching, research and service programs for D.V.M. students, M.P.V.M. students, graduate students, residents, university faculty and visiting researchers interested in food animal medicine. VMTRC programs emphasize herd health medicine, epidemiology and preventive medicine, production management, agricultural economics, environmental protection, food safety and animal welfare.

Information: UC Davis VMTRC, 18830 Road 112, Tulare, CA 93274, 209-688-1731

Engineering and Physical Sciences

Center for Geotechnical Modeling

At the Center for Geotechnical Modeling, students and faculty from several departments and other universities conduct research in physical and numerical modeling of geotechnical problems. The center operates two centrifuges, including the 9-m radius, 4,500-kg payload National Geotechnical Centrifuge. These centrifuges are used to study a variety of topics, including the effect of earthquakes on earth structures, toxic waste transport in groundwater, and deformations of foundations of bridges and large buildings.

Information: 119 Everson Hall, 916-752-6986

Crocker Nuclear Laboratory

This facility is an interdepartmental laboratory for the application of nuclear science to a variety of disciplines. The laboratory has research programs in nuclear physics and chemistry, air pollution analysis, use of pulsed ultraviolet light as an alternative to pesticides and insecticides, biology, material damage studies, the effect of background radiation on computers, and historical studies. Isotopes produced by the variable-energy 76-inch cyclotron are used in clinical and research applications, including pioneering work in brain imaging.

Information: Crocker Nuclear Laboratory, 916-752-1460

Facility for Advanced Instrumentation

The Facility for Advanced Instrumentation is a training and research center where students, faculty and staff have access to major scientific instruments. An electron microscope laboratory houses scanning and transmission electron microscopes with x-ray microanalytical capabilities and an atomic force microscope adjacent to a specimen preparation laboratory. Morphometric analysis is supported by a computerized digitizing tablet and digitizing video image analysis computer. A mass spectrometer laboratory consists of a research-grade GC/MS, a high resolution instrument; and an HPLC/MS equipped with electrospray ionization for analysis of proteins and peptides. The facility also coordinates access to additional instruments located in other departments around the campus.

Information: 9 Hutchison Hall, 916-752-0284

Institute of Theoretical Dynamics

The institute is an organized research unit promoting research and graduate education in the mathematical sciences. The institute provides a focus for extramural and intramural research pursuits; the two most important research themes are dynamics and stochastic processes. Approximately 30 faculty from all of the colleges participate in the activities of the institute, which include conferences, workshops, seminars and summer schools. The institute provides networking of computer workstations, a gateway to supercomputers, research offices, and facilities for interaction with students, faculty and visitors. The institute supports research in mathematical biology, mathematical physics and applied mathematical analysis, especially fluid dynamics. The institute houses the NSF
Computer Graphics Facility for computational biology, which is open to faculty, graduate students and postdoctoral researchers for graphic visualization in biology.

Information: 2201 Academic Surge Building, 916-752-0938, e-mail: info@itd.ucdavis.edu
World Wide Web: http://itd.ucdavis.edu/

Intercampus Institute for Research at Particle Accelerators

This institute conducts research that uses the unique facilities at national and international accelerator laboratories, particularly the Stanford Linear Accelerator Center, the Enrico Fermi National Accelerator Laboratory, the Japanese accelerator laboratory (KEK) and the German laboratory (DESY) in Hamburg. High-energy particle physics is the dominant area of research. The Institute also promotes seminars and lectures by visiting researchers at individual campuses.

Information: Professor Richard L. Lander, associate director, 325 Physics/Geology Building, 916-752-1780

Nuclear Magnetic Resonance Facility

The Nuclear Magnetic Resonance Facility provides qualified researchers in the biological, medical and physical sciences access to state-of-the-art NMR instrumentation for spectroscopy and imaging. At present, the facility operates six spectrometers of varying purposes and capabilities. Three horizontal magnet bore spectrometers are used for in vivo spectroscopy and imaging of small animals and materials, and in vitro spectroscopy of perfused organs. Two vertical bore spectrometers are used primarily for solution studies of biomolecules, with an additional vertical bore instrument for in vitro studies. All of the spectrometers are multinuclear, and a large variety of high resolution, surface and imaging coils are available for use. The facility also has SUN and Silicon Graphics workstations for off-line data processing and molecular modeling.

Information: Medical Sciences 1D, 916-752-7677

X-Ray Crystallographic Facility

The X-Ray Crystallographic Facility is located in the Department of Chemistry. There are three automated four-circle diffractometers. One of these is equipped with a Siemens 15-kW rotating anode X-ray source. There are also traditional Weissenberg and precession cameras. All diffraction equipment is fitted with low-temperature (liquid N2) attachments. In addition, the facility contains a Silicon Graphics Indigo 2, two VAX-station 3000 series computers, microcomputers, graphics terminals and multi-pen plotters. The laboratory is known for pioneering work in low-temperature crystallography, for the development of rapid structure determination methods, and techniques for handling reactive materials.

Information: Marilyn Olmstead, Department of Chemistry, 916-752-6668

Humanities and Social Sciences

The Center for Child and Family Studies

The Center for Child and Family Studies is a research, teaching and demonstration laboratory of the Division of Human Development and Family Studies in the Department of Human and Community Development. At the laboratory, students enrolled in human development courses develop observational techniques and participate with peers, children, parents and professionals in a fully integrated laboratory of developmental programs for young children. Students study theories of development in a naturalistic setting. Students link theory to principles of interaction and develop a recognition and respect for individual differences. Selected undergraduate students participate in faculty and graduate student research at the laboratory.

Information: West House of Child and Family Study Center, 916-752-2888

Humanities Institute

The Humanities Institute organizes interdisciplinary research seminars open to graduate students and faculty, and promotes creative exchanges between the humanities, social sciences and environmental sciences. Its fellowship program enables campus fellows and distinguished visitors to participate in year-long seminars on designated themes. The seminar theme in 1996-97 will be *Cultures of Knowledge*. The institute also sponsors distinguished visiting lecturers, supports interdisciplinary research clusters and a graduate student research assistance program, co-sponsors lectures with other departments, organizes a Friday noon series of talks and films entitled “Problems and Paradigms,” produces a calendar of events, and publishes a newsletter, *Humanities at Davis*.

Information: 2223 Social Sciences and Humanities Building, 916-752-2295, fax: 916-752-4263

Institute of Governmental Affairs

The Institute of Governmental Affairs (IGA) serves as a center for advanced social science research. IGA offers research opportunities for faculty, undergraduate and graduate students, as well as for visiting scholars from around the world. The institute houses the Center for State and Local Taxation and the Joint Center for International and Security Studies. In addition, IGA sponsors five research programs: Program on Workable Energy Regulation; Pacific Rim Business and Development; Program on Leadership and Democracy; Program on Telecommunications Policy; and Program on Immigration, Population and the Economy. The institute also supports a wide range of public affairs programs, seminars and conferences designed to foster debate on political, economic and social issues. IGA provides specialized library services and oversees the Social Science Data Service.

Information: Shields Library, 916-752-2042

Social Science Data Service

The Social Science Data Service (SSDS) is a unit of the Institute of Governmental Affairs (IGA). SSDS provides consulting, computing and specialized support services to faculty involved in quantitative social science research on the UC Davis campus. SSDS staff provides consulting on a wide range of software used by social scientists and assists with questions regarding the use of SSDS computers, as well as statistical and data-related programming. SSDS manages a UNIX system which provides a platform for quantitative social science computing. Specialized support is available for extramurally funded research projects managed by IGA.

Information: 107 Social Sciences and Humanities Building, 916-752-6063
You should become proficient in reading and understanding technical materials and scholarly works. Learn to read analytically and critically, actively questioning yourself about the author's intentions, viewpoint, arguments and conclusions. Your reading experience should include original works in their entirety, not just textbooks and anthologies, and should encompass a wide variety of forms and topics.

Writing: Effective critical thinking and proficiency with the written language are closely related, and both are skills that every university student must master. By university standards, a student who is proficient in English composition is able to understand the assigned topic; select and develop a theme by analysis and argument; choose words that aptly and precisely convey the intended meaning; construct effective sentences, i.e., sentences that economically and successfully convey the writer's ideas and display a variety of structures; and demonstrate an awareness of the conventions of standard written English.

If you plan to attend the university, you must take English courses in high school that require the development and practice of these skills. You must take at least four years of English composition and literature classes that stress expository writing.

Mathematics: Many undergraduate majors require preparation in mathematics beyond the three years required for admission to the university. All majors in the natural and life sciences, engineering and mathematics require calculus. Many majors in the social sciences require statistics or calculus, or both. Calculus is also required for undergraduates preparing for careers in the environmental sciences, dentistry, medicine, optometry, pharmacy and biostatistics. If you select a major that requires either calculus or statistics, you should expect to take that course during your first year at the university.

Prepare yourself for university courses in mathematics while you are still in high school. Good preparation includes a year of mathematics beyond second-year algebra (such as precalculus, mathematical analysis, analytic geometry) and, definitely, a course in mathematics during your senior year.

Algebra is necessary for success in university mathematics courses. Students who do not take a mathematics course during their last year in high school often find they need to take a preparatory course at the university in order to renew their algebra skills. The need to take such a course at the university could delay your undergraduate studies for which mathematics is a prerequisite.

Finally, take advantage of any guidance your high school offers in study skills and diagnostic tests designed to assist you in assessing your college preparation. Managing your time well and studying effectively are critical to excelling at the university. Together with solid academic preparation, these skills should enable you to realize your educational goals and, ultimately, fulfill your career aspirations.

ADMISSION AS A FRESHMAN

The University of California defines a freshman applicant as a student who has graduated from high school but has not enrolled since then in a regular session in any college-level institution. Summer session immediately following high school graduation is excluded in this determination.
Admission requirements for California residents are different from those for nonresidents. Nonresidents must meet higher scholarship requirements.

The following describes the minimum requirements to establish eligibility at the University of California. At UC Davis, students generally must perform well above these minimums in order to gain admission, since the number of applicants exceeds the number of students we can admit. We give priority to students on the basis of highest academic achievements and test scores.

Minimum Requirements for California Residents

To be eligible for admission to the University of California as a freshman, you must meet the subject requirements, scholarship requirement and examination requirements that are described on this and the following pages.

Subject Requirements: A to F

You must complete at least 15 high school units in the subject areas listed below. At least seven of the required 15 units will have to be taken in the last two years of high school. The required course sequence is often referred to as the “A to F” pattern.

Courses taken in the 9th grade and completed with a grade of C or better can satisfy a subject requirement; however, the grades will not be used in computing your grade point average. If you receive a grade of D or lower in a 9th-grade course, you have not satisfactorily completed the subject requirement until you repeat the course (or, in some cases, complete a more advanced course) with a grade of C or better.

A. History/Social Science—2 years

One year of United States history, or one-half year of United States history and one-half year of civics or American government; and one year of world history, cultures and geography.

B. English—4 years

Four years of English—composition and literature (classes should stress preparation for university study, including frequent and regular practice in writing expository prose compositions of some length). Not more than one year will be accepted from the 9th grade. (See English Proficiency below.)

C. Mathematics—3 years; 4 years recommended

Three years of mathematics—elementary algebra, geometry and intermediate algebra. (Courses taken in grades 7 and 8 may partially satisfy the requirement if they are accepted by the high school as equivalent to its own courses.)

D. Laboratory Science—2 years; 3 years recommended

Two years of laboratory science providing fundamental knowledge in at least two of these three areas: biology, chemistry and physics. Not more than one year of laboratory science taken in the 9th grade can be used to meet this requirement.

E. Language other than English—2 years; 3 years recommended

Two years of the same language other than English. Courses should emphasize speaking and understanding, and include instruction in grammar, vocabulary, reading and composition. (Courses taken in grades 7 and 8 may satisfy this requirement if they are accepted by the high school as equivalent to its own courses.)

F. College Preparatory Electives—2 years

Two years in addition to those required in “A” through “E” above.

- **History and English:** courses that fit the general description for elective courses above.
- **Advanced mathematics:** trigonometry, linear algebra, precalculus (mathematical analysis), calculus, statistics, computer science and similar courses. (Courses containing significant amounts of material for arithmetic or from shop, consumer or business mathematics are not acceptable.)
- **Laboratory science:** courses in the biological and physical sciences. A general science course taken in grade 9 as preparation for a laboratory science may be used.
- **Language other than English:** courses may be in either the same language used to satisfy the “E” requirement or a second foreign language. If a second language is chosen, however, at least two years of work in that language must be completed.
- **Social science:** courses that fit the general description for elective courses above, and that serve as preparation for lower division work in social science at the university. (Courses of an applied, service or vocational nature are not acceptable.)
- **Visual and performing arts:** courses should enable students to understand and appreciate artistic expression, and to talk and write with discrimination about artistic materials studied. Courses that develop creative artistic ability or artistic performance may be used. (Courses that are recreational or are offered under physical education are not acceptable.)

If you are a California high school graduate, the courses used to satisfy the **Subject Requirement** must appear on a list that your high school principal has certified meets the course descriptions above, and has placed on file with the university’s Office of Student Academic Services. If you submit courses from an out-of-state school, the Undergraduate Admissions Office will determine if your courses fulfill the Subject Requirement.

English Proficiency

Instead of a fourth year of high school English, you may satisfy the **English Proficiency Requirement** by completing one of the following:

- SAT II Subject Test in Writing (a score of 660 or above); or
- Advanced Placement Examination in English Composition and Literature or English Language and Composition (a score of 5, 4, or 3).

The requirement may also be satisfied with a transferable college-level English course in literature, composition, or speech, worth 3-semester or 4-quarter units in which you earned a grade of C or higher.
Scholarship Requirement

An applicant must have earned a grade of C or better in all high school courses to satisfy the “A to F” requirements above. The grades earned in these courses that are taken in grades 10 through 12 will be used to evaluate the grade point average for minimum eligibility.

If you attain a grade point average of 3.30 (where the letter grade A=4, B=3, C=2, and D=1, and in university-approved honors or advanced placement courses taken during the 10th, 11th and 12th grades (limit of four year-long courses with not more than two coming from the tenth grade) where the letter grade A=5, B=4, and C=3] in the required “A to F” subjects taken after the 9th grade, you will meet the minimum requirements to be eligible to enter the university, regardless of your scores on standardized tests. If your grade point average falls between 3.29 and 2.82, you will meet the minimum requirements for the university if you achieve the specified scores on the standardized tests (see the Eligibility Index opposite).

In determining the required grade point average, the university will use a semester grade of A in one course to balance a semester grade of C in another. Grades you received in courses taken in the 9th grade or earlier are not used in determining your grade point average. (However, these courses may be used to satisfy subject requirements.) The grades that appear on your official high school transcript, including those earned in accelerated and advanced courses, are the grades the university will use in evaluating your record. Grades are counted on a semester basis unless your school gives only year grades.

To meet the Subject and Scholarship Requirements you may repeat courses in which you received a grade of D or lower. The grade achieved in the repeated course will be calculated into the grade point average. There is no limit to the number of repeated courses that may be used in the “A to F” pattern, but each course may be repeated only one time.

Examination Requirement

All freshman applicants must submit official scores from the College Board or the American College Testing (ACT) Program. If you are applying for admission to the fall quarter, take the tests no later than December of your senior year (earlier testing is recommended). The following tests are required:

• Scholastic Assessment Test-I (SAT-I—College Board)—The verbal and mathematics tests scores you submit must be from the same sitting, or
• American College Test

AND

• Three Scholastic Assessment Tests-II (SAT-II—College Board), which must include (a) writing test, (b) mathematics (level I or II) and (c) one test from the social studies or science or foreign language, or the test in English literature. The English Language Proficiency Test is not an acceptable option.

If you are a California resident and your grade point average in the required high school subjects is 3.30 or higher, the tests are required but your scores will not be used to determine your minimum eligibility for admission.

(Reminder: At UC Davis, students generally must perform well above the minimums in order to gain admission.)

If your grade point average in the “A to F” requirement is less than 3.30, refer to the table above to see the examination scores you must earn to be eligible for university admission.

Make arrangements to take the required SAT-I and SAT-II by writing to College Board SAT, Princeton, NJ 08541. For the American College Test (ACT) write to American College Testing Program, Registration Unit, P.O. Box 168, Iowa City, IA 52240. (Test fees should be paid to the Testing Service, not to the university.) UC Davis’ College Board code is 4834 and the ACT code is 0454.

Minimum Requirements for Residents of Other States

If you are a freshman applicant who does not claim California residency, you must meet the following requirements for admission to the University of California:

• Graduate from a regionally accredited or state-accredited high school
• Satisfactorily complete the subject requirements listed under Requirements for California Residents
• Earn a grade point average of at least 3.4 (B+) in the courses used to meet the subject requirements
• Complete the examination requirements listed for California residents

<table>
<thead>
<tr>
<th>Subject</th>
<th>Scholarship Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA ACT</td>
<td>SAT I total</td>
</tr>
<tr>
<td>GPA ACT</td>
<td>SAT I total</td>
</tr>
<tr>
<td>2.82</td>
<td>36</td>
</tr>
<tr>
<td>2.83</td>
<td>36</td>
</tr>
<tr>
<td>2.84</td>
<td>35</td>
</tr>
<tr>
<td>2.85</td>
<td>35</td>
</tr>
<tr>
<td>2.86</td>
<td>35</td>
</tr>
<tr>
<td>2.87</td>
<td>34</td>
</tr>
<tr>
<td>2.88</td>
<td>34</td>
</tr>
<tr>
<td>2.89</td>
<td>33</td>
</tr>
<tr>
<td>2.90</td>
<td>33</td>
</tr>
<tr>
<td>2.91</td>
<td>33</td>
</tr>
<tr>
<td>2.92</td>
<td>32</td>
</tr>
<tr>
<td>2.93</td>
<td>31</td>
</tr>
<tr>
<td>2.94</td>
<td>31</td>
</tr>
<tr>
<td>2.95</td>
<td>31</td>
</tr>
<tr>
<td>2.96</td>
<td>30</td>
</tr>
<tr>
<td>2.97</td>
<td>30</td>
</tr>
<tr>
<td>2.98</td>
<td>29</td>
</tr>
<tr>
<td>2.99</td>
<td>28</td>
</tr>
<tr>
<td>3.00</td>
<td>28</td>
</tr>
<tr>
<td>3.01</td>
<td>27</td>
</tr>
<tr>
<td>3.02</td>
<td>27</td>
</tr>
<tr>
<td>3.03</td>
<td>26</td>
</tr>
<tr>
<td>3.04</td>
<td>26</td>
</tr>
<tr>
<td>3.05</td>
<td>25</td>
</tr>
</tbody>
</table>

The American College Test (ACT) is scored in intervals of 1 point from a minimum of 1 to a maximum of 36. The Scholastic Aptitude Test (SAT) is scored in intervals of 10 points from a minimum of 400 to a maximum of 1600. Use the first score listed if you took the test prior to April 1995. Use the second score if you took the test April 1995 or later.
Minimum Eligibility by Examination Alone

If you do not meet the minimum scholarship and subject requirements for admission, you can meet minimum requirements for admission as a freshman by examination alone. The examinations must be taken before you graduate from high school. (If you have completed transferable college courses, College Board exams cannot be taken in academic subjects covered in those courses.) You must take the same College Board tests discussed above and receive a total score of at least 1400 on the SAT-I, or a score of 31 on the American College Test. Your total score on the SAT-II must be 1760 or higher with no score less than 530 on an individual test. If you are a nonresident applicant, your score on the SAT-II must be 1850 or higher with no score less than 530 on an individual test.

High School Proficiency Examination

The University of California will accept the Certificate of Proficiency or the General Education Development (GED) certificate awarded by the State Department of Education in lieu of the regular high school diploma. However, you must also meet all other university entrance requirements (subject, scholarship, examination).

Transfer Credit

Transfer credit may be granted to a freshman applicant for an acceptable college course taken while still in high school if an official transcript is received from the college that conducted the course.

Transfer credit is also granted for each College Board Advanced Placement Examination completed with a score of 3, 4 or 5. International Baccalaureate Higher Level Examinations with scores of 5, 6 or 7 will receive transfer credit. If students take college courses in combination with Advanced Placement or International Baccalaureate Examinations in the same subject areas, transfer credit may be limited due to duplication of credit.

ADVANCED PLACEMENT EXAMINATIONS

If you take one or more of the College Board Advanced Placement (AP) Examinations and score 3, 4 or 5, you will be awarded college credit. The credit will become part of the minimum 180 quarter units you need in order to receive a bachelor’s degree. The credit from the AP Examinations may also be used to satisfy specific degree requirements. Consult the chart on the facing page to learn how many units you will receive for an AP Examination (see the column headed: Credit Toward Degree), and how those units will be applied toward specific degree requirements (see the column headed: Credit Allowed Toward Specific Degree Requirements). Please note that the courses for which AP credit has been granted may not be used as a substitute for courses required as part of the UC Davis General Education Requirement. Rather, AP credits are counted as transfer credits and may reduce the number of General Education (GE) courses you have to complete. (See the GE section in Bachelor’s Degree Requirements chapter.)

In general, you may not earn university credit for courses that duplicate credit already earned through AP. There are, however, a few exceptions to this general rule. Since it is

ADMISSION AS A TRANSFER STUDENT

The University of California defines a transfer applicant as a student who has been a registered student in a college or university or in college-level extension classes since last attendance at high school. Summer session attended immediately following high school graduation is excluded in this determination. If you are a transfer applicant, you may not disregard your college record and apply for admission as a freshman.

California residents must meet the requirements that follow. If you are not a California resident, see Requirements for Residents of Other States below. At UC Davis, students generally must perform well above the minimums in order to gain admission, since the number of applicants exceeds the number of students we can admit.

The highest priority for admission is given to California Community College transfer applicants with 60 semester or 90 quarter units of transfer work with the highest academic achievement, as well as, in some areas, the completion of lower division major program.

Minimum Requirements for California Residents

Transfer applicants who plan on entering the university any term through spring 1998 must meet one of the following conditions:

• If you were eligible for admission to the university when you graduated from high school—meaning you satisfied the subject, scholarship, and examination requirements—you are minimally eligible for admission if you have a C (2.0) average in your transferable college coursework.

If you have completed fewer than 12 quarter or semester units of transferable college credit since high school graduation, you must also satisfy the examination requirement for freshmen. However, the examination must have been taken prior to graduating high school. All transfer students, regardless of the date of high school graduation, must meet the high school requirements stated earlier in this catalog, or establish eligibility as junior-level transfers.

• If you have graduated from high school and meet the needed scholarship and examination requirements but you have not completed one or more of the “A to F” subjects while in high school, you will be minimally eligible to be considered for admission after you have:
 1. established an overall grade point average of 2.00 or better in another college or university;
 2. completed with a grade of C or better appropriate college courses in the high school subjects that you lack; and
 3. completed 12 or more transferable quarter (or semester) units, or have met the freshman examination requirement.

• If you did not meet the needed scholarship requirement or did not meet the scholarship requirement and
College Board Advanced Placement (AP) Examination Credit

<table>
<thead>
<tr>
<th>EXAMINATION</th>
<th>SCORE</th>
<th>UCD COURSE EQUIVALENCIES</th>
<th>CONTINUING COURSE</th>
<th>CREDIT TOWARD DEGREE</th>
<th>CREDIT ALLOWED TOWARD SPECIFIC DEGREE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>English/Humanities Credit</td>
</tr>
<tr>
<td>English</td>
<td>5, 4</td>
<td>English 1, 3</td>
<td></td>
<td>8 units</td>
<td>Satisfies Subject A requirement.</td>
</tr>
<tr>
<td>English</td>
<td>3</td>
<td></td>
<td></td>
<td>8 units</td>
<td>Satisfies Subject A requirement.</td>
</tr>
<tr>
<td>FOREIGN LANGUAGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Humanities Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>French</td>
<td>5</td>
<td>French 22</td>
<td>French 23, or consultation with adviser</td>
<td>8 units</td>
<td>In the College of Agricultural and Environmental Sciences, satisfies credit toward breadth/Unrestricted electives.</td>
</tr>
<tr>
<td>French</td>
<td>4</td>
<td>French 21</td>
<td>French 22</td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>French</td>
<td>3</td>
<td>French 3</td>
<td>French 21</td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>German</td>
<td>5, 4</td>
<td>German 20</td>
<td>German 21, upper division literature courses</td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>German</td>
<td>3</td>
<td>German 3</td>
<td>German 20</td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Latin (Vergil)</td>
<td>3, 4, 3</td>
<td>Latin 2</td>
<td>Determined by consultation with Classics adviser</td>
<td>4 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Latin (Lyric)</td>
<td>5, 4, 3</td>
<td>Latin 2</td>
<td>Determined by consultation with Classics adviser</td>
<td>4 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Spanish</td>
<td>5, 4</td>
<td>Spanish 21</td>
<td>Spanish 22, 23 or 24, or more advanced course in consultation with adviser</td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Spanish</td>
<td>3</td>
<td>Spanish 3</td>
<td>Spanish 21, or consultation with adviser</td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>HUMANITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Humanities Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>Art Studio</td>
<td>5</td>
<td>Art Studio 2, 5</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Art Studio</td>
<td>4</td>
<td>Art Studio 2</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Art Studio</td>
<td>3</td>
<td>Art Studio 1A, 1B, 1C</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>Art History</td>
<td>5</td>
<td>Art History 17A, 17B</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>American History</td>
<td>5, 3</td>
<td>History 4B, 4C</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>European History</td>
<td>5, 4, 3</td>
<td>Music &</td>
<td></td>
<td>8 units</td>
<td>In the College of Letters and Science, partially satisfies Area (breadth) requirements for A.B. degree.</td>
</tr>
<tr>
<td>NATURAL SCIENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Natural Sciences Credit/Preparatory Courses for Science Majors</td>
</tr>
<tr>
<td>Biology</td>
<td>5, 4</td>
<td>Biological Sciences 10</td>
<td></td>
<td>8 units</td>
<td>Biological Sciences 1A is the first course taken by most students contemplating majors in the Life Sciences.</td>
</tr>
<tr>
<td>Chemistry</td>
<td>4, 3</td>
<td>Chemistry 2A</td>
<td></td>
<td>8 units</td>
<td>Although Chemistry 2A may be taken for full credit, students are strongly encouraged to enroll in the 2HA, 2HB, 2HC sequence.</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>4, 3</td>
<td>Computer Science Engineering 30</td>
<td></td>
<td>4 units</td>
<td>Credit for Computer Science Engineering 30 may serve as prerequisite for Computer Science Engineering 40 with consent of instructor.</td>
</tr>
<tr>
<td>Computer Science AB</td>
<td>3</td>
<td>Computer Science Engineering 90</td>
<td></td>
<td>4 units</td>
<td>In the College of Engineering, examination awards units towards the unrestricted electives.</td>
</tr>
<tr>
<td>Mathematics AB</td>
<td>5, 4</td>
<td>Mathematics 12, 16A, or 21A</td>
<td>Mathematics 16B or 21B</td>
<td>4 units</td>
<td>Mathematics 16A or 21A may be taken for full credit. Credit for Mathematics 16A or 21A may serve as prerequisite for Mathematics 16B or 21B.</td>
</tr>
<tr>
<td>Mathematics BC</td>
<td>5</td>
<td>Mathematics 12, 16A-16B, or 21A-21B</td>
<td>Mathematics 16C or 21C</td>
<td>4 units</td>
<td>Mathematics 16A, 16B, 21A, or 21B may be taken for full credit. Mathematics 16A, 16B, 21A, or 21B may serve as a prerequisite for Mathematics 16B, 16C, 21B, or 21C.</td>
</tr>
<tr>
<td>Mathematics BC</td>
<td>4, 3</td>
<td>Mathematics 12, 16A-16B, or 21A-21B</td>
<td>Mathematics 16B or 21B</td>
<td>4 units</td>
<td>Mathematics 16A or 21A may be taken for full credit. Credit for Mathematics 16A or 21A may serve as prerequisite for Mathematics 16B or 21B.</td>
</tr>
<tr>
<td>Physics B</td>
<td>5</td>
<td>Physics 1A, 1B, 7A, 7B, 7C, 10</td>
<td></td>
<td>8 units</td>
<td>Physics 7A, 7B, 7C may be taken for full credit.</td>
</tr>
<tr>
<td>Physics B</td>
<td>4, 3</td>
<td>Physics 10</td>
<td></td>
<td>8 units</td>
<td>Course equivalents may be used as prerequisite for succeeding courses of same series with consent of instructor.</td>
</tr>
<tr>
<td>Physics CI</td>
<td>5</td>
<td>Physics 1A, 7B, or 9A</td>
<td></td>
<td>8 units</td>
<td>In the College of Engineering, only a score of 5 on Physics (CI and CII) Examinations applies toward Physics requirement.</td>
</tr>
<tr>
<td>Physics CI</td>
<td>4</td>
<td>Physics 1A or 7B</td>
<td></td>
<td>4 units</td>
<td>CII) Examinations applies toward Physics requirement.</td>
</tr>
<tr>
<td>Physics CI</td>
<td>3</td>
<td></td>
<td></td>
<td>4 units</td>
<td>CII) Examinations applies toward Physics requirement.</td>
</tr>
<tr>
<td>Physics CI</td>
<td>5, 4</td>
<td>Physics 1B or 7A</td>
<td></td>
<td>4 units</td>
<td>CII) Examinations applies toward Physics requirement.</td>
</tr>
<tr>
<td>Physics CI</td>
<td>3</td>
<td></td>
<td></td>
<td>4 units</td>
<td>CII) Examinations applies toward Physics requirement.</td>
</tr>
<tr>
<td>SOCIAL SCIENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Social Science Credit/Unrestricted Electives</td>
</tr>
<tr>
<td>American Government and Politics</td>
<td>5, 4, 3</td>
<td>Political Science 1</td>
<td></td>
<td>4 units</td>
<td>Political Science 1 satisfies American History and Institutions requirement.</td>
</tr>
<tr>
<td>Comparative Government and Politics</td>
<td>5, 4, 3</td>
<td>Political Science 2</td>
<td></td>
<td>4 units</td>
<td>In College of Agricultural and Environmental Sciences, satisfies credit toward breadth requirement or Unrestricted electives.</td>
</tr>
<tr>
<td>Economics (Micro)</td>
<td>5, 4, 3</td>
<td>Economics 1A</td>
<td>Determined by consultation with Economics adviser</td>
<td>4 units</td>
<td>Examinations applies toward Humanities/Social Sciences electives.</td>
</tr>
<tr>
<td>Economics (Macro)</td>
<td>5, 4, 3</td>
<td>Economics 1B</td>
<td>Determined by consultation with Economics adviser</td>
<td>4 units</td>
<td>Examinations applies toward Humanities/Social Sciences electives.</td>
</tr>
<tr>
<td>Psychology</td>
<td>5</td>
<td>Psychology 1</td>
<td></td>
<td>4 units</td>
<td>Examinations applies toward Humanities/Social Sciences electives.</td>
</tr>
<tr>
<td>Psychology</td>
<td>4, 3</td>
<td></td>
<td></td>
<td>4 units</td>
<td>Examinations applies toward Humanities/Social Sciences electives.</td>
</tr>
</tbody>
</table>
lack the required subjects, you will be minimally eligible to be considered for admission after you have:

1. completed 84 transferable quarter (56 semester) units of credit in college courses (Note: Although the minimum requirement is 84 quarter/56 semester units, to be competitive for admission to UC Davis, students should complete at least 90 quarter/60 semester transferable units); and

2. established an overall grade point average of 2.40 or better on transferable courses in another college or university; and

3. completed one of the following:
 a. appropriate college courses, with a grade of C or better, in high school subjects that you lacked—up to two units (one unit = one year-long course) of credit may be waived except in English and mathematics;

 OR

 b. a college course, or courses, in mathematics; one transferable course in English; and one transferable course in either U.S. history, a laboratory science, or a language other than English, all with grades of C or better. The mathematics component may be satisfied in one of the following ways: (a) take courses in algebra, geometry, and advanced algebra; (b) take a course that employs the topics of advanced algebra—for example, college algebra, pre-calculus, calculus, linear algebra; (c) take a transferable statistics course that has advanced algebra as a prerequisite.

New Requirements Effective Fall 1998

- Students who were eligible for admission to the university when they graduated from high school—meaning they satisfied the Subject, Scholarship and Examination Requirements—are eligible to transfer if they have a C (2.0) in their transferable college coursework. (No change from current requirements)

- Students who met the Scholarship Requirement but did not satisfy the Subject Requirement must take transferable college courses in the subjects they are missing, earn a grade of C or better in each of these required courses, and earn an overall C (2.0) average in all transferable college coursework to be eligible to transfer. Students who met the Scholarship Requirements but did not meet the Examination Requirement must complete a minimum of 12 semester (18 quarter) units of transferable work and earn an overall C (2.0) average in all transferable college coursework completed.

- Students who were not eligible for admission to the university when they graduated from high school because they did not meet the Scholarship Requirement must:

a. complete 90 quarter units or 60 semester units of transferable college credit with a grade point average of at least 2.4,

and

b. Complete a course plan requirement to include:
 1. Two transferable college courses (3 semester or 4-5 quarter units each) in English composition; and

 2. One transferable college course (3 semester or 4-5 quarter units) in mathematical concepts and quantitative reasoning; and

- 3. Four transferable college courses (3 semester or 4-5 quarter units each) chosen from at least two of the following subject areas: the arts and humanities, the social and behavioral sciences, the physical and biological sciences.

Minimum Requirements for Residents of Other States

If you meet the requirements for admission as a nonresident freshman, you must have a grade point average of 2.8 or better in college courses that are accepted for transfer credit by the University of California.

If you don't meet the minimum requirements for admission as a nonresident freshman, you must have completed at least 84 quarter units (56 semester units) of transferable work with a grade point average of 2.8 or better and have completed the subject requirements for California residents.

Transferring to the College of Engineering

If you are admitted with fewer than 84 quarter units of college work (56 semester units), you are classified in lower division standing and must complete one of the four Lower Division Programs listed under Engineering in the Programs and Courses section of this catalog. You are advanced to upper division standing after completing 84 units.

When there are more applicants than space available in the College, priority is given to transfers from California community colleges who have completed the lower division program for engineering with a high grade point average. You must select a major before admission, and once admitted, you may be limited in your freedom to change majors within the College.

Unit Credit for Courses Taken Elsewhere

The university gives unit credit to transfer students for courses they have completed at other accredited colleges and universities. To be accepted for credit, your courses must be comparable to those offered at the university, as determined by the Undergraduate Admissions and Outreach Services Office.

A total of 105 quarter units (70 semester units) toward a university degree may be earned at a community (two-year) college. Only subject credit will be granted for courses taken in excess of these amounts.

UC Intercampus Transfer

If you are an undergraduate student currently or previously registered at another campus of the University of California and have not since been registered in another institution, you may apply for transfer to the Davis campus. Filing dates and application fees are the same as those listed for new applicants.

ADMISSION AS AN INTERNATIONAL STUDENT

UC Davis welcomes competent, qualified applicants from around the world. An international application may be obtained by writing to Undergraduate Admissions and Outreach Services, University of California, Davis, Cali-
CAMPUS SELECTION CRITERIA

UC Davis makes every effort to provide a place for all California resident applicants who meet the minimum admission requirements and file an application during the appropriate priority filing period.

In recent years, the number of applicants for some majors has far exceeded the number of spaces available. When UC Davis cannot accept all eligible applicants, it uses standards that are more demanding than the minimum requirements to select students. These standards, which are called selection criteria, identify those students who have demonstrated the capacity for high academic achievement and who have a variety of other qualities that can contribute to the strength and diversity of the campus community.

The selection criteria described below will be used for applicants for the fall 1996 term. The criteria may differ for the winter and spring terms because enrollment targets and applicant qualifications change. Applicants for winter or spring should contact Undergraduate Admissions and Outreach Services for more information.

Selection Guidelines

Each campus, in consultation with the Office of the President, develops enrollment targets that specify the number of new freshman and advanced standing students expected to enroll. Campuses that receive more applications than the number required to meet their enrollment target admit students using the criteria described below.

Freshman Applicants

Academic Criteria (used to select up to 60 percent of admits): UC Davis selects freshman applicants who have made the greatest effort to fully prepare academically as measured by the following criteria:

1. Calculated GPA on all academic courses completed in the “A to F” subject areas, with additional points given for honors courses. Maximum value is 4.00.
2. College entrance test scores—SAT-I or ACT and SAT-II test scores.
3. The number and content of college preparatory courses taken in academic subjects beyond UC minimums.
4. The number of university-approved honors or advanced placement courses completed or in progress.

Supplemental Criteria (used to select up to 40 percent of admits): Applicants are evaluated using the selection criteria described above in conjunction with the following supplemental criteria:

1. Personal accomplishments, talents, experiences or interests that will contribute to the educational environment of the campus.
2. Special circumstances which may have affected the applicant's life, including personal hardship, disabilities, economic disadvantage, and membership in groups historically underrepresented at the university.

Transfer Applicants

Academic Criteria: Top priority for admission consideration is given to UC-eligible California community college junior level transfer applicants with 60 semester/90 quarter units of transfer work. Other UC-eligible transfer applicants will be admitted if space is available.

When applications far exceed the number of spaces available—for majors such as engineering, biological sciences, computer science, international relations and psychology, for example—the completion of specific lower division preparatory courses for the major is required. Contact Undergraduate Admissions and Outreach Services for information on which majors are so impacted.

Supplemental Criteria: The same supplemental criteria described above for freshmen are used.

Notification and Acceptance of Admission

Upon completion of a review of your academic records, you will be notified of your admission status by letter. The length of time before admission notification varies, depending upon the completeness of your application. For example, most applicants for fall quarter will be notified of their admission status between March 1 and mid-March for freshmen, and March 1 and May 1 for transfer
When you receive your notification of admission you will also receive an important form called the Statement of Intent to Register (SIR). Complete the form and return it to the Admissions office, along with the required nonrefundable $100 deposit, in order to complete the admissions process. This advance deposit is applied to your university Registration Fee as long as you register in the quarter to which you are admitted. EOP and readmission applicants are not required to submit the $100 advance deposit; however, they will pay full registration fees at the time of registration.

The Statement of Intent to Register (SIR) should be returned by May 1 (as a freshman) or June 1 (as a transfer) to notify the campus that you wish to attend. Students admitted to winter or spring quarter must return the SIR by the date specified in the notification of admission. Students not selected for admission consideration at the UC campuses to which they have applied may have their application considered at another UC campus where space is still available.

READMISSION

If you are a former UC Davis undergraduate student planning to return to the Davis campus, you must file an Application for Readmission and pay a nontransferable, nonrefundable fee of $40. This application is available in the Office of the Registrar. (You are a former student if you have interrupted the completion of consecutive terms of enrollment on the Davis campus.) Official transcripts of all work you may have attempted in the interim must be submitted to the Office of the Registrar.

Undergraduate students applying for readmission must file their applications on or before the following deadlines:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Deadline Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 1996</td>
<td>July 29, 1996</td>
</tr>
<tr>
<td>Winter 1997</td>
<td>November 7, 1996</td>
</tr>
<tr>
<td>Spring 1997</td>
<td>January 30, 1997</td>
</tr>
</tbody>
</table>

SPECIAL PROGRAMS

Concurrent Enrollment

Concurrent courses are regular university courses open to the community on a space-available basis through University Extension. This program allows an individual to pursue academic interests and to test academic abilities at the university.

For information, write to the University Extension office, Research Park, University of California, Davis, CA 95616 916-757-8777.

Educational Opportunity Program/Student Affirmative Action (EOP/SAA)

The Educational Opportunity Program/Student Affirmative Action assists students from ethnic groups that are underrepresented in the UC eligibility pool (African American, American Indian, Chicano and Latino). Also, the program assists students with a disability and students from economically and/or educationally disadvantaged backgrounds. EOP/SAA can help you with the admission application process and offers academic, social and cultural support. (See also under the Academic Advising and Student Resources chapter.) An admissions application fee waiver and financial aid are available to those individuals with demonstrated financial need. You can contact Undergraduate Admissions and Outreach Services for information on obtaining the fee waiver, and you may contact the Financial Aid Office regarding financial assistance.

To apply for the program, each applicant must complete the regular UC admission application form and complete the appropriate places related to EOP. In addition, the applicant is advised to discuss the reasons for requesting EOP assistance in the required personal statement. Limited Status

Students in limited status are those whose special attainments qualify them to take certain courses in the university toward a definite and limited objective. To apply for limited status admission, you must either have a bachelor’s degree but not be a candidate for an advanced degree, or have completed a substantial amount of college work with a satisfactory grade point average. You must also submit official transcripts from all schools attended. As a limited status student you will be expected to maintain a certain scholarship average during a predetermined time of enrollment.

Application filing dates are the same as those for new applicants. Fees for limited status students who do not already have a bachelor’s (or higher) degree are the same as those for new applicants. You will not be admitted to limited status for the purpose of raising a low scholarship average.

Admission to the College of Agricultural and Environmental Sciences requires the approval of the Undergraduate Admissions Director and the dean of the college.

Enrollment pressures have necessitated closing this category of admission for the College of Engineering and the College of Letters and Science.
Second Baccalaureate

If you have a bachelor's degree substantially equivalent to one that is granted by the University of California, you may be allowed to enroll as an undergraduate seeking a second bachelor's degree. Admission in this category will depend upon a superior academic record and clear evidence of a change in objective.

Admission to the College of Agricultural and Environmental Sciences requires the approval of the Undergraduate Admissions Director and the dean of the college. You must submit official transcripts from all schools attended, including high schools.

Enrollment pressures have necessitated closing this category of admission for the College of Letters and Science. The College of Engineering will accept applicants if their first degree is not in engineering and if they complete the lower division engineering program at a California community college. Admission requires the approval of the Undergraduate Admissions Director and Dean of Engineering.

Special Status

The special status classification is for applicants 21 years of age or older who have not had the opportunity to complete a satisfactory high school program or who have not completed a substantial amount of college work, but by reason of special attainment or background may be prepared to undertake certain courses at UC Davis toward a definite and limited objective.

You will not be admitted to special status for the purpose of fulfilling requirements for admission as a regular student. Conditions for admission are determined by the Admissions Officer and are subject to approval by the dean of the college in which you plan to enroll. Admission is for a specified time only and a prescribed scholarship average must be maintained. Fees and filing dates are the same as those for new applicants.

Enrollment pressures have necessitated closing this category of admission for the College of Engineering and the College of Letters and Science.

ADMISSION CHECKLIST

□ 1. Obtain the undergraduate admissions packet from your high school, a community college, or a campus of the University of California. If you are not a California resident, request an application from the Undergraduate Admissions and Outreach Services, 175 Mrak Hall, University of California, Davis, CA 95616.

□ 2. Complete the application, including the essay, and list the college and major you prefer. Attach a check or money order to cover the application fee with your application materials, and return them in the preaddressed envelope during the priority filing period for the quarter in which you are interested.

□ 3. Keep a copy of your application and essay.

□ 4. Keep for your records the notices received from both the Undergraduate Application Processing Service and the Undergraduate Admissions offices that acknowledge receipt of your application.

□ 5. If you are applying from high school, do not send a preliminary transcript unless asked to do so by Undergraduate Admissions and Outreach Services. If test scores are required, please arrange to have these forwarded by the testing agency. If you are applying as an advanced standing student, arrange to have all official transcripts sent.

□ 6. High school applicants for the fall quarter should take the SAT-I or ACT and SAT-II tests no later than December. We strongly encourage you to complete these tests by the November test date.

□ 7. Undergraduate Admissions and Outreach Services may request additional information, such as transcripts, test scores, or confirmation of work in progress. Send this information right away so your application can be processed without delay.

Note: Your eligibility for admission cannot be evaluated until all your application materials are received; i.e., application form, filing fee, essay, official transcripts (if required), work in progress, and test scores (if required).

□ 8. If you are admitted, keep your admission letter for your records.

□ 9. Return your “Statement of Intent to Register” (SIR), “Statement of Legal Residence,” and Student Address form along with the nonrefundable advance deposit of $100 (if required) as soon as possible, and no later than the date stated on the SIR, so your registration materials can be ordered before you register.

□ 10. After your SIR is received, you will be sent information from the Cowell Student Health Center. Return your completed Medical History and Immunization forms to the Cowell Student Health Center as soon as possible.
FEES AND EXPENSES

Give careful consideration to the total financing of your university education. If you will need funds beyond those that you and your family can provide, you should apply for financial aid well in advance of enrollment. The deadlines for financial aid (grants, loans, work-study and scholarships) are listed on the following pages.

At the time of registration each quarter, every student must pay the following quarterly fees. (A Registration Fee Deferred Payment Plan, which allows students to pay their quarterly fees in three monthly installments, is available.)

Undergraduate Student Fees

These are the proposed fees for the 1996-97 academic year. Because fees are subject to gubernatorial, legislative and regental action, these fees may change without notice.

<table>
<thead>
<tr>
<th>Fall Quarter</th>
<th>Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Registration Fee</td>
<td>$238.00</td>
</tr>
<tr>
<td>Educational Fee</td>
<td>$1,029.00</td>
</tr>
<tr>
<td>Associated Students</td>
<td>$23.50</td>
</tr>
<tr>
<td>(ASUCD) Fee</td>
<td>$28.50</td>
</tr>
<tr>
<td>Memorial Union Fee</td>
<td>$28.50</td>
</tr>
<tr>
<td>Undergraduate Health Insurance Fee (optional)*</td>
<td>—</td>
</tr>
<tr>
<td>Student Services Maintenance Fee and Student Activities and Services Initiative Fee</td>
<td>$70.00</td>
</tr>
<tr>
<td>Student Facilities Safety Fee</td>
<td>$22.00</td>
</tr>
<tr>
<td>Total for full-time California residents</td>
<td>$1,411.00</td>
</tr>
<tr>
<td>Tuition for nonresidents</td>
<td>2,798.00</td>
</tr>
<tr>
<td>Total for full-time nonresidents</td>
<td>$4,209.00</td>
</tr>
<tr>
<td>Total for part-time California residents</td>
<td>$897.00</td>
</tr>
<tr>
<td>Total for part-time nonresidents</td>
<td>$2,296.00</td>
</tr>
</tbody>
</table>

*Undergraduates may elect to purchase university-sponsored health insurance at registration. The fee for the 1996-97 academic year is approximately $165.00 per quarter. Foreign undergraduate students and students in the Family Nurse Practitioner and Physician Assistant Programs must participate in the Graduate Student Health Insurance Plan (GSHIP) and pay a Graduate Student Health Insurance Plan Fee of approximately $135.00 per quarter.

For details concerning fees and deposits, consult the publication 1996-97 Student Fees and Deposits, available from the Office of the Registrar. Current fees are also published in the Class Schedule and Room Directory.

Part-Time Students

Students approved for enrollment on a part-time basis pay the same fees as full-time students, but pay only one-half of the Educational Fee, and, if applicable, one-half of the Duplicate Degree Fee. Part-time nonresidents pay one-half of the Nonresident Tuition Fee.
Financial Aid

Expenses, and food and personal expenses. We suggest that you bring initial expenses during the first few months, including tuition and fees. California State License fee (initial license, $6; renewals, $3). Required for all bicycles on campus.

Costs for a Year at UC Davis

The costs listed below are average costs, and your own living expenses may differ somewhat from these. More information on living expenses can be found in the section on housing or from the Financial Aid Office.

<table>
<thead>
<tr>
<th>Average Student Costs Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
</tr>
<tr>
<td>Fees .. $4,225</td>
</tr>
<tr>
<td>Books and supplies $858</td>
</tr>
<tr>
<td>Housing .. $3,812</td>
</tr>
<tr>
<td>Food .. $1,953</td>
</tr>
<tr>
<td>Personal expenses $1,439</td>
</tr>
<tr>
<td>Transportation $799</td>
</tr>
<tr>
<td>Total (off-campus residence) $13,086</td>
</tr>
<tr>
<td>Less for living on campus $99</td>
</tr>
<tr>
<td>Total (on-campus residence) $12,987</td>
</tr>
<tr>
<td>Graduate (Single, living off campus)</td>
</tr>
<tr>
<td>General .. $14,445</td>
</tr>
<tr>
<td>School of Law...$20,681 to 16,499</td>
</tr>
<tr>
<td>(depending upon the year in school)</td>
</tr>
<tr>
<td>School of Medicine ... $20,192 to 19,605</td>
</tr>
<tr>
<td>(depending upon the year in school)</td>
</tr>
<tr>
<td>School of Veterinary Medicine $19,458 to 17,608</td>
</tr>
<tr>
<td>(depending upon the year in school)</td>
</tr>
</tbody>
</table>

International Student Expenses

International students are responsible for all of their expenses while studying at UC Davis. The expenses include non-resident tuition, educational fees, room and board and a modest amount for personal expenses. For the 1996-97 academic year, we estimate the cost will be $24,000. Because the exact cost for tuition and fees is not determined until just before the beginning of the academic year, $24,000 is only a preliminary figure. This minimum allowance may be increased without advance notice.

During the admission process, most international undergraduate students are required to complete the Financial Statement for Students Seeking Nonimmigrant Status form certifying that funds are available for twelve months support. It is very important that students have adequate, reliable, and continuing financial support for the whole time they are here. After students arrive in the United States, it is extremely difficult to obtain additional funding. The university does not offer grants or financial aid to international undergraduate students.

All students need to be aware that there are numerous initial expenses during the first few months, including tuition and fees, an initial down payment for housing, food and personal expenses. We suggest that you bring a minimum of $4,000 for immediate expenses. Careful budgeting is essential for international students.

Cancellation, Withdrawal and Fee Refunds

If you registered for courses and wish to cancel your registration or withdraw from the university, you must complete a Notice of Cancellation/Withdrawal form, available from the Office of the Registrar. Failure to do so may make you liable for fees according to the university refund policy (below). All of your courses will be dropped automatically when this form is processed.

New Undergraduate Students:

*Before Day 1, Registration fees paid are refunded in full except for the $100 acceptance of admission fee.

*Day 1 and after, the $100 acceptance of admission fee is withheld from the registration fee and the Schedule of Refunds is applied to the balance of fees assessed.

All Continuing and Readmitted Students and New Graduate Students:

*There is a service charge of $10 for cancellation of registration before the first day of instruction. After the first day of instruction the Schedule of Refunds is applied to the total of fees assessed.

Schedule of Refunds

The Schedule of Refunds below applies to all continuing and readmitted students and new students who do not receive federal financial aid.*

*The Schedule of Refunds refers to calendar days beginning with the first day of instruction. Percentages listed (days 1-35) should be applied respectively to Nonresident Tuition, Educational Fee, University Registration Fee, and other student fees. The effective date for determining a refund of fees is the date the student files an official notice of withdrawal with the university, and it is presumed that no university services will be provided to the student after that date.

<table>
<thead>
<tr>
<th>University Registration Fee, Educational Fee, Nonresident Tuition and other student fees**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1......................100%</td>
</tr>
<tr>
<td>2-7 days................90%</td>
</tr>
<tr>
<td>8-18 days........50%</td>
</tr>
<tr>
<td>19-35 days........25%</td>
</tr>
<tr>
<td>36 days and over....0%</td>
</tr>
</tbody>
</table>

*New students who receive federal financial aid and withdraw during their first academic term may be refunded fees according to a Modified Fee Refund Schedule, available at the Financial Aid Office.

**Refund Schedule subject to change.

Refund of Health Insurance Fee

If you paid the health insurance fee and you are cancelling your registration before the first day of instruction, you are entitled to a 100 percent refund of this fee. Undergraduates must contact the Health Insurance Office at 916-752-2612 to receive the refund. Graduates will get an automatic refund from the Accounting Office.

After the first day of instruction, no refund of the health insurance fee will be issued. Any questions regarding the refund of health fees for withdrawals should be directed to the Student Health Center.
The Financial Aid Office provides financial assistance in the form of scholarships, loans, grants and work-study employment. Financing an education is a responsibility that is shared by the student, the parents of dependent students and the Financial Aid Office (through distribution of federal, state and university funds). All students are expected to work to help finance their education.

Financial Aid Deadlines

<table>
<thead>
<tr>
<th>Priority filing period for grants, loans, work-study and California Student Aid Commission applications for 1997-98</th>
<th>Jan. 1–Mar. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline to file for fellowships and graduate scholarships for 1997-98 with Graduate Studies</td>
<td>Jan. 15</td>
</tr>
</tbody>
</table>

Students who miss the March 2 deadline should still apply for financial aid. Even though Cal Grant, scholarship, and work-study funds may be depleted, eligible applicants can receive Pell Grants and Federal Direct Stafford/Ford Loans to help meet their need. The Free Application for Federal Student Aid (FAFSA) is available at local high schools, community colleges and the Financial Aid Office. Continuing UC Davis students and prospective graduate students should obtain the FAFSA from the Financial Aid Office in December.

Undergraduates with outstanding academic records are encouraged to apply for scholarships. See “Scholarships and Awards” at the end of this section for information about scholarship applications, or contact the UC Davis Scholarship Office, located at 207 Third Street, Suite B, 916-757-3153, ugscholofc@ucdavis.edu, (by mail: Scholarship Office, University of California, Davis, CA 95616).

Graduate students are eligible for most of the same types of financial aid as undergraduates. In addition, graduate scholarships, fellowships, and teaching and research assistantships are administered through Graduate Studies. State graduate fellowships are awarded to students who are pursuing an advanced or professional degree with intent to become college or university faculty members. Applicants must demonstrate financial need and academic eligibility. The awards pay part of the cost of tuition and are based on graduate student grades, test scores, parents’ educational level and consideration of disadvantaged background.

Eligibility for most assistance is based upon demonstrated financial need. (Most scholarships are not based on need.) Eligibility is determined by the following formula: (1) the student is assigned a standard budget reflecting the average costs for a student attending UC Davis; (2) the student’s resources are analyzed according to federal and state regulations; (3) the resources and an expected student contribution from work are subtracted from the budget; the remainder is the amount of eligibility. The Financial Aid Office attempts to fill this amount with a combination of grants, work-study, and loans.

The awards for married students are based on the same basic budget plus the addition of a standard child care allowance, unless documentation is provided about a spouse who is unable to work, in which case a dependent living allowance will also be awarded. Single parents’ awards are based on the single student’s budget and a child care allowance. If single parents’ resources (earnings and benefits) are not sufficient to meet the basic living expenses of their dependents, a standard dependent living allowance may be awarded upon receipt of documentation.

Satisfactory Academic Progress. Federal regulations require that financial aid recipients meet the published Standards for Satisfactory Academic Progress for Financial Aid concerning units, grade point average and maximum quarters of attendance allowed to obtain a degree. A copy of these standards is available at the Financial Aid Office. Review the policy in detail and discuss it with your academic adviser.

For more information, contact the Financial Aid Office. Regulations and deadlines are subject to change.

Types of Financial Aid

Grants

A grant is a gift that does not have to be repaid as long as the student remains eligible. Whenever criteria and funding levels permit, a student’s financial aid award includes grants.

Federal Pell Grants. All undergraduate financial aid applicants are required to apply for a Federal Pell Grant each year by following the instructions in the financial aid application packet. Recipients must be enrolled at least half time and must maintain good academic standing and make satisfactory academic progress. Eligibility is determined by the federal government according to a formula developed by the Department of Education and approved annually by Congress. All applicants are notified via a “Student Aid Report” (SAR). The amount you receive depends on your financial need.

Cal Grants are awarded by the California Student Aid Commission and may be renewed each year. All undergraduate financial aid applicants who are California residents are required to apply for one of these awards. Follow the instructions in the financial aid application packet.

Cal Grant A awards are based on financial need and academic achievement. Recipients must complete at least 36 units per academic year.

Cal Grant B awards are based on financial need and are for entering undergraduate students primarily from low-income backgrounds. Recipients are required to complete at least 12 units each quarter.

- Cal Grant A pays partial registration fees.
- Cal Grant B pays a quarterly stipend for living expenses for first-year students, and a portion of the registration fees plus a quarterly stipend for living expenses for students in their second through fourth years.

University Grants are available to both graduate and undergraduate students. The maximum varies each year depending on funds available.
Educational Opportunity Program (EOP) Grants are restricted to undergraduates.

Supplemental Educational Opportunity Grants are awarded on the same basis as University Grants. They are available to U.S. citizens or permanent U.S. residents who are at least half-time students and who demonstrate exceptional financial need while pursuing their first undergraduate degree.

Bureau of Indian Affairs (BIA) Grants are awarded to students who are at least one-fourth American Indian, Eskimo or Aleut as recognized by a tribal group served by the Bureau of Indian Affairs and who show financial need. Applicants must submit a Free Application for Federal Student Aid (FAFSA) and provide supporting documents. Write to the agency that administers your tribal affairs and request a BIA Higher Education Assistance application. The BIA Financial Aid counselor on campus can help you complete the application.

- Amount of BIA grant depends on need and availability of funds at each BIA agency.

Loans

Financial Aid almost always includes a long-term loan. Repayment of these loans (with the exception of Federal Direct Unsubsidized/Federal Direct PLUS loans) begins after you graduate or withdraw from school. Students are encouraged to work as much as possible (while remaining full-time students) and to develop modest personal budgets to keep final loan indebtedness within a manageable range.

Federal Perkins Loans are for U.S. citizens or permanent U.S. residents. Loans may be limited to a percentage of student’s need because of demand and limited funds. Repayment starts six to nine months after graduation or withdrawal from school and may be extended over 10 years. Additional deferments are possible for temporary total disability or volunteer service in a private, non-profit organization, VISTA or the Peace Corps. Some teachers of students from low-income families and full-time teachers of handicapped children may also qualify for partial loan cancellation.
- $3,000 undergraduate annual loan limit
- $15,000 undergraduate maximum loan limit
- $30,000 maximum for graduate students, including loans for undergraduate studies
- 5 percent interest (subject to change)

Health Profession Student Loans (HPSL) are awarded to students in the Schools of Medicine and Veterinary Medicine who demonstrate exceptional financial need. Parental income information is required for all applicants regardless of age and dependency status.
- $2,500 plus fees maximum for veterinary medicine and first-year medical students
- $3,333 plus fees maximum for medical students in the second, third or fourth year of study
- 5 percent interest
- Repayment begins twelve months after receipt of the degree or withdrawal

The 1992 reauthorization of financial aid programs changed the eligibility requirement for HPSL for medical students. Beginning with the 1993-94 academic year, new HPSL borrowers must commit themselves to complete a primary care residency program, and practice in a primary care field until their HPSLs are repaid.

Federal Direct Subsidized and Unsubsidized Stafford/Ford Student Loans (Direct Loans) are available through the Financial Aid Office. Subsidized loans are based on financial need, and interest accrued while the student is in school is paid by the federal government. Unsubsidized loans are available to students regardless of income and assets, and there is no interest subsidy. Students are advised to speak with a Financial Aid counselor before borrowing an unsubsidized loan.
• Undergraduate students may borrow up to annual maximums of $2,625 for freshmen, $3,500 for sophomores, and $5,500 for juniors and seniors, up to a maximum aggregate indebtedness of $23,000.

• Independent undergraduate students may borrow unsubsidized Direct Loans up to annual maximums of $4,000 for freshmen and sophomores, and $5,000 for juniors and seniors.

• Graduate and professional students may borrow up to $8,500 per year, not to exceed a maximum aggregate of $65,500 for combined undergraduate and graduate borrowing.

• Variable interest rate is adjusted annually, capped at 8.25 percent.

• Repayment begins six months after graduation or withdrawal.

Federal Direct Parent Loans for Undergraduate Students (Direct PLUS) are government-insured loans that are made to parents of dependent students.

• Parents may borrow Direct PLUS up to the cost of education minus other financial aid received during the years the dependent student is an undergraduate.

• The maximum interest rate is 9%. There is no interest subsidy for this loan.

• Repayment begins within 60 days after loan disbursement.

Short-Term Loans meet temporary or emergency financial needs of registered students. Loan funds are provided by UC Davis alumni, ASUCD, the Cal Aggie Foundation, the Regents of the University of California, and private donors.

• Emergency Loans: $200 maximum. The maximum repayment period is 30 days.

• Short-Term Loans: $300 maximum. The maximum repayment period is five months or the end of the academic year.

• Assistant Loans: graduate students who are in the teaching assistant, research assistant, associate-instructor or postgraduate researcher classifications can apply for a maximum of one month’s salary. The maximum repayment period is six months or the end of the academic year.

For information about how to apply, applications are available in the display rack on the first floor of Voorhies Hall. Application procedures vary slightly during the registration cycle of each quarter. Check the Short-term Loan bulletin board outside 116 Voorhies Hall for instructions.

Work-Study

College work-study programs enable students to earn part of their financial aid through part-time employment. To participate, you must first receive work-study as a part of your financial aid package. Your work-study award offers you both money for your education and work experience. You should obtain a work-study job or ask to defer your work-study before October 31 (and again before January 31, if needed) or your award will be canceled. The Student Employment Center coordinates all undergraduate college work-study programs.

Work-study funds for graduate students are allocated directly to the chairpersons of the graduate programs or departments. Graduate students seeking work-study funding should contact their respective departments for further information.

Federal College Work-Study Program is funded by the federal government. Employment may be on or off campus with profit or nonprofit organizations. Many community service work-study jobs are available that can provide you with an educational and rewarding work experience. To be eligible, you must be a citizen or permanent resident of the U.S., carry at least a half-time academic course load, and maintain minimum academic progress.

California State Work-Study is funded by the state, and employment may be with profit or nonprofit organizations. The employment must be educationally beneficial or related to a particular career interest or the exploration of a career option. To be eligible, students must meet the requirements for federal student aid eligibility and be California residents.

University Work-Study is funded by the University of California, and employment is limited to jobs on campus.

The Student Employment Center helps students, including those on the Planned Educational Leave Program, and their spouses find both part-time and temporary full-time employment on and off campus during the school year and vacation periods. Job opportunities are available in many fields of interest and require skills ranging from entry level to highly technical. For further information, see “Student Employment” in the Student Life chapter of this catalog.

UNDERGRADUATE SCHOLARSHIPS AND AWARDS

Information:
Scholarship Office
207 Third Street, Suite B
916-757-3153; e-mail: ugscholofc@ucdavis.edu

Mailing address:
Scholarship Office
University of California
Davis, CA 95616-8696

UC Davis recognizes exceptional students with scholarships awarded on the basis of academic excellence and exceptional promise. The Scholarship Office administers approximately 200 different undergraduate scholarships. Many more scholarships are handled through outside agencies.

Scholarship recipients are chosen by committees made up of both students and faculty. In addition to academic records (a minimum grade point average of 3.25 is required), selection may be based on letters of recommendation, test scores, and a personal essay in which your university goals and objectives are stated. Some awards are limited to students in specific majors or colleges, residents of certain geographical areas, students of a par-
ricular class standing, or students with demonstrated financial need. Most scholarships are not renewable and you must re-apply each year for scholarship aid.

Students applying to the university for the fall quarter are considered for scholarships using the same forms completed for admission purposes. Winter and spring quarter admission applicants should contact the Scholarship Office for instructions no later than November 1. Continuing students should obtain scholarship applications from the Scholarship Office in October. These applications are due in early December. Announcement of winners is usually made beginning in April.

Graduate students are also eligible for various scholarships and fellowships. (See the Graduate Studies chapter.)

Regents Scholarships, among the highest honors that undergraduates at the university can receive, are granted to exceptionally promising freshmen or juniors enrolling in the fall quarter. Awards may be honorary (a $1,000 per year award) or may be accompanied by a stipend generally covering the difference between family resources and yearly educational costs. These scholarships are renewable as long as you maintain a 3.25 grade point average.

- Dollar amounts vary—up to full financial need
- 2-year and 4-year renewable scholarships

Alumni Scholarships, provided by the Alumni Association in cooperation with the university, are based primarily upon leadership and scholastic achievement. Your financial need and extracurricular activities may also be considered.

- $1,000 maximum
- New undergraduates only
- Selection by local Alumni Association chapters

Military Scholarships are awarded to outstanding high school seniors without regard to financial need, as well as to UC Davis students who have demonstrated exceptional leadership and scholastic achievement during their freshman and/or sophomore years. Eligible high school seniors apply for the full 4-year scholarship and must file applications by November. UC Davis scholarship students participate in the Military Science (ROTC) Program. Information and applications are available from the Department of Military Science, 125 Hickey Gymnasium, 916-752-0543.

- Full fees, books and supplies
- $1,000 per year for miscellaneous expenses
- 1-, 2-, 3-, or 4-year scholarships

Other Scholarships are made possible by individual donors, private corporations, and various agencies. Many organizations and groups conduct their own scholarship programs. In most cases, you apply directly to these sponsoring groups.

- Generally $100 to $3,200

Special Prizes at UC Davis recognize outstanding performance, achievement and promise in special programs or majors. The most prestigious prize is the University Medal, presented to the most outstanding graduating senior.

- Plaques or certificates and cash awards
- College and school medals to outstanding graduates
You can expand your UC Davis experience and add a measure of convenience to your life by living on campus; some 3,600 undergraduate and graduate students do just that. Students and professional staff in each of the residence hall complexes help create and maintain an environment conducive to personal growth and educational achievement. About 90 percent of the freshman students live in residence halls. Twenty-five percent of the transfer students elect to live in a residence hall environment. All new undergraduates whose Statements of Intent to Register (SIR) are received on time are guaranteed residence hall housing as long as they complete all of the instructions that accompany their contracts. Graduate students will be offered contracts on a space-available basis in Lysle Leach Hall.

The total room-and-board rate for the 1996-97 academic year is $5,155–$5,840 for a double-occupancy room and $5,705–$6,385 for a single room (of which there are very few available to new residents). Cost depends on which of the six meal plans you choose. Rooms are furnished with a bed, desk and chair, bookcase, chest of drawers, study lamp and bulletin board for each resident.

If the Davis campus is your choice, the Student Housing Office mails necessary housing information with your admissions letter. If you have a physical disability that requires special housing accommodation, please send a detailed letter of explanation to the Housing Residential Services Office, Room 160, Student Housing Office, at the time you return your Statement of Intent to Register. Your housing contract will be mailed to you between May 15 and July 15. At that time you will be able to choose your meal plan.

Student Family Housing: Orchard Park/Solano Park

Information: 916-752-2033

There are 476 university-operated, furnished and unfurnished on-campus apartments for UC Davis student families. The monthly rates for the academic year 1996-97 will be as follows:

- Orchard Park, two-bedroom unfurnished apartment, $482.
- Orchard Park, two-bedroom furnished apartment, $513.
- Solano Park, one-bedroom unfurnished apartment, $386.
- Solano Park, two-bedroom unfurnished apartment, $438.

Vacancies in Orchard Park/Solano Park are filled from a list based on the date of application. For a fall assignment, you should apply at least six to nine months in advance. For an assignment during the remainder of the year, the waiting period is usually shorter. An application may be submitted before you are admitted to the university and before you are married, but you must show documentation of your student, marital or parental status before occupancy can be granted. If a member of your family has a physical disability that requires special housing accommodation, please attach a detailed letter of explanation to your application.

Russell Park

Information: 916-753-7322

Privately owned and managed on-campus living accommodations are available for student families. Russell Park features one-, two-, and three-bedroom unfurnished units.

Graduate Student Apartment Housing

Information: The Atriums 916-753-0659

The Atriums offers on-campus living accommodations for single graduate students. The privately owned and managed apartments feature studio and two-bedroom unfurnished units.

STUDENT SERVICES

Student Health

Information: Cowell Student Health Center 916-752-2300

Your health is important to you and to the university. Consequently, new students are asked to submit a medical history form and evidence of rubeola and rubella immunity to the Health Center.

The services of the Health Center are made possible, in part, by your registration fees. As an enrolled student paying full registration fees, you are eligible to use the Health Center from the first day of the quarter through the last day of the quarter or to the date of official withdrawal. Some of the Health Center services and facilities are:

- General outpatient care
- Regularly scheduled clinics
- X-ray, laboratory and pharmacy services
- Physical therapy
- Women's Clinic

The Health Center currently does not provide services for dental problems.

Health Center services are available to students’ dependents on a fee-for-service basis. Also, you may purchase a Health Insurance Plan at the Health Center for your spouse and children.

Health Insurance. Graduate, professional and international students must purchase a mandatory insurance plan as part of registration. Undergraduate students have an opportunity to purchase a voluntary plan. For more information, you may call 916-752-2612 or visit the Patient Accounts Office at Cowell Student Health Center, 8:00 a.m. to noon and 1:00 to 5:00 p.m., Monday, Tuesday, Thursday and Friday, and 9:00 a.m. to noon and 1:00 to 5:00 p.m. on Wednesday.
Child Care Programs

Need help with child care? The following programs are available on campus and in the community.

- **Student Housing/Child Care Services** is the principle resource on campus for child care information and referrals. The office distributes child care publications, coordinates an information network among campus units, and serves as the university’s liaison with the on-campus day care centers (LaRue Park Children’s House, Russell Park Child Development Center), and City of Davis Parks and Community Services/Child Care. Additional services include client advising and grievance counseling.

 Information: 260 Student Housing Office, 916-752-5415, e-mail: baashby@ucdavis.edu

- **City of Davis Parks and Community Services/Child Care** provides further resources and information, particularly referrals to licensed family child care homes, and administers a variety of child care subsidies. The program is funded jointly by UC Davis, the City of Davis and the State Department of Education. The program maintains information on licensed family child care homes, day care centers, nursery schools, playgroups and other family-related services for all of Yolo County. Additional services include parenting workshops and handouts; a bimonthly newsletter; a parenting resource library; and a book, video and toy lending library.

 Information and application: City of Davis Parks and Community Services/Child Care, 604 Second Street, 916-757-5691

- The UC Davis Registration Fee Child Care Subsidy Program provides partial child care subsidies to full-time students. Spouses must also be attending school and/or employed full time. Special needs situations will be considered on a case-by-case basis. Eligibility is based on low to moderate family income, with awards determined through a lottery each fall. Parents may choose from licensed family child care homes and day care centers.

 Information and application: City of Davis Parks and Community Services/Child Care, 604 Second Street, 916-757-5691

- **The Child Care Grant Program**, funded through the State Department of Education and administered by City of Davis Parks and Community Services/Child Care, can help low-income families pay for child care through a variety of subsidies. Eligibility requirements and choices of child care settings vary with each program, but all parents need to be employed, in school or seeking employment, and all care must be provided within Yolo County. Parents may be required to pay a fee on a sliding scale. Admittance is based on income and priority guidelines set by the state and federal government. A waiting list is maintained for all programs, with applications accepted year round.

 Information and application: City of Davis Parks and Community Services/Child Care, 604 Second Street, 916-757-5691

- **The Financial Aid Office** can assist student parents who qualify for financial aid with allowances for direct child care costs.

 Information: Financial Aid Information Desk, 125 University House Annex, 916-752-2390

- **The Student Employment Center** posts job listings of parents wishing to hire child care providers.

 Information: 296 Voorhies Hall, 916-752-0520

- **The Community Housing Listing Service/Child Care** provides further resources and information, particularly referrals to licensed family child care homes, and administers a variety of child care subsidies. The program is funded jointly by UC Davis, the City of Davis and the State Department of Education. The program maintains information on licensed family child care homes, day care centers, nursery schools, playgroups and other family-related services for all of Yolo County. Additional services include parenting workshops and handouts; a bimonthly newsletter; a parenting resource library; and a book, video and toy lending library.

 Information and application: City of Davis Parks and Community Services/Child Care, 604 Second Street, 916-757-5691

- **The Perfect Tender Infant Care Cooperative** serves infants under twelve months of age whose parent(s) attend the School of Law.

 Information: 916-752-0243

- **The Center for Child and Family Studies** is a teaching and research laboratory for the Department of Human and Community Development. Four different part-time programs accommodate children from the ages of four months to six years, following the UC Davis academic calendar. The center is located on campus, and student families pay reduced tuition. Children are selected from a waiting list according to criteria designed to meet academic goals.

 Information: The Center for Child and Family Studies, West House (office), 916-752-2888.

- **Cooperative playgroups** are sponsored by the student family housing parents’ associations of Orchard and Solano Parks, 916-759-0146. Each program may serve up to 15 children aged 2 to 5 years.

- **LaRue Park Children’s House and Russell Park Child Development Center** are privately owned and operated child care centers on the UC Davis campus serving infants through kindergarten-age children. Residents of Russell Park, Orchard Park, and Solano Park student family housing pay reduced rates.

 Information: LaRue Park Children’s House, 916-753-8716; Russell Park Child Development Center, 916-753-2487

- **The Women’s Resources and Research Center** sponsors the Child Emergency Notification Service, which provides schools and child care providers a means of contacting student parents if they are in class at the time of a health-related emergency involving their child. This service is available to all student parents and requires
in-person registration each quarter. It is intended as a back-up if the school or child care provider cannot reach the primary emergency contact.

Information: 10 Lower Freeborn, 916-752-3372.

- The UC Davis Breastfeeding Support Program provides lactation sites with electric breast pumps, registration and orientation sessions, and sale of breastfeeding supplies for mothers who wish to continue breastfeeding their infants after returning to school or work. The program is sponsored by Student Housing/Child Care Services and the Division of Human Resources and Risk Management.

Student Employment

Information:
Student Employment Center
Basement, South Hall
916-752-0520

The Student Employment Center helps students who are enrolled in a full-time or part-time degree program, students on PELP, students’ spouses, and students with a letter of acceptance for the following quarter who have not yet registered.

Employment opportunities exist on campus, in the city of Davis and in adjacent communities. Full-time, part-time and temporary jobs are available during the school year and vacation periods. New listings are posted daily. Listings of employment opportunities for the summer with government agencies, camps and resorts throughout California are located at the center. Students are encouraged to begin looking in early March for summer jobs.

Offers of employment are conditional, subject to proof of identity and U.S. citizenship or your right to work in the U.S., as required by federal law (Immigration Reform and Control Act 1986).

The center is open Monday through Friday, 9–11:45 a.m. and 1–4 p.m.

Transportation and Parking

Parking. If you park a vehicle (including a motorcycle or moped) on the Davis campus, you must have a valid parking permit or pay at a meter Monday through Friday between the hours of 7 a.m. and 10 p.m. Parking lots on campus are financed solely by fees collected from parking permits and meters. Daily permits are currently $2, and may be obtained from permit dispensers located in lots 1, 2, 3, 25, 31, 47, 47A, 49, 50, 54, and 81; daily permits for lots 2B and 30 are $1. Long-term permits are required for all other parking lots, and may be purchased at the Transportation and Parking Services Office, located on Extension Center Drive directly south of lot 30 and the Rec Pool. Visitor parking information is available at the South Gate Kiosk on Old Davis Road, or call Transportation and Parking Services at 916-752-8277.

Motorist Assistance Program—Complimentary Service. Transportation and Parking Services (TAPS) provides several services to on-campus motorists at no charge, including lockout service, inflation of flat tires, battery jump service and, if you're out of gas, a gas can and a ride to the nearest gas station. Service hours are Monday–Friday, 7 a.m.–9:45 p.m. Call 752-3729.

Ridesharing. UC Davis encourages ridesharing. For information on transportation alternatives to the Davis campus, call 916-752-MILE or visit the Transportation and Parking Services Office located on Extension Center Drive. Alternatives include carpooling and vanpooling (registered pools receive reduced parking rates as well as preferential parking), public transit, commuter match assistance and shuttle systems.

Shuttles. The UCD/UCDMC Shuttle provides hourly service between the Davis campus and the medical center in Sacramento. The shuttle operates Monday through Friday and is available to all members of the UC Davis community. The Intracampus Bus provides transportation between the Davis campus and the Berkeley campus for university employees, registered students and other university affiliates. Call Fleet Services at 752-8287 for schedule information and reservations.

Buses. Unitrans, 13 bus lines operated by the Associated Students, serves the campus and city year round. Undergraduate students ride by showing a valid registration card. Others ride by paying a cash fare or purchasing tickets or passes at Transportation and Parking Services or the Campus Box Office. Full service is provided each UC Davis school day (Monday through Friday) and Monday through Thursday night during the regular school year—fall, winter and spring quarters. Reduced schedule bus service operates during the summer, finals week and all academic break periods. Schedules are available at the MU Information desk, bus terminals, City Hall and the Unitrans office.

Recreation and the Arts

No matter what your recreational bent—horseback riding, outdoor activities, listening to music, arts and crafts, bowling, swimming or sports—the Davis campus has a place where you can enjoy it.

Facilities and programs such as the Equestrian Center, Craft Center, Outdoor Adventures, Recreation Hall, Intramural Sports, MU Art Gallery, Recreation Swimming Pool or the MU Games Area will help you balance the academic demands at UC Davis with your leisure interests. A catalog of recreational activities is published quarterly, mailed to all residences in Davis and distributed throughout campus. Call 916-752-1730 to request a catalog.

Memorial Union and Campus Recreation

Information:
Memorial Union Programs and Campus Recreation
Lower Freeborn
916-752-1730

Memorial Union Programs and Campus Recreation at UC Davis provide the community with a variety of choices for social, physical, creative, intellectual and cultural expression. The purpose of these programs is to broaden the personal experiences of participants, to complement the academic mission of the university and to enhance the quality of life for the campus. These programs provide many healthy activities to offset the stresses associated with a rigorous academic environment. For additional information, visit the Campus Recreation World Wide Web site:

http://pubweb.ucdavis.edu/Documents/OA/recreational.html
Outdoor Adventures, located in the Barn on the corner of California and Hutchison, will help you develop your outdoor skills and plan your outdoor excursions. You can rent equipment of professional quality for your adventure. An up-to-date library contains topographic maps, trail guides and other materials. Classes, excursions and clinics in backpacking, rock-climbing techniques, whitewater rafting, kayaking, sea kayaking, mountaineering, cross-country skiing and other sports are offered throughout the year. Group rates and custom-designed trips can be arranged. Many special activities such as wilderness emergency-care clinics, whitewater river guide training, slide presentations and programs conducted by outdoor experts are also held. Stop in and share your own outdoor experiences. For more information call 916-752-1995/1730.

The Equestrian Center, southwest of the Veterinary Medical Hospital off Garrod Drive, is active all year round, providing trail rides, practice sessions and instruction in both English and Western riding. Group and private lessons are available for beginning through advanced levels, and trained volunteers can provide an educational experience for those interested in horse care and stable management. The Equestrian Center sponsors clinics, horse shows, summer equestrian camps and special events, and also coordinates the Equestrian Club for student participation. Telephone 916-752-2372/1730 for details.

The Craft Center in the South Silo is an ideal place to channel your creative energy. Facilities are available on a drop-in basis, or purchase a pass for more frequent use of the equipment and work space. Workshops and classes are offered each quarter in such varied crafts as woodworking, weaving, jewelry-making, art and graphics, computer imaging, ceramics, photography, silkscreen printing, welding, leatherworking and stained glass. Call for more information: 916-752-1475/1730.

The Recreation Swimming Pool, at the corner of La Rue Road and Hutchison Drive, is a large free-form pool with a separate wading pool, a bathhouse, shuffleboard courts and an extensive grass area for sunbathing. The staff offers lessons to all age groups and arranges for special events such as “family nights.” The pool opens for the season in April and closes in October. For more information, call 916-752-2695 or 916-752-1995/1730.

The Games Area, located below the UCD Bookstore, is a recreational facility consisting of a bowling center, billiards room, video arcade, lounge and storage lockers. The Games Area conducts bowling leagues, classes, clinics and tournaments for all ages from beginning through advanced skill levels. The facility is fully accessible to those with disabilities. Call 916-752-2580/1730 for details.

The Memorial Union (MU) complex, directly north of the Quad, serves as the community center for the campus. First-floor facilities include the UCD Bookstore, Corral gift shop and the Coffee House. Bring yourself up to date on local events by stopping at the MU Campus Information Center. The Information Center takes reservations for the use of tables and display boards in and around the MU. The center maintains an up-to-date database of 1,200 organizations and can refer you to people, places, programs and services on and off campus. The goal is to save you the “run-around” so you can get the information you need quickly and conveniently. You can also use this valuable resource by telephone, 916-752-2222, or e-mail: info-center@ucdavis.edu.
The Silo Union, recently renovated to serve a variety of campus needs, offers food services, meeting/conference facilities, lounges and the campus pub. If you would like to reserve space in the Silo for a meeting, social event or conference, call Campus Events and Information at 916-752-2813.

The South Silo houses the ASUCD Experimental College (916-752-2568), Student Special Services (916-752-2007), Graduate Student Association (916-752-6108) and a small branch of the Bookstore serving the School of Law (916-752-2961).

Recreation Hall

Information:
Entrance 1B
916-752-6074

Recreation Hall is a multi-use arena available for intramural and informal recreation play, intercollegiate athletic basketball and women's gymnastics, physical education classes and sports clubs. Numerous special events sponsored each year by the campus and community are held in the 8,400-seat Recreation Hall. The tri-level facility has locker rooms; a flat running track; an equipment room; racquetball, wallyball and squash courts; a weight room with free weights, universals, hydraulic machines, stair machines, rowing machines and bicycles; court areas for basketball, volleyball and badminton; and areas for martial arts, table tennis, gymnastics, aerobics and dance. The upper level north area has a state-of-the-art artificial rockclimbing wall for climbers of all skill levels. The Special Events Room can be reserved for meetings by calling the Campus Events and Information Office.

Undergraduate students can use Rec Hall facilities by showing their current valid photo ID card. Graduate students must pay a $5.00 per quarter activity fee. Students may also purchase a $6.00 guest pass valid for three people. Non-students may purchase a privilege card at Rec Hall to use lockers, equipment and facilities. Patrons may also purchase a daily pass at the 1B entrance. Rec Hall is open Monday through Thursday from 6:30 a.m. to midnight; Fridays 6:30 a.m. to 10:00 p.m., Saturdays 9:00 a.m. to 6:00 p.m., and Sundays noon to 10:00 p.m. throughout the year. Rec Hall hours are shortened during quarter breaks and summer.

Recreation Hall is surrounded by an outdoor fitness cluster on Orchard Field, the in-line skate facility on La Rue Road just north of the Rec Pool, and the volleyball and basketball courts west of the Segundo residence hall complex. While these courts are primarily for student use, they are also available to the general community. The courts cannot be reserved and are available on a first-come, first-served basis.

Intramural Sports/Sports Clubs and Intercollegiate Athletics

Information:
IM Sports/Sports Clubs
140 Rec Hall
916-752-3500

Intercollegiate Athletics
264 Hickey Gymnasium
916-752-1111

Intramural Sports, Sports Clubs and Intercollegiate Athletics programs provide organized sports competition and physical recreational activities across the broad spectrum of students' physical abilities. The underlying objective is to offer a coordinated program of sport opportunities to meet student needs at every level of skill and interest.

The Intramural Sports office provides a structured, competitive program involving 36 men's, women's and coed activities with over 13,000 participants. Complementing this highly popular sports arena is the diverse sports club program. A total of 33 recreational and competitive offerings attract 1,400 athletes in activities ranging from archery, badminton, crew, horse polo, and water and snow skiing, to the traditional volleyball, lacrosse, rugby, water polo and equestrian events.

Although intercollegiate athletics at Davis benefits the campus by creating esprit de corps, its primary role is to provide personal development opportunities for as many non-scholarship student-athlete participants as facilities and resources permit. Currently, the program consists of varsity teams in eleven men's sports and twelve women's sports. Membership affiliation is with the Northern California Athletic Conference and Division II of the National Collegiate Athletic Association. Approximately 650 students compete on varsity teams each year.

The Arts

Whether you want to participate, be entertained or be inspired, an abundance of creative, musical, theater, art, design and dance offerings are happening on campus all year long.

UC Davis Presents (916-757-3199), located at 200 B Street, Suite A, brings a wide variety of world-class performing artists to UC Davis to serve both the campus and surrounding communities. During the academic year, UC Davis Presents offers concerts and recitals by classical, jazz and folk music artists; drama; classical, modern and ethnic dance; and lectures by eminent public figures. Bulletin boards, kiosks, the student radio station KDVS and the California Aggie inform audiences about upcoming events.

You'll find annual and quarterly brochures and promotional materials on all events sponsored by UC Davis Presents at the Campus Box Office and at the UC Davis Presents office. Tickets for UC Davis Presents events may be purchased at the Campus Box Office in Freeborn Hall, 916-752-1915, or any BASS/TM outlet.

Music

The Department of Music (916-752-5537) sponsors the UCD Symphony Orchestra, Chorus, Chamber Singers, Early Music Ensemble, Gospel Choir, Concert Band and small ensemble groups. Music majors and other interested students can receive credit for participation in these groups, which perform at concerts and recitals open to the university community. The department sponsors the annual Theatre of Voices Festival and, for one quarter each year, an artist-in-residence who gives concerts, recitals and lectures. Free noon concerts featuring individual performers and ensembles—both professional musicians and music students—are a favorite weekly event during the school year. The UC Davis Contemporary Music Players and the UCD Faculty Woodwind Quintet are in residence on campus. The Department of Music sponsors nearly 100 public concerts each year.
The Department of Dramatic Art has one of the finest theater facilities in California. The excellent faculty and the Granada Artists-in-Residence program (which brings a major British director to the department each quarter), the presence of graduate students working on Master of Fine Arts (M.F.A.) degrees in acting and Ph.D. degrees in 20th Century Performance and Culture, and an unusually good stock of scenery, props, costumes and state-of-the-art lighting and sound equipment all contribute to the professional quality of UC Davis productions and programs.

Each year's drama and dance schedule includes University Theatre Season (five major productions of established plays); Dance Collage (a collection of student and faculty choreographed dance numbers); and Studio Season (four to six productions). Studio Season features premiere performances of new plays written at UC Davis, productions of established plays, and performance projects conceived and produced for the first time at UC Davis. Studio Season productions are held in the smaller department theaters and typically are produced entirely by students. The final production each year is the Undergraduate Playwright's Festival, a collection of three or four one-act plays written by undergraduates and produced for the first time. These productions are part of the academic program of the department and serve an important purpose in the study of dramatic art. Participation is open to all students.

Art Galleries

A tour of all the UC Davis art galleries will take you from one corner of the campus to the other. The **MU Art Gallery** (916-752-2885), located on the second floor of the Memorial Union, features a series of changing contemporary and historical art exhibits during the school year. Works by professional artists as well as students are on display for periods of six weeks.

The **Design Gallery** (916-752-4139) on the first floor of Walker Hall is known for its exciting exhibitions of design-related material. Changing presentations and installations of architecture, interiors, graphics, costumes, textiles, folk art and the annual Student Show and Picnic Day Exhibition reflect the interests of the design program. The Design Gallery is an innovative space where the installations are as interesting as the material presented. Hours during exhibition periods are noon to 5:00 p.m. Monday through Friday; 2:00 to 5:00 p.m. Sundays, and closed on holidays.

The Art Building houses three galleries. The **Richard L. Nelson Gallery** (916-752-8500), named in honor of the first chair of the Department of Art and dedicated in 1976, is located on the first floor. The gallery organizes regularly changing exhibitions of historical and contemporary works of art. The gallery's program reflects and complements the teaching program of the Department of Art and provides aesthetic enrichment to the university community and the Northern California area at large. Hours during exhibition periods are noon to 5:00 p.m., Monday-Friday, and 2:00 to 5:00 p.m. Sunday. The **Fine Arts Collection** (916-752-8500) is located adjacent to the Nelson Gallery. Representing various historical periods and cultures, it is the Davis campus's major collection of art. Selected works are available for viewing weekday afternoons. The **Basement Gallery** is a student-directed gallery that exhibits the artwork of advanced UC Davis art majors. The exhibitions change biweekly throughout the academic year. Hours are 9:00 a.m. to 4:00 p.m., Monday through Friday.

Hart Hall is home to the C.N. Gorman Museum (916-752-6567, Native American Studies). The museum was established in 1973 in honor of Carl N. Gorman, artist, advocate and former faculty member of Native American Studies. The museum features changing exhibitions of works by Native American and diverse artists. Selections from the permanent collection of art are also exhibited on a rotating basis throughout the year. The museum is located on the first floor in Hart Hall and is open from noon to 5:00 p.m., Tuesday through Friday, and by appointment.

ASSOCIATED STUDENTS (ASUCD)

Information: Senate Office, Basement, South Hall, 916-752-3632; ASUCD Main Office, Basement, South Hall, 916-752-1990

The Associated Students of the University of California, Davis (ASUCD), authorized by the regents and the chancellor, represents all undergraduate students. Law and graduate students also currently have access to all ASUCD commercial activities. Funds allocated to ASUCD provide activities and services that will make life as a student a little easier, less expensive, or just more fun.

The student government budgets the allocated funds each year through its senate. Based on a modified federal form of government, the Senate consists of 12 elected senate members and the ASUCD president and vice president. The Senate is the policy-making body for ASUCD and supervises all aspects of the association. The ASUCD president is the chief administrative officer for ASUCD and is assisted by the vice president who serves as the executive aide. ASUCD is the liaison for the undergraduate student body and represents the students with other universities, the UC Office of the President and the regents.

Six **commissions** are subordinate advisory bodies of the Senate and assist the governing board with its decisions by researching legislation and making recommendations. Commission chairs are ex officio members to the Senate. Each commission also involves itself with various projects that relate to their specific area.

- **External Affairs** deals with off-campus concerns (the regents, UC Office of the President, etc.).
- **Internal Affairs** recommends policies to improve the quality of nonacademic student life on campus.
- **Academic Affairs** acts as an advocate for student rights in the area of academics, including dealing with the Academic Senate and with issues such as grading policies, tenure and teacher evaluations.
- **Business and Finance** makes recommendations to the Senate on all financial matters.
- **Ethnic and Cultural Affairs** makes recommendations on policies and programs concerning UC Davis' ethnic community, for establishing liaison and achieving...
rappor with on-campus and off-campus bodies affecting ethnic students and their quality of life while at the university.

- Environmental Policy and Planning addresses all issues and concerns that pertain directly to the campus environment.

The judicial branch authority is vested in the Supreme Court. The court reviews legislation at the request of any ASUCD member and has the ultimate authority to interpret the ASUCD constitution.

ASUCD operates more than forty activities and services for UC Davis students. Information about these services can be found in the Student Directory, which combines details about ASUCD services and organizations with the ASUCD student telephone directory, or by visiting the ASUCD offices in the Memorial Union.

Some of the services operated by the ASUCD for university students include the Unitrans bus system, California Aggie newspaper, the Bike Barn repair services, travel service, free legal advice for undergraduate students, convenience store, U.S. Post Office and the Coffee House in the Memorial Union. The ASUCD-sponsored Experimental College offers a variety of nontraditional classes each quarter for students interested in diversifying their educational experience. Other ASUCD activities include Radio KDVS stereo 90.3 FM, Classical Notes and Campus Copies, Housing Viewpoint, Homecoming, Student Forums, Entertainment Council, Whole Earth Festival and Picnic Day.

UC Davis Administrative Advisory Committees

Students may become involved in issues affecting the campus community by applying for membership on an administrative advisory committee. Each committee advises on policies affecting campus life in a specific area, such as athletics, child care, disability issues, information technology or registration fees.

The committees respond to requests for advice, identify needs or concerns within the charge of the committee, and recommend action to the administration. As members of an administrative advisory committee, students can make sure that student perspectives are well represented in the committee’s recommendations and, in turn, learn more about faculty, Academic Federation and staff views of campus issues. Applications are accepted each winter for service on committees the following academic year.

GRADUATE STUDENT ASSOCIATION (GSA)

Information:
Room 253, South Silo
916-732-6108, fax: 916-732-3158; e-mail: gsa@ucdavis.edu

The Graduate Student Association (GSA) is the officially recognized student government for UC Davis graduate students. GSA is a representative assembly that provides a forum for addressing the concerns of graduate students and promotes communication with campus administrators. GSA also serves as an advocate at all levels of the university on behalf of graduate students. Funded by graduate student fees, GSA provides services to all academic graduate students and to professional students in the Graduate School of Management. Services include new student orientation, community housing listing service, legal service, fax service, travel awards, newsletters and assorted social events. Other professional students are eligible to join GSA by paying a fee.

GSA is run by graduate and professional students who devote time and expertise to the General Assembly, the Executive Council and committees. GSA General Assembly representatives are designated by other students in their department or graduate group. General Assembly meetings are held once a month and are open to all graduate and professional students. Each year the General Assembly elects the members of the Executive Council, who serve in a variety of positions to carry out the policies and functions of the organization. To find out what GSA can do for you, please call or visit the GSA office.

STUDENT PROGRAMS AND ACTIVITIES

Information:
Student Programs and Activities Center
4th Floor, Memorial Union
916-752-2027

Over 300 registered student organizations at UC Davis, including cultural, social, religious, political, ethnic, academic, international, recreational, performing and service groups, provide students and the entire campus with important educational experiences. The Student Programs and Activities Center registers these diverse groups and provides educational programs, advising and support regarding activities, event planning, development, conflict resolution, resources and campus policies. Through participation in these organizations, students have the opportunity to meet friends, clarify values, apply classroom learning, gain a sense of accomplishment, develop role models and learn to work cooperatively with others. In addition to the subunits described below, the Student Programs and Activities Center administers a number of campus programs: Activities Faire, Club Finance Council, College Bowl, Danzantes del Alma folkloric dance troupe, leadership training programs, campus service awards, and liaison to fraternities and sororities. Center staff assist individual students who want to become involved in activities or start new organizations. All students are encouraged to drop by the Center to explore these “hands-on” experiences that reinforce personal and academic development in college as well as prepare them for future careers.

Cultural Days is an annual series of programs celebrating the diverse ethnic cultures of the university community. Programs include African Continuum, Asian Pacific Cultural Week, Semana de la Raza and the Native American Powwow. Everyone is invited to share in these programs featuring speakers, workshops, films, entertainment and family events.

The Cal Aggie Marching Band entertains spectators at athletic, campus and community events. As one of the last remaining “student-run” bands in the nation, the band has a style and personality all its own. The UC Davis Spirit Squad, a group of talented and enthusiastic dancers, stunt team members and gymnasts, travels and performs with the band.
Student Judicial Affairs supports the standards of the campus by responding to alleged violations of university policies or campus regulations. In addition, the office coordinates the informal resolution process and receives formal complaints for student grievances based on impermissible discrimination or harassment (sexual, racial, religious, handicap, etc.), or on violations of student rights to obtain access to or prevent disclosures from their campus records. The office aids in conflict resolution and can provide interpretations of university policies and regulations.

Student Conduct and Discipline

Students enrolling or seeking enrollment in the university assume an obligation to act honestly, ethically and responsibly in a manner compatible with the university’s function as an educational institution. Rules concerning student conduct, student organizations, use of university facilities and related matters are set forth in both university policies and campus regulations. Standards for student conduct are included in the UCD Code of Academic Conduct, in the Student Activities Handbook, in the Guide to Residence Hall Life and in the University of California Policies Applying to Campus Activities, Organizations and Students. The operation of the campus student disciplinary system is outlined in the booklet Administration of Student Discipline. These policies and regulations are available from the Office of Student Judicial Affairs, Room 308, South Hall.

A summary of student conduct expectations is published each quarter in the Class Schedule and Room Directory. Misconduct for which students are subject to discipline includes, but is not limited to, plagiarism; cheating; knowingly furnishing false information to the university; sexual or other physical assault; threats of violence; possession of weapons; harassment, including stalking, sexual harassment or “fighting words”; forgery; theft; vandalism; illegal possession, use or sale of drugs or alcohol; hazing; obstruction or disruption of university activities or functions; and alteration or misuse of university documents, records, keys or identification. Disciplinary sanctions that may be imposed range from a warning to dismissal, and may include restitution and/or assigned community service.

Alleged violations of campus or university standards should be referred to the Office of Student Judicial Affairs. If complaints cannot be resolved informally between Student Judicial Affairs, the accused student and the referring party, the case may be referred to a hearing before the Student Conduct Committee, Campus Judicial Board, or a hearing officer. The president of the university, through the chancellor, has ultimate authority for the administration of student discipline.

Student Responsibilities

You are responsible for complying with the announcements and regulations printed in this catalog and in the Class Schedule and Room Directory, and with all policies, rules and regulations of the university and this campus.
ACADEMIC ADVISING

UC Davis offers many different types of academic advising to help you get the most from your education. College advisers can assist you in meeting degree requirements and taking maximum advantage of the resources available in the university. A conference at least once a quarter is especially desirable for students during their first year and for seniors during the final quarters preceding graduation.

College of Agricultural and Environmental Sciences

Office of the Dean
228 Mrak Hall
916-752-0108

The Dean's Office provides you with

- Staff advisers who can advise on university and College rules, regulations and policies and procedures that affect students.
- Academic advising: in-depth advice regarding probation/dismissal status, admission to the College, readmission, and second bachelor's, limited and regular status.
- Advice and action on petitions.
- Additional services include study plan clearance, College English requirement check, release of holds on registration packets and final evaluation for graduation.

Associate Dean of Undergraduate Academic Programs
Annie King, Associate Dean
228 Mrak Hall
916-752-0108

The College has an associate dean of undergraduate academic programs and advising staff who welcome the opportunity to become acquainted and to talk informally with individual students. They can also help you with academic problems if you are placed on probation or subject to dismissal.

Academic Advising Center

Advising Center. Coordination of the College's Advising Center and the Summer Advising Program is available in the College's Academic Advising Center, 228 Mrak Hall.

Primarily, the Academic Advising Center advises students in the Exploratory Program. Advising for Individual Majors, as well as for other College majors and programs, is also available at the center.

Faculty Advisers/Staff Advisers. You will be assigned a faculty adviser to help you plan a program that corresponds to your individual educational interests. The Master Advisers coordinate advising within a major. Staff advisers located in the department can advise you on courses, specific requirements of majors and career opportunities. You are strongly urged to consult with your faculty adviser or staff adviser each quarter before selecting your courses.

As educational objectives evolve, you may, in consulta-

tion with the Master Adviser for your major, choose a new faculty adviser whose area of expertise corresponds more directly to your specific objectives.

Exploratory Program (non-degree program)
College Academic Advising Center
228 Mrak Hall, 916-752-0610

Are you unsure what major you really want to pursue? If so, you may want to register in the Exploratory Program. With the assistance of the college's Academic Advising Center and the major advisers, you will be able to explore specialization options, develop your decision-making abilities and ultimately select the major best suited to your needs. A major must be declared before you complete 120 units (see Declaration of Major). For registration purposes, indicate “Exploratory” on your admissions materials.

College of Engineering

Undergraduate Office Advisers (1050 Engineering II). By contacting the Undergraduate Office, you may obtain information and assistance on academic, career and personal matters, either through direct assistance from one of the staff advisers or through referral to other offices on campus. The Undergraduate Office handles student petitions, transfer evaluation, articulation and degree certifications.

Faculty Advisers. You will be assigned a faculty adviser your first term on campus by your departmental office. Students in engineering usually retain the same faculty adviser throughout the undergraduate program, but you may choose a new adviser whenever you wish. It is necessary only to keep your departmental office informed of your adviser selection.

The College is implementing a mandatory advising system through RSVP, the phone-in registration system. You will be required to meet with your adviser (faculty or staff) once a year, during a specific quarter, which will be determined by the number of units you have completed. When you telephone to register for classes that will meet during your advising quarter, you will be told that there is an advising hold on your registration. You will be permitted to enroll in classes for and during your advising quarter. If you meet with your adviser during your advising quarter, there will be no difficulties with subsequent registration. If, however, you fail to meet with your adviser during your assigned advising quarter, you will be dropped from all your classes in the following quarter. Therefore, you have approximately four months to clear an advising hold. For further information on mandatory advising, call the Advising Office at 752-0557.

Departmental Staff Advisers. Faculty advising is supplemented by a system of staff advising especially designed for students in that department. Consult your departmental office for more information.

Peers Advisers. A well-developed peer advising system complements faculty and staff advising. Student advisers are available at Bainer Hall, Engineering II, and at other locations described in the Other Academic Advising section of this chapter.
College of Letters and Science
Office of the Dean/
Undergraduate Education and Advising Office
200 Social Sciences and Humanities Building
916-752-0392

The associate dean and staff in the Undergraduate Education and Advising Office can assist you with a wide variety of issues relating to your academic goals and experiences. You can consult the Advising Office on matters such as program planning, selection of a major, exceptions to regulations and academic enrichment opportunities. The office also provides a number of additional services:

- Determines how your transfer credits from other institutions apply towards completion of breadth and unit requirements for the bachelor's degree (applicability of transfer credit toward the major is determined by your major faculty adviser)
- Provides degree checks to identify remaining college requirements and certifies graduation
- Acts on petitions requiring the dean's approval
- Reviews the records of students who are subject to disqualification and determines whether such students may continue at UC Davis

Advising

Faculty Advisers. New students are assigned to a faculty adviser prior to their first term of enrollment. If you indicated an interest in a particular program on your application, your adviser will be a faculty member associated with that major. If you change your major, you will be reassigned.

New students are encouraged to see their faculty adviser at least once every quarter during their first year on campus to discuss their educational goals, course program and progress.

Continuing students who have completed three quarters in residence in the College should consult with an adviser at certain important checkpoint stages in their academic careers (below). They are urged, however, to maintain regular contact with an adviser in their major to avoid program errors that may delay graduation. Seniors should maintain close contact with their adviser in order to ensure that they are meeting the major requirements.

Academic Options Program. If you did not indicate an initial commitment to a particular major program on your application, you will participate in the Academic Options Program, which provides academic advising to lower division students. You will be assisted by an advising team available in the Undergraduate Education and Advising Offices located in each of the university residence hall complexes. Students living off campus are asked to contact the Letters and Science Undergraduate Education and Advising Office early in the quarter to receive their adviser assignments.

Advising Checkpoints. You should consult with your faculty adviser at two, possibly three, critical stages in your academic career:

- Before you complete 90 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a proposal for a quarter-by-quarter program of courses showing how you will meet your educational goals and graduation requirements. You must also have declared a major by this time. Filing this plan with your adviser does not preclude subsequent modifications of the plan or a change of major.
- When you complete 133 units of degree credit, including transfer work, you should obtain Degree Check materials from the Letters and Science Advising Office and consult your adviser concerning course selection and satisfaction of requirements in the major.
- Before you complete 195 units of degree credit, including transfer work, you must develop in consultation with your faculty adviser a firm study plan, in the form of a quarter-by-quarter program that will satisfy all remaining degree requirements as expeditiously as possible. This plan will be filed with your adviser. If the plan indicates that you will have to register beyond the 225-unit limit in order to meet degree requirements, you must contact the Undergraduate Education and Advising Office immediately. Exceptions to the 225-unit limit are granted by the dean only rarely. Typically, approval is granted only to allow completion of minimum degree requirements.

If you have not met with your faculty adviser before these established checkpoints, a hold may be placed on your registration materials as a reminder.

Peer Advisers. Student-to-student advising is an important part of the university advising services. The College of Letters and Science dean's office peer advisers are available during regular office hours in 200 Social Sciences and Humanities Building and on a weekly basis in the campus residence halls to talk with students about their academic concerns.

Division of Biological Sciences
The Division of Biological Sciences Office
66 Briggs Hall
916-752-0410

The associate dean and staff in the Division of Biological Sciences Office can assist you with complete academic advising services for the Biological Sciences major and with general advising information about other divisional majors. In addition, the office can help you with a variety of issues including PELP, withdrawal, change of major and some financial aid forms.

This office is also responsible for the academic progress of all students majoring in the division. If you have any problems (personal, medical, financial) that are affecting your academic performance, or if you are on academic probation, make an appointment to see one of the advisers in the division office.

Sections and Advising Centers
Students entering or intending to declare sectional majors in biochemistry, evolution and ecology, genetics, microbiology, physiology or plant biology should contact the specific section office for academic advising services. Students selecting the biological sciences major should contact the Division of Biological Sciences Office for academic advising services.
Academic Peer Advising

Academic Peer Advising (APA) places peer advisers in over 45 departments to help students find the answers to their questions about major requirements, courses and university regulations. The academic peer adviser complements faculty advising by providing a student perspective on the department. The Academic Peer Advising staff is trained to provide information and assistance concerning graduate schools, career opportunities and college requirements. For more information contact the main APA office in 111 South Hall, 916-752-3000.

The First Resort

The First Resort is a place to go if you are feeling bogged down by university red tape, registration procedures, course selection, choosing a major or other general advising questions. The student advisers here can either answer your questions or put you in contact with others who can. The staff can give you advice and assistance from the point of view of someone who has “been there.” The First Resort maintains a referral service, a listing of courses of 1 to 3 units and other valuable resources. Pre-graduate school information is available, and graduate school bulletins and other supplemental materials on hand are useful in selecting a graduate program. If you have a problem, remember—start with The First Resort, open from 9:00 a.m. to 4:00 p.m. throughout the academic year. (First floor lobby, South Hall; 916-752-2807 or 916-752-3323.)

Orientation and Summer Advising Office

The Orientation and Summer Advising Office coordinates the Summer Advising and Registration Program, fall quarter Orientation activities and many other student assistance and orientation programs for new students. The staff will introduce you to the campus environment, procedures and opportunities, and offers programs relevant to students’ changing needs. Your contribution to orientation programs, through ideas and assistance, is always welcome. The coordinator’s office is located in 111 South Hall, 916-752-3000.

Advising Services

The Pre-Graduate School Information and Referral Service is a program available through Advising Services to assist students interested in M.A., M.B.A., Ph.D. or teaching credential programs. Specific services include help in locating graduate school programs in specific fields, completing application forms and statements of purpose, and planning financial options. This unit also coordinates the Undergraduate Research Conference, an annual event open to all undergraduate UC Davis researchers. Advisers are available through the main Advising Services office, 111 South Hall, 916-752-3000.

The Pre-Law Advising Office is where students interested in the legal profession can come for information. The staff can advise you about admission requirements and program planning. The office maintains a reference library of law school bulletins, legal assistant information, admission test materials and general career information. Students can get more information on preparation for law school and a legal career through the many seminars and workshops held each year. You may contact one of the pre-law advisers in 111 South Hall, 916-752-3000.

The Health Sciences Advising Office, 111 South Hall (916-752-2672), will be an important place for you if you are preparing for a profession in the health sciences. The professional staff and student advisers can provide information on requirements, application procedures, professional school curricula and related options. The office maintains an extensive library of school catalogs, statistics and books and journals related to health education.

Educational Opportunity Program/Student Affirmative Action (EOP/SAA)

Information:
228 North Hall
916-752-3472

The Educational Opportunity Program/Student Affirmative Action Information Office serves EOP/SAA students by assisting them with their academic, social and personal adjustments to the university environment; coordinates EOP/SAA new student orientation programs; and serves as liaison to staff, faculty and administrators. The office’s multicultural peer staff is particularly sensitive to differing social, cultural and ethnic concerns. In addition, those students interested in pursuing the helping professions can receive training and experience through the Peer Adviser Counselor training program.

EOP/SAA Information Office services are also accessible at various outreach locations throughout the campus, such as the Colleges of Agricultural and Environmental Sciences, Letters and Science and Engineering; Learning Skills Center; The House; and all ethnic studies departments. All students are invited to telephone or stop by the EOP/SAA Information Office on the second floor of North Hall or any one of the outreach locations to find out more about the peer counseling services.
ACADEMIC HELP

Learning Skills Center (LSC)
Information: Third Floor Voorhies Hall 916-752-2013

At the Learning Skills Center you can receive assistance in a wide variety of areas, including:

- General study skills
- Math/science study skills
- Writing essays and term papers
- Reading efficiency
- English as a second language
- Time-management skills
- Test-taking skills
- Test anxiety reduction and more

The center also provides individual tutoring sessions for students on academic probation or subject to dismissal. Group and drop-in tutoring are available to all students.

Learning specialists can assist you individually, or you may participate in workshops covering specific areas of study. The Learning Laboratory has self-help tapes and films that enable you to work at your own pace. The LSC library contains a variety of programmed instructional materials, reference books, preparation materials for the GRE, MCAT and LSAT exams, and a file of course examinations given in past quarters. Most materials may be checked out.

The Learning Skills Center is open Monday through Friday, 8:00 a.m. to 5:00 p.m. Come in and ask about our services, which are free to all UC Davis students.

EOP/SAA Tutoring
Information: Learning Skills Center Third Floor Voorhies Hall 916-752-2013

EOP/SAA tutoring is a free service for EOP and affirmative action students. If you are having difficulty with your coursework, the Learning Skills Center offers tutoring in most course areas. Tutoring is provided in groups and on a drop-in basis. For students in academic difficulty, pre-arranged one-to-one tutoring is also available. Although primary emphasis is on the assignments in your classes, tutorial services may also be used to improve study habits and learning skills. The tutoring program is staffed by students carefully selected for both their knowledge of course content and their sensitivity to the needs of students being tutored.

Special Transitional Enrichment Program (STEP)
Information: Learning Skills Center Third Floor Voorhies Hall 916-752-2013

New EOP/SAA students (freshmen) admitted by special action are expected to participate in the Special Transitional Enrichment Program (STEP). Selected regularly admitted EOP/SAA students are encouraged to do so. The program begins in summer and continues through the first academic year, providing preparatory course-work and developing academic skills. It helps students adjust academically and socially to the campus by strengthening their learning skills and study habits, and by providing an extensive orientation to campus life.

Learning Resource Centers
Information: Student Housing Sue Franck 916-752-1736

Learning Resource Centers are located in the Segundo, Tercero and Cuarto residence hall areas. They offer the following services to all residence hall students: PC computer terminals (IBM clones and Macintosh) and assistance, a reference library, language tapes, an exam file and a quiet place to study.

RESOLVING ACADEMIC PROBLEMS

The Grievance Process
Grade Changes. If you believe you received an incorrect grade due to a clerical or procedural error, ask your instructor to file a grade change form with the Registrar’s Office. If you believe you received an incorrect grade due to any type of discrimination, consult the office of Student Judicial Affairs (see below).

Other Grievances. If you need a requirement waiver or any other type of variance, contact your faculty adviser or the appropriate dean’s office for information on your college’s procedures. If you cannot get satisfaction through normal channels, contact the ASUCD Grievance Center or the Committee on Student-Faculty Relationships (see below).

Discrimination/Harassment. If you believe that you have been discriminated against or harassed, you may contact the office of Student Judicial Affairs (see below) or the ASUCD Grievance Center (see below) for information and assistance. Advice is also available from the Sexual Harassment Information Line (916-752-2255). Graduate students may contact Graduate Studies (916-752-0650) and/or the Graduate Student Associa-
tion (916-752-6108). Mediation services are available to resolve student grievances. For information, contact Student Housing (916-752-2491).

ASUCD Grievance Center

Information:
ASUCD Academic Affairs Office
376 Memorial Union
916-752-6101

The ASUCD Grievance Center advocates students’ academic concerns to the faculty and administration. Grievance counselors deal with students one-on-one, directing them to appropriate channels through which to state their grievances (i.e., student-faculty relations, sexual harassment, grade change problems, prejudicial treatment in the classroom and problems with academic procedure and policy). Students can get counseling, referrals and support to aid in the resolution of these matters.

Committee on Student-Faculty Relationships

Information:
Academic Senate Office
356 Mrak Hall
916-752-3920

If students with a grievance feel they cannot get satisfaction through normal procedures, they may contact the Committee on Student-Faculty Relationships for assistance. The committee is advisory and can make recommendations to the office having authority to resolve the problem. It may also meet informally with the students involved with the grievance.

Student Judicial Affairs

Information:
Student Judicial Affairs
3rd Floor, North Hall
916-752-1128

Student Judicial Affairs supports the standards of the campus by responding to alleged violations of university policies or campus regulations. In addition, the office coordinates the informal resolution process and receives formal complaints for student grievances based on impermissible discrimination or harassment (sexual, racial, religious, handicap, etc.), or on violations of student rights to obtain access to or prevent disclosures from their campus records. The office also can aid in conflict resolution and provide interpretations of university policies and regulations.

STUDENT SERVICES

Counseling Center

Information:
219 North Hall
916-752-0871

The Counseling Center offers confidential psychological, psychiatric and peer counseling services to students having problems that affect their academic progress and sense of well-being. The center’s staff offer assistance for personal and interpersonal issues such as relationships, family, stress, cultural differences, assertiveness, self esteem and intimacy. Additionally, staff provide assistance for educational/vocational concerns such as coping with university life, academic performance, test anxiety, reentry adjustment and determining life goals. Services for relationship issues are also offered to students and their partners.

Walk-in services are available daily for students needing immediate assistance. Short-term individual counseling, group counseling and assistance with off-campus referrals are provided. Career interest testing, personality testing and information about graduate school admissions tests and the Planned Educational Leave Program are available.

Services are free to all registered students. Confidentiality is strictly maintained in accordance with state laws and ethical standards. Students, faculty or staff who are concerned about a student or desire consultation or assistance in making a referral are encouraged to call the center. To make an appointment, telephone or come to the Counseling Center.

The House

Temporary Building 16
24-hour hotline: 916-752-2790; business line: 916-752-5665

Located in a green, two-story house next to the Housing Office, The House is a professionally managed peer counseling program of the Counseling Center. Students receive confidential support, information and referrals regarding personal or social problems. Well-trained student volunteers assist students through individual peer counseling and a wide variety of workshops and support groups held in an informal setting. No appointment is necessary and services are offered on a drop-in or telephone basis. The House is open seven days a week and is wheelchair accessible. Volunteers for peer counselor positions at the House are accepted each quarter. Students are trained in basic counseling skills and can receive units for training. Transcript notation is also available for quarters working as a peer counselor volunteer.

Health Education

Information:
Cowell Student Health Center
916-752-9652

Health education programs listed below are administered by Cowell Student Health Center. Because maintaining good health is vital for the successful pursuit of your educational goals, the Health Education Program provides information and services through five programs. Trained peer counselors, health educators, workshops and resource libraries are available through:

Campus Alcohol and Drug Abuse Prevention Program (CADAPP) (916-752-6334) — Individual assessments, six-week small group education courses and workshops on alcohol/other drug-related problems as well as issues of dysfunctional families and addiction. CADAPP includes two components: Peer Counselors in Athletics, an athlete-to-athlete substance abuse prevention and health education program and SESAP (Student Educators in Substance Abuse Prevention).

Student Educators in Substance Abuse Prevention (916-752-DRUG or 752-3784) — Information, peer counseling and resource referrals for students dealing with substance abuse issues of their own, or of their friends or family members. Programs and materials on responsible hospitality and non-alcohol party planning options.
Health Advocates and BikeRight (916-752-9651)—
Information is available on personal nutrition, exercise, stress management, wellness issues, bicycle safety, bike laws and injury prevention and many other topics. Students may also receive free individual computerized dietary analysis and peer nutrition counseling.

Peer Counselors in Sexuality (916-752-1151)—Information and peer counseling (in person or by phone) on birth control, pregnancy, sexually transmitted diseases (including HIV/AIDS), safer sex, healthy relationships, sex roles and other issues related to sexuality.

Lesbian, Gay and Bisexual Resource Center
Information:
University House
916-752-2452
The Lesbian, Gay and Bisexual (LGB) Resource Center offers a safe, supportive environment for people to learn more about lesbian, gay and bisexual concerns and to meet other members of the Davis community. The center has a wealth of information and resources about lesbian, gay and bisexual issues. Students who are studying or researching these issues are also encouraged to use the center’s resources. The center also serves as a meeting place for local organizations or support groups. The center’s resources include:

• A library of more than 400 books on topics ranging from domestic partnership issues to lesbian humor. Many of these books are available for personal use. Local and national newspapers and magazines are available, including The Advocate, Mom Guess What and San Francisco Sentinel.
• A resource database and files on local resources, including health professionals, legal services, clubs, organizations and community contacts.
• A bulletin board exchange, where community members may advertise special events, services, etc.

The LGB Resource Center is staffed by volunteers and serves all members of the Davis community. Open Monday through Friday; call for daily hours.

Rape Prevention Education Program
Information:
Fire and Police Building, Kleiber Hall Drive
916-752-3299
The goal of the Rape Prevention Education Program (RPEP) is to explore myths and expose the realities of sexual assault, focusing on prevention through education. Services include the following:

- Discussions and workshops on topics such as rape prevention, sexual harassment, acquaintance rape, men and rape prevention, media images of women, pornography and dating violence
- Self-defense classes for women, offered quarterly
- Short-term counseling, referrals and support groups for victims of rape, sexual assault, or incest survivors
- 24-hour crisis intervention and advocacy for victims of sexual violence accessed through UC Davis Police at 752-1230
- Training for peer counselors and professionals
- A circulating library of books, videos and articles on sexual assault and related issues
- Quarterly newsletter, Freeing Our Lives

Call RPEP for drop-in hours or to make an appointment. RPEP has student work-study positions and a volunteer staff. Contact RPEP if you have questions.

Services for International Students and Scholars (S.I.S.S.)
Information:
Services for International Students and Scholars
916-752-0864
The S.I.S.S. office assists international students throughout their programs of study at UC Davis, providing orientation and personal and cultural advising. S.I.S.S. also provides information and assistance regarding immigration regulations and helps students maintain their legal status while at UC Davis.

All new and transfer international students are required to attend a special orientation program that is held just before each quarter registration. The orientation will help new students with registration, class enrollment, mak-
Students must report to Services for International Students and Scholars as soon after their arrival as possible. S.I.S.S. can help new international students with their immediate needs, and familiarize them with the Davis campus and community. S.I.S.S. will introduce students to the Davis international community and help them locate other individuals from their home countries.

Women's Resources and Research Center (WRRC)

Information:
North Hall
916-752-3372; FAX: 752-0222
World Wide Web:
http://pubweb.ucdavis.edu/documents/WRRC/wrrc.htm

The Women's Resources and Research Center brings attention to and challenges the barriers that inhibit the inclusion, equal power and advancement of women. The center promotes an understanding of the evolving roles of women and men, helps women develop their full potential, and highlights and celebrates women's achievements.

Programs
- Popular and scholarly lectures, workshops, forums, classes and other events of special interest to women
- Support and discussion groups for campus women
- Advice and assistance to individuals, departments and organizations planning activities on women or gender

Library
- A large, specialized collection of books, periodicals and other materials focusing on women and gender, staffed by a full-time librarian

Information
- Women's Writes, a monthly calendar of events
- Resources—extensive listings of campus and community services such as health care, counseling, child care, women's organizations and legal resources

Services
- Friendly, knowledgeable, accessible staff to answer questions, locate resources, or help address personal, academic or work-related concerns
- Consultation with campus departments, organizations and individuals to expand awareness of gender differences, sexism and women's concerns
- Child emergency notification service for student parents

Academic Activities
- Assistance to instructors in developing syllabi and readers and in identifying classroom resources
- Specialized programs, discussion groups and individualized consultation for faculty and graduate students on research, academic, career and personal topics
- Financial and programmatic support for academic departments and groups engaged in gender-related initiatives
- “Gender Equity in the Classroom,” a workshop for faculty and teaching assistants that examines gender-based classroom dynamics

Student Special Services

Information:
160 South Silo
916-752-2007

Student Special Services coordinates a variety of programs and services to meet the special needs of students.

Disability Resource Center

Information:
Disability Resource Center (DRC)
160 South Silo
916-752-3184 (voice) or 752-6TDD

The Disability Resource Center (DRC) serves students who find their disability is a barrier to achieving academic or personal goals. DRC provides information about campus and community resources, and provides specialized support not available elsewhere.

DRC was founded with a strong commitment to improving individual choices, personal control of essential resources and integrated participation in campus life. All university students are assumed to have similar needs, but the consequences of a disability may include some specialized requirements. We work closely with each student to identify his or her particular disability-based needs.

The following resources are available to meet the individual disability-based needs of enrolled students with documented disabilities:
- Alternative educational materials, including large-print and taped textbooks
- Disability management counseling
- Emergency wheelchair repair
- Facilitation of access to all campus programs
- Registration assistance
- Maintenance of a list of personal care attendants
- Reader and notetaker services
- Referral for special parking
- Referral for tutoring
- Referral to on-campus and off-campus resources, services and agencies
- Shuttle service (on-campus)
- Sign language, oral interpreting and transliterating services
- Special adaptive equipment and computers

The campus is flat, with a good network of bicycle paths, curbs cuts and pedestrian walkways. Almost all instructional, recreational and student facilities are wheelchair accessible. Accessible on-campus housing is available and an accessible bus system links the campus and the community of Davis.

Reentry Student Services

Information:
Reentry Student Services
160 South Silo
916-752-2005

The Reentry Student Services Office assists students who have reentered the university after several years of life and work experience. The office provides admissions assis
tance, information, orientation and peer support. It also provides referral assistance through the Reentry Resource Network composed of representatives from existing student services units, colleges and divisions. The office also sponsors an annual Reentry Day for prospective reentry students on the last Saturday in February.

Transfer Student Services

Information:
Transfer Student Services
160 South Silo
916-752-2200

The Transfer Student Services Office assists students who have transferred from other institutions of higher education. The office coordinates transfer student matters among existing student services units to ensure students an easy and smooth transfer to the university. It also sponsors special receptions and workshops for new transfers and publishes an annual Transfer Guide of available campus services.

Veterans Affairs

Information:
Veterans Affairs Office
160 South Silo
916-752-2020

The Veterans Affairs Office assists veterans, dependents and reservists through a variety of federal, state and campus programs. The office certifies course attendance to the Veterans Administration, coordinates a tutorial assistance program, provides advice and support, and helps with employment, work study and financial aid concerns.

To initiate a benefit claim, write or drop by with your letter of admission. The office can give you the forms, information and advice to process your claim.

INTERNSHIPS AND CAREER SERVICES

Internship Programs

Information:
The Internship and Career Center
2nd floor, Voorhies Hall
916-752-2855

You can take advantage of one of the hundreds of organized internships through the Internship and Career Center or initiate your own.

An internship may be full time or part time, credit or non-credit, voluntary or involving a stipend—depending on your needs and interests and the availability of openings. Internship experiences must emphasize learning rather than routine activities, include field supervision by a qualified professional and, where appropriate, the faculty member responsible for giving credit. Academic credit is awarded only for experiences planned and approved in advance by the sponsoring faculty member.

The Internship and Career Center

Information:
2nd floor, Voorhies Hall
916-752-2855

If you are an undergraduate, graduate or alumnus, ICC can assist you to identify your abilities and interests and relate them to jobs; gain access to practical experience to increase your competitiveness in the job market; and find out how and where to look for the jobs you want. If you are considering dropping out of the university for a term or longer, an adviser can also give you information about internships and employment opportunities.

The Howe Career Resources Library contains material that can aid you in learning how your major field of study can be translated into job opportunities, as well as data concerning types of employment graduates have obtained (summarized by academic major). Useful to job-seekers—and available free of charge—is ICC's Career Resource Manual, which provides guidelines for preparing a resume, tips on being interviewed and information on employment in government, business and education.

To assist students in finding jobs after graduation, the office solicits and maintains job vacancy listings, arranges employment interviews and schedules on-campus recruiting by employers.

Education and Graduate Placement Services

Information:
The Internship and Career Center
2nd floor, Voorhies Hall
916-752-0724

Any student enrolled in the teaching credential program or pursuing a master's or doctoral degree in order to teach should register with the Education and Graduate Placement Office. Services include the following:

- Teaching job vacancy listings
- Placement files (professional dossiers)
- Special workshops on writing teaching resumes and curriculum vitae, and on preparing for interviews
- Individual advising

Advisers maintain contact with school district personnel and work with undergraduate students to explore teaching through internships. The office sponsors the Graduate Career Options Program for advanced degree candidates originally planning a teaching career and now considering other career options.

Human Corps Program

Information:
The Internship and Career Center
348 Voorhies Hall
916-752-3813

Human Corps is the student community services program at UC Davis. Public service work can be a rewarding and satisfying experience that may also improve a student's qualifications for the job market. Community service may or may not be compensated through wages, academic credit or transcript notation and can take many forms, from a one-day activity to a long-term commitment.

The Human Corps is a referral center for students wishing to perform community service and as a resource for agencies and campus units with service opportunities. The office contains a database and directories with information about non-profit agencies in California, community service opportunities throughout the world and employment in the non-profit or public sectors after graduation.
REGISTRATION

Information:
Office of the Registrar
124 Mrak Hall
(916) 752-2973

Registration is the way in which you become a student at the university. Registration includes enrolling in classes via RSVP, the telephone registration system; paying fees and other financial obligations; filing your current address with the Office of the Registrar; and completing and filing other information forms. Every UC Davis student must register each quarter.

If you are a new or reentering student you must also:
- Have a photo ID picture taken.
- Submit a Statement of Legal Residence (see Appendix).
- Return the completed Medical History form, evidence of rubella immunity, results of a tuberculin skin test and the Insurance Information Request form. These forms are mailed to each new student from the Student Health Center.

New graduate students who have been registered previously at Davis as undergraduates are considered to be new students.

Change of Name. Petitions to change your name on official university records may be obtained from the Office of the Registrar. (Students planning to graduate should file this petition no later than the fifth week of the quarter in which they intend to graduate.)

Change of Address. Be sure to inform the Office of the Registrar of any change of address. Important registration materials, information and announcements are mailed to students throughout the year, so keep your campus/local mailing address, your billing address and your permanent address up to date. Change of Address forms are available at the Office of the Registrar and in the Class Schedule and Room Directory. You may also change your address by calling 754-9427.

Late Registration

Late registration privileges extend through the tenth day of instruction, but you will be assessed a fee of $50 to defray the extra clerical costs of late registration. Registration after the deadline will be allowed only under conditions where action or inaction on the part of the university delays registration. A recommendation from an appropriate administrative unit will be required, and the registration fee must be paid with cash, cashier's check, credit union check, university check or fee credit.

ENROLLING IN COURSES

Students enroll in courses using the UC Davis telephone registration system, RSVP (Register Students Via Phone; 752-7787). The Class Schedule and Room Directory, available several weeks before the start of each quarter, gives class meeting times and room numbers, changes to the General Catalog, and the most up-to-date information on fees, RSVP, and registration procedures.

Registration Priority

Access to RSVP is by priority groups. The groups are established according student class level, as determined by the number of units completed. Undergraduate classification is determined by the number of quarter units you have completed:

<table>
<thead>
<tr>
<th>Class Level</th>
<th>Unit Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0.0 — 44.9</td>
</tr>
<tr>
<td>Sophomore</td>
<td>45.0 — 89.9</td>
</tr>
<tr>
<td>Junior</td>
<td>90.0 — 134.9</td>
</tr>
<tr>
<td>Senior</td>
<td>135.0 —</td>
</tr>
</tbody>
</table>

Study List

You are officially registered in all courses listed on your individual study list. You are responsible for completing each of the courses. To confirm the courses on your official study list, call RSVP.

Adding or Dropping Courses

You may adjust your schedule by adding or dropping courses using RSVP until the published deadlines.

To drop a course after the deadline, you need approval of the dean of your college or school. Graduate students must have their advisor's approval in order to drop courses. To add a course after the deadline, you need approval of the department. Certain fees may apply to late adds and drops. A course that is on your study list and for which you did no work that could be graded is reflected on your official transcript by the notation “E-NWS” (Enrolled-No Work Submitted).

See the Academic Calendar in the front of this catalog for the deadlines each quarter to add or drop courses. The Class Schedule and Room Directory for each quarter explains how to use RSVP to add and drop courses and what add/drop procedures and fees apply after the published deadlines.

Retroactive Drops

Occasionally, in exceptional circumstances, students are allowed to drop a course after the course is completed. Reasons for seeking a retroactive drop are very specific: medical problems, severe emotional difficulties, or death or severe illness in the immediate family. Petitions are available from the Office of the Registrar and should include a detailed account of the problem, appropriate documentation and an adequate explanation of why an “I” grade or late drop was not taken during the quarter in which the problem occurred. The instructor's signature is required on the petition. A $3.00 fee is applicable on all retroactive drops.

Retroactive Adds

In some rare circumstances, students are allowed to add a course after the course is completed. Petitions for retroactive adds are available from the Office of the Registrar. Each petition must include the reason for the student's failure to add the course during the quarter in which it is offered. The petition must be supported by the instructor's signed approval, together with a statement from the instructor indicating knowledge of the student's participation and performance during the presentation of the course in question and the instructor's understanding as to the reason for the student's failure to add the course before the end of the quarter. A course grade must be assigned by the instructor. A $3.00 fee is applicable on all retroactive adds.

COURSE LOAD

Certification of Full-Time Status. Undergraduate students must carry a study load of at least 12 units (including workload units) each quarter in order to be certified as full-time students for insurance and financial aid purposes or to compete in intercollegiate athletics. Graduate students must carry a study load of at least 8 units each quarter in order to be certified as full-time students for insurance and financial aid purposes.

Minimum Progress Requirements. Minimum progress is defined as an average of 12 units (including workload units) passed per quarter, calculated at the end of every quarter for the preceding three quarters of enrollment. Undergraduate students falling below this required average may be subject to academic disqualification. Minimum progress requirements do not apply to students who have been granted part-time status or to students who have their dean's approval to carry less than the minimum progress load because of medical disability, employment, a serious personal problem, a death in the immediate family, or a serious accident involving the student.

College of Letters and Science. Freshman students in their first year and transfer students in their first quarter of residence may not take more than 17 units each quarter. For all other Letters and Science students, the study list may not exceed 21 units each quarter. These unit limitations include non-credit remedial courses and repeated courses, but not make-up work to remove incomplete grades.

PART-TIME STUDENT STATUS

If, for reasons of occupation, family responsibility, health or, for one term only, graduating senior status, you are unable to attend the university on a full-time basis, you may qualify for enrollment in part-time status. Students may change status between full-time and part-time as their circumstances change. To be considered eligible, undergraduate students must be registered in 10 units (including workload units) or fewer by the tenth day of instruction that quarter, and graduate students must be registered in 6 units or fewer by the tenth day of the instruction. Minimum progress requirements are waived for part-time students. Undergraduate petitions are available at the Office of the Registrar and require approval by the Registrar. Graduate petitions are available at Graduate Studies and approved by the Dean of Graduate Studies. Part-time students have use of the same facilities and are eligible for the same services, including Student Health Services, as full-time students.

ACADEMIC CREDIT

Academic work at the university is measured by “units of credit.” In conjunction with the letter grade you receive from the course instructor, units of credit give a fairly accurate evaluation of the amount of time you have devoted to a given subject. Units of credit also make it possible to anticipate the amount of work involved in a particular course and enable you to transfer from one campus or university to another without undue difficulty. (To convert quarter units to semester units, multiply by 0.66; from semester to quarter units, multiply by 1.5.) Units of credit are assigned to courses based on the “Carnegie unit,” which assigns 1 unit of credit for three hours of work by the student per week. Usually this means one hour of lecture or discussion led by the instructor and two hours of outside preparation by the student. In laboratory courses, two or three hours of work in the laboratory are normally assigned 1 unit of credit.

In most courses at Davis the standard procedure prevails, so that a 3-unit course meets for three hours a week, a 4-unit course for four hours, and so on. Courses that are an exception to this pattern may require additional class time or give more demanding assignments. If you have questions about the number of units assigned to a course, you should check the expanded course descriptions (if your college or department provides them) or ask the instructor what is required in terms of outside reading, term papers, problem sets or field trips. These are not always spelled out completely in the General Catalog. By knowing the amount of work that will be required, you can plan your course load more systematically and realistically.

Credit by Examination

Under certain prescribed conditions, currently registered students in good standing may receive course credit by taking an examination without formally registering in a course. You may obtain a petition and a copy of the prescribed conditions from the Office of the Registrar. The petition is subject to the approval of the instructor giving the examination and the department involved.

The completed petition, accompanied by a fee of $5.00, must be presented for final approval to the dean of your college or school, or if you are a graduate student, to the dean of Graduate Studies.

The credit received for the examination may not duplicate any credit you have already earned toward your degree. You may not use credit by examination to repeat any course you have taken previously, regardless of the grade you received in that course. The final results will be reported to the Office of the Registrar, which will assign you the appropriate grade and grade points. Since failure to pass the examination will be recorded as an F; you are encouraged to prepare fully for such an examination before attempting it.

You may also receive credit for learning in nonacademic settings through credit by examination.

Concurrent Credit from Another Institution

A student may not obtain transfer credit for courses taken at a non-University of California campus in a term during which the student is registered as a full-time student at UC Davis. A variance can be obtained only by petitioning the dean of your college well in advance of the desired registration. When a variance is granted, units earned are counted toward minimum progress for the term in which the dual registration occurs. Summer session courses are exempt from this regulation.

Students may gain credit for courses taken during the summer at other institutions, provided the courses parallel those given in the University of California. Assurance that such credit will be accepted, however, can be
given only after the courses have been completed. You should arrange to have the transcripts of your summer session grades sent to Undergraduate Admissions and Outreach Services for evaluation. See the Summer Sessions bulletin for detailed information.

Intercampus Visitor Program

Qualified undergraduates may take advantage of educational opportunities on other University of California campuses as an Intercampus Visitor (ICV). This program enables students who have completed at least one year in residence on their home campus and have maintained a grade point average of at least 2.0 to take courses not available on their home campus, to participate in special programs, or to study with distinguished faculty members on other campuses of the university. Students who meet the above requirements should complete an application available in the Office of the Registrar.

UC/CSU/Community College Cross Enrollment

If you are interested in taking a particular class a nearby CSU or Community College campus, you may now do so through the Intersegmental Cross Enrollment program. Enrollment is limited to one course per term and participating students need the approval of both the home and the host campus. (Please note that the Los Rios Community College district is NOT participating in the program.)

Senate Bill 1914, also known as the Killea Bill, requires that UC, CSU and the California Community Colleges permit students to enroll in one course per term at a campus of either of the other two systems on a space available basis at the discretion of the two campuses. This program aims to encourage community college students to enroll concurrently in courses offered at local universities, potentially increasing the number of community college transfers, including students from underrepresented groups.

Students must meet certain qualifications and be certified by their home campus as to eligibility, residence, fee, financial aid and health status. Generally, students will be allowed to add a class, if space is available, after the add/drop period on the host campus. To add a course, students must obtain the faculty member's approval and signature on a Cross-Enrollment form, available at their home campus Registrar’s Office. The student takes the signed form to the Office of the Registrar at the host campus for processing. If you are interested in participating, come to the service counter at the Office of the Registrar, 12 Mrak Hall, for more information.

THE MAJOR

You'll find a complete list of the majors offered at UC Davis in a chart at the front of this catalog.

Declaration of Major

College of Agricultural and Environmental Sciences. Students must declare a major by the time they have completed 120 units. Failure to declare a major at this point may result in a hold on your further registration. In order to declare a major, you must meet with your faculty adviser and/or advising associate, fill out a Declaration of Major petition obtainable at the Office of the Registrar or dean's office and file the petition with the dean's office. If you have completed 120 units you must prepare a study plan with your adviser and/or advising associate at the same time. You are accepted into a major only after your major department and the dean's office have approved the Change of Major petition.

College of Engineering. Students must declare a major when they apply to the College of Engineering. Their freedom to change majors thereafter may be limited.

College of Letters and Science. Students must declare a major by the time they have completed 90 units. If you have not declared a major by this point, a hold may be placed on your registration materials. Such a hold would be removed only when your Declaration of Major petition is filed in the dean's office. Petitions can be obtained from faculty advisers, department offices or the Office of the Registrar. As a part of the declaration procedure, you
must, in consultation with a faculty adviser, prepare a
projected plan of study. You are accepted into the major
when your adviser and the dean have approved the peti-
tion.

To be accepted into a major, you must have a C average
in all courses you have completed that are a requirement
for that major, as well as a C average in the upper divi-
sion courses you have taken toward the major. With the
approval of the College Executive Committee, additional
requirements, such as completion of a particular set of
required courses with a specified grade point average
(usually well above a C average), may be introduced as
conditions for acceptance into any major at any time.

If your performance is unsatisfactory after you have
declared a major program, you may be required to with-
draw from that major by the dean, upon written recom-
menation from the chair of the department or the curricu-
la committee that administers the major.

Change of Major Within a College

To change from one major to another within a college,
you will need the consent of the department or commit-
tee in charge of your proposed new major. Admission
into a major program may be denied by the program or
by the dean if your grade point average in courses
required for the selected major is less than 2.0.

Procedures for change of major within a college are the
same as for declaration of major and the same condi-
tions apply. If you wish to change to a major that has
admission restrictions, you must comply with the special
procedures and requirements for that major.

Except under unusual circumstances, no change of
major will be permitted after you attain senior standing
(135 units). It is not possible to change or declare a
major in the quarter you complete your degree work.

College of Engineering. The above provisions may not
apply to students in the College of Engineering, whose
freedom to change majors is limited. Please contact the
Engineering dean's office for specific change-of-major
requirements.

**Change of Major Accompanied by
Change of College**

A change petition, available at the dean's office and Office
of the Registrar, must be endorsed by a faculty adviser of
the new major you are selecting and signed by the dean of
the college from which you wish to transfer. In addi-
tion, admission to the new college will require that dean's
approval. Permission to transfer from one college to
another may be denied or deferred if you are in acade-
mic difficulty or have a GPA of less than 2.0 in courses
that are required by the new major.

College of Engineering. You may submit petitions for a
transfer into the College of Engineering from another UC
Davis college **only** if you (1) are in good academic stand-
ing and are making minimum progress; (2) have com-
pleted at least 40 units as a registered student on the
Davis campus; (3) have successfully completed Mathe-
ematics 21A, 21B and 21C and Physics 9A (or their equiva-
Iments) on a letter-grade basis; (4) have and maintain a
minimum GPA of 2.5 in all mathematics and physics
coursework in the Mathematics 21 and 22 series and in
the Physics 9 series; and (5) have the minimum UC GPA
specified for the year in which you wish to transfer. Ad-
ditional restrictions may apply to students who want to
major in Civil Engineering, a currently impacted major.
If you have completed more than 120.0 units, you will be
unable to file a change of major petition except by
appeal. Your appeal must include a quartet-by-quarter
program plan of study before a review of your appeal will
be considered.

You must declare a specific major at the time you petition
to transfer and must have the minimum GPA specified
for transfer into that major in that year. Consult the En-
gineering Undergraduate Office for details on minimum
GPAs for transfer to specific majors.

Multiple Majors

College of Agricultural and Environmental Sciences.
Because of similarity in course requirements for many of
the major programs in the college, requests for multiple
majors are not normally approved. If you are interested
in two or more areas of study, you should consider the
options of planning an individually designed major, or of
adopting one or more of the minor programs offered by
the college to complement your major. If you complete
two majors, you may also petition for recognition that
you have completed all the requirements for study of a
major in addition to your selected major. At least 80 per-
cent of the upper division units used to satisfy course and
unit requirements in each major selected must be unique
and not duplicate those of the other major. In planning
for multiple majors, you should determine the total
requirements needed for each major as well as for gradu-
ation from each college involved.

College of Engineering. Engineering has several estab-
lished double majors. Enrollment in combinations of
engineering majors other than the established double
majors or in an engineering major and a non-engineering
major may be possible. A change of major petition is
required; this should be filed in the Undergraduate Office
and is subject to approval. Double-major students must
satisfy the requirements for both majors. Degree require-
ments for such double majors ordinarily cannot be com-
pleted within four academic years.

College of Letters and Science. Students choosing to
major in multiple subjects must notify the dean's office of
their decision by submitting for approval a petition
endorsed by faculty advisers in the majors. The dean's
approval of the declaration of more than one major is
subject to the following conditions:

1. At least 80 percent of the upper division units used to
satisfy course and unit requirements in each major
selected must be unique and may not be counted
towards the upper division unit requirements of any
other major undertaken. Courses with substantial over-
lap in content will not count as part of the 80 percent.

If the major programs differ in the number of upper
division units required, the major program requiring
the smaller number of units will be used to compute
the minimum number of units that must be unique.

2. At the time of request, a substantial part of the
preparatory subject matter and at least two upper
division courses in each major must have been suc-
cessfully completed.
It should be possible to complete all degree requirements within the 225-unit limit.

Combination proposals that cannot be approved are two or more majors

1. in the following group: biochemistry, biological sciences, evolution and ecology, genetics, microbiology, physiology and plant biology;
2. offered by the same discipline, except art history and art studio.

A student who completes all requirements for approved multiple majors in which one major normally leads to an A.B. degree and another normally leads to a B.S. degree, will receive a B.A.S. degree. A single degree is granted to students who graduate with multiple majors.

Cross-College Majors

College of Agricultural and Environmental Sciences. The College does encourage multiple majors between colleges whenever your academic interests and abilities indicate this to be the best route. After endorsement of the Change of Major petition by the appropriate faculty in the colleges involved, each dean may approve the petition if there are sufficient differences between the requirements for the major programs you wish to study. At least 80 percent of the upper division units used to satisfy course and unit requirements in each major selected must be unique and not duplicate those of the other major. In planning for multiple majors, you should determine the total requirements needed for each major as well as for graduation from each college involved.

College of Engineering. Enrollment in a combination of an engineering major and a non-engineering major may be possible. A change of majors petition must be filed in the Undergraduate Office and is subject to approval. Such double-major students must satisfy the requirements for both majors. Degree requirements for such double majors ordinarily cannot be completed within four academic years.

College of Letters and Science. The same conditions apply for cross-college majors as for multiple majors. Cross-college programs will not be approved if the majors involved are available within a single college as well. For example, cross-college programs between the Colleges of Letters and Science and Agricultural and Environmental Sciences will not be approved if one of the majors is biochemistry, biological sciences, evolution and ecology, genetics, microbiology, physiology or plant biology.

Individual Major

Students with academic interests not covered by an established major have the opportunity to develop an individual major. Such a major requires the selection of interrelated courses totalling a minimum of 45 upper division units from two or more areas of study. If you choose this option you will work closely with faculty advisers to develop a coherent and rigorous academic program. This program is then submitted to a faculty committee for review and approval. Submit the proposed program to the committee by the fourth full week of the fifth quarter before graduation. If you wish to undertake an individual major, request the appropriate forms from your dean's office. Program requirements are outlined under Individual Major in the Programs and Courses section of this catalog. The College of Engineering does not offer an individual major.

THE MINOR

If you are interested in two or more areas of study, you should consider completing one or more minor programs. Minor program requirements are listed in the Programs and Courses section of this catalog under the department that offers them. You will find a complete list of the minors offered at UC Davis in a chart at the front of this catalog.

A minor consists of 18 to 24 units in upper division courses specified by the department or program offering the minor. At least half of these units and courses must be completed in residence on the Davis campus. You are also expected to complete all courses that are prerequisite to the upper division courses. To request certification of a minor, you must have a grade point average of 2.0 in all courses required for the minor. At most, one course used in satisfaction of your major may be applied to your minor. If you elect more than one minor, these minors may not have any courses in common.

If you want to have completion of a minor certified on your transcript, you must obtain a minor petition from your dean's office and file it no later than the deadline for filing for graduation. You can elect only one minor in a subject area. Requirements for the minor must be met by the time of graduation.

No minors are available in the College of Engineering, although students in Engineering may, with the approval of the Engineering dean's office and the adviser in the minor department, develop minors in either the College of Letters and Science or the College of Agricultural and Environmental Sciences. A minor is not required and may not be used to substitute for approved Humanities and Social Sciences (HSS) electives. The Undergraduate Office in the College of Engineering has the primary responsibility for certifying minors for engineering students and should be consulted before you begin the minor sequence.

If you are enrolled in the College of Engineering but elect a minor in either the College of Letters and Science or in the College of Agricultural and Environmental Sciences, you must pick up a minor petition in the office of the college that offers the minor you want and have the completed petition approved by the minor adviser and then certified by the Undergraduate Office of the College of Engineering.

EXAMINATIONS

Midterms

In undergraduate courses for which a midterm examination is required, each student has the right to take the midterm (or submit the take-home examination as opted by the instructor) during one of the regularly scheduled meetings of the class as published in the Class Schedule and Room Directory. The scheduling of a midterm examination at a time other than a regularly scheduled class
meeting requires mutual consent of the instructor and each student registered in the course. A student who does not consent in writing to the different time must be permitted to take the examination (or submit the take-home examination) at the officially scheduled time. A student who consents in writing to the change of examination time waives the right to take the midterm at the officially scheduled time.

Final Examinations

Scheduling. The *Class Schedule and Room Directory* lists the times that final examinations are to be held. These are set up according to the day-and-hour periods in which the classes are given during the quarter. This information is available in the *Class Schedule and Room Directory* each term so that you can avoid final examination conflicts.

The scheduling of an examination at a time other than the specified time requires the mutual consent of the instructor and each student involved in the change. Any student who does not consent in writing to a different time must be permitted to take an examination (or submit the instructor-opted take-home examination) at the officially scheduled time. A student who consents in writing to a change in the final examination time waives the right to take the examination as originally scheduled. Departures from the published examination schedule should be carried out so as not to disadvantage students who are unable to accept the alternate schedule. An in-class final examination may not be rescheduled for a date earlier than the first day of finals week. The due date for a take-home final examination may not be rescheduled for a date earlier than the first day of finals week. A student who is improperly denied the right to take a required final examination on the published date (or submit the take-home examination as opted by the instructor) may file a petition with the Executive Council of the Davis Division of the Academic Senate by the end of the next regular term for appropriate action.

Requirements. Except under certain specified circumstances, Academic Senate Regulations require that final examinations be given in all undergraduate courses. Final examinations may be given in graduate courses. Exceptions to the regulation would be independent study courses, courses that consist of laboratory work only, and courses in which the examination has been waived (course descriptions will include the statement, “no final examination”).

At the instructor's option, the final examination may be completely or in part a take-home examination. The writing time (in undergraduate courses) of a take-home and an in-class final examination together should not exceed three hours. In each course in which a final examination is required, the students have the right to take the final examination (and/or submit the take-home examination) at the time published in the *Class Schedule and Room Directory*.

An instructor may release each student's original examination, or a copy, at any time. Otherwise, the instructor will keep the exams, or copies thereof, until the end of the next quarter and students may pick up their exams during this period.

Disabilities. Students with learning disabilities may have additional time for examinations (or alternate examination formats). An adjustment request must be submitted in writing to the instructor of the course involved by the tenth day of the quarter, and must include proof of the existence of a learning disability. The instructor determines, in consultation with the student and the campus learning disability specialist, whether an adjustment is necessary and specifies the terms of the adjustment.

Religious observances. UC Davis seeks to accommodate any student who, in observance of a religious creed, encounters an unavoidable conflict with a test or examination schedule. It is the responsibility of the student to provide, in writing and at the beginning of the quarter, notification of a potential conflict to the individual responsible for administering the test or examination and to request accommodation. Instructors will consider such requests on a case-by-case basis and determine whether such conflicts can be resolved without imposing on the instructor or the other students in the class an undue hardship which cannot be reasonably avoided. If so, the instructor will determine, in consultation with the student, a time during which the student can take the test or examination without incurring a penalty or violation to the student's religious creed.

GRADES

Every instructor is required to assign a grade for each student registered in a course. The following grades are used to report the quality of a student's work at UC Davis:

- **A** excellent
- **B** good
- **C** fair
- **D** barely passing
- **F** not passing (work so poor that it must be repeated to receive recognition)
- **P** passed (grade C– or better)
- **NP** not passed
- **S** satisfactory
- **U** unsatisfactory
- **I** incomplete (work is satisfactory but incomplete for a good cause)
- **IP** in progress
- **E-NWS** enrolled–no work submitted

The grades A, B, C and D may be modified by a plus (+) or minus (–).

Grade Points

Grade points are assigned each letter grade as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>A–</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>B–</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>C–</td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>D–</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Grade Point Average (GPA)

The grade point average is computed on courses taken at the University of California, with the exception of courses taken in University Extension. The value of grade points over units attempted determines your grade point average. The grade point balance represents the number of grade points above or below a C average. The grades IP, P, S, NP and U carry no grade points and are not included in grade point computations. Incomplete
(I) grades are not included in the GPA at the end of the quarter, but are counted as F in determining if a bachelor’s degree candidate has earned the minimum 2.0 GPA required for graduation.

A student at Davis is expected to maintain a C (2.0 GPA) or better in all work undertaken in the university. If you fall below a C average, you are considered “scholastically deficient” (see Probation and Dismissal).

Passed/Not Passed (P/NP) Grading

Subject to regulation by the faculties of the colleges and schools, an undergraduate student in good standing may request to take specific courses on a Passed/Not Passed basis. Such requests must be submitted and confirmed before the 25th day of instruction.

The grade P is assigned for a grade of C– or better. Units thus earned are counted in satisfaction of degree requirements but are not counted in determining your grade point average.

The intent of this option is to encourage exploration in areas in which you have little or no previous experience by alleviating grading pressures. The maximum number of units graded P that will be accepted for degree credit is one third of the units completed in residence on the Davis campus. Consequently, at least two thirds of the units completed in residence at Davis and presented in satisfaction of degree requirements must be in courses taken for a letter grade.

In specific approved courses instructors will assign only Passed or Not Passed grades. Such courses count toward the maximum number of units graded P allowable toward the degree. If you are planning to take courses on a P/NP basis, you should also familiarize yourself with the requirements of your particular school or college, which may have introduced conditions or restrictions in addition to the university requirements. If you plan to attend graduate or professional school, you should consult with Advising Services regarding Passed/Not Passed grading.

If you elect the P/NP grading option for courses graded upon completion of a two- or three-quarter sequence (In-Progress grading), a petition must be submitted before half of the time covered by the IP grading has elapsed. The P/NP grading will then be in effect for the entire course sequence.

If you receive a D or an F in a course you may not repeat it using the P/NP option. If you receive an Incomplete in a course you took for a letter grade, you may not complete the course on a Passed/Not Passed basis.

College of Agricultural and Environmental Sciences: The Passed/Not Passed option should be used only for elective courses, not for courses taken to fulfill major requirements. An NP grade in a course required by the major could prevent graduation. When in doubt, check with your faculty adviser before electing to take a course Passed/Not Passed.

College of Engineering: Students enrolled in any undergraduate major within the College of Engineering may not exercise the Pass/Not Passed option for any coursework used toward satisfaction of course or unit requirements for the degree. Courses offered only on a P/NP basis are acceptable for specific program area degree requirements.

College of Letters and Science: Students enrolled in the College of Letters and Science are subject to an additional limitation on the number of units that may be completed employing the Passed/Not Passed option (see the College of Letters and Science entry in the “Undergraduate Studies” chapter). Graduating seniors, and other students planning to undertake graduate or professional studies, should consult an adviser before petitioning for Passed/Not Passed in courses required for the major program.

Satisfactory/Unsatisfactory (S/U)

The grade of S is awarded to graduate students for work in graduate courses that otherwise would receive a grade of B– or better, and in undergraduate courses for work that otherwise would receive a grade of C– or better.

Graduate students, under certain circumstances, may be assigned grades of S or U, but units earned in this way will not be counted in calculating the grade point average. Petitions are available from the Graduate Studies Office and must be signed by your graduate adviser. (See also Individual Study courses.) A graduate course in which a C, D or F grade is received may not be repeated with the S/U option.

In specific approved courses instructors will assign only Satisfactory or Not Satisfactory grades. Such courses count toward the maximum number of units graded S allowable toward the degree.

In-Progress (IP) Grading

For a course extending over more than one quarter (designated “deferred grading only, pending completion of sequence” in course descriptions), evaluation of student performance is deferred until the end of the final quarter. Provisional grades of IP are assigned in the intervening quarters and are replaced with the final grade at the completion of the sequence. In order to gain credit toward graduation, a student must successfully complete the entire sequence. (See above for electing P/NP grading for a course graded in-progress.)
Incomplete Grades

The grade of I may be assigned when a student's work is of passing quality and represents a significant portion of the requirements for a final grade, but is incomplete for a good cause as determined by the instructor. (Good cause may include illness, serious personal problems, an accident, a death in the immediate family, a large and necessary increase in working hours or other situation of equal gravity.)

You may replace an I grade with a passing grade and receive unit credit (and grade points if the instructor assigns a letter grade) provided you satisfactorily complete the coursework as specified by the instructor. In order to change your records, you must obtain a petition from the Office of the Registrar and present it to your instructor for completion and mailing.

An I grade must be replaced with a letter grade (or P or S grade) before the end of the third succeeding quarter (excluding summer sessions) of the student's academic residence, or the grade will revert to an F (or NP or U).

If a student's degree is conferred before the expiration of the time limit for an I-grade conversion, the graduated student shall have until the end of the third quarter succeeding the quarter in which the I grade was assigned to replace the I grade. If the grade is not replaced by then, the I grade will remain on the student's record.

You may not re-register for credit in a course for which an I grade has been assigned. An undergraduate student whose record shows more than 16 units of I grades will be subject to disqualification. A graduate student who accumulates more than eight units of I grades will be subject to probation.

Incomplete grades will not be included in your grade point average at the end of a quarter. At the time of graduation, however, any remaining I grades are included when your grade point average is computed, in order to determine whether you have achieved the 2.0 average required for the bachelor's degree. An Incomplete grade, in these computations, has the same effect as a grade F, NP or U, depending on which option you have exercised. Therefore, it is recommended that students not delay the clearance of incomplete grades so as not to jeopardize graduation.

Changes of Grade

All grades except I and IP are final when filed by an instructor at the end of the quarter. No final grade except I may be revised by examination or the submission of additional work after the close of the quarter.

If, however, a clerical or procedural error in the reporting of a grade by the instructor can be documented, you may request a change of grade with a petition available from department offices.

Repeating Courses

Undergraduates may only repeat courses in which they received a D, F or NP. Courses in which students received a grade of D or F may not be repeated on a P/NP basis. (Courses in which a grade of NP was received may be repeated on a P/NP basis.)

Degree credit for a repeated course will be given only once, but the grades assigned for both the first and second time a course is taken will appear on the student's transcript. In computing the GPA of undergraduates who have received a grade of D, F or NP, only the grade and corresponding grade points earned the second time a course is taken will be used, up to a maximum of 16 units for all courses repeated. After the 16-unit maximum is reached, the GPA shall be based on all grades assigned and total units attempted.

Repeating a course more than once requires approval by the appropriate college dean. Departments may restrict the repetition of a course if it is a prerequisite to a course the student has already completed with a grade of C– or better.

Graduate students, with the consent of the appropriate graduate adviser and the dean of Graduate Studies, may repeat any course in which they received a C, D, F or U, up to a maximum of 9 units for all courses repeated. Courses in which a grade of C, D or F has been earned may not be repeated on a S/U basis. (Courses in which a grade of U was received may be repeated on a S/U basis.)

Degree credit for a repeated course will be given only once, but the grades assigned for both the first and second time a course is taken will appear on the student's transcript. In computing the GPA of graduate students who have received a grade of C, D or F, only the most recently earned grade for each course and corresponding grade points will be used.

Mid-Term Grade Standing

Students wishing to know their grade at the mid-quarter should ask the instructor. Those who have deficient grades (D, F or Not Passed) are urged to confer with their advisers.

Final Grades

Grades are generally available about three weeks after a quarter has ended. Students can call RSVP to hear their grades at the times and dates announced by the Office of the Registrar. If you wish to have your grades mailed to you, bring in a stamped, self-addressed envelope with your student photo ID card to the Office of the Registrar before the end of the quarter.

Transcripts

A record of each student's academic work at UC Davis is retained permanently by the Office of the Registrar. Copies of your official transcript may be obtained from that office for $4.00 a copy. Transcripts of all work done through University Extension or Concurrent Enrollment should be requested directly from the University Extension Office, 1333 Research Park Drive. Transcripts of work completed at another campus of the university or at another institution must be requested directly from the campus or institution concerned.

Application for a transcript of record should be made at least two weeks in advance of the time needed.

HONORS AND PRIZES

Deans' Honors Lists

According to Davis campus regulations, the quarterly Dean's Honors List includes names of students who have completed, for a letter grade, a minimum of 12 units in
a specific quarter with a grade point average equal to or higher than the minimum grade point average attained by the upper 16 percent of those registered in the same class level and college during that quarter. Honors lists will be posted quarterly outside deans’ offices, and a notation of these honors will be placed on each student’s permanent record by the Office of the Registrar.

Scholarships

Students with outstanding academic records who show promise of continued scholarly achievement are encouraged to apply for scholarship recognition and awards. Awards are accompanied by a financial honorarium or stipend. Information about scholarships is available from the Scholarship Office, 207 Third Street, Suite B, 916-752-3153 (or by mail at Scholarship Office, University of California, Davis, CA 95616-8696).

Graduation Honors

Honors at graduation are awarded to students who have a grade point average in the top percent of their college as shown in the table below. (The College of Letters and Science requires that additional criteria be met for high and highest honors—see explanation below.)

<table>
<thead>
<tr>
<th>Total Quarter</th>
<th>Units Completed at UC</th>
<th>Highest Honors</th>
<th>High Honors</th>
<th>Honors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-89</td>
<td>2%</td>
<td>2%</td>
<td>4%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>90-134</td>
<td>3%</td>
<td>3%</td>
<td>6%</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>135+</td>
<td>4%</td>
<td>4%</td>
<td>8%</td>
<td>16%</td>
<td></td>
</tr>
</tbody>
</table>

Grade point averages from the winter quarter previous to graduation are used to determine the averages that will earn an honors designation. Following are the averages for winter quarter 1996. These averages will be used through winter 1997.

<table>
<thead>
<tr>
<th>Percent Determining Cut-Off Point</th>
<th>Grade Point Average by College</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agricultural and Environmental Sciences</td>
</tr>
<tr>
<td>2%</td>
<td>3.886</td>
</tr>
<tr>
<td>3%</td>
<td>3.838</td>
</tr>
<tr>
<td>4%</td>
<td>3.800</td>
</tr>
<tr>
<td>6%</td>
<td>3.735</td>
</tr>
<tr>
<td>8%</td>
<td>3.662</td>
</tr>
<tr>
<td>12%</td>
<td>3.543</td>
</tr>
<tr>
<td>16%</td>
<td>3.458</td>
</tr>
</tbody>
</table>

An honors notation is made on students’ diplomas and on their permanent records in the Office of the Registrar.

College of Letters and Science. Graduation with honors requires that a student meet the appropriate grade point requirement described in the above table for all UC courses completed. Students who meet the grade point requirement for graduation with honors and who complete the Honors Program of the College of Letters and Science may be recommended by their departments for graduation with high honors or highest honors on the basis of an evaluation of their academic achievements in the major and in the honors project in particular. Graduating students will not be awarded honors with the bachelor’s degree if more than eight units of grade I (Incomplete) appear on their transcripts. The College Committee on Honors may consider exceptions to this condition. Petitions for this purpose should be submitted to the dean’s office.

The Honors Program of the College of Letters and Science

The Honors Program in the College of Letters and Science permits students to pursue a program of study in their major at a level significantly beyond that defined by the normal curriculum. It represents an opportunity for the qualified student to experience aspects of the major that are representative of advanced study in the field. Successful completion of the College Honors Program is a necessary prerequisite to consideration for the awarding of high or highest honors at graduation.

Entrance into the honors program requires that a student have completed at least 135 units with a minimum grade point average of 3.5 in courses counted toward the major. Other prerequisites for entrance into the program are defined by the major. The program consists of a project whose specific nature is determined by consultation with the student’s major adviser. It may involve completion of a research project, a scholarly paper, a senior thesis, or some comparable assignment depending on the major. The project will have a minimum duration of two quarters and will be noted on the student’s record by a variable unit course number or special honors course designation. Successful completion of the honors program requires that a minimum of six units of credit be earned in coursework for the project.

Davis Honors Challenge

The Davis Honors Challenge (DHC) is a campuswide program for highly motivated lower division students interested in enhancing their education through special courses, closer contact with faculty and dynamic interaction with academic peers.

DHC participants will take two honors courses and one problem-oriented interdisciplinary seminar per academic year. Twelve seminars will be offered each year: three in the fall, four in the winter and five in the spring. The goals of the seminar are to foster critical thinking and analytical interpretation, to improve oral and written communication skills, to enhance research skills, to provide experience with group dynamics and collaborative exploration of problems, and to develop familiarity with electronic communication and visual presentations. DHC seminars are limited in size so that participants receive substantial individual attention from faculty. In return, students are expected to participate actively in analyzing real-world problems that require the best intellectual efforts of us all. Lower division honors courses and small honors sections of regular courses also encourage individual student participation and self-challenge. Students satisfactorily completing the Davis Honors Challenge will receive transcript notation for each academic year of participation.

First-year students filing a “Statement of Intent to Register” at UC Davis will receive an application for one of the 50 places in the program. Students interested in applying for one of the 120 places available for second-year students should contact the Davis Honors Challenge at (916) 754-9797.

Integrated Studies

Integrated Studies (IS) is a campuswide invitational first-year residential honors program associated with the
Davis Honors Challenge. Integrated Studies offers interdisciplinary honors courses that satisfy General Education requirements. Approximately 70 students live in an Academic Residential Community on campus and take specifically designed honors courses open only to IS students.

Holders of Regents Scholarships, the university’s most prestigious scholarship awards, are guaranteed places in Integrated Studies. Other highly qualified scholarship holders are also invited to participate and are selected to create a balanced community of students from all three undergraduate colleges and the Division of Biological Sciences. To obtain further information on the Integrated Studies Program, phone (916) 754-9797.

Prizes

The University Medal is the highest campus honor awarded to a graduating senior in recognition of superior scholarship and achievement. In addition, a College or School Medal is given to the outstanding graduating student in each of the colleges and professional schools.

Departmental citations, special awards and prizes are also awarded to students for superior achievement and scholarship.

College of Agricultural and Environmental Sciences. Each year the outstanding graduating senior in the College is awarded a silver medal, known as the “Agricultural and Environmental Sciences Medal.” Scholastic excellence (in a minimum of six quarters at UC Davis) is the primary basis for choosing the recipient. The Mary Regan Meyer Prize is awarded to an outstanding graduate who has demonstrated expertise and an interest in serving humanity. The Kinsella Memorial Prize, in honor of John E. Kinsella, is awarded annually to an outstanding individual who submits his or her Ph.D. dissertation during the spring, fall or winter quarter immediately preceding the due date for nomination.

College of Engineering. Each year outstanding senior students in engineering are recommended by the faculty of the College as nominees for the College of Engineering Medal. Academic excellence is the primary basis for selecting the recipient of the award.

College of Letters and Science. Graduating seniors with a distinguished academic record may be recommended by the faculty as nominees for the College’s Herbert A. Young Medal. Each June, one medalist is selected from among the graduates of the current academic year. The Leon H. Mayhew Award is conferred upon the outstanding graduating student from a disciplinary area other than that of the College medalist. Academic excellence is the primary basis for selecting the recipients of these awards. The Lawrence J. Andrews prize is awarded to a student entering the senior year who not only has achieved academic excellence but who also has demonstrated interests outside of pure scholarship.

Presidential Award for Excellence in Undergraduate Research

The Office of the President initiated the Presidential Award for Excellence in Undergraduate Research in 1994. The award recognizes students who have distinguished themselves through their excellence in and contribution to undergraduate research and encourages others to become involved in these types of efforts. Recipients of the award receive a certificate of commendation and inscribed plaque from the president of the university.

In conjunction with the Presidential Award, Professor Dean Simonton of UC Davis’ Department of Psychology established an endowment for funding a cash prize of $500 for each year’s student recipient.

Honorary Societies

Election to an honorary society is one of the most prestigious awards a student can receive. At UC Davis, the following honorary societies are represented:

- Alpha Kappa Delta (Sociology)
- Alpha Omega Alpha (Medicine)
- Alpha Zeta (College of Agricultural and Environmental Sciences)
- Delta Phi Alpha (German)
- Dobro Slovo (Russian)
- Golden Key (All colleges and schools)
- Kappa Omicron Nu (Applied Behavioral Sciences)
- Omicron Delta Epsilon (Economics)
- Order of Omega (Fraternities–Sororities)
- Order of the Coif (Law)
- Phi Alpha Theta (History)
- Phi Beta Kappa (College of Letters and Science)
- Phi Kappa Phi (All colleges and schools)
- Phi Sigma (Biological Sciences)
- Phi Zeta (Veterinary Medicine)
- Pi Alpha Xi (Environmental Horticulture)
- Pi Delta Phi (French and Italian)
- Pi Mu Epsilon (Mathematics)
- Pi Sigma Alpha (Political Science)
- Prytanean Honor Society (All colleges—undergraduate women only)
- Psi Chi (Psychology)
- Sigma Pi Sigma (Physics)
- Sigma Xi (All colleges and schools—research)
- Tau Beta Pi (Engineering)

WITHDRAWAL AND LEAVE OF ABSENCE

Withdrawals may be granted by the university for emergency reasons or for good cause. In order to withdraw, you must first obtain approval from the dean of your college or school. Unauthorized withdrawals will jeopardize registration privileges and result in failing grades. Petitions for Withdrawal are available at the Office of the Registrar. Information on fee refunds can be found in the Fee Refund section of this catalog. The following signatures are required on withdrawal petitions: lab or course instructor; dean of your college or graduate faculty adviser; Student Aid Accounting Office.

If you are receiving financial aid, you must report your change of status immediately, in person or by mail, to the Financial Aid and Student Aid Accounting Offices. If you are receiving veterans benefits, you must also report your withdrawal to the Veterans Affairs Office.

Retroactive Withdrawals

Petitions for retroactive withdrawals may be obtained from the Office of the Registrar. Reasons for seeking such
are medical problems, severe emotional difficulties, or death or severe illness in the immediate family. Petitions should include a detailed account of the problem, appropriate documentation and an adequate explanation of why withdrawal was not taken during the quarter in which the problem occurred.

Planned Educational Leave Program (PELP)

The Planned Educational Leave Program allows students to suspend academic work, leave the campus and later resume studies with a minimum of procedural difficulties.

Any registered student on the Davis campus, undergraduate or graduate, is eligible to enroll in the Planned Educational Leave Program. To apply for PELP, file an application, including a brief written explanation of the reason for leaving the campus and stating when you intend to resume academic work. Applications for PELP are available at the Office of the Registrar and should be filed with the Office of the Registrar no later than the tenth day of instruction.

Freshmen and transfers who have been admitted but have not yet registered or attended classes are also eligible, providing an opportunity for beginning students to pause between high school or community college and the university. Contact Undergraduate Admissions and Outreach Services for enrollment into the program (916-752-3710).

An application fee of $40 is charged, payable when you enroll in the PELP program. This fee is identical to that paid by a student who withdraws and is required to pay a readmission fee upon return.

The minimum Planned Educational Leave is one full quarter; the normal maximum leave is one full academic year. You may, however, request an extension of your leave. For purposes of this program, leave of one full quarter is defined as a leave beginning no later than the tenth day of instruction in a quarter. You should be entitled to a partial refund of fees paid. (See Fee Refunds.)

Students enrolled in the program are expected to devote their leave period to non-classroom activities. Students on Planned Educational Leave are not eligible to register in concurrent courses on the Davis campus and may not earn academic credit at Davis during the period of the leave.

Readmission is guaranteed assuming you resume regular academic work at the agreed-upon date and satisfy any holds that may have been placed on your registration. Students who do not return at the agreed-upon date and who do not officially extend their leave will be automatically withdrawn from the university.

You will not be eligible to receive all normal university services during the planned leave. Certain limited services, however, such as placement and student employment services, counseling and faculty advising are available. Students on Planned Educational Leave may purchase a health care card from the Student Health Service and may retain library privileges by purchasing a library card. International students should consult Services for International Students and Scholars to find out what effects the Planned Educational Leave will have on their status. Grants and other financial aids will be discontinued for the period of the leave, but every effort will be made, where legally possible, to allow you to renegotiate loan payment schedules and to ensure the availability of financial aid upon your return.

PROBATION AND DISMISSAL

The following provisions apply to all undergraduates. Graduate and professional students with scholarship deficiencies are subject to action at the discretion of their respective deans.

A student will be placed on **probation** for failure to meet qualitative or quantitative standards of scholarship. The qualitative standards of scholarship require that a student maintain a C average (2.0) or better for all work undertaken in the university and for the work undertaken in any one quarter.

A student will be placed on **probation for qualitative reasons** if, at the end of any quarter, the student's grade point average (GPA):

- is less than 2.0, but not less than 1.5, for the quarter.
- is less than 2.0 for all courses taken within the University of California.

A student will be subject to **disqualification for qualitative reasons** if, at the end of any quarter,

- the student's grade point average (GPA) is less than 1.5 for the quarter.
- the student has attempted more than 16 units graded I (Incomplete).
- the student has spent two consecutive quarters on academic probation.

In the case of probation or disqualification the official transcript will state “not in good standing.” Once a student has met quantitative standards for scholarship, the notation will be removed from the transcript.

The quantitative standards, referred to as **minimum progress requirements**, define scholarship in terms of the number of units that you must satisfactorily complete. Minimum progress is defined as an average of 12 units passed per quarter, calculated at the end of every quarter for the preceding three quarters. Minimum progress requirements do not apply to students who have part-time status or to students who have their dean's approval to carry less than the minimum progress load because of medical disability, employment, a serious personal problem, a death in the immediate family, or an accident.

The notation “**warning—minimum progress**” will be noted on the grade report for a quarter in which the student has passed less than 12 units. The notation “minimum progress—subject to academic disqualification,” will be noted on the grade report the first time the total number of units passed at UC Davis is less than 36, calculated at the end of every quarter for the preceding three quarters of enrollment. Quantitative standards are not reflected on the official transcript. It is assumed that a student will earn the 180-unit minimum degree requirement before completing 15 quarters of enrollment. Normal progress would achieve 180 units in 12 quarters.
The following courses may be counted toward unit minimum progress:

- Required non-credit courses, e.g., Mathematics B, will be evaluated according to the "Carnegie unit" rule and counted as units passed
- Repeated courses passed to improve D or F grades
- Courses passed during Summer Sessions at UC Davis or at another accredited school and transferred to UC Davis will be counted as units passed (applied to quarter of registration just preceding the summer session)
- Courses passed by examination in accordance with policies established by the Divisional Committee on Courses (applied to quarter in which exam is taken)
- Courses that are IP (in progress) will be counted as units passed
- Courses graded I will be counted as units passed when replaced by a passing grade (applied to the quarter in which the I grade is received)

The dean of the student's college may grant a student a minimum progress variance of one or more quarters for an acceptable reason. See your faculty adviser or go to the dean's office of your college if you need academic advising about probation and dismissal.

Dismissal

Dismissal for either qualitative or quantitative reasons (defined above) is based on the decision of the dean of the college in which you are enrolled. Such dismissal is from the University of California system and not simply the college or the Davis campus. Should a former Davis student later wish to be readmitted on the Davis campus, the authority to do so rests with the dean of the college from which the student was dismissed. If you are dismissed from your college, you will automatically receive a full refund of registration fees paid.

Transfer with Scholastic Deficiencies

To transfer from one University of California campus to another, or from one college or school to another on the same campus, a disqualified or probational student must obtain the approval of the dean whose jurisdiction is being sought. Following the transfer, the student is subject to supervision by the faculty of the new college, school or campus.

SUMMER SESSIONS

44 Mrak Hall
Davis, California, CA 95616-8715
(916) 752-1641 or 1-800-VIP-2738; e-mail: summer-sessions@ucdavis.edu
World Wide Web:
http://www.mrak.ucdavis.edu/UCDsummer.html

Every summer, several thousand students—approximately 6,000 in 1995—turn to the Office of Summer Sessions at UC Davis for an opportunity to complete their undergraduate degrees, earn units, expand their knowledge, do research, take special study courses, meet prerequisites or take courses that are often over-enrolled during the academic year.

Summer Sessions offers a wide range of lower and upper division courses (more than 200 in 1995) that provide full university credit transferable to most campuses.

Since admission is open to virtually all mature adults, Summer Sessions has traditionally attracted students from universities and colleges, high school graduates and many other qualified applicants. Admission to a summer session, however, does not guarantee or imply admission to the university's regular academic quarters.

In 1997, the Office of Summer Sessions will offer two six-week sessions, which will run from June 23 to August 1 and from August 4 to September 12. All UC Davis undergraduates will automatically receive our 1997 Summer Sessions Catalog and application materials by the end of April; non-UC Davis undergraduates should contact us at the address above, at 916-752-1641, or at summer-sessions@ucdavis.edu.

A variety of international and special programs will be offered in 1997, including the Summer Humanities Institute: An Honors Program for High School Juniors; the Summer Institute of Fine Arts; the Summer Institute for the Literature of Northern California; Literature of the Wilderness, in McCall, Idaho; the study of volcanoes in Hawaii; and other special topic programs of different lengths. In 1996, students had the opportunity to study in Peru, England, France, Italy and Japan. For more information on international programs, call 916-752-0433; for the Summer Humanities Institute, call 916-752-7649; for all other programs and courses, please contact the Office of Summer Sessions.
Major programs in the College of Agricultural and Environmental Sciences highlight the multiple connections among the environment, plant and animal systems, and human health and development, all within the larger context of the quality of life in the global economy. The majors fall into four broad areas of study described below. Majors in a fifth area of study, the biological sciences, are offered through both the College of Agricultural and Environmental Sciences and the College of Letters and Science and are administered by the Division of Biological Sciences. Refer to the following section, “Division of Biological Sciences,” for more information. The College of Agricultural and Environmental Sciences also offers two collegewide degree programs and two collegewide non-degree programs.

The Undergraduate Programs

Animal Biology
These majors prepare students in animal biology and the management of environmental resources as needed to develop sustainable animal production technologies. Also considered is the impact of production and management processes on animal health and welfare, human diet and health, and the natural environment.

Majors:
- Animal Science, B.S.
- Animal Science and Management, B.S.
- Avian Sciences, B.S.
- Entomology, B.S.
- Wildlife, Fish and Conservation Biology, B.S. (see also Environmental and Resource Sciences and Policy)

Minors:
- Agricultural Entomology (Entomology)
- Apiculture Entomology (Entomology)
- Avian Sciences
- Entomology
- Insect Ecology (Entomology)
- Medical-Veterinary Entomology (Entomology)
- Nematology

Environmental and Resource Sciences and Policy
These majors focus on the broad facets of the human and natural environments and their interactions. They draw on the social, physical and biological sciences as needed to prepare students for leadership and advanced studies in the areas of natural resource management, environmental quality and stewardship, community planning and design, and public policy decision making.

Majors:
- Applied Behavioral Sciences, B.S.
- Atmospheric Science, B.S.
- Environmental and Resource Science, B.S.
- Environmental Biology and Management, B.S.
- Environmental Horticulture and Urban Forestry, B.S.
- Environmental Policy Analysis and Planning, B.S.
- Environmental Toxicology, B.S.
- Hydrologic Science, B.S.
- Landscape Architecture, B.S.
- Soil and Water Science, B.S.
- Wildlife, Fish and Conservation Biology, B.S. (see also Animal Biology)

Minors:
- Applied Biological Systems Technology (Biological and Agricultural Engineering)
- Atmospheric Science (Land, Air and Water Resources)
- Energy Policy (Environmental Studies)
- Environmental Policy Analysis (Environmental Studies)
- Environmental Toxicology
- Geographic Information Systems (Biological and Agricultural Engineering)
- Hydrologic Science (Land, Air and Water Resources)
- Soil Science (Land, Air and Water Resources)

Human Health and Development
These majors foster a deeper understanding of the multiple connections between scientific and cultural issues in the context of human health and the quality of life. Basic laboratory, social science, design, and economic principles are taught in this context, linking food and fiber production to consumption, emerging knowledge to societal applications and policy, and human development to active, informed citizenship. Emphasis is on linking resources for humans with humans as resources. The physiological, social, and aesthetic dimensions of the human experience are explored.

Majors:
- Agricultural and Managerial Economics, B.S.
- Community Nutrition, B.S.
- Design, B.S.
- Dietetics, B.S.
- Fermentation Science, B.S.
- Fiber and Polymer Science, B.S.
- Food Biochemistry, B.S.
- Food Science, B.S.
- Human Development, B.S.
- Nutrition Science, B.S.
- Textiles and Clothing, B.S.

Minors:
- Aging and Adult Development (Human and Community Development)
- Agricultural and Managerial Economics (Agricultural and Resource Economics)
- Community Development (Human and Community Development)
- Community Nutrition (Nutrition)
- Fiber and Polymer Science (Textiles and Clothing)
- Food Service Management (Nutrition)
- Human Development (Human and Community Development)
- Nutrition and Food (Nutrition)
- Nutrition Science (Nutrition)
- Textiles and Clothing

Plant Science
These majors provide a strong background in plant biology in the context of agricultural and environmental systems and societal needs. The Agricultural Systems and Environment major couples a strong background in plant biology with an ecological understanding of food and fiber production systems. A wide range of options within the major allows students to focus on such areas as agricultural communications and education and sus-
The study of physiology is concerned with understanding the mechanisms that control and carry out the vital functions of living organisms. From the single cell and its parts, through the various organ systems, to the whole animal and its relationship to its environment—the entire range of function of living matter is investigated.

Majors:
Physiology, B.S.
Major: Plant Biology, A.B., B.S.

Minor: Plant Biology

Divisionwide Program

Bodega Marine Laboratory Program

A full quarter of undergraduate course work in marine biology is available each spring quarter at the Bodega Marine Laboratory (BML) located in Bodega Bay, California. Course offerings include lecture and laboratory instruction in the developmental biology of marine invertebrates, physiological adaptation of marine organisms, and population biology and ecology; a weekly colloquium; and an intensive individual research experience under the direction of laboratory faculty (Biological Sciences courses 120, 120P, 122, 122P, 123; Neurobiology, Physiology and Behavior 141, 141P). The program is residential, with students housed on the laboratory grounds. Participants are assessed a room and board fee in addition to standard campus registration fees.

College of Engineering

Undergraduate Advising Office
1050 Engineering II
916-752-0557

World Wide Web: http://www.engr.ucdavis.edu

Engineering is the profession in which the physical and biological sciences are applied in a practical way for the benefit of society. As an engineering student, you will learn to observe and describe technological problems and to seek useful solutions to them. Your skills upon graduation will be useful to you not only as an engineer, but also as a professional in management, sales, operations, manufacturing, and other fields.

Fifteen undergraduate engineering curricula, including five formal double-major programs, are offered. Each of these is a four-year program leading to the degree of Bachelor of Science. Ten programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET), the nationally recognized accrediting body for engineering curricula: Aeronautical Science and Engineering, Biological Systems Engineering, Chemical Engineering, Civil Engineering, Computer Engineering, Computer Science and Engineering, Electrical Engineering, Electrical Engineering/Materials Science and Engineering, and Mechanical Engineering.

The four-year undergraduate program is divided into two parts: the Lower Division Program and the Upper Division Program.

Lower Division Programs. If you enter the College of Engineering with fewer than 90 quarter units of credit, follow the lower division program specified for your major. If you enter the College with 90 or more quarter units of credit, you must fulfill the requirements outlined in this chapter under “College of Engineering, Unit Requirements.”

Upper Division Programs. If you have completed the requirements for the lower division program or have entered the College of Engineering with more than 90 quarter units of credit, you should follow the upper division requirements for the major you have selected from the programs that follow.

Minor Programs: The College of Engineering does not offer minor programs.

The Undergraduate Programs

Biological and Agricultural Engineering

The Department of Biological and Agricultural Engineering offers two majors. Biological Systems Engineering majors combine traditional engineering studies with a study of modern biological science. They are concerned with the production and use of biological materials and with the corresponding environmental impact. Specializations within the major prepare students to work in industries involved with aquaculture, food, forestry, agriculture, medicine, and biotechnology.

Food Engineering majors learn to apply biological and engineering principles to the food industry. Specific objectives include the development of equipment and processes for the handling, storing, processing, packaging, and distributing of food products.

Majors:
Biological Systems Engineering, B.S.
Food Engineering, B.S.

Chemical Engineering and Materials Science

The Department of Chemical Engineering and Materials Science offers four majors, including two approved double majors.

Chemical Engineering majors learn to apply chemical and engineering principles to create useful products ranging from antibiotics to zirconium, from petroleum to plutonium, from agricultural chemicals to plastics. Specific objectives include improvement of the environment, production of foods and pharmaceuticals, and design of processes as diverse as integrated circuit materials production and integrated waste management.

Chemical/Biochemical Engineering majors combine chemical engineering studies with studies in the life sciences and bioprocess engineering. Bioprocess engineering is the application of engineering principles to develop, optimize, and commercialize manufacturing processes. Specific objectives include pharmaceuticals production, environmental repair, industrial chemical production, and food production.

Materials Science and Engineering majors learn to understand the structure, properties, and behavior of materials in order to produce new and improved materials with capabilities far superior to common metals, alloys and ceramics. Specific objectives include the development of materials for high-speed transportation systems, surgical and dental implants, new generations of power plants, and solid-state electronic devices in computer and communications technology.
Electrical Engineering, B.S.
Chemical Engineering/Materials Science and Engineering, B.S.
Chemical/Biochemical Engineering, B.S.
Materials Science and Engineering, B.S.

Civil and Environmental Engineering
Civil Engineering majors learn to apply the principles of the physical and biological sciences and engineering to plan and design systems to improve the human environment. Specific objectives include providing potable drinking water and freedom from disease-carrying wastes; mitigating the effects of earthquakes and other natural disasters; designing land-, water-, and air-transportation systems; and building roads and structures.

Majors:
Civil and Environmental Engineering, B.S.
Civil Engineering/Materials Science and Engineering, B.S.

Computer Science and Engineering
This major combines study of physical sciences and electronic circuits and systems with the computer hardware and software courses that are the focus of the curriculum. Specific objectives are the study of the interaction between hardware and software in computer system design and the organization, design, analysis, theory, programming, and application of digital computers and computer systems. Compared to the Computer Engineering and Electrical Engineering curricula, the Computer Science and Engineering curricula requires a more specific mix of computer hardware and computer software courses, along with additional humanities and social science electives to produce the verbal and intellectual skills demanded by employers.

Major:
Computer Science and Engineering, B.S.

Electrical and Computer Engineering
Electrical Engineering majors learn to apply the principles of the physical sciences and engineering to the design, analysis, and effective use of electrical systems. Specific objectives include provision of systems for home entertainment, space exploration, medicine, communications, transportation, energy, industrial automation, defense, commerce and education.

Computer Engineering majors study the design, development, analysis, organization, theory, programming, and application of digital computers. Specific objectives include developing the student's ability to design either computer software or computer hardware. In comparison to the Computer Science and Engineering major, the Computer Engineering major has more flexibility in choosing to specialize in computer software, computer hardware, or computer electronics. In comparison to the Electrical Engineering major with a specialty in computers, the Computer Engineering major has considerably fewer required electronics courses.

Majors:
Computer Engineering, B.S.
Electrical Engineering, B.S.
Electrical Engineering/Materials Science and Engineering, B.S.

Mechanical and Aeronautical Science Engineering
Aeronautical Science and Engineering majors learn to apply the principles of the physical sciences and engineering to bodies and vehicles whose applied loads are influenced by aerodynamic forces. Specific objectives include the design, development, and manufacture of aircraft, automobiles, and sports equipment, and the design of energy and transportation systems.

Mechanical Engineering majors learn to apply physical and mechanical principles to the design and manufacture of complex machines, energy conversion systems, and equipment for guidance control. Specific objectives include provision of intelligent manufacturing systems, biomechanical systems, power generation systems, propulsion for transportation, integration of vehicles and automated highways, and biomedical equipment.

Majors:
Aeronautical Science and Engineering, B.S.
Mechanical Engineering, B.S.
Mechanical Engineering/Materials Science and Engineering, B.S.

College of Letters and Science
Office of Undergraduate Education and Advising
Room 200, Social Sciences and Humanities Building
916-752-0392
World Wide Web: http://www-lsdo.ucdavis.edu/

Major programs in the College of Letters and Science provide students systematic exposure to the key principles, methods, findings and representations of a selected area of study. In pursuing a major, students gain intellectual depth and competency in that subject matter, explore important linkages with collateral fields of inquiry, and are encouraged to engage in independent study.

Most of the academic programs offered through the college are grouped in three divisions: Humanities, Arts, and Cultural Studies; Mathematical and Physical Sciences; and Social Sciences. One collegewide degree program, the individual major, also is available. A set of majors in the basic biological sciences are offered through both the College of Letters and Science and the College of Agricultural and Environmental Sciences and are administered by the Division of Biological Sciences. Refer to the earlier section, “Division of Biological Sciences,” for more information.

The Undergraduate Programs
Division of Humanities, Arts, and Cultural Studies

These majors focus centrally on the artifacts, expressions and concerns of humankind in various cultures and times. They provide students the opportunity to explore the creation, performance and analysis of works of art, the language and customs of non-English speaking societies, the theory and criticism of literature, and the peoples and cultures of this nation and its hemisphere. Students interested in studying these types of issues may select from more than twenty different majors.

Majors:
African American and African Studies, A.B.
American Studies, A.B.
Art History, A.B.
Art Studio, A.B.
Chicana/Chicano (Mexican-American) Studies, A.B.
Chinese, A.B.
Classical Civilization, A.B.
Comparative Literature, A.B.
Dramatic Art, A.B.
East Asian Studies, A.B.
English, A.B.
French, A.B.
German, A.B.
Italian, A.B.
Japanese, A.B.
Medieval Studies, A.B.
Music, A.B.
Native American Studies, A.B.
Nature and Culture, A.B.
Religious Studies, A.B.
Russian, A.B.
Spanish, A.B.
Women's Studies, A.B.

Minors:
African American and African Studies
American Studies
Art History
Art Studio
Asian American Studies
Chicana/Chicano (Mexican-American) Studies
Chinese
Comparative Literature
Dramatic Art
East Asian Studies
English
Film Studies
French
German
Greek
Italian
Japanese
Latin
Medieval Studies
Music
Native American Studies
Nature and Culture
Religious Studies
Russian
Social and Ethnic Relations
Spanish
Women's Studies

Division of Mathematical and Physical Sciences
These majors focus primarily on the description and interpretation of the structure, processes and events of the physical universe. They provide students the opportunity to explore in depth the structure, properties and reactions of substances; fundamental mathematical techniques and models and their application to the interpretation and explanation of phenomena; studies of matter and energy and their interconversions; the nature and development of computer languages; and earth and environmental processes. Students interested in studying these types of subjects may select from seven different majors. The division strongly encourages undergraduates to enroll in undergraduate research projects with one-on-one instruction by faculty scholar/researchers.

Majors:
Applied Physics, B.S.
Chemistry, A.B., B.S.
Computer Science, B.S.
Geology, A.B., B.S.
Mathematics, A.B., B.S.
Physics, A.B., B.S.
Statistics, A.B., B.S.

Minors:
Computer Science
Environmental Geology
Geology
Geophysics
Mathematics
Physics
Statistics

Division of Social Sciences
These majors focus largely on issues and problems that characterize social, cultural, political, and economic life across human societies. They provide students the opportunity to explore the relationships between people and the groups and organizations of which they are a part, the antecedents of individual behavior, the development of political and economic systems, the social forces that have shaped the contemporary world, and the foundations of language, thought, knowledge and perception. Students interested in studying these types of issues may select from more than a dozen different majors.

Majors:
Anthropology, A.B., B.S.
Economics, A.B.
Exercise Science, A.B., B.S.
History, A.B.
International Relations, A.B.
Linguistics, A.B.
Nature and Culture, A.B.
Philosophy, A.B.
Political Science, A.B.
Political Science–Public Service, A.B.
Psychology, A.B., B.S.
Rhetoric and Communication, A.B.
Sociology, A.B.
Sociology–Organizational Studies, A.B.

Minors:
Anthropology
Education
Exercise Science
History
History and Philosophy of Science
Linguistics
Nature and Culture
Philosophy
Political Science
Psychology
Rhetoric and Communication
Sociology
War-Peace Studies

Collegewide Program
The opportunity to develop an individual major is available to students in the college whose academic interests cannot be satisfactorily met through the completion of an established major. Individual majors may reflect the most
recent trends in scholarship and research and are typically interdisciplinary in nature. The major proposal is developed in close and active consultation with two faculty advisers from the academic disciplines most closely related to the subject matter of the individual major. Careful faculty guidance and review assure that individual majors are comparable in academic rigor and intellectual coherence to those regularly available through the departments and programs of the college.

Major:
Individual Major, A.B., B.S.

BACHELOR’S DEGREE REQUIREMENTS
You must satisfy four groups of requirements before you can become eligible for candidacy for the bachelor’s degree. The four groups are as follows:
1. University requirements, which apply to all colleges;
2. General Education requirement, which applies to all colleges;
3. College requirements; and
4. Major requirements.
Detailed information on university requirements, the General Education requirement and college requirements can be found in this chapter.

Every student is responsible for seeing that all his or her degree requirements are fulfilled.

Bachelor’s Degree Requirements

University Requirements
All students must fulfill the following University of California requirements:

Subject A
American History and Institutions
Unit Requirement
Residence Requirement
Scholarship Requirement

General Education Requirement
Students must complete three courses in the two areas of topical breadth outside the assigned area of their major. Students also must complete three writing experience courses and one social-cultural diversity course.

College Requirements

College of Agricultural and Environmental Sciences
Unit
Residence
Scholarship
English Composition

College of Engineering
Unit
Residence
Scholarship
English Composition
Design

College of Letters and Science
Unit
Residence
Scholarship
English Composition
Area (Breadth)
Foreign Language (A.B. and B.A.S. degrees)

Major Requirements
Course requirements for each major are listed in the Programs and Courses section of this catalog.
April will take another form of the Subject A Examination, which will be offered on the UC Davis campus during the orientation period each quarter. For the time and location consult the Class Schedule and Room Directory, published before the beginning of each quarter.

If you have not satisfied the requirement in one of the ways described above, you must enroll in English 57 during your first quarter of residence at the university, or as soon thereafter as space is available in the course. English 57, offered by Sacramento City College on the Davis campus, counts as 4.5 units on your study list and toward minimum progress but is not transferable as units toward graduation. To satisfy the requirement, students must pass the Subject A Examination offered as the final examination for English 57. Students failing the examination must repeat English 57. If the requirement has not been satisfied by the end of your third quarter of registration, a hold will be placed on your registration.

Students whose native and school language is not English, and some students whose schooling combines work in the United States and in another country, must demonstrate proficiency in English. The level of proficiency must meet the standards of both the non-native speakers of English program and the Subject A program. The results of the Subject A Examination and a special examination in English administered during the orientation period each quarter determine whether a student has met the Subject A requirement or must take specific coursework before meeting that requirement.

American History and Institutions

The American History and Institutions requirement ensures that every graduating student will have at least a minimum knowledge of the background of this country's development and an understanding of the political, economic and social interrelationships of its way of life.

You may meet this requirement in any of the following ways:

- By offering one high school unit in American history, or 1/2 high school unit in American history and 1/2 high school unit in civics or American government, with a grade of C or better in each course.
- By completing any one of the following courses:
 - African American and African Studies 10, 100, 120, 121
 - Asian American Studies 1, 2
 - Economics 111A, 111B
 - Native American Studies 1, 10, 55, 116, 130A, 130B, 130C
 - Political Science 1, 5, 100, 101, 102, 103, 104, 105, 106, 108, 109, 113, 130, 131, 160, 163
 (Students electing to offer one of the above courses are subject to the rules that apply for prerequisites and majors.)
- By presenting evidence that the requirement has been accepted as satisfied at another campus of the university, by presenting evidence that the requirement has been satisfied through courses in the area of American History and Institutions at another collegiate institution whose credits are acceptable for transfer to the Davis campus.
- By successful completion of the Advanced Placement Examination in American History.

International students, regardless of the type of visa they hold, must meet the university's American History and Institutions requirement for graduation.

Unit Requirement

A minimum of 180 quarter units is required for graduation. These must be distributed according to the minimum requirements set forth by the faculty of your college.

A maximum of 12 units of Internship Courses (92, 192, or a combination) may be counted toward the 180-unit bachelor's degree requirement.

The acceptability of transfer courses for unit credit is determined by Undergraduate Admissions and Outreach Services. The acceptability of such courses toward specific requirements is determined by the individual college or school.

Students should refer to the Advanced Placement Examination chart and their transcripts to eliminate the possibility of duplication of credit.

Residence Requirements

The minimum residence requirement for a bachelor's degree at the University of California is one academic year (three quarters). Each summer session in which a student completes a course of at least 2 quarter units may be counted as half a quarter's residence. Thirty-five of the final 45 quarter units completed by each candidate must be earned while in residence on the Davis campus. Not more than 18 of these 35 quarter units may be completed in summer session courses at UC Davis.

Regularly approved courses (laboratory, field, or other individual work) done outside of a regular session but under the direction of a department of instruction may be accepted upon the recommendation of the department in partial fulfillment of the residence requirement for the bachelor's degree. Registration is with the consent of the instructor only.

University Extension courses are not accepted as part of the university residence requirement.

There are additional residence requirements for students enrolled in the Colleges of Letters and Science and Engineering. If you are planning to study abroad during your senior year, you should consult your college dean's office.

With the approval of the dean of a student's college or school, a candidate for the bachelor's degree who was in active service in the armed forces of the United States in the year preceding the awarding of the degree may be recommended for the degree after only one quarter of university residence in which the candidate completes at least 16 units or passes a comprehensive examination in the major or field of concentration.
Scholarship Requirement
To receive a bachelor's degree, you must obtain twice as many grade points as units (a 2.0 GPA) for all courses you have attempted in the university. An exception to this rule is made for those students undertaking certain honors courses. Grades earned in University Extension courses are not used in calculating individual grade point averages. For specific college requirements consult the college sections following.

Filing for Graduation
Each candidate for an undergraduate degree must file an Announcement of Candidacy with the Office of the Registrar for the quarter in which the candidate plans to receive the degree. The dates for filing are published in the Academic Calendar at the front of this catalog.

College of Agricultural and Environmental Sciences.
A Major Certification form must be received and evaluated by the dean's office before your candidacy for a degree can be finalized. A Major Certification is completed during the quarter a student plans to graduate. At that time, the adviser and student check to see that all major requirements have been completed. The dean's office completes the degree certification by verifying that all college and university requirements have been satisfied.

1996-97 GENERAL EDUCATION REQUIREMENT
The General Education (GE) requirement promotes the intellectual growth of all undergraduates by ensuring that they acquire a breadth of knowledge that will enlarge their perspectives beyond the focus of a major and serve them well as participants in a knowledge-based society. It seeks to stimulate continued intellectual growth by providing students with knowledge not only of the content but also of the methodologies of different academic disciplines. It involves students in the learning process by its expectation of considerable writing and class participation. It encourages students to consider the relationships between disciplines.

The GE requirement has three components: Topical Breadth, Social-Cultural Diversity and Writing Experience.

Topical Breadth
A GE course in topical breadth addresses broad subject areas that are important to the student's general knowledge. It takes a critical, analytical perspective on knowledge, considering how knowledge has been acquired and the assumptions, theories, or paradigms that guide its use. Topical breadth courses are grouped into three broad subject areas of knowledge:

1. Arts and Humanities. Courses in this area provide students with knowledge of significant intellectual traditions, cultural achievements, and historical processes.
2. Science and Engineering. Courses in this area provide students with knowledge of major scientific ideas and applications. They seek to communicate the scope, power, limitations and appeal of science.
3. Social Sciences. Courses in this area provide students with knowledge of the individual, social, political and economic activities of people.

Social-Cultural Diversity
Courses in social-cultural diversity teach students the significance of the many patterned differences that characterize human populations—particularly differences of gender, race, ethnicity, sexuality, religion or social class.

Writing Experience
A GE course in writing experience normally requires a minimum of five pages of writing in a block, which will be evaluated for content, use of language and logical coherence.

Fulfilling the General Education Requirement
Topical Breadth Component: 6 courses
To fulfill the topical breadth component of the General Education requirement you must successfully complete three approved courses in each of the two subject areas of topical breadth other than the one that includes your major. To identify the area of topical breadth to which your major belongs, refer to the chart on the next page. Each academic major has been assigned to one of the three subject areas of GE topical breadth. If you have any questions concerning the subject area to which your major is assigned, consult your college dean's office.

- Double majors will satisfy the topical breadth subject areas to which they are assigned. You will still be responsible for completing any topical breadth subject area in which you do not have a major. If, for example, two majors are assigned to the same subject area, you will need to complete the topical breadth component in each of the other two subject areas. If, on the other hand, you complete two majors that have been assigned to two different areas of topi-
Undergraduate Education

Arts and Humanities

<table>
<thead>
<tr>
<th>Majors</th>
<th>Minors</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American and African Studies</td>
<td>African American and African Studies</td>
</tr>
<tr>
<td>American Studies</td>
<td>American Studies</td>
</tr>
<tr>
<td>Art History</td>
<td>Art History</td>
</tr>
<tr>
<td>Art Studio</td>
<td>Art Studio</td>
</tr>
<tr>
<td>Chicana/Chicano (Mexican-American Studies (Humanities/Arts emphasis)</td>
<td>Chicana/Chicano (Mexican-American Studies)</td>
</tr>
<tr>
<td>Chinese</td>
<td>Chinese</td>
</tr>
<tr>
<td>Classical Civilization</td>
<td>Classical Civilization</td>
</tr>
<tr>
<td>Comparative Literature</td>
<td>Comparative Literature</td>
</tr>
<tr>
<td>Design</td>
<td>Design</td>
</tr>
<tr>
<td>Dramatic Art</td>
<td>Dramatic Art</td>
</tr>
<tr>
<td>English</td>
<td>English</td>
</tr>
<tr>
<td>French</td>
<td>French</td>
</tr>
<tr>
<td>German</td>
<td>German</td>
</tr>
<tr>
<td>Greek</td>
<td>Greek</td>
</tr>
<tr>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>Italian</td>
<td>Italian</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>Japanese</td>
<td>Japanese</td>
</tr>
<tr>
<td>Latin</td>
<td>Latin</td>
</tr>
<tr>
<td>Medieval Studies</td>
<td>Medieval Studies</td>
</tr>
<tr>
<td>Music</td>
<td>Music</td>
</tr>
<tr>
<td>Native American Studies</td>
<td>Native American Studies</td>
</tr>
<tr>
<td>Philosophy</td>
<td>Philosophy</td>
</tr>
<tr>
<td>Religious Studies</td>
<td>Religious Studies</td>
</tr>
<tr>
<td>Russian</td>
<td>Russian</td>
</tr>
<tr>
<td>Spanish</td>
<td>Spanish</td>
</tr>
<tr>
<td>Women’s Studies</td>
<td>Women’s Studies</td>
</tr>
</tbody>
</table>

Science and Engineering

<table>
<thead>
<tr>
<th>Majors</th>
<th>Minors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Systems and Environment</td>
<td>Agricultural Systems and Environment</td>
</tr>
<tr>
<td>Animal Science</td>
<td>Animal Science</td>
</tr>
<tr>
<td>Animal Science and Management</td>
<td>Animal Science and Management</td>
</tr>
<tr>
<td>Anthropology (B.S. degree)</td>
<td>Anthropology (B.S. degree)</td>
</tr>
<tr>
<td>Applied Physics</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>Applied Science</td>
<td>Applied Science</td>
</tr>
<tr>
<td>Atmospheric Science</td>
<td>Atmospheric Science</td>
</tr>
<tr>
<td>Avian Sciences</td>
<td>Avian Sciences</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Community Nutrition</td>
<td>Community Nutrition</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Crop Science and Management</td>
<td>Crop Science and Management</td>
</tr>
<tr>
<td>Dietetics</td>
<td>Dietetics</td>
</tr>
<tr>
<td>Engineering (all majors)</td>
<td>Engineering (all majors)</td>
</tr>
<tr>
<td>Entomology</td>
<td>Entomology</td>
</tr>
<tr>
<td>Environmental and Resource Sciences</td>
<td>Environmental and Resource Sciences</td>
</tr>
<tr>
<td>Environmental Biology and Management</td>
<td>Environmental Biology and Management</td>
</tr>
<tr>
<td>Management</td>
<td>Management</td>
</tr>
<tr>
<td>Environmental Horticulture and Urban Forestry</td>
<td>Environmental Horticulture and Urban Forestry</td>
</tr>
<tr>
<td>Environmental Toxicology</td>
<td>Environmental Toxicology</td>
</tr>
<tr>
<td>Evolution and Ecology</td>
<td>Evolution and Ecology</td>
</tr>
<tr>
<td>Exercise Science</td>
<td>Exercise Science</td>
</tr>
<tr>
<td>Fermentation Science</td>
<td>Fermentation Science</td>
</tr>
<tr>
<td>Fiber and Polymer Science</td>
<td>Fiber and Polymer Science</td>
</tr>
<tr>
<td>Food Biochemistry</td>
<td>Food Biochemistry</td>
</tr>
<tr>
<td>Food Science</td>
<td>Food Science</td>
</tr>
<tr>
<td>Genetics</td>
<td>Genetics</td>
</tr>
<tr>
<td>Geology</td>
<td>Geology</td>
</tr>
<tr>
<td>Hydrologic Science</td>
<td>Hydrologic Science</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Microbiology</td>
</tr>
<tr>
<td>Nature and Culture</td>
<td>Nature and Culture</td>
</tr>
<tr>
<td>Nutrition Science</td>
<td>Nutrition Science</td>
</tr>
<tr>
<td>Physics</td>
<td>Physics</td>
</tr>
<tr>
<td>Physiology</td>
<td>Physiology</td>
</tr>
<tr>
<td>Plant Biology</td>
<td>Plant Biology</td>
</tr>
<tr>
<td>Psychology (B.S. degree)</td>
<td>Psychology (B.S. degree)</td>
</tr>
<tr>
<td>Range and Wildlands Science</td>
<td>Range and Wildlands Science</td>
</tr>
<tr>
<td>Soil and Water Science</td>
<td>Soil and Water Science</td>
</tr>
<tr>
<td>Statistics</td>
<td>Statistics</td>
</tr>
<tr>
<td>Wildlife, Fish and Conservation Biology</td>
<td>Wildlife, Fish and Conservation Biology</td>
</tr>
</tbody>
</table>

Social Sciences

<table>
<thead>
<tr>
<th>Majors</th>
<th>Minors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural and Managerial Economics</td>
<td>Agricultural and Managerial Economics</td>
</tr>
<tr>
<td>Anthropology (A.B. degree)</td>
<td>Anthropology (A.B. degree)</td>
</tr>
<tr>
<td>Applied Behavioral Sciences</td>
<td>Applied Behavioral Sciences</td>
</tr>
<tr>
<td>Chicana/Chicano (Mexican-American Studies (Social Sciences emphasis)</td>
<td>Chicana/Chicano (Mexican-American Studies)</td>
</tr>
<tr>
<td>East Asian Studies</td>
<td>East Asian Studies</td>
</tr>
<tr>
<td>Economics</td>
<td>Economics</td>
</tr>
<tr>
<td>Environmental Policy Analysis and Planning</td>
<td>Environmental Policy Analysis and Planning</td>
</tr>
<tr>
<td>Human Development</td>
<td>Human Development</td>
</tr>
<tr>
<td>International Agricultural Development</td>
<td>International Agricultural Development</td>
</tr>
<tr>
<td>International Relations</td>
<td>International Relations</td>
</tr>
<tr>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Political Science</td>
<td>Political Science</td>
</tr>
<tr>
<td>Political Science–Public Service</td>
<td>Political Science–Public Service</td>
</tr>
<tr>
<td>Psychology (A.B. degree)</td>
<td>Psychology (A.B. degree)</td>
</tr>
<tr>
<td>Rhetoric and Communication</td>
<td>Rhetoric and Communication</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology</td>
</tr>
<tr>
<td>Sociology–Organizational Studies</td>
<td>Sociology–Organizational Studies</td>
</tr>
<tr>
<td>Textiles and Clothing</td>
<td>Textiles and Clothing</td>
</tr>
</tbody>
</table>

Minors

<table>
<thead>
<tr>
<th>Arts and Humanities Minors</th>
<th>Science and Engineering Minors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging and Adult Development</td>
<td>Aging and Adult Development</td>
</tr>
<tr>
<td>Agricultural and Managerial Economics</td>
<td>Agricultural and Managerial Economics</td>
</tr>
<tr>
<td>Anthropology (General emphasis)</td>
<td>Anthropology (General emphasis)</td>
</tr>
<tr>
<td>Community Development</td>
<td>Community Development</td>
</tr>
<tr>
<td>East Asian Studies</td>
<td>East Asian Studies</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>Energy Policy</td>
</tr>
<tr>
<td>Environmental Policy Analysis</td>
<td>Environmental Policy Analysis</td>
</tr>
<tr>
<td>History and Philosophy of Science</td>
<td>History and Philosophy of Science</td>
</tr>
<tr>
<td>Human Development</td>
<td>Human Development</td>
</tr>
<tr>
<td>International Agricultural Development</td>
<td>International Agricultural Development</td>
</tr>
<tr>
<td>Linguistics</td>
<td>Linguistics</td>
</tr>
<tr>
<td>Political Science</td>
<td>Political Science</td>
</tr>
<tr>
<td>Psychology</td>
<td>Psychology</td>
</tr>
<tr>
<td>Rhetoric and Communication</td>
<td>Rhetoric and Communication</td>
</tr>
<tr>
<td>Science and Society</td>
<td>Science and Society</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology</td>
</tr>
<tr>
<td>Textiles and Clothing</td>
<td>Textiles and Clothing</td>
</tr>
<tr>
<td>War-Peace Studies</td>
<td>War-Peace Studies</td>
</tr>
</tbody>
</table>
cal breadth then you will be responsible for completing the topical breadth component in only the remaining subject area.

- **Individual majors** are assigned to an area of topical breadth at the time they are approved by your college.

- **Each minor** has also been assigned to one of the three subject areas of topical breadth. A minor assigned to a subject area other than the area of your major will satisfy the GE course requirement for topical breadth in that subject area.

- **Courses in your major** may count toward the topical breadth component when those courses are also assigned to subject areas other than the area of your major.

- **A course approved in more than one topical breadth subject area** may only be offered in satisfaction of one of those subject areas.

Social-Cultural Diversity Component: 1 course
To fulfill the social-cultural diversity component of the GE requirement, you must successfully complete one course from the approved list that follows.

Writing Experience Component: 3 courses
To fulfill the writing experience component of the GE requirement, you must successfully complete three courses from the approved list that follows.

- **Subject A.** You must satisfy the university Subject A requirement before you take any writing experience course for GE credit. If you take an approved writing experience course but have not yet satisfied the Subject A requirement, you will not receive GE writing experience credit for that course.

Additional Conditions

1. Letter grading.
All courses taken to fulfill the GE requirement must be taken for a letter grade. No GE credit will be awarded for a course that you take on a Passed/Not Passed basis.

2. College and university composition requirements.
The following GE courses may not be used to satisfy university or college requirements in composition and GE writing experience simultaneously: Comparative Literature 1, 2, 3, 4, English 1, 3, 20, 101, 102, 104A, 104B, 104C, 104D, 104E, Native American Studies 5, Rhetoric and Communication 1.

Remember: You must satisfy the university Subject A requirement before you take any writing experience course for GE credit.

3. Courses approved for multiple GE components.
Courses approved for more than one component of the GE requirement (topical breadth, writing experience and social-cultural diversity) will be accepted toward satisfaction of all components for which the course has been approved.

GE Exemption

IGETC, TCC, and UC Reciprocity. You are exempt from the UC Davis GE requirement if you come from a California community college and are certified as having successfully completed the “Intersegmental General Education Transfer Curriculum” (IGETC) or “Transfer Core Curriculum” (TCC), or if you come from another UC campus and are certified as having successfully completed the lower division breadth or General Education requirements of that UC campus (UC reciprocity).

Approved General Education Courses

A list of the courses that provide General Education credit appears on the following pages. This list is subject to change. You should check the Class Schedule and Room Directory each quarter for the most current information.
GENERAL EDUCATION COURSES FOR 1996-97 GE REQUIREMENT

TOPICAL BREADTH

These courses provide GE credit for *topical breadth*. Many of these courses also satisfy the GE requirement for *social-cultural diversity* (indicated by D) and/or provide GE credit for *writing experience* (indicated by W). Complete lists of the courses that satisfy the *social-cultural diversity* requirement and the courses that provide *writing experience* credit follow this list.

Arts and Humanities

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Prefix</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History 177B</td>
<td>W</td>
<td>D</td>
</tr>
<tr>
<td>Art History 178A</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art History 178B</td>
<td>W</td>
<td>D</td>
</tr>
<tr>
<td>Art History 178C</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art History 179B</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Art History 182</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Art History 183A</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art History 183B</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Art History 183C</td>
<td>W</td>
<td>D</td>
</tr>
<tr>
<td>Art History 183E</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art History 184</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art History 188B</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art History 188C</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 30</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 131</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 132A</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 132B</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 147</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 148</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 149</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Art Studio 150</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 111</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 154</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Chinese 10</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 11</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 30</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 104</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 105</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 106</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 107</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 108</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109A</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109B</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109C</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109D</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109E</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109F</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109G</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109H</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 109I</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chinese 110</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Classics 2</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 3</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 10</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Classics 15</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Classics 17B</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 17C</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 20</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 50</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 102</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 140</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 141</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 142</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 143</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 150</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Classics 174</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Comparative Literature 1*</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Comparative Literature 2*</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Comparative Literature 3*</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Comparative Literature 4*</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Comparative Literature 5</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Comparative Literature 6</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Comparative Literature 7</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Comparative Literature 8</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Comparative Literature 9</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Comparative Literature 12</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Comparative Literature 13</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Comparative Literature 14</td>
<td>W</td>
<td>W</td>
</tr>
</tbody>
</table>

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.

† Also assigned to another area of *topical breadth*. ‡ Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).
GENERAL EDUCATION COURSES FOR 1996-97 GE REQUIREMENT

<table>
<thead>
<tr>
<th>Course Code</th>
<th>W</th>
<th>Course Code</th>
<th>D</th>
<th>Course Code</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek 115</td>
<td>W</td>
<td>History 170A</td>
<td>D</td>
<td>Japanese 105</td>
<td>D</td>
</tr>
<tr>
<td>Greek 116</td>
<td>W</td>
<td>History 170B</td>
<td>D</td>
<td>Japanese 106</td>
<td>D</td>
</tr>
<tr>
<td>History 3</td>
<td>W</td>
<td>History 170C</td>
<td>D</td>
<td>Japanese 107</td>
<td>D</td>
</tr>
<tr>
<td>History 4A</td>
<td>W</td>
<td>History 171A</td>
<td>D</td>
<td>Japanese 108</td>
<td>D</td>
</tr>
<tr>
<td>History 4B</td>
<td>W</td>
<td>History 171B</td>
<td>D</td>
<td>Landscape Architecture 401</td>
<td>D</td>
</tr>
<tr>
<td>History 4C</td>
<td>W</td>
<td>History 173</td>
<td>D</td>
<td>Landscape Architecture 140</td>
<td>W</td>
</tr>
<tr>
<td>History 8</td>
<td>D</td>
<td>History 174A</td>
<td>D</td>
<td>Latin 100</td>
<td>D</td>
</tr>
<tr>
<td>History 4A†</td>
<td>D</td>
<td>History 174B</td>
<td>D</td>
<td>Latin 101</td>
<td>W</td>
</tr>
<tr>
<td>History 9B</td>
<td>D</td>
<td>History 174C</td>
<td>W</td>
<td>Latin 102</td>
<td>W</td>
</tr>
<tr>
<td>History 10</td>
<td>D</td>
<td>History 174D</td>
<td>W</td>
<td>Latin 103</td>
<td>W</td>
</tr>
<tr>
<td>History 15</td>
<td>D</td>
<td>History 176A</td>
<td>W</td>
<td>Latin 104</td>
<td>W</td>
</tr>
<tr>
<td>History 17A</td>
<td>D</td>
<td>History 176B</td>
<td>W</td>
<td>Latin 105</td>
<td>W</td>
</tr>
<tr>
<td>History 17B</td>
<td>D</td>
<td>History 177A</td>
<td>D</td>
<td>Latin 106</td>
<td>W</td>
</tr>
<tr>
<td>History 30</td>
<td>D</td>
<td>History 177B</td>
<td>D</td>
<td>Latin 108</td>
<td>D</td>
</tr>
<tr>
<td>History 72A</td>
<td>D</td>
<td>History 180A</td>
<td>W</td>
<td>Latin 109</td>
<td>W</td>
</tr>
<tr>
<td>History 72B</td>
<td>D</td>
<td>History 180B</td>
<td>W</td>
<td>Latin 110</td>
<td>W</td>
</tr>
<tr>
<td>History 85</td>
<td>D</td>
<td>History 180C</td>
<td>W</td>
<td>Latin 111</td>
<td>W</td>
</tr>
<tr>
<td>History 110</td>
<td>W</td>
<td>History 183A</td>
<td>D</td>
<td>Latin 112</td>
<td>W</td>
</tr>
<tr>
<td>History 111A</td>
<td>W</td>
<td>History 183B</td>
<td>D</td>
<td>Latin 114</td>
<td>W</td>
</tr>
<tr>
<td>History 111B</td>
<td>W</td>
<td>History 185A</td>
<td>W</td>
<td>Latin 115</td>
<td>W</td>
</tr>
<tr>
<td>History 111C</td>
<td>W</td>
<td>History 185B</td>
<td>W</td>
<td>Latin 116</td>
<td>W</td>
</tr>
<tr>
<td>History 115A</td>
<td>D</td>
<td>History 189A</td>
<td>W</td>
<td>Latin 125</td>
<td>D</td>
</tr>
<tr>
<td>History 115B</td>
<td>D</td>
<td>History 189B</td>
<td>W</td>
<td>Linguistics 1†</td>
<td>D</td>
</tr>
<tr>
<td>History 115C</td>
<td>D</td>
<td>History 189C</td>
<td>W</td>
<td>Linguistics 50†</td>
<td>W</td>
</tr>
<tr>
<td>History 116</td>
<td>D</td>
<td>History 191A</td>
<td>D</td>
<td>Medieval Studies 20A</td>
<td>W</td>
</tr>
<tr>
<td>History 121A</td>
<td>W</td>
<td>History 191B</td>
<td>D</td>
<td>Medieval Studies 120A</td>
<td>D</td>
</tr>
<tr>
<td>History 121B</td>
<td>W</td>
<td>History 191C</td>
<td>D</td>
<td>Medieval Studies 120D</td>
<td>W</td>
</tr>
<tr>
<td>History 121C</td>
<td>W</td>
<td>History 191D</td>
<td>D</td>
<td>Medieval Studies 120E</td>
<td>W</td>
</tr>
<tr>
<td>History 122</td>
<td>D</td>
<td>History 191E</td>
<td>D</td>
<td>Medieval Studies 20B</td>
<td>W</td>
</tr>
<tr>
<td>History 125</td>
<td>D</td>
<td>History 191F</td>
<td>D</td>
<td>Medieval Studies 20C</td>
<td>W</td>
</tr>
<tr>
<td>History 130A</td>
<td>D</td>
<td>History 194A</td>
<td>D</td>
<td>Music 10</td>
<td>W</td>
</tr>
<tr>
<td>History 130B</td>
<td>D</td>
<td>History 194B</td>
<td>W</td>
<td>Music 105</td>
<td>D</td>
</tr>
<tr>
<td>History 130C</td>
<td>D</td>
<td>History 194C</td>
<td>D</td>
<td>Music 110A</td>
<td>W</td>
</tr>
<tr>
<td>History 130D</td>
<td>D</td>
<td>History 194D</td>
<td>D</td>
<td>Music 110B</td>
<td>W</td>
</tr>
<tr>
<td>History 131A</td>
<td>W</td>
<td>History 194E</td>
<td>D</td>
<td>Music 110C</td>
<td>W</td>
</tr>
<tr>
<td>History 131B</td>
<td>W</td>
<td>History 196A</td>
<td>D</td>
<td>Music 110D</td>
<td>W</td>
</tr>
<tr>
<td>History 131C</td>
<td>W</td>
<td>History 196B</td>
<td>D</td>
<td>Music 110E</td>
<td>W</td>
</tr>
<tr>
<td>History 133</td>
<td>W</td>
<td>History and Philosophy of Science 130A</td>
<td>W</td>
<td>Native American Studies 5†</td>
<td>W</td>
</tr>
<tr>
<td>History 133A</td>
<td>W</td>
<td>History and Philosophy of Science 130B†</td>
<td>W</td>
<td>Native American Studies 10†</td>
<td>W</td>
</tr>
<tr>
<td>History 133B</td>
<td>W</td>
<td>History and Philosophy of Science 131†</td>
<td>W</td>
<td>Native American Studies 33</td>
<td>D</td>
</tr>
<tr>
<td>History 136</td>
<td>W</td>
<td>History and Philosophy of Science 131</td>
<td>W</td>
<td>Native American Studies 101</td>
<td>D</td>
</tr>
<tr>
<td>History 138A</td>
<td>W</td>
<td>of Science 131</td>
<td>W</td>
<td>Native American Studies 156</td>
<td>D</td>
</tr>
<tr>
<td>History 138B</td>
<td>W</td>
<td>Humanities 1</td>
<td>W</td>
<td>Native American</td>
<td>D</td>
</tr>
<tr>
<td>History 138C</td>
<td>W</td>
<td>Humanities 10</td>
<td>D</td>
<td>Studies 181A</td>
<td>D</td>
</tr>
<tr>
<td>History 139A</td>
<td>W</td>
<td>Humanities 20A</td>
<td>W</td>
<td>Native American</td>
<td>D</td>
</tr>
<tr>
<td>History 139B†</td>
<td>W</td>
<td>Humanities 110A</td>
<td>W</td>
<td>Studies 181B</td>
<td>D</td>
</tr>
<tr>
<td>History 141</td>
<td>W</td>
<td>Humanities 180</td>
<td>W</td>
<td>Native American</td>
<td>D</td>
</tr>
<tr>
<td>History 142</td>
<td>W</td>
<td>Integrated Studies 8B</td>
<td>D</td>
<td>Studies 181C</td>
<td>D</td>
</tr>
<tr>
<td>History 143</td>
<td>D</td>
<td>Italian 50</td>
<td>W</td>
<td>Native American</td>
<td>D</td>
</tr>
<tr>
<td>History 144</td>
<td>D</td>
<td>Italian 105</td>
<td>W</td>
<td>Studies 191</td>
<td>D</td>
</tr>
<tr>
<td>History 145</td>
<td>W</td>
<td>Italian 107</td>
<td>W</td>
<td>Nature and Culture 1†</td>
<td>W</td>
</tr>
<tr>
<td>History 146A</td>
<td>W</td>
<td>Italian 112</td>
<td>W</td>
<td>Philosophy 1</td>
<td>W</td>
</tr>
<tr>
<td>History 146B</td>
<td>W</td>
<td>Italian 113</td>
<td>W</td>
<td>Philosophy 6</td>
<td>W</td>
</tr>
<tr>
<td>History 147A†</td>
<td>W</td>
<td>Italian 114</td>
<td>W</td>
<td>Philosophy 11</td>
<td>D</td>
</tr>
<tr>
<td>History 147B†</td>
<td>W</td>
<td>Italian 115A</td>
<td>W</td>
<td>Philosophy 13</td>
<td>W</td>
</tr>
<tr>
<td>History 147C†</td>
<td>D</td>
<td>Italian 115B</td>
<td>W</td>
<td>Philosophy 14</td>
<td>D</td>
</tr>
<tr>
<td>History 148A</td>
<td>W</td>
<td>Italian 115C</td>
<td>W</td>
<td>Philosophy 21</td>
<td>W</td>
</tr>
<tr>
<td>History 148B</td>
<td>D</td>
<td>Italian 115D</td>
<td>W</td>
<td>Philosophy 22</td>
<td>W</td>
</tr>
<tr>
<td>History 151A</td>
<td>W</td>
<td>Italian 118</td>
<td>W</td>
<td>Philosophy 23</td>
<td>W</td>
</tr>
<tr>
<td>History 151B</td>
<td>W</td>
<td>Italian 119</td>
<td>W</td>
<td>Philosophy 24</td>
<td>W</td>
</tr>
<tr>
<td>History 151C</td>
<td>W</td>
<td>Italian 120A</td>
<td>W</td>
<td>Philosophy 31†</td>
<td>W</td>
</tr>
<tr>
<td>History 151D</td>
<td>D</td>
<td>Italian 120B</td>
<td>W</td>
<td>Philosophy 32†</td>
<td>W</td>
</tr>
<tr>
<td>History 161A</td>
<td>D</td>
<td>Italian 131</td>
<td>W</td>
<td>Philosophy 101</td>
<td>W</td>
</tr>
<tr>
<td>History 161B</td>
<td>D</td>
<td>Italian 139B</td>
<td>W</td>
<td>Philosophy 102</td>
<td>W</td>
</tr>
<tr>
<td>History 162</td>
<td>D</td>
<td>Italian 140</td>
<td>W</td>
<td>Philosophy 103</td>
<td>W</td>
</tr>
<tr>
<td>History 163A</td>
<td>W</td>
<td>Italian 141</td>
<td>D</td>
<td>Philosophy 104†</td>
<td>W</td>
</tr>
<tr>
<td>History 163B</td>
<td>W</td>
<td>Italian 142</td>
<td>D</td>
<td>Philosophy 105</td>
<td>W</td>
</tr>
<tr>
<td>History 164</td>
<td>W</td>
<td>Japanese 10</td>
<td>D</td>
<td>Philosophy 106†</td>
<td>W</td>
</tr>
<tr>
<td>History 165</td>
<td>W</td>
<td>Japanese 15</td>
<td>D</td>
<td>Philosophy 107†</td>
<td>W</td>
</tr>
<tr>
<td>History 165A</td>
<td>W</td>
<td>Japanese 50</td>
<td>D</td>
<td>Philosophy 108†</td>
<td>W</td>
</tr>
<tr>
<td>History 166B</td>
<td>W</td>
<td>Japanese 101</td>
<td>D</td>
<td>Philosophy 109†</td>
<td>W</td>
</tr>
<tr>
<td>History 168</td>
<td>W</td>
<td>Japanese 102</td>
<td>D</td>
<td>Philosophy 110†</td>
<td>W</td>
</tr>
<tr>
<td>History 169A</td>
<td>D</td>
<td>Japanese 103</td>
<td>D</td>
<td>Philosophy 114</td>
<td>W</td>
</tr>
<tr>
<td>History 169B</td>
<td>D</td>
<td>Japanese 104</td>
<td>D</td>
<td>Philosophy 115</td>
<td>W</td>
</tr>
</tbody>
</table>

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.

† Also assigned to another area of topical breadth. * Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).

Science and Engineering

Agricultural Systems and Environment 120
Agricultural Systems and Environment 121
Agricultural Systems and Environment 130
Animal Science 1
Animal Science 2
Animal Science 18
GENERAL EDUCATION COURSES FOR 1996-97 GE REQUIREMENT

Animal Science 42	W	Environmental and Resource Sciences 60
Animal Science 104	W	Environmental and Resource Sciences 121
Animal Science 105	W	Environmental and Resource Sciences 131
Animal Science 106	W	Environmental Horticulture 1
Animal Science 115	W	Environmental Studies 10
Animal Science 120	W	Environmental Studies 30
Animal Science 123	W	Environmental Studies 116
Animal Science 124	W	Environmental Studies 121
Animal Science 146	W	Environmental Toxicology 10
Anthropology 1	D	Environmental Toxicology 112A
Anthropology 5	D	Environmental Toxicology 112B
Anthropology 15	D	Environmental Toxicology 114A
Anthropology 151	W	Environmental Toxicology 114B
Anthropology 152	W	Evolution and Ecology 108
Anthropology 153	W	Evolution and Ecology 121
Anthropology 154A	W	Evolution and Ecology 138
Anthropology 154B	W	Exercise Science 101
Anthropology 155	W	Exercise Science 103
Anthropology 156	W	Exercise Science 110
Anthropology 157	W	Exercise Science 113
Anthropology 158	W	Exercise Science 115
Anthropology 181	W	Exercise Science 117
Anthropology 183	W	Exercise Science 118
Astronomy 10	W	Exercise Science 126
Atmospheric Science 5	W	Geology 1
Atmospheric Science 10	W	Geology 3
Avian Sciences 11	W	Geology 4
Avian Sciences 13	W	Geology 32
Biological Sciences 1C	W	Geology 43
Biological Sciences 10	W	Geology 100
Cell Biology and Human Anatomy 101	W	Geology 101
Chemistry 2B	W	Geology 105N
Chemistry 2C	W	Geology 106N
Chemistry 10	W	Geology 107N
Chemistry 111	W	Geology 108N
Chemistry 115	W	Geology 109-109L
Chemistry 150	W	Geology 110
Chemistry 2A	W	Geology 115N†
Engineering 160F	W	Geology 116
Engineering: Applied Science 137†	W	Geology 134
Engineering: Biological Systems 1	W	Geology 135
Engineering: Biological Systems 75	W	Geology 143
Engineering: Civil and Environmental 3	W	Geology 144N
Engineering: Computer Science 15	W	Geology 145N
Engineering: Computer Science 15А	W	Geology 110
Engineering: Computer Science 167	W	Geology 115N†
Entomology 10	W	History and Philosophy of Science 130A†
Entomology 17	W	History and Philosophy of Science 130B†
Entomology 100	W	History and Philosophy of Science 131†
Entomology 101	W	Human Development 19
Entomology 102	W	Hydrologic Science 21
Entomology 103	W	Hydrologic Science 100
Entomology 104	W	Integrated Studies 8A
Entomology 107	W	Landscape Architecture 153
Entomology 109	W	Linguistics 175
Entomology 110	W	Mathematics 16A
Entomology 111	W	Mathematics 16B
Entomology 112	W	Mathematics 16C
Entomology 114W	W	Mathematics 21A
Entomology 116	W	Mathematics 21B
Entomology 119W	W	Mathematics 21AH
Entomology 147	W	Mathematics 21B
Entomology 153	W	Mathematics 21C
Entomology 154A	W	Mathematics 21CH
Entomology 153W	W	Mathematics 21M
Entomology 154B	W	Mathematics 36
Entomology 155	W	Microbiology 20
Entomology 156	W	Molecular and Cellular Biology 10
Entomology 157	W	Molecular and Cellular Biology 162
Entomology 158	W	Nature and Culture †
Entomology 159W	W	Nematology 110
Entomology 160‡	W	Neurobiology, Physiology and Behavior 10
Engineering: Computer Science 15	W	Neurobiology, Physiology and Behavior 12
Engineering: Computer Science 15А	W	Nutrition 10
Engineering: Computer Science 167	W	Nutrition 11
Engineering: Computer Science 167	W	Nutrition 20†
Engineering: Computer Science 167	W	Nutrition 114
Environmental Science 130B†	W	Nutrition 115
Environmental Science 130A†	W	Nutrition 120
Environmental Science 130M	W	Nutrition 123
Environmental Science 130A†	W	Philosophy 31†
Environmental Science 130B†	W	Philosophy 32†
Environmental Science 130M	W	Philosophy 104†
Environmental Science 130A†	W	Philosophy 106†
Environmental Science 130B†	W	Philosophy 107†
Environmental Science 130M	W	Philosophy 108†
Environmental Science 130A†	W	Philosophy 110†
Environmental Science 130B†	W	Physics 10
Environmental Science 130M	W	Physics 122
Environmental Science 130A†	W	Physics 137†
Environmental Science 130B†	W	Physics 160†
Environmental Science 130M	W	Plant Biology 1
Environmental Science 130A†	W	Plant Biology 11
Environmental Science 130B†	W	Plant Biology 12
Environmental Science 130M	W	Plant Biology 108
Environmental Science 130A†	W	Plant Biology 112
Environmental Science 130B†	W	Plant Biology 116
Environmental Science 130M	W	Plant Biology 142
Environmental Science 130A†	W	Plant Biology 143
Environmental Science 130B†	W	Plant Biology 151
Environmental Science 130M	W	Plant Pathology 140
Environmental Science 130A†	W	Pomology 10
Environmental Science 130B†	W	Statistics 10†
Environmental Science 130M	W	Statistics 12
Environmental Science 130A†	W	Statistics 13
Environmental Science 130B†	W	Statistics 32
Environmental Science 130M	W	Statistics 100
Environmental Science 130A†	W	Statistics 102
Environmental Science 130B†	W	Statistics 103
Environmental Science 130M	W	Statistics 104
Environmental Science 130A†	W	Statistics 106
Environmental Science 130B†	W	Statistics 108
Environmental Science 130M	W	Statistics 120
Environmental Science 130A†	W	Statistics 138
Environmental Science 130B†	W	Statistics 144
Environmental Science 130M	W	Textiles and Clothing 6
Environmental Science 130A†	W	Textiles and Clothing 162

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.
† Also assigned to another area of topical breadth.
‡ Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Section</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anth 117</td>
<td>Consumer Science 100</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anth 119</td>
<td>Economics 1A</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anth 120</td>
<td>Economics 1B</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 121N</td>
<td>Native American Studies 130A</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 122</td>
<td>Native American Studies 130B</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 123A</td>
<td>Native American Studies 130C</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 123B</td>
<td>Native American Studies 133D</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 124</td>
<td>Native American Studies 134D</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 125A</td>
<td>Native American Studies 180D</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 125B</td>
<td>Nature and Culture 100</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 126</td>
<td>Nutrition 20†</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 127</td>
<td>Politics 109†</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 128</td>
<td>Politics 118</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 129</td>
<td>Philosophy 119</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 130</td>
<td>Philosophy 127†</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 1</td>
<td>Physics 137†</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 131</td>
<td>Physics 160†</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 132</td>
<td>Political Science 1</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 133</td>
<td>Political Science 2</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 134</td>
<td>Political Science 3</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 135</td>
<td>Political Science 4</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 136</td>
<td>Political Science 5</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 137</td>
<td>Political Science 7</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 139</td>
<td>Political Science 100</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 140A</td>
<td>Political Science 102</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 140B</td>
<td>Political Science 105</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 141</td>
<td>Political Science 106</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 141B</td>
<td>Political Science 107</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 142</td>
<td>Political Science 108</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 143A</td>
<td>Political Science 109</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 143B</td>
<td>Political Science 112</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 144</td>
<td>Political Science 113</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 145</td>
<td>Political Science 114</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 146</td>
<td>Political Science 115</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 147</td>
<td>Political Science 116</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 148A</td>
<td>Political Science 118A</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 148B</td>
<td>Political Science 118B</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 149A</td>
<td>Political Science 118C</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 149B</td>
<td>Political Science 121</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 150</td>
<td>Political Science 122</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 151</td>
<td>Political Science 123</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 152</td>
<td>Political Science 124</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 153</td>
<td>Political Science 126</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 154</td>
<td>Political Science 127</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 155</td>
<td>Political Science 128</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 156</td>
<td>Political Science 129</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 157</td>
<td>Political Science 130</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 158</td>
<td>Political Science 131</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 159</td>
<td>Political Science 132</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 160</td>
<td>Political Science 133</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 161</td>
<td>Political Science 134</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 162</td>
<td>Political Science 135</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 163</td>
<td>Political Science 136</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 164</td>
<td>Political Science 137</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 165</td>
<td>Political Science 138</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 166</td>
<td>Political Science 139</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 167</td>
<td>Political Science 140</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 168</td>
<td>Political Science 141</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 169</td>
<td>Political Science 142</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 170</td>
<td>Political Science 143</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 171</td>
<td>Political Science 144</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 172</td>
<td>Political Science 145</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 173</td>
<td>Political Science 146</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 174</td>
<td>Political Science 147</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 175</td>
<td>Political Science 148</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 176</td>
<td>Political Science 149</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 177</td>
<td>Political Science 150</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 178</td>
<td>Political Science 151</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 179</td>
<td>Political Science 152</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 180</td>
<td>Political Science 153</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 181</td>
<td>Political Science 154</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 182</td>
<td>Political Science 155</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 183</td>
<td>Political Science 156</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Anthropology 184</td>
<td>Political Science 157</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 1</td>
<td>Political Science 158</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 2</td>
<td>Political Science 159</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 118</td>
<td>Political Science 160</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 119</td>
<td>Political Science 161</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 120</td>
<td>Political Science 162</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 121</td>
<td>Political Science 163</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 122</td>
<td>Political Science 164</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 123</td>
<td>Political Science 165</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 124</td>
<td>Political Science 166</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 125</td>
<td>Political Science 167</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 126</td>
<td>Political Science 168</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 127</td>
<td>Political Science 169</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 128</td>
<td>Political Science 170</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 129</td>
<td>Political Science 171</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 130</td>
<td>Political Science 172</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 131</td>
<td>Political Science 173</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 132</td>
<td>Political Science 174</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 133</td>
<td>Political Science 175</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 134</td>
<td>Political Science 176</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 135</td>
<td>Political Science 177</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 136</td>
<td>Political Science 178</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 137</td>
<td>Political Science 179</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Applied Behavioral Sciences 138</td>
<td>Political Science 180</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Asian American Studies 110</td>
<td>Political Science 181</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Asian American Studies 111</td>
<td>Political Science 182</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Asian American Studies 112</td>
<td>Political Science 183</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 110</td>
<td>Psychology 1</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 111</td>
<td>Psychology 2</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 112</td>
<td>Psychology 3</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 113</td>
<td>Psychology 4</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 114</td>
<td>Psychology 5</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 115</td>
<td>Psychology 6</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 116</td>
<td>Psychology 7</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 117</td>
<td>Psychology 8</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 118</td>
<td>Psychology 9</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 119</td>
<td>Psychology 10</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 120</td>
<td>Psychology 11</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 121</td>
<td>Psychology 12</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 122</td>
<td>Psychology 13</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 123</td>
<td>Psychology 14</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 124</td>
<td>Psychology 15</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 125</td>
<td>Psychology 16</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 126</td>
<td>Psychology 17</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 127</td>
<td>Psychology 18</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 128</td>
<td>Psychology 19</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 129</td>
<td>Psychology 20</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 130</td>
<td>Psychology 21</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 131</td>
<td>Psychology 22</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 132</td>
<td>Psychology 23</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 133</td>
<td>Psychology 24</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 134</td>
<td>Psychology 25</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 135</td>
<td>Psychology 26</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 136</td>
<td>Psychology 27</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 137</td>
<td>Psychology 28</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 138</td>
<td>Psychology 29</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 139</td>
<td>Psychology 30</td>
<td>D</td>
<td>W</td>
</tr>
<tr>
<td>Chicana/Chicano Studies 140</td>
<td>Psychology 31</td>
<td>D</td>
<td>W</td>
</tr>
</tbody>
</table>

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.
† Also assigned to another area of topical breadth. ‡ Credit for writing experience allowed if co-course taken concurrently (see Writing Experience list).
Writing Experience

These courses satisfy the GE requirement for writing experience. Many of these courses also provide GE credit for topical breadth or social-cultural diversity. Refer to the topical breadth and social-cultural diversity course lists to determine if any additional GE credit applies.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>GE Requirement</th>
<th>Topical Breadth</th>
<th>Social-Cultural Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American and African Studies 12, 15, 50, 52, 80, 107A, 107B, 107C, 152, 153, 162, 170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Economics 15, 120, 141, 141M, 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Education 100, 160, 172</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Systems and Environment 121, 130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Studies 1A, 1B, 1C, 1E, 110, 120, 130, 151, 152, 153, 154, 155, 156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Science 1, 2, 42, 106, 124, 141, 146, 148, 193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Behavioral Sciences 1, 2, 118, 140, 151, 152, 154, 157, 176</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art Studio 30, 131A, 132A, 132B, 147, 148, 149, 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric Science 5, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avian Sciences 11, 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Sciences 1C, 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Biology and Human Anatomy 101L (course 101 required concurrently)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 10, 111, 115, 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicana/Chicano Studies 10, 110, 121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classics 2, 3, 15, 17B, 17C, 20, 30, 30, 102, 140, 141, 143, 150, 151, 174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This course may not be used to satisfy a college or university composition requirement and GE writing experience simultaneously.
GENERAL EDUCATION COURSES FOR 1996-97 GE REQUIREMENT

Social-Cultural Diversity

These courses satisfy the GE requirement for social-cultural diversity. Many of these courses also provide GE credit for topical breadth or writing experience. Refer to the topical breadth and writing experience course lists to determine if any additional GE credit applies.

GENERAL EDUCATION REQUIREMENT FOR CONTINUING STUDENTS

Students who entered UC Davis before the 1996-97 academic year may elect to fulfill the 1996-97 GE requirement or to complete the requirement in effect the year of their entrance to UC Davis.

If you elect to complete the GE requirement in effect the year of your entrance to UC Davis, you must meet the requirements and conditions listed below and select approved GE courses from the list on the next page.

If you elect to complete the 1996-97 GE requirement, you must meet all of the requirements and conditions explained in the preceding section and select approved GE courses from the lists on the preceding pages.

Coursework completed before 1996-97, if accepted toward the 1996-97 GE requirement (see the preceding list of approved GE courses), may be used to satisfy your GE requirement.

Determining Your General Education Requirement (Continuing Students)

Each academic major, minor and degree program has been assigned to one of the three areas of General Education: Civilization and Culture, Contemporary Societies, and Nature and Environment. Each GE course has also been assigned to one of the three areas. You must complete three courses in each of the two General Education areas outside of the area of your major. Two of the three courses in each area must be certified General Education courses. One of the three courses in each area must be an upper division course.

Double majors will satisfy the GE requirement in two areas only if the majors are assigned to two different areas. You will still be responsible for completing the GE requirement in the third area. Double majors in the same area do not reduce your GE requirements.

Individual majors are assigned to one of the three General Education areas when the major is approved by your college. If you have any questions concerning the GE area to which your major was assigned, consult your college dean's office.

A minor in an area outside the area of your major will satisfy your GE requirement in that minor's area. The minor in Science and Society may satisfy the GE requirement in any one of the three areas.

The specific General Education requirements for students who entered UC Davis from the 1992-93 academic year through the 1995-96 academic year are detailed in the General Education Requirements table below. Students who entered UC Davis before the 1992-93 academic year should consult their college dean's office to determine their GE requirement.

Additional Conditions

In addition to the requirements outlined above and in the GE requirements table, you must meet the following conditions:

1. **Letter grading.** All courses taken to fulfill the GE requirement must be taken for a letter grade. No GE credit will be awarded for a course that is taken on a Passed/Not Passed basis.

2. **Subject A.** This requirement must be completed before you begin your GE coursework.
GENERAL EDUCATION COURSES FOR CONTINUING STUDENTS

This list contains approved GE courses for continuing students who have elected to complete the GE requirement in effect the year of their entrance to UC Davis. Please consult prior years' catalogs or the Deans' offices for the lists of courses approved in previous years. Please note that you cannot claim GE credit for a course you completed before it was an approved GE course.

Civilization and Culture

Courses in this area present dominant intellectual traditions, achievements and socio-political institutions, and increase awareness of cultural diversity within the Western tradition and in other civilizations.

Lower Division
- American Studies 1B, 1E
- Art History 1A/1AG, 1B/1BG, 1C/1CG, 1D/1DG, 2S/2DG
- Chinese 11
- Classics 15, 17B, 17C, 20, 50
- Comparative Literature 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 20, 25, 53B
- English 3, 4, 30A, 30B
- French 25
- German 47, 48, 50
- History 3, 4A, 4B, 4C, 8, 9A, 17A, 17B, 30, 72A, 72B
- History and Philosophy of Science 20
- Human Development 13
- Integrated Studies 2B4, 2D4, 3B4, 3C4, 8B4
- Italian 50
- Landscape Architecture 40
- Linguistics 1, 50
- Medieval Studies 20A, 20B, 20C
- Music 3A/3B2, 10
- Medieval Studies 20A, 20B, 20C
- Linguistics 1, 50
- Music 3A/3B2, 10
- Native American Studies 5
- Philosophy 1, 11, 13, 14, 21, 22, 23, 24, 31, 32
- Political Science 4
- Religious Studies 3A, 3B, 3C, 21, 23, 40
- Russian 44
- Viticulture and Enology 3-3W1

Upper Division
- Art History 178C
- Chinese 110
- Classics 140, 141, 143, 150
- Dramatic Art 156A, 156B, 156C
- Education 120
- English 118, 156, 162, 171A, 171B, 182, 184
- French 112, 113, 114
- History and Philosophy of Science 130A, 140, 131
- Humanities 110A
- Italian 140, 141, 142
- Landscape Architecture 140
- Medieval Studies 120A, 120D, 120E
- Music 105, 110A, 110B, 110C, 110D, 110E, 129
- Native American Studies 130A, 130B, 156, 181A, 181B, 181C
- Philosophy 101, 102, 104, 105, 107, 108, 151
- Religious Studies 141A, 141B, 141C, 142
- Rhetoric and Communication 110
- Russian 129, 130, 131, 143, 151, 166
- Spanish 149
- Veterinary Medicine 170
- Women's Studies 140

Contemporary Societies

Courses in this area create an awareness of critical economic, political and social problems of the contemporary world.

Lower Division
- Agricultural Economics 15
- American Studies 1A
- Anthropology 2, 4
- Applied Behavioral Sciences 2
- Chicana/Chicano Studies 40
- Economics 1A-1B2
- Environmental and Resource Sciences 10-10G
- Environmental Studies 10
- Geography 2-2G1, 5-5G1
- History 10, 72B
- Human Development 15
- Integrated Studies 3A, 3D, 3E, 4C, 4D, 8C4
- Italian 50
- Linguistics 1, 50
- Medieval Studies 20A, 20B, 20C
- Music 3A/3B2, 10
- Native American Studies 5
- Philosophy 1, 11, 13, 14, 21, 22, 23, 24, 31, 32
- Political Science 4
- Religious Studies 3A, 3B, 3C, 21, 23, 40
- Russian 44
- Viticulture and Enology 3-3W1

Nature and Environment

Courses in this area provide students with knowledge of major scientific ideas and discoveries and some perception of the methods, scope, power, limitations and appeal of science.

Lower Division
- Agricultural Systems and Environment 1
- Animal Science 1, 2, 42
- Anthropology 1, 15, 23
- Astronomy 10
- Atmospheric Sciences 10
- Avian Sciences 11, 13
- Biological Sciences 10
- Chemistry 2A-2B2, 10
- Engineering: Civil and Environmental 30
- Engineering: Computer Science 13, 15AT
- Entomology 17
- Environmental and Resource Sciences 3-3G1
- Environmental Studies 30-30G1
- Food Science and Technology 2
- Geology 1, 3-3G1, 32, 36, 43
- Human Development 19
- Hydrologic Science 21
- Integrated Studies 1A, 1B, 8A4
- Microbiology 20
- Molecular and Cellular Biology 10
- Nutrition 10-113, 20
- Philosophy 31
- Physics 10
- Plant Biology 11, 12
- Pomology 10
- Science and Society 20
- Soil Science 10
- Statistics 10
- Viticulture and Enology 3-3W1
- Wildlife, Fish and Conservation Biology 10

Upper Division
- Agricultural Systems and Environment 121
- Anthropology 152, 153
- Engineering 160
- Engineering: Applied Science 137
- Engineering: Computer Science 167
- Entomology 111, 119, 147, 153
- Environmental and Resource Sciences 121, 131
- Environmental Studies 116-116G1
- Evolution and Ecology 121, 138
- Fiber and Polymer Science 110
- Geology 115N, 116-116G2, 135-135G1
- History and Philosophy of Science 130A, 130B, 131
- Hydrologic Science 100
- Landscape Architecture 155
- Philosophy 108
- Physics 137, 160
- Plant Biology 151
- Plant Pathology 140

1These GE courses must be taken concurrently for General Education credit and will satisfy the requirement for one GE course.

2This is a two-course sequence of non-GE courses which will satisfy the requirement for one GE course.

3Nutrition 10 and 11 must both be completed to satisfy the requirement for one GE course. These courses may be taken concurrently, if offered, or sequentially (10 then 11).

4GE courses in Integrated Studies are open only to students in the Integrated Studies program.
Exception: GE credit may be earned before completing the Subject A requirement for the following course sequences which have been approved for the General Education Program: Chemistry 2A-2B, Economics 1A-1B and Music 3A-3B.

Transfer Credit
If you have transferred from a community college or other post-secondary institution, or enter with Advanced Placement (AP) units, you still have to complete some GE courses at UC Davis, but the number of required courses may be reduced depending upon the number of transfer or AP units you have brought with you.

The following courses and transfer credits will be used in determining the General Education requirement for transfer students:
- UC Davis Extension courses if they are accepted for transfer by Undergraduate Admissions and Outreach Services.
- Advanced Placement credit.
- Transfer work from other community colleges and four-year institutions.

UC Davis Summer Sessions courses completed before entry do not count as “transfer credit” for determining your GE requirement. Successful completion of an approved GE course during a UC Davis Summer Session before entry, however, will count toward satisfaction of the GE requirement.

Consult the “Transfer Credit Evaluation” form prepared for you by Undergraduate Admissions and Outreach Services to determine your transfer credits.

GE Exemption
You are exempt from the UC Davis GE Requirement if you come from a California community college and have completed the “Intersegmental General Education Transfer Curriculum” (IGETC) or “Transfer Core Curriculum” (TCC), or you come from another campus of the University of California and have completed the lower division breadth or General Education requirements of that campus. Your college dean’s office can tell you whether you fall into either of these categories.

Approved General Education Clusters
General Education “clusters” are groups of closely related lower division GE courses. You may earn credit for having satisfied the entire requirement in an area of General Education by completing an approved cluster. A cluster allows you to substitute lower division for any required upper division courses. There are two approved clusters in the area of Civilization and Culture: History 4A, 4B, 4C; and Comparative Literature 1, 2, 3. There is one approved cluster in the area of Nature and Environment: Animal Science 1, 2, 42.

GE Courses for Continuing Students
The list on the facing page contains approved GE courses for continuing students who have elected to complete the GE requirement in effect the year of their entrance to UC Davis. Please consult prior years’ catalogs or the Deans’ offices for the lists of courses approved in previous years.

Fulfilling the General Education Requirement (Continuing Students)
Students entering UC Davis from the 1992-93 academic year through the 1995-96 academic year (GE courses must be completed in the areas of General Education other than the area containing the major.)

Freshman or transfer student with 40 or fewer transfer units
6 GE courses:
- 3 courses in each of two areas;
- at least 1 upper division course in each area;
- at least 2 of the 3 courses in each area must come from the list of certified GE courses;
- the third course in each area may come from a list of courses approved for GE credit by your college.

Transfer student with more than 40 but fewer than 84 units
4 GE courses:
Option 1:
- 2 courses in each of two areas:
 - at least 1 course in each area must be upper division;
 - at least 1 course in each area must come from the list of certified GE courses;
 - the second course in each area may come from a list of courses approved for GE credit by your college.

Option 2:
- 3 courses in one area:
 - at least 1 course must be upper division;
 - 2 courses must come from the list of certified GE courses;
 - the remaining course may come from a list of courses approved for GE credit by your college;
 - 1 upper division course in the other area, which must come from the list of certified GE courses.

Transfer student with 84 or more units
2 or 3 GE courses:
Option 1:
- 1 upper division course in each of two areas:
 - both courses must come from the list of certified GE courses.

Option 2:
- 3 courses in one area:
 - at least 1 course must be upper division;
 - 2 courses must come from the list of certified GE courses;
 - the remaining course may come from a list of courses approved for GE credit by your college.
College Requirements for the Bachelor’s Degree

College of Agricultural and Environmental Sciences

Unit Requirements

Of the required 180 units counted toward a degree, **54 units must be upper division work**. In addition, the following unit limitations apply to all majors:

- Not more than 6 units can be Physical Education 1 and 6
- Not more than 20 units can be courses numbered 90X, 92, 97T, 97TC, 99, 190C, 190X, 192, 197T, 197TC, or 199
- Not more than 12 units can be courses numbered 92 and/or 192 (credit will not be given for 192s taken before the completion of 84 units)
- Not more than 5 units per quarter of Special Study courses (99, 194H, 199)
- Not more than 9 units of professional courses (numbers 300–499) may be used toward the 54 upper division units

Credit in University Extension Courses

Students in residence may apply a maximum of 9 units of credit earned in some University Extension courses toward the 180-unit requirement provided written approval has been obtained from the dean before registering. Units of credit allowed by the dean may be less than the number of units listed for a course. No grade points are assigned for courses completed through University Extension.

Residence Requirement

Thirty-five of the final 45 quarter units completed by each candidate must be earned while in residence on the Davis campus. Not more than 28 of these 35 quarter units may be completed in summer session courses at UC Davis.

Scholarship Requirement

Students in the College are required to attain a minimum grade point average of 2.0 for all courses specified as depth subject matter in their major. Each candidate must complete a program of study either as prescribed in (a) a major approved by the Undergraduate Majors and Courses Subcommittee and printed in this catalog, or (b) an individual major approved by the Individual Major Committee.

English Composition Requirement

The English Composition requirement can be met in one of two ways:

1. by taking, before you have completed 120 units, **either** two courses emphasizing written expression or one course emphasizing written expression and one course emphasizing oral expression. The following UC Davis courses satisfy this requirement:
 - (a) one course must be selected from English 1, 3, 20, 101, 104A, 104B, 104C, 104D, or 104E (courses with primary emphasis in writing skills);
 - (b) one course selected from the courses not selected above, or from English 102, Comparative Literature 1, 2, 3, 4, Native American Studies 5, or Rhetoric and Communication 1 (courses emphasizing either writing or speaking skills);

OR

2. by passing the English Composition Examination administered by the College of Letters and Science upon completion of 70 units of degree credit (the examination does not yield credit).

General Education

You should consult your Dean's Office or department adviser in advance to determine exactly how your General Education courses will apply toward your major.

Study Plan Approval

A Study Plan provides for attainment of specific long-term goals and should allow for the acquisition of prerequisite knowledge for courses to be taken in subsequent quarters; the fulfillment of College and major requirements; a proper balance between the demands of the courses and your ability to master the subject matter; and meeting the minimum progress regulation (see the Academic Information section).

In conjunction with a faculty adviser and/or staff adviser, you must plan and prepare a program that specifies your goals and shows how the graduation requirements will be met. It is a regulation that a written “study plan” be filed with your faculty adviser or staff adviser by the end of the second quarter of the junior year (having completed not more than 120 units either in residence and/or by transfer).

You may be denied registration for future quarters if you do not comply with this regulation. However, filing this study plan does not preclude a change of major or program modifications.

Major Degree Certification

A Major Certification is completed during the quarter you plan to graduate. At that time, you and your faculty adviser and/or staff adviser check to see that all major requirements have been completed. The Dean's Office completes the degree certification by verifying that all college and university requirements have been satisfied.

Degree Requirement Changes

On occasion, the faculty make changes in the requirements that students must satisfy to obtain the baccalaureate degree. So that you will not be penalized by changes that may work to your disadvantage and so that you will benefit by changes that assist you in completing your degree requirements, it is college policy that you may choose to fulfill the university, college and major requirements in effect at the time you were registered at UC Davis. If you have transferred to UC Davis from a community college, state college, or another university, you may follow the requirements as stated in any UC Davis catalog in effect either during the three years immediately preceding your transfer to Davis or at the time you first registered at that institution, whichever is most recent. Once you have chosen the year of the General Catalog under which you wish to be governed, you must satisfy all of the university, college and major requirements specified in that catalog.
College of Engineering

Unit Requirements

Each candidate for the degree of Bachelor of Science in Engineering must satisfactorily complete an approved curriculum in engineering. Each curriculum consists of a specified Lower Division Program (or an approved equivalent program for students who transfer into the College with 90 or more quarter units) and a specified Upper Division Program. Detailed requirements for the approved curricula are given in the Programs and Courses section of this catalog; to see the courses required in your major, consult this section. For more specific advice on your requirements, see the transfer counselor of your institution.

If you are admitted with 90 or more quarter units, you are classified as having upper division standing, but you are required to complete the minimum number of quarter units in the subject areas specified below before your Lower Division Program is considered complete. You may, however, start your Upper Division Program while completing your Lower Division Program requirements.

Minimum Quarter Units

Subject Areas

Mathematics (calculus, differential equations, linear algebra, vector analysis) .. 22

Physical and biological sciences (typically, at least 10 units must be in general chemistry and at least 12 units in physics courses designed for engineering and physical science students) .. 22-26

Engineering (lower division subjects such as graphics, properties of materials, surveying, computer programming, dynamics, statics and circuit theory. These courses must include statics, dynamics, circuits and FORTRAN for all but Electrical and Computer Engineering and Computer Science majors, who must take Pascal. Students majoring in Mechanical, Aeronautical, Materials Science, Civil, Electrical or Computer Engineering, or Computer Science may have additional course requirements specific to their respective majors. Because of additional lower division chemistry requirements, Chemical Engineering majors may elect to take only 10 units of engineering in their lower division programs) .. 22-26

Written and oral expression English 1 or 3 and Rhetoric and Communication 1 or 3, or courses that are their equivalents. ... 8

Humanities–Social Sciences (courses must be selected from a list of course groups approved by the Committee on Undergraduate Study) .. 5-12

Unspecified subjects (Chemical Engineering majors should cover quantitative analysis and one course in organic chemistry with laboratory during their sophomore year) .. 5-8

Total .. 90

Once you have completed the Lower Division Program and fulfilled these specified subject area requirements, you need not take additional lower division courses, except those that are prerequisite to upper division courses in your curriculum.

The minimum number of required units in the combined Lower and Upper Division Programs varies, with the curriculum, from 180 to 195.

You may, for good cause, request a modification of particular degree requirements by submitting a student petition. These petitions, which are available in the Undergraduate Office, can be a valuable aid in resolving individual program conflicts or other special problems. Such petitions are subject to approval by the Undergraduate Study Committee, a body of six professors and six (non-voting) students. A negative decision by the committee may be appealed to the College faculty for action at a regular meeting.

Credit in University Extension Courses. Appropriate courses taken through University Extension may be used for degree credit. Simultaneous registration in resident courses and Extension courses requires prior approval by the College's Associate Dean for Undergraduate Studies. Such approval will be given only for a limited number of credits. No grade points are assigned for courses completed in University Extension.

Residence Requirement

In addition to fulfilling the university residence requirement, you must complete at least 35 of the final 45 units characteristic of your curriculum in engineering while registered in the College.

Scholarship Requirement

In addition to meeting the university scholarship requirement, you are required to maintain a 2.0 grade point average for all engineering coursework.

English Composition Requirement (Upper Division)

After completing 70 quarter units, you may elect to satisfy the upper division English Composition requirement by passing the English Composition Examination administered by the College of Letters and Science. (You should take it early in your junior year and must take it before your last quarter. Units of credit are not given for passing this examination.)
OR, upon completion of 90 quarter units, you may satisfy this requirement by completing English 101, 102, 104A, or 104E with a grade of C– or higher.

This requirement is in addition to the expository writing course requirement (English 1 or 3; Comparative Literature 1, 2, 3 or 4; or Native American Studies 5) specified in the Lower Division Programs.

During the 1996-97 academic year, the English Composition Examination will be offered on the following three Saturdays: October 26, 1996, January 25, 1997 and April 26, 1997. Sign-up rosters will be posted on the bulletin board near the main English Department office (176 Voorhies), Monday until noon on Friday (or until they are filled) just preceding each Saturday examination date. You must sign up, in person, by Friday. You must obtain the English Composition Examination form, available at the UCD Bookstore, to take the exam.

Engineering Design Requirement

Engineering design is the process of devising a system, component, or process to meet certain needs. Design involves a decision-making process (often iterative), in which the basic sciences, mathematics and engineering sciences are applied to convert resources optimally to meet a stated objective. Among the fundamental elements of the design process are the establishment of objectives and criteria, synthesis, analysis, construction, testing and evaluation. You must take at least 24 quarter units of such design coursework through a combination of required and restricted elective courses. Specific comments about design are included in individual curricula descriptions. You should also review the design content of your individual program with your adviser in the course of completing the upper division advising worksheet.

Electives

In general, there are four kinds of elective courses in the engineering curricula: Humanities–Social Sciences, General Education, technical and unrestricted. Transfer students have an additional set of electives: Physical and Biological Sciences electives or Mathematics/Science electives.

Humanities–Social Sciences electives: Because engineers are significant agents of social change, they must be sensitive to the human setting in which that change takes place. The Humanities–Social Sciences (HSS) electives have been selected within the engineering curricula to increase your awareness of the human and societal implications of engineering practice. The humanities include subject areas such as literature, philosophy, history and the fine arts. The social sciences include areas such as anthropology, political science, sociology, psychology and economics.

You must take at least 24 quarter units of coursework in the humanities and social sciences. Subjects that are vocationally oriented or skills oriented, such as management and accounting, or that contain a preponderance of scientific or mathematical content, are not suitable for HSS credit even though a course may be offered by a department ordinarily classified as a humanities or social science department. Foreign language courses must stress literature, not skills, and fine arts courses must emphasize the history and appreciation of forms of expression, not development of performance or other technical skills. You may petition to have a non-literature course in a foreign language which is not your native language count as a humanities course. Students enrolled in the Davis Honors Challenge may receive HSS credit for approved Honors Seminars; consult with the Undergraduate Advising Office for a list of approved seminars each quarter. You may petition for HSS credit for 92, 98, 99, 192, 197, 198 and 199 courses in appropriate cases. If you repeat any of the courses which may be repeated for credit, not more than 4 units in any such courses can be counted toward your HSS requirement.

Your HSS electives should be selected to include a comprehensive and coherent set of courses and may, in some cases, be integrated with your General Education electives, as described in the next section. HSS electives must be selected from the following list.

- Agricultural Economics 1, 15, 100A, 100B, 120, 141, 141M, 148, 150, 175, 176
- American Studies 1A, 1B, 1C, 1E, 1F, 2, 101A-H, 110, 120, 125, 130, 151, 152, 153, 154, 155, 156
- Anthropology 2, 3, 4, 20, 21, 23, 101, 110, 112, 113, 117 through 149B, 170 through 179, 184
- Applied Behavioral Sciences 1, 2, 17, 18, 118, 140, 151, 152 through 154, 157, 158, 161 through 164, 171, 172, 174 through 178, 190
- Art History 1A, 1B, 1C, 1D, 25, 150 through 188C, 190 (also Art History 1AG, 1BG, 1CG, 1DG and 25G when taken concurrently with Art History 1A, 1B, 1C, 1D and 25)
- Art Studio 10, 147 through 150
- Asian American Studies 1, 2, 20, 100, 101, 110, 111, 112, 130, 136, 150, 155
- Chicana/Chicano Studies 10, 30, 40, 50, 60, 70, 100 through 140, 154, 155, 156
- Chinese 10, 11, 104 through 109A-I, 110, 111 through 116, 130, 131, 132, 140, 160
Comparative Literature 1 through 53B, 120, 135 through 180
Consumer Science 100
Design 140, 142A, 142B, 143, 144
Dramatic Art 20, 115, 150 through 159
East Asian Studies 113
Economics 1A-1B, 100, 101, 103, 104, 105, 110A through 136B, 151A through 175
Economy, Justice and Society 100
Education 110, 117, 120, 122, 123, 130, 132, 145, 151, 153
English 3, 4, 30A, 30B, 46A, 46B, 46C, 105, 110A through 189
Environmental Studies 101, 133, 160 through 162, 164 through 167, 175
Exercise Science 105
French 25, 101, 102, 103, 107, 112 through 133, 140, 141, 160, 161, 162
Geography 2, 5, (2G, 5G when taken concurrently with 2 or 5), 10, 50, 104, 120 (but not 120L), 121, 122A through 126, 131, 141 through 162, 168, 170 through 173, 175
Greek 100 through 116
History 3 through 86, 101 through 104A, 110 through 191D, 193 through 196B
History and Philosophy of Science 20, 130A, 130B, 131, 150
Human Development 15, 19, 100A through 103, 110, 130, 131, 132, 151, 160, 162
Humanities 10, 20A, 110A
Hydrologic Science 150
Integrated Studies 1A, 2A, 2B, 2C, 2D, 2E, 3A, 3B, 3C, 3D, 3E, 8, 8B, 8C (Open only to students accepted to the Integrated Studies Program)
International Agricultural Development 10, 103
Italian 50, 105, 107 through 145
Japanese 10, 15, 25, 50, 101 through 106, 108, 131 through 135
Landscape Architecture 140
Latin 100 through 116, 125
Linguistics 1, 10 through 15, 50, 103A, 103B, 104, 105, 121, 131, 141, 151, 152, 163, 166, 167, 171, 173
Medieval Studies 20A, 20B, 20C, 120A-F
Native American Studies 1, 5, 10, 32, 33, 55, 101 through 191
Nature and Culture 1
Nutrition 20, 118
Philosophy 1, 11, 13, 14, 21, 22, 23, 24, 32, 101 through 111, 114 through 127, 137, 143 through 177, 190
Political Science 1 through 7, 100 through 113, 115 through 191
Psychology 1, 112, 114, 120, 130, 131, 132, 135, 136 through 150, 165, 168, 175, 177, 183
Religious Studies 1 through 75, 100 through 178A-E
Rhetoric and Communication 50, 103 through 145, 152
Russian 41, 42, 44, 121 through 154, 160, 166
Sociology 1, 2, 3, 4, 25, 100, 118 through 185
Spanish 100, 111N, 112N, 114N, 115N, 116, 118, 130 through 176
Textiles and Clothing 107, 177
Women’s Studies 20, 50, 60, 70, 80, 102, 103, 104, 130, 140, 160, 180, 187

General Education electives are used to satisfy a campus requirement and are chosen from the list of General Education Courses for 1996-97 given earlier in this chapter. Since all engineering majors are in the Science and Engineering GE topical breadth area, you must fulfill the campus requirement by taking courses in the Arts and Humanities and Social Sciences areas.

You should note that the requirement of 24 quarter units of Humanities and Social Science (HSS) coursework is a College of Engineering requirement and is in addition to the campus General Education (GE) requirement of a fixed number of courses. You may satisfy the HSS and GE
Technical electives permit you to tailor a program to your own academic and career objectives. For some, the technical electives offer the opportunity to prepare for a specific occupation. For others, they offer an opportunity to broaden a background in the sciences and engineering.

You may receive technical elective credit up to a maximum of 6 units for any combination of engineering courses numbered 190C, 192, 197, 198 and 199. Academic credit for 199 courses is limited to a maximum of 5 units per quarter for each substantially different project. Academic credit for engineering internship courses (192s) is also limited to a maximum of 5 units per quarter.

With the exception of the following courses, all upper division courses in engineering, physics, chemistry, mathematics and statistics may be taken as technical electives. The courses which may not be used are:

- Applied Science Engineering 137 (restricted to one unit of technical elective)
- Physics 137 and 160 (restricted to one unit of technical elective), 194H, 195, 197T, 198, 199
- Chemistry 194H, 197, 198, 199
- Engineering 160 (restricted to one unit of technical elective)
- Mathematics 192, 197TC, 198, 199
- Statistics 102

In addition to engineering, physics, chemistry, mathematics and statistics courses, the following courses may be taken as technical electives:

- Agricultural Economics 100A, 100B, 113, 118A, 118B, 155, 157, 171A, 171B, 175, 176
- Agricultural Systems and Environment, any upper division course except 100 and 190 through 199
- Animal Science 104, 105
- Applied Biological Systems Technology 161, 163, 180, 181
- Atmospheric Science 121A, 121B, 124, 128, 133, 149, 158
- Biological Sciences 1A, 1B, 1C, 101, 102, 103, 104, 120, 120P, 121, 121P, 122, 122P
- Chemistry 2C, 2CH, 8A, 8B
- Economics 140
- Environmental Toxicology 101, 131, 135, 155
- Fiber and Polymer Science 100, 150, 161, 161L
- Hydrologic Science 113, 115, 122, 143, 150, 180
- Management 11A, 11B
- Microbiology 102, 102L, 105, 130A, 130B, 130L, 177, 177L
- Molecular and Cellular Biology 160L, 161, 170L
- Neurobiology, Physiology and Behavior, any upper division course
- Soil Science 100, 102, 107, 111, 118, 120
- Wildlife, Fish and Conservation Biology 100, 102, 110, 110L, 111, 111L, 120, 120L, 121, 122, 130, 131, 136, 140, 151, 153, 154

You are urged to discuss the selection of technical elective courses with your academic adviser.

Unrestricted electives. You may count any course for which university credit is allowed as an unrestricted elective in the engineering curricula.

Physical and Biological Science electives. Engineering students are required to have 26 units in physical and biological sciences, typically 10 units of chemistry and 16 units of physics. Students who transfer into the College of Engineering with advanced standing are required to complete 26 units of physical and biological science by graduation, but need only have completed 5-10 units of chemistry (depending on major) and 12 units of physics by the time of transfer. Transfer students may make up the remaining 4 units by taking 4 additional units of chemistry, 4 additional units of physics, or 4 units in courses selected from any of the curricula listed below, with the restrictions that follow.

- Atmospheric Science
- Biological Science
- Chemistry
- Evolution and Ecology
- Geology
- Microbiology
- Molecular and Cellular Biology
- Neurobiology, Physiology and Behavior
- Physics
- Plant Biology

All courses in these departments numbered 10 and 190–199 are excluded for credit, as are the following courses:

- Evolution and Ecology 138
- Geology 1-1G, 3-3G, 43, 113-113G, 116-116G, 131, 135, 144
- Microbiology 20
- Physics 137, 160
- Plant Biology 191

Electrical Engineering and Computer Engineering students should also use this list to identify the courses to satisfy the mathematics/science electives. To identify additional courses that may also satisfy this requirement, please refer to the Electrical Engineering and Computer Engineering curricula outlines.
Degree Check

Use the Degree Requirement Check sheets for each of the curricula for monitoring your progress toward a degree. The Undergraduate Office will prepare only one unofficial preliminary degree check for you (preferably at the end of your junior year). You should also request an exit interview during the quarter before you plan to graduate. To have this degree check prepared, submit a signed Degree Check Request and request an appointment. You can get further information concerning these services and the forms for requesting a degree check or an exit interview in the Engineering Undergraduate Office.

Degree Requirement Changes

Since engineering is a rapidly developing profession, curricular changes are made by the faculty from year to year. To ensure that you benefit from these changes, the College of Engineering has established a policy that you must fulfill the degree requirements stated in the catalog for the year in which you complete degree work or in the catalog for the year immediately preceding.

College of Letters and Science

Unit Requirements

A minimum of 180 units is required for the bachelor’s degree. Of these units, 64 must be earned in upper division courses.

Registration Beyond the 225-unit Limit. You are normally expected to fulfill all degree requirements within the 180- to 225-unit range. Once 225 units have been completed (excluding units awarded for College Board Advanced Placement Examinations), you may register only with the permission of the dean. Such permission is rarely granted, and then typically only to allow completion of minimum degree requirements. You will be expected to adhere to a program of courses agreed upon and to meet other conditions that may have been set. Approval must be obtained before you will be permitted to register for courses for the quarter following completion of 225 or more units.

If you are in good standing, you will be able to complete 12 quarters or the equivalent (e.g., four years) of college work even if you have earned more than 225 units before you finish your fourth year. You must petition for continuation, however, and file the quarter-by-quarter course program you have planned.

Unit Credit Limitations

For certain courses, limits have been established on the number of units that can be counted towards the 180-unit minimum required for the degree. To avoid discovering just before graduation that you are short units, keep track of the number of units you have taken in each of the following categories.

Limitation on Credit for Graduate and Professional Courses. Undergraduates may enroll in graduate and professional courses in the 200, 300 and 400 series subject to the restrictions described in the Academic Information section in this catalog. Graduate and professional courses that have been completed will be listed on the student’s transcript in the usual manner. However, the units earned may be counted toward degree requirements only under the conditions listed below.

Within the limitations A, B and C given below, undergraduate students in the College may count an unlimited number of units in graduate 200 series courses and up to a combined total of 9 units in 300 and 400 series professional courses toward degree requirements. These units, however, are not counted as upper division units unless this is granted by petition to the dean.

A. The recommendations of the instructor in the course and the department chairperson—in addition to approval from the dean—must be obtained by petition in order to receive credit toward the degree for the following kinds of courses:
- all graduate courses 200–298, whether offered by a department or program outside of or within the College of Letters and Science
- all professional courses 300–398 for teachers offered outside of the College of Letters and Science
• all postgraduate professional courses 400–498 offered outside of the College of Letters and Science
• all variable unit courses 300–398 and 400–498 offered within the College of Letters and Science

B. The minimum eligibility conditions for an undergraduate student in the College to petition for degree credit for a 200, 300, or 400 series course are a UC grade point average of 3.3 and completion of 18 upper division units basic to the subject matter of the course. These eligibility conditions may be waived, however, upon the recommendation of the course instructor and concurrence of the department chairperson if the student's preparation warrants exception.

C. Undergraduates in the College cannot receive degree credit for special study courses 299, 399, or 499.

Limitation on Credit for Units Graded P. Excluding courses that are graded on a Passed/Not Passed (P/NP) basis only, the number of units graded P that may be accepted toward a degree in the College of Letters and Science is limited to not more than one fourth of the units completed in residence on the Davis campus.

The Academic Senate limits the total number of courses graded P, including units earned in courses graded “P/NP only,” to one third of the units completed on the Davis campus. This limitation applies to all Davis undergraduates, including Letters and Science students.

Limitation on Credit for University Extension Courses. Students may apply credit earned in University Extension courses toward the 180-unit requirement only when written approval has been obtained from the dean before registration. The degree credit allowed by the dean for Extension courses is usually less than the unit value listed in the course description. A maximum of 9 units may be offered for elective credit only. Such units and courses may not be applied toward fulfillment of the Area, Foreign Language, Upper Division, or Residence requirements of the College. No grade points are assigned for courses completed in University Extension.

Other Unit Credit Limitations. The following are additional courses that have limits on the number of units that can be counted toward your degree.

Internship courses (numbers 92, 92H): 12 units maximum including internship units taken at other institutions. (See under Nonstandard courses below.)

Nonstandard courses (92, 97T, 97TC, 99, 192, 194H, 197T, 197TC, 199 and similar courses): 30 units maximum or one-sixth of the units taken at UC Davis, whichever is the smaller. (Note the separate unit limits on internship, special study and tutoring courses; and major limitations.)

Physical Education 1 and 6 (combined): 6 units maximum.

Special Study courses (99, 194H, 199): 5 units maximum in any one quarter. (See under Nonstandard courses above.)

Tutoring courses (97T, 97TC, 197T, 197TC): 10 units maximum. (See under Nonstandard courses above.)

Residence Requirement
While registered in the College of Letters and Science, a minimum of 27 upper division units, including 18 upper division units in the major, must be completed on the Davis campus. (Work completed while registered in the Education Abroad Program does not satisfy campus or College Residence requirements.)

Scholarship Requirement
The minimum grade point average to satisfy the scholarship requirement is 2.000 for all courses counted toward the major and for all upper division courses used to satisfy major requirements. Only grades earned in courses taken at UC Davis will be included in the grade point computations. To obtain these minimal averages in the major, you may repeat courses that are graded D or F. If you have to repeat a course more than once, you need the dean's approval.

English Composition Requirement
The English Composition requirement can be met in one of two ways:

1. by passing the English Composition Examination upon completion of 70 units of degree credit (the examination does not yield credit);

OR

2. by completing with a grade of C– (or P) or better (a) one course in English composition from English 1, 3, 20, Comparative Literature 1, 2, 3 or 4, or Native American Studies 5; and (b) English 101, 102, or 104A-E (which must be taken after 84 units have been completed).

Transfer Courses in English Composition. Transfer courses considered by the dean to be equivalent or comparable to English 1, 3, 20, 101, 104A-E, Comparative Literature 1, 2, 3, 4, or Native American Studies 5 will be accepted toward satisfaction of the English Composition requirement. Note that English 101 and 104A-E or the equivalent must be taken after you have completed 84 units of transferable degree credit.

If your transfer work does not include an acceptable English composition course taken after you had completed or accumulated 84 units, you may fulfill the requirement by examination (see below) or take English 101, 102 or 104A-E at UC Davis.

English Composition Examination. This academic year, the no-fee examination will be offered on the following Saturday mornings:

October 26, 1996
January 25, 1997
April 26, 1997

There are no examinations given during the summer. Sign-up rosters will be posted on the bulletin board near the main English Department office (176 Voorhies), Monday until noon on Friday (or until they are filled) just preceding each Saturday examination date. You must sign up, in person, by Friday. The English Composition Examination form, available at the UCD Bookstore, is required.

Area (Breadth) Requirement
The College Breadth Requirement promotes the intellectual growth of students by asking them to acquire a broader background of knowledge than is provided by
the usual major. The Breadth requirement also guides students in exploring the interdependence of knowledge and, in the case of the A.B. degree, provides students the opportunity to become acquainted with performance in the fine arts.

A.B. degree—satisfaction of the campus General Education requirements plus completion of one of the following options:

a. a “Mini Minor” consisting of a minimum of three approved upper division courses in a single Letters and Science department or program other than the major (and which are not offered in satisfaction of major requirements);

OR

b. a minimum of three approved lower or upper division courses in Art, Music, or Dramatic Art from outside the student’s major;

OR

c. a certified minor from any UC Davis college or program.

The Letters and Science faculty believes that the completion of a certified minor is often the best way for a student to obtain structure and coherence in pursuit of intellectual breadth.

For the purposes of options a and b above, all courses are considered as approved except: courses bearing less than 3 units of credit, internship courses, non-standard courses, directed group study courses and courses used to satisfy the College English Composition Requirement.

B.S. degree—a total of 90 units in natural sciences/mathematics; and satisfaction of the General Education requirement.

Courses numbered 92, 97T, 97TC, 98, 192, 197T, 197TC, 198, and from 200 through 499 cannot be counted toward satisfaction of the natural sciences/mathematics Area requirements. A maximum of 10 units in special study courses (99, 194H, 199) may be counted toward that portion of the Area requirements. Courses used to satisfy the English Composition and Foreign Language requirements may not be counted toward the area requirement. Subject to the restrictions just listed, courses acceptable for fulfilling the 90-unit natural sciences/mathematics area requirement are as follows:

Natural Sciences and Mathematics

Anatomy, Physiology and Cell Biology 100
Animal Science 135
Anthropology 1, 5, 15, 151, 152, 153, 154A, 154B, 155, 156, 157, 158
Astronomy
Avian Sciences 13
Biological Sciences: All courses except 19
Cell Biology and Human Anatomy 101, 101L
Chemistry
Engineering 5, 102
Engineering: Civil and Environmental 30
Engineering: Computer Science 10, 30, 40, 100, 110, 120, 122A, 140A, 170
Engineering: Electrical and Computer 170
Entomology 10, 100, 153
Environmental and Resource Sciences 2, 131
Environmental Studies 30, 100, 121, 126
Environmental Toxicology 101
Evolution and Ecology
Exercise Science 101, 102, 103, 110, 111, 112, 113, 115, 116, 117, 126, 133, 135
Fiber and Polymer Science 110
Food Science and Technology 2, 100A, 100B, 101A, 101B
Geography 1, 3, 102, 108, 110, 117, 118, 162
Geology
Integrated Studies 1A, 1B, 8A
Mathematics
Microbiology
Molecular and Cellular Biology
Neurobiology, Physiology and Behavior
Nutrition 10, 101, 110, 111
Pathology, Microbiology and Immunology 126
Physics
Plant Biology
Statistics
Wildlife, Fish and Conservation Biology 10

Foreign Language Requirement
(A.B. and B.A.S. degrees)

A.B. and B.A.S. degrees—the 15-unit level or the equivalent in one language.

B.S. degree—none.

Acceptable Languages. The Foreign Language requirement may be satisfied in any language offered at UC Davis, or for which transfer credit is allowed from another academic institution (including American Sign Language).

You may also satisfy this requirement by examination in a language not offered on the Davis campus. In this case, the Dean’s Office will assist you in making arrangements to take an examination on another University of California campus, with a faculty member who teaches the language in question.

Satisfaction of the Requirement. Plan to complete the Foreign Language Requirement by the end of your first or second year, as program priorities permit. This is particularly important if you plan to apply for the university’s Education Abroad Program. The Foreign Language requirement may be satisfied by examination or completion of language courses as follows:

1. Foreign Language Placement Test. This test does not yield unit credit—it only determines whether the Foreign Language requirement has been met, or at which point in the language sequence you should enroll. You may validate your knowledge of a language learned in high school by taking this test. A test may not be taken, however, in a language for which you have already received degree credit. If you are a transfer student, consult your Graduation Requirement Degree Check, which is issued by the Dean’s Office within a quarter after enrollment.

2. College Board Achievement Test. Earning a qualifying score of at least 550 on a College Board Foreign Language Achievement Test satisfies the requirement. This test may be taken at any time during your high school career. Once your score is on file at the Undergraduate Admissions Office, notify the Letters and Science Dean’s Office so that satisfaction of the College requirement can be noted on your record.
3. **College Board Advanced Placement Examination.** A score of 5, 4, or 3 on any foreign language College Board Advanced Placement Examination, with the exception of Latin, taken in high school will satisfy the Foreign Language requirement.

4. **Course Completion in College (or the equivalent).** A.B. degree—15-unit level in one language (e.g., Spanish 3 or Japanese 3). B.S. degree—as required in the major program.

If you have successfully completed (C– or better) the second or third year of a language in the tenth or higher grade in high school you may receive unit credit for course 1 of that language on a P/NP grading basis only. Although a passing or nonpassing grade will be charged to your P/NP option, no petition is required. [See “Passed/Not Passed (P/NP) Grading” in the Academic Information section.]

5. **Proficiency Examination.** If you have not completed the required level language course, but assume you have attained equivalent knowledge, you may satisfy the language requirement by passing a proficiency examination. For more information consult the appropriate foreign language department.

Major Program Requirements

Requirements for major programs are described in the Programs and Courses section of this catalog. These requirements are fulfilled by completing a major program offered by a teaching department or program committee in the College of Letters and Science (see the list of majors) or an individual major program approved by the College's Committee on Individual Majors.

No more than 6 units in internship courses (numbered 92, 192, or similar internship courses), may be accepted in satisfaction of the requirements of major programs. Courses numbered 97T, 97TC, 197T and 197TC do not satisfy unit or course requirements in the major.

Degree Check

Before the beginning of your senior year, take some time to consider your goals and to plan the academic program for your final year as an undergraduate. To plan properly and to ensure that you get the most out of your remaining education and complete all graduation requirements as well, you should know what requirements remain unsatisfied. To help you in these efforts, the Letters and Science Advising Office provides informational materials and instructions on how to evaluate your progress on college and university requirements. You should also obtain a check of major requirements from your faculty adviser.

Once you have completed 135 units of degree credit, you should contact the Letters and Science Advising Office and your faculty adviser for a degree check. The Letters and Science Advising Office will provide each student with one official degree check summarizing your progress in fulfilling college and university requirements. You may request this degree check anytime during your final four regular quarters of registration before graduation.

Degree Requirement Changes

On occasion, the faculty makes changes in the requirements that students must satisfy to obtain the baccalaureate degree. So that you will not be penalized by changes that may work to your disadvantage and so that you will benefit by changes that assist you in completing your degree requirements, it is College policy that you may choose to fulfill the university and College requirements (see General Education requirement for an exception) as stated in any UC Davis General Catalog in effect at any time you were registered in a postsecondary institution of higher education (i.e., community college, college, or university). Once you have chosen the year of the General Catalog under which you wish to be governed, you must satisfy all of the university and college requirements specified in that catalog.

With respect to the completion of your major requirements, most of the majors in the College of Letters and Science require completion of the major degree requirements in effect at the time you officially declared your major. However, because departments differ in how they handle these matters, check with the department or major program office if you have any questions about which requirements apply to you.
UC Davis offers advanced degrees in more than 70 graduate programs. Students’ graduate study is guided by either departments or graduate groups. Graduate groups are composed of individual faculty members with similar disciplinary or research interests. The group structure, used extensively at Davis, permits faculty to be affiliated with graduate programs in more than one discipline and offers students flexibility and breadth by crossing the administrative boundaries of the various departments, colleges, schools and sometimes campuses. In keeping with UC Davis’ progressive spirit, the group structure also allows for expansion of established degree programs and facilitates the development of new ones. Almost half of the graduate programs at Davis are sponsored by graduate groups. You will find a list of the graduate degrees available at UC Davis in the front of this catalog.

Graduate study is administered by the Graduate Council, a standing committee of the Davis Division of the Academic Senate and by the dean of Graduate Studies. A university-wide Coordinating Committee on Graduate Affairs determines general policies and establishes common procedures.

PREPARING FOR AN ADVANCED DEGREE

Admission to a graduate program at the University of California requires a bachelor's degree that is comparable to a degree from the University of California both in distribution of academic subject matter and in scholarship achievement.

The primary requirement for admission to any program is evidence of intellectual achievement and promise. Your application will be evaluated primarily on the basis of your transcript to assure that your qualifications meet minimum standards as set by universitywide and UC Davis Graduate Councils. Generally, you must have a minimum B average in undergraduate coursework from an institution of acceptable standing to be considered for admission. Graduate programs frequently require submission of additional materials such as a separate application form, Graduate Record Examination (GRE) scores, letters of recommendation, portfolios, or examples of written work to assist in selecting from among qualified applicants. Admission to graduate study is limited by the number of spaces available in major programs. Not all eligible applicants can be admitted.

GRADUATE STUDENT DEADLINES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for students who expect to complete work for master's degrees to file applications for candidacy with the dean of Graduate Studies</td>
<td>Sept. 23</td>
<td>Jan. 6</td>
<td>Feb. 24</td>
<td>June 2 Sept. 22</td>
</tr>
<tr>
<td>Deadline for candidates for master's degrees to file theses with the committee in charge</td>
<td>Nov. 1</td>
<td>Feb. 3</td>
<td>May 1 July 21</td>
<td></td>
</tr>
<tr>
<td>Deadline for candidates for master's degrees to file theses with the dean of Graduate Studies</td>
<td>Nov. 29</td>
<td>Mar. 3</td>
<td>June 2 Sept. 1</td>
<td></td>
</tr>
<tr>
<td>Deadline for candidates for master's degrees to file final report on comprehensive examination with the dean of Graduate Studies</td>
<td>Dec. 16</td>
<td>Mar. 23</td>
<td>June 14</td>
<td>Sept. 13</td>
</tr>
<tr>
<td>Deadline for students who expect to complete work for the degrees of Doctor of Philosophy and Doctor of Engineering to file applications for candidacy with the dean of Graduate Studies</td>
<td>Aug. 12</td>
<td>Nov. 11</td>
<td>Feb. 3</td>
<td>May 19 Aug. 11</td>
</tr>
<tr>
<td>Deadline for candidates for the degrees of Doctor of Philosophy, Doctor of Education, and Doctor of Engineering to file theses with the committee in charge</td>
<td>Oct. 1</td>
<td>Jan. 3</td>
<td>Apr. 1 July 1</td>
<td></td>
</tr>
</tbody>
</table>
UC Davis is committed to maintaining excellence, preserving fairness and promoting diversity in its student population. In addition to an applicant's past scholastic achievement, admissions criteria include an applicant's potential for service in the field, keeping in mind the needs of our society and of underrepresented and disadvantaged communities. Criteria also attempt to take into account any prior disadvantages applicants have experienced that may bear on future achievements and services.

APPLYING FOR ADMISSION

March 1 Deadline for international students to file applications for admission to graduate standing, with complete credentials, with the dean of Graduate Studies

April 1 Deadline for United States residents to file applications for admission to graduate standing, with complete credentials, with the dean of Graduate Studies

Applications are accepted for fall quarter only. Combined admission and fellowship application forms are available from Graduate Studies, University of California, Davis, CA 95616. You should begin the application process as early as possible in the academic year, since many programs have early deadlines. In addition, your chances for employment as a teaching or research assistant or of receiving financial support are greatly enhanced by applying early. The application deadlines are as noted above, unless otherwise indicated by the program, or until your proposed graduate program is full, whichever occurs first.

The completed application form, along with the $40 non-refundable application fee and official transcripts from each college and university you have attended, must be sent directly to Graduate Studies. Supplemental application materials required by the graduate program must be sent directly to the graduate adviser for that program.

When all application materials have been received by Graduate Studies, they will be forwarded to your proposed major program where they will be evaluated along with the supplemental materials you have sent to the program adviser. The Graduate Admissions Advisory Committee for the program will submit its recommendation and evaluation to Graduate Studies; final admission decisions rest with the dean of Graduate Studies. This approval procedure applies to all applicants, including those seeking a transfer to UC Davis from another UC campus.

Applications for the degrees of Juris Doctor, Doctor of Medicine, Doctor of Veterinary Medicine, Master of Business Administration and Master of Preventive Veterinary Medicine must be filed directly with the appropriate professional school.

Readmission

April 1 Deadline to file applications for readmission to graduate status with Graduate Studies

If you were formerly registered at UC Davis as a graduate student and wish to return to the same degree program and major, you must apply for readmission and pay the readmission application fee of $40. The readmission application must be filed with Graduate Studies by April 1 (or earlier if the program specifies an earlier date). Readmission to quarters other than fall is granted on an exception basis by special petition to the dean of Graduate Studies. If you are seeking to return to a new degree program and/or new major, you must apply for admission along with other new applicants. Obtain an application from the Graduate Studies office. Transcripts of all work undertaken since you were last registered in graduate status at Davis must be presented with the application. (There is no assurance of reentry, as applicants for readmission will be considered in competition with other applicants for the program.)

International Students

Assessment of a foreign degree is based on the characteristics of the national system of education, the type of institution attended and the level of study completed.

If you are an international student with credentials from universities outside the U.S., you should begin the application process as early as a year in advance. Official copies or certified copies of all transcripts in English and in the original language are required before your application can be processed. Completed applications along with the nonrefundable $40 application fee must be received from international students by March 1, unless your proposed program has an earlier deadline.

English Requirement

If English is not your native language and you have not studied at an institution where English was the language of instruction, you will be required to demonstrate proficiency in English by submitting your test scores from the Test of English as a Foreign Language (TOEFL). This test is given six times each year by the Educational Testing Service, CN6131, Princeton, NJ 08541-6131. The minimum score required for admission to graduate study at UC Davis is 550.

Visas

If you need a certificate of eligibility for a student visa issued by UC Davis, you will be required to complete a certification of finances form showing the availability of sufficient funding for your graduate program (see under
“International Student Services” in the Academic Advising section for complete details). No financial aid of any kind (grants, loans, fellowships, scholarships, or work-study awards) is available to international students during their first year of registration at UC Davis.

FEES

At the time of registration each quarter, every student must pay the following fees.

<table>
<thead>
<tr>
<th>Graduate Student Fees (per quarter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>These are the proposed fees for the 1996-97 academic year. Because fees are subject to gubernatorial, legislative and regental action, these fees may change without notice.</td>
</tr>
<tr>
<td>University Registration Fee $238.00</td>
</tr>
<tr>
<td>Educational Fee $1,029.00</td>
</tr>
<tr>
<td>Memorial Union Fee $28.50</td>
</tr>
<tr>
<td>Health Insurance* $150.00</td>
</tr>
<tr>
<td>Graduate Student Association Fee $6.50</td>
</tr>
<tr>
<td>Student Facilities Safety Fee $22.00</td>
</tr>
<tr>
<td>Total Full-Time California Resident $1,474.00</td>
</tr>
<tr>
<td>Non-Resident Tuition $2,798.00</td>
</tr>
<tr>
<td>Total for full-time nonresident $4,272.00</td>
</tr>
<tr>
<td>Total Part-time California Resident $960.00</td>
</tr>
<tr>
<td>Total part-time nonresident $2,359.00</td>
</tr>
<tr>
<td>Total Employee-Student $473.50</td>
</tr>
</tbody>
</table>

*Graduate students must purchase the Graduate Student Health Insurance Plan (GSHIP) unless they are able to prove comparable coverage under another insurance plan. GSHIP is approximately $150.00 per quarter.

PROGRAM OF STUDY

New students are assigned an adviser within the appropriate department or graduate group who assists them in planning a program of study. The program will depend to some degree on the student's undergraduate training and may include undergraduate courses to remove deficiencies. Each student must satisfy the degree requirements as published in the Graduate Program Directory, or as documented by the program. Additional requirements for study may be established by the department or group and approved by the Graduate Council. These requirements often include a core of required courses, but considerable flexibility is permitted to suit individual needs. Undergraduates at Davis who plan to pursue graduate study should consult with their major adviser early in their senior year to guarantee adequate preparation.

A graduate degree is awarded to recognize a student's command of a wide range of knowledge in an academic field. It is not awarded merely for fulfillment of technical requirements, such as residence, or the completion of specific courses.

Master's Degree

Students working toward a master's degree must be registered in residence for at least three quarters. Two regular six-week Summer Sessions may count as the equivalent of one quarter. Usually, all work for the master's degree is done in residence on the Davis campus. With the consent of the graduate adviser and the dean of Graduate Studies, however, some work taken elsewhere may be credited toward your degree. The normal limit for such transfer credit is 6 units from another institution, or 12 concurrent units, or up to one half of the unit requirement if the courses were taken at another campus of the University—providing the units were not used to satisfy requirements for another degree.

A master's degree may be awarded upon completion of one of two basic plans in which either a thesis or a comprehensive examination is required.

Ph.D. Degree

The Doctor of Philosophy degree, as granted at the University of California, means that the recipient possesses knowledge of a broad field of learning and has given evidence of distinguished attainment in that field; it is a warrant of critical ability and powers of imagination and
synt hesis. It means, too, that the candidate has presented a dissertation containing an original contribution to the knowledge of the chosen field of study.

Students working toward a doctorate must be registered and in university residence for a minimum of six regular quarters. Experience indicates that it takes considerably longer than this to complete a degree program. Two consecutive regular Summer Sessions may count as the equivalent of one regular quarter.

There is no university unit requirement for the doctoral degree. However, individual programs have course requirements that must be completed before admission to the qualifying examination.

The qualifying examination is administered by a committee appointed by the dean of Graduate Studies. The examination is intended to demonstrate critical thinking ability, powers of imagination and synthesis and broad knowledge of the field of study. Upon recommendation of the Qualifying Examination Committee, and with the approval of the Graduate Council, the examination may be repeated one time.

After successful completion of the Qualifying Examination, the student must file for Advancement to Candidacy for the degree. At this time, a committee is appointed to direct the research problem and guide in the preparation of the dissertation.

Graduate students in certain Ph.D. programs may participate in a Designated Emphasis, a specialization that might include a new method of inquiry or an important field of application which is related to two or more existing Ph.D. programs. The Designated Emphasis is awarded in conjunction with the Ph.D. degree and is signified by a transcript designation; for example, “Ph.D. in History with a Designated Emphasis in Critical Theory.” Programs approved as Designated Emphases include: Computational Science; Critical Theory; Economy, Justice and Society; Feminist Theory and Research; International Nutrition; Native American Studies; and Social Theory and Comparative History.

INTERCAMPUS EXCHANGE PROGRAM

A graduate student registered on any campus of the university may become an intercampus exchange student with the approval of the graduate adviser, the chairperson of the department or group on the host campus and the dean of Graduate Studies on both the home and the host campuses.

An intercampus exchange student has library, health service and other student privileges on the host campus, but is considered a graduate student in residence on the home campus. The grades obtained in courses on the host campus are transferred to the home campus and entered on the student’s official graduate transcript.

Application forms may be obtained at the Office of the Dean of Graduate Studies and should be submitted six weeks before the beginning of the quarter in which you wish to participate in the program.

FELLOWSHIPS, ASSISTANTSHIPS AND LOANS

Financial support for graduate study at UC Davis is available in several forms: teaching and research assistantships, financial aid and fellowships/scholarships.

Information and application materials for TAships are available from the department in which you wish to teach. Contact the faculty directly about the availability of RAships.

Financial aid, which is available to U.S. citizens, permanent residents or immigrants only, is awarded on the basis of demonstrated financial need and is administered by the Financial Aid Office. Federal financial aid includes student loans, grants and work-study funding. You may apply for financial aid before you have been admitted. To be considered for financial aid, or for any awards based on financial need, you must file a "Free Application for Federal Student Aid" (FAFSA) no later than February 28, prior to the fall quarter enrollment. This form, submitted directly to the Federal Student Aid Program Office, Iowa City, IA, is used to determine financial need only. Contact the Graduate Financial Aid Office for information regarding loans, grants and work-study.

Fellowships and graduate scholarships are awarded primarily on the basis of scholarship and promise of outstanding academic and professional achievement. Fellowship awards can include a stipend, fees and/or nonresident tuition. Considered in evaluations are the Graduate Record Examination (GRE) scores, undergraduate and graduate grade point averages, academic transcripts, statement of purpose, letters of recommendation and other documentation such as publications or awards. The minimum cumulative undergraduate or graduate grade point average required for a stipend or in-state fee award is 3.5 (A=4.0); for nonresident tuition fellowships the minimum is 3.25. Applicants must be U.S. citizens, or permanent residents of the U.S., or immigrants. To be considered for a nonresident tuition award, applicants must be U.S. citizens, or permanent residents of the U.S. who are not legal residents of California. New international students may be awarded nonresident tuition fellowships, but not stipend or in-state fee fellowships.

Applications for fellowships and graduate scholarships are due by January 15 for awards beginning fall quarter. Entering students submit the “Application for Graduate Admission and Fellowship; continuing students file an “Application for Fellowships and Graduate Scholarship for Continuing Students” with their graduate program.

GRADUATE CERTIFICATE PROGRAM FOR ENGINEERS

For engineers who already have a degree, the College of Engineering offers a Graduate Certificate Program. This program consists of coursework in selected engineering subjects and requires fewer units than the degree programs. The purpose of the Graduate Certificate Program is to provide practicing engineers with an opportunity to develop additional expertise in specific areas and to explore new fields of technical interest.
General requirements for the program are

• 15 or 16 units of specified graduate coursework, or a combination of specified graduate and undergraduate coursework

• Admission to Graduate Studies

Further information on the Graduate Certificate Program may be found in the College of Engineering Bulletin.

TEACHER CREDENTIAL PROGRAMS

The Division of Education offers programs for students interested in becoming elementary or secondary teachers. The elementary education program prepares you to teach all the subjects commonly taught in an elementary classroom. In addition, it offers the option of receiving in-depth training for teaching in a bilingual (Spanish) or English as a Second Language classroom. The secondary education program is designed to prepare teachers who will work in grades 7 through 12 in the following areas: agriculture, English, foreign language (Spanish), science (biology, chemistry, geoscience and physics), math, music, physical education and social studies education.

To apply you need to have done the following:

• completed a bachelor's degree;

• completed most of the required course work in the area you want to teach, or have taken a National Teacher Exam (NTE) and National Evaluation Systems (NES) exam in the area you want to teach;

• taken the California Basic Education Skill Test (CBEST);

• worked with school-age children; and,

• met Graduate Studies minimum GPA requirement (3.0).

There are additional requirements that we encourage you to take as undergraduates. Information is available in the Student Services Office, 2078 Academic Surge, 916-752-0757 (jgmacdonald@ucdavis.edu).

The teaching credential program starts in the fall quarter only and is nine months long. It is a full-time program with a rigorous schedule. Student teachers are in classrooms in the morning and early afternoon and back on campus in the afternoon and evening for coursework. The student teaching assignments generally are in the following communities: Davis, Winters, Woodland, Dixon, Vacaville, Fairfield, Sacramento and West Sacramento. Student teachers are required to participate in the schools in the role of a regularly credentialed teacher. A typical course schedule follows:

- student teaching
- teaching methods courses [on how to teach your subject area(s) and grade level(s)]
- reading methods course
- computer education course
- health education course
- special education course

Upon satisfactory completion of all requirements, you will be recommended to receive a California teaching credential.

Applications and filing deadlines should be obtained from the Division of Education, 2078 Academic Surge, University of California, Davis, CA 95616-8579 or the Department of Applied Behavioral Sciences (agricultural education), Hunt Hall, University of California, Davis, CA 95616-8523.

The teacher education program is also available to upper division students who have a 3.3 GPA and room in their schedule for a full-time teaching program. Satisfactory completion of your degree and the credential program would entitle you to a nonrenewable preliminary credential. Within five years you must complete a graduate year of study to be eligible for an additional credential. Specific requirements may be obtained from the Student Services staff in the Division of Education.

Students considering teaching as a career should consult the Division of Education or the Department of Applied Behavioral Sciences as early as their freshman year. Because of the complexity of the Teacher Preparation and Licensing Law and the requirements of Davis campus programs, students are encouraged to maintain close contact with education advisers throughout their undergraduate years (http://education.ucdavis.edu/).

PROGRAM IN COLLEGE TEACHING

The Program in College Teaching provides graduate students interested in college and university teaching the opportunity to improve their teaching skills and gain familiarity with a wide range of issues important to a faculty career. The program focuses on teaching in the participant’s own discipline area. Direction and instruction are predominantly provided by a faculty mentor selected by the participant. Successful participants earn a certificate of completion and an appropriate annotation is added to their university transcripts. They also have the opportunity to construct a well-developed teaching portfolio for prospective employers.

The heart of the program is co-teaching with a faculty mentor. Many participants choose UC Davis faculty members as their mentors and do their teaching on the Davis campus. Participants considering a career at a community college or at a four-year teaching college are encouraged to find faculty mentors and teaching opportunities at cooperating colleges nearby, thereby developing contacts and references at institutions similar to those at which they intend to eventually teach. Participants also complete individualized learning contracts and attend regularly scheduled “Teaching Roundtables.”

The Program in College Teaching is administered through the Office of Graduate Studies and the Teaching Resources Center. The program begins in late spring quarter, lasts until the end of the following spring quarter, and is designed to fit into the student’s existing schedule. Further information may be obtained from the Teaching Resources Center, 17 Wellman Hall, University of California, Davis, Davis, CA 95616-8717.
The School of Law offers a three-year professional curriculum leading to the degree of Juris Doctor. In addition to the traditional professional curriculum, the School provides professional skills training in interviewing and counseling, negotiation and dispute resolution and trial practice. It also offers opportunities for practical experience through clinical programs and for in-depth study of an area of law in an individualized program of classroom work, research, writing, or experience in the community. The School seeks to promote critical evaluation of law and legal institutions in a broad perspective, integrating non-legal disciplines with professional legal education.

The School is fully accredited by the American Bar Association, is a member of the Association of American Law Schools, and has a chapter of the Order of the Coif.

PREPARATION FOR THE STUDY OF LAW

No specific college major is required for admission to the School of Law, and there is no prescribed pre-legal program. Your college record and Law School Admission Test (LSAT) score must, of course, demonstrate that you are highly qualified for the study of law.

As a pre-law student, you should plan a course of study that will give you a broad cultural background and include intensive work for a substantial period of time in a selected field of study. Pre-law students should develop the ability to think critically. They should gain an understanding of people and institutions and know how to gather and weigh facts, to solve problems and think creatively. They should be able to read rapidly with comprehension, and express themselves clearly, completely and concisely, both orally and in writing.

You can get help with program planning from the Pre-Law Advising Office, 227 Voorhies Hall, 916-752-3009.

For additional information, see the Official Guide to U.S. Law Schools, a publication of the Law School Admission Council and Law School Admission Services. This book includes material on the law and lawyers, pre-law preparation, applying to law school and the study of law, together with individualized information on all ABA approved law schools. It can be found at college and major bookstores or ordered from Law Services, Box 2400, Newtown, PA 18940-0977.

APPLYING FOR ADMISSION

February 1 Deadline for filing applications for admission for 1997-98 to the School of Law

1. Request application forms and the school catalog from the Office of Admissions, School of Law, University of California, Davis, CA 95616-5201. Return your completed application to that office, plus a $40 nonrefundable application fee, in the form of a check or money order made payable to the Regents of the University of California.

The last date for filing completed application forms, together with all supporting documents, including LSAT scores, Law School Data Assembly Service (LSDAS) reports and letters of recommendation, is February 1 of the year in which admission is sought. Early filing of all application materials is strongly recommended and will materially assist the School of Law Admissions Committee in its considerations. Applications postmarked after February 1 will be returned to the applicant.

2. You must take the Law School Admission Test and register with the Law School Data Assembly Service so that the score will be reported to the school. You are urged to take the test as early as possible, and no later than December preceding the year in which admission is sought.

Testing centers are located in all parts of the United States and in many foreign countries. Tests are given four times a year: February, June, October and December. The completed test application blank, accompanied by the required fee, must be postmarked approximately six weeks before the date of the test to ensure that you will be registered for that test date.

To obtain application forms, information about the test, specific test dates and the location of testing centers, write to: Law Services, Box 2000, 661 Penn Street, Newtown, PA 18940-0998. You can also contact Law Services via e-mail at lsacinfo@lsac.org. The LSAT/LSDAS Registration and Information book is also available in the Law School Admission Office and the Pre-Law Advising Office on campus.

3. Register with the LSDAS no later than December 1 by completing and mailing the registration form supplied in each LSAT/LSDAS Registration and Information book. Have a transcript from each college or university you have attended sent directly to Law Services, Box 2700, 661 Penn Street, Newtown, PA 18940-0978.

4. Submit an official transcript of college work completed during the first semester or quarter of your senior year directly to the School of Law as soon as it is available. Failure to do so may delay consideration of your application materials. Successful applicants must submit directly to the School of Law a final transcript showing the award of a bachelor's degree.

5. Provide two letters of recommendation from objective and responsible persons to whom you are well known. At least one of these letters should come from a faculty member under whom you studied while in college. These letters of recommendation should be enclosed in sealed envelopes, the recommender must sign across the seal, and the letters should be submitted along with the application for admission; or they may be sent directly from a college placement center, career center, or college pre-law office. Your application cannot be considered until two letters have been received.

Your application will be reviewed by the School of Law Admissions Committee, which seeks students of demonstrated academic ability, as evidenced by LSAT scores and the undergraduate grade point average (GPA). The committee seeks students of diverse backgrounds and considers economic factors, advanced degrees or other advanced studies, significant work experience and extracurricular and community activities during and after the college years. An applicant's growth, maturity and commitment to the study of law are also major considerations. Students are admitted only on a full-time basis and only in August.
6. When accepted by the School of Law, you are simultaneously admitted to Graduate Studies on the Davis campus of the university for the program leading to the degree of Juris Doctor. If you intend to pursue studies leading to other graduate degrees, or wish to become a candidate for a Combined Degree Program (see below), you must make separate application to Graduate Studies before commencing such studies.

Admission to Advanced Standing

If you have completed at least one year of full-time law coursework in another approved law school, you may be considered for admission to advanced standing with credit for not more than one year of such work. The application filing period is June 1–30. No application for advanced standing will be considered until the Office of Admissions has received transcripts for all prior law school work.

Application procedures for advanced standing are the same as described above with the addition of (1) a letter of good standing including class rank from the dean of any law school previously attended; (2) at least one letter of recommendation from a law professor; (3) transcripts of all law school work; (4) LSAT score (no need to register with LSDAS—a copy of the report previously submitted to the school you are presently attending will suffice); and (5) an official transcript from the school where you earned your undergraduate degree, stating the date the degree was conferred. The deadline for transfer applications is June 30 of the year for which transfer is sought. Committee decisions on advanced standing are normally made in late July or early August of the year in which admission is sought.

Students who have been disqualified at another law school will not be admitted to this school.

Recruitment of Underrepresented Groups

The students and faculty of the UC Davis School of Law recognize the great need for lawyers from underrepresented groups. The School, therefore, actively solicits applications from those groups that reflect the many diverse populations of California but, traditionally, have been underrepresented in the law school population.

The School of Law, in cooperation with the Association of American Law Schools (AALS) and the Council on Legal Education Opportunity (CLEO), participates in programs designed to increase the number of law students from underrepresented groups. CLEO applications may be obtained by writing to: Council on Legal Education Opportunity, 1420 N Street, N.W., Terrace One, Washington, D.C. 20005.

Scholarships for Indian and Alaskan natives are available from American Indian Graduate Center, 4520 Montgomery Blvd., N.E., Suite 1B, Albuquerque, New Mexico 87109, (505) 881-4584. Applicants must be enrolled members of federally recognized Indian tribes or Alaskan native villages or possess 1/4 recognized blood and must demonstrate need. The deadline for applications is April 30.

The Mexican-American Legal Defense and Education Fund (MALDEF) has monies available for Hispanic students who have applied to law school. Applications may be obtained by writing to: Mexican-American Legal Defense and Education Fund, 634 South Spring Street, 11th Floor, Los Angeles, CA 90014, Attention Scholarship Fund.

PROGRAM OF STUDY

The course of study in the professional curriculum requires six semesters for completion and extends over a period of three years. It is designed for full-time students only; no part-time or evening program is offered. New students are admitted only at the beginning of the fall semester.

After satisfactorily completing the professional curriculum of 88 semester units and the required period of resident study, you will receive the degree of Juris Doctor.

The first year’s work is prescribed and provides the essential foundation for subsequent legal study. Satisfactory completion of the first-year courses is, in all cases, prerequisite to second- and third-year courses. The work of the second and third years is elective. Students who fail to attain satisfactory grades may be required to withdraw from the School at the end of any academic year.

Courses taken in summer sessions at other accredited law schools may, with prior permission, be credited toward the units required for the professional degree.

The courses of the professional curriculum are listed in the Programs and Courses section of this catalog.

Combined Degree Programs

Students may find a combined degree involving law and another discipline such as economics, business, sociology, or science advantageous. In order to encourage this kind of study, the School, in conjunction with other schools and university departments, has established Combined Degree Programs. Under these programs, a student may work toward a J.D. degree and a master’s degree in another discipline at the same time. In some instances it may be possible to work on a Ph.D. degree as well.
Normally, a Combined Degree Program will take at least four years. You will usually be able to earn up to 10 semester-hours of law school credit for work in the related discipline and normally can complete the combined degrees in less time than it would take to earn the two degrees separately. The first year of the Combined Degree Program must be taken entirely in the School of Law. During the remaining years, coursework may be divided between the Law School and the related discipline. You must satisfy the admission requirements for both programs and file applications with both units.

Students have pursued degree programs in combination with UC Davis departments for the M.A. degree in economics and sociology, and with the School of Management for the M.B.A. degree. The Law School will attempt to work out an additional program if you are interested in other disciplines. You may enroll in the Combined Degree Program any time before the beginning of your third year in law school. If you are interested in pursuing a Combined Degree Program, and have made a separate application to another school or department, you should notify the School of Law if that application is accepted.
The Graduate School of Management offers a full-time, two-year program leading to the Master of Business Administration degree. The program provides both entry-level and mid-career students with an understanding of management approaches to problem solving and an awareness of the environment within which public and private management decisions are made. Successful completion requires not only a sophisticated understanding of a variety of functional skills in finance, marketing, production, program evaluation and accounting, but also an understanding of computers, information systems and the application of scientific methods to the identification and solution of management problems.

PREPARATION FOR THE STUDY OF MANAGEMENT

A bachelor’s degree and a strong interest in professional management are prerequisites for admission to the Graduate School of Management. The school seeks students from diverse professional and academic backgrounds and does not limit its consideration to applicants from any particular category of majors. Entry-level and mid-career applicants are considered, and women and minorities are encouraged to apply.

Although the program has no specific subject prerequisites, it is strongly recommended that students complete the following coursework before enrollment in the program:

- **Accounting**—introductory course which discusses basic concepts.
- **Economics**—introductory courses in micro- and macro-economics, and one upper division course in micro-economics.
- **English**—a business communication course.
- **Mathematics**—an introductory course in calculus.
- **Statistics**—one course in elementary statistics.

APPLYING FOR ADMISSION

April 1 Deadline for filing applications for admission for 1997-98 to the School of Management

Admission is for the fall quarter only. Application materials may be obtained from the Graduate School of Management, University of California, Davis, CA 95616. Complete and return your application, with all supporting documents, by April 1. The application fee is $40.00. Students interested in admission to the school are urged to request an Announcement of the Graduate School of Management at an early date so that all minimum academic requirements and deadlines are met.

In addition to your application, you will need to submit:

- Transcripts from all colleges or universities previously attended.
- Graduate Management Admission Test (GMAT) taken within the last five years of the admission date. Applicants must take the GMAT no later than March to be considered for fall admission. For further information and registration forms contact: Graduate Management Admission Test, Educational Testing Service, CN 6108, Princeton, NJ 08541-6108, 609-771-7330.
- Three letters of recommendation. Applicants currently enrolled in school should include one recommendation from a professor. For individuals who are out of school, recommendations from employers or business associates are acceptable.
- A writing sample and a personal statement which discusses career objectives and educational reasons for seeking admission to the program.

Personal interviews are not required, although visits from applicants are welcomed.

International Students

Foreign students for whom English is a second language must take the Test of English as a Foreign Language.
(TOEFL) by March 1, and receive a score of 600 or better. To receive registration forms, write to: TOEFL, Educational Testing Service, Box 899, Princeton, NJ 08541-6108.

International students must show proof of financial support for one academic year including tuition and living expenses.

Criteria for Admission

The major criterion of the committee granting admission is what an applicant has to gain from, and offer to, the program. Consideration of an applicant's undergraduate performance includes a review of trends in scholastic performance and areas of academic strength as well as an assessment of overall grade point averages. Admissions standards and grading policies of the schools attended are also considered. Both verbal and quantitative scores on the GMAT are used to evaluate measurable general aptitude for management. Background and maturity as indicated by employment history, service and activity records, recommendations and the applicant's personal statement are factors in the committee's evaluation. Professional management experience is not required for admission but is favorably considered.

PROGRAM OF STUDY

In the first year, the program offers a series of core courses that focus on all the basic disciplines of business—accounting, economics, finance, marketing, organizational behavior, decision sciences and information systems.

The second year of the program allows students to take courses in individually selected concentrations. These concentrations include accounting, agricultural management, environmental and natural resource management, finance, management information systems, management science, marketing, public sector management and science and engineering management. Students may also design their own concentration.

In addition to the above full-time program, the Graduate School of Management offers an evening M.B.A. program for working professionals (WPMBA). If you would like more information about the evening program, please contact the Graduate School of Management Admissions Office at 752-7399.
APPLYING FOR ADMISSION

November 1 Deadline for filing applications for admission for 1997-98 to the School of Medicine

The School of Medicine participates in the centralized American Medical College Application Service (AMCAS). Application request cards are available from the Admissions Office, School of Medicine, University of California, Davis, CA 95616, after April 1 of each year. You may also secure this form from other AMCAS-participating medical schools or from your premedical adviser. You need to submit only one application and one set of official transcripts to AMCAS, regardless of the number of member schools to which you are applying.

Upon receipt of the application request form, AMCAS will send you an application for admission, together with descriptive material and instructions. Submit the completed application and other required credentials directly to AMCAS for verification, reproduction and immediate distribution to the medical schools you have indicated.

After your AMCAS application has been received by the School of Medicine, the Admissions Office will notify you and may request a secondary application and two letters of recommendation along with a nonrefundable application fee of $40. Send these items directly to the Chairperson of the Admissions Committee, School of Medicine, University of California, Davis, CA 95616, and not to AMCAS. Recommendations can be in the form of a report by a premedical advisory committee at the college or university where you are enrolled or letters from two faculty members who are familiar enough with you and your abilities to make a meaningful evaluation. We recommend that one letter be from a science instructor and the other from a non-science instructor.

Applications are accepted by AMCAS between June 1 and November 1. We strongly recommend that you make an early request for application materials from AMCAS and see that the necessary supporting items reach the Committee as soon as possible after the School of Medicine requests them. The Committee reviews only complete applications and other required credentials directly to AMCAS for verification, reproduction and immediate distribution to the medical schools you have indicated.

A personal interview is usually required before a place in the first-year class can be offered. However, because of the large number of applicants, it is not possible to interview each one, and for this reason interviews are held only at the invitation of the Admissions Committee. Interviews take place at the medical school in order to provide you with first-hand knowledge of programs and facilities and give you the opportunity to meet some of the students.

As decisions are made, letters of acceptance are sent; this can be as early as mid-October and as late as September of the following year.

Applicant Selection. The class entering in the fall will be limited to 93 students selected on the basis of academic achievement, academic promise and personal characteristics. The Admissions Committee uses these criteria to determine if a candidate will be able to complete satisfactorily the requirements of the medical curriculum and

PREPARATION FOR THE STUDY OF MEDICINE

When you apply to the School of Medicine, you must submit the results from the New Medical College Admissions Test (MCAT), so it is recommended that you take the MCAT by the spring before application. Information can be obtained at your undergraduate institution or directly from MCAT Program, Box 24720, Oakland, CA 94623-1720. To be acceptable for the entering class of fall 1997, the new MCAT must be taken no later than fall 1996. No scores before 1994 will be accepted.

Applicants must also meet the following academic requirements:

A. Must have completed at least three years of study in an accredited college or university in the United States or Canada. A minimum of 90 semester hours or 135 quarter units of college-level work is required. Courses in highly specialized fields are acceptable only at the discretion of the medical school.

B. Must have completed satisfactorily before matriculation each of the following courses:

1. English, 1 year or its equivalent. 12 Quarter Units
2. Biological science, 1 year including laboratory, or its equivalent. 158 Quarter Units
3. General chemistry, 1 year including laboratory, or its equivalent. 158 Quarter Units
4. Organic chemistry, 1 year or its equivalent. If two or more undergraduate organic chemistry courses are offered, it is recommended that you elect the more rigorous option. 128 Quarter Units
5. Physics, 1 year including laboratory or its equivalent. 12 Quarter Units
6. Mathematics, coursework sufficient to satisfy prerequisites for integral calculus. (Coursework through integral calculus is recommended). 64 Quarter Units

(You will find helpful experience and knowledge gained in biochemistry, genetics and embryology.)

C. Must demonstrate the potential to perform academically at least as well as the average of the current first year class. This reflects the School of Medicine's generally higher standards and our emphasis on potential as judged from the application as a whole, including but not limited to MCAT and GPA scores.

For additional information, contact the School of Medicine Admissions Office and request A Guide for Prospective Students.
become excellent medical practitioners. Factors taken into consideration include scholastic records, Medical College Admission Test performance, and reports of teachers, advisers and interviewers with regard to intellectual capacity, motivation, emotional stability and personal dedication.

The majority of openings in the entering class will be awarded to students who are California residents. However, the School of Medicine participates in the program of the Western Interstate Commission for Higher Education (WICHE) and residents of participating states will be considered as residents for purposes of admission. For more information, write the WICHE at Post Office Drawer P, Boulder, CO 80302.

The School of Medicine selects students for admission with a view to meeting the needs of society, of the medical profession and of the School. Because we live in a pluralistic society, and the educational experience is enhanced by the interaction of students from various backgrounds, the School desires diversity in its student body. This is reflected in the School's commitment to expand opportunities in medical education for individuals from groups underserved in medicine as the result of socioeconomic disadvantage and to increase the number of physicians practicing in underserved areas. Therefore, the Admissions Committee, which is composed of individuals from a variety of backgrounds and which is representative of a broad spectrum of medical sciences, evaluates applicants in terms of all relevant factors. These include academic credentials, with due regard to how they may have been affected by disadvantages experienced by the applicant, such personal traits as character and motivation, experience in the health sciences and/or the community, career objectives, and the ability of the individual to make a positive contribution to society, the profession and the School.

Transfer with Advanced Standing

Currently enrolled students in good standing at approved medical schools in the United States or Canada may apply for admission to the third year of study. In order to provide the best facilities and clinical resources, however, we must limit the number of students in our clinical clerkships. Therefore, applications for transfer to the third year are considered on a space-available basis. Deadline for application is April 1 of the year of transfer. A nonrefundable application fee of $40.00 is required. Applicants must provide medical school transcripts, and if accepted, must pass Part I of the USMLE at their current institution. Available spaces may be filled by the Admissions Committee based upon the entire content of an application, or they may request additional information including letters of recommendation and a personal interview. All applicants for transfer must meet the usual requirements for admission, as well as satisfactorily completing the equivalent of two years of study at the medical school. Applicants will be notified of the Admissions Committee's decision starting April 30.

PROGRAM OF STUDY

The curriculum for the M.D. degree is normally a four-year program that provides comprehensive training for
the practice of medicine. The curriculum has been designed to provide a blend of basic sciences training and clinical experience. Although the emphasis during the first two years is on the basic-science foundations of medicine, medical students are introduced to patient care during their very first quarter of study, reflecting the school’s commitment to the training of highly skilled clinicians. Several volunteer clinics, largely staffed by UC Davis medical students, provide an ideal setting for hands-on clinical experience.

In addition to the Doctor of Medicine degree, the School of Medicine at Davis offers a combined M.D./Ph.D. program whose target is to train physicians to meet, respond to and solve the broad diversity of problems and dilemmas facing current and future health care. Meeting this challenge requires those capable of advancing our biological sciences knowledge base, and others who can recognize and solve the ethical, political and humanitarian issues that confront the broad delivery of health care to all. Hence, the field for the Ph.D. in the joint degree program at UC Davis can be any graduate program offered on the Davis campus, extending beyond the traditional biological sciences boundaries, and strongly encouraging candidates to seek degrees in social sciences and humanities. All requirements for both degrees are met in a course of study that usually lasts six years. To be admitted, and be concurrently enrolled in both degree programs, students are required to apply for separate admission to both the M.D. and Ph.D. programs, and also obtain permission of the School of Medicine M.D./Ph.D. Advisory Committee. Inquiries about admission to graduate education should be directed to the Dean of Graduate Studies, University of California, Davis, CA 95616. For more information concerning the M.D./Ph.D. program, contact Ms. Suzanne Mink, Office of Curricular Support, Room 2431, MS 1A, School of Medicine, University of California, Davis, CA 95616.

Academic Calendar

The School of Medicine operates on a different schedule from the rest of the campus. A detailed academic calendar may be obtained from the Office of Curricular Support, 2431 Medical Sciences 1A, University of California, Davis, CA 95616.

The program is a continuous four-year academic experience, with the first year commencing in fall quarter. A six-week break is scheduled between the first and second year academic schedule, following spring quarter. The second year concludes with a three- to four-week period for preparation for USMLE Step 1 examination. The third and fourth year clinical experiences begin in summer and continue through spring.

With approval, students may extend the first two years over three years and use the additional time to individualize their programs. This alternative time is highly suitable for including research experiences and/or meeting other academic objectives. Flexibility in the third and fourth years also permits alternate scheduling.
The mission of the School of Veterinary Medicine is to provide the best possible health care for animals through teaching, research and public service. Students are offered a rigorous four-year program of study that prepares them for diverse career opportunities in veterinary medicine.

PREPARATION FOR THE STUDY OF VETERINARY MEDICINE

To be considered for admission to the School, you must have completed 108 quarter units (72 semester units) in an accredited college or university and have completed the following courses:

<table>
<thead>
<tr>
<th>Lower Division Required Sciences</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry</td>
<td>15</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upper Division Required Sciences</th>
<th>Quarter Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embryology</td>
<td>4</td>
</tr>
<tr>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>Physiology</td>
<td>5</td>
</tr>
<tr>
<td>Required English</td>
<td>12</td>
</tr>
<tr>
<td>Required Humanities and Social Sciences</td>
<td>12</td>
</tr>
<tr>
<td>Required Statistics</td>
<td>4</td>
</tr>
</tbody>
</table>

(To convert semester units to quarter units, multiply by $\frac{3}{2}$. For example, a 4-unit semester course is equivalent to a 6-unit course in the quarter system.)

You should plan your preveterinary medical education carefully. The required courses should be spaced to permit maximum scholastic achievement. An undergraduate major should be selected on the basis of individual interest and aptitude; there is no advantage gained toward admission by selecting one major over another.

Many students planning to enter veterinary school have definite areas of interest within the general field of veterinary medicine. These individuals are encouraged to take courses (for example, computer science, agricultural economics, molecular and biochemical genetics) that will broaden their background in these areas. Some specialized areas include laboratory animal medicine, exotic animal medicine, public health, food animal practice and biomedical research.

Examinations. All applicants must take the General Aptitude Test and the Subject Test in Biology of the Graduate Record Examination (GRE) by the October test date. Graduate Record Examination scores received from the November test or later tests for the year the application is filed will not be accepted for consideration. Applications for the exams and additional information may be obtained from the Educational Testing Service, Box 23470, Oakland, CA 94623-0470. The GRE must be taken within five years of the time you submit your application. The highest scores will be used when the GRE is taken more than once.

Grade Point Average. To be considered for admission, you must have a minimum grade point average of 2.50 for both the required sciences and the cumulative grade point average. Applicants who do not meet the minimum grade point average can qualify for admission by receiving GRE scores in the upper 30th percentile for the combined General Aptitude Test and Subject Test in Biology. Applicants who do not have transcripts with letter grading can qualify for consideration with these same scores or by receiving a bachelor's degree with honors.

Practical Experience. Admission to the School requires extensive experience with animals. This experience should entail more than having family pets and should include experience with several animal species if it includes relevant experience with types of activities that give an applicant an appreciation and understanding of the veterinary profession. The minimum requirement for animal, veterinary and biomedical science experience is 180 hours (4.5 weeks). This experience should also include working with veterinarians, so that the applicant understands the duties and responsibilities of a practitioner and the breadth of veterinary medicine.

APPLYING FOR ADMISSION

November 1 Deadline for filing applications for admission for Fall 1997 to the School of Veterinary Medicine

The Veterinary Medical Colleges Application Service (VMCAS) will be the central distribution, collection and processing service for applications to the School of Veterinary Medicine and to other veterinary colleges.

Students are admitted to the School of Veterinary Medicine in the fall only. Applications may be obtained any time after July 15 by writing to the Office of the Associate Dean—Student Programs, School of Veterinary Medicine, University of California, Davis, CA 95616 or by calling 916-752-1383.
Students interested in admission to the School of Veterinary Medicine are urged to request an Announcement of the School of Veterinary Medicine at an early date so that all minimum academic requirements and deadlines are met. Applicants with disadvantaged backgrounds (cultural, economic, social, educational, disabled and other factors) are encouraged to apply to the Veterinary Medical Opportunity Program (VMOP). For further information and advising services, contact the Office of the Dean—Student Programs or by calling 916-752-1383.

Letters of Evaluation. Three letters of evaluation are required and are submitted with your VMCAS application. Letters should be requested from persons who know you well, understand academic and professional demands, and have had the opportunity to evaluate your personal qualities and potential as a professional person. The evaluator should be willing to write a thorough, comprehensive letter on your behalf.

Interviews. Interviews may be requested, as deemed necessary, by the Dean and Admission Committee to obtain additional information. The Dean and Admission Committee may require additional evaluation procedures for selecting candidates for admission.

Out-of-State and Foreign Applicants. California residents are given priority for admission to the school. A small number of uniquely qualified applicants who are not California residents may be admitted as nonresidents. The criteria for determining residency are explained in Residence for Tuition Information in the Appendix of this catalog. Specific questions should be addressed to the Legal Analyst—Residence Matters, 300 Lakeside Dr., 7th Floor, Oakland, CA 94720. No other persons are qualified to give rulings on residency.

If you are from a country other than the United States, you must include a certified English version of your college transcript, and, if English is your second language, the official scores from the Test of English as a Foreign Language (TOEFL) taken within five years of the date when your application is submitted.

Criteria for Selection

I. Academic Factors (50-60%)

A. College coursework:
 1. GPA of all undergraduate and graduate coursework
 2. GPA of required science coursework
 3. GPA of last two years of college work (minimum of 72 quarter units)

B. Graduate Record Examination:
 1. General Aptitude Test (Verbal, Quantitative and Analytical)
 2. Subject Test in Biology

II. Non-Academic Factors (40-50%)

A. Narrative (5-20%)
B. Letters of Evaluation (5-20%)
C. Interviews (0-20%)

Applicants will also be evaluated for their understanding of the profession and the responsibilities of being a veterinarian, interest in serving the public, maturity, motivation and other qualities necessary for successful academic and professional work.

Student Fees: School of Veterinary Medicine

At the time of registration each quarter, every student must pay the following fees.

These are the proposed fees for the 1996-97 academic year. Because fees are subject to gubernatorial, legislative and regental action, these fees may change without notice.

<table>
<thead>
<tr>
<th>Students entering 1996-97</th>
<th>Per Quarter</th>
<th>Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Registration Fee</td>
<td>$238.50</td>
<td>$713.00</td>
</tr>
<tr>
<td>Educational Fee</td>
<td>$1,029.00</td>
<td>$3,086.00</td>
</tr>
<tr>
<td>Memorial Union Fee</td>
<td>$28.50</td>
<td>$85.50</td>
</tr>
<tr>
<td>Health Insurance*</td>
<td>$150.00</td>
<td>$449.00</td>
</tr>
<tr>
<td>Student Facilities Safety Fee</td>
<td>$22.00</td>
<td>$66.00</td>
</tr>
<tr>
<td>Professional School Fee†</td>
<td>$1,334.00</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>Total for CA residents</td>
<td>$2,801.50</td>
<td>$8,399.50</td>
</tr>
<tr>
<td>Non-Resident Tuition</td>
<td>$2,798.00</td>
<td>$8,394.00</td>
</tr>
<tr>
<td>Total for nonresidents</td>
<td>$5,599.50</td>
<td>$16,793.50</td>
</tr>
</tbody>
</table>

* Students must purchase the Graduate Student Health Insurance Plan unless they are able to prove comparable coverage under another plan.
†M.P.V.M., Masters, and Ph.D. students do not pay the Professional School Student Fee. These students pay the Graduate Student Fees (see Graduate Studies).

The Professional School Fee for students admitted to the School of Veterinary Medicine in previous years is as follows:

1995-96: $3,000 per year. Total annual student fees for California residents are $7,399.50; for nonresidents, $15,793.50.

1994-95: $2,000 per year. Total annual student fees for California residents are $6,399.50; for nonresidents, $14,793.50.

Prior to 1994-95: students are not assessed the Professional School Fee. Total annual student fees for California residents are $4,399.50; for nonresidents, $12,793.50.

PELP students are considered continuing students.

Readmitted students are considered new (entering) students.
Program of Study

Doctor of Veterinary Medicine. To receive a Doctor of Veterinary Medicine degree, students must study veterinary medicine for the equivalent of 12 quarters of 12 weeks each (the last six quarters must have been spent in the School of Veterinary Medicine, University of California, Davis). A grade point average of 2.0 (C), computed on all courses taken in the School, is required and students must satisfactorily complete all required work as determined by the faculty of the School.

Master of Preventive Veterinary Medicine. Applicants for candidacy to the Master of Preventive Veterinary Medicine (M.P.V.M.) degree program must have completed the Doctorate in Veterinary Medicine or the equivalent; final admission decisions rest with the Admissions Committee, M.P.V.M program. Application deadline for fall quarter admission is March 15 (Please note that the deadline for applications for Nonresident Tuition Fee Fellowships is January 15.) International applicants are encouraged to apply as early as possible. Students wishing to enter winter or spring quarter should contact the M.P.V.M. Program Director concerning application deadlines.

The M.P.V.M. degree normally takes one year to complete; however, some students may require as much as two years to finish the program. Students who intend to complete the program in one calendar year must commence the program in August. Candidates for the M.P.V.M. degree must satisfactorily complete a total of 40 units of coursework while in residence. This includes 27 units of required courses in epidemiology, biostatistics, information management and a minimum of 13 units of approved electives. Students must also complete a research study which culminates in a written report and oral presentation. A committee, consisting of three faculty members, reviews each paper for acceptability and assigns an appropriate grade.

Application forms and information about the program can be requested from the Director, M.P.V.M. Program, Office of the Dean, School of Veterinary Medicine, University of California, Davis, CA 95616.

Combined Program. Students may enroll in the combined D.V.M./M.P.V.M. program in which the M.P.V.M. degree may be awarded by the end of the fall quarter of the fifth year or as soon thereafter as all requirements for both the D.V.M. and M.P.V.M. degrees are completed. The advantage of the combined program resides in the ability of the student to complete the M.P.V.M. program within six months after normal completion time of the D.V.M. degree, rather than 15 months, as would be the case if taken sequentially.

Master of Science and Doctor of Philosophy. General information regarding these degrees will be found in the Announcement of Graduate Studies, which may be obtained from Graduate Studies, University of California, Davis, CA 95616. Additional detailed information may be obtained by writing the chairperson of the department in which you wish to study.

School of Veterinary Medicine

Academic Calendar 1996-97

Fall Quarter 1996
- Orientation for 1st-year students: Wed–Fri, Sept. 12–14
- Instruction begins for 4th-year students: Tuesday, September 3
- Instruction begins for 1st-, 2nd- and 3rd-year students: Mon, September 16
- Schalm Lecture: Sunday, November 10
- Thanksgiving Holiday: Thur–Fri, Nov. 28–29
- Instruction ends: Friday, December 6
- Finals end:

Winter Quarter 1997
- Instruction begins for 4th-year students: Thursday, January 2
- Instruction begins for 1st-, 2nd- and 3rd-year students: Thursday, January 2
- M. L. King Holiday: Monday, January 20
- President’s Holiday: Monday, February 17
- Monday classes meet: Thursday, March 13
- Instruction ends: Friday, March 14
- Finals end:

Spring Quarter 1997
- Instruction begins:
- Student Awards Ceremony: Wednesday, May 7
- Memorial Day Holiday: Monday, May 26
- Instruction ends:
- Finals end:
- Commencement: Saturday, June 7

116 School of Veterinary Medicine
COURSES

Undergraduate Courses

Lower Division Courses
These courses, numbered 1–99, are open to all students for lower division credit, but are designed primarily for freshmen and sophomores.

Upper Division Courses
These courses, numbered 100–199, are open to all students who have met the necessary prerequisites as indicated in the catalog course description. Preparation should generally include completion of one lower division course in the given subject or completion of two years of college work.

Variable-Unit Courses
Subject to approval by the department chair, an instructor may arrange to give a special study course (numbers 90X, 92, 97T, 97TC, 98, 99, 190X, 192, 194H, 197T, 197TC, 198, 199) to interested students.

• 90X/190X (Seminar) are seminar courses for in-depth examination of a special topic within the subject area.

• 92/192 (Internship) courses enable individual students to obtain practical experience to complement their educational goals or to explore potential career interests and opportunities. Students must have completed 84 units before enrolling in course 192.

• 97T/197T (Tutoring) and 97TC/197TC (Tutoring in the Community) are courses for students who want to tutor in a subject in which they are proficient—generally in their major field—while enrolled as an undergraduate.

• 98/198 (Directed Group Study) courses are set up on a one-time basis for a group of students in a subject for which no regular courses have been established.

• 99 (Special Study for Undergraduates) is a course arranged for an individual student who shares with an instructor an academic experience that cannot be accommodated within the formal course structure.

• 194H (Special Study for Honors Students) courses are for individual students with honor status, as determined by the department offering the course, and who have completed 84 units.

• 199 (Special Study for Advanced Undergraduates) courses are the upper division counterparts of course 99, and involve supervised independent study and research requiring adequate background in the subject proposed for study as well as prior completion of 84 units.

Credit in courses 99, 194H and 199 is limited to a total of 5 units per term.

Autotutorial Courses are courses in which students instruct themselves at their own pace. These courses can be identified by the letters AT on their course numbers, e.g., 13AT, 141AT.

Research Conference Courses are courses in which advanced undergraduate students may participate in critical discussions of staff research activities. These one-unit courses are numbered 190C and are graded on a Passed/Not Passed basis.

Graduate Courses
Courses numbered 200–299 are open to graduate students and to undergraduates who have completed 18 units of upper division work basic to the subject matter of the course. However, admission is subject to the approval of the instructor in charge of the course. Grading in 290C courses and variable-unit 299 or 299D courses is Satisfactory/Unsatisfactory.

Professional Courses for Teachers and Nurse Practitioners
Courses numbered 300–399 are teacher-training courses in the Division of Education and in other departments and are especially intended for teachers or prospective teachers. Included are courses designed to provide instruction to teaching assistants. Also included are courses for certification of family nurse practitioners and physician assistants. These courses are open only to students enrolled in those programs.

Other Professional Courses
Courses numbered 400–499 are professional training courses. Graduate students should consult their faculty adviser or contact the Graduate Studies Office before registering in 400 series courses to determine if graduate credit may be awarded for the course in question.

Prerequisites
Prerequisites for courses should be noted carefully; the responsibility for meeting these requirements rests on the student. If you can demonstrate that your preparation is equivalent to that specified by the prerequisites, the instructor may waive these requirements for you. However, the prerequisite that requires that you complete 84 units before registering in the course may not be waived.

COURSE DESCRIPTIONS
Here is a sample of how a course is listed in this catalog.

190. Proseminar in Nutrition (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: senior standing; course 111. Discussion of human nutrition problems. Each term will involve a different emphasis among experimental, clinical and dietetic problems of community, national and international scope. May be repeated for credit with consent of instructor. (P/NP grading only.)

Top line: course number; title; units; quarters offered; instructor(s).

Paragraph following: course instructional format; prerequisite; course description; grading if other than letter grading.

Quarters offered: the quarter in which a course is intended to be given is shown as follows:
I. Fall Quarter (September to December) or Fall Semester (August to December), School of Law
II. Winter Quarter (January to March) or Spring Semester (January to May), School of Law
III. Spring Quarter (April to June)
IV. Summer Quarter (July to September) for students in the School of Medicine only
Alternate Year Designation
Some course descriptions will include the phrase “Offered in alternate years.” If the course number is marked with an asterisk (*), this indicates that the course will not be offered this academic year, but will be offered the following year. If the course number is not marked with an asterisk, this indicates that the course will be offered this academic year, but will not be offered the following year.

Multi-Quarter Courses
A series of course numbers followed by two or three letters (for example, Physics 110A-110B-110C) is continued through three successive quarters, ordinarily from September to June. The first quarter course listed this way is a prerequisite to the second, and the second is prerequisite to the third. On the other hand, where A and B portions of a course are listed separately (for example, Economics 160A and 160B), the A course is not a prerequisite to B, unless it is specifically mentioned in the list of prerequisites.

Expanded Course Descriptions
You may find that, because of space limitations, the descriptions in the General Catalog will not include all the information you would like about a course. The faculty has responded to this need by writing the “Expanded Course Descriptions,” giving more detailed explanations about each course offering. These descriptions are available each quarter to assist students in selecting their courses. They contain such information as course goals, texts used, preparation required of students, basis for grading, course format, special assignments (papers, field trips, etc.), and a topical outline of the material to be covered.

Copies of the “Expanded Course Descriptions” are available for on-campus use at the Shields Library Reference and Periodicals desks, the College deans’ offices, advisers’ offices, advising centers, departmental offices, The First Resort and in the dormitories at the head residents’ offices.

The course offerings and instructors listed in this catalog are subject to change without notice. For more current quarter offerings and instructors, refer to the Class Schedule and Room Directory, available in the UCD Bookstore.
African American and African Studies

(College of Letters and Science)

John O. Stewart, Ph.D., Director
Program Office, 280 Kerr Hall (916-752-1548)

Committee in Charge

Bobbie J. Bolden (African American and African Studies, Drama)
Mike Henderson, Ph.D. (Art History, Art Studio)
Clarence Major, Ph.D. (English)
Jacob K. Olupona, Ph.D. (African American and African Studies)
Felicienne Ramey, Ph.D. (African American and African Studies)
John H. Stanfield, II, Ph.D. (African American and African Studies, Sociology)
John O. Stewart, Ph.D. (African American and African Studies)
Patricia A. Turner, Ph.D. (African American and African Studies)
Clarence E. Walker, Ph.D. (History)
David Scofield Wilson, Ph.D. (African Studies)

Faculty

Bobbie J. Bolden, M.A., Lecturer
Jacob K. Olupona, Ph.D., Associate Professor
Mark A. Reid, Ph.D., Associate Professor
John H. Stanfield, II, Ph.D., Professor
John O. Stewart, Ph.D., Professor
Patricia A. Turner, Ph.D., Associate Professor

Affiliated Faculty

Felicienne Ramey, Ph.D., Adjunct Associate Professor
Kristie Haggins, Ph.D., Adjunct Assistant Professor
Cecil A. Brown, Ph.D., Lecturer
Hortense E. Simmons, Ph.D., Visiting Professor
Lizzette LaFalle-Collins, Lecturer

The Major Program

The African American and African Studies Program provides courses through which students learn about the history and culture of African Americans. The program is committed to providing students with a multi-disciplinary learning experience. Majors are required to take selected courses in other programs and departments that complement those offered within African American and African Studies. Majors and minors are also encouraged to take advantage of internship programs.

The Program

Students are encouraged to combine an examination of African American history and culture in the U.S.A. with African or diaspora studies. The emphasis in African American (U.S.A.) culture includes courses on the history, culture, arts, literature of African Americans, the patterns of their socio-political and cultural movements, and the struggle with racism as a social and psychological problem. The emphasis in African Studies includes courses on the social organization, culture, and religion of West African societies. The diaspora emphasis includes courses on the African heritage in The Americas, Islam in Africa and The Americas, African religion in the diaspora and cinema studies. In addition, students may choose to do special research projects.

Career Alternatives

African American and African Studies majors are well prepared for employment opportunities in the Office of Education, human service units, county social service programs, and counseling services. African American and African Studies is also an appropriate background for work in community organizations like the Urban League, NAACP, Urban Affairs, and Office of Economic Opportunity. The major also provides a strong background for future study in graduate school.

Courses in African American and African Studies (AAS)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>36</td>
</tr>
<tr>
<td>Two courses from Anthropology 2, Economics 1A, 1B, Geography 2, Sociology 1, Political Science 1, 2</td>
<td>8</td>
</tr>
<tr>
<td>Two courses from Chicano Studies 10, Native American Studies 1, 10, American Studies 45</td>
<td>8</td>
</tr>
<tr>
<td>Two courses from History 17A, 17B, 17C</td>
<td>8</td>
</tr>
<tr>
<td>Music 18</td>
<td>4</td>
</tr>
<tr>
<td>Course from Statistics 13, Sociology 46A, or Psychology 41</td>
<td>4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36</td>
</tr>
</tbody>
</table>

A coordinated program of upper division courses, selected and approved in consultation with the major adviser to reflect the student's major emphasis.

Core courses: African American Studies 101, 110, 133
Additional upper division units chosen to reflect the student's major emphasis.

Total Units for the Major | 72 |

Major Program Emphases

The areas of emphasis are offered as guidelines for students in the African American and African Studies major:

The above areas of emphasis are the only areas students may choose for the major. However, the major program must be (a) developed in consultation with an African American and African Studies faculty member, and (b) approved by the Program's Major adviser. Information regarding the areas of emphasis may be obtained from the African American and African Studies Office.

Related Upper Division Courses

The following courses are offered by faculty members in other disciplines and focus on African American and African people and their culture.

Anthropology 104, 139A, 139B, 140, 153, 158, Applied Behavioral Sciences 151, 152, 153, 159A, 159B, 172; Art History 150; Dramatic Art 155; Education 150; English 179, 181; Geography 125A, 125B, History 102, 115A, 115B, 115C, 116, 177; Music 113B; Political Science 134, 138, 146, 151, 167, 176; Sociology 129, 130.

Major Adviser: P.A. Turner.

Minor Program Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one course from African American Studies 10, 15, or 80</td>
<td>4</td>
</tr>
<tr>
<td>American History and Institutions.</td>
<td>20</td>
</tr>
</tbody>
</table>

This University requirement can be satisfied by completion of African American Studies 10, 100. (See also under University requirements.)

*Course not offered this academic year.

Lower Division Courses

10. Introduction to Afro-American Culture and Society (4) I, Turner
Lecture—4 hours. Introduction to the contemporary Black American experience by critically examining historical, political and social and economic factors that have affected the development and status of Afro-American people.

12. Introduction to African Studies (4) II, Olupona
Lecture/discussion—4 hours. Introduction to African Studies which will focus on the various disciplinary perspectives through which African society and culture are generally studied. A survey of methods, resources and conceptual tools for the study of Africa.

GE credit: ArtHum, Div, Wrt.

15. Introduction to African American Humanities (4) I, The Staff
Lecture—3 hours: discussion—1 hour. Introduction to the humanist tradition developed by writers, philosophers, and artists of African descent in the West. Attention given to African sources, as well as European, Caribbeain, Latin-American, and North American variations on this tradition. GE credit: ArtHum, Div, Wrt.

50. Black Images in Popular Culture (4) III, Turner, Reid
Lecture—2 hours: discussion—2 hours. A survey of the depictions of Blacks in popular culture (popular press, stage, radio, film, television, advertising) from the middle of the sixteenth century to the present. GE credit: ArtHum, Div, Wrt.

51. History of Afro-American Dance (4) III, Wynnn-Bolden
Lecture—2 hours: discussion—2 hours. Evolution of African American dance, tracing its history and development from West Africa through the Caribbean and to the United States. Investigates the social relevance of African American dance and the artistic merits and contributions of African American choreographers and performers.

52. African Traditional Religion (4) II, Olupona
Lecture—2 hours: discussion—2 hours. Introduction to the traditional religions of the sub-Saharan African peoples: emphasis on myths, rituals and symbols in West, East, Central and South African indigenous religious. Examines themes such as sexual kingship, divination system, women, prophecy, conversion and adaptation to Islam and Christianity. GE credit: ArtHum, Div, Wrt.

54. University Gospel Choir (2) I, II, III, Lymus, Stewart
Rehearsal—4 hours. Prerequisite: consent of instructor; open to any student in the university. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as Music 54.) (P/NP grading only.)

80. Introduction to Black Politics (4) III, Stanfield

99. Special Study for Undergraduates (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Survey of Ethnicity in the U.S. (4) II, Turner
Lecture—4 hours. The history, culture, philosophy, and current problems of groups considered ethnic minorities in the United States as viewed by the groups themselves. GE credit: ArtHum, Div.

101. Introduction to Research in the Afro-American Community (4) III, The Staff
Lecture—4 hours. Prerequisite: course 10 or consent of instructor. Introductory survey of Afro-American Studies methods and techniques; problems and methodology in Afro-American Studies.
107A. African Descent Communities and Culture in the Caribbean and Latin America (4) I, Stewart
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: upper division standing. Origin and development of African descent communities and culture in the Caribbean and Latin America: (a) the evidence for pre-Colombian arrivals; (b) the African slave trade and its aftermath; (c) the emergence of the African-Creole cultures. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

107B. African Descent Communities and Culture in North America (4) I. Stewart
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: upper division standing. Origin and development of African descent communities and culture in the USA, Canada, and Mexico from the African slave trade to contemporary urban society. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

107C. African Descent Communities and Culture in Europe and Asia (4) I. Stewart
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: upper division standing. The study of early African kingdoms, their relationship with Europe and Asia, and the development of African descent communities and culture in Europe and Asia from the pre-Colombian to the post-colonial era. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

110. West African Social Organization (4) II. Olupona
Lecture—4 hours. Prerequisite: course 101 or consent of instructor. Ecology, population, social organization, and survival culture of West Africa in the pre-colonial, colonial, and post-colonial periods. GE credit: SocSci, Div.

123. The Black Female Experience in Contemporary Society (4) III. The Staff
Lecture—4 hours. Prerequisite: upper division standing or consent of instructor. Black female social, intellectual, and psychological development. Black women's contributions in history, literature, and social sciences. Black women and intellectual and philosophical underpinnings of the feminist movement. GE credit: ArtHum, Div. 130. Education in the African American Community (4) I. The Staff
Lecture—1 hour; fieldwork—3 hours. Prerequisite: course 10 or 100, and completion of the Subject A requirement. Examination of the history of the education of African Americans in the United States, with emphasis on the history and critique of contemporary theories concerning the schooling of African Americans. (Former course 140.)

133. The Black Family in America (4) III. The Staff
Lecture—4 hours. Prerequisite: upper division standing or consent of instructor. Analysis of social science research to examine relationship between Black family structures, patterns of functioning, and political, economic, and social conditions. Examination of role differentiation within families by race and social class. GE credit: SocSci, Div.

141. Psychology of the African American Experience (3) III. Haggins
Lecture—2 hours; discussion—1 hour. Prerequisite: course 10 or consent of instructor. Introduction to the psychological issues faced by African Americans. Analysis of issues from European/Western and Afrocentric frame of reference. Emphasis of Optimal Theory, a psychological theory based on an Afrocentric world view.

145A. Black Social and Political Thought (4) III. Stanfield
Lecture—4 hours. Prerequisite: course 10 or 80, or consent of instructor. Exploration and analysis of Black social and political thought in the Americas. GE credit: SocSci, Div.

145B. Black Intellectuals (4) III. Stanfield
Lecture—4 hours. Prerequisite: course 10, 80, 145A, or consent of instructor. Exposure and critical analysis of selected theoretical writings of Black intellectuals, art, political and social thinkers, in the Americas. GE credit: SocSci, Div.

150A. The Afro-American Visual Arts Tradition: A Historical and Cultural Study (4) I. The Staff
Lecture—4 hours. Prerequisite: upper division standing. Afro-American visual arts tradition, folk and formal, in historical and cultural context, from 1600 through Reconstruction. GE credit: ArtHum, Div.

150B. The Afro-American Visual Arts Tradition: A Historical and Cultural Study (4) I. The Staff
Lecture—4 hours. Prerequisite: upper division standing. Afro-American visual arts tradition, folk and formal, in historical and cultural context, from Reconstruction to present. GE credit: ArtHum, Div.

151. African-American Vernacular Music and Verbal Arts (4) III. Turner
Lecture—2 hours; discussion—2 hours. Socio-political dimensions of Afro-American musical forms like spiritual, work song, minstrelsy blues, rhythm and blues, jazz, gospel, soul and contemporary pop, and related verbal arts like preaching, teaching, rapping.

152. Major Voices in Black World Literature (4) II. Stewart
Lecture—2 hours; discussion—1 hour: term paper. Prerequisite: upper division standing. Selections from major black authors, in historical and cultural context from Reconstruction to present. GE credit: ArtHum, Div. Wrt.

153. African Religions in the Americas (4) I. Olupona
Lecture—2 hours; discussion—2 hours. Prerequisite: course 10 or 15. Comparative study of African religious heritage in the Americas: Jamaica, Trinidad, Cuba, U.S.A., Haiti and Brazil. Emphasis on the origins and development of Candomble, Santeria, Shango, Vodun and Rastafarianism in the New World. GE credit: ArtHum, Div, Wrt.

154. University Gospel Choir (2) I, II, III. Lyimus, Stewart
Rehearsals—4 hours. Prerequisite: consent of instructor; open to any student in the university. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as Music 154.) (P/NP grading only.)

155A. African-American Dance and Culture in the United States, Brazil and the Caribbean (4) II. Bolden
Lecture/discussion—4 hours. A comparative study of the African-American dance forms in the U.S.A., Brazil, Haiti, Cuba, Jamaica, Barbados, and Trinidad. Examination of ritual, folk, and popular dance forms and the socio/historical factors that have influenced these forms. (Same course as Dramatic Art 155A.)

160. African American Folklore (4) III. Turner
Lecture—2 hours; discussion—1 hour; fieldwork—3 hours. Prerequisite: course 10. Theory and history of African American folklore and folklife, including music, material culture, oral narrative, proverbs, and humor. African and Caribbean cultural influences on New World folk genres will be probed. GE credit: ArtHum, Div.

162. Islam in Africa and the Americas (4) III. Olupona
Lecture—3 hours; discussion—1 hour. Prerequisite: course in African American or Religious Studies, preferably course 12 or 110 or Religious Studies 60. A comparative and historical survey of Islam in the regional and cultural contexts of Nigeria, Ghana, and other African and the Americas. GE credit: ArtHum, Div, Wrt.

170. African-American Film and Video (4) II. The Staff
Lecture/discussion—2 hours; term paper; film viewing—2 hours. Prerequisite: one of courses 15, 50, or English 160 or 162. A comparative approach in the study of dramatic films and videos that treat black life in the Americas, drawing on the social sciences and black feminist theory to examine and discuss selected works. GE credit: ArtHum, Div, Wrt.
Agricultural and Managerial Economics

Courses in Agricultural and Environmental Chemistry (AGC)

Graduate Courses

290. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Selected topics in agricultural and environmental chemistry, presented by students. (S/U grading only.)

*298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. The chemistry and biochemistry of foods, nutritional chemicals, pesticides, and other special topics as they apply to agricultural and environmental chemistry.

*299. Research (1-12) I, II, III. summer. The Staff (Chairperson in charge)
Arrangements should be made well in advance with a faculty member of the Group in Agricultural and Environmental Chemistry. (S/U grading only.)

Agricultural and Managerial Economics

College of Agricultural and Environmental Sciences

The Major Program

The major in agricultural and managerial economics teaches students to apply economics and quantitative principles to problems in agricultural production, management, and marketing.

The Program. Each student must specialize in at least one of three options: agricultural economics, which focuses on topics related to the production and marketing of foods and fibers; consumer economics, which focuses on issues related to consumer decision making, protection, and welfare; or managerial economics, which focuses on topics related to evaluating, financing, and managing business activities.

Internships and Career Alternatives. Students in agricultural and managerial economics have opportunities to gain additional career information and preparation through internships in a variety of private business and governmental agencies. Graduates qualify for supervisory and management training positions in farm and ranch production, food and agricultural processing, agricultural sales and service, banking, finance, commodity and stock brokerages in the private sector, and a variety of agency career positions in local, state, and federal government. Students who desire additional training are well qualified to enter graduate programs in agricultural economics, econometrics, business administration, or law.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Social Science, Natural Science, Agricultural Science ... 40

(See undergraduate handbook in Department Advising Office for complete list of courses.)

Breadth/General Education......................... 6-24

Note: Approved General Education courses may be used to simultaneously satisfy Social, Natural, and Agricultural Science courses as defined in the Preparatory Subject Matter for the major and the campus General Education requirement.

Depth Subject Matter ↑.............................. 19-21

Micro theory, Agricultural Economics 100A, 100B... 8

Quantitative methods, Agricultural Economics 106, 155 ... 8

Macro theory, Economics 101 or 105 5-5

Restricted Electives... 32

Options (choose at least one):

(a) Agricultural Economics....................... 32

At least 15 units must be chosen from Agricultural Economics 120, 130, 132, 138, 139, 140, 145, 150. The remaining 13 units must be selected from the aforementioned courses, Agricultural Economics 140, or upper division courses in Agricultural Economics and/or Economics.

(b) Environmental and Resource Economics 32

Agricultural Economics 175, 176.

At least 18 units must be chosen from Agricultural Economics 15, 120, 138, 141M, 145, 150, 166, Economics 123, 125, 130, Environmental Studies 168A, 168B, 178. The remaining 8 units may be selected from the aforementioned courses or upper division courses in Agricultural Economics and/or Economics, Environmental Studies 160, 161, 162, 163, 165, 166, 167, 171, 172, 173, Environmental Toxicology 138.

(c) Managerial Economics.............................. 32

Agricultural Economics 18.

At least 12 units must be chosen from Agricultural Economics 112, 118A, 118B, 136, 157, 171A, 171B. The remaining 6 units may be chosen from the aforementioned courses or from Agricultural Economics 120, 130, 132, 138, 139, 140, 143, 144, 145, 150, 156, 175, 176, Economics 162, 163, 165, 166, 168B, 178, Political Science 174, 188.

Unrestricted Electives... 37-48

Total Units for the Degree.............................. 180

*Students graduating with this major are required to attain at least a C average (2.0) in all upper division Agricultural Economics, Consumer Economics, and Economics courses, plus any other upper division courses taken at the University in the depth subject matter.

Advising Center for the major is located in 1176 Social Sciences and Humanities Building (916-752-6185).

Major Adviser. D.A. Sumner (Agricultural Economi-

Minor Program Requirements:

The Department of Agricultural Economics offers five minor emphases open to students majoring in other disciplines who wish to complement their study programs with a minor in Agricultural and Managerial Economics. Each minor requires completion of Agricultural Economics 100A. Minimum prerequisites of Economics 1A-1B and Mathematics 16A-16B are required for Agricultural Economics 100A. For some courses, Statistics 13 and 103 may be required. Variable-unit courses are not accepted for any emphasis.

*Course not offered this academic year.

UNITS

General emphasis

Agricultural Economics 100A or the equivalent 18

Additional upper division courses in Agricultural Economics ... 14

Agricultural Economics emphasis

Agricultural Economics 100A or the equivalent 14

Additional upper division courses in Agricultural Economics ... 14

Select 9 or more units from Agricultural Economics 112, 118A, 118B, 136, 157, 171A, 171B.

Select additional upper division Agricultural Economics courses to complete the 18-unit total for the minor.

Consumer Economics emphasis

Agricultural Economics 100A or the equivalent 4

Additional upper division courses in Agricultural Economics ... 4

Select 9 or more units from Agricultural Economics 112, 118A, 118B, 136, 157, 171A, 171B.

Select additional upper division Agricultural Economics courses to complete the 18-unit total for the minor.

Managerial Economics emphasis

Agricultural Economics 100A or the equivalent 4

Additional upper division courses in Agricultural Economics ... 4

Select 9 or more units from Agricultural Economics 112, 118A, 118B, 136, 157, 171A, 171B.

Select additional upper division Agricultural Economics courses to complete the 18-unit total for the minor.

Environmental and Natural Resource Economics emphasis

Agricultural Economics 100A or the equivalent 4

Additional upper division courses in Agricultural Economics ... 4

Select 9 or more units from Agricultural Economics 175 and 176, and either 100B or 120.

Select additional upper division Agricultural Economics courses to complete the 18-unit total for the minor.

Graduate Study. See the Graduate Studies section in this catalog.

Agricultural and Resource Economics

College of Agricultural and Environmental Sciences

Richard J. Sexton, Ph.D., Chairperson of the Department

Department Office, 2118 Social Sciences and Humanities Building (916-752-1517)

Student information: Undergraduate, 1176 Social Sciences and Humanities Building, 916-752-6185; Graduate, 1171 Social Sciences and Humanities Building, 916-752-6866

Faculty

Richard A. Alcauskas, J.D., Lecturer
Julian M. Alston, Ph.D., Professor
Steven Blank, Ph.D., Lecturer
Bayford D. Butler, M.S., Lecturer
Leslie J. Butler, Ph.D., Lecturer

Courses in Agricultural and Environmental Chemistry

...
Agricultural and Resource Economics

Michael R. Caputo, Ph.D., Associate Professor Hoy F. Carman, Ph.D., Professor Colin A. Carter, Ph.D., Professor James A. Chalmers, Ph.D., Professor Roberta L. Cook, Ph.D., Lecturer James Faber, M.S. Lecturer Richard D. Green, Ph.D., Professor Arthur Havener, Ph.D., Professor Thomas W. Hazlett, Ph.D., Associate Professor Dale M. Heien, Ph.D., Professor Gloria E. Heilbrun, Ph.D., Associate Professor Garth J. Holloway, Ph.D., Assistant Professor Richard E. Howitt, Ph.D., Professor Lovell S. Jarvis, Ph.D., Professor Desmond A. Jolly, Ph.D., Lecturer Karen Klonsky, Ph.D., Lecturer Mahlon Lang, Ph.D., Lecturer Douglas M. Larson, Ph.D., Associate Professor Philip L. Martin, Ph.D., Professor Catherine J. Morrison, Ph.D., Professor Quirino Paris, Ph.D., Professor Richard J. Sexton, Ph.D., Professor Lawrence E. Shepard, Ph.D., Professor Joe J. Stasialt, Ph.D., Lecturer Daniel A. Sumner, Ph.D., Professor J. Edward Taylor, Ph.D., Professor Marilyn D. Walker, Ph.D., Assistant Professor James E. Wilen, Ph.D., Professor (Agricultural Economics, Environmental Studies)

Emeriti Faculty
Oscar R. Burt, Ph.D., Professor Emeritus Harold O. Carter, Ph.D., Professor Emeritus Jerry Foytik, Ph.D., Professor Emeritus Benjamin C. French, Ph.D., Professor Emeritus Varden Fuller, Ph.D., Professor Emeritus Warren E. Johnston, Ph.D., Professor Emeritus Gordon A. King, Ph.D., Professor Emeritus Sylvia Lane, Ph.D., Professor Emerita Elmer W. Learn, Ph.D., Professor Emeritus Samuel H. Logan, Ph.D., Professor Emeritus Alexander F. McCalla, Ph.D., Professor Emeritus Chester G. McCo, Jr., Professor Emeritus Refugio I. Rochin, Ph.D., Professor Emeritus J. Herbert Snyder, Ph.D., Professor Emeritus Stephen H. Sosnick, Ph.D., Professor Emeritus

Major Program and Graduate Study. See the major in Agricultural and Resource Economics, and for graduate study, see the Graduate Studies section in this catalog.

Major Advisers. See the Class Schedule and Room Directory.

Related courses. See Environmental Biology and Management 110, Environmental Studies 160, 166A, 166B, 173; and courses in Consumer Economics and Economics.

Courses in Agricultural Economics (AGE)

Lower Division Courses

1. Economic Basis of the Agricultural Indus- tries I. Butler Lecture—4 hours. Prerequisite: Economics 1A. For non-majors only. Nature of product marketing by the business firm. Customer-product relationships, pricing and demand; new product development and marketing strategy; promotion and advertising; product life cycles, the distribution system; manufacturing, wholesaling, retailing. Government regulation and restraints. (Not open for credit to students who have completed course 118A).

II. Butler Lecture—4 hours. Prerequisite: Economics 1A. For non-majors only. Nature of product marketing by the business firm. Customer-product relationships, pricing and demand; new product development and marketing strategy; promotion and advertising; product life cycles, the distribution system; manufacturing, wholesaling, retailing. Government regulation and restraints. (Not open for credit to students who have completed course 118A).

118A-118B. Tax Accounting (3-3) II-III. Butler Lecture—2 hours; discussion—1 hour. Prerequisite: Management 11B. Determination of the federal income tax of employees, proprietors, partners, and corporations and the tax implications of alternative business decisions and methods of accounting.

120. Agricultural Policy (4) III. Sumner Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A. Administrative and financial management of historical and current economic problems and governmental policies influencing American agriculture. Uses of economic theory to deal with the economic problems of agriculture; how public policy influences the nature and performance of American agriculture. GE credit: SocSci, Wrt.
145. Farm and Rural Resources Appraisal (4) II. Johnston
Lecture—3 hours: laboratory—3 hours; field trip. Principles of farm and ranch appraisal; land utilization in relation to problems of development and valuation. Real estate instruments and elements of real estate finance.

147. Resource and Environmental Policy Analysis (3) II. The Staff
Lecture—3 hours. Prerequisite: Economics 1A; enrollment open to non-majors only. Natural resource use problems, emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; public and private resource use problems; and public issues. (Students who have taken course 100A, Economics 100, or the equivalent, may receive only 2 units of credit, so must enroll in course 147M instead.) GE credit: SocSci.

147M. Resource and Environmental Policy Analysis (2) II. The Staff
Lecture—3 hours. Prerequisite: Economics 1A; enrollment open to non-majors only. Natural resource use problems with emphasis on past and current policies and institutions affecting resource use; determinants, principles, and patterns of natural resource use; property rights; conservation; public and private resource use problems; and public issues. (Students who have taken course 100A, Economics 100, or the equivalent, must enroll in this course (for 2 units) rather than course 147.)

*148. Economic Planning for Regional and Resource Development (5) II. The Staff
Lecture—4 hours. Prerequisite: Economics 1A and 1B; Mathematics 16A recommended. Relation of resources to economic growth, including regional problems. Planning in economic development with particular emphasis on resource use in agriculture; regional and national planning by both centralized and decentralized governments.

150. Agricultural Labor (4) I. Martin
Lecture—3 hours; discussion—1 hour. Importance of family and hired labor in agriculture; farm labor market; unions and collective bargaining in California agriculture; simulated collective bargaining exercise; effects of unions on farm wages and earnings. GE credit: SocSci, Div, Wt.

155. Quantitative Analysis for Business Decisions (4) I. Paris; III. Howitt
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100A and 100B. Introduction to selected topics in management science and research operations: decision analysis for management, mathematical programming, competitive analysis, and others.

159. Introduction to Mathematical Economics (4) I. Green
Lecture—4 hours. Prerequisite: course 100A and 155. Linear algebra for economists; necessary and sufficient conditions in static optimization problems; implicit function theorem; economic methodology and mathematics; comparative statics; envelope theorem; Le Chatlier principle; applications to production and consumption models.

157. Analysis for Production Management (4) III. Carman
Lecture—4 hours. Prerequisite: course 100A; Statistics 103. Application of economic theory and quantitative methods in analyzing production management problems including inventory control, production scheduling, quality control, simulation, systems approach, and work measurement.

171A. Financial Management of the Firm (4) II. Hara
Lecture—3 hours; discussion—1 hour. Prerequisite: course 106; Management 11A-11B. Financial analysis at the firm level: methods of depreciation; influence of the tax structure; inventory, cash, and accounts receivable management; sources of short-term and long-term financing, and financial problem solving using a computer spreadsheet program. (Students who have taken Natural Resource Economics 134 may not receive credit for this course.)

171B. Financial Management of the Firm (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 171A. Financial analysis at the firm level: methods of capital budgeting; calculating the cost of capital; dividend policies; mergers and acquisitions; financial current topics in finance.

175. Natural Resource Economics (3) II. The Staff
Lecture—3 hours. Prerequisite: course 108B or Economics 100 or the equivalent. Analytical treatment of the role of the environment in economic activity and methods for protecting and enhancing environmental quality; implications of market failures for public policy; design of environmental policy; theory of welfare measurement; measuring the benefits of environmental improvement. GE credit: SocSci.

176. Environmental Economics (3) III. Larson
Lecture—3 hours. Prerequisite: course 108B or Economics 100 or the equivalent. Analysis of the role of the environment in economic activity and methods for protecting and enhancing environmental quality; implications of market failures for public policy; design of environmental policy; theory of welfare measurement; measuring the benefits of environmental improvement. GE credit: SocSci.

*190A. Senior Research Project (2) II. Lecture—1 hour; discussion—1 hour. Prerequisite: course 200A; Statistics 103 or consent of instructor or senior standing. Individual student-defined research project conducted under faculty guidance. Problem definition, study objectives, procedure, method of analysis, working outline, and preliminary elements of report writing to be completed in the first quarter. (Deferred grading only, pending completion of sequence.)

*190B. Senior Research Project (2) II. Lecture—1 hour; discussion—1 hour. Prerequisite: course 190A or consent of instructor. The research report begun in course 190A will be completed and, after evaluation by the instructor, be revised and resubmitted by the student prior to the end of 190B. (Deferred grading only, pending completion of sequence.)

192. Internship (1-6) I, II, III. Summer. The Staff (Chairperson in charge)
Internship—3 to 18 hours. Internship experience off and on campus in all subject areas offered in the Department of Agricultural Economics. Internships are supervised by a member of the staff. (P/NP grading only.)

197T. Tutoring in Agricultural Economics (1-3) I, II, III. The Staff (Chairperson in charge)
Tutor—1 hour. Tutoring to help in agricultural economics courses. Hours and duties will vary depending upon the course being tutored. Prerequisite: senior standing in Agricultural Economics. GE credit: Department Chairperson. Tutor will lead small discussion groups affiliated with one of the department's regular courses, under the supervision of, and at the option of the instructor in charge of the course. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Microeconomic Theory (5) I. The Staff (Economics)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Characteristics of market equilibrium under perfect competition; simple monopoly and monopsony. Emphasis on equilibrium and welfare economics; the sources of market success and market failures. (Same course as Economics 200B.)

200B. Microeconomic Theory (5) II. Helms (Economics)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200A. Characteristics of market equilibrium under perfect competition, simple monopoly and monopsony. Emphasis on general equilibrium and welfare economics; the sources of market success and market failures. (Same course as Economics 200B.)

200C. Microeconomic Theory (5) III. Makowski (Economics)
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Uncertainty and information economics. Individual decision making under uncertainty. Introduction to game theory, with emphasis on applications to markets that are imperfectly competitive or consumers that are imperfectly informed. (Same course as Economics 200C.)

202A. Introduction to Applied Research Methods (3) I. Wilen
Lecture—4 hours; discussion—3 hours. Prerequisite: courses 204 and 256, or the equivalent, 200A concurrently. Study of philosophy and methodology of applied research in agricultural economics. Methods of conceptions of researchable topics. Method of communication and constructive criticism.

202B. Applied Microeconomics I: Consumer and Producer Behavior (3) III. Alston
Lecture—4 hours; discussion—3 hours. Prerequisite: courses 200A and 202A; course 200B concurrently. Application of consumer and producer theory for specification of empirical models of supply and demand for inputs and outputs and market equilibrium displacement models.

202C. Applied Microeconomics II: Welfare Analysis and Imperfect Competition (3) III. Larson
Lecture—4 hours; discussion—3 hours. Prerequisite: course 202B; course 200C concurrently. Methods of applied welfare economics with emphasis on problems arising in agriculture and the environment. Models of imperfectly competitive markets and their application to industries and institutions in the agricultural sector.

204. Microeconomic Analysis (5) I. Sexton
Lecture—4 hours; discussion—1 hour. Prerequisite: Economics 100 or courses 100A-100B and Mathematics 16A-16B; open to advanced undergraduates with consent of instructor. Economic reasoning and social choice behavior, behavioral models of the theory of markets, partial and general equilibrium analysis, welfare economics, illustrations and applications. (Same course as Economics 204.)

214. Development Economics (4) I. The Staff
Lecture—4 hours. Prerequisite: course 100A, 100B, Economics 101; Agricultural Economics/Economics 204 and Economics 160A, 160B recommended. Review of the principal theoretical and empirical issues of development analysis and dependence development economics. Analysis of economic development theories and development strategies and their application to specific policy issues in developing country contexts. (Same course as Economics 214.)

215A. Agriculture and Economic Development (4) II. Taylor
Lecture—4 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 200A or 204 and 214. Developmental theory and application. Analysis of rural-urban linkages and their role in economic development, food price policy, and interactions between economic development and the environment. Analytical focus on household-farm and intersectoral models. (Same course as Economics 215A.)

215B. Open Macroeconomics of Development (4) II. Kandoka (Economics)
Lecture—4 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 200A or 204, 200D or 205, and 214 or 215A. Models and policy approaches regarding trade, monetary and fiscal issues, capital flows and debt are discussed in the macroeconomic framework of an open developing country. The basic analytical focus is real exchange rates and its impact on sectoral allocation of resources. (Same course as Economics 215B.)

*215C. Empirical Approaches to Development Analysis (4) III.
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 215A, 215B. Extension of development models for policy analysis including Household-Farm models, models of re-

*Course not offered this academic year.
source allocation under uncertainty, Social Account-
ning Matrix and Computable General Equilibrium mod-
els. Analysis and case studies of methods of project evaluation with and without income-distribution weights. (Same course as Economics 215C.)

*220. Economics of Consumer Policy (3) III. The Staff
Lecture—3 hours. Prerequisite: one graduate course in econometric theory and one course in econometrics or the equivalent. Policy criteria; sources of market failure; consumer policy alternatives; empirical evaluation of selected economic policies.

221. Agricultural Policy in Developed Countries (4) III. Sumner
Lecture/discussion—4 hours. Economic policy, its nature, formation and analysis; characteristics of agri-
cultural policy in developed countries, comparison of analyses of policies relating to production, marketing, price, income, rural poverty, and resource adjustment; international trade policies for temperate zone agri-
cultural commodities.

222. International Agricultural Trade and Policy (4) II. Carter
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100B or Economics 204, Economics 106 or the equivalent. Country interdependence through world agricultural markets. Partial equilibrium analysis is used to study the impacts of national inter-
vention and world market policy choice in an open economy and multinational policy issues. Offered in alternate years.

240A. Econometric Methods (4) II. Green
Lecture—4 hours. Prerequisite: Statistics 133 and a course in linear algebra or the equivalent. Least squares, instrumental variables, and maximum like-
lihood estimation and inference for single equation linear regression model; linear restrictions; hetero-
skedascity; autocorrelation; lagged dependent vari-
bles. (Same course as Economics 240A.)

240B. Econometric Methods (4) III. Chalffant
Lecture—4 hours. Prerequisite: course 240A. Topics include analysis of variance, pooled time-series, cross-section seemingly unrelated regres-
sion, classical hypothesis tests, and identification and estimation of simultaneous equation models. (Same course as Economics 240B.)

240C. Econometric Theory (4) I. Havenner
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Finite sampling theory; nonlinear and dynamic econometric models; asymptotic distribution theory. (Same course as Economics 240C.)

240D. Topics in Econometrics (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Advanced topics in nonlinear econo-
metric modelling. Contents may vary from year to year. (Under course number Economics 240D.)

252. Applied Linear Programming (4) I. Howitt
Lecture—3 hours; discussion—1 hour. Applied linear programming methods emphasizing uses for busi-
ness decisions: production, diet, blending, network and related problems.

253. Optimization Techniques with Economic Applications (4) I. Paris
Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 206C. Optimiza-
tion methods including linear and nonlinear programming. Empirical applications to household, firm, general equilibrium and economic growth.

254. Dynamic Optimization Techniques with Economic Applications (4) II. Caputo
Lecture—4 hours. Prerequisite: course 253 and ele-
mentary knowledge of ordinary differential equations. Necessary and sufficient conditions in the calculus of variations and optimal control, economic interpreta-
tions, the dynamic envelope theorem and transversal-
ity conditions, infinite horizon problems and phase diagrams, local stability and comparative statics of the steady state, comparative dynamics.

255. Systems Analysis and Simulation (3) III. Caputo/Howitt
Lecture—3 hours. Dynamic model formulation and computer simulation of economic systems.

Agricultural Computing and Information Systems

256. Applied Econometrics (4) II. Heien
Lecture—3 hours; discussion—1 hour. Prerequisite: Master students in agricultural economics or econom-
ics, or consent of instructor. Application of statistical tools to economic and business analysis. Emphasis on regression analysis, problems of specification, and model development. (Same course as Economics 256.)

257. Analysis and Applications in Production Economics (4) III. The Staff
Lecture—4 hours. Prerequisite: courses 204, 252, and 256 or the equivalent. Micro-level analysis of decision problems in agricultural production processes, e.g., investment, resource conservation, pest manage-
ment, and irrigation scheduling. Covers static and dynamic models under risk and uncertainty and some aggregate aspects of production.

258. Demand and Market Analysis (3) II. Morrison
Lecture—3 hours. Prerequisite: courses 204 and 256 or consent of instructor. Quantitative and theoretical analysis of the factors affecting supply, demand and price determination for agricultural products. Empha-
sis on analytical tools for assessing the impacts of changes in government policies and macroeconomic variables.

261. Case Problems in Management (3) III. Carman
Lecture—1 hour; discussion—2 hours. Case problem analysis and discussion of business policy and strat-
egy including organization, planning, production, marketing, and financing issues. Emphasis is on problem definition and solution using current exam-
defs drawn primarily from agriculturally oriented firms.

275. Resource and Environmental Economics of Agriculture (3) III. Helfand
Lecture/discussion—3 hours. Prerequisite: course 204. Development of externality theory and market failure in agricultural production; use of discounting, welfare economics, and political economic models in analyzing agricultural public policies; exploration of theory of renewable and nonrenewable resources in agricultural issues.

276. Institutional and Economic Analysis of Natural Resources (3) I. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: course 204/Economics 204 or consent of instructor. Natural resources are developed and allocated in a milieu of institutional arrangements that significantly affect their economic yields; definition/enforcement of property rights; computer simulation of market costs and benefits; marginal externalities, transactions and adjustment costs. Applications to land/water/policy.

280. Analysis of Research in Production Economics (4) II. Johnston
Lecture—3 hours; discussion—1 hour. Current prob-
lems and methods of analysis in agricultural produc-
tion economics research. Emphasizes both firm and industry.

281. Analysis of Research in Agricultural Marketing (4) I. Holloway
Lecture—4 hours. Current problems and methods in agricultural market analysis with emphasis on market-
ring sector firm behavior. Topics include market defini-
tion, marketing margins and derived demand, spatial markets, technology analysis, models of imperfect competition, cooperatives, and marketing orders.

283. Analysis of Research in Natural Resource Economics (4) III. The Staff
Lecture—3 hours. Prerequisite: course 254. Scope and disciplinary context of natural resource econ-
ometrics. Recent problems affecting policy and use planning including efficiency and welfare criteria, technologi-
ical externalities, public goods, extramarket goods, indivisibilities, and intermittence problems, benefit cost analysis and public and private invest-
mment criteria.

284. Applied Demand Analysis (4) I. The Staff
Lecture—4 hours. Prerequisite: courses 200A, 240A, and 240B. Issues, techniques and methodology cur-
ently used in applied demand analysis. Demand param-
eter estimation will be used to answer various policy questions. Problem identification, model spec-
fication, hypothesis stipulation, and econometric esti-
mation of various demand models.

293. Analysis of California Agriculture and Resource Issues (3) II. Johnston
Lecture—1.5 hours; fieldwork—45 hours total of field trip, including one 5-day summer field trip. Review and analysis of production, marketing, and resource issues facing agricultural firms in California. Applica-
tion of economic theory and measurement to individ-
ual firm and industry decisions in an applied setting. (SU grading only.)

293M. Analysis of California Agriculture and Resource Issues (2) II. Johnston
Lecture—0.5 hours; fieldwork—45 hours total, includ-
ing one 5-day summer field trip. Prerequisite: Ph.D. level standing. Review and analysis of production, marketing, and resource issues facing agricultural firms in California. (SU grading only.)

298. Directed Group Study (1-5) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 254. Scope and disciplinary context of natural resource econometrics. Recent problems affecting policy and use planning including efficiency and welfare criteria, technologi-

cal externalities, public goods, extramarket goods, indivisibilities, and intermittence problems, benefit cost analysis and public and private invest-
mment criteria.

299. Individual Study (1-12) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 254. Scope and disciplinary context of natural resource econometrics. Recent problems affecting policy and use planning including efficiency and welfare criteria, technologi-

cal externalities, public goods, extramarket goods, indivisibilities, and intermittence problems, benefit cost analysis and public and private invest-
mnt criteria.

299D. Special Study for Doctoral Dissertation (1-12) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 254. Scope and disciplinary context of natural resource econometrics. Recent problems affecting policy and use planning including efficiency and welfare criteria, technologi-

cal externalities, public goods, extramarket goods, indivisibilities, and intermittence problems, benefit cost analysis and public and private invest-
mnt criteria.

Agricultural Computing and Information Systems

(College of Agricultural and Environmental Sciences)

This minor is for students interested in applying mod-
eron computing technology to management problems in agriculture, resource management, and other areas. Coursework provides knowledge of the use of infor-
mation technology and the methodology of applied quantitative and systems analysis. The minor program in Agricultural Computing and Information Systems is offered by the Department of Agronomy and Range Science.

Minor Program Requirements:

UNITS

Agricultural Computing and Information Systems ...18-19

Two or three of the following courses: Agricultural Systems and Environment 120, 121, 122, Animal Science 126..7-11

The third course may be taken in substitution for a course from either of the elective groups.

Remainder of the units to be made up of courses selected from one or both of the following groups:

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Agricultural Education

(College of Agricultural and Environmental Sciences)

Faculty
See under the Department of Agronomy and Range Science.

Major Program. An undergraduate program leading to a bachelor of science degree is offered in Agricultural Systems and Environment with a specialization in Agricultural and Environmental Education.

Advising Center for the major is located in 152 Hunt Hall (916-752-1715).

Teaching Credential Subject Representative. You may make an appointment with a credential counselor and obtain a statement of the complete requirements for the credential at the Agricultural Education Program Office, 152 Hunt Hall (916-752-3040 or 4369). Since many majors in the College do not offer the minimum preparation necessary for entering the Agriculture Teaching Credential program, you are encouraged to seek counseling as early as possible. See also the Teacher Education Program.

Graduate Study. For graduate study refer to the Graduate Studies section in this catalog. The Department of Human and Community Development offers a program of study leading to the M.Ed. degree. Further information may be obtained from the Department and the Graduate Announcement.

Graduate Adviser. L.S. Whent (Agronomy and Range Science).

Courses in Agricultural Education (AED)

Questions pertaining to the following courses should be directed to the instructor or to the Agricultural Education Program Office, 152 Hunt Hall.

Lower Division Courses

92. Internship (1-5) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: lower division standing; consent of instructor; Supervised internship and on campus areas in areas of agricultural education. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Concepts in Agricultural and Environmental Education (3) I. Zilbert
Lecture—2 hours; laboratory—3 hours. Prerequisite: upper division standing. Philosophy and nature of formal and nonformal agricultural and environmental education programs. Emphasis on understanding the role of the teacher and observing a variety of programs. GE credit: SocSci, Wrt.

160. Vocational Education (3) II. Whent

306B. Field Experience in Teaching Agriculture (5-18) I. Whent
Student teaching (corresponds with public school session). Prerequisite: acceptance into the Teacher Education Program; course 306A (concurrently); courses 100, 300, 301, 302. Directed teaching including supervision of occupational experience programs and youth activities in secondary schools or community college general agriculture or home economics programs. (Deferred grading only, pending completion of course.)

The Staff
Student teaching (corresponds with public school session). Prerequisite: acceptance into Teacher Education Program; courses 300, 300, 301, 302. Supervised teaching in secondary school or community college general agriculture or home economics programs. (Deferred grading only.)

323. Resource Development: Agricultural Education (3) II. Whent
Lecture—3 hours. Prerequisite: courses 306A, 306B. Selection and implementation of community resources in teaching.

590. Seminar: Issues in Agricultural and Home Economics Education (2) III. Whent
Seminar—2 hours. Prerequisite: acceptance into the Teacher Education Program; courses 306A-306B or 307. Discussion and evaluation of current issues, theories and research in home economics and agricultural education. (SU grading only.)

Agricultural Systems and Environment

(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Agronomy and Range Science, Pomology, and Vegetable Crops.

The Major Program

This major is for students who are interested in understanding agricultural systems as they relate to the environment and society and provides an interdisciplinary background that encompasses both natural science and social science disciplines. Students will acquire a core understanding of production systems as managed ecosystems, how they function, how they interact with the natural environment and how they are intimately connected with human society and social changes. In addition, students will develop an area of specialization. Within each of these areas of specialization, students choose between a broad-based education and one focused in selected areas.

The Program. Specialization in Sustainable Production Systems covers food and agricultural production, agroecology, pest ecology and management, crop improvement and propagation. Students may also develop an emphasis in particular production areas such as agronomy, environmental horticulture, pomology, vegetable crops or viticulture. The Range and Natural Resources specialization emphasizes the theory and practice of natural resource management in grazed ecosystems. The Agricultural and Environmental Education specialization provides preparation in educational foundations, planning and teaching strategies, with development of an agriculture and environment emphasis. Specialization in Agricultural and Environmental Communication and Information offers preparation in agricultural and environmental science, along with in-depth understanding of communication and information management.

All students will gain practical experience through a combination of internships and practice. In addition, students may pursue an Honors thesis in their senior year.

Career Alternatives. Graduates from this program will be prepared to pursue a wide range of careers,
including various technical and management positions in agricultural and business enterprises; farming; consulting; private, state and federal agencies concerned with the natural and natural resource management; Cooperative Extension; international development; teaching; agricultural and environmental journalism; and communication services. Students will also be qualified to pursue graduate studies in the natural and social sciences, such as agronomy, environmental studies, pest management, education, business management.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITs

Written/Oral Expression..................................3-12
See college English requirement.........................7-8
Additional English requirement (English 102 or 104A or 104E)..............................3-4

Perspectives on Agriculture and the Environment..18
Agriculture, nature and society (Agricultural Systems and the Environment 1)..............
Botany of agricultural plants (Agricultural Systems and the Environment 2)....................
Introduction to agricultural ecosystems (Agricultural Systems and the Environment 22)....
Agriculture and the environment (Agricultural Systems and the Environment 101)...........

Preparatory Subject Matter..................................41-43
Biology courses (Biological Sciences 1A-1B)...10
General chemistry (Chemistry 2A-2B)..............10
Physics (Physics 1A-1B or Physics 5A-5B; see specializations)..........................6-8
Mathematics (Mathematics 1A).........................3
Computer skills (Agricultural Systems and the Environment 21)..........................3
Statistics (Agricultural Systems and the Environment 120 or Statistics 3 or 102)............4
Economics (Economics 1A).............................3

Breadth/General Education..................................6-24

Depth Subject Matter..20-21
Crop biology and ecology (Agricultural Systems and the Environment 150 or Plant Biology 147)....
Agricultural economics (Agricultural Economics 113 or 140).................................4-5
Ecological principles (Plant Biology 117 or Environmental Science 100).......................4
Agricultural practicum (Agricultural Systems and the Environment 92. 99, 137; Agricultural Economics 49A, 49B, 49C, Animal Science 49A, B, C; Applied Biological Systems Technology 16, 49, 52, 145)....3
Internship (Agricultural Systems and the Environment 192, 199)..............................3

Senior Thesis, The Senior Honors Thesis includes two or three successive quarters of guided, scientific and/or scholarly research on an agricultural and/or environmental subject of special interest to the student.
With adviser approval the Senior Thesis can satisfy up to 12 units of restricted electives in the major.

Areas of Specialization (choose one):

Sustainable Production Systems..................................51-65
Includes food and agricultural production, agroecology, crop improvement, propagation, and pest management. Restricted electives allow students to choose between a broad education in sustainable agriculture or to focus on one or two areas of agriculture (e.g., agronomy, crop improvement, environment, horticulture, pest management, pomology, vegetable crops, viticulture).

Ecology of cropping systems (Plant Biology 142 and Agricultural Systems and Environment 150)..4-8
Genetics (Plant Biology 152 or Biological Science 101)..4
Organic chemistry (Chemistry 8A, 8B)..6
Pest management (Agricultural Systems and Environment 105)...................................3
Soils (Soil Science 100)..4

Restricted elective courses, chosen with approval of the academic adviser from the following groups: 27-36

Plant improvement and propagation (Agricultural Systems and Environment 118; Plant Biology 143, 152, 153, 154, 160, 171)..3-4
Plant physiology or plant nutrition (Environmental Horticulture 122; Plant Biology 111, 146, 157, 158, 172; Viticulture and Enology 110).................................3-4
Atmospheric, soil or water science (Atmospheric Science 133; Hydrologic Science 100, 110, 124; Soil Science 107, 109, 111).................................3-4

Pest ecology and management (Plant Biology 120, 121; Entomology 110, 135; NematoLOGY 100; Plant Pathology 120; Viticulture and Enology 110)..............6-6

Policy, social science and ethics (Agricultural Economics 147, 176; Agricultural Systems and Environment 121, 123; Environmental Studies 161, 175; Geography 142; Hydrologic Science 150; Plant Pathology 140; Political Science 107)..3-4

Unrestricted Electives..................................0-41
Recommended courses: Mathematics 16B, Physics 5A-5B, Agricultural Biological Technology 49 and courses listed under Plant, Animal and Environmental Sciences.

Range and Natural Resources..................................54-55
This specialization brings together courses that provide a unified understanding of the interaction between livestock production and environmental quality in rangelands.

Computer and quantitative skills (Agricultural Systems and Environment 121)......4
Statistics (Agricultural Systems and Environment 120, Statistics 13, 100).................4
Soil science (Soil Science 100)..4
Watershed management (Hydrologic Science 141)..4
Wildlife biology (Wildlife, Fish and Conservation Biology 110, 111, 120, 151)..............6
Animal Nutrition (Animal Science 41, Nutrition 115)..6
Forage systems (Agricultural Systems and Environment 112)...................................3
Remote sensing/GIS (Geography 106, Hydrologic Science 186; Applied Biological Systems Technology 190)..3-4
Plant identification/systematics (Plant Biology 102, Agricultural Systems and Environment 131)..7
Ecology and conservation (Agricultural Systems and Environment 130).....................3

Comparative ecology of grazing ecosystems (Agricultural Systems and Environment 134).................................3

Ecology of grassland and savanna herbivores (Agricultural Systems and Environment 135)..3

Public lands management (Environmental Studies 172)..4

Unrestricted Electives..................................27-38
Recommended courses: Biological Sciences 1EC, Mathematics 16B, Physical Sciences 5A-5B, Atmospheric Science 133, Plant Biology 111, Environmental Studies 123, and courses listed under Plant, Animal and Environmental Sciences.

Agricultural and Environmental Education..................................38-45

This specialization includes preparation in educational foundations, planning and teaching strategies, and development of an agricultural and environmental science emphasis. This option, along with a broad preparation in the natural sciences, social sciences and agriculture, prepares the student for entry into the graduate agriculture teaching credential program, for employment in the private sector in areas of training and human resource development, for working in nontraditional educational programs involving environmental education, outdoor education, 4-H and other youth organizations, and pursuing further graduate studies in the social or natural sciences.

Soil science (Soil Science 100)..................................3-4
Concepts in agricultural and environmental education (Agricultural Education 100)........3

Directed field experience in teaching (Agricultural Education 300)............................3

Educational foundations (Education 110 and 120)..8

Planning and teaching strategies (Agricultural Systems and Environment 122 or Educa-
tion 180; Agricultural Education 171, 301 and 302)..12-13

Agricultural and environmental science emphasis..................................10-15
Courses to be selected in consultation with academic adviser. Students typically will select one area of agriculture to develop a strong ability by taking three to four courses.

Students pursuing the Graduate Agricultural Teaching Credential Program need at least 10 units of Animal Science, 10 units of Plant and Soil Science, 8 units of Agricultural Economics, and 8 units of Agricultural Mechanics. See adviser for list of required courses.

Unrestricted Electives..................................17-54
Recommended courses listed under Plant, Animal and Environmental Sciences.

Agricultural and Environmental Communications and Information Management........43-53

This specialization provides broad preparation in the agricultural and environmental sciences along with in-depth understanding of communications and information management. The option is intended to prepare individuals for careers in agricultural and environmental science journalism, newscasting, information services and industrial communications.

Soil science (Soil Science 10 or 100)..................................3-4
Management of information (Agricultural Systems and Environment 120, 180)........5-6
Technical writing (English 104A)..4

Upper division internship (Agricultural Education 192)...6-9

Information media (Agricultural Education 171, 172; Rhetoric and Communication 140, 142A, 142B)..12-13

Communications and information transfer (Rhetoric and Communication 130, 136)........4

Agricultural and environmental communications and information emphasis........10-15
Courses to be selected in consultation with academic adviser. Students typically will select one area of agriculture to develop a strong ability by taking three to four courses.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Agricultural Systems and Environment

Minor Program Requirements:

Required Courses: (11 units minimum)

- Agricultural Systems and Environment 121
- Sustainable Agriculture: Farming Systems and Planning
- Agricultural Systems and Environment 120 or Sociology 42B, or the equivalent.

Select one of the following tracks:

1. Sustainable Agriculture
2. Range and Natural Resources
3. Range and Environmental Science
4. Sustainable Agriculture: Farming Systems and Planning

Minimum of 1 unit from the following:

- Agricultural Systems and Environment 105
- 120, 150, Soil Science 100

Range and Natural Resources

Agricultural Systems and Environment 121

Lower Division Courses

1. Agriculture, Nature and Society (3)
 - Gradel (Agronomy and Range Science)
 - Lecture—2 hours; discussion/laboratory—1 hour. Multiple perspectives and connections between the natural sciences, social sciences, and agriculture. Emphasis on agriculture's central position between nature and society and its role in our search for a productive, lasting and hospitable environment. Sev- eral full-period field trips provide hands-on learning. Not open for credit to students who have completed Agrarian Studies 2.
2. Botany and Physiology of Cultivated Plants (4)
 - Saltveit (Vegetable Crops)
 - Lecture—3 hours; discussion/laboratory—3 hours. Prerequisite: high school course in biology and chem- istry recommended. A holistic introduction to the underlying botanical and physiological principles of cultivated plants and their response to the environ- ment. Includes concepts behind plant selection, culti- vation, and utilization. Laboratories include discussion and interactive demonstrations.
3. Molecules, Risk and Public Policy (3)
 - Phillips
 - Lecture—2 hours; discussion—1 hour. How funda- mental traits of molecules affect their function and influence public policy. Discussions will explore issues relating to risk and regulation of molecules used for agricultural production and personal con- sumption.
4. Applications of Microcomputers in Agriculture (3)
 - III, III. Plant (Agronomy and Range Science)
 - Lecture—1 hour; laboratory/discussion—4 hours. Pre- requisite: high school algebra. Concepts of comput- ing and applications using personal computers; spreadsheets, database management, word processing and communications. Not open for credit to stu- dents who have completed Agricultural Science and Management 21.
5. Introduction to Agricultural Ecosystems (4)
 - Shennan (Vegetable Crops)
 - Van Horn (Agronomy and Range Science)
 - Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 2A, Chemistry 2B (may be taken concur- rently), and course 2 or the equivalent. Role of the bio- logical and physical components of agricultural ecosystems and the structure, function and manage- ment of whole agro-ecosystems. Comparative analy- sis of important agricultural systems and practices. On- and off-campus.
6. Agricultural Systems and Environment Seminar (1-4)
 - Lecture—1-4 hours. Prerequisite: consent of instruc- tor. Examination of a special topic in a small group setting.
7. Internship (1-12)
 - II. The Staff (Director in charge)
 - Internship—3-36 hours. Prerequisite: consent of instructor. Work experience on or off campus in all subject areas pertaining to agricultural and environ- mental sciences. Internship supervised by faculty member in the animal, plant, and environmental sci- ences. (P/NP grading only.)
8. Special Study for Undergraduates (1-5)
 - II. The Staff (Director in charge)
 - Primarily intended for lower division students. (P/NP grading only.)
9. Upper Division Courses
 - 101. Agriculture and the Environment (3)
 - II. Hill (Agronomy and Range Science)
 - Lecture—2.5 hours; Saturday field trip. Prerequisite: course 22 and consent of instructor. Focus on the interaction between agriculture and environment to address the principles required to analyze conflict and develop solutions to complex problems facing society.
 - 105. Concepts in Pest Management (3)
 - Norris
 - Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: Biological Sciences 1C or course 2, Chemistry 68B. Introduction to the ecological princi- ples of integrated pest management, biology of differ- ent classes of pests and the types of losses they cause, population assessment, evaluation of advan- tages and disadvantages of different techniques used for pest management, IPM programs.
 - 107. Small Fruit Production (2)
 - Shaw (Pomology)
 - Lecture—2 hours; two field trips arranged at mutual convenience. Prerequisite: Biological Sciences 1C or the equivalent. Strawberries (Fragaria), blackberries-rasberries (Rubus), blueberries-cranberries (Vac- cinium) as important nutritional resources; their origin, production and utilization with emphasis on recent progress in integrated management. Offered in alternate years. Not open for credit to students who have taken Pomology 107B. (Former course Pomology 107.)
 - 110A. Principles of Agronomic Crop Production in Temperate and Tropical Systems (3)
 - II. Travis, Rains (Agronomy and Range Science)
 - Lecture—3 hours. Prerequisite: course in general botany and/or course 2. Fundamentals of field crop production in temperate and tropical climates. Resource utilization and economic, political and social problems in relation to tech- nological problems and their influences on agricultural development.
 - 110B. Management of Agronomic Crops in Temperate and Tropical Systems (3)
 - Travis, Rains (Agronomy and Range Science)
 - Lecture—3 hours. Prerequisite: course in general botany and/or course 2; course 110A. Application of agronomic principles in production of temperate and tropical crops (nutrition, pest management, and disease). Reference to management and efficient use of physical and biological resources.

*Course not offered this academic year.
191. Current Topics in Agricultural Science Research (1). I. The Staff. Discussion—1 hour. Prerequisite: consent of instructor. Introduction to current areas of experimental investigation in the Agricultural and Plant Sciences. Seminar format with short presentations of current directions of research, followed by interactive discussions. (P/NP grading only.)

192. Internship (1-12). I, II, III. The Staff (Director in charge) Internship—3–36 hours. Prerequisite: consent of instructor. Supervised internship on and off campus in agricultural and environmental sciences. (P/NP grading only.)

194H. Senior Honors Thesis (2-6) I, II, III. The Staff Independent study. Prerequisite: Agricultural Systems and Environment major; senior standing; overall GPA of 3.25 or higher and consent of master adviser. Two or three successive quarters of guided research on an agriculturally related subject of special interest to the student. Not open for credit to students who have completed Agrarian Studies 188H. (P/NP grading only; Deferred grading only, pending completion of thesis.)

195. Field Study of Vegetable Industry (1) III. Jackson (Vegetable Crops) Field Study. Prerequisite: consent of instructor. Field study illustrating different aspects of California vegetable culture, including research institutions, farm operations, field stations, Extension Service, marketing, processors, equipment, etc. To be given between winter and spring quarters. Considered a spring preenrollment. Not open for credit to students who have completed Vegetable Crops 195. (Former course Vegetable Crops 196.) (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Director in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

200. Experimental Design and Analysis (4) II. Geng Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 120 or the equivalent. Graduate students in agricultural and environmental sciences will be introduced to the research process and statistical methods to plan, conduct and interpret experiments. Not open for credit to students who have completed course 205A. (Former course 205A.)

206. Multivariate Systems and Modeling (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Systems and Environment 120 or the equivalent. Graduate students in agricultural and environmental sciences will be presented multiple regression, multivariate and computer modeling methods needed to conduct research experiments and analyze multivariate data systems. Not open for credit to students who have completed course 205B. (Former course 205B.)

207. Plant Population Biology (3) II. Rice Lecture—2 hours; laboratory/discussion—1 hour. Prerequisite: advanced undergraduate ecology course (e.g., Environmental Studies 100, Evolution and Ecology 125, Plant Biology 117, or Entomology 104); an advanced undergraduate course in genetics and/or evolution (e.g., Biological Sciences 101 or Evolution and Ecology 100). Provides entry-level graduate students and advanced undergraduates with an introduction to both theoretical and empirical research in plant population biology. Emphasis will be placed on linking ecological and genetic approaches to plant population biology. Offered in alternate years. (Same course as Ecology 207.)

211. Principles and Practices of HPLC (2) III. Goyal Lecture—1 hour; laboratory—3 hours. Prerequisite: undergraduate physics and chemistry. Biological Sciences 102, 103 recommended. Principles and theory
of HPLC involving various modes of separation and detection. Optimization of separation using isocratic and gradient elution. Develop practical knowledge about the use, maintenance and troubleshooting of HPLC equipment, including HPLC columns. Development of new HPLC methods.

221. Advanced Plant Breeding (4) III. Teuber Lecture—3 hours. Laboratory—3 hours. Prerequisite: course 205; Genetics Graduate Group 201D or Animal Genetics 107; Plant Science 113. Methods, history, and problems in developing improved plant species. Topics include: inbreeding, heterosis, progeny testing, breeding methodology, index selection, germplasm conservation, and breeding for stress resistance. Laboratories include tours of breeding facilities and calculation and interpretation of quantitative data. Offered in alternate years.

224. Chromosome Evolution (3) I. Dvorak Lecture—3 hours. Prerequisite: Genetics 201A and 201B or the equivalent. Structure and function of chromosomes. Dynamics of their evolution at the molecular and structural levels. Offered in alternate years.

232. Advanced Topics in the Physiology of Crop and Range Plants (3) III. Travis Lecture—3 hours. Prerequisite: Botany 111 or Plant Science 102. Physiological aspects of vegetative and reproductive growth of field crop and range plants in relation to nitrogen utilization and photosynthesis.

234. Physiology of Crop Growth and Development (4) I. Jernstedt Lecture—3 hours. Prerequisite: Plant Biology 111, 112 or the equivalent. Selected aspects of plant growth and development as they relate to crop productivity. Analysis of current literature on shoot and root growth and function, reproduction, senescence, hormonal and environmental controls of development. Offered in alternate years.

290. Seminar in Crop Growth, Production and Utilization (1-2) I. Temple Seminar—1-2 hours. Topics of current interest related to plant growth processes, production and management systems, and utilization of cultivated food, feed and fiber crops.

291. Seminar in Plant Breeding and Evolution of Cultivated Plants (1-2) III. Wilkins Seminar—1-2 hours. Topics of current interest related to plant breeding systems and the origins and evolution of cultivated plants.

297T. Tutoring in Agronomy—1-5 hours. Prerequisite: graduate standing; Staff (Chairperson in charge). Tutoring—1-5 hours. Prerequisite: graduate standing; Staff (Chairperson in charge). May be repeated for credit for a total of 5 units.

American Studies

American Studies offers an alternative approach to the study of American experience for students who feel too limited by departmental approaches. Lower division, introductory classes explore the ways in which cultural systems shape and reflect life in the United States. These classes pay close attention to the ways in which differences of class, race, gender, generation, ethnicity, religion, and sexual orientation unevenly affect American lives.

The Program. American Studies majors take five upper division, in-depth classes (see below) and participate in three smaller proseminars limited to majors and intended to close study of major thinkers and issues crucial to the practice of American Studies. Advanced work in at least two other departments or programs allows each student to emphasize a period, a problem, or a subject tailored to his or her own individual education goals. Students have the option of writing a senior thesis within this emphasis.

Career Alternatives. As an interdisciplinary program, American Studies provides a good liberal arts and sciences undergraduate education. American Studies maximizes a student’s contact with a variety of subject matter and approaches. This flexibility has meant that our graduates have been able to move into a broad range of career settings, including journalism, law, medicine, nursing, law enforcement, environmental planning, teaching, library science, museum curatorship, and business. Some students discover new career possibilities through their internships in American institutions.

A.B. Major Requirements:

Preparatory Subject Matter

- One course from American Studies 1 series...
- One course from African American and African Studies 10, Asian American Studies 1, Chicano/a Studies 10 or 20, Native American Studies 10, or Women's Studies 50 or equivalent...
- Two courses chosen from History 17A, 17B, 72A, 72B...
- One course chosen from English 30A, 30B...
- One course chosen from Anthropology 2, Sociology 2...

Depth Subject Matter

- American Studies core courses...
- American Studies 110, 120, and 130...
- American Cultural Themes...

Three Junior Proseminars

- (American Studies 180) Emphasis...

Total Units for the Major

Recommended

Completion of the College requirement in English composition before enrollment in American Studies 190A.

Minor Program Requirements:

American Studies

- American Studies, upper division courses...

- No more than 8 units of course 192 may be counted toward this total.

Faculty Advisers. C. Blair, R. Frankenberg, J. Mechling, K. Ono.

- Teaching Credential Subject Representative. J. Mechling. See also the Teacher Education Program.

Agronomy and Range Science

(College of Agricultural and Environmental Sciences)

- James E. Hill, Ph.D., Chairperson of the Department Office, 133 Hunt Hall (916-752-1703)

Faculty

- Montague W. Demment, Ph.D., Professor
- R. Ford Denison, Ph.D., Associate Professor
- Judy A. Jernestedt, Ph.D., Associate Professor
- Stephen R. Kauffman, Ph.D., Lecturer
- William C. Liebhardt, Ph.D., Lecturer
- John W. Menke, Ph.D., Lecturer
- Donald A. Phillips, Ph.D., Professor
- Richard E. Plant, Ph.D., Professor
- Daniel H. Putnam, Ph.D., Lecturer
- D. William Rans, Ph.D., Professor
- Kevin J. Rice, Ph.D., Associate Professor
- Steven R. Temple, Ph.D., Lecturer
- Larry T. Teuber, Ph.D., Professor
- Robert L. Travis, Ph.D., Professor
- Thea A. Wilkins, Ph.D., Assistant Professor

Emeriti Faculty

- Robert W. Allard, Ph.D., Professor Emeritus
- R. William Breidenbach, Ph.D., Lecturer Emeritus
- Ivan W. Buddenhagen, Ph.D., Professor Emeritus
- William J. Clason, M.S., Lecturer Emeritus
- Beecher Crampton, M.S., Lecturer Emeritus
- Ray O. Huffaker, Ph.D., Professor Emeritus
- Subodh K. Jain, Ph.D., Professor Emeritus
- Milton B. Jones, Ph.D., Lecturer Emeritus
- Morton A. Laude, Ph.D., Professor Emeritus
- William M. Lovett, Ph.D., Professor Emeritus
- Robert S. Loomis, Ph.D., Professor Emeritus
- Vernom L. Marble, Ph.D., Lecturer Emeritus
- Duane S. Mikelsen, Ph.D., Professor Emeritus
- Maurice L. Peterson, Ph.D., Professor Emeritus
- Y. P. Puri, Ph.D., Lecturer Emeritus
- Calvin O. Quaist, Ph.D., Professor Emeritus
- Charles A. Raguse, Ph.D., Professor Emeritus
- Charles W. Schaller, Ph.D., Professor Emeritus
- Raymond C. Valentine, Ph.D., Professor Emeritus
- Barbara D. Webster, Ph.D., Professor Emeritus
- William A. Williams, Ph.D., Professor Emeritus

Affiliated Faculty

- Mark Van Horn, M.S., Lecturer
- Linda S. Whent, Ph.D., Lecturer, Supervisor of Teacher Education
- Eric E. Zilbert, Ph.D., Lecturer

Courses.

- See the Agricultural Systems and Environment, Agronomy, Plant Biology, and the Range Science course listings.
Courses in American Studies (AMS)

Lower Division Courses

*1A. Technology, Science, and American Culture (4) I. Mechling
Lecture—3 hours; discussion—1 hour. American sci-
cence and technology as cultural systems, mutual influ-
ence and interaction of those systems with other

cultural systems, including religion, social thought, art,
ar
culture, architecture, literature, music, and common sense. GE

credit: ArtHum or SocSci, Div, Wr.

1B. Religion in American Lives (4) I. Mechling
Lecture—2 hours; discussion—1 hour; tutorials and
field exercises. Examines ways Americans have or-
dered their lives with religion; how latter-day
churches, imported faiths, and Indian cultures differ or
converge; attention to “civil religion” and mass-
mediatvaligion; genres of religious experience,
such as testimony, song, dance, ritual, meditation,
vision, trance. GE credit: ArtHum or SocSci, Div, Wr.

1C. American Lives through Autobiography (4)
III. The Staff
Lecture—2 hours; discussion—2 hours. American

culture as understood through the individual life
stories told by Americans, with attention to the roles of
gender, race, ethnicity, social class, and sexual ori-
entation in the individual’s life course. GE credit: ArtHum or SocSci, Div, Wr.

1E. Nature and Culture in America (4)
II. The Staff
Lecture—3 hours; fieldwork—3 hours. Uses and
abuses of nature in America; patterns of inhabitation,
exploitation, appreciation, and neglect; attention to
Californian environment as a key to understanding
ourselves and the natural world; attention to models of
healing; stewardship, ecology, the “rights” movement. Offered in alternate years. GE credit:
ArtHum or SocSci, Div, Wr.

1F. The Popular Image of Women in America (4)
II. Blair
Lecture—2 hours; discussion—1 hour; directed
analysis of popular media. Lecture; media exposure; special
projects. Examines the image of women as presented in
popular media. Emphasis on the politics of gender roles and the connection between the popular
female image and the demands of the larger American culture.

*2. Forms of American Wisdom (2) III. Mechling
Lecture—1 hour; discussion—1 hour. Exploration of
the forms wisdom takes in America: folk knowledge,
popular belief, prophetic wisdom, public religion, commis-
sion sense, science, literature; special attention to the grounding of wisdom in circumstance of race,
genpner, generation, ethnic identity, and region. (P/NP grading only)

*4. Freshman Seminar (2) II, III. The Staff
Program Director in charge
Seminar—2 hours. Prerequisite: open only to students
who have completed fewer than 40 quarter units. Investigation of a special topic in American Studies through shared readings, discussions, written assignments, and special activities (such as fieldwork, site visits). Emphasis on student participation in learning. Limited to enrollee only.

98. Directed Group Study (1-5) I, II, III. The Staff
Chairperson in charge
Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only)

99. Individual Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only)

Upper Division Courses

*101A-H. Special Topics (4) I, II, III. The Staff
Chairperson in charge
Seminar—3 hours, intensive reading, writing, and special
projects. Interdisciplinary group study of special topics in American Culture Studies, designed for

non-majors as well as majors. Content will vary according to the instructor and in accord with the following titles:
(A) Popular Culture Studies; (B) Women’s Studies; (C)

Material Aspects of American Culture; (D) American National Character; (E) American Lives Through Auto-
biography; (F) The Interrelationship Between Arts and Ideas; (G) New Directions in American Culture Stud-
ies; (H) Problems in Cross-Cultural American Stud-
ies. May be repeated for credit in different subject
only.

110. A Decade in American Civilization (4) I. Schroeder
Lecture—2 hours; discussion—2 hours. Prerequisite:
one of courses 1A, 1B, 1C, 1D, 1E or 1F. Close exami-
nation of a single decade in American civilization; the connections between the history, literature, arts,
customs, and ideas of Americans living in the decade. GE credit: ArtHum or SocSci, Div, Wr.

120. American Folklore and Folklife (4) II. Mechling
Lecture—3 hours; fieldwork—1 hour. Theory and
method of the study of American folk traditions, including oral lore, customs, music, and material folk
culture; the uses and meanings of those traditions in various folk communities, including families, ethnic
institutions, voluntary organizations, and occupational groups GE credit: ArtHum or SocSci, Div, Wr.

125. Corporate Cultures (4) III. The Staff
Lecture—2 hours; discussion—1 hour; fieldwork—1 hour.
Prerequisite: one course chosen from course 120, Anthropology 2, Psychology 16, or Sociology 1; or consent of instructor. Examines small cultures of American corporate workplaces, including
the role of environment, stories, jokes, rituals, cere-
monies, personal style, and play. The effects of cultural diversity upon corporate cultures, both from within and from other corporations.

*130. American Popular Culture (4) II. The Staff
Lecture/discussion—3 hours; fieldwork—1 hour. Pre-
requisite: course 1 or upper division standing. Ameri-
can popular expression and experience as a cultural
system, and the relationship between this system and elite and folk cultures. Exploration of theories and
methods for discovering and interpreting patterns of meaning in American popular culture. GE credit:
ArtHum or SocSci, Div, Wr.

151. American Landscapes and Places (4)
II. Blair
Lecture—2 hours; discussion—1 hour; fieldwork—3 hours.
Prerequisite: course 1 or upper division standing. Com-
parative study of several American cultural populations inhabiting a region, including their relation-
ship to a shared biological, physical, and social environment, race, ethnicity, and their interconnec-
tions to the dominant American popular and elite culture and folk traditions. GE credit: ArtHum or SocSci, Div, Wr.

*152. The Lives of Children in America (4)
II. Mechling
Lecture—2 hours; discussion—2 hours. Experience of
childhood and adolescence in American culture, as understood through historical, literary, artistic, and
social scientific approaches. GE credit: ArtHum or SocSci, Div, Wr.

153. The Individual and Community in America (4)
II. Frankenberg
Lecture—2 hours; discussion—2 hours. Interdiscipli-
ary examination of past and present tensions be-
tween the individual and the community in American experience, as those tensions are expressed in such cultural systems as folklore, public ritual, popular
entertainment, literature, fine arts, architecture, and social thought. GE credit: ArtHum or SocSci, Div, Wr.

154. The Lives of Men in America (4)
II. Mechling
Lecture—2 hours; discussion—2 hours. Interdiscipli-
nary examination of the lives of boys and men in America, toward understanding cultural definitions of
masculinity, the ways individuals have accepted or
resisted these definitions, and the broader conse-
quences of the struggle over the social construction of
genidership. GE credit: ArtHum or SocSci, Div, Wr.

*155. Symbols and Rituals in American Life (4)
I. The Staff
Lecture—2 hours; discussion—2 hours. Prerequisite:
course 1. Interdisciplinary examination of selected, richly expressive events (parties, festivals, holidays) and symbols (flags, memorials, temples) which en-
codense national values and national meanings (Thank-
giving, New Year’s, etc.) or which reanimate more
limited, special meanings (Mardi Gras, rodeo, Kwanzaa, graduation, bar mitzvah, etc.). Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wr.

156. Race, Culture and Society in the United
States (4) III. Frankenberg
Lecture—2 hours; discussion—2 hours. Prerequisite:
course 1. Interdisciplinary examination of the signifi-
cance of race in the making of America, how race shapes culture, identities and social processes in the United States; the interweaving of race with gender, class and nationhood in self and community. GE credit: ArtHum or SocSci, Div, Wr.

160. Undergraduate Seminar in American
Studies (4) I, II, III. Turner, Blair, Mechling
Seminar—3 hours; term paper. Prerequisite: open to
junior and senior American Studies majors only. Inten-
sive reading, discussion, research, and writing by small
groups in selected topics of American Studies
scholarship; emphasis on theory and its application to
American material. Limited enrollment. May be repeated for credit with consent of instructor.

190A-190B. Senior Thesis (4-4) I, II, III. Mechling,
Turner, Frankenberg, Wilson
Discussion—2 hours. Prerequisite: senior standing in
American Studies major. In consultation with advisor, student contracts to write an extended research paper on a topic mutually
agreed upon and enunciated in a prospectus re-
viewed and accepted by faculty. (Deferred grading only, pending completion of sequence.)

197T. Tutoring in American Studies
Graduate Courses

*154. Symbols and Rituals in American Life (4)
I. The Staff
Lecture—2 hours; discussion—2 hours. Prerequisite:
course 1. Interdisciplinary examination of selected, richly expressive events (parties, festivals, holidays) and symbols (flags, memorials, temples) which en-
codense national values and national meanings (Thank-
giving, New Year’s, etc.) or which reanimate more
limited, special meanings (Mardi Gras, rodeo, Kwanzaa, graduation, bar mitzvah, etc.). Offered in alternate years. GE credit: ArtHum or SocSci, Div, Wr.

160. Undergraduate Seminar in American
Studies (4) I, II, III. Turner, Blair, Mechling
Seminar—3 hours; term paper. Prerequisite: open to
junior and senior American Studies majors only. Inten-
sive reading, discussion, research, and writing by small
groups in selected topics of American Studies
scholarship; emphasis on theory and its application to
American materials. May be repeated for credit with consent of instructor.

190A-190B. Senior Thesis (4-4) I, II, III. Mechling,
Turner, Frankenberg, Wilson
Seminar—2 hours; independent study—2 hours. Pre-
requisite: senior standing in American Studies major. In consultation with advisor, student contracts to write an extended research paper on a topic mutually
agreed upon and enunciated in a prospectus re-
viewed and accepted by faculty. (Deferred grading only, pending completion of sequence.)

197T. Tutoring in American Studies
Graduate Courses
Anatomy

See Anatomy, Physiology and Cell Biology (Veterinary Medicine, below); Cell Biology and Human Anatomy (Medicine, School of)

Anatomy, Physiology, and Cell Biology

(School of Veterinary Medicine)
Dallas M. Hyde, Ph.D., Chairperson of the Department

Faculty

Hilary P. Benton, Ph.D., Assistant Professor
Michael L. Bruss, D.V.M., Ph.D., Professor
Sharon L. Cummings, Ph.D., Assistant Professor
Leslie J. Faulkin, Jr., Ph.D., Professor
Dorothy W. Gietzen, Ph.D., Professor
Benjamin L. Hart, D.V.M., Ph.D., Professor
David E. Hinton, Ph.D., Professor
Dallas M. Hyde, Ph.D., Professor
Janine B. Kasper, D.V.M., Lecturer
Kent Pinkerton, Ph.D., Associate Professor in Residence
Charles Q. Propper, Ph.D., Professor
Susan M. Stover, D.V.M., Ph.D., Associate Professor
Fern Tablin, V.M.D., Ph.D., Associate Professor
Reen Wu, Ph.D., Professor in Residence

Emeriti Faculty

George H. Cardinet III, D.V.M., Ph.D., Professor Emeritus
Donald L. Curry, Ph.D., Professor Emeritus
Alfred A. Heusner, Docteur-ès-Sciences, Professor Emeritus
Ralph L. Kitchell, D.V.M., Ph.D., V.M.D. (Ihc), Professor Emeritus

Affiliated Faculty

Howard C. Bailey, Ph.D., Assistant Adjunct Professor
Jeffrey M. Cheek, Ph.D., Assistant Research Toxicologist
Mary Ann Hickman, D.V.M., Ph.D., Assistant Research Physiologist
Edward S. Schelegle, Ph.D., Assistant Research Physiologist
William Thurlbeck, M.D., Adjunct Professor
Barbara Washburn, Ph.D., Assistant Research Physiologist

Courses in Anatomy, Physiology, and Cell Biology (APC)

Upper Division Courses

100. Comparative Organology of Vertebrates (4) II. Plopper
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1B. Integrative study of the organization of cells and tissues into organs and organ systems in vertebrates. The following organ systems will be compared between fish, birds, and mammals: musculoskeletal, gastrointestinal, cardiovascular, respiratory, integumentary, urinary, reproductive, and nervous.

102. Fundamentals of Human Anatomy (4) I. II.
Lecture—3 hours; laboratory—3 hours. Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

202. Organology (2) II. The Staff (Chairperson in charge)
Lecture—2 hours. Prerequisite: course 100 or the equivalent and consent of instructor. Comparative development, growth patterns, and composition of selected organs: liver, kidney, lung, mammary gland, brain, and a skeletal muscle. Offered in alternate years.

205. Structural and Functional Anatomy (3) (I, III). The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: histology. The electron microscopic appearance of cells, tissues, and organs of animals emphasizing the structural basis for their physiological functions. Offered in alternate years.

207. Perspectives in Morphological Research (3) (II, III). The Staff (Wu, Tablin in charge)
Lecture—2 hours; discussion—1 hour. Consideration of the principles and applications of modern morphological methods and their role in biomedical research. Examples of specific methods include stereology, computer analysis of images, scanning and transmission electron microscopy, autoradiography, rapid freezing, and vascular injections. Offered in alternate years.

215. Veterinary Histology (6) II. The Staff (Chairperson in charge)
Lecture—3 hours; laboratory—9 hours. Prerequisite: Biological Sciences 1B. The microscopic anatomy of tissues and organs of mammalian and avian species of veterinary significance.

220. Physiology and Pathophysiology of the Liver (3) I. Bruss
Lecture—2.6 hours; laboratory—1.2 hours. Prerequisite: systemic physiology; biochemistry or physiological chemistry. Topics in functional morphology, physiology, intermediary metabolism, pharmacology, and disorders of the liver. Emphasis on bile formation, bile pigments, bile acids; drug and toxin metabolism; circulation; carbohydrate, lipid and protein metabolism; trace minerals; basic pathological processes; and function tests. (Same course as 420.)

230. The Secretory Process (2) I. The Staff (Chairperson in charge)
Lecture—2 hours. Prerequisite: graduate standing or consent of instructor. Structural and intracellular events involved in secretion with emphasis on physiological initiators and modifiers. All secretory systems, processes; and function tests. (Same course as 420.)

235. The Secretory Process (2) II. The Staff (Chairperson in charge)
Lecture—2 hours; term paper/dissertation—1 hour. Prerequisite: Veterinary Medicine 406; or graduate standing and upper division course in animal behavior; or consent of instructor. Examination of the ways in which animals use behavioral strategies to avoid debilitating viral, bacterial and parasitic diseases; or to overcome such diseases once they are sick. Main emphasis is on vertebrates, especially wild and domestic mammals.

233. Tumor Biology (3) I. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: graduate standing and consent of instructor. Growth, invasion and metastasis of tumors; mechanisms of carcinogenesis; intrinsic and extrinsic etiologic factors. Offered in alternate years.

283. Tumor Nutrition and Physiology (3) III. M. Bruss, Morris
Lecture—2.7 hours; laboratory—0.9 hours. Prerequisite: graduate or veterinary student standing. Upper division nutrition courses (e.g., Nutrition 110), upper division systemic physiology (e.g., Neurobiology, Physiology and Behavior 110), Biochemistry (e.g., Biological Sciences 102 and 103) or physiological chemistry (e.g., Physiological Chemistry 101A and 101B) or equivalent. Basic and applied aspects of ruminant nutrition and physiology, nutritional and metabolic disorders of ruminants. (Same as course 484.)

285. Morphology of Cells, Tissues and Organs (3) III. Hyde
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100 or the equivalent, and Statistics 13. At the end of the course, students will be able to define what critical data need to be collected to estimate volumes, surfaces and lengths of organs and their components (e.g., vessels, ducts and airways). Students will also learn how to estimate the number of cells in an organ or tissue, their volumes, products and gene expression using morphometry. Offered in alternate years.

290. Seminar (1) I, II, III. The Staff
Seminar—1 hour. Discussion and critical evaluation of advanced topics and current trends in research. (SU grading only.)

Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Topics concerning structure and function of respiratory system. Possible topics include: lung growth, pulmonary reaction to toxicants, pulmonary inflammation, lung metabolism, biology of lung cells, tracheobronchial epithelium, nares and cavity structure and function. May be repeated for credit. (SU grading only.)

292. Topics in Neuroscience Research (1) III. Cummings
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Students will examine current topics in neuroscience research literature, as well as evaluate rationale, methods, results, interpretation of data, and relevance of studies. Possible topics include pain, autonomic nervous system, neuroendocrinology, neurotransmitter regulation of gene expression, neurotransmitter-immune interactions, stress. (SU grading only.)

298. Group Study (1-5) I, II, III.
Laboratory—6-15 hours. Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff
Laboratory—6-36 hours. Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

410. Equine Locomotor Anatomy (3) II. Stover
Lecture—10 sessions; laboratory—10 sessions. Prerequisite: Veterinary Medicine 401 with a grade of C- or better. Normal anatomy of the equine fore and hind limb bones, joints, muscles, ligaments, tendons, nerves and vessels with emphasis on clinically applicable structures.

420. Physiology and Pathophysiology of the Liver (3) I. Bruss
Lecture—2.6 hours; laboratory—1.2 hours. Prerequisite: systemic physiology; biochemistry or physiological chemistry. Topics in functional morphology, physiology, intermediary metabolism, pharmacology, and disorders of the liver. Emphasis on bile formation, bile pigments, bile acids; drug and toxin metabolism; circulation; carbohydrate, lipid and protein metabolism; trace minerals; basic pathological processes; and function tests. (Same course as 420.)

443. Behavior Clinic (1-2) I, II, III. Hart
Clinical activity—2-4 hours. Prerequisite: first-year standing in the School of Veterinary Medicine and course 458. Clinical training in behavioral therapy. Students work with clients and animal patients through the Behavioral Services Management Clinic. Case record work-ups with selected presentations of cases during discussion sessions.

458. Behavioral Therapy (1) I, II, III. Hart
Clinical activity—2-4 hours. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Clinical application of management, conditioning procedures, hormonal manipulation and drug therapy to resolve common behavioral problems of dogs and cats.
484. Ruminant Nutrition and Physiology (3) III. Bruss, Morris
Lecture—2.7 hours, laboratory—0.9 hours. Prerequisite: graduate or veterinary student standing. Upper division nutrition courses (e.g., Nutrition 110), upper division systemic physiology (e.g., Neurobiology, Physiology and Behavior 110), biochemistry (e.g., Biological Sciences 102 and 103) or equivalent. Basic and applied aspects of ruminant nutrition and physiological, nutritional and metabolic disorders of ruminants. (Same as course 284.)

Animal Genetics (A Graduate Group)
Benjamin L. Hart, D.V.M., Ph.D., Chairperson of the Group
Group Office, 112 Haring Annex (Animal Behavior Program) (916-752-4863, FAX 916-752-8391; e-mail: jmtrevitt@ucdavis.edu)
Faculty. The Group includes faculty from eleven departments in three schools and colleges.
Graduate Study. The Ph.D. program in Animal Behavior is an interdepartmental program which trains students for teaching and research in a variety of areas including psychology, zoology, animal science, veterinary science, ecology, and wildlife biology. Students choose one of the three areas of specialization: (1) ethology and evolutionary bases of animal behavior, (2) physiological basis of animal behavior, and (3) applied animal behavior. All three specializations emphasize the adaptive and evolutionary bases of animal behavior. Resources available to students, in addition to various departmental facilities, include those of the California Regional Primate Research Center, Bodega Bay Marine Biology Laboratory, and the Agricultural Field Stations. There is an early application deadline of January 15 for fall quarter.
Preparation. Appropriate preparation is a bachelor's or master's degree in one of the several disciplines relevant to behavior, such as psychology, zoology, entomology, anthropology, physiology, wildlife biology, ecology, animal science, veterinary medicine, genetics, or animal behavior. In addition, at least one course from each of the following four areas must be taken before admission into the program or before the end of the first year in the program.

General genetics: Genetics 100 or the equivalent
Statistics: Statistics 102 or Psychology 103, or the equivalent
Evolution: Genetics 103 or Evolution and Ecology 100, or the equivalent
Animal behavior: Psychology 150, Wildlife, Fish and Conservation Biology 140, or Neurobiology. Physiology and Behavior 155, or the equivalent Students are encouraged to engage in some form of research as early as possible during the first year. This pre-dissertation research may be pursued under the guidance of any faculty member of the Group, not necessarily the student's major professor.

Anesthesia (College of Agricultural and Environmental Sciences)
Faculty. See under Department of Animal Science. Major Program. See the major in Animal Science. Related Courses. See Agronomy 221, 224; Plant Pathology 215X; Plant Biology 154; Vegetable Crops 220.

Courses in Animal Genetics (ANG)

Animal Genetics (College of Agricultural and Environmental Sciences)
Faculty. See under Department of Animal Science. Major Program. See the major in Animal Science. Related Courses. See Agronomy 221, 224; Plant Pathology 215X; Plant Biology 154; Vegetable Crops 220.

Courses in Animal Genetics (ANG)
Questions pertaining to the following courses should be directed to the instructor or to the Animal Science Advising Center, 1302A Meyer Hall.

Upper Division Courses
107. Genetics and Animal Breeding (5) III. Medrano
Lecture—4 hours, laboratory—3 hours. Prerequisite: Biological Sciences 101. Principles of quantitative genetics applied to improvement of livestock and poultry. Effects of mating systems and selection methods are emphasized with illustration from current breeding practices.

108. Methods in Quantitative Animal Breeding (3) II. Famula
Lecture—3 hours. Prerequisite: course 107. Methods and procedures in quantitative animal breeding, including: expected value, single and multiple trait selection index, restricted selection, embedded traits, categorical traits, and best linear unbiased prediction.

109. Introduction to Parameter Estimation (1) II. Famula
Lecture—1 hour. Prerequisite: course 107 or the equivalent; course 108 recommended. Procedures for estimation of repeatability, heritability, and genetic and environmental correlations. Concept of expected value, estimation of variance components and the simulation of biological data.

111. Molecular Biology Laboratory Techniques (4) II. Murray, Oberbauer
Lecture—2 hours, laboratory—6 hours. Prerequisite: Biological Sciences 1C; Biological Sciences 101, 102, 103. Introduction to the concepts and techniques used in molecular biology; the role of this technology in both basic and applied animal research; and participation in laboratories using some of the most common techniques in molecular biology.

198. Directed Group Study (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Selected topics relating to animal genetics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
204. Theory of Quantitative Genetics (3) I. Gall
Lecture—3 hours. Prerequisite: course 107 or the equivalent. Theoretical basis of quantitative genetics and the consequences of Mendelian inheritance. Concepts used to estimate quantitative genetic differences and basis for partitioning the phenotypic variance. Offered in alternate years.

206. Advanced Domestic Animal Breeding (3) III. Famula
Lecture—3 hours. Prerequisite: course 107 and Animal Science 205; course 204 recommended. Procedures for the genetic evaluation of individuals to include selection indices and mixed model evaluation for single and multiple traits. Methods of estimating genetic trends. Offered in alternate years.

208. Estimation of Genetic Parameters (3) III.
The Staff (Animal Science)
Lecture—3 hours. Prerequisite: course 107 and Animal Science 205; courses 204 and 108 recommended. General methods for the estimation of components of variance and covariance and their application to the estimation of heritability, repeatability and genetic correlations are considered. Specific emphasis is given to procedures applicable to livestock populations under selection.

211. Genetic Engineering of Animals (2) II. Murray
Lecture—1 hour; lecture/discussion—1 hour. Review of techniques for the genetic engineering of animals and their limitations and applications. Student-led discussions of recent papers in the field and possible future applications of genetically engineered animals in basic research and applied agricultural and medical research. Offered in alternate years. (S/U grading only.)

212. Sequence Analysis in Molecular Genetics (2) II. Medrano
Lecture/laboratory—2 hours. Prerequisite: Genetics 201A, 201B, 201C, or the equivalents. The use of computer algorithms and on-line databases to analyze nucleic acid and protein sequences in molecular genetics research. Offered in alternate years. (S/U grading only.)
Animal Science

See Biological Sciences: Section of Neurobiology, Physiology and Behavior; and Physiology (A Graduate Group)

Animal Science

(College of Agricultural and Environmental Sciences)

Edward O. Price, Ph.D., Chairperson of the Department

Bodega Marine Laboratory (BML)
Bodega Bay, CA (707-875-2211)

Department Office, 2223 Meyer Hall (916-752-1250)

Faculty

- Thomas E. Adams, Ph.D., Professor
- Gary B. Anderson, Ph.D., Professor, Academic Senate Distinguished Teaching Award
- Leland Baldwin, Jr., Ph.D., Sesnon Professor of Animal Science
- Patricia J. Berger, Ph.D., Associate Professor
- C. Christopher Calvert, Ph.D., Professor
- Ernest S. Chang, Ph.D., Professor (Biological Sciences, Bodega Marine Laboratory)
- Douglas E. Corklin, Ph.D., Associate Professor
- Mary E. DeLany, Ph.D., Assistant Professor
- Edward J. DePeters, Ph.D., Professor
- Serge Doroshov, Ph.D., Professor
- James G. Fadel, Ph.D., Associate Professor
- Thomas R. Farnula, Ph.D., Professor
- Graham A. E. Gail, Ph.D., Professor
- Silas O. H. Hung, Ph.D., Professor
- Joseph M. Medina, Ph.D., Associate Professor
- Joy A. Mench, Ph.D., Professor
- Gary P. Moberg, Ph.D., Professor
- Dennis Hedgecock, Ph.D., Lecturer (Bodega Marine Laboratory)
- James W Oljen, Ph.D., Lecturer
- Diana Van Liew, Lecturer

The Major Program

Animal science major gives students an understanding of the proper care of animals and their utilization by people for food, fiber, work, research, companionship, and recreation. Aquaculture, companion animals, laboratory species, and domestic agriculture are included in animal science. The study of animals is achieved through biological, physical, and social sciences, such as chemistry, bio-chemistry, genetics, physiology, nutrition, economics, mathematics, and their integration in the various animal science courses.

The Program. Two options are available in the major: Animal Biology and Aquaculture. The Animal Biology option is for students with interests in the biology of domestic animals, covering the range of study from the molecular and cellular levels to the whole animal and populations of animals. Course requirements emphasize domestic animal biology and production. Course requirements in the Aquaculture option emphasize biology and production of fresh- and salt-water aquatic animals. The Aquaculture option is appropriate for students interested in applying principles of animal production to aquatic species.

Internships and Career Alternatives. Animal science offers a wide range of internship opportunities for study both on campus at departmental facilities and off campus at field stations, government agencies, and with private industry. Career opportunities for graduates cover a wide range of options from farming and ranching to all of the industries, institutions, and professions involved with domestic animals and aquaculture. These include positions in management, sales, financial services, health care, agricultural extension, consulting services, teaching, journalism, laboratory technology, and research. Preparation for veterinary medicine or other professional schools or graduate study can be achieved by careful planning in the major.

B.S. Major Requirements:

- Units
- Written/Oral Expression.........................7-8
- See College requirement7-8

Preparatory Subject Matter....................55-56
- Animal science (Animal Science 1, 2, and either 148 or 151, or 141 and 142) 11-12
- Biological sciences (Biological Sciences 1A, 1B, 1C) 15
- Chemistry (Chemistry 2A, 2B, 8A, 8B) 16
- Computer science (Computer Systems and Environment 21) 3
- Mathematics (Mathematics 16A-16B or more advanced mathematics courses) 6
- Statistics (Agricultural Systems and Environment 120 or Statistics 100, or other courses in quantitative skills with prior approval of the major adviser) 4

Breadth/General Education....................6-24

- Depth Subject Matter........................23
- Biological Sciences 1, 2, 102, 103, 104 - 13
- Animal Genetics 107 - 5
- Nutrition 110 - 5

- Animal Biology option.......................35-39
- Physiology, Neurobiology, Physiology, and Behavior 101 - 5

Laboratory, one course from the following: Animal Genetics 111; Animal Science 135; Microbiology 177L; Microbiology 177L (Microbiology 177 must be taken concurrently); Molecular and Cellular Biology 120L; Neurobiology, Physiology and Behavior 101L; Pathology, Microbiology and Immunology 126L - 2-6

- Animal science (28 units minimum) - 28

At least one course from the Animal Care and Management series: Animal Science 115, 140, 143, 144, 146; and the balance from Animal Science 102, 104, 105, 106, 118, 119, 120, 120L, 123, 124, 125, 128, 131, 135 (if not elected above), 141, 145, 147, 148; Animal Genetics 108, 109, 111 (if not elected above); Microbiology 177, 177L (if not elected above); Nutrition 115, 122, 122L, 123, 124; Neurobiology, Physiology and Behavior 121, 121L, 130.

A maximum of two courses from the following list may be selected in consultation with your faculty adviser and used toward the 28-unit Animal Science requirement:
- Wildlife, Fish and Conservation Biology 121, 151; Population Health and Reproduction 111; Molecular and Cellular Biology 150, 150L; Pathology, Microbiology and Immunology 126; Avian Science 100.

Aquaculture option.............................43-45
- Evolution and Ecology 112, 113, 211 - 6-8
- Wildlife, Fish and Conservation Biology 120, 121 - 3
- Nutrition 124, 125, 126 - 3
- Neurobiology, Physiology and Behavior 142, 143, 144, 145, 146, 147, 148, 149, 150, 151 - 3
- Animal Science 118 and 119 - 10

Animal Science.................................8

At least four (4) courses, including two of the following courses, 112 units including one laboratory course (designated with “P” or “L”) or Animal Science 135 or Animal Sciences 111 from the following list:

Unrestricted Electives........................27-53

Total Units for the Degree..................180

Master Adviser. G.A.E. Gall

Advising Center for the major, including peer advising, is located in 1202A Meyer Hall, 916-752-6118. Students must secure their academic adviser through this office upon entering the major.

Graduate Study. The Department of Animal Science offers a program of study and research leading to the M.S. degree. In addition, the Master of Agriculture and Management (M.A.M.) is offered by the Department of Animal Science in conjunction with the Graduate School of Management. Detailed information about each of these programs may be obtained by contacting the department.

Graduate Adviser. T.R. Farnula (M.S. degree); I. Garnett (M.A.M. degree).

Courses in Animal Science (ANS)

Lower Division Courses

1. Domestic Animals and People (4) I. Farnula

2. Animal Care—3 hours; laboratory—3 hours. Animal domestication and factors affecting their characteristics and distribution. Animal use for food, fiber, work, drugs, research and recreation; present and future roles in society. Laboratory exercises with beef and dairy cattle, poultry, sheep, swine, laboratory animals, fish, horses, meat and dairy products. GE credit: Sci-Eng, Wt.
92. Internship in Animal Science
(3) III. Berger
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 1 and Biological Sciences 1A recommended. Growth, reproduction, lactation, inheritance, nutrition, and disease control in domesticated animals and species used in aquaculture; the application of sciences to animal husbandry. GE credit: SciEng, Wrt.

15. Introductory Horse Husbandry
(3) I. DePeters
Lecture—3 hours. Prerequisite: course 2 recommended. Introduction to care and use of light horses emphasizing the basic principles for selection of horses, responsibilities of ownership, recreational use and raising of foals.

18. Introductory Aquaculture
(4) III. Conklin
Lecture—3 hours; discussion—1 hour. Historical and contemporary aquatic practices. Interaction between the culture environment and the biology of aquatic animals. Impact of economics and governmental policies on the development of aquaculture. Interaction of aquatic cultural practices with larger societal goals. GE credit: SciEng.

21. Livestock and Dairy Cattle Judging
(2) III. Van Liew
Lecture—6 hours. Prerequisite: course 1 or 2 recommended. Evaluation of type as presently applied to light and dairy cattle. Relationship between form and function, and carcass quality, and form and milk production.

22A. Animal Evaluation
(2) I. Liew
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21 or the equivalent. Study of domestic livestock species with emphasis on visual appraisal, carcass evaluation, and application of performance information. Accurate written and oral descriptions and occasional weekend field trips required. This course is prerequisite to intercollegiate judging competition. Offered in alternate years. (PNP grading only.)

22B. Animal Evaluation
(2) II. Liew
Lecture—3 hours; discussion—1 hour. Prerequisite: course 22A or the equivalent. Continuation of course 22A with emphasis on specific species: visual appraisal, carcass evaluation, and application of performance information. Accurate written and oral descriptions and occasional weekend field trips required. This course is prerequisite to intercollegiate judging competition. Offered in alternate years.

41. Domestic Animal Production
(2) I. DePeters

41L. Domestic Animal Production Laboratory
(2) I. DePeters
Lecture—6 hours. Prerequisite: course 41 (may be taken concurrently). Production principles and practices, including field trips to dairy cattle, beef cattle, sheep and swine operations, and campus laboratories. (PNP grading only.)

42. Introductory Companion Animal Biology
(4) II. Berger

49. Animal Management Practices
(2) I, II, III.
Van Liew
Discussion—1 hour; laboratory—3 hours. The application of the principles of elementary biology; art and science of management of a specific animal species. Each quarter students will be able to choose from the following sections: beef, dairy cattle, dairy goats, horses, pigs, swine, laboratory animals. May be repeated up to four times with a different species. (PNP grading only.)

136. Aquatic Animal Laboratory
(1-5) I, II, III.
The Staff
Lecture—2 hours; laboratory—6 hours. Prerequisite: one course each in biochemistry and physiology; consent of instructor. Course designed to introduce student to concepts of research.Specimens may include crop production, ration formulation, and farm management. Hands-on experience in developing linear ear programs and interpreting the results.

131. Reproduction and Early Development in Aquatic Animals
(4) III. Doroshov
Lecture—3 hours; discussion—1 hour. Prerequisite: Wildlife, Fish and Conservation Biology 120 and 121. Current practices in fish production; relationship between the biological aspects of a species and the production systems, husbandry, management, and marketing practices utilized. Emphasis on species currently reared in California.

119. Invertebrate Aquaculture
(4) I. Conklin
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 101 or consent of instructor. Breeding and feeding of economically important aquatic invertebrates; application of basic principles of physiology, reproduction, and nutrition to production of mollusks and crustaceans for human food; emphasis on interaction of species biology and managerial techniques on production efficiencies.

120. Principles of Meat Science
(3) III. Bandman (Food Science and Technology), Lee
Lecture—3 hours. Prerequisite: Biological Sciences 103, or the equivalent. Anatomical, physiological, developmental, and biochemical aspects of muscle underlying the conversion of muscle to meat. Includes meat processing, public health issues associated with meat products. (Same course as Food Science and Technology 120.) GE credit: SciEng.

120L. Meat Science Laboratory
(2) III. Lee, Bandman (Food Science and Technology)
Discussion—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 103; course 120 (may be taken concurrently). Laboratory exercises and student participation in transformation of live animal to carcass and meat, structural and biochemical changes related to meat quality, chemical and sensory evaluation of meat, and field trips to packing plants and processing plants. (Same course as Food Science and Technology 120L.)

123. Animal Growth and Development
(4) III. Sainz
Lecture—3 hours; lecture/discussion—1 hour. Prerequisite: Biological Sciences 104; recommended: Biological Sciences 104, Molecular and Cellular Biology 150. Growth and development of animals from conception to maturity, viewed from practical and biological perspectives; includes genetic, metabolic, nutritional control of cell and organism function. GE credit: SciEng.

124. Lactation
(4) II. Baldwin
Lecture—3 hours; laboratory—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 101; Nutrition 110, or the equivalent background knowledge. Consideration of the biochemical, genetic, physiological, nutritional, and structural factors of milk production and gland development; the initiation of lactation, the composition of milk and lactational performance. GE credit: SciEng, Wrt.

125. Equine Exercise Physiology
(3) II. Roser
Lecture—3 hours. Prerequisite: course 15; Nutrition 110 or 115. Distance learning class broadcast from Cal Poly, Pomona, on basic and applied physiology of the exercising horse. Includes physiological systems, gas analysis, lameness, pharmacology, sports medicine; sport horse performance evaluation and conditioning. (Students and instructor have two-way communication capabilities.)

126. Equine Nutrition
(3) I. Roser
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 15; Nutrition 110 or 115. Distance learning class broadcast from Cal Poly, Pomona and CSU Fresno on equine nutrition. Includes equine digestion, digestive physiology, diet development and evaluation, and the relationship of the topics to recommended feeding practices and nutritional profiles.

128. Agricultural Applications of Linear Programming
(3) III. Fadel
Lecture—2 hours; laboratory—2 hours. Prerequisite: upper division standing and Agricultural Systems and Environment 21 or the equivalent. Applications of linear programming in agriculture, emphasizing resource allocation problems and decision making. Problems include crop production, ration formulation, and farm management. Hands-on experience in developing linear ear programs and interpreting the results.

131. Reproduction and Early Development in Aquatic Animals
(4) III. Doroshov
Lecture—3 hours; laboratory—3 hours. Prerequisite: Molecular and Cellular Biology 150, Wildlife, Fish and Conservation Biology 120, 121; or consent of instructor. Physiological and developmental functions related to reproduction, breeding efficiency and fertility of animals commonly used in aquaculture.

135. Experimental Biochemistry Laboratory
(4) I. Gencay
Lecture—2 hours; laboratory—6 hours. Prerequisite: one course each in biochemistry and physiology; consent of instructor. Course designed to introduce student to concepts of research. Specimens may include crop production, ration formulation, and farm management. Hands-on experience in developing linear ear programs and interpreting the results.

136. Aquatic Animal Laboratory
(1-5) I. Huirng
Lecture—3 hours. Prerequisite: course 118 or Wildlife, Fish and Conservation Biology 121. Hands-on experience in current practices in aquatic animal
Animal Science and Management

production. Students will conduct an eight-week growth trial with proper experimental design, care and maintenance of fish, data collection and analysis, and technical report writing.

141. Equine Enterprise Management (4) II. Ross/Garnett Lecture/discussion—4 hours. Prerequisite: course 111; Economics 1A. Recommended. Examination of the concepts and principles involved in the operation of an equine enterprise. Essential aspects of equine enterprise management, including equine law, marketing, cash flow analysis and impact of state and federal regulations. GE credit: SocSci, Wrt.

142. Pig and Poultry Care and Management (4) I. Garnett, Ernst, Berger Lecture—3 hours; laboratory—3 hours; Saturday field trip. Prerequisite: Nutrition 115 or 110. Neurobiology, Physiology and Behavior 101. Care and management of swine, broilers and turkeys as related to environmental factors, nutrition and disease management and reproduction.

144. Beef Cattle and Sheep Production (4) I. Sainz Lecture—3 hours; laboratory—3 hours; one or two Saturday field trips. Prerequisite: course 41, Animal Genetics 107, Nutrition 115, or consent of instructor; a course in Range Science and a course in microcomputing are recommended. Genetics, physiology, nutrition and management of beef cattle and sheep production. Resources used, species differences, range and feedlot operations. Emphasis on integration and information needed in modern commercial beef and lamb enterprises.

145. Meat Processing and Marketing (4) II. Lee Lecture—3 hours; laboratory—3 hours. Prerequisite: course 143 or 144 or consent of instructor. Distribution, processing and marketing of meat and meat products. Meat and meat animal grading and pricing. Government regulations and social/consumer concerns. Future trends and impact on production management practices. Includes poultry.

146. Dairy Cattle Production (4) III. The Staff Laboratory—3 hours; one mandatory Saturday field trip required. Prerequisite: course 124, Animal Genetics 107, and Nutrition 115, or consent of instructor. Scientific principles from genetics, nutrition, physiology, and related fields applied to conversion of animal feed to human food through dairy animals. Management and economic decisions are related to animal biology considering the environment and animal well-being. GE credit: SciEng, Wrt.

147. Dairy Processing and Marketing (3) II. The Staff Lecture—2 hours; laboratory—3 hours. Prerequisite: course 146 or consent of instructor. Examination of distribution systems, processing practices, product quality, impact of government policy (domestic and foreign), marketing alternatives, and product development.

148. Enterprise Analysis in Animal Industries (4) III. Garnett Lecture/discussion—4 hours. Prerequisite: course 141 or 146 or 147 or consent of instructor. Examination of applications of decision making and problem solving in the production enterprise. The areas of production analysis, problem solving, risk analysis and cost-benefit analysis will be examined in terms of the total enterprise. GE credit: SocSci.

190C. Research Group Conference (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in the animal sciences. May be repeated for credit. (IPN grading only.)

192. Internship in Animal Science (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3—36 hours. Prerequisite: completion of 84 units and consent of instructor. Internship off and on campus in dairy, livestock and aquaculture production, research and management; with a business, industry, or agency associated with these or other animal enterprises. All requirements of Internship Approval Request Form must be met. (IPN grading only.)

193. Introduction to Animal Science Research (1) I, III. Gail in charge Lecture/discussion—1 hour. Prerequisite: biological Sciences 1A and 1B, course 2 and an upper division Animal Science course. Consideration of ethics in animal research; basic elements of a research plan, project design, and literature review; preparation of a research proposal. Mid-term report and preparation of a brief research proposal. GE credit: Wrt.

194. Research in Animal Science (3) I, II, III The Staff Laboratory—6 hours; discussion—1 hour. Prerequisite: upper division standing, course 193, one laboratory course in animal biology and consent of instructor. Research with a faculty mentor. Weekly discussion and laboratory on specific research topic. May include a seminar group. Choose from sections: (1) Animal Behavior; (2) Animal Genetics; (3) Animal Nutrition; (4) Animal Physiology. May be repeated for credit for a total of four times.

194HA-194HB-194HC. Undergraduate Honors Thesis in Animal Science (4-4-4) I-II-III. The Staff (Chairperson in charge) Lecture—2 hours; laboratory—1—2 hours; one or two Saturday field trips. Prerequisite: consent of instructor. (P/NP grading only.) (Course not offered this academic year.)

195. Senior Project in Animal Science (3) I, II, III, Gall Studio—6 hours. Prerequisite: senior standing in animal science and consent of instructor. Project analysis of a specific area of animal science; industry, communication, outreach, business and marketing, animal welfare, food safety and research are examples. May be repeated once for credit. (IPN grading only.)*

196. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduate (1-5) I, II, III. Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Strategies in Animal Production (4) I. Garnett Lecture/discussion—4 hours. Prerequisite: consent of instructor. Examines the forces and issues in animal agriculture through the strategic management process.

206. Models in Agriculture and Nutrition (3) II. Fadel Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 16B, Statistics 108B. Basic model building principles and techniques for statistical and systems simulation models. Optimization techniques for non-linear experimental designs and management models are presented. Quantitative analysis and evaluation of linear and non-linear models used in agriculture and nutrition. Offered in alternate years.

*Course not offered this academic year.

Animal Science and Management

(College of Agricultural and Environmental Sciences)

The Major Program

The animal science and management major combines a thorough education in the basic biology of domestic animal species with a strong background in managerial economics. Graduates of this program manage farms and participate in a wide variety of other businesses related to agriculture. Many graduates enter graduate, veterinary and medical schools, while others become teachers and extension personnel.

The Program. The interdisciplinary program in animal
Anthropology is the systematic study of human beings as they live in groups. It is a diverse field and the courses at UC Davis are subdivided into four categories—biological, social/cultural, linguistics, and archaeology. The student of anthropology learns about human origins, primate studies and the fundamentals of biology as these relate to Homo sapiens. Anthropology is divided into four major subfields: (a) Anthropological Linguistics, (b) Social-Cultural Anthropology, (c) Biological Anthropology, and (d) Archaeology and Prehistory.
2. Cultural Anthropology (4) I. Yengoyan; II. Lavie; III. Curley
 Lecture—3 hours; discussion—1 hour. Introduction to cultural diversity and the methods used by anthropo-
 logists to account for it. Family relations, economic activities, politics, gender, and religion in a wide

3. Introduction to Anthropological Linguistics (4) I. J.S. Smith; II. Macri
 Lecture—3 hours; discussion—1 hour. Exploration of the role of language in the construction and world
 view, minority languages and dialects, bilingualism, literacy, the social motivation of language change.
 Introduction of analytical techniques of linguistics and demonstration of their relevance to language in socio-

5. Proseminar in Biological Anthropology (4) III. Rodman
 Seminar—3 hours; term paper. Prerequisite: course 1 and consent of instructor. Course primarily for majors.
 Integration of related disciplines in the study of bio-
 logical anthropology through discussion and research projects. Primarily in human adaptation to the
 environment. GE credit: SciEng, Wrt.

15. Behavioral and Evolutionary Biology of the Human Life Cycle (5) II. Harcourt
 Lecture—3 hours; discussion—1 hour; term paper. Introduction to the biology of birth, childhood, mar-
 riage, the family, old age, and death. Examines com-
 parative characteristics of nonhuman primates and
 other animals as well as cross-cultural variation in humans by study of selected cases. GE credit: Sci-
 Eng, Div, Wrt.

20. Comparative Cultures (4) III. Curley
 Lecture—3 hours; discussion—1 hour. Introduction to the anthropological study of cultural diversity. Case
 studies of eight societies will be presented to illustrate and compare the distinctive features of major cultural

21. Anthropological Perspectives on the Politics of Culture in the United States (4) III. The Staff
 Lecture—3 hours; discussion—1 hour. Primarily for nonmajors. Examines what comparative anthropol-
 ogical analysis can contribute to an understanding of the high-profile issues of cultural politics (the so-
 called “culture wars”) in our own society. Offered in alternate years. GE credit: SocSci, Div, Wrt.

23. Introduction to World Prehistory (4) III. Beaton
 Lecture—3 hours; discussion—1 hour. Broadly sur-
 veys patterns and changes in the human species’ physical and cultural evolution from earliest evidence for
 “humanness” to recent development of large-scale complex societies or “civilizations.” Lectures empha-
 size use of archaeology in reconstructing the past. GE credit: SocSci, Div, Wrt.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Human Ecology (4) II. Richerson/Borgenhoff-Mulder
 Lecture—3 hours; discussion—1 hour. Prerequisite: one course from course 1, 2, Environmental Studies
 30, Genetics 10, or the equivalent. Critical variables in the processes that relate humans and their environ-
 ment. Emphasis on the biological, cultural, social, and psychological factors that encourage stability or change in human ecological relationships. (Same course as Environmental Studies 101.) GE credit: SocSci.

(a) Anthropological Linguistics

110. Elementary Linguistic Analysis (4) III. Macri
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or Linguistics 1. Analytical techniques of
 articulatory phonetics, phonemics, morphophoneme-
 mics, and morphology. GE credit: SocSci.

*113. Indigenous Languages of North America (4) II. Macri
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4, Linguistics 1, or consent of instructor. Survey
 of indigenous languages of North America, including their classification, linguistic characteristics, areal features, and socio-cultural aspects. GE credit: SocSci, Div.

*117. Language and Society (4) III. J.S. Smith
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or Linguistics 1 and 2. Consideration of language in its social context. Methods of data col-
 lection and analysis; identification of socially signifi-

*119. World Writing Systems (4) II. Macri
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4 or course 2 and Linguistics 1. Survey of major world writing systems, including pictographic, syllabic, and alpha-
 betic scripts used in both the Old and New Worlds in ancient and modern times, examined from linguistic and socio-political aspects. GE credit: SocSci.

*120. Language and Culture (4) II. Yengoyan
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 4; or course 2 and Linguistics 1. Culture, cog-
 nition, meaning, and interpretation; language and the classification of experience; communication and learning in crosscultural perspective. GE credit: Soc-
 Sci, Div, Wrt.

(b) Social-Cultural Anthropology

*121N. Indigenous Peoples and Resource Conservation (4) III. Mulder
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or Geography 1 or Environmental Studies 30.
 Integration of the interests of resident and indigenous peoples with the conservation of natural resources and ecosystems, using case study examples from both the developing and developed world. Offered in alternate years. GE credit: SocSci.

*122. Economic Anthropology (4) III. Davis
 Lecture—3 hours; discussion—1 hour. Prerequisite: consent of instructor. Economic behavior in nonindus-
 trial societies; its social and cultural setting and its modern changes. GE credit: SocSci, Div, Wrt.

*123A. Anthropology and Political Economy (4) III. C. Smith
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of anthropol-
 ogical approaches to the study of political organiza-
 tions; interrelationships among political institutions, economic infrastructures and cultural complexity. GE credit: SocSci, Div, Wrt.

*123B. Resistance, Rebellion, and Popular Movements (4) III. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or the equivalent. Analysis of popular protest in Third World and indigenous societies ranging from covert resistance to national revolts. Comparative case studies and theories of peasant rebellions, mil-
 itarian movements, social bandits, Indian “wars,” ethnic and regional conflicts, gender and class confi-

123C. Multiculturalism and Minority Identity (4) I. Lavie
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Recent developments in conceptions of minority identity from the point of view of minority

*Course not offered this academic year.
Anthropology 139

populations in the Third World, Europe, and the United States. Challenges to existing categories of gender, race, and class, as well as nationalism and imperialism, offered in alternate years.

*125A. Structuralism and Symbolism (4) I. Yengoyan Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Survey of anthropological approaches to understanding the logic of structuralism and symbolism in cultural analysis. Focus on how structural and symbolic interpretations relate to cultural and linguistic universals and to the philosophical basis of relativism in the social sciences. (Former course 125.) GE credit: SocSci, Div, Wrt.

*125B. Postmodernism(s) and Culture (4) II. Lavine Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. The U.S.–European postmodern condition. "Modernity" as a project for subjugated nations. The economic, social, technological and political conditions leading to postmodern aesthetics, in comparison with postcolonialism, feminism and minority discourse. GE credit: SocSci, Div, Wrt.

126. Anthropology of Development (4) I. Boyd Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of approaches to urban living: political structures, organization of labor, class relations, world views. The evolution of urban life and its contemporary dilemmas. Cross-cultural comparisons discussed through case studies. GE credit: SocSci, Div, Wrt.

127. Urban Anthropology (4) II. Walton Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Survey of approaches to urban living: political structures, organization of labor, class relations, world views. The evolution of urban life and its contemporary dilemmas. Cross-cultural comparisons discussed through case studies. GE credit: SocSci, Div, Wrt.

129. Self, Identity, and Family (4) I. Joseph Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Exploration of self, identity, and family systems cross-culturally. Impact of class, gender, race, ethnicity, ruralization, urbanization, and globalization on notions of selfhood in different social/cultural systems. Offered in alternate years. GE credit: SocSci, Div, Wrt.

*131N. Ethnohistory (4) I, II. Walton Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 and one other course in either history or anthropology. Course focuses on method and interpretation involved in reconstructing the history and cultural experience of those “people without history” who left no documentary record (peasant communities, slaves, peasants). Emphasizes cross-cultural comparison and complementary methods (archaeology, demography, oral history, travel accounts). GE credit: SocSci, Div, Wrt.

133. Cultural Ecology (4) III. Orlove Lecture—3 hours; discussion—1 hour. Comparative survey of the interaction between diverse human cultural systems and the environment. Primary emphasis given to people in rural and relatively underveloped environments as a basis for interpreting more complex environments. (Same course as Environmental Studies 133.) GE credit: SocSci, Div, Wrt.

*134. Race and Sex: Race Mixture and Mixed Peoples (4) I. Farnell Lecture—4 hours. Prerequisite: course 1, or 2, or one of Native American Studies 10, Chichano Studies 110, African American and African Studies 100 or Asian American Studies 110. The phenomenon of racial, ethnic and interreligious intermixture and marriage, and of multi-ethnic peoples. Emphases on the Americas and upon the sociocultural effects of intermixture and on the lives of people on the periphery of the U.S. (Same course as Native American Studies 134.) GE credit: SocSci, Div, Wrt.

135. Peasant Society and Culture (4) III. C.A. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative study of peasant communities, utilizing historical and ethnographic sources; analysis of urban-rural relations, problems of economic development and culture change. GE credit: SocSci, Div, Wrt.

136. Ethnographic Film (4) II. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Overview of the use of film in anthropology, and its advantages and limitations in comparison to written ethnographic descriptions. Essential features of ethnographic films. Film production in anthropological research and problems encountered in producing films in the field. GE credit: SocSci, Div, Wrt.

137. Theory in Social-Cultural Anthropology (4) I. Boyd Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative analysis of major theoretical orientations in social-cultural anthropology, including evolutionary, historical, functional, ecological, psychological, structural, symbolic, and Marxist approaches. Selections and critiques of theoretical orientations to clarify strengths and limitations of extant theories. GE credit: SocSci.

*138. Ethnographic Research Methods in Anthropology (4) II. Boyd Lecture—3 hours; discussion—1 hour. Prerequisite: courses 2 and 137. Basic concepts in and approaches to ethnographic field research. Problem formulation, research design, qualitative and quantitative data collection procedures, and techniques for organizing, retrieving, and analyzing information. Ethnographic description and constructed inference. Students will organize and conduct individual research projects. GE credit: SocSci.

*139. Race, Class, Gender Systems (4) III. C.A. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Comparative analysis of class/race/gender inequality, concentrating on the ways in which beliefs about descent, “blood,” and biological difference interact with property and marital systems to affect the distribution of power in society. GE credit: SocSci, Div, Wrt.

140A. Cultures and Societies of West and Central Africa (4) I. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of Africa west of Congo Basin with analyses of representative societies which illustrate problems of general theoretical conception. Major consideration will be the continuities and discontinuities between periods prior to European contact and the present. GE credit: SocSci, Div, Wrt.

*141N. Cultures and Societies of East and South Africa (4) I. Curley Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Ethnographic survey of Eastern and Southern Africa with analyses of societies in these areas to illustrate problems of interest to anthropologists. Major consideration will be given to continuities and discontinuities between periods prior to European contact and the present. GE credit: SocSci, Div, Wrt.

*141A. Indians of North America (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Introductory survey of the Indians of North America: origins, languages, civilizations, and history. GE credit: SocSci, Div, Wrt.

141B. Ethnography of California and the Great Basin (4) III. Bettinger Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Description and analysis of the native peoples of California and the Great Basin, and their lifeways at the time of European contact. (Former course 141C.) GE credit: SocSci, Div, Wrt.

142. Peoples of the Middle East (4) I. Lave Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Peoples of the Middle East (including North Africa). Discussions of class relations, kinship organization, sex/gender systems, religious beliefs and behavior, ethnic relations, political systems. Impact of world systems, political and religious movements and social change. (Former course 136.) GE credit: SocSci, Div, Wrt.

143A. Ethnology of Southeast Asia (4) II. Yengoyan Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Introduction to the ethnology of the Philippines. Nature and distribution of ethnic groups, social organizations, cultural patterns and social issues. Emphasis on ethnic minorities, rural populations, effects of modernization, and the relation of the state to local groups. GE credit: SocSci, Div, Wrt.

*144. Contemporary Societies and Cultures of Latin America (4) II. Orlove Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Introduction to the ethnology of Latin America. Origins, maintenance and changes in inequality: economic responses to poverty, socioeconomic responses to discrimination, and political responses to powerlessness. GE credit: SocSci, Div, Wrt.

*145. Colonialism and Ethnicity in the Caribbean (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Exploration of the native peoples of Mexico and Central America: their histories, socio-political organization, mythologies, languages, material culture, writing systems. GE credit: SocSci, Div, Wrt.

146. Indigenous Peoples of Mexico and Central America (4) I. C.A. Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Ethnographic survey of the native peoples of Mexico and Central America: their histories, socio-political organization, mythologies, languages, material culture, writing systems. GE credit: SocSci, Div, Wrt.

147. Peoples of the Pacific (4) III. Boyd Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Ethnographic survey of aboriginal cultures of Oceania. Comparison of ori-
Anthropology

148A. Traditional Chinese Society (4) I. Skinner
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or an analysis of society, culture, and political economy of late traditional China to 1949. Additional attention given to nature of social change in this pre-modern agrarian civilization. GE credit: SocSci, Div, Wrt.

148B. Family, Gender, and Population in Contemporary China (4) II. Skinner

149A. Traditional Japanese Society (4) III. J. S. Smith
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Patterns of culture and social organization from prehistoric to early twentieth-century Japan. Origins, prehistory, and traditional religious and political systems, marriage and kinship, language and culture. Origins of institutions and ideologies in traditional and contemporary Japanese culture are addressed. Offered in alternate years. GE credit: SocSci, Div, Wrt.

149B. Contemporary Japanese Society (4) III. J. S. Smith
Lecture—3 hours; discussion—1 hour. Introduction to contemporary Japanese social structure, social organization, and patterns of culture. Analysis of rural-urban contrasts, contemporary classes and contrasts, class relations, political and economic systems, kinship, sex/gender systems, contemporary religious beliefs and behavior, conflict, consensus, and cultural stereotypes. Offered in alternate years. GE credit: SocSci, Div, Wrt.

(c) Biological Anthropology

151. Primate Evolution (4) III. McHenry
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Biological Sciences 1B. Origin and relationships of the primates, monkeys, and apes. GE credit: SciEng, Wrt.

152. Human Evolution and Fossil Man (4) II. McHenry
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Biological Sciences 1B. Nature and results of the evolutionary processes involved in the formation and differentiation of mankind. GE credit: SciEng, Wrt.

153. Human Biological Variation (4) I. D. G. McHenry
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Biological Sciences 1B. Origin, adaptive significance and methods of analysis of genetic differences among human populations. Special attention will be given to racial differences such as those in blood groups, plasma proteins, red cell enzymes, physiology, morphology, pigmentation and dermatoglyphics. GE credit: SciEng, Wrt.

154A. The Evolution of Primate Behavior (5) I. Harcourt
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1. Examines ecological diversity and evolution of social systems of prosimian monkeys, and apes, placing the social behavior of the primates in the context of appropriate ecological and evolutionary theory. GE credit: SciEng, Wrt.

155. Comparative Primate Anatomy (4) II. The Staff
Lecture—2 hours; laboratory—4 hours. Prerequisite: Biological Sciences 1B. The functional anatomy of monkeys, apes, and man. Emphasis on the anatomical evidence for human evolution. GE credit: SciEng, Wrt.

156. Human Osteology (4) III. McHenry
Lecture—2 hours; laboratory—4 hours. Prerequisite: course 1 or the equivalent. Introductory study of the human skeleton, including bone growth, pathology, radiology, evolution, and variations in race, sex, and age. GE credit: SciEng.

157. Anthropological Genetics (3) II. D. G. Smith
Lecture—3 hours. Prerequisite: course 1 or Biologi- cal Sciences 1A, and Genetics 100, 103, 105, or 106. Processes of micro-evolution responsible for biologi- cal differences among human populations. Special attention will be given to the adaptive significance of genetic variation in blood group antigens, serum pro- teins and red cell enzymes. GE credit: SciEng.

157L. Laboratory in Anthropological Genetics (2) I. D. G. Smith
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 1 or Biological Sciences 1A, and either Genet- ics 100, 103, 105, or 106. Techniques in general elec- trophoresis of serum proteins, cell acetate and polypyr- lamide, immunodiffusion and immunoelectrophoresis on agarase. (P/NP grading only.) GE credit with current enrollment in course 157: Wrt.

158. The Evolution of Females and Males: Biological Perspective (4) III. Isbell
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Current theoretical frameworks for explain- ing the evolution of sex differences and for under- standing the interrelationship between biological processes and cultural construction of gender roles. GE credit: SciEng, Div, Wrt.

(d) Archaeology and Prehistory

170. Archeological Theory and Method (4) II. Bettinger
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1 and 3. Introduction to history and develop- ment of archeological theory and method, with partic- ular emphasis on the basic independence of the latter on the former. Stress is on historical development of arche- ology in the New World. GE credit: SocSci, Div, Wrt.

171. Georarcheology (4) II. Beaton
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Theories, methods, and techniques for studying the geomorphic context of archeological sites. Particular attention to sediment and soil attrib- utes and analysis of soil-profiles and the distribution of past landform features and development histories of archeological sites. Offered in alternate years. GE credit: SocSci, Wrt.

172. New World Prehistory: The First Arrivals (4) II. Beaton
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Survey of human settlement in the Western Hemisphere prior to the contact. GE credit: SocSci, Div, Wrt.

173. New World Prehistory: Archaic Adaptations (4) III. Bettinger
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Course 173 recom- mended. Introduction to and survey of prehistoric hunting and gathering adaptations across North America with particular emphasis on the East, Southeast, Midwest, Plains, Southwest, and Northwest. Offered in alternate years. GE credit: SocSci, Div, Wrt.

174. Prehistory of California and the Great Basin (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 or consent of instructor. Description and analysis of the prehistoric peoples of California and the Great Basin from earliest times to European contact. GE credit: SocSci, Div, Wrt.

178. Hunter-Gatherers (4) III. Bettinger
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2. Study and interpretation of the ancient and modern lifeway in which peoples support themselves with primitive technologies and without benefit of domesticated plants and animals. Offered in alter- nate years. GE credit: SocSci, Div, Wrt.

179. Ethnoarchaeology (4) II. Beaton
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3. Relationships between behavior and its archeological consequences. Ethnography by arche- ologists examines residence patterning, site-forma- tion processes, hunting/farming behavior and other artifact creating activities and how these contribute to modern archeological thinking. GE credit: SocSci, Div, Wrt.

181. Field Course in Archeological Method (9) Summer. The Staff
Lecture—6 hours. Daily field investigation. Prerequi- site: course 3. On-site course in archeological meth- ods and techniques held at a field location in the western United States, generally California or Nevada. Introduces basic methods of archeological survey, mapping, and excavation. GE credit: SciEng.

183. Laboratory in Archeological Analysis (4) III. Bettinger
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 181 or consent of instructor. Museum prepara- tion, advanced field investigation, and guidance in preparation of museum material for publication. May be repeated for credit with consent of instructor. Lim- ited enrollment. GE credit: SciEng.

184. Prehistoric Technology: The Material Aspects of Prehistoric Adaptation (4) II.
Lecture—3 hours; discussion—1 hour. Prerequisite: course 2 or 3. Examination of the role of ceramic, textile and wooden implements as elements in prehistoric survival and development. Emphasis is descriptive, but the significance of material resources as factors in prehistoric adaptation, settlement pat- terns, and culture change are discussed. GE credit: SocSci.

(e) Special Study Courses

191. Topics in Anthropology (4) I. Bettinger
Lecture/discussion—3 hours; term paper. Prerequi- site: junior or senior standing in anthropology. Inten- sive treatment of a special anthropological topic or problem. May be repeated for credit when topic differs.

192. Internship in Anthropology (1-12) I, II, III.
The Staff
Internship—3-36 hours. Prerequisite: Upper division standing; consent of instructor. Work experience off and on campus in all subject areas offered in the Department of Anthropology under the supervision of a member of the faculty. Limited to Anthropology majors. May be repeated for a total of 12 units includ- ing 192 courses taken in other departments. (P/NP grading only.)

194H. Special Study for Honors Students (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: open only to majors of senior standing who qualify for honors program. Independent study of an anthropological problem including the writing of an honors thesis. May be repeated for a total of 12 units. (P/NP grading only.)

197T. Tutoring in Anthropology
Tutorial—1-5 hours. Prerequisite: upper division standing. May be repeated once for credit when topic differs.

192. Directed Group Study (1-5) I, II, III.
The Staff (Chairperson in charge)
(P/NP grading only.)

*Course not offered this academic year.
206. Research Design and Method in Social Anthropology (5) III. Joseph Seminar—4 hours; individual student-instructor session (in-depth work on proposal writing). Prerequisite: consent of instructor. Formulation of research problems and preparation of research proposals; relationships between theory and method, funding, pre-fieldwork preparations, entering the community, field research techniques, and problems of ethics; intensive work on proposal writing. May be repeated once for credit. Limited enrollment.

207. Ethnographic Writing (4) I. Lavei Seminar—3 hours; term paper. Prerequisite: courses 137, 201, or the equivalent. Relationship between conducting participant observation of others and writing it up. Emphasizing the processual rift between the reality of fieldwork and its written representation. Study of various literary genres and textual strategies used in cultural anthropology. May be repeated for credit. Offered in alternate years.

209. Objectives and Methods for College Teaching of Anthropology (2) I, II, III. The Staff Discussion—2 hours, assignments and reports. Prerequisite: normally limited to teaching assistants in anthropology. Analysis of the elements of effective teaching, drawing upon the student’s experience in the classroom situation.

210. Aspects of Culture Structure (4) I. Walton; III. Boykin Seminar—3 hours; term paper. Analysis of various phases of culture, such as religion, economics, law, and folklore. May be repeated for credit when topics differ.

211. Advanced Topics in Cultural Ecology (3) I. Orlove Lecture—3 hours. Prerequisite: graduate standing; Anthropology/Environmental Studies 133 or the equivalent or consent of instructor. Discussion and evaluation of theories which relate environment, culture, and social structure. The works of several major theorists will be examined with regard to analytical models, empirical data, research methodologies, and modes of explanation. Offered in alternate years. (Same course as Ecology 211.)

216. Problems in Archeological Method (4) II. Beaton Seminar—3 hours; term paper. Techniques for analyzing archeological data, application to various prehistoric cultures. May be repeated for credit with consent of instructor.

217. Andean Prehistory: Theory and Method (4) II. Beaton Seminar—3 hours; term paper. Prerequisite: consent of instructor. Discussion and evaluation of prehistoric occupations in the Andean Region of South America. Emphasis upon Pre-Ceramic and early farming peoples.

218. Topics in North American Prehistory (4) I. Bettridge Seminar—3 hours; term paper. Advanced study on current problems in North American prehistory and archaeology. May be repeated for credit only if material is unique for that student, and with consent of instructor.

219. Field Course in Linguistics (4) III. Macri Seminar—2 hours; laboratory—2 hours. Prerequisite: courses 110, 111. Techniques of eliciting, recording, and analyzing; work with a native speaker.

221. Rural Transformation in Postcolonial Societies (4) I. Orlove Seminar—3 hours; term paper. Prerequisite: courses 223, 265, or consent of instructor. Problems of rural transformation arising out of political and economic intervention between national elites and rural and local populations under varying conditions of induced change in postcolonial societies. Attention will be given to the implications of this interaction for rapid economic growth. May be repeated for credit.

222. Problems in Urban Anthropology (4) I. Walton Seminar—3 hours; one paper. Prerequisite: graduate status or consent of instructor. Study of selected critical problems in urban anthropology. Each quarter focuses on some of the following topics: class, minorities, poverty, migration, religion, politics, kinship, community, sex-roles, communication, ideology, consciousness in urban context. May be repeated for credit.

223. Economic Anthropology (4) III. Davis Seminar—3 hours; term paper. Prerequisite: course 122 or consent of instructor. Selected current methodological and theoretical problems in the analysis of nonindustrial economic systems.

224. Problems in Comparative Religion (4) I. Curley Seminar—3 hours; term paper. Advanced study of current problems in the anthropological study of religion.

225. State and Nation in the Modern World (4) III. C. A. Smith Seminar—3 hours; term paper. A presentation of current anthropological theories of the origins and nature of the modern nation-state in both the First and Third Worlds, with special reference to state ideology (nationalism) and forms of control. Offered in alternate years.

226. Consciousness and Resistance (4) I. Seminar—3 hours; term paper. Prerequisite: completion of first-year graduate work or consent of instructor. Consideration of approaches to the study of social inequality, and resistance to subordinated groups. Emphasis in situating approaches to contemporary social theory, concrete research problems, and political strategies. Topics: formation of consciousness and identity; collective action; accommodation to frontal resistance. Offered in alternate years.

227. Behavioral Ecology and Anthropology (4) III. Borgerhoff-Mulder Seminar—3 hours; term paper. Prerequisite: graduate standing. An exploration of the links between behavioral ecology and the study of human cultural variation, focusing on social organization, marriage, reproduction, inheritance, and subsistence in traditional and historical populations. May be repeated once for credit. Offered in alternate years.

229. Gender, Identity, and Self (4) I. Joseph Seminar—3 hours; term paper. Course covers intersections of gender, identity, and selfhood cross-culturally and historically. Explores how the self is feminized and masculinized, and interfaces with sexual, race, class, work, national, minority, and majority identities under different historical, cultural, and social structural conditions.

230. Comparative Family Demography (4) II. Skinner Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing in one of the social sciences (including History). Comparative examination of population processes—marriage/hypertality, fertility/reproduction, mortality, and migration—across cultural and historical contexts, with an emphasis on contrasting family systems. Case studies are drawn from Western Europe (France, Italy) and East Asia (China, Japan, Thailand). Offered in alternate years.

232. Political Movements (4) I. Walton Seminar—3 hours; term paper. Prerequisite: completion of first-year graduate work recommended. An interdisciplinary approach to political movements of protest, reform, and revolution emphasizing historical comparison and evaluation of major theoretical approaches including world systems, resource mobilization, state and culture, rational choice, moral economy, social class and gender.

239. Problems in African Society and Culture (4) I. Curley Seminar—3 hours; term paper. Diachronic analyses of traditional institutions in selected societies.

240. Problems in Afro-American Studies (4) III. Seminar—3 hours; term paper. Comparative studies of selected Black communities in the New World.

241. Topics in North American Ethnology (4) III. Forbes Seminar—3 hours; term paper. Advanced study on current problems in North American ethnography and culture history. May be repeated for credit with consent of instructor.

245. Ethnology of Northern and Central Asia (4) II. Seminar—3 hours; term paper. Prerequisite: a reading knowledge of German, Russian, Chinese, or Japanese. Lectures on the culture aboriginally found north of the Caucasus-Korea line. Supervised study of the primary and secondary sources. Work with informants when available.

246. Ethnology of Europe (4) II. Seminar—3 hours; term paper. Prerequisite: reading knowledge of a European language other than English. Supervised study of the primary and secondary sources dealing with the ethnography and ethnology of the peoples of Europe. Emphasis upon folk, peasant, and minority groups.

252. Human Evolution Seminar (4) II. McHenry Seminar—3 hours; term paper. Prerequisite: course 152 or the equivalent, consent of instructor. Study of selected topics in human evolution. North America. Each year course will focus on one or more of the following: molecular evolution, primate evolutionary biology, Tertiary hominoids, Australopithecus, Homo erectus, archaic Homo sapiens, brain evolution. May be repeated for credit.

253. Seminar in Human Biology (4) II. D.G. Smith Seminar—3 hours; term paper. Prerequisite: course 153, 157, or consent of instructor. Study of selected topics in human biology. May be repeated for credit when topics vary. Offered in alternate years.

254. Current Issues in Primate Sociobiology (4) I. I. Stolt Seminar—3 hours; term paper. Prerequisite: course 154B or the equivalent. Analysis of primate behavior, with particular emphasis on preparation for field studies. May be repeated for credit when topic differs.

258. Evolution and Human Behavior (4) II. Hrdy Seminar—3 hours; term paper. Prerequisite: courses 15, 101, 154A or 154B; 158 or consent of instructor. Focus will be on reproductive strategies and parental investment. May be repeated for credit when topics vary.
B.S. Major Requirements:

UNITS

English Composition Requirement..................4-12

See College requirement.........................0-8

Additional English (English 101 or 104A-E)........4

Preparatory Subject Matter...........................25

Community development (Applied Behavioral Sciences 1)........4

Computer science (Agricultural Systems and Environment 21 or Engineering Computer Science 15).........3-4

Economic theory (Economics 1A or 1B)...........5

Ethnicity and American communities (Applied Behavioral Sciences 160)

Social science theory (Anthropology 2 or Sociology 1)..................4-5

Statistics (Statistics 13 or 32 or Sociology 465)........3-4

Breadth/General Education Requirement........24

Satisfaction of General Education require-

ment to include:

Sciences and mathematics................................8

Humanities (Proficiency in a second lan-

guage is specifically useful to an under-

standing of particular aspects of the

community. Students planning to work in a minority community are encouraged to select an appropriate language.).........8

Social sciences..8

Depth Subject Matter.................................42

Methods for community research, Applied Behavioral Sciences 151 and 160.........8

Social theory and community change, Applied Behavioral Sciences 154.........4

Institutional and organizational change, Applied Behavioral Sciences 164 or Sociology 180A..4

Political processes and community change, one course from Applied Behavioral Sciences 157, 158, 171..4

Economics and community change, one course from Applied Behavioral Sciences 140, 162.........4

Ethnicity and social inequality, Applied Behavioral Sciences 172 or 1764

Community development and transfer of knowledge, one course from Applied Behavioral Sciences 152, 173, 175 or International Agricultural Development 1034

Evaluation of community development programs, Applied Behavioral Sciences 168........4

Internship: Applied Behavioral Sciences 159 ..4

Field of concentration..................................36

Additional upper division courses related to the major, determined in consultation with faculty adviser. (Up to 5 units of variable-unit course work may be counted toward this requirement, e.g., Applied Behavioral Sciences 159, 192, 196, 197, 199.)

Unrestricted Electives.................................41-52

Total Units for the Degree............................180

Other Requirements

In consultation with a faculty and staff adviser, Applied Behavioral Sciences majors must develop a program of study which will comprise an area of spe-

cialization. Students must submit a written proposal for the major to be reviewed and approved by a fac-

ulty committee.

Major Adviser. M. Kenney.

Advising Center for the major is located in 1303 Hart Hall (916-752-2244).

Minor in Community Development

Minor Program Requirements:

The Applied Behavioral Sciences faculty offers the fol-

lowing minor program:

UNITS

Community Development.............................24

Applied Behavioral Sciences 1, 151, 152, 164

(2) I, II, III. The Staff

Graduate Study: Refer to the Graduate Studies sec-

tion in this catalog.

Related Courses. See Environmental Studies 10, 101, 133.

Courses in Applied Behavioral Sciences (ABS)

Lower Division Courses

1. The Community (4) I. MacCannell; III. Tarallo

Lecture—4 hours. Basic concepts of community analysis and planned social change. The dynamics of community change through case studies of communities including peasant, urban ghetto, suburban mainland, and California farm workers. GE credit: SocSci, Div, Wrt.

2. Ethnicity and American Communities (4) II. Guarnizo; III. The Staff

Lecture—3 hours; discussion—1 hour. Historical and cultural survey of the role of various ethnic groups in the development of American communities. Examines ethnicity as a cultural factor, ethnicity as power and issues related to selected American ethnic groups. GE credit: SocSci, Div, Wrt.

17. Population and Community (2) I. The Staff

Lecture—2 hours. Dynamics and challenges offered by demographic changes in California and the world community. Implications for individuals and communi-

ties. Special emphasis on the possible contributions each individual can make towards resolving global problems related to human ecology through local community action. (P/NP grading only.)

47. Orientation to Community Resources (2) II, III. Fujimoto

Field trip—4 days; seminar—three 2-hour sessions. (Course given between quarters. Prerequisite: consent of instructor. Intensive field course in San Fran-

cisco. Students interact with agencies and individuals who address the range of human service, educational and social needs in the city. Advance reservations required. (P/NP grading only.)

92. Internship (1-12) I, II, III. The Staff

Chairperson in charge. Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

98. Directed Group Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

(P/NP grading only.)

Upper Division Courses

118. Technology and Society (4) I. Kenney

Lecture—3 hours; discussion—1 hour. Prerequisite: course 18 or consent of instructor. Impact of technol-

ogy on labor relations, employment, industrial develop-

ment and international relations. The internal relations of technology development and deployment. GE credit: SocSci, Wrt.

140. Political Economy of Regional Development (4) II. Kenney

Lecture—4 hours. Prerequisite: one undergraduate economics, agricultural economics or political sci-

cence course, or consent of instructor. Political econ-

Related Courses. See Environmental Studies 10, 101, 133.
151. Community Field Research: Theory and Analysis (3) I. Smith, II. Tarallo
 Lecture—3 hours. Prerequisite: course 151L must be taken concurrently; course 1 and any upper division Applied Behavioral Sciences course are recommended. Design and analysis of research at the community level with a focus on the relationship between practice and theory. Focus will be on conducting community-based structural analysis, elite interviewing, ethnographic research, and other such research methods. GE credit: SocSci, Div. Wrt.

151L. Laboratory in Community Research and Analysis: Field Experience (1-3) I. Smith, II. Tarallo
 Fieldwork—3-9 hours. Prerequisite: course 151 currently. Field research focused on community or organizational issues and their resolution. Includes assignment with local agencies or community-based organizations. The focus will be conducting community research using such methods as structural analysis, elite interviewing, ethnographic research, and comparative community studies.

152. Community Development (4) III. Bradshaw
 Lecture—4 hours. Prerequisite: course 151 or 1, Sociology 2, Anthropology 2, Asian American Studies 100, Chicago Studies 5, Chicago Studies 101. Introduction to principles and strategies of community organizing and development. Examination of different citizen participation movements and the role of change agents in the development process. Students work in teams and conduct fieldwork in local communities. GE credit: SocSci, Wrt.

*153. International Community Development (4) III. Fujimoto
 Lecture—4 hours. Prerequisite: course 1, Anthropology 2, International Agricultural Development 10. Examination of community development efforts worldwide. Analysis of impact of global forces on community development in different settings. Alternative strategies with emphasis on self-reliance and locally controlled development.

154. Social Theory and Community Change (4)
 I. Hirtz
 Lecture—4 hours. Prerequisite: course 1, Sociology 1, or Anthropology 2. A comparative overview of the dominant social science paradigms for the study of community development and change. Among the paradigms discussed are functionalism, conflict theory, Marxism, structuralism, and methodological individualism. GE credit: SocSci, Div. Wrt.

157. Politics and Community Development (4)
 III. Smith
 Lecture—4 hours. Prerequisite: prior course work in sociology or political science recommended. Analyzes political, economic, and sociocultural forces shaping the form and function of local communities in the U.S. Considers theories of the state, the community and social change and case studies of actual community development in comparative historical perspective. GE credit: SocSci, Div. Wrt.

*158. Small Community Governance (4)
 II. Sokolow
 Lecture/discussion—3 hours; fieldwork—3 hours. Prerequisite: course 151 or 160 or Political Science 100. Governing institutions and political processes in rural and small urban places. Local government organization, community autonomy, leadership, political change, policy development, and select policy issues include public finance. Field research on political processes or policy issues in select communities. Offered in alternate years.

159. Field Experience in Community Development (4) II, III. Bradshaw
 Discussion—2 hours; fieldwork—6 hours. Prerequisite: any one of courses 151, 152, 153, 154, or 157. Field involvement with community or organizational issues or problems and their resolution. May be repeated for credit for a total of 12 units with consent of instructor.

160. Research Design and Method in Community Studies (4) II. Goldman
 Lecture—4 hours. Prerequisite: course 1; Statistics 13 or the equivalent. Application of behavioral science research methodology to multidisciplinary problems confronting communities and community organizations. Focuses on design, sampling, measurement and analysis.

161. Ethnographic Research in America (4) I. Tarallo
 Lecture—3 hours; discussion—1 hour. Prerequisite: completion of 8 units of course work in Anthropology, Sociology, or Applied Behavioral Sciences. Methodologies, ethics and goals of qualitative research. Emphasis on analyzing and conducting ethnographic research in American communities; problem formulation, analytic modes, data collection and interpretation. Offered in alternate years.

162. People, Work and Technology (4) I. Wells
 Lecture—4 hours. Prerequisite: course work in the social sciences (e.g. Sociology 1, 3, Anthropology 137, Economics 1A, 1B) or labor history. Relationships between work, technology, and people’s lives. Such topics as industrialization, bureaucratization, automation, the structure of work-related communities, education and the labor market, work and the economic system and the future of work.

163. Behavior of Community Organizations (4)
 I. The Staff
 Lecture—4 hours. Prerequisite: introductory social sciences course. How community organizations function and how members of organizations interact with each other, the organization, and those people who are clients of the organization. Effects of leadership, motivation, group dynamics, communications, and power.

164. Theories in Organizational Change (4) I. Hirtz
 Lecture—4 hours. Prerequisite: course 1 or 2. Development of approaches to planned change including normative re-educative, applied systems, and developmental strategies.

168. Program Evaluation and the Management of Organizations (4) I. Goldman
 Lecture—4 hours. Prerequisite: courses 160, 161. Role of program evaluation in organizational and program management. Impact of internal evaluation in program planning, improvement, and accountability.

171. Housing and Social Policy (4) III. The Staff
 Lecture—4 hours. Social impact, economics, and policies of housing in the United States. Special attention given to alternative program strategies at the national and local levels.

172. Social Inequality: Issues and Innovations (4) III. Wells
 Lecture—4 hours. Prerequisite: upper division standing. 8 units of sociology or anthropology or combination. Study of the phenomenon of inequality in the U.S. Various approaches to inequality examined, including structural and historical explanations, prejudice and discrimination, the “culture of poverty,” and arguments concerning race, sex, and genetic potential.

173. The Continuing Learner (4)
 I. Bradshaw
 Lecture—4 hours. Prerequisite: upper division standing. Theories of adult learning and teaching emphasizing the role of adult education in the community. Designing of adult education programs.

174. Communication for Community Change (4)
 I. Goldberg
 Lecture—4 hours. Prerequisite: course 1. Communication as a mechanism and method for creating change in communities. Theories and practices; impact of message on attitudes and behavior; ethics of change and discrimination.

176. Comparative Ethnicity (4) I. Guarnizo
 Lecture—4 hours. Prerequisite: upper division standing. 8 units of sociology or anthropology or combination. Exploration of the role of ethnicity in shaping social systems and interaction through analytical approaches to and issues arising from the study of ethnicity, through utilization of data from a range of different societies. GE credit: SocSci, Div. Wrt.

190. Current Issues in Applied Behavioral Sciences (1) I, II, III. The Staff
 Seminar—1 hour. Current social, political, and economic issues affecting communities and individuals. One-hour presentations by guest speakers on research topics and contemporary issues in Community Development. (P/NP grading only)

192. Internship (1-12) I, II, III. The Staff
 Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only)

193. Applied Behavioral Sciences Seminar: Major Proposal (2) I, II. Tarallo
 Seminar—1 hour; discussion—1 hour. Prerequisite: course 1. Open to Applied Behavioral Science majors only. Designing an Applied Behavioral Sciences major that incorporates course work and personal experience. Required of all Applied Behavioral Sciences majors. (Deferred grading only, pending completion of sequence.) (P/NP grading only)

*196. Senior Project in Applied Behavioral Sciences (1-5) I, II, III. The Staff (Chairperson in charge)
 Prerequisite: major in Applied Behavioral Sciences, and consent of instructor. Guided research leading to completion of senior thesis. May be repeated for credit. (P/NP grading only)

197T. Tutoring in Applied Behavioral Sciences (1-5) I, II, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. Leading small voluntary discussion groups. (P/NP grading only)

197C. Community Tutoring in Applied Behavioral Sciences (1-5) I, II, III. The Staff (Chairperson in charge)
 Prerequisite: consent of instructor. Supervised tutoring in the community. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III.
 The Staff (Chairperson in charge)
 (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
 (P/NP grading only)

Graduate Courses

*201. Planning Processes in Applied Behavioral Sciences (4) I. The Staff
 Lecture—4 hours; supervised practice in planning—3 hours. Prerequisite: consent of instructor. Systematic approach to planning, including new concepts, theories, and methods for planning with application to educational institutions, agencies and the community at large.

*202. Systems Approach for Organizational Change (4) III. Hirtz
 Lecture—4 hours. Prerequisite: course 201 or consent of instructor. Organizational structure and processes from systems perspective, organization-environment interplay, dynamics of resource allocation, impact of political environment on social behavior, communication networks, role of innovation and determinants of change. Emphasis upon applications of theory for organizational learning.

*203. Evaluation and Decision Making (4) II. Goldman
 Lecture—4 hours. Prerequisite: graduate standing; knowledge of social science research methodology. Focuses on theoretical formulations and method-
240. Community Theory (4) J. Bradshaw
Lecture—2.5 hours; seminar—1.5 hours. Prerequisite: two or more upper division courses in sociology, anthropology, philosophy or critical theory. Classic and current theories of community with an emphasis on the comparative community research tradition from Redfield’s Yucatan studies to Macro-social Account-
Ing. Readings include Rousseau, Marx, Levi-Strauss, the Cornell School, Postmodernist accounts of com-
munity and critical theory.
241. The Economics of Community Development (4) II. Kenney
Lecture—4 hours. Prerequisite: course 240. Economic theories and methods of planning for communities. Human resources, community services and infra-
structure, industrialization and technological change, and regional growth. The community’s role in the greater economy.
242. Community Development: Program Management (4) III. Hirtz
Seminar—4 hours. Prerequisite: course 241. Plan-
ing, organization, financing and administration of social change projects or programs at the community or city level.
243. Professional Skills for Human Service and Community Development (4) I. The Staff
Lecture—2 hours; seminar—2 hours. Prerequisite: graduate student standing in a social science disci-
pline. Theory of interpersonal communication and small group process as applied to development of professional skills as community developer, program administrator and/or consultant.
244. The Political Economy of Domestic Development (4) III. Kenney
Lecture—4 hours. Prerequisite: course 241. Exami-
nation of the politics and institutions affecting the eco-
nomic growth of regions. Theories of development and change are examined with specific reference to case study material.
245. The Political Economy of Urban and Regional Development (4) III. Smith
Lecture—4 hours. Prerequisite: course 157, 244, or the equivalent. How global politics and economic restructuring and national and state policies are medi-
at by community politics; social prediction of urban form; analysis of the state in uneven development; dynamics of urban growth and decline; regional development in California.
290. Seminar (1) I. Wright and staff; II, III. Wright Seminar—1 hour. Analysis of research in applied behav-
ioral sciences. (SU grading only.)
297. Practicum in Community Development (2)
I, II. The Staff Seminar—2 hours. Prerequisite: course 243 and field placement in community human service agency. Application of theories and approaches of community development through field placement in a community or human service agency. Further development of skills as change agents in community settings. Con-
sideration of the field placement as it relates to rele-
vant research. May be repeated for a maximum of 4 units. (SU grading only.)
298. Group Study (1-5) II. Guarnizo
299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)
credit to students who have completed Agricultural Engineering Technology 134.

141. Technology for Agriculture in Developing Regions (3) I, II, III. The Staff Lecture—2 hours; laboratory/discussion—2 hours. Prerequisite: Physics 1A; upper division standing. Equipment used in tropical agriculture; man-, animal-, and engine-powered devices. Energy requirements, size-scale, costs, support infrastructure development, and productivity potentials. (Same course as Interna-
tional Agricultural Development 141.)

141AT. Equipment Technology for Developing Agricultu-
rural—2 hours; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 21 or the equivalent computer experience. Manage-
ment and analysis of geo-referenced data. Spatial database management and modeling. Cartographic modeling. Applications to agriculture and biological resource management. Using the ARC/INFO geo-
graphic information system.

180. Introduction to Geographic Information Systems (5) II. Plant, Wallender Lecture—2 hours; laboratory/discussion—6 hours. Prerequisite: Agricultural Systems and Environment 21 or the equivalent computer experience. Manage-
ment and analysis of geo-referenced data. Spatial database management and modeling. Cartographic modeling. Applications to agriculture and biological resource management. Using the ARC/INFO geo-
graphic information system.

181. Geographic Information Systems Modeling (5) III. Wallender Lecture—2 hours; laboratory—9 hours. Prerequisite: course 180. Advanced topics in Geographic Informa-
tion Systems (GIS), such as raster-based GIS (GRID), triangular irregular network (TIN), and net-
works. Use of GIS ARC/INFO for remote sensing and modeling of environmental terrain, transportation, hydrology, and site specific crop management.

190C. Research Conference for Advanced Undergraduates (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: consent of instruc-
tor. Research conferences for specialized study in applied biological systems technology. May be re-
peated for credit. (P/NP grading only.)

192. Internship in Applied Biological Systems Technology (1-5) I, II, III. The Staff (Hills in charge) Internship—3-15 hours. Prerequisite: upper division standing; approval of project prior to period of intern-
ship. Supervised internship in applied biological sys-
tems technology. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Hills in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Hills in charge) (P/NP grading only.)

Graduate Courses

233. Advanced Pest Control Practices (3) II. Giles Lecture—2 hours; laboratory—3 hours. Prerequisite: introductory class in entomology, plant pathology, weed science or similar discipline. Practical and the-
oretical considerations of pest control systems and techniques. Design, selection and use of mechanical systems for field, orchard, greenhouse and vector control use. Biological, legal and environmental con-
iderations in pest control and pesticide application. Not open for credit to students who have completed Agricultural Engineering Technology 161A.

163. Aquaculture Systems Engineering (3) III. Piedrahta Lecture—3 hours. Prerequisite: course 161. Design of aquacultural systems; design methodology; principles of fluid mechanics, site selection and facility planning, management operations, computer modeling. Not open for credit to students who have completed Agricultural Engineering Technology 161A.

165. Irrigation Practices for an Urban Environment (2) III. Hills Lecture—2 hours. Prerequisite: Physics 1A or 5A. Basic design, installation, and operation principles of irrigation systems for turf and landscape: golf courses, parks, highways, public buildings, etc. Emphasis on hardware association with sprinkler and drip-trickle systems. Not open for credit to students who have completed Agricultural Engineering Technology 143.

170. Design in Biological Systems Technology (3) II. Miles, Steinkne Lecture—2 hours; laboratory—3 hours. Prerequisite: Physics 1A or 5A and course 15, 16, or 17. Introduc-
tion and application of design procedures and tools. Techniques are presented for solving design prob-
lems and selecting appropriate material. Catalog and handbook utilization, government safety regulations, and environmental considerations are discussed.
Art History

(College of Letters and Science)

Jeffrey Ruda, Ph.D., Director, Program in Art History
Department Office, 111A Art Building
(916-752-0105)

Faculty
Dianne Sachko Macleod, Ph.D., Professor
Jeffrey Ruda, Ph.D., Associate Professor
Emeriti Faculty
Mary H. Fong, Ph.D., Professor Emerita
Robert J. Grigg, Ph.D., Professor Emeritus
Seymour Howard, Ph.D., Professor Emeritus

The Major Program

Art History is the study of the visual arts in civilization. It examines changing aesthetic and cultural values and significant material and ideological developments as seen in works of art and architecture. It emphasizes visual as well as verbal intelligence, providing more than the standard advantages of liberal arts training.

The Program. The student majoring in art history begins with courses which survey the arts of Asia, Europe, and America. More specialized courses follow in ancient, Byzantine, medieval, Renaissance, baroque, modern, Non-Literate, East Asian, and American art and architecture. At the same time students are encouraged to take classes in related disciplines such as religion, history, philosophy, literature, and foreign languages.

Career Alternatives. The major prepares students for advanced study either in graduate school, or in professional programs. It can also serve as the foundation for careers in teaching, research, museums, galleries, arts administration, criticism, publishing, and art investment.

A.B. Major Requirements:

Preparatory Subject Matter ..20
Three courses selected from Art History 1A, 1B, 1C, 1D, and 1E. One art studio course in drawing, printmaking, painting, or photography. One upper division course in sculpture or ceramics. One lower division substitute course permitted. Depth Subject Matter ...36
Nine upper division art history courses, which must be taken in at least four of the following five areas.
(a) Ancient/Medieval/Northern Renaissance
(b) Southern Renaissance/Baroque
(c) Modern
(d) China/Japan
(e) Non-Literate

Total Units for the Major ..56

Minor Program Requirements:

Art History ..20
Five upper division art history courses (one lower division substitute course permissible). Courses must be chosen from at least three of the following subject areas with no more than two courses in any single area.
(a) Ancient/Medieval/Northern Renaissance
(b) Southern Renaissance/Baroque
(c) Modern
(d) China/Japan
(e) Non-Literate

Honors Program. An Honors Program is available to Art History majors who are seriously considering attending graduate school. To be eligible for the program, a student must have a grade point average of 3.7 in the major. In addition to meeting the standard major requirements, the honors student completes one quarter of language in German or Chinese, or seminar (courses 190 or 198), and writes an honors thesis (course 194H). Students participating in this Program are candidates for Departmental recommendation for graduation with High or Highest Honors. See the Letters and Science section of this catalog and consult the department for more information.

Teaching Credential Subject Representative. Department Chairperson. See also the Teacher Education Program.

Graduate Study. The Program in Art History offers studies leading to the Master of Arts degree in History of Art as preparation for further graduate study or professional work. Further information may be obtained by writing to the Graduate Adviser or consulting the Graduate Announcement.

Courses in Art History (AHI)

Lower Division Courses

1A. Ancient Art (I) I. Roller
Lecture—3 hours; discussion—1 hour. Art of the pagan Mediterranean world from the prehistoric caves to the fall of the Roman Empire. GE credit: ArtHum.

1AG. Writing: On Ancient Art (I) I. Roller
Discussion—1 hour; short papers. Prerequisite: course 1A (concurrently). Group discussions and preparation of short papers for course 1A. GE credit with concurrent enrollment in course 1A. Wrt.

1B. Medieval and Renaissance Art (II) II. Grigg
Lecture—3 hours; discussion—1 hour. Christian, Bar- barian, Moslem, and Classical traditions in European Art from the fourth through the sixteenth centuries. GE credit: ArtHum.

1BG. Writing: On Medieval-Renaissance Art (II) II. Grigg
Discussion—1 hour; short papers. Prerequisite: course 1B (concurrently). Small group discussions and preparation of short papers for course 1B. GE credit with concurrent enrollment in course 1B. Wrt.

1C. Baroque and Modern Art (III) III. The Staff
Lecture—3 hours; discussion—1 hour. Major styles and masters of the Western world after the Counter Reformation. GE credit: ArtHum, Div.

1CG. Writing: On Baroque-Moder Art (III) III. The Staff
Discussion—1 hour; short papers. Prerequisite: course 1C (concurrently). Small group discussions and preparation of short papers for course 1C. GE credit with concurrent enrollment in course 1C. Wrt.

1D. Asian Art (I) I. Roller
Lecture—3 hours; discussion—1 hour. Introduction to the arts of Asia through a study of Oriental ink painting and architecture, Buddhist sculpture, Indian temples, Chinese ceramics, Japanese prints, and art in Mao's China. GE credit: ArtHum.

1DG. Writing: On Asian Art (I) I. Roller
Discussion—1 hour; short papers. Prerequisite: course 1D (concurrently). Small group discussions and preparation of short papers for course 1D. GE credit with concurrent enrollment in course 1D. Wrt.

25. Introduction to Architectural History (I) II. The Staff
Lecture—3 hours; discussion—1 hour. Formal and social history of architecture, examining design principles, major traditions, and concepts of architectural history with a focus on issues in Western architecture. GE credit: ArtHum.

25G. Writing: Introduction to Architectural History (I) II. The Staff
Discussion—1 hour. Prerequisite: course 25 concurrently. Ge credit: ArtHum.

98. Directed Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. Restricted to lower division students. (PIN required.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. (PIN required.)

Upper Division Courses

*150. Arts of Subsaharan Africa (IV) III. Crowley
Lecture—3 hours; term paper or gallery studies and review. Traditional arts and crafts of sub-Saharan Africa; particular attention to the relationships between sculpture and culture in West and Central Africa. GE credit: ArtHum, Div.

*151. Arts of the Indians of the Americas (IV) III. Crowley
Lecture—3 hours; term paper or gallery studies and review. Development of art in North America, emphasizing ancient Mexico. South American relationships and parallels. Recent and contemporary Indian arts and crafts from Alaska to Chile. GE credit: ArtHum, Div.

152. Arts of Oceania and Prehistoric Europe (IV) Crowley
Lecture—3 hours; term paper. Traditional arts of abo- riginal Australia, Melanesia, Polynesia, and Microne- sia, as seen in their cultural contexts. Prehistoric art of Europe and the Near East. GE credit: ArtHum, Div.

*154A. Early Greek Art and Architecture (IV) III. The Staff
Lecture—3 hours; gallery study and term paper. Prerequisite: upper division standing. Examination of his- tory and significance of major monuments in Greek art and architecture from the Homeric, Geometric Age to the Golden Age and the death of Socrates. GE credit: ArtHum, Wrt.

154B. Later Greek Art and Architecture (IV) III. The Staff
Lecture—3 hours; gallery studies and term paper. Prerequisite: upper division standing. Examination of the history and significance of monuments in Greek art and architecture from the Silver Age of Aristotle to Alexander to the end of the Hellenistic Age and the death of Cleopatra. GE credit: ArtHum, Wrt.

155. Roman Art (IV) III. Roller
Lecture—3 hours; term paper or gallery studies and review. The art of Republican and Imperial Rome. GE credit: ArtHum, Wrt.

163A. Chinese Art (IV) II. Fong
Lecture—3 hours; term paper or gallery studies and review. A survey from the second century focusing on the major art forms that are tradition- ally known as well as newly discovered through archaeology in China. GE credit: ArtHum, Div, Wrt.

163B. Chinese Painting (IV) III. Fong
Lecture—3 hours; term paper or gallery studies and review. The unique form of ink painting, with or without colors, depicting human and animal figures, flowers and birds, and landscape—the favorite and enduring theme of the Chinese scholar-painter. GE credit: ArtHum, Div, Wrt.

*163C. Painting in the People's Republic of China (IV) III. The Staff
Lecture—3 hours; term paper. Prerequisite: course 1D or upper division standing. Analysis of the interaction between art and politics in the emergence of China into the modern world. Integration of Western influ- ence, implementation of Mao Zedong's thought on art, and the formation of contemporary Chinese painting. GE credit: ArtHum, Div, Wrt.

*164. The Arts of Japan (IV) III. The Staff
Lecture—3 hours; term paper and/or gallery studies and review (determined by instructor each quarter course offered). Study of the significant achievements in architecture, painting, sculpture, and decorative arts from prehistoric age to twentieth century. GE credit: ArtHum, Div, Wrt.

168. Great Cities (IV) II. The Staff
Lecture—3 hours; term paper. Transformation in archi- tecture and urban form in Paris, London, and Vienna in the context of varying social, political, and eco-
nomic systems as well as very different cultural tradi-
tions, concentrating on the years 1830-1914. Offered in alternate years. GE credit: ArtHum, Wrt.

*176A. Art of the Middle Ages: Early Christian and Byzantine Art (4) I. The Staff Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture of the early Christian era in Constantinople and the later Roman Empire in the West and to the final cap-
ture of Constantinople in the East. GE credit: ArtHum, Wrt.

*176B. Art of the Middle Ages: Early Medieval and Romanesque Art (4) I. The Staff Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture of western Europe in the early medieval era, from the rise of the barbarian kingdoms through the twelfth century. GE credit: ArtHum, Wrt.

176C. Art of the Middle Ages: Gothic (4) I. Grigg Lecture—3 hours; term paper or gallery studies and review. Painting, sculpture and architecture in northern Europe from the twelfth through the fifteenth centuries.

*177A. Northern European Art (4) III. The Staff Lecture—3 hours; term paper or gallery studies and review. Northern European art of the fifteenth century in Austria, Germany, France and the Lowlands, in-
cluding such artists as Jan van Eyck and Hieronymus Bosch. GE credit: ArtHum, Wrt.

*177B. Northern European Art (4) I. The Staff Lecture—3 hours; term paper or gallery studies and review. Painting and sculpture of the sixteenth century in Germany, France and the Lowlands, including such artists as Albrecht Dürer and Pieter Bruegel. GE credit: ArtHum, Wrt.

178A. Italian Renaissance Art (4) II. Ruda Lecture—3 hours; term paper or gallery studies and review. Giottos and the origins of the Renaissance; painting and sculpture in Italy from Nicola Pisano through Lorenzo Monaco, with emphasis on Duccio, Giotto, and other leading artists of the early fourteenth century. GE credit: ArtHum, Wrt.

*178B. Italian Renaissance Art (4) II. Ruda Lecture—3 hours; term paper or gallery studies and review. Early Renaissance in Florence; fifteenth-cen-
tury artists from Donatello and Masaccio through Bot-
ticelli, in their artistic and cultural setting. GE credit: ArtHum, Wrt.

178C. Italian Renaissance Art (4) III. Ruda Lecture—3 hours; term paper or gallery studies and review. Seventeenth-century painting, including such artists as Caravaggio, Rubens, Rembrandt, and Velázquez. Offered in alternate years. GE credit: ArtHum, Wrt.

182. British Art (1750-1914) (4) III. Macleod Lecture—3 hours; discussion—1 hour. Prerequisite: course 1C. Analysis of the place of art in British culture—1750 to 1914. Topics include influence of class and gender on art education, patronage, and exhibitions. Artists: Hogarth, Turner, Pre-
Raphaelites, and lesser-known advocates of military, social realist, and colonial themes. GE credit: ArtHum, Div, Wrt.

183A. Art in the Age of Revolution (4) II. Macleod Lecture—3 hours; discussion—1 hour. Prerequisite: at least one course in art or consent of instructor. Analy-
sis of political and stylistic implications of European painting from 1750 to 1860. Artists studied include Goya, David, Delacroix, Constable, Turner, the Pre-
Raphaelites, and Courbet. GE credit: ArtHum, Wrt.

183B. Impressionism and Post-Impressionism (4) III. Macleod Lecture—3 hours; discussion—1 hour. Prerequisite: at least one course in art or consent of instructor. Social and cultural study of major European art movements between 1860 and 1900, including an examination of the paintings of Manet, Monet, Renoir, Whistler, Gau-
guin, van Gogh, Cezanne, and Redon. GE credit: ArtHum, Wrt.

183C. Modern Art: 1900-1945 (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: at least one course in art or consent of instructor. Exam-
ination of modern movement in European art from Fauvism and Cubism to Surrealism and Abstract Expressionism (1900-1945). Artists studied include Picasso, Matisse, Kandinsky, Malevich, and Pollock. GE credit: ArtHum, Div, Wrt.

*183D. Modern Sculpture (4) III. The Staff Lecture—3 hours; term paper or gallery studies and review. Sculpture from Neo-Classicism to the present.

183E. Contemporary Art: 1945 to the Present (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: at least one course in art or consent of instructor. Paint-
ing and sculpture in Europe and America from 1945 to the present, with emphasis on the New York school, Pop art, Op art, Earthworks, and Feminist art. GE credit: ArtHum, Div, Wrt.

184. Twentieth Century Architecture (4) I. The Staff Lecture—3 hours; term paper. Prerequisite: course 25 recommended. Major movements in architecture of the twentieth century in Europe and America. Formal innovations are examined within the social, political, and economic circumstances in which they emerged. GE credit: ArtHum, Wrt.

188B. Architecture of the United States (4) I. The Staff Lecture—3 hours; term paper. Prerequisite: course 25 recommended. American architecture from the first European settlers to Postmodernism. Technological and formal developments will be examined within the social, political, and economic context in which they emerged. Issues include ideals of domesticity and the development of the architectural profession. GE credit: ArtHum, Wrt.

188C. Painting of the United States (4) I. The Staff Lecture—3 hours; discussion—1 hour; term paper or gallery studies and review. American pictorial develop-
ment from 1650 to the present, with emphasis on twentieth-century developments. GE credit: ArtHum, Wrt.

*190. Undergraduate Seminar (4) II. The Staff (Program Director in charge) Lecture—3 hours; term paper. Prerequisite: consent of instructor. Intended primarily for senior and ins-
tudents in the history of art. Assigned readings, discus-
sions, and a substantial paper in a particular area of art history will introduce the student to methodology and techniques of art historical research. May be repeated once for credit. Limited enrollment.

192. Internship (2–12) I, II, III. The Staff (Program Director in charge) Internship—term paper or catalogue. Supervised pro-
gram of internships at professional art institutions such as museums, galleries, and art archives includ-
ing collections of slides and photographs. May be repeated once for credit. (P/NP grading only.)

194H. Special Study for Honor Students (4) I, II, III. The Staff Independent study—12 hours. Prerequisite: course 190 or the equivalent, as determined by the major adviser. Open only to students in the Art History Honors Program. Independent study of an art historical problem culminating in the writing of an honors thesis under the supervision of a faculty guidance committee.

198. Directed Group Study (1-5) I, II, III. The Staff (Program Director in charge) (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Program Director in charge) (P/NP grading only)

Graduate Courses

200. Introduction to Art Historical Research (4) I. McLeod Seminar—4 hours. Introductory sampling of major writings, methods, and sources used for research in the discipline of art history.

250. Problems in Art Historical Research (4) II. The Staff Seminar—3 hours; term paper. Major topics in art his-
torical research, emphasizing special methods of investigation, and of historical and critical analysis. May be repeated for credit.

*251. Seminar in Tribal Arts (4) II. The Staff Seminar—3 hours; term paper. Selected topics in the art and aesthetics of small scale societies. May be repeated for credit when topic differs and with con-
sent of instructor.

*254. Seminar in Classical Art (4) III. The Staff Seminar—3 hours; term paper. Selected topics in spe-
cial study in classical art of the Greek and Roman tra-
dition. Course may be repeated for credit with consent of instructor.

*263. Seminar in Chinese Art (4) II. Fong Seminar—3 hours; paper. Selected areas of special study in Chinese Art. May be repeated for credit with consent of instructor.

*276. Seminar in Medieval Art (4) III. Grigg Seminar—3 hours; term paper. Selected topics in spe-
cial study in medieval art from Early Christian to late Gothic. May be repeated for credit with consent of instructor.

278. Seminar in Italian Renaissance Art (4) III. Ruda Seminar—3 hours; term paper. Selected areas of spe-
cial study in Italian art from the fourteenth to the six-
teenth century. May be repeated for credit with consent of instructor.

283. Seminar in Modern European Art (4) II. Macleod Seminar—3 hours; term paper. Selected areas of spe-
cial study in art since 1800 in Europe. May be repeated for credit with consent of instructor.

*288. Seminar in European and American Architecture (4) II. The Staff Seminar—3 hours; term paper. Exploration of selected topics in European and American architect-
ural history with concentration on the Modern Period. May be repeated for credit with consent of instructor.

299. Individual Study (1-6) I, II, III. The Staff (Program Director in charge) (SIU grading only)

Professional Course

390. Introduction to Teaching Art History for Teaching Assistants (1) I, II, III. The Staff Discussion—1 hour. Designed for teaching assistants with emphasis on problems and procedures encoun-
tered by teachers of undergraduate art history. (SIU grading only)

Professional Courses

*402. Museum Training: Exhibition Methods (4) II. Ames Seminar—3 hours, exhibition. Approved for graduate degree credit. History of exhibition methods in pri-
ivate and public collections. Comparisons of different types of museums and their exhibition problems. Lighting and techniques of display with emphasis on actual design. Experimentation with unusual presen-
tation forms.

Note: Various of the above courses are not offered each year; please check the quarterly Class Sched-
ule and Room Directory.
Art Studio

(College of Letters and Science)

Gyöngy Laky, M.A., Chairperson of the Department
Department Office, 111A Art Building
(916-752-0105); Hours: 9:00 a.m. to 4:00 p.m.

Faculty

L. Price Amerson, Jr., Ph.D., Lecturer (Director, Nelson Gallery)
Conrad Atkinson, R.A.S. (honors), Professor
Squeak Carnwath, M.F.A., Professor
William Henderson, M.F.A., Professor
Lynn Hershman, M.A., Professor
Harvey Himmelbarf, M.A., Professor, Academic Senate Distinguished Teaching Award
David Hollowell, M.F.A., Associate Professor
Gyöngy Laky, M.A., Professor
Malaguivas Montoya, M.A., Cooperating Professor
Lucy A. Puls, M.F.A., Associate Professor
Irl Rogoff, Ph.D., Associate Professor
Cornelia Schulz, M.F.A., Professor, Academic Senate Distinguished Teaching Award
Baochi Zhang, M.F.A., Assistant Professor

Emeriti Faculty

Richard D. Cramer, M.F.A., Professor Emeritus
Roy Defeo, M.A., Professor Emeritus
Roland C. Petersen, M.A., Professor Emeritus

Professor Emeritus, UC Davis Prize for Teaching and Scholarly Achievement

The Program

The studio art major provides the knowledge and experience necessary for a broad understanding of the visual arts.

The Program. For the beginning student, the major offers an introduction to drawing, composition, sculpture, and art history. Students may then advance to more specialization (painting, sculpture, printmaking, ceramics, photography, film making, electronic arts, as well as theory and criticism) in upper division work.

Portfolios. Admitted students, once at Davis, should keep a continuing portfolio of their art work which is subject to faculty perusal at such times as when the student is declaring the major, requesting independent study courses, and scheduling an exhibition in the student gallery.

Career Alternatives. The studio art graduate is prepared for graduate work or continuing development as a professional artist or art teacher. Students who have career aspirations in the commercial aspects of the visual arts can acquire a broad general education and a creative foundation in the art studio major, establishing a basis for further specialization in commercial art.

A.B. Major Requirements:

Preparatory Subject Matter

Three courses from Art Studio 2, 3, 4, 5, 16, see prerequisites required for upper division courses. 12
Three courses from Art History 1A, 1B, 1C, 1D, 2, 3, 99. Depth Subject Matter. 40
Six courses, under three different instructors, chosen from Group A, Practice of Art. 24
Two courses from Group B, Theory and Criticism. 8
Two upper division courses in art history. 8
Total Units for the Major. 64

Recommended

(a) Students interested in drawing and painting should take Art Studio 2, 3, 4 (course 5 is recommended).
(b) Students interested in sculpture should take Art Studio 2, 3, 5 (course 4 is recommended); and
(c) Students preparing for graduate work in any of the environmental design professions should take Art Studio 2, 5, 16.

Major Advisers. See the Class Schedule and Room Directory.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>STUDY</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art Studio.</td>
<td>20</td>
</tr>
<tr>
<td>Upper division art studio courses chosen either in consultation with a faculty adviser (one lower division substitute course permissible)</td>
<td>20</td>
</tr>
<tr>
<td>Prerequisite courses must be taken prior to enrollment in upper division courses. Independent study courses are not applicable.</td>
<td></td>
</tr>
</tbody>
</table>

Teaching Credential Subject Representative.

Major Program

The Department of Art offers programs of study and research leading to the M.F.A. degree in the practice of art. Detailed information regarding graduate study may be obtained from the Graduate Admissions Office or the Art Office.

Courses in Art Studio (ART)

Lower Division Courses

Studio—6 hours. Form and composition in black and white.

10. Introduction to Art Appreciation (4) III. The Staff
Lecture—3 hours; term paper or gallery studies and review. Understanding and appreciation of painting, sculpture, architecture, and industrial art. Illustrated lectures. Intended for students not specializing in art. Does not count towards major. (PINP grading only.)

30. Introduction to Contemporary Visual Culture (4) I. The Staff
Lecture—3 hours; discussion/laboratory—1 hour. Establishing visual literacy across the media of fine art, photography, advertising, television and film; media culture; focus on critical decoding of contemporary visual culture. GE credit: Artulum, Div. Wrt.

98. Directed Group Study (1-5) I, II, III. The Staff
Chairperson in charge
Prerequisite: consent of instructor. Restricted to lower division students. (PINP grading only)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff
Chairperson in charge
Prerequisite: consent of instructor. (PINP grading only)

Upper Division Courses

Note: Upper division courses are listed under three groups: (A) Practice of Art; (B) Theory and Criticism; (C) Special Study Courses.

Prenrollment in upper division courses is restricted to art majors. Art minors may obtain permission to preenroll by filling out a "Waiver of Restriction" form in the Art office.

Group A: Practice of Art

101. Painting: Materials and Carriers (4) I, II. Atkinson, Carnwath Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Experimentation in media and their supports.

102. Painting (4) I, II, III. Carnwath, Henderson, Schulz Studio—6 hours. Prerequisite: course 101 or consent of instructor. Advanced painting in various media including oil and polymers. May be repeated once for credit with consent of instructor.

103. Advanced Drawing (4) I, II. Atkinson Studio—6 hours. Prerequisites: courses 2, 3, 4, 16, or consent of instructor. Advanced drawing, composition and form in black and white and color. May be repeated once for credit with consent of instructor.

104. Figure Drawing and Painting (4) I, II. Zhang, Hollowell Studio—6 hours. Prerequisite: courses 4 and 101, or consent of instructor. Advanced figure drawing and painting using the human figure as subject. May be repeated once for credit with consent of instructor.

110. Photography I (4) I, II, III. The Staff
Studio—6 hours. Prerequisite: courses 2, 3, 4, or consent of instructor. Photography as an art form. Experiments with camera and light sensitive materials.

111. Photography II (4) II. The Staff
Studio—6 hours. Prerequisite: course 110 or consent of instructor. Art of camera and light sensitive materials: tonal control, multiple exposure, synthetic negatives, etc. May be repeated once for credit with consent of instructor.

113. Interdisciplinarity (4) II. Hershman Studio—6 hours. Prerequisite: one course in Art History or Art Studio. Focus on the uses of two or more art forms to make a unique art work; also, ideas of collaboration and reconfigured and integrated forms as new methods of expression that do not solely depend on unique authors.

114. Identity and Technology (4) III. Hershman Studio—6 hours. Prerequisite: one course in Art History or Art Studio. The notion of "self", "portraiture" and "identity" as it is defined in an electronic world in which media alters perceptions of belief as individuals and society. Hands-on projects plus theoretical analysis of media.

115. Film-Making I (4) I. The Staff
Studio—6 hours. Prerequisite: courses 2, 3, 4, or consent of instructor. Film-making as an art form; 8 and 16 mm. cameras and sound track. May be repeated once for credit with consent of instructor.

116. Video Practice and Theory (4) III. Henderson Studio—6 hours. Prerequisite: 12 units of lower division art studio classes. Production techniques of video, including shooting, editing, lighting, sound and effects. A conceptual framework for video-art techniques.

117. Experimental Documentary (4) III. Hershman Studio—6 hours. Prerequisite: upper division standing. Study of the documentary form with particular attention to hybrid forms of film, video and computer genre. May be repeated once for credit with consent of instructor when topic differs.

120. Intermedia Art (4) III. Zhang Studio—6 hours. Prerequisite: three courses chosen from the following: courses 2, 3, 4, 5, and 16. Use of multiple media in artmaking. Human body as artistic medium. Non-traditional visual media. Problem solving on conceptual and technical levels. Visual metaphors, narrative, intuition, meaning and expression in art. May be repeated once for credit when topic differs and with consent of instructor.

125. Printmaking: Relief (4) I. The Staff
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Woodcut, linocut, metal-plate relief and experimental uses of other materials.

*Course not offered this academic year.
126. Printmaking: Intaglio (4) I, III. Atkinson and staff
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Metal plate etching, aquatint, hard- and soft-ground, burin engraving and related methods. May be repeated once for credit with consent of instructor.

127. Printmaking: Lithography (4) II. The Staff
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Stone and metal-plate lithography and other planographic methods. May be repeated once for credit with consent of instructor.

128. Printmaking: Serigraphy (4) III. The Staff
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Silk screen and related stencil methods. May be repeated once for credit with consent of instructor.

*131. Gender, Vision, and Difference (4) III. Rogoff
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 30 or Women's Studies 50. Examination of the way vision establishes power relations within cultures. How vision and visual culture determine who is visible and invisible, who is beautiful and who is ugly, and who is included and who is excluded within the languages of culture. GE credit: ArtHum, Div, Wrt.

132A. The Tradition of Modernism (4) I. The Staff
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: one of course 30, or Art History 183A, 183B, 183C or 184. The emergence of modernism in painting and sculpture, from the early twentieth century to the 1940s. Critical examination of the emergence of modernism, the ideologies it supported, and the exclusions it practiced. Offered in alternate years. GE credit: ArtHum, Wrt.

132B. The Theory of Modernism (4) II. The Staff
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 132A. Re-examination of materials of Modernist art through a set of critical analytical tools which will help in understanding what cultural and ideological beliefs these art forms sustained. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

141. Sculpture: Material Explorations (4) II. Puls Studio—6 hours. Prerequisite: course 5. Primary application and exploration of a single sculptural material. Examination of its properties, qualities and characteristics for three dimensional expression. May be repeated twice for credit in different subject area with consent of instructor.

142. Sculpture: Ceramics I (4) I, II. The Staff
Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Introduction to ceramic forms and processes.

143. Sculpture: Ceramics II (4) III. The Staff
Studio—6 hours. Prerequisite: course 142 or consent of instructor. Introduction to color, as well as glazing and use of kiln. May be repeated once for credit with consent of instructor.

144. Sculpture: Figure Modeling (4) I. Zhang Studio—6 hours. Prerequisite: courses 2, 3, 4, 5, or consent of instructor. Sculpture in various media using the human figure as subject. May be repeated once for credit with consent of instructor.

145. Sculpture: Concepts (4) III. Puls Studio—6 hours. Prerequisite: course 5 or consent of instructor. Investigation through the creation of sculpture of the relationship of idea to form and material. May be repeated once for credit in different subject area with consent of instructor.

146. Sculpture: Ceramics III (4) III. The Staff
Studio—6 hours. Prerequisite: course 141, 143, 144, or 145. Advanced form and color. Clay sculpture in relief and ground. May be repeated once for credit with consent of instructor.

Group B: Theory and Criticism

147. Theory and Criticism of Photography (4) III. The Staff
Lecture—3 hours; term paper. Prerequisite: course 2 or 5 and one art lecture course. Development of camera vision, ideas, and aesthetics and their relationship to the fine arts from 1839 to the present. GE credit: ArtHum, Wrt.

148. Theory and Criticism: Painting and Sculpture (4) I. The Staff
Lecture—3 hours; term paper. Prerequisite: course 2 or 5, and one art lecture course. Study of forms and symbols in historic and contemporary masterpieces. GE credit: ArtHum, Wrt.

149. Introduction to Critical Theory (4) III. Rogoff
Lecture—3 hours; discussion—1 hour. Prerequisite: two of Art History 1B, 1C, or 183F. An overview of 20th century critical theories of culture and their relation to visual art and mass media culture. GE credit: ArtHum, Div, Wrt.

150. Theory and Criticism of Electronic Media (4) I. Hershenson
Lecture—3 hours; term paper. Prerequisite: course 116 or 117. The history of electronic media, stressing both critique, application and relationship to art practice. Analysis of the conceptual biases of electronic media as an artistic mode of expression. GE credit: ArtHum, Wrt.

171. Mexican and Chicano Mural Workshop (4) III. Montoya Studio—8 hours; independent study—1 hour. Prerequisite: Chicana/o Studies 70 and/or written consent of instructor. The mural: a collective art process that empowers students and people through design and execution of mural paintings in the tradition of the Mexican Mural Movement; introduces materials and techniques. May be repeated once for credit. (Same course as Chicana/o Studies 171.)

Group C: Special Study Courses

192. Internship (2-12) I, II. The Staff
Lecture—3 hours; term paper. Supervised program of internships at professional art institutions such as museums, galleries, and art archives including collections of slides and photographs. May be repeated once for credit. (P/NP grading only.)

*193. Seminar in Art Practice (4) I, II, III. The Staff
Discussion/laboratory—8 hours; variable—4 hours. Prerequisite: courses 2 and 3; upper division standing; taking or having taken courses in upper division drawing, painting, and sculpture. Work (painting, sculpture, drawing, etc.) done for group discussion and criticism, as well as group discussion of contemporary topics in the visual arts. May be repeated once for credit.

198. Directed Group Study (1-5) I, II, III. The Staff
Discussion/laboratory—8 hours; variable—4 hours. Prerequisite: courses 2 and 3; upper division standing; taking or having taken courses in upper division drawing, painting, and sculpture. Work (painting, sculpture, drawing, etc.) done for group discussion and criticism, as well as group discussion of contemporary topics in the visual arts. May be repeated once for credit. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Discussion/laboratory—4 hours; variable—1 hour. Prerequisite: courses 2 and 3; upper division standing; taking or having taken courses in upper division drawing, painting, and sculpture. Work done for discussion and criticism, as well as group discussion of contemporary topics in the visual arts. May be repeated once for credit. (P/NP grading only.)

Graduate Courses

201. Experiments in Art and Visual Communication (4) I, II, III. The Staff
Lecture—3 hours. Original work produced for class discussion and criticism. May be repeated for credit.

290. Seminar (4) I, II, III. Hershenson, Carawan, Schurzak and staff
Seminar—3 hours. Original works produced for group discussion and criticism; associated topics of a contemporary and historical nature. May be repeated for credit.

291. Seminar: Critical Evaluation (1) I. The Staff (Graduate Adviser in charge)
Seminar—1 hour. May be repeated for credit. (S/U grading only.)

292. Seminar: Comprehensive Qualifying (1) I. The Staff (Graduate Adviser in charge)
Seminar—1 hour. Further critical evaluation of the student’s work to determine his eligibility to begin the Comprehensive Project. May be repeated for credit. (S/U grading only.)

Asian American Studies

Asian American Studies (College of Letters and Science)

Stanley Sue, Ph.D., Director
Program Office, 3102 Hart Hall (916-752-3625)

Committee in Charge

Angela Y. Cheer, Ph.D. (Mathematics)
Roy H. Ooi, Ph.D. (Molecular and Cellular Biology)
Isao Fujimoto, M.A. (Human and Community Development, Asian American Studies)
Darrell Y. Hamamoto, Ph.D. (Asian American Studies)
Wendy A. Ho, Ph.D. (Asian American Studies, Women’s Studies)
Carl C. Jorgensen, Ph.D. (Sociology)
Peter C.Y. Leung, M.S. (Asian American Studies)
Beatriz Pesquera, Ph.D. (Chicana/o Studies)
Kent Ono, Ph.D. (Asian American Studies, Psychology)
Stanley Sue, Ph.D. (Asian American Studies, Asian American Studies)
Stefano Varesi, Ph.D. (Native American Studies)

Faculty

Darrell Y. Hamamoto, Assistant Professor
Wendy A. Ho, Ph.D., Assistant Professor
Peter C.Y. Leung, M.S., Senior Lecturer
Kent A. Ono, Assistant Professor
Stanley Sue, Ph.D., Professor

Program of Study

Currently, Asian American Studies does not offer a major. A minor program in Asian American Studies is available to students interested in this field of study.

American History and Institutions. This university requirement can be satisfied by one of the following courses in Asian American Studies: 1, 2. (See also under University Requirements.)

Related Courses. For courses in Asian languages, see Cantonese (below) and Chinese and Japanese. For other Asian courses, see Chinese and Japanese, and East Asian Studies.
Atmospheric Science

Minor Program Requirements:

Asian American Studies

Asian American Studies 100, 110, 111, 112, 130, 136, 150, 155, 192

1-2-3. Elementary Cantonese

1-2-3. Elementary Cantonese

Atmospheric Science

111. Ethnic Self and Identity

112. Asian/Pacific American Women

110. Historical Experience of Asian Americans

113. Asian American Drama

American Studies

1. Historical Experience of Asian Americans

2. Contemporary Experience of Asian Americans

3. Legal History and the Asian American

Upper Division Courses

92. Internship

The Staff

4. 5-6. Intermediate Cantonese

100. Asian American Communities (4) II

110. Theoretical Perspectives in Asian American Studies (4) I

Courses in Cantonese (CAN)

Lower Division Courses

1-2-3. Elementary Cantonese

4-5-6. Intermediate Cantonese

Asian Studies

See Asian American Studies; and East Asian Studies

Astronomy

See Physics

Atmospheric Science

(See under Department of Land, Air and Water Resources.)

The Major Program

Atmospheric science is the study of the layer of air that surrounds the planet. It includes all weather phenomena, such as frontal systems and clouds, as well as severe weather events such as hurricanes and tornadoes. Concerns regarding the effects of human activity on the quality of the air we breathe, and on possible global warming are also central to this field of study.

The Program.

Modern meteorology is a quantitative science that is becoming increasingly computer oriented. In addition to the study of daily weather events, the program deals with fundamental physical processes that involve the general circulation of the atmosphere; mass and energy transfers to the planetary surface and within the atmosphere; solar and terrestrial radiation; atmospheric interaction with the biosphere; climate variations; air pollution meteorology; and developments in modern meteorological instrumentation. As well as providing a broad background in meteorology, the major includes an informal minor area to be chosen from mathematics, computer science, environmental studies, resource management or a physical or biological science.

Internships and Career Alternatives. Atmospheric science students have participated in internships with the California Air Resources Board, various county Air Pollution Control Districts, and the National Weather Service. Numerous career opportunities exist in the federal and state governments, research and development in the private sector, and education. Examples of career areas are weather forecasting, agricultural meteorology, air-pollution forecasting and control, weather modification, hurricane and severe weather forecasting and research, weather satellite meteorology, environmental consulting, and weather research. About half of our graduates continue their education by seeking the M.S. or Ph.D. degree in atmospheric science.
B.S. Major Requirements: (For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable.)

UNITS

English Composition Requirement 8
See College requirement

Preparatory Subject Matter ... 62
Biological sciences courses selected with adviser’s approval 8
Chemistry (Chemistry 2A, 2B) .. 10
Computer science (Engineering 5 or the equivalent in FORTRAN programming) 3
Meteorology (Atmospheric Science 60) 4
Physics (Physics 9A, 9B, 9C) ... 12
Statistics (Statistics 32) .. 3

Breadth/General Education .. 28
Satisfaction of General Education requirement 6-16
Additional units in social sciences and humanities to total 28

Depth Subject Matter ... 32
Atmospheric Science 110, 111, 120, 121A, 121B, 124, 128 .. 25
Upper division Atmospheric Science courses selected with adviser’s approval No more than 3 units of courses 192 and 199 may be counted.

Restricted Electives .. 21
Earth and planetary sciences (choose from Environmental Studies 116, 150A, 150B, Geography 117, Geology 105, 113, 115, Environmental and Resource Sciences 103, Soil Science 100, Water Science 100, 141, or courses approved by adviser) .. 6
Coordination of courses (minor area) to be chosen with adviser’s approval from mathematics, computer science, environmental studies, resource management, or a physical or biological science 15

Unrestricted Electives ... 29-37

Total Units for the Degree .. 180

Major Adviser. S. Soong (Land, Air and Water Resources).

Advising Center for the major, as well as for graduate studies, is located on the 4th floor of Hoagland Hall in the Land, Air and Water Resources Teaching Center (916-752-1669).

Minor Program Requirements: Minor Program. The minor in Atmospheric Science provides a broad treatment of weather and climate, with the option to focus on such topics as climate change, meteorological instrumentation, and satellite remote sensing. Students undertaking the minor should have completed minimum preparatory course work in calculus and physics (Mathematics 16A-16B, Physics 5A or 7A). Some upper division courses in Atmospheric Science have as prerequisites the Mathematics 21 and 22 series and the Physics 9 series.

UNITS

Atmospheric Science .. 20-24
Atmospheric Science 60, 110, 111, 120, 121A, 121B, 124, 128, 129 .. 25
Four courses selected with the approval of the minor program adviser from the following: upper division Atmospheric Science courses (excluding 100, 192 or 199) or Environmental and Resource Sciences 131 .. 12-16

Graduate Study. You can specialize in particular areas through a minor program and research leading to the M.S. and Ph.D. degrees. For details see under the Graduate Group in Atmospheric Science. See also the Graduate Studies section in this catalog.

Related Courses. See Environmental Studies 150A; Physics 104A, 104B, Environmental and Resource Sciences 103, 131.

Courses in Atmospheric Science (ATM) Questions pertaining to the following courses should be directed to the instructor or to the Land, Air and Water Resources Teaching Center, 148 Hoagland Hall (916-752-1669).

Lower Division Courses

5. Global Climate (3) I. Shelton
Lecture—2 hours; discussion—1 hour. Introduction to the climate system and global climate patterns. Emphasis on principles, concepts, and fundamental processes underlying seasonal and regional climate differences. Examination of natural and human factors contributing to climate change. GE credit: SciEng, Wrt.

10. Severe and Unusual Weather (3) III. Carroll
Lecture—2 hours; discussion—1 hour. Introduction to physical principles of severe and unusual weather: flood, blizzards, thunderstorms, lightning, tornadoes, and hurricanes. Emphasis on scientific perspective and human context. (Former course 100.) GE credit: SciEng, Wrt.

30. Issues in Atmospheric Science (2) II. Paw U
Lecture—1 hour; discussion—1 hour. Prerequisite: high school physics. Introduction to selected topics in atmospheric science, such as: meteorological aspects of air pollution, use of computer models in weather forecasting, theories of global climate change, impact of satellites on meteorology, and modern meteorological instrumentation. (P/NP grading only)

60. Atmospheric Physics and Dynamics (4) I. Shelton
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16A and Physics 5A. Composition and thermal structure of the atmosphere. Radiation and the heat budget of the earth and its atmosphere. Cloud formation and precipitation processes. The atmosphere in motion, thunderstorms and other severe weather phenomena.

92. Atmospheric Science Internship (1-12) I, II, III.
The Staff (Chairperson in charge)
Internship—36 hours. Prerequisite: lower division standing and consent of instructor. Internship off and on campus in atmospheric science. Internship supervised by a member of the faculty. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

Special Study for Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge) (P/NP grading only)

Upper Division Courses

110. Weather Observation and Analysis (4) II. Soong
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 60. Acquisition, distribution and analysis of meteorological data. Vertical sounding analysis, stability indices, probability of local severe weather, weather map analysis. Use of National Weather Service analyses and forecast products. Laboratory makes use of computer-generated analyses.

111. Weather Analysis and Prediction (5) I. Grotjahn
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 110, 121B, knowledge of FORTRAN (Engineering 5). Introduction to the tools used for analyzing and predicting mid-latitude weather systems. Quasigeostrophic theory. Evidence of predictability and weather forecast model design and verification. Laboratory develops computer methods to illustrate topics in lecture.

115. Hydroclimatology (3) II. Shelton
Lecture—3 hours. Prerequisite: course 60. Examination of climate as the forcing function for the hydrologic system. Emphasis on seasonal variations in the relationships between precipitation and evapotranspiration for meso-scale areas. Watershed modeling of floods and drought for evaluating the effects of climate fluctuations.

116. Climate Change (3) II. Shelton
Lecture—3 hours. Prerequisite: course 60. Climate trends and patterns spanning the recent past and the future. Emphasis on natural processes that produce climate variations and human influence on these processes. Evidence of climate change and the role of global climate models in understanding climate variability.

120. Atmospheric Thermodynamics and Cloud Physics (3) I. Soong
Lecture/discussion—3 hours. Prerequisite: Mathematics 21C; Physics 9A; course 60 (may be taken concurrently). Atmospheric composition and structure, thermodynamics of atmospheric gases, thermal properties of dry and moist air, atmospheric stability; cloud nucleation, cloud growth by condensation and collision, cloud models.

121A. Atmospheric Dynamics (3) II. Nathan
Lecture—3 hours. Prerequisite: course 120, Mathematics 21D, Physics 9B. The atmosphere in motion: equations of motion for rotating atmospheres; pressure and density fields and their relations to atmospheric circulation; wave motion in the atmosphere; vorticity. The physical basis of modern numerical methods in meteorology.

121B. Atmospheric Dynamics (3) III. Nathan
Lecture—3 hours. Prerequisite: course 121A. The dynamics of fluid motion in geophysical and laboratory systems: Rossby waves; Helmholtz waves; the effect of turbulence; boundary layers; the Ekman layer. The dynamics of convective motion: the Rayleigh problem, penetrative convection; convective plumes; cumulus models.

124. Meteorological Instruments and Observations (3) I, II, III.
The Staff
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 60, Physics 9B, Mathematics 22B, 21D. Concepts of atmospheric radiation and the use of satellites in remote sensing. Emphasis on the modification of solar and infrared radiation by the atmosphere. Estimation from satellite data of atmospheric variables such as temperatures and cloudiness.

133. Biometeorology (4) II. Paw U
Lecture—3 hours; discussion/laboratory—2 hours. Prerequisite: course 60, Physics 9B, Meteorology 22B, 21D. Concepts of atmospheric radiation and the use of satellites in remote sensing. Emphasis on the modification of solar and infrared radiation by the atmosphere. Estimation from satellite data of atmospheric variables such as temperatures and cloudiness.

149. Introduction to Air Pollution (3) I, Carroll, Chang, Raabe (Civil Engineering)
Lecture—3 hours. Prerequisite: Mathematics 22B, 21D; Chemistry 2B; course 121A or Engineering 103A. Examination of physical and technical aspects of air pollution. Emphasis on geophysical processes and air pollution meteorology as well as physical and chemical properties of pollutants. (Same course as Civil Engineering 149.)

150. Computer Methods in Meteorology (4) II. Grotjahn
Lecture—3 hours; laboratory/discussion—2 hours. Prerequisite: Engineering 5, Mathematics 22B, and a course in fluid dynamics (course 121A, Physics 104A or Engineering 103A), or consent of instructor. Numerical techniques and their applications to meteorological problems. Finite differencing and spectral (Fourier transform) methods. Advection equation, simple forecast models, eigenvalue matrices, time series. Students will write and run FORTRAN programs to illustrate these topics.

Atmospheric Science 151
Avian Sciences

158. Boundary-Layer Meteorology (4) Ill. Shaw Lecture—3 hours; discussion—1 hour. Prerequisite: course 121A. Growth, development and structure of the atmosphere. Precipitation influenced by the underlying surface and extending to a maximum of about two kilometers under convective conditions. Turbulent diffusion in the boundary layer. The microclimate and near the ground surface.

192. Atmospheric Sciences Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Internship off and on campus in atmospheric science. Internship supervised by a member of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: three upper division units in Atmospheric Science and at least an overall B average. (P/NP grading only.)

Graduate Courses

*200. Atmospheric Processes (3) I. Grotjahn Lecture—3 hours. Prerequisite: Mathematics 228B-229B. Advanced phenomenological and physical study of atmospheric structure and processes including radiation, statics, structural and weather phenomena. Accelerated presentation of the major topics covered in courses 60, 110A-110B, 126 and 128. Credit not allowed to students having completed any two of these courses.

221. Advanced Atmospheric Dynamics (3) II. Nathan Lecture—3 hours. Prerequisite: course 121B. Conditions for instability in stratified atmospheres; baroclinic instability; forced topographic Rossby Waves; wave-mean flow interaction theory; tropical dynamics; stratospheric dynamics.

230. Atmospheric Turbulence (3) III. Shaw Lecture—3 hours. Prerequisite: course 121B or 158. Dynamics and energetics of turbulence in the atmosphere including vorticity dynamics. Statistical description of turbulence; Eulerian and Lagrangian scales, spatial and temporal, conditional sampling techniques. Turbulent diffusion; the closure problem, gradient-diffusion and second-order methods. Offered in alternate years.

231. Advanced Air Pollution Meteorology (3) III. Carroll Lecture—3 hours. Prerequisite: course 149, and one course in fluid dynamics. Processes determining transport and diffusion of primary and secondary pollutants. Models of turbulence, of the atmospheric boundary layer and of mesoscale wind fields, as applicable to pollutant dispersion problems are examined. Offered in alternate years.

*233. Advanced Biometeorology (3) II. Paw U Lecture/discussion—3 hours. Prerequisite: course 133 or consent of instructor. Current topics in biometeorology. Physical and biological basis for water vapor, other gases, and energy exchange with the atmosphere. Topics include modeling and measuring turbulent transport from plant canopies, surface temperatures and energy budgets, bio-aerosol physics and atmospheric chemistry. Offered in alternate years.

*240. General Circulation of the Atmosphere (3) II. Grotjahn Lecture—3 hours. Prerequisite: course 121B. Large-scale, observed atmospheric circulations. Energy and momentum balances derived and compared with observations. Theoretical framework developed to synthesize observed features. Offered in alternate years.

*241. Climate Dynamics (3) I. Warren Lecture—3 hours. Prerequisite: course 121B. Dynamics of large-scale climatic variations over time periods from weeks to centuries. Description of the appropriate methods of analysis of atmospheric data, observational and numerical modeling for climate variability and climatic change. Conservation of mass, energy and momentum. Introduction to the range of climate simulations.

250. Meso-Scale Meteorology (3) I. Soong Lecture—3 hours. Prerequisite: graduate standing, course 150, a course in partial differential equations, or consent of instructor. The study of weather phenomena with horizontal spatial dimensions between 2.5 and 2500 kilometers. Methods of observational study and numerical modeling of the structure and temporal behavior of these weather systems. Offered in alternate years.

*255. Numerical Modeling of the Atmosphere (4) III. Soong Lecture—2 hours; laboratory—6 hours. Prerequisite: course 121B and Engineering 5; course 150 recommended. Principles of numerical modeling of the dynamic, thermodynamic and physical processes of the atmosphere. Hands-on experiments on model development using the shallow water equations and the primitive equations. Operational forecast models. Offered in alternate years.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. Prerequisite: graduate standing in Atmospheric Science or related field. Current developments in selected areas of atmospheric research. Topics will vary according to student and faculty interests. (S/U grading only.)

291A-E. Research Conference in Atmospheric Science (1-3) I, II, III. The Staff Lecture/discussion—1-3 hours. Review and discussion of current literature in: (A) Air Quality Meteorology; (B) Biometeorology; (C) Boundary Layer Meteorology; (D) Climate Dynamics; (E) General Meteorology. May be repeated up to a total of 6 units per segment. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

Avian Sciences

Avian Medicine

See Medicine and Epidemiology

Avian Sciences

(Chairperson in charge)

Alida Morzenti, M.S., Lecturer
Ralph A. Ernst, Ph.D., Lecturer
Francine A. Bradley, Ph.D., Lecturer
Affiliated Faculty

Annie J. King, Ph.D., Associate Professor
Annie J. King, Ph.D., Associate Professor
Kirk C. Klausing, Ph.D., Professor
Joy A. Mench, Ph.D., Professor
James R. Millam, Ph.D., Associate Professor
Kathryn Radke, Ph.D., Associate Professor
Wesley W. Weathers, Ph.D., Professor
Barry W. Wilson, Ph.D., Professor
Emeriti Faculty

Ursula A. Abbott, Ph.D., Professor Emeritus
Hans Aplandahl, Ph.D., Professor Emeritus
Richard Grau, Ph.D., Professor Emeritus
F. Howard Kratzer, Ph.D., Professor Emeritus
Frank X. Ogawara, Ph.D., Professor Emeritus
Parn N. Vohra, Ph.D., Professor Emeritus
Wilbur O. Wilson, Ph.D., Professor Emeritus
Affiliated Faculty

Franco A. Bradley, Ph.D., Lecturer
Ann T. Brice, Ph.D., Lecturer
Alfred A. Ernst, Ph.D., Lecturer
Alda Monti, M.S., Lecturer

The Major Program

Avian sciences is the study of birds and the ways in which they relate to and are useful to humans. The major combines the study of avian wildlife and their environments, production and marketing of domestic birds and eggs, caged exotic bird management, and basic and applied laboratory research on birds with a broad introduction to biological science. The Program. The flexibility of the program and the close personal interaction between students, faculty, and specialists in the field give students a large role in selecting and designing their own course work. Students may specialize in a bachelor's program that
qualifies them for a particular career or they may choose a program to meet other broader intellectual and cultural interests.

Interests and Career Alternatives. Independent study, undergraduate research, and internships are emphasized in the avian sciences program. Birds for laboratory or special study are housed within the main building as well as at the research farm and the experimental aviary. An avian sciences major has a variety of career options: health-oriented research, teaching biology, gamebird production, domestic and foreign agriculture, extension and advisory services, governmental agencies, or the domestic or exotic bird industries. A recent survey has shown that the majority of avian sciences graduates enter graduate school or are employed by the domestic bird industry. The remainder of the graduates were evenly distributed in the categories of professional schools, avian biology agencies, educational fields, and individual jobs indirectly associated with birds.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equal or more comprehensive courses are acceptable.)

General Education (GE) credit:
ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Breadth Subject Matter..55
Biochemistry (Biological Sciences 102 and 103)............................3
Genetics (Biological Sciences 101)...6
Avian science (Avian Science 11 or 13)..3-4
Biological sciences (Biological Sciences 1A, 1B, 1C).........................9
Chemistry (Chemistry 2A, 2B, 2C)..15
Computer science (Agricultural Systems and Environment 211)...............3
Mathematics (Mathematics 16A, 16B, 16C).................................9
Physics (Physics 1A and 1B)..6
Restrict Electives...24
Biochemistry (Biological Sciences 150L, Biochemistry 101L, Neurobiology, Physiology and Behavior 101).........................5
Laboratory units in above listed subjects..4
Satisfaction of General Education requirement.............................24

Restrict Electives...31-32
Satisfaction of General Education requirement.............................24

Total Units for the Degree..180

Minor Program Requirements:

Choose one from Avian Sciences 1A, 1B, 15L, 16L.................................2-3
Choose remaining units from Avian Sciences 100, 102, 115, 121, 123, 149, 150, Animal Science 143; Evolution and Ecology 137; Neurobiology, Physiology and Behavior 117, Wildlife, Fish and Conservation Biology 111

The M.S. degree is offered in Avian Sciences. For details see under the Graduate Group in Avian Sciences. See also the Graduate Studies section in this catalog.

Courses in Avian Sciences (AVS)

Related Courses

Animal Sciences 130; Animal Science 143; Food Science and Technology 120, 120L, 121; International Agricultural Development 102; Molecular and Cellular Biology 150, 150L; Nutrition 123.

Lower Division Courses

11. Introduction to Poultry Science (3) II.
Bradley Lecture—3 hours; one field trip required. The mosaic of events that have tied poultry science to other scientific disciplines and poultry to humans. Poultry science techniques and production methods from the time of domestication to the present. GE credit: SciEng. Wrt.
13. Birds, Humans and the Environment (3) III.
Wilson, Eric Lecture—2 hours; discussion—1 hour; half-day field trip. Interrelationships of the worlds of birds and humans. Lectures, discussions, field trips and projects focus on ecology, avian behavior, physiology, reproduction, flight, behavior, folklore, identification, ecology and conservation. Current environmental issues are emphasized. GE credit: SciEng. Wrt.
14L. Management of Captive Birds (2) II, III.
Morzenti Fieldwork—3 hours; lecture/discussion—1 hour. Prerequisite: consent of instructor. One weekly discussion and field trip to study practical captive management (housing, feeding, equipment, marketing, diseases). Visit facilities rearing birds such as commercial parrots, hobbyist, exotics, ostrich, raptors, waterfowl, game birds, poultry and pigeons.

Bachelor of Science (B.S.) Major Requirements:

Choose units from above listed subjects.....55

Restrict Electives...24

Total Units for the Degree..180

Major Adviser: A.J. King
Advising Center for the major is located in 1202D Miller Hall (916-752-1301).

Graduate Study. Further training is available through graduate or professional programs in animal physiology, genetics, nutrition, or veterinary medicine. The failures resulting from disease, nutritional or genetic causes. Use of avian embryos in biomedical research.

115. Raptor Biology (3) I.
Morzenti Lecture—3 hours; two field trips. Prerequisites: Biological Sciences 1A or the equivalent. Study of birds of prey: classification, distribution, habits and habitats, migration, unique anatomical and physiological adaptations, natural and human diseases, environmental concerns, conservation, legal considerations, rehabilitation, and falconry.

121. Avian Reproduction (2) II.
Millam Lecture—2 hours. Prerequisite: Biological Sciences 1A, 1B. Breeding cycles and reproductive strategies, egg and sperm formation, incubation, sexual development, imprinting, hormonal control of reproductive behavior and song. Species coverage includes wild and companion birds. Course has a physiological orientation. Offered in alternate years.

123. Management of Companion Birds (3) II.
Morzenti Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B. Captive propagation of birds, including reproduction, genetic management, health, feeding, artificial incubation, artificial insemination, and related legal aspects, including trade and smuggling. Emphasis on parrot species and the role of captive propagation in conservation. Offered in alternate years.

149. Egg Production Management (2) III.
Ernst Lecture—2 hours; one Saturday field trip required. Prerequisite: course 11 or the equivalent course consent of instructor. Management of commercial table egg flocks as related to environment, nutrition, disease control, economics, housing, equipment, egg processing and raising replacement pullets. Offered in alternate years.

150. Nutrition of Birds (1) III.
Klassing Lecture—1 hour. Prerequisite: Nutrition 110 (may be taken concurrently). Principles of nutrition specific to avian species, including feed additives, nutrient metabolism, energy systems, and nutritional support of egg production and growth. Use of computers for feed formulation to support production. Offered in alternate years.

150L. Nutrition of Birds Laboratory (2) III.
King Laboratory—6 hours. Prerequisite: course 150. Feeding trials to show nutrient requirements. Metabolizable energy study and proximate analysis of feed. Determination of vitamins, minerals, fatty acids and other nutrients or substances in feed with emphasis on use of laboratory equipment.

160. Designing and Performing Experiments in Avian Sciences (2) I, II, III.
Weathers Lecture—3 hours; term paper. Prerequisite: Statistics 13 or the equivalent courses; course 100 or Evolution and Ecology 137-139, or Wildlife, Fish and Conservation Biology 111-111L. These courses focus on ecology, avian behavior, physiology, reproductive

16A-16LB-16LC. Raptor Migration and Population Fluctuations (2-2-2) I, II, III.
Morzenti Fieldwork—3 hours; discussion—1 hour; one Saturday field trip. Prerequisite: consent of instructor. Identification of raptors, study of avian migration, and the migratory behavior of birds. Fieldwork—3 hours; one field trip. Hands-on experience handling birds of prey. Students are taught all of the skills required to handle and care for raptors, including their husbandry, biology, habitat requirements, cage design, veterinary care, rehabilitation methods, research potential and long-term care requirements.

29. Internship in the Avian Sciences (3-12) I, II, III.
The Staff (Chairperson in charge) Internship—3 hours; discussion—1 hour. Prerequisite: sophomore standing preferred; consent of instructor. Internship on and off campus in poultry, gamebirds or exotic bird production, management and research; or in a business, industry, or agency concerned with these entities. Compliance with Internship Approval Request Form essential. (P/NP grading only.)

29A. Special Study for Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge) Prerequisite: consent of instructor. Problems in avian biology; nutrition, breeding, and physiology of poultry/wild birds and their products. (P/NP grading only.)

Upper Division Courses

100. Avian Biology (3) I.
Weathers Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B. Survey of avian natural history and study of the diversity, functional morphology, behavior, ecology and evolution of birds. GE credit: SciEng. Wrt.
102. Fertility and Hatchability (4) I.
Delany Lecture—3 hours; discussion—1 hour. Prerequisite: course 100, Biological Sciences 101, Zoology 100. Normal avian embryonic development. Reproductive
production, management and research; or in a business, industry, or agency concerned with these entities. Compliance with Internship Approval Request form essential. (Pr/NP grading only.)

195. Topics in Current Research (1-3) I, II, III. The Staff (Chairperson in charge) Lecture/discussion—variable. Hours will depend on instructor with the number of units being commensurate with time in class. Prerequisite: consent of instructor. Discussion of topics of current interest in avian sciences. May be repeated three times for credit.

197T. Tutoring in Avian Sciences (1-3) I, II, III. The Staff (Chairperson in charge) Hours and duties vary depending upon course being tutored. Prerequisite: Avian Sciences or related major; advanced standing; consent of instructor. Tutoring of students in lower division avian sciences courses; weekly conference with instructors in charge of course; written critiques of teaching procedures. (Pr/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (Pr/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (Pr/NP grading only.)

Graduate Courses

220. Cellular Proliferation and Oncogenes (4) I. Radke, Oberbauer Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 101, 102, 103, 104; Genetics Graduate Group 201C or Molecular and Cellular Biology 221D or Microbiology 200C recommended. Regulation of growth and division of animal cells. The cell cycle, oncogenes, retroviruses and growth factors will be discussed in the context of normal and cancerous growth. Critical reading and writing are emphasized.

290. Seminar (1) I, II, III. The Staff Seminar—1 hour. Reports and discussions of recent advances and selected topics of current interest in avian genetics, physiology, nutrition, and poultry technology.

290C. Research Conference (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Major professors lead research discussions with their graduate students. Research papers are reviewed and project proposals presented and evaluated. Format will combine seminar and discussion. (S/U grading only.)

297. Supervised Teaching in Avian Sciences (1-4) I, II, III. The Staff (Chairperson in charge) Tutoring—1-4 hours. Prerequisite: graduate standing and consent of instructor. Tutoring of students in lower, upper division, and graduate courses in Avian Sciences; weekly conference with instructor in charge of course; written critiques of teaching methods in lectures and laboratories. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (SU grading only.)

Avian Sciences (A Graduate Group)

J.R. Miliar, Ph.D., Chairperson of the Group
Group Office, 1202D Meyer Hall (916-752-1301)
Faculty. Consists of members from several departments in the College of Agricultural and Environmental Sciences, Division of Biological Sciences, and the School of Veterinary Medicine.

Graduate Study. The Graduate Group in Avian Sciences offers the M.S. degree program to students who wish to pursue specialized advanced work on avian species. The areas of specialization that may be chosen by the student at present include: nutrition, physiology, reproduction, pathology, toxicology, food chemistry, management, ecology, genetics, comparative incubation, environmental physiology, and cellular and developmental studies using wild and domestic birds as experimental animals. Both master’s degree plans, thesis or comprehensive examination, are available.

Preparation. It is expected that the student will have had undergraduate preparation in a field appropriate to the course of study selected. The student will be expected to have had courses in most of the following subjects: general biology, general and organic chemistry, biochemistry, avian biology, genetics, nutrition, physiology, and statistics.

Graduate Adviser. C.C. Calvert (Animal Sciences).

Biochemistry and Biophysics

See Biological Sciences: Section of Molecular and Cellular Biology

Biochemistry and Molecular Biology (A Graduate Group)

Michael E. Dahmus, Ph.D., Chairperson of the Group
Group Office, 188 Briggs Hall (916-752-9091)
Internet: http://www-ggc.ucdavis.edu/ggc/bmb
Faculty. Members of the group include faculty from the Colleges of Agricultural and Environmental Sciences and of Letters and Science, as well as the Schools of Medicine and of Veterinary Medicine.

Graduate Study. The Graduate Group in Biochemistry and Molecular Biology offers programs of study and research leading to the M.S. and Ph.D. degrees. The emphasis is on the discovery of fundamental principles governing the structure, function, and behavior of biological systems. The field of biochemistry and molecular biology offers opportunities for research in diverse areas, including but not limited to the following: bioenergetics, cellular and molecular biology, enzymology, genetics, immunology, and structural biology. For more information contact the chairperson of the group.

Graduate Advisers. E. Bandman (Food Science and Technology), D.J. Klonarik (Microbiology), J.C. Lagarias (Molecular and Cellular Biology), T. Wilkins (Agronomy and Range Science).

Courses in Biochemistry and Molecular Biology (BMB)

Graduate Courses

290. Seminar (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (SU grading only.)

*Course not offered this academic year.

Biological Chemistry

See Medicine, School of

Biological and Agricultural Engineering

(College of Agricultural and Environmental Sciences)

David J. Hills, Ph.D., Chairperson of the Department
Department Office, 2030 Bainer Hall (916-752-0102)
Faculty

Pictiau (Paul) Chen, Ph.D., Professor
Michael J. Delwiche, Ph.D., Professor
D. Ken Giles, Ph.D., Associate Professor
Mark E. Grismer, Ph.D., Professor
Bruce R. Hartsough, Ph.D., Professor
David J. Hills, Ph.D., Professor
Bryan M. Jenkins, Ph.D., Professor
John M. Krochta, Ph.D., Professor
Miguel A. Maro, Ph.D., Professor
Kathryn McCarthy, Ph.D., Associate Professor
Michael J. McCarthy, Ph.D., Professor
John A. Miles, Ph.D., Professor
Ning Pan, Ph.D., Associate Professor
Marc B. Parlange, Ph.D., Associate Professor
Raul H. Piedrahita, Ph.D., Associate Professor
Richard E. Plant, Ph.D., Professor
James W. Runsey, M.S., Lecturer
Thomas R. Runsey, Ph.D., Professor
R. Paul Singh, Ph.D., Professor
David C. Slaughter, Ph.D., Associate Professor
Shrinivas K. Upadhyaya, Ph.D., Professor
Wesley W. Wallender, Ph.D., Professor
Ruihong Zhang, Ph.D., Assistant Professor

Emeriti Faculty

Norman B. Akesson, M.S., Professor Emeritus
William J. Chancellor, Ph.D., Professor Emeritus
Robert B. Frield, Ph.D., Professor Emeritus
Roger E. Garrett, Ph.D., Professor Emeritus
John R. Goss, M.S., Professor Emeritus
George F. Hanna, M.Ed., Lecturer Emeritus
S. Milton Henderson, M.S., Sc.D., Professor Emeritus
Robert A. Kepner, B.S., Professor Emeritus
Coby Lorenzen, Jr., M.S., Professor Emeritus
Larry Merson, Ph.D., Professor Emeritus
Stanton R. Morrison, Ph.D., Professor Emeritus
Michael O’Brien, B.S., Professor Emeritus
Henry E. Studer, M.S., Professor Emeritus
Wesley E. Yates, M.S., Professor Emeritus

Affiliated Faculty

William E. Steinke, Ph.D., Extension Specialist
James F. Thompson, M.S., Extension Specialist

Major Programs and Graduate Study. For the Bachelor of Science program see the major in Engineering; for graduate study see the Graduate Studies section in this catalog.

Courses. Courses are listed under Applied Biological Systems Technology, and Engineering: Biological and Agricultural (Biological Systems Engineering).

Minor Program. The Department of Biological and Agricultural Engineering offers two minors through the College of Agricultural and Environmental Sciences: Applied Biological Systems Technology and Geographic Information Systems. Programs for these minors are listed separately in this catalog in alphabetical order.

The Applied Biological Systems program is for non-engineering students interested in engineering terminology and procedures. This work provides knowledge of material properties, design procedures, fabrication principles, and hardware practices.
The minor in Geographic Information Systems is open to all majors, including those in engineering. This minor is ideal for students interested in information processing of spatial data related to remote sensing for geographical and environmental planning and related areas.

Biological Sciences

(College of Agricultural and Environmental Sciences and College of Letters and Science)

Mark G. McNamee, Ph.D., Dean of Biological Sciences
Mark F. Sanders, Ph.D., Associate Dean—Undergraduate Academic Programs

Division Office, Administration, 355 Briggs Hall
916-752-6764

Division Office, Undergraduate Academic Programs, 66 Briggs Hall
916-752-0410

The intercollege Division of Biological Sciences coordinates campuswide programs in basic biology and administers undergraduate programs in the core disciplines of biology on behalf of the College of Agricultural and Environmental Sciences and the College of Letters and Science. The division has five sections that represent the major themes of modern biology: Evolution; Ecology; Microbiology; Molecular and Cellular Biology; Neurobiology; Physiology, and Behavior; and Plant Biology. Core courses in biological sciences, the Biological Sciences major, and the Bodega Marine Laboratory Program are offered jointly by the sections of the division. Each section also offers courses and one or more majors focusing on the core disciplines.

The Biological Sciences major is broad in concept, spanning the numerous core disciplines of biology. While emphasizing breadth, the major also features an area of emphasis requirement which provides concentrated attention to one facet of biology at the upper division level. Each area of emphasis coincides with one of the sections of the division.

Faculty

All faculty are primary members of one section and some faculty are secondary members of a second section as well. See “Sections of the Division,” following, for a list of faculty in each section.

The Major Programs

Seven majors are offered leading to a B.S. degree in:
- Biochemistry
- Biological Sciences
- Genetics
- Evolution and Ecology
- Microbiology
- Physiology
- Plant Biology

Four majors leading to an A.B. degree are offered in:
- Biological Sciences
- Evolution and Ecology
- Microbiology
- Plant Biology

Choice of College. The Bachelor of Arts degree is offered only by the College of Letters and Science. The Bachelor of Science degree is offered by both the College of Letters and Science and the College of Agricultural and Environmental Sciences. The major requirements are the same in each college, but there are differences in the college requirements and policies. See the Undergraduate Education chapter college sections in this catalog for more information.

Student Services. Student affairs officers at the division’s Undergraduate Academic Programs Office, 66 Briggs Hall, and advising staff in section offices provide information and counseling on the major programs and courses offered by the division.

The Biological Sciences Major

(Sections of Evolution and Ecology: Molecular Biology; Molecular and Cellular Biology; Neurobiology, Physiology, and Behavior; and Plant Biology)

The Program. Students select either a Bachelor of Arts or Bachelor of Science degree in Biological Sciences. The Bachelor of Science programs include mathematics, general and organic chemistry, and courses in biology that emphasize breadth as well as depth. This program can be used to satisfy requirements for admission to graduate schools, leading either to a variety of professional health careers, or further study in basic and applied areas of biology. The Bachelor of Arts program emphasizes organisms, evolution and ecology. This degree program prepares students for a variety of careers and professional or graduate programs. It is appropriate for students interested in teaching biology at the secondary school level, and for students interested in careers that bear on the ecological problems that require the development of public policy.

Career Alternatives. The biological sciences degree provides suitable preparation for a wide variety of careers, including teaching, biological research, work with various governmental agencies or with private companies, and all the health sciences. It is an excellent background for students wishing to enter a graduate program in biology, a teacher training program, a health professional school, or other professional schools.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subject Matter</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
</tr>
<tr>
<td>Math 16A-16B-16C</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
</tr>
<tr>
<td>Statistics 33, 100, or 102</td>
</tr>
<tr>
<td>Physics 5A-5B-SC or 7A-7B-7C</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
</tr>
<tr>
<td>Biological Sciences</td>
</tr>
<tr>
<td>Microbiology</td>
</tr>
<tr>
<td>Molecular and Cellular Biology</td>
</tr>
<tr>
<td>Neurobiology and Behavior</td>
</tr>
<tr>
<td>Statistics 13, 32, 100, or 102</td>
</tr>
<tr>
<td>Restricted Electives</td>
</tr>
<tr>
<td>Breadth in the major is obtained by requiring (a) at least one course from each of the five fields requirement lists, (a) through (e), below. See your area of emphasis for any specific course requirements.</td>
</tr>
<tr>
<td>Depth in the major comes through completion of one area of emphasis listed below, and additional upper division biology courses, as needed, to total at least 32 units. See your faculty adviser regarding the choice of those courses.</td>
</tr>
<tr>
<td>Depth in the major must include at least 2 units (or 6 hours per week) of laboratory. See your area of emphasis for specific courses designated in the area of emphasis.</td>
</tr>
</tbody>
</table>

Note: Although courses may be listed in more than one category, each course may be offered in satisfaction of only one requirement.

Field Requirement Course List (Breadth):

(a) Evolution: Anthropology 151, 152, 154A; Evolution and Ecology 100; Geology 107; Plant Biology 143 3-5
(b) Ecology: Anthropology 154B; Biological Sciences 121, 123, 124, 156; Environmental Studies 100, 121; Evolution and Ecology 101; Microbiology 120; Wildlife, Fish and Conservation Biology 151 3-4
(c) Microbiology: Food Science 104; Microbiology 102, 140, 150, 162; Pathology, Microbiology and Immunology 127, 128; Soil Science 111 3-5
(d) Neurobiology and physiology and behavior: Anthropology 154A, 154B; Entomology 102, 104; Neurobiology, Physiology and Behavior 100, 101, 102, 141 3-5
(e) Plant biology: Environmental Horticulture 102, 105; Evolution and Ecology 121, 140; Plant Biology 102, 105, 108, 111, 112, 116, 117, 118, 121, 143, 146, 178; Plant Pathology 120, 130 3-5

Areas of Emphasis (Depth):

Evolution and Ecology emphasis 12-18

(1) Field requirement: Students must take Evolution and Ecology 100.
(2) Evolution and Ecology 102 or 103 3-4

Biology: Six or more units, to include at least two units (or 6 hours per week) of lab, from the following: Entomology 100, 100L, 107, 109; Evolution and Ecology 112, 113, 121, 134, 134L, 137; Geology 107, 107L; Microbiology 105; Nematology 110; Plant Biology 102, 108, 118, 148; Wildlife, Fish and Conservation Biology 110, 110L, 111L, 120, 120L 5-9

Microbiology emphasis (four options, a through d) 15-16

(1) Field requirement: Students must take Microbiology 102 to satisfy Field requirement (c).
(2) Laboratory requirement: Students must take Microbiology 102, to satisfy the restricted elective lab requirement.

(3) Options: Complete one of the four clusters (options a-d) below, or complete an individual cluster with approval from your faculty adviser.

(a) Microbial Physiology and Molecular Genetics option (in the Microbiology emphasis) 14

Microbiology 102L
Select two courses from Microbiology 140, 150, 160 6
Select six or more units from the following courses: Microbiology 155L, 177, Molecular and Cellular Biology 121, 123, 141, 161 6

(b) Microbial Diversity and Ecology option (in the Microbiology emphasis) 14

Microbiology 102L, 105, 162 11
Select three or more units from the following Microbiology 120, 121, 123, 155L, Microbiology and Immunology 121; Soil Science 111 3

(c) Biotechnology and Applied Microbiology option (in the Microbiology emphasis) 14

Microbiology 102L 2
Microbiology 140 or 150 5
Select one course from: Food Science and Technology 102A, 104, or Viticulture and Enology 186 3-4
Select six or more units from the following: Chemical Engineering 161A; Microbiology 110, 155L, Molecular and Cellular Biology 121, 122, 123, 170L 6

(d) Medical Microbiology option (in the Microbiology emphasis) 13-15

Microbiology 102L 2
Pathology, Microbiology and Immunology 127 or Medical Microbiology 115-116 5
Microbiology 162 or Pathology, Microbiology and Immunology 127 or Medical Microbiology 107 or Pathology, Microbiology and Immunology 126 3-4

Molecular and Cellular Biology emphasis 12-18

(1) Molecular biology and gene expression: One course from Molecular and Cellular Biology 121, 141, 161 3-4

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Biological Sciences 101C or 102
Biological Sciences 102
Plant Biology 102
Neurobiology, Physiology and Behavior 102

Note: Although courses may be listed in more than one area, only one category per course may be approved for the purpose of satisfying only one requirement.

Total units for the major: 78-100

Diversity Lists

(a) Animal diversity: Avian Sciences 101; Evolution and Ecology 105, 112, 133, 134, 136, 137; Nematology 110; Wildlife, Fish and Conservation Biology 110, 111, 120.

(b) Microbial diversity: Microbiology 105, 162; Plant Biology 118, 148; Soil Science 111; Pathology, Microbiology and Immunology 127, 128, 130, 140, 141, 149.

(c) Plant diversity: Evolution and Ecology 120, 140; Plant Biology 102, 108, 116, 121.

Approved Biology Electives

These courses are those which are accepted without petition for upper division units in the Biological Science major; many other biologically related courses may be substituted with consent of your adviser. Anatomy, Physiology and Cell Biology 100

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Citation for Outstanding Performance: The Division of Biological Sciences formerly presented citations for Outstanding Performance on undergraduates majoring in biological sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.

The Minor Program

The minor in Biological Sciences acquaints students with the range and variety of modern biology, including work in two or three areas: animal biology, plant biology, and microbiology; and in four of the following five subdisciplines: organismal biology, ecology, evolution, physiology, and biochemistry.

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Additional upper division units (as specified in the area requirements and group requirements below): 15

Group Requirements:

(a) Animal biology: Anatomy 100; Anthropology 151, 152, 153, 154A, 155, 156; Avian Sciences 100; Biological Sciences 120; Biology and human anatomy 101, 101L; Chemistry 107A, 107B, 108, 150; Entomology—All upper division courses

(b) Microbial diversity: Microbiology 105, 162; Plant Biology 118, 148; Soil Science 111; Pathology, Microbiology and Immunology 127, 128, 130, 140, 141, 149.

(c) Plant diversity: Evolution and Ecology 120, 140; Plant Biology 102, 108, 116, 121.

Approved Biology Electives

These courses are those which are accepted without petition for upper division units in the Biological Science major; many other biologically related courses may be substituted with consent of your adviser. Anatomy, Physiology and Cell Biology 100

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Citation for Outstanding Performance: The Division of Biological Sciences formerly presented citations for Outstanding Performance on undergraduates majoring in biological sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.

The Minor Program

The minor in Biological Sciences acquaints students with the range and variety of modern biology, including work in two or three areas: animal biology, plant biology, and microbiology; and in four of the following five subdisciplines: organismal biology, ecology, evolution, physiology, and biochemistry.

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Citation for Outstanding Performance: The Division of Biological Sciences formerly presented citations for Outstanding Performance on undergraduates majoring in biological sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.

The Minor Program

The minor in Biological Sciences acquaints students with the range and variety of modern biology, including work in two or three areas: animal biology, plant biology, and microbiology; and in four of the following five subdisciplines: organismal biology, ecology, evolution, physiology, and biochemistry.

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Citation for Outstanding Performance: The Division of Biological Sciences formerly presented citations for Outstanding Performance on undergraduates majoring in biological sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.

The Minor Program

The minor in Biological Sciences acquaints students with the range and variety of modern biology, including work in two or three areas: animal biology, plant biology, and microbiology; and in four of the following five subdisciplines: organismal biology, ecology, evolution, physiology, and biochemistry.

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Citation for Outstanding Performance: The Division of Biological Sciences formerly presented citations for Outstanding Performance on undergraduates majoring in biological sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.

The Minor Program

The minor in Biological Sciences acquaints students with the range and variety of modern biology, including work in two or three areas: animal biology, plant biology, and microbiology; and in four of the following five subdisciplines: organismal biology, ecology, evolution, physiology, and biochemistry.

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Citation for Outstanding Performance: The Division of Biological Sciences formerly presented citations for Outstanding Performance on undergraduates majoring in biological sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.

The Minor Program

The minor in Biological Sciences acquaints students with the range and variety of modern biology, including work in two or three areas: animal biology, plant biology, and microbiology; and in four of the following five subdisciplines: organismal biology, ecology, evolution, physiology, and biochemistry.

Additional upper division units (as specified in the area requirements and group requirements below): 15

Area Requirement: one course in two of the area requirements below: animal biology, microbiology, and plant biology.

Citation for Outstanding Performance: The Division of Biological Sciences formerly presented citations for Outstanding Performance on undergraduates majoring in biological sciences who have demonstrated superior academic performance and individual achievement in research. Students who wish to be considered for a citation must first meet or exceed a specified grade point average and participate in an appropriate research project.
The Evocation and Ecology Major Program

(Section of Evolution and Ecology)

The major in Evolution and Ecology offers the student a broad background in the theoretical and empirical basis of our understanding of the diversity and distribution of living organisms.

The Program. The program of study for the evolution and ecology major begins with a core of introductory courses in mathematics, physical sciences, and biology. These are followed by survey courses in evolution and ecology and various more specialized courses that allow the student to focus his or her studies. Evolution and ecology majors may earn either a Bachelor of Science or a Bachelor of Arts degree. The requirements for the B.S. degree program include more science courses, such as biochemistry, whereas those for the A.B. degree program allow room for more electives within the humanities and social sciences. The A.B. degree is especially appropriate for those students who wish to combine arts or languages with evolution and ecology for career preparation in such areas as scientific writing, translating or illustration.

Career Alternatives. A degree in evolution and ecology prepares the student for career opportunities in research, teaching, health professions, veterinary medicine, agriculture, environmental management, and industry. Majors gain some research experience while at UC Davis and choose to continue their training at the graduate level. This track offers careers in academics, government, or business.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Area</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>41-45</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C or 21A-21B-21C</td>
<td>9-12</td>
</tr>
<tr>
<td>Physics 5A-5B-5C or 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100 or 102</td>
<td>3-4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>53-54</td>
</tr>
<tr>
<td>Biological Sciences 101, 102, 103, 104 ... 13</td>
<td>18</td>
</tr>
<tr>
<td>Chemistry 2C on 29A-29B-29C-126B-126C, 129A-129B</td>
<td>12-13</td>
</tr>
<tr>
<td>Chemistry 107A-107B-108</td>
<td>9-12</td>
</tr>
<tr>
<td>Molecular and Cellular Biology 120L, 121L, 122L, 123L</td>
<td>13</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>4</td>
</tr>
<tr>
<td>Upper division courses in biological sciences or chemistry. Students are encouraged to obtain additional laboratory experience, including 199 research, however, no more than 3 units of 199 may be counted toward Restricted Elective units.</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>77-81</td>
</tr>
</tbody>
</table>

Recommended Biological Sciences 102-103; Geology 3; Physics 7A; Physics 118B, 118C, 119A, 119B. Academic Programs: Ecology and Evolution 100, 101, 102 or 103, 104, 105, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123. Natural History and Environmental Science 197T. Also, courses not on the above list for major requirements. All new students in the major should contact the Program for the major is located in 2320 Storer Hall (916-752-8523).
Biological Sciences (Major Programs)

Hall, to learn what specific courses are required on their transcripts.

Teaching Credential Subject Representative. Students planning for a teaching career should consult the Department of Education in regard to preparation for certification. See also the section on the Teacher Education Program.

The Genetics Major Program

(Section of Molecular and Cellular Biology)

The genetics major provides a broad background in the biological, mathematical, and physical sciences basic to the study of heredity and evolution. The major is sufficiently flexible to accommodate students interested in the subject either as a basic discipline in the biological sciences or in terms of its applied aspects such as biotechnology, medicine, and agriculture.

The Program. The genetics program begins with the four course upper division common curriculum that provides an introduction to the principles of genetics, biochemistry, and cell biology. Genetics majors then take additional upper division courses in specialized areas of modern genetics including gene expression, evolution, development, and human genetics, as well as a laboratory course in the principles of genetics. Additional upper division courses in biological sciences are required, including a second laboratory course.

Career Alternatives. The genetics degree provides suitable preparation for a wide variety of careers, including teaching, research, work with biotechnology companies, medicine, and all the health sciences. It is also an excellent background for students wishing to enter a graduate program, a teacher-training program, medical school, veterinary school, or other professional schools.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td></td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C or 21A-21B-21C</td>
<td>9-12</td>
</tr>
<tr>
<td>Physics 5A-5B-5C or 7A-7B-7C</td>
<td></td>
</tr>
<tr>
<td>Statistics 13, 32, 100, or 102</td>
<td>3-4</td>
</tr>
<tr>
<td>Evolution and Ecology 10000</td>
<td>4</td>
</tr>
<tr>
<td>One course from the following: Molecular and Cellular Biology 121, 145, 161</td>
<td>3-4</td>
</tr>
<tr>
<td>One course from the following: Microbiology 102-102L, Molecular and Cellular Biology 120, 170L</td>
<td>6</td>
</tr>
</tbody>
</table>

Restricted Electives | 11

Upper division courses in genetics or other fields relevant to the student’s interest chosen in consultation with the adviser. No more than 4 units of 192, 198, or 199 can be used for credit in this category.

Total Units for the Major | 110-121

Master Adviser. Contact R.S. Hawley (Molecular and Cellular Biology), 345 Briggs Hall.

Graduate Advising. The Graduate Group in Genetics offers study and research leading to the M.S. and Ph.D. degrees in genetics. The Program. Both undergraduate major programs provide a balance of studies in microbiology, with appropriate courses in mathematics and physical sciences. The A.B. degree program emphasizes the biology of bacteria, while the B.S. degree program includes more biochemistry and related course work. Either program, with judicious course selection, is appropriate for students contemplating a career in medicine or various allied health professions including medical technology, or teaching. The B.S. program is especially well suited for students who want a professional career in microbiology, or who wish to pursue graduate education in a biological science discipline. The choice of a major program and its suitability for particular career options should be discussed with a major adviser.

Career Alternatives. A bachelor’s degree in microbiology is excellent preparation for a career in biotechnology, pharmacology, agriculture, and the food industry. It also provides a strong background for students wishing to continue on to professional studies in medicine and the other health sciences.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td></td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C or 21A-21B-21C</td>
<td>6-8</td>
</tr>
<tr>
<td>Physics 1A-1B or 7A-7B-7C</td>
<td></td>
</tr>
<tr>
<td>Statistics 13</td>
<td>4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>38-40</td>
</tr>
<tr>
<td>Biological Sciences 102, 103</td>
<td>6</td>
</tr>
<tr>
<td>Microbiology 126, 127</td>
<td>14</td>
</tr>
<tr>
<td>Microbiology 162 or Pathology, Microbiology and Immunology 128</td>
<td>3-4</td>
</tr>
<tr>
<td>Two of the following: Microbiology 120-120L, 130B-130L, 177-177L</td>
<td>10-11</td>
</tr>
<tr>
<td>Additional units from Microbiology 110, 120, 120L, 130B, 130L, 177, 177L, Molecular and Cellular Biology 120L, Pathology, Microbiology 163, 164, Pathology 126, 127, Plant Biology 114, 118, 119</td>
<td>5</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>85-101</td>
</tr>
</tbody>
</table>

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td></td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C</td>
<td>9</td>
</tr>
<tr>
<td>Physics 5A-5B-5C or 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100 or 102</td>
<td>3-4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>45-52</td>
</tr>
<tr>
<td>Biological Sciences 101, 102, 103, 104</td>
<td>13</td>
</tr>
<tr>
<td>Molecular and Cellular Biology 120L</td>
<td>6</td>
</tr>
<tr>
<td>Microbiology 126-127</td>
<td>11</td>
</tr>
<tr>
<td>Two courses from Microbiology 140, 150 or 160</td>
<td>11</td>
</tr>
<tr>
<td>Microbiology 162 or Pathology, Microbiology and Immunology 127</td>
<td>3-4</td>
</tr>
<tr>
<td>One of the following: Food Science and Technology 104-104L, Microbiology 120-120L, 155L, 177-177L, Molecular and Cellular Biology 161-170L</td>
<td>9-12</td>
</tr>
<tr>
<td>Physics 5A-5B-5C or 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100 (recommended), or 102</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Master Adviser. Contact M. L. Wheelis, Department of Molecular and Cellular Biology, 321 Life Sciences Building.

Honors and Honors Program. M. L. Wheelis.

Teaching Credential Subject Representative. M. L. Wheelis. See also the Teacher Education Program.

Graduate Study. The Graduate Group in Microbiology offers programs of study and research leading to the M.S. and Ph.D. degrees in microbiology. The offerings of the Section of Microbiology are augmented by courses and faculty of the Departments and Sections of Evolution and Ecology; Food Science and Technology; Land, Air, and Water Resources; Molecular and Cellular Biology; Plant Pathology; Plant Biology; Virology and Oncology; and the Schools of Medicine and of Veterinary Medicine. For detailed information regarding graduate study in microbiology, address the Chairperson, Graduate Group in Microbiology, Section of Microbiology.

Related Courses. For other courses related to microbiology, see course offerings in the Division of Biological Sciences and departments of Medicine and Epidemiology; Food Science and Technology; Land, Air and Water Resources; Medical Microbiology; Pathology, Microbiology and Immunology; Plant Pathology; and Plant Sciences.

Faculty of the Section of Microbiology also teach or participate in the following courses: Biological Sciences 1A, 10, and 19.

The Physiology Major Program

(Section of Neurobiology, Physiology, and Behavior)

The study of physiology is concerned with understanding the mechanisms that control and carry out the vital functions of living organisms. From the single cell and its parts, through the various organ systems, to the whole animal and its relationship to its environment—the entire range of function of living matter is investigated.

The Program. An understanding of physiology must be built on a broad scientific background. In the freshman and sophomore years, physiology majors take courses in chemistry, biology, physics, and mathematics. As juniors or seniors, majors can enroll in a variety of neurobiology, physiology and behavior courses along with upper division courses in related sciences. Students can participate in a number of advanced laboratory courses or may design an individual independent project guided by a member of the faculty.

Career Alternatives. Completion of the physiology major provides the foundations for a challenging career in physiology and also serves as a basis for further training in schools of human and veterinary medicine, medical technology, pharmacy, dentistry, optometry, and other health sciences. Students interested in research and advanced teaching may use the program as preparation for continued study leading to advanced degrees.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td></td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B-118C</td>
<td>6-12</td>
</tr>
<tr>
<td>Mathematics 16A-16B-16C</td>
<td>9</td>
</tr>
<tr>
<td>Physics 5A-5B-5C or 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Statistics 13, 32, 100 (recommended), or 102</td>
<td>3-4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>48-50</td>
</tr>
<tr>
<td>Biological Sciences 101, 102, 103, 104, 105</td>
<td>13</td>
</tr>
<tr>
<td>Biology and Biochemistry 102</td>
<td>11</td>
</tr>
<tr>
<td>Two courses from Microbiology 140, 150 or 160</td>
<td>11</td>
</tr>
<tr>
<td>Microbiology 162 or Pathology, Microbiology and Immunology 127</td>
<td>3-4</td>
</tr>
<tr>
<td>One of the following: Food Science and Technology 104-104L, Microbiology 120-120L, 155L, 177-177L, Molecular and Cellular Biology 161-170L</td>
<td>9-12</td>
</tr>
<tr>
<td>Exercise Science 101L, Neurobiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Course not offered this academic year.
Physics and Behavior 106, 111C, 111L, 160L, 194H; 199 courses or other courses with the approval of the master adviser.

Additional physiology depth unit requirement

All other Neurobiology, Physiology and Behavior courses used in satisfaction of any other requirement; Anthropology 154A, 154B; Entomology 104; Exercise Science 101, 102, 111.

One course from Anthropology 151; Evolution and Ecology 100; Plant Biology 107

Total Units for Major..108-119

Master Adviser. J. Goldberg (Section of Neurobiology, Physiology, and Behavior), 191 Briggs Hall.

Advising Center. 196 Briggs Hall (916-752-9696)

Graduate Study. The Graduate Group in Physiology offers programs of study and research leading to the M.S. and Ph.D. degrees. Information on graduate study may be obtained by writing the Graduate Adviser, Graduate Group Complex. See also the graduate course offerings in Animal Behavior Graduate Group, Neuroscience Graduate Group, and Physiology Graduate Group. See also the Graduate Studies section in this catalog.

The Plant Biology Major Program

Plant biology is the study of plants as organisms. It includes the disciplines of cellular and molecular plant biology and the traditional areas of botany, such as anatomy, morphology, systematics, physiology, mycology, physiology, ecology, and evolution.

The Program. The plant biology major consists of core courses in applied plant biology, plant anatomy, plant physiology, and plant ecology, as well as biochemistry, cell biology, and genetics. In addition, students complete a set of courses in one of the following areas: (1) applied plant biology, (2) plant evolution and ecology, (3) general plant biology, and (4) plant physiology, development, and molecular biology. The major provides breadth in diverse areas of plant biology and depth in one of several areas of specialization. Independent research opportunities in plant biology are available. Consult with an adviser.

Career Alternatives. A Plant Biology degree is an excellent credential for a wide range of career options, including domestic and international opportunities in business, research and teaching in both governmental and private sectors. Plant biologists can work in the field, in the forest, in the laboratory, in botanical gardens or nurseries, in food or feed companies, or in pharmaceutical, energy or chemical industries, and pursue rewarding careers in the areas of biotechnology, environmental protection, or agribusiness. The program is also an excellent background for students wishing to enter graduate or other professional schools, including medicine, law or journalism.

A.B. Major Requirements:

Preparatory Subject Matter.............................35

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Agriculture Systems and Environment 120 or Statistics 13 or 100 or 102</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Units for the Major..............................76-77

Recommended

Chemistry 2C; Evolution and Ecology 100; Plant Biology 118, 119.

For students with interests in specialized areas of plant biology (e.g., agricultural botany, ecology, systematics and evolution, morphology, plant physiology, etc.), certain substitutions, including courses in other courses or departments, may be allowed on prior consultation with a Plant Biology major adviser.

B.S. Major Requirements:

Preparatory Subject Matter.............................60-61

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 1A-1B-1C</td>
<td>15</td>
</tr>
<tr>
<td>Chemistry 2A-2B-2C</td>
<td>15</td>
</tr>
<tr>
<td>Mathematics 1A-1B-1C</td>
<td>9</td>
</tr>
<tr>
<td>Physics 5A-5B-5C or 7A-7B-7C</td>
<td>12</td>
</tr>
<tr>
<td>Agricultural Systems and Environment 120 or Statistics 13, 32, 100, or 102</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Deph Subject Matter.................................45

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 101 or Plant Biology 152</td>
<td>32</td>
</tr>
<tr>
<td>Biological Sciences 102, 103, 104</td>
<td>9</td>
</tr>
<tr>
<td>Plant Biology 105, 111</td>
<td>8</td>
</tr>
<tr>
<td>Completion of one Option listed below</td>
<td>24</td>
</tr>
</tbody>
</table>

Research experience through internships or special studies is recommended.

General Plant Biology

Evolution and Ecology 100, Plant Biology 112

Plant Biology 117 or 142

One course from the Applied Plant Biology course list (Plant Biology 175 recommended) | 3-5 |

One course from the Evolution and Diversity course list | 3-5 |

Additional upper division coursework from any of the four course lists, chosen in consultation with an adviser, to achieve a total of 24 or more units. At least one course chosen from the option course list must include a formal laboratory or fieldwork section | 3-7 |

Applied Plant Biology

Plant Biology 112

Plant Biology 142 or 143

Plant Biology 160, 175

Molecular and Cellular Biology 120; Plant Biology 111L, 153, 158, 172L, 189, or Plant Pathology 120

Additional upper division coursework from the Applied Plant Biology course list to achieve a total of 24 or more units | 3-7 |

Plant Evolution and Ecology

Evolution and Ecology 100

Plant Biology 117 or 142

One course from the Applied Plant Biology course list (Plant Biology 175 recommended) | 3-5 |

Additional upper division coursework from the Evolution and/or Diversity course list to achieve a total of 24 or more units. At least one course chosen must include a formal laboratory or fieldwork section | 11-13 |

Plant Physiology, Development and Molecular Biology

Plant Biology 112

Molecular and Cellular Biology 120L, 170L; Plant Biology 111L or 153

One course from the Applied Plant Biology course list (Plant Biology 175 recommended) | 3-5 |

One course from the Ecology course list (Plant Biology 117 recommended) | 3-4 |

One course from the Evolution and Diversity course list | 3-5 |

Additional upper division coursework from the Plant Physiology, Development, and Molecular Biology course list to achieve a total of 24 or more units | 1-9 |

Course Lists

Applied Plant Biology

Agricultural Systems and Environment 107, 110L, 111L, 112, 113, 118, 150, 170A, 170B, 195; Atmospheric Science 133; Entomology 100L, 100L, 111, 119, 135; Environmental Horticulture 102, 105, 107, 120, 125, 130, 133; Environmental Toxicology 101; Hydrologic Science 124; International Agricultural Development 101; Nematology 100; Plant Biology 121, 142, 143, 146, 150, 152, 157, 158, 160, 171, 172, 172L, 173, 174, 175, 176, 177, 178, 188; Plant Pathology 120, 125; Pomology 102; Range Science 100, 103, 133, 134; Soil Science 100, 105, 109, 111; Viticulture and Enology 101A, 101B, 101C, 110, 115, 116, 118.

Ecology

Agricultural Systems and Environment 112; Environmental Studies 121, 123, 124, 128, 128L, 150C, 151, 151L, 155, 156L, Evolution and Ecology 121, 138; Hydrologic Science 122, 122L, 124; Plant Biology 117, 121, 142, 146; Range Science 133, 134.

Evolution and Diversity

Plant Physiology, Development, and Molecular Biology

Molecular and Cellular Biology 126; Plant Biology 125, 153, 157, 158, 160; Plant Pathology 130.

Total Units for the Major...............................105-106

Minor Adviser. Contact A. Stemler, Plant Biology Section Office, 143 Robbins Hall.

Minor Program Requirements:

Plant Biology...............................23

To satisfy the requirements for a Plant Biology minor, a student must complete Biological Sciences 1C (or equivalent introductory plant biology course). Up to 5 upper division units including at least one course from each of the four groups below:

(a) Anatomy and morphology: Evolution and Ecology 140, Plant Biology 105, 116, 118.

(b) Physiology and development: Plant Biology 111, 112, 125, Plant Pathology 130.

(c) Evolution and ecology: Evolution and Ecology 100, Plant Biology 102, 117, 143.

Minor Adviser. Same as for major above.

Honors and Honors Programs. Students on the honors list may elect to substitute a maximum of 5 units of 194H for 5 upper division units of the regular major; however, recommendations for high honors and highest honors at graduation are not dependent on the completion of 194H. Refer to the Academic Information chapter and the appropriate College section for Dean’s Honors List information.

Teaching Credential Subject Representative. R. M. Thornton (Section of Plant Biology), 218 Robbins Hall. See also the Teacher Education Program.

Graduate Study. Consult the Plant Biology Graduate Group listing.

Division-wide Programs and Courses

Bodega Marine Laboratory Program

A full quarter of undergraduate course work in marine biology is available each spring quarter at the Bodega Marine Laboratory (BML) located in Bodega Bay, California. Course offerings include lecture and laboratory instruction in the developmental biology of...
Courses in Biological Sciences (BIS)

Lower Division Courses

1A. Introductory Biology (5) I, II, III. The Staff Lecture—4 hours; discussion—1 hour. Prerequisite: Chemistry 2B (may be taken concurrently). Introduction to biological molecules, bioenergetics, cell structure and function, elements of molecular biology and genetics, and viruses. Interdisciplinary course for majors in the biological sciences.

1B. Introductory Biology (5) I, II, III. The Staff Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 1A. Topics covered include transmission genetics, systematics, evolution, survey of the animal kingdom, comparative anatomy, physiology, and adaptation in animals.

1C. Introductory Biology (5) I. Canington; II. Murphy/Sinha, Shackel/Labavitch; III. Thornton, Yoder/Bloom Lecture—4 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 1A. Topics covered include a survey of bacteria, protozoa, algae and plants, structure and function of plant tissue, adaptive development and evolution of plants, population ecology, ecosystem analysis and human evolution. GE credit: SciEng, Wrt.

10. General Biology (4) I. Goldberg; II. Marriott; III. Falk Lecture—3 hours; discussion—1 hour. Consideration of the main features and principles of biology, with emphasis on biological processes and special reference to evolution, heredity, and the bearing of biology on society. For students not specializing in biology. Not open for credit to those who have had course 1A. GE credit: SciEng, Wrt.

11A-11B. Issues in the Life Sciences (2-2) I. Villalobos; II. The Staff Lecture—1 hour; discussion—1 hour. Prerequisite: enrollment limited to BUSP students; consent of instructor required. Designed to broaden the students’ understanding of biology by demonstrating the range of subjects and approaches included in the field of biology. Both basic biological research topics and applied biology will be studied.

19. Biology of Cancer (3) III. The Staff Lecture—3 hours. Prerequisite: course 1A or 10, or Molecular and Cellular Biology 10 or Neurobiology, Physiology and Behavior 10. Interdisciplinary course offers an introduction to the biological, clinical and psycho-social aspects of cancer, and emphasizes basic understanding of biological principles and facts about the disease process. Designed for students with little scientific background. Offered in alternate years.

92. Internship in Biological Sciences (1-12) I, II, III. The Staff (Associate Dean in charge) Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: lower division standing and consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Genes and Gene Expression (4) I. Gottleib (Evolution and Ecology), Sprechman; II. Bowman (Plant Biology), Morand, Rodriguez, Sanders; III. Dvorak (Agronomy and Range Science), Quiros (Vegetable Crops), Pohl/Sanders Lecture—4 hours. Prerequisite: course 1B; Chemistry 88B or 118B or 128B. Structure and function of macromolecules with emphasis on proteins; enzyme kinetics; supramolecular assemblies; membranes; cytoskeleton; cell motility and cell division. Not open for credit to students who have completed Biochemistry and Biophysics 101A. (Former course Biochemistry and Biophysics 101A.)

103. Bioenergetics and Metabolism (3) I. Calis, Morand; II. I.H. Segel, Doo; III. Carlson, L.D. Segel Lecture—3 hours. Prerequisite: course 102. Fundamentals of metabolism including glycolysis and oxidative pathways; photosynthesis; biosynthesis of amino acids, nucleic acids and proteins. Not open for credit to students who have completed Biochemistry and Biophysics 101A. (Former course Biochemistry and Biophysics 101B.)

104. Regulation of Cell Function (3) I. Baskin, Erickson, Nuccitelli; II. Crowe, Wilson (Neurobiology, Physiology and Behavior); III. Etzler, McNally, Myles Lecture—3 hours. Prerequisite: course 101 and 102; course 103 recommended. Membrane receptors and signal transduction; cell trafficking; cell cycle, cell growth and division; extracellular matrix and cell-cell junctions; cell development; immune system. Not open for credit to students who have completed Botany/Zoology 130, Physiology 100A or Zoology 121A. (Former courses Botany/Zoology 130, Physiology 100A, Zoology 121A.)

120. Developmental Biology of Marine Invertebrates (4) I. Jeffery (Molecular and Cellular Biology) Lecture—30 hours total; laboratory—30 hours total. Prerequisite: Molecular and Cellular Biology 150-150L, Biological Sciences 102 and 103; course 123 concurrently. Phylogenetic patterns of reproduction and development among the marine invertebrates. Emphasis on both modern and classical approaches to understanding gametogenesis, gamete interaction and fertilization, cleavage, cell differentiation and morphogenesis, and larval development and metamorphosis. Course offered at Bodega Marine Laboratory. (See above description for Bodega Marine Laboratory Program.)

120P. Developmental Biology of Marine Invertebrates/Advanced Laboratory Topics (6) I. Jeffery (Molecular and Cellular Biology) Laboratory—150 hours total; discussion—10 hours total. Prerequisite: course 120 concurrently. Students will pick a research topic for intense study. Research will be related to a topic covered in course 120 and will be conducted at the Bodega Marine Laboratory with close supervision of resident faculty. (See above description for Bodega Marine Laboratory Program.)

122. Population Biology and Ecology (4) I. Strong (Evolution and Ecology) Lecture—30 hours total; laboratory—30 hours total. Prerequisite: lower division core in biological sciences; course 123 concurrently. Population and community processes. Emphasis on biological and physical processes affecting plant and animal populations in the array of habitats at the ecological reserve. Model- ling as a basis for designing experiments. Course offered at Bodega Marine Laboratory. (See above description for Bodega Marine Laboratory Program.)

122P. Population Biology and Ecology/Advanced Laboratory Topics (6) I. Strong (Evolution and Ecology) Laboratory—150 hours total; discussion—10 hours total. Prerequisite: course 122 concurrently. Students pick a research topic for intense study. Research will be related to a topic covered in course 122 and will be conducted at the Bodega Marine Laboratory with close supervision of resident faculty. (See above description for Bodega Marine Laboratory Program.)

123. Undergraduate Colloquium in Marine Science (1-11) I. stall Seminar—1 hour. Prerequisite: enrolled student at the Bodega Marine Laboratory. Series of weekly seminars recognized authorities in various disciplines of marine science from within and outside the UC system. Includes informal discussion with speaker. Course will be held at the Bodega Marine Laboratory. (P/NP grading only.)

192. Internship in Biological Sciences (1-12) I, II, III. The Staff (Associate Dean in charge) Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

194H. Research Honors (2) I, II, III. The Staff (Associate Dean in charge) Independent study—6 hours. Prerequisite: senior standing. Students majoring in Biological Sciences who have completed two quarters (3-5 units per quarter) of 199 and who qualify for the honors program as defined by the current catalog. Opportunity for Biological Sciences majors to pursue intensive research culminating in the writing of a senior thesis with the guidance of faculty advisers. (P/NP grading only.)

197T. Tutoring in Biological Sciences (1-3) I, II, III. The Staff (Associate Dean in charge) Prerequisite: upper division standing; appropriate background in biological sciences. Assisting in courses in Biological Sciences under the direction of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study in Biological Sciences (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

Graduate Courses

298. Group Study (1-5) I, II, III. The Staff (Associate Dean in charge) Prerequisite: consent of instructor. Division of Biological Sciences staff members may offer group study courses under this number.

Professional Course

310. Effective Teaching of College Biology (2) I. Thornton (Plant Biology) Informal lecture/discussion—2 hours. Teaching function of an academic career; objectives, nature, and methods of effective teaching; design of curricula and courses; lecturing and leading discussions, examinations and grading; evaluation; counseling; innovation. (S/U grading only.)

Sections of the Division of Biological Sciences

*Course not offered this academic year.
Biology and Evolution

Thomas W. Schoener, Ph.D., Chairperson of the Section
Section Office, 2320 Storer Hall (916-752-1272)

Faculty
Primary Section Members
James A. Doyle, Ph.D., Professor
Olaf W. J. Ellers, Ph.D., Assistant Professor
John H. Gileaspe, Ph.D., Professor
Leslie D. Gottlieb, Ph.D., Professor
Richard K. Grosberg, Ph.D., Associate Professor
Charles L. Langley, Ph.D., Professor
Robert W. Pearcy, Ph.D., Professor
Marcel Rejmanek, Ph.D., Professor
Michael J. Sanderson, Ph.D., Assistant Professor
Thomas W. Schoener, Ph.D., Professor
H. Bradley Shaffer, Ph.D., Professor
Arthur M. Shapiro, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Judy A. Stamps, Ph.D., Professor
Maurice L. Stanton, Ph.D., Professor
Sharon Y. Strauss, Ph.D., Assistant Professor
Donald R. Strong, Ph.D., Professor
Catherine A. Toft, Ph.D., Professor
Michael Turelli, Ph.D., Professor
Emeriti Faculty
Daniel I. Axelrod, Ph.D., Professor Emeritus
Milton Hildebrand, Ph.D., Professor Emeritus
Academic Senate Distinguished Teaching Award
Everett W. Jameson, Ph.D., Professor Emeritus
Jack Major, Ph.D., Professor Emeritus
Peter R. Marler, Ph.D., Professor Emeritus
Milton A. Miller, Ph.D., Professor Emeritus
Timothy Prout, Ph.D., Professor Emeritus
Robert L. Rudd, Ph.D., Professor Emeritus
George W. Salt, Ph.D., Professor Emeritus
G. Ledyard Stebbins, Ph.D., Professor Emeritus
Kenneth E. F. Watt, Ph.D., LL.D, Professor Emeritus
Grady L. Webster, Ph.D., Professor Emeritus
Affiliated Faculty
Susan L. Keen, Ph.D., Lecturer

Courses in Evolution and Ecology (EVE)

Lower Division Courses
92. Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the Section of Evolution and Ecology. Internships supervised by a member of the faculty. (Former course Zoology 92.) (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge) Former course Zoology 99. (P/NP grading only.)

Upper Division Courses
100. Introduction to Evolution (4) I. Stanton; II. G. Langley, Tuner Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1A, 1B, 1C; 101; Mathematics 16A, 16B, 16C or the equivalent; Statistics 13 or 100 (Statistics 100 recommended). A general survey of the origins of the biological diversity and evolutionary mechanisms. Not open for credit to students who have completed Botany 100, Genetics 103, Zoology 148. (Former courses Botany 100, Genetics 103, Zoology 148.)

101. Introduction to Ecology (4) I. Strauss; II. Toft; III. The Staff Lecture—3 hours; lecture/discussion—1 hour. Prerequisite: Biological Sciences 1A, 1B, 1C; Mathematics 16A, 16B, 16C or the equivalent. A survey of the principles of ecology. Not open for credit to students who have completed Zoology 125. (Former course Zoology 125.)

102. Population and Quantitative Genetics (4) II. Langley Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 101, and Statistics 100 or 102, and course 100. Evolution as caused by random mating, genetic drift, natural selection, inbreeding, migration, and mutation in theory and actuality. Study of the resemblance between relatives and consequences of selection for quantitative traits. Application of these ideas to topics such as the evolution of sex.

105. Systematics: Analysis of Vertebrate Structure (4) I. The Staff Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, and 1C. Diversity and classification of angiosperms (flowering plants) on a world scale, and current understanding of the origin of angiosperms and evolutionary relationships and trends within them based on morphological and molecular evidence. (Same course as Plant Biology 108B.) GE credit: SciEng.

112. Invertebrate Zoology (4) II. Ellers Lecture—4 hours. Prerequisite: Biological Sciences 1A, 1B; course 112L (concurrently); courses in systematics, ecology, and evolution recommended. Survey of the invertebrate phyla emphasizing aquatic forms and forming on morphology, development, natural history, and phylogenetic relationships. Not open to students who have completed Zoology 112L. (Former course Zoology 112.)

112L. Laboratory for Invertebrate Zoology (3) II. Ellers Discussion—1 hour; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; course 112L concurrently. Field and laboratory experience with representatives of the invertebrate phyla discussed in course 112. Emphasis on comparative morphology, natural history, ecology, and behavior of living invertebrates. Not open to students who have completed Zoology 112L. (Former course Zoology 112L.)

117. Plant Ecology (4) I. Pearcy, Stanton Lecture—3 hours; three to five field trips. Prerequisite: Biological Sciences 1A, 1B, 1C; Plant Biology 112; Plant Biology 102 or 108 strongly recommended. The study of interactions between plant populations or vegetation types and their environment. Special emphasis on California. Students taking course 117 cannot receive credit for Plant Biology 101. (Same course as Plant Biology 117.) Not open to students who have completed Botany 117. (Former course Botany 117.)

121. Survey of Plant Communities of California (4) III. Barbour Lecture—2 hours; fieldwork—1 hour; term paper—1 hour. Prerequisite: Biological Sciences 1C recommended. Structure and composition of selected plant communities and the relationship of their component species to the environment. Espe- cially recommended for non-majors. Not open for credit to students who have completed Botany 101 or Botany 101L. (Former courses Botany Plant Biology 101, Botany 101L.) GE credit: SciEng, Wrt.

134. Herpetology (3) III. Shaffer Lecture—2 hours; term paper. Prerequisite: Biological Sciences 1A, 1B; Evolution and Ecology 100 recommended. The world-wide diversity of amphibians and reptiles with emphasis on behavior, ecology, functional morphology, and evolutionary history. Offered in alternate years. Not open to students who have completed Zoology 134. (Former course Zoology 134.)

134L. Herpetology Laboratory (2) III. Shaffer Laboratory—6 hours; two weekend field trips. Prerequisite: Biological Sciences 1A, 1B; course 134 concurrently. Diagnostic characteristics and functional attributes of amphibians and reptiles, emphasizing ecological, biogeographic and phylogenetic patterns. Field trips will acquaint students with techniques for identifying and studying amphibians and reptiles under natural conditions. Offered in alternate years. Not open to students who have completed Zoology 134L. (Former course Zoology 134L.)

137. Ornithology (2) II. The Staff Lecture—2 hours. Prerequisite: course 101 or the equivalent course in ecology. Systematics, distribution, physiology, and population dynamics of birds. Students who have had Wildlife, Fish and Conserva- tion Biology 111 may not receive credit for this course. Not open to students who have completed Zoology 137. (Former course Zoology 137.)

137L. Ornithology Laboratory (3) II. The Staff Laboratory—6 hours; Prerequisite: course 137L, or course 101 may be taken concurrently) and consent of instructor. Individual study and field trips strongly emphasized. Systematics, behavior, population dynamics, and reproduction of California birds. Not open to students who have completed Botany 137L. (Former course Zoology 137L.)

138. Ecology of Tropical Latitudes (3) III. Shapiro Lecture—3 hours. Prerequisite: any one of the following: Biological Sciences 1A, 1B, or 10, Plant Biology 10, Geography 2 or 2G, or Wildlife, Fish and Conserva- tion Biology 101. Biological, physical, and human-related aspects of the ecology of low latitudes. Distribution, numbers, and relationships of tropical organisms. Problems of development and conserva- tion in the context of ecological and evolutionary the- ory. Offered in alternate years. Not open to students who have completed Zoology 138. (Former course Zoology 138.) GE credit: SciEng, Wrt.

140. Paleobotany (4) I. Doyle Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; Introduction to plant fossil record, beginning with invasion of land in the Sil- urian, emphasizing origin and evolution of major groups and adaptations and changing composition and distribution of floras in relation to tectonic and climatic change. Not open to students who have completed Botany 140. (Former course Botany 140.)

141. Systematics and Macroevolution (3) II. Shapiro Lecture—2 hours; biweekly research projects. Prereq- uisite: Biological Sciences 1B or 1C; course 100 re- commended. Historical background, philosophical rationale, contemporary approaches and working rules of animal biostatistics, including International Code of Zoological Nomenclature. Offered in alternate years. Not open to students who have completed Zoology 141. (Former course Zoology 141.)

147. Biogeography (4) I. Shapiro Lecture—3 hours; term paper. Prerequisite: Biological Sciences 1A, 1B. Movements of terrestrial organisms. The role of geologic, climatic, and biological changes in the geographic distribution of organisms. Offered in alternate years. Not open to students who have completed Zoology 147. (Former course Zoology 147.)

149. Evolution of Ecological Systems (4) I. Shapiro Lecture—3 hours; term paper. Prerequisite: course 101 or Environmental Studies 100 (or the equivalent), and course 100 (or the equivalent). Evolution as an organizing force in natural communities. Coadaptation in trophic and competitive relationships. Ecology of polymorphisms, clines, and speciation. Offered in
Graduate Courses

221. Behavioral Ecology (3) III. The Staff
Lecture—3 hours. Prerequisite: course 101 or Neuro-
biology, Physiology and Behavior 102 or the equiva-
 lent, and graduate standing. Introduction to the main
issues treated in modern behavioral ecology, the ma
main experimental techniques used to treat these is
issues and the major theoretical methods used to de
velop predictive models. Offered in alternate years.
Not open to students who have completed Zoology 221.
(Former course Zoology 221.)

240. Paleobotany and Angiosperm Evolution
(4) II, III. Doyle
Lecture—3 hours; laboratory—3 hours. Prerequisite:
Plant Biology 108, 116, or course 140. Critical analy
sis of the plant fossil record as a source of evidence on
origin, evolution, and phylogeny of the angiosperms,
Cretaceous and Tertiary climates, geographic history
of modern taxa, and origin of modern vegetation
types. Offered in alternate years. Not open to students
who have completed Botany 240. (Former course Botany 240.)

243. Palynology (4) I, Doyle
Lecture—2 hours; laboratory—6 hours. Prerequisite:
Plant Biology 108, 116, or course 140. Morphology of
spores and pollen grains and their use in stratigraphy,
plant systematics and evolution, and paleoecology.
Techniques for study of modern spores and pollen
and extraction and identification of fossil paly-
nonomorphs from Quaternary to Paleozoic age.
Offered in alternate years. Not open to students
who have completed Botany 243. (Former course Botany 243.)

287. Seminar in Animal Behavior (2) III. Stamps
Seminar—2 hours. Prerequisite: consent of instructor.
Reports and discussion on the principles and recent
developments in invertebrate and vertebrate animal
behavior. Not open to students who have completed
Zoology 287. (Former course Zoology 287.)

290C. Research Conference (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate standing and
consent of instructor. Research and discussion of,
faculty and graduate student research in biology.
May be repeated for credit. Former course Zoology 290C.
(S/U grading only.)

290C. Research Conference (2) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate standing and
consent of instructor. Research and discussion of,
faculty and graduate student research in biology.
May be repeated for credit. Former course Zoology 290C.
(S/U grading only.)

294. Seminar in Animal Ecology (3) III. The Staff
Seminar—3 hours. Prerequisite: course 101 and grad-
uate standing. Readings and discussions of advanced
topics in the population and community ecology of ani-
mals. Not open to students who have completed Zool-
yogy 294. (Former course Zoology 294.)

298. Group Study (1-5) I, II, III. The Staff
(Chairperson in charge)
Former course Zoology 298. (SU grading only.)

299. Research (1-12) I, II, III. The Staff
(Chairperson in charge)
Former course Zoology 299. (SU grading only.)

Professional Course

390. Methods of Teaching (2) I, II, III. The Staff
Lecture—1 hour; discussion—1 hour. Prerequisite:
grandate standing and consent of instructor. Practical
experience in the methods and problems of teaching.
Includes analyses of texts and supporting material,
discussion of teaching techniques and preparing and
conducting laboratory, discussions, and discussion
sections. May be repeated for credit for a maximum of 8 units.
Former course Zoology 390. (SU grading only.)

*Course not offered this academic year.
105. Bacterial Diversity (5) II. Nelson Lecture—3 hours; laboratory—6 hours. Prerequisite: courses 102, 102L, and Biological Sciences 102; Biological Sciences 103 recommended. Survey of the major groups of bacteria emphasizing diversity of energy metabolism, morphology and natural history. Includes methods for determination of evolutionary relationships among groups. Isolation and characterization of bacterial strains from various habitats.

*110. Bacteriology of Insects (3) II. Baumann Lecture—3 hours. Prerequisite: course 102; Biological Sciences 102 or permission of the instructor. Genesis and physiology of pathogenic and symbiotic associations between procaryotes and insects. Taxonomy, physiology, pathogenesis, and molecular biology of insect pathogens. Insect immunity. Nutritional associations between microorganisms and insects. Pertinent entomological background information will be included.

120. Microbial Ecology (3) III. Meeks Lecture—3 hours. Prerequisite: course 105, Biological Sciences 102. Interactions between non-pathogenic microorganisms and their environment, emphasizing physiological and metabolic characteristics of various groups and their adaptation to and modification of specific habitats.

120L. Microbial Ecology Laboratory (2) III. Meeks Laboratory—6 hours; one optional overnight weekend field trip. Prerequisite: course 120 (may be taken concurrently); consent of instructor. Study of procaryotic microorganisms from certain habitats. One-half of laboratory effort will consist of organized experiments on ecologically important microbial activities. For remaining one-half, research projects will be done on student selected specific habitats of microorganisms. Limited enrollment.

140. Bacterial Physiology (3) I. Singer Lecture—3 hours. Prerequisite: Biological Sciences 101, 102, 103 (may be taken concurrently); course 102 recommended (may be taken concurrently). Fundamentals of bacterial growth and bacterial responses to environmental stresses. Topics will include carbon and nitrogen regulation, growth rate control, post-exponential growth, and motility and chemotaxis. Not open for credit to students who have completed course 120A.

150. Bacterial Genetics (3) II. Igo Lecture—3 hours. Prerequisite: Biological Sciences 101 and 102, course 105 (may be taken concurrently) recommended. Fundamentals of bacterial and phage genetics. Topics will include generating mutations, phage genetics, classical bacterial genetics, molecular techniques to generate mutations and physical mapping techniques. Not open for credit to students who have completed course 215.

155L. Bacterial Physiology Laboratory (3) III. Artz Laboratory—9 hours. Prerequisite: course 140 or 150, course 102L. Physiology and genetics of bacteria. Isolation and characterization of mutant strains. Mapping of mutations by conjugation and transduction studies on control of enzyme synthesis by induction, repression, and metabolite repression. Not open for credit to students who have taken course 150L. (Former course 130L.)

*160. Bacterial Regulatory Mechanisms (3) III. Kowalczykowski, Artz Lecture—3 hours. Prerequisite: course 140 or 150 recommended. Fundamentals of bacterial regulatory mechanisms. Topics will include control of DNA, RNA, and protein synthesis, global regulatory mechanisms, recombination. DNA repair systems, and cell cycle control with emphasis on bacterial systems. Not open for credit to students who have taken course 130B. (Former course 130B.)

162. General Virology (4) II. Manning Lecture—4 hours. Prerequisite: microbiology; Biological Sciences 1A, 102. Integrated presentation of the nature of animal, bacterial, and plant viruses, including their structure, replication and genetics.

*177. Metabolism of Anaerobic Bacteria (3) II. The Staff Lecture—3 hours. Prerequisite: course 102; Biological Sciences 103 (may be taken concurrently). Various groups of anaerobic and facultatively anaerobic bacteria, a consideration of their natural environments and their metabolic characteristics, with emphasis on energy yielding catabolic pathways.

*177L. Laboratory in Metabolism of Anaerobic Bacteria (2) II. The Staff Laboratory—6 hours. Prerequisite: course 102L; course 102 recommended (may be taken concurrently). Isolation of anaerobic bacteria from a number of different natural environments; experiments dealing with certain characteristic physiological and metabolic aspects of anaerobic bacteria. Offered in alternate years.

190C. Undergraduate Research Conference (1) I, II, III. The Staff (Chairperson in charge) Discussion/conference—1 hour. Prerequisite: upper division standing, consent of instructor. Presentation and critical discussion of staff research activities; designed for advanced undergraduate students. May be repeated for credit. Offered in alternate years.

192. Internals (1-2) I, II, III. The Staff Internship—3-36 hours. Theoretical and/or professional experience on or off campus. Supervised by a member of the Microbiology Section faculty. (P/NP grading only.)

194H. Microbiology Honors Research (2) I, II, III. The Staff Independent study—6 hours. Prerequisite: senior standing; eligibility for college honors; completion of six units of 190H in microbiology; consent of section. Continuation of an individual microbiological research project culminating in writing of a senior thesis under a faculty director. (P/NP grading only.)

197T. Tutoring in Microbiology (1-5) I, II, III. The Staff Lecture/discussion—3 hours. Prerequisite: permission of the instructor. Survey of the genetics, physiological and metabolic aspects of selected bacterial systems. Specific systems discussed will include the following types of regulation: control of transcription initiation and termination; translational controls; RNA modification effects; autoregulation; control circuits in bacterial viruses; supercontrols. Offered in alternate years.

262. Advanced General and Molecular Virology (3) III. Manning, Luciv (Medical Pathology), Bruening (Plant Pathology) Lecture—3 hours. Prerequisite: graduate standing. Advanced integrated presentation of animal, bacterial, and plant viruses, including their structure, modes of regulation, expression and replication, and effects on host cells and organisms.

263. Principles of Protein–Nucleic Acid Interactions (3) III. Kowalczykowski, Artz Lecture—3 hours. Prerequisite: advanced standing and completion of one of the following courses: Biochemistry, Microbiology 120L; consent of instructor. Emphasis on protein–nucleic acid interactions. Topics include nucleic acid recognition by proteins, thermodynamics of protein-nucleic acid stability, and kinetics of binding process for both non-specific and sequence-specific nucleic acid binding proteins. Emphasis on systems that represent paradigms in protein–nucleic acid interactions. Offered in alternate years.

*270. Advanced Animal Virology (3) III. Manning in charge Lecture—3 hours. Prerequisite: consent of instructor. Selected advanced topics on biological and biochemical properties of animal viruses. May be repeated for credit. Offered in alternate years.

274. Seminar in Genetic Recombination (2) I, II, III. Kowalczykowski, Artz Seminar—2 hours. Prerequisite: graduate standing; consent of instructor. Biochemical and genetic aspects of genetic recombination in prokaryotes and eukaryotes. Mechanisms of recombination, chemical and genetic characteristics of recombination proteins. Proteins include DNA strand exchange, DNA helicase, and Holliday junction resolving proteins. (SU grading only.)
Biological Sciences: Molecular and Cellular Biology

Carl W. Schmid, Ph.D., Chairperson of the Section

Faculty

Primary Section Members

Peter B. Armstrong, Ph.D., Professor
Ronald J. Baskin, Ph.D., Professor
Kenneth C. Burtis, Ph.D., Associate Professor
Judith Callis, Ph.D., Associate Professor
Don M. Carlson, Ph.D., Professor
James S. Clegg, Ph.D., Professor
Richard S. Croddle, Ph.D., Professor
John H. Crowe, Ph.D., Professor
Michael E. Dahms, Ph.D., Professor
Roy H. Doi, Ph.D., Professor
Carol A. Erickson, Ph.D., Professor
Maryann E. Etzler, Ph.D., Professor
Charles S. Gasser, Ph.D., Professor
Robert D. Grey, Ph.D., Professor, Academic Senate Biomedical Teaching Award
Scott Hawley, Ph.D., Professor
Jerry L. Hedrick, Ph.D., Professor
Leonard M. Hjelmeland, Ph.D., Professor (Biological Chemistry)
William R. Jeffery, Ph.D., Professor
John A. Kiger, Ph.D., Professor
J. Clark Lagarias, Ph.D., Professor
R. Marc Learned, Ph.D., Assistant Professor
Francis J. McNally, Ph.D., Assistant Professor
Mark G. McNamee, Ph.D., Professor
Gregg B. Morin, Ph.D., Assistant Professor
Diana G. Morgan, Ph.D., Professor
Jeanette A. Natzie, Ph.D., Associate Professor
Richard L. Nuccitelli, Ph.D., Professor
Jodi Nunnari, Ph.D., Assistant Professor
Reena Padmanabhan, Ph.D., Professor
Leslie L. Rose, Ph.D., Assistant Professor

Courses in Molecular and Cellular Biology (MCB)

Lower Division Courses

10. Introduction to Human Heredity (4) I. Sanders

Lecture—3 hours; discussion—1 hour. Topics in human heredity and human gene structure and function, including the genetic basis of human development, causes of birth defects, mental retardation, genetic diseases, sexual determination, development, and behavior. Not open to students who have received credit for Genetics 102. (Former course Genetics 10.) GE credit: SciEng, Wrt.

140L. Cell Biology Laboratory (4) I. Baskin

Lecture—1 hour; laboratory—6 hours. Prerequisite: Biological Sciences 101 and 102; Biology 104 recommended. Exercises include 10 or more of the following: cell morphology, cell biology, individual cell biology, and cell biology. Manipulative skills. Not open to students who have received credit for Zoology 121L. (Former course Zoology 121L.)

*141. Cellular Regulation of Gene Expression (4) I. Natzie

Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 101 and 102; Biological Sciences 104 recommended. Molecular and cellular mechanisms for regulating the flow of information from genome to cytoplasm, and from one generation to the next in eukaryotes and prokaryotes. Various levels of regulation will be discussed from an experimental, as well as a theoretical, perspective. Not open to students who have received credit for Biochemistry and Biophysics 153, Genetics 102A, 102B, Zoology 121B, or course 121 or 161. (Former course Zoology 121.)

122. Structure and Function of Proteins (3) I. Hutchens (Food Science and Technology)

Lecture—3 hours. Prerequisite: course 120L, Biological Sciences 103. Correlation of structure and biological function. Molecular models of enzymes that explain their physiological function. Physical and chemical methods used in determining protein structure. Function as measured by kinetic and binding models and as affected by physiological considerations. Not open to students who have received credit for Biochemistry and Biophysics 143. (Former course Biochemistry and Biophysics 143.)
162. Human Genetics (3) II. Hawley Lecture—3 hours. Prerequisite: Biological Sciences 101 or the equivalent. Human molecular genetic variation, molecular basis of metabolic disorders, chromosomal aberrations and consequences, diseases associated with the immune system, and statistical techniques for estimating genetic and environmental effects. Not open to students who have received credit for Genetics 107. (Former course Genetics 107.) GE credit: Sci, Eng, Wrt.

163. Developmental Genetics (3) II. Natzle Lecture—2 hours; discussion—1 hour. Prerequisite: courses 101, 102; course 150 recommended. Current aspects of developmental genetics. Historical background and current genetic approaches to the study of development of higher organisms. Not open to students who have received credit for Genetics 104. (Former course Genetics 104.)

164. Advanced Eukaryotic Genetics (3) III. Hawley Lecture—3 hours. Prerequisite: Biological Sciences 101. Concentration on the five basic operations of genetic analysis: mutation, segregation, recombination, complementation, and regulation. Special emphasis will be placed on the process and practice both of isolating new mutations and of analyzing existing mutations.

166. Advanced Developmental Genetics (3) III. Kiger Lecture—2 hours; discussion—1 hour. Prerequisite: courses 161, 163. Topics of current interest in the area of genetic control of development. Focus on the genetic dissection of development in Drosophila and Caenorhabditis elegans. Emphasis on a transgenic and other novel techniques for the description and manipulation of developmental processes. Not open to students who have received credit for Genetics 144. (Former course Genetics 144.) (P/NP grading only.)

170L. Advanced Molecular Genetics Laboratory (II) I, II. The Staff Laboratory—9 hours; lecture—1 hour; discussion—2 hours. Prerequisite: Biological Sciences 101; courses 120L or 160L; course 121, 141, or 161; and consent of instructor. Molecular analysis of gene structure and function. Isolation, manipulation, and characterization of DNA, RNA, and proteins using recombinant DNA technology. Limited enrollment. Not open for credit to students who have completed Genetics 102L. (Former course Genetics 102L.)

178. Undergraduate Seminar in Molecular Genetics (1) I. Hawley, Rodriguez, II. Hawley, Rose; III. The Staff Seminar—1 hour. Prerequisite: upper division standing and consent of instructor; and concurrent enrollment in course 193 or 199. Discussion of current research by faculty and students. May be repeated for credit. (P/NP grading only.)

190C. Undergraduate Research Conference (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: upper division standing and consent of instructor; and concurrent enrollment in course 193 or 199. Presentation and discussion of current research by faculty and students. May be repeated for credit. (P/NP grading only.)

191. Introduction to Research (1) I, II, III. Segel Seminar—1 hour. Prerequisite: Biological Sciences 102 (may be taken concurrently) or consent of instructor. Various topics in molecular and cellular biology, including biochemistry, genetics, and cell biology will be discussed, along with ways undergraduates can participate in research projects of faculty members. May be repeated for credit. (P/NP grading only.)

192. Internship (1-12) I, II, III. The Staff Internship—3½ hours. Prerequisite: completion of 84 units and consent of instructor. Technical and/or practical experience on and off campus, supervised by a member of the Faculty. Not open for credit to students in the biological sciences or a related discipline. Student reports on current topics in cell biology with emphasis on integration of concepts, synthesis, and state-of-the-art research approaches. Reviews of literature and special topics in molecular and cellular biology may be included. May be repeated for credit. (P/NP grading only.)

195. Independent Studies (1-5) I, II, III. The Staff Independent study—9 hours. Prerequisite: upper division standing; completion of course 193 or 199; senior standing and consent of instructor. To assist in the study of a limited number of undergraduate students in one of the Section’s regular courses. (Former courses Biochemistry and Biophysics 197T, Genetics 197T) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) II, III. The Staff Variable—1½ hours. Prerequisite: consent of instructor. (Former courses Biochemistry and Biophysics 198, Genetics 198.) (P/NP grading only.)

Graduate Courses

200A. Current Techniques in Cell Biology (2) I. Nuccitelli Lecture—2 hours. Prerequisite: graduate standing; Biological Sciences 104 and course 141 or the equivalent courses. Current techniques used in cell biology research including microscopy, spectroscopy, electrophysiology, immunochemistry, histology, organellar isolation, calorimetry, tissue culture and gel electrophoresis. Lectures are presented by experts on each technique, with an emphasis on pitfalls to avoid when using the technique. (Same course as Graduate Developmental Biology 200.) Not open to students who have received credit for Zoology 200. (Former course Zoology 200.) (SU grading only.)

200B. Current Techniques in Biochemistry (2) I. Segel Lecture—2 hours. Prerequisite: Biological Sciences 103 and course 120L or the equivalent courses. Current techniques used in biochemical research including protein and carbohydrate analyses, immunochemistry, recombinant DNA methods, electrophoretic and chromatographic methods. Not open to students who have received credit for Biochemistry and Biophysics 200. (Former course Biochemistry and Biophysics 200.)

200C. Current Techniques in Biophysics (2) III. Jue (Biological Chemistry) Lecture—2 hours. Prerequisite: graduate standing; Biological Sciences 102 or the equivalent. Current techniques in biophysics research including diffraction, magnetic resonance spectroscopy, cationic, optical spectroscopy. (Same course as Biophysics Graduate Group 200.) (SU grading only.)

220L. Advanced Biochemistry Laboratory rotations (5) I, II, III. McNally, Nunnari Laboratory—15 hours. Prerequisite: course 221A (may be taken concurrently) and 120L or the equivalent. Two five-week assignments in biochemistry research laboratories. Individual research projects with emphasis on methodological/procedural experience and experimental design. May be repeated twice for credit. (Former course Biochemistry and Biophysics 220L.)
221A. Physical Biochemistry (4) I. Schmid, I.H. Segel
Lecture—4 hours. Prerequisite: Biological Sciences 103, Chemistry 107B-108 and 128C, 129C or 118C or the equivalents. Biochemical thermodynamics and chemical and physical properties of biomacromolecules. including enzyme kinetics and methods for determination of structure and shape of macromolecules. Not open to students who have received credit for Biochemistry and Biophysics 201A. (Former course Biochemistry and Biophysics 201A.)

*221B. Integration of Metabolism and Regulatory Phenomena (3) I. Learned
Lecture—3 hours. Prerequisite: course 221A or consent of instructor. Regulatory phenomena that occur in cells, e.g., regulation at the enzyme level; integration of metabolic pathways including homeostasis, hormonal influences, turnover of enzymes, comparative aspects of metabolism, regulation of amino acids and lipid metabolism in living systems. Not open to students who have received credit for Biochemistry and Biophysics 201B. (Former course Biochemistry and Biophysics 201B.)

221C. Molecular Biology (4) III. Dahnmueller
Lecture—3 hours; discussion—1 hour. Prerequisite: course 212A. Structure and organization of DNA and chromatin; DNA replication, repair and modification; transcription and RNA processing; protein biosynthesis and turnover; transcriptional and translational control mechanisms; examples of the above from eukaryotic and prokaryotic cells, and viruses. Not open to students who have received credit for Biochemistry and Biophysics 201C. (Former course Biochemistry and Biophysics 201C.)

221D. Cellular Biochemistry (4) II. Etzler, Hanley
(Biological Chemistry), McNamee, Scholcy
Lecture—3 hours; discussion—1 hour. Prerequisite: course 221A. Molecular structure and biochemical function of cell membranes, cytoplasmic organization, organelle trafficking, signaling, mechanisms of intra-cellular transport, chromosome segregation and cell division with emphasis on biochemical principles. Not open to students who have received credit for Biochemistry and Biophysics 210D. (Former course Biochemistry and Biophysics 210D.)

*231. Membrane Biochemistry (2) III. McNamee
Lecture—2 hours. Prerequisite: course 221D. Advanced topics in membrane biochemistry with emphasis on the structure and function of membrane proteins and lipids. Offered in alternate years. Not open to students who have received credit for Biochemistry and Biophysics 208. (Former course Biochemistry and Biophysics 208.)

*232. Chemical Modifications of Proteins (3) III. I. Baskin
Biological Chemistry
Lecture—3 hours. Prerequisite: Biological Sciences 103, Chemistry 128C or 118C or the equivalent courses. Chemical approaches for studying proteins, emphasizing the use of chemical modifications as a tool in the study of active sites, particularly of enzymes, and relating the structure of proteins to their functions. Offered in alternate years. Not open to students who have received credit for Biochemistry and Biophysics 212. (Former course Biochemistry and Biophysics 212.)

241. Membrane Biology (3) III. Crowe
Lecture—3 hours. Prerequisite: Biological Sciences 102 and 103, or Biological Sciences 104 and course 141, or consent of instructor. This course will emphasize biological aspects of membrane function and structure. The general approach will be to discuss cell biology from the viewpoint of membranous components of cells. Offered in alternate years. Not open to students who have received credit for Zoology 241. (Former course Zoology 241.)

*242. Muscle Biochemistry (4) I. Baskin
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: Biological Sciences 102, 103 and Mathematics 168 or 218, or consent of instructor. The biochemical aspects of muscle function. Not open to students who have received credit for Zoology 236. (Former course Zoology 236.)

*248. Seminar in Cell Biology (2) II. Scholcy
Seminar—2 hours. Prerequisite: consent of instructor. Discussion of recent literature on the physical and chemical aspects of organization and function of living systems, topics of current interest in ultrastructure and function of cells. Organizational and functional properties of the molecular and cellular levels of biological systems. May be repeated for credit. (Former course Zoology 266.)

*249. Literature in Cell Biology (1, I, II, III.
The Staff
Seminar—1 hour. Prerequisite: consent of instructor. Presentation and critique of recent journal articles in cell biology. General topic area will change each quarter. May be repeated for credit. (Former course Zoology 242.) (SU grading only)

*250. Special Topics in Cell Biology (3) I. Deamer
Lecture—2 hour; discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Discussion and review of current topics in cell biology. May be repeated for credit. (Former course Zoology 240.)

*251. Biology of Fertilization (3) I. Nuccitelli, Meizel, Clark, Hedrick
Lecture—2 hours; term paper. Prerequisite: Biological Sciences 104 or the equivalent, and consent of instructor. The morphology, physiology, and biochemistry of gametes, and the mechanisms and consequences of fertilization. Offered in alternate years. Not open to students who have received credit for Zoology 225. (Former course Zoology 225.)

*252. Cellular Basis of Morphogenesis (4) III. Armstrong
Lecture/discussion—3 hours; term paper. Prerequisite: course 150. Development of form and structure; morphogenetic movement, mechanisms of cellular motility, cell adhesion, intercellular invasion, interaction of cells and tissues in development. Offered in alternate years. Not open to students who have received credit for Zoology 204. (Former course Zoology 204.)

253. Pattern Formation (4) II. Nuccitelli
Lecture—3 hours; term paper. Prerequisite: course 150, Biological Sciences 104 or the equivalent, and consent of instructor. Morphology and mechanism of pattern formation beginning with ontogenic sequestration. Emphasis will be on cell polarity, but some multiscale systems will also be covered. Offered in alternate years. Not open to students who have received credit for Zoology 205. (Former course Zoology 205.)

*254. Mechanisms of Organogenesis (4) II. The Staff
Lecture—3 hours; term paper. Prerequisite: course 150. This course will introduce the various means by which several cell types become organized and differentiate to form a functional unit, using five selected organ systems. Offered in alternate years. Not open to students who have received credit for Zoology 206. (Former course Zoology 206.)

*255. Molecular Mechanisms in Animal Development (3) I. Natzle, Jeffery
Lecture—1.5 hours; seminar—1.5 hours. Prerequisite: graduate standing or consent of instructor; introductory background in development biology and molecular genetics recommended. Analysis of the molecular mechanisms that control animal development, with a special focus on multiple levels of gene regulation. Experimental systems including Drosophila, amphibians, C. elegans, and mice will be discussed. Readings will be taken from current literature. Offered in alternate years. Not open to students who have received credit for Zoology 208. (Former course Zoology 208.)

256. Cell and Molecular Biology of Cancer (1) I. Armstrong
Lecture—1 hour. Prerequisite: course 150 or 141 or Biological Sciences 104 or Biological Sciences 102 and 103. Analysis of the cellular and molecular levels of the regulation of normal and neoplastic growth, tumor dissemination and characteristics of oncogenes and anti-oncogenes. Not open to students who have received credit for Zoology 226. (Former course Zoology 226.)

258. Seminar in Development (2) II. Armstrong, Erickson
Seminar—2 hours. Prerequisite: consent of instructor. Reports and discussion on embryology, morphogenesis, and developmental mechanisms. May be repeated for credit (Former course Zoology 292.)

*259. Literature in Developmental Biology (1, II, III. Armstrong, Erickson
Seminar—1 hour. Prerequisite: consent of instructor. Critical presentation and analysis of recent journal articles in developmental biology. May be repeated for credit. (Former course Zoology 269.) (SU grading only)

*262. Reombinant DNA and Genetic Engineering (3) II. Rodriguez
Lecture—3 hours. Prerequisite course 161 or Microbiology 130A-130B or consent of instructor. This course will explore the biology of necessary elements such as plasmids, transposons insertion sequences, prokaryotes, etc. Both prokaryotic and eukaryotic moveable genetic elements will be discussed. The molecular biology of plasmid replication, illegitimate recombination, etc., will be considered. Offered in alternate years. Not open to students who have received credit for Genetics 202. (Former course Genetics 202.) (SU grading only)

290C. Research Conference (1, I, II, III.
The Staff
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Presentations and critical discussions of faculty and graduate student research in molecular and cellular biology including biochemistry, genetics, and cell biology. May be repeated for credit. (Former course Biochemistry and Biophysics 250, Genetics 290C.) (SU grading only)

291. Current Progress in Molecular and Cellular Biology (1) I, III. Armstrong
Seminar—1 hour. Prerequisite: graduate standing or consent of instructor. Seminars presented by guest lecturers on subject of their own research activities. May be repeated for credit. (Former course Biochemistry and Biophysics 291.) (SU grading only)

295. Literature in Molecular and Cellular Biology (1) I. Privalsky (Microbiology); II. Racke (Avian Sciences); III. Oberbauer (Animal Science)
Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Critical reading and evaluation of current literature in molecular and cellular biology disciplines. Papers will be presented and discussed in detail. May be repeated for credit. (SU grading only)

*296. Research Seminar (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: course 221C or consent of instructor. Presentation and critical discussion of research activities of students working at the local molecular and cellular biology community; primarily designed for graduate students. May be repeated for credit. (Former course Biochemistry and Biophysics 296.) (SU grading only)

298. Group Study (1-5) I, II, III. The Staff
Variable—1-5 hours. Prerequisite: consent of instructor. (Former courses Biochemistry and Biophysics 298, Genetics 298.) (SU grading only)

299. Research (1-2) I, II, III. The Staff
Independent Study—1-2 hours. (Former courses Biochemistry and Biophysics 299, Genetics 299.) (SU grading only)

Professional Course

390. Methods of Teaching (1) I, II, III. The Staff
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Practical experience in the methods and problems of teaching biology and cellular biology. Includes analysis of texts and supporting material, discussion of teaching techniques, preparing for and conducting recitation and laboratory sections, formulating examinations under supervision of instructor. Participating in the teaching program required for Ph.D. May be repeated for credit. (Former courses Biochemistry and Biophysics 390, Genetics 300.) (SU grading only)

*Course not offered this academic year.
12G. Understanding the Human Nervous System (1) III. Recanzone
Discussion—1 hour. Prerequisite: concurrent enrollment in course 12. Scientific studies of brain function will be discussed in relation to ethical considerations, social, economic, and political implications and current and future research. GE credit with concurrent enrollment in course 12: Wt.

Upper Division Courses
100. Neurobiology (4) I, II. The Staff
Lecture—3 hours, discussion—1 hour. Prerequisite: Biological Sciences 1A, 1B; Physics 7C recommended. Brains and nervous systems, neurons and neural circuits, vision, hearing, and feature extraction by the central nervous system. Coordination of movement. The cell biology of learning and memory. Perception, cognition, and disorders of the brain.

Lecture—5 hours. Prerequisite: Biological Sciences 1B; Physics 1B or 7C strongly recommended. Systemic physiology with emphasis on aspects of human physiology. Functions of major organ systems, with the structure of those systems described as a basis for understanding the functions. Not open for credit to students who have completed Physiology 110 or course 110L. (Former course Physiology 110.)

101L. Systemic Physiology Laboratory (2) I. Adamson; III. Goldberg
Laboratory—3 hours, discussion—1 hour. Prerequisite: course 101 prior to taking 101L recommended, but 101L may be taken concurrently. Selected experiments to illustrate functional characteristics of organ systems discussed in course 101. Not open for credit to students who have completed Physiology 110L or course 110L. (Former course Physiology 110L.)

102. Animal Behavior (3) II. Clayton; III. Nevitt
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Basic principles of behavioral organization in vertebrate and invertebrate animals. Understanding and application to the ideas, mathematical techniques and computational approaches underpinning behavioral systems. Emphasis on conceptual and methodological approaches using several species in demonstrating the behavior of organisms. Not open for credit to students who have completed courses 111A or 111B. (Former courses 111A, 111B.)

103. Cellular Physiology/Neurobiology (3) II. Pappone
Lecture—3 hours. Prerequisite: Biological Sciences 103 and 104; Physics 7C recommended. Cellular physiology with emphasis on membrane transport processes and neuronal physiology. Fundamental physical-chemical, cellular and biological mechanisms of membrane transport will be considered in relation to cytoplasmic homeostasis, communication between cells, and the cellular mechanisms of sensory and motor transduction. Not open for credit to students who have completed course 100B or Physiology 100B. (Former courses Neurobiology, Physiology and Behavior 155, Zoology 155.)

103L. Cellular Physiology/Neurobiology Laboratory (3) II. Pappone
Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 101, 101L. Selected experiments to illustrate functional characteristics of organ systems discussed in course 101. Not open for credit to students who have completed Physiology 110L or course 110L. (Former course Physiology 110L.)

104L. Cellular Physiology/Neurobiology Laboratory (3) I. M. Mendel, Ph.D., Professor Emeritus
Lecture—1 hour; laboratory—6 hours; discussion—2 hours (laboratory and discussion alternate weekly). Prerequisite: Biological Sciences 104 or the equivalent; course 103 (may be taken concurrently). Experiments in the physical and chemical processes of cells and tissues. Not open for credit to students who have completed course 100L or Physiology 100L. (Former course Physiology 100L.) GE credit: Wrt.

105. Introduction to Computer Models (4) III. Keizer
Lecture—3 hours; lecture/laboratory—1 hour. Prerequisite: Mathematics 16C or the equivalent, Physics 7C, Chemistry 2C, and course 100 or 101. Introduction to the ideas, mathematical techniques and computer tools required for developing models of cellular processes in physiology and neurobiology. Applications include membrane transport, ionic channels, action potentials, Ca++ oscillations, respiration, and muscle contraction. Offered in alternate years.

106. Experiments in Neurobiology, Physiology, and Behavior: Design and Execution (3) I, II, III.
The Staff
Laboratory—7 to 9 hours; discussion—0.5 hours. Prerequisite: course 101, 102, or 103, and consent of instructor. Experiments in current physiological, neurobiological, or animal behavior laboratories. Discussion of experimental design. Students choose a project and, independently or in groups of 2-3, design a protocol, do the project and report their findings. May be repeated once for credit with consent of instructor. (PNP grading only.)

111C. Advanced Systemic Physiology Laboratory (3) II. Adamson
Lecture—1 hour; laboratory—6 hours; discussion—2 hours (laboratory and discussion alternate weekly). Prerequisite: courses 101, 101L. Selected comprehensive experiments in the autonomic nervous system, the cardiovascular, respiratory, and neuromuscular systems. Emphasis on conceptual and methodological approaches using several species in demonstrating the physiology of organ systems. Not open for credit to students who have completed courses 111A or 111B. (Former courses 111A, 111B.)

111L. Advanced Systemic Physiology Laboratory (3) III. Adamson
Lecture—1 hour; laboratory—6 hours; discussion—2 hours (laboratory and discussion alternate weekly). Prerequisite: courses 101, 101L. Selected comprehensive experiments in the autonomic nervous system, the cardiovascular, respiratory, and neuromuscular systems. Emphasis on conceptual and methodological approaches using several species in demonstrating the physiology of organ systems. Not open for credit to students who have completed courses 111A or 111B. (Former courses 111A, 111B.)

112. Neurobiology (4) I. Carstens; III. Gray
Lecture—3 hours. Prerequisite: course 100 or 101. Presentation of concepts in neuroscience including sensory systems, motor systems, and higher neural integration. Emphasis on mammalian nervous system. Not open for credit to students who have completed Physiology 112. (Former course Physiology 112.)

113. Cardiovascular, Respiratory, and Renal Physiology (4) II. Goldberg
Lecture—4 hours. Prerequisite: course 101; Chemistry 8B, Physics 7A recommended. An intense and advanced presentation of concepts in cardiovascular, respiratory, and renal physiology including discussion of acid-base balance. Recommended for Physiology students, graduate students, and others in allied interests. Not open for credit to students who have completed Physiology 113. (Former course Physiology 113.)

114. Gastrointestinal Physiology (3) I. Johnson
Lecture—3 hours; term paper. Prerequisite: course 101. Biological Sciences 103 recommended. Advanced gastrointestinal physiology covering absorption, secretion, motility, and special emphasis on endocrinology and innervation. Emphasis will be on physiology of the gastrointestinal tract; some pathologic and nutritional items will be covered. Not open for credit to students who have completed Physiology 114. (Former course Physiology 114.) GE credit: Wrt.

117. Avian Physiology (3) III. Millam
Lecture—3 hours. Prerequisite: course 101 or Biological Sciences 1B. Physiology of the various systems of birds with emphasis on digestion, respiration, excretion, and endocrine systems. Not open for credit to students who have completed Physiology 117. (Former course Physiology 117.)

119. Invertebrate Physiology (4) II. Crowe
Lecture—3 hours; term paper; individual conferences. Prerequisite: Evolution and Ecology 112, Chemistry 2A, 2B, Physics 7C; Biological Sciences 102 and 103 recommended. Comparative physiology of invertebrate organ systems. Not open for credit to students who have completed course 142 or Zoology 142. (Former course Zoology 142.)

119L. Invertebrate Physiology Laboratory (3) II: Crowe
Laboratory—6 hours (includes research project). Prerequisite: course 119 (may be taken concurrently). Experiments on the physiological mechanisms of
invertebrate organ systems. Design and execution of a research project. Not open to credit to students who have completed course 142L or Zoology 142L. (Former course 121, Physiology 124.)

121. Physiology of Reproduction (3) II. Anderson
Lecture—3 hours. Prerequisite: course 101. Physiological mechanisms connected to reproduction, consisting of areas such as development, efficiency, and fertility, with special reference to domestic animals. Not open for credit to students who have completed Physiology 121. (Former course 121, Physiology 124.)

121L. Physiology of Reproduction Laboratory (1) II. Anderson
Laboratory—3 hours. Prerequisite: course 121 recommended (may be taken concurrently). Experiments on the reproduction systems of domestic animals including male and female gametes. Not open for credit to students who have completed Physiology 121L. (Former course Physiology 121L.) (P/NP grading only.)

125. Comparative Physiology: Neuroendocrinology (3) II. Woolley
Lecture—3 hours. Prerequisite: course 101. Comparisons of endocrine systems in the animal kingdom: neurointegrative mechanisms of integration in control of physiological development at both neuronal and systemic levels. Not open for credit to students who have completed course 120A or Physiology 120A. (Former course 120A, Physiology 120A.)

126. Comparative Physiology: Sensory Systems (3) II. Silliman
Lecture—3 hours. Prerequisite: course 100 or 101. Basic physiological mechanisms involved in sensory systems. Comparative approach to considerations of mechanosensitive systems (audition, lateral lines, touch, echo location, equilibrium), chemosensitive systems (olfaction, taste, pheromones), photoreceptive systems (vision, infrared detection, UV detection), electroreception, and pain. Emphasis on receptors. Not open for credit to students who have completed course 120P or Physiology 120P. (Former course 120P, Physiology 120P.)

127. Comparative Physiology: Circulation (3) II. Weidner
Lecture—3 hours. Prerequisite: course 101. Comparisons of physiological functions in the animal kingdom: circulation. Comparative approach to cardiovascular function in vertebrates and invertebrates. Not open for credit to students who have completed course 120B or Physiology 120B. (Former course 120B, Physiology 120B.)

128. Comparative Physiology: Endocrinology (3) II. Moberg, Chang
Lecture—3 hours. Prerequisite: course 101. Comparison of physiological functions in the animal kingdom: animal hormones and their functions. Not open for credit to students who have completed course 120D or Physiology 120D. (Former course 120D, Physiology 120D.)

*129. Comparative Physiology: Respiration (3) II. Cech
Lecture—3 hours. Prerequisite: course 101. Comparisons of physiological mechanisms in the animal kingdom: respiration. Offered in alternate years. Not open for credit to students who have completed course 120E or Physiology 120E. (Former course 120E, Physiology 120E.)

130. Physiology of the Endocrine Glands (4) I. Adams
Lecture—4 hours. Prerequisite: course 101. Advanced presentation of concepts in endocrinology with emphasis on the role of hormones in reproduction, metabolism, and disease. Not open for credit to students who have completed Physiology 130. (Former course Physiology 130.)

141. Principles of Environmental Physiology (3) II: Fuller
Lecture—3 hours. Prerequisite: course 101; Biological Sciences 102 recommended. Physiological aspects of interactions of organisms and environment at cellular and organismal levels. Emphasis on regulatory mechanisms at tissue and organ levels. Emphasis on regulatory responses/mechanisms to thermal, press-
Graduate Courses

221. Cellular and Molecular Neuroscience (4) I. Wilson
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course dealing with the cellular and subcellular organization of the nervous system. Membrane channels, sensory transduction, synaptic transmission and cellular aspects of development and learning will be covered. (Same course as Neuroscience 222.)

222. Systems Neuroscience (4) II. Britten
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course covering the integrative and information-processing aspects of nervous system organization. Specific topics to be covered include sensory systems, motor function, sensorimotor integration, the limbic system, and the neurobiology of learning and memory. (Same course as Neuroscience 222.)

245. Computational Models of Cellular Signaling (3) II. Keizer
Lecture—3 hours. Prerequisite: consent of instructor. Computational and mathematical techniques in modeling of regulatory and signaling phenomena in neurobiology and cell physiology, focusing on linear and nonlinear ordinary differential equation models. Applications include ion channel kinetics, electrical activity, signal transduction, calcium oscillations, and simple neural circuits. Offered in alternate years.

263. Modeling in Systems Neuroscience (4) II. Sutter
Lecture—3 hours; lecture/laboratory—1 hour. Prerequisite: consent of instructor. Modeling as a tool in systems neuroscience. Mathematical techniques will be introduced and used to explore advanced topics in echolocation, sound localization, electroreception, and nonlinear ordinary differential equation models. The focus will be on applications in advanced topics in special groups. Not open for credit to students who have completed course Plant Science 104. (Former course Plant Science 10.) GE credit: SciEng, Div, Wrt.

90X. Plant Science Seminar (1-4) I, II, III.
The Staff
Prerequisite: consent of instructor. Examination of a special topic in a small group setting. Not open for credit to students who have completed course Plant Science 90X. (Former course Plant Science 90X.)

92. Internship (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-6 hours. Prerequisite: consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Plant Biology Department faculty. (Former course Botany 92.) (P/NP grading only)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Primarily for lower division students. (Former course Botany 98.) (P/NP grading only)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (Former course Botany 99.) (P/NP grading only)

Upper Division Courses

For questions about courses numbered 102 through 125, see the Plant Biology Section Office, 143 Robbins Hall. For questions concerning courses numbered 142 through 188, see the Plant Science Advising Center, 142 Hunt Hall.

102. California Floristics (5) III. Dean
Lecture—2 hours; lecture/discussion—1 hour; laboratory—6 hours (includes three one-day, weekend field trips). Prerequisite: Biological Sciences 1A, 1B, 1C or the equivalent in plant science. Survey of the flora of California, with emphasis on field recognition and identification of important vascular plant families and genera characterizing the major floristic regions. Lectures review the taxonomic diversity, evolutionary relationships, and geographical patterns of California flora. Not open for credit to students who have completed Botany 102. (Former course Botany 102.)

105. Developmental Plant Anatomy (5) I. Rost
Lecture—3 hours; laboratory—6 hours. Prerequisite: introductory plant biology (for example, Biological Sciences 1C). Survey of vascular plant structure and development. Current ideas and experimental evidence for developmental concepts. Not open for credit to students who have completed Botany 105. (Former course Botany 105.)

108. Systematics and Evolution of Angiosperms (5) III. Doyle
Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B and 1C. Diversity and classification of angiosperms (flowering plants) on a world scale, and current understanding of the origin of angiosperms and evolutionary relationships and trends within them based on morphological and molecular evidence. (Same course as Plant Biology 108.) GE credit: SciEng.

111. Plant Physiology (3) I. Lucas, Stemler
Lecture—3 hours. Prerequisite: Biological Sciences 1C; Chemistry 8B (may be taken concurrently; Physics 7A, 7B, 7C recommended. Fundamental activities of plants; the plant cell and functioning unit. Processes of absorption, movement, and utilization of water and minerals. Water loss, translocation, photosynthesis, respiration. Not open for credit to students who have completed Botany 111. (Former course Botany 111.)

111D. Problems in Plant Physiology (1) I.
Lucas, Stemler
Discussion—1 hour. Prerequisite: course 111 concurrently. Discussion of problems and applications relating to principles presented in course 111. Students will be assigned problems each week showing novel applications of principles described in course 111 and will prepare answers to be submitted orally during the class period. Not open for credit to students who

Biology and Science (BA) (General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Biological Sciences: Plant Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111L</td>
<td>111L. Introductory Plant Physiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Plant Growth and Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112D</td>
<td>Problem in Plant Growth and Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Molecular and Cellular Biology of Plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Plant Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Plant Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Introduction to Phylogeny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Biological Sciences: Plant Biology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course not offered this academic year.
who have completed Plant Science 141A. (Former course Plant Science 141A.)

161B. Plant Genetics and Biotechnology Laboratory (4) I. Wilkins, Greps (Agronomy and Range Science), Dandeik (Pomology)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 152 and/or 160. Advanced techniques of genetic manipulation and molecular level analysis, including transformation, gene expression, analysis of transgenic plants and QTL analysis. Not open for credit to students who have completed Plant Science 141B. (Former course Plant Science 141B.)

171. Plant Propagation (4) III. Satter (Pomology)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Principles and practice of propagation of plants covering anatomical, physiological, and practical aspects. Not open for credit to students who have completed Plant Science 109. (Former course Plant Science 109.)

172. Postharvest Physiology and Handling of Horticultural Crops (4) I. Dejong (Pomology), Reid (Environmental Horticulture), Saltveit (Vegetable Crops)
Lecture—2 hours; laboratory—3 hours. Prerequisite: general plant science background recommended (e.g., Agricultural Systems and Environment 2 or Food Science and Technology 2); concurrent enrollment in course 172L recommended. Principles of postharvest physiology and procedures related to the maturation and senescence of fruits, vegetables, and ornamentals; fundamentals involved in handling, transportation, storage, and marketing practices, e.g., temperature and humidity control, protectant treatments, controlled atmospheres. Not open for credit to students who have completed Plant Science 112L. (Former course Plant Science 112L.)

173. Biological Applications in Pomology (2) I. Dejong (Pomology)
Lecture—1 hour; laboratory—3 hours. Prerequisite: Botany 150; Principles underlying cultural practices associated with fruit trees and cultural practices used to maintain them. Course emphasis is on the applicability of biological principles in the culture of commercially important temperate zone fruit tree species. Not open for credit to students who have completed Botany 150. Not open for credit to students who have completed Plant Science 112L. (Former course Plant Science 112L.)

174. Principles of Fruit Production (4) III. De Young, Polito (Pomology)
Lecture—2 hours; discussion—3 hours. Prerequisite: Biological Sciences 1C or consent of instructor. Principles underlying cultural practices associated with fruit and nut production, including morphology and physiology of the developing buds, flowers and fruits. Emphasis on commercially important temperate zone fruit tree species. Not open for credit to students who have completed Plant Science 102. Not open for credit to students who have completed Plant Science 116. (Former course Plant Science 116.)

175. Applied Plant Biology (4) II. Brown, Labava (Pomology), Napoli (Environmental Horticulture)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 111, and Biological Sciences 101 or course 152. Advanced principles of plant biology with reference to the uses of plants for food, fiber, and environmental enhancement. Current research, applications, and issues in crop improvement, production and biotechnology are explored and discussed. Not open for credit to students who have completed Plant Science 145. (Former course Plant Science 145.)

176. Introduction to Weed Science (3) II. Bayer
Lecture—2 hours; discussion—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, Chemistry 8A, 8B. Principles of weed science including mechanical, biological, and chemical control methods. Weed control in crop, pasture, range, brush, forests, aquatic, and non-crop situations. Types of herbicides. Application of herbicides. Sight identification of common weeds and demonstrations to illustrate the principles. Not open for credit to students who have completed former course 120, Botany 120. (Former course 120, Botany 120.)

177. Action of Herbicides (3) III. Bayer/FaIlk
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 176; Soil Science 100; courses 111, 111D recommended. Influence of plants and soils on the action of herbicides. Herbicide metabolism, fate, mechanism of action and symptoms of herbicides in plants. Effects of herbicides on plant populations. Physical and molecular fates of herbicides in soils. Not open for credit to students who have completed former course 122, Botany 122. (Former course 122, Botany 122.)

178. Biology and Management of Freshwater Macrophytes (3) I. Anderson
Lecture—3 hours; field trips. Prerequisite: Botany 150; Principles and experimental approaches to current questions in plant sciences, and consent of the instructor. Not open for credit to students who have completed Plant Science 191, Vegetable Crops 191. (Former course Plant Science 191.) (P/NP grading only.)

188. Undergraduate Research: Proposal (3) III. The Staff
Lecture—1 hour; discussion—1 hour; independent study—3 hours. Prerequisite: upper division standing and consent of instructor. A faculty sponsor will individually assist each student to define a problem, conduct a literature survey, state objectives, generate testable hypotheses, design experiments, plan data analysis, prepare a working outline, and write and revise a draft proposal. Not open for credit to students who have completed former course 150, Botany 150. (Former course 150, Botany 150.)

190C. Research Conference in Botany (1, 1, 1, 1)
Lecture—2 hours; discussion—3 hours, lab—3 days. Prerequisite: course 190 and laboratory course 190L. Principles of biological, and genetic and population levels. Not open for credit to students who have completed Botany 189. (Former course Botany 189.) (P/NP grading only.)

Lecture—2 hours; discussion—3 hours. Prerequisite: course 190 and laboratory course 190L. Principles of biological, and genetic and population levels. Not open for credit to students who have completed Botany 189. (Former course Botany 189.) (P/NP grading only.)

190C. Research Conference in Botany (I, I, III, I, III).
Lecture—2 hours; discussion—3 hours. Prerequisite: course 190 and laboratory course 190L. Principles of biological, and genetic and population levels. Not open for credit to students who have completed Botany 189. (Former course Botany 189.) (P/NP grading only.)

Biomedical Engineering (A Graduate Group)

Maury L. Hull, Ph.D., Chairperson of the Group
(916-752-6656 or 752-2611)
Group Office, 1050 Engineering II (Engineering Dean’s Office, 916-752-2611)

Graduate Study. The Graduate Group in Biomedical Engineering offers programs of study and research leading to the M.S. and Ph.D. degrees. The programs of study prepare students for professional work in the effective integration of engineering with biology and medical sciences, including modeling of biological systems and the design of devices and procedures useful for human and veterinary medicine. This broad interdepartmental program is best suited for students who are capable and comfortable with considerable independence. Each student, together with an advisor, defines a specific course of study suited to individual goals.

Preparation. The Group regards strong competence in mathematics and engineering as necessary for successful completion of study. Prior coursework in these areas is emphasized in the evaluation of applications. Some such training can be acquired after admission to the Group, but it generally necessitates one or more additional years of study.

Faculty Advisers. M. Buonocore (Radiology); F.E. Curry, (Human Physiology); M.L. Hull (Mechanical Engineering); R.B. Martin (Orthopaedic Surgery); J.F. Shackelford (Materials Science and Engineering); R. Smith (Electrical and Computer Engineering).

Courses in Biomedical Engineering (BIM)

Graduate Courses

200. Introduction to Biomedical Engineering (2) I. Hull
Lecture—2 hours. Prerequisite: Biological Sciences 1A and 1B, Engineering 17, 36, and 45, and consent of instructor. Introduction to several primary fields of specialization in biomedical engineering. Include the following: 1) sensors, instrumentation, and
signal processing; 2) orthopaedic biomechanics; 3) whole body biomechanics; 4) imaging; and 5) trans-

210. Introduction to Biomaterials (4) II. Shackelford Lecture—4 hours. Prerequisite: Engineering 45 or consent of instructor. Mechanical and atomic properties of metallic, ceramic, and polymeric implant materials; corrosion, degradation, and failure of implants; inflammation, wound and fracture healing, blood coagulation; properties of bones, joints, and blood vessels; biocompatibility of orthopedic and cardio-

215. Biomedical Fluid Mechanics and Transport Phenomena (4) I. Barakat Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103 or Chemical Engineering 152B or Civil Engineering 141. Application of fluid mechanics and transport to biomedical systems. Flow in normal physiological function and pathological conditions. Topics include circulatory and respiratory flows, affect of flow on cellular processes, transport in the arterial wall and in tumors, and tissue engineering. (Same course as Mechanical Engineering 215.)

220. Research Topics in Biomechanics (3) III. Williams Lecture—2 hours; seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Exercise Scien-
ces 110 recommended. Survey of current research into diverse areas of the biomechanics of human movement. Topics will include locomotion, sport biomechanics, electromyography, musculoskeletal and tissue mechanics, advances in measurement technol-
ygy, clinical biomechanics. (Same course as Exercise Science 220.)

225. Spatial Kinematics and Robotics (3) II. Cheng Lecture—3 hours. Prerequisite: Mechanical Engineer-
ing 222. Spatial kinematics: Point and line coordinates and their transformations; concept of screw systems and instantaneous invariants for rigid body motion. Robotics I 227/Exercise Science 227. (Same course as Mechanical Engineering 225.)

227. Research Techniques in Biomechanics (4) II. Williams, Hawkins Lecture—2 hours; laboratory—4 hours; term paper/ discussion—1 hours. Prerequisite: consent of instruc-
tor, Mathematics 22B, Exercise Science 115 recom-
mended. Expert techniques for biomechanical analysis of human movement are examined. Tech-
iques evaluated include data acquisition and analy-
sis by computer, force platform analysis, strength as-
sessment, planar and three-dimensional videography, data reduction and smoothing, body segment para-
meter determination, electromyography, and biome-
chanical modeling. (Same course as Mechanical En-
ngineering 222/Exercise Science 227.)

228. Skeletal Muscle Mechanics: Form, Function, Adaptability (3) I. Hawkins Lecture—3 hours. Prerequisite: graduate standing, consent of instructor. Basic background in biol-
ygy, physiology, and engineering. Engineering 3 and 45, Mathematics 22B, and Neurobiology, Physiology and Behavior 110 recommended. Basic structure and function of skeletal muscle is examined at the microscopic and macroscopic level. Muscle adapta-
tion in response to aging, disease, injury, exercise, and disuse. Special emphasis on the relation between muscle structure and muscle mechanics (e.g., force, work, power). (Same course as Exercise Science 228.)

231. Musculo-Skeletal System Biomechanics (3) III. Hull Lecture—3 hours. Prerequisite: Engineering 102, Mechanical Engineering 176. Mechanics of skeletal muscle and mechanical models of muscle, solution of the inverse dynamics problem, theoretical and experi-
mental methods of kinematic and kinetic analysis, computation of intersegmental load and muscle forces, applications to gait analysis and sports bio-
mechanics. Offered in alternate years. (Same course as Mechanical Engineering 231.)

232. Skeletal Tissue Mechanics (3) III. Martin Lecture—3 hours; laboratory—1 hour. Prerequisite: Engineering 104B. Overview of the mechanical prop-
erties of the various tissues in the musculoskeletal system, the relationship of these properties to a-
ptic and histologic structure, and the changes in these properties caused by aging and disease. The tis-
sues covered include bone, cartilage and synovial fluid, ligament and tendon. (Same course as Mechani-
cal Engineering 232.)

241. Introduction to Magnetic Resonance Imaging (2) II. Buonocore Lecture—2 hours. Prerequisite: Physics 9D, Mathe-
matics 22B. Introduction to introduction, equipment, methods, medical applications of magnetic resonance imaging (MRI). Lectures review basic, advanced pulse se-
quencies, image reconstruction, display and technol-
ygy and how these are applied clinically. Format: 35 mm slide presentation. Lecture complements more technical course 246, which may be taken concur-
rently.

242. Survey of Medical Imaging Technology (2) II. Boone, Seibel Lecture—2 hours; term paper. Prerequisite: graduate student in scientific field or consent of instructor. The various imaging modalities used in medical diag-
nosis will be studied. These include x-ray radiogra-
phy, fluoroscopy, computed tomography, mammogra-
phy, ultrasound imaging, nuclear magnetic resonance imaging, and nuclear medicine imaging. Offered in al-
ternate years.

246. Magnetic Resonance Technology (3) II. Buonocore Lecture—3 hours. Prerequisite: Physics 9D, Mathe-
matics 22B. Course covers MRI technology at an advanced level with emphasis on mathematical des-
criptions and problem solving. Topics include spin dynamics, signal generation, image reconstruction, pulse sequences, and contrast agents. (Same course as Molecular and Cellular Biology 200LB.) (S/U grading only.)

252. Advanced Information Systems (3) II. Waters Lecture—2 hours; laboratory—2 hours. Prerequisite: experience in initial phases of data preparation, edit-
ing and sorting; Computer Science Engineering 168 or the equivalent; must be able to perform at graduate level. To increase, through examples, projects and discussions, understanding of the components of information systems, including hardware, software, economics and people, and to prepare students to apply this understanding in the solution of specific problems in the creation, design and implementation of information systems.

290. Seminar (1) I, II, III. Hull Seminar—1 hour. Seminar in biomedical engineering. (S/U grading only.)

298. Group Study (0-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

Biophysics

Graduate Courses

200. Current Techniques in Biophysics (2) III. The Staff Lecture—2 hours. Prerequisite: graduate standing. Biological Sciences 102D or 104 or the equivalent. Cur-
tent techniques in biophysics research including diffraction, magnetic resonance spectroscopy, calo-
rimetry, optical spectroscopy, and electrophysiology. (Same course as Molecular and Cellular Biology 200C.) (S/U grading only.)

200LA. Biophysics Laboratory (3) I, II, III. The Staff (Chairperson in charge) Laboratory—18 hours (5 weeks). Prerequisite: course 200 (may be taken concurrently). Laboratory assign-
ment in the research laboratory of a Biophysics Gradu-
ate Group faculty member. Individual research projects with emphasis on methodology/proce-
dural experience and experimental design.

200LB. Biophysics Laboratory (6) I, II, III. The Staff (Chairperson in charge) Laboratory—two 18-hour rotations (5 weeks each). Prerequisite: course 200 (may be taken concurrently). Two-five week laboratory assignments in the research laboratories of Biophysics Graduate Group faculty members. Individual research problems with empha-
sis on methodology/procedural experience and experimental design.

290C. Research Conference in Biophysics (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: graduate standing in Biophysics and/or consent of instructor; course 299 concurrently. Presentation and discussion of faculty and graduate-student research in biophysics. May be repeated for credit. (S/U grading only.)

298B. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

299B. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

Biotechnology

(Chairperson in charge)

Biophysics (A Graduate Group)

Richard Nuccitelli, Ph.D., Chairperson of the Group
Office, 188 Briggs Hall (916-752-9091)

Biophysics, Faculty, includes faculty members from the Depart-
ments of Agronomy and Range Science; Environmen-
tal Horticulture; Food Science and Technology; Land, Air and Water Resources; Plant Pathology; Pomology; Vegetable Crops; Viticulture and Enology, and the Division of Biological Sciences.

The Major Program

Every living organism, from the most primitive bacte-
ia to every plant, insect, animal or human being, contains DNA as the primary genetic material. DNA directs all cellular processes, creating the incredible variety and diversity of living organisms in the bios-
phere. Biotechnology focuses on the mechanics of life processes and their application. Biotechnology means “life technology” and represents an integrated, multidisciplinary field, with a profound impact today on almost every aspect of human endeavor.

The Program.

In the first two years students develop a strong and general background in biological sci-
ence with an emphasis on fundamental concepts and basic principles of genetics, molecular biology and
cell biology. Three options, Animal Biotechnology, Plant Biotechnology and Fermentation/Microbial Biotechnology, provide in-depth training and specialized knowledge in an aspect of biotechnology. Each option has a strong laboratory component to reinforce the theoretical concepts. Students also do an internship in biotechnology company or university or government laboratory.

Internships and Career Opportunities. In the last decade, more industries are turning to biotechnology to solve problems and improve products, creating a growing job market for individuals trained in biotechnology in the agricultural, food and beverage, health care, chemical, pharmaceutical and biochemical, and environmental and bioremediation industries. Graduates trained in the technologies designed for biotechnology will find their training applicable to advanced research in molecular biology, genetics, biochemistry, and the plant and animal sciences.

B.S. Major Requirements

English Composition Requirement 0-8

Preparatory subject matter 54-60

Mathematics 16A-16B 6

Chemistry 2A-2B-2C 15

Microbiology 105 4

Molecular Genetics, Molecular and Cellular Biology 161 3

Genetics 202 or Plant Pathology 140 2-4

Internship or independent research, 192 or 199 8

Breadth/General Education 6-24

Depth subject matter 27-28

Biological Sciences 101, 102, 103, 104 13

Microbiology 102 4

Molecular Genetics, Molecular and Cellular Biology 161 3

Genetics 202 or Plant Pathology 140 2-4

Internship or independent research, 192 or 199 8

Plant Biology 188 (optional) 1

Areas of Specialization (choose one)

Fermentation/Microbiology Biotechnology Option 30-33

Specific course requirements 15-18

Microbiology 130A, 130B, Microbiology 102L or Food Science and Technology 104L, Molecular and Cellular Biology 160L, Viticulture and Enology 124 or 186.

Restricted Electives 15-18

Select from: Microbiology 105, 130L, Viticulture and Enology 124, 126, 128, 135, Molecular and Cellular Biology 170L, Viticulture and Enology 140, Food Science and Technology 104, 104L, 110A, 110B, Chemical Engineering 161A, 161B, 161L.

Plant Biotechnology Option 28

Specific Course Requirements 18

Molecular and Cellular Biology 126, Plant Biology 158, 160, 161A, 161B.

Restricted Electives 10

Select at least one course from each of the areas:

(a) Pests, Pathogens and Production Agricultural Systems and Environment 118, Plant Pathology 120, Entomology 110, Nematology 100 or 110, Plant Biology 143, 146, 148, 153, 154, 172

(b) Growth and Development Microbiology 170L, Plant Biology 105, 111, 112, 157, 158

Animal Biotechnology Option 25

Specific Course Requirements 14

Animal Genetics 111, Neurobiology, Physiology and Behavior 101, Molecular and Cellular Biology 150, 150L.

Restricted Electives 11

Select at least one class from each of the areas:

(a) Animal microbiology Molecular and Cellular Biology 160L, Microbiology 177, 177L, Pathology, Microbiology and Immunology 126, 126L, 128, Medical Microbiology 107

(b) Animal reproduction and breeding Animal Genetics 107, Animal Science 131, 140, Avian Sciences 121, Neurobiology, Physiology and Behavior 121, 121L, Physiology Graduate Group 200L

Unrestricted Electives 27-68

Total Units for the Major 120-150

Major Adviser: A.M. Dandekar (Pomology). Advising Center for the major is located at 152 Hunt Hall.

Botany

See Biological Sciences: Section of Plant Biology; Crop Science and Management; Plant Biology; Plant Biology (A Graduate Group)

Cantonese

See Asian American Studies

Cell and Developmental Biology (A Graduate Group)

Carol A. Erickson, Ph.D. Chairperson of the Group (916-752-8318)

Group Office, 188 Briggs Hall (916-752-9091)

Faculty. The group includes 40 faculty members from 17 departments in the College of Agricultural and Environmental Sciences, College of Letters and Science, and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Cell and Developmental Biology offers programs of study leading to the Ph.D. degree. Cell and Developmental Biology is a broad interdepartmental program. The curriculum consists of core courses in cell biology or developmental biology. Specific programs of study are decided upon by an advisory committee chaired by the student's research adviser, and the choice of major core courses will reflect the student's primary research interest.

Preparation. Appropriate preparation is an under-graduate degree in a biological or physical science. Preparation should include a year of calculus, physics, general chemistry and organic chemistry, and introductory courses in statistics, biochemistry, genetics, and biology.

Graduate Advisers. J. Natzle (Molecular and Cellular Biology), S. Meizer (Cell Biology and Human Anatomy).
Chemistry (College of Letters and Science)
Alan Balch, Ph.D., Chairperson of the Department
Dino S. Tinti, Ph.D., Vice-Chairperson of the Department
Department Office, 108 Chemistry Building
(916-752-0503/0953, FAX 916-752-8995)

Faculty
Alan L. Balch, Ph.D., Professor
R. David Brit, Ph.D., Associate Professor
Constantine Kakavas, Ph.D., Professor
Timothy C. Donnelly, Ph.D., Lecturer
W. Ronald Fawcett, Ph.D., Professor
William H. Fink, Ph.D., Professor
William M. Jackson, Ph.D., Professor
Philip G. Jessop, Ph.D., Assistant Professor
Susan M. Kauzlarich, Ph.D., Associate Professor
Joel E. Keizer, Ph.D., Professor
Peter B. Kelly, Ph.D., Associate Professor
Mark J. Kurth, Ph.D., Professor
Gerd N. LaMar, Ph.D., Professor
Donald P. Land, Ph.D., Assistant Professor
Carlo B. Lebrilla, Ph.D., Assistant Professor
Claude F. Meares, Ph.D., Professor
R. Bryan Miller, Ph.D., Professor
Tadeusz F. Molinski, Ph.D., Assistant Professor
W. Kenneth Musker, Ph.D., Professor
Krishnan P. Nambiar, Ph.D., Associate Professor
Tadeusz F. Molinski, K.P. Nambiar, N.E. Schore, F.E. Wood.

Major Advisers.

B.S. Major Requirements:

Preparatory Subject Matter..........................36-39

Chemistry 2A-2B-2C or 2AH-2BH-2CH.....15

Physics 5A-5B-5C or 7A-7B-7C.............12

Mathematics 21A-21B-21C or 16A-16B-16C

...9-12

Depth Subject Matter..........................39

Chemistry 110A, 110B, 110C, 124A, 128A,

...25

At least 14 additional upper division units in chemistry (except Chemistry 107A

or 107B), biochemistry, or physics...........14

Total Units for the Major..........................75-78

B.S. Major Requirements:

Preparatory Subject Matter..........................54

Chemistry 2A-2B-2C or 2AH-2BH-2CH.....15

Physics 9A, 9B, 9C, 9D, 9E..............................16

Mathematics 21A, 21B, 21C, 21D, 22A, 22B

..22

Depth Subject Matter..........................50

Chemistry 110A, 110B, 110C, 111, 115,

117A, 118, 118A, 121A, 121B, 121C, 129A,

129B, 129C, 129D, 129E...............................22

At least 12 additional upper division units in chemistry (except Chemistry 107A,

107B), including one course with labora-

tory work..12

Total Units for the Major..........................103

Major Advisers. W.H. Fink, R.E. Kepner, R.B. Miller,

T.F. Molinski, K.P. Nambiar, N.E. Schore, F.E. Wood.

Honors and Honors Program. The student must take courses 194HA, 194HB,

194HC.

Graduate Study. The Department of Chemistry offers programs of study and research leading to the M.S.

and Ph.D. degrees in Chemistry. Detailed information regarding graduate study may be obtained by writing to the Graduate Adviser, Department of Chemistry. See also the Graduate Studies section in this catalog.

Courses in Chemistry (CHE)

Lower Division Courses

2A. General Chemistry (5) I. Donnelly, Wood,

II. La Mar, ...2

Lecture—3 hours; laboratory/discussion—4 hours.

Prerequisite: High school chemistry and physics strongly recommended; satisfactory score on diagnostic examination or course 9 with grade of C or better. Periodic table, stoichiometry, chemical equations, physical properties and kinetic theory of gases, atomic and molecular structure and chemical bonding. Laboratory experiments in stoichiometric reactions, preparation and collection of gases, atomic spectroscopy, and introductory quantitative analysis. GE credit: SciEng.

2AH. Honors General Chemistry (5) I. Tinti

Lecture—3 hours; laboratory/discussion—4 hours.

Prerequisite: High school chemistry and physics; satisfactory score on diagnostic examinations; Mathe-

matics 21A (may be taken concurrently) or consent of instructor. Limited enrollment course with a more rigorous treatment of material covered in course 2A. Students completing course 2AH can continue with course 2BH or 2CH.

2B. General Chemistry (5) II. Donnelly, Jessop;

III. Donnelly, Land

Lecture—3 hours; laboratory/discussion—4 hours.

Prerequisite: course 2A with consent of instructor or course 2AH with a grade of C or better; and Mathe-

matics 21B (maybe taken concurrently) or consent of instructor. Limited enrollment course with a more rigorous treatment of material covered in course 2B. Students completing course 2BH can continue with course 2CH or 2C.

2C. General Chemistry (5) I. Kelly and staff;

II. Fink, Tucker

Lecture—3 hours; laboratory—6 hours.

Prerequisite: course 2B or 2CH. Continuation of course 2B. Kinetics, electrochemistry, spectroscopy, structure and bonding in transition metal compounds, application of principles to chemical reactions. Laboratory experiments in kinetics, electrochemistry, spectroscopy and analysis using instrumental methods, qualitative analysis, and inorganic and organic synthesis. GE credit: SciEng.

2CH. Honors General Chemistry (5) III. Britt

Lecture—3 hours; laboratory—6 hours.

Prerequisite: course 2B with consent of instructor or course 2BH with a grade of C or better; and Mathematics 21C (maybe taken concurrently) or consent of instructor. Limited enrollment course with a more rigorous treatment of material covered in course 2C.

8A. Organic Chemistry: Brief Course (2)

I. Musker, II. Smith

Lecture—2 hours.

Prerequisite: course 2B with a grade of C- or higher. With course 8B, an introduction to the nomenclature, structure, chemistry, and reaction mechanisms of organic compounds. Intended for students majoring in areas other than chemistry.

8B. Organic Chemistry: Brief Course (4)

II. Musker, III. Takahashi

Lecture—3 hours; laboratory—3 hours.

Prerequisite: course 8A or 118A. Continuation of course 8A. Labo-

ratory concerned primarily with organic laboratory techniques and the chemistry of the common classes of organic compounds.

9. Introduction to General Chemistry (3)

I. The Staff

Lecture/discussion—3 hours.

Prerequisite: chemistry diagnostic examination; not open for credit to stu-

dents who have passed the exam or completed course 2A or 2AH. Introduction to chemistry. Students who complete course 9 will receive only 3 units credit for course 2A. Course 9 must be taken for a letter grade and may not be repeated. For some offerings of this course, instruction may be by video.

10. Concepts of Chemistry (4) I. The Staff

Lecture—4 hours. A survey of basic concepts and contemporary applications of chemistry. Designed for non-science majors and not as preparation for Chem-

isty 2A. Course not open to students who have had Chemistry 2A but who have earned credit for course 10 may take Chemistry 2A for full credit. GE credit: SciEng, Wit.

98. Directed Group Study (1-5) I., II., III. The Staff

Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I., II., III. The Staff

Prerequisite: consent of instructor. (P/NP grading only.)
Upper Division Courses

107A. Physical Chemistry for the Life Sciences (3) I. Meares
Lecture—3 hours. Prerequisite: course 107B or 110A. Continuation of course 107A. Electrochemistry and the thermodynamics of simple electrolyte solutions. Chemical rate theory. Introduction to spectroscopy, atomic and molecular structure, x-ray crystallography, radiation and nuclear chemistry, and to surface chemistry and collagenous solids. Considerations on bioinversible processes.

108. Physical Chemistry of Macromolecules (3) II. Fink
Lecture—3 hours. Prerequisite: course 107B or 110C. Physical properties and characterization of macromolecules with emphasis on those of biological interest. Structural thermodynamics, optical and transport properties of polymers in bulk and in solution. Physical chemistry of conjugated polymers. Special topics on the properties of polyelectrolyte systems.

110A. Physical Chemistry: Thermodynamics (3) I. Lebrilla; II. Kelly
Lecture—3 hours. Prerequisite: course 107B or 110C. Phase transition and characterization of macromolecules with emphasis on those of biological interest. Structural thermodynamics, optical and transport properties of polymers in bulk and in solution. Physical chemistry of conjugated polymers. Special topics on the properties of polyelectrolyte systems.

110B. Physical Chemistry: Quantum Mechanics I (3) I. LaMar; II. Tucker
Lecture—3 hours. Prerequisite: course 110C. Development and application of the principles of chemical thermodynamics.

110C. Physical Chemistry: Kinetics (3) II. Fawcett/Stuchebrikov; III. Jackson
Lecture—3 hours. Prerequisite: course 110B. Statistical thermodynamics, kinetic theory of gases, and chemical kinetics.

111. Physical Chemistry: Methods and Applications (4) I. Ture; III. Tinti
Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 110A (may be taken concurrently) and 115. Introduction to the chemical literature, methods of data analysis, techniques of physical measurements, and modern laboratory experiments from the areas of thermodynamics, spectroscopy, and kinetics. GE credit: SciEng, Wrt.

115. Instrumental Analysis (4) II. Lebrilla
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 110A. Theory and practice of modern instrumental techniques of chemical analysis with emphasis on electroanalytical and spectroscopic methods and separation science. Introduction to instrumentation electronics. Laboratory focuses on trace analyses of samples having practical significance. GE credit: SciEng, Wrt.

118A. Organic Chemistry for Health and Life Sciences (3) I. Issidorides; II. Nantz; III. Shen
Lecture—3 hours; laboratory—6 hours. Lecture—3 hours; laboratory—3 hours. Prerequisite: course 118A. Content of course 118A, with emphasis on spectroscopy and the preparation and reactions of aromatic hydrocarbons, organometallic compounds, aldehydes and ketones.

118B. Organic Chemistry for Health and Life Sciences (4) I. Issidorides; II. Nantz; III. Shen
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 118A. Content of course 118A, with emphasis on spectroscopy and the preparation and reactions of aromatic hydrocarbons, organometallic compounds, aldehydes and ketones.

118C. Organic Chemistry for Health and Life Sciences (4) I. Miller; II. Kurth; III. Nambar
Lecture—3 hours; laboratory—8 hours. Prerequisite: course 118B, with emphasis on the preparation, reactions and identification of carboxylic acids and their derivatives, alkyl and acyl amides, 8-dicabonyl compounds, and various classes of naturally occurring, biologically important compounds.

120. Physical Chemistry Laboratory: Advanced Methods (3) II. Kelly
Lecture—1 hour; laboratory—6 hours. Prerequisite: courses 110C and 111. Design of experiments; experimental control and data acquisition using microcomputers. Laboratory emphasizes the use of microcomputers in advanced physical-chemical experiments.

121. Introduction to Molecular Structure and Spectra (3) III. True
Lecture—4 hours. Prerequisite: course 110B. Modern theoretical and experimental methods used to study problems of molecular structure and bonding; emphasis on spectroscopic techniques.

124A. Inorganic Chemistry: Fundamentals (3) II. Power
Lecture—3 hours. Prerequisite: course 2C. Symmetry, molecular geometry and structure, molecular orbital theory of bonding (polyatomic molecules and transition metals), solid state chemistry, energetics and spectroscopy of inorganic compounds.

124B. Inorganic Chemistry: Main Group Elements (3) II. Kauzlarich
Lecture—3 hours. Prerequisite: course 124A. Synthesis, structure and reactivity of inorganic and heteroorganic molecules containing the main group elements.

124C. Inorganic Chemistry: d and f Block Elements (3) III. Power, Kauzlarich
Lecture—3 hours. Prerequisite: course 124A. Synthesis, structure and reactivity of transition metal complexes, organometallic and bioinorganic chemistry, the lanthanides and actinides.

128A. Organic Chemistry (3) I. Nantz; II. Schore
Lecture—3 hours. Prerequisite: course 2C with a grade of C or higher; chemistry majors should enroll in course 128A concurrently. Introduction to the basic concepts of organic chemistry with emphasis on stereochemistry and the chemistry of hydrocarbons. Designed primarily for majors in chemistry.

128B. Organic Chemistry (3) II. Shen; III. Molinski
Lecture—3 hours. Prerequisite: course 128A or consent of instructor. For chemistry majors or transfer students who have completed 135 units and who qualify for the honors program. Original research under the guidance of a faculty advisor, culminating in the writing of an extensive report. (Deferred grading only, pending completion of sequence)

195. Industrial Chemistry (1) I. Kurth
Seminar—2 hours. Prerequisite: junior or senior standing in Chemistry. Designed to give Chemistry undergraduate students an in-depth perception of careers in the chemical industry. Preparatory material will be given seminars describing both research and career insights. The research seminar will be technical while the career-oriented seminar will be more general. (P/NP grading only.)

197. Projects in Chemical Education (1-4) I, II, III
The Staff (Chairperson in charge)
Lecture and/or laboratory. Prerequisite: consent of instructor. Participation may include development of laboratory experiments, lecture demonstrations, autotutorial modules or assistance with laboratory sessions. May be repeated for credit for a total of 12 units. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III
The Staff (Chairperson in charge)
Lecture/Discussion and/or laboratory. Prerequisite: consent of instructor. Participation may include development of laboratory experiments, lecture demonstrations, autotutorial modules or assistance with laboratory sessions. May be repeated for credit for a total of 12 units. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III
The Staff (Chairperson in charge)
Lecture and/or laboratory. Prerequisite: consent of instructor based upon adequate preparation in chemistry, mathematics and physics. (P/NP grading only.)

Graduate Courses

*201. Chemical Uses of Symmetry and Group Theory (3) I. Kauzlarich
Lecture—3 hours. Prerequisite: course 124A and 110B, or consent of instructor. Symmetry elements and operations, point groups, representations of
Chemistry

205. Symmetry, Spectroscopy, and Structure (3) II. Land
Lecture—3 hours. Prerequisite: course 201 or the equivalent. Vibrationally and rotational spectra; electronic spectra and electron spectroscopy; magnetism; electron spin and nuclear quadrupole resonance spectroscopy; nuclear magnetic resonance spectroscopy; other spectroscopic methods.

210A. Quantum Chemistry: Introduction and Statistical Thermodynamics (3) II. Britt
Lecture—3 hours. Prerequisite: course 110B and 110C or consent of instructor. Stationary-state quantum chemistry; postulates of quantum mechanics; simple solutions; central field problems and angular momenta, hydrogen atom, perturbation theory, variational theory, atoms and molecules.

210B. Quantum Chemistry: Time-Dependent Systems (3) III. Stuchebrukhov
Lecture—3 hours. Prerequisite: course 210A. Matrix mechanics and time-dependent quantum chemistry; matrix formulation of quantum mechanics, Heisenberg representation, time-dependent perturbation theory, selection rules, density matrices, and miscellaneous molecular properties.

210C. Quantum Chemistry: Molecular Spectroscopy (3) I. Fink
Lecture—3 hours. Prerequisite: course 210B. Molecular spectroscopy: Born-Oppenheimer approximation, rotational, vibrational and electronic spectroscopy, spin systems, and molecular photochemistry.

211A. Advanced Physical Chemistry: Statistical Thermodynamics (3) I. Tucker
Lecture—3 hours. Prerequisite: consent of instructor. Principles and applications of statistical mechanics; ensemble theory; statistical thermodynamics of gases, solids, liquids, electrolyte solutions and polymers; chemical equilibrium.

211B. Statistical Mechanics (3) III. ————
Lecture—3 hours. Prerequisite: course 211A. Statistical mechanics of nonequilibrium systems, including the rigorous kinetic theory of gases, continuum mechanics transport in dense fluids, stochastic processes, brownian motion and linear response theory. Offered in alternate years.

212. Chemical Dynamics (3) II. Kelly
Lecture—3 hours. Prerequisite: consent of instructor. Introduction to modern concepts in chemical reaction dynamics for graduate students in chemistry. Emphasis will be on experimental techniques as well as emerging physical models for characterizing chemical reactivity at a microscopic level. Offered in alternate years.

215. Theoretical and Computational Chemistry (3) III. Fink
Lecture—3 hours. Prerequisite: courses 211A and 210B or consent of instructor. Mathematics of wide utility in chemistry: computational methods for guidance or alternative to experimental, and modern formulations of chemical theory. Emphasis will vary in successive years. May be repeated for credit when topic differs. Offered in alternate years.

216. Magnetic Resonance Spectroscopy (3) II. Britt
Lecture—3 hours. Prerequisite: courses 210A, 210B (may be taken concurrently). Quantum mechanics of spin and orbital angular momentum, nuclear magnetic resonance, theory of chemical shift and multiplet structures, electron spin resonance, theory of g-tensor in organic and transition ions, spin Hamiltonians, nuclear quadrupolar resonance, spin relaxation phenomena. Offered in alternate years.

217. X-Ray Structure Determination (3) III. The Staff
Lecture—3 hours. Prerequisite: consent of instructor. Introduction to crystal structure; X-ray structure determination; crystals, symmetry, diffraction geometry, sample preparation and handling, diffraction apparatus and data collection, methods of structure solution and refinement, presentation of results, text, tables and graphics, crystallographic literature.

218. Physical Principles of Macromolecular Structure (3) III.
Lecture—3 hours. Prerequisite: course 211A or the equivalent. Relationship of higher order macromolecular structure to subunit composition; equilibrium properties and macromolecular dynamics; physical-chemical determination of macromolecular structure. Offered in alternate years.

219. Spectroscopy of Organic Compounds (3) I. Patton
Lecture—3 hours. Prerequisite: course 128B or the equivalent. Identification of organic compounds and investigation of stereochemical and reaction mechanism phenomena using spectroscopic methods—principally NMR, IR, and MS.

221A-H. Special Topics in Organic Chemistry (3) I. Smith
Lecture—3 hours. Selected topics of current interest in organic chemistry. Topics will vary each time the course is offered, and in general will emphasize the research interests of the staff member giving the course.

226. Principles of Transition Metal Chemistry (3) I. Jessop
Lecture—3 hours. Prerequisite: course 124A or the equivalent. Electronic structures, bonding, and reactivity of transition metal compounds.

228A. Bio-inorganic Chemistry (3) III. The Staff
Lecture—3 hours. Prerequisite: course 226 or consent of instructor. Description of functions of biological systems by identifying the functions of metal ions and metal group compounds in biological systems and discussing the chemistry of model and isolated biological compounds. Offered every third year.

228B. Main Group Chemistry (3) III
Lecture—3 hours. Prerequisite: course 226 or consent of instructor. Synthesis, physical properties, reactions and bonding of main group compounds. Discussions of concepts of electron deficiency, hypervalency, and non-classical bonding. Chemistry of the main group elements will be treated systematically. Offered every third year (next offering: Spring 1998).

228C. Solid-State Chemistry (3) III
Lecture—3 hours. Prerequisite: courses 124A, 110B, 226, or the equivalent. Design and synthesis, structure and bonding of solid-state compounds; physical properties and characterization of solids; topics of current interest such as low-dimensional materials, inorganic polymers, materials for catalysis. Offered every third year (next offering: Spring 1998).

231. Organic Synthesis: Methods and Strategies (3) III. Kurth
Lecture—3 hours. Prerequisite: course 131 or the equivalent. Provides a broadly based discussion of current strategies in synthetic organic chemistry. Focus on methods for constructing carbon framework, controlling relative stereochemistry, and controlling absolute stereochemistry. Retrosynthetic strategies will be discussed throughout the lectures.

233. Physical-Organic Chemistry (3) II. Palmore
Lecture—3 hours. Prerequisite: courses 128A-128B-128C and 110A-110B-110C or the equivalent. Introduction to elementary concepts in physical-organic chemistry including the applications of simple numerical techniques in characterizing and modeling organic reactions.

235. Organometallic Chemistry in Organic Synthesis (3) III. Schore
Lecture—3 hours. Prerequisite: course 128C. Current trends in use of organometallics for organic synthesis; preparations, properties, applications, and limitations of organometallic reagents derived from transition and/or main group metals. Offered in alternate years.

236. Chemistry of Natural Products (3) II
Lecture—3 hours. Prerequisite: course 128C or the equivalent. Aids to student enrolment. Areas of current interest such as low-dimensional materials, inorganic polymers, materials for catalysis. May be repeated for credit when topic differs.

237. Bio-organic Chemistry (3) I.
Lecture—3 hours. Prerequisite: course 128C or the equivalent. Structure and function of biomolecules; molecular recognition; enzymes; reaction mechanisms; design of suicide substrates for enzymes; enzyme engineering; design of artificial enzymes and application of enzymes in organic synthesis. Offered in alternate years.

240. Advanced Analytical Chemistry (3) I. Fawcett
Lecture—3 hours. Prerequisite: courses 110A and 110B or the equivalent. Numerical treatment of experimental data; thermodynamics of electrolyte and non-electrolyte solutions; complex equilibria in aqueous and non-aqueous solutions; potentiometry and spectrophotometry; mass transfer in liquid solutions; foundation of separation techniques, including column, gas and liquid chromatography.

241A-D. Special Topics in Analytical Chemistry (3) III. Fawcett
Lecture—3 hours. Prerequisite: consent of instructor. Series of advanced, research-oriented, special-topics courses in analytical chemistry. Topics will vary each time course is offered.

251. Current Topics in Chemical Research (2) II.
Lecture—2 hours. Prerequisite: graduate standing in Chemistry or consent of instructor. Designed to help chemistry graduate students maintain familiarity with the current and past literature in their immediate field of research and related areas. May be repeated for credit when topics differ.

253. Introduction to Chemical Research Methodology (3) I, II, III. The Staff
Lecture—9 hours. Prerequisite: courses 293 and graduate student standing in Chemistry; consent of instructor. Introduction to identification, formulation, and solution of meaningful scientific problems including experimental design and/or theoretical analyses of new and prevailing techniques, theories and hypotheses. May be repeated for credit when topic differs. (SU grading only.)

256. Advanced Chemical Research Methodology (6) I, II, III. The Staff
Laboratory/discussion—18 hours. Prerequisite: course 263 or consent of instructor. Applications of the methodology developed in Chemistry 263 to experimental and theoretical studies. Advanced methods of interpretation of results are developed. Includes the preparation of manuscripts for publication. May be repeated for credit when topic differs. (SU grading only.)

290. Seminar (2) I, II, III.
Seminar—2 hour. Prerequisite: consent of instructor. (SU grading only.)

291. Introduction to Chemistry Research (1) I. The Staff (Balch in charge)
Discussion—2 hours. Designed for incoming graduate students preparing for higher degrees in chemistry. Group and individual discussion of research activities in the Department and research topic selection. (SU grading only.)

295. Industrial Chemistry (1) I. Kurth
Seminar—2 hours. Prerequisite: graduate standing in Chemistry. Designed to give Chemistry graduate students an in-depth perception of careers in the chemical industry. Professional chemists will give seminars describing both research and career insights. The research seminar will be technical while the career-oriented seminar will be more general. May be repeated for credit. (SU grading only.)

298. Group Study (1-12) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
The laboratory is open to qualified graduate students who wish to pursue original investigation. Students with less than 12 units should communicate with the department well in advance of the quarter in which the work is to be undertaken. (SU grading only.)
Chicana/Chicano Studies

A.B. Major Requirements:

Humanities/Arts Emphasis:

Preparatory Subject Matter: 16-28

Chicana/o Studies 10, 508
One course from Chicana/o Studies 21, 30, or 404
One course from Chicana/o Studies 60, 70, or 73 ..4
Spanish 1, 2, 3, or 31, 32 and 33 or the equivalent ..0-12

Depth Subject Matter: 48

Chicana/o Studies 1004
Two courses from History 166B, 169A, 169B ..8
Two courses from Chicana/o Studies 110, 120, 132, or 1408
Comparative ethnicity/gender: two upper division courses selected from two of the following areas: 8
American African American Studies, Asian American Studies, Chicana/o Studies, Native American Studies, or Women's Studies.

Equalives, a minimum of 20 units from the following areas, at least 12 of which must be selected from one area only: 20
Area 1—Creative arts/arts/cultural representation: Chicana/o Studies 156, 160, 171, 172
Area 2—Literature/cultural studies: Chicana/o Studies 150, 154, 155; Linguistics 115, 116, Education 151; Women's Studies 170; Linguistics 1 recommended for students selecting Linguistics courses.

Total Units for the Major: 64-76

Social Science Emphasis:

Preparatory Subject Matter: 16-28

Chicana/o Studies 10, 508
One course from Chicana/o Studies 21, 30, or 40 ..4
One course from Chicana/o Studies 60, 70, or 73 ..4
Sociology 46A ..4
Spanish 1, 2, 3, or 31, 32, 33 and the equivalent ..0-12

Depth Subject Matter: 48

Chicana/o Studies 1004
Two courses from History 166B, 169A, 169B ..8
Two courses from Chicana/o Studies 154, 155, or 160 ..8
Comparative ethnicity/gender: two upper division courses selected from two of the following areas: 8

Minor Adviser.

Chicana/o Studies (CHI)

Lower Division Courses

10. Introduction to Chicana/o Studies (4) I. Flores-Ortiz
Lecture—3 hours; discussion—1 hour. Analysis of the situation of the Chicana/o (Mexican-American) people, emphasizing their history, literature, political movements, education and related areas. GE credit: Div.; WRT.

21. Chicana/o and Latina/o Health Care Issues (4) I. Flores-Ortiz
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10. Overview of health issues of Chicanas/os and Latinas/os in the State of California; role of poverty/lack of education in limited access to health care. GE credit: Div.

30. United States Political Institutions and Chicanas/os (4) II. Sosa-Riddell
Lecture/discussion—3 hours; term paper. Overview of the major political institutions and ideologies of the United States and the Chicana/o people's historical and contemporary role in, and responses to them. Theory, methods and critical analysis. GE credit: Div.

40. Chicanas/os in the Economy (4) II. The Staff
Lecture—4 hours. Introduction to Chicanas/os in the economy and related institutions. Topics include census counts, demographics, immigration, education, labor markets, local economics, and government roles and policies in employment and income generation.

50. Chicana and Chicano Culture (4) II. Chabram-Dernersesian; III. The Staff
Lecture—4 hours. Introduction to Chicanas/os and related institutions. Explores how Chicano cultural forms and practices intersect with varying cultural and historical contexts.
social/material forces, intellectual formations and cultural discourses. (Former course 21.) GE credit: Div. 60. Chicana and Chicoano Representation in Commercial Media (4) I, II. Lecture—3 hours; term paper. Prerequisite: course 10 or 20. The politics and economics of Chicana/o communities in the context of the social turmoil from which they spring. Includes political use of the poster and the mural, the influence of the Mexican mural and graphic movement, and social responsibility of the artist. GE credit: Div. 73. Chicana/o Art Expression Through Silk Screen (4) I. Montoya Studio—8 hours; laboratory—4 hours. Introductory level studio course using silk screen and basic printing techniques to explore and develop images of Chicano/a cultural themes and expressions. Students will experiment with images and symbols from their immediate environment/culture. Integrated approach to Chicano/a philosophy and art. 98. Directed Group Study (1-5) I, II. The Staff (Chairperson in charge) (P/NP grading only) 99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only) Upper Division Courses 100. Chicana/Chicoano Theoretical Perspective (4) II. Flores-Ortiz (Director in charge) Lecture/discussion—4 hours; term paper. Prerequisite: courses 10 and 50. Critical examination of Chicana/Chicoano Studies theoretical perspectives in light of contemporary intellectual framework in the social sciences, arts, and humanities. Includes analysis of practices of self-representation, and socio-cultural developments in the Chican/o/a community. 110. Sociology of the Chican/o/a Experience (4) III. Pesquera Lecture—4 hours. Prerequisite: course 10 or Sociology 1. The Chican/o/a experience in the American society and economy viewed from theoretical perspectives. Immigration, history of integration of Chicano/a labor into American class structure, economic and social inequality, the family and Chican/o/a politics. (Former course Sociology 110.) GE credit: SocSci, Div, Wrt. 111. Chicanas/Mexicanas in Contemporary Society (4) II. P. Pescina Lecture/discussion—4 hours. Prerequisite: course 10 or 50. Women's Studies 50 or History 169B. Analysis of the role and status of Chicanas/Mexicanas in contemporary society. Special emphasis on their historical role, the political, economic and social institutions that have affected their status, and their contributions to society and their community. (Former course 102.) GE credit: ArtHum. 120. Chican/o/a Psychology (4) III. Flores-Ortiz Lecture—4 hours; discussion—1 hour. Prerequisite: course 21. Introductory psychology course recommended. Introduction to the field of Chican/o/a psychology. Analysis of socio-cultural context of Chicanos/as and Latinos/as. Special attention to issues of ethnic identity development, bilingualism, and development of self esteem. Impact of minority experience, migration, and the like. Examined. GE credit: SocSci, Div. 121. Chican/o/a Community Mental Health (4) I. The Staff Lecture—3 hours; term paper. Prerequisite: course 10 or 20. Mental health needs, problems, and service utilization patterns of Chicanas/os and Latinas/os will be analyzed. An analysis of social service policy, and the economic context of mental health programs. GE credit: SocSci, Div, Wrt. 122. Psychology Perspectives Chican/a/o and Latina/o Family (4) I. Flores-Ortiz Lecture—4 hours. Prerequisite: course 20. Introductory psychology course highly recommended, and/or consent of instructor. Role of migration and acculturation on family structure and function. From a psychological and Chicana/o Studies perspective, contemporary family forms and variations in family structures are examined. Special topics include family violence, addiction, family resiliency and coping strategies. 130. United States-Mexican Border Relations (4) III. Sosa-Riddell Lecture—3 hours; term paper. Prerequisite: upper division standing. Theories of U.S.-Mexican border relations, with an overview of the political, economic, and social relationships and an in-depth analysis of immigration issues, border industrialization, women's organizations, economic crises, and legal issues. GE credit: Div. 131. Chicanas in Politics and Public Policy (4) I. Sosa-Riddell Lecture/discussion—4 hours. Prerequisite: course 30 or Political Science 1. Historical and political analysis of Chicana/Latina political involvement and activity in the general political system, women's movement, Chicano movement, and Chicano movement. Course also examines the public policy process and the relationship of Chicana/o political policy formation. Offered in alternate years. GE credit: SocSci, Div. 132. Political Economy of Chicana/o Communities (4) I. Sosa-Riddell Lecture—3 hours; term paper. Prerequisite: upper division standing. Lower division Chicana/o Studies course recommended. Historical and contemporary study of political and economic forces which define and influence the development of Chican/o/a communities. Includes critiques of traditional and Marxian theories and concepts applicable to Chican/o/a communities, case studies of Chicana/o/a communities, especially in the Southwest. 140. Chicana/o Ethnicity and Socio-Economic Inequalities (4) III. The Staff Lecture/discussion—4 hours. Prerequisite: upper division standing. Cross-sectional comparisons of socio-economic inequalities facing ethnic minorities and, in particular, Chicanas/os in the economy. Sub-topics include theories and concepts for studying ethnicity and inequalities correlated with factors of demographics, immigration, education, labor market, employment, occupations, housing and health. GE credit: SocSci, Div. 154. The Chican/o/a Novel (4) II. Chafram-Demerson Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Introduction to the forms and themes of the Chican/o/a novel with special attention to the construction of gender, nationality, sexuality, social class, and the family by contemporary Chicana and Chicoano novelists. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 126B.) GE credit: ArtHum. *155. Chican/o Theater (4) III. Demerson Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Examination of the formal and thematic dimensions of Chicana/o theater in the contemporary period with special emphasis on El Teatro Campesino and Chicana Feminist Theater. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 126B.) 156. Chican/a/o Poetry (4) III. Chafram-Demerson Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Survey of Chican/a/o poetry with special emphasis on its thematic and formal dimensions. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 126C.) 165. Chicanas, Latinas and Mexicanas in Commercial Media (4) I. Fregosio Lecture/discussion—4 hours; laboratory—2 hours. Prerequisite: intermediate Spanish or other film or feminist theory course; conversational fluency in Spanish. The portrayal of Chicana, Latinas and Mexicanas in commercial media. The relation between the representa- tion of Chicana, Latina, and Mexican women in commercial television and cinema and the role of women in Mexican and U.S. societies. Offered in alternate years. 171. Mexican and Chicoano Cultural Art (4) III. Montoya Lecture—3 hours; independent study—1 hour. Prerequi- site: Chicana/o Studies 70 and/or written consent of instructor. The cultural art process that empowers students and people through design and execution of mural paintings in the tradition of the Mexican Mural Movement. Introduces materials and techniques. May be repeated once for credit. (Same course as Art Studio 171.) 172. Chicana/o/ Voice/Poster Silk Screen Workshop (4) I. Montoya Studio—8 hours; independent study—1 hour. Prerequi- site: course 70 and/or 73 and/or written consent of instructor. The poster as a voice art form used by Chi- canas/os and other people of color to point to the defects of social and political existence and the pos- sibility for change, from the Chicana/o artists' perspective. May be repeated once for credit. 192. Internship in Chican and Latina/o Community (4) I, II, III. The Staff (Chairperson in charge) (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only) 199HA-199HB-199HC. Senior Honors Research Project (2-5) I, II, III. The Staff Independent study—6-15 hours. Prerequisite: senior standing in Chicana/o Studies major. Student is required to read, research, and write Honors Thesis on Chicana/o Studies topics. Deferred grading only, pending completion of sequence.) 198. Directed Study Group (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only) 199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only) (Former course Sociology 110.) GE credit: SocSci, Div. 205. The Chican/o/a Novel (4) II. Chafram-Demerson Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Introduction to the forms and themes of the Chican/o/a novel with special attention to the construction of gender, nationality, sexuality, social class, and the family by contemporary Chicana and Chicoano novelists. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 126B.) GE credit: ArtHum. *205. Chican/o Music (4) II, III. The Staff Lecture—4 hours. Prerequisite: intermediate Spanish or consent of instructor. Examination of the formal and thematic dimensions of Chicana/o theater in the contemporary period with special emphasis on El Teatro Campesino and Chicana Feminist Theater. Bilingual readings, lectures, discussions, and writing in Spanish. (Former course Spanish 126B.) *Course not offered this academic year. 178 Child Development
which cuts across departmental boundaries. Students may work with children and families in the community, including the University’s Center for Child and Family Study. Recipients of the degree gain sufficient background in the biological and social sciences to engage in professions that directly (e.g., preschool, 4-8) or indirectly (e.g., social policy) involve children and families, obtain positions in teaching or research settings, or pursue further study leading to a doctorate in child development, human development, clinical psychology, or related fields. Admission applications must be in by April 1.

Graduate Adviser. Contact Group Office.

Chinese

See Chinese and Japanese (below); Asian American Studies; and East Asian Studies

Chinese and Japanese

(College of Letters and Science)

Michelle Yeh, Ph.D., Chairperson of the Department Department Office, 184 Kerr Hall (916-752-4995)

Faculty

Robert Borgen, Ph.D., Professor (Japanese)
Chia-ning Chang, Ph.D., Associate Professor (Japanese)
Susan Griswold, Ph.D., Assistant Professor (Japanese)
Michelle Yeh, Ph.D., Professor (Chinese)

Emeriti Faculty

Donald A. Gibbs, Ph.D., Professor Emeritus
Key H. Kim, Ph.D., Professor Emeritus
Benjamin E. Wallacker, Ph.D., Professor Emeritus

Affiliated Faculty

Bei Dao, Visiting Professor (Chinese)
Kazue Chavez, Lecturer (Japanese)
David Fahy, Coordinator (Japanese)
Shun Guo, Lecturer (Chinese)
Haruko Sakakibara, Lecturer (Japanese)
Ritsuko Shigeyama, Lecturer (Japanese)
Miyo Uchida, Lecturer (Japanese)
Tianwei Xie, Coordinator (Chinese)

The Major Program

The department serves the student in two ways: it offers a core language program in both Chinese and Japanese, and it offers courses in literature and cinema. The core language program is for students who have no background whatsoever in Japanese or Chinese. Students with prior language background can improve their skills in separate, specially designed sequences of courses.

The Program. A student elects to major in either Japanese or Chinese. Practical language skills are taught using the most modern methods so that upon entering the upper division a student will have attained substantial fluency in the spoken language (hearing and speaking) and the written language (reading and writing). Upper division courses balance the need to further language skills with the need to understand and appreciate the cultural richness of either Chinese or Japanese civilization. All students are encouraged to combine their study of Japan’s or China’s language and literature with courses in related fields, and to study abroad through the UC International Summer Session programs, the Education Abroad Program, or through internships.

Career Opportunities. UC Davis graduates have learned that a major in Chinese or Japanese is a genuine, earned distinction that facilitates entrance to graduate programs and professional schools. In addition, job opportunities abound in virtually all career paths, especially for those who have completed study abroad.

Chinese

A.B. Major Requirements:

Preparatory Subject Matter: 19/24
Chinese 1, 2, 3, 4, 5, 6; or 7, 17, 27; or 8, 18, 28; and one 4-unit lower division Chinese literature course.

Recommended:

Japanese 10, Linguistics 1, History 9A.

Depth Subject Matter: 36

Recommended:

Japanese 101, 102, 103, 104, 105, 106; Anthropology 149A-149B; Art History 163A-163B; East Asian Studies 113; History 190A-190B-190C; 191A-191B; Religious Studies 172; other advanced literature courses selected in consultation with the undergraduate adviser.

Total Units for the Chinese Major: 55/70

Japanese

A.B. Major Requirements:

Preparatory Subject Matter: 15/30
Japanese 1, 2, 3, 4, 5, 6; or 8, 18, 28

Recommended:

Japanese 10, 15, 25, Chinese 10, Linguistics 1, History 9B.

Depth Subject Matter: 40
Japanese 101, 102, 103, 111, 112, 113, 115, 116, 120, 130, 141, 142, 143, 145

Recommended:

Japanese 101, 102, 103, 104, 105, 106; Anthropology 149A-149B; Art History 164; Comparative Literature 153; History 194A-194B-194C; Religious Studies 172; other advanced literature courses selected in consultation with the undergraduate adviser

Total Units for the Japanese Major: 55/70

Courses in Chinese (CHN)

Lower Division Courses

1. Elementary Chinese (5) I. The Staff Lecture/discussion—5 hours. Introduction to Chinese grammar and development of all language skills in a cultural context with special emphasis on communication. Students who have successfully completed Chinese 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.

2. Elementary Chinese (5) II. The Staff Lecture—6 hours; discussion—5 hours. Continuation of courses 1 and 2 into a single quarter. Those who complete this course may go on to course 3.

3. Elementary Chinese (5) III. The Staff Lecture/discussion—5 hours. Prerequisite: course 1. Continuation of course 1 in the areas of grammar and basic language skills.

4. Intermediate Chinese (5) I. The Staff Lecture—5 hours. Prerequisite: course 3 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 3.

5. Intermediate Chinese (5) II. The Staff Lecture/discussion—5 hours. Prerequisite: course 4 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 4.

6. Intermediate Chinese (5) III. The Staff Lecture/discussion—5 hours. Prerequisite: course 5 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 5.

*SA. Situational Chinese (2) I. The Staff Discussion—2 hours. Prerequisite: course 5 or the equivalent. Intermediate-level training in spoken and written Chinese in cultural contexts, based on language skills developed in course 5.

Placement. Chinese 1 and Japanese 1 are intended for beginning students with no prior knowledge of those languages. Students who do have some knowledge but wish to improve their skills should meet with one of the advisers to discuss appropriate placement. Students must follow departmental guidelines for placement in all language courses and instructor approval is required for enrollment.

Education Abroad Program. The university maintains study abroad programs in China, Japan, Hong Kong, and Taiwan. They offer excellent opportunities for students to polish their language skills and experience Asian cultures firsthand. Students are encouraged to participate. Appropriate courses taken abroad can be applied toward the major or the minor. For more details, see the department’s student adviser and the Education Abroad Program office.

Student Advisers. R. Borgen (Japanese), C.N. Chang (Japanese), S. Griswold (Japanese), M. Yeh (Chinese).

Prerequisite Credit. No student may repeat a course if that course is a prerequisite for a course that has already been completed with a grade of C– or better.

Minor Program Requirements:

Minors are offered in Chinese and in Japanese for students wishing to follow a formally recognized program of study in those languages and their literatures.

Chinese

Japanese

All upper division courses, including both language courses and literature in translation courses, may be used to meet this requirement. One approved lower division course (Chinese 10, 11, 50; Japanese 10, 15, 25, 50) may also be used. In addition, students must develop oral and written language proficiency, normally through completion of Chinese 111 or Japanese 111. Only four units from 192, 197T, 198, and 199 may be applied toward the minor. For details, consult the undergraduate advisers.

Related Courses. See East Asian Studies course list.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
7. Mandarin for Cantonese Speakers I (1-5) I. The Staff Lecture—3 hours. Prerequisite: ability to read and write Chinese characters at the elementary school level. Accelerated training in spoken Mandarin, particularly in the phonetic transcription system known as pinyin, for students who already can read and write Chinese. Course assumes no knowledge of spoken Mandarin Chinese.

8. Accelerated Written Chinese I (5) I. The Staff Lecture—5 hours. Prerequisite: ability to speak and listen to Mandarin Chinese. Designed for students who already have some degree of fluency in spoken Mandarin, but who cannot read Chinese characters. This course concentrates on developing reading ability and accelerating progress to the upper division.

*10. Modern Chinese Literature (in English) (4) I. The Staff Lecture—3 hours; discussion—1 hour. Introductory course requiring no knowledge of Chinese language or history. Reading and discussion of short stories and novels and viewing of two films. Designed to convey a feeling for what China has experienced in the twentieth century. GE credit: ArtHum, Div, Wrt.

11. Great Books of China (in English) (4) II. The Staff Lecture—3 hours; discussion—1 hour. Selected readings in English translation are supplemented with background information, periods, authors and the interrelationships of culture, literature and social change. Methods of analysis are introduced and applied in class discussions. GE credit: ArtHum, Div, Wrt.

17. Mandarin for Cantonese Speakers II (5) II. The Staff Lecture—5 hours. Prerequisite: course 7. Continuation of course 7. Training in spoken Mandarin for students who already can read and write Chinese.

18. Accelerated Written Chinese II (5) II. The Staff Lecture—5 hours. Prerequisite: course 8. Continuation of course 8. Designed to accelerate the progress of students who already know spoken Mandarin but cannot read or write Chinese characters.

27. Mandarin for Cantonese Speakers III (5) III. The Staff Lecture—5 hours. Prerequisite: course 17. Continuation of course 17. Prepares students for entering upper division courses in Chinese.

28. Accelerated Written Chinese III (5) III. The Staff Lecture—5 hours. Prerequisite: course 18. Continuation of course 18. More advanced written styles and syntax in Chinese will be dealt with. Students completing this course proceed to course 111, which starts in the third-year level of Chinese, or to some other appropriate upper-division course.

50. Introduction to the Literature of China and Japan (3) II. Yeh Lecture—3 hours. Methods of literary analysis and their application to major works from the various genres of Chinese and Japanese literature (in translation), including film. East Asian cultural traditions will also be introduced. (Same course as Japanese 50.) GE credit: ArtHum, Div, Wrt.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

*104. Twentieth-Century Chinese Fiction (in English) (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or a course in Chinese history recommended. Introduction to Western literary thought into modern China, the experimentation with Western literary forms and techniques, and the development of Marxism in contemporary literary theory. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*105. Western Influences on Twentieth-Century Chinese Literature (in English) (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or History 9A recommended. Introduction to Western literary thought into modern China, the experimentation with Western literary forms and techniques, and the development of Marxism in contemporary literary theory. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

106. Chinese Poetry (in English) (4) III. Yeh Lecture—3 hours; discussion—1 hour. Prerequisite: History 9A or any course on traditional China recommended. Organized topically and chronologically, the lyric tradition is explored from the dawn of folk songs down to modern expressions of social protest. Topics include hell, rebellion, war, poetry, television, emigration, war, politics, death, ecology and beauty. All readings are in English. GE credit: ArtHum, Div, Wrt.

107. Traditional Chinese Fiction (in English) (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or a course in Chinese history. Language-literature course studying the dawn of Chinese fiction and its development down to modern times. Com-bines survey history with close reading of representative works such as The Story of the Stone and famous Ming-Qing short stories. GE credit: ArtHum, Div, Wrt.

*108. Poetry of China and Japan (in English) (4) II. Yeh Lecture—3 hours; discussion—1 hour. A comparative approach to Chinese and Japanese poetry, examining poetic practice in the two cultures, includes a general overview of the two traditions, plus study of poetic forms, techniques, and distinct treatments of universal themes: love, nature, war, etc. Offered in alternate years. (Same course as Japanese 108.) GE credit: ArtHum, Div, Wrt.

109A-L. Topics in Chinese Literature (in English) (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or the equivalent. Course 114 recommended. Close reading in Chinese of representative works from the Tang Dynasty (618-907) to modern times. May be repeated once for credit when content varies.

110. Great Writers of China: Texts and Context (in English) (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: depending on specific instructor. Course 111, 104, 106, 107, or a course in Chinese history. Topics in Chinese literature may include: (A) crime and punishment; (B) love in poetry; (C) women writers; (D) the knave-errant; (E) the city in fiction; (F) the recluse; (G) the literature of twentieth-century Taiwan; (H) popular literature; (I) the scholar and the commons. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

111. Modern Chinese: Reading and Discussion (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or the equivalent. Readings in modern Chinese newspaper articles, essays, and short stories, based on language skills developed in courses 1 through 6.

112. Modern Chinese: Reading and Discussion (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 111. Readings in modern Chinese newspaper articles, essays, and short stories, based on language skills developed in course 111.

113. Modern Chinese: Reading and Discussion (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 112. Readings in modern Chinese newspaper articles, essays, and short stories, based on language skills developed in course 112.

114. Introduction to Classical Chinese: Confucius (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or consent of instructor. Texts from the Con-fucian canon are read with the assistance of prepared word glossaries so that while learning to read classical Chinese, the students also experience the most influential books in the history of China in their original texts.

115. Introduction to Classical Chinese: Mencius (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 114. Continues course 114 by reading selections from the text of the Mencius.

116. Introduction to Classical Chinese: Narrative Styles (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 115. Continues course 115 by reading selections from the Records of the Grand Historian and other early, influential works.

120. Advanced Chinese (4) I, II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 113 or consent of instructor. Selected readings from all genres to develop advanced skills in reading, writing, aural comprehension, and translation. May be repeated once for credit.

*130. Readings in Traditional Chinese Fiction (4) II. The Staff Lecture—1 hour; discussion—3 hours. Prerequisite: course 112 or the equivalent. Course 114 recommended. Close reading in Chinese of representative works from the Tang Dynasty (618-907) to modern times. May be repeated once for credit when content varies.

131. Readings in Traditional Chinese Poetry (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or consent of instructor. Chinese poetic history from its beginnings to the golden ages of Tang and Song, surveying forms and poets that best reveal the Chinese poetic sensibility and the genius of the language of Chinese poetry.

132. Readings in Modern Chinese Poetry (4) II. Yeh Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or consent of instructor. Chinese poetry from the Literary Revolution of 1917 to the present, surveying works that embody exciting innovations and reflect the modernity of twentieth-century Chinese society and culture.

*140. Readings in Classical Chinese (4) I, II, III. The Staff Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Study and philological analysis of selected texts from the first millennium of Imperial China. May be repeated twice for credit.

*160. The Chinese Language (4) III. The Staff Lecture/discussion—4 hours. Prerequisite: course 6 (may be taken concurrently). Linguistics 1 recommended. The Chinese language viewed in its linguistic context, synchronically and diachronically. Historical phonology, classical and literary language, rise of written vernacular, descriptive grammar of modern standard Chinese, dialectal variation, and sociolinguistic factors.

192. Chinese Internship (1-12) I, II, III. The Staff Internship—3 to 36 hours to be arranged. Prerequisite: upper division standing and consent of instructor. Work experience in the Chinese language, with analytical term paper on a topic approved by instructor. (P/NP grading only.)

197T. Tutoring in Chinese (1-3) I, II, III. The Staff Tutoring—1-3 hours. Prerequisite: consent of Department chairperson. Leading of small voluntary discussion groups affiliated with one of the Department's regular courses. May be repeated for credit, but only 2 units may be applied to the minor. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)
Courses in Japanese (JPN)

Lower Division Courses

1. Elementary Japanese (5) I. The Staff
 Lecture/discussion—5 hours. Introduction to spoken and written Japanese in cultural contexts, with emphasis on communication. (Students who have successfully completed Japanese 2 or in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)
 *1A. Intensive Elementary Japanese (10) I. The Staff
 Lecture—5 hours; discussion—5 hours. Combines the work of courses 1 and 2 into a single quarter. Those who complete this course may go on to course 3.

2. Elementary Japanese (5) II. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 1 or the equivalent. Continuation of training in basic spoken and written skills.

3. Elementary Japanese (5) III. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 2 or the equivalent. Continuation of training in basic spoken and written skills.

4. Intermediate Japanese (5) I. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 3 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 3.

5. Intermediate Japanese (5) II. The Staff
 Lecture/discussion—5 hours. Prerequisite: course 4 or the equivalent. Intermediate-level training in spoken and written Japanese in cultural context, based on language skills developed in course 4.

6. Intermediate Japanese (5) III. The Staff
 Lecture/discussion—5 hours. Prerequisite: successful completion (C– or better) of course 5 or the equivalent. Intermediate training in spoken and written Japanese in cultural context, based on language skills developed in course 5.

7. Intermediate Japanese for Bilingual Students I (5) I. The Staff
 Lecture—5 hours. Prerequisite: bilingual background in Japanese. A special course for students with some bilingual background in Japanese. Emphasis is on speaking at an educated level and learning to read and write Japanese. First of a three-course sequence accelerating advancement to upper division courses.

8. Masterworks of Japanese Literature (in English) (4) III. The Staff
 Lecture—4 hours; discussion—1 hour. An introduction to Japanese literature: readings and discussion in English of important works from earliest times to the present. GE credit: ArtHum, Div, Wrt.

9. Introduction to Traditional Japanese Culture (15) I. The Staff
 Lecture—2 hours; discussion—1 hour. General introduction to Japanese culture from its beginnings through 1850, focusing on religion, thought, and the arts (visual and performing). Indigenous traditions and the assimilation of foreign influences will be discussed. Readings and discussions in English. GE credit: ArtHum, Div, Wrt.

10. Modern Japanese Literature: War and Revolution (4) I. Chang
 Lecture/discussion—3 hours. Perspectives and sensibilities with which major modern Japanese writers have interpreted the traumatic and often poignant experiences of war and socio-political upheavals from the late nineteenth century to the 1970s. Lectures, discussions, and readings in English. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

11. Modern Japanese Literature: Hero and Anti-hero (3) I. Chang
 Lecture/discussion—2 hours. The ways in which representative heroes and anti-heroes in modern Japanese literature perceive, confront, struggle with, and resolve a wide array of social, moral, and intellectual problems in their times. Lectures, discussions, and readings in English. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

12. Modern Japanese Culture Through Films (4) II. Fahy
 Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Aspects of Japanese culture such as love, the family, position of women, growing up, death, and the supernatural as portrayed in films by Kurosawa, Mizoguchi, Ichikawa, Ozu, and Itami. Lectures, discussion, and reviews of English films with English subtitles. GE credit: ArtHum, Div, Wrt.

13. Poetry of China and Japan (in English) (4) I. Chang
 Lecture—3 hours; discussion—1 hour. A comparative approach to Chinese and Japanese poetry, examining poetic practice in the two cultures; includes a general outline of the two traditions, plus study of poetic forms, techniques, and distinctive treatments of universal themes: love, nature, war, etc. Offered in alternate years. (Same course as Chinese 108.) GE credit: ArtHum, Div, Wrt.

14. Modern Japanese: Reading and Discussion (4) II. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or the equivalent. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only.)

15. Modern Japanese: Reading and Discussion (4) III. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 112. Continuation of course 112.

16. Modern Japanese Autobiographies (in English) (4) III. Chang
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or the equivalent. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only.)

17. Modern Japanese: Reading and Discussion (4) II. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or the equivalent. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only.)

18. Modern Japanese: Reading and Discussion (4) II. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 6 or the equivalent. Training in spoken Japanese for students with a basic working knowledge of the language. (P/NP grading only.)

19. Japanese Language and Culture (in English) (4) I. Smith
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or Linguistics 1 or Anthropology 4 recommended. Classification and communication of experience in Japanese culture; principles of language use in Japanese society. Speech levels and honorific language, gender and minority languages, literacy. Role of Japanese in artificial intelligence and computer science. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

 Lecture—5 hours; prerequisite: course 18. Continues course 18. A special course for students with some bilingual background in Japanese. Emphasis is on advanced training in formal and informal speech styles, discourses strategies in spoken and written Japanese, and on reading authentic works. Third of a three-course sequence accelerating advancement to upper division courses.

21. Introduction to the Literature of China and Japan (3) II. Borgen
 Lecture—3 hours; discussion—1 hour. Methods of literary analysis and their application to major works from the various genres of Chinese and Japanese literature (in translation), including film. East Asian cultural traditions will also be introduced. This is a 5-unit course as Chinese 50. GE credit: ArtHum, Div, Wrt.

22. Directed Group Study (1-15) I, II, III. The Staff
 Chairperson in charge (P/NP grading only.)

23. Special Study for Undergraduates (1-15) I, II, III. The Staff
 Chairperson in charge (P/NP grading only.)

Upper Division Courses

 Lecture—3 hours; discussion—1 hour. Early Japanese literature from the Nara to the end of the Heian period through a broad survey of the major literary genres such as lyric poetry, court diaries, prose narratives, poem-tales, and classical Chinese writings. GE credit: ArtHum, Div, Wrt.

102. Japanese Literature in Translation: The Middle Period (4) II. Griswold
 Lecture—3 hours; discussion—1 hour. The major literary genres from the twelfth century to the second half of the nineteenth century including poetry, renga, military chronicles, and Buddhist literature. haiku, haibun, kabuki, bunraku, plays and Edo prose narratives. GE credit: ArtHum, Div, Wrt.

 Lecture—3 hours; discussion—1 hour. Modern Japanese literature from the 1870s to the 1970s. Surveys representative literary works and ideas about the social and intellectual background of the Meiji, Taisho, and Showa periods. GE credit: ArtHum, Div, Wrt.

104. Modern Japanese Literature: War and Revolution (4) I. Chang
 Lecture/discussion—3 hours. Perspectives and sensibilities with which major modern Japanese writers have interpreted the traumatic and often poignant experiences of war and socio-political upheavals from the late nineteenth century to the 1970s. Lectures, discussions, and readings in English. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

105. Modern Japanese Literature: Hero and Anti-hero (3) I. Chang
 Lecture/discussion—2 hours. The ways in which representative heroes and anti-heroes in modern Japanese literature perceive, confront, struggle with, and resolve a wide array of social, moral, and intellectual problems in their times. Lectures, discussions, and readings in English. Offered in alternate years. GE credit: ArtHum, Div, Wrt.
Classics

(Classical and Mediterranean Civilizations track)

A. B. Major Requirements:

Preparatory Subject Matter

Latin 1-2-3, or Greek 1-2-3, or Hebrew 1-2-3

Two courses from Classics 1, 2, 3

Two additional courses from: Art History 1A; Classics courses 1 through 50 (except 30 and 31); Comparative Literature 1; Philosophy 21; Religious Studies 21, 40

Depth Subject Matter

Additional upper division courses in Latin, Greek and Hebrew; Classics 140, 141, 142, 143, Religious Studies 141A, 141B, 141C

(b) History:

History 102A, 111A, 111B, 111C, Religious Studies 102, 122

(c) Art, Archaeology and Drama:

Classics 171, 174, 175; Art History 154A, 154B, 155

(d) Rhetoric, Philosophy and Political Theory:

Classics 150; Rhetoric and Communication 110; Political Science 118A; Philosophy 143, 160, 161, 162

Total Units for the Major

66-67

(3) Preparatory Subject Matter

Latin 1-2-3, or Greek 1-2-3, or Hebrew 1-2-3

Total Units for the Major

66-67

(4) Depth Subject Matter

Six upper division courses in the two chosen languages, with at least two courses in each language

Additional upper division courses selected from any of the following groups:

Latin, Greek and Hebrew; Classics 140, 141, 142, 143, Religious Studies 141A, 141B, 141C

Six upper division courses in the two chosen languages, with at least two courses in each language

Two additional courses selected from any of the following groups:

Art History 102A, 111A, 111B, 111C, Religious Studies 102, 122

Art, Archaeology and Drama:

Classics 171, 174, 175; Art History 154A, 154B, 155

Rhetoric, Philosophy and Political Theory:

Classics 150; Rhetoric and Communication 110; Political Science 118A; Philosophy 143, 160, 161, 162

Total Units for the Major: 70

(4) Major Advisers:

D.A. Traill, L.E. Roller

Greek

Admission to the undergraduate major in Greek has been suspended. Courses in Greek continue to be offered and may be applied toward minors such as Classical Civilization.

A.B. Major Requirements:

Preparatory Subject Matter

Greek 1, 2, 3 (or the equivalent)
Depth Subject Matter ... 36
Upper division units in Greek (two courses may be chosen from department-approved courses in related fields).

Total Units for the Major 36-51

Recommended
Latin 1, 2, 3.

Latin
Admission to the undergraduate major in Latin has been suspended. Courses in Latin continue to be offered and may be applied toward majors such as Classical Civilization.

A.B. Major Requirements:

Preparatory Subject Matter 15
Latin 1, 2, 3 (or the equivalent) 15

Depth Subject Matter ... 36
Latin 121 ... 5
At least 31 additional upper division units in Latin.

Total Units for the Major 36-51

The Minor Programs
The Department offers minors in Classical Civilization, Greek and Latin for those wishing to follow a shorter but still formally recognized program of study in classics.

Minor Program Requirements:

Classical Civilization ... 20
Classics 1, 2, or 3... 4
One upper division course in Latin, Greek or Hebrew ... 4
Three additional upper division courses selected from any of the groups (a) through (d) in the Classical Civilization major ... 12

Greek.. 21
Greek 3 ... 5
Four upper division courses in Greek 16

Latin.. 21
Latin 3 ... 5
Four upper division courses in Latin 16

Prerequisite credit. Credit will not normally be given for a lower division course in Latin or Greek if it is the prerequisite of a course already successfully completed. Exceptions can be made by the Program Director only.

Graduate Study. The Department offers a master's degree in Classics with emphasis on either Greek or Latin. The program is suitable for high school teachers seeking to improve their qualifications and for students wishing to prepare themselves for admission to one of the more competitive doctoral programs in Classics. Admission into the graduate program has been suspended.

Courses in Classics (CLA)

Lower Division Courses

Lecture—3 hours; term paper. Introduction to the literature, art and social and political institutions of ancient Mesopotamia, Egypt, Palestine, and early Greece from 3000 to 500 B.C.E.

2. Ancient Greece and the Near East: 500 to 146 B.C.E. (4) II. Schein
Lecture—3 hours; term paper. Introduction to the literature, art and thought and the political and social institutions and values of Greece and its eastern Mediterranean neighbors—the Persians, Egyptians, and Judeans. GE credit: ArtHum, Wrt.

3. Rome and the Mediterranean: 1000 B.C.E. to 500 C.E. (4) III. Traill
Lecture—3 hours; term paper. Introduction to the history, literature, art and thought and the political and social institutions and values of Roman civilization, with emphasis on Rome's interactions with its Mediterranean neighbors—Etruscans, Carthaginians, Greeks, Egyptians, and Persians—and on the rise of Christianity. GE credit: ArtHum, Wrt.

10. Greek and Roman Mythology (3) I. Allan
Lecture—3 hours. Origin and development of myths and legends, their place in the religion, literature, and art of Greece and Rome. GE credit: ArtHum.

15. Women in Classical Antiquity (4) III. Allan
Lecture—3 hours; term paper. Lives and roles of women in ancient Greece and Rome. Readings from history, philosophy, medical and legal documents, literature, and myth. GE credit: ArtHum, Div, Wrt.

17B. Greek Archaeology (4) II. Roller
Lecture—3 hours; term paper. Archeological monuments of Geometric, Archaic, and Classical Greece, with special emphasis on the development of cities and sanctuaries. GE credit: ArtHum, Wrt.

17C. Later Greek and Roman Archaeology (4) III. The Staff
Lecture—3 hours; term paper. Archeological monuments of the Greek world after the conquests of Alexander the Great, and the monuments of Rome and the Roman Empire. Offered in alternate years. GE credit: ArtHum, Wrt.

20. Pompeii AD 79 (4) III. Traill
Lecture—3 hours; term paper. Roman life in an urban community at the time of the eruption of Vesuvius. Side presentations of the archeological evidence will be supplemented by the readings from Petronius' Satyricon and other ancient authors. Offered in alternate years. GE credit: ArtHum, Wrt.

30. Greek and Latin Elements in English Vocabulary (3) II. Schaffner
Lecture—3 hours. Knowledge of Latin and Greek not required. Elements of Greek and Latin vocabulary for increased understanding of English word formation and improved ability to understand and retain unfamiliar words. Emphasis on Greek and Latin elements but other languages not neglected.

31. Greek and Latin Elements in Technical Vocabulary (3) III. The Staff
Lecture—3 hours. Knowledge of Greek and Latin not required. Elements of Greek and Latin vocabulary to increase understanding of English word formation in medical, scientific and technical terminology and improve ability to understand and retain unfamiliar terms.

50. The Rise of Science in Ancient Greece (4) II. Rosenstock
Lecture/discussion—3 hours; term paper. Prerequisite: Mathematics 16A or the equivalent. Study of the emergence of scientific rationality in ancient Greece and its political and social context; concentration on four areas: mathematics, medicine, cosmology, and psychology. Reading from the Presocratics, Hippocrates, Plato, Aristotle, and Hellenistic philosophers. GE credit: ArtHum, Wrt.

Upper Division Courses

102. Film and the Classical World (4) III. Traill
Lecture—3 hours; film viewing—2.5 hours. Prerequisite: any Classics course except 30 or 31. The Classical World as portrayed in films. Viewing and discussion of modern versions of ancient dramas set in the Ancient Mediterranean world, and films imbued with classical themes and allusions. SUPPLEMENTARY READINGS IN ANCIENT LITERATURE AND PHILOSOPHY. GE credit: ArtHum, Wrt.

140. Homer and Ancient Epic (4) I. Builman
Lecture—3 hours; term paper. Prerequisite: course 4A or 10 or Comparative Literature 1. Reading of Iliad, Odyssey, and Aeneid. English Discussion of Homer's and Vergil's techniques of composition, the beliefs and values of their respective societies and the influence of Homer on Vergil. Offered in alternate years. GE credit: ArtHum, Wrt.

141. Greek and Roman Comedy (4) II. Allan
Lecture—3 hours; conference—1 hour. Readings in Aristophanes, Menander, Plautus, and Terence; lectures on the development of ancient comedy. Offered in alternate years. GE credit: ArtHum, Wrt.

142. Greek and Roman Novel (4) III. Schein
Lecture—3 hours; term paper. Examination of the ancient Greek romances and their development into the grotesque realism of Petronius' Satyricon, and the religious mysticism of Apuleius' The Golden Ass. GE credit: ArtHum, Wrt.

143. Greek Tragedy (4) II. Traill
Lecture—3 hours; term paper. Prerequisite: course 4A or 10. Reading in English of selected plays of Aeschylus, Sophocles and Euripides. Lectures on the development and influence of Athenian tragedy. Offered in alternate years. GE credit: ArtHum, Wrt.

150. Socrates and Classical Athens (4) III. Rosenstock
Lecture/discussion—3 hours; term paper. Prerequisite: course 4A. Study of the major sources of our knowledge of Socrates to assess his role in the politics and culture of ancient Athens; his method of teaching and its place in Western thought. GE credit: ArtHum, Wrt.

171. Mediterranean Bronze Age Archaeology (4) I. Roller
Lecture—3 hours; term paper. Prerequisite: course 1. Anthropology 3. Archaeological monuments of the ancient Near East, including Egypt and Mesopotamia, and of Greece and Crete during the Bronze Age. Special emphasis on the problems of state formation and on the co-existence and collapse of Bronze Age societies. Not open for credit to students who have completed course 17A. Offered in alternate years.

174. Ancient Greek Sanctuaries (4) II. Roller
Lecture/discussion—4 hours. Prerequisite: course 17B or consent of instructor. The history, cults, and monuments of Olympia, Delphi, and other sanctuaries. Student reports on major monuments. Offered in alternate years. GE credit: ArtHum, Wrt.

175. Topography and Monuments of Ancient Athens (4) III. Roller
Lecture/discussion—4 hours. Prerequisite: course 17A-17B or consent of instructor. The history of Athens as an urban center from the Bronze Age through the late Roman period. Student reports on major monuments with emphasis placed on restoration, chronology, and on the relating of documentary to excavational evidence. Offered in alternate years.

197TC. Community Tutoring in Classical Languages (1-5) I, II, III. The Staff
Tutoring—1-5 hours. Prerequisite: consent of instructor. Supervised instruction of Greek or Latin in nearby schools by qualified students in department. May be repeated for credit up to 5 units. (P/NP grading only.)

Graduate Courses

201. Introduction to Classical Philology (4) I. Traill
Seminar—3 hours; term paper. Survey of major contemporary areas of classical scholarship with special attention devoted to current problems in literary and textual criticism.

202. Homer (4) II. Roller
Seminar—3 hours; term paper. Readings in the Iliad and Odyssey: the origins and transmission of the poems.

203. Vergil (4) I. Traill
Seminar—3 hours; term paper. Reading of selected books of the Bucolics, Georgics, and Aeneid. Emphasis will be placed on the study of Vergilian poetic language.

204. Greek and Roman Comedy (4) II. The Staff
Seminar—3 hours; term paper. Historical and critical problems in Aristophanes or New Comedy. May be repeated for credit.

205. Latin Lyric and Elegy (4) II. Traill
Seminar—3 hours; term paper. Critical examination of the works of Catullus, Horace, or Propertius. May be repeated for credit.
Courses in Greek (GRK)

Lower Division Courses
1. Elementary Greek (5) I. The Staff
 Lecture—5 hours. Introduction to the basic grammar and vocabulary of Classical and New Testament Greek. Development of translation skills with emphasis on Greek-English. (Students who have successfully completed Greek 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)

2. Elementary Greek (5) II. Traill
 Lecture—5 hours. Prerequisite: course 1. Continuation of course 1.

2NT. Elementary New Testament Greek (1) II. The Staff
 Lecture—1 hour. Prerequisite: course 2 (concurrently). Supplementary study of New Testament Greek.

3. Intermediate Greek (5) III. Bulman
 Lecture—5 hours. Prerequisite: course 2. Continuation of course 2. Selected readings from Greek authors.

3NT. Elementary New Testament Greek (1) III. The Staff
 Lecture—1 hour. Prerequisite: course 3 (concurrently). Supplementary study of New Testament Greek.

98. Directed Group Study (1-5) I, II, III. The Staff (Program Director in charge)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses
100. Attic Orators (4) I. Traill
 Lecture—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.

*101. Plato (4) I. Traill
 Lecture—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.

*102. Euripides (4) I. Roller
 Lecture—3 hours; term paper. Prerequisite: course 101. GE credit: ArtHum, Wrt.

103A. Homer: Iliad (4) III. Schein
 Recitation—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.

*103B. Homer: Odyssey (4) II. Schein
 Recitation—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.

*104. Menander (4) III. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.

*105. Demosthenes (4) III. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. GE credit: ArtHum, Wrt.

*111. Sophocles (4) II. Schein
 Lecture—3 hours; term paper. Prerequisite: course 103. GE credit: ArtHum, Wrt.

*112. Aristophanes (4) III. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 103. GE credit: ArtHum, Wrt.

*113. Thucydides (4) II. Roller
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years. GE credit: ArtHum, Wrt.

*114. Lyric Poetry (4) III.
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years. GE credit: ArtHum, Wrt.

*115. Aeschylus (4) II. Schein
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years. GE credit: ArtHum, Wrt.

116. Herodotus (4) II. Roller
 Lecture—3 hours; term paper. Prerequisite: course 103. Offered in alternate years. GE credit: ArtHum, Wrt.

198. Directed Group Study (1-5) I, II, III. The Staff (Program Director in charge)
 (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Program Director in charge)
 (P/NP grading only.)

Courses in Latin (LAT)

Lower Division Courses
1. Elementary Latin (5) I. The Staff
 Lecture—5 hours. Introduction to basic grammar and vocabulary and development of translation skills with emphasis on Latin to English. (Students who have successfully completed Latin 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)

2. Elementary Latin (5) II. Traill
 Lecture—5 hours. Prerequisite: course 1. Continuation of course 1.

2X. Intensive Latin (10) I. III. The Staff
 Lecture—10 hours. Prerequisite: course 1. Intensive course that covers the ground of courses 2 and 3 in a single quarter. Those who have completed course 2 may receive only 5 units for course 2X.

3. Intermediate Latin (5) I. III. The Staff
 Lecture—5 hours. Prerequisite: course 2. Continuation of course 2. Selected readings from Latin authors.

98. Directed Group Study (1-5) I, II, III. The Staff (Program Director in charge)
 Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses
*100. Ovid (4) I. Allan
 Lecture—3 hours; paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*101. Livy (4) II. Traill
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*102. Roman Comedy (5) I. The Staff
 Lecture—4 hours; term paper. Prerequisite: course 3. offered in alternate years. GE credit: ArtHum, Wrt.

*103. Vergil: Aeneid (4) III. Schaeffer
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*104. Sallust (4) II. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*105. Catullus (4) I. Allan
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*106. Horace: Odes and Epodes (4) III. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*108. Horace: Satires and Epistles (4) I. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

110. Caesar (4) I. Allan
 Lecture—3 hours; substantial paper. Prerequisite: course 3. Translation and discussion of selected readings from Caesar. Grammar review and introduction to Latin prose composition. Offered in alternate years. GE credit: ArtHum, Wrt.

*111. Silver Age Latin (4) II. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*112. Cicero: Political Writings (4) I. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*114. Cicero: Philosophical Works (4) I. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

115. Luciletus (4) II. Schaeffer
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

116. Vergil: Eclogues and Georgics (4) II. Traill
 Lecture—3 hours; term paper. Prerequisite: course 3. Offered in alternate years. GE credit: ArtHum, Wrt.

*121. Prose Composition (5) I. Traill
 Lecture—4 hours; term paper.

125. Medieval Latin (4) III. Albou
 Lecture—3 hours; term paper. Prerequisite: course 3 and two upper division courses in Latin. Selected readings from the Vulgate and various medieval authors provide an introduction to the developments in the Latin Language and literature from the fourth to the fifteenth centuries. Offered in alternate years. GE credit: ArtHum, Wrt.

198. Directed Group Study (1-5) I, II, III. The Staff (Program Director in charge)
 (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Program Director in charge)
 (P/NP grading only.)
Community and International Health
See Medicine, School of

Community Nutrition
(College of Agricultural and Environmental Sciences)

The Major Program
Community nutrition teaches students the identification of nutrition-related health problems and the biological, behavioral, economic, and sociocultural factors that influence the nutrition of individuals and groups. The aim of community nutrition is to apply this knowledge to the development of programs that improve the nutritional status in the community.

The Program. The community nutrition major is for students who seek to combine a foundation in the biological and human sciences with study in the social sciences. All students in the major are required to complete a common core of preparatory and depth subject matter courses. Students select one of three subject matter options emphasizing sociocultural, psychological, or economic aspects of food, diet, and nutrition, and an additional area of concentration in consultation with the adviser.

Career Alternatives. The community nutrition major prepares students for jobs in administrative, teaching, research, or public health/public service positions or for graduate or professional training in nutrition and other health sciences. Students who complete the academic requirements for an internship in dietetics are also qualified for careers in dietetics, following completion of an internship.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

English Composition Requirement0-8
See College requirement

Preparatory Subject Matter49-51

Biological sciences (Biological Sciences 1A, 1B, 1C) ..15

Chemistry (Chemistry 2A, 2B, 8A, 8B)16

Computer science (Agricultural Systems and Environment 21 or Computer Science Engineering 15) ..34

Cultural food habits (Nutrition 20)4

Cultural social science (Anthropology 2, Geography 2, or Sociology 3)4

Social research methods (Sociology 46A or Psychology 41)4

Statistics (Sociology 46B or Statistics 13)4

Breadth/General Education6-24

Satisfaction of General Education requirement ..6-24

(Note that some of the Option Subject Matter may meet General Education requirements.)

Depth Subject Matter53

Biological Sciences 102 and 1036

Food Science and Technology 100A, 100B, 101A, 101B ...10

Nutrition 192 ..2

Neurobiology, Physiology and Behavior 101, 101L ...7

Option Subject Matter28-32

Course work chosen from one of the following three options in consultation with adviser ..18-20

Additional units in a related social or health science chosen in consultation with adviser ...10-12

(May include a minor program in fields such as physical education, environmental toxicology, community development, statistics or the social sciences.)

Behavioral–Psychological Option

Psychology 1, Education 110 or Psychology 130

Psychology 112 or Human Development 109A or 109B

Psychology 115 or Human Development 100C

Applied Behavioral Sciences 173, 178

Consumer Science 100

Food Science and Technology 107, 117

Sociology 154

Anthropology 129, 130

Rhetoric and Communication 115

Economics and International Development Option

International Agricultural Development 10 Economics 1A, 1B

Mathematics 16A

Agricultural Economics 100A, 100B, 120, 130, 141

International Agricultural Development 103, 110, 111, 118

Economics 100, 101, 115A, 115B, 118, 123, 130, 162

Consumer Science 100

Anthropology 122, 126

Sociology 170

Economics 151A

Environmental Studies 1, 165

Rhetoric and Communication 115

Sociocultural Option

Foreign language (10 units or the equivalent strongly recommended)

Anthropology 101, 126, 133, 135

Geography 170, 175

African American and African Studies 100

Applied Behavioral Sciences 2

Rhetoric and Communication 115

Regional courses, choose 8 units from one of the following four areas (alternative courses may be selected in consultation with the adviser)

Central and South America: Geography 122A, 122B, History 161A, 161B, 162, 163A, 163B, 165, 166A, 166B, 168

Africa: Anthropology 140A, 140B, Geography 125A, 125B, History 115A, 115B, 115C

Additional Recommended Courses.

Unrestricted Electives12-43

Total Units for Degree180

Major Adviser. R.B. McDonald (Nutrition).

Advising Center for the major is located in 1202E Meyer Hall (916-752-2512).

Internship. To fulfill the academic requirements for an internship in Dietetics, the following courses must be included:

Economics 18, Agricultural Economics 112, Food Industry Management 120, 123, 121, 122, 123, Applied Behavioral Sciences 173 or Education 110, Psychology 1, Nutrition 116A-L116BL, and Rhetoric and Communication 1. Consult the Advising Center prior to the first quarter of the junior year for information on procedures.

Graduate Study. For information on graduate study, see the Graduate Studies section in this catalog.
Comparative Literature encourages students to read, think about, and compare books from different national languages and from different parts of the world. It broadens students' horizons by bridging the divisions between national cultures instead of concentrating on a single tradition.

The Program. Both the major and minor comparative literature programs allow students to combine courses in one or more national literature departments with courses in comparative literature. The introductory course sequence, "Great Books of Western Culture" and "Major Books of the Contemporary World," provides both an overview of European literary culture from ancient times to the present and intensive practice in analytical thought and English composition. All readings in undergraduate comparative literature courses are in English, but majors take upper division courses in at least one foreign literature in the original language.

Career Alternatives. Careers directly related to comparative literature include teaching, journalism, publishing, and translating. Because many professional schools consider a literature major an excellent background for their graduate disciplines, comparative literature provides valuable preparation (supplemented with the major) for careers in business, government, medicine, or law.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>15-46</td>
</tr>
<tr>
<td>Comparative Literature 1, 2, 3</td>
<td>12</td>
</tr>
<tr>
<td>One lower division course other than Comparative Literature 1, 2, 3, and 10A-N</td>
<td></td>
</tr>
<tr>
<td>Foreign language: sufficient preparation to insure satisfactory performance at the upper division level</td>
<td>3-4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>40</td>
</tr>
<tr>
<td>Five upper division courses (including at least three in a language other than English) distributed between the first and second literatures of concentration with the approval of the adviser</td>
<td></td>
</tr>
<tr>
<td>Comparative Literature 141 strongly recommended</td>
<td>8</td>
</tr>
<tr>
<td>Two additional upper division Comparative Literature courses, including at least one in a major literary period (such as 164A-D), movement (such as 160A-B, 161A-B, or 166A-B), or national language (such as 168A-B or 169)</td>
<td></td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>55-82</td>
</tr>
</tbody>
</table>

Major Adviser. The Staff.

All Comparative Literature majors and minors must consult with their adviser, individually, at least once at the beginning and once at the end of each academic year.

Teaching Credential Subject Representative. The Staff.

Graduate Studies in Comparative Literature (A Graduate Program). See also the Graduate Studies section in this catalog.

Courses in Comparative Literature (COM)

Minor Program Requirements:

The minor in Comparative Literature allows students to combine courses in Comparative Literature with courses in one or two national literatures, including English and foreign literatures in translation. There is no foreign language requirement for the minor.

<table>
<thead>
<tr>
<th>Course</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Literature</td>
<td>24</td>
</tr>
<tr>
<td>Comparative Literature 1, 2, 3, or 4</td>
<td></td>
</tr>
<tr>
<td>At least two upper division Comparative Literature courses (Comparative Literature 141 strongly recommended)</td>
<td>8</td>
</tr>
<tr>
<td>Three additional upper division courses in one or two national literatures (including English) or in Comparative Literature</td>
<td>12</td>
</tr>
</tbody>
</table>

Courses in Comparative Literature (COM)

Lower Division Courses

1. Great Books of Western Culture: The Ancient World (4) I, II, III. The Staff

Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from the ancient world to Auguste’s Confessions. GE credit: ArtHum, Wrt. (Cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously.)

2. Great Books of Western Culture: From the Middle Ages to the Enlightenment (4) I, II, III. Director in charge

Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Dante’s Inferno to Swift’s Gulliver’s Travels. GE credit: ArtHum, Wrt. (Cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously.)

3. Great Books of Western Culture: The Modern Crisis (4) I, II, III. Director in charge

Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. An introduction, through class discussion and frequent written assignments, to some of the great books of western civilization from Goethe’s Faust to Beckett’s Waiting for Godot. GE credit: ArtHum, Wrt. (Cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously.)

4. Major Books of the Contemporary World (4) I, II, III. The Staff

Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. Comparative study of selected major Western and non-Western texts composed in the world from 1950 to the present. Intensive study and writing about these texts, with frequent papers written about these works. GE credit: ArtHum, Wrt. (Cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously.)

5. Fairy Tales, Fables, and Parables (4) I, II.

Reed, Schlidgen and staff

Lecture—3 hours. Discussion—1 hour. An introduction to fairy tales, fables, and parables as recurrent forms in literature, with such readings as tales from Aesop and Grimm, Chaucer and Shakespeare, Kafka and Borges, Buddhist and Taoist parables, the Arabian Nights, and African American folklore. GE credit: ArtHum, Wrt.

6. Myths and Legends (4) I, II. McLean, Schlidgen

7. Literature of Fantasy and the Supernatural (4) I, II. Reed, Allosso

Lecture—3 hours. Discussion—1 hour. An inquiry into the relationships between the fantastic and the real in the literature of dream and hallucination, fabulous landscapes and voyages, grotesque satire, and gothic horror. GE credit: ArtHum, Wrt.

8. Utopias and their Transformations (4) II.

The Staff

Lecture/discussion—3 hours; term paper. Prerequisites: Subject A or the equivalent. Consideration of literary works from different ages, of visionary and rational perceptions of a lost paradise, Golden Age, or Atlantis—and of the inhuman nightmares that can result from perversions of the utopian dream of perfection. GE credit: ArtHum, Wrt.

9. The Short Story and Novella (4) III. The Staff

Lecture/discussion—3 hours; term paper. An introduction to shorter forms of prose fiction by major authors of different countries, with special emphasis on the modern period. GE credit: ArtHum, Wrt.

10A-N. Master Authors in World Literature (2) I, II, III. The Staff

Director in charge

Lecture/discussion—1 two-hour session. Designed primarily to acquaint the non-literature major with a cross-section of writings by the world’s most important authors; readings in English translation. Content alternates among the following segments: (A) Gilgamesh, Ramayana, Beowulf; (G) Metamorphoses, Decameron, Arabian Nights, Canterbury Tales; (C) Chanson de Roland, El Cid, Igors Campaign, Morte d’Arthur; (D) Sakuntala, Tristan and Isolde, Aquascis and Nicolette, Gawain and the Green Knight; (E) Swift, Rabelais, La Celestina, Simplicissimus; (F) Cervantes, Sakakai, Fielding, Voltaire; (G) Machiavelli, Shakespeare, Lope de Vega/Calerdon, Molieré/Racine, Lessing/Schiller; (H) Goethe, Byron, Stendhal, Pushkin, Lermontov; (I) Hoffmann, Gogol, Poe, Hawthorne, Maupassant, Chekhov, Melville; (J) Flaubert, Dostoevski/Tolstoi, Hardy, W. T. Garnett, Galdós, Ibsen; (K) Balzac, Dostoievski/Tolstoi, Hardy, Shaw, Strindberg; (L) Unamuno, Svevo, Conrad, Gide, Kafka, Faulkner; (M) I’llke/Yesats, Joyce/Woolf, Virginia Woolf, Collette, Unamuno; O’Neill/Richardson, Turgenev, Pirandello; (N) Camus/Sartre, Garcia Marquez/Grazz, Borges/Sarrate, Bellow/Nabokov, Beckett/Pinter, Genet/Durénnett. May be repeated for credit in different subject area. Limited enrollment. (FNSP grading only.)

12. Introduction to Women Writers (4) II.

The Staff

Lecture/discussion—3 hours; term paper. Prerequisites: completion of Subject A requirement. Survey of fiction, drama, and poetry by women writers from all continents. Concerns of women compared in light of their varied social and cultural roles. Students will practice literary analysis of voice, imagery, narrative strategies and diction. GE credit: ArtHum, Wrt.

13. Dramatic Literature (3) III. Finney

Lecture—3 hours. Prerequisites: Subject A or the equivalent. Introduction, through careful reading of selected plays, to some of the major forms of Western drama, from the earliest tragedies of ancient Greece to the contemporary American theater. Offered in alternate years. GE credit: ArtHum, Wrt.

14. Introduction to Poetry (3) III. Finney

Lecture/discussion—3 hours. Prerequisites: completion of Subject A requirement. Comparative study of poetry in a variety of lyric and other poetic forms from different historical periods and different linguistic, national, and cultural traditions. Offered in alternate years. GE credit: ArtHum, Wrt.

Course not offered this academic year.
*15. The Spiritual Quest (3) I. Torrance
Lecture/discussion—3 hours. An exploration of the enduring search to discover—or to create—a transcendent meaning and purpose in human life, as reflected in such works as the Bhagavad Gita, *The Quest of the Holy Grail*, Dante's *Purgatory*, and Melville's *Moby Dick*. GE credit: ArtHum, Wrt.

20. Man and the Natural World (4) I. McLean
Lecture/discussion—3 hours; term paper. Examination of the changing relationship between the individual human being and its “natural” environment, whether cultivated or wild, as reflected in literary works from ancient times to the present by such authors as Hesiod, Virgil, Rousseau, Wordsworth, and Thoreau. GE credit: ArtHum, Wrt.

*25. Ethnic Minority Writers in World Literature (4) (3) II. The Staff
Lecture—3 hours; term paper. Consideration of a broad range of writers who speak from an ethnic perspective different from the nominally or politically dominant culture of their respective countries and who explore the challenges faced by characters significantly affected by their ethnic minority status. GE credit: ArtHum, Div, Wrt.

*53A. Literature of China and Japan (3) III. The Staff
Lecture—2 hours; discussion—1 hour. Introduction to representative masterpieces of East Asia with readings from such works as the *Tale of Genji*, *The Peach Blossom Fan*, *Tang and Sung poetry*, classical *Japanese* poetry, drama, and travel diaries, and *The Tale of Genji*. GE credit: ArtHum, Div, Wrt.

*53B. Literature of India and Southeast Asia (3) I. Schildgen
Lecture—2 hours; discussion—1 hour. Introduction to representative masterpieces of South Asia with readings from such works as the *Mahabharata* and *Ramayana*, *The Cloud Messenger*, *Shakuntala*, *The Little Clay Cart*, and the stories and poems of both ancient and modern India and Southeast Asia. GE credit: ArtHum, Div, Wrt.

90X. Lower Division Seminar (1-2) I, II, III.
The Staff
Seminar—1-4 hours. Prerequisite: consent of instructor. Examination of a special topic in a small group setting.

98. Directed Group Study (1-5) I, II, III. The Staff (Director in charge)
Restricted to lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Director in charge)
(P/NP grading only.)

Upper Division Courses

*120. Writing Nature: 1750 to the Present (4) I. McLean
Lecture/discussion—3 hours; term paper. Prerequisite: completion of *Subject A* requirement and at least one course in literature. Study of representations, descriptions, and discussions of humankind’s problematic relationship with the non-human world in texts written in a variety of European and American traditions between 1750 and the present. Offered in alternate years. GE credit: ArtHum, Wrt.

135. Women Writers (4) I. Reed
Lecture/discussion—3 hours; term paper. An exploration of women’s differing views of self and society as reflected in the major works by female authors of various times and cultures. Readings, principally of fiction, will include such writers as Lady Murasaki, Mme de Lafayette, and Charlotte Bronte. GE credit: ArtHum, Wrt.

*138. Gender and Interpretation (4) I. Schiessari
Lecture/discussion—3 hours; term paper. Prerequisite: completion of *Subject A* requirement and at least one course in the literary traditions of *Western* and *Asian* cultures, including such topics as gender role and gender identity in literary texts from various periods, societies, and cultures in light of research and theory on gender, with attention to gender as a topic for literary interpretation. GE credit: ArtHum, Div, Wrt.

*140. Thematic and Structural Study of Literature (4) II. Murav
Lecture/discussion—3 hours; term paper. Interpretation of selected literary works marking the historical evolution of themes, as well as of formal and structural elements. May be repeated for credit when substance of course varies. GE credit: ArtHum, Wrt.

141. Literary Theory and Criticism (4) II. Torrance
Lecture/discussion—3 hours; term paper. Exploration of literary theories with emphasis on specific objectives and possibilities of comparative literature. GE credit: ArtHum, Wrt.

*142. Critical Reading and Analysis (4) III. The Staff (Director in charge)
Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Close reading of selected texts; scrutiny of very limited amount of material, with attention to the problems of texts in translation.

*144. The Grotesque (4) II. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: completion of *Subject A* requirement and at least one course in literature. Study of the “grotesque” in selected texts from the Renaissance to the 20th century, with attention to the “grotesque” as a means of social, cultural, and political commentary, as well as of aesthetic innovation. Offered in alternate years. GE credit: ArtHum, Wrt.

*145. Representations of the City (4) I. The Staff
Lecture/discussion—3 hours; term paper. Examination of the portrayal of the modern city in 19th and 20th century western literature. Readings include works by Balzac, Dickens, Poe, Baudelaire, Dostoevsky, Whitman, Zola, T.S. Eliot, and William Carlos Williams. GE credit: ArtHum, Wrt.

*146. Myth in Literature (4) II. Schaeffer, Lokke
Lecture—3 hours; term paper. Prerequisite: course 6 recommended. Comparative study of different versions of one or more central myths, with attention to their cultural settings, artistic and literary forms of representation, as well as to their psychological dimensions. GE credit: ArtHum, Wrt.

147. Modern Jewish Writers (4) I. Murav
Lecture—3 hours; discussion—1 hour. Prerequisite: completion of *Subject A* requirement and one lower division literature course. Problems of the modern Jewish experience from the perspective of the writer’s construction of the self in relation to the future and in relation to the non-Jew. Works upon Russian, German, Yiddish, and American traditions. GE credit: ArtHum, Div, Wrt.

151. Colonial and Postcolonial Experience in Literature (4) III. Blanchard
Lecture—3 hours; term paper. Prerequisite: completion of *Subject A* requirement and at least one course in literature. Study of colonial and postcolonial literary traditions, including introduction to the cultural issues of colonialism and postcolonialism through reading, discussion and writing on narratives which articulate diverse points of view. GE credit: ArtHum, Div, Wrt.

152. Literature of the Americas (4) I. Blanchard
Lecture/discussion—3 hours; term paper. Prerequisite: completion of *Subject A* requirement and at least one course in literature. Study of the various stylistic, historical, social, and cultural factors that contribute to a hemispheric vision of American literature, encompassing works by Canadian, United States, Caribbean, Brazilian, and Spanish-American writers. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*153. The Forms of Asian Literature (4) II. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. An introduction to the literary traditions of *Asian* countries, with attention to how literature and culture reflect the shared assumptions concerning man’s place in the world. GE credit: ArtHum, Wrt.

163. Biography and Autobiography (4) I. Murav
Lecture/discussion—3 hours; term paper. Portrayals of a human life in biographies and/or autobiographies of different countries and ages. Offered in alternate years. GE credit: ArtHum, Wrt.

164A. The Middle Ages (4) I. Schildgen
Lecture/discussion—3 hours; term paper. Readings in heroic epics, chivalric romances, and such major authors as Dante and Chaucer, with emphasis on shared assumptions concerning man’s place in the world. GE credit: ArtHum, Wrt.

164B. The Renaissance (4) II. Torrance
Lecture/discussion—3 hours; term paper. Readings in major authors such as Petrarch, Machiavelli, Eras- mus, Montaigne, Racine, Milton, Grammichausen, with consideration of the tension between the expansive energies of the “baroque” and the restraints of dogma and reason. GE credit: ArtHum, Wrt.

164C. Baroque and Neoclassicism (4) I. van den Abbeele
Lecture/discussion—3 hours; term paper. Readings in major authors such as Calderón, Corneille, Pascal, Racine, Milton, and Grammichausen, with consideration of the tension between the expansive energies of the “baroque” and the restraints of dogma and reason. GE credit: ArtHum, Wrt.

164D. The Enlightenment (4) III. Kusch
Lecture/discussion—3 hours; term paper. Readings in major authors such as Swift, Voltaire, Rousseau, Sterne, and Kant, with emphasis on philosophical ideas and literary forms. GE credit: ArtHum, Wrt.

166A. The Epic (4) I. Schein
Lecture/discussion—3 hours; term paper. Study of various forms of epic poetry in both the oral and literary traditions. May be repeated for credit in different subject area. GE credit: ArtHum, Wrt.

166B. The Novel (4) I. Flavelle
Lecture/discussion—3 hours; term paper. Readings in various forms of the novel such as the picaresque, the developmental, and the confessional, with emphasis on the evolution of the genre. May be repeated for credit in different subject area. GE credit: ArtHum, Wrt.
Comparative Literature

188

167. Comparative Study of Major Authors (4) I. Schein
Lecture/discussion—3 hours; term paper. Prerequisite: consent of instructor. Pivotal works of authors in the Western mainstream, such as Dante, Shakespeare, Cervantes, Goethe, Tolstoi, Proust, and Joyce. GE credits: Art/Hum, Wrt.

168A. Romanticism (4) II. Lokke
Discussion—3 hours; term paper. Prerequisite: any introductory course in literature. Introduction to the Romantic movement with emphasis upon Romantic concepts of the self, irony, love, the imagination and artistic creativity, and the relationship of the individual to nature and society. GE credit: Art/Hum, Wrt.

168B. Realism and Naturalism (4) I. Finney
Discussion—3 hours; term paper. Prerequisite: consent of instructor. Novels and plays by Dickens, Zola, Flaubert, Dreiser, Ibsen, and Strindberg investigate marriage and adultery, the city and its perils, the hardships of industrialization, the war between the sexes, the New Woman, and other 19th-century themes. Offered in alternate years. GE credit: Art/Hum, Wrt.

169. The Avant-Garde (4) II. The Staff
Lecture/discussion—3 hours; term paper. Studies in movements such as surrealism, expressionism and modernism. GE credits: Art/Hum, Wrt.

170. The Contemporary Novel (4) II. Terrance
Lecture—3 hours; term paper. Study of important novels from different parts of the world, including Asia, Africa, Latin America, Europe, and the United States, in the period from the Second World War to the present. GE credit: Art/Hum, Wrt.

180. Selected Topics in Comparative Literature (4) III. Murav
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject A requirement and at least one course in literature. Study of a selected topic or topics appropriate to student and faculty interests and areas of specialization of the instructor. May be repeated once for credit when the topic differs. GE credit: Art/Hum, Wrt.

194H. Special Study for Honors Students (1-5)
I, II, III. The Staff (Director in charge)
Independent study—1-5 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member approved by the Program Director, leading to a senior honors thesis on a comparative topic. (P/NP grading only.)

195. Seminar in Comparative Literature (4) III. Murav
Seminar—3 hours; term paper. Prerequisite: junior standing and major in Comparative Literature, or consent of instructor. Advanced comparative study of selected topics and texts, with explicit emphasis on the theoretical and interpretive approaches that define Comparative Literature as a discipline and distinguish it from other literary disciplines. May be repeated once for credit when topic differs. Offered in alternate years.

1977. Tutoring in Comparative Literature (1-5) I, II, III. The Staff (Director in charge)
Discussion—2-4 hours. Prerequisite: upper division standing with declared major in Comparative Literature. Tutoring in undergraduate courses including leadership in small voluntary discussion groups affiliated with current courses offered by Comparative Literature. May be repeated for credit for a total of 6 units. (P/NP grading only.)

199. Directed Group Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge)
(P/NP grading only.)

200. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge)
(P/NP grading only.)

Graduate Courses

*200. Introduction to the Graduate Study of Comparative Literature (4) II. Finney
Seminar—3 hours; research paper. Prerequisite: reading knowledge of one foreign language. Introduction to research tools, library resources, and critical concerns of Comparative Literature, with focus on the comparative study of a single work, culminating in a related research project.

201. Theories of Comparative Literature (4) III. Torrance
Seminar—3 hours; research paper. Prerequisite: reading knowledge of one foreign language; course 141 is the equivalent recommended. An examination of international theories of literature with reference to language, genre, themes, social and historical context.

202. History of Literary Theory (4) III. Schein
Discussion—3 hours; term paper. Prerequisite: graduate standing in Comparative Literature, English, or a foreign-language literature, or consent of instructor. Study of classical theoretical works from the Greeks to the late 19th century, with emphasis on these works’ treatment of such topics as textuality, representation, genre, meaning, structure, style, allegory, and canonicity.

210. Topics and Themes in Comparative Literature (4) I, II, III. Lokke, Murav, Torrance
Discussion—3 hours; term paper. Prerequisite: graduate standing in Comparative Literature, English, or a foreign-language literature, or consent of instructor. Comparative study of specific topics and themes in literary works from various periods, societies, and cultures, in light of these works’ historical and sociocultural contexts. May be repeated for credit when topic differs.

*215. Forms of the Spiritual Quest (4) III. Torrance
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor; knowledge of at least one foreign language. An exploration, culminating in a research paper, of changing forms of the quest for transcendence in different cultures, mainly in major works of Western literature, but also in other traditions and from the perspectives of other disciplines.

220. Literary Genres (4) II. Finney
Discussion—3 hours; term paper. Prerequisite: graduate standing in Comparative Literature, English, or a foreign-language literature, or consent of instructor. Comparative literature of major works in a particular genre from various linguistics, national, and cultural traditions, with particular attention to historical developments within the genre and to genre theory. May be repeated for credit when topic differs.

250A. Research in Comparative Literature (4) I, II, III. The Staff (Director in charge)
Individual instruction—1 hour. Prerequisite: course 200. Students are prepared for the supervision of a faculty member, in a comparative topic culminating in a term paper. Required of M.A. and Ph.D. candidates.

250B. Research in Comparative Study of Author, Period, or Genre (4) I, II, III. The Staff (Director in charge)
Individual instruction—1 hour. Prerequisite: courses 200 and 201. Individually guided research, under the supervision of a faculty member, in the specialized study of an individual author, historical period, or literary genre culminating in a term paper. Required of Ph.D. candidates.

250C. Basic Research for the Dissertation (4) I, II, III. The Staff (Director in charge)
Individual instruction—1 hour. Prerequisite: courses 200 and 201. Individually guided research, under the supervision of a faculty member, in preparation for dissertation in Comparative Literature. Required of Ph.D. candidates.

298. Directed Group Study (1-5) I, II, III. The Staff (Director in charge)
(S/U grading only.)

299. Special Study for the Doctoral Dissertation (1-12) I, II, III. The Staff (Director in charge)
(S/U grading only.)

*Course not offered this academic year.

Professional Courses

390. Teaching Comparative Literature in College (3) I. Allosso
Lecture—1 hour; discussion—2 hours. Methods of teaching Comparative Literature with specific application to the introductory courses 1, 2, and 3, in relation to major cultural and social developments. Discussion also of ways to teach analytical writing. (SU grading only.)

392. Teaching Internship in Comparative Literature (1) II, III. Allosso
Discussion—1 hour. Regular consultations between the student instructor teaching Comparative Literature courses and a supervisor. In-class evaluation of teaching. May be repeated for credit after consultation with supervisor. (SU grading only.)

Comparative Literature (A Graduate Group)

Marifed Kusch, Ph.D., Chairperson of the Group, (916-752-2239)

Group Office, 922 Sproul Hall (916-752-2239)

Faculty. The interdisciplinary faculty come from Comparative Literature, French, Italian, German, Russian, Spanish, and English.

Graduate Study. The Comparative Literature Program offers the M.A. and Ph.D. degrees with a strong emphasis on individual research under the supervision of a faculty member. Candidates for the M.A. degree are prepared to combine study of Comparative Literature with study of two literatures (one of which may be English or American) in the original languages. Ph.D. candidates, in addition to further research of a comparative nature, study three literatures (one of which may be English and/or American) in the original languages, acquiring an extensive knowledge of the overall development of one. Within this framework, each student's program will be tailored to individual interests, and may center on a major historical period, such as the Renaissance or the modern age; a genre, such as lyric poetry, epic, drama, or the novel; or any other special emphasis approved by the Graduate Adviser.

Preparation. For admission to the program, candidates should have an undergraduate major in literature and reading ability in one foreign language. Ph.D. candidates should have an undergraduate major in literature and reading ability in two foreign languages. The Group requires three letters of recommendation and a sample of recent written work, and it is recommended that students submit their GRE scores.

Graduate Adviser. H. Murav (Comparative Literature, Russian).

Comparative Pathology (A Graduate Group)

Dennis W. Wilson, D.V.M., Ph.D., Chairperson of the Group, (916-752-1385)

Group Office, 1126 Haring Hall (916-752-1385)

Graduate Study. The Graduate Group in Comparative Pathology offers the M.S. and Ph.D. degrees for graduate study in discipilined research in disease processes. The focus of the Group is on the study of the causes and nature of disease processes in animals and humans. Major emphasis is on the mechanisms responsible for the development of diseases at the organismal, cellular or subcellular level. This study is brought a wide array of scientific knowledge.

Graduate Adviser. Dennis W. Wilson, D.V.M., Ph.D.
so that students with divergent interests can be accommodated in programs designed for individual needs.

This program is primarily for students who have a professional medical degree, i.e., D.V.M., M.D., D.D.S. Students without a professional degree will not be considered unless they have an especially strong background in the basic sciences. Beyond core courses selected from disciplines such as anatomy, bacteriology, genetics, immunology, parastology, pathology, physiology, and virology, course programs are intentionally flexible.

Graduate Adviser. J. G. Zinkl (Pathology, Microbiology and Immunology), D.H. Hinton (Anatomy, Physiology and Cell Biology), R.B. LaFebvre (Pathology, Microbiology and Immunology), K.M. Lam (Pathology, Microbiology and Immunology).

Computer Science

See Computer Science (below); Computer Science (A Graduate Group); Engineering: Computer Science; and Engineering: Electrical and Computer Engineering.

Computer Science

(College of Letters and Science)

Charles U. Martel, Ph.D., Chairperson of the Department

Ronald A. Olsson, Ph.D., Vice Chairperson of the Department

Department Office, 2063 Engineering II (916-752-7004; http://www.cs.ucdavis.edu)

Faculty. For complete faculty listing, please see Engineering: Computer Science.

The Major Program

The computer science major prepares students for careers involving the design of computer systems and their application to science, industry, and management.

The Program. Students taking this major receive solid grounding in fundamentals of computer languages, operating systems, and the formal mathematical tools required to use the computer in solving complex tasks. Emphasis in the major is on software, although introductory architecture is included. For students interested in the engineering aspects of computer science, see Engineering: Computer Science.

Career Alternatives. The computer science program prepares students for advanced work in computer science or in other disciplines requiring advanced knowledge of the use of computers.

B.S. Major Requirements:

Preparatory Subject Matter..........................48-49

Computer Science Engineering 30 or 35, 408

Computer Science Engineering 504

Mathematics 21A-21B-21C, 22A-22B18

Statistics 32 ..3

One series from the following four15-16

(a) Chemistry 2A-2B-2C

(b) Chemistry 2A-2B and Biological Sciences 1A

(c) Chemistry 2AH-2BH-2CH

(d) Physics 9A-9B-9C and Mathematics 21D

Computer Science

See Computer Science (below); Computer Science (A Graduate Group); Engineering: Computer Science; and Engineering: Electrical and Computer Engineering.

Minor Program Requirements

UNITS

Computer Science..24

Computer Science Engineering 504

Upper Division Computer Science Engineer- ing ..16

Graduate Study. See the Graduate Studies section in this catalog.

Consumer Science

See Ecology (A Graduate Group); Environmental Biology and Management; and Wildlife, Fish, and Conservation Biology.

Consumer Science

(College of Agricultural and Environmental Sciences)

Faculty. See under the Division of Textiles and Clothing.

Major Programs and Graduate Study. The Consumer Science major is a related program. For graduate study, see the Graduate Studies section in this catalog. See also Consumer Economics, Food Science and Technology, Nutrition, and Textiles and Clothing.

Courses in Consumer Science (CNS)

Questions pertaining to the following courses should be directed to the Division of Textiles and Clothing Advising Office, 129 Everson Hall.

Lower Division Courses

47. Food Product Development Field Study (1) III. The Staff Discussion—three 2-hour sessions; field trip—2 days. To observe commercial aspects of the large-scale development, distribution and evaluation of food products intended for human consumption. Course given between Winter and Spring Quarters. Advance enrollment with instructor required Winter quarter. (P/NP grading only.)

92. Internship in Consumer Science (1-12) I, II, III. Rucker Internship—3-36 hours. Prerequisite: consent of instructor. Internship on and off campus in a consumer science related area. (P/NP grading only.)

Upper Division Courses

100. Consumer Behavior (3) II. Rucker Lecture—3 hours. Prerequisite: preparation in areas of psychology or sociology and economics recommended. Provides a set of behavioral concepts and theories useful in understanding consumer behavior on the part of the individual, business, and social organizations. Conceptual models to help guide and understand consumer research will be presented. GE credit: SocSci, Div, Wrt.
190 Critical Theory

192. Internship in Consumer Science (1-12) I, II, III. Rucker
Internship—3-36 hours. Prerequisite: completion of a minimum of 84 units; consent of instructor. Internship on and off campus in a consumer science related area. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. Rucker (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. Rucker (P/NP grading only.)

Graduate Course

299. Research (1-12) I, II, III. Rucker (SU grading only.)

Critical Theory
Georges Van Den Abbeele, Ph.D., Program Director
(916-752-1038)
Program Office, 516 Sprout Hall, (916-752-5464)

Committee in Charge
Marc E. Blanchard, Agrégé de Lettres (Comparative Literature, French)
M. Kay Fawell, Ph.D. (Critical Theory)
Ruth Frankenberg, Ph.D. (American Studies)
Smadar Lavie, Ph.D. (Anthropology, Comparative Theory)
Patricia Moran, Ph.D. (English)
Harriet Murav, Ph.D. (Russian, Comparative Literature)
Judith Newton, Ph.D. (Women's Studies)
Janelle Reinstein, Ph.D. (Dramatic Art, French)
Irit Rogoff, Ph.D. (Art, Critical Theory)
Juliana Sciasci, Ph.D. (Italian)
Seth L. Schein, Ph.D. (Comparative Literature)
John Stanfield, Ph.D. (African American and African Studies)
David Van Leer, Ph.D. (English)

Graduate Study. The program in Critical Theory offers study and research leading to the Ph.D. with a designated emphasis in Critical Theory. The program provides theoretical emphasis and interdisciplinary perspective to students already preparing for the Ph.D. in one of the twelve participating departments (Anthropology, Comparative Literature, Education, English, French and Italian, German and Russian, History, Music, Philosophy, Psychology, Sociology, and Spanish; other departments are in the process of joining). All requirements for the Ph.D., including the dissertation, in one of the participating departments. The additional requirements leading to the designated emphasis consist of two core courses (200A, 200B) offered by the program in Critical Theory, two additional graduate courses (one of which may be Critical Theory 201), and a special examination.

Graduate Adviser. Consult Critical Theory Program Office.

Courses in Critical Theory (CRI)

Graduate Courses

200A. Approaches to Critical Theory (4) I, III. The Staff (Director in charge)
Seminar—3 hours; term paper. Prerequisite: graduate standing in a participating program. The problem of interpretation in twentieth-century thought with a critical overview of various theoretical approaches (e.g., semiotics, hermeneutics, deconstruction, social and cultural critique, feminist theory, psychoanalysis).

200B. Problems in Critical Theory (4) I, II, III. The Staff (Director in charge)
Seminar—3 hours; term paper. Prerequisite: course 200A with a grade of B+ or better. Focused study of a particular theoretical approach, school or perspective. Topics will vary. May be repeated for credit with consent of instructor when topic differs.

200C. Historical Studies in Critical Theory (4) II. The Staff
Seminar—3 hours; term paper. Critical analysis and discussion of pre-twentieth century theories of literary and cultural criticism. Topics will vary. May be repeated for credit with consent of instructor when topic differs.

201. Critical Theory Special Topics (4) I, II, III. The Staff (Director in charge)
Seminar—3 hours; term paper. Prerequisite: course 200A. Application of theoretical principles to one specific research topic. May be repeated for credit with consent of instructor when topic differs.

298. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

Crop Science and Management

(College of Agricultural and Environmental Sciences)

Faculty. See under Departments of Agronomy and Range Science, Agricultural and Resource Economics, Plant Pathology, Pomology, Vegetable Crops and Viticulture and Enology.

Related Major Programs. The major relies on courses taught in conjunction with numerous other major programs, particularly Plant Biology, Agricultural Systems and Environment, and Agricultural and Resource Economics.

The Major Program

The Crop Science and Management major trains students in biological and natural sciences and economics as they apply to the production, protection, and maintenance of crop plants, and their quality following harvest.

The Program. Students majoring in crop science and management spend the first two years of study developing the scientific and general background necessary for upper division work. The science courses include biology, botany, physiology, and mathematics. Management courses include economics and accounting. General background is provided by courses in the social sciences/humanities (English, rhetoric, and the general education program) and by courses in areas supportive of crop science, such as entomology, weed science, water science, plant pathology, nematology and plant physiology. At the upper division level, students may specialize by electing courses pertinent to specific crop types (vegetables, fruits and nuts, small grains, or nursery crops).

Internships and Career Alternatives. This program prepares graduates for careers in farm management and other technical and management positions in agricultural business and associated enterprises, such as banking and equipment supply companies, as well as private, state and federal service in consulting and research. Graduates are also qualified to pursue graduate studies in animal science, plant biology, horticulture, agronomy, agroecology, pest management, economics or business management. Internships are available in local companies involved in farm production and in extension work with farm advisers.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses may be taken with the instructor’s approval. Course shown without parentheses are required)

English Composition Requirement.................7-8

See College Requirement.

Preparatory Subject Matter..........................62-64

Biological Sciences (Biological Sciences 1A, 1B, 1C)..................15

Chemistry (Chemistry 2A, 2B, 8A, 8B).................16

Calculus (Mathematics 16A, 16B)..................6

Physics (Physics 1A-1B, or 5A-5B)...............6-8

Computer science (Agricultural Systems and Environment 21).............3

Economics (Economics 1A, 1B).......................10

Statistics (Agricultural Systems and Environment 120, Statistics 13 or 103).........4

Field equipment operations (Applied Biological Technology 49)...............1

Breadth/General Education........................6-24

(See General Education Requirements and consult your adviser.)

Depth Subject Matter.............................61

Crop and Soil Science Component..............22

Plant Biology 111, 142, Soil Science 100, Hydrologic Science 110.........................14

In consultation with adviser select a minimum of 8 additional units from:

Past Management Component....................16

Entomology 110, 110L, Nematology 100, Plant Biology 120, Plant Pathology 120

Economics and Business Management Component..................23

Agricultural Economics 100A, 130, 140, Management 100.................................16

In consultation with adviser select a minimum of 7 additional units from:

Agricultural Economics 105B, 112, 120, 131, 145, 147M, 150 or 157..................7

Restricted Electives.................................12

In consultation with adviser select a minimum of 12 units from the Restricted Electives list below.

Unrestricted Electives...............................11-32

(Iternship and Spanish Recommended)

Total units for the Major..........................180

Restrictive Electives

Major Adviser. T. DeJong.

Advising Center for the major is located in 152 Hunt Hall (916-752-1715).

Related Courses. See under Departments of Agronomy and Range Science, Agricultural and Resource Economics, Pomology, Plant Pathology, Vegetable Crops, and Viticulture and Enology.

*Course not offered this academic year.
Design
(College of Agricultural and Environmental Sciences)
JoAnn Stabb, M.A., Chairperson, Design Program
Department Office, 142 Walker Hall (916-752-6223)
Faculty
Richard Berteaux, B.Arch., M.S., Associate Professor
Dolph Gotelli, M.A., Professor
Patricia Harrison, M.Arch., Associate Professor
Gyongy Laky, M.A., Professor
Helge B. Olsen, Senior Lecturer
Susan Palmer, M.A., Lecturer
Kathleen L. Plummer, M.F.A., Lecturer
Victoria Z. Rivers, M.A.C.T., S.C.T., Professor
Barbara Shawcroft, M.F.A., Professor
Kathryn Sylva, M.F.A., Assistant Professor
JoAnn C. Stabb, M.A., Senior Lecturer
Emeriti Faculty
Frances Butler, M.A., Professor Emerita
Katherine W. Rossbach, M.A., Professor Emerita
Affiliated Faculty
Emily DuBois, Visiting Assistant Professor
The Major Program
The design program offers a creative, challenging, and self-directed approach to the study of design. The philosophy of the program encourages self-direction and independent thinking, not only in design work but also in planning the overall undergraduate education.
The Program. Basic introductory design courses, Design and Visual Culture, Fantasy Design, and Drawing, Media, and Photographic Media studies, are required of all design majors. Beyond these, students take courses in their depth subject matter emphasizing their interests. Three basic areas of emphasis serve to focus undergraduate study: textile and costume design, interior architecture, and visual communication and presentation. These areas can also be combined into a comprehensive area of study through individualized study plans developed with a faculty adviser and are strongly complemented by classes in related design history. A more detailed explanation is available through the Design Advising Center, 152 Walker Hall.
Portfolio. Students will be required to keep a continuing portfolio of their creative work to be evaluated by faculty for the purposes of declaring the major, enrolling in overflow courses, and requesting individual inde- pendent study, internship, or other similar courses.
Internships and Career Alternatives. As part of their preparation, design students are encouraged to supplement their education with internships in design firms, museums, art galleries, textile galleries, and in interior designers' and architects' offices. Design graduates go directly from this program into further graduate study, clothing and interior design and architectural firms, exhibit and display work in galleries and museums, and theatrical and textile companies. In addition, students have become entrepreneurs through freelance and commissioned work in many related areas.
B.S. Major Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>General Education</th>
<th>Design and Visual Culture</th>
<th>Fantasy Design</th>
<th>Drawing Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>16 units</td>
<td>4 units</td>
<td>4 units</td>
<td>4 units</td>
</tr>
</tbody>
</table>

Breadth/General Education
Sixteen units in natural science and/or Science and Engineering and 16 units in social science and/or Social Sciences to include satisfaction of General Education requirement.

Depth Subject Matter
Design history, theory, and criticism (Design 140, 142A, 142B, 143, 144).............12

Restricted Electives
(Courses to be selected with approval of adviser.)

Additional Requirement
Development of a course of study, in consultation with an adviser, upon completion of 90 units or prior to transferring into the major.

Major Adviser. R. Berteaux.

Graduate Study. The graduate program in Textile Arts and Costume Design leading to the Master of Fine Arts degree offers students opportunities for independent, creative, interdisciplinary study combining design with anthropology, critical theory, consumer issues, art, engineering, the sciences and theater. Faculty work closely with students to build individual programs structured upon a student's special goals and interests in textile and costume design. Study in new technologies and experimental approaches are encouraged. Areas of emphasis include constructed textiles (off loom and woven), surface design, computer-integrated textile design, and functional, ethnographic, and aesthetic costumes. The Textile and Costume Study Collection, which houses over 8,500 artifacts, is a valuable resource in enriching studies emphasizing multi-cultural expression. For information about specific requirements, please contact the Advising Center at 916-752-1165.

Graduate Adviser. Please contact department at 916-752-6223.

Courses in Design (DES)
Questions pertaining to the following courses should be directed to the instructor or to the Advising Center for the major, 152 Walker Hall (916-752-1165).

Lower Division Courses
1. Design and Visual Culture (4) I. Hethorn
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; course 3 recommended. Creative, innovative interdisciplinary study combining design with anthropology, critical theory, consumer issues, art, engineering, and the sciences and theater. Faculty work closely with students to build individual programs structured upon a student's special goals and interests in textile and costume design. Study in new technologies and experimental approaches are encouraged. Areas of emphasis include constructed textiles (off loom and woven), surface design, computer-integrated textile design, and functional, ethnographic, and aesthetic costumes. The Textile and Costume Study Collection, which houses over 8,500 artifacts, is a valuable resource in enriching studies emphasizing multi-cultural expression. For information about specific requirements, please contact the Advising Center at 916-752-1165.

2. Fantasy Design (4) III. Gotelli
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Investigation of fantasy as found in the environment. All aspects of design are explored and fantasy is presented as a problem-solving device.

3. Drawing Studio (4) I. The Staff (Stabb in charge)
 Studio—8 hours. Prerequisite: course 1 must be taken concurrently; priority enrollment to Design majors. Drawing for the designer as an aid to perception and communication of ideas, objects, and plans. May be repeated once with a different instructor (course 1 should not be repeated).

4. Media Studio (4) II. Palmer and staff (Stabb in charge)
 Studio—8 hours. Prerequisite: courses 1 and 11 recommended; priority enrollment to Design majors. Tools, materials, and techniques used in the designer's studio.

5. Photographic Media Studio (4) III. Sylva in charge
 Studio—8 hours. Prerequisite: course 1; course 3 concurrently; priority enrollment to Design majors. Film and video tape for description, simulation, analytical research, and design development.
126C. Visual Presentation: Installation and Design (4) I. Gotelli
Studio—8 hours. Prerequisite: course 126A and 126B or consent of instructor. Advanced principles and practice of visual communication of ideas through non-verbal presentations. The study of three-dimen- sional objects in a spatial context with an emphasis on communication of visual and aesthetic qualities.
*131. Layered Textiles and Costumes (4) Rivers
Studio—8 hours; field trip required. Prerequisite: courses 11, 12, 23, and 24 recommended. Explo- ration of surface embellishments and structural tech- niques derived from historic and contemporary world cultures. Emphasis on unique qualities of hand made textiles/costumes and individual expression. Topics include: mokume gane, piecing and quilting, beadwork, embroidery, and dimensional surfaces. Offered in alternate years.
132A. Loom-Constructed Textile Design (4) I. DuBois
Studio—8 hours. Prerequisite: course 23 or 24. Founda- tion course in handwoven textile structure and design, emphasizing yarn identification, basic drafting, basic weaves and their derivatives explored in context of original color effects and yarn combinations.
132B. Loom-Constructed Textile Design (4) II. DuBois
Studio—8 hours. Prerequisite: course 132A. Interme- diate level study of complex fabric structure with emphasis on pattern in relation to surface, dimension, and material.
132C. Computer-Aided Textile Design (4) III. DuBois
Studio—8 hours. Prerequisite: course 132B. Micro- computer applications to the structure, design, and weaving of fabrics, emphasizing advanced composi- tion, drafting, and plotting of multi-dimensional, orig- inal weave structures.
133A-133B. Visual Metaphor (4-4) II-III. Sylvia
Studio—8 hours. Prerequisite: courses 13, 22, 25. Study and practice of image generation and produc- tion with emphasis on clarity of visual expression, the perception and use of color, and visual composition in the three-dimensional context.
134A. Introduction to Interior Architecture (4) I. Olsen
Studio—8 hours; required field trips. Prerequisite: courses 11, 12, 21 and upper division standing. The design process through simple space planning prob- lems focuses on residential and small commercial spaces.
134B. Introduction to Interior Architecture (4) II. Berteaux
Studio—8 hours; required field trips. Prerequisite: course 134A. Problems in interior architecture empha- sizing the conscious design concepts and issues. Includes thermal comfort, issues in sus- tainable design, reduction of waste, “green materi- als,” and resource recycling.
134C. Introduction to Interior Architecture (4) III. Harrison
Studio—8 hours; required field trips. Prerequisite: course 134B. Focus on technical environments such as laboratories, medical facilities, child care facilities, school facilities, computer installations. Includes instruction in model making and presentations in the form of models or photographic presentations derived from computer modeling.
135A. Furniture Design (4) II. Olsen
Studio—8 hours; required field trip. Prerequisite: course 21; course 134A recommended. Development of designs for contemporary furniture. Consideration of behavioral and physical requirements, cultural and structural and aesthetic qual- ities. Process includes research, drawings, and con- struction of scale models.
135B. Furniture Design (4) III. Olsen in charge.
Studio—8 hours; required field trip. Prerequisite: course 135A or consent of instructor. Design and con- struction of full size prototype furniture based on pre- liminary work completed in course 135A. Material technology, construction methods, and finishes discussed. Process includes development of shop drawings and furniture construction.
136. Recording Historic Structures (4) III. Berteaux
Studio—8 hours; field trip required. Prerequisite: courses 11, 12, and 21 or the equivalent. A studio course of individual and group projects that intro- duces students to historic preservation. A major component of the course is on-site study of a historic building and the production of measured drawings.
138. Materials and Specifications for Interior Architecture (2) II. Harrison
Lecture—2 hours; field trips required. Prerequisite: course 21, course 134A recommended. Introduction to construction and finish materials used in interior architecture. Supplementary course for studio courses 134A, 134B, 134C, 190A, 190B, 190C.
140. History of Design (4) II. The Staff (Stabb in charge)
Lecture—4 hours. Prerequisite: Art History 1A or the equivalent. Historical survey of the changing relationship of society to its practices and techniques of mak- ing and using tools and objects; technological changes, development of design terminology, con- sumer goods, hand workmanship, and industrial design. GE credit: ArtHum. Wtr.
142A. World Textiles: Far East and Pacific (4) I. Rivers
Lecture—4 hours; field trip required. Prerequisite: courses 132A, 132B, 132C, 190B. Exploration of the specific traditions of clothing in the whole world. GE credit: ArtHum. Wtr.
142B. World Textiles: Middle East, Europe and the Americas (4) III. DuBois
Lecture—4 hours; two field trips. Prerequisite: course 132A; 132B, 132C, 190B; 160A-160B-160C or 170A- 170B-170C (concurrently). Study of concepts and methods significant in the historical, social, esthetic and stylistic development of the textile arts. GE credit: ArtHum. Wtr.
143. History of Costume Design (4) II. (The Staff (Stabb in charge))
Lecture—4 hours; field trip required. Prerequisite: Art History 1A or equivalent. Background in art or design history recommended. History of costume design from the earliest times to the present with emphasis on both aesthetic and functional aspects. GE credit: ArtHum. Wtr.
144. History of Interior Design (4) III. Plummer
Lecture—4 hours. Prerequisite: course 140 and Art 1C or the equivalent. History of interior design in Europe and North and South America from ancient to mod- ern times. Emphasis on the dwelling in its cultural set- ting and the development of the theory of modern interior design. GE credit: ArtHum. Wtr.
150. Computer-Assisted Drawing for Designers (4) I, II, III. The Staff
Studio—8 hours. Prerequisite: courses 21, 121. Com- puter-assisted drafting for interior architecture and design.
160A. Textile Design: Patterning and Resist (4) II. Rivers
Studio—8 hours; required field trip. Prerequisite: courses 11, 12, or the equivalent. Open to senior majors in Design and Textiles and Clothing. Exploration of the design, dyeing and patterning of hand- printed textiles; emphasis on the unique qualities of the individual producer. Techniques include tie-dye, direct dyeing (with fiber-reactive dyes and indigo) and batik resist.
160B. Textile Design: Screen Printing and Advanced Technique (4) III. Rivers
Studio—8 hours; required field trip. Prerequisite: course 11, 12, 160A. Open to seniors in Design and Textiles and Clothing. Exploration of the design, dye- ing and patterning of hand-printed textiles; emphasis on the unique qualities of the individual producer. Techniques include silk screen printing, photo- silkscreen, and advanced dyeing processes.

*Course not offered this academic year.
197. Tutoring in Design (1) I, II, III. The Staff (Stabb in charge)
Discussion—3-5 hours. Prerequisite: upper division standing and consent of instructor. Leading of small discussion groups or studio meetings affiliated with one of the department's regular courses. (P/N grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Stabb in charge)
Prerequisite: upper division standing and consent of instructor. (P/N grading only.)

199. Special Study of Advanced Undergraduates (1-5) I, II, III. The Staff (Stabb in charge)
(P/N grading only)

Graduate Courses
221. Experimental Approaches to Textile and Costume Design Media and Methods (4) I
The Staff
Lecture—4 hours; discussion—1 hour. term paper required. Prerequisite: graduate standing in Textile Arts and Costume Design or consent of instructor. Covers perspectives on theoretical and aesthetic issues such as design in historical, contemporary and ethnographic fiber/fabric media. Students apply theories to their creative explorations for presentation and discussion.

222. Seminar in Costume and Textile Design Criticism (4) II, III. The Staff
Seminar—2 hour; discussion—1 hour; variable—1 hour. Prerequisite: course 221, graduate standing in Textile Arts/Costume Design or consent of instructor. An open forum which addresses criticism and communication in relation to creative work in textile arts and costume design through seminar, readings, field trips and discussion.

224. Seminar in Textile and Costume Design Research (4) II, III. The Staff
Lecture—4 hours; discussion—1 hour. Prerequisite: course 222; to be taken concurrently with course 142A (fall), 142B (spring) or 143 (winter) with separate discussion section; graduate standing in Textile Arts/Costume Design or consent of instructor. Required of first-year students. Students utilize existing historical and ethnographic materials as a point of departure for creative work through research and examination of textile/costume specimens with oral and written presentation of findings. May be repeated for credit.

290. Seminar in Design (4) I, II, III. The Staff
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Selected topics in design methodology, research, communication, and education. May be repeated for credit.

292. Practicum in Textile Arts/Costume Design (1-12) I, II, III. The Staff
Prerequisite: graduate standing in Textile Arts/Costume Design or consent of instructor. Interaction with a working professional in the student's field of interest to apply theories and concepts to working practice. (SU grading only)

298. Directed Group Study for Graduate Students (1-5) I, II, III. The Staff (Rivers in charge)
Studio—variable hours. Prerequisite: consent of instructor. (SU grading only.)

299. Individual Focused Study (1-12) I, II, III. The Staff
Individual study. Prerequisite: graduate standing in Textile Arts/Costume Design or consent of instructor. Advanced study in studio practice or independent projects with faculty consultation. May be repeated for credit.

299D. Project Concentration (1-12) I, II, III. The Staff
Prerequisite: graduate standing in Textile Arts/Costume Design or consent of instructor. A minimum of 22 units must be taken in Project Concentration and Individual Focused Study. Student creates a body of original work at a professional level, with written and visual documentation of process and concepts underlying the project, culminating in public presentation. May be repeated for credit. (SU grading only)

Dietetics
(College of Agricultural and Environmental Sciences)

The Major Program
The dietetics major provides students with training in normal and therapeutic nutrition, biological and social sciences, food science, computer science, communication, and management. This major fulfills the academic requirements for admission into a dietetics internship or the equivalent which must be completed before qualifying for registration (Exhibit 1 or 3). 4

The Program. The dietetics major takes the basic core of nutrition classes as nutrition science majors, but in dietetics there is less emphasis on laboratory aspects of the science courses. Instead, dietetics majors take additional courses such as education, sociology, communication skills, and food service management to prepare for work with the public.

Dietetic students spend the first two years completing preparatory coursework in the basic biological sciences, along with several of the social sciences. In the final two years, students take courses in normal and clinical nutrition, food science, biochemistry, and management.

Career Alternatives. The dietetics major qualifies students to apply for the American Dietetics Association "accredited internship," enabling them to become a Registered Dietitian, the professional credential necessary to work in a clinical setting. Once dietitians are registered, they generally seek employment in administrative, therapeutic, teaching, research, or public health/public service positions in clinics, hospitals, schools, or other similar institutions. There is a growing role for dietitians working in settings outside of the traditional hospital (for example, in state and federal nutrition programs, nutrition education, Peace Corps and Cooperative Extension work). Students who complete the undergraduate preparation in dietetics are also qualified to enter graduate programs in dietetics, nutrition science, public health nutrition, and food service management.

B.S. Major Requirements:
For convenience in program planning, the usual four-year plan is shown, but the requirements are shown in parentheses. Equal or more comprehensive courses are acceptable. Courses shown without parentheses are required.

Written/oral communication: 6
Written expression (Rhetoric and Communication 1) 4
Oral expression (Rhetoric and Communication 1) 4

Preparatory Subject Matter: 56-58

Biological sciences (Biological Sciences 1A, 1B) 10
Chemistry (Chemistry 2A, 2B, 8A, 8B) 16
Computer science (Agricultural Systems and Environment 21 or Computer Science Engineering 10 or 15) 3-4
Economic principles (Economics 1A or 1B) 5
Microbiology (Biology 102, 102L or Food Science and Technology 104, 140L) 6
Psychology (Psychology 1) 4
Social science theory (Sociology 1 or 3 or Anthropology 2) 4-5
Statistics (Statistics 13) 4

Satisfaction of General Education requirements: 6-24

Unrestricted Electives: 20-48

Total Units for the Major: 180

Major Advisor: A.J. Clifford (Nutrition).
Advising Center for the major is located in 1202E Meyer Hall (916-752-2512).

Graduate Study. See the Graduate Studies section in this catalog.
Courses in Dramatic Art (DRA)

Lower Division Courses

1. Theatre, Performance, and Culture (4) I, II
 The Staff
 Lecture/discussion—4 hours. Introductory investiga-
 tion of the nature of all performance, moving from per-
 formance theory to consideration of various manifesta-
 tions of performance including theatre, film and
 media, dance, sports, political rallies and demon-
 strations, religious celebrations, civic pageants and
 “occasions”. Investigation of the border between ritual
 and performance. GE credit: ArtHum, Div.Wrt.

 10. Introduction to Acting (3) I, II, III. The Staff
 Laboratory/discussion—4 hours; term paper. Funda-
 mentals of movement, speech, theatre games, and
 improvisation. Selected reading and viewing of the-
 atre productions. Intended for students not specializing
 in Dramatic Art.

 14. Introduction to Contemporary Dance (2) I,
 II, III. Bolden
 Laboratory/discussion—4 hours. Introduction to basic
 movement skills used in contemporary dance. Focus
 on holistically preparing the body for dance. Basic
 techniques and terminology used in ballet, modern
 or jazz dance and short combinations emphasizing
 use of space, quality, and rhythm.

 20. Introduction to Dramatic Art (4) I, III.
 The Staff
 Lecture—3 hours; discussion—1 hour. Understanding
 and appreciation of both the distinctive and collabo-
 rative contributions of playwright, actor, director, and
 designer to the total work of dramatic art. Study of
 plays from the major periods of dramatic art in their
 cultural contexts. GE credit: ArtHum.

 21A. Fundamentals of Acting (4) II. Sellers-
 Young
 Lecture—2 hours; laboratory—4 hours. Prerequisite:
 course 21B. Focus on the actor’s understanding of
 character and practice of acting with emphasis on char-
 acter analysis, interpretation, and development. Act-
 ing in a student-directed project. Viewing of theatre
 productions. Limited to those planning to major in
 Dramatic Art.

 21B. Fundamentals of Acting (4) III. Sellers-
 Young
 Lecture—2 hours; laboratory—4 hours. Prerequisite:
 course 21A and consent of instructor. Theory and
 practice of acting with emphasis on character analy-
 sis, interpretation, and development. Acting in a stu-
 dent-directed project. Viewing of theatre productions.
 Limited to those planning to major in Dramatic Art.

 The Staff
 Lecture—3 hours; laboratory—2 hours. Understand-
 ing and appreciation of the visual aspects of dramatic
 art: theatre architecture, scenery, lighting, costume,
 and makeup.

 25. Technical Aspects of Dramatic Production
 (3) II. Hunt
 Lecture—3 hours. Technical principles of dramatic
 production emphasizing the three areas of scenic,
 costume and lighting studios. Subjects covered
 include basic tools, materials and equipment, pro-
 duction practices, and the inter-disciplinary and col-
 laborative nature of dramatic production.

 26. Performing Arts Production Management
 (3) II. Winn
 Lecture—3 hours. Theoretical study of performing
 arts administration and backstage operations from
 audition through performance. Techniques of sched-
 uling, production management, stage management,
 technical direction, audience control, box office, pro-
 motion, safety and accessibility concerns with dis-
 abilities and emergency procedures.

 30. Theatre Laboratory (1-5) I, II, III. The Staff
 Prerequisite: course 25 or consent of instructor. Pro-
 jects in acting, production, scene design, costuming,
 lighting, directing, and playwriting. Participation in
 departmental productions. May be repeated for credit
 up to a total of 8 units.

*Course not offered this academic year.
124A. Principles of Theatrical Design: Scenery (4) I, II. Hunt Lecture—seminar—4 hours. Prerequisite: course 24 or consent of instructor. Scene design processes, working drawings, sketching techniques, scale models, methods and materials of scenery construction.

124B. Principles of Theatrical Design: Scenery (4) III. Hunt Lecture—seminar—4 hours. Prerequisite: course 24 or consent of instructor. Analysis of plays in terms of scene design, elements of design, execution of design for modern and period plays.

124C. Principles of Theatrical Design: Lighting (4) III. Wnn Lecture—seminar—4 hours. Prerequisite: course 24 or consent of instructor. Theories of lighting the stage, equipment and control systems, execution of lighting plots.

124D. Principles of Theatrical Design: Costume (4) II. Kress Lecture—seminar—4 hours. Prerequisite: course 24 or consent of instructor. Source materials for theatrical costuming, selecting fabrics, elements of design, analysis of plays in terms of costume design, execution of designs for modern and period plays.

125. Scenic Painting (4) II. Hunt Lecture—2 hours; studio—3 hours; laboratory—3 hours. Prerequisite: upper division standing in Dramatic Art, Art Studio, or Design, or one of the following: Drama 4A, 24, or consent of instructor. Scenario painting techniques, practices and materials. Course satisfies production requirement in studio category. May be repeated once with consent of instructor. Offered in alternate years.

127A. Principles of Directing (4) I. The Staff Lecture—2 hours; laboratory—4 hours. Prerequisite: courses 21A, 26, 256A, 256B, 256C or consent of instructor. The director's creative approach to the play and to its staging.

127B. Principles of Directing (4) II. The Staff Lecture—2 hours; laboratory—4 hours; rehearsal. Prerequisite: course 127A and consent of instructor for non-majors. The director's creative approach to the actor.

130. Approaches to Theatrical Design: Practice and Theory (4) II. Hunt Seminar—2 hours; studio—4 hours. Prerequisite: upper division standing in Dramatic Art, Art Studio or Design. Advanced scenic design study in specific areas including but not limited to: research, design styles and concepts, new materials and techniques, photography, projections, computer technology, spectacle and special effects, and alternative theatre forms and genres. Course satisfies Dramatic Art production requirement in Design. Offered in alternate years.

140A. Dance Composition I (3) II. Bolden Lecture/laboratory—5 hours. Prerequisite: course 40A, 41A, or consent of instructor. Introduction to the craft of choreography. Students will compose phrasing and present movement studies based on the elements of choreography: motivation, space, time, force/energy.

140B. Dance Composition II (3) III. Bolden Lecture/laboratory—5 hours. Prerequisite: course 140A. Continuation of study of choreography, focusing on the development of group choreography: duets, trios, quartets and group work, form, and accompanied movement.

143. Dance and Movement Studio (1-4) I, II, III. Bolden Laboratory/discussion—2-8 hours. Prerequisite: course 14 or consent of instructor. Special studies in dance forms such as African, Balinese, Baroque, Chinese, European, and stage combat. Offered as needed for stage productions. May be repeated for credit for a total of 8 units.

150. American Theatre and Drama (4) II. The Staff Lecture—4 hours. The history of the theatre from Colonial times to the present. Readings of selected plays. Offered in alternate years. GE credit: ArtHum, Dw, Wrt.

153. The American Musical (4) III. The Staff Lecture—4 hours. History and development of the American Musical as a unique theatrical form. Offered in alternate years.

154. Asian Theatre and Drama: Contexts and Forms (4) II. Sellers-Young Lecture/discussion—4 hours. Prerequisite: upper division standing in Dramatic Art. An analysis of performance forms in their cultural and artistic contexts; myth, ritual and the theatre; performance training, visual presentation of the text; political theatre; intercultural performance—the fusion of Asian and Western traditions. Offered in alternate years. GE credit: ArtHum, Dw, Wrt.

155. Representing Race in Performance (4) III. The Staff Lecture—4 hours. Examination of how race is represented and presented in American culture. It will feature different subheadings such as "African American Theatre" or "Asian-Americans on Stage." May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum, Dw, Wrt.

155A. African-American Dance and Culture in the United States, Brazil and the Caribbean (4) II. Bolden Lecture/discussion—4 hours. A comparative study of the African American dance forms in the U.S.A., Brazil, Haiti, Cuba, Jamaica, Barbados, and Trinidad. Examination of ritual, folk, and popular dance forms and the sociocultural factors that have influenced these forms. (Same course as African American and African Studies 155A.) Offered in alternate years.

156A. History of Theatre and Dance: Ancient to 1650 (4) I. The Staff Lecture—4 hours. A survey of theatre and dance as it has come to be recognized in ancient societies through to 1650. Performance traditions studied include Greek, Indian, Aztec, Roman, Japanese (Noh), through the Renaissance. GE credit: ArtHum, Dw, Wrt.

156B. History of Theatre and Dance: 1650-1900 (4) II. The Staff Lecture—4 hours. Overview of theatre and dance between 1650 and 1900. Dance and theatre are related to the specific social and political organizations of court society in 17th and 18th century France, Germany and England, and to Japanese society. GE credit: ArtHum, Dw, Wrt.

156C. History of Theatre and Dance: The Twentieth Century (4) III. The Staff Lecture—4 hours. Overview of theatre and dance in the twentieth century. Although largely focused on Western theatrical practices, the relationship between East and West performance practices will be studied and contemporary Japanese theatre will be included. GE credit: ArtHum, Dw, Wrt.

159. Contemporary Experimental Theatre and Drama (4) I. The Staff Lecture—4 hours. Examination and evaluation of the "New Theatre." Course includes attending theatre events.

160A-160B. Principles of Playwriting (4-4) I-II. The Staff Lecture/seminar—4 hours. Prerequisite: two courses in Dramatic Art or related courses in other departments; course 160A prerequisite for 160B or consent of instructor. Analysis of dramatic structure; preparation of scenarios; the composition of plays. GE credit: ArtHum, Dw, Wrt.

170. Media Theatre (3) III. Hunt Lecture—1 hour; rehearsal—2 hours; performance—1 hour. Prerequisite: upper division standing in Dramatic Art, Music, Art Studio, Design, Computer Science, or Engineering; Computer Science, or consent of instructor. New media and application of theatre design and performance. Emphasis on collaboration process in relationship to integration of emerging technologies and formation of new theatrical works. Development of concept and performance through lecture, demonstration, improvisation and experimentation. May be repeated once for credit.

180. Theatre Laboratory (1-5) I, II, III. The Staff Prerequisite: upper division standing and course 25, or consent of instructor. Projects in acting, production, scene design, costuming, lighting, directing, and playwriting. Participation in departmental productions. May be repeated for credit.

192. Internship in Dramatic Art (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: upper division or graduate work in dramatic art; upper division course related to the project; consent of instructor and Department Chairperson. Internship outside the academic department enabling students to practice their skills. May be repeated for credit for a total of 12 units. (P/NP grading only.)

194A-194HB. Special Study for Honors Students (3-3) I, II, III. The Staff Independent study—9 hours. Prerequisite: qualification for Letters and Science Honors Program and admission to Dramatic Art Senior Honors Program. Presentation and performance of a culminating project under the supervision of an instructor, in one of the creative or scholarly areas of Dramatic Art. (Deferred grading only, pending completion of sequence.)

197T. Tutoring in Dramatic Art (1-5) I, II, III. The Staff (Chairperson in charge) Tutoring—1-5 hours. Prerequisite: upper division or graduate standing with major in dramatic art; consent of department chairperson. Leading of small voluntary groups affiliated with one of the department's regular courses. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Methods and Materials in Theatre Research (4) I. The Staff Seminar—3 hours; term paper. Essential research tools in theatre and related fields; bibliographies, primary sources; methods of evaluating and presenting evidence; delineating research areas in the field.

211. Advanced Voice and Speech (2) I, II, III. The Staff Laboratory—4 hours. Open to advanced undergraduates with consent of instructor. Voice production and speech related to specific acting problems in classical plays, particularly in verse. May be repeated for credit.

212. Advanced Stage Movement (2) I, II, III. Sellers-Young Laboratory—4 hours. Prerequisite: open to advanced undergraduates with consent of instructor. Rhythmic movement patterns relating to acting problems in classic and modern plays. May be repeated for credit.

221. Special Problems in Advanced Acting (4) I, II, III. Granada Artist, The Staff Seminar—2 hours; laboratory—4 hours. Prerequisite: consent of instructor. Advanced acting problems arising from differences in the type and style of plays selected from Greece to the present. May be repeated for credit.

224A. Visual Problems in Theatre and Performance (4) III. Hunt Seminar—3 hours; term project. Special problems in visual and auditory aspects of theatrical production culminating in a single performance project. Open to Dramatic Art, Art History, Art Studio, and Design majors. May be repeated for credit.

224C. Advanced Principles and Theories of Theatrical Design (4) II. Hunt Seminar—3 hours; term paper. Selected problems in the design of stage scenery and costumes; practice in design. May be repeated for credit.

224D. Advanced Principles and Theories of Theatrical Design (4) III. The Staff Seminar—3 hours; term paper. Design of a production for three different types of theatres: open stage, arena, and proscenium. May be repeated for credit.
East Asian Studies

*224D. Advanced Principles and Theories of Theatrical Costume Design (4) III. Kress Seminar—3 hours; research and design projects—30 hours. Prerequisite: course 124D or consent of instructor. Costume design projects emphasizing research, principles, and theories; the planning and presentation of costume renderings, detail and action sketches, and scale drawings of patterns. Projects from classic theatre, musical comedy, ballet, and opera. Offered in alternate years.

*224E. Advanced Principles and Theories of Theatrical Lighting Design (4) II. Winn Seminar—3 hours; laboratory—2 hours. Prerequisite: course 124C, a scenic design course, and consent of instructor. Design concepts, script/score analysis, color, composition and style. Projects presented in studio atmosphere. Also included: renderings, written analyses, and drafted plots. Offered in alternate years.

*227. Seminar in Directing Theory: Realism (4) III. Granada Artist Seminar—3 hours; term project. Modern directing theory as it applies to theatrical realism; development of directorial concepts for productions of selected realistic plays; emphasis on textual analysis. Offered in alternate years.

*228. Seminar in Directing Theory: Non-Realism (4) III. Granada Artist Seminar—3 hours; term paper. Modern directing theory as it applies to non-realistic theatre; development of directorial concepts for production of selected non-realistic plays—Greek to the present; emphasis on textual analysis. Offered in alternate years.

*229. Special Problems in Directing (5) I, II, III. The Staff and Granada Artist Seminar—2 hours; laboratory—2 hours; rehearsal—4 hours. Prerequisite: consent of instructor. Projects in directing scenes selected from plays from ancient Greece to the present. May be repeated for credit.

*230A-230B. Classic and Medieval Theatre (4-4) II-III. The Staff Seminar—3 hours; term paper. The theatre of Greece, Rome, and Middle Ages; emphasis on relationship of dramas of the period to physical circumstances of production. Course 230A (may be taken separately) includes readings and discussion; 230B emphasizes research culminating in a substantial scholarly paper.

*235A-235B. Renaissance and Baroque Theatre (4-4) II-III. The Staff Seminar—3 hours; term paper. The theatre of Italy, Spain, England, and France, 1500-1660; emphasis on relationship of dramas of the period to physical circumstances of production. Course 235A (may be taken separately) includes readings and discussion; 235B emphasizes research culminating in a scholarly paper.

*240A-240B. Neoclassic and Romantic Theatre (4-4) II-III. The Staff Seminar—3 hours; term paper. The theatre of France, England, Germany, Italy, and America, 1660-1860; emphasis on relationship of dramas of the period to physical circumstances of production. Course 240A (may be taken separately) includes readings and discussion; 240B emphasizes research culminating in a scholarly paper.

250. Modern Theatre (4) II. The Staff Seminar—3 hours; term paper. The theatre of Europe and America, 1860-1940; with emphasis on the relationship of the dramas of the period to the physical circumstances under which they were produced. Offered in alternate years.

259. Topics in Contemporary Theatre and Performance (4) I, II, III. Reinelt, Cohn and staff Special topics designed to study in depth aspects of contemporary performance including performance analysis, cultural and historical context, modes of production, theoretical and political entailments, and issues of spectatorship. May be repeated five times for credit.

*265. Theory of Dramatic Art (4) II. The Staff Seminar—3 hours; term paper. Theory and aesthetic principles of dramatic art as a fine art. Offered in alternate years.

280. Theatre Laboratory (1-12) I, II, III. The Staff Advanced practice in acting, designing, directing, playwriting, and technical theatre. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor.

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

299D. Dissertation Research (1-12) I, II, III. The Staff (Chairperson in charge) (SU grading only.)

Professional Course

413. Stage Make-up (1) II. R. Rogers Lecture/laboratory—2 hours. Prerequisite: consent of instructor. Approved for graduate degree credit. Lectures, demonstrations, and practical work in aspects of theatrical make-up.

Earth Sciences and Resources

See Hydrologic Science; Hydrologic Science (A Graduate Group); and Environmental and Resource Sciences

East Asian Studies

(College of Letters and Science)

Michelle Yeh, Ph.D., Program Director
Program Office, Interdepartmental Programs (916-752-1219)

Faculty

Beverly Bossier, Ph.D., Assistant Professor (History) Robert Borgen, Ph.D. Professor (Chinese and Japanese) Cheng-Chang Chang, Ph.D. Associate Professor (Chinese and Japanese) Susan Gruiswold, Ph.D., Assistant Professor (Chinese and Japanese) Whalen W. Lai, Ph.D. Professor (Religious Studies) Susan Mann, Ph.D. Professor (History) Don C. Price, Ph.D., Professor (History) G. William Skinner, Ph.D. Professor (Anthropology) Janet S. Smith, Ph.D., Professor (Anthropology) Michelle Yeh, Ph.D., Professor (Chinese and Japanese)

Emeriti Faculty

Mary H. Fong, PhD., Professor Emerita Donald Gibbs, Ph.D., Associate Professor Emeritus Joyce K. Kalgren, Ph.D., Professor Emeritus Kwang-Ching Liu, Ph.D., Professor Emeritus Benjamin Wallacker, Ph.D., Professor Emeritus

The Major Program

The East Asian studies major gives the student an understanding of East Asia (especially China and Japan) through interdisciplinary studies that combine sustained work in an East Asian language with courses on East Asian countries.

The Program. The program offers core courses in East Asian history, political sciences, and languages. After taking the core courses in conjunction with two years or more of either Chinese or Japanese language study, the student chooses additional courses focusing on a special field of interest, such as anthropology or history. Since six quarters of language work are required, students normally should apply to the East Asian studies program no later than their sophomore year.

Career Alternatives. The program provides preparation either for a career that involves working with East Asian affairs and people (business, government service, teaching, and counseling), or as preparation for graduate studies in the East Asian field.

A.B. Major Requirements:

UNITS

Preparatory Subject Matter:..........................41-42

History 9A, 9B ...8

One course from Art History 10D, Chinese 10, 11, Comparative Literature 53A, Japanese 10, 25, Religious Studies 70, 754-4

Two years (or the equivalent) of Chinese or Japanese language study (Chinese 1-2-3-4-5-6)..............30

Depth Subject Matter................................36

Must include at least 8 units of core courses from each of the following categories: history, social science, and humanities. Core courses in each category are listed below.

History:

Social Science:

- Anthropology 148A, 148B, 149A, 149B
- Economics 171

Humanities:

- Art History 163A, 163B, 163C, 164; Chinese 104, 106, 107, 109, 131, 132; Japanese 101, 102, 103, Religious Studies 172

At least 12 additional units must be selected from the above courses, or from the following:

- Anthropology 110, 112, 117, 119, 120, 122, 123, 124, 128; Chinese (any upper division course); Economics 115A, 115B, 116, 116A, 160B, 162; Geography 143; History 102G, 102H, 102N; Japanese (any upper division course); Linguistics 100; Political Science 127, 133, 138, 145, 148C; Sociology 118, 141, 170, 183.

Total Units for the Major..................................77-78

Recommended

Students are strongly urged to take a substantial number of courses in Euro-American civilization as a basis for comparison for a deeper understanding of America’s relations with East Asia.

Minor Program Requirements:

Courses taken for the minor are expected to reflect a predominant interest in either China or Japan, but also to provide some exposure to the other of the two countries. All courses counting towards the East Asian Studies major, including individual and group study courses (136, 198), may be used to fulfill the requirements for the minor program, as long as they deal predominantly with China, Japan, or both.

UNITS

East Asian Studies:.................................22

History 9B and 19 upper division units, of which at least 12 must be in courses focusing on China; OR History 9A and 18 upper division units, of which at least 12 must be in courses focusing on Japan ...

Major Advisers. Consult Program Director.

Courses in East Asian Studies. The following courses count toward the major and are open to students throughout the campus. Refer to departmental listings for course descriptions.
Anthropology
148A. Traditional Chinese Society
148B. Family, Gender, and Population in Contemporary China
149A. Traditional Japanese Society
149B. Contemporary Japanese Society

Art History
1D. Asian Art
163A. Chinese Art
163B. Chinese Painting
163C. Painting in the People’s Republic of China
164. The Arts of Japan

Chinese
All courses.

Comparative Literature
53A. Literature of China and Japan
153. Forms of Asian Literature

Economics
171. Economy of East Asia

Geography
*127. Contemporary East Asia

History
9A. History of East Asia (Civilization) (4)
9B. History of East Asia (Civilization) (4)
102C. Undergraduate Seminar: China to 1800 (3)
102H. Undergraduate Seminar: China since 1800 (3)
102N. Undergraduate Seminar: Japan (3)
101A. Classical China (4)
101B. High Imperial China (4)
101C. Late Imperial China (4)
101D. Nineteenth-Century China (3)
101E. The Chinese Revolution (4)
101F. History of the People’s Republic of China, 1949 to the Present (4)
101A. Aristocratic and Feudal Japan (4)
104B. Early Modern Japan (4)
104C. Modern Japan (4)
104D. Business and Labor in Modern Japan (4)
104E. Education and Technology in Modern Japan (4)

Japanese
All courses.

Linguistics
*100. Languages of Eastern Asia

Political Science
133. The American Role in East Asia (1)
138. International Relations: East Asia (1)
148A. Government and Politics in East Asia: China (4)
148B. Government and Politics in East Asia: Pacific Rim
148C. Government and Politics in East Asia: Southeast Asia

Religious Studies
70. Introduction to Buddhism (2)
72. Chinese Philosophy: An Introduction
172. Ch’an (Zen) Buddhism

Sociology
*147. Sociological Perspectives on East Asia

Courses in East Asian Studies (EAS)

Upper Division Courses
*113. Cinema and Society in China (4) III. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: one course from History 190C, 193, or consent of instructor. Knowledge of Chinese not required. Viewing and analysis of one Chinese film with English subtitles each week, followed by discussion and short essays. Cinematic technique, social values and film topics from 1930s to today. Not open for credit to students who have completed Chinese 113. GE credit: ArtHum, Div, Wrt.

192. East Asian Studies Internship (1-12) I, II, III. The Staff
Internship—3-36 hours; term paper. Prerequisite: upper division standing and consent of instructor. Work experience in the East Asian Studies field, with analytical term paper on a topic approved by the instructor. (P/NP grading only.)

194H. Special Study for Honors Students (1-5) I, II, III. The Staff (Chairperson in charge)
Independent study—1-5 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in East Asian Studies culture, society, or language. (P/NP grading only.)

196A-196B. Honors Seminar (4-4) I-II. The Staff
Seminar—2 hours; conference—2 hours. Prerequisite: a GPA of 3.5 in the major, senior standing, and consent of instructor. A two-quarter research project culminating in an Honors thesis. A grade of B or higher must be earned to qualify the student for honors distinction at graduation. Deferred grading only, pending completion of sequence.

198. Directed Group Study (1-5) I, II, III
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Ecology (A Graduate Group)

Ph.D., Chairperson of the Group
Group Office, 3122 Wickson Hall (916-752-6752)
Faculty, The Group includes faculty from 26 departments in five schools and colleges, and the Bodega Marine Laboratory.

Graduate Study. The Graduate Group in Ecology offers the M.S. and Ph.D. degrees in several areas of specialization within the spectrum of ecology.

The Ecology program is one of the most diverse on the Davis campus. In order to accommodate varied student interests, the Group depends on close consultation between students and faculty for program development. Several curricular plans are now available in specific areas of emphasis. For details, contact the group office.

Preparation. Appropriate preparation is undergraduate work in any of the biological, social, or behavioral, and physical sciences, mathematics or engineering. Applicants will normally be expected to have completed two courses each in introductory biology, general chemistry, and physics; one course each in calculus, ecology, statistics, and evolution are also required. Applicants in human ecology areas may substitute quantitative social science courses for up to two courses of chemistry or physics. Each of the three broad areas requires certain advanced preparation appropriate to the option. Details may be found in the Group Announcement.

Graduate Advisers. T.C. Foin.

Courses in Ecology (ECL)

Graduate Courses
200A. Principles and Application of Ecological Theory (4) I. Foit
Lecture—3 hours; discussion—1 hour. Prerequisite: first course in ecology; Statistics 102; Mathematics 16A, 16B. Critical evaluation of ecological theory and applications to ecological management. Historical development of ecological theory is emphasized. Critical evaluation of ecological principles pertaining to the structure and dynamic properties of ecological systems, their organization and evolution.

200B. Principles and Application of Ecological Theory (Offered II.) Foit
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A. Continuation of course 200A. Critical evaluation of theory and application in the areas of ecological adaptation and system plasticity, spatial and temporal scales, ecological energetics, and system dynamics. Synthesis of ecological theory into testable principles.

201. Ecosystems and Landscape Ecology (4) III. Ustün
Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A and 200B. Overview of ecosystem and landscape principles (structure, energy, nutrient flow, species diversity, landscape heterogeneity, change and stability), building on ecological principles and theory. Introduction to analysis tools (remote sensing, geographic information systems, modeling) applied to landscape systems.

203. Physiological Ecology (3) III. Ellers, Cech
Lecture—3 hours. Prerequisite: Evolution and Ecology 101 or Environmental Studies 100. Neurobiology, Physiology and Behavior 110 or Plant Biology 111 or Environmental Studies 129, and elementary calculus. A comparative examination of several animal groups addressing fundamental physiological mechanisms that shape the ecology of each animal group.

204. Population and Community Ecology (4) I. E. Caswell-Chen
Prerequisite: Environmental Studies 100 or Evolution and Ecology 101, Mathematics 21A-21B or consent of instructor; Mathematics 22B recommended. Review of major concepts of population ecology and community ecology, with emphasis on basic principles and use of theory as applied in the ecology of natural and managed systems.

205. Community Ecology (4) I. Karpban, Lawler
Lecture—3 hours; discussion—2 hours. Prerequisite: Environmental Studies 100, Evolution and Ecology 101, or Plant Biology 117. Introduction to literature and contemporary research into processes structuring ecological communities.

Lecture—3 hours; laboratory—4 hours. Prerequisite: introductory courses in statistics and plant ecology; consent of instructor. Principles and techniques of vegetation analysis, including structure, composition, and dynamics. Emphasis given to sampling procedures, association analysis, ordination, processes and mechanisms of succession, and classification. Most techniques are demonstrated or conducted during field trips and laboratories. Offered in alternate years.

207. Plant Population Biology (3) II. Rice
(Agronomy)
Lecture—2 hours; laboratory/discussion—1 hour. Prerequisite: advanced undergraduate ecology course (e.g., Environmental Studies 100, Zoology 125, Botany 117, or Entomology 104) and advanced undergraduate course in genetics and/or evolution (e.g., Genetics 100, 103, or Botany 100). Provides entry-level graduate students and advanced undergraduates with an introduction to both theoretical and empirical research in plant population biology. Emphasis is placed on linking ecological and genetic approaches to plant population biology. Offered in alternate years. (Same course as Agronomy 207.)

208. Issues in Conservation Biology (4) II. Harrison
Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Studies 100, Zoology 125, Botany 117, Entomology 106. Graduate-level introduction to current research in conservation biology. Course will emphasize reading and discussing primary literature. Specific topics will reflect the research interests of UC Davis conservation biology faculty.

*209. Demography for Biologists (3) II. Carey
Lecture—3 hours. Prerequisite: course 104 or Zoology 125 or the equivalent. Major demographic concepts and techniques including current, abridged and multiple decrement life tables; analysis of reproduction, stable population theory, stochastic, two-sex and multiregional models and demographic applications such as life history scaling, harvesting theory and curve fitting. Offered in alternate years.

210. Advanced Topics in Human Ecology (4) III. Orlove
Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing. Course stresses the commonalities that human ecologists have as social scientists who specialize in problems relating human populations and environmental variables. General epistem-
The Major Program
Economics is the study of how individuals, organizations, and societies choose among alternative uses of resources and how these resources are turned into the things people want. The Program, Economics majors complete an introductory course sequence in economics, in addition to several courses in quantitative methods. Intermediate theory and economic history are taken on the upper division level and students are free to concentrate the remainder of their units in various areas of interest including more courses in economic theory or history, international economics, labor, industry, alternative economic systems, economic development, public finance, econometrics, or mathematical economics.

Internships and Career Alternatives. Internships for economics majors have been arranged at banks, brokerage firms, other business enterprises, and government units. The internships must complement the student’s course work. A degree in economics is an excellent credential for students who want to go on to law school, business school, advanced work in economics, or graduate work in international relations. It is also a good background for careers in management and positions with the government.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth Subject Matter ...40</td>
</tr>
<tr>
<td>Economics 100, 101 ...10</td>
</tr>
<tr>
<td>One course from Economics 110A, 110B, 111A, 111B ...4</td>
</tr>
<tr>
<td>Additional economics courses to achieve a minimum of 40 upper division units ...18</td>
</tr>
<tr>
<td>Total Units for the Major ...62–66</td>
</tr>
</tbody>
</table>

Recommended
Students considering graduate study in economics or business administration are strongly urged to take Mathematics 21A-21B-21C and 22A. The Economics Department suggests that Economics 100 and 101 be taken as soon as possible after the introductory courses.

Graduate admission tests. In order to take any upper division courses other departments in satisfaction of the economics upper division course requirements. Approval from a departmental adviser is required in all such cases.

Graduation with High or Highest Honors. To be eligible for a departmental recommendation for High or Highest Honors in Economics at graduation, a student must take all upper division courses in Economics for a letter grade, earn at least a 3.5 grade-point average in those courses, and complete at least eight units of coursework that result in the submission of an Honors project. Consult the College of Letters and Science section of this catalog and contact the Department for more information.

Major Advisers. Contact Department Office.

American History and Institutions. This University requirement can be satisfied by completion of Economics 111A, 111B. (See also under University requirements.)

For information on admission to graduate study, degree requirements, and financial aid, consult the Graduate Announcement and contact the chairperson of the departmental graduate committee.

Graduate Advisers. Contact Department Office.

Courses in Economics (ECN)

Lower Division Courses

1A. Principles of Microeconomics (5) I, II, III.

The Staff

Lecture—3 hours; discussion—2 hours. Courses 1A and 1B may be taken in either order. Analysis of the distribution of income and the role of the public policy. GE credit: SocSci.

1B. Principles of Macroeconomics (5) I, II, III.

The Staff

Lecture—3 hours; discussion—2 hours. Courses 1A and 1B may be taken in either order. Analysis of the economy as a whole; determinants of the level of income, employment, and prices; money and banking; economic fluctuations, international trade, economic development; the role of public policy. GE credit: SocSci.

90X. Lower Division Seminar (1-2) I.

The Staff

Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Economics through shared readings, discussions, and written assignments. May not be repeated for credit. Limited enrollment.

92. Internship and Field Work (1-12) I, II, III.

The Staff

Internship—3-36 hours; term paper. Prerequisite: junior or senior standing; availability of internship position or approved field work project; stock-brokerage units or approved field work project; stock-brokerage units or approved field work project. GE credit: SocSci.

98. Group Study for Undergraduates (1-5) I, II, III.

The Staff (Chairperson in charge)

Prerequisite: consent of instructor. For lower division students only. GE credit: SocSci.

99. Individual Study for Undergraduates (1-5) I, II, III.

The Staff (Chairperson in charge)

Prerequisite: consent of instructor. GE credit: SocSci.

Upper Division Courses

100. Intermediate Micro Theory (5) I, II, III.

The Staff

Lecture—4 hours; discussion—1 hour. Prerequisite: course 1A, 1B, and Mathematics 16A or 16B or Mathematics 21A with a grade of C– or better in each course. GE credit: SocSci.

The Staff

Lecture—4 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, and Mathematics 16A or 16B or Mathematics 21A with a grade of C– or better in each course. GE credit: SocSci.
121A. Industrial Organization (4) II. Bonnano
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B, 100 or 104, or consent of instructor. Application of the theory of competition and monopoly in the American economy; market structure, conduct, and economic performance of a variety of industries. GE credit: SocSci.

121B. Industrial Organization (4) III. Borenstein
Lecture—3 hours; discussion—1 hour. Prerequisite: course 121A. Public policy in a private enterprise economy; antitrust and other policies toward industry; economic regulation of regulated industries. GE credit: SocSci.

*123. Ecology and Economics (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Economics and populations as self-regulating systems; economic regulation of man's interaction with its environment. Topics: population growth and its economic determinants; optimal rates of use of exhaustible and renewable resources; implications of common property in resource use; prospects for agricultural growth. GE credit: SocSci.

*125. Urban Economics (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1A or 1B. Explores the market forces behind the development of cities, explaining the existence of cities and the spatial distribution of activity within cities. Explores the effects of policies that address problems such as poverty, inadequate housing, crime, major international political events, education, and health. GE credit: SocSci.

130. Public Microeconomics (4) I. Silvestre
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 104, or consent of instructor. Public expenditures; theory and applications. Efficiency and equity of competitive markets; externalities, public goods, and market failures; positive and normative aspects of public policy for expenditure, including benefit-cost analysis. Topics include consumer protection, pollution, education, poverty, and crime.

131. Public Finance (4) I. Helms
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 104. Assessing the economic burden of taxation; equity and efficiency considerations in tax design; structure and economic effects of the U.S. tax system (including personal income tax, corporation income tax, and property tax); tax loopholes; recent developments; tax reform proposals.

134. Financial Economics (4) III. Neering
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, and 100 or 104. Mathematics 16A, Statistics 13, or consent of instructor. Background and rationale of corporation: finance as resource allocation over time; decision making under uncertainty and the role of information; capital market and interest rate structure; financial decisions and the role of taxes. Students who have completed Agricultural Economics 17A may not receive credit for this course.

135. Money, Banks and Financial Institutions (3) III. Hoover
Lecture—3 hours. Prerequisite: courses 1A-1B or consent of instructor. Monetary institutions, the banking system, money creation, the Federal Reserve System, and the role of monetary policy.

136A. Monetary Theory (4) I. Makowski
Lecture—3 hours; discussion—1 hour. Prerequisite: course 101 or 105. Monetary theory; the impact of changes in the quantity of money and of liquid assets on economic activity.

136B. Monetary Policy (4) II. Salyer
Lecture—3 hours; discussion—1 hour. Prerequisite: course 136A or consent of instructor. Analysis of the role of financial intermediaries in the economy and the theoretical foundations of monetary policy.

140. Econometrics (4) II. Cameron
Lecture—3 hours; laboratory—2 hours. Prerequisite: courses 100 and 104, or 101 and 105. Mathematics 16A-16B or 21A. Statistics 13. Introduction of problems of observation, estimation and hypotheses testing in economics through the study of the theory and application of linear regression models, critical evaluation of selected examples of empirical research and exercises in applied econometrics.

151A. Economics of the Labor Market (4) I. Cameron
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or 104. Theory of labor supply and demand; determination of wages and employment in the labor market. Economic theories of labor unions. Policy issues: labor force participation by married women; minimum wage and youth unemployment; effect of unions on wages.

151B. Economics of Human Resources (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 151A. Human resource analysis; introduction to human capital theory and economics of education; the basic theory of wage differentials, including theories of labor market discrimination; income distribution; poverty; Policy issues: negative income tax; manpower training programs; incomes policy.

160A. International Microeconomics (4) I. Feenstra; III. Swenson
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, 100 or 104, or consent of instructor. International trade theory: impact of trade on the domestic and world economies; public policy toward international trade. Students who have completed courses 162 may receive only 2 units of credit for course 160A. 160B. International Macroeconomics (4) I. Swenson; II. Bergin
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B, and 100 or 104, and course 101 or 105, or consent of instructor. Macroeconomic theory of an open economy. Balance of payments adjustment mechanism, international monetary economics issues, international capital flows, and their policies. Students who have completed course 162 may receive only 2 units of credit for course 160B.

162. International Economic Relations (4) I. Swenson; III. Woo
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. International trade and monetary relations, trade policy, exchange rate policy, international capital mobility and investment. Emphasis on current policy issues. Course intended especially for non-majors. Not open for credit to students who have completed course 160A or 160B. GE credit: SocSci.

*170. Economy of the Middle East (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A, 1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of the Middle East. Consult department for course scheduling.

*171. Economy of East Asia (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of East Asia. Consult department for course scheduling.

*172. Economy of South Asia (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of South Asia. Consult department for course scheduling.

*173. Economy of South-East Asia (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of South East Asia. Consult department for course scheduling.

*174. Economy of Europe (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of Europe. Consult department for course scheduling.

*175. Economy of Sub-Sahara Africa (4) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1A-1B or consent of instructor. Intensive reading, discussion and research on selected topics from the economies of the countries of the Sub-Sahara. Consult department for course scheduling.

190. Topics in Economics (4) III. Bonnano
Lecture/discussion—4 hours. Selected topics in economic analysis and public policy. Variable content. May be repeated for credit.

*190X. Upper Division Seminar (1-4). I. The Staff
Seminar—1-4 hours. Prerequisite: courses 100 or 104; and 101 or 105; and consent of instructor. In-depth examination at an upper division level of a special topic in Economics. Emphasis on focused analytical work. May not be repeated for credit. Limited enrollment.

192W. Internship in the Davis-in-Washington Program (6-8) I. The Staff
Internship—19-24 hours. Prerequisite: junior or senior standing; completion of 84 units of credits with a minimum grade point average of 3.00; admission to the Davis-in-Washington Program. Internship in Washington, DC with associated research project. Students must arrange for a faculty sponsor before embarking on the internship. Maximum of 3 units will count toward satisfying Economics major requirements. GE credit: SocSci.

194HA-194HB. Special Study for Honors Students (4-4) I-Ill. III. The Staff (Lindert in charge)
Independent study—3 hours; seminar—1 hour. Prerequisite: major in Economics; consent of instructor and completion of 135 units with a minimum grade point average of 3.5 in courses counted toward the major. A program of research culminating in the writing of a senior honors thesis under the direction of a faculty advisor. (Deferred grading only, pending completion of course.)

197T. Tutoring in Economics (1-5) I, II, III.
Tutoring—3-15 hours. Prerequisite: consent of instructor and chairperson. Undergraduates assist the instructor by tutoring students in one of the department’s regularly scheduled courses. Units may not be counted toward satisfaction of major requirements. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Microeconomic Theory (5) I. Silvestre
Lecture—4 hours; discussion—1 hour. Prerequisite: grade standing. Linear programming theory applied to develop the theory of the profit-maximizing firm and the utility-maximizing consumer. (Same course as Agricultural Economics 200A.)

200B. Microeconomic Theory (5) II. Quinzi
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200A. Characteristics of market equilibrium under perfect competition, simple monopoly and monopsony. Emphasis on general equilibrium and welfare economics; the sources of market success and market failure. (Same course as Agricultural Economics 200B.)

200C. Microeconomic Theory (5) III. Makowski
Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Uncertainty and information economics. Individual decision making under uncertainty. Introduction to game theory, with emphasis on applications to markets with firms that are imperfect competitors or consumers that are informed. (Same course as Agricultural Economics 200C.)

200D. Macroeconomic Theory (5) I. Sheffrin
Lecture—4 hours; discussion—1 hour. Prerequisite: course 101, Mathematics 21A, and 21C. Macroeconomic analysis of income, employment, and prices. (Same course as Agricultural Economics 200D.)

200E. Macroeconomic Theory (5) II. Sheffrin
Lecture—4 hours; discussion—1 hour. Prerequisite: course 101, Mathematics 21A, and 21C. Macroeconomic analysis of income, employment, and prices. (Same course as Agricultural Economics 200D.)
Macrodynamics of income, employment, and prices.

201A. History of Economic Thought (4) III. Hoover Lecture—3 hours; discussion—1 hour. Economic thought from the classical Greece to modern times. Offered in alternate years.

201B. History of Economic Thought (4) I. Hoover Lecture—3 hours; discussion—1 hour. Origins and emergence of modern economic analysis. Offered in alternate years.

203A. Advanced Economic Theory (4) I. Quinzell Lecture—4 hours. Prerequisite: course 200A, 200B. Advanced topics in general equilibrium theory and welfare economics: existence, determinateness and efficiency, intertemporal economies; uncertainty.

203B. Advanced Economic Theory: Game Theory (4) II. Roemer Lecture—3 hours; discussion—1 hour. Origins and emergence of modern economic analysis. Offered in alternate years.

204. Microeconomic Analysis (5) I. Sexton (Agricultural Economics) Lecture—4 hours; discussion—1 hour. Prerequisite: course 100 (or 100M) or Agricultural Economics 100A-100B; Mathematics 21A, 21B and 21C (or Mathematics 16A, 16B and 16C); open to advanced undergraduates with consent of instructor. Econometric reasoning and social choice: behavior of firms and households, theory of markets, partial and general equilibrium analysis, welfare economics, illustrations and applications. (Same course as Agricultural Economics 204.)

207. Contemporary Economics Seminar (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: graduate standing in Economics. Seminar series on topics of current interest. May be repeated for credit. (S/U grading only.)

209B. Public Ownership Economics (4) II. Silvestre Lecture—4 hours. Prerequisite: course 200B. Public ownership from the viewpoint of microeconomics, in particular general equilibrium and welfare economics. Topics include returns to scale and firm ownership, common-pool resources, externalities, and solution concepts for economies with public and private ownership. Offered in alternate years.

209C. Foundations of Decision Theory (4) III. Nehring Lecture—4 hours; discussion—1 hour. Prerequisite: course 200B. Rigorous exposition of subjective expected utility theory; foundations, normative and empirical challenges. Topics include intertemporal decision; learning, incompleteness and ambiguity; individual and social choice with interactive decision theory; bounded rationality. Offered in alternate years.

210A. Economic History (4) II. Clark Lecture/discussion—4 hours. Economic history of the eastern hemisphere in the modern period. Medieval Europe and other regions may be studied, depending on student interest.

210B. Economic History (4) I. Olmstead Lecture/discussion—4 hours. The United States from Colonial times to the present. Other areas of the western hemisphere may be studied, according to student interest.

210C. Economic History (4) III. Lindert Seminar—4 hours. Prerequisite: a graduate course in economic history. Selected topics and issues, emphasis on current research. (Quarter offered to be flexible.)

214. Development Economics (4) I. The Staff Lecture—4 hours. Prerequisite: Agricultural Economics 100A, 100B, course 101; Agricultural Economics 204 and course 160A-160B recommended. Review of the principal theoretical and empirical issues whose analysis has formed developed economics. Analysis of economic development theories and development strategies and their application to specific policy issues in developing country contexts. (Same course as Agricultural Economics 214.)

215A. Agriculture and Economic Development (4) III. Taylor Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 200A or 204 and 214. Agricultural development theory and application. Analysis of rural-urban development theory and theory in eco- nomic development, food price policy, and interactions between economic development and the environment. Analytical focus on household-farm and intersectoral models. (Same course as Agricultural Economics 215A.)

215B. Open Macroeconomics of Development (4) II. Wolfe Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 200A or 204, 200D or 205, and 214 or 215A. Models and policy approaches regarding trade, monetary and fiscal issues, capital flows and debt are discussed in the macroeconomic framework of an open developing country. The basic analytical focus is real exchange rate and its impact on sectoral allocation of resources. (Same course as Agricultural Economics 215B.)

215C. Empirical Approaches to Development Analysis (4) III. Taylor Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics/Economics 215A, 215B. Extensive development of models for policy analysis including Household-Farm models, models of resource allocation under uncertainty, Social Accounting Matrix and Computable General Equilibrium models. Analysis and case studies of methods of pro- ject evaluation with and without income-distribution weights. (Same course as Agricultural Economics 215C.)

221A. Industrial Organization (4) II. Bonanno Lecture—3 hours; to be arranged—1 hour. Analysis of market structure, business behavior, and economic performance under conditions of limited govern- mental interference. (Same course as Agricultural Economics 215A.)

221B. Industrial Organization (4) III. Borenstein Lecture—2 hours; seminar—2 hours. Social standards and public policies toward the business sector of the economy.

221C. Topics in Industrial Organization (4) III. The Staff Lecture—3 hours; seminar—1 hour. Prerequisite: course 221A. Advanced topics in industrial organization and in applied microeconomics. Emphasis on current research. Content may vary from year to year.

225. Urban Economics (4) III. The Staff Lecture—2 hours; discussion—2 hours. Prerequisite: course 200A or 204. Explores development of cities and land-use patterns within cities. Explores efficiency and equity effects of local spending and taxes. Analysis of urban problems such as transportation (congestion, pollution, mass transit), crime, and inadequate housing.

230A. Public Economics (4) I. Helms Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Measures of deadweight loss and consumer surplus; optimal commodity and income taxation; tax incidence; policy issues in per- sonal taxation, corporate taxation, and social insur- ance; evaluation of effective tax rates.

230B. Public Economics (4) II. Trieu Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Effects of tax policies on eco- nomic behavior; production, consumption, savings, investment, and labor supply. Distribution and equity: social welfare, evaluation and the measurement of inequity.

230C. Public Economics (4) III. Nelson Lecture—3 hours; discussion—1 hour. Prerequisite: course 200A or 204. Advanced topics in economics of the public sector, with emphasis on current research. Content may vary from year to year.

235A. Alternative Approaches to Monetary Analysis (4) II. Hoover Lecture—3 hours; discussion—1 hour. Prerequisite: course 200D (may be taken concurrently). Focuses on relation between changes in money supply and changes in nominal GDP. Also discusses the effect of changes in money supply on interest rates.

235B. Monetary Theory (4) III. Salyer Lecture—3 hours; discussion—1 hour. Prerequisite: course 200D (may be taken concurrently). Focuses on relation between changes in money supply and changes in nominal GDP. Also discusses the effect of changes in money supply on interest rates.

240A. Econometric Methods (4) III. Green Lecture—4 hours. Prerequisite: Statistics 133 and a course in linear algebra or the equivalent. Least squares, instrumental variables, and maximum likeli- hood estimation and inference for single equation linear regression models; linear restrictions, heteroskedasticity; autocorrelation; lagged dependent variables. (Same course as Agricultural Economics 240A.)

240B. Econometric Methods (4) III. Chaifant (Agricultural Economics) Lecture—4 hours. Prerequisite: course 240A. Topics include analysis of variance, pooled time-series, cross-section estimation, seemingly unrelated regres- sion, classical hypothesis tests, and identification and estimation of simultaneous equation models. (Same course as Agricultural Economics 240B.)

240C. Econometric Theory (4) I. Havenner Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Finite sampling theory; nonlinear and dynamic econometric models, asymptotic distribution theory. (Same course as Agricultural Economics 240C.)

240D. Topics in Econometrics (4) II. Cameron Lecture—3 hours; discussion—1 hour. Prerequisite: course 240B. Advanced topics in nonlinear econometric modeling. Contents may vary from year to year. (Same course as Agricultural Economics 240D.)

250A. Labor Economics (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: courses 150A-150B or the equivalent. Philosophy, theory and history of American and foreign labor movements, union structure, organization and collective bargaining under changing labor market condi- tions; current labor market issues.

250B. Labor Economics (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 151A or consent of instructor; course 204 or 209A recommended. Microeconomic theory of labor supply and labor demand, estimation of labor supply and demand functions; human capital theory; labor market analysis.

256. Applied Econometrics (4) II. Heien Lecture—3 hours; discussion—1 hour. Prerequisite: master students in agricultural economics or economics, or consent of instructor. Emphasis on statistical tools to economic and business analysis. Emphasis on regression analysis, problems of specification, and

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Writ = Writing Experience.
Economy, Justice, and Society

Models development. (Same course as Agricultural Economics 256.)

260A. International Economics (4) I. Feenstra
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200A or 204. Theory of trade determinants; gains from trade; tariffs and effective protection; economic unions.

260B. International Economics (4) II. Woo
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 200D and 200E. Balance of payments adjustment mechanisms; foreign exchange markets; theories of balance of payments policy and international monetary mechanisms.

260C. International Economics (4) III. Swenson
Seminar—4 hours. Prerequisite: courses 260A and 260B. Survey of current literature in international trade theory.

280. Orientation to Economic Research (2) I. The Staff
Discussion—2 hours. Course tries to bridge the gap between students' classwork and their subsequent research. It deals with topics such as the origination of a research project, some mechanics of empirical research and hints on the submission of research papers. (SU grading only.)

290. Topics in Economics (4) I, II, III. The Staff
Seminar—4 hours. Prerequisite: consent of instructor. Selected topics in economic analysis and public policy, focusing on current research. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff
(Chairperson in charge)
Discussion—1-5 hours. Prerequisite: graduate standing and consent of instructor. (SU grading only.)

299D. Dissertation Research
Prerequisite: consent of instructor and graduate standing in Economics. Teaching of economics: methodology, teaching and evaluation procedures. (S/U grading only.)

299. Individual Study
Prerequisite: consent of instructor and graduate standing. Teaching of economics: methodology, teaching and evaluation procedures. (SU grading only.)

299A. Economic Models of Distributive Justice (4) II. Roemer
Lecture—4 hours. Prerequisite: course 100 or the equivalent, and graduate standing. Introduction to social choice theory; envy-free allocations; axiomatic bargaining theory; axiomatic characterizations of resource allocation. Applications to modeling of the distributive theories of political philosophers. Offered in alternate years.

290B. Economic Models of Public Ownership (4) I. The Staff
Lecture—4 hours. Prerequisite: course 100 or the equivalent and graduate standing. Public ownership from the viewpoint of microeconomics, in particular, general equilibrium and welfare economics. Topics include return to scale and firm ownership, common pool resources, externalities, and solution concepts for economies with public and private ownership. Offered in alternate years.

290C. Foundations of Decision Theory (4) III. Nehring
Lecture—4 hours. Prerequisite: course 100 or the equivalent and graduate standing. Rigorous exposition of subjective expected utility theory; foundations, normative and empirical challenges. Topics include intertemporal decision; learning; incompleteness and ambiguity; individual and social choice; game theory as interactive decision theory; bounded rationality. Offered in alternate years.

290. Interdisciplinary Social Analysis (3) II. The Staff
(Director in charge)
Seminar—2 hours; term paper. Prerequisite: graduate standing in economics, philosophy or political science; course 100, Philosophy 117, or the equivalents. Analysis of practical and theoretical social problems with tools of economic theory, philosophy, and political theory, e.g., the welfare state, risk and public policy, equality of opportunity, individual rationality and cooperation.

Course in Economy, Justice, and Society (EJS)

Upper Division Course

100. Microeconomic Theory (4) III. Nehring
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A or graduate standing. Basic concepts; modes of reasoning and fundamental results in modern microeconomics. Emphasis on, first, Utility Theory; second, the logic of the equilibrium methods; third, welfare economics and public policy.

Graduate Courses

207. Interdisciplinary Social Analysis (3) II. The Staff
Lecture—4 hours; term paper. Prerequisite: graduate standing in Economics, Philosophy, or Political Science; course 100, Philosophy 117, or the equivalents. Analysis of practical and theoretical social problems with tools of economic theory, philosophy, and political theory, e.g., the welfare state, risk and public policy, equality of opportunity, individual rationality and cooperation.

209A. Economic Models of Distributive Justice (4) II. Roemer
Lecture—4 hours. Prerequisite: course 100 or the equivalent and graduate standing. Introduction to social choice theory; envy-free allocations; axiomatic bargaining theory; axiomatic characterizations of resource allocation. Applications to modeling of the distributive theories of political philosophers. Offered in alternate years.

209B. Economic Models of Public Ownership (4) I. The Staff
Lecture—4 hours. Prerequisite: course 100 or the equivalent and graduate standing. Public ownership from the viewpoint of microeconomics, in particular, general equilibrium and welfare economics. Topics include return to scale and firm ownership, common pool resources, externalities, and solution concepts for economies with public and private ownership. Offered in alternate years.

209C. Foundations of Decision Theory (4) III. Nehring
Lecture—4 hours. Prerequisite: course 100 or the equivalent and graduate standing. Rigorous exposition of subjective expected utility theory; foundations, normative and empirical challenges. Topics include intertemporal decision; learning; incompleteness and ambiguity; individual and social choice; game theory as interactive decision theory; bounded rationality. Offered in alternate years.

209. Interdisciplinary Social Analysis (3) II. The Staff
(Director in charge)
Seminar—2 hours; term paper. Prerequisite: graduate standing in economics, philosophy or political science; course 100, Philosophy 117, or the equivalents. Analysis of practical and theoretical social problems with tools of economic theory, philosophy, and political theory, e.g., the welfare state, risk and public policy, equality of opportunity, individual rationality and cooperation.

*Course not offered this academic year.
Minor Program Requirements:

Educational theory is considered to be the foundation or basic area for undergraduates to elect as a minor. They may elect (1) major in an allied program, (2) obtain a master's degree in education or allied field, (3) obtain a Ph.D. degree in education, (4) enter a profession that focuses on work with people, (5) seek employment in governmental or industrial training programs, or (6) obtain a better understanding of the issues and concerns of public and private education.

Minor Advisers. K. Bray.

Graduate Study

The Division of Education, in conjunction with the Graduate Group in Education, offers programs of study and research leading to the M.A. and Ph.D. degree). We are currently giving strong preference to the Graduate Group. Detailed information regarding programs of study and research leading to the M.A. and Ph.D. Graduate Group in Education, offers programs of field, minor if they wish to pursue graduate study described below. There is no requirement of an undergraduate major in education.

Joint UCD/CSU Fresno Doctoral Program (Ed.D.)

Karen Carey, (CSU Fresno) and Robert DeVillar (UC Davis), Program Directors

UC Davis Office, 2078 Academic Surge

(916-752-2761; FAX, 916-752-5411)

e-mail: kbray@ucdavis.edu

CSU Fresno Program Office

(209-278-0427; FAX: 209-278-0457)

e-mail: diane_rivera@csufresno.edu

The joint (UCD/CSU Fresno) doctoral program leads to the Doctorate in Education (Ed.D.) in Educational Leadership. Contact the CSU Fresno Program Office for information and application materials.

Courses in Education (EDU)

Lower Division Course

98. Directed Group Study (1-5) I, II, III. The Staff (Director in charge)

Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

Upper Division Courses

100. Introduction to Schools (4) I, II, III. Wampler

Lecture—3 hours; field work—3 hours. Prerequisite: upper division standing. Study of occupational concerns of teachers; skills for observing classroom activities; school organization and finance; school reform movement; observing, aiding, and tutoring in schools.

110. Educational Psychology: General (4) I, II, III. The Staff (Director in charge)

Lecture/discussion—4 hours. Prerequisite: Psychology 1; upper division standing. Learning processes, cognitive development, individual differences, testing and evaluation. GE credit: SocSci, Wrt.

*114. Quantitative Methods in Educational Research (4) I. Wagner

Lecture/discussion—4 hours. Prerequisite: two years of high school algebra. Problems and methods in data analysis. Design of research projects. Some consideration of procedures suited to digital computers.

115. Educating Children with Disabilities (2) I, II, III. Figueroa, Sandoval

Lecture—2 hours. Prerequisite: upper division standing. Educational issues and processes involved in teaching children with disabilities. The course will focus on the structure of special education, with an emphasis on meeting the educational needs of children who are mainstreamed in regular classes.

120. Philosophical and Social Foundations of Education (4) I, II, III. Wagner

Lecture—2 hours; discussion—2 hours. Prerequisite: upper division standing. Philosophical, historical, and sociological study of education and the school in our society. GE credit: SocSci, Wrt.

130. Issues in Higher Education (4) III. The Staff (Director in charge)

Discussion—3 hours; field work—3 hours. Prerequisite: upper division standing or consent of instructor. Analysis of current issues in higher education and some of practical implications of varying philosophical approaches to the role of the university.

151. Language Development in the Chicano Child (3) I. Merino

Lecture—3 hours. Prerequisite: some knowledge of Spanish and linguistics recommended. Bilingualism, first and second language acquisition, bilingual education, language assessment, Chicano Spanish, and the role of dialect varieties in the classroom.

152. Communication Skills for Bilingual Teachers (3) II, III. The Staff (Merino in charge)

Lecture—2 hours; field work—3 hours. Prerequisite: course 151; Spanish 2A, 2A-B. The development of communication skills of prospective educators with an emphasis on the study and use of standard Spanish and Southwest Spanish dialects in teaching science, mathematics, social science, music, art, and language arts to bilingual elementary school pupils.

153. Cultural Diversity and Education (2) III. The Staff (Director in charge)

Lecture/discussion—2 hours. Prerequisite: upper division standing. Analysis of research on learning styles among culturally diverse students with review and evaluation of responsive curricula and classroom teaching techniques. The ethnographic interview as a research tool.

160A. Introduction to Peer Counseling (2) I, II. Counseling Center Staff

Lecture/discussion—2 hours. Prerequisite: upper division standing and consent of instructor. Introduction to peer counseling techniques and development of peer counseling skills. (P/NP grading only.)

160B. Issues in Peer Counseling (2) I, II. Counseling Center Staff

Lecture—2 hours. Prerequisite: upper division standing and consent of instructor; course 160A recommended. In-depth review and development of skills for specific counseling topics. May be repeated once for credit when topic differs. (P/NP grading only.)

*163. Guidance and Counseling (4) III. Figueroa, Sandoval

Lecture—4 hours. Prerequisite: course 110 may be taken concurrently. Nature and scope of pupil personnel services; basic tools and techniques of guidance; theory and practice of counseling psychology, with emphasis on educational and vocational adjustment.

Lecture—1 hour; seminar—1 hour; laboratory—1 hour. Prerequisite: upper division standing or graduate student. Applications of computers in education as instructional, intellectual, and communication tools. Not open for credit to students who have taken course 181 or 182.

181. Instructional Applications of Computers (2) Dugdale

Lecture/discussion—3 hours. Prerequisite: course 180 or 182. Applications of computers in education as instructional, intellectual, and communication tools. Not open for credit to students who have completed course 180 or 182.

182. Computer Project for Curricular Integration (1) Dugdale

Seminar—1 hour. Prerequisite: Application of computers in K-12 instruction, with emphasis on software selection and use, subject and grade level focus, and curricular integration. Intended for students who already possess experience and skill with a variety of microcomputer applications, this course does not include the more general topics covered in course 180. Not open for credit to students who have completed course 180 or 182.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
204 Education

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Director in charge) Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

Graduate Courses

200. Educational Research (4) III. Sandoval Lecture—2 hours; discussion—2 hours. Prerequisite: introductory statistics and graduate standing in education or consent of instructor. Define educational research questions, reviewing relevant literature, developing research designs, developing research instruments, selecting appropriate data analysis procedures, and writing research projects. A case problem will provide practice in designing and reporting research.

201A. Ethnographic Research in Schools I: Current Theory and Practice (4) I. Watson-Gage Discussion—4 hours. Prerequisite: seminar standing and consent of instructor. Review of current literature from anthropology and sociology related to schools, with emphasis on the organizational structure of institutions, and the analysis of face-to-face interaction. Will explore the relationship between field-based research and theory development on the acquisition of knowledge in specific social and cultural contexts.

201B. Ethnographic Research in Schools II: Field-Based Research Projects (4) II. Watson-Gage Discussion—4 hours. Prerequisite: seminar standing and consent of instructor. Seminar research projects in specific schools with cooperative critical analysis of the design, data collection, and interpretation by researchers. Students will continue to meet with instructors as a group throughout the quarter to discuss specific projects.

*202. Philosophy of Education: Models and Methods (4) III. The Staff (Director in charge) Seminar—3 hours; lecture—3 hours. Prerequisite: seminar standing and consent of instructor. Examination of some major philosophical points of view about educational aims, illustrations of several types of philosophical discourse, and argumentation, and an opportunity for students to locate and critique some contemporary studies in the philosophy of education. Offered in alternate years.

203. Qualitative Research in Education (4) III. Wagner Seminar—2 hours; lecture—2 hours. Prerequisite: graduate standing or consent of instructor. Examines the design and conduct of educational research using non-standardized data (e.g., text, discourse, imagery, and artifacts). Focuses on issues (e.g., validity, reliability, generalizability, ethics) and reporting genres (e.g., narrative accounts, case studies, and arguments).

204. School Change and Educational Reform (4) II. Wagner Lecture/discussion—2 hours; seminar—2 hours. Prerequisite: graduate standing in Education with course 120 or the equivalent, or consent of instructor. Analysis of models, processes, and case studies of school change and educational reform with respect to variable characteristics of schools and schooling, planned and unplanned change, the moral evaluation of school change, and the role of educational research.

*207. Concepts of the Curriculum (4) I. The Staff (Director in charge) Lecture—2 hours; discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Development of the skills of philosophical analysis and argument for the establishment of a point of view, in the consideration of curriculum theory and practice. Classical and contemporary approaches to subject matter and activity emphases, hidden curriculum, and moral education.

211. Psychological Models (4) II. The Staff (Director in charge) Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Phenomenological approach to the psychological construct and situation (psychopedagogics). A critical consideration of how psychopedagogics contributes to the theory and practice of education.

*213. Individual Assessment (4) III. Sandoval Lecture—4 hours; courses 114 and 219, admission to school psychology credential program. Theories of intellectual functioning and the measurement of cognitive abilities in school-aged children. Supervised practical experience in the application of individual assessment of children including the WISC-R, the WAIS-R, the Stanford Binet, the McCarthy Scales of Children's Ability.

*214. Assessment of Children's Personality (4) III. Sandano Lecture—3 hours; field work—3 hours (minimum). Prerequisite: admission to school psychology credential program; courses 213 and 216, and familiarity with basic personality theories and theories of vocational assessment. Study of the projective hypothesis; concepts of personality and its measurement; legal and ethical issues in personality assessment; testing techniques in assessment of social and affective functioning; specific measures in personality assessment; reporting on personality assessments; school interventions. Offered in alternate years.

215. Motivation and Behavior Modification (4) II. Spring Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Factors related to influencing behavior in educational settings, including analyses of intrinsic and extrinsic motivation, psychological reactance, locus of control, achievement attribution, and behavior modification.

*216. Testing Minority Children (4) I. Figueroa Lecture—3 hours; field work—3 hours. Prerequisite: admission to school psychology program or to M.A. bilingual education program or consent of instructor. Emphasizing tests and techniques that are appropriate for use with Hispanic students. The use of multicultural pluralistic assessment. Review studies and guidelines on use of tests with minority children. Offered in alternate years.

219. Educational Testing and Evaluation (3) I. Gandara Seminar—3 hours. Prerequisite: courses 114 and 200 or consent of instructor. Study of test theory as it applies to research and evaluation in education, with an emphasis on test construction and reading tests. Offered in alternate years.

231. Culture and Learning (4) II. Delgado-Gaitan Seminar—4 hours. Prerequisite: graduate standing in Education with course 120 or the equivalent, or consent of instructor. Analysis of major theories of relationships between learning and the sociocultural context in which learning takes place, issues related to the academic achievement of different language groups, and implications for research and pedagogical reform.

*232. Families and Communities as Educational Contexts (4) I. Delgado-Gaitan Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Families and cultural communities are important social contexts of education for children. An interdisciplinary perspective is presented in an attempt to understand how learning in these social contexts influences the schooling of children.

233. Anthropology of Education (4) I. Delgado-Gaitan Seminar—3 hours; term paper. Prerequisite: one of the following courses: Anthropology 117, 127, 129, or 222, or Education 251, 201A, or 201B, or consent of instructor. Uses concepts of anthropology to examine education in indigenous, community, and formal institutions of schooling. Course goal is to raise questions about educational issues often taken for granted and provide a perspective from which problems may be analyzed. Offered in alternate years. (P/NP grading only.)

*235. Critical Pedagogy (4) III. Delgado-Gaitan Seminar—4 hours. Prerequisite: Critical Theory 200A and graduate standing. A sociocultural critique, from an interdisciplinary perspective, of educational reform and change. The critique will include an analysis of the influence of text content on the perpetuation of social power differences.

237. Education and Social Policy (4) III. Gandara Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Focuses on understanding the social and political context of education in the U.S. and California and how education policy is formed in the broader public policy arena. Develops skills in educational policy analysis. Offered in alternate years.

239. Discourse Analysis in Educational Settings (4) II. Watson-Gage Seminar—3 hours; term paper. Prerequisite: graduate standing and at least one previous course in linguistics or sociolinguistics, or consent of instructor. Examines form and type of discourse (e.g., narration, conversation, routines), approaches to discourse analysis, and research on classroom discourse (lessons, teachers' feedback, instructional sequences). Final term paper is an analysis of discourse data-taped by student in a field setting.

*241. Research on Reading and Spelling Acquisition (4) III. Murphy Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Analysis and critique of research on psychological processes in learning to read and spell. Topics include writing systems, theories of processes and acquisition, emergent reading, readiness, decoding, word reading, oral text reading, spelling stages, instructional methods, disability, dialect. Offered in alternate years.

242. Research on Text Comprehension (4) I. Spring Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Analysis and evaluation of research related to the comprehension of written and oral text, with an emphasis on the teaching and learning of comprehension processes in school settings. The course will focus on current issues and on research methodology. Offered in alternate years.

*243. Research on the Teaching and Learning of Writing (4) III. Murphy Seminar—4 hours. Prerequisite: graduate standing in Education or consent of instructor. Focuses on research issues in research on composition; history of composition studies; data analysis techniques; product and process approaches; cognitive and social perspectives. Offered in alternate years.

251. Research in Bilingual and Second Language Education (3) III. Merino Seminar—3 hours. Prerequisite: course 151; knowledge of a foreign language. Discussion and analysis of recent research in bilingual and second language education. Topics include: language acquisition in second language learners and bilinguals, second language teaching methods, language-use models in bilingual education, interaction analysis in bilingual/cross-cultural classrooms, use of the vernacular in classrooms. Offered in alternate years.

*252. Multicultural Teaching and Curriculum (3) III. Merino Seminar—2 hours; field work—3 hours. Prerequisite: graduate standing or consent of instructor. Cross-cultural research on socialization, motivation, language acquisition and cognition and its application to effective classroom strategies. Prerequisite: graduate standing and commitment to multicultural curriculum as well as use ethnographic research techniques in an educational setting. Offered in alternate years.

*Course not offered this academic year.
253. Language and Literacy in Linguistic Minorities (3) III. Merino, Watson-Gegeo
Seminar—2 hours; fieldwork—3 hours. Prerequisite: familiarity with another language and culture; graduate standing. Analysis and application of research on oral language development and literacy in language minority students, through the development, implementation, and evaluation of research-based language arts curriculum.

255. Curriculum Development and Evaluation in Mathematics (4) I. Dugdale
Seminar—4 hours. Prerequisite: graduate standing in Education with upper division coursework in mathematics or consent of instructor. Analysis of curricular issues and goals in mathematics education, including long-term trends, current status and influences, proposed changes, and evaluation issues. Selected curricular projects will be examined.

256A. Research in Mathematics Education (4) II. Dugdale
Seminar—4 hours. Prerequisite: graduate standing in education with upper division coursework in mathematics, or consent of instructor. Examination of research process in mathematics education; review of critical productive problems identified by researchers; evolution of trends, issues, theories and hypotheses in various areas of mathematics education research. Course emphasizes research foundations. Offered in alternate years.

256B. Research in Mathematics Education (4) II. Dugdale
Seminar—4 hours. Prerequisite: graduate standing in education with upper division coursework in mathematics or consent of instructor. The roles of calculators, computers, and graphing calculators in mathematics education will be addressed, with emphasis on the impact of these technologies on curriculum reform. Selected efforts to integrate technology into mathematics instruction will be examined. Offered in alternate years.

275. Effective Teaching (4) I. The Staff (Director in charge)
Seminar—4 hours. Review of research on the relationship of effective teacher behavior and student learning. Use of research on teacher effectiveness to develop teaching strategies. Ways to decide on the most appropriate instructional strategies in specific teaching situations.

290C. Research Conference in Education (1) I, II, III. The Staff (Director in charge)
Discussion—1 hour. Prerequisite: graduate standing. Presentations and critical discussions of research in education by graduate students with their major professor. May be repeated twice for credit. (SU grading only.)

291. Proseminar in Education (3) I, II. Sandoval
Seminar—3 hours. Prerequisite: admission to the Ph.D. graduate program in education. Seminar for first-year education doctoral students. The study of multi-disciplinary research approaches to educational issues. Reports and discussions of recent advances in education. Speakers from the graduate group faculty in education. May be taken twice for credit.

292. Special Topics in Education (2-4) I, II, III. The Staff (Director in charge)
Seminar—2-4 hours. Prerequisite: completion of doctoral core courses in Education or consent of instructor. Special education. Designed to facilitate preparation for the qualifying examination or dissertation. Students will critically analyze scholarly work including their own works in progress. May be repeated for credit.

293. Topical Seminar in School Psychology (3) I, II, III. Sandoval
Seminar—3 hours. Prerequisite: graduate standing in education and consent of instructor. Critical study of selected issues in education and school psychology related to the learning and mental health of children and adolescents in schools. May be repeated once for credit.

296. Group Study (2-5) I, II, III. The Staff (Director in charge)
(SU grading only)

299. Individual Study (1-6) I, II, III. The Staff (Director in charge)
Independent study—3—18 hours. Individual study under the direction of a faculty member. (SU grading only)

299D. Research (2) I, II, III. The Staff (Director in charge)
Independent study—3—36 hours. Research for individual graduate students. (SU grading only.)

Professional Courses

300. Reading in the Elementary School (4) III. The Staff (Merino in charge)
Lecture—3 hours; fieldwork—2 hours. Prerequisite: graduate standing in education and consent of instructor. Principles, procedures, and curriculum materials for teaching of reading. Includes decoding skills with a special emphasis on phonics, comprehension skills, study skills, and reading in the content areas.

310. Reading in the Secondary School (4) I, II. Murphy
Discussion—4 hours. Prerequisite: admission to graduate standing, enrollment in the secondary credential program, or consent of instructor. Principles, procedures, and materials to help secondary school teachers improve the reading competence of students. Strategies for enhancing learning through reading and writing in all disciplines, with special attention to linguistically diverse populations.

302. Language Arts in the Elementary School (2) I. The Staff (Merino in charge)
Lecture—2 hours. Prerequisite: graduate standing. Principles, procedures, and materials for the teaching of oral and written expression, listening skills, drama, and children's literature in elementary schools.

303. Art Education (3) III. The Staff (Merino in charge)
Lecture/discussion—2 hours; laboratory—2 hours. Prerequisite: admission to multiple subject credential program. Understanding the principles of education in the arts through development of concepts, introduction to media, and techniques suitable for the elementary school with emphasis on cross-disciplinary evaluation.

304A. Teaching in the Elementary Schools (5-8) I. The Staff (Merino in charge)
Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in preschool or elementary schools. Evaluation of teaching materials including audio-visual aids. Current elementary school curriculum with emphasis on contributions from fine arts and humanities.

305A. Teaching in the Middle Grades (5-8) I. The Staff (Merino in charge)
Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in middle grades. Current conceptions of the middle-grades curriculum with emphasis on social, biological, and physical sciences. Effective teaching methods.

305B. Teaching in the Middle Grades (5-8) II. The Staff (Merino in charge)
Lecture—2 hours; seminar—2 hours; student teaching—15-30 hours. Prerequisite: course 305A; acceptance into a teacher education program. Supervised teaching in regular or special education classrooms in junior high school. Current conceptions of the junior high school with emphasis on effective teaching methods, and selection of curriculum materials. Alternative programs.

Seminar—2 hours; student teaching—10-21 hours. Prerequisite: acceptance into teacher education program. Supervised teaching in regular or special education secondary school classrooms. Techniques for classroom communications; constructing goals and objectives; assessment of learning; special problems of adolescents; audio-visual techniques. Must be repeated by undergraduates for a total of 15 units; 21 units by graduates in Elementary School and Music, and 24 units by all other graduate students.

307. Methods in Elementary Science (2) III. Wampler
Lecture/discussion—2 hours. Prerequisite: acceptance into teacher education program. Principles, procedures, and materials for teaching the biological and physical sciences in elementary schools.

308. Methods in Elementary Social Studies (2) III. Wampler
Lecture/discussion—2 hours. Prerequisite: acceptance into a teacher education program. Principles, procedures, and materials for teaching history and the social sciences in elementary school.

309. Early Childhood and Kindergarten Education (3) III. The Staff (Merino in charge)
Lecture—3 hours. Prerequisite: upper division or professional standing. Methods, materials, and history of educational programs for the preschool through primary grades. Development of curriculum methods and materials which stress integration of appropriate subject areas with emotional, social, creative, physical, and cognitive development.

322. Methods in Secondary Social Studies (4) I. The Staff (Merino in charge)
Lecture—4 hours. Prerequisite: acceptance into a teacher education program. Supervised teaching in regular or special education secondary school classrooms. Focus on teaching the study of cultural, political, and world history.

323A. Physical Science in the Secondary School (3) I. The Staff (Merino in charge)
Laboratory/discussion—2 hours; laboratory—1 hour. Prerequisite: acceptance into a teacher education program. Activity-based overview of concepts and processes in secondary school physical sciences. Emphasis on philosophy, appropriate teaching methods, materials, assessment and evaluation of learning.
Education

323B. Life Sciences in the Secondary School (3) II. The Staff (Merino in charge)
Laboratory/discussion—2 hours; discussion/laboratory—1 hour. Prerequisite: acceptance into a teacher education program. Activity-based overview of concepts and processes in secondary school biology and chemistry. Emphasis on philosophy, appropriate teaching methods, materials, assessment and evaluation of learning and issues.

324. Teaching Methods in Mathematics (3) II. Dugdale
Lecture—3 hours. Prerequisite: acceptance into a teacher education program; student teaching (concurrently); a mathematics background or consent of instructor. Methods and curriculum for teaching mathematics at the secondary level (grades 9-12). Review of innovative mathematics programs in the State.

325. Research and Methods in Secondary English Language Arts (4) III. The Staff
Seminar—2 hours; fieldwork—3-9 hours. Prerequisite: graduate standing or credential program in Education or consent of instructor. Research on teaching and learning in the language arts. Principles, procedures and materials for improving the writing, reading and oral language of secondary students, with special attention to students from culturally and linguistically diverse populations.

326. Teaching Language Minority Students in Secondary Schools: Methods and Research (4) III. Merino
Seminar—3 hours; fieldwork—3 hours. Prerequisite: graduate standing in Education of consent of instructor. Research on principles, procedures and curricula for teaching discipline-specific concepts to language-minority students in secondary schools. Second-language acquisition principles and instructional strategies.

*351. Advanced Fieldwork in Bilingual Education: Teaching (3-5) I. The Staff (Merino in charge)
Seminar—2 hours; field work—3-9 hours. Prerequisite: upper division standing; acceptance into a bilingual education specialist program. Discussion, analysis, and implementation of methods, techniques, and materials in the bilingual/cross-cultural classroom, including team teaching with paraprofessionals, implementation of language-use models in the classroom, lesson planning, selection and use of bilingual/cross-cultural materials.

*352. Advanced Fieldwork in Bilingual Education: Evaluation and Supervision (3-5) II. Merino
Seminar—2 hours; field work—3-9 hours. Prerequisite: upper division standing; acceptance into a bilingual/cross-cultural specialist credential program. Provides opportunity to acquire evaluation and supervisory skills in the field under the supervision of University staff and an experienced program evaluator/supervisor in bilingual/cross-cultural education.

*361A-361B-361C. School Psychology: Introduction (3-3-3) I-II-III. Sandoval and staff
Seminar—2 hours; fieldwork—3 hours (minimum). Prerequisite: admission to school psychology credential program. History and theory of school psychology. Application of psychological theory to educational problems. Reading and mathematics curriculum for school psychologists. Crisis intervention and counseling. Survival skills in school and other institutions serving children. (S/U grading only.)

*362A-362B-362C. School Psychology: Advanced (3-3-3) I-II-III. Sandoval, Figueroa, Gandara
Seminar—2 hours; field work—4 hours. Prerequisite: courses 361A-361B-361C, 213, 218, 219. Theory and techniques of school-based mental health consulta tion and non-biased assessment. Legal principles relating to special education and practice in school psychology. Advanced case study techniques. (S/U grading only.)

*363A-363B-363C. School Psychology: Internship (8-12) I, II, III. Sandoval, Figueroa, and staff
Seminar—2 hours; internship—18-32 hours. Prerequisite: admission to school psychology credential program; courses 361A-361B-361C, 362A-362B-362C, 213, 218, 219. Individual assessment and program evaluation, mental health consultation, intervention strategies to promote the school learning and adjustment of children. Selected topics in school psychology. (S/U grading only.)

398. Group Study (1-5) I, II, III. The Staff (Director in charge)
(S/U grading only.)

399. Individual Study (1-5) I, II, III. The Staff (Director in charge)
(S/U grading only.)

Education (A Graduate Group)

Jonathan H. Sandoval, Chairperson of the Group
Faculty. Faculty are drawn from 12 departments in the Colleges of Letters and Science, and of Agriculture and Environmental Sciences.

Graduate Study. The Graduate Group in Education offers programs of study leading to the Ph.D. degree. Students may study topics in mathe matics, education, science education, and language and literacy education including bilingual education. Students may also concentrate in educational/school psychology, educational anthropology, and education sociology and policy studies. Detailed information regarding graduate study may be obtained by writing the group administrative assistant.

Preparation. Students who have earned an M.A. degree on their proposed emphasis program. For example, students applying for the Instructional Studies emphasis in mathematics should have earned the M.A. or M.A.T. degree in mathematics; students applying to the Psychological Studies program should have an M.A. in psychology, or educational psychology.

Graduate Adviser. Consult the Education Graduate Group Office.

Courses. See Education for courses.

Education Abroad Program

Dennis Dutschke, Ph.D., E.A.P. Campus Director
Program Office, 153 Kerr Hall (916-752-3014; FAX: 916-754-8311); World Wide Web: http://www.ucop.edu/eaphome/EAP.html

Programs of Study

The University of California offers overseas study programs in cooperation with more than 100 host universities and colleges in over 50 countries throughout the world. More than 1,500 UC students, primarily undergraduates, will take part in this program in 1996-97. Participating students remain registered on their home campuses while studying abroad and receive full academic credit for their work. Nearly 800 international students will attend under the auspices of the Education Abroad Program (EAP) in 1996-97, often with scholarships provided through UC and their home institutions. As an academic program, EAP at UC Davis is dedicated to serving students and faculty by providing global educational opportunities. Full-year study programs are available in Australia, Austria, Barbados, Brazil, Canada, Chile, China, Costa Rica, Denmark, Egypt, England, France, Germany, Ghana, Hong Kong, Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, Korea, Mexico, The Netherlands, New Zealand, Scotland, Singapore, Spain, Sweden, Taiwan, and Thailand. EAP also offers short-term and special-focus programs. One-semester options are available in Brazil, Canada, Chile, Costa Rica, Denmark, Hungary, India, Indonesia, Italy, Sweden, and Thailand. One-term international language programs are available in Den mark, France, Germany, Italy, and Mexico. A field research program is offered in Mexico, two Tropical Biology programs in Costa Rica, and a Global Security and Development Studies program in Japan.

Selection of UC undergraduates is subject to the following minimum qualifications: 3.0 cumulative grade point average at the time of application and maintained through departure (not required for some short-term language and special-focus programs); endorsement of the UC Davis EAP selection committee; and completion of language courses as required. (Some countries do not have a language requirement. About half of the programs require two years of college-level training in the language of the host country.) EAP opportunities are also open to qualified graduate students who have completed at least one full year of graduate work and have support of their graduate program and graduate dean. A detailed statement of the proposed program of study is required.

UC faculty, who serve as directors at most Study Centers, provide academic counsel to students while abroad. Full credit is granted satisfactorily completed, and approved courses are recorded on official UC transcripts. With careful planning, most EAP students make normal progress toward their UC degrees. Students may earn credit abroad towards their major, minor, general education, or graduation requirements, with approval of their UC major and college.

Participants pay the same fees as at UC Davis. Additional costs and fees include room and board, books and personal travel, round-trip transportation, on-site orientation and intensive language program (where applicable) and miscellaneous expenses. The cost of studying abroad is often comparable to that of studying on a UC campus, although costs vary from country to country.

Financial assistance is available to EAP students. Those already receiving UC financial aid maintain their eligibility for grants, loans, and scholarships while studying on EAP. Financial aid is based on the cost of studying at each EAP location. Students who might not normally be eligible for financial aid may qualify for the period they are in EAP. In addition to UC financial aid, EAP provides support through various scholarships and grants. Campus scholarships may also be available based on academic merit, or academic field of study. Students should contact the campus EAP and Financial Aid office for additional information.

An EAP advisor can provide full details about the academic programs abroad, requirements, and application procedures. Staff will put students in touch with recent participants and academic advisers. Academic catalogs and detailed course listings are available.

Selection

Students are selected by a committee of UC Davis faculty and staff familiar with the host country. EAP applicants must participate in a Conversation/Culture partnership: EAP applicants meet with international students or scholars for a minimum of five hours to exchange language, culture and information about their respective countries. In addition, the committee strongly recommends that prospective participants familiarize themselves with the country of their interest in preparation for the year abroad. Participation in predeparture courses, books, magazine or journal articles, and newspapers. Lists of suggested courses and reading materials are available in the EAP Office.

Once the completed application materials have been filed, an applicant will be contacted by the selection committee consisting of faculty and EAP returnees. Among other things, academic goals, knowledge of

*Course not offered this academic year.
Established by the Office of the Registrar). In some cases, students attend the same course abroad as in the host country, and in some cases students attend the same courses, taught by faculty of the host country in their own language. Thus, language skills are very important for students about to complete the EAP programs. To aid adjustment of UC students, tutorials are a part of the academic program at some centers. Tutorials assist in overcoming language problems and differences in educational practices and provide cultural background information presupposed in the courses. Tutorials are taught by graduate students or junior staff of the host university and are offered in association with courses in which a sufficient number of UC students have enrolled.

To assist in the adjustment and the academic work of the students, faculty members of the University of California serve as Directors and/or Associate Directors at most of the study centers abroad. The academic program of each student includes: (1) an intensive preparatory course in the language of the host country (except for the programs in the Australia, Canada, Egypt, Ghana, Hungary, Ireland, and New Zealand, United Kingdom); (2) a quarter, a semester or a full year of academic courses; (3) broad opportunity to audit courses within the host university. It is expected that students will complete a minimum of 36 units during the academic year or 24 semester units in addition to units earned in the intensive language program.

Graduation Requirements
All prospective applicants, particularly students who intend to study abroad during their senior year, should consult their course programs for Davis and abroad carefully in order to satisfy university, college, and major/minor requirements for their degree. The provisional planning form in the application packet addresses these concerns. Although units and grade points earned in the EAP are incorporated into the University transcript and GPA, departments and majors retain the right to determine which EAP courses will be accepted in satisfied or partial fashion toward requirements. Some units and small programs have identified key upper division courses which must be completed in residence at Davis. Academic advisers should be consulted regarding coursework and the pre-departure program at Davis will be planned appropriately.

All degree candidates must meet the University residence requirement. Students planning to graduate immediately after completion of the EAP may satisfy college residence requirements within the final 45 units preceding entrance into the EAP. In addition, subject to prior approval of the major department or program concerned, the requirement may be satisfied as follows: Within the final 90 units earned toward the degree, 35 units must be completed in residence in the student’s college or university. 12 units of which must be completed after returning from EAP participation. With this option, no more than 55 units taken abroad may be applied toward the unit requirement for graduation. The applicant’s college dean is the source of information on the University residence requirement.

Students may satisfy GE requirements while on EAP. GE credit is determined by the student’s college. Participants who satisfy all degree requirements while abroad and expect to graduate upon completion of the year abroad should file for candidacy to receive their degree in September (candidacy filing dates are established by the Office of the Registrar). In some cases, transcripts from abroad may not be received in time to be posted on the student’s Davis transcript for EAP returnees to be included on the June degree list. Such returning students may participate in the June commencement ceremony, however, their graduation date will be in September.

Study Centers
At any one center, the courses and fields of study open to UC students may be limited. Each host institution has special areas of excellence and strength. The listing below incorporates selected information concerning coursework available at each study center. More detailed information is available in the flyers describing each of the centers and from the EAP advisor in 153 Kerr Hall. In addition to the programs listed below, Davis students have access to a variety of non-UC programs of study and work abroad opportunities. Information can be obtained at the EAP Office in 153 Kerr Hall.

Europe

Austria. The program offers an opportunity to pursue a specialized interest to a limited number of highly qualified students for the academic year. A compulsory intensive language course in Vienna precedes the beginning of the academic year. All courses are taught in German.

University of Vienna. Eastern European studies (Balkans, Russia), fine arts (history of art, music, theater arts), folklore, history.

Vienna University of Economics and Business Administration.

Denmark. A compulsory summer intensive language program precedes the academic year or semester and continues through the fall semester. Most students concentrate on their major or a closely related field; independent study under tutorial supervision is expected. Students may also apply to the Summer Intensive Language Program only as a short-term program option.

University of Copenhagen. Broad availability of humanities and social sciences. Programs in communications, economics and international politics, history of linguistics, and medieval studies are of particular interest.

France. A compulsory intensive language course precedes the beginning of the academic year. All courses in the universities are taught in French. UC faculty directors are in residence at the Bordeaux, Lyon and Paris study centers in France. A French language and culture program is available during Fall quarter at the Centre International d’Études Francaises, at Lyon.

Ecole Normale Supérieure at Fontenay-Saint-Cloud, Paris Region. Coursework in social sciences and the humanities.

University of Bordeaux. Broad areas of the humanities and social sciences. The Institute of Political Science and the Institute of Prehistory (Anthropology) are well known.

University of Grenoble. Mainly in the social sciences through the Université des Sciences Sociales (Grenoble II); some humanities. Offerings in anthropology and psychology are limited. Not suitable for physical or life sciences.

University of Lyon. Social sciences, art history; modern languages and linguistics; Arabic studies.

Paris Center for Critical Studies. Film theory, literary criticism, philosophy, theater (literature, criticism, and history), historiography, and art history.

Paris Center for Critical Studies. In addition to required core courses in French civilization, students take courses in humanities and social sciences, with emphasis on comparative cultural studies, French language, and critical studies.

University of Toulouse. EAP students take regular University courses at Toulouse I (Social Sciences) and Toulouse II (Humanities). Of particular note are courses in business/management studies, comparative literature, economics, international relations, and political science.

Germany. A compulsory intensive language and culture program precedes the beginning of the academic year. All courses are taught in German.

Language and Society Program, Bayreuth. Short Term program available for Fall and Spring quarters.

Georg-August University, Göttingen. Broad curriculum covering most majors. Excellent science programs with substantial strength in biology, chemistry, and physics.

Hungary. Eotvos Loránd University, Budapest. A fall semester or a year-long program are offered with an emphasis on Central European studies. Students take courses especially designed for EAP, and the courses are taught in English.

Italy. A compulsory intensive program in language and history precedes the beginning of the academic year. Students who have completed only one year of Italian may become eligible for participation by attending a summer intensive-language program in Italy in order to attain the required third-year level, followed by the normal compulsory intensive-language program in Padua. A UC faculty director resident in Padua administers all EAP programs in Italy. All courses are taught in Italian.

Siena Language and Culture Spring Quarter (Siena) or Semester (Venice/Siena) Program. Open to begin (no prior language study required) and intermediate (at least one year of language study) Italian language students. Sophomores may apply. Good academic standing.

Bocconi University, Milan. This institution offers studies in business administration, economics, management and public administration, with a special emphasis on Italian and European entrepreneurial systems.

University of Bologna. Humanities, social sciences, economics, history.

University of Padua. History of art (including archaeology), Italian literature (including linguistics), and political science (which includes history, social sciences, geography, and demography, as well as political science in the American sense). Sciences are not available for UC students.

University of Venice. Economics; History; History of art.

Scuola Normale Superiore, Pisa. Medieval and Renaissance studies and links to faculty members need to be approved by the humanities prior to admission into the program.

Accademia delle Belle Arti di Venezia, Venice. Art studio and some art history. Colored slides of portfolio of art work and successful completion of entrance examination required for admission.

Netherlands. Year or Fall/European Studies semester available. Courses in European history, politics, economics, international relations. Courses taught in English.

Spain. A compulsory intensive language program precedes the beginning of the academic year. All instruction is in Spanish.

University of Alcalá de Henares. Spanish language and literature, history and art.

University of Barcelona. Humanities (with emphasis on Spanish art, literature, history, linguistics) and some social sciences. EAP students are required to take at least two regular-year-long courses at the University of Barcelona. (This is a cooperative program with the University of Illinois.)

University of Granada. EAP students take at least three courses each semester. Students will also take specified program tutorials.

Complutense University of Madrid. Humanities and some social sciences. The core program, developed for the UC Study Center and other American programs, concentrates on Spanish studies in the broadest sense. Core and Study Center courses are taught...
by Spanish faculty. EAP students are required to take two regular year-long courses at the University of Madrid, Autonomous University of Barcelona. Courses in most majors including Catalan studies, International Relations, and Environmental/Ecological studies.

Autonomous University of Madrid. Courses in natural sciences, physics, chemistry and biology, economics, history, ethnography, literature, and psychology.

Sweden. A Fall or year compulsory intensive language course during the summer for students who are not already fluent in Swedish. Language study continues during the fall semester for all students until the student has reached the equivalent of two years of Swedish. Many courses are taught in English. Prior knowledge of Swedish is not required. Fall or year participation.

University of Lund. Broad curriculum. Excellent science programs.

United Kingdom and Ireland. The program, which includes institutions below, is administered by a director and associate director located in London. Studies include courses in art and music, history, literature, and the natural sciences. Undergraduates are taught through the EAP administration; a student must still be accepted by a specific department in one of the host institutions. In many host institutions, the student can pursue studies in the following departments:

England: University of Birmingham, University of East Anglia, University of Essex, Colchester, University of Hull, University of Kent at Canterbury, University of Lancaster, University of Leeds, University of London (Queen Mary and Westfield College), University of Sheffield, University of Sussex, University of Warwick, University of York.

Ireland: University College, Cork, University College, Galway.

Scotland: University of Edinburgh, University College, Glasgow, University of St. Andrews, University of Stirling.

Generally, the host universities offer a broad curriculum that includes most liberal arts majors. Life sciences and physical sciences are available.

Russia. One semester-long (fall only) program available at the State University of Moscow. Intensive language study at the intermediate or advanced level for at least half of the units earned, and a wide range of area courses to choose from. Some coursework will be available in English. Graduate student opportunities will be available for students with advanced Russian language training.

Middle East

Egypt. All courses are taught in English, except courses in Arabic language and literature. The American University of Cairo. A broad curriculum offered by the Faculty of Arts and Sciences. All students are required to take one year-long course in Arabic. Offerings in science are limited.

Israel. A required, 10-week summer intensive language and cultural immersion program at the University of Haifa precedes the academic year.

Hebrew University, Jerusalem. Broad curriculum; emphasis on Israel and Middle Eastern studies. UC students enroll in a special program for foreign students, taught in English at the Hebrew University’s Robert Schad School for Overseas Students. The program offers courses in Judaic, Israeli, Middle Eastern studies, and a few courses in the general social sciences and humanities, science and business. Students with command of Hebrew have access to a broad curriculum throughout the Hebrew University.

Ben-Gurion University of the Negev, Beer Sheva. Intensive study abroad experience focusing on research. Two tracks are available: social-scientific study of the Middle East and culture and tradition, as well as continued study of the language, with additional courses in areas related to Israel’s environment. This fall semester program in Tel Aviv is an eight-week intensive program. The programs are administered by a director located in Tel Aviv.

Doshisha University, Kyoto. Humanities and social sciences, emphasis on Japanese language and culture. This center serves students having more advanced study of Japanese; at least two, preferably three, years of UC Japanese language study.

Global Security Studies Program, Meiji Gakuin University, Yokohama. This spring quarter program provides students the opportunity to study world peace and security issues. Previous Japanese language study is preferred, but not required.

Inter-University Center for Japanese Language Study (IUC), Yokohama. This program offers an intensive program of training for graduate students in Japanese language. The prerequisite is two years of university-level Japanese.

International Christian University, Mitaka (Tokyo). Humanities and social sciences; emphasis on Japanese language and intercultural communication. A limited number of courses taught in English are available. At least one year of university-level Japanese language study is required.

Nagoya University, Nagoya. This program is for graduate level economics students. The academic program includes intensive Japanese language study and research conducted under the supervision of a Japanese professor. The prerequisite is two years of university-level Japanese.

Osaka University, Osaka. Undergraduate students study Japanese language and a set program of economics courses. Instruction is in English during the fall semester and in Japanese during the spring. A minimum of two years of university-level Japanese is required.

Sophia University, Tokyo. Comparative culture studies, Japanese language and literature, history, political science, economics and business are available. Most are taught in English. The prerequisite is one year of university-level Japanese.

Tohoku University, Sendai. This program is primarily for graduate students in most fields with well-developed research projects. Participants will study Japanese language, in addition to working on their research projects under the guidance of a Japanese professor. Graduate study in Engineering may also be available. Undergraduates at the advanced level in Japanese may be able to participate in a language and culture program. The prerequisite is two to three years of university-level Japanese.

Tokyo Institute of Technology. Graduate students proficient in Japanese may do research and take courses in science and engineering.

Tsukuba University. Studies in the humanities, social and natural sciences and engineering.

Korea. Year or summer-plus-fall term with a required six-week intensive language program at Yonsei University. Students who are not fluent in Korean will take courses taught in English at Yonsei’s Division of International Education. Courses in art history, business, economics, law, literature, philosophy, political science, and sociology are available.

People’s Republic of China. EAP offers a full-year program in Beijing and a fall semester program at Nankai University in Tianjin. Intensive language study in Chinese is the primary emphasis of all programs. Beijing University of Science and Technology. Students receive a half-year of academic credit and financial support for studying standard Chinese and teaching English to Chinese students. The prerequisite is two years of Chinese language and one course in teaching English as a foreign language.

Nankai University, Tianjin. This fall semester program includes Chinese language study and courses taught in English on Chinese culture and civilization. The prerequisite is one year of college-level Chinese. Students must take an intensive language program in July and August prior to the start of the semester.

Peking University. A year-long program focused on advanced-level instructional in Chinese language and literature. Courses are taught in the Chinese Language Teaching to Foreigners Division of Peking University. The prerequisite for the program is two years of college-level Chinese.

Singapore. Semester or year program. Courses in biology (botany and zoology), business, economics, sociology, and Southeast Asian Studies.

Taiwan, Republic of China. Year program. Students participating in the Chinese Language and Culture Studies program in Taipei receive instruction in the Chinese language and enroll in lecture courses (taught in English) on Chinese culture and society arranged by CSU International Programs. Courses in art history, literature, economics, history and political science are available. Prior course work in Chinese culture, history and language are recommended.

National Taiwan University. This is a cooperative program with California State University International Programs.

Thailand. Fall semester or year program. An eight-week summer intensive language program at Chiangmai University is required for all students. This is followed by a seven-semester program of continued study of the Thai language, with additional courses in Thai history and culture, taught in English. Most students will remain at Chiangmai University for the second semester and continue taking courses in

*Course not offered this academic year.
Thai language and area studies classes taught in English. Students with sufficient language background (more than two years of University-level Thai language) have the option of enrolling at Chulalongkorn University in Bangkok for the second semester. Instruction is in Thai, though English-speaking tutors are available. It is possible to apply for the summer intensive-language program only. Students may take more advanced language courses in subsequent years.

Africa

Ghana. University of Ghana, Legon-Accra. Open to undergraduate and graduate students. Instruction is in English. As in the British system, students take a year-long program of study in a single area. End-of-year examinations are given only once and are mandatory for credit to be awarded. Offerings include humanities and social sciences, with emphasis on African studies. There is a strong program in ethnomusicology.

Latin America

Brazil. Language requirement for admission to this program is two years of college-level Portuguese or the equivalent; or one year of college Spanish and one year of college Portuguese, or two years of college Spanish. All language courses precede the beginning of regular coursework.

Pontifical Catholic University of Rio de Janeiro (PUC-Rio). A semester or year academic program which consists of Portuguese study and regular university courses in a wide range of fields.

Chile. Semester (Winter and Spring quarter equivalent) and year program. Catholic University of Chile, Santiago de Chile. A semester or year program is offered. Courses in Chilean history and society; Spanish language; Latin American development, ecology studies are available.

Costa Rica. Semester (Winter and Spring quarter equivalent) and year program. University of Costa Rica, San Jose. As is appropriate in this hemisphere, the academic year extends from early March through December. UC participants leave in January. Applications for participation in this program are due in May for a January departure.

A mandatory intensive language program precedes the academic year. During the academic year, courses in Central American studies (history, literature, political science, etc.) form half of the curriculum, with the remaining courses taken from any of the faculties at the University of Costa Rica.

Costa Rica Tropical Biology Quarter at Monteverde and at Las Cruces. This Spring and Fall quarters program provides an unusual opportunity for undergraduates to study and do field research in a tropical cloud forest. Applicants should have completed a year of biology, including one upper division organizational biology course. Spanish language required.

Mexico. Universidad Nacional Autonoma de Mexico (UNAM), Mexico City. A required intensive language program precedes the beginning of the school year, augmented by courses in contemporary Mexico (history, art, literature, etc.). Students have the option of spending one semester (two UC quarters) at UNAM, or a full year. All instruction is in Spanish.

Central America

Field Research Program (FRP) in Mexico. Available for either Fall or Spring semester, the FRP program begins in Mexico City with six weeks of intensive language courses and a course on contemporary Mexico. The final weeks of the program are spent doing volunteer work in a community outside of Mexico City to complement formal course work. Students must have completed a minimum of one year of university-level Spanish, or the equivalent, and have at least sophomore standing with good academic standing at the time of departure.

Language Program in TAXCO. Winter quarter available for language study at the 2nd-year level or advanced. At least sophomore standing with good academic status at the time of departure.

Summer Intensive Language Quarter in Morelia. This program provides total immersion in Mexican society and Spanish language instruction for students who have completed one year of university-level Spanish with a 3.0 GPA before departure. It is not appropriate for advanced students in Spanish. At least sophomore standing with a cumulative GPA of at least 3.0.

Canada

Students may enroll for a Fall semester or a full year. Studies on the major or a closely allied field are expected.

University of British Columbia (UBC). Vancouver. Most advanced courses are available. Areas of special interest include Pacific Rim and Canadian Studies.

Australia and New Zealand

As is appropriate in the Southern Hemisphere, the academic year extends from the beginning of instruction in late February through the examination period, which ends in early December. UC participants leave in early February, and will be unable to attend classes during the winter term preceding departure. Applications for participation in these programs are due in May for a February departure. The universities follow the British system of higher education.

The Australian program includes the University of New England in Armidale; the University of Queensland in Brisbane; the Australian National University in Canberra; three institutions in the Melbourne area, University of Melbourne, Monash University and La Trobe University; the University of Sydney, and the University of New South Wales in Sydney; University of Adelaide and Flinders University in South Australia; and the University of Wollongong. A full range of academic programs is available. The Study Center accommodates a limited number of students. A UC faculty member in Melbourne directs all programs.

The New Zealand program includes the University of Auckland, Lincoln College in Christchurch, the University of Otago in Dunedin, Massey University in Palmerston North, Victoria University in Wellington and the University of Waikato in Hamilton. All academic disciplines are available: programs in textiles and engineering and a variety of agricultural sciences are of special interest.

Endocrinology (A Graduate Group)

Judith Turgeon, Ph.D., Chairperson of the Group

Endocrinology Group Office, 4136 Medical Sciences-1A (Human Physiology, 752-3230)

Faculty. The Group includes faculty from the Schools of Medicine, Veterinary Medicine, the California Primate Research Center, and the College of Agricultural and Environmental Sciences.

Graduate Study. The interdepartmental Graduate Group in Endocrinology offers programs of study leading to the M.S. and Ph.D. degrees. Research and instruction are offered in topics ranging from endocrinological processes at the cellular and molecular levels to integrative systemic endocrinology. Graduate students receive a strong background in required basic cellular, biochemical and integrative endocrinological and related course work, plus have the opportunity to select specific fields of emphasis such as molecular mechanisms of hormone action, signal transduction, metabolism regulation, growth factors, neuroendocrinology, and reproduction.

Graduate Advisers. Contact the Program Office.

Courses in Endocrinology (EDO)

Graduate Courses

The Staff Laboratory—9 hours; discussion—1 hour. Prerequisite: consent of instructor. Ten-week assignment in endocrinology research laboratory. Individual research problem with emphasis on experimental design and methodological/analytical experience. Exposure to and experience with a range of endocrinology faculty research activities. May be repeated three times for credit. (S/U grading only.)

218. Mammalian Endocrinology and Homeostasis (4) III. Wtur. Turgeon

Lecture—4 hours. Prerequisite: Biological Sciences 102 and 103, Neurobiology, Physiology and Behavior 110, and consent of instructor. Biochemical, physiological, and regulatory properties of the mammalian endocrine system, both at the cellular and systemic level. Signal transduction mechanisms and hormonal actions. Principles that regulate homeostasis, especially in organ–organ interrelationships, metabolism and minerals, fluids and electrolytes. Reproductive endocrinology.

220. Endocrinology Literature Critique (1) I, II. Turgeon

Discussion—1 hour. Prerequisite: consent of instructor. Critical reading and evaluation of current original publications in endocrinology. Selected papers will be presented and discussed in detail by faculty and students. May be repeated for credit. (S/U grading only.)

235. Personal Computing in the Life Sciences (3) II. Matthews

Lecture—1 hour; laboratory—6 hours. Prerequisite: consent of instructor. Current and near-future uses of "state-of-the-art" personal computers and local area networks. Applications in the Life Sciences. Running programs on Macintosh IIX and 80386-based PC-compatibles and on 3-Com local area network in Endocrinology Graduate Group Computer Laboratory.

240. Biochemical Endocrinology (3) III. Adams

Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Examination of recent advances in biochemical endocrinology and molecular and cellular biology of endocrine systems with emphasis on processes of hormone and receptor synthesis, second messenger phenomena, and hormonal control of gene expression.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge)

Seminar—1 hour. Prerequisite: consent of instructor. Discussion and critical evaluation of advanced topics and current trends in research in endocrinology. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor.

299. Research (1-12) I, II, III, IV. The Staff (Chairperson in charge)

(S/U grading only.)

Endocrinology and Metabolism

See Internal Medicine in Medicine, School of
Biological and Agricultural Engineering Lower Division Program:

Food Engineering

Requirements for major in Food Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>QUARTER USUALLY TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus—Mathematics 21A-21B-21C-21D</td>
<td>1-2-3-4</td>
</tr>
<tr>
<td>Linear algebra—Mathematics 22A</td>
<td>5</td>
</tr>
<tr>
<td>Differential equations—Mathematics 22B</td>
<td>3</td>
</tr>
<tr>
<td>General physics—Physics 9A-9B-9C</td>
<td>6</td>
</tr>
<tr>
<td>Properties of biological materials—Biological Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Expository writing—English 1, 3, or Comparative Literature</td>
<td>3</td>
</tr>
<tr>
<td>Humanities—Social Sciences electives and General Education electives</td>
<td>3</td>
</tr>
<tr>
<td>Total Lower Division Units</td>
<td>92</td>
</tr>
</tbody>
</table>

Chemical Engineering Lower Division Program:

Requirements for majors in Chemical Engineering and the double majors, Chemical Engineering/Materials Science and Chemical Engineering/Biochemical Engineering, only.

<table>
<thead>
<tr>
<th>Course</th>
<th>QUARTER USUALLY TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus—Mathematics 21A-21B-21C-21D</td>
<td>1-2-3-4</td>
</tr>
<tr>
<td>Linear algebra—Mathematics 22A</td>
<td>5</td>
</tr>
<tr>
<td>Differential equations—Mathematics 22B</td>
<td>3</td>
</tr>
<tr>
<td>General physics—Physics 9A-9B-9C</td>
<td>6</td>
</tr>
<tr>
<td>General chemistry—Chemistry 2A, 2B, 2C (Chemistry 2AH, 2BH, 2CH strongly recommended)</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Organic chemistry—Chemistry 12A, 12B</td>
<td>6</td>
</tr>
<tr>
<td>Organic chemistry laboratory—Chemistry 12A</td>
<td>4</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3 (or an acceptable substitute as approved by the Undergraduate Study Committee of the College of Engineering)</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Humanities—Social Sciences electives and General Education electives</td>
<td>5</td>
</tr>
<tr>
<td>Total Lower Division Units</td>
<td>92</td>
</tr>
</tbody>
</table>

Course not offered this academic year.

Materials Science Lower Division Program

Requirements for majors in Materials Science and Engineering only.

<table>
<thead>
<tr>
<th>Course</th>
<th>QUARTER USUALLY TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus—Mathematics 21A-21B-21C-21D</td>
<td>1-2-3-4</td>
</tr>
<tr>
<td>Linear algebra—Mathematics 22A</td>
<td>5</td>
</tr>
<tr>
<td>Differential equations—Mathematics 22B</td>
<td>3</td>
</tr>
<tr>
<td>General physics—Physics 9A-9B-9C</td>
<td>6</td>
</tr>
<tr>
<td>General chemistry—Chemistry 2A, 2B, 2C (Chemistry 2AH, 2BH, 2CH strongly recommended)</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Organic chemistry—Chemistry 12A, 12B</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3 (or an acceptable substitute as approved by the Undergraduate Study Committee of the College of Engineering)</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Humanities—Social Sciences electives and General Education electives</td>
<td>5</td>
</tr>
<tr>
<td>Total Lower Division Units</td>
<td>92</td>
</tr>
</tbody>
</table>

Civil Engineering Lower Division Program

Requirements for Civil Engineering and the double major, Civil Engineering/Materials Science and Engineering, only.

<table>
<thead>
<tr>
<th>Course</th>
<th>QUARTER USUALLY TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus—Mathematics 21A-21B-21C-21D</td>
<td>1-2-3-4</td>
</tr>
<tr>
<td>Linear algebra—Mathematics 22A</td>
<td>5</td>
</tr>
<tr>
<td>Differential equations—Mathematics 22B</td>
<td>3</td>
</tr>
<tr>
<td>General physics—Physics 9A-9B-9C</td>
<td>6</td>
</tr>
<tr>
<td>General chemistry—Chemistry 2A, 2B, 2C (Chemistry 2AH, 2BH, 2CH strongly recommended)</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Organic chemistry—Chemistry 12A, 12B</td>
<td>6</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B, 1C</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3 (or an acceptable substitute as approved by the Undergraduate Study Committee of the College of Engineering)</td>
<td>3-4-5</td>
</tr>
<tr>
<td>Humanities—Social Sciences electives and General Education electives</td>
<td>5</td>
</tr>
<tr>
<td>Total Lower Division Units</td>
<td>92</td>
</tr>
</tbody>
</table>

Course not offered this academic year.
Computer Science and Engineering Lower Division Program

Requirements for Computer Science and Engineering majors only.

QUARTER USUALLY TAKEN

UNITS

Required Courses

Calculus—Mathematics

21A, 21B, 21C, 21D16

1-2-3-4

Linear algebra—Mathematics

22A-22B-22C-22D16

5

Differential equations—

22A-22B-22C-22D16

5

General physics—

Physics 9A, 9B, 9C12

3-4-5

General chemistry—Chemistry

2A-2B-2B12

3-4-5

General chemistry (required for

Science Engineering 404

2 or 3

Electrical Engineering 70 or

Engineering Science 404

2 or 3

Computer structure and assembly language—

Electrical Engineering 104

2 or 3

Computer Science Engineering

16

Total Lower Division Units90

Electrical and Computer Engineering Lower Division Program

Requirements for Electrical Engineering, Computer Engineering, and Electrical Engineering/Materials Science and Engineering majors only.

QUARTER USUALLY TAKEN

UNITS

Required Courses

Calculus—Mathematics

21A, 21B, 21C, 21D16

1-2-3-4

Linear algebra—Mathematics

22A-22B-22C-22D16

5

Differential equations—

22A-22B-22C-22D16

5

General physics—

Physics 9A-9B-9C-9D16

3-4-5-6

General chemistry—Chemistry

2A-2B-2B12

3-4-5

General chemistry (required for

Science Engineering 404

2 or 3

Electrical Engineering 70 or

Engineering Science 404

2 or 3

Computer structure and assembly language—

Electrical Engineering 104

2 or 3

Computer Science Engineering

16

Total Lower Division Units90

Mechanical and Aeronautical Engineering Lower Division Program

Requirements for Aeronautical Science and Engineering, Mechanical Engineering, and Mechanical Engineering/Materials Science majors only.

QUARTER USUALLY TAKEN

UNITS

Required Courses

Calculus—Mathematics

21A-21B-21C-21D16

1-2-3-4

Linear algebra—

Mathematics 22A3

5

Differential equations—

Mathematics 22B3

6

General physics—

Physics 9A-9B-9C-9D16

3-4-5-6

General chemistry—Chemistry

2A-2B-2B12

3-4-5

General chemistry (required for

Science Engineering 404

2 or 3

Electrical Engineering 70 or

Engineering Science 404

2 or 3

Computer structure and assembly language—

Electrical Engineering 104

2 or 3

Computer Science Engineering

16

Total Lower Division Units90

Aeronautical engineering fundamentals—

Aeronautical Science and Engineering

2S (Required for Aeronautical Science and Engineering majors)3

2

Statics—Engineering 353

4 or 5

Dynamics—Engineering 363

5 or 6

Properties of materials—

Engineering 454

4 or 6

Manufacturing processes—

Mechanical Engineering 50

(Required for Mechanical Engineering and Mechanical Materials Science and Engineering majors)3

4 or 5

Expository writing—English 1 or 3, or Comparative Literature

1, 2, 3 or 4, or Native American Studies 54

1 or 2

Introduction to public speaking or group communication—Rhetoric and Communication 1 or 3 (or an acceptable substitute as approved by the Undergraduate Study Committee of the College of Engineering)4

6

Humanities–Social Sciences and/or

General Education electives12

Total Lower Division Units91

Upper Division Programs

If you have completed the requirements for the lower division program or have entered the College of Engineering with more than 89 quarter units of credit, you should follow the upper division requirements for the major you have selected from the programs that follow.

Aeronautical Science and Engineering

Aeronautical Science and Engineering is the branch of engineering that applies scientific knowledge to the design, manufacture and operation of aircraft. Our Bachelor of Science degree in Aeronautical Science and Engineering provides a broad background and fundamental education in mathematics, the physical sciences, and the engineering sciences. These fundamentals, when complimented by the required technical courses, prepare you for employment in government or industry, while simultaneously establishing an excellent foundation for graduate studies.

The fundamental disciplines of this branch of engineering apply to all bodies and vehicles whose applied loads are influenced by aerodynamic forces. Within this context, aeronautical engineers are involved with automobiles, trains, ships and submarines, aircraft, rockets and missiles, space equipment, and a variety of energy systems.

Courses in fundamental engineering principles are supplemented with courses in aircraft propulsion, aerodynamics, performance, stability and control, aircraft preliminary design, aeronautical structures, and aeroelasticity.

A broad range of technical elective courses is available. Some students choose these electives from one area of study in order to begin developing a specialty. Others choose from several areas in order to broaden their background in the sciences and engineering. Typical aeronautical science and engineering specialties include aero-thermodynamics, propulsion systems, aircraft performance, stability and control, aeronautical structures, aeroelasticity, flight testing, or component and mechanism design. While you should consult with your adviser before selecting your technical electives, there are a number of electives that could be recommended to all aeronautical science and engineering students regardless of their chosen area of specialization.

Suggested technical electives:

Aeronautical Science and Engineering 131, 137, 139

Mechanical Engineering 172
Engineering

Aeronautical Science and Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology)

Minimum units required for major: 185

Subject Areas and Courses

Electronic circuits—Engineering 1003
Applied mechanics—Engineering 102, 104, 106, 1083
Applied thermodynamics—Engineering 105A, 105B, Mechanical Engineering 16510
Fluid mechanics—Engineering 103A, 103B, 107L10
Aerodynamics—Aeronautical Science and Engineering 126, 127 ..8
Aircraft propulsion, performance, stability and control—Aeronautical Science and Engineering 128, 129, 138 ..12
Aircraft preliminary design—Aeronautical Science and Engineering 133 ..8
Aerospace structures—Aeronautical Science and Engineering 133, 135 ..7
Measurement systems—Mechanical Engineering 137 ..8
Controls and system analysis—Mechanical Engineering 171 ..2
Applied mathematics—Select one course from Engineering 180; Applied Science 115 or Mathematics 128 ..12

Technical electives ..12

Strongly recommended: Aeronautical Science and Engineering 131, 137, 139; Mechanical Engineering 172.

Recommended: Engineering 102L, 106, 122, 190, Materials Science and Engineering 140, 142, 149, 155; Mechanical Engineering 150A, 150B, 162, 184A with 184B (both courses must be taken), 186, 187, Electrical and Computer Engineering 150; Applied Science Engineering 115, Civil and Environmental Engineering 131A.

Humanities—Social Sciences electives and/or General Education electives ..12

Total Units for Upper Division Program94

Biological and Agricultural Engineering: Biological Systems Engineering

Biological Systems Engineering is the branch of engineering that builds strongly on biology as a scientific base. In the coming age of biology and biotechnology, engineers will be needed to work side by side with life scientists to bring laboratory developments into commercial production. Industries in plant and animal production, tissue culture, bioprocessing, biotechnology, food processing, aquaculture, agriculture, and forest production will all need engineers with strong training in biology. Concern for our environment is opening new engineering opportunities as society strives to maintain a balance within the biosphere.

In the freshman and sophomore years, the Biological Systems Engineering major requires sequences of courses usual in all engineering programs, including math, physics, chemistry, engineering science, and humanities. Unlike other majors, the Biological Systems Engineering major also requires fundamental courses in the biological sciences and the integration of engineering with biology. Specific courses for the first two years are given in the section on Lower Division.

In the junior and senior years, the Biological Systems Engineering major requires courses that focus on the integration of biology and physical sciences with engineering. These upper division requirements are listed under the Biological Systems Curriculum.

Depending on your area of interest, you may select elective courses from six specializations:

- Agricultural Engineering
- Aquacultural Engineering
- Biotechnical Engineering
- Ecological Systems Engineering
- Forest Engineering
- Premedical/Biotechnical Engineering

You may also develop your own specialization in consultation with your adviser.

Areas of Specialization

Agricultural Engineering. Students specializing in agricultural engineering integrate engineering analysis and design with applied biology to solve problems in production, transportation and processing of agricultural products. Agricultural engineers design machinery, processes, and systems for managing a productive plant and animal culture, including environment, nutrient, and waste. Suggested courses in the specialization provide students with the fundamental principles of agricultural production and a broad background in engineering. Agricultural engineers are employed as practicing professionals and managers with large and small agricultural producers, equipment manufacturers, food processors, consulting engineering firms, and government agencies.

Recommended biological science electives:

- Plant Emphasis
 - Plant Biology 111
 - Soil Science 100
 - Select one course from Agricultural Systems 110, Plant Science 116, Environmental Horticulture 102
 - Animal Emphasis
 - Neurobiology, Physiology and Behavior 101
 - Soil Science 100
 - Select one course from Avian Sciences 101, Animal Science 143, 144, 146

Recommended engineering electives:

- Biological Systems Engineering 114, 132, 145
- Civil and Environmental Engineering 141, 141L, 149

Aquacultural Engineering. Aquacultural engineers design, build, and manage equipment and systems for the production of aquatic plants and animals. Aquacultural engineers must have a solid understanding of biology, especially processes related to water quality, to be able to work with the wide variety of systems used for aquaculture production. Systems range from sophisticated indoor plants with water treatment and recirculation to low-input earthen ponds. The elective courses recommended for the specialization include fish biology and production as well as water quality and treatment. Employment opportunities for aquacultural engineers include engineering consulting companies and government agencies. The aquaculture industry is expanding rapidly in various areas around the world, creating international employment opportunities for aquacultural engineers.

Recommended biological science electives:

- Fish and Wildlife Science 118
- Wildlife, Fish and Conservation Biology 121
- Recommended engineering electives:
 - Applied Biological Systems Technology 163
 - Civil and Environmental Engineering 140, 140L, 141, 141L, 148A, 148B

Biotechnical Engineering. This specialization is for students interested in the developing biotechnology industries. Core engineering courses are combined with training in genetics, biochemistry, microbiology, and molecular biology. Modern laboratory techniques in biochemistry are also included in the specialization to provide hands-on skills. Biotechnology is an emerging area of industrial growth in the US and will increasingly need engineers to transfer laboratory developments to large scale production. Present industrial activities include the production of genetically altered plants, plant materials and food products, production and packaging of biocontrol agents for plant pests and diseases; microbial production of biological products; tissue culture; and bioremediation.

Recommended biological science electives:

- Biological Sciences 101, 102, 103
- Microbiology 102

Molecular and Cellular Biology 120L

Recommended engineering electives:

- Biological Systems Engineering 132, 175
- Chemical Engineering 161B, 161L
- Engineering 190

Ecological Systems Engineering. Specialists in ecological systems engineering are concerned with the design, development, and management of ecosystems. Typical applications include rehabilitation of disturbed ecosystems, the design of mitigation areas, the incorporation of ecologically sustainable features into land developments, and the design and management of public and private landscapes. An understanding of ecology and the interaction of ecological communities, coupled with knowledge of engineering design and economics, are stressed in this specialization. Employment opportunities include environmental consulting firms, government regulatory agencies, and agencies involved in wildland resource management.

Recommended biological science electives:

- Environmental Studies 100
- Soil Science 100
- Select one course from Atmospheric Science 133, Plant Biology 121, Environmental Toxicology 101 or 1121

Recommended engineering electives:

- Applied Biological Systems Technology 190
- Biological Systems Engineering 115, 145
- Civil and Environmental Engineering 148A or 149, 152
- Hydrologic Sciences 100

Recommended course: Landscape Architecture 40 (no technical elective credit will be granted for this course in any engineering major)

Forest Engineering. Forest engineers apply engineering principles to solve problems in managing forest lands. Forestry has evolved from an emphasis on wood production toward multiple use, ecosystem management and consideration of noneconomic objectives such as retaining biodiversity. Forest engineers help to develop the equipment and techniques to plan and carry out forest operations that can meet these changing requirements. Examples include reforestation, harvesting, forest residue management, and development of roads and recreation facilities. Following the sophomore year, students are strongly encouraged to attend an eight-week field course sequence at the UC Forestry Camp near Quincy. This is followed by a semester at UC Berkeley, as an intercampus visitor, taking suggested forestry courses. This sequence provides a strong background in forest ecology, planning, and operations. Students complete their engineering programs at Davis, taking courses in planning methods, equipment development, and road design. Forest engineers are employed by the US Forest Service and other public agencies, the forest industry, consulting firms, and equipment manufacturers.

Recommended biological science electives:

- ESPM 129 or Soil Science 100
- ESPM 182 4.5 (Forest Harvest Systems)
- ESPM 185 6 (Silviculture)

Recommended engineering electives:

- Applied Biological Systems Technology 180
- Biological Systems Engineering 114, 115, 116
- Civil and Environmental Engineering 141, 141L, 145

Recommended Courses:

- ESPM 101 15 (Forestry Summer Program)
- ESPM 172 4.5 (Forest Photogrammetry and Photo Interpretation)
- Geography 106
Biological and Agricultural Engineering: Food Engineering

There is a strong demand for food engineering graduates in the food industry, which is the largest industrial sector of the U.S. and California economies. Food engineers help develop new food products and processes, design and operate food processing equipment, and plants for effective production of foods with minimal impact on the environment. Food engineers may work for food companies in process research and development, equipment and facilities design, or management of production operations. Research and regulatory positions are also available with state and federal agencies. Summer internships are usually available, and students are encouraged to make use of these opportunities.

Food engineering involves the application of engineering principles and concepts to the handling, storage, processing, packaging, and distribution of food and related products. In addition to engineering principles, the food engineering degree provides an understanding of the chemical, biochemical, microbiological, and physical characteristics of foods. Concepts of food refrigeration, freezing, extrusion, drying, packaging, handling, and other food operations are studied.

The food engineering curriculum provides a strong foundation in mathematical, physical, biological, and food sciences. Courses are drawn from the biological and food sciences, and from biological systems, chemical, and mechanical engineering. These courses introduce students to methods which account for material and energy uses; methods for analyzing and designing processes, equipment and operations (e.g., fluid flow and heat transfer); methods for predicting equipment performance; and design and controlling performance of operations in a manner most relevant to food and food systems. Food engineers are key contributors in optimizing food quality and safety, and are in maintaining both nutritional standards. In the development of food products like low-fat foods, food engineers design the processes and equipment to manufacture the new food and assist in the formulation.

Food Engineering Curriculum

Minimum units required for major: 180-182.

Master Undergraduate Adviser: J. R. Fronczak.
graphs. Please talk to the instructors of the courses listed about possible prerequisites before enrolling.

The premedical and prebiomedical engineering areas of specialization have been specifically designed to prepare the student for graduate work in biomedical engineering or to meet the undergraduate requirements for entrance into medical school. Because of the emphasis on the natural sciences and the application of fluid mechanics, mass transport, heat transfer, thermodynamics, reaction kinetics, and process dynamics to problems in natural science, you are well prepared to understand problems in living systems. Many biological phenomena, such as blood flow, solute transport, and energy exchange, can be dealt with using the theoretical tools you learned as an undergraduate.

AREAS OF SPECIALIZATION:

Applied Chemistry. The Chemical Engineering curriculum includes an important core of chemistry courses. You can take advantage of this background to build a strong program in chemistry by choosing electives from among advanced undergraduate chemistry courses.

Suggested technical electives:
- Chemistry 110B, 111, 115, 121, 128C, 129B, 129C
- 130, 131, 150
- Fiber and Polymer Science 100, 110

Applied Mathematics. The mathematics specialization is designed both to strengthen your understanding of the foundations of engineering science and to improve your ability to treat complex engineering problems. Courses in abstract algebra, advanced calculus, and the theory of differential equations provide a sound theoretical background, while courses in analytical and numerical analysis provide the techniques for solving a wide range of engineering problems.

Suggested technical electives:
- Applied Science Engineering 115, 116

Biochemical Engineering. This area of specialization prepares you to do graduate work in biochemical engineering and to find employment in the biotechnology, pharmaceutical, and food industries.

Suggested technical electives:
- *Strongly recommended*
 - Microbiology 102, 102L
 - Biological Sciences 1A, 102
 - Chemical Engineering 161A, 161B, 161L

- *Also recommended*
 - Biological Sciences 1B, 101, 103, 104
 - Biological Systems Engineering 175
 - Chemical Engineering 170
 - Food Science and Technology 123, 123L
 - Microbiology 130A, 130B, 130L
 - Molecular and Cellular Biology 120L, 123, 160L, 161, 170L
 - Neurobiology, Physiology and Behavior 100B, 100L
 - Plant Science 140
 - Viticulture and Enology 140, 186

Computers and Automation. This specialization offers you the opportunity to master various computational techniques to formulate, solve, and analyze chemical engineering problems. In addition, you are exposed to the theory and practice of monitoring and operating chemical processes using microprocessor-based control systems. The common ingredient in these studies is the use of computers. Development of expert systems for detecting process failures, using computer-aided design (CAD) packages to optimize product yields, solving large numbers of equations on supercomputers to assess transient behavior of processes, and implementation of plantwide control systems are all common goals of chemical engineering endeavors based on the extensive use of computers.

The following list of elective courses is suggested to help you obtain the necessary background in these areas.

Suggested technical electives:
- *Artificial Intelligence and Computer Graphics:*
 - Computer Science Engineering 170, 175

- *Numerical Analysis and Simulation:*
 - Applied Science Engineering 115, 116
 - Mathematics 128B-128C, 168
 - Civil and Environmental Engineering 153

- *Automatic Control:*
 - Electrical and Computer Engineering 150, 151, 157B
 - Mechanical Engineering 176
 - Food Science and Technology 156

Advanced Materials Processing. Because the manufacture of semiconductor devices, integrated circuits, magnetic memories, tapes, disks, and other devices involves the application of chemical and engineering principles by chemical engineers to the developing productive careers in the electronics industry. The electronics processing specialization introduces you to the analysis and design of modern circuits and devices and provides a strong background in the layout and fabrication of such devices.

Suggested technical electives:
- Computer Science Engineering 140
- Electrical and Computer Engineering 145A, 145B, 146A, 146B
- Physics 140A, 140B

Energy Conversion and Fuels Processing. This area of specialization introduces you to energy sources, energy conversion methods, and the manufacture of fuel.

Suggested technical electives:
- Biological Systems Engineering 120
- Engineering 111, 116
- Environmental and Resource Sciences 103
- Environmental and Resource Sciences 107
- Mechanical Engineering 161, 162

Environmental Engineering. Many activities of chemical engineers are motivated by environmental protection. This option prepares you to deal with environmental issues by developing knowledge of fuel, chemical, chemical transport phenomena: chemical reaction processes coupled with fluid mechanics, heat transfer, and mass transfer. Such a foundation in basic chemical engineering science, plus the usual chemical engineering analysis and design courses and designs on environmental topics, prepares you to seek employment with industry or government. For this specialization, select six courses from the following list:

Suggested technical electives:
- *Air Environment*
 - *Strongly recommended*
 - Civil and Environmental Engineering 149

- *Recommended*
 - Atmospheric Science 121A, 121B, 158
 - Civil and Environmental Engineering 242A, 242B, 242B*, 244
 - Environmental Studies 110
 - Environmental Toxicology 101, 112A, 112B, 131

- *Water Environment*
 - *Strongly recommended*
 - Chemical Engineering 161A, 161B, 161L
 - Civil and Environmental Engineering 140, 140L, 148A, 148B
 - Microbiology 102

- *Recommended*
 - Biological Sciences 102, 103
 - Civil and Environmental Engineering 147, 240, 243A, 243B, 244, 245, 246, 248A
 - Environmental Studies 110, 150A, 151
 - Environmental Toxicology 101, 112A, 112B
 - Soil Science 104
 - Water Science 41, 104

Food Process Engineering. This area of specialization prepares you to do graduate work in food science and technology and to work in the food processing industry.

Suggested technical electives:
- *Strongly recommended*
 - Microbiology 102
 - Biological Sciences 102, 103
 - Chemical Engineering 161A, 161B, 161L
 - Biological Systems Engineering 132
 - Food Science and Technology 104, 104L, 111

- *Recommended*
 - Food Science and Technology 150, 150L, 151

Marketing. Specialty chemical and product manufacturers need chemical engineers who have training in market management, which involves the application of economics, psychology, and statistics in market planning and forecasting and in strategically developing and promoting new products.

Suggested technical electives:
- Management 250, 251
- Agricultural Economics 113, 130, 136
- Psychology 183
- Statistics 103

Polymer Science. Polymer materials and their applications are dependent on the use of chemical and engineering principles to process such materials to meet the end-use functional and environmental requirements. The polymer science specialization also prepares you for graduate work in the interdisciplinary field of polymer science and engineering.

Suggested technical electives:
- Chemistry 108, 128C, 129B, 129C
- Fiber and Polymer Science 100, 150

Prebiomedical Engineering. This area of specialization prepares you for graduate work in biomedical engineering. Early planning of a complete course schedule in consultation with a Chemical Engineering adviser is important in planning necessary biomedical sciences courses into your program.

Suggested technical electives:
- Four to six courses from
 - Anatomy 100, Biological Sciences 1A, 1B, 1C, 10, 102, 103, 104, Molecular and Cellular Biology 140L, 141, 142, Neurobiology, Physiology, and Behavior 101, 111A, 111B, 112, 113, 114

Premedical. Inclusion of both organic and physical chemistry in the curriculum allows you to complete the premedical requirements while satisfying the requirements of the Chemical Engineering major. If you elect the premedical (including preveterinary) area of specialization, you should verify the specific preparation requirements with the Health Sciences Advising Office before making a final decision on your electives. To ensure that you have provided room in your program for the necessary biology courses, prepare a course schedule with a Chemical Engineering adviser early in your freshman year.

Suggested technical electives:
- Anatomy 100
- Chemistry 128C, 129B, 129C
- Six biology or biochemistry courses, such as Biological Sciences 1A, 1B, 1C, 101, 102, 103, 104, Microbiology 102, Molecular and Cellular Biology 140L, 141, 142, 150, Neurobiology, Physiology and Behavior 110, 112, 113, 114

Chemical Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.)

Minimum units required for major: 187-188.

UNITS

Subject Areas and Courses

| Chemistry—Chemistry 110A, 110C | 6 |
| Quantum mechanics—Physics 9D or Chemistry 110B | 4 or 3 |

Course not offered this academic year.
Advanced chemistry electives6

Technical electives...................................12
Humanities–Social Sciences/General Education electives6

Total Units for Upper Division Program....96-97

Chemical Engineering/Materials Science and Engineering

Minimum units required for major: 195-196

UNITS

Subject Areas and Courses
Chemistry—Chemistry 110A, 110C6
Quantum mechanics—Physics 9D or Chemistry 110B4 or 3
Materials science—Materials Science and Engineering 130, 132, 134, 138, and 139 courses chosen from Materials Science and Engineering 140, 142, 144, 146, 147, 148, 149, 155, and two laboratory courses chosen from Materials Science and Engineering 130L, 134L, and 138L ..22
Humanities–Social Sciences and/or General Education electives8

Total Units for Upper Division Program...100-101

Chemical Engineering/Biochemical Engineering

Minimum units required for major: 187

UNITS

Subject Areas and Courses
Biochemical engineering—Biological Sciences 102, Microbiology 102, Chemical Engineering 161A, 161B, 161L...17
Chemistry—Chemistry 110A, 110C6
Biochemical engineering electives10
Choose at least six units of lecture from Biological Sciences 1B, 101, 103, 104, Biological Systems Engineering 175, Molecular and Cellular Biology 123, Microbiology 130A, Neurobiology, Physiology and Behavior 100B, Viticulture and Enology 140, 186, Chemical Engineering 170.

Choose at least 4 units of laboratory from Molecular and Cellular Biology 120L, 160L, Microbiology 102L, Neurobiology, Physiology and Behavior 104L.

Humanities–Social Sciences electives and/or General Education electives8

Total Units for Upper Division Program91

Materials Science and Engineering

Materials science and engineering is directed toward an understanding of the structure, properties, and behavior of materials. Society demands new and improved materials with capabilities far superior to common metals, alloys, and ceramics. New materials are needed for high-speed transportation systems, surgical and dental implants, new generations of power plants, and solid-state electronic devices in computer and communication technology.

Both the development of new materials and the understanding of present-day materials demand a thorough knowledge of basic engineering and scientific principles including crystal structure, elastic and plastic behavior, thermodynamics, phase equilibria and reaction rates, and physical and chemical behavior of engineering materials.

Materials engineers study phenomena found in many different engineering operations, from fracture behavior in automobiles to fatigue behavior in aircraft frames; from corrosion behavior in petro-chemical refineries to radiation-induced damage in nuclear power plants; and from fabrication of steel to design of semiconductors. Materials engineers are also increasingly involved in developing the new materials needed to attain higher efficiencies in existing and proposed energy conversion schemes, and will play a central role in the development of new technologies based on composites and high temperature superconductivity.

The undergraduate program in Materials Science and Engineering provides the background for activities in research, processing, and the design of materials. The curriculum is based on a common core of courses basic to engineering. These courses, taken during your first two years, provide a strong foundation in fundamental engineering concepts. In your third year, you will take “fundamentals” courses (Materials Science and Engineering 130, 132, 134, 138). With this background, you are then ready for the “applications” courses (Materials Science and Engineering 140, 142, 144, 146, 147, 148, 149, 155) during the fourth year. Technical electives, selected from other engineering or physical and natural science disciplines, give you some degree of specialization at the bachelor’s degree level. They also provide preparation for research in a selected area at the graduate level. Twelve technical elective units may be selected to complete the undergraduate Materials Science and Engineering program. By selecting the appropriate technical electives and Humanities and Social Science/General Education electives, you may orient the program to suit your interests and career objectives: production and development, applied research, basic research, teaching, and industrial management.

Upper division courses in engineering, chemistry, physics, mathematics, and biological sciences are generally acceptable as technical electives in Materials Science and Engineering.

The following list of suggested areas of specialization is given to assist you and your adviser in the preparation of study lists.

Suggested technical electives:

Aerospace Structures:
Aeronautical Science and Engineering 130, 133, 135, 137, 139

Automatic Control and Systems Analysis:
Mechanical Engineering 171, 172, 185, 187, 188
Electrical and Computer Engineering 157A, 157B, 174

Biomedical Engineering:
Chemistry 107A, 107B
Biological Sciences 1A, 1B
Physiology 111A, 111B, 112, 113
Exercise Science 101, 102

Chemical Corrosion:
Chemistry 110A, 110B, 110C or 107A, 107B
Chemical Engineering 151, 152A, 152B

Computers:
Applied Science Engineering 115
Computer Science Engineering 110, 122A, 122B, 142, 151A, 151B
Electrical and Computer Engineering 170, 172, 180A, 180C
Mathematics 129A, 129B, 168
Statistics 130A, 130B

Electronic Materials:
Physics 121, 140A, 140B

Environmental Engineering:
Engineering 160 (only one unit of credit towards Technical Elective requirement)
Atmospheric Science 120
Biochemistry and Biophysics 101A, 101B
Water Science 41
Chemistry 8A, 8B
Civil and Environmental Engineering 149

Heat Transfer:
Engineering 105B
Mechanical Engineering 165
Chemical Engineering 150A, 153

Materials Design and Processing:
Aeronautical Science and Engineering 137
Engineering 104B, 106
Materials Science and Engineering 146, 148, 149, 155
Mechanical Engineering 150A, 150B, 150L, 151, 152, 185
Civil and Environmental Engineering 139

Physics of Solids:
Physics 115A, 115B, 140A, 140B
Electrical and Computer Engineering 145A, 145B, 148

Materials Science and Engineering

Minimum units required for major: 183

UNITS

Subject Areas and Courses
Electronic circuits—Engineering 1003
Applied mechanics—Engineering 103A, 1047
Applied thermodynamics—Engineering 105A, 106
Materials Science and Engineering 130, 132, 134, 138
Engineering design elective—select from Aeronautical Science and Engineering 137, 138A, Civil and Environmental Engineering 132, 135, Mechanical Engineering 150A, 150B ..9
Materials in design—Materials Science and Engineering 149, and select two courses from Materials Science and Engineering 140, 148, 155

Measurements and laboratory—Materials Science and Engineering 132L, 134L, 138L, Mechanical Engineering 176 ..9
Materials science fundamentals—Materials Science and Engineering 132, 134, 138
Materials science applications—Select from Materials Science and Engineering 142, 144, 146, 147 or (if not taken for the Materials in Design requirement) 140, 148, 155
Applied mathematics—Select one course from Engineering 180, 182; Mathematics 131; Statistics 120, 131A; Civil and Environmental Engineering 114

Basic science—Select from Chemistry 110A, 110C or Physics 140A, 140B, or Chemistry 128A, 128B, or Physics 121, 122A, or Geology 10A, 117A, 117B, or Physiology 110A, 110L, 110T

Technical electives10
Humanities–Social Sciences electives and/or General Education electives12

Total Units for Upper Division Program92

Civil and Environmental Engineering

Civil and environmental engineering is devoted to the improvement of the human environment to make our activities productive, safe, and enjoyable, and our surroundings aesthetically pleasing. The profession contributes directly to humanity’s continued health and well-being by the planning and design of sys-
tems that provide plentiful supplies of potable water; management and control of waste streams; land-water-air transportation; housing and other structures; flood control; and large recreational facilities.

Areas of specialization within civil and environmental engineering include (1) Civil Engineering Planning; (2) Environmental Engineering; (3) Structural Engineering; (4) Transportation Planning and Engineering; and (5) Water Resources Engineering. You may specialize in one or more of these areas by selecting appropriate technical electives. Such specialization is not required. You are urged to consult a faculty advisor when developing your individual program.

Because of the direct concern of professional civil engineers for the quality of human life, you are encouraged to include among your technical electives such courses as Economics 125, Environmental Studies 160 and 166; Political Science 108. Additional information concerning the areas of specialization and suggested courses are given in the following paragraphs.

AREAS OF SPECIALIZATION:

Civil Engineering Planning. Specialization in this area is directed toward the planning of resources utilization and development of projects on an urban or regional scale. Civil engineering planning requires an understanding of the basic principles of engineering, economics, law, planning concepts and techniques, environmental sciences, public administration, and politics. You are encouraged to plan your program early with the aid of a faculty adviser and to consult the suggested technical electives with coursework in the humanities and social sciences.

Suggested technical electives:
- Agricultural Economics 147, 148, 176
- Civil and Environmental Engineering 137, 146, 153, 155, 160, 161, 162
- Economics 125, 130, 131
- Environmental Engineering (only one unit of credit towards technical elective requirement)
- Geography 155, 162
- Geology 134
- Hydrologic Science 150
- Political Science 100, 101, 102, 107, 108

Environmental Engineering. Specialists in this area are concerned with improving and maintaining the quality of the air, land, or water environments that affect our health and well-being in the face of increasing population and expanding industrial activity. The program is firmly based on fundamental science and civil engineering and emphasizes the design of water-borne, solid, and airborne waste management systems; the design of potable water-supply systems; and environmental monitoring.

Suggested technical electives:
- Agricultural Economics 148, 176
- Atmospheric Science 120, 121A, 121B
- Biological Sciences 102, 103
- Chemical Engineering 154A, 154B, 156A, 156B, 161A, 161B, 170
- Chemistry 107A, 107B, 110A, 128A, 128B
- Civil and Environmental Engineering 140, 140L, 142, 142L, 144, 145, 146, 147, 148B, 149, 150
- Engineering 193
- Environmental Sciences 150A, 150B, 150C, 151, 166
- Mathematics 128A, 128B, 128C
- Mechanical Engineering 161
- Microbiology 102, 105, 120A
- Soil Science 111
- Statistics 130A, 130B

Structural Engineering, Structural Mechanics, and Geotechnical Engineering. This area is concerned with the conception, design, analysis, economics, and construction of structures such as buildings, bridges, highways, and dams. Structural Engineering encompasses structures made from metals, reinforced concrete, or timber. Geotechnical Engineering encompasses natural and man-made structures, such as foundations or slopes that are composed of rock or soil. Structural mechanics emphasizes more theoretical aspects of structures, such as mathematical analysis and characterization of material properties.

Suggested technical electives:
- Aeronautical and Astronautical Engineering 135, 137
- Civil and Environmental Engineering 131, 132, 136, 137, 138, 173, 174, 176
- Engineering 122, 126
- Materials Science and Engineering 138
- Mathematics 128A, 128B, 128C

Transportation Planning and Engineering. Specialists in this area are concerned with the development, coordination, and management of transportation systems for the movement of people and goods in a manner compatible with societal demands. Transportation planning blends knowledge of the basic concepts of engineering, economics, and planning in the development of policies, programs, and projects. Transportation systems engineering blends knowledge of many engineering disciplines in the design, construction, operation, and maintenance of transportation facilities in the form of an integral system. Students should also acquire an awareness of the social sciences and environmental sciences through coursework in these areas.

Suggested technical electives:
- Civil and Environmental Engineering 137, 149, 153, 160, 161, 162, 163
- Engineering 160 (only one unit of credit towards Technical Electives requirement)
- Environmental Studies 167, 168A, 168B, 171, 173, 178, 179

Water Resources Engineering. This area includes hydrology, hydraulics, and water resources systems planning and design. Hydraulics is concerned with flow in pipe and open-channel water-distribution systems and through hydraulic structures. Water resources systems planning and design is concerned with the comprehensive development of water resources for multiple use. Emphasis is placed on principles of planning, analysis, and engineering design and operation as they affect the needs of industry, agriculture, recreation, and other activities.

Suggested technical electives:
- Agricultural Economics 148, 176
- Atmospheric Science 120, 121A, 121B
- Civil and Environmental Engineering 142, 142L, 144, 145, 146, 148B, 150
- Electrical and Computer Engineering 150A, 150B
- Environmental Studies 128, 150A, 151
- Geography 162
- Hydrologic Science 103, 110, 150

Civil Engineering

(Certified by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc.)

Minimum units required for major: 180

Subject Areas and Courses

- Fluid Mechanics—Engineering 103A
- Mechanical Engineering 103A
- Structural mechanics—Engineering 104, 104L
- Applied thermodynamics—Engineering 105A or Chemistry 110A
- Soil mechanics—Civil and Environmental Engineering 171, 171L

Hydraulics and water resources—Civil and Environmental Engineering 141, 141L
- Environmental—Civil and Environmental Engineering 145A
- Civil engineering design—Civil and Environmental Engineering 135
- One course from Civil and Environmental Engineering 136, 145B, 148B, 150, 155, 162, or 173
- Three or four additional courses from Civil and Environmental Engineering 132, 134, 136, 145, 147, 148B, 150, 155, 162, or 173
- Economics—Engineering 106
- Engineering mathematical analysis—Applied Science Engineering 115, Civil and Environmental Engineering 114
- Mathematics 118A, 121A, Statistics 108, Engineering 182
- Transportation electives—select from Civil and Environmental Engineering 160, 161, or 163
- Technical electives

Total Units for Upper Division Program

Civil Engineering/Materials Science and Engineering

Minimum units required for major: 183

Subject Areas and Courses

- Electronic circuits—Engineering 100
- Fluid Mechanics—Engineering 103A
- Structural mechanics—Engineering 104, 104L
- Applied thermodynamics—Engineering 105A or Chemistry 110A
- Materials Science Engineering 130

Structural analysis—Civil and Environmental Engineering 130

Soil mechanics—Civil and Environmental Engineering 171, 171L

Hydraulics and water resources—Civil and Environmental Engineering 141, 141L

Environmental—Civil and Environmental Engineering 145A

Civil engineering design—Civil and Environmental Engineering 135
- One course from Civil and Environmental Engineering 136, 145B, 148B, 150, 155, 162, or 173
- Two additional courses chosen from Civil and Environmental Engineering 132, 134, 136, 145, 147, 148B, 150, 155, 162, or 173
- Economics—Engineering 106
- Engineering mathematical analysis—Applied Science Engineering 115, Civil and Environmental Engineering 114, and one course from Applied Science Engineering 116, Civil and Environmental Engineering 153

Materials science—Materials Science and Engineering 132, 134, 138, and two courses from Materials Science and Engineering 140, 142, 144, 147, 148B, 149, 155; and two laboratory courses chosen from Materials Science and Engineering 132L, 134L, 138L

Hydraulics—Civil and Environmental Engineering 137

Projects in environmental engineering—Environmental Engineering 137

Total Units for Upper Division Program

*Course not offered this academic year.
Computer Science and Engineering

The Department of Computer Science administers two curricula: Computer Science and Engineering in the College of Engineering, and Computer Science in the College of Letters and Science. It also administers a minor in the College of Letters and Science. For information on the Computer Science curriculum and minor, see “Computer Science” in this catalog.

The field of Computer Science and Engineering encompasses the organization, design, analysis, theory, programming, and application of digital computers and computing systems. It develops versatile engineers with backgrounds spanning a broad computer hardware/software spectrum. The Computer Science and Engineering major provides students with a solid background in mathematics, physics, chemistry, and electronic circuits and systems, all supporting the computer hardware and computer software courses which form the focus of the curriculum. A key theme of this curriculum is the hardware/software interaction in today's computer systems design, a theme reflected in the balance between computer hardware and computer software aspects in the course requirements. The key theme of hardware/software interaction is also reflected in the orientation of itself. The Computer Science and Engineering major also requires additional humanities and social science electives, helping to develop the verbal skills and intellectual breadth demanded by today's employers.

The Computer Engineering program prepares students to do further work in hardware, software, or electronics, either in industry or postgraduate study.

Computer Science and Engineering

(Accredredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology and the Computer Science Accreditation Commission of the Computing Science Accreditation Board.)

Minimum units required for: 180.

Subject Area and Courses

Professional responsibilities—Engineering 1903
Electrical engineering background—Electrical and Computer Engineering 100 and 180A ... 10
Mathematical methods—Computer Science Engineering 100 and Mathematics 131 or Statistics 131A ... 7
Data structures and algorithms—Computer Science Engineering 153 .. 3
Computer science theory—Computer Science Engineering 120† or 122A† 3
Computer hardware—Computer Science Engineering 152A, 154A, 154B, and Electrical and Computer Engineering 172 15
Computer software—Computer Science Engineering 140A, 150A or 151A†, and 160 12

Computer electives—at least 16 units chosen from Computer Science Engineering 120†, 122A†, 122B, 140B, 142, 150T, 151A†, 151B, 152B, 153, 158, 163, 165A, 165B, 168, 170, 172, 174, 177, 178, or Electrical and Computer Engineering 180B, and a combined total of 3 units from approved Computer Science Engineering 192, 199 and Electrical and Computer Engineering 194, 196

Humanities—Social Sciences/General Education electives 21

Total Upper Division Units 91

† Completion of both Computer Science Engineering 120† or 122A† will satisfy the computer science theory requirement and a computer elective requirement.
† Completion of both Computer Science Engineering 150 and 151A will satisfy a portion of the computer software operational system requirement and a computer elective requirement.

Electrical and Computer Engineering

The Department of Electrical and Computer Engineering administers three curricula in the College of Engineering: (1) The Electrical Engineering curriculum, (2) the Computer Engineering curriculum, and (3) the Electrical Engineering/Materials Science curriculum. Double majors are also defined in Electrical Engineering and Computer Engineering, and in Electrical Engineering and Computer Science and Engineering.

Upper division requirements for the degrees in Electrical Engineering, Computer Engineering, and Electrical Engineering/Materials Science are described below. Information on double majors can be obtained from the Electrical and Computer Engineering Department Office.

Computing Majors

There are three computing majors offered within the College of Engineering: (1) Electrical Engineering with a Computers Operations specialty, (2) Computer Engineering, and (3) Computer Science and Engineering.

All three curricula require that 63 of the approximately 90 upper division units be divided into the following three areas: computer hardware, computer software, and electronics. The Electrical Engineering with a Computer option and Computer Engineering curricula divide these 63 units almost equally between electrical, computer hardware and computer software (with the most flexibility found in the Computer Engineering curriculum). The Computer Science and Engineering curriculum divides these 63 units primarily between computer hardware and computer software.

Because Electrical Engineering is one of the few engineering majors recognized in all fifty states for professional registration, some computer majors wish to pursue a double major in Electrical Engineering and Computer Engineering or in Electrical Engineering and Computer Science and Engineering. Students interested in this option should check with a staff adviser since course selections must be planned very carefully. However, it is possible to obtain a double major in Electrical Engineering and Computer Engineering with only 195 units (15 more than either degree alone) or in Electrical Engineering and Computer Science and Engineering with 217 units.

Electrical Engineering Curriculum

Electrical Engineering involves the design, analysis, and effective use of electrical systems including electronic computers. Electrical and electronic circuits and computer systems play a central role in many aspects of modern life, including communications, medicine, education, environmental protection, space exploration, defense, and home entertainment.

The Electrical Engineering curriculum prepares students for careers in electrical engineering or for graduate studies by providing a solid background in mathematics, physics, sciences, and traditional electrical engineering subjects of (1) physical electronics, (2) signals and systems, (3) electromagnetics, (4) active and passive circuits, (5) computer systems and software, and (6) logic design. Through the proper choice of 25 upper division electives and free electives, it is possible to focus on any of these six specialty areas or to distribute the 25 units of electives among these areas. Students who complete the Electrical Engineering curriculum will obtain a Bachelor of Science in Electrical Engineering, one of the engineering degrees recognized in all fifty states as eligible for registration as a Professional Engineer.

Areas of Specialization

Physical Electronics includes the areas of solid-state circuits and fabrication and the theory courses supporting those subjects.

Recommended elective courses:

Signals and Systems includes digital communications, robotics, as well as control and communications, wireless and cellular digital communications systems, as well as signal and image processing and computer vision.

Recommended elective courses:

Electromagnetics studies microwave circuits and transmission lines.

Recommended elective courses:

Active and Passive Circuits deals with transistor-level circuit design and covers topics such as electronic amplifiers, analog-to-digital converters, filters, logic gates, RAM and ROM, and programmable logic arrays.

Recommended elective courses:

Computer Systems and Software includes courses in computer architecture, computer design, computer interfacing and computer software.

Recommended elective courses:

Logic Design considers the design of computer circuits at various levels, including the use of CAD systems, VHDL, and the design and fabrication of transistor-level digital circuits.

Recommended elective courses:

Electrical Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.)

Minimum units required for: 180.

Required Courses

Electrical engineering core—Electrical and Computer Engineering 101, 110A, 130A, 140A, 150A, 180A, plus two courses from 110B†, 130B, 140B, 150B

Computer software—Electrical and Computer Engineering 173 4

Thermodynamics—Engineering 105A 3

Probability theory—Statistics 120, 131A, or Mathematics 131A ... 3

Professional responsibilities—Engineering 160, 190 or Applied Science Engineering 137 3

Design electives .. 18

Select six courses, at least two with laboratories, from:

Electrical and Computer Engineering 106, 110B†, 111A–111B (both must be
Engineering

May also include approved Electrical and Computer Engineering or Computer Science Engineering 192 or 199 courses.

Humanities–Social Sciences/General Education electives... 12

Unrestricted electives... 5

Total Upper Division Units 90

† Electrical Engineering 110B may not be counted toward both the Electrical Engineering Core requirement and the Electrical Engineering Design Electives.

‡ Electrical Engineering students may substitute Computer Science Engineering 154A for Electrical and Computer Engineering 170.

Computer Engineering

Computer Engineering involves the design, development, analysis, organization, theory, programming, and application of digital computers. It combines many aspects of electronics, computer hardware, and computer software.

The Computer Engineering curriculum prepares students for careers in computer engineering or graduate studies by providing a solid background in mathematics, physical sciences, and the traditional computer engineering subjects: electronics, computer hardware, and computer software. Here electronics refers to the four Electrical Engineering specialty areas (1) physical electronics, (2) signals and systems, (3) electromagnetics, and (4) active and passive circuits. The 54 upper division units required in electronics, computer hardware, and computer software consist of 13 units in electronics courses, 18 units in computer hardware courses, and 18 units in computer software courses. The 14 units consist of 9 units of design electives and 5 units of unrestricted electives. By carefully selecting these 14 design and unrestricted electives, students can focus on electronics, computer hardware, or computer software, or distribute these units among the three areas. In comparison to the Electrical Engineering curriculum, the Computer Engineering curriculum requires courses in only four of the six Electrical Engineering areas: (1) physical electronics, (2) active and passive circuits, (3) computer systems and software, and (4) logic design. In comparison to the Computer Science and Engineering curriculum, the Computer Engineering curriculum requires students to take the electronics background necessary to pursue electives in integrated circuit design and offers more flexibility than the Computer Science and Engineering curriculum in the choice of electives. Students who complete the Computer Engineering curriculum will receive a Bachelor of Science in Computer Engineering.

AREAS OF SPECIALIZATION

Physical Electronics includes the areas of solid-state circuits and fabrication and the theory courses supporting those areas.

Recommended elective courses:

Signals and Systems includes digital communications, robotics, classical controls and communications, wireless and cellular digital communications systems, as well as signal and image processing and computer vision.

Recommended elective courses:

Electromagnetics studies microwave circuits and fiber-optical communications.

Recommended elective courses:

Active and Passive Circuits deals with transistor-level circuit design and covers topics such as electronic amplifiers, active to digital converters, logic gates, RAM and ROM, and programmable logic arrays.

Recommended elective courses:

Computer Systems and Software includes courses in computer architecture, computer design, computer interfacing, and computer software.

Recommended elective courses:

Logic Design considers the design of computer circuits at various levels, including the use of CAD systems, VHDL, and the design and fabrication of transistor-level digital circuits.

Recommended elective courses:

Computer Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology)

Minimum units required for major: 186.

Professional engineering electives—Engineering 160, 190 or Applied Science Engineering 137 3

Design electives ... 9

Select three courses, at least one of which must be a Mathematics and Science Engineering course, from the following:

Also may include approved Electrical and Computer Engineering or Computer Science Engineering 192 or 199 courses.

Humanities–Social Sciences/General Education electives... 12

Unrestricted electives... 5

Total Upper Division Units 90

† Computer Science Engineering 154A and 154B may be substituted for the Electrical and Computer Engineering 170 requirement.

‡ No design credit allowed when taken with 154A as substitute for Electrical and Computer Engineering 170.

Electrical Engineering/Materials Science and Engineering

In addition to the Electrical Engineering curriculum described above, the Department of Electrical and Computer Engineering offers a combined major in Electrical Engineering/Materials Science. In the past decade, the fields of solid-state electronics, optoelectronics, magnets, and superconductors have developed to the point that demand for new materials now sets the pace for progress in these fields. Materials scientists with an electronics background are needed to continue progress in these areas. The Electrical Engineering/Materials Science curriculum provides students with the background necessary to pursue careers in electrical engineering or materials science or to go on to graduate study.

Electrical Engineering/Materials Science and Engineering

Minimum units required for major: 186.

UNITS

Required Courses

Materials science core—Materials Science and Engineering 130, 132, 134, 146, and one laboratory course from Materials Science and Engineering 130L, 134L ... 14

Probability theory—Statistics 120, 131A, or Mathematics 131 ... 4

Professional responsibilities—Engineering 160, 190 or Applied Science Engineering 137 3

Design electives ... 6

Select two courses, at least one of which must be a Mathematics and Science Engineering course, from the following:
Electrical and Computer Engineering 106, 110A-111B (must both be taken to count as one design elective), 114, 118, 132A, 132B, 132C, 135, 146A, 146B, 157A,
The engineer-designer must have a solid and relative understanding of mechanical engineering, computer science, and electrical engineering. The industrial designer's ability to create new types of products is a function of their creativity and the use of various packages. The emphasis in the design and manufacturing processes is on the use of computer-aided design and computer-aided manufacturing methods and processes. Laboratories have been established that have state-of-the-art manufacturing equipment for conventional and non-traditional processing, three-dimensional measurement, and plastic injection molding. Computer-oriented manufacturing is also an emphasis of the program. A manufacturing engineer will have a solid background in manufacturing processes and systems as well as in statistics, design, controls, and applications of microprocessors.

Suggested technical electives:

- Electrical and Computer Engineering 160, 174
- Materials Science and Engineering 140, 155
- Mechanical Engineering 151, 153, 154, 172

Systems Dynamics and Control. Engineers are increasingly concerned with the performance of integrated dynamic systems in which it is essential to optimize component parts without considering the overall system. Systems Dynamics and Control specialists are concerned with the modeling, analysis, and simulation of all types of dynamic systems and with the use of automatic control techniques to change the dynamic characteristics of systems in useful ways. The emphasis in this program is on the physical systems that are closely related to mechanical engineering, but the techniques for studying these systems apply to social, economic, and other dynamic systems.

Graduate research includes projects on continuously variable transmissions, active and semi-active suspension systems, anti-lock braking systems, and the use of mechanical control actuator design. Research in walking machines, electronically controlled steering, mathematical models of motorcycle dynamics, the analysis of fuel management systems, and the design of flight control systems for the modeling of human pilot and vehicle dynamics. An Automotive Systems Dynamics Laboratory is being developed for testing component systems such as transmissions, brakes, and steering systems as well as testing completed test vehicles. As plans for on-campus laboratories and a test track proceed, ten experimental vehicles are housed in a rented facility, and research on vehicle components proceeds in various Mechanical Engineering laboratories.

Suggested technical electives:

- Aeronautical Science and Engineering 128, 129, 131, 139
- Engineering 122
- Mechanical Engineering 134, 152, 172, 184A with 184B (both courses must be taken)

Ground Vehicle Systems. An aspect of mechanical engineering is the design of surface vehicles. The emphasis is on the design of more environmentally benign vehicles that can provide transportation while using fewer resources. Innovations in the field require competence in vehicle dynamics, propulsion and engine concepts, control of power transmission, and construction of lightweight manufacturable structures and systems. Alternatively, fuel-efficient power systems, including electric drives, are also studied.

Transportation Systems. An important aspect of Mechanical Engineering is the planning, design, and operation of transportation systems. As society recognizes the increasing importance of optimizing transportation systems to minimize environmental degradation and energy expenditure, engineers will need to consider major innovations in the way people and goods are moved. Such innovations will require competence in vehicle dynamics, propulsion and...
control, and an understanding of the problems caused by present-day modes of transportation.

Suggested technical electives:
Aeronautical Science and Engineering 127, 128, 129
Civil and Environmental Engineering 131A, 140
Mechanical Engineering 122, 160 (only one unit of credit towards Technical Electives requirement)

Mechanical Engineering 134, 152, 162, 184A with 184B (both courses must be taken), 187

Mechanical Engineering

(Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology.)

Minimum units required for major: 180.

Subject Areas and Courses

Electronic circuits—Engineering 1003
Applied mechanics—Engineering 102, 1047
Applied thermodynamics—Engineering 105A, 105B, Mechanical Engineering 16510
Fluid mechanics—Engineering 105A, 105B6
Mechanical engineering design—Mechanical Engineering 150A, and either 150B or 172; and one course chosen from 184A with 184B (both courses must be taken), 185A with 185B (both courses must be taken in consecutive quarters), 186, 187, 188 ..12
Controls and systems analysis—Mechanical Engineering 1717
Measurements and laboratory—Engineering 102L, 107L, Mechanical Engineering 1767
Professional responsibilities—Engineering 1903
Applied mathematics—Select one course from: Engineering 180, 182; Applied Science 115; Mathematics 128C, 131; Statistics 120, 131A; Civil and Environmental Engineering 114, 11519
Technical electives ..22

In order to satisfy the design requirement, select three courses (on a letter grade basis) from the following:

- Materials Science and Engineering 140, 148,
- Aeronautical Science and Engineering 128, 129, 130, 137, 139, Mechanical Engineering 150B, 172, 184A with 184B (both courses must be taken), 185A with 185B (both courses must be taken in consecutive quarters), 186, 187, 188 (if these courses are not used for the core design requirement), and 134, 151, 152, 154, 161, 162, 163.

Additional technical electives:

In addition to the individual courses 184A–184B, 185A–185B, 186, or 187, selected to meet the Mechanical Engineering core units, a maximum of 4 units of project/independent study courses (184–188, 192, 199) may be applied to the technical elective degree requirement.

Total Units for Upper Division Program95

Courses in Engineering (ENG)

Lower Division Courses

4. Engineering Graphics in Design (3) I, II, Schaaf, Yamazaki

Lecture—2 hours; laboratory—3 hours. Introduction to engineering design, descriptive geometry, pictorial sketching, computer-aided graphics, and their application in the solution of engineering problems.

5. Applications of Computers (3) I, II, III, The Staff

Lecture—2 hours; discussion—1 hour. Prerequisite: Mathematics 16A or 21A. Digital computation and computer programming in FORTRAN Algorithms and their description. Basic programming, debugging of programs; approximate computing accuracy and significance; solving simple numerical and nonnumerical problems.

11. Issues in Engineering (1) I. Shackelford

Lecture—1 hour; discussion—1 hour. Prerequisite: participation in the Minority Engineering Program (MEP) or consent of instructor. Designed to broaden students’ understanding of the engineering profession: its methods, principles, design, and development process; career opportunities; and professional resources.

17. Circuits (4) I, II, III, The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22B (may be taken concurrently); Physics 9C. Basic electric circuit analysis techniques, including electrical quantities and elements, resistive circuits, transient and steady-state responses of RC circuits, sinusoidal excitation and phasors, and complex frequency and network functions.

25. Introduction to Physical Devices and Systems (3) I, II, III, The Staff

Lecture/discussion—2 hours; laboratory—3 hours. Prerequisite: lower division standing in engineering and consent of instructor. Introduction to and experience with common hardware and physical devices with the overall goal of enriching the students’ understanding of physical devices and systems. (P/NP grading only.)

35. Statics (3) I, II, III, The Staff

(Chairperson in charge)

Lecture—2 hours; laboratory—3 hours. Prerequisite: Mathematics 21D (may be taken concurrently); Physics 9A. Force systems and equilibrium conditions with emphasis on engineering problems.

Lecture—3 hours. Prerequisite: course 35, Mathematics 21D. Open to College of Engineering students only. Kinematics and kinetics of particles, of systems of particles, and of rigid bodies applied to engineering problems.

45. Properties of Materials (4) I, II, III, The Staff

Lecture—3 hours; laboratory—3 hours. Prerequisite: open only to students in the College of Engineering. Introductory course on the properties of engineering materials and their relation to the internal structure of materials. GE credit: Wt.

Upper Division Courses

100. Electronic Circuits and Systems (3) I, II, III, The Staff

Lecture—3 hours; lecture—1 hour; discussion—1 hour. Prerequisite: course 17. Introduction to analog and digital circuit and system design through hands-on laboratory design projects. Students who have completed Electrical and Computer Engineering 100 may receive only 1.5 units of credit.

102. Intermediate Dynamics (3) I, II, III, Hubbard, Karnopp

Lecture—3 hours. Prerequisite: course 36, Mathematics 21D; open to College of Engineering students only. Topics in three-dimensional rigid body dynamics; elementary dynamics of vibrating systems; introduction to energy methods.

102L. Solid Mechanics Laboratory (2) I, III, The Staff

Lecture—1.5 hours; laboratory—1.5 hours. Prerequisite: courses 102 (may be taken concurrently) and 104. Experimental laboratory to demonstrate fundamental principles of solid mechanics and their application to engineering problems. Introduction to instrumentation for dynamic motion measurement.

103A. Elementary Fluid Mechanics (3) I, II, III, Barakat, Chatott, Dwyer, White

Lecture—3 hours. Prerequisite: course 36 (may be taken concurrently). Fluid properties; fluid statics; continuity and linear momentum equations for control volumes; flow of incompressible fluids in pipes; dimensional analysis.

103B. Elementary Fluid Mechanics (3) I, II, III, Hajez, Kollmann

Lecture—3 hours. Prerequisite: course 103A; open to College of Engineering students only. Incompressible viscous flow; boundary layer flow; potential flows; compressible flows.

104L. Mechanics of Materials Laboratory (1) I, II, III, Chai

Laboratory—3 hours. Prerequisite: course 104. Experiments which illustrate the basic principles and verify the analysis procedures used in the mechanics of materials are performed using the basic tools and techniques of experimental stress analysis.

105A. Thermodynamics (3) I, II, III, Aldredge, Baughn, Dwyer, Kennedy

Lecture—3 hours. Prerequisite: Mathematics 21D, 22B; open to College of Engineering students only. Fundamental concepts of thermodynamics: heat energy and work, properties of pure substances, First
Law and Second Law for closed and open systems, reversibility, entropy, thermodynamic temperature scales, power cycles: Carnot, Rankine, Brayton; and applications of thermodynamics to engineering systems.

105B. Thermodynamics (3) I, II, III. Aldredge, Hoffman
Lecture—3 hours. Prerequisite: course 105A; open to College of Engineering students only. Irreversibility and availability, thermodynamic relations, gas and vapor mixtures, and chemical reactions.

106. Engineering Economics (3) II, III. Hartough, Slaughter
Lecture—3 hours. Prerequisite: upper division standing in engineering. The analysis of problems in engineering economy; the selection of alternatives; replacement decisions. Compounding, tax, origins and cost of capital, economic life, and risk and uncertainty are applied to methods of selecting most economical alternatives.

107L. Thermal Fluids Laboratory (2) II, III. Shaw, Barakat
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 103B and 105B (both may be taken concurrently). Experiments to illustrate the first and second laws of thermodynamics, thermodynamic cyclic processes, combustion, flow measurements and internal and external flows.

111. Electric Power Equipment (3) I. Delwiche, Hartough
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 17. Principles of AC and DC electric motors and generators, their control systems and power sources. Selection of electric power equipment components based on their construction features and performance characteristics.

122. Introduction to Mechanical Vibrations (3) I. Karnopp
Lecture—3 hours. Prerequisite: course 102. Free and forced vibrations in lumped-parameter systems with and without damping; vibrations in coupled systems; electromechanical analogs; use of energy conservation principles.

160. Environmental Physics and Society (3) I. Jungerman, Craig
Lecture—3 hours. Prerequisite: Physics 9D, 5C, or 10 or 1B and Mathematics 16B or the equivalent. Impact of mankind on the environment will be discussed from the point of view of the physical sciences. Calculations based on physical principles will be made, and the resulting policy implications will be considered. In the College of Engineering, students may receive only one unit of credit towards the Technical Electives requirement. (Same course as Physics 160.) GE credit: SciEng or SocSci.

180. Environmental Engineering (3) I. Hafez
Lecture—3 hours. Prerequisite: Mathematics 22B, course 5. Analysis of steady-state and nonsteady-state problems for discrete and continuous systems; analytic and approximate solutions. Typical engineering problems in heat transfer, fluid mechanics, electrical networks, mechanical vibrations, and elasticity.

182. Engineering Analysis in Applied Mechanics (3) III. Breuer
Lecture—3 hours. Prerequisite: course 102 (may be taken concurrently) and Mathematics 22B. Introduction to the mathematics of optimum design. The calculus of variations with applications to dynamics and design. Linearization and the solution of linear dynamic equations. Emphasis on analytical methods and computer aids.

190. Professional Responsibilities of Engineers (3) II, III. Sanders
Lecture—3 hours; laboratory—1 hour. Prerequisite: upper division standing. Organization of the engineering profession; introduction to contracts, specifications, business law, patents, and liability; discussion of professional and ethical issues; oral presentations on the interactions between engineering and society.

Graduate Courses

254. Manufacturing Engineering (3) II. Dorf
Lecture—3 hours. Prerequisite: course 160; Statistics 120. Manufacturing and process engineering, productivity, planning, production and operations, inventory and facilities, quality, robots and flexible manufacturing systems.

291. Seminar in Teaching (1) III. The Staff
Seminar—1 hour. Discussion of previous experience as a student and actual practice as a teacher. (SU grading only.)

Engineering: Applied Science

Courses in Engineering: Applied Science—Davis (EAD)

Lower Division Courses

90C. Research Group Conference for Lower Division Students (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: lower division standing; consent of instructor. May be repeated for credit. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor and lower division standing. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

115. Introduction to Numerical Methods for Engineers and Scientists (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: Engineering 5, Mathematics 22B. Introduction to error analysis, roots of equations, interpolation, eigenvalues, systems of linear algebraic equations, ordinary differential equations, and deterministic and stochastic algorithms. Lectures and computational assignments on the application of digital computers to problems in engineering and science.

116. Computer Solution of Physical Problems (3) III. De Groot
Lecture—3 hours. Prerequisite: course 115 or consent of instructor. Application of computers to solution of physical problems. Numerical solution of elliptic, parabolic, and hyperbolic partial differential equations; eigenvalue problems, Monte Carlo methods, linear programming.

137. Science and Technology of Nuclear Arms Effects and Control (3) I. Jungerman (Physics), Craig
Lecture—2 hours; discussion—1 hour. Prerequisite: course 115 or consent of instructor. Introduction to nuclear arms effects and nuclear arms control including the nuclear physics of atomic and hydrogen bombs, blast and radiation effects, radioactivity, electromagnetic pulse, ICBM accuracy, laser weapons, verification safeguards, biological and ecological effects. Emphasis on order of magnitude calculations. (In the College of Engineering, students may receive only one unit of credit towards the Technical Electives requirement.) (Same course as Physics 137.) GE credit: SciEng or SocSci.

147. Arms Race Strategies and Technologies (3) I. Craig
Lecture—2 hours; discussion—1 hour. Prerequisite: course 137/Physics 137. Technological and strategic issues in the nuclear arms race. Characteristics of nuclear weapons and weapons defense systems; responses and counter-responses. Advantages and disadvantages of alternative realizations of weapons systems.

165A. Quantum Optics I (3) I. Yeh

165B. Quantum Optics II (3) III. Yeh
Lecture—3 hours. Prerequisite: course 165A or the equivalent. Quantum nature of interaction between light and matter; photodetector counting statistics. Photon distributions in scattering processes and in nonlinear optical processes.

166A. Quantum Optics Laboratory (1) I. Yeh
Laboratory—3 hours. Prerequisite: course 165A currently. Hands on experience in working with lasers, photodetectors, spectroscopy, optical-electrical devices and photodetector counting statistics.

166B. Quantum Optics Laboratory (1) III. Yeh
Laboratory—3 hours. Prerequisite: course 165B currently. Continuation of course 166A.
171. Scanning Probe Microscopy (4) III. Yeh Lecture—3 hours; laboratory—3 hours. Prerequisite: Electrical and Computer Engineering 130A, Engineering 130D. Chemistry 110B or the equivalent. Physics of scanning microscope techniques, scanning tunneling microscope and atomic force microscope will be covered, as well as their applications to surfaces and structural biology. Operational STM and AFM will further student's experience in nano-scale science and technology.

180. Introduction to Plasma Physics and Controlled Fusion (3) I. De Groot Lecture—3 hours. Prerequisite: Physics 110B and 112A, or consent of instructor. Equilibrium plasma properties, plasma sources, plasma diagnostics, magnetic confinement, kinetic theory, plasma stability, plasma confinement systems and approaches to controlled thermonuclear fusion.

181. Plasma Physics Laboratory (1) I. De Groot Laboratory—3 hours. Prerequisite: course 180 concurrently. Langmuir probes, plasma sources, Landau damping of ion acoustic waves, ion acoustic shocks, ion-ion two-stream instability.

190C. Research Group Conference for Advanced Undergraduates (1) I, II, III. The Staff Conference—1 hour. Prerequisite: advanced standing; consent of instructor. Weekly conference on research problems in plasma physics: new techniques in applied science. May be repeated for credit. (P/NP grading only.)

198. Group Study (1-5) I, II, III. The Staff Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

228A-228B-228C. Properties of Matter (3-3-3) I-II-III. Hoover Lecture—3 hours. Prerequisite: Mathematics 22B and Physics 112B. Microscopic and macroscopic descriptions of matter; thermodynamics and kinetics, constitutive, electrical, mechanical and thermal properties.

230A-230B-230C. Structure of Matter (3-3-3) I-II-III. Yeh Lecture—3 hours. Prerequisite: courses 205A, 205B, 205C (may be taken concurrently). Classical properties of matter; introduction of quantum mechanics by the correspondence principle; perturbation theory; electron theory of atoms, molecules, and solids; quantum theory of cooperative effects.

271. Optical Methods in Biophysics (3) I. Yeh Lecture—3 hours. Prerequisite: Physics 110A-110B-110C. Chemistry 110A, 110B, or the equivalent. Physics of light-matter interactions used in biophysical research. Techniques of absorption, ellipsometry, fluorescence, phosphorescence, elastic and inelastic scattering, diffraction, and nonlinear optics are applied to the studies of proteins, nucleic acids, lipids, and supra-molecular organizations in biological systems. Offered in alternate years.

280A-280B-280C. Plasma Physics and Controlled Fusion (3-3-3) I-II-III. De Groot Lecture—3 hours. Prerequisite: course 234B or consent of instructor. Equilibrium plasma properties; single particle motion; fluid equations; waves and instabilities in a fluid plasma; plasma kinetic theory and transport coefficients; nonlinear and nonlocal Vlasov theory; fluctuations, correlations and radiation; inertial and magnetic confinement systems in controlled fusion.

285A. Physics and Technology of Microwave Vacuum Electron Beam Devices I (4) I. Luhmann Lecture—4 hours. Prerequisite: B.S. degree in physics or electrical engineering or the equivalent background. Physics and technology of electron beam devices in accelerators, flow and transport, electron gun design, space charge and waves and klystrons. Offered in alternate years.

285B. Physics and Technology of Microwave Vacuum Electron Beam Devices II (4) I. Luhmann Lecture—4 hours. Prerequisite: 285A. Theory and experimental design of traveling wave tubes, backward wave oscillators, and extended interaction oscillators. Offered in alternate years.

285D. Physics and Technology of Microwave Vacuum Electron Beam Devices IV (3) I. Luhmann Lecture—4 hours. Prerequisite: 285C. Computational models of vacuum electron beam devices. Offered in alternate years.

289A-J. Special Topics in Applied Science (1-5) I, II, III. The Staff Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in the following areas: (A) Atomic and Molecular Physics; (B) Chemical Physics; (C) Computational Physics; (D) Computer Science; (E) Materials Science; (F) Nuclear Science; (G) Nonlinear Optics; (H) Plasma Physics; (I) Quantum Electronics; (J) Solid State. May be repeated for credit.

290. Seminar (1-2) I, II, III. The Staff Seminar—1-2 hours. (S/U grading only.)

290C. Graduate Research Group Conference (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: consent of instructor. May be repeated for credit. (S/U grading only.)

299. Research (1-2) I, II, III. The Staff Research—1-2 hours. (S/U grading only.)

Courses in Engineering: Applied Science—Livermore (EAL)

Upper Division Course

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Software Engineering (3) I. The Staff Lecture—3 hours. Prerequisite: data structures, elementary knowledge of software development methodology; knowledge of an object-oriented language is desirable. First part of course examines the development of large production-quality programs, project management techniques, software design methodologies. The second part covers automated and integrated software tools and object-oriented methods of design. Problems associated with user interface design are discussed. (Former course 201A.)

203. Computer Architecture (3) III. The Staff Lecture—3 hours. Prerequisite: Computer Science Engineering 175A. Topics in computer architecture, hardware features to enhance operating systems, advanced architectures, memory hierarchy, parallel architectures, and vector computing.

204. Knowledge Representation (3) III. Blattner Lecture—3 hours. Prerequisite: Computer Science Engineering 270 and 222A, or the equivalent. Course explores expressive adequacy, computational efficiency, non-declarative and non-monotonic reasoning associated with some knowledge representation schemes. Optional written examination.

205A. Mathematical Methods (3) I. The Staff Lecture—3 hours. Prerequisite: calculus. Complex variables, theory of convergence, evaluation of definite integrals, factorial function (gamma function), asymptotic expansions, Fourier analysis.

205B. Mathematical Methods (3) II. The Staff Lecture—3 hours. Prerequisite: course 205A. Laplace transforms, Sturm-Liouville theory, solution of second order ordinary ODE, approximate solutions of ODE, calculus of variations, characteristics.

205C. Mathematical Methods (3) III. The Staff Lecture—3 hours. Prerequisite: course 205B. Spherical harmonics, Bessel functions, conformal mapping, hypergeometric functions, elliptic functions.

207. Compiler Construction (3) I. The Staff Lecture—3 hours. Prerequisite: Computer Science Engineering 240. Syntax-directed translation techniques are used to implement a compiler for a high-level programming language. Emphasis on semantic analysis and code generation and optimization.

210C. Numerical Methods in Applied Science (3) III. The Staff Lecture—3 hours. Prerequisite: course 210B. Computational methods in various fields including: fluid mechanics, kinetic theory, solid mechanics, quantum mechanics.

211A. Numerical Solution of Partial Differential Equations I (3) I. Rodrigue Lecture—3 hours. Prerequisite: course 210A, 210B. Fundamentals of parallel computers, grid generation, domain decomposition, Poisson's equation, elliptic PDEs, Galerkin methods, numerical linear algebra, iterative acceleration.

211B. Numerical Solution of Partial Differential Equations II (3) II. Rodrigue Lecture—3 hours. Prerequisite: course 211A. Parabolic PDEs, stability, preconditioned time differencing, hyperbolic PDEs, monotone differential equations, advection-diffusion equations, wave equation, Burgers' equation, reaction-diffusion equations.

211C. Numerical Solution of Partial Differential Equations III (3) III. Rodrigue Lecture—3 hours. Prerequisite: course 211B. Conservation laws, fluid equations, turbulence, elasticity equations, electromagnetic equations, transport equations.

213A. Computer Graphics (3) II. Max Lecture—3 hours. Prerequisite: consent of instructor. Development of algorithms for perspective line drawings of three-dimensional objects, as defined by polygons or bicubic patches.

213B. Computer Graphics (3) III. Max Lecture—3 hours. Prerequisite: course 213A or Computer Science Engineering 175. Emphasis on algorithms to produce color-shaded raster renderings of three-dimensional models.
21A-G. Special Topics in Computer Science (1-5) I-II. The Staff
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in the following areas: (A) Architecture; (B) Software Systems; (C) Language Translation; (D) Operating Systems; (E) Computer Systems; (F) Foundations of Computing. (G) Computational Mathematics. May be repeated for credit for a total of 5 units per segment if topic differs.

217A-217B. Computational Science (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: courses 205A and 205B (may be taken concurrently). Designed for physical scientists. Topics in computer science applicable to computations to scientific computer. Computer organization and architecture, data structures, algorithms and complexity, software environments for scientific visualization, symbolic computation.

218. Signal Processing (3) I. The Staff
Lecture—4 hours plus laboratory. Prerequisite: Mathematics 121A, 121B or the equivalent. Discrete-time and continuous-time signal processing. Fourier transforms, Laplace transforms, graph convolution. DT-Fourier transform, DT-Fourier convolution. Discrete-time transforms: DFT, FFT, and Discrete wavelet transforms. Filters and filter designs. Offered in alternate years.

220A. Artificial Neural Nets—I (3) I. Bernucci

220B. Artificial Neural Nets—II (3) I. Bernucci

221. Genetic Algorithms and Optimization (3) III. Vemuru
Lecture—3 hours. Prerequisite: Mathematics 145 or the equivalent; graduate standing; ability to program in one of the modern programming languages. Introduction to genetic algorithms. Fundamental theorem; schema; self-adaptive operators; applications to function optimization, scheduling, VLSI circuit layout. Implementation on parallel computers; genetic programming; evolutionary algorithms.

222. User Interfaces (3) II. The Staff
Lecture—3 hours. Prerequisite: courses 101, 106. Design and evaluation of the interface between systems and users. Covers user interaction styles and techniques, display formats, user guidance, and methodologies for designing and evaluating user interfaces. Offered in alternate years.

223. Mixed Media Interfaces (3) I. Blattner
Lecture—3 hours. Prerequisite: course 222. Examines basic principles of visual and auditory realistic computer interfaces. In time-varying systems, navigation through the multimedia systems, hypermedia, and an examination of some commercial systems as well as the study of interaction devices such as audio, gesture, video, pen-based systems, and voice input and output. Virtual reality systems are also studied. Offered in alternate years.

224. Theories of Human-Computer Interaction (3) I. Blattner
Lecture—3 hours. Prerequisite: data structures and basic statistics; a course in user interfaces is desirable. Some basic cognitive science pertaining to computer usage is introduced (such as memory, sensory limits, and problem solving) followed by models of human activity; task analysis; different paradigms for computer use; models of cooperative activity; cultural differences in human-computer interaction; users with disabilities and adaptive interfaces. Offered in alternate years.

225. Computational Structures for Signal and Image Processing and Graphics (3) III. Vemuru
Lecture—3 hours. Prerequisite: Computer Science Engineering 40; course 210A. Tools for research in digital media. Relevant computer architectures, algorithms and languages for signal processing, image processing and computer graphics. Software and hardware solutions in parallelism. Programming in SISAL. Parallel C and Parallel Fortran. Parallel algorithms, using SISAL on parallel computers. Offered in alternate years.

226. Practical Data Communications in Digital Media (3) I. Blattner
Lecture—3 hours. Prerequisite: Computer Science Engineering 152. Tools for research in digital media. Communication protocols, algorithms and architectures suitable in modern networked environment. Transmission of digital data over voice-grade channels, telecommunications networks for data transport, Broadband multimedia communications, ATM, and Broadband ISDN. Offered in alternate years.

227. Chaos, Fractals and Nonlinear Phenomena (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 205A and 205B. A system-inclusive investigation of sensitivity to initial conditions—called "chaos." Connecting the Second Law of Thermodynamics to nonlinear dynamics with "strange attractors"; these are generally "fractal" objects with great aesthetic and intellectual appeal. 228A-228B-228C. Statistical Mechanics (3-3-3) I-II-III. The Staff
Lecture—3 hours. Prerequisite: Mathematics 22B and Physics 112B. Microscopic and macroscopic descriptions of matter; thermodynamics and kinetics: constitutive, electrical, mechanical and thermal properties.

230A-230B-230C. Quantum Mechanics (3-3-3) I-II-III. The Staff
Lecture—3 hours. Prerequisite: course 205A-205B-205C (may be taken concurrently). Classical properties of matter; introduction to quantum mechanics by the correspondence principle; perturbation theory; electron theory of atoms, molecules and solids; quantum theory of cooperative effects.

233A-233B-233C. Theory and Applications of Solid-State Physics (3-3-3) I-II-III. The Staff
Lecture—3 hours plus laboratory—230C or the equivalent. Structure and properties of crystals; theory of dielectrics, metals and alloys; magnetism, superconductivity, and semiconductors. Applications to various solid-state devices.

234A-234B-234C. Electromagnetic Theory (3-3-3) I-II-III. The Staff

255. Classical Mechanics (3) I. The Staff
Lecture—3 hours. Prerequisite: consent of instructor. General principles of classical mechanics; variational methods; Lagrange’s and Hamilton’s equations; kinematics; collisions.

256. Continuum Mechanics (3) II. The Staff
Lecture—3 hours. Prerequisite: course 205C. Hydrodynamics of solids and compressible fluids in two and three dimensions; problems of hydrodynamic instability; viscous hyrodynamics; boundary layer theory.

262A-262B-262C. Atomic and Molecular Interactions (3-3-3) I-II-III. Orel
Lecture—3 hours. Prerequisite: course 230A-230B-230C or the equivalent. Atomic structure and specie, molecular structure and spectra, classical and quantum mechanical collision theory of electron and heavy particle scattering.

265A-265B. Laser Physics (3-3) I-II. Haas

266A-266B. Laser Physics Laboratory (3-3) I-II. The Staff

267. Nonlinear Optics (3) III. Haas

267L. Nonlinear Optics Laboratory (3) III. Haas
Lecture—1 hour; laboratory—6 hours. Prerequisite: course 265A-265B. Experiments exploring the principles of nonlinear optics. Phenomena studied selected from: crystal-optics, electro-optics, acousto-optics, parametric amplification and oscillation, harmonic conversion, stimulated Raman and Brillouin scattering, self-focusing, four-wave mixing, phase conjugation.

280A-280B-280C. Plasma Physics and Controlled Fusion (3-3-3) I-II-III. Hwang
Lecture—3 hours. Prerequisite: course 234B or consent of instructor. Equilibrium plasma properties; single particle motion; fluid equations; waves and instabilities in a fluid plasma; plasma kinetic theory and transport coefficients; linear and nonlinear Vlasov theory; fluctuations, correlations and radiation; inertial and magnetic confinement systems in controlled fusion.

285A. Physics and Technology of Microwave Vacuum Electron Beam Devices I (4) I. Luhmann
Lecture—4 hours. Prerequisite: B.S. degree in physics or electrical engineering or the equivalent background. Physics and technology of electron beam emissions, flow and transport, electron gun design, space charge waves and klystrons. Offered in alternate years.

285B. Physics and Technology of Microwave Vacuum Electron Beam Devices II (4) I. Luhmann
Lecture—4 hours. Prerequisite: 285A. Theory and experimental design of traveling wave tubes, backward wave oscillators, and extended interaction oscillators. Offered in alternate years.

285C. Physics and Technology of Microwave Vacuum Electron Beam Devices III (3) I. Luhmann
Lecture—4 hours. Prerequisite: 285B. Physics and technology of gyrotrons, gyro-kinetic, free electron lasers, magnetrons, crossfield amplifiers and relativistic devices. Offered in alternate years.

285D. Physics and Technology of Microwave Vacuum Electron Beam Devices IV (3) I. Luhmann
Lecture—4 hours. Prerequisite: 285C. Computational models of vacuum electron beam devices. Offered in alternate years.

289A-K. Special Topics in Applied Science (1-5) I-II. The Staff
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in the following areas: (A) Atomic and Molecular Physics; (B) Chemical Engineering: Applied Science 223
Courses in Engineering: Biological Systems (EBS)

Lower Division Courses

1. Introduction to Biological Systems and Food Engineering (3) I, II, III. The Staff (Chair in charge)
Lecture—2 hours; laboratory—3 hours. Introduction to engineering and the engineering design process, with examples drawn from the fields of agriculture, biological and food engineering. Emphasis on the relationship of engineering principles to biological systems. Laboratories include small group design projects and presentations. (P/NP grading only.)

75. Properties of Materials in Biological Systems (4) II. Slaughter
Lecture—3 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1A; Physics 9C (may be taken concurrently). Properties of typical biological materials; composition and structure with emphasis on the effects of physical and biochemical properties on design of engineered systems; interactions of biological materials with typical engineering materials. GE credit: SciEng.

90C. Research Group Conference in Biological Systems Engineering (1), II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: lower division standing in Biological Systems Engineering or Food Engineering; consent of instructor. Research group conference. May be repeated for credit. (P/NP grading only.)

90X. Lower Division Seminar (1-4) I, II, III. The Staff
Seminar—1-4 hours. Prerequisite: consent of instructor. Examination of a special topic in a small group setting.

92. Internship in Biological Systems Engineering (1-5) I, II, III. The Staff (Hills in charge)
Internship. Prerequisite: lower division standing; project approval prior to period of internship. Supervised work experience in biological systems engineering. May be repeated for credit. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff
Research conference. May be repeated for credit. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Hills in charge)
Research conference. May be repeated for credit. (P/NP grading only.)

Upper Division Courses

114. Principles of Field Machinery Design (3) III. Steinke
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 36, 104A. Tractor and stability of vehicles with wheels or tracks. Operating principles of field machines and basic mechanisms used in their design.

115. Forest Engineering (3) III. Hartsough
Lecture—3 hours. Prerequisite: Engineering 104A; Environmental Science Policy and Management 182; 185 (Berkeley campus). Applications of engineering principles to problems in forestry, including those in forest regeneration, harvesting and transportation.

116. Forest Engineering Field Problems (2) I. Miles
Lecture—1 hour; three weekend field trips to Blodgett Forest. Prerequisite: course 114 or 115. A field study and critical analysis of operations, techniques, and equipment common in forest management, with particular consideration to measurements, data analysis, safety of operations, and maintenance practices.

120. Power Sources and Transmission (4) II. Chen
Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 17, 36, 103A, 105A. Design and performance characteristics of power units; internal combustion engines, hydroelectric, wind, and hydraulic power systems. Selection and design of power transmission systems for agricultural and industrial applications.

125. Psychrometrics, Heat, and Mass Transfer (3) III. Jenkins
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 75, Engineering 105A. Psychrometrics and heat and mass transfer with principal applications in the design of controlled climates and environments for biological systems. Psychrometric variables and control processes. Steady and transient heat and mass transfer, including heat conduction, convection, and material diffusion.

130. Dynamic Modeling of Processes in Biological Systems (3) II. F. Rumsey
Lecture/discussion—3 hours. Prerequisite: Engineering 5 or the equivalent. Introduction to techniques for modeling processes through mass and energy balances, rate equations and equations of state. Analytical and numerical methods for the solution of equations.

132. Unit Operations in Food Engineering (4) III. Singh
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 125, Engineering 103A, 105A. Mechanutal unit operations applied to such processes as non-Newtonian flow, size reduction, sorting and mixing of granular materials. Thermal operations related to refrigeration, freezing, evaporation and drying of foods.

143. Analytical Hydrology and Watershed Management (3) II. Parlangie
Lecture—2 hours. Prerequisite: Engineering 103A or Hydrologic Science 103, and working knowledge of FORTRAN. Introduction to watershed hydrology modeling. Techniques in precipitation, evaporation, infiltration, subsurface and overland flow, non-point source pollution, snowmelt, and their formulation into watershed model design and programming. (Same course as Hydrologic Science 143.)

145. Irrigation and Drainage Systems (4) II. Wallender, Grismer, Hills
Lecture—2 hours. Prerequisite: Engineering 103A or Hydrologic Science 103. Engineering and scientific principles applied to the design of surface, sprinkler and micro irrigation systems and drainage systems within economic, biological, and environmental constraints. Interaction between irrigation and drainage will be emphasized. (Same course as Hydrologic Science 115.)

165. Bio-Instrumentation and Control (3) I. Delwiche
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 100. Instrumentation and control for biological production systems. Measurement system concepts, instrumentation and transducers for sensing biological parameters, data acquisition, and process control.

170A. Engineering Design and Professional Responsibilities (3) II. Miles
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 36, 104A. Introduction to engineering design including professional responsibilities. Emphasis placed on project selection, data sources, specifications, human factors, biological materials, safety systems, and professionalism. Detailed design proposals will be developed for course 170B.

170B. Engineering Projects: Design (3) I, II, III. Miles
Laboratory/discussion—three 2-hour sessions. Prerequisite: course 170A. Individual or group projects involving the design of devices, structures, or systems to solve specific problems in agriculture or forestry. Students may select their projects, subject to approval of instructor.

170C. Engineering Projects: Design Evaluation (3) II, III. Miles
Laboratory—three 3-hour sessions. Prerequisite: course 170B strongly recommended. Individual or group projects involving fabrication, assembly and testing of components, devices, structures or systems designed to solve specific problems in agriculture or forestry. Projects selected by the instructor from those designed in course 170B.

*Course not offered this academic year.
175. Rheology of Biological Materials (3) I. K. McCarthy
Lecture—3 hours. Prerequisite: Chemical Engineering 150A or Engineering 103A; and Agricultural Engineering 150A or Chemical Engineering 152A. Introduction to fluid and solid rheology, viscoelastic behavior of foods, and other biological materials. Application of rheological properties to food and biological systems (i.e., pipeline design, extrusion, mixing, coating).

190C. Research Group Conference in Biological Systems Engineering (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: upper division standing in Biological Systems Engineering or Food Engineering; consent of instructor. Research group conference. May be repeated for credit. (P/NP grading only)

190X. Upper Division Seminar (1-4) I, II, III. The Staff Seminar—1–4 hours. Prerequisite: consent of instructor. In-depth examination of a special topic in a small group setting.

192. Internship in Biological Systems Engineering (1-5) I, II, III. The Staff (Hills in charge)
Internship. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in biological systems engineering. May be repeated for credit. (P/NP grading only)

198. Directed Group Study (1-5) I, II, III. The Staff (Hills in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Hills in charge) (P/NP grading only)

Graduate Courses

200. Research Methods in Biological Systems Engineering (2) I. Giles
Lecture—2 hours. Prerequisite: graduate standing. Planning, execution and reporting of research projects. Literature review techniques and proposal preparation. Research funding. Record keeping and patents. Uncertainty analysis in experiments and computations. Graphic analysis. Oral and written presentation of research results, manuscript preparation, submission and review.

215. Soil-Machine Relations in Tillage and Traction (3) II. Upadhyaya
Lecture—3 hours. Prerequisite: course 114. Mechanic of interactions between agricultural soils and tillage and traction devices; determination of relevant physical properties; soil analysis of stress and strains in soil due to machine loads; experimental and analytical methods for synthesizing characteristics of overall systems. Offered in alternate years.

216. Energy Systems (3) II. Jenkins
Lecture—3 hours. Prerequisite: Engineering 105A. Theory and application of energy systems. System analysis including input-output analysis, energy balances, thermodynamic availability, economics, environmental considerations. Energy conversion systems and devices including cogeneration, heat pump, fuel cell, hydroelectric, wind, photovoltaic, and biomass conversion principles. Offered in alternate years.

218. Solar Thermal Engineering (3) I. T. Rumsey

220. Pilot Plant Operations in Aqueculural Engineering (3) III. Piedrahita
Lecture—1 hour; laboratory—6 hours. Prerequisite: Civil Engineering 243A-243B or Applied Biological Systems Technology 161, 163. Topics in water treatment as they apply to aquaculture operations. Laboratory study of unit operations in aquaculture. Offered in alternate years.

231. Mass Transfer in Food and Biological Systems (3) I. Krotcha
Lecture/discussion—3 hours. Prerequisite: graduate standing. Application of mass transfer principles to food and biological systems. Former course Agricultural Engineering 289C. Offered in alternate years.

233. Analysis of Processing Operations: Drying and Evaporation (3) II. T. Rumsey
Lecture—3 hours. Prerequisite: course in food or process engineering with FORTRAN. Diffusion theory in drying of solids. Analysis of fixed-bed and continuous-flow dryers. Steady-state and dynamic models to predict performance evaporators: multiple effects, mechanical and thermal recompression, control systems. Offered in alternate years.

235. Advanced Analysis of Unit Operations in Food and Biological Engineering (3) III. Singh
Lecture—3 hours. Prerequisite: course 132. Analysis and design of food and biological systems. Steady state and dynamic heat and mass transfer models for operations involving phase change such as freezing and drying. Separation processes including membrane applications in food and fermentation systems.

237. Thermal Process Design (3) III. T. Rumsey
Lecture—2 hours; discussion—1 hour. Prerequisite: Food Science and Technology 150 recommended. Heat transfer and biological basis for design of heat sterilization of foods and other biological materials in containers or in bulk. Former course Agricultural Engineering 289B. Offered in alternate years.

239. Magnetic Resonance Imaging in Biological Systems (3) I. M. McCarthy
Lecture—3 hours. Prerequisite: graduate standing. Theory and applications of magnetic resonance imaging to biological systems. Former course Agricultural Engineering 289E. Offered in alternate years.

240. Infiltration and Drainage (3) II. Grimmer
Lecture—3 hours. Prerequisite: Soil Science 107; Water Science 140. Aspects of multiphase flow in soils and their application to infiltration and drainage. Gas-particle transport during infiltration, and transient drainage with nonlinearity, capillarity, and evapotranspiration considered. Offered in alternate years.

241. Sprinkle and Trickle Irrigation Systems (3) III. Hills
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 145. Computerized design of sprinkle and trickle irrigation systems. Consideration of emitter mechanics, distribution functions and water yield functions. Offered in alternate years.

242. Hydraulics of Surface Irrigation (3) II. Wallender
Lecture—3 hours. Prerequisite: course 145/Hydrologic Science 115. Mathematical models of surface-irrigation systems for prediction of the ultimate disposition of water flowing over a field. Quantity of runoff and distribution of water over field length as a function of slope, roughness, infiltration and inflow rates. Offered in alternate years.

245. Management of Wastes from Biological Production Systems (3) II. Zhang
Lecture—3 hours. Prerequisite: mass transfer system design or consent of instructor. Characterization of wastes from livestock, crop residues and food processing. Study of methods of collection, treatment, and disposal of these wastes. Offered in alternate years.

260. Analog Instrumentation (4) II. Del维奇

265. Design and Analysis of Engineering Experiments (4) III. Upadhyaya, Plant Lecture—3 hours; laboratory—3 hours. Prerequisite: at least one undergraduate course in statistics or consent of instructor. Design, management, and analysis of engineering experiments with emphasis on criteria for the selection and utilization of statistical methods. Procedures necessary for the use of computer and departmental computing facilities will be assigned.

270. Modeling and Analysis of Biological and Physical Systems (4) III. Upadhyaya, T. Rumsey
Lecture—3 hours; laboratory/discussion—3 hours. Prerequisite: Civil and Environmental Engineering 212A. Mathematical modeling of biological systems: model development; analytical and numerical (finite difference and finite elements) solutions. Case studies from various specializations within Biological and Agricultural Engineering. Offered in alternate years.

275. Physical Properties of Biological Materials (3) I. Chen
Lecture—2 hours; laboratory—3 hours. Prerequisite: consent of instructor. Selected topics on physical properties, such as mechanical, optical, rheological, and aerodynamic properties, as related to the design of harvesting, handling, sorting, and processing equipment. Techniques for measuring and recording physical properties of biological materials.

289A-K. Selected Topics in Biological Systems Engineering (1-5) I. The Staff
Prerequisite: Consent of instructor. Special topics in: (A) Animal Systems Engineering; (B) Aquacultural Engineering; (C) Biological Engineering; (D) Energy Systems; (E) Environmental Quality; (F) Food Engineering; (G) Forest Engineering; (H) Irrigation and Drainage; (I) Plant Production and Harvest; (J) Postharvest Engineering; (K) Sensors and Actuators. May be repeated for credit when topic differs.

290. Seminar (1) I, II, III. The Staff
Prerequisite: Graduate standing. Weekly seminars on recent advances and selected topics in biological systems engineering. Course theme will change from quarter to quarter. May be repeated for credit. (S/U grading only)

290C. Graduate Research Conference (1) I, II, III. The Staff (Hills in charge)
Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress and techniques in biological systems engineering. May be repeated for credit. (S/U grading only)

297. Advances in Food Engineering (1) I, II, III. Singh
Seminar—1 hour. Prerequisite: consent of instructor. Review and discussion of current literature and developments in food engineering. Presentations by individual students. (S/U grading only)

298. Group Study (1-5) I, II, III. The Staff (Hills in charge)

299. Research Seminar (1-12) I, II, III. The Staff (Hills in charge)
(S/U grading only)

Professional Course

300. Supervised Teaching in Biological and Agricultural Engineering (1-3) I, II, III. The Staff
Lecture—3 hours; tutorial—3-9 hours. Prerequisite: graduate standing; consent of instructor. Tutorials supervising and teaching students in undergraduate courses offered in the Department of Biological and Agricultural Engineering. Weekly conferences with instructor, evaluation of teaching. Preparation of and participating in demonstrations, laboratories and discussions. Preparing and grading exams. May be repeated for a total of 6 units. (Former course 290T) (S/U grading only)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Engineering: Chemical Engineering and Materials Science

(College of Engineering)

Brian G. Higgins, Ph.D., Chairperson of the Department
Subhash H. Risbud, Ph.D., Vice-Chairperson of the Department (916-752-0474)
Department Office, 3118 Bainer Hall
(916-752-0400; FAX: 916-752-1031)

Faculty
Nicholas L. Abbott, Ph.D., Assistant Professor
Roger B. Boulton, Ph.D., Professor (Chemical Engineering, Viticulture and Enology)
Stephanie R. Dungan, Ph.D., Assistant Professor (Chemical Engineering, Food Science and Technology)
Bruce C. Gates, Ph.D., Professor
Brian G. Higgins, Ph.D., Professor
Arian J. Johnsson, Ph.D., Professor
Benjamin J. McCoy, Ph.D., Professor
Karen A. McDonal, Ph.D., Associate Professor
Ahmet N. Palazoglu, Ph.D., Associate Professor
Robert L. Powell, Ph.D., Professor
Drew D.Y. Ryu, Ph.D., Professor
Pieter Stroeve, Sc.D., Professor, Academic Senate Distinguished Teaching Award
Stephen Whakiter, Ph.D., Professor, Academic Senate Distinguished Teaching Award

Division of Materials Science and Engineering

Faculty
Jeffery C. Gibeling, Ph.D., Professor
Joanna R. Groza, Ph.D., Associate Professor
David G. Howitt, Ph.D., Professor
Amya K. Mukherjee, D.Phil., Professor, Academic Senate Distinguished Teaching Award, UIC Davis Prize for Teaching and Scholarly Achievement
Zuhair A. Munir, Ph.D., Professor
Subhash H. Risbud, Ph.D., Professor
James F. Shackelford, Ph.D., Professor

Emeriti Faculty
Richard L. Bell, Ph.D., Professor Emeritus
Howard L. Needles, Ph.D., Professor Emeritus
J. M. Smith, Sc.D., Professor Emeritus
S. Haig Zeronian, Ph.D., D.Sc., Professor Emeritus

Courses in Engineering: Chemical (ECH)

(Courses in Chemical Engineering (ECH) are listed below; courses in Materials Science and Engineering (EMS) are listed immediately following.)

Lower Division Courses

1. The Scope of Chemical Engineering (1) II. The Staff (Chairperson in charge)
Lecture—1 hour. Demonstrations and discussions of the opportunities in chemical engineering for professional development, contributions to basic knowledge, with clarification of what chemical engineers actually do in various jobs. (P/NP grading only.)

90X. Lower Division Seminar (1) I, II, III. The Staff
Seminar—1 hour. Examination of a special topic in a small setting.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor and lower division standing. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

150A. Chemical Engineering Fluid Mechanics (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22A, 22B, 21D, Engineering 35. Fluid statics and one-dimensional laminar flows. Kinematics of point and integral functions. The stress vector-stress tensor relation. Newton’s law of viscosity and application of the Navier-Stokes equations to laminar flow and dimensional analysis. Flow of non-Newtonian fluids. Not open for credit to students who have completed Engineering 103A.

150B. Chemical Engineering Fluid Mechanics (3) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Turbulent flows and time averaging. Application of Bemoulli’s equation and the macroscopic laws of momentum, and mechanical energy balances to a variety of practical problems. Introduction to compressible flow. The entropy equation and isentropic processes. Shock waves and choked flow. Not open for credit to students who have completed Engineering 103B or Civil Engineering 141.

150C. Rheology and Polymer Processing (4) III. The Staff
Lecture—4 hours. Prerequisite: Course 150A. Fundamentals of rheology. Introduction to polymer processing unit operations.

150L. Polymer Engineering Laboratory (4) II. The Staff
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 150C, Chemistry 2C or 2CH, or consent of instructor. Introduction to specialized equipment to learn about principles governing preparation of macromolecules and their properties. Principles and properties relevant to processing polymers. Environmental effects in polymer applications. Molecular engineering design.

151. Material Balances (3) I. The Staff
Lecture—3 hours. Prerequisite: Chemistry 110A, Chemistry 128B (may be taken concurrently). Engineering 5. Application of the principles of conservation of mass to single- and multicomponent systems in chemical process calculations. Studies of batch, semi-batch, and continuous processes involving mass transfer, change of phase, and chemical reaction.

152A. Chemical Engineering Thermodynamics (3) II. The Staff
Lecture—3 hours. Prerequisite: course 151, Chemistry 110A. Thermodynamics and operational calculus. Application of thermodynamics to chemical processes. Not open for credit to students who have completed Engineering 105A.

152B. Chemical Engineering Thermodynamics (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 152A. Continuation of course 152A. Not open for credit to students who have completed Engineering 105B.

153. Chemical Engineering Heat Transfer (4) III. The Staff
Lecture—4 hours. Prerequisite: course 150A. Steady and transient heat conduction. The thermal energy equation, analysis of forced and free convective heat transfer. Turbulence, macroscopic balances, and heat transfer coefficients. The photon transport equation and radiant energy exchange. The design of heat exchangers.

154A. Mass Transfer (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 153. Prerequisite: course 150A. Fundamentals of mass transfer in fluids. Problems in pure diffusion and convective mass transfer.

154B. Applications of Mass Transfer (3) II. The Staff
Lecture—3 hours. Prerequisite: course 154A. Application of the principles of mass transfer and thermodynamic equilibrium to absorption, evaporation, distillation, and other separation processes.

155A. Chemical Engineering Laboratory (4) I, II. The Staff
Laboratory—12 hours. Prerequisite: course 154A (may be taken concurrently). Open only to majors in Chemical Engineering, Chemical Engineering/Materials Science, Chemical/Biochemical Engineering, Biochemical Engineering, Biomedical Engineering. Laboratory experiments in transport phenomena, chemical kinetics, and thermodynamics. GE credit: Wrt.

155B. Chemical Engineering Laboratory (4) II, III. The Staff
Laboratory—12 hours. Prerequisite: courses 154B (may be taken concurrently) and 155A. Open only to majors in Chemical Engineering, Chemical Engineering/Materials Science, Chemical/Biochemical Engineering, Biomedical Engineering, Food Engineering, Biological Systems Engineering. Continuation of 155A. Laboratory experiments in transport phenomena, chemical kinetics, and thermodynamics. GE credit: Wrt.

156A. Chemical Engineering Kinetics (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 152B, 154A, and Chemistry 110C (may be taken concurrently). Chemical kinetics and introduction to homogeneous and heterogeneous reactor design.

156B. Chemical Engineering Kinetics (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 156A. Continuation of course 156A.

157. Process Dynamics and Control (3) I. McDonal
Lecture—3 hours. Prerequisite: course 159. Fundamentals of dynamic modelling of chemical processes. Design and analysis of classical feedback control of chemical processes.

157L. Process Control Laboratory (1) I, III. The Staff
Laboratory—3 hours; discussion—1 hour. Prerequisites: course 157. Open only to majors in Chemical Engineering, Chemical Engineering/Materials Science, Materials Science, Chemical/Biochemical Engineering, Biomedical Engineering, and Food Engineering. Laboratory experiments in control system design and analysis.

158A. Economics and Optimization of Chemical Processes (3) I. Palazoglu
Lecture—3 hours. Prerequisite: senior standing. Fundamentals of economics, interest calculations, depreciation, taxes, Economic analysis of chemical plant designs. Optimization methods. Linear and non-linear programming.

158B. Process Equipment Design (3) II. Palazoglu
Lecture—3 hours. Prerequisite: course 158A. Design of chemical process equipment. Equipment cost estimation techniques.

158C. Chemical Plant Design (3) III. Palazoglu
Lecture—3 hours. Prerequisite: course 158B. Open only to majors in Chemical Engineering, Chemical Engineering/Materials Science, Materials Science, Chemical/Biochemical Engineering, Biomedical Engineering, Food Engineering, Biosystems Engineering. Conceptual design of chemical processes. Design, costing and profitability analysis of complete chemical plants. Use of computer-aided design techniques.

158B. Chemical Engineering Analysis (3) I. Palazoglu
Lecture—3 hours. Prerequisite: Mathematics 22B. Chemical engineering applications of partial differential equations, tensors, systems of linear equations, and operational calculus.

161A. Biochemical Engineering Fundamentals (3) II. The Staff
Lecture—3 hours. Prerequisite: Chemistry 128A, Mathematics 22B, Microbiology 102 (or consent of instructor). Biokinetics; bioreactor design and operation; transport phenomena in bioreactors; microbial, plant, and animal cell cultures. (Not open for credit to students who have completed course 161.)

161B. Bioseparations (3) II. The Staff
Lecture—3 hours. Prerequisite: course 154A. Product recovery and purification of biochemicals. Cell disruption, centrifugation, filtration, membrane separa-
rations, extraction, and chromatographic separation processes.

161L. Bioprocess Engineering Laboratory (4) III. The Staff Laboratory—9 hours; discussion—1 hour. Prerequisite: courses 161A, 161B. Laboratory experiments in the operation and analysis of bioreactors; determination of oxygen mass transfer coefficients in bioreactors; ion exchange chromatography; membrane filtration.

166. Catalysis (3) II. Gates Lecture—3 hours. Prerequisite: course 156A (may be taken concurrently) or consent of instructor. Principles of catalysis based on an integration of principles of physical, organic, and inorganic chemistry and chemical kinetics and chemical reaction engineering. Catalysis in solution; catalysis by enzymes; catalysis in swellable polymers; catalysis in microcopic cages (zeolites); catalysis on surfaces.

170. Introduction to Colloid and Surface Phenomena (3) III. Stroeve Lecture—3 hours. Prerequisite: Chemistry 110A. Introduction to the behavior of surfaces and dispersion systems. The fundamentals will be applied to the solution of practical problems in colloid science. The course should be of value to engineers, chemists, biologists, soil scientists, and related disciplines.

190C. Research Group Conferences (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: upper division standing in Chemical Engineering; consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)

190X. Upper Division Seminar (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: upper division standing. In-depth examination of a special topic in a small group setting.

198. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

206. Biochemical Engineering (3) II. Ryu Lecture—3 hours. Prerequisite: Microbiology 102 and 102L, Biological Sciences 101, 102, 103, Molecular and Cellular Biology 122, 120L, 200A; or consent of instructor. Application of basic biochemical and engineering principles of practical enzymatic processes. Lectures cover large scale production and separation of enzymes, immobilized enzyme systems, enzyme reactor design and optimization, and new application of enzymes in genetic engineering related biotechnology. Offered in alternate years.

225. Enzyme Engineering (3) II. Ryu Lecture—3 hours. Prerequisite: Microbiology 102 and 102L, Biological Sciences 102, 103, Molecular and Cellular Biology 122, 120L, 200A; or consent of instructor. Application of basic biochemical and engineering principles of practical enzymatic processes. Lectures cover large scale production and separation of enzymes, immobilized enzyme systems, enzyme reactor design and optimization, and new application of enzymes in genetic engineering related biotechnology. Offered in alternate years.

246. Advanced Biochemical Engineering (2) III. Ryu Lecture—2 hours. Prerequisite: course 206 or consent of instructor. Advances in the field of biotechnology including genetic engineering, enzyme engineering, fermentation science, and renewable resources development. The important results of original research will be evaluated for understanding of the fundamental principles and for potential practical application.

252. Statistical Thermodynamics (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 152B, Engineering 105B, or the equivalent. A treatment of the statistical basis of thermodynamics; introduction to statistical mechanics; discussion of the laws of thermodynamics; application of the thermodynamic relationships to phase and chemical reaction equilibrium; introductory thermodynamic processes and the evaluation of thermodynamic properties from molecular simulations.

253C. Advanced Mass Transfer (4) II. The Staff Lecture—4 hours. Prerequisite: courses 154A, 154B, and 259 (may be taken concurrently). Topics include molecular transport, interfacial transfer, bulk and emulsion flows, and concentration principles for multicomponent systems. Constitutive equations for momentum, heat and mass transfer. Applications to binary and ternary systems. Details of diffusion with reaction, and the effects of concentration.

254. Colloid and Surface Phenomena (4) I. Stroeve Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Chemical Engineering or consent of instructor. Thermodynamics, structure and rate processes at interfaces. These fundamental processes will then be applied to determine the collective properties of dispersed colloidal systems. Some emphasis will be placed on the behavior of macromolecules in solution.

256. Chemical Kinetics and Reaction Engineering (4 II. The Staff Lecture—4 hours. Prerequisite: courses 156A and 156B or the equivalent. Analysis of the performance of chemical reactors and design of chemical reactors based on the principles of chemical kinetics and transport phenomena. Consideration of noncatalytic and catalytic reactors and non-Newtonian fluid phases and emphasis on reactions in multiphase mixtures, especially gas-solid reactors.

261. Separation Processes: Column Operations (3) III. The Staff Lecture—3 hours. Prerequisite: course 154B. Analysis and design of chemical separation processes: distillation, extraction, adsorption, chromatography. Finite difference equations, unified design methods, axial dispersion models, probability and random walk theories, method of separation by reverse phase, optimization. Offered in alternate years.

262. Transport Phenomena in Multiphase Systems (3) III. Whitaker Lecture—3 hours. Prerequisite: course 253C. Heat, mass, and momentum transfer in multiphase, multi-component systems with special emphasis on transport processes in porous media. Derivation of the averaging theorem and application of the method of volume averaging to multicomponent, reacting systems.

263. Rheology and Mechanics of Non-Newtonian Fluids (3) II. Powell Lecture—3 hours. Prerequisite: courses 253A and 259. Concepts of instructor. Analysis of polymer solutions and suspension, especially the development of properly invariant constitutive equations. Topics include: viscometry, linear and nonlinear viscoelasticity, continuum mechanics, kinetic theory. Offered in alternate years.

265. Emulsions, Microemulsions and Bilayers (3) II. Dunagan Lecture—3 hours. Prerequisite: an undergraduate course in physical chemistry. Thermodynamic and mechanical descriptions of surfactant-laden interfaces. Forces between and within interfaces. Physics of micelle and microemulsion formation. Structure and stability of emulsions. Properties of phospholipid bilayers, with emphasis on vesicles.

267. Advanced Process Control (3) III. The Staff Lecture—3 hours. Prerequisite: course 157 or the equivalent. Advanced course in analysis and synthesis of linear multivariable systems. Emphasis on frequency domain techniques and applications to chemical processes. Topics include singular value analysis, internal model control, robust controller design methods as well as self-tuning control techniques. Offered in alternate years.

289A-L. Special Topics in Chemical Engineering (1-5) I, II, III. The Staff Lecture and/or laboratory. Prerequisite: consent of instructor. Special topics in (A) Fluid Mechanics; (B) Nonlinear Analysis and Numerical Methods; (C) Process Control; (D) Chemistry of Catalytic Processes; (E) Biotechnology; (F) Interfacial Engineering; (G) Molecular Thermodynamics; (H) Membrane Separations; (I) Advanced Materials Processing; (J) Novel Experimental Techniques; (K) Advanced Process Control; (L) Biomolecular Engineering.

290. Seminar (1) I, II, III. The Staff Seminar—1 hour. (S/U grading only.)

290C. Graduate Research Group Conference (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: consent of instructor. Research problems, progress and techniques in chemical engineering. May be repeated for credit. (S/U grading only.)

291. Seminar in Multiphase Transport Phenomena (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: graduate or senior standing. Seminar devoted to the theoretical and practical applications of multiphase transport phenomena. Subjects will include flow in porous media, dispersion with adsorption and reaction, and heat transfer in multiphase systems with chemical reaction. (S/U grading only.)

292. Seminars in Process Dynamics and Control (1) II. Palazoglu Seminar—1 hour. Prerequisite: graduate or senior standing. Theoretical and practical aspects of process control will be addressed. Topics will cover controller analysis and synthesis of linear and nonlinear systems including bioreactors, distillation columns and others as well as dynamic modeling of such processes. (S/U grading only.)

293. Graduate Student Seminar (1) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. Prerequisite: graduate standing. Presentation by graduate students of research in progress. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)
Professional Course

390. Teaching of Chemical Engineering (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: qualifications and acceptance as teaching assistant and/or associate-in in chemical engineering. Participation as a teaching assistant or associate-in in a designated engineering course. Methods of leading discussion groups or laboratory sessions, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated twice for credit. (SU grading only.)

Courses in Materials Science and Engineering (EMS)

Upper Division Courses

130. Thermodynamics of Materials Processes (3) I. Risbud Lecture—3 hours. Prerequisite: Engineering 45 and 105A (or the equivalent); upper division standing in Engineering. Application of the principles of thermodynamics to solid engineering materials with emphasis on solving problems associated with materials processes, e.g., alloying, phase stability, surface properties, and environmental interaction, thermoelectric power and thermionic energy conversion. GE credit: Wrt.

132. Structure of Engineering Materials (3) I. Howitt Lecture—3 hours. Prerequisite: Engineering 45; upper division standing. Structure of engineering materials on the atomic scale will be described by exploring the fundamentals of crystallography. The importance of this structure to materials’ properties will be emphasized. Experimental determination of structure will be described using x-ray diffraction techniques. GE credit: Wrt.

132L. Structure and Testing of Materials Laboratory (2) I. Snackellford, Howitt Laboratory—6 hours. Prerequisite: course 132 (concurrent enrollment recommended). Experimental investigations of structure of solids are combined with techniques for testing and evaluation. Laboratory exercises emphasize methods used to study structure of solids at the atomic and microstructural levels. Methods focus on optical, x-ray, electron, and ultra-sound techniques.

134. Rate Processes in Materials Science (3) II. Groza Lecture—3 hours. Prerequisite: Engineering 45 and 105A or course 130. Basic kinetic laws. Theory of Arrhenius’ Reaction Rates. Applications in diffusion, nucleation, solidification, evaporation, sintering and phase transformations in materials. Materials behavior in high-temperature and corrosive environments will be emphasized.

138. Mechanical Behavior of Materials (3) III. Mukherjee Lecture—3 hours. Prerequisite: Engineering 45 and 105A (or the equivalent); upper division standing in Engineering. Microscopic aspects of the mechanical behavior of engineering materials are discussed with emphasis on recent developments in materials science and fracture mechanics. High temperature plastic deformation processes, strengthening mechanisms and mechanical failure modes of materials systems are outlined. GE credit: Wrt.

138L. Mechanical Properties Laboratory (2) III. Mukherjee Laboratory—6 hours. Prerequisite: course 138 (concurrent enrollment recommended). Experimental investigations of the mechanical behavior of engineering materials. Laboratory exercises emphasize the fundamental relationships between microstructure and mechanical properties.

140. Materials in Engineering Design (3) III. The Staff Lecture—3 hours. Prerequisite: senior standing in Engineering or consent of instructor. Quantitative treatment of materials selection for engineering applications. Discussion of the relationship of design parameters and materials properties. Emphasis on the processing and fabrication of metals, ceramics, polymers, and composites as related to the overall design process. GE credit: Wrt.

142. Principles of Nondestructive Testing (3) II. Snackellford Lecture—3 hours. Prerequisite: senior standing in Engineering or consent of instructor. Basic principles of nondestructive testing using radiological, ultrasonic, and magnetic testing methods, etc., are discussed. Typical results expected from these tests and their application in material characterization, flaw detection, crystallographic information, chemical inhomogeneity, residual stress analysis, etc., are emphasized. GE credit: Wrt.

144. Corrosion and Oxidation of Engineering Materials (3) II. The Staff Lecture—3 hours. Prerequisite: upper division standing in Engineering. Principals governing the interaction between engineering materials and their environment; corrosion in aqueous media, soils and biological systems. Oxidation of structural materials in high temperature environments; design and selection criteria for the prevention and control of corrosion.

146. Electronic and Optical Materials Processing (3) III. Risbud Lecture—3 hours. Prerequisite: upper division standing in Engineering. Physics, Chemistry, or Geology. Principles of phase equilibria, thermodynamics and reaction kinetics applied to the processing of electronic and optical materials in polycrystalline, single crystal, and amorphous forms. GE credit: Wrt.

147. Principles of Polymer Materials Science (3) II. The Staff Lecture—3 hours. Prerequisite: chemistry through introductory physics sequence. Basic principles of polymer science presented including polymer structure and synthesis; polymerization mechanics, polymer classes, properties, and reactions; polymer morphology, rheology, and characterization; polymer processing. (Same course as Fiber and Polymer Science 100.)

148. Failure Analysis (4) I. III. The Staff Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 104A and Mechanical Engineering 150A recommended. Fracture mechanics and failure mechanisms in metals, ceramics, and composites. Effects of fatigue, corrosion and wear. Methodologies for failure analysis including optical microscopy, scanning electron microscopy and destructive testing. GE credit: Wrt.

149. Materials Engineering Design Project (3) I, III. The Staff Discussion—1 hour; laboratory—6 hours. Prerequisite: senior standing in Engineering and consent of instructor. A capstone engineering design experience involving analysis of real materials problems or engineering materials problems. The various principles of material science introduced in other courses in the curriculum are integrated into the design project.

190C. Research Group Conferences (1) I, III. The Staff Discussion—1 hour. Prerequisite: consent of instructor; upper division standing. Individual and/or group conferences on original concepts in engineering materials research. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, III. The Staff Lecture—1-5 hours. Prerequisite: consent of instructor. Group study of selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. P/NP grading only.

Graduate Courses

230L. Laboratory for Electron Microscopy (2) II. Howitt Laboratory—6 hours. Prerequisite: course 230 concurrently. Practical application of techniques of electron scanning and transmission microscopy including x-ray microanalysis. Offered in alternate years.

232. Advanced Topics in Transmission Electron Microscopy (3) II. Howitt Lecture—1 hour; discussion—2 hours. Prerequisite: course 230. Advanced course in the techniques of electron microscopy. Includes advanced analytical techniques, probe diffraction methods, and high resolution imaging. Offered in alternate years.

232L. Laboratory for Advanced Transmission Electron Microscopy (2) I. The Staff Discussion—1 hour; laboratory—3 hours. Prerequisite: course 232 concurrently. Laboratory in advanced transmission electron microscopy techniques relevant to specific graduate research projects in materials science. Offered in alternate years.

240. Transport Phenomena in Materials Processes (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering. Phenomenological and atomistic mechanisms in transport processes in condensed and noncondensed phases. Application to heat transfer, chemical and physical vapor deposition, crystal growth, bonding, sintering and joining of metals. Offered in alternate years.

241. Principles and Applications of Dislocation Mechanics (4) II. Mukherjee Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Engineering; consent of instructor. Concepts in dislocation theory are applied to explain plasticity of crystalline solids. Glide and climb of dislocations, strain hardening, recrystallization, threading of dislocations, and interaction of dislocation with solute atoms, precipitates and impurity clouds are discussed. Offered in alternate years.

242. Advanced Mechanical Properties of Materials (4) II. Mukherjee Lecture—3 hours; discussion—1 hour. Prerequisite: course 138. Strength and structure of engineering materials. The dependence of their mechanical properties on time, stress, and temperature. Generalized concepts of dislocation theory in plastic deformation, including creep, superplasticity, and cavitation. Influence of microstructure in optimizing the mechanical strength properties. Offered in alternate years.

243. Kinetics of Phase Transformation in Engineering Materials (3) III. Groza Lecture—3 hours. Prerequisite: graduate standing in Engineering and consent of instructor; course 130 recommended. Theory of alloying, kinetics of phase changes, homogeneous and heterogeneous transformation, transformation by shear, order-disorder reactions. Offered in alternate years.

244. Interaction of Materials and their Environment (3) I. Munir Lecture—3 hours. Prerequisite: Engineering 45 and 105A, or consent of instructor. Thermodynamic and kinetic foundations of the corrosion and oxidation processes. Practical aspects of corrosion control and prevention. Stress-corrosion and gas-embrittlement phenomena. Special topics in corrosion; microbio-
299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

390. The Teaching of Materials Science (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate-in in mechanical engineering. Participation as a teaching assistant or associate-in in designated engineering courses. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated twice for credit. (S/U grading only.)

Engineering: Civil and Environmental

(College of Engineering)

Melvin R. Ramey, Ph.D., Chairperson of the Department (916-752-0896)
Jay R. Lund, Vice Chairperson of the Department (916-752-5671)
Department Office, 116 Everson Hall (916-752-0586)

Faculty
Kandiah Arulanandan, Ph.D., Professor
Takashi Asano, Ph.D., Adjunct Professor
John Bolander, Ph.D., Assistant Professor
Ross W. Boullanger, Ph.D., Assistant Professor
Y. K. (Rob) Chai, Ph.D., Assistant Professor
Daniel P. Y. Chang, Ph.D., Professor
Yannis F. Dafalias, Ph.D., Professor
Jeanne L. Darby, Ph.D., Associate Professor
Johannes J. DeVries, Ph.D., Lecturer
Leonard R. Herrmann, Ph.D., Professor, Academic Senate Distinguished Teaching Award, UC Davis Prize for Teaching and Scholarly Achievement
I.M. Idriess, Ph.D., Professor
Roy A. Imbsen, D.E., Adjunct Professor
Paul P. Josan, Ph.D., Professor
M. Levent Kavas, Ph.D., Professor
Iain P. King, Ph.D., Professor
Bruce L. Kutter, Ph.D., Professor
Bruce E. Larock, Ph.D., Professor
Jay R. Lund, Ph.D., Associate Professor
Miguel A. Marinho, Ph.D., Professor (Civil and Environmental Engineering; Land, Air and Water Resources)
Patricia L. Mokhtarian, Ph.D., Assistant Professor
Debbie Niemeier, Ph.D., Assistant Professor
Glaucio Paulino, Ph.D., Assistant Professor
Melvin R. Ramey, Ph.D., Professor
Mark M. Rashid, Ph.D., Assistant Professor
Karl M. Romstad, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Edward D. Schroeder, Ph.D., Professor, Academic Senate Distinguished Teaching Award
S. Geoffrey Schladov, Ph.D., Assistant Professor
Robert Smith, Ph.D., Lecturer
Daniel Sperling, Ph.D., Professor (Civil and Environmental Engineering; Environmental Studies)
Fred Stephenson, M.S., Lecturer
Thomas M. Young, Ph.D., Assistant Professor

Emeriti Faculty
Don O. Brooks, Ph.D., Professor Emeritus
Robert H. Burgy, M.S., Professor Emeritus
James A. Cheney, Ph.D., Professor Emeritus
James R. Hutchinson, Ph.D., Professor Emeritus
Ray B. Krone, Ph.D., Professor Emeritus
Gerald T. Oishi, Ph.D., Professor Emeritus
otto G. Raabe, Ph.D., Professor Emeritus
Verne H. Scott, Ph.D., Professor Emeritus
Chih-Kang Shen, Ph.D., Professor Emeritus

Michael A. Taylor, Ph.D., Professor Emeritus
George Tchobanogous, Ph.D., Professor Emeritus

Courses in Engineering:
Civil and Environmental (ECI)

Lower Division Courses

1. The Civil Engineer in Society (1) I. The Staff (Chairperson in charge)
Lecture—1 hour. A description of the field of civil engineering and the function of the professional civil engineer. Discussion of professional practice with respect to application of engineering principles, ethics, and responsibilities. (P/NP grading only.)

3. Introduction to Civil and Environmental Engineering Systems (3) I, II, III. Ramey
Lecture—2 hours; laboratory—3 hours. Prerequisite: trigonometry. Introduction to civil engineering systems. General view of the engineering process as obtained by participation in laboratory experiments illustrative of the solution of representative, but greatly simplified, engineering problems. GE credit: SciEng.

10. Introduction to Surveying (3) III. Smith
Lecture—2 hours; laboratory—3 hours. Theory and practice of measurements for distance, elevation, and angles; the analyses and adjustments for systematic and random measurement errors; line directions, traverse computations, horizontal and vertical curves; calculations for latitude, longitude, azimuth; earthwork computations.

30. Engineering a Better Environment (4) II
The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: intermediate algebra, and Physics 10 or Engineering 20. Introduction to fundamental concepts and methodologies of environmental engineering. Topics presented include water and air quality, environmental radiation and radioactivity, waste management. Students will evaluate environmental issues in written essays and oral discussion. Intended for non-physical science majors.

90X. Lower Division Seminar (1-4) I, II, III. The Staff
Seminar—1-4 hours. Prerequisite: consent of instructor. Examination of a special topic in a small group setting. May be repeated for credit.

92. Internship in Engineering (1-5) I, II, III. The Staff (Chairperson in charge)
Internship. Prerequisite: lower division standing; approval of project prior to period of internship. Supervised work experience in civil engineering. May be repeated for credit. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; lower division standing. (P/NP grading only.)

Upper Division Courses

114. Probabilistic Systems Analysis for Civil Engineers (3) I, II. Mokhtarian
Lecture—3 hours; prerequisite: Mathematics 21C. Probabilistic concepts and models in engineering. Statistical analysis of engineering experimental and field data. Introduction to stochastic processes and models of engineering systems. (Not open for credit to students who have completed Statistics 120.)

130. Structural Analysis (4) I, II. Romstad

131. Matrix Structural Analysis and Introduction to Finite Element (3) I. Ramey
Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 10 or the equivalent and 104. Open to Engineering majors only. Matrix formulation and computer analysis of statically indeterminate structures.
Introduction to finite element methods for elasticity and bending problems. (Former course 131B.)

132. Structural Design: Metallic Elements (3) I, II, Lund Lecture—3 hours. Prerequisite: Engineering 104 (may be taken concurrently). Metallic beams, columns, other members; analysis and design of bolted and welded joints; simple beam connections, moment resistant connections, and column base plates. (Former course 132A.)

133. Cement Composites (3) III, Bolander Lecture—2 hours, laboratory—3 hours. Prerequisite: Engineering 104. Survey of applications; material selection and proportioning; component and composite properties; basic cement chemistry and hydration reactions; microstructure evolution; experimental methods. Testing; performance; severe loading/environmental conditions; structural design considerations.

134. Analysis and Design of Bridges (4) II. Imbisen Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 130 and 135. Bridge design and analysis utilizing current state-of-the-art computer programs. Overview of Caltrans and American Association of State Highway and Transportation Officials (AASHTO) codes and principles. Seismic analysis and retrofitting of bridges. Bridge design and details and final plans, drawings, and estimates.

135. Structural Design: Concrete Elements (4) I, III. The Staff Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 104 (may be taken concurrently). Strength design procedures for columns, rectangular beams, T-beams and beams of general cross-section. Building code requirements for bending, shear, axial load, combined stresses and bond. Introduction to prestressed concrete.

136. Building Design: Wood, Steel, and Concrete Applications (4) (4) (4) (4) III. Ramey Lecture—2 hours; laboratory—3 hours. Prerequisite: course 130 and 135; course 132 recommended. Horizontal and lateral load paths; dead and live loading; earthquake and wind forces. Approximate analyses of building frames; wood engineering for buildings. Steel, concrete and wood building design.

137. Construction Principles (3) III. The Staff (Chairperson in charge) Lecture—2 hours; laboratory—3 hours. Prerequisite: senior standing in Engineering. A study of the construction industry; its form, evolution, and methods of operation. Focus: principles underlying construction practices; economic factors in planning, organizing, and operating a construction force. Field trips and analysis of local construction projects.

140. Environmental Analysis of Aqueous Systems (3) I. Darby Lecture—3 hours. Prerequisite: Chemistry 2B or the equivalent. Introduction to chemical principles underlying current practices in sampling and analysis of water and wastewater.

140L. Environmental Analysis of Aqueous Systems Laboratory (1) I. Darby Laboratory—3 hours. Prerequisite: Chemistry 2B or the equivalent. (Former course 140L may be taken concurrently). Restricted to Civil Engineering students. Introduction to the "wet chemical" and instrumental techniques used in the examination of water and wastewater and associated data analysis.

141. Engineering Hydraulics (3) I, III, Larock Lecture—3 hours. Prerequisite: Engineering 103A. Open to Engineering students only. Nature of flow of a real fluid; flow in pipes; open channel flow; turbulence; fluid forces on objects; boundary layers, lift and drag.

141L. Engineering Hydraulics Laboratory (1) I, III, Larock Laboratory—3 hours. Prerequisite: course 141 (may be taken concurrently). Open to Engineering students only. Laboratory experiments and demonstrations on flow measurements; simple beam connections, moment resistant connections, and column base plates.

142. Engineering Hydrology (3) I, II. Kavas Lecture—3 hours. Prerequisite: course 141 (may be taken concurrently) or the equivalent. Study of the hydrologic cycle. Frequency analysis of hydrologic variables. Precipitation analysis for hydrologic design. Evapo-transpiration, interception, depression storage and infiltration. Streamflow analysis. Flood routing through channels and reservoirs.

143. Bioremediation Principles (3) III. Schroeder Lecture—3 hours. Prerequisite: course 148A or the equivalent. Introduction to bioremediation of contaminated soils and groundwater. Site characterization, microbial processes, in situ and on-site treatment methods. Introduction to bioremediation systems design.

144. Groundwater Systems Design (3) I. Darby Lecture—3 hours. Prerequisite: 142 (may be taken concurrently). Applied Science Engineering 115 recommended. Groundwater occurrence, distribution, and movement; selection of well sites; design of wells; groundwater quality and contamination; aquifer management. Introduction to groundwater modeling.

145. Hydraulic Structure Design (3) III. DeVries Lecture—2 hours; laboratory—3 hours. Prerequisite: 141 and 142 recommended. Principles of project design. Methods of analysis and hydraulic design of storage systems, conveyance and regulation systems, and hydraulic structures. Emphasis is on application of principles of open channel hydraulics in these systems.

146. Water Resources Simulation (3) II. Schladow Lecture—3 hours. Prerequisite: 141, 114 and 142 recommended. Simulation techniques in the analysis, design and operation of surface water systems; introduction to modeling concepts with particular application to surface runoff; water quality in rivers and streams; and management of reservoirs. GE credit: Wrt.

147. Solid Waste Management (3) I. Tchobanoglous Lecture—2 hours; laboratory—3 hours. Characteristics and amounts of solid wastes; collection systems; introduction to waste treatment processes and return of treated wastes to the environment.

148B. Water Quality Management Systems Design (3) III. Chobanoglous Lecture—2 hours; laboratory—3 hours. Prerequisite: course 148A (may be taken concurrently). Introduction to the design of water and wastewater treatment processes.

149. Introduction to Air Pollution (3) I. Carroll (Land, Air and Water Resources), Chang, Raabe Lecture—3 hours. Prerequisite: Mathematics 22B, 21D, Chemistry 2B, Atmospheric Science 121A or Engineering 121A. Basic principles of air pollution and the control of pollutants. (Same course as Atmospheric Science 121A.)

150. Air Pollution Control System Design (3) II. Chang Lecture—2 hours; laboratory—3 hours. Prerequisite: Engineering 105A and 106; course 149 recommended. Introduction to the design and evaluation of air pollution control devices and systems.

153. Deterministic Optimization and Design (4) II. Bartlett Lecture—4 hours. Prerequisite: Mathematics 21C and 22A, Engineering 5 or the equivalent; Applied Science Engineering 115 recommended. Introduction to optimization research. Optimization techniques such as linear programming, dynamic programming, and nonlinear programming. Applications in water resources planning, transportation planning, systems engineering, and other civil engineering disciplines through computer-based design projects.

155. Water Resources Engineering Planning (4) III. Lund Lecture—4 hours. Prerequisite: Engineering 106 or Economics 1A, course 114 or the equivalent; course 142; course 153 recommended. Basic water resources engineering planning concepts; role of engineering, economic, environmental and social information; institutional, political and legal aspects. Case studies will illustrate the planning of water resource systems. GE credit: Wrt.

160. Introduction to Transportation Planning (4) I. Sperling Lecture—3 hours; discussion—1 hour. Prerequisite: any two of Geography 5, Economics 1A, Engineering 106, or course 152 recommended. Transportation and associated environmental impacts on urban areas, and prospective technological and institutional solutions. Draws upon concepts and methods from economics, engineering, political science, and environmental studies. GE credit: SocSci. Wrt.

161. Transportation System Operations (3) II. Jovinas Lecture—3 hours. Prerequisite: Engineering 36. Principles of transportation system operations; traffic characteristics and methods of measurement; safety and operations; models of transportation operations and congestion applied to urban streets and freeways.

162. Transportation System Design (3) III. Jovinas Lecture—2 hours; laboratory—3 hours. Prerequisite: course 160 or 161 or 163. Human vehicle and guide-way factors and their relationship to transportation system design. Generalized design paradigm; application to large scale group problem solving.

163. Energy and Environmental Aspects of Transportation (3) II. Sperling Lecture—3 hours. Prerequisite: course 160. Engineering, economic, and systems planning concepts. Analysis and evaluation of energy quality and selected environmental attributes of transportation technologies. Strategies for reducing pollution and petroleum consumption in light of institutional and political constraints. Evaluation of vehicle emission models. (Same course as Environmental Studies 163.) GE credit: Wrt.

171. Soil Mechanics (4) II. Kutter Lecture—4 hours. Prerequisite: Engineering 103A, 104 (may be taken concurrently), course 10, course 171L concurrently. Restricted to Civil Engineering majors. Soil formations, mass-volume relationships, soil classification, effective stress, soil-water-void relationships, compaction, seepage, capillarity, compressibility, consolidation, strength, states of stress and failure, lateral earth pressures, and slope stability.

171L. Soil Mechanics Laboratory (1) II. Kutter Laboratory—3 hours. Prerequisite: course 171 must be taken concurrently. Laboratory studies utilizing standard testing methods to determine physical, mechanical, and hydraulic properties of soil and demonstration of basic principles of soil behavior.

173. Foundation Design (4) I. Idriss Lecture—4 hours. Prerequisite: course 135 (may be taken concurrently) and 171L. Exploration and determination of soil properties for design; consolidation and elastic settlements of foundations; bearing capacity of soils and footing design; lateral earth pressures and retaining wall design; pile foundations, excavations and de-watering.
174. Environmental Geotechnology (3) III. Arulananadan
Lecture—3 hours. Prerequisite: course 148A and 171. Soil and site characterization in relation to natural and man-made hazards, waste containment, and waste site remediation techniques.

176. Geotechnical Modeling (3) I. Kutter
Lecture—3 hours. Prerequisite: Engineering 103A and course 171. Dimensional analysis similarity and the theory of models. Applications to soil mechanics and solid mechanics. Instrumentation, calibration, computer-aided data reduction and recording. Experiments demonstrating basic principles including vibration of beams, centrifuge modeling of building foundations and seepage.

189A-J. Selected Topics in Civil Engineering (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Directed group study of selected topics with separate sections in (A) Environmental Engineering; (B) Hydraulics and Hydrologic Engineering; (C) Engineering Planning; (D) Geotechnical Engineering; (E) Analysis and Design of Bridges; (F) Building Design: Wood, Steel and Concrete Applications; (G) Transportation Engineering; (H) Transportation Engineering: Water Resources Engineering; (J) Water Resources Planning. May be repeated for credit when the topic is different.

190C. Research Group Conference in Civil and Environmental Engineering (1-5) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: upper division standing in Civil and Environmental Engineering; consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)

192. Internship in Engineering (1-5) I, II, III. The Staff (Chairperson in charge)
Internship. Prerequisite: upper division standing; approval of project prior to the period of the internship. Supervised work experience in civil engineering. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: senior standing in engineering and at least a B average. (P/NP grading only)

Graduate Courses

201. Introduction to Theory of Elasticity (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 104. Fundamental equations of elasticity in three dimensions, plane stress and plane strain; flexure and torsion of bars of various shapes. Introduction to variational and approximate methods.

202. Buckling of Columns and Plates (3) II. The Staff
Lecture—3 hours. Prerequisite: courses 201 and 221. Analysis of the buckling behavior of structural members: buckling of columns, lateral buckling of beams, nonlinear bending and lateral-torsional buckling of beams-columns, stability of structural frames, buckling strength and ultimate strength of plates.

203. Inelastic Behavior of Solids (3) III. Dafalias
Lecture—3 hours. Prerequisite: course 201. Fundamental equations of viscoelasticity and viscoplasticity for solids. Macroscopic constitutive modeling for engineering materials, e.g., metals, polymers, soils, etc., and microscopic motivation. Offered in alternate years.

205. Continuum Mechanics (3) II. Dafalias
Lecture—3 hours. Prerequisite: course 203. Tensor formulation of the field equations for continuum mechanics; deformation effects; introduction to nonlinear thermoelasticity and thermodynamics. Solution of three-dimensional problems. Selected topics. Offered in alternate years.

206. Fracture Mechanics (3) II. Paulino
Lecture—3 hours. Prerequisite: Engineering 104; course 201. Linear and nonlinear fracture mechanics, stress analysis, energy concepts, brittle fracture criteria, path independent integrals, Dugdale-Barenblatt model, general cohesive zone models, ductile fracture criteria, material field tips for stationary and propagating cracks, fatigue. Application of numerical methods for fracture mechanics.

211. Advanced Matrix Structural Analysis (3) II. Rostamid
Lecture—3 hours. Prerequisite: course 131A, 131B, or consent of instructor. Computer analysis of complex frameworks by the displacement method; treatment of tapered beams, curved beams, and beams on elastic foundations; partially connected elements; non-linear and stability analysis; introduction to structural optimization.

212A. Finite Element Procedures in Applied Mechanics (3) II. Rashid
Lecture—3 hours. Prerequisite: Applied Science Engineering 115 or Mathematics 128A-128B (128B may be taken concurrently), or consent of instructor. Approximate analysis procedures; Galerkin and stationary principle methods. Construction of approximate solutions by the finite element method. Applications to one- and two-dimensional problems in engineering. Introduction to time dependent, non-linear and three-dimensional problems, and other approximation procedures.

212B. Finite Elements: Application to Linear and Nonlinear Structural Mechanics Problems (3) II. Herrmann
Lecture—3 hours. Prerequisite: course 212A. Application of the finite element method to linear and non-linear, one-, two-, and three-dimensional problems in continuum mechanics, soil mechanics, and to plate and shell theories.

212C. Finite Elements: Application to Fluid Problems (3) III. L. Jarock
Lecture—3 hours. Prerequisite: courses 141, 212A. Application of the finite element method to two- and three-dimensional fluid flow problems, including inviscid and viscous flow, convection-diffusion problems, the shallow water equations, and flow through porous media. Class lectures and independent study and projects. Offered in alternate years.

213. Analysis of Structures Subjected to Dynamic Loads (3) III. Rostamid
Lecture—3 hours. Prerequisite: courses 138, 211. Analysis of structures subjected to earthquake, wind, and blast loading; distributed, combined and lumped mass techniques; development of a computer program for complex structures; nonlinear response spectrum analysis; frequency and time domain analysis.

221. Theory of Plates and Introduction to Shells (3) I. Herrmann
Lecture—3 hours. Prerequisite: course 201 (may be taken concurrently). Development of classical and refined plate theories. Application to isotropic, orthotropic and composite plates. Solutions for rectangular and circular plates. Membrane theory for axisymmetric shells and bending of circular shells.

232. Advanced Topics in Concrete Structures (3) I. Ramay
Lecture—3 hours. Prerequisite: course 132B. Ductility of reinforced concrete; design for torsion of structural concrete; seismic requirements; two-way slabs.

233. Advanced Design of Steel Structures (3) II. Ramay
Lecture—3 hours. Prerequisite: courses 132A and 131A. Design considerations for steel column and frame buckling; steel-plate girder design; steel-concrete composite design; design of connections. Design basis follows the AISC's, LRFD, and ASD specifications.

240. Water Quality (3) II. The Staff

242. Air Quality (3) III. Chang
Lecture—3 hours. Prerequisite: Engineering 105A; courses 141 and 149, or the equivalent. Factors determining air quality. Effects of air pollutants. Physical and chemical fundamentals of atmospheric transport and reaction. Introduction to dispersion modeling. Offered in alternate years.

243A. Water and Waste Treatment (3) I. Schroeder
Lecture—3 hours. Prerequisite: course 148A. Characteristics of water- and airborne wastes; treatment processes and process kinetics; treatment system design.

243B. Water and Waste Treatment (3) II. Schroeder
Lecture—3 hours. Prerequisite: course 243A; consent of instructor. Continuation of course 243A.

244. Environmental Quality Modeling (3) I. The Staff
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 240 or 242A. Mathematical modeling of environmental water quality, with emphasis on mathematical models of water quality, their structure, capabilities and limitations, sensitivity and reliability as analytical and/or predictive tools. Offered in alternate years.

245. Applied Environmental Chemistry (3) IV. Darby
Lecture—4 hours. Prerequisite: Engineering 105A, courses 140 and 140L, or the equivalent. Chemistry 2A, 2B, or the equivalent; Chemistry 5 or 2C or 107A recommended. Chemistry of natural and polluted waters. Chemical kinetic and equilibrium principles, thermodynamics, carbonate systems, precipitation and dissolution, coordination chemistry, oxidation reduction, and interfacial phenomena.

246. Pilot Plant Laboratory (3) II. Darby
Lecture—1 hour; laboratory—6 hours. Laboratory investigation of physical, chemical, and biological processes for water and wastewater treatment.

247. Airborne Particles and Scavenging Mechanisms (3) I. The Staff
Lecture—3 hours. Prerequisite: course Engineering 105A and 103A, and courses 141, 149. Generation, characterization and behavior of small particles and droplets suspended in gas, including deposition and scavenging of airborne particles in the earth's atmosphere. Offered in alternate years. (Former course 242B.)

247L. Airborne Particles Laboratory (1) I. The Staff
Lecture—3 hours. Prerequisite: course 247 (may be taken concurrently). Laboratory exercises designed to familiarize the student with methods generation and characterization of airborne particles. Offered in alternate years. (Former course 242BL.)

248A. Design of Natural Systems for Wastewater Treatment (3) III. Smith
Lecture—3 hours. Prerequisite: courses 243A, 243B. Procedures are presented for the design of natural aquatic and soil-based systems for treatment of municipal and industrial wastewaters. Emphasis is placed on the practical application of principles developed in core courses 243A and 243B plus new information related to natural systems. Offered in alternate years.

248B. Wastewater Reclamation and Re-use: Theory and Practice (3) III. Asano
Lecture—3 hours. Prerequisite: course 243A, 243B. Wastewater reuse in water resources planning. Wastewater reuse practices in agricultural and landscape irrigation, industry, groundwater recharge, recreational and environmental uses, and potable water reuse. Selection of reclamation techniques for earthworks. Assessment of health risks and health risk mitigation. Offered in alternate years.

250. Urban Transportation and Land Use Planning (3) I. The Staff
Lecture—3 hours. Prerequisite: course 251. Historical and current relationships between transportation and land use. Traditional land use models. Role of land use in urban transportation modeling. Relation-
ship between energy consumption and urban form. Impact of telecommunications on urban form. Policies involving transportation/land use relationships. Offered in alternate years.

251. Transportation Demand Analysis (3) II. The Staff
Lecture—3 hours. Prerequisite: course 114 or the equivalent. Emphasis on discussions of standard procedures used in urban passenger travel demand forecasting. Principles and assumptions of the model components (trip generation, trip distribution, and mode choice). Use of computer exercises using empirical data to calibrate models and forecast travel demand.

252. Sustainable Transportation Technology and Policy (3) III. Spirling
Lecture—2 hours; discussion—1 hour. Prerequisite: course 250 or the equivalent. Computer exercises using empirical data to calibrate models and forecast travel demand.

253. Transportation Safety Analysis (3) III. Jovovics
Lecture—3 hours. Prerequisite: course 114, 254. Human and vehicle factors in accident occurrence. Evaluation of safety investments; regression to the mean; Development of statistical models of accident occurrence.

254. Discrete Choice Analysis of Travel Demand (3) III. Mokhtarian
Lecture—3 hours. Prerequisite: course 114 or the equivalent. Behavioral and statistical principles underlying the formulation and estimation of discrete choice models. Practical application of discrete choice models. Characterization of choice behavior, hypothesis testing, and forecasting. Emphasis on computer exercises using large-scale data sets obtained from home interview surveys.

255. Transportation Survey Methods (3) II. Mckinistrar
Lecture—3 hours. Prerequisite: course 251 or consent of instructor. Description of types of surveys commonly used in transportation demand modeling, including home interview, travel diary, panel, attitudinal, conjoint, and stated-preference surveys. Discussion of sampling, experimental design, and survey design issues. Analysis methods, including factor, discriminant, cluster, conjoint, and stated-preference analysis.

256. Urban Traffic Management and Control I (3) II. Jovovics
Lecture—3 hours. Prerequisite: graduate standing. Nature of urban vehicular traffic congestion; roadway capacity; intersection design and traffic signal operations; freeway operations and management; corridor control.

257. Transportation Planning in Developing Countries (3) III. Spirling
Lecture—3 hours. Prerequisite: course 160 or consent of instructor. Investigation of the role that transportation investments and policies play in the development of regions and countries. Emphasis is on identifying appropriate technologies, policies, and planning methods for designing transportation systems in regions of low socioeconomic, geographic, and institutional settings. Offered in alternate years.

258. Advanced Highway Technology and Automation (3) I. Jovovics
Lecture—5 hours. Prerequisite: graduate standing. Topics covered will include vehicle navigation and guidance, telecommunications and information systems, and highway electrification. Analysis and evaluation of policy implementation issues, driver response and pricing strategies and costs, and formulation of control theory.

259. Noncohesive Sediment Transportation (3) II. The Staff
Lecture—3 hours. Prerequisite: course 141. Sediment mechanics. Particle suspension by currents, waves, and winds. Modes of transport. Bed load relations and suspended load relations. Calculation of total loads in streams. Similarity criteria for movable bed models. Stable channel design. Offered in alternate years.

261. Cohesive Particle Transportation (3) III. The Staff
Lecture—3 hours. Prerequisite: course 141. Cohesion; cohesive particulate material; cohesive particulate systems; processes of aggregation and dispersion; aggregate properties; deposition and scour, channel and harbor design and maintenance. Offered in alternate years.

262. Transit Systems Analysis (3) I. Niemeier
Lecture—3 hours. Prerequisite: course 251. Theoretical and policy aspects of transit planning and analysis techniques. Five modules: policy and funding; management and operations; design standards and issues; planning and forecasting methods for performance evaluation. Review of transit studies from other regions. Offered in alternate years.

263. Transportation Economics (3) I. Niemeier
Lecture—3 hours. Prerequisite: Engineering 106. Ben-elt cost theory and application. Introduction to price theory and application in transportation. Discussion of measures of welfare loss and applications in transport. Includes local, regional, and World Bank studies.

264A. Transport, Mixing and Water Quality in Rivers and Lakes (3) III. Schlauf
Lecture—3 hours. Prerequisite: courses 141 and 240. Principal causes of mixing and transport in rivers, lakes and reservoirs, and their impacts on water quality. Case studies of California lakes and rivers. Offered in alternate years.

264B. Transport, Mixing and Water Quality in Estuaries and Wetlands (3) III. Schlauf
Lecture—3 hours. Prerequisites: courses 141 and 240. Principal causes of mixing and transport in estuaries and wetlands, and their impacts on water quality. Topics include advection-diffusion, transverse mixing, longitudinal dispersion, sediment transport, nutrient cycling, computer modeling of estuaries. San Francisco Bay case study. Offered in alternate years.

265. Stochastic Contaminant Transport (3) II. Kavvas
Lecture—3 hours. Prerequisite: course 266A. The stochastic theory of molecular diffusion will be covered by means of Taylor-Chandrasekhar theory. Turbulence diffusion will be covered in the Langrangian-Eulerian frameworks. The theory will be applied to contaminant transport in groundwater aquifers, atmosphere, river and oceanic environments. Offered in alternate years.

266A. Applied Stochastic Methods in Engineering (3) I. Kavvas
Lecture—3 hours. Markov processes and their applications to modeling of engineering systems. Review of differentials, Itô, Ito-Kolmogorov equations, Brownian motion and Ornstein-Uhlenbeck processes within the framework of statistical diffusion theory and their engineering applications to pollution transport problems.

266B. Applied Stochastic Methods in Engineering (3) II. Kavvas
Lecture—3 hours. Stochastic differential equations and their applications to the solution of engineering problems. Offered in alternate years.

267. Water Resources Management (3) I. Lund
Lecture—3 hours. Prerequisite: basic probability (course 114 or the equivalent) and courses 141 and 142; course 153 recommended. Operation, maintenance, and financing of water resource systems; engineering, economic, financial, legal, and institutional considerations; decision, optimization, and risk analysis.

268. Public Works Economics (3) II. Lund
Lecture—3 hours. Prerequisite: Engineering 106 or Agricultural Economics 148; Economics 1A. Engineering economics applied to public works planning, operations, and maintenance problems; microeconomic and macroeconomic theories; benefit-cost analysis; effect of uncertainty; optimization econom- ics; non-classical economics; public finance. Offered in alternate years.

270. Advanced Water Resources Management (3) III. Lund
Lecture—3 hours. Prerequisite: courses 153 and 267 or the equivalent. Discussion of technical papers related to planning theory, system maintenance, regionalization, multi-objective methods, risk analysis, institutional issues, pricing model application, eco- nomic development, foreclosures, and other topics. Offered in alternate years.

271. Water Resources Planning Laboratory (3) III. The Staff
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 142, 152. Application of hydrology, hydraulics, systems analysis, economics and principles of plan formulation and plan evaluation in conducting a water resources planning study. Emphasis on instruction on principles and methodology used in the laboratory study. Offered in alternate years.

272. Advanced Groundwater Hydrology (3) II. Manito
Lecture—3 hours. Prerequisite: course 144 or the equivalent; Mathematics 118A recommended. Fundamental physical concepts, groundwater flow systems (hydraulic head, pseudopotential function, stream function). Multi-phase fluids. Contaminant transport in porous and fractured media. Geostatic and stochastic approach in hydrogeology.

273. Water Resource Systems Engineering (3) I. Mariano
Lecture—3 hours. Prerequisite: courses 114 and 153 or the equivalent. Planning, design, and management of water resource systems. Application of deterministic and stochastic optimization techniques. Water allocation, capacity expansion, and design and operation of reservoir systems. Surface water and groundwater management. Offered in alternate years.

274. Hydraulics of Pipe Lines (3) I. Iarocci

275. Hydrologic Time-Series Analysis (3) III. Kavvas
Lecture—3 hours. Prerequisite: Engineering 118 and course 142 or the equivalent. Application of statistically methods for analysis and modeling of hydrologic series. Statistical simulation and prediction of hydrologic sequences using time series methodology. Offered in alternate years.

276. Watershed Hydrology (4) II. Kavvas
Lecture—4 hours. Prerequisite: course 142 or the equivalent. Analysis and mathematical modeling of hydrologic processes taking place in a watershed. Precipitation analysis and modeling. Theory of over- land flow and its kinematic wave approximation. Analysis and modeling of saturated and unsaturated subsurface flow processes taking place on a hill slope.

277. Unsteady Flow in Surface Waters (3) I. King

278. Hydrodynamics (3) II. Iarocci
Lecture—3 hours. Prerequisite: course 141. Equations for conservation of mass, momentum, energy; vortic- ity, circulation; stream functions, velocity potential; flows by superposition and conformal mapping; free streamline applications, gravity effects, introduction to wave motion. Offered in alternate years.
Seminar—1 hour. Discussion of current graduate student in charge.

290. Seminar

Directed group study of special topics (G) related to fluid mechanics; construction; instrumentation; main-tenance; seismic effects including considerations of pore water pressures; settlement. Procedures for estimating these motions; local site re-

286. Advanced Foundation Design (3) I. Arulanandan

Lecture—2 hours; laboratory—3 hours. Prerequisite: course 281A. Soil investigation methods: CPT, SPT, pressuremeter, vane, seismic investigation, electrical properties. Slope stability, including seepage pres-

284. Theoretical Soil Mechanics (3) I. Kutter

Lecture—3 hours. Prerequisite: course 271. Elasticity, plasticity, and critical state soil mechanics. Prediction of stress-strain-volume change behavior of soils. Monotonic and cyclic loading, anisotropy, and strain-rate effects. Numerical implementation of an-

285A. Soil Modification (3) I. Idriss

Lecture—3 hours. Prerequisite: course 171. Pur-

poses, principles, and methods of soil modification for various geotechnical applications. Offered in alternate years.

*285B. Pavement Systems Design (2) I. Arulanandan

Lecture—2 hours. Prerequisite: course 171. Principles and methods of pavement design for highways and airfields. Offered in alternate years.

286. Advanced Foundation Design (3) III. Idriss

Lecture—3 hours. Prerequisite: course 173. Design and analysis of bulkheads; deep excavation; tie-back systems; coffer dams; loads on buried conduits; lat-

eral pile loading capacity; pier foundations; and other related topics.

287. Geotechnical Earthquake Engineering (3) III. Idriss

Lecture—3 hours. Prerequisite: course 138; course 281A or consent of instructor. Characteristics of earth-

quake ground motion and empirical and simulation pro-

cedure for estimating these motions; local site re-

onse; liquefaction potential; residual strength and sta-
rability consideration; generation and dissipation of pore water pressures; settlement.

288. Earth and Rockfill Dams (3) II. Idriss

Lecture—3 hours. Prerequisite: course 281A, 281B. Site selection; preliminary design considerations; layout; seismic effects including considerations of fault movements; construction; instrumentation; main-

enance.

289A-I. Selected Topics in Civil Engineering (1-5) I, II, III. The Staff (Chairperson in charge)

Lecture, laboratory, or combination. Prerequisite: consent of instructor. Directed group study of special top-

ics with separate sections in (A) Environmental Engineering; (B) Hydraulic and Hydrologic Engineer-

ing; (C) pavement design; (D) Geotechnical Engineering; (E) Structural Engineering; (F) Structural Mechanics; (G) Transportation Engineering; (H) Transportation Planning; (I) Water Resources Engineer-

ing. May be repeated for credit.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge)

Seminar—1 hour. Discussion of current graduate research, and guest lectures on recent advances.

Oral presentation of individual study. Course required of graduate degree candidates. (SU grading only.)

290C. Graduate Research Group Conference (1) I, II, III. Chairperson in charge

Discussion—1 hour. Research problems, progress, and techniques in civil engineering. May be repeated for credit. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)

(SU grading only)

Professional Course

390. The Teaching of Civil Engineering (1) I, II, III. The Staff (Chairperson in charge)

Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate-in Civil Engi-

neering. Participation as teaching assistant or associ-

ate-in in a designated engineering course. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equip-

ment, and grading laboratory reports. May be re-

peated for total of 9 units. (SU grading only.)

Engineering: Computer Science

(College of Engineering)

Charles U. Martel, Ph.D., Chairperson of the

Department

Ronald A. Olsson, Ph.D., Vice Chairperson of the

Department

Office, 2063 Engineering II

(916-752-7004; http://www.cs.ucdavis.edu)

Faculty

Matthew Bishop, Ph.D., Assistant Professor

Matthew K. Farrans, Ph.D., Associate Professor

Dipak Ghosal, Ph.D., Assistant Professor

Daniel Gusfield, Ph.D., Professor

Bernd Hamann, Ph.D., Acting Associate Professor

Kenneth I. Joy, Ph.D., Associate Professor

Kari Levit, Ph.D., Professor

Charles U. Martel, Ph.D., Professor

Norman S. Matloff, Ph.D., Professor

Biswa Nath Mukherjee, Ph.D., Professor

Ronald A. Olsson, Ph.D., Associate Professor

Jain Raj Pandey, Ph.D., Assistant Professor

Armand E. Priedhorsky, Ph.D., Associate Professor

Philip Rogaway, Assistant Professor

Manfred G. Russe, Ph.D., Professor

Richard F. Walters, Ph.D., Professor

Emeriti Faculty

Lawrence T. Kou, Ph.D., Professor Emeritus

Peter Linz, Ph.D., Professor Emeritus

Courses in Engineering: Computer Science (ECS)

Lower Division Courses

10. Basic Concepts of Computing (4) I.

The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: two years of high school algebra. Introduction to prin-

ciples of computing. Methods and algorithms for solving problems by use of a digital computer. Not intended for students majoring in physical sciences, engi-

neering, or mathematics. (Not open to credit for students who have completed course 30 or 35, Engineering 5, or former course 30H.)

15. Introduction to Computers (4) I, II, III. Walters

Lecture—3 hours per laboratory—3 hours. Course uses in modern society. Emphasis on uses in non-

scientific disciplines. Includes word processing, other applications, elementary programming concepts, overview of current/projected computer uses. In-

tended for students in the College of Letters and Sci-

ence and other non-computer science majors. Not open for credit to students who have completed course 30, 35, Engineering 5 or former course 30H. GE credit: SciEng, Wrt.

15AT. Introduction to Computers (4) I. Walters

Independent study—3 hours. Prerequisite: consent of instructor. Computer uses in modern society. Includes word processing, spreadsheet, DOS, net-

works and programming concepts. Independent study course paralleling course 15 lectures. Not open to students who have completed course 15, 30, 35, or Engineering 5. GE credit: SciEng, Wrt.

30. Introduction to Programming and Problem Solving (4) I, II. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 16A or 21A (may be taken concurrently).

Introduction to computers and computer program-

ming, algorithm design, running, debugging and test-

ing of well-structured programs. Programming lan-

guage Pascal will be used to solve problems. (Not open to students who have completed course 10, 30, or former course 30H. Only two units of credit allowed for students who have completed Engineering 5.)

35. Structure and Interpretation of Computer Programs (4) I. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: Computer Science or Electrical Engineering Mathematics 16A or 21A (may be taken concurrently), knowledge of Pascal or C. Mathematical foundations of computer science. Procedural and data abstrac-

tion. Design and analysis of algorithms. The Scheme programming language is used. Not open to students who have completed course 10, 30, Engineering 5, or former course 30H. Intended for stu-

dents who have been introduced to a high-level programming language in high school.

40. Introduction to Software Development (4) I, II, III. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 30 or 35. Elements of program design, style, documentation, efficiency. Methods for debugging and verification. Application of dynamic data struc-

tures. Introduction to programming language C.

50. Computer Organization and Machine-Dependent Programming (4) II, III. Farrans, Matloff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Comparative study of different hardware architectures via programming in the assembly lan-

guages of various machines. Role of system software in producing an abstract machine. Only one unit of credit allowed for students who have taken Electrical and Computer Engineering 70.

89A-L. Special Topics in Computer Science (1-5) I, II, III. The Staff

Lecture, laboratory or combination. Prerequisite: con-

sent of instructor. Special topics in (A) Computer Sci-

tence Theory; (B) Architecture; (C) Programming Languages and Compilers; (D) Operating Systems; (E) Software Engineering; (F) Data Bases; (G) Arti-

ificial Intelligence; (H) Computer Graphics; (I) Net-

works; (J) Computer-Aided Design; (K) Scientific Computing; (L) Computer Science. May be repeated for credit when the topic is different.

90X. Lower Division Seminar (2) I, II, III. The Staff

(LChairperson in charge)

Seminar—2 hours. Prerequisite: lower division stand-

ing. Examination of a special topic in a small group setting.

92. Internship in Computer Science (1-5) I, II, III. The Staff

Internship. Prerequisite: lower division standing; pro-

ject approval prior to period of internship. Supervised work experience in computer science. May be repeated for credit (P/NP grading only).

98. Directed Group Study (1-5) I, II, III. The Staff

Chairperson in charge)

(P/NP grading only)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff

(Chairperson in charge)

(P/NP grading only)
Upper Division Courses

100. Discrete Structures and Application (3) I, II, III. Gusfield, Martel, Rogaway, Levitt Lecture—3 hours. Prerequisite: Mathematics 21C, Discrete structures. Applications in computer science; mathematical reasoning proofs, particularly through mathematical induction. Introduction to propositional logic, logic circuit design, combinatorics, recursive equations, problem solving, analysis of algorithms, graph theory and trees, finite state machines.

120. Introduction to the Theory of Computation (3) I, II. Rogaway, Gusfield, Martel Lecture—3 hours. Prerequisite: course 100, Mathematics 106 recommended. Fundamentals ideas in the theory of computation, including formal languages, computability and complexity, Reducibility among computational problems.

122A. Algorithm Design and Analysis (3) II, III. Gusfield, Martel, Rogaway Lecture—3 hours. Prerequisite: courses 100, 110. Complexity of algorithms, bounds on complexity, algorithms for searching, sorting, pattern matching, graph manipulation, combinatorial problems, introduction to NP-complete problems. Not open for credit to students who have taken Computer Science Engineering 122.

*122B. Algorithm Design and Analysis (3) I. Gusfield, Martel, Rogaway Lecture—3 hours. Prerequisite: course 122A, Theory and practice of hard problems, and problems with complex algorithmic solutions. NP-completeness, approximation algorithms, randomized algorithms, dynamic programming and branch and bound. Students do theoretical analysis, implementation and practical evaluations. Examples from parallel, string, graph, and geometric algorithms.

140A. Programming Languages (4) I, II. Olsson, Pandey Lecture—3 hours; discussion—1 hour. Prerequisite: course 140A. Continuation of programming language principles. Further study of programming language paradigms such as functional and logic; additional programming language paradigms such as concurrency (parallel), dataflow, and constraint; key implementation issues for those paradigms; and programming language semantics.

142. Compilers (4) III. Pandey Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100, 140A; course 160 recommended. Principles and techniques of lexical analysis, parsing, semantic analysis, and code generation. Implementation using programming languages.

150. Operating Systems and System Programming (4) I, II, III. Levitt, Matloff, Olsson Lecture—3 hours; discussion—1 hour. Prerequisite: course 40, and course 154A or Electrical and Computer Engineering 170, and course 154B or Electrical and Computer Engineering 170 strongly recommended. Basic concepts of operating systems and system programming. Processes and interprocess communication/synchronization; virtual memory, program loading and linking; file and I/O subsystems; utility programs. Study of a real operating system.

151A. Operating System Design (4) II. Ruschitzka Lecture—3 hours; laboratory—3 hours. Prerequisite: course 154A or Electrical and Computer Engineering 170. Architectural support of operating system concepts. System programming, Major components of an operating system, their functions, and their interactions. Lecture material is closely coupled with a project that involves a machine simulator and the implementation of a major component of the operating system. (Not open to students who have taken Electrical and Computer Engineering 182A.)

151B. Operating System Design (3) III. Ruschitzka Lecture—3 hours. Prerequisite: course 151A and an introductory probability course. Contemporary architectures: virtual memory and operating system support functions. Concurrent processes and the problems of determinacy, mutual exclusion, deadlock, and synchronization. Management of physical and virtual resources. Protection mechanisms. User interface and ease-of-use considerations. (Not open to students who have taken Electrical and Computer Engineering 182B.)

152A. Computer Networks (3) I, II, III. Mukherjee, Matloff, Ghoti Lecture—3 hours. Prerequisite: course 154A or Electrical and Computer Engineering 170; Mathematics 131 or Statistics 131A or 120 or 32; Overview of local and wide-area networks. ISO seven-layer model. Physical aspects of data transmission. Data-link protocols multiplexing and formatting broadcast and network transmission. Internetworking. Not open for credit to students who have taken course 152.

153. Introduction to Computer Security (4) III. Bishop Lecture—3 hours; discussion—1 hour. Prerequisite: course 150 or 151A-151B. Study of the principles, mechanisms, and implementation of computer security and data protection. Policy, encryption and authentication, access control and integrity models and mechanisms, network security systems, programming and vulnerabilities analysis. An existing operating system will be studied.

154A. Computer Architecture (4) I, II. Farrrens, Matloff, Mukherjee Lecture—3 hours; discussion—1 hour. Prerequisite: course 50 or Electrical and Computer Engineering 70, and course 110. Introduction to digital design. Interfacing of devices for I/O, memory and memory management. Input/output programming, via wait loops, hardware interrupts and calls to operating system services. Hardware support for operating system software. Only one unit of credit allowed for students who have taken Electrical and Computer Engineering 170.

154B. Computer Architecture (4) II, III. Farrrens, Matloff Lecture—3 hours; discussion—1 hour. Prerequisite: course 154A or Electrical and Computer Engineering 170, and course 110. Hardwired and microprogrammed CPU design. Memory hierarchies. Uniprocessor performance analysis under varying program conditions. Introduction to pipelining and multiprocessors.

158. Programming on Parallel Architectures (3) III. Farrrens, Matloff Lecture—3 hours. Prerequisite: course 154B or Electrical and Computer Engineering 170; and course 150 or 151A. Techniques for designing and implementing algorithms for parallel systems. Use of parallel and distributed computer systems. Load balancing. Efficient use of interconnects and memory.

160. Introduction to Software Engineering (4) II, III, Levitt, Priedist Lecture—3 hours; discussion—1 hour. Prerequisite: courses 110, 140A. Requirements, specification, design, implementation, testing, and verification of large software systems. Study and use of software engineering methodology, Team programming.

163. User/Computer Interface (3) I, II, III. Joy Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100, 110. Study of the principles of user/computer interaction. User interface management system architecture; semantics of input devices; translation of network and event-based systems, models of interaction, graphical interfaces; implementations; and performance issues and tradeoffs.

165A. Database Systems (4) II. Walters Lecture—3 hours; discussion—1 hour. Prerequisite: course 110. Database hardware, input techniques; file types; database models; reliability, integrity and security; operating system interfaces with databases.

165B. Database Systems (4) III. Walters Lecture—3 hours; laboratory—3 hours. Prerequisite: course 165A. Continuation of basic principles of database systems. Distributed systems; transaction processing; knowledge representation; new database models, including object-oriented, performance evaluation; optimization.

167. Databases in Humanities and Sciences (4) III. Walters Lecture—3 hours; laboratory—3 hours. Prerequisite: course 15 or the equivalent. Introduction for non-majors to basic principles of database management systems; overview of typical commercial database packages; use of database systems in various fields in humanities and sciences; design and implementation of individual database applications. Not open for credit to College of Engineering students. GE credit: SciEng, Writ.

*168. Information Systems (3) I. Walters Lecture—3 hours. Prerequisite: course 40 or the equivalent; upper division standing. Design, creation, implementation, and case study evaluation of information systems. Project-oriented, self-paced implementation of actual information including survey collection of data, input design, and development of components to edit, sort, and retrieve data. Case study of typical information systems problems. Offered in alternate years.

170. Introduction to Artificial Intelligence (4) II. Levitt, Priedist Lecture—3 hours; discussion—1 hour. Prerequisite: courses 110, 140A. Design and implementation of intelligent computer systems. Knowledge representation and organization. Memory and inference. Problem-solving. Natural language processing.

*172. Natural Language Processing (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 110, course 140A recommended. Introduction to cognitive modeling. Study of knowledge structures and processes required for computer comprehension of human languages. Conceptual analysis based on Conceptual Dependency Theory, scripts, goals, and plans. Techniques for designing and implementing natural language parsers and generators.

177. Introduction to Visualization (4) II, III. Hamann, Joy Lecture—3 hours; discussion—1 hour. Prerequisite: course 175. Techniques for analyzing and visualizing science and engineering data using graphics workstation equipment.

*Course not offered this academic year.
178. Introduction to Geometric Modeling (3) III. Hamann, Joy, Max
Lecture—3 hours. Prerequisite: course 175. Computer-aided geometric design techniques and their applications in engineering, in particular for computer-aided design and computational field simulation.

188. Ethics and the Information Age (3) II. The Staff
Seminar—2 hours; term paper. Prerequisite: senior standing. Ethics and professional responsibility issues as they are influenced by the growth of computer usage and networking in today’s society.

189A-L. Special Topics in Computer Science (1-5) I, II, III. The Staff
Discussion, tutorial, seminar, or laboratory, to be announced. Prerequisite: consent of instructor. Special topics in (A) Computer Science Theory, (B) Architecture, (C) Programming Languages and Compilers, (D) Operating Systems, (E) Software Engineering, (F) Data Bases, (G) Artificial Intelligence, (H) Computer Graphics, (I) Networks, (J) Computer-Aided Design, (K) Scientific Computing, (L) Computer Science. May be repeated for credit when the topic is different.

190C. Research Group Conferences in Computer Science (1) I, II, III. The Staff
Discussion or seminar on a research topic in computer science. Prerequisite: consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)

190X. Senior Seminar (1-5) I, II, III. The Staff
Seminar—2 hours. Prerequisite: senior standing. Examination of a special topic in a small group setting.

192. Internship in Computer Science (1-5) I, II, III. The Staff
Internship. Prerequisite: completion of a minimum of 84 units; project approval prior to period of internship. Supervised work experience in computer science. May be repeated for credit. (P/NP grading only.)

197T. Tutoring in Computer Science (2-3) I, II, III. Walters
Discussion—1 hour; laboratory—3–6 hours. Prerequisite: upper division standing in Computer Science and Engineering; consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

220. Theory of Computation (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 120 and 122A. Theory of computation: the notion of effective procedures, computability, Turing machines, Post symbol manipulation systems, models similar to digital computers, computational complexity and intractable problems.

*221. Formal Language Theory (3) III. The Staff
Lecture—3 hours. Prerequisite: course 220. Definition and properties of formal languages, deterministic context-free languages, context-sensitive languages, abstract grammars, families of languages, special topics of current interest.

222A. Design and Analysis of Algorithms (3) II. Gusfield, Martel, Rogaway
Lecture—3 hours. Prerequisite: course 122A; Statistics 131A recommended. Techniques for designing efficient algorithms and analyzing their complexity. Use of data structures. Counting and estimating. Search properties. Graph algorithms.

222B. Advanced Design and Analysis of Algorithms (3) II. Gusfield, Martel, Rogaway

223. Parallel Algorithms (3) II. Martel
Lecture—3 hours. Prerequisite: course 222A. Models of parallel computer systems including PRAMs, loosely coupled systems and interconnection networks. Parallel algorithms for classical problems and studied as well as general techniques for their design and analysis. Lower bounds on parallel computation are proved in several settings.

225. Graph Theory (3) II. Hakimi

227. Modern Cryptography (3) II. Rogaway
Lecture—3 hours. Prerequisite: course 220 or 222A. Modern cryptography, as a discipline emphasizing formal definitions and proofs of security. One-way functions, pseudorandomness, encryption, digital signatures, zero-knowledge, secure protocols.

240. Programming Languages (3) II. Levitt, Pandey
Lecture—3 hours. Prerequisite: courses 140A, 142. Advanced topics in programming languages, including formal syntax and semantics, the relation between formal semantics and verification, and an introduction to the lambda calculus. Additional topics may include language design principles, alternative programming language paradigms, and in-depth semantic theory.

242. Translation of Programming Languages (3) III. Pandey
Lecture—3 hours. Prerequisite: course 242. Lexical analysis, parsing, storage management, symbol table design, semantic analysis, and code generation. LR, LR(1), and LR(0) grammars. Compiler-compilers.

243. Code Generation and Optimization (3) I. Pandey

244. Principles of Concurrent Programming (3) I. Olsson
Lecture—3 hours. Prerequisite: course 100; and course 150 or 151B. Fundamental concepts and applications of concurrent programs: concurrent program verification; synchronization mechanisms in programming languages; distributed programming techniques; case studies of languages.

247. Parallel Languages (3) II, Pandey, Olsson
Lecture—3 hours. Prerequisite: course 240. Language constructs for parallel computation in functional-programming, logic-programming, and related languages. Representation and implementation of task spawning and synchronization. Forms of parallelism, including explicit vs. implicit, AND vs. OR, and Al-Solutions vs. Committed-Choice. Techniques of data flow, suspensions, graph reduction, backtracking, difference lists, etc. Mapping to architectures.

250A. Advanced Computer Architecture (3) I. Mattson
Lecture—3 hours. Prerequisite: course 154B or Electrical and Computer Engineering 170, and Statistics 131A or equivalent. Course 150 or 151A and 151B recommended. Use of simulation and queueing theory in computer design. Applications to memory hierarchies; file storage; computer networks; fault-tolerance; scheduling.

256B. Modeling and Analysis of Computer Networks (3) III. Mattson
Lecture—3 hours. Prerequisite: course 256A. Use of simulation and queueing theory in the design of wide-area and local computer networks, with particular emphasis on optimization. Multiple access protocols, capacity planning, topological design, flow/congestion control, routing.

260. Software Engineering (3) I. Levit
Lecture—3 hours. Prerequisite: courses 140A, 160. Advanced techniques for program specification, design, implementation, testing, and documentation. Application of techniques to large-scale software systems.

261. Program Verification (3) I. Levit
Lecture—3 hours. Prerequisite: Mathematics 125 or Philosophy 112 or familiarity with first-order logic. Knowledge of an iterative and a functional programming language. Methods of proving correctness of programs with respect to formal specifications, with attention to those suited for employing automated deduction. Logic background, symbolic execution, techniques suited to iterative programming, methods from fundamental semantics, terminal deduction, dynamic logic and proofs of concurrent programs.

262. Formal Specification (3) II. Levit
Lecture—3 hours. Prerequisite: course 261. Formal specification of modules, and its relationship to top-down programming development and verification. Abstract state data types, together with methods for specifying them. Implementation and proofs of implementation. Using specifications to reason about programs. Parameterized types, constructing good formal specifications. Offered in alternate years.

265. Database Systems (3) III. Walters
Lecture—3 hours. Prerequisite: course 165A. Data models (especially relational and network), performance measures, query languages and optimizers, data base security and integrity, and distributed systems.
269. Evolution of a Computer Language (3) I. Walters
Lecture—3 hours. Prerequisite: course 140A. Review of specific language: history, features, implementation techniques, validation procedures, performance evaluation and applications. Projects in programming, meta language implementation, validation and performance analysis. Optional capstone project.

270. Artificial Intelligence (3) II. The Staff

271. Machine Learning and Discovery (3) III. Pridietis
Lecture—3 hours. Prerequisite: course 170 or the equivalent. Artificial intelligence techniques for knowledge acquisition by computers. Fundamental problems in machine learning and discovery. Systems that learn from examples, analogies, and solved problems. Systems that discover numerical laws and qualitative relationships. Projects centering on implementation and evaluation.

*272. Cognitive Modeling (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 172 and 270. Central issues in artificial intelligence, emphasizing the modeling and simulation of human performance. Discussion and implementation of current methods in knowledge representation, memory processes and organization, natural language understanding, and planning and problem solving.

*274. Automated Deduction (3) III. Levitt
Lecture—3 hours. Prerequisite: Mathematics 125 or Philosophy 112 or familiarity with first-order logic. Techniques of mechanical theorem-proving. Methods based on resolution and term-rewriting. Decision procedures. Induction. Applications to program verification, question-answering and plan generation. Offered in alternate years.

275A. Advanced Computer Graphics (3) I. Joy, Hamann
Lecture—3 hours. Prerequisite: course 175 or the equivalent. Advanced topics in computer graphics. Hidden surface models, rendering of various surface types, subdivision methods, shading techniques, anti-aliasing, modeling techniques.

275B. Advanced Computer Graphics (3) III. Joy, Hamann
Lecture—3 hours. Prerequisite: course 275A. Advanced topics in computer graphics and geometric modeling. Topics from advanced research papers in computer graphics, image synthesis, visualization and geometric modeling, discussion of current research. Offered in alternate years.

277. Advanced Visualization (3) II. Hamann
Lecture—3 hours. Prerequisite: course 177 or consent of instructor. Visualization of 3D data, including scalar fields, vector fields, and molecular structures. Primary emphasis on volume visualization of scalar fields.

*278. Computer-Aided Geometric Design (3) III. Joy
Lecture—3 hours. Prerequisite: course 178; Applied Science Engineering 115 or Mathematics 128A. Mathematical techniques for the definition and manipulation of curves and surfaces. Coon’s patches, Bezier curves and surfaces. B-spline curves and surfaces, beta-splines, box-splines. Integration into various computer graphics rendering models, and computer-aided design systems. Offered in alternate years.

279. Computer Animation (3) III. Max, Hamann, Joy
Lecture—3 hours. Prerequisite: course 275A. Control of camera and object motion necessary to produce convincing animation. Modelling of articulated objects made from jointed segments, and of deformable objects. Students will complete a final animation project.

289A-L. Special Topics in Computer Science (1-5) I, II, III. The Staff
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in (A) Computer Science Theory; (B) Architecture; (C) Programming Languages and Compilers; (D) Operating Systems; (E) Software Engineering; (F) Data Bases; (G) Artificial Intelligence; (H) Computer Graphics; (I) Networks; (J) Computer-Aided Design; (K) Scientific Computing; (L) Computer Science. May be repeated for credit. (SU grading only.)

290. Seminar in Computer Science (1) I, II, III. The Staff
Seminar—1 hour. Participating seminar; discussion and presentation of current research and development in computer science. May be repeated for credit. (SU grading only.)

290C. Graduate Research Group Conference (1) I, II, III. The Staff
Conference—1 hour. Chairperson in charge.

Professional Courses

315. Teaching Computer Science (3) II. Walters
Lecture—2 hours; discussion/laboratory—1 hour. Prerequisite: course 110. Fundamentals of instructional methodology applied to teaching computer science, especially at the introductory level. Behavioral objectives, testing methods, course design, evaluation, technology in instruction.

390. The Teaching of Computer Science (1) I, II, III. The Staff
Discussion—1 hour. Prerequisite: meet qualifications as determined by the Department of Computer Science. May be repeated for credit. (SU grading only.)

Emeriti Faculty

V. Ralph Algaize, Ph.D., Professor Emeritus
John N. Churchill, Ph.D., Professor Emeritus
Richard C. Dorf, Ph.D., Professor Emeritus
Herman J. Fink, Ph.D., Professor Emeritus
I. Horowitz, Ph.D., Professor Emeritus
Wen C. Lin, Ph.D., Professor Emeritus
Ronald F. Soochoo, Ph.D., Professor Emeritus
Jero M. Suran, Ph.D., (Hon.), Senior Lecturer Emeritus

Affiliated Faculty

Scott D. Collins, Ph.D., Associate Adjunct Professor
Sharon N. Farrens, Ph.D., Assistant Adjunct Professor

Courses in Engineering: Electrical and Computer Engineering (EEC)

Lower Division Courses

1. Introduction to Electrical and Computer Engineering (1) I. The Staff (Chairperson in charge)
Lecture—1 hour. Electrical and computer engineering as a professional activity. What electrical engineers know and how they use their knowledge. Problems they are concerned with and how they go about solving them. Presentation of basic ideas and their applications. Examination of some case studies. (P/NP grading only.)

70. Computer Structure and Assembly Language (4) I, III. Redinbo, Soderstrand, Wilken
Lecture—3 hours; computer workshop—3 hours. Prerequisite: Computer Science Engineering 30 or 35. Introduction to computer architecture; machine language; assembly language; macros and conditional macros; subroutine parameter passing, input/output programming, interrupts and trap, direct-memory access; absolute and relocatable code; reentrant code; program development in an operating system.

89A-U. Special Topics in Electrical and Computer Engineering (1-5) I, II, III. The Staff (Chairperson in charge)
Lecture, laboratory, or combination. Prerequisite: consent of instructor. Special topics in (A) Computer Science Theory; (B) Programming Systems; (C) Digital Systems; (D) Communication; (E) Signal Transmission; (F) Digital Communication; (G) Control Systems; (H) Robotics; (I) Signal Processing; (J) Image Processing; (K) High-Frequency Phenomena and Devices; (L) Solid-State Devices and Physical Electronics; (M) Systems Theory; (N) Active and Passive Circuits; (O) Integrated Circuits; (P) Computer Software; (Q) Computer Engineering; (R) Microprocessor Programming; (S) Electronics; (T) Electromagnetics; (U) Opto-Electronics. May be repeated for credit when the topic is different.

90C. Research Group Conference in Electrical and Computer Engineering (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Preliminary consent of instructor; lower division standing. Research group conferences. May be repeated for credit. (P/NP grading only.)

130B. Introductory Electromagnetics II (4) II, III. Dienes, Fink, Heritage, Knoesen Lecture—3 hours; discussion—1 hour. Prerequisite: course 130A. Plane wave propagation in lossy media, reflections, guided waves, simple modulated waves and dispersion, and basic antennas.

131A. Electromagnetic Fields and Waves (3) I. Dienes, Fink, Knoesen Lecture—3 hours. Prerequisite: course 131B or the equivalent. Propagation and reflection of plane waves in isotropic media. Guided electromagnetic waves. Rectangular and circular waveguides.

*131B. Electromagnetic Fields and Waves (3) II. Dienes Lecture—3 hours. Prerequisite: course 131A or the equivalent. Fiber optics. Helix and slow-wave structures. Wave propagation in media with anisotropic permittivity and permeability, and on plasmas. Traveling wave amplifier.

*131C. Electromagnetic Fields and Waves (3) III. Dienes Lecture—3 hours. Prerequisite: course 131B or the equivalent. Resonant devices; microwave networks and components; antennas.

132A. High-Frequency Systems, Circuits and Devices (4) I. Branner Lecture—3 hours; laboratory—3 hours. Prerequisite: course 132B. Amplifiers, oscillators, mixers, and modulators. Analysis and design of practical devices, circuits and systems operating at radio frequencies. Energy transfer at high frequencies, transmission lines, microwave integrated circuits, circuit analysis of electromagnetic energy transfer systems, the scattering parameters.

132B. High-Frequency Systems, Circuits and Devices (5) II. Branner Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 132A. Passive high frequency device analysis, design. Microwave circuit and filter design. Introduction to analysis and design of microwave devices, monolithic and tunnel diode amplifiers.

132C. RF Amplifiers, Oscillators, Mixers and Antennas (5) III. Branner Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 132B. Microwave amplifier theory and design, including transistor circuit models; stability considerations, noise models and low noise design. Theory and design of microwave transistor oscillators and mixers. Analysis and design of linear, loop, waveguide and horn radiators.

140A. Principles of Device Physics I (4) I, II. Bower, Churchill, Haley, Hunt, Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 140A. Magnetic properties, design, and models for bipolar and MOS devices.

140B. Principles of Device Physics II (4) II, III. Bower, Churchill, Haley, Hunt, Smith Lecture—3 hours; discussion—1 hour. Prerequisite: course 140A. Magnetic properties, design, and models for bipolar and MOS devices.
course 112. Signal analysis based on Fourier methods. Fourier series and transforms, time-sampling, convolution, and filtering, spectral density; modulation: carrier-amplitude, carrier-frequency, and pulse-amplitude.

165. Modulation, Coding, and Noise (3) II. Gardner, Levy Lecture—3 hours. Prerequisite: course 160. Statistics 120. Introduction to random process models of modulated signals and noise, and analysis of receiver performance. Analog, carrier, and digital pulse modulation; noise and channel capacity; error rate, eye and constellation diagrams; noise and jitter measurement in digital communication and signal processing systems. Spectral and time measurement in digitized PCM voice and video, cellular digital and satellite communications. Introduction to artificial intelligence (AI) applications. In-class experiments/demonstrations.

170. Introduction to Computer Architecture (4) I, III. Oklobdzija, Redinbo, Wilken, Akella Lecture—4 hours. Prerequisite: course 160A; course 70 or Computer Science Engineering 50. Introduction to basic aspects of computer architecture, including computer performance measurement, instruction set design, computer arithmetic, pipelined/non-pipelined implementation, and memory hierarchies (cache and virtual memory). Presents a simplified Reduced Instruction Set Computer using logic design methods from the prerequisite course. Not open for credit to students who have taken course 171.

172. Microcomputer-Based System Design (4) I, II. Chang, Oklobdzija, Akella, Redinbo, Wilken Lecture—4 hours. Prerequisite: course 180A, course 70 or Computer Science Engineering 50, and course 180A; course 180B concurrently recommended. Review of 8086/8088 microprocessor architecture; bus-based system architecture; peripheral chips architecture, I/O interface design; software (I/O device drivers; interrupt driven system design; MS-DOS operating system based system design; real-time embedded system design.

173. Applications of Object-Oriented Programming (4) I, II. The Staff Lecture—3 hours, discussion—1 hour. Prerequisite: course 180A; course 70 or Computer Science Engineering 50, and course 180A; course 180B concurrently recommended. Introduction to modern programming paradigms of data abstraction and object-oriented programming for engineering applications. Introduction to object-oriented concepts and OOP language. The technique of modeling an application by defining new types that match the concepts in the application. Not open for credit to students who have taken course 173.

174. Microprocessor-Based Instrumentation Systems (4) III. Soderstrand Lecture—3 hours, laboratory—3 hours. Prerequisite: course 70 or Computer Science Engineering 50, and course 100. Typical uses of microprocessors and microprocessor development systems in instrumentation applications. Analytical and design methods common to modern instrumentation systems including: transducers, dynamic response, signal condition, A/D conversion, data transmission, hardware interfacing, software development, noise analysis, and filter design.

180A. Digital Systems I (5) I, II, III. Oklobdzija, Redinbo, Wilken, Akella, Hakimi Lecture—3 hours; laboratory—6 hours. Prerequisite: course 210 or Electrical Engineering 90; course 100 or Engineering 100. Restricted to the following majors: Electrical Engineering, Computer Engineering, Computer Science and Engineering, Electrical Engineering/Materials Science and Engineering, Electrical Engineering/Computer Engineering, and Computer Science. Non-majors accommodated when space available. Introduction to digital system design including combinational logic design, sequential and asynchronous circuits, computer arithmetic, memory systems and algorithmic state machine design; computer-aided design (CAD) methodologies and tools. Not open for credit to students who have taken course 176.

180B. Digital Systems II (5) I, II. Oklobdzija, Redinbo, Wilken, Akella Lecture—3 hours; laboratory—6 hours. Prerequisite: course 180A. Restricted to the following majors: Electrical Engineering, Computer Engineering, Computer Science and Engineering, Electrical Engineering/Materials Science and Engineering, Electrical Engineering/Computer Engineering, and Computer Science. Non-majors accommodated when space available. Multi-input/output sequential digital systems; timing/pulse circuits; TTL, CMOS, ECL logic elements; analog switch; sample/hold; A-D-A converter. Design of system noise: grounding, shielding, cross-talk; reflection; memory systems; CAD with PLD/PAL; CAD with Xilinx FPGA. Not open for credit to students who have taken course 177.

189A-U. Special Topics in Electrical Engineering and Computer Science (1-5) I, II, III. The Staff (Chairperson in charge) Lecture, laboratory, or combination. Prerequisite: consent of instructor. Topics will vary. May be repeated for credit. Not open for credit to students who have taken course 171.

190C. Research Group Conferences in Electrical and Computer Engineering (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: upper division standing in Electrical and Computer Engineering, consent of instructor. Research group conferences. May be repeated for credit. (P/NP grading only.)

192. Internship in Electrical and Computer Engineering (1-5) I, II, III. The Staff (Chairperson in charge) Internship—3-15 hours. Prerequisite: completion of sequence. Internship—3-15 hours. Prerequisite: completion of sequence. May be repeated for credit. (P/NP grading only.)

194A-194B-194C. Micromouse Design Project (2-2-1) I-II-III. Soderstrand Workshop—3 hours (194A and 194B only); laboratory—3 hours. Prerequisite: course 70 or Computer Science Engineering 50; Engineering 17 (may be taken concurrently); course 100 or Engineering 100 (may be taken concurrently recommended); course 180A recommended (may be taken concurrently). Enrollment in course 194A automatically enrolls student in 194B and 194C. Design of a robotic mouse for the IEEE Micromouse competition. Limited enrollment. May be repeated for credit. (Deferred grading only, pending completion of three-course sequence.)

195A-195B-195C. Student Design Project (2-2-1) I-II-III. The Staff Laboratory and discussion. Prerequisite: consent of instructor. Enrollment in course 195A automatically enrolls student in 195B and 195C. Design projects and/or contests sponsored by industry. Topics vary; check with department for availability. Course offering subject to student demand/availability of resources. May be repeated for credit. Limited enrollment. (P/NP grading only; Deferred grading only. pending completion of sequence.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

205. Introduction to Optical Information Processing (3) II. Knoesen Lecture—3 hours. Prerequisite: courses 230 and 250 recommended. Review of the scalar theory of diffraction and of two-dimensional Fourier transforms, from which the foundations of the frequency analysis of imaging systems will be developed. Image processing techniques will be examined, including the theory and applications of holography, introduction to optical computing. Offered in alternate years.

206. Digital Image Processing (4) II. Levy, Reed Lecture—3 hours; laboratory—3 hours. Prerequisite: course 150B. Two-dimensional systems theory, image perception, sampling and quantization, transform theory and applications, enhancement, filtering and restoration, image analysis, and image processing systems.

207. Pattern Recognition and Classification (3) III, Ford, Reed Lecture—3 hours. Prerequisite: Statistics 120. Topics in statistical pattern recognition and classification: linear decision functions and minimum distance classification; Bayes decision theory; eigenvalue decomposition of the generalized perception, multi-layer neural networks, and feature extraction.

209. Image Sequence Processing (3) III. Reed Lecture—3 hours. Prerequisite: course 106. Basic video concepts and image sequences as spatio-temporal data; three-dimensional linear systems; perception of visual motion; enhancement of image sequences; image sequence representation; resolution issues; the computation of motion; image sequence compression.

211. Advanced Analog Circuit Design (3) I, II, III. Spencer, Current, Hurst Lecture—3 hours. Prerequisite: course 210. Statistics 131A or the equivalent required. Noise in elec-
tronic circuits and systems. Distortion analysis; the translinear principle and its application to circuit analysis and synthesis; phase-locked loops and their applications.

212. Analog MOS IC Design (3) II. Hurst, Lewis Lecture—3 hours. Prerequisite: course 210. Analysis and design of analog MOS integrated circuits. Passive components, single-ended and fully differential op amps, sampled-data and continuous-time filters.

213. Data-Conversion Techniques and Circuits (3) III. Lewis, Current, Hurst, Spencer Lecture—3 hours. Prerequisite: course 210. Digital-to-analog and analog-to-digital conversion; component characteristics and matching; sample-and-hold, comparator, amplifier, and reference circuits.

214B. Computer-Aided Circuit Analysis and Design (3) II, Current, Haley Lecture—3 hours. Prerequisite: course 214A. Transient analysis; harmonics, stability, steady-state analysis; time-domain network sensitivities, ac, dc, transient gradient calculations, design optimization. Extensive computer project.

218A. Introduction to VLSI Circuits (3) I. Curren, Hunt, Spencer Lecture—3 hours. Prerequisite: courses 110A-110B, 111A-111B. Theory and practice of VLSI circuit and system design. Extensive use of VLSI computer-aided design aids allows students to undertake a VLSI design example.

218B. Multiprocessor Chip Design (1) II. Current, Hurst, Oklobdzija, Spencer Laboratory—3 hours. Prerequisite: course 218A. CMOS and NMOS multiprocessor chip layouts of projects begun in courses 218A, 212, and 219 are assembled and submitted to the DARPA/NSF MOSIS program for fabrication.

218C. Testing and Evaluation (1) III. Current, Hurst, Oklobdzija, Spencer Laboratory—3 hours. Prerequisite: course 218A and 218B. Chips submitted in course 218B are tested and evaluated. Issues involving design of ICs for testability are discussed.

219. Advanced Digital Circuit Design (3) III. Hurst, Current, Spencer Lecture—3 hours. Prerequisite: course 118 or 218A. Analysis and design of digital circuits. Both bipolar and CMOS circuits are covered. Dynamic and static RAM cells and sense amplifiers. Advanced MOS families. Multivalued logic.

221. Passive Filter Design (3) I. Soderstrand Lecture—3 hours. Prerequisite: courses 100 and 150A. Introduction to the design of passive filters with lumped and distributed elements. Filter specification and design process, approximation theory, modern doubly terminated reactance, two-port synthesis, passive filters with lumped elements, crystal and ceramic filters, mechanical filters.

222. Active Filter Design (3) II. Soderstrand, Current, Haley Lecture—3 hours. Prerequisite: course 221 recommended. Introduction to the design of active filters with lumped elements and switches. Active filters with lumped RC elements, active-R networks, and switched capacitor filters.

225A. Lasers (3) II. Dienes, Heritage Lecture—3 hours. Prerequisite: course 130B or the equivalent, and course 231. Theoretical and practical description of pulsed and continuous-wave lasers. The techniques of population inversion, amplification and oscillation using semiconductor oscillator model and rate equations. Description and design of real laser systems. Offered in alternate years.

227A. Microwave Electronics (3) I. The Staff Lecture—3 hours. Prerequisite: courses 130B and 140B. Theory of microwaves, waveguides and cavities. Interaction between electromagnetic fields and the electron charge. Lorentz force law, energy levels in matter and Zeeman splitting. Comparison between conventional and microwave tubes and other novel types of microwave oscillators and amplifiers. Offered in alternate years.

227B. Microwave Electronics (3) II. The Staff Lecture—3 hours. Prerequisite: course 227A or the equivalent. Theory of electromagnetic fields and electronic charges, with applications to electron beam and solid-state devices. Beam formation, velocity and density modulation, plasma oscillation, space charge wave propagation in klystrons. Parametric amplifiers, tunnel and IMPATT diodes, Gunn oscillators. Offered in alternate years.

228. Advanced Microwave and Antenna Design Techniques (3) III. Branner Lecture—1 hour. Prerequisite: courses 132B or 131B. Design, fabrication, analysis of advanced microwave devices, antennas. Includes FET amplifiers, microstrip and stripline filters, hybrids, beamformers, tapered networks. Yole’s broadband matching theory applied to microwave devices. Antenna design, analysis of horns, microstrip, log periodic, arrays, spirals and reflectors. Offered in alternate years.

230. Electromagnetics (3) I. Dienes Lecture—3 hours. Prerequisite: course 130B. Maxwell’s equations, plane waves, reflection and refraction, waveguides, waves in anisotropic media, propagation in dispersive media, laser beams and resonators.

231. Photonics (3) I. Dienes, Knosen Lecture—3 hours. Prerequisite: course 130B or the equivalent. Course 231 recommended. Introduction to opto-electronics, including ray optics, wave optics, beam optics, resonators, couplers, pulse propagation in dispersive media, electro-optical modulation and detection. Offered in alternate years.

232A. Advanced Applied Electromagnetics I (3) I. Branner Lecture—3 hours. Prerequisite: course 131B or 132B. The exact formulation of applied electromagnetic problems using Green’s functions. Applications of these techniques to transmission circuits. Offered in alternate years.

232B. Advanced Applied Electromagnetics II (4) III. Branner Lecture—3 hours. Laboratory—3 hours. Prerequisite: course 131B or 132B. Advanced treatment of electromagnetics with applications to passive microwave devices and antennas. Offered in alternate years.

233. Nonlinear Optical Applications (3) III. Knosen, Dienes, Heritage Lecture—3 hours. Prerequisite: course 130B or the equivalent; course 230 recommended. Nonlinear optical interactions have important applications in optical information processing, telecommunications and integrated optics. The basic concepts underlying optical nonlinear interactions in materials and in guided media are presented. Offered in alternate years.

240. Semiconductor Devices (3) II. Bower, Hunt Lecture—3 hours. Prerequisite: course 140B. Physical principles, characteristics and models of various semiconductor devices including P-N junction and metal-insulator-semiconductor diodes, junction and insulated gated field effect transistors. Not open for credit to students who have completed former course 220.

245A. Applied Solid-State Physics (3) II. Haley, Hunt Lecture—3 hours. Prerequisite: course 140B, Physics 115A. Physics of solids relevant to solid-state applications. Topics include atomic structure of solids, quantum theory of electronic and vibrational states in crystals, electron dynamics, and transport theory.

245B. Applied Solid-State Physics (3) III. Hunt, Haley Lecture—3 hours. Prerequisite: course 245A. Theory and application of magnetism and superconductivity. Topics in magnetism include paramagnetism, ferromagnetism, magnetic resonance, exchange and other properties of magnetic elements. Topics in superconductivity include basic superconducting phenomena, Ginzburg-Landau theory, Josephson junctions, SQUIDS and SC microcircuitry.

245C. Applied Solid-State Physics (3) III. Haley, Hunt Lecture—3 hours. Prerequisite: course 245A. The physics of solids and quantum-confined systems relevant to applications of fundamental optical processes. Topics include elementary excitations, radiative and non-radiative recombination, high-density excitation, stimulated emission, and excitonic effects in bulk material as well as quantum wells, wires, and boxes. Offered in alternate years.

246. Advanced Projects in IC Fabrication (3) III. Hunt, Spencer, Smith Lecture—1 hour. Laboratory—6 hours. Prerequisite: course 140B. Individualized projects in the fabrication of analog or digital integrated circuits. (Former course 215.)

247. Advanced Semiconductor Devices (3) I. Bower, Hunt Lecture—3 hours. Prerequisite: course 240. Physics of various semiconductor devices, including metal-oxide-semiconductor field-effect transistors (MOSFETs), IMPATT and related transit-time diodes, transferred-electron devices, light-emitting diodes, semiconductor lasers, photodetectors, and solar cells. Offered in alternate years.

248. Micromoson Design and Fabrication (3) III. Bower Lecture—3 hours. Prerequisite: graduate standing in Engineering. Design and fabrication of sensors using microfabrication techniques. Topics include transduction principles, fabrication technologies specific to microsensors, and design of microsensor systems, including packaging. Offered in alternate years.

249. Microfabrication (3) III. Hunt Lecture—3 hours. Prerequisite: graduate standing in Engineering. Theory and practices of several major technologies of microfabrication, used for producing integrated circuits, sensors, and microstructures. Major topics include sputtering, chemical vapor deposition, plasma processing, micro machining, and ion implantation. Offered in alternate years.

257. Topics in Optimization (5) III. Chang, Mayne Lecture—3 hours. Prerequisite: graduate standing. Advanced topics in the theoretical foundations of optimization and its applications, such as: linear and nonlinear systems theory, stochastic programming, stochastic optimal control, approximation theory for optimization, advanced topics in numerical implementation of algorithms, shape optimization, large scale optimization, semi-infinite and nondifferentiable optimization with applications to engineering design, global optimizations. (Same course as Mathematics 257.)

258A. Optimization I (3) I. Chang, Mayne Lecture—3 hours. Prerequisite: knowledge of FOR-TRAN and FORTRAN problems existing in engineering design and other applications, optimality conditions, linear programming and unconstrained optimization (gradient, Newton, conjugate directions and minimax algorithms), convergence and rate of convergence, selected topics. (Same course as Mathematics 258A.)

*258B. Optimization II (3) III. Chang, Mayne Lecture—3 hours. Prerequisite: course 258A. Modeling constrained optimization problems existing in engineering design and other applications, optimality conditions, linearly and nonlinearly constrained optimization problems, projection, feasible directions and reduced gradient algorithms, interior point methods. Lagrangian theory, duality, augmented Lagrangians, sequential quadratic programming, selected topics. (Same course as Mathematics 258B.)

259. Optimal Control, Theory and Algorithms (3) I. Chang, Mayne Lecture—3 hours. Prerequisite: graduate standing. Optimal control and calculus of variations; existence of solutions to optimal control problem; necessary and sufficient conditions of Pontryagin maximin principle, Euler equation; sufficient conditions of optimality. Hamilton-Jacobi-Bellman equation, linear quadratic regulator problem; algorithms for unconstrained and constrained optimal control problems. (Same course as Mathematics 259.)

260. Random Signals and Noise (4) II. Gardner Lecture—3 hours; discussion—1 hour. Prerequisite: Statistics 120, course 150A; course 250 recommended. Random processes as probabilistic models for signals and noise. Review of probability, random variables, and expectation. Study of correlation function and spectral density, ergodicity and stationarity. Calculation of time averages and expected values, filters and dynamical systems. Applications.

266. Information Theory and Coding (3) II. Alizai, Abdul-Majeed Lecture—3 hours. Prerequisite: Statistics 120. Information theory and coding. Measure of information. Redundancy reduction encoding of an information source. Capacity of a communication channel, error-free communications.

*268. Digital Modulation Techniques (3) III. Feher Lecture—3 hours. Prerequisite: course 267. MDSM (modulator-demodulator) signal processing and complete radio transmitter/receiver/analysis design and application for digital cellular mobile radio satellite, mobile satellite and personal communication systems. Study of advanced 4-QPSK, GMSK, coded QAM and of correlated/coded modems. Computer-aided and hardware design of advanced communications and synchronization algorithms.

*269. Error Correcting Codes (3) II. Abdel-Ghaffar Lecture—3 hours. Prerequisite: Mathematics 222A. Introduction to coding theory, finite fields, linear codes, Hamming codes, cyclic codes, BCH and RS codes and their decoding algorithms, convolutional codes.

270. Computer Architecture (3) II. Redinbo, Oklobdzija, Wilken Lecture—3 hours. Prerequisite: course 170, 180A. Emphasis on quantitative analysis of design trade-offs, optimization of resource usage, formal descriptive models, and interactions between architecture and software.

*271. Advanced Digital System Design (4) II. Oklobdzija Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 170, 180B. Topics in advanced design of arithmetic processors. High-speed addition, multiplication, and floating point processors. Pipeline processors. Laboratory invlving design and construction of several example systems.

*273. Bit-Slice Microprogramming CISC and RISC Systems (4) I. Oklobdzija Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 172, 180B, 270. Microprogramming technique for the design of control unit of CPU for CISC (Complex Instruction Set Computer); microprogram control technique and state machine concept for digital logic design; hardware emulation of microprocessors, survey of RISC (Reduced Instruction Set Computer) based systems, hardware emulation of RISC-based systems. Offered in alternate years.

*274. Parallel Computer Architectures (3) II. Oklobdzija, Redinbo Lecture—3 hours. Prerequisite: course 270. Use of parallelism to achieve high performance levels. Within-CPU parallelism, through pipelining. Multiple-CPU parallelism, through array processors and multiprocessors, and through novel structures such as database machines, artificial neural nets.

275. Advanced Object Oriented Programming (3) III. Wang Lecture—3 hours. Prerequisite: course 173. Object-oriented analysis and implementation of complex software systems. Topics include fundamental concepts of object models, the notation and process of object-oriented analysis and design, creating graphical user interface, application of object-oriented development across different application domains.

276. Introduction to Fault-Tolerant Computing (3) II. Wilken Lecture—3 hours. Prerequisite: course 170, 180A. Introduction to fault-tolerant computing and practice. Covers recent and classic fault-tolerant techniques based on hardware redundancy, time redundancy, information redundancy, and software redundancy. Examines hardware and software reliability analysis, and example fault-tolerant architectures. Offered in alternate years.

276B. Introduction to Digital Fault Diagnosis (3) III. Akella Lecture—3 hours. Prerequisite: course 180B, Statistics 120 or 131A. A review of several current techniques used to diagnose faults in both combinational and sequential circuits. Topics include path sensitization procedures, Boolean difference, D-algorithm random test generation, TC testing and an analysis of the effects of intermittent faults. Offered in alternate years.

*277. Real-Time Multiprocessor/Multitasking System Design (5) III. Oklobdzija Lecture/discussion—2 hours; laboratory—9 hours. Prerequisite: courses 172, 180B, Computer Science Engineering 150. Real-time system design using multiple 16-bit microprocessors. System development and emulation through IBM/AT driven STD-bus system, and Intel's IRX286 development system. Bus architecture, design of hardware, software and system design with IRX289 real-time multitasking operating system. Offered in alternate years.

*278. Computer Arithmetic for Digital Implementation (3) III. Oklobdzija, Redinbo Lecture—3 hours. Prerequisite: course 170, 180A. The design and implementation of computer arithmetic logic units are studied with particular emphasis on high-speed performance requirements. Addition (subtraction), multiplication and division operations are covered, and fixed and floating-point representations are examined. Offered in alternate years.

*279. Artificial Neurons and Applications (4) I. The Staff Lecture—1.5 hours; discussion—1.5 hours; laboratory—3 hours. Prerequisites: courses 172, 180B, 207. Biological neuron, artificial neuron modelling and implementation, adaptive/learning algorithms, applications to pattern recognition. Offered in alternate years.

282. Synthesis Approach to System Design (3) III. Akella Lecture—3 hours. Prerequisite: courses 180B, Computer Science Engineering 122 and 142, or the equivalents, or consent of instructor. VHDL, logic synthesis, field-programmable gate arrays, compiler synthesis, algorithms underlying computer-aided design tools, high-level synthesis, hardware/software co-design.

Course Information: Mechanical and Aeronautical Engineering

Faculty

Bahram Ravan, Ph.D., Chairperson of the Department
Ian M. Kennedy, Ph.D., Vice Chairperson of the Department
Department Office, 2132 Bainer Hall (916-752-0580; FAX: 916-752-4158)

Faculty

Professor

Chairperson Ronald A. Hess, Ph.D., Professor
Mohamed M. Hafez, Ph.D., Professor
Allan A. McKillop, Ph.D., Professor Emeritus
Warren H. Giedt, Ph.D., Professor Emeritus
Clyne F. Garland, M.S., Professor Emeritus
Bruce R. White, Ph.D., Professor
Emeritus Faculty

Charles W. Beadle, Ph.D., Professor Emeritus
Harry Brandt, Ph.D., Professor Emeritus
John W. Brewer, Ph.D., Professor Emeritus
Clyne F. Garland, M.S., Professor Emeritus
Warren H. Giedt, Ph.D., Professor Emeritus
Jerald M. Henderson, D.Eng., Professor Emeritus
Myron A. Hoffman, Sc.D., Professor Emeritus
John D. Kemper, Ph.D., Professor Emeritus
Allan A. McKillop, Ph.D., Professor Emeritus
An Tzu Yang, D.E.Sc., Professor Emeritus
Affiliated Faculty

Billy Sanders, Ph.D., Lecturer
SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Courses in Engineering: Mechanical (EME)

Courses in Mechanical Engineering (EME) are listed below; courses in Aeronautical Science and Engineering (EAE) are listed immediately following.

Lower Division Courses

1. Mechanical Engineering (1) I. The Staff (Chairperson in charge)

Lecture—1 hour. Description of the field of mechanical engineering with examples taken from industrial applications; discussion of the practice with respect to engineering principles, ethics and responsibilities. (P/NP grading only.)

50. Manufacturing Processes (3) I, II, III. The Staff

Discussion—2 hours, laboratory—3 hours. Prerequisite: Engineering 4, consent of instructor. Restricted to Mechanical, Aeronautical, and Materials Science Engineering majors. Introduction to and experience with modern manufacturing methods, manufacturing instructions and computer-aided manufacturing and their role in the engineering design and development process.

92. Internship in Mechanical Engineering (1-5) I, II, III. The Staff (Chairperson in charge)

Internship. Prerequisite: lower division standing; approval of project prior to period of internship. Supervised work experience in engineering. May be repeated for credit (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor; lower division standing. (P/NP grading only.)

Upper Division Courses

134. Vehicle Stability (4) III. Margolis

Lecture—3 hours; laboratory—3 hours. Prerequisite: Engineering 102. Introduction to the static and dynamic stability characteristics of transportation vehicles with examples drawn from aircraft, high performance automobiles, rail cars and boats. Laboratory experiments illustrate the dynamic behavior of automobiles, race cars, airplanes, bicycles, etc.

150A. Mechanical Design (4) I, III, Hull

Ravan Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 45 and 104, course 50 (may be taken concurrently). Principles of engineering mechanics applied to the fundamentals of mechanical design. Theories of static and fatigue failure of metals. Design projects emphasizing the progression from conceptualization to hardware.

150B. Mechanical Design (4) I, II. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 150A. Restricted to Aeronautical and Mechanical Engineering and Materials Science majors. Principles of engineering mechanics, failure theories and fatigue theory applied to the design and selection of mechanical components. Design projects which concentrate on design, engineering analysis, methods of manufacture, material selection and cost. Introduction to computer-aided design.

151. Statistical Methods in Design and Manufacturing (3) III. Hull

Lecture—3 hours. Prerequisite: course 150A. Methods of statistical analysis with emphasis on applications in mechanical design and manufacturing quality control. Applications include product evaluation and decision making, probabilistic design, methods of sampling inspections and control charts.

152. Computer-Aided Mechanism Design (3) I. Cheng

Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 5 or the equivalent; Engineering 36. Principles of computer-aided mechanism design. Com-
puter-aided kinematic, static, and dynamic analysis and design of planar mechanisms such as multiple-loop linkages and geared linkages. Introduction to kinematic synthesis of mechanisms.

153. Introduction to Machining of Material (3) III. Yamazaki
Lecture—3 hours. Prerequisite: Engineering 36, 45, 104, and 105. Material removal characteristics, kinematics and dynamics of material removal processes such as metal cutting, grinding, non-traditional machining such as EDM and laser cutting, and quality in machining. The lecture is accompanied by live demonstrations of the technology.

154. Introduction to Mechatronics (3) II. Yamazaki
Lecture—2 hours, laboratory—3 hours. Prerequisite: Engineering 36 and 100 or Electrical and Computer Engineering 100; course 50 or consent of instructor. Mechatronics system concept, academic subjects related to mechatronics, mechatronics system overview, control system design overview, control software architecture, control hardware architecture, microcontroller and interface technology for mechatronics control, sensor for mechatronics systems, actuator control technology, power electronics for actuator drives.

161. Conduction and the Environment (4) III. Shaw
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B and 105B. Introduction to combustion kinetics; the theory of premixed flames and diffusion flames; turbulent combustion; formation of air pollutants in combustion systems; examples of combustion equipment include internal combustion engines, gas turbines, furnaces and waste incinerators; alternative fuel sources.

162. Modern Power Systems (4) II. Hoffman
Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 103B, 105B. Study of modern power plants for electric power generation and cogeneration. Thermodynamic analysis of different power plants including fossil fuels, nuclear fuels, solar energy, etc. Design studies of some specific powerplants.

163. Internal Combustion Engines (3) I. Dywer
Lecture—2 hours, laboratory—3 hours. Prerequisite: Engineering 103A, 105A, Engineering 103B and 105B recommended. Fundamentals of internal combustion engine design and performance, and the need to adapt the IC engine to increased environmental concern, emphasis on internal processes in the engine, but other subsystems will be discussed.

165. Fundamentals of Heat Transfer (4) I, II. Baughn, Barakat
Lecture—2 hours, laboratory—3 hours. Prerequisite: Engineering 5, 103B and 105B; restricted to Aeronautical and Mechanical Engineering and Materials Science majors and Biological Systems and Food Engineering majors. Fundamentals of conduction, convection and radiation heat transfer; applications to engineering equipment with use of digital computers.

171. Analysis, Simulation and Design of Dynamic Systems (4) I, II. Eke, Karnopp, Marek

Lecture—3 hours; discussion—1 hour. Prerequisite: course 171. Classical feedback control for engineering systems. Control system design using time and frequency domain methods. State space techniques.

Lecture—2 hours; discussion—1 hour; laboratory—1 hour. Prerequisite: Engineering 100 and 36; restricted to Aeronautical and Mechanical Engineering and Materials Science students. Theory of measurements; measurement techniques for mechanical systems; transducers, data manipulation and processing, data digitization.

184A. Senior Design Project (2) I, II, III. The Staff
Lecture—6 hours. Prerequisite: course 150B, 165, 172 and Aeronautical Engineering 25 (may be taken concurrently); senior standing in Mechanical Engineering, consent of instructor. Performance of practical mechanical engineering projects which include one or more of the following: analysis, design, development and evaluation of mechanical engineering system. (Deferred grading only; pending completion of sequence.)

184B. Senior Design Project (2) I, II, III. The Staff
Lecture—6 hours. Prerequisite: course 184A in a previous quarter from the same instructor; consent of instructor. Performance of mechanical engineering projects which include one or more of the following: analysis, design, development and evaluation of a mechanical engineering system.

185A. Mechanical Systems Design Project (2) II. The Staff
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 150B (may be taken concurrently); senior standing in Mechanical Engineering (enrollment permission to students who have not taken courses 186 or 187). Capstone mechanical engineering design course; the mechanical engineering design process and its use in the design of engineering systems.

185B. Mechanical Systems Design Project (2) II, III. The Staff
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 185A; senior standing in Mechanical Engineering (enrollment permission to students who have not taken any of course series, 184-188). Design of a thermal system such as a power plant or engine, including consideration of engineering and economic factors. Grading based on individual contributions to project. Limited enrollment.

187. Control Systems Design Project (4) I. Frank
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 172, Consent of instructor, senior standing in Mechanical Engineering (enrollment permission to students who have not taken any of course series, 184-188). Design of dynamic engineering systems. Formulation of linear models of plants, consideration of passive, open loop, and closed loop active solutions. Hardware and cost/performance considerations. Grading based on individual contributions to project. Limited enrollment.

188. Vehicle Systems Design Project (4) II. Frank
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 150B; senior standing in Mechanical Engineering (enrollment permission to students who have not taken any of course series, 184-188). Design of vehicle systems, including components, and/or complete vehicle. General topics include: Students design, analyze, construct and evaluate a vehicle-related component. Grading based on individual contributions to projects. Limited enrollment.

189A-B. Selected Topics in Mechanical Engineering (1) I, II. Shaw, Barakat
Lecture/discussion—1 hour biweekly; laboratory—3 hours biweekly. Prerequisite: consent of instructor. Directed group study of selected topics with separate sections in (A) Fluid Mechanics Laboratory; (B) Thermodynamics Laboratory.

192. Internship in Engineering (1-5) I, II, III. The Staff (Chairperson in charge)
Internship. Prerequisite: upper division standing; approval of the department. During period of internship. Supervised work experience in mechanical engineering. May be repeated for credit. (PINP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PINP grading only.)

199. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (PINP grading only.)

Graduate Courses

205. Thermal Radiation (3) II.
Lecture—3 hours. Prerequisite: course 165 or consent of instructor. The transfer of radiant energy. Geometrical and spectral characteristics of systems involving thermal radiation. Gaseous radiation. Applications to solar energy systems. Offered in alternate years.

208A. Experimental Methods in the Thermal Sciences (3) II. Baughn
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: course 165. Experiment design, statistics uncertainty analysis. Steady-state and transient temperature measurement. Steady-state flow and pressure measurements. Offered in alternate years.

208B. Experimental Methods in Fluid Mechanics and Combustion (3) II. Kennedy
Lecture—2 hours; laboratory—3 hours. Prerequisite: courses 165 and Engineering 103B. Application of shadow, schlieren and other flow visualization methods. Introduction to optical techniques of velocity and concentration in reacting and non-reacting flows with laser diagnostic techniques including LDV, Rayleigh, Raman and fluorescence scattering and CARS. Offered in alternate years.

210A. Advanced Fluid Mechanics and Heat Transfer (4) I. White
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B, 105B, course 165. Development of differential equations governing continuity, momentum, and energy transfer. Solutions in laminar flow for exact cases, low and high Reynolds numbers and lubrication theory. Dynamics of inviscid flow.

210B. Advanced Fluid Mechanics and Heat Transfer (4) II. Kennedy
Lecture—3 hours; discussion—1 hour. Prerequisite: course 210A. Study of stability and transition to turbulence. Introduction to the physics of turbulence. Modeling of turbulence for numerical determination of momentum and heat transfer.

211. Fluid Flow and Heat Transfer Design (4) I. Hoffman
Lecture—3 hours; discussion—1 hour. Prerequisite: course 210A (may be taken concurrently) or consent of instructor. Design aspects of selected topics such as heat conduction, thermal stresses, fins; heat transport in ducts, boundary layers and separated flows; impingement and film cooling; heat exchangers; flow in diffusers, flow over airfoils and blades. Offered in alternate years.

212. Advanced Heat Transfer with Phase Change (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 165. Study of complex phenomena occurring in two-phase flow, boiling and condensation. Development of fundamental relations. Use of these relations with experimental data to develop semi-empirical working relations; application to various energy systems and power-plant problems. Offered in alternate years.

213. Advanced Turbulence Modeling (4) I. Kollmann
Lecture—4 hours. Prerequisite: course 210B. Methods of analyzing turbulence; kinematics and dynamics of homogeneous turbulence; Reynolds stress and heat-flux equations; second order closures and their simplification; numerical methods; application to boundary layer-type flows; two-dimensional and three-dimensional hydraulic and environmental flows. Offered in alternate years.

Lecture—3 hours; discussion—1 hour. Prerequisite: courses 210A and Aeronautical Science Engineering 233, or consent of instructor. Application of numerical...
approximation methods of fluid flows involving heat and mass transfer for mechanical and aeronautical applications. Applications to pipe flows; high Peclét number flows; forward turbulent combustion, and solution of the Navier-Stokes equations. Offered in alternate years.

215. Biomedical Fluid Mechanics and Translational Biomechanics (3) II. Barakat
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B or Chemical Engineering 150B or Civil Engineering 141. Application of fluid mechanics and translational biomechanics to physiological system flow in normal physiological function and pathological conditions. Topics include circulatory and respiratory flows, effect of flow on cellular processes, transport in the arterial wall and in tumors, and tissue engineering. (Same course as Biomedical Engineering 215.)

216. Advanced Thermodynamics (4) I. Kollmann
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 105B. Study of topics important to energy conversion systems, propulsion and other systems using high temperature gases. Classical thermodynamics and quantum statistical mechanics of nonequilibrium and chemically reacting gases; gas mixtures, and other substances. Offered in alternate years.

217. Combustion (4) II. Shaw
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B and 105B. Review of chemical thermodynamics and chemical kinetics. Discussions of reacting flows, their governing equations and transport phenomena; detonations; laminar flame structure and turbulent combustion. Offered in alternate years.

218. Advanced Energy Systems (4) II. Hoffman
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B, 105B, or the equivalent. Review of options available for advanced power generation. Detailed study of basic power balances, component efficiencies, and overall powerplant performance for one advanced concept such as a fusion, magnetic containment, and solar electric powerplant. Offered in alternate years.

220A-220B. Mechanical Vibrations (3-3) II.-III.
Hubbard
Lecture—3 hours. Prerequisite: Engineering 122. Applications of vibration theory to systems with many degrees of freedom and continuous systems. Introduction to random vibrations.

222. Advanced Dynamics (3) I. Karnopp
Lecture—3 hours. Prerequisite: Engineering 102. Dynamics of particles and of rigid bodies with advanced engineering applications; generalized coordinates; Hamilton’s Principle, Lagrange’s Equations; Hamilton-Jacobi theory.

223A. Multibody Dynamics I (3) II. Eke, Hubbard
Lecture—3 hours. Prerequisite: Engineering 102. Dynamics of particles and of rigid bodies with advanced engineering applications; generalized coordinates; Hamilton’s Principle, Lagrange’s Equations. Offered in alternate years.

223B. Multibody Dynamics II (3) III. Eke, Hubbard

224. Kinematic Design of Mechanisms (3) II. Cheng
Lecture—3 hours. Prerequisite: course 152 or consent of instructor. Introduction to Bermester theory of the rational planar mechanisms. Geometric and algebraic concept of two- and three-dimensional rigid-body displacements, instantaneous invariants, higher order path curvature analysis, circle- and center-point curves. Graphic and computer methods for kinematic design. Offered in alternate years.

225. Spatial Kinematics and Robotics (3) II
The Staff
Lecture—3 hours. Prerequisite: course 222. Spatial kinematics: point and line coordinates and their transformations; concept of screw systems and instantaneously necessary invariance. Robotics: solving for kinematic equations; differential relationships; motion trajectories. Application of dual-number matrices, screw calculus, and associated analytical methods. Offered in alternate years.

226. Acoustics and Noise Control (3) I. Margolis
Lecture—3 hours. Prerequisite: Engineering 122. Description of sound using normal modes and waves; interaction between freely vibrating objects and sound field; sound absorption in enclosed spaces; sound transmission through barriers; applications in design of mufflers, acoustic enclosures, room acoustics, design of quiet machinery. Offered in alternate years.

227. Research Techniques in Biomechanics (4) II. Williams, Hawkins
Lecture—2 hours; laboratory—4 hours; term paper/discussion—1 hour. Prerequisite: consent of instructor. Exercise science theory and application of modern techniques in digital data analysis and computerization. Topics include data acquisition and analysis by computer, force平台 analysis, strength assessment and laboratory planning and three-dimensional videography, data reduction and smoothing, body segment parameter determination, electromyography, and biomechanical modeling. (Same course as Biomedical Engineer 227/Exercise Science 227.)

231. Musculo-Skeletal System Biomechanics (3) III. Hull
Lecture—3 hours. Prerequisite: course 176 and Engineering 102. Mechanics of skeletal muscle and mechanical models of muscle, solution of the inverse dynamics problem, theoretical and experimental methods of kinematic analysis, computer simulation of intersegmental load and muscle forces, applications to gait analysis and sports biomechanics. Offered in alternate years. (Same course as Biomedical Engineering 102.)

232. Skeletal Tissue Mechanics (3) III. Martin
Lecture—3 hours; laboratory—1 hour. Prerequisite: Engineering 104B. Overview of the mechanical properties of the various tissues in the musculoskeletal system, the relationship of these properties to anatomic and histologic structure, and the changes in these properties caused by aging and disease. The tissues covered include bone, cartilage and synovial fluid, ligament and tendon. (Same course as Biomedical Engineering 232.)

234. Design and Dynamics of Road Vehicles (3) I. Velinsky
Lecture—3 hours. Prerequisite: course 134. Analysis and numerical simulation of road vehicles with emphasis on design applications. Offered in alternate years.

250A. Advanced Methods in Mechanical Design (3) II. Ravini, Velinsky
Lecture—3 hours. Prerequisite: courses 150A and 150B or the equivalents; Engineering 182 or consent of instructor. Applications of advanced techniques of solid mechanics to mechanical design problems. Coverage of advanced topics in stress analysis and static failure theories with emphasis in design of machine elements. Design projects emphasizing advanced analysis tools for life cycle evaluation.

250B. Advanced Methods in Mechanical Design (3) III. Ravini, Velinsky
Lecture—3 hours. Prerequisite: course 250A. Applications of advanced techniques of solid mechanics to mechanical design problems. Coverage of advanced topics in variational methods of mechanics with emphasis in design of machine elements. Design projects emphasizing advanced analysis tools.

251. Mechatronics (4) III. Yamazaki
Lecture—3 hours. Prerequisite: course 50, 154, 172 and Engineering 100. Studies of techniques required for designing the electro-mechanical system which consists of the mechanism and the electronics-based sophisticated control. Methodologies for designing the microprocessor applied control hardware and dedicated software and applying electric actuator and sensors with its theoretical background.

255. Computer-Aided Design and Manufacturing (3) III. Ravani
Lecture—2 hours; discussion—1 hour. Prerequisite: Engineering 180 and course 150B. Proficiency in a high level programming language such as FORTRAN, Pascal, or C. Studies of computational and computer graphic techniques in design and manufacturing. Use of numeric and non-numeric computations and geometric tools in design and manufacturing. Offered in alternate years.

270. Modeling and Simulation of Engineering Systems (3) I. Margolis
Lecture—3 hours. Prerequisite: course 172 or consent of instructor. Multiprotocol models of mechanical, electrical, hydraulic and thermal devices; bond graphs, block diagrams and state space equations; Hamilton’s principle for complex systems; formulation for analog and digital simulation; identification; instrumentation, approximate models of distributed systems.

271. Design of Multivariable Control Systems (3) II. Snel
Lecture—3 hours. Prerequisite: course 270 or consent of instructor. Modern methods of state variable feedback applied to control system design. Introduction to observers and equivalent dynamic feedback. Stress on practical application of theory to engineering systems in various energy domains.

272A. Mathematical Foundations of System and Control Theory (4) I. Eke
Lecture—4 hours. Prerequisite: course 172. Singular valued decompositions. Laplace transforms, and 2-transforms. Algebra of groups and rings and of polynomials and matrices. Reducibility, controllability, and observability. Observers and feedback control for single input, single output systems. Equal emphasis on frequency domain and state variable methods. Offered in alternate years.

272B. Multivariable Feedback Control and Estimation Theory (4) II. Eke
Lecture—4 hours. Prerequisite: course 272A. Emphasis on multi-input, multi-output systems. Digital and continuous time control and estimation. Introduction to singular value methods and quantitative feedback theory. Optimum Wiener-Hopf and other frequency domain methods. Offered in alternate years.

272C. Mathematical Foundations of Nonlinear Control Theory (4) III. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 172. Digital systems analysis; digital filtering; sample data systems; state space and transform design techniques; quantization effects.

276A. Digital Data Acquisition and Analysis (3) III. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: course 176. Application of microprocessors and digital computers to data acquisition and control. Topics include computer organization, hardware for laboratory applications of computers, fundamentals of interfaces between computers and experimental equipment, programming techniques for data acquisition, control and basic digital design. Theory and application of modern techniques in digital data

General Education (GE) credit: Art/Hum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
analysis. Topics include statistical description of data, convolution and correlation, and frequency analysis using the discrete Fourier transform. Emphasis on applying these techniques in the experimental characterization of linear dynamic systems. Offered in alternate years.

Lecture—2 hours, discussion—1 hour. Prerequisite: courses 270, 271. Application of bond graph modeling and control system design principles. The bond graph process simulation programs ENPORT and CAMP are used with advanced continuous system modeling programs to simulate the dynamic response of engineering systems. Offered in alternate years.

280. Advanced Engineering Analysis (3) I, II.
The Staff
Lecture—3 hours. Prerequisite: Engineering 180 or the equivalent. Applications in mechanical engineering of advanced analytical and numerical techniques. Topics include probability theory, calculus of variations, classification of differential equations, and advanced numerical methods.

290C. Graduate Research Conference (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: consent of instructor. Individual and/or group conference on problems, progress, and techniques in mechanical engineering research. May be repeated for credit. (S/U grading only.)

295. Dynamic Systems, Controls, Design Seminar (1) I, II, III. The Staff
Seminar—1 hour. Current developments in the mechanical systems design and analysis are including dynamic systems, controls, and design with presentations by students, faculty and visitors. May be repeated for credit.

296. Fluid and Thermal Sciences (1) I, II, III. The Staff Seminar—1 hour. Review and discussion of the current literature and trends in fluid mechanics and thermal sciences. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

390. The Teaching of Mechanical Engineering (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: meet qualifications (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: consent of instructor. Applications for teaching assistant and/or associate-in in mechanical engineering. Participation as a teaching assistant or associate-in in a designated engineering course. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated for credit. (S/U grading only.)

Courses in Aeronautical Science and Engineering (EAE)

Lower Division Course

25. Aeronautical Engineering Fundamentals (3) II. Rehfildt
Lecture—3 hours. Prerequisite: Mathematics 21A. Restricted to Mechanical and Aeronautical Science majors. History of aeronautics. Aircraft subsystems and nomenclature. Fundamentals of aircraft aerodynamics, performance, stability and control, structures and aerelasticity, and propulsion. Not open for credit to students who have completed Aeronautical Science and Engineering 125.

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor and lower division standing. (P/NP grading only.)

Upper Division Courses

126. Theoretical and Computational Aerodynamics (4) III. Hafez
Lecture—3 hours; discussion—1 hour. Prerequisite: course 25. Engineering 180 or Applied Science Engineering 115 or Mathematics 128C. Development of general equations of fluid motion. Study of flow field kinematics and dynamics. Flow about a body. Thin airfoil theory. Viscous effects. Applications of numerical methods to wing analysis and design.

127. Applied Aircraft Aerodynamics (4) I. Chatto

128. Aircraft Performance (4) II. van Dam
Lecture—3 hours; discussion—1 hour. Prerequisite: course 127. Aircraft propulsion systems and their performance characteristics. Methods for computing and presenting aircraft performance data. Modern techniques of numerical analysis and energy methods. Application of techniques to aircraft design.

129. Aircraft Stability and Control (4) I. van Dam

130. Aircraft Preliminary Design (4) III. van Dam
Lecture—2 hours; discussion—1 hour, laboratory—3 hours. Prerequisite: courses 128 and 129. Aircraft preliminary design including estimation of weight/volume, aerodynamics, performance, stability and control. Design iteration and trade-off studies.

*131. Aircraft Flight Performance Laboratory (3) III. The Staff
Lecture—1 hour, discussion—1 hour, laboratory—3 hours. Prerequisite: courses 25 and 128. Measurements and analysis of aircraft characteristics and performance, in flight and with flight simulator.

133. Finite Element Methods in Structure (4) III. Sarigul-Klijn
Lecture—3 hours; laboratory—3 hours. Prerequisites: Engineering 104. Open to Engineering students only. An introduction to the aerospace structural design process. History of aircraft materials. Effects of loading beyond elastic limit. Deflections and stresses due to combined loading. Virtual work principles, and finite element methods. Applications to aerospace structures.

135. Aerospace Structures (3) I. Rehfildt
Lecture—3 hours. Prerequisite: course 133. Analysis and design methods used in aircraft structures. Shear flow in open, closed and multi-cell beam cross-sections, buckling of flat and curved sheets, tension field beams, local buckling.

137. Structural Composites (4) II. Rehfildt
Lecture—3 hours; laboratory—1 hour. Prerequisite: Engineering 104. Overview of materials and technology for creating structures from fiber reinforced resin matrix composite material systems. Elementary design analysis and case studies emphasizing aeronautical applications.

138. Aircraft Propulsion (4) II. Capece
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 45, 103B, and 105B. Analysis and design of modern aircraft gas turbine engines. Development and application of cycle performance prediction techniques for important engine configurations. Introduction to the operation and design of inlets, compressors, burners, turbines, and nozzles. Cycle design studies for specific applications.

139. Introduction to Aeroelasticity (4) III. Sarigul-Klijn

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

*230. Advanced Aerodynamics-Inviscid Flow (4) II. Chatto
Lecture—4 hours. Prerequisite: courses 126, 127. Inviscid theory. Nonlinear effects in subsonic and supersonic flows. Transonic aerodynamics. Offered in alternate years.

232. Advanced Aerodynamics-Viscous Flow (4) II. Chatto
Lecture—4 hours. Prerequisite: Engineering 103B. Discussion of boundary-layer theory, laminar and turbulent boundary layers, laminar boundary-layer instability and transition, separation, viscous/inviscid interaction, three-dimensional effects and computational methods and their application.

233. Introduction to Computational Aerodynamics and Fluid Dynamics (4) I. Chatto
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B. Introduction to numerical methods for solution of fluid flow problems. Discretization techniques and solution algorithms. Finite difference solutions to classical model equations pertinent to wave phenomena, diffusion phenomena, or equilibrium. Application to the incompressible Navier-Stokes equations. Offered in alternate years.

*234. Computational Aerodynamics (4) II. Hafez

*235. Computational Fluid Dynamics, Euler and Navier-Stokes Equations (4) III. The Staff
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 230 or consent of instructor. Euler and Navier-Stokes equations, conservative formulation, numerical methods for systems of convection and convection-diffusion equations, computation of compressible Euler and Navier-Stokes equations, generalized coordinates, grid generation, applications. Offered in alternate years.

*236. Aerodynamics in Nature and Technology (4) III. White
Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103B. Introduction to aerodynamics in nature, fundamentals of turbulence in atmospheric flows, planetary boundary layers, wind effects on man-made objects, pedestrian-level winds in urban areas. Criteria for laboratory modeling of atmospheric flows, wind-tunnel testing, extra-terrestrial aerodynamics. Offered in alternate years.

237. Analysis and Design of Composite Structures (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 137. Modeling and analysis methodology for composite structures including response and failure. Laminated plate bending theory. Introduction to failure processes. Offered in alternate years.

238. Advanced Aerodynamic Design and Optimization (4) III. van Dam
Lecture—4 hours; discussion—1 hour. Prerequisite: consent of instructor. Application of aerodynamic theory to obtain optimum aerodynamic shapes. Both

*Course not offered this academic year.
analytic solutions and solutions obtained with numerical optimization techniques will be examined. Includes introduction to the calculus of variations and numerical optimization techniques. Offered in alternate years.

240. Computational Methods in Nonlinear Mechanics (4) II. Sarigi-Klijn Lecture—4 hours. Prerequisite: Applied Science Engineering 115; Mathematics 128B. Deformation of solids and the motion of fluids are treated within the framework of the state-of-the-art computational methods. Numerical treatment of nonlinear dynamics; classification of coupled problems; vector computers with special application to nonlinear mechanics. Offered in alternate years.

248. Turbomachinery (4) I. Capace Lecture—3 hours; discussion—1 hour. Prerequisite: Engineering 103A, 105B. Preliminary aerodynamic design of axial and radial flow compressors and turbines. Design of diffusers. Selection of turbomachine configuration and approximations to optimum dimensions and flow angles. Introduction to through flow analysis. Special topics: rotating stall and surge, and aeromechanical considerations. Offered in alternate years.

275. Advanced Topics in Aircraft Stability and Control (4) III. Snell Lecture—3 hours; discussion—1 hour. Prerequisite: Mechanical Engineering 172. Development of aircraft equations of motion; response to control action; response to external inputs; turbulence description; stability augmentation system design; pilot/vehicle analysis; handling qualities. Offered in alternate years.

290C. Graduate Research Conference (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: consent of instructor. Individual and/or group conference on problems, progress and techniques in mechanical engineering research. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

390. The Teaching of Aeronautical Science and Engineering (11) I, II, III. The Staff Discussion—1 hour. Prerequisite: meet qualifications for teaching assistant and/or associate-in Aeronautical Science and Engineering. Methods of leading discussion groups or laboratory sections, writing and grading quizzes, use of laboratory equipment, and grading laboratory reports. May be repeated for credit. (S/U grading only.)
Minor Program Requirements:

UNITS

English19-20

Five upper division courses, at least four of which will be literature courses....19-20

Campus Writing Center. The Campus Writing Center, an affiliate of the English Department, provides writing instruction across the curriculum. Of special interest to students are its adjunct writing courses, which are offered to students who are simultaneously enrolled in specified courses in other disciplines. Topics of instruction and writing assignments in each adjunct course relate to the subject matter of the companion course. These are credit-bearing courses offered in conjunction with both lower and upper division courses in agriculture, engineering, and letters and sciences. Interested students and faculty should call the Campus Writing Center, 916-752-0431, for the current schedule of courses.

Subject A. Students must have met the Subject A requirement before taking any course in English.

Prerequisites. English 1 or 3 is required for admis- sion into courses 201, 30A, 30B, 45, 46A, 46B, 46C, and all upper division courses, unless otherwise stated in the course listings. Course 45 is recom- mended as preparation for the 46 series. Students taking GE-certified upper division courses in English may substitute Comparative Literature 1, 2, 3, or 4 for English 1 or 3.

Meeting for Majors. All new and prospective English majors are invited to attend a general meeting for majors at the beginning of each year; all English majors must see their advisors, individually, in the spring quarters of their sophomore and junior years.

Undergraduate Adviser: P.L. Moran.

Foreign Languages. Students who contemplate advanced study in English should prepare for foreign language requirements for higher degrees and should consult with the graduate adviser.

Honors and Honors Program. The honors program consists of four units of 194H and four units of 195H, normally taken during the fall and winter quarters of the senior year. Preparation for the honors program is a pre- requisite for High or Honors at graduation. Eligibility criteria and application materials may be obtained at the Undergraduate Office, 114 Sproul Hall. Refer to the Academic Information section and the College section for Dean’s Honors List Information.

Teaching Credential Subject Representative. P. Moran. See also under Teacher Education Program.

Graduate Study. The Department of English offers programs of study and research leading to the M.A. and Ph.D. degrees. Detailed information may be obtained from the graduate advisor or the Chairperson of the Department.

The department’s affiliation with the Critical Theory Program also provides the opportunity for students in English to prepare for the designated emphasis in Critical Theory (an interdisciplinary program in theories and methodologies in the Humanities and Social Sciences).

Graduate Adviser: M. J. Hoffman.

Courses in English (ENL) Lower Division Courses

* A. Language Skills (2) I, II, III. The Staff (Chairperson in charge)

Lecture/discussion—4 hours. Introductory course to help students gain writing proficiency required for subsequent University-level work. Focus on syntactical thinking, reading, and writing; on the fundamentals of essay writing; and on the relationship between writ- ing mechanics and coherent thought. This course must be taken for a letter grade. Minimum passing grade is a C; students receiving a C- or below must repeat course to meet Subject A requirement. (Counts as 4 units toward minimum progress.)

R. Communications Skills Workshop (0) I. The Staff (Chairperson in charge)

Lecture—4 hours; workshop—2 hours; reading laboratory—1 hour. Workshop in language skills for stu- dents from non-standard-English backgrounds who need to strengthen basic skills before taking English 57 (offered by Evening Extension City College) or other English courses worth 6 units toward minimum study requirement. (P/NP grading only.)

1. Expository Writing (4) I, II, III. The Staff (Chairperson in charge)

Lecture/discussion—4 hours. Prerequisite: comple- tion of Subject A requirement. Composition, the essay, paragraph structure, diction, and related topics. Fre- quent writing assignments will be made. GE credit: Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).

3. Introduction to Literature (4) II, III. The Staff (Chairperson in charge)

Lecture—3 hours; discussion—1 hour. Prerequisite: completion of Subject A requirement. Introductory study of several genres of English literature, empha- sizing both anthologies of major works and the range of forms and styles in English prose and poetry. Fre- quent writing assignments will be made. GE credit: ArtHum, Wrt (cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously).

4. Critical Inquiry and Literature: Freshman Seminar (4) III. Waddington

Seminar—4 hours. Prerequisite: completion of Subject A requirement and consent of instructor; enrollment limited to freshmen. Critical inquiry into significant lit- erary texts. Emphasis on close reading, classroom dialogue, and the writing of several papers or a longer seminar paper. (Counts as 4 units toward minimum progress.)

5F. Introduction to Creative Writing: Fiction (4) I, II, III. The Staff (Chairperson in charge)

Lecture/discussion—4 hours. Prerequisite: comple- tion of Subject A requirement. The elementary princi- ples of writing fiction. Students will write both in prescribed forms and in experimental forms of their own choosing. No final examination. GE credit: Wrt.

5P. Introduction to Creative Writing: Poetry (4) I, II, III. The Staff (Chairperson in charge)

Lecture/discussion—4 hours. Prerequisite: comple- tion of Subject A requirement. The elementary princi- ples of writing poetry. Students will write both in prescribed forms and in experimental forms of their own choosing. No final examination. GE credit: Wrt.

20. Intermediate Composition (4) I, II, III. The Staff (Chairperson in charge)

Lecture/discussion—4 hours. Prerequisite: course 1 or 3. Emphasis on the grammatical patterns of stan- dard English, sentence revision techniques, develop- ment of coherent paragraphs, and the formal proper- ties of the expository essay. GE credit: Wrt (cannot be used to satisfy a college or university composition re- quirement and GE writing experience simultaneously).

30A. Survey of American Literature (4) II. Van Leer

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. American literature from the seven-teenth century to 1865. GE credit: ArtHum, Div, Wrt.

30B. Survey of American Literature (4) III. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. American literature from 1865 to the present. GE credit: ArtHum, Div, Wrt.

45. Close Reading of Poetry (4) I, II, III. The Staff (Chairperson in charge)

Lecture/discussion—4 hours. Prerequisite: course 1 or 3. Close reading of selections from English and American poetry. Frequent written exercises. GE credit: Wrt.

Course not offered this academic year.

46A. Masterpieces of English Literature (4) I. Schleifer, I. Levin

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers to 1640. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. GE credit: Wrt.

46B. Masterpieces of English Literature (4) II, III. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1640 to 1832. History of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. GE credit: Wrt.

46C. Masterpieces of English Literature (4) I. Moran, III. Robson

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or 3. Selected works of principal writers from 1832 to present. The history of literary conventions and backgrounds in religious thought, intellectual and social history, and related art forms. GE credit: Wrt.

92. Internship in English (1-12) I, II, III. The Staff (Chairperson in charge)

Internship—3-36 hours. Prerequisite: course 1 or 3. Internships in fields where students can practice their skills. May be repeated for credit for a total of 12 units. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: course 1 or 3. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

100F. Creative Writing: Fiction (4) I. Byrd, Vaz; II. Byrd, III. Major, Vaz

Discussion—4 hours; development and evaluation of written materials, and conferences with individual stu- dents. Prerequisite: course SF or SP, or consent of instructor; priority given to English (Creative Writing) majors. Writing of fiction. May be repeated for credit with consent of instructor. No final examination.

100N. Creative Writing: Non-Fiction (4) II. Hicks

Discussion—4 hours; development and evaluation of written materials, and conferences with individual stu- dents. Prerequisite: course SF or SP, or consent of instructor; priority given to English (Creative Writing) majors. Writing of non-fiction. May be repeated for credit with consent of instructor. No final examination.

101F. Creative Writing: Poetry (4) I, II, III. McPherson; III. Snyder

Discussion—4 hours; development and evaluation of written materials, and conferences with individual stu- dents. Prerequisite: course SF or SP, or consent of instructor; priority given to English (Creative Writing) majors. Writing of poetry. May be repeated for credit with consent of instructor. No final examination.

101N. Creative Writing: Poetry (4) I, II, III. McPherson; Snyder

Discussion—4 hours; development and evaluation of written materials, and conferences with individual stu- dents. Prerequisite: course SF or SP, or consent of instructor; priority given to English (Creative Writing) majors. Writing of poetry. May be repeated for credit with consent of instructor. No final examination.
111. Medieval Literature (I) I. Osborn; III. Cioffi
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused intensive examination of topics in medieval literature. May be repeated for credit when content differs. GE credit: Wrt.

113A. Chaucer: Troilus and the “Minor” Poems (I) Cioffi
Lecture—3 hours; term paper. Prerequisite: course 1 or 3. Development of the poet's artistry and the evolution of the poet’s ideas from his first work to his culminating masterpiece: Troilus and Criseyde. Courses 113A and 113B need not be taken in sequence. GE credit: Wrt.

113B. Chaucer: The Canterbury Tales (I) I. Osborn
Lecture—3 hours; term paper. Prerequisite: course 1 or 3. The Canterbury Tales complete as a work of art. Courtly love, literary forms, medieval science and astrology, theology and dogma as they inform the reading of Chaucer. Courses 113A and 113B need not be taken in sequence. GE credit: Wrt.

115. Renaissance Literature (I, II) Abbott
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of the Renaissance. May be repeated for credit when content differs. GE credit: Wrt.

117A. Shakespeare: The Early Works (I) I. Levin; II. Zender
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works from Shakespeare's early period, up to 1599. Courses 117A and 117B-117C need not be taken in sequence. GE credit: Wrt.

117B. Shakespeare: The Middle Period (II) I. Osborn; III. Waddington
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works from Shakespeare's middle period, up to 1603. Courses 117A-117B and 117C need not be taken in sequence. GE credit: Wrt.

117C. Shakespeare: The Later Works (I) I. Osborn; III. Waddington
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works from Shakespeare's later period. Courses 117A-117B and 117C need not be taken in sequence. GE credit: Wrt.

118. Shakespeare (I)
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works by Shakespeare. Recommended for non-majors. May not be applied toward the English major. GE credit: ArtHum, Wrt.

122. Milton (II) I. Waddington
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Selected major works by Milton. May be repeated for credit when content differs. GE credit: Wrt.

123. 18th-Century British Literature (I) I. Byrd
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of 18th-century English literature. May be repeated for credit when content differs. GE credit: Wrt.

130. British Romantic Literature (I) I. Locke
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of Romantic English literature. May be repeated for credit when content differs. GE credit: Wrt.

133. 19th-Century British Literature (II) I. Robson
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of 19th-century English literature. May be repeated for credit when content differs. GE credit: Wrt.

137. 20th-Century British Literature (II) I. Moran; III. Williams
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of 20th-century English literature. Authors who might be taught are Conrad, Joyce, Lawrence, Eliot, Woolf, Larkin. May be repeated for credit when content differs. GE credit: Wrt.

142. Early American Literature (I) I. Van Leer
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of American literature of the 17th and 18th centuries. May be repeated for credit when content differs. GE credit: Wrt.

143. 19th-Century American Literature (I) III. Stange
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works of 19th-century American literature. May be repeated for credit when content differs. GE credit: Wrt.

144. Post-Civil War American Literature (I) III. Stange
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historically or thematically focused study of works in post-Civil War American literature. May be repeated for credit when content differs. GE credit: Wrt.

146. 20th-Century American Literature (I) I. Hays; II. Hicks
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused study of works of 20th-century American literature. May be repeated for credit when content differs. GE credit: Wrt.

149. Topics in Literature (I, II) I. Diehl
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Intensive examination of literature considered in topical terms, not necessarily historically. May be repeated for credit when topic differs. GE credit: Wrt.

150A. British Drama to 1800 (I) I. Cioffi
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused study of works of English drama prior to 1800. May be repeated for credit when topic differs. GE credit: Wrt.

150B. British Drama from 1800 to the Present (I) III. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused study of works of British drama from 1800 to the present. May be repeated for credit when topic differs. GE credit: Wrt.

152. American Drama (I) I. Hays
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused study of works of American drama from 1800 to the present. May be repeated for credit when topic differs. GE credit: Wrt.

155A. 18th-Century British Novel (I) III. Byrd
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Historical or thematic study of drama. May be repeated for credit when topic differs. GE credit: Wrt.

155B. 19th-Century British Novel (I) I. Robson
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused examination of 19th-century British novels, with emphasis on the historical novel, the social novel, and novels by women. Scott, Dickens, the Brontes, Eliot, Hardy. GE credit: Wrt.

155C. 20th-Century British Novel (II) I. Moran
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically focused examination of 20th-century British novels, with emphasis on impressionism; the revolt against naturalism; the experimental novel;
the anti-modern reaction: Conrad, Joyce, Woolf, Lawrence, Drabble, Rhys. GE credit: Wrt.

156. The Short Story (4) I. The Staff; II. Vaz; III. Z. Kramer
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. The short story as a genre; its historical development, techniques, and formal character as a literary form. European as well as American writers. GE credit: ArtHum, Wrt.

158A. The American Novel to 1900 (4) II. Hoffman
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically organized examination of the rise and development of the American novel from its beginnings; Hawthorne, Melville, Twain, James, and others. GE credit: Wrt.

158B. The American Novel from 1900 to the Present (4) I. Hays
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Historically or thematically organized examination of American novelists of the twentieth century; Faulkner, Hemingway, Fitzgerald, Morrison, and others. GE credit: Wrt.

*159. Topics in the Novel (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Examination of major novels arranged thematically. Topics might include Bildungsroman, stream-of-consciousness novel, Gothic novel, historical novel. May be repeated for credit when topic differs. GE credit: Wrt.

160. Film As Narrative (4) I. The Staff
Discussion—2 hours; lecture and film study—3 hours. Prerequisite: course 1 or 3. Study of modern film (1930 to the present) as a storytelling medium. GE credit: ArtHum, Wrt.

162. Film Theory and Criticism (4) II. The Staff
Lecture—1 hour; discussion—2 hours; laboratory—3 hours. Prerequisite: course 1 or 3. Film theory and criticism with a study of ten major works of international film art. Offered in alternate years. GE credit: ArtHum, Wrt.

165. Topics in Poetry (4) II. Major; III. McPherson
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 and course 45. Intensive examination of various topics expressed in poetry from all periods of English and American literature. May be repeated for credit when topic covers different poets and poems. GE credit: Wrt.

*171A. The Bible as Literature: The Old Testament (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. A maximum of 4 units on course 171B. Selected readings from the Old Testament illustrating various literary forms. Emphasis on the Pentateuch, the Historical Books, and the Wisdom Books. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

171B. The Bible as Literature: Prophets and New Testament (4) II. Robertson
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. May be taken independently of course 171A. Selected readings from the Old Testament prophets and the New Testament. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*173. The Literature of Science Fiction (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of the literary modes and methods of science fiction. The course will analyze representative novels and short stories which exemplify major themes and styles in this genre—e.g., time travel; alternative universes; utopian, anthropological, sociological science fiction. GE credit: ArtHum, Wrt.

175. American Literary Humor (4) I. Morris
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3, or standing above freshman level. American humorous vision of man, nature, and the supernatural. One or more of the following: colonial humor; southwestern and New England humor; pre- and post-Civil War masters; local colorists; journalistic gadflies; anti-provisionalists; modernist poets and prose writers; black humor. GE credit: ArtHum, Wrt.

177. Study of an Individual Author (4) II. Morris
Lecture/discussion—3 hours, course 1 or 3. Survey of the works of an individual author other than Chaucer, Shakespeare, or Milton. May be repeated for credit when a different author is studied. GE credit: ArtHum, Wrt.

*178. Special Topics in Ethnic Literature (4) Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Intensive study of a topic drawn from multithreaded literature. Course may focus on particular ethnic groups, historical periods, writers, genres, and/or themes. May be repeated once for credit when subject matter differs. GE credit: Div, Wrt.

179. Multi-Ethnic Literature (4) II. Kramer
Lecture/discussion—3 hours; papers. Prerequisite: course 1 or 3, or standing above freshman level. Fiction, poetry, and other writings by Americans of ethnic minority background (Native, Black, Hispanic, Jewish, Italian, etc.) which reveal their immigrant experience, cultural diversity, and contributions to American literature. GE credit: Div, Wrt.

180. Children’s Literature (4) III. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. American children’s literature from the slavery period to the end of the 1930s. Particular attention to the rapid development of the American children’s literature from a primarily oral tradition. Offered in alternate years. GE credit: Div, Wrt.

181A. African American Literature to the Harlem Renaissance (4) I. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. African American literature from the slavery period to the end of the 1930s. Particular attention to the rapid development of the American African literature from a primarily oral tradition. Offered in alternate years. GE credit: Div, Wrt.

181B. African American Literature from the Harlem Renaissance to the Present (4) II. Morris
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3 or the equivalent. Major African American writers in the context of cultural history from 1940 to the present. Writers may include Richard Wright, Ann Petry, James Baldwin, Ralph Ellison, Paule Marshall, Toni Morrison, Alice Walker, Clarence Major. Offered in alternate years. GE credit: Div, Wrt.

182. Literature of California (4) III. Hicks
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. California literature in the context of California’s social, political, and intellectual history. Reading of poetry, fiction, and essays. Emphasis on nineteenth- and twentieth-century naturalists, turn of the century romanticism, the Beats, and writers of the last two decades. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

184. Literature of the Wilderness (4) II. Robertson
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of the theme of wilderness primarily in American Literature, with some consideration of Biblical and European antecedents. Major attention given to Thoreau, Muir, London, Austin, Faulkner, Snyder, and Abbey. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

185A. Literature by Women I (4) I. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3. Study of women’s art; the rise of feminism; new trends in literature, illustration and bibliography. GE credit: Wrt.

185B. Literature by Women II (4) II. Gilbert
Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 3; course 185A recommended. English language literature by women of the last two decades. Of special interest to English major emphasis write on a major writer, and preparation for writing an honors thesis in course 195H.

193H. Honors Thesis (4) II. The Staff (Hoffman in charge)
Independent study—12 hours. Prerequisite: course 193H. Preparation of a thesis, under the supervision of an instructor. Students satisfying requirements for the general major or the teaching emphasis write on a scholarly or critical subject; creative writing students submit a volume of poems or fiction.

197T. Tutoring in English (1-5) I, II, III. The Staff (Chairperson in charge)
Tutoring—1-5 hours. Prerequisite: upper division standing and consent of Chairperson. Leading of small voluntary discussion groups affiliated with one of the department’s regular courses. Does not fulfill requirement for major. May be repeated for credit for a total of 6 units. (P/NP grading only)

197TC. Community Tutoring in English (1-4) I, II, III. The Staff (Chairperson in charge)
Tutoring—1-4 hours. Prerequisite: upper division standing and major in English; consent of Chairperson. Field experience, with individuals or in classroom in instruction of English language, literature, and composition. Does not fulfill requirement for major. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: course one from courses 1, 3, 5F, 5P. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: course one from courses 1, 3, 5F, 5P. (P/NP grading only.)

Graduate Courses

200. Techniques of Literary Scholarship (4) II. Waddington
Discussion—3 hours; term paper. The elements of bibliography with special attention to literature and discussion of the principal modes of literary investigation—critical, historical, textual, and others.

*201. Literary Criticism (4)
Discussion—3 hours; term paper. Survey of the major critics from Aristotle to the present, with emphasis on the relationship of critical theory to the history of literature.
205. Anglo-Saxon Language and Culture (4) I. Osborn
Lecture—3 hours; conference and term paper. The language and culture of Anglo-Saxon England; readings in Old English prose and poetry. Offered in alternate years.

206. Beowulf (4) II. Osborn
Discussion—3 hours; term paper. Study of the phonology, morphology, syntax, and lexicon between 1100 and 1500 with investigation of the regional dialects; pertinent facts on both the internal and external linguistic history; intensive reading of texts.

207. Middle English (4)
Discussion—3 hours; term paper. Theoretical—toward Creative Writing master’s degree students. Directed study and evaluation of research papers. Directed study and evaluation of research papers. May be repeated for credit when topic and/or reading list differs. Offered in alternate years.

208. Present-Day English Linguistics (4)
Discussion—3 hours; term paper. Theory and method of structural linguistics and transformational grammar as applied to the analysis of English. Emphasis will be on recent linguistic techniques, particularly as these relate to the teaching of language, literature, and composition.

210. Readings in English and American Literature (4)
Seminar—3 hours; conference—1 hour. Prerequisite: upper division English course in area to be studied. Offered in multiple sections each quarter. Content varies according to specialty of instructor. Course designed for students preparing for their comprehensive examinations. May be repeated for credit.

215. Middle English Romance (4)
Seminar—3 hours; conference. The sources of Medieval romance literature. Continental and English literary treatment; significant change of attitudes in post-Malory literature.

225. Topics in Irish Literature (4)
Seminar—3 hours; conference—1 hour. Prerequisite: course 130. Course will vary from quarter to quarter and will include such topics as the nineteenth-century novel, contemporary Irish poetry, rise of the drama, or a study of a major writer.

230. Studies in Major Writer (4) II. Diehl
Seminar—3 hours; conferences with individual students—1 hour; research papers. Artistic development of one major writer and his intellectual and literary milieu. May be repeated for credit when a different writer is studied.

232. Problems in English Literature (4)
Seminar—3 hours; conferences with individual students—1 hour. Selected topics in the current study and criticism of a limited period or topic in English literature. May be repeated for credit when different period or topic is studied.

233. Problems in American Literature (4) III. Robertson
Seminar—3 hours; conferences with individual students—1 hour; research papers. Selected topics for intensive investigation. May be repeated for credit when different topic or period is studied.

234. Dramatic Literature (4)
Seminar—3 hours; conference—1 hour. Historical introduction to dramatic theory; the genres of tragedy, comedy, and tragi-comedy.

235. Theory of Fiction (4) I. Hicks
Seminar—3 hours; preparation and evaluation of paper on a work of fiction. Theories of fiction as they relate to the professional writer’s practice of the craft. Designed for students in the creative writing program.

236. Poetics (4) III. Snyder
Seminar—3 hours; conference—1 hour. Structure, prosody, and idiom of British and American poetry variably approached—sometimes through an intensive study of a single writer, sometimes historically or theoretically—at the instructor’s discretion. Preparation and evaluation of research papers. Directed toward Creative Writing master’s degree students.

237. Modern Critical Theory (4)
Seminar—3 hours; conference—1 hour. Examination of problems in the theory underlying the practice of literary criticism from I.A. Richards and T.S. Eliot to the present.

238. Special Topics in Literary Theory (4)
Seminar—3 hours; term paper. Prerequisite: course 237 or the equivalent. Advanced topics in literary theory and criticism. Preparation and evaluation of research paper. May be repeated for credit when topic and/or reading list differs. Offered in alternate years.

240. Medieval Literature (4) III. Crofutt
Seminar—3 hours; conference—1 hour. Studies of Medieval literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

242. Sixteenth-Century Literature (4)
Seminar—3 hours; conference—1 hour. Studies in sixteenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

244. Shakespeare (4) II. Levin
Seminar—3 hours; conference—1 hour. Studies in Shakespeare. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

248. Eighteenth-Century Literature (4) I. The Staff
Seminar—3 hours; conference—1 hour. Studies in eighteenth-century literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

252. Victorian Literature (4) I. Robson
Seminar—3 hours; conference—1 hour. Studies in Victorian literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

254. Twentieth-Century British Literature (4) II. Gilbert
Seminar—3 hours; conference—1 hour. Studies in twenty-first-century British literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

256. Early American Literature (4) I. Van Leer
Seminar—3 hours; conference—1 hour. Studies in Early American literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

258. American Literature: 1800 to the Civil War (4)
Seminar—3 hours; conference—1 hour. Studies in American literature from 1800 to Civil War. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

260. American Literature: Civil War to 1914 (4) III. Morris
Seminar—3 hours; conference—1 hour. Studies in American literature from the Civil War to 1914. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

262. American Literature: 1914 to 1944 (4) II. Hays
Seminar—3 hours; conference—1 hour. Studies in American literature after 1914. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

264. Studies in Modern British and American Literature (4) II. Williamson
Seminar—3 hours; conference—1 hour. Studies in modern British and American literature. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when a different topic is studied.

285. Literature by Women (4) III. Moran
Seminar—3 hours; conference—1 hour. Studies in literature by women and the theoretical approaches to literature by women. Course materials to be selected by the instructor. Preparation and evaluation of research papers. May be repeated for credit when topic and/or reading list differs.

290F. Seminar in Creative Writing of Fiction (4) I. Vaz; II. Major; III. Byrd
Seminar—3 hours; 1 additional hour of writing. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in master’s program in Creative Writing. Writing of prose. Evaluation of written materials and individual student conferences. May be repeated for credit.

290NF. Seminar in Creative Writing of Non-Fiction (4)
Seminar—3 hours; term paper. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in the Master’s Program in English (Creative Writing). A workshop in the writing of literary non-fiction, with emphasis—according to staff and student interest—on autobiography, biography, memoir, the occasional or nature essay, or other non-fiction prose narratives.

290P. Seminar in Creative Writing of Poetry (4) I. Gilbert; II. McPherson; III. Williamson
Seminar—3 hours; 1 additional hour of writing. Prerequisite: consent of instructor; graduate standing, with preference given to those enrolled in master’s program in Creative Writing. Writing of poetry. Evaluation of written materials and individual student conferences. May be repeated for credit.

298. Directed Group Study (1-5) I, II, III
The Staff (Chairperson in charge)
(S/U grading only.)

298C. Colloquium on Literary Scholarship (1-4) I, II, III. The Staff (Chairperson in charge)
Oral presentation and critique of research papers. (S/U grading only.)

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

299D. Special Study for the Doctoral Dissertation (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

Professional Courses

300. Problems in Teaching English Language, Literature, and Composition in Secondary Schools (3)
Lecture—3 hours. Prerequisite: graduate standing; An English teaching major or minor. This course should be completed in conjunction with practice teaching. Course is accepted in partial satisfaction of the requirement in education for the general secondary credential.

390. Theory and Practice of University-Level Composition (4) I. The Staff (Director of Composition in charge)
Seminar—3 hours; term paper. Prerequisite: graduate standing; appointment as Teaching Assistant in the Composition Program. Examination of current trends in the teaching of writing and their practical application to undergraduate writing courses at UC Davis. (S/U grading only.)

391. Teaching Creative Writing (2) I. Hicks
Discussion—2 hours. Prerequisite: graduate standing; appointment as Teaching Assistant in the Composition Program. Designed for new instructors of English SF or SP, discussion of ways to facilitate creative writing workshops and to respond to student manuscripts. (S/U grading only.)
Entomology

(250)

392. Teaching Expository Writing (2) I, II.
The Staff
Discussion—2 hours. Prerequisite: graduate standing, appointment as Teaching Assistant in the Composition Program; completion of course 390 or the equivalent. Discussion of problems related to teaching expository writing at the university level, with special emphasis on teaching reading and writing skills and responding to student papers. (S/U grading only.)

393. Teaching Literature and Composition (2) I, II.
The Staff
Discussion—2 hours. Prerequisite: graduate standing, appointment as Teaching Assistant in the Composition Program. Designed for new instructors of English 3 or the equivalent courses; discussion of problems related to teaching literature and composition to lower division students. (S/U grading only.)

The Major Program

The Major Program
The Department of Entomology has seven minor programs: (1) II. Entomology, (2) I. Medical-Veterinary Entomology, (3) Environmental Toxicology, (4) Entomology (Entomology, Agriculture, and Environmental Sciences), (5) Entomology (Entomology, Agriculture, and Environmental Sciences), (6) Entomology (Entomology, Agriculture, and Environmental Sciences), and (7) Entomology (Entomology, Agriculture, and Environmental Sciences).

B.S. Major Requirements:
For convenience in planning a program, the following courses are designed to satisfy the major requirement for all students. The courses are divided into five levels: (1) II. Introduction to Entomology, (2) I. Cell and Tissue Biology, (3) Environmental Entomology, (4) Medical-Veterinary Entomology, and (5) Environmental Toxicology. Each level consists of a specific number of units, with an additional number of units for the major requirements. The courses are designed to provide a comprehensive understanding of the major areas of entomology, including the study of insects and their interactions with the environment.

English Composition Requirement
See College Requirement

Preparatory Subject Matter

Basic Biology (Biology 1A, 1B, 1C, 1D)……………………………………15

Chemistry (Chemistry 4A, 4B, 4C)………………….16

Mathematics (Mathematics 1A, 1B, 1C)……………………………………3

Statistics (Statistics 1A, 1B, 1C)…………………..6

Computer science or additional mathematics or statistics (Agricultural Systems and Environment 101, Engineering 5, or Mathematics 16B)……………..3

Breadth Subject Matter

Satisfaction of General Education requirement

Depth Subject Matter

Cell or microbiology (Microbiology 102, Plant Biology 118, 119, Plant Pathology 120)………………..4-5

Biological Sciences 101………………………………..4

Ecology (Environmental Sciences 100 or Evolution and Ecology 101)……………………………….4

Evolution (Evolution and Ecology 100)………………..3-4

Physiological chemistry (Biological Sciences 102 and 103)………………………………6

Entomology 100, 100L………………………………5

At least 7 units from Entomology 101, 102, 103, 104, 107, 109, or 116………………..7

Restricted Electives

Upper division entomology courses…………….14

Upper division electives related to student’s interest with approval of adviser…………….20

Note: No more than a total of 6 units from Entomology 192, 197T, 199 and 199 may count toward fulfilling depth subject matter or restricted elective units.

Unrestricted Electives

Total Units for the Major………………………………………180

At least two courses from Entomology 101, 102, 103, 104, 107, 109, or 116………………………….7-8

At least two additional upper division Entomology courses (except courses 192, 196, 199)………………………………6-11

Agricultural Entomology………………………………………18

Entomology 100, 100L, 110, 110L, 135…………….4-5

At least four additional upper division Entomology units………………………………………4

Apiculture………………………………………18-23

Entomology 100, 100L, 119…………………..10

Entomology 104 or 110, 110L…………………3-4

Additional courses recommended: Agronomy 120, Plant Science 102, Plant Science 116……………………………….5-8

Insect Ecology………………………………………19

Entomology 100, 100L, 104………………..8

Seven units from Entomology 103, 107, 109………………..7

Evolution and Ecology 149 or Environmental Studies 121………………………………………4

Medical-Veterinary Entomology……………………………18

Entomology 100, 100L, 110L, 135…………………..8

At least three units from Entomology 156L: Pathology, Microbiology and Immunology 126, 126L, 128………………………………….3

Minor Adviser. J. Granett.

Graduate Study. The Department of Entomology offers a program of study and research leading to the M.S. and Ph.D. degrees. See the Graduate Studies section and the Graduate Announcement for further details.

Graduate Advisers. See Class Schedule and Room Directory.

Related Courses. See courses in Nematology.

Courses in Entomology (ENT)

Lower Division Courses
10. Natural History of Insects (3) II. Kaya
Lecture—3 hours. Designed for students not specializing in entomology. Not open for credit to students who have had course 100, but students who have taken this course may take course 100 for credit. An introduction to the insects detailing their great variety, structures and functions, habits, and their significance in relation to plants and animals including man. GE credit: SciEng.

17. Evolution and Behavior (4) III. Dingle/Page
Lecture—3 hours; discussion—1 hour. Introduction to the theory of natural selection, using evaluations and applications of behavioral adaptations, ranging from insects to humans. GE credit: SciEng.

90X. Special Topics in Entomology (2) I, II, III.
The Staff
Seminar—2 hours. Freshman seminar for in-depth examination of a special topic in entomology.

99. Special Study for Undergraduates (1-5) I, II, III.
The Staff (Chairperson in charge)
(P/P grading only.)

Upper Division Courses
100. General Entomology (3) I. Granett in charge
Lecture—3 hours. Prerequisite: Biological Sciences 1B. Biology, anatomy, physiology development, classification, ecology and relation of insects to human welfare. GE credit: SciEng.

100L. General Entomology Laboratory (2) I.
Granett in charge
Laboratory—6 hours. Prerequisite: course 100 (may be taken concurrently). Anatomy, development, population ecology, methods of collecting, classification and identification of insects of all orders and of major families. GE credit with concurrent enrollment in course 100: Wrt.
101. Functional Insect Morphology (3) II. Peng
Lecture—2 hours; laboratory—3 hours. Prerequisite: course 100. Study of the basic external and internal structures, organs and tissues of insects, with emphasis on functional systems. Functional anatomy, histology and fine structure of important organs and tissues will be discussed. GE credit: SciEng, Wrt.

102. Insect Ecology (4) III. Duffey
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or course in physiology or invertebrate zoology. Processes by which insects maintain themselves, reproduce, and adapt to environment. Insects as models for basic/applied research through detailed analysis of metabolic, physiological, and behavioral processes. Emphasis on analysis of methodology, fact, and theory. GE: SciEng, Wrt.

103. Insect Systematics (3) III. Ward
Lecture—2 hours; discussion—1 hour. Prerequisite: introductory course in zoology or entomology. Principles and methods of systematics, with particular reference to insects. Emphasis on different theories of classification, and analysis of phylogenetic relationships. GE credit: SciEng, Wrt.

104. Behavioral Ecology of Insects (3) II. Page
Lecture—3 hours. Prerequisite: introductory biology or zoology and departmental permission. An introduction to insect behavior and ecology. An evolutionary approach to understanding behavioral ecology of insects. GE credit: SciEng, Wrt.

107. California Insect Diversity (5) III. L. Kimsey
Lecture—1 hour; laboratory—6 hours; fieldwork—6 hours. Prerequisite: an introductory course in entomology. Survey of the diversity of insects from selected ecological zones in California with emphasis on collection, identification, and natural history. Offered in alternate years. GE credit: SciEng, Wrt.

*109. Field Taxonomy and Ecology (7) Extra-
session summer. Ward
Lecture—2 hours; laboratory—36 hours; five-week course. Prerequisite: an introductory course in entomology or consent of instructor. The study of insects in their natural habitats; their identification and ecology. Offered in alternate years. GE credit: SciEng, Wrt.

110. Arthropod Pest Management (3) II. Granett
Lecture—3 hours. Prerequisite: Biological Sciences 1B. Identification, biology, and control of insects and mites that cause economic losses. Emphasis is placed on the management of agricultural pests but includes structural, household, storage and ornamental pest problems. GE credit: SciEng, Wrt.

110L. Arthropod Pest Management Laboratory (2) II. Parrella
Laboratory—6 hours. Prerequisite: course 110 (may be taken concurrently) and Biological Sciences 1B. Identification and control of insects and mites that cause economic losses. Emphasis is placed on the management of agricultural pests but includes structural, household, storage, and ornamental pest problems.

111. Insects and Human Affairs (4) II. Dingle; III. Ulman
Lecture—2 hours; discussion—1 hour; film/demonstration—1 hour; one required evening meeting. Prerequisite: Biological Sciences 10 recommended. Diversity, structure and function of insects. Their role as benefactors, competitors, and destroyers of human resources and health. Their contribution to human biological and scientific knowledge. Approaches to insect pest control and its environmental, social and political correlates. GE credit: SciEng, Wrt.

116. Biology of Aquatic Insects (3-5) III. Lawler
Lecture—2 hours and laboratory (Saturday field trips); optional laboratory on identification and/or aquatic insect collection. Prerequisite: course 100 or consent of instructor. A study of life history, ecology, and identification of insects associated with streams, ponds, and lakes. GE credit: SciEng.

119. Apiculture (3) III. Peng
Lecture—3 hours; papers. Prerequisite: Biological Sciences 1C recommended. Biology and behavior of honeybees; communication, orientation, social organization, foraging activities, honey production, pollination activities. GE credit: SciEng, Wrt.

135. Introduction to Biological Control (4) III. Ehler, Kaya
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 100 or 110. Principles of biological control of agricultural pests from the viewpoint of parasites, entomopathogenic nematodes, parasitoids, and predators. Emphasis on classical and augmentative biological control. GE credit: SciEng, Wrt.

147. Evolution of Life on Earth (4) I. L. Kimsey
Lecture—3 hours; discussion—1 hour. Prerequisite: Plant Biology 10 or Biological Sciences 10. Relationships between physical changes in the continents and the evolution and diversification of plants and animals, particularly insects, over the past 400 million years. GE credit: SciEng, Wrt.

153. Medical Entomology (4) I. R. Kimsey
Lecture—3 hours; discussion—1 hour. Prerequisite: advanced division standing in one of the biological sciences or consent of instructor. The worldwide relationships of insects and other arthropods to human health. The biology and basic classification of medically important insects is emphasized, as well as the ecology of arthropod-borne human diseases and principles of their control. GE credit: SciEng, Wrt.

156. Biology of Parasitism (3) III. R. Kimsey, Theis, Westerdahl
Lecture—3 hours. Prerequisite: Biological Sciences 1A or consent of instructor. Lectures on the biological and ecological aspects affecting host-parasite relationships using selected examples from protozoan and metazoan fauna. GE credit: SciEng.

156L. Biology of Parasitism Laboratory (1) III. R. Kimsey in charge
Laboratory—3 hours. Prerequisite: course 156 (con- currently) or consent of instructor. Laboratory demonstrations using selected examples of protozoan and metazoan organisms along with various techniques used in parasitology to exemplify concepts presented in the lecture course. GE credit with concurrent enrollment in course 156 Wrt.

192. Internship (1-12) I, II, III, extra session.
Lecture—1 hour. Prerequisite: completion of 84 units and consent of instructor. Laboratory experience or fieldwork off and on campus in all subject areas offered in the Department of Entomology. Internships supervised by a member of the faculty. (P/NP grading only.)

197T. Tutoring in Entomology (1-3) I, II, III.
The Staff
Lecture—1-3 hours. Leading small discussion groups. Problems assignment and review for preparation of discussion. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III, summer.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, summer.
The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses

200A. Conceptual Basis of Entomology: Basic Biology (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Selected advanced topics in contemporary entomological research with an emphasis on theoretical and fundamental aspects of natural selection, behavior, ecology, physiology, and biochemistry as related to the regulation of insect behavior. Provides the theoretical framework for course 200B.

200B. Conceptual Basis of Entomology: Application (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Selected advanced topics in contemporary entomological research with emphasis on the application of theoretical/conceptual outlines from course 200A to epidemiology, biotechnology, biological control and integrated pest management for pursuing current insect pest problems concerning food, fiber, and health.

206. Ecology of Insect Parasitoids (4) II. Rosenberg
Lecture—3 hours; seminar—1 hour. Prerequisite: introductory animal ecology or behavior. Insect parasitoids will be investigated as model systems to address current topics in behavior, population, and evolutionary ecology. Theory will be synthesized and critical empirical tests of ecological hypotheses emphasized. Offered in alternate years. (Same course as Population Biology 206.)

212. Molecular Biology of Insects and Insect Viruses (3) III. Maeda

220. Chemical Ecology of Plant-Insect Interactions (4) II. Duffey
Lecture—3 hours; discussion—1 hour. Prerequisite: introductory plant biochemistry. Investigation of the interface between plants, herbivorous insects and their natural enemies from a mechanistic point of view, stressing principles of biophysical, physiological, and toxicological rather than those of ecology. Major emphasis is placed on plant natural products. (Same course as Ecology 220.)

225. Terrrestrial Field Ecology (4) III. Karban
Seminar—1 hour; laboratory—15 hours. Prerequisite: introductory ecology and introductory statistics. A field course conducted over spring break and four weekends at Bodega Bay, emphasizing student projects. Ecological hypothesis testing, data gathering, analysis, and written and oral presentation of results will be stressed. (Same course as Ecology 225.)

230. Advanced Biological Control (5) I. Ehler
Lecture—3 hours; laboratory—6 hours. Prerequisite: prerequisite: graduate or upper division standing in biological science or consent of instructor. Principles and current issues in biological control of arthropod pests and weeds; laboratory devoted to indentification and life history of the major groups of parasitic and predaceous arthropods. Offered in alternate years.

253. Advanced Medical Entomology (3) III.
The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: one upper division course in entomology (other than course 153) and one course in microbiology: course 153 strongly recommended. An analysis of several arthropod-borne human diseases with emphasis on the relationships of the biology of the vector to the ecology of the disease. Discussion includes demonstration of vectors and techniques. Offered in alternate years.

290. Special Topics in Entomology (1-4) I, II, III.
The Staff (Chairperson in charge)
Seminar—1-4 hours. Prerequisite: consent of instructor.

291. Seminar in Medical Entomology (2) I. Eldridge, Scott, R. Kimsey
Seminar—2 hours. Prerequisite: course 153. Discussions of parasitology, ecology and epidemiology related to vectors of pathogens causing disease in man and animals. May be repeated for credit.

292. Seminar in Insect Physiology (2) I. Duffey, Hambly, Maeda
Seminar—2 hours. Prerequisite: course 102. Critical examination of areas of current interest to insect physiology and biochemistry. May be repeated for credit.

293. Seminar in Systematic Entomology (2) III.
Ward, Kimsey
Seminar—2 hours. Prerequisite: course 103. Selected topcs in systematics and evolution are presented and discussed. Some topics may be selected by laboratory sessions. May be repeated for credit.

294. Seminar in Insect Ecology (2) III. Carey, Ehler, Karban
Seminar—2 hours. Prerequisite: a general ecology
Environmental and Resource Sciences

Course. Discussions of advanced topics in ecology with emphasis on analysis of factors influencing the distribution and abundance of insects. Includes consideration of applications of basic theory as in biological control and related approaches. May be repeated for credit.

295. Seminar in Agricultural Entomology (2) II. Granett, Panetta-Rosenbauer. Seminar—2 hours. Prerequisite: course 110. Discussion of advanced topics relating to the principles of pest insect population management. May be repeated for credit.

296. Seminar in Bee Biology (2) I. Page, Peng. Seminar—2 hours. Prerequisite: course 119 or the equivalent. Discussions of behavior, ecology, management, and general biology of bees (Apoidea) with emphasis on the honeybee. May be repeated for credit.

297. Seminar in Insect Behavior (2) III. Dingle. Page Seminar—2 hours. Prerequisite: a course in animal behavior. Analysis of contemporary advances in insect behavior, interpretation and description of observations, physiological mechanisms, functional kinds of behavior, application of general principles to the solution of problems in the laboratory and field. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Seminar—2 hours. Prerequisite: course 110. Consideration of applications of basic theory as in pest insect population management. May be repeated for credit.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge). UNITS (SU grading only.)

Professional Course

404. Grantsmanship (2). Granett, Duffey. Lecture—1 hour; 15-20 page research proposal required. Prerequisite: graduate standing; research experience. Approved for graduate degree credit. Develops in students an awareness of options and strategies in writing research proposals. Students write a full-length research proposal.

Environmental and Resource Sciences

(College of Agricultural and Environmental Sciences)

Faculty. See under departments of Agricultural Economics, Agronomy and Range Science, and Land, Air and Water Resources.

The Major Program

The environmental and resource sciences major is a program for study of the biological, chemical, and physical features of environmental resources, and the economical and social considerations associated with their use, conservation, protection, and management and restoration. Students who choose this major include those with an interest in careers associated with environmental resource utilization and management, as well as those pursuing post-baccalaureate, academic, or professional training.

The Program. The curriculum for the major provides flexibility in meeting individual student needs, interests, and career objectives. May be repeated for credit.

296. Seminar in Insect Behavior (2) III. Dingle. Page Seminar—2 hours. Prerequisite: course 119 or the equivalent. Discussions of behavior, ecology, management, and general biology of bees (Apoidea) with emphasis on the honeybee. May be repeated for credit.

297. Seminar in Insect Behavior (2) III. Dingle. Page Seminar—2 hours. Prerequisite: a course in animal behavior. Analysis of contemporary advances in insect behavior, interpretation and description of observations, physiological mechanisms, functional kinds of behavior, application of general principles to the solution of problems in the laboratory and field. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Seminar—2 hours. Prerequisite: course 110. Consideration of applications of basic theory as in pest insect population management. May be repeated for credit.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge). UNITS (SU grading only.)

Professional Course

404. Grantsmanship (2). Granett, Duffey. Lecture—1 hour; 15-20 page research proposal required. Prerequisite: graduate standing; research experience. Approved for graduate degree credit. Develops in students an awareness of options and strategies in writing research proposals. Students write a full-length research proposal.

Environmental and Resource Sciences

(College of Agricultural and Environmental Sciences)

Faculty. See under departments of Agricultural Economics, Agronomy and Range Science, and Land, Air and Water Resources.

The Major Program

The environmental and resource sciences major is a program for study of the biological, chemical, and physical features of environmental resources, and the economical and social considerations associated with their use, conservation, protection, and management and restoration. Students who choose this major include those with an interest in careers associated with environmental resource utilization and management, as well as those pursuing post-baccalaureate, academic, or professional training.

The Program. The curriculum for the major provides flexibility in meeting individual student needs, interests, and career objectives. May be repeated for credit.

296. Seminar in Insect Behavior (2) III. Dingle. Page Seminar—2 hours. Prerequisite: course 119 or the equivalent. Discussions of behavior, ecology, management, and general biology of bees (Apoidea) with emphasis on the honeybee. May be repeated for credit.

297. Seminar in Insect Behavior (2) III. Dingle. Page Seminar—2 hours. Prerequisite: a course in animal behavior. Analysis of contemporary advances in insect behavior, interpretation and description of observations, physiological mechanisms, functional kinds of behavior, application of general principles to the solution of problems in the laboratory and field. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Seminar—2 hours. Prerequisite: course 110. Consideration of applications of basic theory as in pest insect population management. May be repeated for credit.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge). UNITS (SU grading only.)

Professional Course

404. Grantsmanship (2). Granett, Duffey. Lecture—1 hour; 15-20 page research proposal required. Prerequisite: graduate standing; research experience. Approved for graduate degree credit. Develops in students an awareness of options and strategies in writing research proposals. Students write a full-length research proposal.

Environmental and Resource Sciences

(College of Agricultural and Environmental Sciences)

Faculty. See under departments of Agricultural Economics, Agronomy and Range Science, and Land, Air and Water Resources.

The Major Program

The environmental and resource sciences major is a program for study of the biological, chemical, and physical features of environmental resources, and the economical and social considerations associated with their use, conservation, protection, and management and restoration. Students who choose this major include those with an interest in careers associated with environmental resource utilization and management, as well as those pursuing post-baccalaureate, academic, or professional training.

The Program. The curriculum for the major provides flexibility in meeting individual student needs, interests, and career objectives. May be repeated for credit.

296. Seminar in Insect Behavior (2) III. Dingle. Page Seminar—2 hours. Prerequisite: course 119 or the equivalent. Discussions of behavior, ecology, management, and general biology of bees (Apoidea) with emphasis on the honeybee. May be repeated for credit.

297. Seminar in Insect Behavior (2) III. Dingle. Page Seminar—2 hours. Prerequisite: a course in animal behavior. Analysis of contemporary advances in insect behavior, interpretation and description of observations, physiological mechanisms, functional kinds of behavior, application of general principles to the solution of problems in the laboratory and field. May be repeated for credit.

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge). Seminar—2 hours. Prerequisite: course 110. Consideration of applications of basic theory as in pest insect population management. May be repeated for credit.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge). UNITS (SU grading only.)

Professional Course

404. Grantsmanship (2). Granett, Duffey. Lecture—1 hour; 15-20 page research proposal required. Prerequisite: graduate standing; research experience. Approved for graduate degree credit. Develops in students an awareness of options and strategies in writing research proposals. Students write a full-length research proposal.

Environmental and Resource Sciences

(College of Agricultural and Environmental Sciences)

Faculty. See under departments of Agricultural Economics, Agronomy and Range Science, and Land, Air and Water Resources.

The Major Program

The environmental and resource sciences major is a program for study of the biological, chemical, and physical features of environmental resources, and the economical and social considerations associated with their use, conservation, protection, and management and restoration. Students who choose this major include those with an interest in careers associated with environmental resource utilization and management, as well as those pursuing post-baccalaureate, academic, or professional training.

The Program. The curriculum for the major provides flexibility in meeting individual student needs, interests, and objectives. At the same time, certain courses are required in the basic physical and biological sciences areas. Upper division general environmental resource sciences courses, a resource economics course, and a specified number of units of environmental and resource-oriented courses are required for all students in the major. Environmental and resource-oriented courses shall be selected in consultation with the student’s adviser. Considerable care should be taken to ensure effective utilization of the flexibility of the major, and to meet individual academic and career objectives. Students specialize their study by selecting one of the options within the major or, in consultation with their adviser, pursing other specializations.

Internships and Career Alternatives. Positions now held by graduates in environmental and resource sciences are quite varied and include employment as resource analysts and planners as well as technical and environmental specialists with government agencies, municipalities, and private firms. A significant proportion of these opportunities are leading to advanced degrees in resources, the environment, and related fields.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

Written/Oral Expression

See College requirement

Preparatory Subject Matter

Atmospheric Science 60 ...4
Biological sciences (Biological Sciences 1A-1B-1C or 1A-15-1C) ...15
Chemistry (Chemistry 2A-2B) ...10
Environmental quality (Environmental Toxicology 10) ...3
Geology (Geology 10 or 50) ...3
Mathematics (Mathematics 16A-16B or 21A-21B) ...6-8
Students are encouraged to take the advanced series—consult with your adviser.

Microcomputer skills, computer programming

(Agricultural Systems and Environment 21 and 121, Engineering 5, Computer Science Engineering 10, 15) ...6-7
Physics (Physics 1A-1B or 5A-5B-5C—see option requirements) ...6-12
Students are encouraged to take the advanced series—consult with your adviser.

Statistics (Statistics 13) ...4

Breadth/General Education

Satisfaction of General Education requirements; additional units in social sciences and humanities to total 24 units

Depth Subject Matter

24-27

Written expression (in addition to college requirement), (English 101, 104) ...3
Agricultural Economics, Agronomy and Range Science 117, Plant Science 101, Zoology 125) ...3-4
Agricutural economcs, agronomy and range science, soil science, water resources in both natural and agricultural ecosystems. Emphasis on analysis of soils and plants for estimating crop nutrient requirements and principles of irrigation and drainage of agricultural land. Appropriate preparation for careers with utilities, monitoring and environmental quality agencies. Soil Science 109, 118, 167, 168 (select three courses) ...12
Atmospheric Science 131 ...4
Environmental and Resource Sciences 3 ...3
Environmental Science 116, 124, 133
Hydrologic Science 110, 111, 120, Environmental Studies 123
Environmental and Resource Sciences 121 ...4

Unrestricted Electives ...6-10

Environmental Science 123, 125, 126

Preparatory physics options Physics 5A-5B required

Atmospheric Science 30, 60, 110, 124, 133

Additional soil science or hydrologic science courses selected with adviser’s approval

*Course not offered this academic year.
Environmental Biology and Management

(College of Agricultural and Environmental Sciences)

Faculty

See under the Division of Environmental Studies.

The Major Program

The environmental biology and management major offers an education in the basic natural sciences, especially ecology, together with a set of management and public policy analysis courses. Students completing the major will understand the scientific basis for environmental decision making, and the legal, economic, and political issues involved in management of the environment in the United States and worldwide.

The Program. Courses in chemistry, physics, mathematics, biology, and earth sciences form the foundation of the curriculum; these are then tied together by courses in ecology, computing, statistics, and other methods courses that give the students quantitative research skills. Economics, political science, and techniques of quantitative management offer perspectives that management and public policy require.

A moderate degree of specialization is permitted in these upper division options. Students in the Conservation Biology and Management option take courses in conservation biology, genetics, evolution and biogeography, resource economics, environmental policy making, and quantitative management techniques. This option emphasizes the management of public lands and natural resources in wildland and rural areas. Practical courses in field level planning and management are featured. Students interested in urban problems and/or legislative approaches should examine the Environmental Policy Analysis and Planning major.

Career Alternatives. The major prepares students to enter careers in management of natural resources, field ecology, and conservation. Students interested in urban problems and/or legislative approaches should examine the Environmental Policy Analysis and Planning major.

Unusual courses taken to satisfy requirements are shown in parentheses. Equal or more comprehensive courses may be taken, with the adviser’s written approval. Courses shown without parentheses are required.) Students are required to plan their course selection with their adviser.

UNITS

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Environmental Biology and Management 253

Entomology 116 ..5
Wildlife, Fish and Conservation Biology 120, 120L ..4
Hydrologic Science 134 or 1363
Hydrologic Science 192 (Internship)3
Additional electives (Environmental Studies 125, 151 and Biological Toxicology 101, Hydrologic Science 21, 141, 150, Wildlife, Fish and Conservation Biology 153) ..6-10
Unrestricted Electives (to total 180)........18-36

Total Units for the Major180

Major Adviser. J. Stasulat (South Hall).

Advising Center for the major is located in 148 Hoagland Hall (916-752-1669).

Courses in Environmental and Resource Sciences (ERS)

Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 148 Hoagland Hall (916-752-1669).

Lower Division Courses

3. Energy and the Environment (3) I. Barbour, Berry, Bledsoe, Deuflond, Weinbaum Lecture—3 hours. Prerequisite: course 1 or Geology 1. The role of water in an essential natural resource in contemporary society. (P/NP grading only.)

121. Water and Society (3) I. Silk Lecture—2 hours; discussion—1 hour. Prerequisite: Physics 10 or Geology 1. The role of water as an essential natural resource in contemporary society. (P/NP grading only.)

131. Air as a Resource (3) II. McBean Lecture—3 hours. Prerequisite: Biological Sciences 1C; junior standing. Biological structure and function of trees as organisms; understanding of forests as communities and ecosystems; use of forests by humans; tree phenology, photosynthesis, respiration soil process, life histories, dormancy, forest biodiversity, and agroforestry. (Same class as Plant Biology 144.)

125. California: The State (3) II. Stasulat Lecture—3 hours. Prerequisite: introductory geology or geography recommended. Introduction to geomorphology, physiography and natural resources of California. (P/NP grading only.)

106. Trees and Forests (3) I, II. Barbour, Berry, Bledsoe, Deuflond, Weinbaum Lecture—3 hours. Prerequisite: Biological Sciences 1C; junior standing. Biological structure and function of trees as organisms; understanding of forests as communities and ecosystems; use of forests by humans; tree phenology, photosynthesis, respiration soil process, life histories, dormancy, forest biodiversity, and agroforestry. (Same class as Plant Biology 144.)

108. Directed Study (1-5) I, II, III. The Staff (Chairperson in charge) Credit: SocSci. (P/NP grading only.)

109. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Credit: SocSci. (P/NP grading only.)

110. Environmental Biology and Management 120, 120L ..4-5

60. Global Environmental Interactions (3) II. Southward/Nathan Lecture—2 hours; discussion—1 hour. Prerequisite: high school algebra and biology or chemistry. Relationships among climate, hydrology, biogeochemical cycles, and vegetation distribution in diverse landscapes. Emphasis on physical, chemical, and biological processes affecting ecosystems from the poles to the equator. GE credit. SciEng. Wrt.

92. Resource Sciences Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in resource sciences. Internship supervised by a member of the faculty. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. For lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

103. Renewable Energy Resource (3) II. Flocchini Lecture—3 hours. Prerequisite: course 3. Characterization of solar and wind systems, energy conversion; wind power.

115. World Resources (3) II. Flocchini Lecture—3 hours. Prerequisite: course 3. Characterization of solar and wind systems, energy conversion; wind power.

125. California: The State (3) II. Stasulat Lecture—3 hours. Prerequisite: introductory geology or geography recommended. Introduction to geomorphology, physiography and natural resources of California. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Credit: SocSci. (P/NP grading only.)

1C; junior standing. Biological structure and function of trees as organisms; understanding of forests as communities and ecosystems; use of forests by humans; tree phenology, photosynthesis, respiration soil process, life histories, dormancy, forest biodiversity, and agroforestry. (Same class as Plant Biology 144.)

121. Water and Society (3) I. Silk Lecture—2 hours; discussion—1 hour. Prerequisite: Physics 10 or Geology 1. The role of water as an essential natural resource in contemporary society. (P/NP grading only.)

131. Air as a Resource (3) II. McBean Lecture—3 hours. Prerequisite: Biological Sciences 1C; junior standing. Biological structure and function of trees as organisms; understanding of forests as communities and ecosystems; use of forests by humans; tree phenology, photosynthesis, respiration soil process, life histories, dormancy, forest biodiversity, and agroforestry. (Same class as Plant Biology 144.)

125. California: The State (3) II. Stasulat Lecture—3 hours. Prerequisite: introductory geology or geography recommended. Introduction to geomorphology, physiography and natural resources of California. (P/NP grading only.)

108. Directed Study (1-5) I, II, III. The Staff (Chairperson in charge) Credit: SocSci. (P/NP grading only.)

109. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

B.S. Major Requirements:

(These usual courses taken to satisfy requirements are shown in parentheses. Equal or more comprehensive courses may be taken, with the adviser’s written approval. Courses shown without parentheses are required.) Students are required to plan their course selection with their adviser.

UNITS

English Composition Requirement6-15
See College requirement.

Additional English (English 102 concurrently with Environmental Studies 1)3
Oral expression (Rhetoric and Communication or Dramatic Art 110)4-5
Preparatory Subject Matter49-54
Biological sciences (Biological Sciences 1A, 1B, 1C)15
Chemistry (Chemistry 2A-2B or 2AH-2BH)10
Computer science (Agricultural Systems and Environmental Engineering 21, or Computer Science Engineering 10, 15, or 30)3-4
Environmental analysis (Environmental Sciences 1 or 30; choose Environmental Studies 1 if Environmental Management option is selected)3-4
Policy analysis (Political Science 1, or Economics 1A if Environmental Management option is selected)4-5
Mathematics (Mathematics 16A-16B or 21B)6-8

253
Environmental Design

Physics (Physics 5A-5B or 9A-9B)...........8

Breadth/General Education..............12-24
Satisfaction of General Education require-
tment to include 12 units of humanities
and/or Civilization and Culture........12-24

Depth Subject Matter.....................26-32
(These units must be taken for a letter
grade attaining an overall grade-point
average of 2.000 or higher.)

Ecology (Select one of Botany 117, Environ-
mental Studies 100, Evolution and Ecol-
ogy 101, Wildlife, Fish and Conservation
Biology 151).....................................3-4

Survey of environmental science, Environ-
mental Studies 1104

Physical processes in the environment (Select
two courses from: Atmospheric Science
120, Environmental Studies 150A, Environ-
mental and Resource Sciences 131, Geo-
logy 134, 153, 154, Hydrologic Science
100, 141, Soil Science 100)..................6-8

Environmental Policy (Select one course from:
Environmental Studies 161, 162, 163, 166,
171, 179; Agricultural Economics 147,
175, 176)..3-4

(Choose Agricultural Economics if
Environmental Management option is
selected.)

Management of Public Lands, Environmental
Studies 172..4

Mathematics and/or Statistics (Select one
course from: Mathematics 16C, 21C, 22A,
22B, Agricultural Systems and Environ-
ment 120, Statistics 102 OR upper divi-
sion mathematics, computing or statistics.
Environmental Management students
should enroll in Agricultural Systems and
Environment 120, or Statistics 102........3-4

Research methods—Environmental Studies
123, 128, 178, Wildlife, Fish and Conserva-
tion Biology 100. Management students
should enroll in Environmental Studies 178
...3-5

Areas of Specialization.....................25-38

Conservation Biology and Management Option

Conservation biology, Wildlife, Fish and Con-
servation Biology 154.........................4

Genetics, Biological Sciences 101............4

Evolution and biogeography: Choose one
from: Entomology 147, Evolution and Eco-
logy 100, 102, 138, 144, 147, 149,
Geography 173, Geology 107................3-4

Resource economics, Agricultural Economics
176 or Environmental Studies 175........3-4

(Students must select a course which
was not taken in “Depth Subject Matter.”)

Environmental policy making. Choose one
from: Agricultural Economics 147, Envi-
ronmental Studies 161, 166, 171, 172,
Geography 161....................................3-4

(Students must select a course which
was not taken in “Depth Subject Matter.”)

Quantitative analysis, Environmental Studies
121 or Wildlife, Fish and Conservation
Biology 122......................................4

Field experience. Choose from Environmental
Studies 123, 124, 151L, 155L, Wildlife, Fish
and Conservation Biology 100, 102........3-10

(Students may select Biological Sci-
ences 122 or a course at an approved
field station or an off-campus field biol-
ogy research site.)

Environmental Biology Option

Behavioral ecology (Choose one from: An-
thropology 154A, Entomology 104, Evolution
and Ecology 137, Neurobiology, Physiology
and Behavior 102, Psychology 150,
Wildlife, Fish, and Conservation Biology
140)..3-5

Evolution and genetics (Choose one from:
Biological Sciences 101, Evolution and

Ecology 100, Geology 107)....................3-4

Quantitative analysis (Mathematics 22A-22B,
upper division mathematics or statistics)...........6-8

Taxonomy, including laboratory experience
(Entomology 103, Evolution and Ecology
112-112L, 133, Plant Biology 102, 108,
116, Wildlife, Fish and Conservation Biol-
ogy 110, 111, 111L, 120).......................4-8

Physiology, including laboratory experience.
Choose from: Entomology 102, Environ-
mental Studies 129, 129L, Neurobiology,
Physiology and Behavior 101, Plant Biol-
ogy 111, Wildlife, Fish and Conservation
Biology 121.....................................3-5

Advanced environmental biology. Choose two
courses from the following: Avian Sciences
100, Environmental Studies 121, 151,
151L, 150B, 150C, 155L, Evolution
and Ecology 144, 149, Geography 173,
Hydrologic Science 122, 122L, Plant Biol-
yogy 101, 102, 117, Wildlife, Fish and Con-
servation Biology 100, 120, 122, 130........6-8

Environmental Management Option

Resource policy evaluation, Environmental
Studies 162....................................4

Microeconomics, Economics 100 or 104 or
Agricultural Economics 100A..................5

Bureaucratic policy making, Environmental
Studies 166; or Political Science 182........4

Environmental management, Environmental
Studies 179.....................................3

Statistical analysis, Agricultural Economics 106
or Sociology 106, or Statistics 108...........4

Management of a natural resource, choose
two courses from one of the following
three groups..................................6-8

Animal Resources: Range Science 133,
Wildlife, Fish and Conservation Biology
110, 111, 120, 122, 151, 154, or Environ-
mental and Resource Sciences 101, or
Environmental Studies 123

Forest and Rangeland Resources: Envi-
ronmental and Resource Sciences 2, or
Range Science 133, 134.

Air, Water, and Soil Resources: Environmental
and Resource Sciences 131, or
Hydrologic Science 21, 103, 122, 141, or
Geography 162, or Soil Science 118, or
Environmental Studies 151 and 151L,
155 and 155L.

Unrestricted Electives......................20-62

Total Units for the Degree..................180

Major Adviser: J.F. Quinn (Environmental Studies).

*Course not offered this academic year.

Minor Program Requirements:

The faculty for Environmental Biology and Manage-
ment offers a minor in Recreation for students in Land-
scape Architecture desiring to specialize in recreation
area design; Physical Education, Psychology, Sociol-
ogy, Human Development, and Applied Biologival
Sciences students wishing to work in educational and
therapeutic recreation; Environmental Policy Analysis
and Planning students seeking careers in public recrea-
tion policy analysis and management; Agricultural
and Managerial Economics students wishing to go into
the administration of commercial recreation enter-
prises; and those students interested in park landscape design and maintain-
ance.

UNITS

Recreation......................................18-20

Resource economics, (Agricultural Econom-
ics 147, 176, Economics 123)............3-4

Urban recreation programs, (Environmental
Planning and Management 134, Physical
Education 150).................................3-4
Environmental Horticulture
(College of Agricultural and Environmental Sciences)

Select two of the following three courses:
Environmental Horticulture 125, 130, 133
Environ. Horticulture 255

Select one of Environmental Planning and Management 110, 134

Minor Advisers: J.A. Harding or D.W. Burger.

Courses in Environmental Horticulture (ENH)

Lower Division Courses

1. Introduction to Environmental Horticulture/Urban Forestry (3) I. Burger
Lecture—3 hours. Introduction to the use of plants to improve the physical, visual and social environment. The use of ecological principles in developing sustainable, low maintenance landscape systems will be presented. Career opportunities will be discussed. GE credit: SciEng, Wrt.

6. Introduction to Environmental Plants (3) I. The Staff
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Introduction to the classification, nomenclature, and variation of environmental plants. The use of floral and vegetative characteristics and terminology to key unknown plants. Characteristics of plant groups and the development and maintenance of cultivars. Identification of 150 common landscape plants.

10. Landscape Horticulture for the Home and Community (3) III. The Staff
Lecture—2 hours; discussion—1 hour. Recommended for non-majors. Influences of climate, soil, and cultural practices on the growing of turf, flowers, and herbaceous and woody plants in the landscape.

92. Internship (1-12) I, II, III. The Staff
(1-5) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: lower division standing. Biological Sciences 1C or Plant Science 10, and consent of instructor. Work experience off or on campus in flower and nursery crop production, and marketing, landscape horticulture, and park management. Internships supervised by a member of the faculty. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

100. Urban Forestry (3) I. The Staff
Lecture—2 hours; laboratory—3 hours. Prerequisite: Biological Sciences 1C, Agricultural Systems and Environment 2. Principles and practices of planning and managing urban vegetation. The basics of tree appraisal, natural resource inventory, and development of long-term urban forest management plans will be covered.

102. Physiological Principles in Environmental Horticulture (4) III. Sachs
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C. Physiological principles and processes essential to floriculture, nursery crop production, turficulture and landscape horticulture. Emphasis on the control of vegetative and reproductive development for a broad species range in greenhouse and extensive landscape environments.

105. Taxonomy and Ecology of Ornamental Plants (4) III. Harding
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 6 or Biological Sciences 1C. Classification and identification of exotic and native species used in the western landscape. Emphasis on plant adaptations to environmental variation, patterns of morphological diversity and phylectic relationships of plants that are important factors in the human environment.

107. Herbaceous Environmental Plants (4) III. Harding
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Introductory course in environmental plants (course 6) or in plant taxonomy (Botany 108). Evolutionary relationships, hybridization, selection and cultural uses of herbaceous, environmental plant materials with emphasis on family characteris-

Environmental Design
(College of Agricultural and Environmental Sciences)

JoAnn Stabb, M.A., Chairperson, Design Program
Mark Francis M.L.A., Chairperson, Landscape Architecture Program
Department Office, 142 Walker Hall (916-752-6223)
Faculty. See faculty listings under Design and Landscape Architecture.

Programs of Study. See the undergraduate majors in Design and Landscape Architecture and the graduate program in Textile Arts and Costume Design (information pertaining to graduate courses is listed under the Design major).

Related Courses. See Design and Landscape Architecture course lists.

Environmental Geology
(College of Letters and Science)
The minor in Environmental Geology examines the multidisciplinary factors of geology and related earth science fields, and planning and resources oriented programs.

Students in the minor are encouraged to participate in internship programs that assist them in solidifying the Environmental Geology minor with their Geology major or other major field areas that include geologic components.

The minor is sponsored by the Department of Geology, 174 Physics/Geology Building.

Minor Program Requirements:

Environmental Horticulture
(College of Agricultural and Environmental Sciences)

Minor Adviser: Robert Twiss, Department of Geology, 395 Physics/Geology Building, 752-1860.

Minor Program Requirements:

Environmental Horticulture
(College of Agricultural and Environmental Sciences)

Minor Adviser: R. A. Johnston (Environmental Studies).

Courses in Environmental Biology and Management

Questions pertaining to courses in Environmental Biology and Management should be directed to the Environmental Biology and Management advising office, 2134 Wickson Hall. See also Environmental Planning and Management listing following Environmental Horticulture.

Environmental Horticulture
(College of Agricultural and Environmental Sciences)

Minor Adviser: R. A. Johnston (Environmental Studies).

Courses in Environmental Biology and Management

Questions pertaining to courses in Environmental Biology and Management should be directed to the Environmental Biology and Management advising office, 2134 Wickson Hall. See also Environmental Planning and Management listing following Environmental Horticulture.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
B.S. Major Requirements

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses listed without parentheses are required.)

UNITS

English Composition Requirement..........................0-8
See College Requirement

Preparatory Subject Matter.................................55-63
Environmental Horticulture 1 and 6.......................6
Landscape Architecture 40..................................3
Soil Science 10, 11, 12.......................................3
Biological sciences (Biological Sciences 1C or Agricultural Systems and Environment 2)..........................4-5
Physical sciences (Chemistry 2A and Chemistry 2B and Physics 10)...14
Agricultural sciences (Agricultural Systems and Environment 22 or Plant Science 10)..........................3-4

Resource sciences (Select two courses from Environmental and Resource Sciences 2, 3, 10; Geography 1, 2, 3, 5, 6; Water Science 41)..6-8
Environmental sciences (Environmental Studies 1, 10, or 30)..3-4
Social sciences (Psychology 1 or 15 or 16 and Sociology 1 or 2)..7-9
Quantitative reasoning (Agricultural Systems and Environment 21 and either Mathematics 16A or Statistics 13)..6-7

Breadth/General Education..................................6-24

Depth Subject Matter...40-44
Ecology (Select two courses from Environmental Studies 100, Evolution and Ecology 101, 117, or 121)..........................8
Environmental Horticulture 102...............................4

Course not offered this academic year.
Environmental Policy Analysis and Planning

(College of Agricultural and Environmental Sciences)

The Major Program

The major in environmental policy analysis and planning develops an understanding of governmental policy-making and skills for analyzing policy in fields related to environmental quality. Any student in good standing is eligible to transfer to the EPAP major, to do so, please see the major adviser, S.I. Schwartz (2140 Wicken Hall) or staff adviser, D. DuMont (2134 Wicken Hall).

The Program. This major provides students with a general background in the natural sciences relevant to environmental policy. It also provides sufficient training in mathematics, statistics, and research methodology to quantitatively analyze environmental problems and policy options. A strong background in policy analysis, including the evaluation of policy alternatives and the factors affecting policy formulation and implementation is included. In addition, students are encouraged to develop substantive knowledge in a specific field of environmental policy, such as urban and regional planning, water pollution control, or energy.

Career Alternatives. Environmental policy analysis and planning graduates are prepared for employment in public agencies, consulting firms, and businesses concerned with environmental affairs. The major is also excellent preparation for students who want to go on to graduate work in law, planning, public policy, or management.

B.S. Major Requirements:

(Courses in parentheses are those normally taken. Very similar or more difficult courses may be taken with the approval of your adviser. Courses shown without parentheses are required.)

UNITS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>10-11</td>
</tr>
<tr>
<td>See College requirement</td>
<td>0-8</td>
</tr>
<tr>
<td>Additional English (English 102 concurrently with Environmental Studies 1)</td>
<td>3</td>
</tr>
<tr>
<td>Oral expression (Rhetoric and Communica-</td>
<td>1 or</td>
</tr>
<tr>
<td>tion 1 or Dramatic Art 10)</td>
<td>3-4</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>51-58</td>
</tr>
<tr>
<td>Biological sciences (Biological Sciences 1A or 1B)</td>
<td>4-5</td>
</tr>
<tr>
<td>Chemistry (Chemistry 2A, 2B)</td>
<td>10</td>
</tr>
<tr>
<td>Computer science (Agricultural Systems and Environment 21, Engineering 5, Computer Science Engineering 10, 30)</td>
<td>3-4</td>
</tr>
<tr>
<td>Economic principles (Economics 1A, 1B) .</td>
<td>10</td>
</tr>
<tr>
<td>Environmental science/agriculture (Animal Science 1, Biological Sciences 18, Geography 1, Geology 1, Hydrologic Science 100, 104, Plant Science 10, Soil Science 100)</td>
<td>5-6</td>
</tr>
<tr>
<td>Environmental studies (Environmental Studies 11) ..</td>
<td>3-4</td>
</tr>
<tr>
<td>Mathematics (Mathematics 16A-16B or 21A-</td>
<td>6-8</td>
</tr>
<tr>
<td>21B) ...</td>
<td>2</td>
</tr>
<tr>
<td>Physics (Physics 1A)</td>
<td>3</td>
</tr>
<tr>
<td>Political science (Political Science 1) .</td>
<td>4</td>
</tr>
<tr>
<td>Statistics (Statistics 13, 32)</td>
<td>3-4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>6-24</td>
</tr>
<tr>
<td>Satisfaction of General Education require-</td>
<td>6-24</td>
</tr>
<tr>
<td>ment ..</td>
<td>6-24</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>37-40</td>
</tr>
<tr>
<td>Core Courses (Students must take these units on a letter grade basis, and must attain an over-</td>
<td>4</td>
</tr>
<tr>
<td>all grade-point average of 2.00 or higher in the Depth Subject Matter courses.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Studies 160</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Studies 161, 173, or Hydro-</td>
<td>3-4</td>
</tr>
<tr>
<td>logic Science 150</td>
<td></td>
</tr>
<tr>
<td>Environmental Studies 166</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Studies 168A</td>
<td>5</td>
</tr>
<tr>
<td>Environmental Studies 171 or 179</td>
<td>3-4</td>
</tr>
<tr>
<td>Environmental Studies 110</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Studies 164</td>
<td>4</td>
</tr>
<tr>
<td>Research Methods (Environmental Studies 178; or Sociology 103)</td>
<td>4</td>
</tr>
<tr>
<td>Sociology 106 or Agricultural Economics 106</td>
<td>4</td>
</tr>
<tr>
<td>or Statistics 108</td>
<td>3-4</td>
</tr>
<tr>
<td>Economic Analysis (Economics 100, 104, or Agricultural Economics 100A)</td>
<td>4-5</td>
</tr>
</tbody>
</table>

Areas of Specialization (choose one) 17-23

Advanced Policy Analysis Option

**Political institutions (Political Science 102, 105, 108, 155, Environmental Studies 162) | 4 |
Political behavior (Political Science 164, 165, 170)	4
Science policy (Environmental Studies 165)	4
Policy evaluation research (Environmental Studies 168B)	4
Policy evaluation (Civil and Environmental Engineering 153, 160, Agricultural Economics 155, Economics 130)	3-4

City and Regional Planning Option

**Urban design (Art History 168, Environmental Planning and Management 110; Landscape Architecture 40 recommended) | 3-4 |
Urban geography (Geography 155, 156)	4
Transportation planning (Civil and Environmental Engineering 160)	3-4
Environmental impact assessment (Soil Science 118, Environmental Studies 179)	3-4
Urban economics (see adviser)	4
Urban politics (Political Science 102, 100)	4
(Enroll for Environmental Studies 173 for law requirement under Depth Subject Matter above.)	3-4

Energy Policy Option

**Environmental health (Environmental Studies 126, Environmental Toxicology 101) | 4 |
Nuclear hazards (Environmental Studies 115)	3
Energy technology (Engineering 160, 162)	3
Solar energy (Environmental and Resource Sciences 103)	3
Economics of energy (Environmental Studies 175)	4
Energy policy (Environmental Studies 167)	4

Environmental Science Option

Students choosing the Environmental Science area of specialization must consult with a faculty adviser to identify an emphasis within this specialization and to select suitable courses. Possible areas of emphasis include:

- **Biological conservation**, pollinators in the environment, ecology, planning in the presence of environmental hazards. If you are considering this area of specialization, please contact the major adviser as soon as possible.

Recreation Policy Option

Internship in Recreation Management, Environmental Studies 192 | 4 |
Public Land Management, Environmental Studies 172	4
Urban recreation programs (Environmental Planning and Management 134, Physical Education 150)	3-4
Recreation policy analysis, Environmental Studies 162	4

Recreation Administration (Agricultural Economics 112, Applied Behavioral Science 163, 170, Political Science 183, 189) | 4 |

Transportation Planning Option

**Urban structure (Geography 155, 156, Economics 125) | 4 |
Transportation planning (Civil and Environmental Engineering 160)	3
Transportation engineering analysis (Civil and Environmental Engineering 161, Environmental Studies 168B)	3-4
Energy policy (Environmental Studies 167, Engineering 160)	4
Air quality (Environmental and Resource Sciences 131)	3
Energy and environmental aspects of transpor-	3
tation (Environmental Studies 163)	3

Water Quality Option

**Water resource management (Environmental Studies 126, Environmental Toxicology 101, Geography 162) | 4 |
Water pollution (Hydrologic Science 21, Soil Science 120)	2-3
Freshwater systems (Hydrologic Science 122, Environmental Studies 151)	3-4
Field and laboratory methods (Hydrologic Science 122L, Environmental Studies 151L)	2-3
Water chemistry (Hydrologic Science 103, 142)	3-4
Hydrology (Hydrologic Science 141)	3
(Enroll in Hydrologic Science 150 for law requirement under Depth Subject Matter above.)	3-4

Unrestricted Electives | 24-59 |

Total Units for the Degree | 180 |

Major Adviser. S.I. Schwartz (Environmental Studies).

Minor Program Requirements

The faculty for environmental policy analysis and planning offers the following two minors. The Energy Policy minor is for students from any major seeking basic training in energy technology, impacts and policy analysis methods applied to energy systems. The second minor is for natural and social science students desiring basic training in policy analysis theory and methods.

UNITS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Policy (Economics 1A; basic course in political science)</td>
<td>18-19</td>
</tr>
<tr>
<td>Environmental and Resource Sciences 3 or Engineering 160)</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Studies 126 or Environmental Toxicology 101</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Studies 167 or Political Science 171</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Studies 167 or Political Science 171</td>
<td>4</td>
</tr>
<tr>
<td>Environmental studies 115</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Studies 175</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Studies 167 or Political Science 171</td>
<td>4</td>
</tr>
<tr>
<td>Environmental Policy Analysis</td>
<td>23-24</td>
</tr>
<tr>
<td>Preparation: Economics 1A; basic course in political science)</td>
<td>18-19</td>
</tr>
<tr>
<td>Environmental Studies 110, 160, 161, 166, 168A</td>
<td>20</td>
</tr>
<tr>
<td>Environmental Studies 171 or 179</td>
<td>3-4</td>
</tr>
<tr>
<td>Minor Adviser.** S.I. Schwartz (Environmental Studies).**</td>
<td>3</td>
</tr>
</tbody>
</table>
Courses in Environmental Studies (EST)

Lower Division Courses

1. Environmental Analysis (4) II. Quinn, Weinberg
 Lecture—3 hours; discussion—1 hour. Prerequisite: English 1; English 102, Economics 1A, 1B, Biological Sciences 1A, and Political Science 1 recommended. Analysis of the biological, physical, and social interactions which constitute environmental problems, such as food production, energy development and conservation, pollution, and the conservation of natural environments. Emphasis on analysis of problems and the consequences of proposed solutions.

10. Introduction to Environmental Studies (4) III. Ives
 Lecture—3 hours; discussion—1 hour. Prerequisite: elementary biology recommended. Survey of the importance of ecology and systems behavior for man-environment relationships and management problems. Resources, environmental quality, urban dynamics, environmental perception, and conservation are covered. Includes several integrative case studies, and features individual reading in environmental problems. Not open for credit to those who have had course 1. GE credit: SciEng, Wrt.

30. The Global Ecosystem (3) III. Richerson
 Lecture—3 hours; one-day field trip. Prerequisite: Biological Sciences 10 or Geography 1 or Anthropology 2. The interaction of biotic and abiotic factors and the production of ecological systems. The limits and opportunities for human use of different natural environments, and human utilization of the earth's biotic resources. GE credit: SciEng.

30G. The Global Ecosystem: Laboratory/Discussion (2) Richerson
 Laboratory/discussion—3 hours. Prerequisite: course 30 concurrently. Presents natural history skills in plant and animal identification, soils, and geology. Emphasis on the diverse organisms and habitats of Northern California. GE credit with concurrent enrollment in course 30. Wrt.

92. Internship (1-12) I, II, III. The Staff
 (Department Chairperson in charge)
 Internship—3—36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the College of Agricultural and Environmental Sciences. Internship supervised by member of the faculty. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff
 (Chairperson in charge)
 Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

Upper Division Courses

100. General Ecology (4) I. Harrison
 Lecture—3 hours; discussion—1 hour. Prerequisite: elementary biology (including botanical and zoological elements); elementary calculus. Ecological principles of biological systems, emphasizing populations and ecosystems. Principles of growth, regulation, distribution, structure, energetics, and mineral cycles related to the evolution of biological systems and applications to selected human ecological problems.

101. Human Ecology (4) II. Richerson, Mulder
 Lecture—3 hours; discussion—1 hour. Prerequisite: one course from course 30. Anthropology 1, 2, Genetics 10, or the equivalent. Critical variables in the processes that relate humans and their environment. Emphasis on the biological, cultural, social, and psychological forest; biological, social, or cultural change in human ecological relationships. (Same course as Anthropology 101.) GE credit: SocSci, Div.

(a) Environmental Science

110. Principles of Environmental Science (4) II. The Staff
 Lecture—3 hours; discussion—1 hour. Prerequisite: Physics 1A or 5A, or Physics 16B or 21B, and Biological Sciences 1A. Application of physical and chemical principles, ecological concepts, and systems approach to policy analysis of atmospheric environments, freshwater and marine environments, land use, energy supplies and technology, and other resources.

*115. Bioenvironmental Consequences of Nuclear Technology (3) III. The Staff
 Lecture—3 hours; field trip to nuclear power station. Prerequisite: a course in biology. Biophysical implications of radiation and thermal effluents generated by nuclear technology. Hazards evaluation based on predictions of the most sensitive physiological responses. Offered in alternate years.

116. The Oceans (3) I. Spero; II. Cowen
 Lecture—3 hours. Introductory survey of the marine environment; oceanic biological phenomena, chemical constituents, geological history, the sea's biota, and utilization of marine resources. (Same course as Geology 116.) GE credit: SciEng.

116G. The Oceans: Discussion (2) I. Spero; II. Cowen
 Discussion—2 hours. Prerequisite: course 116. Geology 116 concurrently. Scientific method applied to the discovery of the processes, biota, and history of the oceans. Group discussion and preparation of papers on related topics. (Same course as Geology 116G.) GE credit with concurrent enrollment in course 116 Wrt.

(b) Ecological Analysis

121. Population Ecology (4) II. Hastings
 Lecture—2 hours; laboratory—6 hours. Prerequisite: Environmental Studies 100 or the equivalent. Statistics 102 or the equivalent. Introduces students to methods used for collecting ecological data in field and laboratory situations. Methods used by population ecologists and community ecologists; emphasis on experimental design, scientific writing and data analysis.

 Lecture—6 hours; discussion—4 hours; seminar—1 hour; laboratory—18 hours (Summer Session I). Prerequisite: Biological Sciences 1A, 1B, Mathematics 16A-16B. Development of exponential and logistic growth models for plant and animal populations, analysis of age structure and genetic structure, analysis of competition and predator-prey systems. Emphasis is on developing models and using them to make predictions and solve problems. Offered in alternate years. GE credit: SciEng, Wrt.

123. Introduction to Field and Laboratory Methods in Ecology (4) III. Quinn
 Lecture—2 hours; laboratory—6 hours. Prerequisite: Environmental Studies 100 or the equivalent. Statistics 102 or the equivalent. Introduces students to methods used for collecting ecological data in field and laboratory situations. Methods used by population ecologists and community ecologists; emphasis on experimental design, scientific writing and data analysis.

 Lecture—6 hours; discussion—4 hours; seminar—1 hour; laboratory—18 hours (Summer Session I). Prerequisite: Biological Sciences 1A, 1B, Mathematics 16A-16B. Development of exponential and logistic growth models for plant and animal populations, analysis of age structure and genetic structure, analysis of competition and predator-prey systems. Emphasis is on developing models and using them to make predictions and solve problems. Offered in alternate years. GE credit: SciEng, Wrt.

126. Environmental and Occupational Epidemiology (4) I. Beaumont
 Lecture—3 hours; discussion—1 hour. Prerequisite: introductory course in statistics and upper division standing. Methods and contemporary issues in environmental and occupational epidemiology. Effects of carcinogens, reproductive hazards, lifestyle factors, air and water pollution, infectious agents, and other hazards on human populations. Discussion of epidemiologic study designs, biases, and risk assessment.

128. Analysis and Simulation of Complex Systems (3) III. Foin
 Lecture—3 hours. Prerequisite: Mathematics 16B or 21B, Statistics 102; upper division standing in the biological or social sciences. Analysis of systems and construction of simulation models of ecological and socioeconomic systems using DYNAMO. Evaluation of models. Logical and scientific reasoning is stressed.

128L. Modeling Complex Systems (3) III. Foin
 Lecture—1 hour; laboratory—3 hours; discussion—1 hour. Prerequisite: concurrent enrollment in DYNAMO modeling using DYNAMO. Students complete a series of exercises from model formulation to model
experiments and develop a term project of their choosing.

129. Physical Biology (3) III. The Staff
Lecture—4 hours. Prerequisite: General Chemistry 2B, Physics 1B, and Biological Sciences 1A and 1B. Comparative and evolutionary study of organismic responses and adaptations to the physical and chemical environment. Emphasis on energy, temperature, gas and nutrient exchange, thermoregulation, biomechanics, locomotion, and selected topics in current research.

129L. Physiological Ecology Laboratory (3) III. The Staff
Laboratory—6 hours. Prerequisite: course 129 (may be taken concurrently) or the equivalent. Methods for monitoring physical variables in aquatic and terrestrial environments and animal responses to them. Water balance, respiration, and thermoregulation are demonstrated and a broadly comparative approach is considered. Enrollment limited.

(c) Cultural Ecology

133. Cultural Ecology (4) III. Orlove
Lecture—3 hours; discussion—1 hour. Comparative survey of the interaction between diverse human cultural systems and the environment. Primary emphasis given to people in rural and relatively undeveloped environments as a basis for interpreting more complex environments. (Same course as Anthropology 133.) GE credit: SocSci, Div, Wrt.

(d) Aquatic Ecosystems Analysis

150A. Physical and Chemical Oceanography (4) I. Freeland
Lecture—3 hours; discussion—1 hour. Prerequisite: Environmental Studies/Geology 116, Physics 9B, Mathematics 22C, Chemistry 1C, or upper division standing in a natural science and consent of instructor. Physical and chemical properties of seawater, fluid dynamics, air-sea interaction, currents, waves, tides, mixing, major oceanic geo-chemical cycles. (Same course as Geology 150A.) GE credit: SocSci, Div.

150B. Geological Oceanography (3) II. McClain (Geology)
Lecture—3 hours. Prerequisite: Geology 50 or 116. Introduction to the origin and geologic evolution of ocean basins. Composition and structure of oceanic crust; marine volcanism; and deposition of marine sediments. Interpretation of geologic history of the ocean floor in terms of sea-floor spreading theory. (Same course as Geology 150B.) GE credit: SocSci.

150C. Biological Oceanography (3) III. The Staff
Lecture—3 hours. Prerequisite: Biological Sciences 1A and a course in general ecology, or consent of instructor. Study of the ecology of major marine habitats including intertidal, shelf benthic, deep-sea and plankton communities. Existing knowledge and contemporary issues in research. Portion of course will be devoted to man’s use of and impact on the ocean. (Same course as Geology 150C.) Offered in alternate years.

151. Limnology (4) III. C. Goldman
Lecture—3 hours; discussion—1 hour. Special project. Prerequisite: Biological Sciences 1A and junior standing. The biology and productivity of inland waters with emphasis on the physical and chemical environment.

151L. Limnology Laboratory (3) III. C. Goldman
Laboratory—6 hours; two weekend field trips. Prerequisite: course 151 (may be taken concurrently); junior, senior, or graduate standing. Limnological studies of lakes, streams, and reservoirs with interpretation of aquatic ecology.

155. Wetland Ecology (3) I. Rejmankova
Lecture—3 hours. Prerequisite: course 100 or Botany 117; course 110 or 151 recommended. Introduction to wetland definition, structure and function of wetland types and principles that are common to wetlands and that distinguish them from terrestrial and aquatic ecosystems.

155L. Wetland Ecology Laboratory (3) I. Rejmankova
Lecture—1 hour; laboratory—6 hours; fieldwork—two 1-day weekend field trips. Prerequisite: course 155 required (may be taken concurrently). Modern and classic techniques in wetland field ecology. Emphasis on sampling procedures, vegetation analysis, laboratory analytical techniques, and examples of successful wetland restoration techniques.

(e) Environmental Policy Analysis

160. Environmental Decision Making (4) II. Sabatier
Lecture—3 hours; discussion—1 hour. Prerequisite: Political Science 1, Economics 1A, intermediate statistics, course 1 and course 166 or Political Science 182; upper division standing or consent of instructor. Alternative models of environmental policymaking, and application to case studies of decision making in the U.S. and California.

161. Environmental Law (II) Wandesforde-Smith
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing and one course in environmental science (course 1, 10, 110, Biological Sciences 1A, Environmental Toxicology 10, or Resource Sciences 100); English 1 and Political Science 1 rec- ommendations. Introduction for non-Law School students to some of the principal issues in environmental law and the judicial interpretation of some important envi- ronmental statutes, e.g., NEPA. GE credit: SocSci, Div.

162. Recreation Policy Analysis (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; Agricultural Economics 147 or 176, Environmental Biology and Management 127. Introduction to major issues and evaluative techniques in the analy- sis of outdoor recreation policy. Principles of political science and economics are applied to the analysis of recreation demand and provision, and the resolution of conflicts between recreation and other uses. Offered in alternate years.

163. Energy and Environmental Aspects of Transportation (3) III. Sabatier

164. Ethical Issues in Environmental Policy (3) III. Sabatier
Lecture—3 hours. Prerequisite: courses 160, 168A; seniors only in Environmental Policy Analysis and Planning or by consent of instructor. Basic modes of ethical reasoning and criteria of distributive justice applied to selected topics in environmental policy- making.

165. Science, Experts and Public Policy (4) IV I. The Staff
Lecture—4 hours. Prerequisite: upper division stand- ing in the social or biological sciences; course 160 or Political Science 108 recommended. Analysis of fac- tors affecting the influence of scientists, planners, and other experts in policymaking. Several cases and controversies presented. GE credit: SocSci.

166. Policy-Making in Natural Resource Agencies (4) I. Wandesforde-Smith
Lecture—3 hours; discussion—1 hour. Prerequisite: Political Science 1, Economics 1A, intermediate statistics (Sociology 106 or Statistics 102 or the equivalent), and local government (Applied Behavioral Science 157, 158 or Political Science 100, 102 or 104.) Exposure to students to the economic, political, and legal factors affecting land use and growth controls, and helps students critically evaluate written materials in terms of their arguments and supporting data.

172. Public Lands Management (4) II. Helfand
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A. Investigation of the issues and political factors affecting land use, and energy policy. Emphasis on environmental statutes, e.g., NEPA. GE credit: SocSci, Div.

173. Land Use and Growth Controls (4) III. Johnston
Lecture—3 hours; discussion—1 hour. Prerequisite: Political Science 1, Economics 1A, intermediate statistics (Sociology 106 or Statistics 102 or the equivalent), and local government (Applied Behavioral Science 157, 158 or Political Science 100, 102 or 104.) Emphasis on environmental statutes, e.g., NEPA. GE credit: SocSci, Div.

175. Natural Resource Economics (3) II. Wilen
Lecture—3 hours; discussion—1 hour. Prerequisite: course 100B or Economics 100 or the equivalent. Conceptual and policy issues associated with natural resources, renewable resources (ground water, forests, fisheries and wildlife populations), and non-renewable resources (minerals and energy resources, oil). (Same course as Agricultural Economics 175.) GE credit: SocSci.

176. Applied Research Methods (4) I. Weinberg
Lecture—3 hours; discussion—1 hour. Prerequisite: Statistics 102 or Sociology 106 or the equivalent. Research methods for analysis of urban and regional land use, transportation, and environmental problems. Survey research and other data collection tech- niques, exploratory analysis, basic forecasting, air quality, and transportation models. Collection, inter- pretation, and critical evaluation of data.

177. Environmental Impact Reporting (3) I. Johnston
Lecture—2 hours; discussion—1 hour. Prerequisite: upper division standing, Biological Sciences 1A; one course from the following: course 1, 10, 110, Environmental Toxicology 10, or Resource Sciences 100. Methods of analysis used in environmental impact reporting. Emphasis on accurate writing; review and management of impact reports in the context of rational decision-making processes.
Environmental Toxicology

Environmental Toxicology

(College of Agricultural and Environmental Sciences)
Robert H. Rice, Ph.D., Acting Chairperson of the Department
Department Office, 4138 Meyer Hall (916-752-1142)

Faculty
Michael S. Denison, Ph.D., Associate Professor
Bruce D. Hammock, Ph.D., Professor (Environmental Toxicology, Entomology)
Theodore L. Hular, Ph.D., Professor
Fumio Matsumura, Ph.D., Professor
Marion G. Miller, Ph.D., Associate Professor
Robert H. Rice, Ph.D., Professor
Takayuki Shibamoto, Ph.D., Professor
Barry W. Wilson, Ph.D., Professor (Environmental Toxicology, Avian Sciences)
Dorothy E. Woolley, Ph.D., Professor (Environmental Toxicology, Neurobiology, Physiology and Behavior)

Emeriti Faculty
Richard G. Burau, Ph.D., Professor Emeritus
Donald G. Crosby, Ph.D., Professor Emeritus
Dennis P. H. Hsieh, Sc.D., Professor Emeritus
Ming-yu Li, Ph.D., Lecturer Emeritus
James N. Seiber, Ph.D., Professor Emeritus
Way W. Winterlin, M.S., Lecturer Emeritus

Affiliated Faculty
Gary N. Cherr, Ph.D., Lecturer
Gregory D. Jorgensen, Ph.D., Lecturer
Norman A. Kado, Ph.D., Assistant Adjunct Professor
Michael W. Stimmann, Ph.D., Cooperative Extension Specialist

The Major Program
Toxic agents found in the environment include pesticides, food additives, industrial waste, metals and chemicals produced by animals, plants, fungi and bacteria. Environmental Toxicology majors learn about the potential for toxicants to produce adverse effects by understanding both the environmental fate and biological activity of compounds. They learn about monitoring concentrations and the distribution and persistence of agents found in water, soil, air and foods. Toxicity testing procedures and exposure assessment are used to help signal potential threat to humans and other species. By understanding the cellular and biochemical mechanisms perturbed by toxicants, toxicologists can better estimate adverse effects. Overall, the program teaches students how knowledge of the origin, fate and action of toxic agents helps toxicologists evaluate the risk of adverse effects and balance risks against the benefits of use.

The Program, Preparatory courses in biology, chemistry, microbiology, mathematics, and physics are required to provide the chemical and biological principles which underlie toxicology. Students in the major are expected to understand the environmental fate and biological activity of different classes of toxic substances, and the legislative issues which arise from chemical use. Opportunities are available to develop in-depth understanding in areas of emphasis through selection of electives.

Internships and Career Alternatives. Occupations that use environmental toxicology are environmental health and safety, monitoring and field sampling, residue or forensic analysis, pest control, pharmaceutical or food additive toxicity testing and research, risk assessment and managing regulatory compliance. A substantial proportion of graduates elect to pursue advanced training in graduate or professional schools. Others with the B.S. degree have gone on to law or medical school, as well as to degrees in pharmacology, toxicology, agricultural and environmental chemistry, or public health. During undergraduate study, optional internships or research projects are recommended to provide training and work experience to help students set future goals.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible, equivalent or more comprehensive courses may be substituted with adviser's approval. Courses shown without parentheses are required.)

UNITS

English Composition Requirement0-8
See college requirement

Preparatory Subject Matter61-70
Biological sciences (Biological Sciences 1A, 1B, 1C)15
Chemistry (Chemistry 2A-2B-2C, or 2AH-2BH-2CH and 116A-116B-116C)20-24

Computer science (Agricultural Systems and Environment 21)3

Environmental sciences (Environmental Toxicology 10 or Environmental Studies 10)3-4

Mathematics (Mathematics 16A-16B or 21A-21B)8-8

Statistics (Physics 1A-1B or 7A-7B)6-8
Statistics (Statistics 100) ..4

Breadth/General Education36
Satisfaction of the General Education requirement to include courses selected with adviser's approval to complement the major (courses in agricultural economics, environmental studies, political science, psychology, and sociology are particularly recommended).24

Additional breadth in humanities and social sciences12

Depth Subject Matter29-30
Genetics and/or Biochemistry (Biological Sciences 101, 102, 103)6-7
Environmental Toxicology 101, 112A-112B, 114A-114B, 138 and (128, 130A-E, 131, 132, 135, or 146)23

Restricted/Other Electives24
Electives selected for area of specialization with adviser's approval

Total Units for the Degree180

Minor Program Requirements:

UNITS

Environmental Toxicology18
Electives courses 6 units minimum, selected from Environmental Toxicology 10, 128, 130A-E, 131, 132, 135, 136, 190, 198 and 199 (4 units combined maximum)6

Minor Adviser. T. Shibamoto.

*Course not offered this academic year.
Environmental Toxicology 261

Graduate Study. Programs of study leading to M.S. and Ph.D. degrees are available through related Graduate Groups such as Pharmacology and Toxicology, Ecology, and Agricultural and Environmental Chemistry. For information on graduate study, contact the Advising Office or the appropriate graduate adviser. Refer also to the Graduate Studies section in this catalog.

Graduate Advisers. A. R. Buckpitt, J. A. Last, B. W. Wilson (Pharmacology and Toxicology), T. Shibamoto (Agricultural and Environmental Chemistry).

Courses in Environmental Toxicology (ETX)

Lower Division Courses

10. Introduction to Toxicology (3) III.bullar
Lecture—3 hours. Prerequisite: open to science and non-science majors. Study of some natural and man-made toxic substances in personal, occupational, community, and global environments. Emphasis placed upon occurrence, properties, and effects of toxic substances. Biological and physical factors which alter fate of substances are described. GE credit: SciEng.

92. Internship (1-12) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in subject areas offered in the College of Agricultural and Environmental Sciences. Internships supervised by a member of the faculty. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Principles of Environmental Toxicology (3) I. Denison
Lecture—3 hours. Prerequisite: Chemistry 8B, 118B, or 128B, and Biological Sciences 1A. The fate, consequences, and assessment of toxicants in environmental and biological systems; classes of environmental toxicants discussed include pesticides, air and water pollutants, phytotoxins, mycotoxins, food-borne toxicants, and heavy metals. GE credit: SciEng.

112A. Toxicants in the Environment (3) II. Shibamoto
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 112A; consent of instructor. Continuation of 112A. Toxic chemicals—primarily pollutants—in the environment; concepts and techniques of sampling, detecting, and measuring toxicants of current concern; collection, interpretation, and use of analytical data. Limited enrollment. Environmental Toxicology majors will be given preference for enrollment. GE credit: SciEng.

128. Food Toxicology (3) III. Shibamoto, Russell (Food Science and Technology)
Lecture—3 hours. Prerequisite: Biological Sciences 102 and 103. Chemistry and biochemistry of toxins occurring in foods, including plant and animal toxins, intentional and unintentional food additives. The assessment of food safety and toxic hazards. (Same course as Food Science and Technology 128.) GE credit: SciEng.

130A-E. Selected Topics in Environmental Toxicology (3) I, II, III. The Staff (Chairperson in charge)
Lecture/discussion—3 hours. Prerequisite: consent of instructor; course 101 recommended. Selected topics of current interest in environmental toxicology. Topics will vary each time the course is offered, and will emphasize such areas as the microbiology of toxic substances, poisonous plants and animals, chemical ecology, toxic substances in food, and the safe handling of toxic substances.

131. Air Pollutants and Inhalation Toxicology (3) III. Last (Internal Medicine)
Lecture—3 hours. Prerequisite: Chemistry 8B (may be taken concurrently) or the equivalent; Biological Sciences 102 recommended. Toxicology of air pollutants in the ambient and occupational environments. Environmental factors, biological effects, air-quality criteria and standards, and pulmonary responses to these pollutants. GE credit: SciEng.

132. Chromatography for Analytical Toxicology (4) II. The Staff (Chairperson in charge)
Discussion—1 hour; laboratory—8 hours; slide presentation—2 hours. Prerequisite: Chemistry 8B or the equivalent (may be taken concurrently); consent of instructor. Application and theory of basic chromatographic techniques such as thin-layer, gas-liquid, high-pressure liquid and column chromatography useful for analytical toxicology; residue analysis comprises one-third of course.

135. Health Risk Assessment of Toxicants (3) I. Hsieh
Lecture—3 hours. Prerequisite: course 101; course 114A recommended. Current practices of health risk assessment of environmental chemicals using toxicological principles and their application to regulatory control of these chemicals. GE credit: SciEng.

136. Legal Aspects of Environmental Toxicology (3) II. Shirman
Lecture—3 hours. Prerequisite: consent of instructor; courses 10 and 101 recommended. Federal and California legislation concerning air and water pollution, pesticide use, food and feed additives, consumer protection, and occupational exposure to toxic substances; roles of Federal regulatory agencies; alternatives to governmental control. GE credit: SocSci.

146. Exposure and Dose Assessment (3) II. The Staff
Lecture—3 hours. Prerequisite: course 112A required; course 135 recommended. The exposure component of risk assessment, specifically, the presence and/or formation of toxic substances in environmental media, their movement within and between contaminated media, and the contacts of human populations with these media. GE credit: SciEng.

190. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: consent of instructor. Selected topics presented by students, faculty, or outside speakers covering current research and instructional activities within environmental toxicology. Reports and discussion concerning oral and written presentations, literature sources, and career opportunities. (P/NP grading only.)

190C. Research Group Conference (1-3) I, II, III. The Staff
Discussion—1 hour. Prerequisite: consent of instructor. Weekly conference of advanced research methods and the interpretation of research results. (P/NP grading only.)

Graduate Courses

203. Environmental Toxicants (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 128C (or the equivalent), or Chemistry 8B and consent of instructor. Toxic chemicals: selected topics illustrating their occurrence, structure, and the reactions underlying detection, toxicity, fate, and ecological importance. Offered in alternate years.

214. Mechanisms of Toxic Action (3) III. Hammock, Denison
Lecture—3 hours. Prerequisite: Biological Sciences 102, 103 and consent of instructor. Biochemical and physiological mechanisms underlying toxicity and detoxification.

220. Analysis of Toxicants (3) I. The Staff
Lecture—3 hours. Prerequisite: course 101 and consent of instructor; course 203 recommended. Principles of the microanalysis of toxicants. Theoretical considerations regarding separation, detection, and quantitative determination of toxicants using chemical and instrumental techniques.

220L. Analysis of Toxicants Laboratory (2) I. The Staff
Laboratory—6 hours. Prerequisite: course 220 (may be taken concurrently) and consent of instructor. Laboratory techniques for microanalysis of toxicants: Separation, detection, and quantitative determination of toxicants using chemical and instrumental methods.

228. Gas Chromatography/Mass Spectrometry of Toxic Chemicals (3) I. Shibamoto
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: course 220 and Chemistry 129C, or consent of instructor. Application of GC/MS techniques to investigate toxic chemicals. Mass spectral fragmentations and their application to the elucidation of the chemical structure. Practical application of GC/MS in current research. Preference given to environmental toxicology graduate students.
Epidemiology
(A Graduate Group)

Course Information

234. Neurophysiological Basis of Neurotoxicology (3) I. Woolley
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 100 or equivalent; basic understanding of neurophysiology. Mechanisms of action at the cellular and systemic level of a number of different neurotoxins and toxicants. Examples of ways toxins may act on the nervous system and techniques for study of neurotoxicology. (Same course as Physiology 234.)

240. Ecotoxicology (3) III. Matsumura
Lecture—3 hours. Prerequisite: elementary course in toxicology and ecology or the equivalent, or consent of instructor. Principles of toxicology as applied to chemical action on natural populations, communities, and ecosystems. Physical, chemical, and biological characteristics which influence ecotoxic effects, modeling, and field research. Selected case histories are analyzed and presented in class.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Current topics in environmental toxicology. (SU grading only.)

290C. Advanced Research Conference (1) I, II, III. The Staff (Chairperson in charge)
Lecture/discussion—1 hour. Prerequisite: consent of instructor. Presentation and critical discussion of advanced research methods and interpretation of research results. Designed primarily for graduate students. (SU grading only.)

297T. Tutoring in Environmental Toxicology (1-5) I, II, III. The Staff (Chairperson in charge)
Hours and duties will vary depending upon course being tutored. Prerequisite: graduate standing in Environmental Toxicology, a related major, or the equivalent experience, and consent of instructor. Teaching toxicology including conducting discussion groups for regular departmental courses under direct guidance of staff. May be repeated for credit up to a total of 5 units. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)

290. Seminars in Epidemiology (1) I. McCurdy, Romano
Seminar—1 hour. Students will actively participate in presentation and discussion of ongoing or published research projects in epidemiology. (SU grading only.)

Required Courses for the Program

Prerequisite Courses. Prerequisites may be taken concurrently with required courses below. Mathematics 16A-16B or 21A-21B Statistics 102, 106, and 108

Required Courses. These courses are required of all students in the program (M.S. and Ph.D. degrees). These requirements cannot be waived and must be met before a student’s Qualifying Examination.

Epidemiology 290 or Occupational and Environmental Health 190C Preventive Veterinary Medicine 405, 406, 407 Statistics 130A-130B

Select two courses from the three groups below: (The two courses may not be from the same group)

(a) Population Health and Reproduction
(b) Epidemiology 222 or 223
(c) Population Health and Reproduction

Related Courses. For additional coursework in Epidemiology, please see Medicine and Epidemiology, Preventive Veterinary Medicine, Population Health and Reproduction, and Internal Medicine—Occupational and Environmental Health.

Courses in Epidemiology (EPI)

Graduate Courses

*222. Epidemiological Modeling (3) II. Carpenter
Lecture—2 hours; laboratory—3 hours. Prerequisite: Preventive Veterinary Medicine 405. Techniques of model building and simulation of infectious diseases will be explored. Epidemiologic modeling philosophy, construction and validation will be emphasized. Offered in alternate years. (Former course Epidemiology and Preventive Medicine 222.)

223. Spatial Epidemiology (3) II. Carpenter Lecture—2 hours; laboratory—3 hours. Prerequisite: Preventive Veterinary Medicine 405 or Environmental Studies 126 or Veterinary Medicine 409. Geographic Information Systems (GIS) and spatial statistics. Students are expected to complete a term project based on their graduate research. Offered in alternate years.

240. Principles of Injury Epidemiology (3) I. Romano
Lecture/discussion—3 hours. Overview of the epidemiology of human injury, including general principles, surveillance methods, behavioral factors, environmental factors, treatment issues and engineering and legal interventions related to vehicular injuries, drownings, falls, fires and burns, poisonings, firearm injuries and other intentional injuries.

250. Introduction to Clinical Research Design and Epidemiology (3) I. McCurdy, Romano
Lecture—1 hour. Prerequisite: graduate standing or medical/nursing personnel. For medical personnel who are or will be involved in medical research. Review of basics of clinical study design and analysis of clinical data. (SU grading only.)

*251. Environmental Epidemiology (3) II. Gold Lecture—3 hours. Prerequisite: Preventive Veterinary Medicine 405 (may be taken concurrently); upper division undergraduates who have completed Environmental Studies 126 or the equivalent. Examination of the human health effects and the risk of disease from community, occupational, and personal exposure to toxic substances. Offered in alternate years.

260. Epidemiology of Chronic Diseases and Aging (3) II. Haan
Lecture/discussion—3 hours. Overview of the epidemiology of chronic disease in old age. Topics include biology of aging, epidemiology of cardiovascular disease, neoplasms, osteoporosis and fractures, psychosocial factors, and health in old age, delirium, functional status and prevention of disease.

*270. Research Methods in Occupational Epidemiology (3) III. Beaumont Laboratory/discussion—3 hours. Prerequisite: Environmental Studies 126 or Preventive Veterinary Medicine 405, and Statistics 102 or Epidemiology and Preventive Medicine 402. Methods used in epidemiologic research on occupational hazards. Topics include design and analysis of cohort, case-control studies, sample size, measuring dose, choosing a control group, validation of employment and health data, interpreting negative studies, and analysis software. Offered in alternate years.

271. Epidemiology of Diseases and Injuries in Agriculture (3) III. Beaumont
Lecture/discussion—3 hours. Prerequisite: Environmental Studies 126 or Preventive Veterinary Medicine 405, or consent of instructor. Overview of disease and injury hazards in agriculture with emphasis on epi- demiologic studies. Topics include respiratory diseases, zoonoses, occupational injuries, child injuries, suicide, stress, pesticide injuries and illnesses, infectious disease hazards, reproductive hazards, and cancer hazards. Offered in alternate years.

290. Seminars in Epidemiology (1) I. The Staff
Seminar—1 hour. Students will actively participate in presentation and discussion of ongoing or published research projects in epidemiology. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff

299. Research (1-12) I, II, III. The Staff

Exercise Science

(College of Letters and Science)

Edmund M. Bernauer, Ph.D., Chairperson of the Department

Department Office, 264 Hickey Gymnasium (916-752-0511)

Faculty—Exercise Science

David Hawkins, Ph.D., Assistant Professor
Robert G. Holly, Ph.D., Supervisor
Susan E. Jennings, Ph.D., Lecturer
Paul A. Mok, Ph.D., Professor
Melvin R. Ramey, Ph.D., Professor (Civil and Environmental Engineering)

Keith R. Williams, Ph.D., Associate Professor

Faculty—Physical Education

G. Robert Biggs, B.A., Supervisor
Stephen T. Bronzan, M.S., Lecturer
Gary Colberg, M.A., Principal Recreation Supervisor
Simon Davies, Ph.D., Lecturer
Kathleen M. DeYoung, B.A., Supervisor
Pamela L. Gil-Fisher, M.A., Supervisor
Raymond S. Goldbar, M.A., Supervisor
Jorja E. Hoehn, M.S., Lecturer
Jeff Hogan, B.A., Supervising Athletic Trainer
Barbara A. Jahn, M.S., Supervisor
Sharon King, M.S., Lecturer
Daryl Lee, M.S., Lecturer/Coach
Bill Mazze, M.B.A., Lecturer/Coach
Maryclaire Robinson, M.S., Lecturer/Coach
Philip S. Swimley, M.A., Supervisor
Lisa Varnum, B.S., Athletic Trainer
Deanne M. Vochatzer, M.A., Assistant Supervisor
Jon E. Vochatzer, M.S., Supervisor
Robert A. Williams, M.A., Lecturer
Suzanne C. Williams, M.S., Supervisor

Emeriti Faculty

William C. Adams, Ph.D., Professor Emeritus
Edmund M. Bernauer, Ph.D., Professor Emeritus
Charles R. Kovacic, Ed.D., Professor Emeritus
Willard S. Lotter, Ed.D., Senior Lecturer Emeritus
E. Dean Ryan, Ed.D., Professor Emeritus

*Course not offered this academic year.
The Mission of the Department of Exercise Science is the integrative study of human biology in the context of physical activity. The Program. The undergraduate major may select either the Bachelor of Arts or the Bachelor of Science degree program. The Bachelor of Arts is primarily for those students who desire a liberal arts program with a broadly based lower division curriculum. This program permits specialization in either the biological or psychological aspects of exercise science, and is most appropriate for those who intend to pursue careers in coaching, teaching, or in community/corporate exercise programs, and for those intending graduate study in the behavioral aspects of sport and exercise. The Bachelor of Science program is for students who desire a more intense curriculum in the natural sciences. It involves more extensive lower division preparation in physical and life sciences and requires additional upper division coursework more specific to either biomechanics or exercise physiology.

Career Alternatives. This degree program provides preparation for graduate study in exercise and sport science, for careers in the allied health sciences, and requires preparation in physical and life sciences and requires additional upper division coursework more specific to either biomechanics or exercise physiology.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>33-35</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A, 2B</td>
<td>10</td>
</tr>
<tr>
<td>Exercise Science 10</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1A, 5A, or 7A</td>
<td>3-4</td>
</tr>
<tr>
<td>Psychology 1 or 15</td>
<td>3-4</td>
</tr>
<tr>
<td>Additional requirements</td>
<td>4</td>
</tr>
<tr>
<td>Biology Statistics 13</td>
<td></td>
</tr>
<tr>
<td>Psychological emphasis—Psychology 41</td>
<td></td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>43</td>
</tr>
<tr>
<td>Cell Biology and Human Anatomy 101, 101L</td>
<td>6</td>
</tr>
<tr>
<td>Exercise Science 101, 101L, 102, 103, 104</td>
<td>6</td>
</tr>
<tr>
<td>Exercise Science 101, 101L, 102, 103, 104, 105</td>
<td>16</td>
</tr>
<tr>
<td>Neurobiology, Physiology and Behavior 101...5</td>
<td></td>
</tr>
<tr>
<td>Minimum of 12 upper division units in exercise science chosen with approval by a major adviser</td>
<td>12</td>
</tr>
<tr>
<td>Biological emphasis: Students electing this emphasis must select a minimum of 9 units from Exercise Science 110, 111, 112, 113, 115, 116, 117, or 118</td>
<td></td>
</tr>
<tr>
<td>Psychological emphasis: Students electing this emphasis must select a minimum of 7 units from Exercise Science 120, 121 or 122</td>
<td></td>
</tr>
<tr>
<td>Minimum of 4 upper division non-exercise science units in either the biological or the psychological area from the following lists. Substitutes may be made only with the prior written approval of a major adviser.</td>
<td></td>
</tr>
<tr>
<td>Biological emphasis: Anthropology 101, 152 or 153, Biological Sciences 101, Neurobiology, Physiology and Behavior 113, or Nutrition 101</td>
<td>4</td>
</tr>
<tr>
<td>Psychological emphasis: Psychology 114, 115, 136, 143, 145, or 160</td>
<td>18</td>
</tr>
</tbody>
</table>

None of the variable-unit courses or Physical Education 120, 128B, 128B, 143A, 143B, or 144, or Exercise Science 146, 146L, 147L, 148L, or 149L may be used to fulfill these requirements. Consult your adviser regularly.

Total Units for the Major...76-78

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>54-59</td>
</tr>
<tr>
<td>Anthropology 1</td>
<td>4</td>
</tr>
<tr>
<td>Biological Sciences 1A-1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A, 2B</td>
<td>10</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
<tr>
<td>Exercise Science 45</td>
<td>3</td>
</tr>
<tr>
<td>Physics 5A-5B, 7A-7B, or 9A-9B</td>
<td>6</td>
</tr>
<tr>
<td>Psychology 1 or 15</td>
<td>3-4</td>
</tr>
<tr>
<td>Statistics 13 or 102</td>
<td>4</td>
</tr>
<tr>
<td>Additional Requirements</td>
<td></td>
</tr>
<tr>
<td>Biomechanics emphasis: Computer Science Engineering 10 or 30 or Engineering 5, and Physics 7C, or 7C.</td>
<td></td>
</tr>
<tr>
<td>Exercise Science 101, 101L, 102, 103, 104, 105</td>
<td></td>
</tr>
<tr>
<td>Neurobiology, Physiology and Behavior 101, 110, 111, 112, 113, 115</td>
<td>7</td>
</tr>
<tr>
<td>Restricted electives</td>
<td>22</td>
</tr>
<tr>
<td>1. Minimum of 10 upper division units from outside the major selected with adviser's approval and as restricted below.</td>
<td></td>
</tr>
<tr>
<td>Biomechanics emphasis: at least 3 of the 10 units must be selected from the following: Biological Sciences 102 or Nutrition 110; Neurobiology, Physiology and Behavior 112, Evolution and Ecology 170, 170L.</td>
<td></td>
</tr>
<tr>
<td>Exercise Science 101, 101L, 102, 103, 104, 105</td>
<td></td>
</tr>
<tr>
<td>Exercise Science 101, 101L, 102, 103, 104, 105</td>
<td></td>
</tr>
<tr>
<td>3. Additional courses to complete a total of 18 upper division units. None of the variable-unit courses or Physical Education 100, 128A, 128B, 143A, 143B, or Exercise Science 146, 146L, 147L, 148L, or 149L may be used to fulfill these requirements. Consult your adviser regularly.</td>
<td></td>
</tr>
<tr>
<td>Minor Advisers. Same as major advisers. Teaching Credential Subject Representative, S. Williams. See also the section on the Teacher Education Program.</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Study: A program of study and research leading to the M.S. degree is available in exercise science. For detailed information regarding graduate study, write to the Graduate Adviser, Department of Exercise Science. See also the Graduate Studies section in this catalog. Admission to study for the M.A. degree in Physical Education is closed for the 1996-97 academic year.

Graduate Adviser, P.A. Molé.

Class and Recreation Use of Facilities. The incidental fee payable by all students at the time of registration entitles students to the use of the gymnasium, showers, towels, lockers, tennis courts, and athletic fields. Certain equipment for games and sports is available for exercise and recreation, either with or without instruction. Lockers must be turned in on the last day of class, i.e., before the final examination period. Fines are imposed for each formal transaction necessitated by failure of the student to comply with the regulations of the department.

Physical Education Program

The physical education program provides courses of interest to non-majors. The program focuses on physical activities and education, fitness, health and recreation. The basic activities series includes Physical Education 1, beginning sports skills and knowledge, Physical Education 6, for students participating in intercollegiate athletics, and Physical Education 7, for students interested in a career in teaching/coaching in grades K-12. Additional lower division courses include those in special skill areas, such as life-saving and water safety, scuba diving, and health and fitness. Upper division courses include advanced skills in scuba diving and a series of courses that meet the mandated requirements for students pursuing teacher preparation and certification.

The Physical Education program is independent of the degree programs, but is available as part of a student’s general educational experience to enhance and broaden the understanding of physical activity in the maintenance of lifetime health and fitness.
Courses in Exercise Science (EXS)

(Formerly courses in Physical Education)

Lower Division Courses

45. Foundations of Physical Education (3) I. Adams

Lecture—3 hours. An introduction to biological, biomechanical, physiological, and sociological foundations of physical education. Not open for credit to students who have taken Physical Education 45.

90X. Lower Division Seminar (1-2) I, II, III.

The Staff (Chairperson in charge)

Lecture—1 hour. Prerequisite: lower division standing and consent of instructor. Gives freshman or sophomore level students the opportunity to study a special topic in the general area of Exercise Science in a small class setting. Not open for credit to students who have taken Physical Education 90X.

92. Exercise Science Internship (1-5) I, II, III.

The Staff (Chairperson in charge)

Internship—3-15 hours. Prerequisite: consent of instructor; enrollment dependent on availability of intern positions, with priority given to Exercise Science majors. Work experience in the application of physical activity to teaching, recreational, clinical or research situations under department faculty supervision. May be repeated for credit once but no internship units will be counted toward Exercise Science major. (P/NP grading only.)

97T. Tutoring Exercise Science in the Community (1-5) I, II, III.

The Staff (Chairperson in charge)

Tutorial—2-14 hours; discussion—1 hour. Prerequisite: lower division standing and consent of Department Chairperson. Tutoring of students in exercise science course-related projects. Regular meetings with instructor in charge and written report required. May be repeated for credit. (P/NP grading only.)

97TC. Tutoring Exercise Science in the Community (1-5) I, II, III.

The Staff (Chairperson in charge)

Tutorial—2-15 hours; discussion—1 hour. Prerequisite: lower division standing and consent of Department Chairperson. Tutoring in the community in exercise science related projects under the guidance of the Exercise Science faculty. Regular meetings with instructor in charge and written report required. May be repeated for credit. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III.

The Staff (Chairperson in charge)

Prerequisite: consent of instructor and Department Chairperson. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III.

The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

101. Physiological Regulation During Exercise (3) I. Bernauer, Molé

Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 101. Review of physiological mechanisms underlying acute exercise response. Focus is on physiological regulation and control in response to metabolic demand. Metabolism, fluid composition, acid-base, and temperature regulation are studied in relation to control by the cardiovascular, respiratory, and renal systems. Not open for credit to students who have taken Physical Education 101. GE credit: SciEng.

101L. Exercise Physiology Laboratory (1) Molé

Laboratory—3 hours (for 5 weeks); discussion—2.5 hours (for 5 weeks). Prerequisite: course 101 (may be taken concurrently). Neurobiology, Physiology and Behavior 101. Series of laboratory experiments demonstrating the principles of physiological regulation to standardized exercise regimens. The assessment of physical, environmental and anthropological factors limiting exercise capacities performed on quantitatively controlled ergonomic devices, while monitoring physiological variables by noninvasive methods. Not open for credit to students who have taken Physical Education 101L.

102. Physiological Adaptations to Exercise (2) II. Adams in charge

Lecture—2 hours. Prerequisite: course 101 or consent of instructor. Study of physiological capacities with reference to genotypic and adaptive aspects. Analysis of physiological adaptations to chronic physical activity and selected environmental stressors. Not open for credit to students who have taken Physical Education 102.

103. Analysis of Human Movement (4) III. Hawkins

Lecture—3 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisite: Cell Biology and Human Anatomy 101 and Physics 1A. Focuses on the anatomical and physiological mechanisms of human motion. Qualitative and quantitative application of kinesiological principles to a variety of movement situations. Not open for credit to students who have taken Physical Education 103. GE credit: SciEng.

104. Introduction to Motor Control and Skill Acquisition (3) I. Jennings

Lecture—2 hours; discussion—1 hour to alternate weekly with laboratory—1 hour. Prerequisite: upper division standing; Psychology 1 or 15, and course 45. Analysis of variables affecting the ability to produce, learn, and reproduce motor skills. Basic neuropsychological and behavioral accounts of motor control processes are examined. Theories of movement retention and motor learning are covered. Not open for credit to students who have taken Physical Education 104. GE credit: SciEng.

105. Psychosocial Factors in Motor Performance (3) II. Jennings

Lecture—3 hours. Prerequisite: Psychology 1, 15, or 16. Survey of experimental findings in sport social psychology and human motivation and their application to motor performance, including gender differences, success and failure, expectations, anxiety, confidence, and motivation. Not open for credit to students who have taken Physical Education 105. GE credit: SocSci.

110. Exercise Metabolism (3) II. Molé

Lecture—2 hours; laboratory—five 4-hour sessions. Prerequisite: courses 101, 102; Chemistry 2A. Focus on energy metabolic pathways and fuels used during different modes of exercise. Also, exercise-induced adaptations which affect metabolism and performance will be discussed. Experiments in laboratory will utilize a variety of techniques to characterize the metabolic responses to exercise. Not open for credit to students who have taken Physical Education 110. GE credit: SciEng.

111. Environmental Effects on Physical Performance (3) III. Adams in charge

Lecture—2 hours; laboratory—3 hours, with discussion—1 hour (alternate weeks). Prerequisite: courses 101 and 102, or consent of instructor. The effects of thermal, barometric and gravitational conditions on physiological function and physical performance of humans. Acute and chronic effects, emphasizing physiological adaptations and limitations, will be studied. Not open for credit to students who have taken Physical Education 111.

112. Clinical Exercise Physiology (4) III. Holl

Lecture—3 hours; laboratory—3 hours to alternate weekly with discussion—1 hour. Prerequisite: courses 101 and 102, or consent of instructor. Physical activity as a therapeutic modality is examined in normal and diseased populations (cardiovascular, pulmonary, renal diseases, diabetes, obesity, lipemias, etc.). Exercise will be considered as a prophylactic and/or therapeutic modality. Not open for credit to students who have taken Physical Education 112. GE credit: SciEng.

117. Exercise and Aging in Health and Disease (3) II. Holl

Lecture—2 hours; discussion—1 hour. Prerequisite: courses 101 or 102. The effects of aging on physiological and motor performance will be discussed. Experiments in laboratory will utilize a variety of techniques to characterize the metabolic responses to exercise. Not open for credit to students who have taken Physical Education 117. GE credit: SciEng.

118. Bionomics of Work: Physical Performance and Standards in the Workplace (3) III.

Bernauer

Lecture—2 hours; discussion—1 hour. Explores principles and practices of physical performance in the workplace. Established assessment procedures including validation of job standards are presented. Cost of medical benefits are examined with respect to on-site and off-site programs of fitness maintenance and remediation. Not open for credit to students who have taken Physical Education 118. GE credit: SciEng, Wrt.

120. Sports in American Society (4) II.

Gill-Fisher

Lecture—3 hours; discussion—1 hour. Historical development of sport in American society. Relationship and interaction of sport and politics, economics, religion, art, sexism, racism, and education; current trends and problems. Not open for credit to students who have taken Physical Education 120. GE credit: SocSci, Div.

121. Sport Psychology (4) III. Jennings

Lecture—3 hours; discussion—1 hour. Prerequisite: course 105 and Psychology 145. Consideration of major theories, research findings and methods of data collection in sport psychology through a critical examination of relevant experimental, clinical, and field data. Not open for credit to students who have taken Physical Education 121.

122. Psychological Effects of Physical Activity (3) II. Jennings

Lecture—3 hours. Prerequisite: Psychology 1 or 15, and upper division standing. Physical activity is evaluated in terms of its ability to enhance the quality of life. Topics studied include: individual factors (self concept, type A); special populations (elderly, cardiovascular, and mental health changes (depression, anxiety). Not open for credit to students who have taken Physical Education 122.

*Course not offered this academic year.
loop theories, motor programming, cognitive learning strategies, and the effects of biochemical and biomechanical influences. Not open for credit to students who have taken Physical Education 125.

126. Tissue Mechanics (3) II. Hawkins Lecture—2 hours; laboratory/discussion—3 hours. Prerequisite: course 103 or consent of instructor. The mechanical properties of biological tissues are investigated. Tissues considered include bone, cartilage, ligaments, tendons, nerves, and skeletal muscle. Not open for credit to students who have taken Physical Education 126. (P/NP grading only.)

131. The Teaching of Physical Activity to Special Populations (4) I. J. Vochatzer Lecture—3 hours; laboratory—3 hours. Prerequisite: course 103. The diverse and complex nature of the atypical/exceptional, their disabilities, what caused those disabilities, how they adapt to their disability in daily living, and how physical activity/recreational programs play a role in their daily living. Not open for credit to students who have taken Physical Education 131.

133. Prevention and Care of Sports Injuries (3) II. The Staff (Chairperson in charge) Lecture—3 hours; laboratory—6 hours. Prerequisite: upper division standing. Cell Biology and Human Anatomy 101 (may be taken concurrently). Management of the prevention, care, and rehabilitation of injuries. Laboratory: anatomy, emergency care, physical therapy methods, and taping techniques. Not open for credit to students who have taken Physical Education 133.

135. Advanced Procedures in Evaluation and Management of Athletic Injuries (3) III. The Staff (Chairperson in charge) Lecture—3 hours. Prerequisite: course 133. Cell Biology and Human Anatomy 101, and consent of instructor. Advanced study of the evaluation and management of athletic injuries, including mechanism of injury, biomechanics and pathophysiology. In-depth study of selected current topics in athletic training. Not open for credit to students who have taken Physical Education 135.

*146. Theory and Practice of Exercise Training (1) I, II, III. Jennings Lecture/discussion—1 hour. Prerequisite: course 2 or 45, or 102. Physiological adaptations, exercise programming and behavioral techniques focusing on young and middle-aged adults. Topics include exercise prescription, nutrition, psychological effects of exercise, stress-reduction techniques, and exercise adherence techniques. Not open for credit to students who have taken Physical Education 146. (P/NP grading only.)

*146L. Shop-Up Testing and Training Laboratory (1) I, II, III. Jennings Laboratory—3 hours. Prerequisite: course 146 (may be taken concurrently). Primary activities involve leading shape-up class, attending workshops, testing sessions, and completing final reports. May be repeated once for credit. (Former course 146L.) (P/NP grading only.)

147L. Adult Fitness Training Laboratory (1) I, II, III. Jennings Laboratory—3 hours. Prerequisite: courses 146, 146L, and 102 (may be taken concurrently); current CPR. Involves attending and assisting with aerobic training sessions for older adults, and assisting with physiological testing sessions. Not open for credit to students who have taken Physical Education 147L. (P/NP grading only.)

148. Theory and Practice of Exercise Testing (111) I, II, III. Jennings Lecture/discussion—1 hour. Prerequisite: courses 101, 102, 112 (may be taken concurrently), and 146; current CPR. Theory and practice of exercise testing applied to various populations. Physiological responses to and limitations of exercise testing. Application of exercise testing and training to healthy and diseased populations. Not open for credit to students who have taken Physical Education 148. (P/NP grading only.)

148L. Adult Fitness Testing Laboratory (1) I, II, III. Holly Laboratory—3 hours. Prerequisite: courses 146, 148 (concurrent); current CPR. Testing symptomatic and asymptomatic older adults for functional aerobic capacity, body composition, blood lipids, pulmonary function, and cardiovascular risk factors. Counseling adults in exercise program design and lifestyle modifications. Two quarters minimum; third quarter permitted. (Former course Physical Education 148L.) (P/NP grading only.)

149L. Cardiopulmonary Rehabilitation Laboratory (1) I, II, III. Holly Laboratory—3 hours. Prerequisite: courses 148 and 148L; current CPR certification. Testing and training of cardiac patients depending on needs of developing heart disease. Present mini-lectures to program participants, maintain patient records, and present patients’ cases in rounds. Two quarters minimum; third quarter permitted. (Former course Physical Education 149L.) (P/NP grading only.)

192. Exercise Science Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor; enrollment dependent on availability of intern positions, with priority given to Exercise Science majors. Work experience in the application of physical activity programs to teaching, recreational, clinical or research settings under department faculty supervision. May be repeated for credit for total of 12 units (including course 92), but no internship units will be counted toward Exercise Science major. (P/NP grading only.)

197T. Tutoring in Exercise Science (1-5) I, II, III. The Staff (Chairperson in charge) Tutorial—2-15 hours. Prerequisite: upper division standing and consent of instructor. Tutoring of students in exercise science course-related projects. Regular meetings with instructor in charge and written report required. May be repeated for credit. (P/NP grading only.)

197TC. Tutoring Exercise Science in the Community (1-5) I, II, III. The Staff (Chairperson in charge) Tutorial—2-15 hours; discussion—1 hour. Prerequisite: upper division standing and consent of instructor. Tutoring of students in exercise science course-related projects. Regular meetings with instructor in charge and written report required. May be repeated for credit. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Seminar—2 hours. Prerequisite: course 112 or consent of instructor. In-depth study of selected current topics in exercise science. Not open for credit to students who have taken Physical Education 226. (Former course Physical Education 198.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of Department Chairperson. (P/NP grading only.)

Graduate Courses

200A. Introduction to Research: History and Philosophy in Physical Education (2) I. Molé Discussion—1 hour; seminar—1 hour. Prerequisite: consent of instructor. Fundamental tenets of science and their implications in human physical performance; benchmark studies in the evolution of the field. Not open for credit to students who have taken Physical Education 200A.

200B. Problem Solving and Research Design in Physical Education (2) II. Jennings, Molé Discussion—1 hour; seminar—1 hour. Prerequisite: course 200A. Conventional approaches to problem solving, processes in research design and analysis; written and oral presentation of a thesis proposal. Not open for credit to students who have taken Physical Education 200B.

201A. Sports Medicine: Medical Aspects of Sports Injuries (3) I. Bernauer Lecture—2 hours; workshop—1 hour. Prerequisite: graduate students with upper division course in systemic pathology or anatomy, and medical students.

Multidisciplinary course introducing student to the pathophysiology of sports injuries, physical examination of the injured athlete, and management of sports injuries. Specific injuries, taping, and use of physical modalities will be discussed. Not open for credit to students who have taken Physical Education 201A.

220. Research Topics in Biomechanics (3) II. Williams Lecture—2 hours; seminar—1 hour. Prerequisite: graduate standing and consent of instructor; course 115 recommended. Survey of current research into diverse areas of the biomechanics of movement. Topics will include locomotion, sport biomechanics, electromyography, musculoskeletal and tissue mechanics, advances in measurement technology, and clinical biomechanics. (Same course as Biomechanical Engineering 220.) Not open for credit to students who have taken Physical Education 220.

221. Anthropometry in Physical Activity (3) III. Adams Lecture—2 hours; laboratory—five 3-hour sessions to alternate weekly with five 1-hour discussion sessions. Prerequisite: courses 101 and 102. Consideration of physical constitution, body proportions, and body composition in man as they affect physical performance, and of body structural and compositional changes accompanying prolonged, systematic physical conditioning. Offered in alternate years. Not open for credit to students who have taken Physical Education 221.

222. Metabolic Functions in Exercise (4) III. Molé Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 102. Neurobiology, Physiology and Behavior 101. Review of the current research literature on the metabolic responses to exercise in man; a laboratory survey of respiratory response, metabolic and water balances, blood gas adjustments and acid-base balance with particular reference to the effect of environmental conditions. Not open for credit to students who have taken Physical Education 222.

223. Physiological Basis of Physical Fitness (2) II. Bernauer Seminar—2 hours. Prerequisite: graduate standing. Review and critical discussion of current research topics concerned with the physiological aspects of physical training and adaptation. Offered in alternate years. Not open for credit to students who have taken Physical Education 223.

224. Exercise Electrocardiography (2) I. Holly Lecture—2 hours. Prerequisite: course 112 or consent of instructor. Physiological bases and clinical implications of normal and abnormal exercise electrocardiograms (ECG) are treated in detail. Exercise prescription is considered as is the predictive significance of normal and abnormal ECG. Offered in alternate years. Not open for credit to students who have taken Physical Education 224.

225. Seminar in Cardiac Rehabilitation (2) I. Holly Seminar—2 hours. Prerequisite: course 112 or graduate standing and consent of instructor. Critical examination of literature dealing with the causes, prevention and treatment of cardiovascular disease with particular emphasis on intervention through cardiac rehabilitation. Both the theoretical and practical approaches to cardiac rehabilitation will be examined. Offered in alternate years. Not open for credit to students who have taken Physical Education 225.

226. Measurement of the Biological Aspects of Human Performance (3) I. Adams in charge Lecture—2 hours; laboratory—3 hours. Prerequisite: course 101; consent of instructor. Introduction to primary measurement strategies used to investigate the biological bases of human performance. Emphasis placed on the critical selection of the most valid tests and on obtaining the most accurate and reliable results. Not open for credit to students who have taken Physical Education 226.

227. Research Techniques in Biomechanics (4) II. Williams, Hawkins Lecture—2 hours; laboratory—4 hours; term paper/
Exercise Science

6. Preparation and Participation in ICA Competition (1) I, II, III. ICA Staff (Director in charge)
Discussion—laboratory—10-20 hours. Prerequisite: consent of instructor (coach). Preparation and participation in Intercollegiate Athletics. Development of fundamental and advanced individual and team skills. In-depth knowledge of rules and strategy. Advanced sports competition and Conference and NCAA levels. May be repeated along with course 1 for a total of 6 units. (P/NP grading only.)

7. Professional Physical Education Activities: Men and Women (1) I, II, III. The Staff
(Coordinator in charge)
Lecture—1 hour, laboratory—2 hours. Men and women may be enrolled in all classes. Prerequisites: consent of instructor. (P/NP grading only.)

230. Human Performance: Psychological Aspects (3) II.
Seminar—3 hours. Prerequisite: course 105 or consent of instructor. Critical review of current literature on learning social psychology and its application to clinical problems related to exercise and sport. Not open for credit to students who have taken Physical Education 230. (Same course as Biomedical Engineering 227.)

*230. Human Performance: Psychological Aspects (3) II.
Seminar—3 hours. Prerequisite: course 105 or consent of instructor. Critical review of current literature on learning social psychology and its application to clinical problems related to exercise and sport. Not open for credit to students who have taken Physical Education 230. (Same course as Biomedical Engineering 227.)

Courses in Physical Education (PHE)

Lower Division Courses

1. Physical Education for Men and Women (1/2) I, II, III. The Staff (Chairperson in charge)
Lecture—1 hour; discussion—1 hour; two Saturday field trips—8 hours. The nature and scope of community and programs, and elements of planning. Prerequisite: course 44 and upper division standing or consent of instructor. (P/NP grading only.)

2. Principles of Basic Exercise Conditioning (2) I. (Swimley in charge)
Lecture—1 hour; laboratory—2 hours. A survey of the basic concepts, facts, and accepted approaches to physical conditioning in: (a) sports skills, rules and strategy; (b) physical fitness and personal health; (c) recreation; (d) dance, and (e) intercollegiate athletics. May be repeated along with course 6 for a combined total of 8 units. (P/NP grading only.)

143A. Coaching Effectiveness (2) I. The Staff
Lecture—2 hours. Prerequisite: course 128A. Analysis of the principles and methods of coaching. Synthesis and application of basic components of sport psychology, sport pedagogy, and sport physiology to coaching. (P/NP grading only.)

143B. Coaching Internship (2) I. The Staff
Lecture—2 hours. Prerequisite: course 143A. Application of general principles of management and administration to athletic coaching in high school. (P/NP grading only.)

*144. Principles of Health Education (2) I
Lecture—2 hours. Prerequisite: course 44 and upper division standing or consent of instructor. Principles of teaching health education in the public schools. (P/NP grading only.)

145. Administration of Health/Fitness Programs (2) III.
Lecture—2 hours. Prerequisites: course 44 and upper division standing or consent of instructor. Principles of teaching health education in the public schools. (P/NP grading only.)

*Course not offered this academic year.
Feminist Theory and Research
Judith Newton, Ph.D., Program Director
Program Office, 271 Kerr Hall (916-752-4686)
Graduate Study. The program in Women’s Studies offers courses leading to a designated emphasis in Feminist Theory and Research. The courses provide theoretical and interdisciplinary perspectives to students already preparing for the Ph.D. in one of twelve participating departments (Anthropology, Comparative Literature, Dramatic Art, Education, English, French, German, History, Italian, Psychology, Spanish, and Sociology). Students complete all requirements for the Ph.D., including the dissertation, in one of the participating departments. The additional requirements leading to the designated emphasis consist of two core courses (Women’s Studies 200A and 200B) and two courses on gender, one of which must be in the student’s home department. It is expected that an analysis of gender will be a central component of the student’s doctoral examination and dissertation.
Graduate Adviser. Consult the Women’s Studies office (916-752-4686).

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Fiber and Polymer Science

Fiber and Polymer Science
(College of Agricultural and Environmental Sciences)

The Major Program

The fiber and polymer science major is concerned with the physical, chemical, and structural properties of fibers and polymers and how these relate to fiber and polymer performance and end-use.

The Program. All students in this major are required to take a common core of coursework in chemistry, physics, and mathematics, and depth subject matter in fiber and polymer science, organic and physical chemistry, and technical writing. In the restricted electives, the student is expected to select courses from areas such as computer science and mathematics, chemistry, marketing and management, material and advanced fiber and polymer science, and textiles.

Career Alternatives. The major prepares the student for a career in a wide range of industries in the areas of research and development, technical marketing and management, production, quality control, and science teaching (on completion of an additional year in the teaching credential program). The companies employing Fiber and Polymer Science graduates are in the fiber, polymer, absorbent product, textile and/or chemical business. Graduates are prepared to enter the graduate program in textiles or agricultural and environmental chemistry with a specialization in fiber and polymer chemistry, and fiber and polymer science programs at other universities.

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirement are shown in parentheses where possible. Equivalent or more comprehensive courses will be accepted.)

UNITS

English Composition Requirement 0-8
See College requirement

Preparatory Subject Matter 59-66
Biochemistry (Biological Sciences 102, 103) 6
Biology (Biological Sciences 1A) 5
Chemistry (Chemistry 2A-2B-2C, and 8A-8B or 128A-128B, 129A) 21-25
Computer science (Agricultural Systems and Environment 21, Computer Science Engineering 10, 30, or Engineering 5) 3-4
Mathematics (Mathematics 16A-16B or 21A-21B) 6-8
Microbiology (Microbiology 102-102L) 6
Physics (Physics 5A, and 5B or 5C) 8
Statistics, including analysis of variance (Agricultural Systems and Environment 120 or Statistics 106) 4

Breadth/General Education 24
Satisfaction of General Education requirement plus additional coursework in social sciences and humanities or others as approved by adviser.

Depth Subject Matter 40
Choose from: Chemistry 107A, 107B, 108, 130
Chemical Engineering 161A, 206
Microbiology 105, 130A, 130B, 130L, 250

Viticulture and Enology 3, 123, 124, 125, 126, 127, 128, 135, 140, 186, 190X, 219, 235 (no variable-unit 190, 192, 199, 299 courses allowed toward depth requirement)

(Courses in depth subject matter may not be taken on the P/NP grading basis. Overall GPA in depth subject matter must be 2.0 or greater)

Restricted Electives 28
Selected according to student’s educational goals and upon approval by adviser.

Only 6 units of 192 or 6 units of 190, 198, 199, 290, or 298 may be counted; or a total of 8 units of these courses combined.

Unrestricted Electives 14-23

Total Units for the Degree 180

Major Adviser. A. Waterhouse.

Graduate Study. Refer to the Graduate Studies degree programs in Agricultural and Environmental Chemistry, Biochemistry, Chemical Engineering, Food Science, Genetics, Microbiology.
Film Studies

The interdisciplinary minor in Film Studies provides insight into and critical perspectives on the role of film in culture. The minor emphasizes connections between visual media and other forms of representation, and between Film Studies and other academic disciplines. Students will gain an understanding of the history of film, an awareness of genres, national traditions, and representations of gender and race. The minor involves critical perspectives on the role of film in relation to societal needs, and their impact on society and the environment. GE credit: SocSci, Wrt.

150. Polymer Syntheses and Reactions (3) III. Hsieh
Lecture—3 hours. Prerequisite: Chemistry 128B or 8B, and Chemistry 107A. Organic and physical chemistry aspects of polymer syntheses and reactions including polymerization mechanisms, kinetics and thermodynamics for major types of organic high polymers.

161L. Textile Chemical Analysis Laboratory (1) I. Hsieh
Laboratory—3 hours. Prerequisite: course 161 may be taken concurrently. Laboratory methods and procedures employed in qualitative and quantitative analysis of textile fibers and auxiliaries. Offered in alternate years.

Film Studies

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

Film Studies...20

100. Principles of Polymer Materials Science
(3) II. Pan
Lecture—3 hours. Prerequisite: Chemistry 2A-2B; Chemistry 8A-8B or Engineering 45; introductory physics. The basic principles of polymer science are presented including polymer structure and synthesis; polymerization mechanisms, polymer classes, properties, and reactions; polymer morphology, rheology, and characterization; polymer processing. (Same course as Engineering: Materials Science 147.)

110. Plastics in Society and the Environment
(4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Chemistry 10 or introductory course in physical sciences. Basic concepts and methodologies in the study of plastics. Formation, classification, structure, properties, processing, and formulation. Their application to societal needs, and their impact on society and the environment. GE credit: SocSci, Wrt.

Fisheries

See Animal Science; and Wildlife, Fish and Conservation Biology

Food Biochemistry

(College of Agricultural and Environmental Sciences)

The Major Program

The major in food biochemistry stresses the principles of chemistry and biochemistry as related to constituents of foods and the changes which occur in the constituents before and during processing and during storage. Particular emphasis is placed on the role and changes in the carbohydrates, lipids, proteins, enzymes, and nucleic acids and their effect on the quality attributes of foods.

The Program.

The food biochemistry curriculum stresses a strong background in chemistry, physics, mathematics, and biology at the lower division level. At the upper division level, students take specialized courses in food science and technology and advanced biochemistry and nutrition. Through the appropriate choice of electives, students may emphasize certain research areas such as nutrition, food processing, or toxicology.

Career Alternatives.

The major employment options for a food biochemistry graduate are in research and development at large food industry units; in laboratory-related employment in quality assurance, new food technology, and food analysis; or in any position requiring knowledge of biochemical techniques, such as in clinical laboratories. The major offers excellent preparation for graduate study in areas such as food science, nutrition, biochemistry, and environmental toxicology. Food biochemistry has also been chosen as a pre-professional major by students interested in medical, veterinary, optometry, or dental school.

B.S. Major Requirements:

(for Convenience in Program Planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

Preparatory Subject Matter..................................77-79

Biochemistry (Biological Sciences 102, 103)...........12

Biology (Biological Sciences 1A-1B-1C)..................6

Chemistry (Chemistry 2A-2B-2C or 2AH-2BH-2CH; 118A-118B-118C or 128A-128B-128C; 129A; 107A-107B or 110A-110B)..........................32-33

Mathematics, (Mathematics 16A-16B-16C or 21A-21B-21C).....9

Physics (Physics 5A-5B-5C, 7A-7B-7C or 9A-9B-9C)........12

Other (one course from Computer Science Engineering 10, 30, Engineering 5, Mathematics 22A, 22B, 22C, Statistics 13, Agricultural Systems and Environment 120).................................5-14

Breadth/General Education..................................6-24

Satisfaction of General Education requirement. See advising office for breadth requirement.

Depth Subject Matter.....................................30

Food Science and Technology (to include Food Science and Technology 103, 104, 104L, 110A)..................25

Biochemistry (Food Science and Technology 123, 123L)..........5

*Course not offered this academic year.
Food Science
(College of Agricultural and Environmental Sciences)

The Major Program
Food science applies chemical, physical, biological, engineering, and social sciences to processing, preservation, development, packaging, storage, evaluation, identification and utilization of foods.

The Program. Students majoring in food science spend the first two years of study developing the scientific and general background necessary for upper division study. The science courses include chemistry, biology, physics, and mathematics. General background is provided by courses in the social science/humanities area and optional courses in introductory food science. At the upper division level, students take courses in nutrition, food microbiology, food chemistry, food analysis, food commodities, food processing, food engineering, and may choose to specialize in one of five career-oriented options. Students enrolled in the program are eligible for various scholarships, including, for three of the options, scholarships from the Institute of Food Technologists.

Career Alternatives. Opportunities for employment include positions in the food and allied industries, local, state, and federal government agencies, and educational and research institutions. Graduate study for the food science student may lead to the M.S. or Ph.D. degree in food science, or in related fields such as agricultural chemistry, biochemistry, microbiology, and nutrition.

Five career-oriented options are available in the major. The Food Technology option provides a broad exposure to food chemistry, food microbiology, food engineering and food processing. Students find positions in quality assurance, product development, and food processing in the food industry.

The Food Business and Management option allows students to integrate study of the science and technology of food with that of business and economics in a unique program. Students prepare for positions of management in small food companies, and research and development-oriented marketing or technical sales positions in corporate food industries.

The Consumer Food Science option prepares students for jobs in food product formulation, research and development-oriented marketing and sensory analysis, quality assurance, extension service, creative writing, and community service. Students who obtain the requirements for the teaching credential teach elementary or secondary school home economics.

The Food Biology/Microbiology option and Food Chemistry option are for students interested in research and development careers with food companies or government laboratories, in teaching and research at academic institutions, or in professional (medical, veterinary, or dental) school. The Food Biology/Microbiology option prepares students for graduate study and research in such areas as flavor chemistry, food additive chemistry, biotechnology, biochemistry and toxicology.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses may be taken with advisor's approval. Courses shown without parentheses are required for all options.)

UNITS

English Composition Requirement...3-11
See College requirement.

Additional English (English 102 with food science or related area, or English 104).........3

Preparatory Subject Matter..26-32
Biology (Biological Sciences 1A)..................5
General chemistry (Chemistry 2A-2C-2C)........15
Organic chemistry (see option for requirement)
Mathematics (Mathematics 16A-16B).............6
Physics (see options for requirement)

Food science and society (Food Science and Technology 1) recommended..................(3)
Introduction to food science and technology (Food Science and Technology 50) recommended..................(3)

Breadth/General Education...24
Satisfaction of General Education requirement plus social science and humanities electives to total 24 units................24

Depth Subject Matter..25-31
Biochemistry (Biological Sciences 102-103)..6
Food composition (Food Science and Technology 100A)..........................3
Food composition laboratory (Food Science and Technology 101A).......................2
Food properties (Food Science and Technology 100B)...............................3
Food biochemistry (Food Science and Technology 100C).............................3
Food microbiology (Food Science and Technology 104)..............................3
Food science seminar (Food Science and Technology 190)..........................1
Nutrition (see options for requirements)
Statistics (Agricultural Systems and Environment 120).................................4
Internship (Food Science and Technology 192) recommended..................(3)
Special study (Food Science and Technology 199) recommended..................(3)
See options for additional requirements.

Select one of the following five options:

Food Technology Option
Specific course requirements.....................................58-62
Biology (Biological Sciences 1B-1C)..................10
Organic chemistry (Chemistry 8A-8B).............6
Physics (Physics 5A-5B or 7A-7B-7C)................8-12
Food engineering (Food Science and Technology 110A-110B)..................6
Food engineering laboratory (Applied Biological Systems Technology 110L)........2
Food processing (Food Science and Technology 180).............................4
Food analysis (Food Science and Technology 103)..............................5
Food microbiology laboratory (Food Science and Technology 104L)..............4
Nutrition (Nutrition 10 or approved substitute).................................3
Plant sanitation (Food Science and Technology 108).............................3
Project conduct (Food Science and Technology 160).............................4

Quality assurance (Food Science and Technology 109)............................3

Selected additional courses.......................................15
Select courses from a master list available from the department Advising Center.

Food Business and Management Option
Specific course requirements.....................................57
Biology (Biological Sciences 1B-1C)..................10
Organic chemistry (Chemistry 8A-8B).............6
Physics (Physics 1A-1B)...6
Microeconomics (Economics 1A).....................6
Business organization (Agricultural Economics 112)...............................4
Marketing management (Agricultural Economics 113)...............................4
Personnel management (Food Service Management 123)............................3
Quality assurance (Food Science and Technology 109)............................3
Food laws and regulations (Food Science and Technology 140)....................3
Food processing (Food Science and Technology 131)...............................3
Introduction to food science and technology (Food Science and Technology 50)........3
Plant sanitation (Food Science and Technology 108)...............................3
Project conduct (Food Science and Technology 160).............................4
Nutrition (Nutrition 10 or approved substitute).................................3

Selected additional courses.......................................15
Select courses from a master list available from the department Advising Center.

Consumer Food Science Option
Specific course requirements.....................................55
Biology (Biological Sciences 1B-1C)..................10
Organic chemistry (Chemistry 8A-8B).............6
Physics (Physics 1A-1B)...6
Food properties laboratory (Food Science and Technology 101B)..................2
Introduction to food science and technology (Food Science and Technology 50)........3
Sensory evaluation (Food Science and Technology 107A and 107B)...................8
Food product development field trip (Food Science and Technology 441).............2
Consumer behavior (Consumer Science 100).................................3
Product development (Food Science and Technology 160)............................3
Business organization (Agricultural Economics 112)...............................4
Systemic Physiology (Neurobiology, Physiology and Behavior 101)..............5

Selected additional courses.......................................18
Select courses from a master list available from the department Advising Center.

Food Biology/Microbiology Option
Specific course requirements.....................................52-62
Biology (Biological Sciences 1B-1C)..................10
Organic chemistry (Chemistry 8A-8B or 118A-118B-119C).....................6
Physics (Physics 5A-5B or 7A-7B-7C)................8-12
Microbiology (Microbiology 102, 102L).............................6
Food analysis (Food Science and Technology 103)..............................5
Food microbiology laboratory (Food Science and Technology 104L)..............4
Food engineering (Food Science and Technology 110A-110B)..................6
Food processing (Food Science and Technology 180).............................4
Nutrition (Nutrition 10 or approved substitute).................................3

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Food Science

Selected additional courses ..24
Select courses from a master list available from the department Advising Center.

Food Chemistry Option
Specific course requirements ..57-58
Mathematics (Mathematics 16C) 3
Chemistry (Chemistry 124A) 3
Organic chemistry (Chemistry 118A-118B-
118C or 128A-128B-128C-129A) ... 11-12
Physical chemistry (Chemistry 107A-107B). . 6
Physics (Physics 5A-5B-5C or 7A-7B-7C) 12
Food analysis (Food Science and Technology
103) ... 5
Food microbiology laboratory (Food Science and
Technology 104L) .. 4
Food engineering (Food Science and
Technology 110A-110B) 6
Food processing (Food Science and Technology
180).. 4
Nutrition (Nutrition 10 or approved substitute) 1

Selected additional courses ...16
Select courses from a master list available from the department Advising Center.

Unrestricted Electives .. 21-36
Total Units for the Degree ...180

Major Adviser. D.S. Reid (Food Science and Technology).
Advising Center for the major is located in 111 Cruess Hall.

Graduate Study. A program of study and research leading to the M.S. and Ph.D. degrees in Food Science is available (see below). For further information on graduate study, contact the graduate adviser.

Food Science and Technology
(College of Agricultural and Environmental Sciences)

Charles F. Shoemaker, Ph.D., Chairperson of the Department.
Department Office, 126 Cruess Hall (916-752-1465)

Faculty
Everett Bandman, Ph.D., Professor
Ericka L. Barnett, Ph.D., Professor
Stephanie R. Dungan, Ph.D., Assistant Professor
J. Bruce German, Ph.D., Associate Professor
Jean-Xavier Guinard, Ph.D., Assistant Professor
Norman F. Haard, Ph.D., Professor
T. William Hutchens, Ph.D., Professor
John M. Krochta, Ph.D., Professor
Kathryn L. McCarthy, Ph.D., Associate Professor
David M. Ogrydziak, Ph.D., Chairperson of the Department
Charles F. Shoemaker, Ph.D., Professor
Barbara O. Schneeman, Ph.D., Professor
Michael J. McCarthy, Ph.D., Professor
Robert A. Bernhard, Ph.D., Professor Emeritus
Walter L. Dunkley, Ph.D., Professor Emeritus
Robert E. Feeney, Ph.D., Professor Emeritus
Dieter W. Gruenwedel, Ph.D., Professor Emeritus
Jerald M. Henderson, D.Eng., Professor Emeritus
Walter G. Jennings, Ph.D., Professor Emeritus
Michael J. Lewis, Ph.D., Professor, Academic Senate Distinguished Teaching Award
David S. Reid, Ph.D., Professor Emeritus
Gerald F. Russell, Ph.D., Professor Emeritus
Charles F. Shoemaker, Ph.D., Professor
R. Paul Singh, Ph.D., Professor (Food Science and Technology, Biological and Agricultural Engineering)

Emeriti Faculty
Richard A. Bernhard, Ph.D., Professor Emeritus
Walter L. Dunkley, Ph.D., Professor Emeritus
Robert E. Feeney, Ph.D., Professor Emeritus
Dieter W. Gruenwedel, Ph.D., Professor Emeritus
Jerald M. Henderson, D.Eng., Professor Emeritus
Walter G. Jennings, Ph.D., Professor Emeritus
Michael J. Lewis, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Jerald M. Henderson, D.Eng., Professor Emeritus
Walter G. Jennings, Ph.D., Professor Emeritus
Michael J. Lewis, Ph.D., Professor
Dieter W. Gruenwedel, Ph.D., Professor Emeritus
Jerald M. Henderson, D.Eng., Professor Emeritus
Walter G. Jennings, Ph.D., Professor Emeritus
Michael J. Lewis, Ph.D., Professor
Dieter W. Gruenwedel, Ph.D., Professor Emeritus
Jerald M. Henderson, D.Eng., Professor Emeritus
Warren G. Chapman, Ph.D., Professor Emeritus

Affiliated Faculty
Diane M. Barrett, Ph.D., Associate Specialist
Christine M. Bruhn, Ph.D., Specialist
John C. Bruhn, Ph.D., Specialist
Linda J. Harris, Ph.D., Assistant Specialist
Robert J. Price, Ph.D., Specialist
Monte A. Kromberg, Ph.D., Associate Specialist
Erica M. Tappel, Ph.D., Professor Emeritus
John R. Whitaker, Ph.D., Professor Emeritus

Related Courses. See courses in Consumer Science, Engineering, Molecular and Cellular Biology, Nutritional Sciences, and Viticulture and Enology.

Courses in Food Science and Technology (FST)

Lower Division Courses

1. Food Science and Society (3) II. Bandman
Lecture—2 hours; discussion—1 hour. Nature and scope of world food problems; food composition; scientific and technological aspects of converting animal and plant products into a variety of prepared foods; improvement and evaluation of acceptability and nutritional value of foods. Not open for credit to students who have received credit for course 100A, 100B.

2. Introductory Food Science (3) II. Russell
Lecture—3 hours; one industrial visit to a food factory (optional). Processes by which raw agricultural commodities are preserved and converted into edible foods; regulation of food manufacture and the chemistry and microbiology of food that control its qualities and safety. Not open for credit to students who have received credit for any other Food Science and Technology course.

47. Food Produce Development Field Study (1)
III. Shoemaker
Discussion—6 hours; fieldwork—2 days (course given between winter and spring quarters). Prerequisite: advance enrollment required in winter quarter with instructor; background knowledge in foods from such courses as Food Science and Technology 1. Commercial aspects of the large-scale development, distribution, and evaluation of food products intended for human consumption. (P/NP grading only.)

50. Introduction to Food Science and Technology (3) II. Krochta
Lecture—2 hours; laboratory—3 hours. Prerequisite: Chemistry 2A, Biological Sciences 1A. Introduction to fruit, vegetable, dairy, seafood and meat technology. Overview of food processes used for preservation of food quality. Pilot plant exercises include food processing operations such as cheese making, canning, freezing, fermentation and dehydration of foods.

99. Special Study for Undergraduates (1-5) II, III.
The Staff (Shoemaker in charge)
(P/NP grading only)

Upper Division Courses

100A. Principles of Food Composition and Properties (3) I. Dungan
Lecture—3 hours. Prerequisite: Chemistry 8A-8B. Fundamental chemical, physical, and sensory aspects of food composition as they relate to physical properties, acceptability, and nutritional value of fresh and processed foods.

100B. Principles of Food Composition and Properties (3) II. German, Schneeman
Lecture—3 hours. Prerequisite: Chemistry 8A-8B. Fundamental chemical, physical, and sensory aspects of food composition as they relate to physical properties, acceptability, and nutritional value of fresh and processed foods.

100C. Principles of Food Biochemistry (3) III. Haard
Lecture—3 hours. Prerequisite: course 100B. Biological Sciences 103 (may be taken concurrently). Principles of biochemistry, cell biology, and biochemistry applied to postharvest changes in edible plant and animal tissue. Importance of enzymes in food quality and their use as food processing aids. Application of recombinant DNA technology to improving food quality.

101A. Principles of Food Composition and Properties Laboratory (2) I. Shoemaker
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100A (may be taken concurrently). Course designed to give laboratory experience with the food systems and properties described in course 100A.

101B. Principles of Food Composition and Properties Laboratory (2) II. Shoemaker
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100B (may be taken concurrently). Course designed to give laboratory experience with the food systems and properties described in course 100B.
102A. Matting and Brewing Science (4) II. Lewis
Lecture—4 hours. Prerequisite: Biological Sciences
102, 103, senior standing recommended. The tech-
nology involved in brewing and fermentation pro-
cesses is integrated with the chemistry, biochem-
istry, and microbiology that determine industrial prac-
tices and product quality. Not open for credit to
students who have taken course 102B.

102B. Practical Matting and Brewing (4) III.
Lewis
Lecture/discussion—2 hours; laboratory—6 hours.
Prerequisite: course 102A and analytical experience
beyond Chemistry 2C, such as Viticulture and Enol-
ygy 123, Food Science and Technology 103, 123L,
Molecular and Cellular Biology 120L. Open to seniors
only in Food Science or Food Science and Technology.
Provides practical working knowledge of analytical
methods used in matting and brewing and experi-
ence with brewing materials and processes, by
analysis of samples that illustrate the range of val-
ues experienced in practice and pilot scale brewing.

103. Physical and Chemical Methods for Food
Analysis (5) I. Russell
Lecture—3 hours; laboratory—6 hours. Prerequisite:
Chemistry 2C, 8B, Biological Sciences 103 (may
be taken concurrently). An introduction to the theory
and application of physical and chemical methods for
determining the constituents of foods. Modern sepa-
ration and instrumental analysis techniques are
stressed.

104. Food Microbiology (3) II. Barrett
Lecture—3 hours. Prerequisite: Biological Sciences
1A, 102. Microorganisms in food safety, spoilage,
and production. Food-borne disease agents and their
control. Growth parameters of food spoilage agents.
Detection of microbes in food. Food fermentations.
The development of microbes as a resource for the
food industry.

104L. Food Microbiology Laboratory (4) III. C.
Price
Lecture—1 hour; discussion—1 hour; laboratory—6
hours. Prerequisite: Biological Sciences 1A, course
104. Cultural and morphological characteristics of
microorganisms involved in food spoilage, in food-
borne disease, and food fermentation. Analysis of
microbiological quality of foods.

107A. Food Sensory Science (4) I. O'Mahony
Lecture—3 hours; laboratory—3 hours. Prerequisite:
Agricultural Systems and Environment 120 (may
be taken concurrently) or consent of instructor. Critical
examination of theories and techniques of sensory
measurement of food as analytical tools and as mea-
sures of consumer perception and acceptance. An
introduction to the sensory and cognitive systems
associated with the perception of food.

107B. Food Sensory Science (3) II. Guirard
Lecture—2 hours; laboratory—3 hours. Prerequisite:
course 107A. A critical examination of techniques and
theories of sensory measurement applied to a range of
food systems. Methods for analyzing the sensory
attributes of food in relation to quality assurance,
product development and optimization.

108. Food Processing Plant Sanitation (3) II.
Ogrydziak
Lecture—3 hours. Prerequisite. Chemistry 8B, Bio-
logical Sciences 1A. Discussion of factors relating to
sanitary control of food processing including water
treatment, chemical and physical sanitizing agents,
principles of cleaning and hard surface detergency,
metal corrosion, concepts in the disposal of wastes
and the pertinence of government control agencies.

109. Principles of Quality Assurance in Food
Processing (3) III. Bandman
Lecture—2 hours; discussion—1 hour. Prerequisite:
Statistics 13 or Agricultural Systems and Environment
120. Quality assurance measurement techniques
applied to food processing and formulated products
empha-
sized. Rationale for establishing valid quality assur-
ance programs including selection of samples at
critical points. Statistical problems in quality assur-
ance programs used by the food industry.

110A. Physical Principles in Food Processing
(3) I. McCarthy
Lecture—2 hours; laboratory—2 hours. Prerequisite:
Physics 5A and 5B or 7A/7B/7C or the equivalent; cal-
culus recommended. Not open for credit to students
enrolled in College of Engineering. Applications of
the conservation of mass and energy to food processing.
Elements of engineering thermodynamics, fluid
mechanics, and problem solving.

110B. Heat and Mass Transfer in Food Proces-
sing (3) II. Singh
Lecture/course—4 hours. Prerequisite: course 110A
or the equivalent; Applied Biological Systems
Technology 110L recommended (may be taken con-
currently). Rate processes: conduction, convection,
and radiation heat transfer. Air heating, cooling,
freezing, psychrometrics; mass transfer during
drying, and storage.

119. Chemistry and Technology of Milk and
Dairy Products (4) III. Hutcher
Lecture—4 hours, demonstrations and a field trip.
Prerequisite: Biological Sciences 1A and 102, or con-
sent of instructor. Composition, structure and proper-
ties of milk and products derived from milk. Relates
chemical, microbiological, and technological prin-
ciples to commercial practices in processing of milk
and its products.

120. Principles of Meat Science (3) III. Bandman
Lecture—3 hours. Prerequisite: Biological Sciences
103 or the equivalent. Anatomical, physiological,
developmental and biochemical aspects of muscle
underlying the conversion of muscle to meat. Includes
meat processing, preservation, microbiology and
public health issues associated with meat products.
(Same course as Animal Science 120.)

120L. Meat Science Laboratory (2) III. Lee
(Agricultural Science)
Discussion—1 hour; laboratory—3 hours. Prerequi-
site: Biological Sciences 103; course 120 may be
taken concurrently. Laboratory exercises and stu-
dent participation in transformation of live animal
and carcass and meat, structural and biochemical
changes related to meat quality, chemical and sen-
sory evaluation of meat, and field trips to packing
plant and processing plant. (Same course as Animal
Science 120L.)

121. Principles of Poultry Product Technology
(3) I. King (Avian Sciences)
Lecture—3 hours. Prerequisite: Biological Sciences
103 or the equivalent; may be taken concurrently.
Quality, preservation, and processing of avian products.
Topics include quality control, nutrition, chemistry,
biochemistry, microbiology, and functional properties.

122. Marine Food Science (3) II. Ogyrdziak
Lecture—3 hours. Prerequisite: Biological Sciences
1A, 103 (may be taken concurrently). Biochemical,
microbiological, and ecological principles unique to
fish, where fish are found and why; fishing and land-
ing techniques as they influence quality; processing,
storage, and public health aspects of marine organi-
sms, resource development, including aquaculture.
Offered in alternate years.

123. Introduction to Enzymology (3) III. G. Smith
Lecture—3 hours. Prerequisite: Biological Sciences
103. Principles of physical, chemical and catalytic
properties of enzymes and their importance. Purifica-
tion, characterization, and quantitative evaluation of
reaction conditions on activity are stressed. Speci-
ficity and mechanism of action illustrated by use of
selected enzymes. (Former course Biochemistry and
Biophysics 123.)

123L. Enzymology Laboratory (2) III. G. Smith
Lecture—1 hour; laboratory—3 hours. Prerequisite:
Biological Sciences 103, course 123 (concurrently).
Laboratory exercises involved in detection, purifica-
tion and characterization of enzymes. (Former course
Biochemistry and Biophysics 123L.)

127. Introduction to the Sensory
Characteristics of Food (3) II. Guirard
Lecture—2 hours. Prerequisite: Agricultural Systems
and Environment 120. Critical

Food Science and Technology 271

examination of techniques and theory of sensory
measurement of food along with correlation with
instrumental measures. For students not intending to
specialize in food sensory science.

128. Food Toxicology (3) III. Russell, Shibamoto
Lecture—3 hours. Prerequisite: Biological Sciences
102, 103. Chemistry and biochemistry of toxins occurr-
ing in foods, including plant, animal, food
intentional and unintentional food additives. The
assessment of food safety and toxic hazards. (Same
course as Environmental Toxicology 128.)

131. Food Packaging (3) III. Krochta
Lecture—3 hours. Prerequisite: Chemistry 8B, Bio-
logical Sciences 1A, Physics 5B or 7C. Principles of
food packaging. Functions of packaging. Properties
of metal, glass, paper and plastic materials and pack-
aging. Design, fabrication, and processing of pack-
aging. Packaging of fresh and processed foods,
including fruits and vegetables, dairy foods, beer and
wine.

140. Food Laws and Regulation (3) I. The Staff
Lecture—3 hours. Prerequisite: upper division stand-
ard. Legal and scientific issues involved in the regu-
lation of the nation’s food supply and nutritional status.
Philosophy underpinning the application of regulatory
standards. Sources of information necessary for com-
munication with government on public food policy
information.

151. Freezing Preservation of Food (3) II. Reid
Lecture—3 hours. Prerequisite: Biological Sciences
1A, 102, Biological Sciences 1A, and Chemistry 8B; course 104 rec-
ommended. Freezing of model systems and food with
emphasis on physicochemical aspects. Conse-
quences of food freezing and thawing. Modeling of
freezing for predictive purposes. Visualization and char-
acterization of frozen materials. Offered in alternate
years.

156. Computer Interfacing for Laboratory and
Process Control (4) III. Russell
Lecture—3 hours; laboratory—3 hours. Prerequisite:
consent of instructors. Principles of micro- and mini-
computer use in measurement and control of labora-
tory instrumentation and processing operations with
both theoretical and practical aspects of computer
interfacing.

159. New Food Product Ideas (2) I. Haard
Lecture/discussion—2 hours. Prerequisite: upper divi-
sion standing with background coursework in food
science (course 50 or 100A), biological sciences (Bio-
logical Science 1A, 1B, 1C), or the physical sci-
ciences (Physics 5A, 5B, 5C or Chemistry 2A, 2B, 2C).
Course will familiarize students with initial stages of
food product development, including definition and
articulation of a problem; generation of ideas to solve
the problem, screening of ideas, and the formal pre-
sentation of a new product concept.

160. Food Product Development (4) II. Haard
Lecture—1 hour; discussion—1 hour; laboratory—6
hours. Prerequisite: upper division standing with back-
ground coursework in food science (course 50 or
100A), biological sciences (Biological Science 1A,
1B, 1C), or the physical sciences (Physics 5A, 5B, 5C or
Chemistry 2A, 2B, 2C). Product implementation stage of food product development including prelimi-
nary product description, prototype development,
product testing, and formal presentation of a new
product development.

180. Integrated Food Processing (4) III. M.
McPherson
Lecture—3 hours; laboratory—3 hours. Prerequisite:
courses 100C, 101A, 104, 110B. Recent advances in
food processing are examined in terms of their effects
on the various physical properties of raw mater-
ial. Pilot plant exercises will be employed to iden-
tify and illustrate common principles among apparently
diverse processes.

190. Project Seminar (1) I. Reid
Seminar—1 hour. Prerequisite: senior standing or con-
sent of instructor. Selected topics presented by stu-
dents on recent advances in food science and technol-
ogy. Reports and discussions concerning oral and
written presentations, literature sources and career
opportunities.
192. Internship for Advanced Undergraduates (1-12) I, II, III. The Staff (Shoemaker in charge) Internship—3-36 hours. Prerequisite: consent of instructor. Experience on or off campus in the practical application of food science. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Shoemaker in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Shoemaker in charge) (P/NP grading only.)

Graduate Courses

202. Chemical and Physical Changes in Food (4) R. Reid Lecture—3 hours; term paper. Prerequisite: Biological Sciences 103; Chemistry 107B. Fundamental principles of chemistry and physics are applied to a study of changes in water binding properties and activity changes in proteins, nutrients, toxic constituents and other compounds during storage, heating, freezing, dehydrating, and concentrating of food materials.

203. Food Processing (3) II. K. McCarthy Lecture—3 hours. Prerequisite: course 110A, Physics 5C or 7C, Chemistry 107B, and one undergraduate food processing course. Principles of food engineering applied to food processing. Relationship of Newtonian and non-Newtonian fluid behavior to heat and momentum transfer. Application of mass transfer in controlling kinetics and quality changes of foods.

204. Advanced Food Microbiology (3) III. Price, Ogrydziak Lecture—3 hours. Prerequisite: Biological Sciences 1C, 103, course 104 or a course in microbiology. Principles of and recent developments in food microbiology, including food pathogen virulence and detection, parameters of microbial growth in food, and the microbiology of food and beverage fermentation.

205. Industrial Microbiology (3) I. Ogrydziak Lecture—3 hours. Prerequisite: Biological Sciences 1A and 102, 103; Microbiology 120A-120B or Biological Sciences 101 recommended. Use of microorganisms for producing substances such as amino acids, peptides, enzymes, antibiotics and organic acids. Emphasis on metabolic regulation of pathways leading to fermentation products, on yeast fermentations, and on genetic manipulations (including recombinant DNA techniques) of industrial microorganisms. Offered in alternate years.

207. Advanced Sensory-Instrumental Analyses (3) III. Noble (Viticulture and Enology) Lecture—2 hours; laboratory—3 hours. Prerequisite: course 107 and consent of instructor. Basic principles of measurement of color, texture, and flavor of foods by sensory and instrumental methods. Advanced statistical analysis of relation of colorimetry, texturometry, and chemistry of volatile compounds to perception of appearance, texture, flavor. Offered in alternate years.

210. Proteins: Functional Activities and Interactions (3) II. G. Smith, Hutchens Lecture—3 hours. Prerequisite: Biological Sciences 101 or 110. The relationship of the structure of proteins to their biological functions. Structural proteins, complexing proteins, and catalytic proteins in plant and animal materials and products.

211. Lipids: Chemistry and Nutrition (3) I. German Lecture—3 hours. Prerequisite: Biological Sciences 103, Chemistry 107B, 128B. Chemistry of lipids as it pertains to research in food and nutrition. Relations between lipid structure and their physical properties in tissues and foods. Regulation of absorption, trans-port, and metabolism of lipids. Implications of dietary fats and health.

217. Advanced Food Sensory Science (2) I. O'Mahony Lecture—2 hours. Prerequisite: course 107A (may be taken concurrently). Advanced study of the techniques and theory of the sensory measurement of food as analytical tools and as a measure of consumer perception and acceptance. Advanced examination of the sensory and cognitive systems associated with the perception of food.

227. Food Perception and the Chemical Senses (2) II. Gunard Lecture—2 hours. Prerequisite: course 107B (may be taken concurrently). Examination of the anatomy and physiology of the chemical senses (taste, smell, and the trigeminal senses) and how they are involved in the perception of food and food intake.

250L. Chromatographic and Electrophoretic Methods Laboratory (1) III. German, Bandman Laboratory—3 hours. Prerequisite: course 250L. May be taken concurrently. Practice of gas and liquid chromatography and electrophoresis for analytical and preparative applications. Choice and optimization of separation methods, detection systems, and recovery of purified sample components.

290. Seminar (1) I, II, C. Price Seminar—1 hour. (SU grading only.)

290C. Advanced Research Conference (1) I, II, III. The Staff (Shoemaker in charge) Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Critical presentation and evaluation of original research by graduate students. Planning of research programs and proposals. Discussion led by individual major instructors for their research group. (SU grading only.)

291. Advanced Food Science Seminar (1) III. C. Price Seminar—1 hour. Prerequisite: completion of at least one quarter of course 290. Oral presentation of student's original research, discussion, and critical evaluation. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Shoemaker in charge)

299. Research (1-12) I, II, III. The Staff (Shoemaker in charge) Prerequisite: graduate standing. (SU grading only.)

Food Service Management

(College of Agricultural and Environmental Sciences)

Faculty

See under the Department of Nutrition.

The Major Program and Graduate Study

Food Service Management is incorporated within the major in Dietetics. If you are interested in preparing for a career in commercial organizations such as hotels, restaurants, industrial cafeterias, or contract food services, as well as in public or private institutions such as hospitals, related schools, colleges, or other related organizations, consult the Department of Nutrition.

Related Courses. See Food Science and Technology, and Nutrition.

French

(College of Letters and Science)

Manfred Kusch, Ph.D., Chairperson of the Department

Department Office (French and Italian), 515 Sproul Hall (916-752-0830)

Faculty

Marc E. Blanchard, Aigrégé de Lettres, Professor (French, Comparative Literature)

Simone Clay, Ph.D., Lecturer

Manfred Kusch, Ph.D., Senior Lecturer (French, Comparative Literature)

Maria I. Males-Manoliu, Ph.D., Professor

*Course not offered this academic year.
The Major Program

The major program assures proficiency in all four of the language skills—speaking, understanding, reading, and writing—and acquaints students with the intellectual and cultural contributions of the French-speaking world through the study of its literature, traditions, and institutions.

The Program

The department is strongly committed to undergraduate education. It encourages its students to work closely with the academic adviser in designing a major tailored to their needs and interests within the broad requirements prescribed by the program and to avail themselves of the guidance of an excellent teaching faculty. The department sponsors an active French Club and a chapter of Pi Delta Phi, the National French Honor Society. Each year, a substantial number of students with a good preparation in French participate in the university’s very popular Education Abroad Program, which maintains centers at seven French universities.

Career Alternatives

Foreign language teachers, a cardiologist, a veterinarian, a naval commander at the Pentagon, a professor of Political Science, lawyers, sales representatives, journalists, anesthesiologists, a law professor, translators, a senior museum preparator, nurses, financial managers, stock brokers, and an industrial attaché for a French Trade Commission, all graduated with an A.B. in French from UC Davis and represent only a small fraction of the career choices documented in a recent survey of department graduates.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>French 101</td>
<td>French 101</td>
<td>7</td>
</tr>
<tr>
<td>French 102</td>
<td>French 102</td>
<td>7</td>
</tr>
<tr>
<td>French 103</td>
<td>French 103</td>
<td>7</td>
</tr>
<tr>
<td>French 104</td>
<td>French 104</td>
<td>7</td>
</tr>
<tr>
<td>French 105</td>
<td>French 105</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Units for the Major: 30

Preparatory Subject Matter: The Staff

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>French 101</td>
<td>French 101</td>
<td>7</td>
</tr>
<tr>
<td>French 102</td>
<td>French 102</td>
<td>7</td>
</tr>
<tr>
<td>French 103</td>
<td>French 103</td>
<td>7</td>
</tr>
<tr>
<td>French 104</td>
<td>French 104</td>
<td>7</td>
</tr>
<tr>
<td>French 105</td>
<td>French 105</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Units for the Major: 30

Elective courses in French literature, language, or civilization to be chosen in consultation with an undergraduate adviser.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>French 101</td>
<td>French 101</td>
<td>7</td>
</tr>
<tr>
<td>French 102</td>
<td>French 102</td>
<td>7</td>
</tr>
<tr>
<td>French 103</td>
<td>French 103</td>
<td>7</td>
</tr>
<tr>
<td>French 104</td>
<td>French 104</td>
<td>7</td>
</tr>
<tr>
<td>French 105</td>
<td>French 105</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Units for the Minor: 18

Prerequisite Credit: Credit will not normally be given for a course if it is the prerequisite of a course already successfully completed. Exceptions can be made by the Department Chairperson only.

Honors Program: Candidates for high or highest honors in French must write a senior thesis under the direction of a faculty member. For this purpose, honors candidates must take French 194H (3 units) and French 195H (3 units). Normally, a student will undertake the honors project during the first two quarters of the senior year; other arrangements must be authorized by the department chair. Only students who, at the end of the junior year (135 units), have attained a cumulative grade-point average of 3.5 in courses required for the major and 3.75 in courses狂欢 for the honors program. The requirements for earning high and highest honors in French are in addition to the regular requirements for the major in French.

Graduate Study: The department offers programs of study and research leading to the M.A. and Ph.D. degrees in French.

Graduate Advisers: M.I. Manea-Manoliu (M.A., Ph.D. degrees—French Linguistics); G. Van Den Abbeele (M.A., Ph.D. degrees—French Literature).

Teaching Credential Subject Representative: J. Wiengold. See also under the Teacher Education Program.

Courses in French (FRE)

Students offering high school language preparation as a prerequisite must take a placement test.

Course Placement: Students with two years of high school French normally take French 2, those with three years take French 3 and those with four years take French 21.

Lower Division Courses

1. Elementary French (5) I, II, III. The Staff

 Discussion—5 hours; laboratory—1 hour. Students who have successfully completed French 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.

2. Elementary French (5) I, II, III. The Staff

 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of course 1.

3. Elementary French (5) I, II, III. The Staff

 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Continuation of course 2.

4. French Conversation (2) I, II, III. The Staff

 Lecture—2 hours; discussion—1 hour. Practice in initiating and maintaining conversation. Oral presentations, oral quizzes, and oral final exam. May be repeated once for credit.

5. Practical Phonetics (2) I, II, II. The Staff

 Lecture/lab—2 hours. Prerequisite: course 3 or the equivalent. Practically oriented presentation of French sounds and intonational patterns. Laboratory drills with emphasis on phonetic features specific to contemporary spoken French. Students will use the international phonetic alphabet. Not open for credit to students who have completed course 5. (Former course 5.)

22. Intermediate French (5) I, II, III. The Staff

25. Introduction to French Literature in Translation (3) I. The Staff

 Lecture—3 hours. Introductory study of outstanding works of French drama and prose. Topics include major authors, genres, literary periods/movements. Study of literary techniques, structure, and meaning to foster better understanding of creative processes in French cultural context. Intended for the nonmajor. GE credit: ArtHum, Wrt.

25. Explication and Dissertation (2) III.

 The Staff (Chairperson in charge)

 Lecture—2 hours. Prerequisite: course 22. Theory and practice of French explication de texte and dissertation. Especially recommended for those students planning to study abroad in French universities.

28. Intermediate French Conversation (2) I, II, III. The Staff

 Discussion—3 hours. Prerequisite: course 8 or the equivalent. Continued practice in initiating and maintaining conversation. Oral presentations, oral quizzes, and oral final exam. May be repeated once for credit. Not open to native speakers.

50. French Film (4) III. Van Den Abbeele

 Lecture—1 hour; discussion—2 hours; term paper. Introduction to the tradition of French cinema from its invention by Méliès and the Lumière brothers through New Wave (especially the works of Truffaut and Godard) and more recent developments in French and Francophone film. Taught in English. Offered in alternate years. GE credit: ArtHum, Wrt.

98. Directed Group Study (1-5) I, II, III. The Staff

 Prerequisite: consent of instructor. Wrt.

99. Special Study for Undergraduates (1-5) II, III. The Staff

 Prerequisite: consent of instructor. Wrt.

Upper Division Courses

100. Composition in French (4) I, II, III. The Staff

 Lecture—3 hours; term paper. Prerequisite: course 23; course 20 strongly recommended. Instruction and practice in expository writing in French, with emphasis on organization, correct syntax, and vocabulary building.

101. Introduction to French Poetry (4) I, II, III. The Staff

 Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Analysis and evaluation of works representing the main types of French poetry. Study of French poetic conventions and versification. GE credit: ArtHum.

102. Introduction to French Drama (4) I, II, III. The Staff

 Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Analysis and evaluation of plays representing the main types of French drama, with emphasis on dramatic structure and techniques. GE credit: ArtHum.

103. Introduction to French Prose (4) I, II, III. The Staff

 Lecture—3 hours; short papers. Prerequisite: course 100 or consent of instructor. Analysis and evaluation of works representing the main types of French prose, with emphasis on narrative structure and techniques. GE credit: ArtHum.

104. Translation (4) I, II, III. The Staff

 Lecture—3 hours; numerous short in-class translations; frequent supplementary outside reading. Prerequisite: course 100 or the equivalent. Practice in English-to-French translations using a variety of non-literary materials, illustrating different problems and styles. Not open to students who have spent an academic year as an EAP student in a Francophone coun-

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
106. French in Business and the Professions (4) I. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 100 or consent of instructor. French language as used in the commercial sphere. Emphasis on proper style and form in French, and in non-literary composition. Technical terminology in such diverse fields as government and world business.

107N. The Making of Modern France (4) I. The Staff

Lecture—3 hours; term paper. Prerequisite: course 100 or consent of instructor. Introduction to French culture through a historical approach to topics such as the citizen and the state (politics, justice, social service), the economy, education, the rise of public education, colonization, class and social relationships. Offered in alternate years. GE credit: ArtHum.

108. Contemporary French Culture (4) II. The Staff

Lecture—3 hours; term paper. Prerequisite: course 100 or consent of instructor. Study of contemporary French culture through focus on specific topics such as women and French culture, decolonization and modernization, the politics of education, immigration in France, Francophone cultures. Offered in alternate years. GE credit: ArtHum.

110. Stylistics and Creative Composition (4) II. The Staff

Lecture—3 hours; frequent papers. Prerequisite: course 100 or consent of instructor. Intensive course in creative composition using a variety of techniques and literary styles, patterned on Gueneau’s Exercices de style. Practice in such stylistic modifications as inversion, antithesis, changes in tense, mood, tonality, etc. The writing of poetry.

*112. Masterpieces of French Drama in Translation (3) I. The Staff

Lecture-discussion—3 hours. Prerequisite: course 25 or consent of instructor. Plays in translation representing the main types of French drama with emphasis on dramatic structure and techniques. Consideration of this genre within French social and cultural context. Intended for the nonmajor. GE credit: ArtHum, Wrt.

*113. Masterpieces of French Novel in Translation (3) III. The Staff

Lecture-discussion—3 hours. Prerequisite: course 25 or consent of instructor. Novels in translation representing works from the seventeenth century to the present. Study of broad generic, theoretical, and historical contexts in French. Analysis of structure and techniques of the genre. Intended for the nonmajor. GE credit: ArtHum, Wrt.

*114. French Philosophical Literature in Translation (3) III. The Staff

Discussion—3 hours. Prerequisite: course 25 or consent of instructor. French philosophical literature, with works analyzed within broad philosophic, moral, and historical contexts. Focus on such topics as stoicism, classicism, libertinism, naturalism, existentialism, absurdism. Literary techniques and styles analyzed. GE credit: ArtHum, Wrt.

*115. Medieval French Literature and Society (4) I. Van Den Abbeele

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The social and cultural life of medieval France as studied through its representation in such literary works as La Chanson de Roland, courtly love lyric, the Arthurian romances of Chretien de Troyes, Aucassin et Nicolette, selected fabliaux and farces. Offered in alternate years. GE credit: ArtHum.

*116. The French Renaissance (4) III. Van Den Abbeele

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Overview of major works and writers with particular attention to the historical context of the turbulent 16th century. Writers to be read may include Rabelais, Marot, Ronsard, Du Bellay, Laub, Marguerite de Navarre, Montaigne, and Du Bellay. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.

*117A. Baroque and Preclassicism (4) II. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. The literature and intellectual culture of the period between the Renaissance and French classicism. Offered in alternate years. GE credit: ArtHum.

*117B. The Classical Moment (4) III. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Literature, culture, and politics in the “Age of Louis XIV.” May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.

*118A. The Age of Reason and Revolution (4) II. Kusch

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Literature and philosophy of the French Enlightenment. Readings from such authors as Bayle, Fontenelle, Montesquieu, Voltaire, Rousseau and Diderot. Offered in alternate years. GE credit: ArtHum.

*118B. Private Lives and Public Secrets: The Early French Novel (4) II. Kusch

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. History of the French novel from the Middle Ages to the Revolution with particular emphasis on the novels of the 18th century. Offered in alternate years. GE credit: ArtHum.

*119A. The Romantic Imaginary (4) II. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Major concepts and themes of French Romanticism, such as dream and the supernatural, impossible love, exoticism, revolution, individualism, nature, the mal de siecle. Romantic irony, the creative imagination, the cult of ruin. Offered in alternate years. GE credit: ArtHum.

*119B. Realism, History and the Novel (4) III. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Investigation of the narrative and historical codes of French realistic fiction, with emphasis on the representation of history in the realistic novel, its depiction of social “realities” such as class and gender, and its relation to the historical situation of post-revolutionary society. Offered in alternate years. GE credit: ArtHum.

*119C. From Baudeelaire to Surrealism (4) I. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 101 and 102 or 103. Introduction to the Proust to the Nouveau Roman and beyond. Consideration of the thematic, theoretical and political tendencies in contemporary French fiction. Barthes, Foucault, Duras, Guibert, considered in terms of their writing on identity and gender. Offered in alternate years. GE credit: ArtHum, Div.

*130. From Page to Stage: Theatre and Theatricality (4) I. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 102. French theater as literature and performance. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: ArtHum.

*133. Gender and Politics in French Literature and Culture (4) II. The Staff

Lecture-discussion—3 hours; term paper. Prerequisite: course 101, 102, or 103. Study of the representation of Paris in 19th and 20th century texts and its importance in defining the experience and art of modernity. Offered in alternate years. GE credit: ArtHum.

*138. Advanced Literary Translation (4) II. The Staff

Lecture—3 hours; numerous short in-class translations, frequent supplementary outside assignments. Prerequisite: course 100 or the equivalent, course 104 or the equivalent (such as one academic year as an EAP student in a Francophone country). English-to-French translation of a variety of modern literary texts.

*140. Study of a Major Writer (4) II. The Staff

Lecture—3 hours; term paper. Prerequisite: course 100 and course 101, 102, or 103 as appropriate to selected topic, or consent of instructor. Concentrated study of works of a single author. May be repeated once for credit as subject-author changes.

*141. Selected Topics in French Literature (4) II. The Staff

Lecture—3 hours; term paper or short papers. Prerequisite: courses 100 and 101 or 102 or 103 as appropriate to the selected topic or consent of instructor. Subjects and themes such as satiric and didactic poetry of the Middle Ages, the theatre in the eighteenth century, pre-romantic poetry, etc. May be repeated twice for credit in a different subject area.

*160. Topics in French Morphosemantics (4) III. Manea-Manoliu

Lecture-discussion—3 hours; term paper. Prerequisite: course 100 and Linguistics 1. Analysis of controversial grammatical phenomena with emphasis on the syntactic content and the pragmatic function of such categories as tense, mood and gender. Offered in alternate years.

*161. Modern French Syntax (4) III. Manea-Manoliu

Lecture—3 hours; short papers. Prerequisite: course 160. Presentation of basic concepts of contemporary approaches to French syntax. Consideration of new explanations of so-called “irregular” phenomena in current language models.

*162. History of French Language (4) II. Manea-Manoliu

Lecture—3 hours; short papers. Prerequisite: course 160. Main periods in development of the French language, from Latin to contemporary popular aspects, with emphasis on relationship between socio-cultural patterns and evolution of the language. GE credit: ArtHum.

*Course not offered this academic year.
192. Internship (1-12) I, II, III. The Staff
Seminar—3–36 hours; term paper. Prerequisite: upper division standing and consent of instructor. Practicum application of the French language through work experience in government and/or business, culminating in an analytical term paper on a topic approved by the sponsoring instructor. (P/NP grading only.)

194H. Special Study for Honors Students (3) I, II, III. The Staff
Chairperson in charge) Independent study—3 hours. Prerequisite: open only to French majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in French literature, civilization, or language studies (P/NP grading only.)

195H. Honors Thesis (3) I, II, III. The Staff
Chairperson in charge) Independent study—3 hours. Prerequisite: course 194H. Writing of an honors thesis on a topic in French literature, civilization, or language studies under the direction of a faculty member. (P/NP grading only.)

197T. Tutoring in French (1-4) I, II, III. The Staff
Seminar—1–2 hours; laboratory—1–2 hours. Prerequisite: upper division standing and consent of Chairperson. May be covered and new literary values. Course may treat one or more novelists of the period. May be repeated for credit with consent of instructor.

206A. Seventeenth-Century Literature: The Humanists (4) I. The Staff
Seminar—3 hours; term paper. Prerequisite: courses 159, 160, 250A, or consent of instructor. Presentation of the main changes in the phonematic and grammatical structures of French, from Latin to contemporary spoken aspects.

206B. Seventeenth-Century Literature: Prose (4) I. The Staff
Seminar—3 hours; term paper and/or exposure. Works of authors such as Pascal, Descartes, Mme de Lafayette. One or more authors may be covered. May be repeated for credit with consent of instructor as different topics are studied from quarter to quarter.

206C. Seventeenth-Century Literature: Poetry (4) III. The Staff
Seminar—3 hours; term paper and/or exposure. Studies of the works of one or more poets of the period. May be repeated for credit with consent of instructor.

207A, Eighteenth-Century Literature: Philosophy (4) II. Kusch
Seminar—3 hours; term paper and/or exposure. Not a course in philosophy, but an examination of the role of philosophy in the design and context of literary works. Study of one or more authors. May be repeated for credit.

207B. Eighteenth-Century Literature: Novel (4) III. The Staff
Seminar—3 hours. Rise of the novel. Study of narrative experiments in the context of the philosophical climate and new literary values. Course may treat one or more novelists of the period. May be repeated for credit when different topics are studied.

208A. Nineteenth-Century Literature: Fiction (4) I. The Staff
Seminar—3 hours. Study of the works of one or several novelists and/or short-story writers of the period. May be repeated for credit with consent of instructor when different topics are studied.

208B. Nineteenth-Century Literature: Poetry (4) III. Blanchard
Seminar—3 hours. Study of the works of one or several poets of the period. May be repeated for credit with consent of instructor when different topics are studied.

209A. Twentieth-Century; Prose (4) II. The Staff
Seminar—3 hours; term paper and/or exposure. Study of the works of one or several writers of the period.

209B. Twentieth-Century; Theater (4) II. The Staff
Seminar—3 hours; term paper and/or exposure. Study of the works of one or several dramatists of the period. May be repeated for credit with consent of instructor.

209C. Twentieth-Century; Poetry (4) III. The Staff
Seminar—3 hours; term paper and/or exposure. Study of the works of one or several poets of the period. May be repeated for credit with consent of instructor.

210. Studies in Narrative Fiction (4) I. Praeger
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

211. Studies in Criticism (4) II. Blanchard
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

212. Studies in the Theater (4) I. The Staff
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

213. Studies in Poetry (4) II. The Staff
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

214. Study of a Literary Movement (4) III. The Staff
Seminar—3 hours. May be repeated for credit with consent of instructor when different topic is studied.

238. Advanced Literary Translation (4) III. The Staff
Seminar—3 hours; significant amounts of translation of texts. Designed to acquaint students with the basic principles of applied translation theory. Translation of texts chosen for their theoretical interest. Open to native French speakers only with consent of instructor.

250A. French Linguistics: Morphematics (4) I. Manea-Manoliu
Seminar—4 hours. Prerequisite: courses 159, 160, or consent of instructor. Theoretical approach to French grammar, with emphasis on morphematics, i.e., a semantic analysis of grammatical categories, as well as of their paradigmatic and syntactic relations.

250B. French Linguistics: Transformational Syntax (4) I. Manea-Manoliu
Seminar—4 hours. Prerequisite: course 250A or consent of instructor. Presentation of French syntax exemplified by a core of transformational rules (such as subjectivization, passivization, relativization) focusing on the most recent developments in the field (i.e., case grammars, generative semantics, trace theory).

251. Trends in French Contemporary Linguistics (4) I. Manea-Manoliu
Seminar—3 hours; term paper. Prerequisite: course 250A or 250B or consent of instructor. Issues in contemporary French linguistic thought and their relationship to the development of theoretical linguistics. Topics such as pragmatics, semantics, symbolic logic, speech acts, etc. Intended for students in French linguistics or those interested in applying linguistic models to literature. May be repeated once for credit with consent of instructor when topic differs.

261. Current Issues in Modern French Syntax (4) II. Manea-Manoliu
Seminar—3 hours; term paper. Presentation of contemporary approaches to French syntax. Explorations of various less regular phenomena, with reference to on-going changes in modern spoken French. Offered in alternate years. May be repeated for credit with consent of instructor when topic differs.

297. Individual Study (1-5) I, II, III. The Staff
(S/U grading only.)

298. Research (1-12) I, II, III. The Staff
(S/U grading only.)

399D. Dissertation Research (1-12) I, II, III. The Staff
(S/U grading only.)

Professional Courses

380. Teaching of a Modern Foreign Language (3) III. The Staff
Lecture/discussion—3 hours. Prerequisite: senior or graduate standing; a major or minor in a modern foreign language.

390A. The Teaching of French in College (2) I. Wagnild
Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (S/U grading only.)

390B. The Teaching of French in College (2) II. Wagnild
Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (S/U grading only.)

390C. The Teaching of French in College (2) III. Wagnild
Lecture/discussion—2 hours. Prerequisite: graduate standing or consent of instructor. Course designed for graduate teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (S/U grading only.)

Freshman Seminar Program
Francisco J. Samaniego, Ph.D., Program Director
Program Office, 17 Weilman (Teaching Resources Center) (916-752-6052)

Committee in Charge
Paul Griffin, Ph.D. (Graduate School of Management)
Marina Estabrook, M.A. (Teaching Resources Center)
Karri Lokke, Ph.D. (College of Letters and Science)
Nora McGuinness, Ph.D. (Integrated Studies, Davis Honors Challenge)
John R. Pascoe, D.V.M., Ph.D. (School of Veterinary Medicine)
Ron Perschbacher, J.D. (School of Law)
Ronald J. Phillips, Ph.D. (College of Engineering)
John Vohs, M.A. (Academic Senate Committee on Courses)
Donal A. Walsh, Ph.D. (School of Medicine)

Course in Freshman Seminar (FRS)
(Questions pertaining to the following course should be directed to the instructor or to the Teaching Resources Center.)

Lower Division Course
1A-Z. Freshman Seminar (2) I, II, III. The Staff
Seminar—2 hours. Prerequisite: open only to students who have completed fewer than 45 quarter units. Investigation of a special topic (A-Z) through shared readings, discussions, written assignments, and special activities (such as fieldwork, site visits, laboratory work, etc.). Emphasis upon student participation in learning.

Genetics
See Biological Sciences; and Genetics (A Graduate Group), below

Genetics
(A Graduate Group)
Kenneth Burton, Ph.D., Chairperson of the Group
Group Office, 188 Briggs Hall (916-752-9356)

Faculty. Includes members drawn from the Colleges of Agricultural and Environmental Sciences, and Letters and Science, Division of Biological Sciences, and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Genetics offers programs of study and research leading to the M.S. and Ph.D. degrees. The Group is subdivided into three affinity groups: molecular, animal, and plant. Each of these affinity groups provides broad training in genetics, combined with an emphasis specific to its area. Both model genetic organisms and agricultural species are studied using molecular and classical approaches. For additional information regarding the program, contact the group administrative assistant at 916-752-9092.

Graduate Adviser. Consult Genetics Graduate Group Office.

Courses in Genetics (GGG)
Graduate Courses
201A. Transmission Genetics (3) I. Gepts
Lecture—3 hours. Prerequisite: Genetics 100, introductory statistics and calculus. Study of segregation, linkage, and mapping and the modifications of Mendel's original genetic model.

201B. Cytogenetics (3) II. Dvorak and Murray
Lecture—3 hours. Prerequisite: course 201A or consent of instructor. Study of cytogenetics including meiosis, recombinination, chromosomes, haploidy, aneuploidy, trisomics, monosomes, autopolyploids and inter- and interspecific manipulation.

201C. Molecular Genetics (3) III. The Staff
Lecture—3 hours. Prerequisite: course 201A or consent of instructor. Current topics in molecular genetics at a graduate level, with emphasis on the relationship between classical genetic studies and current molecular research, as well as on the molecular techniques used to develop the basic concepts of molecular genetics.

201D. Quantitative and Population Genetics (3) III. St. Clair
Lecture—3 hours. Prerequisite: course 201A or consent of instructor. The basic concepts of quantitative and population genetics, including gene and genotypic frequencies, multiple factor hypothesis, phenotypic and genotypic values, heritability, selection, genetic variation and evolution in populations, and experimental methodologies.

205. Molecular Genetics Laboratory (5) I, II, III. The Staff
Laboratory—15 hours. Prerequisite: Genetics 100 (may be taken concurrently) or the equivalent, enrolled in Genetics Graduate Group, consent of instructor. Students will conduct experiments in molecular genetics laboratories. Individual research problems will emphasize experimental design, experience with methodologies, and data interpretation. May be repeated up to three times for credit. (S/U grading only)

207L. Research Methods in Plant Genetics Laboratory (2-5) I, II, III. The Staff
Laboratory—6-15 hours. Prerequisite: course 207 (may be taken concurrently). Working knowledge of contemporary methodologies in plant genetics is obtained by participating in research programs of the various Plant Genetics Affinity Group members. (S/U grading only)

291. Seminar in History of Genetics (2) II. Griesemer (Philosophy)
Seminar—2 hours. Prerequisite: Genetics 100. The development of modern genetic theories beginning with Mendel.

*292A. Seminar in Cytogenetics (1-3) I. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the deletion, duplication and rearrangement of chromosome regions. Offered in alternate years.

*292B. Seminar in Quantitative Genetics (1-3) II. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics of current interest related to the inheritance of continuous characters. Offered in alternate years.

292C. Seminar in Developmental Genetics (1-3) I. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics in the area of cell-specific control of genes in development. Offered in alternate years.

292D. Seminar in Population, Evolutionary and Ecological Genetics (1-3) II. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Topics related to the analysis and prediction of changes in populations. Offered in alternate years.

293. Seminar in Animal Genetics (1-3) III. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Emphasis on recent advances in the field of animal genetics, ranging from quantitative genetics to molecular biology as it relates to animals.

297. Seminar in Plant Genetics (1-3) II. The Staff
Seminar—1-3 hours. Prerequisite: course 201A or consent of instructor. Current topics in plant genetics will be examined in student-conducted seminars and discussion format. The integration of molecular, organismal and population genetics to address questions in plant biology will be examined.

Geographic Information Systems
(College of Agricultural and Environmental Sciences)
The Department of Biological and Agricultural Engineering offers a minor in Geographic Information Systems with an emphasis on spatial analysis. This minor is ideal for students interested in information processing of spatial data related to remote sensing, land information systems, marine cartography, thematic mapping, surface modeling, environmental modeling, resource management, public utility planning, emergency response, geomarketing, geotechnics, archaeology, military exercises, and computer-aided design. Prerequisites include Mathematics 16A-16B, Statistics 13 or Agricultural Systems and Environment 120 or Civil and Environmental Engineering 114, and Agricultural Systems and Environment 21 or Computer Science Engineering 15.

Minor Program Requirements:

Geographic Information Systems.......................18
Applied Biological Systems Technology 180, 181 ..10
Select 8 or more units from the following courses:
Agricultural Systems and Environment 121, Geography 105, 106, 107, Hydrologic Science 186.

Geography
Courses in Geography (GEO)
Lower Division Courses
1. Physical Geography (4) I. Jett
Lecture—3 hours; laboratory—2 hours. Basic physical elements of the human habitat, especially climate, landforms, soils, and natural vegetation.

2. Introduction to Cultural Geography (3) III. The Staff

20. Introduction to Cultural Geography: Discussion (1) III. The Staff
Discussion—1 hour; short papers. Prerequisite: course 2 concurrently. Small group discussion of topics and readings assigned for course 2. Preparation and discussion of short papers. GE credit with concurrent enrollment in course 2. Wrt.
The regional disparities both within and between nations.

143. Political Geography (4) I. Dingemans Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Survey of the principal natural and cultural phenomena affecting the world's political organization.

151. History of Geographic Thought (4) III. The Staff Lecture—3 hours; term paper. Prerequisite: three upper division courses in geography. The literature of geography: objectives, subdivisions, and development of the subject.

155. Urban Geography (4) I. Dingemans Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Geography of land use within cities. The processes of change, and theories of economic and social organization of urban space. The urban landscape as a product of history, planning policy, transportation systems, and residential structure.

156. The Urban Region (4) III. Dingemans Lecture—3 hours; term paper. Prerequisite: course 5 or consent of instructor. Location and functional interdependence of cities. Relations between city and hinterland, including labor shed, service area, and economic base. Role of urbanization in regional development.

162. Geography of Water Resources (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or geographic survey of water on the land; needs and opportunities for water-resource development and conservation. Historical solutions to water needs of specific areas, and geographical problems associated with current and future water requirements.
168. Mountain Geocology: Human Geography (4) III. The Staff
Lecture—3 hours; term paper. Prerequisite: course 118, or consent of instructor. Analysis of traditional adaptations of mountain cultures to their habitats; resource use and environmental degradation; tourism impacts and Third World development issues. Emphasis on Himalayan, also Andes, Alp, and Rocky Mountains, providing historical perspective and discussion of current environmental crises.

170. Cultural Ecology (4) I. Jett
Lecture—3 hours; term paper. Prerequisite: course 2 or Anthropology 2. Geographic theories of environment-man relations. Ecologic relations of gatherers, fishermen, hunters, cultivators, and urbanites; their environmental impacts; their domestic plants and animals.

171. Cultural Geography (4) III. Jett
Lecture—3 hours; term paper. Prerequisite: course 2 or consent of instructor. Consideration of principal concepts and approaches in cultural geography in modern times, and links with, and parallels in, other disciplines.

173. Humans and Vegetation Change (4) II. Bahre
Lecture—3 hours; term paper. Prerequisite: course 1 or Biological Sciences 1A, or consent of instructor. Role of humans in modifying the earth's vegetation. Emphasis on temporal and spatial changes in plant geography, factors of plant distribution, classification and mapping of vegetation, world vegetation patterns, human impact on major regions, and case studies of land use and vegetation change.

175. Geography of Food and Diet (4) II. The Staff
Lecture—4 hours. Prerequisite: course 2 or Anthropology 2; Nutrition 20 recommended. Consideration of the cultural and environmental factors that influence dietary practices; historical development of food habits; food use in different economic systems, both traditional and contemporary. Offered in alternate years.

192. Student Internship in Geography (2-4) I, II, III. The Staff
Internship—5-15 hours at employing agency; term paper. Prerequisite: consent of undergraduate Geography major adviser and consent of instructor. Supervised program of student internships with public agencies dealing with geographical problems. The application and evaluation of theoretical concepts through work experience with a variety of assignments and work schedules. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

199. Special Study for Advanced Undergraduates. (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

Graduate Courses

200. Research Trends in Geography (1) I. The Staff (Chairperson in charge)
Seminar—1 hour. Major current research themes and trends in geography. (SU grading only)

200C. Theory and Practice of Geography (4) II. The Staff
Lecture—3 hours; term paper. Prerequisite: graduate standing. Development of geographical theory; key concepts and theories; their chronology, and application to the practice of geography. Analytical background to geographical theory; application of theory to geographical analysis and research projects.

200D. Field Research and Methodology (4) III. The Staff
Lecture/discussion—2 hours; fieldwork—3 hours; term paper. Prerequisite: graduate standing. Methods and tools of geographic research; emphasis on research design, primary and secondary data collection; data analysis; organization and structure of research proposals; proposal preparation.

201. Sources and General Literature of Geography (4) I, II, III. The Staff
Discussion—4 hours. Prerequisite: graduate status in geography; consent of instructor. Designed for students preparing for higher degrees in geography. May be repeated for credit in one or more of the following subfields: physical, cultural, economic, urban, historical, political, conservation, and regional geography.

202. Arctic and Alpine Environments (4) III. The Staff
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: graduate status in Geography or consent of instructor. Analysis of cold climate processes in high latitudes and high altitudes. Interdisciplinary evaluation of arctic and alpine environments; including glaciation and permafrost, vegetation development and landscape change through time; effects of climatic change. Offered in alternate years.

290. Seminar: Selected Regions (4) III. The Staff
Seminar—3 hours. Region to be announced annually.

291. Seminar in Cultural Geography (4) III. Jett
Seminar—3 hours.

292. Seminar in Plant Geography (4) I. Bahre
Seminar—3 hours; seminar paper. Prerequisite: graduate standing. Examination of the aspect of cultural plant geography dealing with human impacts and vegetation change in the earth’s major biomes. Particular emphasis on the New World's savannas, deserts, and grasslands, noted in alternate years.

294. Seminar in Climatology (4) II. The Staff
Seminar—3 hours.

295. Seminar in Urban Geography (4) II. Dingemans
Seminar—3 hours.

296. Seminar in Agricultural Geography (4) II. The Staff
Seminar—3 hours.

297. Graduate Group in Geography Seminar (2) I, II, III. The Staff
Lecture/discussion—1 hour; term paper. Prerequisite: graduate standing. Seminars by UC Davis faculty and prominent national and international scholars; research presentations by Graduate Group in Geography Ph.D. candidates. May be repeated for credit. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff
Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only)

299D. Individual Study (1-12) I, II, III. The Staff
Prerequisite: graduate student status in Geography and consent of instructor. (SU grading only)

Preparation. Most students considered for admission will have completed an undergraduate major in geography or a closely related field. They normally will have completed a course in any of the following areas: field methods in geography, cartography, remote sensing, statistics, GIS, geographic theory. They usually will have completed one course each in human geography, physical geography, and a geographic region.

Graduate adviser. J. R. Lund.

Geography (College of Letters and Science)
Howard W. Day, Ph.D., Chairperson of the Department
Department Office, 174 Physics/Geology Building (916-752-0350)

Faculty
Roland Bergmann, Ph.D., Associate Professor
Sandra J. Carlson, Ph.D., Associate Professor
William H. Casey, Ph.D., Professor (Land, Air and Water Resources)
Richard Cowen, Ph.D., Senior Lecturer, Academic Senate Distinguished Teaching Award
Howard W. Day, Ph.D., Professor
James A. Doyle, Ph.D., Professor (Evolution and Ecology)
Graham E. Fogg, Ph.D., Associate Professor (Land, Air, and Water Resources)
Louise H. Kellogg, Ph.D., Associate Professor
Charles E. Leith, Ph.D., Associate Professor
James S. McClain, Ph.D., Associate Professor
Eldridge M. Moores, Ph.D., Professor
Jeffrey F. Mount, Ph.D., Professor
Peter Schiffman, Ph.D., Professor
Howard J. Spero, Ph.D., Associate Professor
Robert J. Twist, Ph.D., Professor
Geerat J. Vermeij, Ph.D., Professor
Kenneth L. Verosub, Ph.D., Professor
Academic Senate Distinguished Teaching Award
Emeriti Faculty
Charles G. Higgins, Ph.D., Professor Emeritus
Robert A. Matthews, A.B., Senior Lecturer Emeritus

The Major Programs

"Civilization exists by geological consent—subject to change without notice."
Will Durant

Geology is the study of the Earth, and in particular the history, the structure, the evolution of life, and the processes that have molded the Earth and its inhabitants. The coming of the space age has also extended the field to include the solid planets of the solar system. Although often attracted to the study of geology by an aesthetic appreciation and enjoyment of the earth, geologists commonly approach their studies from an interest either in the academic or the applied aspects of the science.

The academic aspects include the study of the history of life, the Earth, and the planets, and of the processes that have molded the Earth and its inhabitants. The coming of the space age has also extended the field to include the solid planets of the solar system. Although often attracted to the study of geology by an aesthetic appreciation and enjoyment of the earth, geologists commonly approach their studies from an interest either in the academic or the applied aspects of the science.

The applied aspects of the science generally involve the interaction between humans and the earth. Applied studies include the study of mineral resources including oil and water; identification and mitigation of Earth hazards such as earthquakes, landslides, and volcanic eruptions; identification and mitigation of polluted ground water; and land use planning.

The Program. Students interested in becoming pro-
Recommended

One or more of the following courses, depending upon emphasis in geology. Mathematics 21D, 22A, 22B, Statistics 104, 106, 108, 110, Chemistry 2C, 110A.

Minor Program Requirements:

Students in other disciplines may elect to complete a minor in Geology by choosing a geology subject matter emphasis listed below. On transcripts the minor will appear as a minor in Geology.

General Geology emphasis...19
Geology 50 and 50L ..5
Civil Engineering 171, 171L ...5
Three courses chosen from Geology 134, 161, 162N, 163, 170, Hydrologic Science 103, 145, Soil Science 118, 120.....9-12
Minor Adviser, R. Twiss. UNITs

Geophysics emphasis ...15
Geology 60, 60L, 129, 146N ..9
Chemistry 110A, 110C ..6
(Chemistry majors may substitute one of the elective courses for Chemistry 110C.)
One elective course chosen from Chemical Engineering 151, Engineering 130, 134, Geology 150A, Hydrologic Science 134, Soil Science 102.............3-5
Minor Adviser, R.J. Twiss. UNITs

Oceanography emphasis ...21-24
Geology 108N, 116, 150A, 150B, 150C.....16
Two courses chosen from Environmental Studies 100, 151, Geology 109, 151, 152N, Hydrologic Science 136.................5-8
Minor Adviser, H.J. Spero. UNITs

Paleobiology emphasis ...20-21
Geology 107 and 107L, 108N8
Geology 151 or 152N ..4
At least eight additional units from the following. Anthropology 151 or 152, Evolution and Ecology 101, 111, 115, 112, 120, 140, 149, Geology 109, 150C......8-9
Minor Adviser, R. Cowen.

Interdisciplinary minors. The Geology Department administers two interdisciplinary minor programs, Environmental Geology and Geophysics, which may be completed by students majoring in any discipline, including Geology. Programs for these minors are listed separately in this catalog in alphabetical order. For Geology majors, one course at most from these minor programs can be counted toward satisfaction of the Geology degree requirements.

Integrated Science Teaching Credential. Students wishing to prepare for the teaching credential in Integrated Science with a concentration in Geoscience may do so by satisfying the requirements for the A.B. degree in Geology (70-75 units) and 36-37 additional units of science as outlined below. Students may also prepare for the science credential by taking the B.S. degree in Geology (108-111 units) and an additional 30-32 units as indicated below. Some students will also fulfill the science credential by taking the B.S. degree in Geology (108-111 units) and an additional 30-32 units as indicated below. Some students will also prepare for the science credential by taking the B.S. degree in Geology (108-111 units) and an additional 30-32 units as indicated below.

Biological Sciences 1A-1B-1C*15
Chemistry 2C ..5
Physics 5C ..4
Geology 36* ...4
Geology 116-116G ...5
Atmospheric Science 60* or 100*3-4

Students are advised to take the following courses as upper division electives in the A.B. program: Geology 105, 106, and 134 or 135*...12-13

Teaching Credential Subject Representative. H.W. Davey also serves as Undergraduate Education Subject Representative. Graduate Study: The Department of Geology offers a program of study and research leading to the M.S. and Ph.D. degrees. For information regarding graduate study in geology, address the Graduate Adviser, Department of Geology.

Courses in Geology (GEL)

Lower Division Courses

1. The Earth (4) I. Cowen; III. Verosub Lecture—3 hours; discussion—1 hour. Introduction to study of the Earth for those not majoring in geology or associated sciences. Not open for credit to students who have taken course 50. GE credit: SciEng.

2. Earth Laboratory (1) I. Cowen; III. Verosub Lecture—3 hours. Prerequisite: course 1 (preferably taken concurrently). Introduction to Earth materials (minerals and rocks), crustal deformation (faults and folds), landforms, and the processes that form them. Not open for credit to students who have taken course 50.

3. History of Life (3) I. Cowen Lecture—3 hours. Prerequisite: course 1 recommended. The history of life during the three and one-half billion years from its origin to the present day. Origin of life and processes of evolution; how to visualize and understand living organisms from their fossil remains. GE credit: SciEng.

3G. History of Life: Discussion (1) I. Cowen Discussion—1 hour. Prerequisite: course 3 concurrently. Small group discussion and preparation of short papers for course 3. GE credit with concurrent enrollment in course 3. Wr.

3L. History of Life Laboratory (1) I. Cowen Lecture—1 hour. Prerequisite: course 3 concurrently. Laboratory exercises in understanding fossils as the clues to interpreting ancient life, including their functional morphology, paleoecology, and evolution.

4. Evolution: Science and World View (3) I. Vervaeke Lecture—2 hours; discussion—1 hour. Introduction to biological evolution. Emphasis on historical development, major lines of evidence, and causes of evolution; relationships between evolution and Earth history; and the impact of evolutionary thought on other disciplines. GE credit: SciEng.

12. Evolution and Paleobiology of Dinosaurs (2) I. Cowen/Larson Lecture—2 hours. Introduction to evolutionary biology, paleobiology, ecology and paleoecology, using dinosaurs as case studies.

17. Earthquakes and Other Earth Hazards (2) I. Verosub Lecture—2 hours. The impact of earthquakes, volcanoes, landslides and floods on Man, his structures and his environment. Discussion of the causes, effects, and solution of geologic problems in rural and urban settings.

20. Geology of California (2) I. Moores Lecture—2 hours; demonstration—1 hour. The geologic history of California, the origin of rocks and the environments in which they were formed; the structure of the rocks and the interpretation of their structural history, mineral resources, and appreciation of the California landscape. GE credit: Wr.

32. Volcanoes (4) I. Schiffman Lecture—2 hours; discussion—1 laboratory—1.5 hours. Study of how volcanoes, their eruptions, and their eruptive products shape our planet's surface, influence its environment, and provide essential human resources. (Former course 120) GE credit: SciEng, Wr.

43. Form, Function, and Evolution: The Molluscan Shell (3) III. Vermeij Lecture/discussion–2 hours; term paper. Prerequisite: course 1 or the equivalent. The origins and evolution of molluscan shells. Introduction to classification and recognition of molluscan shells and to interpretation of topographic and geologic maps and aerial photographs. Not open for credit to students who have completed course 50L. GE credit: SciEng, Wrt.

50. Physical Geology (3) I. McClain Lecture–3 hours. Prerequisite: high school physics and chemistry. The Earth, its materials, its internal and external processes, its development through time by sea-floor spreading and global plate tectonics. Students with credit for course 1 or the equivalent may receive only 2 units for course 50L.

50L. Physical Geology Laboratory (2) I. McClain Laboratory–6 hours: one or two one-day field trips. Prerequisite: course 50L or 100L (may be taken concurrently). Introduction to classification and recognition of minerals and rocks and to interpretation of topographic and geologic maps and aerial photographs. Students with credit for course 1 or the equivalent may receive only 2 units for course 50L.

60. General Mineralogy (3) I. Day Lecture–3 hours. Prerequisite: Chemistry 2A or 2AH. Crystallography; physical and chemical structure and properties of minerals; mineral genesis. GE credit: SciEng, Wrt.

60L. General Mineralogy Laboratory (2) I. Day Laboratory–6 hours. Prerequisite: course 60 (preferably taken concurrently). Morphological crystallography; stereographic projection; identification of the common rock-forming minerals.

99. Special Study for Undergraduates (1-5) I., II., III. The Staff (Chairperson in charge) Prerequisite: consent of instructor; lower division standing, (P/NP grading only)

Upper Division Courses

100. Earth Dynamics I: Extensional and Translational Processes (3) I. Twiss Lecture–3 hours. Prerequisites: courses 50-50L, Mathematics 21A or 16A (may be taken concurrently); consent of instructor. The structure of the earth. Geophysical and structural signatures of extensional and translational tectonics. Seismicity and focal mechanisms. Mid-ocean ridges and continental rifting. Strike-slip faulting. Application to California tectonics. Not open for credit to students who have completed course 105. GE credit: SciEng.

100L. Earth Dynamics I: Structure/Tectonics Laboratory (1) I. Twiss Laboratory–3 hours; two one-day field trips required. Prerequisite: course 50L and course 100 (may be taken concurrently); consent of instructor. Use of topographic and geologic maps; interpretation of topographic and geologic maps; tectonic analysis of extensional and strike-slip terranes. Not open for credit to students who have completed course 105L. GE credit with concurrent enrollment in course 100L. Wrt.

101. Earth Dynamics II: Convergent and Collisional Processes (3) I. Moores/Twiss Lecture–3 hours. Prerequisites: courses 50-50L, 100, Mathematics 21B or 16B (may be taken concurrently). Physical and chemical properties of convergent tectonics, subduction zones, plate collisions and mountain belts. Topics include dynamics of plate tectonics, seismic Benioff zones, gravity and isotasy. Examples of collisions and resulting mountain belts. Examples drawn from western North America. Not open for credit to students who have completed course 105. GE credit: SciEng.

101L. Earth Dynamics II: Structure/Tectonics Laboratory (1) I. Moores/Twiss Laboratory and fieldwork–6 hours; six days of field trips on four separate weekends required. Prerequisites: courses 50L, 100L, and 101 (may be taken concurrently). Continuation of course 100L. GE credit: SciEng, Wrt.

102N. Earth Dynamics III: Plate Kinematics and Dynamics (2) II. Lesher Lecture–2 hours. Prerequisite: course 101, Mathematics 21C or 16C (may be taken concurrently). Kinetics of plate motions and interaction between plates. Plates of reference and hotspots. Paleomagnetism and geodesy. Dynamics of plate motion, only Structure of the Earth, thermal convection in the Earth. Not open for credit to students who have completed course 108.

103. Field Geology (3) III. Lesher Fieldwork and discovery course; 7-8 days on weekends during quarter. Prerequisite: course 101L or consent of instructor. Field mapping projects and writing geological reports. Weekly classroom meetings devoted to preparation of maps, cross sections, stratigraphic sections, rock descriptions, and reports. Not open for credit to students who have completed course 102.

105N. Earth Materials: Igneous Rocks (4) II. Lesher Lecture–2 hours; laboratory–6 hours. Prerequisites: courses 60-60L, Mathematics 16A or 21A, Chemistry 2B (may be taken concurrently). Origin and occurrence of igneous rocks. Geophysical and chemical exercises to identify the size of the rock in hand specimen and thin section. Not open for credit to students who have completed course 123. GE credit: SciEng, Wrt.

106N. Earth Materials: Metamorphic Rocks (4) III. Day Lecture–2 hours; laboratory–6 hours. Prerequisites: course 105N, Chemistry 2B, Mathematics 16A or 21A. Advanced application of geologic and geometric analysis of metamorphic rocks. Laboratory exercises emphasize the study of these rocks in hand specimen and thin section. Not open for credit to students who have completed course 125. GE credit: SciEng, Wrt.

107. Earth History: Paleobiology (3) III. Vermeij Lecture–3 hours. Prerequisites: courses 3-3L or Biological Sciences 1B. The evolution and ecological structure of the biosphere from the origin of life to the present.

107L. Earth History: Paleobiology Laboratory (2) III. Vermeij Laboratory–6 hours. Prerequisites: courses 3-3L or Biological Sciences 1B, course 107 (may be taken concurrently). Exercises in determining the ecological functions and evolution of individuals, populations, and communities of fossil organisms in field and laboratory.

108N. Earth History: Paleoclimates (3) I. Spero Lecture–3 hours. Prerequisites: course 1 or Geology/Environmental Studies 116; and Chemistry 2A; or consent of instructor. Geologic and environmental factors controlling climate change, the greenhouse effect with a detailed analysis of the history of Earth’s climate fluctuations over the last 600 million years. Past and present climate records are used to examine potential climate change and its impact on credit to students who have completed course 114. GE credit: SciEng, Wrt.

109. Earth History: Sediments and Strata (2) II. Mount Lecture–2 hours. Prerequisites: courses 50-50L. Principles of stratigraphic and sedimentologic analysis.

Evaluation of historical and modern global changes in sedimentation within terrestrial and marine environments. Examination of the plate tectonic, climate and oceanographic factors controlling the distribution and exploitation of economic fluids within sedimentary rocks. Not open for credit to students who have completed course 106. GE credit with concurrent enrollment in course 108. GE credit.

109L. Earth History: Sediments and Strata Laboratory (2) II. Mount Laboratory–6 hours (includes four 1-day field trips). Prerequisites: courses 106 and 109 or consent of instructor. Methods of stratigraphic and sedimentologic analysis of modern and ancient sediments. Identification of major sediment and sedimentary rock types. Outcrop and surface analysis of sedimentary basins. Not open for credit to students who have completed course 106. GE credit with concurrent enrollment in course 100. Wrt.

110. Summer Field Geology (8) Summer Extra Section Fieldwork–8 hours/day, 6 days/week for six weeks. Prerequisite: courses 103, 109; course 105N recommended. Advanced application of geologic and geographic field methods to the study of rocks. Includes development and interpretation of geologic maps and cross sections; gravity, magnetic, electrical resistivity and seismic surveys; and field analysis of plutonic and metamorphic rocks. Outcrops and surface outcrops to students who have completed course 118. GE credit: SciEng, Wrt.

115N. Earth Science, History, and People (4) III. Cowen Lecture–3 hours; discussion–1 hour. Prerequisite: upper division standing; course 1. Study of interplay between the earth and its human inhabitants through history, including consideration of acute events such as earthquakes and eruptions as well as the geology of resources, topography, and water. Former course 131.) GE credit: SciEng or SocSci, Wrt.

116. The Oceans (3) I. Cowen, II. Verosub Lecture–3 hours. Prerequisite: upper division standing or consent of instructor. Introductory survey of the marine environment. Oceanic physical phenomena, chemical constituents, geological history, and the sea’s biota; and utilization of marine resources. (Same course as Environmental Studies 116.) GE credit: SciEng.

116G. The Oceans: Discussion (2) I. Cowen, II. Verosub Discussion–2 hours. Prerequisite: course 116/Environmental Studies 116 concurrently. Scientific method applied to discovery of the processes, biota and history of the oceans. Group discussion and preparation of reports. (Same course as Environmental Studies 116G.) GE credit with concurrent enrollment in course 116. Wrt.

129. Sample Preparation and Techniques for Petrology (1) I. Winter Laboratory–3 hours. Prerequisite: course 60-60L. Introduction to petrographic laboratory techniques for petrographers. Topics covered may include thin and polished section preparation, rock crushing/grinding, mineral separation, staining, and petrography. (Former course 180.) (P/NP grading only)

*130. Non-Renewable Natural Resources (3) III. Lecture–3 hours. Prerequisite: course 1. Origin, occurrence, and distribution of non-renewable resources, including metallic, nonmetallic, and energy-producing materials. Problems of discovery, production, and management. Estimations and limitations of reserves, and their sociological, political, and economic effects.

134. Environmental Geology and Land Use Planning (3) III. Moores Lecture–3 hours. Prerequisite: one course in Geol, preferably course 50 or 1, or consent of instructor. Geologic aspects of land use and development planning. Geologic problems concerning volcanic and earthquake hazards, land stability, floods, erosion, coastal hazards, non-renewable resource extractions, and waste disposal, water resources. GE credit: SciEng, Wrt.

135G. Rivers of California—Laboratory/Discussion (1) III. Mount Laboratory/discussion—2 hours; field study—two 10-hour trips. Prerequisite: course 135 concurrently. Discussion in course 135. Analysis of selected Sierran watershed. Two raft trips on Sierran rivers. GE credit with concurrent enrollment in course 135. Wrt.

143. Advanced Igneous Petrology (5) III. Lesher Lecture—3 hours; laboratory—6 hours. Prerequisite: course 105N, Mathematics 16C or 21C, Chemistry 2C. Physical and chemical properties of magnetic environments and processes of igneous rock formation. Laboratory study of representative igneous rocks. Not open for credit to students who have completed course 123. GE credit: SciEng, Wrt.

*145N. Advanced Metamorphic Petrology (5) II. Day Lecture—3 hours; laboratory—6 hours. Prerequisite: course 105N, Hydrologic Science 134 or Chemistry 2C. Mathematics 16C or 21C. Metamorphic processes and the origin of metamorphic rocks. Laboratory study of representative rock suites. Offered in alternate years. Not open for credit to students who have completed course 125. GE credit: SciEng, Wrt.

146N. Isotope Geochemistry (3) II. Day Lecture—3 hours. Prerequisite: Chemistry 2C or consent of instructor. Principles and applications of nuclear chemistry to geology. Methods of determining geologic ages using K-Ar, Rb-Sr, Nd-Sm, and U-Pb isotopes. The interpretation of apparent ages determined by isotopic methods. The age and origin of the earth. Offered in alternate years.

150A. Physical and Chemical Oceanography (4) I. Lewis Lecture—3 hours; discussion—1 hour. Prerequisite: course 116 or Environmental Studies 116; Physics 9B; Mathematics 16C or 21C; or upper division standing in a natural science and consent of instructor. Physical and chemical properties of seawater, fluid dynamics, air-sea interaction, currents, waves, tides, mixing, major oceanic geochemical cycles. Offered in alternate years. (Same course as Environmental Studies 150A.)

150B. Geologic Oceanography (3) II. McClain Lecture—3 hours. Prerequisite: course 50 or 116. Introduction to the origin and geologic evolution of ocean basins. Composition and structure of oceanic crust; marine volcanism; and deposition of marine sediments. Interpretation of geologic history of the ocean floor in terms of sea-floor spreading theory. (Same course as Environmental Studies 150B.)

150C. Biological Oceanography (3) III. The Staff Lecture—3 hours. Prerequisite: Biological Sciences 1A and a course in general ecology or consent of instructor. Survey of the ecology of major marine habitats including intertidal, shelf benthic, deep-sea, and plankton communities. Existing knowledge and contemporary issues in research will be equally stressed. A portion of the study will be devoted to man's use of and impact on the ocean. Offered in alternate years. (Same course as Environmental Studies 150C.)

*151. Paleobiology of Invertebrates (4) I. Lecture—2 hours, laboratory—6 hours. Prerequisite: course 107, 109L, 111 or consent of instructor. Development and evolution of the major phyla of invertebrates. Offered in alternate years. Not open for credit to students who have completed course 111A.

*152N. Paleobiology of Prostata (4) II. Lecture—2 hours, laboratory—4 hours. Prerequisite: courses 107 or Biological Sciences 1A or consent of instructor. Morphology, systematics, evolution, and ecology of single-celled organisms that are preserved in the fossil record. Offered in alternate years. Not open for credit to students who have completed course 111B.

161. Exploration Geophysics and Seismology (3) III. Bürgmann Lecture—3 hours. Prerequisite: Mathematics 21C, Physics 5C or 7C or 9C; or consent of instructor. Principles of exploration geophysics and seismology. Use of gravity, magnetic, electrical resistivity, electromagnetic, and seismological methods to determine structure of the Earth’s crust. Interpretation of data using computers. Survey of well-logging techniques. Seismology and earthquakes. Not open for credit to students who have completed course 117B.

162N. Geophysics of the Solid Earth (3) II. Kellogg Lecture—3 hours. Prerequisites: Mathematics 21C, Physics 5C or 7C or 9C; or consent of instructor. Principles of fluid flow as applied to problems in geologic sciences. Flow in volcanic pipes and artesian springs. Porous flow in natural systems. Thermal convection. Convection in the Earth's mantle and in the oceans. Not open for credit to students who have completed course 117C.

163. Fluid Flow of the Earth (3) III. Lecture—3 hours. Prerequisite: Mathematics 21C, Physics 5C or 7C or 9C; or consent of instructor. Principles of fluid flow as applied to problems in geologic sciences. Flow in volcanic pipes and artesian springs. Porous flow in natural systems. Thermal convection. Convection in the Earth's mantle and in the oceans. Not open for credit to students who have completed course 117C.

170. Fracture and Flow of Rocks (3) III. Twiss Lecture—3 hours. Prerequisite: course 101, 101L; Mathematics 21B or 16B; Physics 5A or 7A or 9A; or consent of instructor. Examination of the origin of structures in rocks associated with brittle and ductile deformation on the basis of continuum mechanics and experiment. Emphasis on interpretation of the structures in terms of the deformational processes that occur in the Earth. Offered in alternate years.

175. Advanced Field Geology (1-6) I, II, III. Fieldwork—3 to 18 hours. Prerequisite: course 110 or graduate standing; satisfaction of prerequisites and methods in geographic field studies. Preparation of a geologic report. May be repeated up to a total of six units, including units received for course 185.

190. Seminar in Geology (1) I, II, III. Bürgmann, Kellogg, Spero Discussion—1 hour; seminar—1 hour; written abstract. Prerequisite: major in Geology. Presentation and discussion of current topics in geology by visiting lecturers, staff, and students. May be repeated for credit. (P/NP grading only.)

192. Internship in Geology (1-12) I, II, III. The Staff (Chairperson in charge) Internship. Prerequisite: upper division standing. Project approval prior to internship; supervised work experience in geology. May be repeated for credit for a total of 10 units. (P/NP grading only.)

194A-194B. Senior Thesis (3-3) I-III. The Staff (Chairperson in charge) Prerequisite: open to geology majors who have completed 135 units and who do not qualify for the honors program. Guided independent study of a selected topic, leading to the writing of an honors thesis. (Deferred grading only, pending completion of sequence.)

194A-194HB. Senior Honors Project (3-3) I-III. The Staff (Chairperson in charge) Independent study—9 hours. Prerequisites: open to geology majors who have completed 135 units and who qualify for the honors program. Guided independent study of a selected topic, leading to the writing of an honors thesis. (Deferred grading only, pending completion of sequence.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: senior standing in geology or consent of instructor.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

206. Stratigraphic Analysis (3) III. Mount Lecture—3 hours. Prerequisite: courses 109, 109L or consent of instructor; course 144 recommended. Topics in advanced methods of stratigraphic analysis, regional stratigraphy and sedimentation, and sedimentary basin analysis. Emphasis on techniques used to interpret stratigraphic record and on current issues in stratigraphy and sedimentation. May be repeated for credit when topic differs. Offered in alternate years.

*214. Active Tectonics (3) II. Bürgmann Lecture/discussion—3 hours. Prerequisite: graduate standing or consent of instructor. Active deformation associated with faults, landslides, and volcanoes. Geodetic measurement techniques such as triangulation, trilateration, leveling, Global Positioning System (GPS) and radar interferometry. GPS data acquisition and analysis. Inversion of geodetic data and mechanical models of crustal deformation.

*215N. Stable Isotope Geochemistry (3) II. Lecture—3 hours. Prerequisite: Chemistry 110A, Mathematics 22B; or consent of instructor. Principles of equilibrium and kinetic isotope fractionation and material balance with special application to the distribution of oxygen and hydrogen isotopes in natural systems. Topics include isotope hydrology, geothermometry and paleotemperatures, igneous rocks and materials, and fluid-rock interaction. Offered in alternate years. (Former course 215B.)

216. Tectonics (3) I. Moore Lecture/discussion—3 hours. Prerequisite: course 101 or consent of instructor. Nature and evolution of tectonic features of the Earth. Causes, consequences, and evolution of plate motion, with selected examples from the Earth's deformed belts. Offered in alternate years.

217. Topics in Geophysics (3) III. Bürgmann Lecture—1 hour; seminar—2 hours. Prerequisite: consent of instructor. Discussion and evaluation of current research in a given area of geophysics. Topic will change from year to year. May be repeated for credit.

*218N. Analysis of Structures in Deformed Rocks (3) II. Twiss Lecture—3 hours. Prerequisite: courses 100, 100L, 101, 101L, 170; or consent of instructor. Recent advances in the understanding and analysis of structures in brittlely and ductilely deformed rocks. Detailed investigation of the characteristics of the structures, models for their formation, and applications to inferring the kinematics of large scale tectonics. Offered in alternate years. (Former course 218A.)

*220. Mechanics of Geologic Structures (3) II. Twiss Lecture—3 hours. Prerequisite: course 170, Mathematics 21C, Physics 9A or 5A, or consent of instructor. Mathematics 21D and 22A recommended. Development in tensor notation of the balance laws of continuum mechanics, and constitutive theories of elasticity, viscosity, and plasticity and their application to understanding development of geologic structures such as fractures, faults, dikes, folds, foliations, and boudinage. Offered in alternate years.

*226. Advanced Sedimentary Petrology (3) III. Mount Lecture—2 hours, laboratory—3 hours. Prerequisite: course 144 or consent of instructor. Advanced petrographic analysis of sediments and sedimentary rocks. Geochemical, textural and mineralogical evolution of sedimentary rocks during deposition, burial, and uplift. Laboratory work emphasizes thin section analysis.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Geophysics

282 Geophysics

analysis of rock. May be repeated for credit when topic differs. Offered in alternate years.

227. Stable Isotope Biogeochemistry (3) III.
Seminar—3 hours. Lecture—3 hours. Prerequisite: consent of instructor. Critical discussions and review of selected topics in biogeochemistry with emphasis on carbon, oxygen, nitrogen, hydrogen and sulfur stable isotopes.

228. Marine Geology (3) III.
Lecture—3 hours. Prerequisite: courses 106, 116, 150B or consent of instructor. Critical discussions on the interests of the group. Occasional field trips to the sea-bed mineral resources. Topics will vary each quarter. May be repeated twice for credit.

230. Advanced Mineralogy (3) III.
Lecture—3 hours. Prerequisite: consent of instructor. Discussion of selected topics in metamorphic mineral and high pressure phases. Mechanism of phase transformations, with emphasis on pressure-induced polymorphism. Effect of kinetics and diffusion on the behavior. Processes of exsolution, order/disorder, and crystalization. Offered in alternate years.

236. Inverse Theory in Geology and Geophysics (3) III.

238. Theoretical Seismology (3) III. McClain—Lecture—3 hours. Prerequisite: consent of instructor. Elastodynamic wave equation. Greens functions and space-time representations. Ray theory. Plane and spherical waves and boundary conditions. Elastic wave propagation in stratified media. (P/NP grading only.) Offered in alternate years.

246. Physical Chemistry of Metamorphic Processes (3) II. Day—Lecture—3 hours. Prerequisite: course 145, Chemistry 110A, or consent of instructor. Physicochemical principles of metamorphic mineral assemblages and methods of interpreting the paragenesis of metamorphic rocks. Offered in alternate years.

247. Metamorphic Petrology Seminar (3) I. Day—Seminar—3 hours. Prerequisite: course 145; course 246 recommended. Selected topics in metamorphic petrology (e.g., mass transport processes, textural settings, geothermometry, thermal structure of metamorphic belts, regional studies). May be repeated for credit when topic differs. Offered in alternate years. (SU grading only.)

250. Advanced Geochmistry Seminar (3) I. Seminar—3 hours. Prerequisite: course 115 or consent of instructor. Critical review of selected topics in geochmistry including ore genesis, hydrothermal and geothermal fluids, recent and ancient sediments, isotopic geology, origin and chemistry of the oceans. Subject varies yearly depending on student interest. May be repeated for credit in alternate years.

253. Current Topics in Igneous Petrology (3) I. Lesher—Seminar—3 hours. Prerequisite: graduate standing in Geology; course 143 or consent of instructor. Topic of seminar designed to help graduate students develop and maintain familiarity with current and past literature related to igneous rock petrogenesis. May be repeated for credit when topic differs. (SU grading only.)

254. Physical Chemistry of Igneous Processes (3) I. Lesher—Lecture—3 hours. Prerequisite: course 143 or consent of instructor. Chemistry 110A required. Chemistry 110B and 110C recommended. Introduction of modern concepts in chemical thermodynamics and kinetics, and fluid dynamics of magmatic systems for graduate students in petrology. Offered in alternate years.

255. Experimental Petrology (3) I. Lesher—Lecture—2 hours; laboratory—3 hours. Prerequisite: course 143 or consent of instructor. Introduction to techniques and methods of design and executing experiments on Earth-forming mineral and rocks. Problems and examples from igneous and metamorphic petrology will be utilized. Offered in alternate years.

260. Paleontology (3) I. Vermeij; II, Carlson—Seminar—3 hours. Prerequisite: graduate standing in geology or a biological science. Selected problems in paleontology. Subject to be studied at an organizational meeting. May be repeated for credit when topic varies.

269. Evolutionary Biology of Protista (3) I. Kellogg—Seminar—3 hours. Prerequisite: course 152N. Analysis and discussion of selected topics on the evolution of single-celled organisms with emphasis on their fossil record and biology. Offered in alternate years.

282. Geological X-Ray Spectrometric Analysis (4) III. Schiffman—Lecture—3 hours; laboratory—3-4 hours. Prerequisite: course 60-60L, Chemistry 2C, Physics 9C, and 110A required; Chemistry 110B and 110C recommended. Introduction to the X-ray fluorescence spectrometer, electron microprobe, and x-ray diffractometer. Offered in alternate years.

290. Seminar in Geology (1, 1, 1, III, Bürgmann, Kellogg, Spero—Seminar—1 hour; discussion—1 hour. Presentation and discussion of current topics in geology by visiting lecturers, staff, and students. (SU grading only.)

291. Geology of the Sierra Nevada (1) I, Day—Seminar—1 day-long session. Prerequisite: consent of instructor. Short oral presentations by students and faculty concerning their research results of their past work and plans for future work in the Sierra. A written abstract is required following the format required at professional meetings. (SU grading only.)

294. Structure/Tectonics Forum (1) I, II, III, Twiss—Seminar—1 hour. Prerequisite: graduate student in geology or consent of instructor. Seminar/discussion group to review and discuss latest research in structural geology and tectonics, and on-going research of participants. Topics will vary each quarter depending on the interests of the group. Occasional field trips to areas of current interest. May be repeated for credit when topic differs. (SU grading only.)

295. Advanced Problems in Geodynamics (3) I, II, Twiss—Seminar—3 hours. Prerequisite: courses 100 and 101 or consent of instructor. Seminar dealing with problems in geodynamics. Topics will vary. (e.g., ductile deformation mechanisms, brittle fracture, earthquake prediction, driving forces for plate tectonics, mantle convection). Emphasis on recent literature. May be repeated for credit when topic differs. Offered in alternate years. (SU grading only.)

296. Advanced Problems in Tectonics (3) I. Moores—Seminar—3 hours. Prerequisite: course 101 or consent of instructor. Seminar dealing with current problems in tectonics of selected regions. Topics will change from year to year. Emphasis on study of recent literature. May be repeated for credit. Offered in alternate years. (SU grading only.)

Professional Course

390. Methods of Teaching Geology (1) I. Mount—Discussion—1 hour. Prerequisite: graduate student standing in Geology. Discussion of methods and problems of teaching geology. Topics include departmental facilities, grading efficiency/effectiveness, Teaching Assistant/student interaction, and teaching techniques for lecturing, discussions, and problems in teaching program required for Ph.D. in Geology. (SU grading only.)

391. Ethical Issues in Earth Science (1) I. Kellogg—Seminar—1 hour. Prerequisite: graduate standing in geology or consent of instructor. Reading and discussions of ethical issues arising in the earth sciences. Topics include scientific misconduct, gender equity in science, authorship of scientific papers, establishing priorities in research, and related issues. Offered in alternate years. (SU grading only.)

Geophysics

Geophysics (College of Letters and Science)

Geophysics is study of the physical properties and processes within and surrounding the Earth. Many problems in the Earth Sciences require geophysical techniques for study. The interdisciplinary minor in geophysics is for students with backgrounds in the physical sciences, engineering and other fields who are interested in pursuing a career or professional career in geophysics, or who require a significant knowledge in the field. The curriculum reflects the student's interests. This need for such students to have a firm foundation of geophysics classes, as well as the vast diversity of subdisciplines from many departments that are included in geophysics.

The minor is sponsored by the Department of Geol. 174 Physics/Geology Building.

Minor Program Requirements:

UNITS

Geophysics .. 21-24
Engineering 5 ... 3
Geology 161, 162N 6
Applied Science Engineering 115 3
One course sequence chosen from the follow-
ing:... 9-12
a. Atmospheric Science 120, 121A, 121B; 5
b. Geology 100, 100L, 101, 101L; 4
Mathematics 118A, 118B, 118C; 4
Physics 104A, 104B, 105C.

Minor adviser. J.S. McClain, Department of Geology.
275A Physics/Geology, 752-7093.

*Course not offered this academic year.
German

(College of Letters and Science)
Gail Finney, Ph.D., Chairperson of the Department
Department Office (German and Russian), 422 Sproul Hall (916-752-2114)

Faculty
Clifford A. Bernd, Dr.Phil., Professor
Gail Finney, Ph.D., Professor
Ingeborg Henderson, Ph.D., Senior Lecturer,
Academic Senate Distinguished Teaching Award
Anna K. Kuhn, Ph.D., Professor
Fritz Sammern-Frankenegg, Dr.Phil., Lecturer
John F. Fetzer, Ph.D., Professor Emeritus
Peter M. Schaeffer, Ph.D., Professor
Emeriti Faculty
John F. Felzer, Ph.D., Professor Emeritus
Roland W. Hoermann, Ph.D., Professor Emeritus
H. Guenther Nerjes, Ph.D., Professor Emeritus
Fritz Sammern-Frankenegg, Dr.Phil., Lecturer

The Major Program

The German major explores in depth the literature, language, and culture of the German-speaking world. The General Program accommodates specifically those students who have interest lists in literary studies, while the Area Studies Emphasis addresses the needs of students wishing to obtain a broader knowledge of the contributions of the German-speaking world to fields such as music, art, history, philosophy, and economics.

The Program. The department’s primary emphasis on literary figures, movements and themes finds expression in the common core of upper division literary electives characterizing both programs. Majors desiring maximum practice in spoken and written German, as well as in listening comprehension, will find opportunities for such exposure in any of the upper division courses that are offered in German.

Career Alternatives. Completion of the major will prepare the student for graduate study in German. Both programs (general and area studies) prepare students for career opportunities in fields such as international relations, business, the sciences, and the arts, as well as permitting admission to such professional curricula as law and medicine.

A.B. Major Requirements:

Preparatory Subject Matter………………..16-27
German 1-2-3 (or the equivalent)………0-15
German 20, 21, 22…………………………12

Depth Subject Matter……………………44

General Program
German 101A, 101B, 103………………12
German 120………………..4

Three courses chosen from upper division literature offerings taught in German…12

Four additional upper division courses selected from 104–109 and 121–198, upon the explicit advance approval of the undergraduate major adviser………………..16

The above category may be satisfied in part by one or more courses in Comparative Literature, in another national literature, or from German literature-in-translation offerings (110–119, 140–142C) upon consultation with, and advance approval of, the undergraduate major adviser.

German Area Studies Emphasis
German 101A, 101B, 103………………12
German 120…………………………4

Two courses chosen from upper division literature courses that are taught in German………………..8

History 144…………………..4

Four elective courses in accordance with student’s interest………………..16

Courses chosen from at least two of the following three areas after consultation with and approval by adviser.

Humanities: History 143, Philosophy 170, 175, 176, 178
Social Sciences: Economics 174, Geography 123, Political Science 117, 137.
Fine Arts: Art 176C, 177A, 177B, Music 110A, 110C, 110D.

Special consideration is also given to such courses as those on aComparative Literature as the 164 series, where pan-European movements influential upon German literature are at issue.

Total Units for the Major………………..60-71

Minor Program Requirements:

The Department offers a German Language and Literature minor. In addition, individualized minor programs may be designed upon consultation with the undergraduate adviser.

Students are particularly encouraged to consider a minor that combines a coherent group of courses to emphasize area studies in Germany (i.e., German philosophy, the arts, history, political science, as well as literature). The purpose of the minor is to provide students with the opportunity to augment their training in other fields by acquiring proficiency in the German language and exposure to German literature and culture.

German Language and/or Literature…………20-24

Choose courses numbered from German 100 through 109B and literature courses that are taught in German………………..20-24

One lower division course from German 47 on may be counted.

Major Adviser, P. Schaeffer.

Prerequisite Credit. Credit normally will not be given on the lower division level for a course that is the prerequisite of a course already successfully completed.

Honors and Honors Program. The honors program comprises two quarters of study under course 194A-194B, which will include a research paper. See also the University and College requirements.

Teaching Credential Subject Representative. I. Henderson. See also under the Teacher Education Program.

Graduate Study. The Department offers programs of study and research leading to the M.A. degree and to the Ph.D. degree in German Literature. Additional degree options for a designated emphasis are available through departmental affiliations with the programs in Social Theory and Comparative History, Critical Theory, and Feminist Theory. Detailed information may be obtained by writing to the Department Chairperson or the Graduate Adviser.

Graduate Adviser, G. Finney.

Courses in German (GER)

Lower Division Courses

Course Placement: Students with two years of high school German normally continue in German 2; those with three years, German 3; those with four years, German 170.

1. Elementary German (5) I, II, III. Henderson in charge

Discussion—5 hours; laboratory—two 1/2-hour sessions. Introduction to German grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed German 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)

2. Elementary German (5) I, II, III. Henderson in charge

Discussion—5 hours; laboratory—1 hour. Prerequisite—course 1. Continuation of course 1 in areas of grammar and basic language skills.

3. Elementary German (5) I, II, III. Henderson in charge

Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Completion of grammar sequence and continuing practice of all language skills through cultural texts.

6. Conversational German (3) I, II, III. Henderson

Discussion—3 hours. Prerequisite: course 3. Designed to develop intermediate language skills with special emphasis on communication and grammatical accuracy. Course 6 may be taken concurrently with course 20.

10. Basic Reading German (3) I. The Staff

Discussion—3 hours. Intensive course for non-majors, providing reading proficiency of texts containing basic sentence patterns and standard general vocabulary. Outside preparation will focus on developing translation techniques with general texts.

11. Intermediate Reading German (3) II. McConnell

Discussion—3 hours. Prerequisite: successful completion of course 10 or the equivalent. Continuation of course 10. Study of advanced reading grammar to gain proficiency with texts of intermediate difficulty. (P/NP grading only.)

12. Advanced Reading German (3) III. McConnell

Discussion—3 hours. Prerequisite: successful completion of course 10 or the equivalent. Continuation of course 10. Study of advanced reading grammar to gain proficiency with texts of intermediate difficulty. (P/NP grading only.)

20. Intermediate German (4) I, II, III. The Staff Lecture/discussion—3 hours; laboratory—1 hour. Prerequisite: course 3. May be taken concurrently with course 6. Review of grammatical principles by means of written exercises; expanding of vocabulary through readings of modern texts. Not open for credit to students who have completed course 4. (Former course 4.)

21. Composition and Conversation (4) I, II, III. The Staff

Discussion—3 hours; term paper. Prerequisite: course 20 or consent of instructor. Practice in short essay writing. Discussion based on readings from a variety of German texts. Not open for credit to students who have completed course 101. (Former course 101.)

22. Composition and Conversation (4) I, II, III. The Staff

Discussion—3 hours; term paper. Prerequisite: course 21 or consent of instructor. Practice in short essay writing with an aim toward refinement and expansion of vocabulary. Discussion based on readings in a variety of German texts. Not open for credit to students who have completed course 202. (Former course 202.)

*47. Erasmus and Christian Humanism (4) II. Schaeffer

Lecture/discussion—3 hours; term paper. Erasmus is studied as a protagonist of contemporary ideas such as the equality of men and women, individual human dignity, peace and disarmament, pluralistic society and tolerance, in the context of Renaissance Europe, and his influence in the following centuries. Offered in alternate years. GE credit. ArtHum, Div. Wrt.

*48. Myth and Saga in the Germanic Cultures (4) I. The Staff

Lecture—3 hours; term paper. Knowledge of German not required. Reading in English translation from the Norse Eddas, the Volsunga Saga, Sigurd-Siegfried cycles, and the Grunn lays, literary mythology in German Romanticism culminating in Wagner’s “total art” concept and The Ring of the Nibelung cycle. May not be counted toward major in German. GE credit: ArtHum, Wrt.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Survey of the development of the German language and study of its structure in historical perspective. 107. Modern German Syntax (4) III. Benware Discussion—3 hours; term paper. Prerequisite: course 21 or the equivalent; Linguistics 1 recommended. Examination of the major problems in describing modern German sentence structure. 108. Varieties of Contemporary German (4) I. Benware Lecture—3 hours; laboratory and/or individual/group consultation on projects. Prerequisite: courses 21, 105. Study of relations between Standard language, Umgangssprachen and dialects. Approach is both descriptive and sociolinguistic. Class or individual projects on regional differences, including all of the contiguous German-speaking area of Europe. 109A. Business German (4) II. Henderson Lecture/discussion—4 hours. Prerequisite: course 22. Specialized advanced language course using business-oriented information and publications as the basis for discussions, role-play, reports, compositions and translation. 109B. Advanced Business German (4) III. Henderson Lecture/discussion—3 hours; laboratory/discussion—1 hour. Prerequisite: course 109A or consent of instructor. Specialized advanced language course designed as a sequel to German 109A. Expands on previously introduced materials and features new topics such as the Euro (European Currency System) and German company forms and the stock market. Offered in alternate years. *110. Older German Literature in English (4) I. McConnell Lecture—3 hours; discussion—1 hour. Knowledge of German not required. Analyses in English of German literature from the Middle Ages through the Reforma-
tion (Nibelungenlied, Gottfried’s Tristan and Isolde or Wolfram’s Parzival, lyric poetry, selections from Johann von Teply, Conrad Celtes, Sebastian Brant, Erasmus, Luther). GE credit: ArtHum, Wrt. *111A-H. Major Writers in Translation (4) II. The Staff Lecture—2 hours; discussion—1 hour; term paper. Examination of representative works by a major writer, set in the broader cultural context of the relevant period or movement in each case. A) Goethe; B) E.T.A. Hoffmann; C) Thomas Mann; D) Franz Kafka; (E) Bertolt Brecht; (F) Christa Wolf; (G) Günter Grass; (H) Friedrich Schiller. GE credit: ArtHum, Wrt. *112A-C. Topics in German Literature (4) I. Kuhn Discussion—3 hours; term paper. Investigation of sig-
nificant themes and issues within their European con-
text: (A) Women in Literature; (B) Anti-Hero Figures in Literature; (C) German Periodicals. Knowledge of Ger-
man not required. May be repeated in different sub-
ject area. GE credit for 112A: ArtHum, Div, Wrt. GE credit for 112B: ArtHum, Wrt. 113. Goethe’s Faust (4) I. Bernd, Schaeffer Discussion—3 hours; term paper. Intensive study of one of the great works of world literature: Parts I and II. Discussions and readings in English; reading the text in the original is encouraged GE credit: ArtHum, Wrt. *114. The Faust Tradition Before and After Goethe (4) I. The Staff Lecture—3 hours; term paper. Examines predeces-
sors of Goethe’s Faust (the German chaukbook of 1587, Marlowe’s Tragical History of Dr. Faustus of 1582), and some successors (Mann’s novel of 1947) in order to underscore key variations of this provoca-
tive and pervasive theme. Knowledge of German not required. Offered in alternate years. GE credit: ArtHum, Wrt. *115A. German Literature Since 1945 (4) I. Menges Lecture—3 hours; written reports—1 hour. Knowledge of German not required. Reading of major writers including the post-war generation of Austria, Switzerland and Western Germany. Discussion of novelists like Böll, Grass, Johnson, Walser, Handke; playwrights such as Frisch, Dürenmatt and Hochhuth, and poets like Celan, Enzensberger, and Aichinger. GE credit: ArtHum, Wrt. *117A. German Literature since 1945 (4) I. Kuhn Lecture—3 hours; written reports—1 hour. Knowledge of German not required. Reading and discussion of the literature of the German Democratic Republic (East Germany), the theory of literature in the social-
ist world, the practice of this literature as exemplified in such authors as Strittmatter, Seghers, Wolf, Kant, Hackes. *116. From Goethe’s Werther to Today’s Werthers (4) II. The Staff Lecture—3 hours; discussion—1 hour; written reports. Comparision of Germany’s first international best-
seller, Goethe’s The Sufferings of Young Werther (1774) with its later counterparts, culminating in Plen-
zdorff’s novel of 1973 The New Sufferings of Young W. GE credit: ArtHum, Wrt. *117A. The Tristan Tradition: Medieval, Musical, Modern (4) III. McConnell Lecture—3 hours; term paper. Three different modes of the Tristan and Isolde legend: the medieval epic poem Gottfried of Straasburg (1210), the music drama of Wagner (1869) and Thomas Mann’s parodic

*Course not offered this academic year.
*118E. Contemporary German Culture (4) II. Menges
Lecture—2 hours; discussion—1 hour; term paper. Through an introduction into the political, economic, social, and cultural scene of Germany today (Austria and Switzerland marginally included). Historical background and contemporary perspectives. Readings from a broad variety of sources, films and videotapes. Knowledge of German not required. Offered in alternate years. GE credit: ArtHum, Wrt.

*119. From German Fiction to German Film (4) II. The Staff
Lecture—3 hours; discussion—1 hour; term paper. Examines a number of film adaptations of major German prose works and plays to ascertain the types of changes involved in the shift from page to screen and the positive and negative effects achieved by such transfers. GE credit: ArtHum, Wrt.

120. Survey of German Culture (4) III. Fetzter
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21. Major developments in such areas of German life as the arts, philosophical thought, social institutions, and political history.

*121. The Medieval Period in German Literature (4) I. Menges
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Literary-philosophical profile of the Mittelalterliche Blützeit in terms of the significant epics, romances, and lyric poetry. Readings in modern German.

*122A. Humanism and Reformation (4) I. Schaeffer
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Exemplary literary works of the sixteenth century tracing the principal lines of development and showing the reflection in literature of the social scene.

*122B. The Literary Baroque (4) II. Schaeffer
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Exemplary literary works of the seventeenth century tracing the principal lines of development and showing the reflection in literature of the social scene.

*123. Literature of the Classical Age (4) I. Bernd
Lecture—3 hours; term paper. Prerequisite: course 21. A critical assessment of principal works of Goethe and Schiller in their development from Sturm und Drang individualism and rebellion to the balanced harmony of the classical period.

*124A-D. Major Movements in German Literature (4) I, II, III. III. The Staff
Lecture—3 hours; term paper. Prerequisite: course 21 or the equivalent. Examination of significant movements and schools, with particular emphasis on the broader cultural dynamics and ideologies as these apply to individual literary works. (A) Sturm und Drang; (B) Romantik; (C) Naturalismus; (D) Expressionismus.

125. Short Fiction Around 1900 (4) III. Schaeffer
Lecture—3 hours; term paper. Prerequisite: course 21. Representative short German fiction in the fin-de-siècle period, to attain conversation with various prose styles and the cultural currents they reflect.

*126. Modern German Literature (4) I. Menges
Lecture—3 hours; term paper. Prerequisite: course 21. Selections from the significant works of major twentieth-century writers, such as Hesse, Mann, Kafka, Riike, Brecht, Grass. May be repeated for credit with consent of Undergraduate Major Advisor.

127A-G. Studies in Major Writers (4) III. The Staff
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 21 or the equivalent. Examination of representative works of a major writer, set in the broader cultural context of the relevant period or movement in each case: (A) Lessing; (B) Goethe; (C) Kafka; (D) Riike, George and Hofmannsthal; (E) Brecht; (F) Wolfgang Kiest; (G) Course presentation in German. May be repeated for credit when subject area differs.

128A-128B. Topics in German Literature (4) I. Kuhn
Lecture—3 hours; term paper. Prerequisite: course 21 or the equivalent. Examination of significant themes and issues within their European context: (A) Frauen in der Literatur; (B) Der Künstler als literarischer Held.

*129. Postwar Women Writers (4) III. Finney
Lecture—3 hours; term paper. Prerequisite: course 21. Survey of major women writing in German since 1945. Considers such issues as the existence of "feminine" writing and of a feminist aesthetics. Writers include Seghers, Bachmann, Wolf, Kirsch, Morgen, Wohmann, Stefan, and Schwaiger.

130. Modernity and its Discontents: the Tradition of German Critical Critique (4) I. Menges
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 21. Inquiry into the art of the "Novelle" through analysis of the materials and formal devices of representative authors from Goethe to Kafka.

*133. The German Drama (4) III. Bernd
Lecture—3 hours; term paper. Prerequisite: course 21. Readings in the works of Germany’s leading dramatists from the seventeenth century to the present day, such as Lessing, Goethe, Schiller, Kleist, Hebbel, Hauptmann, Brecht.

134. Topics in German Intellectual History (4) II. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Topics in German intellectual history with materials from a number of periods, genres, and disciplines. May be repeated twice for credit when topic differs. Offered in alternate years.

*140. German Political Literature from the Middle Ages to the Present (4) III. McConnell
Lecture—3 hours; discussion—1 hour. Examination of the relationship of art to politics in German literary history from the time of Walther von der Vogelweide in the Middle Ages through the Reformation, the period of Romanticism, and the Twentieth Century. GE credit: ArtHum, Wrt.

*141. The Holocaust and its Literary Representation (4) I. Menges
Lecture—2 hours; discussion—1 hour; term paper. Knowledge of German not required. Aesthetic representation and metaphorical transformation of the holocaust in its human and historical perspectives. Offered in alternate years. GE credit: ArtHum, Wrt.

*142C. New German Cinema: From Oberhausen to the Present (4) I. Schaeffer

*143. Contemporary German Press (4) I. Schaeffer
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Study of contemporary German-language newspapers and magazines for insight into political and cultural developments in German-speaking countries. Discussion of contents. Critical approaches. Writing of summaries, rebuttals, comments.

144. Marx, Nietzsche, Freud (4) I. Finney
Lecture/discussion—3 hours; term paper. Study of major texts of these thinkers, selected with an eye to their impact on 20th-century economics, ethics, and attitudes toward eros. Particular focus on conceptions of the self and the individual’s relation to society. Taught in English. Offered in alternate years.

145. The Literature of Deviance: Mann, Hesse, Kafka (4) II. Finney
Lecture/discussion—3 hours; term paper. Close study of selected prose works as representative of modernism’s fascination with lost innocence and the philosophical alienation. Attention to the nuanced portrayal of deviance through formal innovations in fiction. Taught in English. Offered in alternate years.

*150. Contemporary German Literature (4) I. Kuhn
Lecture—3 hours; term paper. Prerequisite: course 21 or the equivalent. Readings in contemporary literature, including texts by Christa Wolf, Helga Königsdorf, Monika Maron, Günter Grass, Peter Schneider, Günter de Bruyn. Offered in alternate years.

*160. Love in the Middle Ages (4) I. McConnell
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21. Analysis of the phenomenon of love in selected medieval lyric poetry and romance from the twelfth and thirteenth century Blützeit. Origins of courtly love, love and individualism, love and the Church.

*165. The German Epigram (4) I. Schaeffer
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Survey of the German epigram from its beginnings to the present, tracing the origins and development of the genre, its place in European literature and its function as a mirror of the history of ideas.

*166. Die Meistersinger (4) III. Schaeffer
Lecture/discussion—3 hours; listening—1 hour. Prerequisite: course 21. Wagner’s music-drama Die Meistersinger von Nürnberg against the backdrop of the city’s cultural history, the practice of Meistersang and the historical Hans Sachs, to show the relationship of words to music, and the resulting music-drama as an eminently humanistic work. Offered in alternate years.

167. Ribalday in German Literature (4) III. Schaeffer
Lecture/discussion—3 hours; term paper. Prerequisite: completion of course 21 or consent of instructor. Survey of German literature from late Middle Ages to Age of Goethe, focusing on ribalday, i.e., earthy humor close to everyday life, sometimes for its own sake, more often as social satire or the promotion of causes such as the Reformation. Offered in alternate years.

168. Multiculturalism in German Literature (4) II. Schaeffer
Lecture/discussion—3 hours; term paper/discussion—1 hour. Prerequisite: course 21. Experiences of German literature in which “encounter with the other” is thematic. Going from the High Middle Ages to mid-20th century, these examples reflect contact with people of different beliefs and cultures and inner-German minorities. Offered in alternate years.

*176. The Kunstmärchen in German Literature (4) III. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Development of the German “fantasy” or magical, tale—beginning with Grimmeislohausen and Goethe’s epoch-making Das Märchen, focusing on Romanticism’s poet figure as hero-messiah in the Erzählungenform and fairy-tales, modern variants as in Hoffmannsthal, Kafka, and Brecht.

*185. The Age of Bismarck (4) III. Bernd
Lecture—3 hours; term paper. Prerequisite: course 21. Study of notable literary repercussions that took place in Germany after Bismarck set its peak during the age of the Iron Chancellor. The poetry of Storm, the prose of Fontane, the drama of Hauptmann.

192. Field Work in German (1-12) I, II, III. Henderson
Internship—3 hours. Prerequisite: course 109A. Internship with several German companies. Participation in various business activities where expertise in
German

German is expected and further developed. (P/NP grading only.)

194HA-194HB. Honors Program (3-3) I.-II. The Staff (Chairperson in charge) Independent study—2 hours; term paper. Prerequisite: open only to majors with a 3.5 minimum GPA in at least 135 graduation units. (A) Research of an integrative nature (either “General” or “Area Studies Emphasis” fields of major), guided by thesis advisor chosen by student; (B) Writing of Honors Thesis on topic selected by student in consultation with thesis advisor only. Deferred grading only, pending completion of course sequence.)

197T. Tutoring German (2-4) I. Henderson Lecture—2-4 hours; term paper. Prerequisite: course 21. Tutoring and leading of special discussion sections in first-year language classes. Offers teaching opportunities under guidance of staff after initial observation period. Exposure course participants to all phases of language teaching; instant feedback and discussion. (P/NP grading only.)

198. Directed Group Study (1-5) I.-III. The Staff (Chairperson in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduate Students I.-III. I., II., III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

*202. Middle High German (4) I. McConnell Discussion—3 hours; lecture—1 hour. Outline of grammar; selections from Middle High German epic, romance, and lyric poetry.

*210. Techniques of Literary Scholarship (4) I. The Staff Seminar—3 hours; term paper. The bibliographical, organizational, and methodological tools and resources for advanced, independent research.

*211. Concepts in Literary Theory (4) I. Menges Seminar—3 hours; written reports. Advanced course in concepts of literary theory and criticism. Discussion of the emergence of theoretical concepts and their impact on the understanding and appreciation of literary works. Discussion in German and English, readings in German.

*212. Contemporary Approaches to Literary Theory (4) I. Finney Seminar—3 hours; term paper. Study of contemporary theoretical approaches such as structuralism, deconstruction, feminism, Marxism/ Frankfurt School, and postmodernism in conjunction with the works of major authors.

*239. Narrative and Narrative Theory (4) I. Finney Seminar—3 hours; term paper. Studies, in a theoretical historical context, major elements of 19th- and 20th-century narrative, such as techniques of framing, refraction, and montage; narrative perspective; mimetic; and self-consciousness. Focuses on paradigmatic prose texts along a spectrum of critical approaches. Offered in alternate years.

*240. Forms of German Verse (4) II. Bernd Seminar—3 hours; term paper. The development of German verse from the Middle Ages to the present, with special emphasis on different techniques of text analysis and interpretation. May be repeated for credit with consent of instructor. Offered in alternate years.

*241. The German Drama (4) I. Finney Seminar—3 hours; term paper. The major forms of German drama from its origins to the middle of the twentieth century. May be repeated for credit with consent of instructor.

*242. The German Novel (4) II. Bernd Seminar—3 hours; term paper. The major German Novelisten, with particular emphasis on the flowering of this genre in the nineteenth century. May be repeated for credit with consent of instructor.

*243. Fontane and the Rise of the Modern German Novel (4) II. Bernd Seminar—3 hours; term paper. Fontane, the father of the modern German novel, and the chief German representative of the European novel at its greatest, in the context of the nineteenth-century European political and social scene.

*244. Gender and Comedy (4) III. Finney Seminar—3 hours; term paper. Studies of genre and gender in German-language comedy by male and female writers from the 18th century to the present. Authors treated include Lessing, Kleist, Büchner, Ebner-Eschenbach, Hauptmann, Hofmannsthal, Frisch, Langer, and Jelinek. Offered in alternate years.

*252. The Writings of Lessing (4) I. The Staff Seminar—3 hours; term paper. Study of Lessing's theory of literature with particular emphasis upon his critical attacks on French drama.

253. Goethe (4) I. Bernd Seminar—3 hours; term paper. Study of the origins of Goethe's thought in German Pietism, and his principal artistic, autobiographical, scientific, and philosophical works.

*254. Schiller (4) III. The Staff Seminar—3 hours; term paper. A critical analysis of Schiller's major works with special attention to his impact on the intellectual climate in Germany during the late eighteenth and early nineteenth centuries.

*255. Aesthetics in the Age of Goethe (4) I. Menges Seminar—3 hours; term paper. Prerequisite: German 200A, 200B, 200C. Focuses on the emergence of aesthetic autonomy from eighteenth-century normative poetics during the Age of Goethe. This involves the shift from a model based on the imitation of nature (and the Ancients) to a new concept grounded in the individuality of aesthetic experience.

*257. Heinrich von Kleist (4) III. Bernd Seminar—3 hours; term paper. Kleist's important dramatic and prose works; special attention will be given to the peculiar hermeneutic problems in modern German, French, and Anglo-American Kleist criticism.

*258. The Novels of Thomas Mann (4) II. Menges Seminar—3 hours; term paper. Reading of selected novels with emphasis on aesthetic techniques, originality, ethical and political views, and influence on the contemporary literary scene in Germany.

*259. Studies in Kafka (4) II. The Staff Seminar—3 hours; term paper. Study of Kafka's narrative techniques with special emphasis in the shorter works on the existential development from its roots to expressionism.

*260. The Poetry of Rilke (4) I. Menges Seminar—3 hours; term paper. Study of principal motifs, myths, images, and problems in the poetry of Rainer Maria Rilke.

*261. Brecht and the Epic Theater (4) III. Menges Seminar—3 hours; term paper. A reading of Brecht's works with emphasis on the ideas which impelled the development of new literary forms and concepts.

*262. Studies in Turn-of-the-Century Culture (4) II. Finney Seminar—3 hours; term paper. Investigates literary currents in turn-of-the-century Germany and Austria against the background of contemporaneous developments in psychology, the visual arts, philosophy, and music. Authors treated include Hauptmann, Holz and Schilf, Schnitzler, T. Mann, Wedekind, Musil, Hofmannsthal. Offered in alternate years.

270A. Research in a Period or Topic (4) I., II., III. The Staff (Chairperson in charge) Discussion—1 hour; term paper. Individual guided research, under the supervision of a faculty member, in the specialized study of a period or topic. The topic is determined by the student in consultation with a faculty advisor. May be repeated for credit with consent of instructor.

270B. Basic Research for the Dissertation (4) I., II., III. The Staff (Chairperson in charge) Individual instruction from a faculty member—1 hour. Prerequisite: course 270A. Individually guided intensive research, under the supervision of a faculty member, designed to develop expertise and generate basic materials (such as a detailed outline and bibliography) for the dissertation topic. Required for Ph.D. candidates prior to the Qualifying Examination.

270C. Basic Research for the Dissertation (4) I., II., III. The Staff (Chairperson in charge) Individual instruction from a faculty member—1 hour. Prerequisite: course 270B. Individually guided intensive research, under the supervision of a faculty member, designed to develop expertise and generate basic materials (such as a detailed outline and bibliography) for the dissertation topic. Required for Ph.D. candidates prior to the Qualifying Examination.

*285. Middle High German Literature (4) III. McConnell Seminar—3 hours; term paper. Prerequisite: course 202 or consent of instructor. Extensive reading of Middle High German texts in the original language. Examines linguistic and literary problems. May be repeated for credit with change of subject matter and consent of instructor.

*288. The Renaissance and Reformation in German Literature (4) I. Schaeffer Seminar—3 hours; term paper. The “Elegantiaideal” and the varying methods used to portray it in seven- teenth-century German literature. May be repeated for credit with consent of instructor.

*290. The Enlightenment in German Literature (4) I. The Staff Seminar—3 hours; term paper. Revolt against the concept of the “Elegantiaideal,” and evolution of a new literature based on reason and wit. May be repeated for credit with consent of instructor.

*292. Sentimentality and “Sturm und Drang” in German Literature (4) III. Menges Seminar—3 hours; written reports. Reaction to overemphasis on reason: theories of Hamann and Herder and works of poets such as Lenz, Leisewitz, the early Goethe and Schiller. May be repeated for credit with consent of instructor.

*293. The Classical Age of German Literature (4) III. Bernd Seminar—3 hours; term paper. Inquiry into the aesthetic and humanistic qualities of Germany’s greatest literary epoch. May be repeated for credit with consent of instructor.

294. The Romantic Period in German Literature (4) I. Menges Seminar—3 hours; term paper. Survey of the works of early nineteenth-century authors in reaction against the age of classicism. May be repeated for credit with consent of instructor.

*295. Poetic Realism in German Literature (4) I. Bernd Seminar—3 hours; term paper. Outstanding figures in German literature between 1840 and 1890. Important phases in their developments will be treated. May be repeated for credit with consent of instructor.

*296. Twentieth-Century German Literature (4) I. Kuhn Seminar—3 hours; term paper. Considers the revolt of the Hauptmann generation, symbolism, expressionism, and the chief currents of the contemporary scene. May be repeated for credit with consent of instructor.

297. Special Topics in German Literature (4) I., II., III. The Staff Seminar—3 hours; term paper. Various special topics in German literature, which may cut across the more usual period and genre rubrics. May be repeated for credit when topic differs.

298. Group Study (1-5) I., II., III. The Staff (Chairperson in charge)
History

(1-12) I, II, III

The Staff

(Chairperson in charge)

(S/U grading only)

Preparatory Subject Matter

(Plan I or II)

Five lower division courses, including at least two from each of the following two fields:....20

a. Western Civilization: History 4A, 4B, 4C, 3, 10, 30

b. Asian Civilization: History 8, 9A, 9B

c. United States and Latin America: History 17A, 17B, 72A, 72B

d. Africa: History 15

A.B. Major Requirements:

UNITS

Preparatory Subject Matter

(Plan I or II)

History

(5) I, II, III

See Classics

See Religious Studies

Greek

Latin

Society

The Program

A student electing a major in History may complete Plan I or Plan II. Plan I enables students to receive a broad education in histories of several geographic areas. Plan II encourages interested students, including those preparing for graduate work in history, to enroll in a seminar, to undertake independent work, and to study the history of history as part of the major. Students preferring more active engagement in research and writing are encouraged to follow Plan II.

Career Alternatives. A degree in history is excellent preparation for a professional career such as teaching, law, journalism, public administration, or business management. Professional schools in these and related fields are looking for students who can weigh conflicting evidence, evaluate alternative courses of action or divergent points of view, and express conclusions logically in everyday language. These analytical skills are stressed in history classes, and their mastery gives the history student a solid preparation for subsequent training in a specialized career.

A.B. Major Requirements:

UNITS

Preparatory Subject Matter

(Plan I or II)

Five lower division courses, including at least two from each of the following two fields:....20

a. Western Civilization: History 4A, 4B, 4C, 3, 10, 30

b. Asian Civilization: History 8, 9A, 9B

c. United States and Latin America: History 17A, 17B, 72A, 72B, 85, 66

d. Africa: History 15

Depth Subject Matter—Plan I

Four upper division courses from one of the fields of concentration listed below, one course from one of the other fields of concentration listed below, and one course from the following:

History 101, or 102, or 103 (in field of concentration) 4-5

Total Units for the Major

Plan I

65-66

Depth Subject Matter—Plan II

Four upper division courses from one of the fields of concentration listed below, including a two-quarter sequence of courses:

History 102 in field of concentration (in exceptional circumstances, a student may with the permission of an adviser, take the seminar in another field) 5

History 103 in field of concentration 4

Total Units for the Major

Plan II

64-65

Fields of Concentration

Within broad fields, a student may wish to concentrate some of the courses in a particular area or period, such as China or Great Britain or Medieval Europe. Special approval is not required.

History and Philosophy of Science

Courses from the History and Philosophy of Science program may count toward the History major. History and Philosophy of Science 130A fulfills upper division requirements in the field of pre-industrial Europe. History and Philosophy of Science 135B, 150, and 180 fulfill upper division requirements in either the U.S. or Modern Europe field.

Students can create a field in the History of Science upon consultation with a faculty adviser. They may draw upon the relevant History courses (History 85, 86, 135A, 135B, 185A, and 185B) as well as History and Philosophy of Science offerings to do so.

Consult the History and Philosophy of Science program for a more detailed description of course offerings in this area and the minor in History and Philosophy of Science.

Major Advisers.

Minor Program Requirements:
The minor in History consists of five upper division courses chosen so that at least three courses are in one field and at least one course is in another field. The courses chosen from among those defined in the catalog for the major. However, students may also, in consultation with and the authorization of a faculty adviser, define other thematic fields.

UNITs
History

Graduate Study. The Department of History offers programs of study and research leading to the M.A. and Ph.D. degrees in history. Detailed information may be obtained from the Graduate Adviser, Department of History.

American History and Institutions. This University requirement can be satisfied by passing any one of the following courses in History: 17A, 17B, 72A, 72B, 170A, 170B, 170C, 171A, 171B, 174A, 174B, 174C, 175A, 175B, 175C, 176A, 176B, 177A, 177B, 180A, 180B, 183A, 183B. The upper division courses can be used only with the consent of the instructor. (See also Undergraduate requirements.)

Courses in History (HIS)

Lower Division Courses

3. Cities: A Survey of Western Civilization (4) I.
 The Staff

4A. History of Western Civilization (4) I, II, III.
 The Staff
 Lecture—3 hours; discussion—1 hour. Development of western civilization from the Renaissance to the Twentieth Century. GE credit: ArtHum, Wrt.

4B. History of Western Civilization (4) I, II, III.
 The Staff
 Lecture—3 hours; discussion—1 hour. Growth of western civilization from late antiquity to the Renaissance. GE credit: ArtHum, Wrt.

5A. American History and Institutions (4) I, II, III.
 The Staff
 Lecture—3 hours; discussion—1 hour. American history and institutions since 1810; political, social, and cultural development. GE credit: ArtHum, Wrt.

5B. American History and Institutions (4) I, II, III.
 The Staff
 Lecture—3 hours; discussion—1 hour. Survey of American history from the rise of cities (ca. 2000 B.C.) to the present, emphasizing themes in religious, social, and political organization, and art and literature that reflect cultural interaction and change. GE credit: ArtHum, Wrt.

7A. History of the United States (4) I, II, III.
 The Staff
 Lecture—3 hours; discussion—1 hour. History of the United States, focusing on its geographic area where they plan to study abroad. To receive a history degree from UC Davis, students must complete at least 18 upper division units in the history major at UC Davis (which can include History 101, 102, 103). The remaining major requirements can be fulfilled abroad provided that (a) the course should be evaluated as at least four UC upper division units, methodology, and interpretations.

25. Thematic History Seminar (4) I.
 The Staff
 Seminar—3 hours; term paper. Prerequisite: freshman or sophomore standing. Explores in-depth a historical topic related to the research interests of the instructor. Addresses historical questions, controversies, methodology, and interpretations.

30. Russian Cultural History (4) I.
 The Staff
 Lecture—3 hours; discussion—1 hour. Survey of Russia's history over the last thousand years as reflected in the lives of her political leaders, artists, and rebels. Lectures will use the biographies of Russian political leaders, intellectuals and artists to illustrate the general currents of the country's political, social, and cultural development. GE credit: ArtHum, Wrt.

72A. Social History of American Women and the Family (4) I, II.
 Rosen
 Lecture—3 hours; discussion—1 hour. Social and cultural history of women, sex roles and the family from colonial America until the late nineteenth century. Emphasizes changes resulting from the secularization, commercialization, and industrialization of America. GE credit: ArtHum, Wrt.

72B. Social History of American Women and the Family (4) I, II.
 Rosen
 Lecture—3 hours; discussion—1 hour. Social and cultural history of women, sex roles, and the family in twentieth-century America, emphasizing female reformers and revolutionaries, working class women, consumerism, the role of media, and the “feminine mystique.” Changes in family life, and the emergent women's movement. GE credit: ArtHum, Wrt.

 Smith
 Seminar—4 hours; term paper. Prerequisite: consent of instructor. History of the attitudes and behavior of Americans toward their natural environment and their technology, from colonial times to the present. No final examination. Limited enrollment. GE credit: ArtHum, Wrt.

86. Quackery and Pseudoscience in America (4)
 Lecture—3 hours; tutorial supervision of research paper. History of humbug and pseudoscience in America: witchcraft, medical quackery, spiritualism, science hoaxes, technological frauds, literary and art forgers, UFOs, parapsychology, astrology, paranormal phenomena. Emphasis upon explanations for the existence of deception and pseudoscience.

98. Directed Group Study (1-5)
 The Staff
 (Chairperson in charge)
 Prerequisite: consent of instructor. Primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5)
 The Staff
 (Chairperson in charge)
 (P/NP grading only.)

Upper Division Courses

101. Introduction to Historical Thought and Writing (3) I, II.
 The Staff
 Lecture/discussion—4 hours; term paper. Prerequisite: consent of instructor. Study of the history of historiographical thought and writing, analysis of critical and speculative philosophies of history and evaluation of modes of organization, interpretation, and style in historical writing.

102A-R, X. Undergraduate Proseminar in History (3) I, II, III.
 The Staff
 Seminar—3 hours; term paper. Designed primarily for history majors. Intensive reading, discussion, research, and writing in selected topics in the various fields of History: (A) Ancient History; (B) Early Christian and Medieval History; (C) Renaissance and Reformation; (D) Modern Europe since 1815; (E) Modern Europe since 1815; (F) Russia; (G) China since 1800; (H) China since 1800; (I) Britain; (J) Latin America since 1810; (K) American History to 1877; (L) United States since 1877-1966; (M) Latin America to 1877; (N) Japan; (O) Africa; (P) Christianity and Culture in
Europe, 50-1850. (Q) India; (R) Muslim Societies; (X) Comparative History, selected topics in cultural, political, economic, and social history that deal comparatively with more than one geographic field. May be repeated for credit. Limited enrollment.

103A. Topics in Historical Research (4) The Staff (Chairperson in charge) Discussion—3 hours. Individual consultation with instructor; term paper. Prerequisite: consent of instructor. Individual research resulting in a research paper on a specific topic in one of various fields of history. May be repeated for credit.

104A. Introduction to Historical Research and Interpretation (4) I. The Staff Seminar—3 hours; term paper. Prerequisite: acceptance into History Department Honors Program. Directed reading and research aimed at preparing students to select appropriate topics and methodologies for a senior honors essay and to situate their topics within a meaningful, broad context of historical interpretations. Culminates in the submission of a full prospectus for an honors essay.

104B. Honors Tutorial (4) The Staff Tutorial—4 hours. Prerequisite: course 104A. Research in preparation of a senior honors thesis under the direction of a faculty adviser. (Deferred grading only, pending completion of sequence.)

104C. Honors Tutorial (4) The Staff Tutorial—4 hours. Prerequisite: course 104A and 104B. Completion of a senior honors thesis under the direction of a faculty adviser.

110. Themes in World History (4) Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing; at least 6 units in history. Issues in world history from 1400 to the present. Topics will emphasize the interaction of diverse regions of the world as well as common patterns of historical change. Offered in alternate years. GE credit: ArtHum.

111A. Ancient History (4) III. Spyridakis Lecture—3 hours; discussion or paper (student option). History of ancient empires of the Near East and of their historical legacy to the Western world. GE credit: ArtHum.

111B. Ancient History (4) II. Spyridakis Lecture—3 hours; discussion or paper (student option). Political, cultural and intellectual study of the Greek world from Minoan-Mycenaean period to end of Hellenistic Age. GE credit: ArtHum.

111C. Ancient History (4) I. Spyridakis Lecture—3 hours; discussion or paper (student option). Development of Rome from earliest times. Rise and fall of the Roman Republic; the Empire to 476 A.D. GE credit: ArtHum.

115A. History of West Africa (4) II. Brantley Lecture—3 hours; written reports. Prerequisite: courses 4A, 4B, 4C recommended. Introductory survey of the history of West Africa and the Congo region from the earliest times to the present. GE credit: ArtHum, Div.

115B. History of East and Central Africa (4) Brantley Lecture—3 hours; written reports. Prerequisite: course 115A recommended. Introductory survey of the history of East and Central Africa from 1000 to the present. Discusses the formation of independent nation states in its place. Open for credit to students who have received credit for former course 137B. GE credit: ArtHum.

115C. History of Southern Africa, Swaziland, Lesotho, and Botswana from 1500 to the Present (4) III. Brantley Lecture—3 hours; written reports. Prerequisite: courses 115A and 115B recommended. Historical survey of the Southern African, including South Africa, Swaziland, Lesotho, and Botswana from 1500 to the present. GE credit: ArtHum, Div.

116. African History: Special Themes (4) The Staff Lecture—3 hours; term paper. Prerequisite: courses 115A and 115B recommended. Themes of African history, such as African states and empires, slave trade, relationship of Egypt to rest of Africa, Bantu origins and migrations, and French policy of Assimilation and Association. GE credit: ArtHum.

115A. History of Science to the 18th Century (4) I. The Staff Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Survey of the historical development of science, technology, and medicine from the ancient world to the eighteenth century, with special emphasis on Isaac Newton as the culmination of the seventeenth century scientific revolution. GE credit: ArtHum.

115B. History of Science, 18th to 20th Centuries (4) II. The Staff Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing. Survey of the historical development of scientific thought in geography, biology, chemistry, physics, and cosmology from the eighteenth to the twentieth centuries. Emphasis on emergence of broad explanatory principles that serve more than one science. GE credit: ArtHum.

136. Scientific Revolution (4) II. Findlen Lecture/discussion—3 hours; term paper. Prerequisite: course 135A or 135B recommended. History of science in Western Europe (1400-1750). Investigates the changing definitions of science in the age of Copernicus, Galileo, and Newton. Considers the evolution of new ideas about nature, experiment, observation, and scientific theory. GE credit: ArtHum, Wrt.

138A. Russian History: The Rise of the First Empire, 1500-1881 (4) I. Brower Lecture—3 hours; term paper. Prerequisite: courses 4B and 4C recommended. Expansion of the Russian state in Muscovite and imperial era. Emphasis on autocratic rule, the incorporation of non-Russian peoples, and the rise of a Russian as a Great Power. Only two units of credit will be allowed to students who have completed former course 137B. GE credit: ArtHum, Wrt.

138B. Russian History: The Russian Revolution, 1880-1917 (4) I. Brower Lecture—3 hours; term paper. Prerequisite: courses 4B and 4C recommended. History of the fall of the Russian Empire and of the Revolution of 1917. Not open for credit to students who have received credit for former course 138. GE credit: ArtHum, Wrt.

138C. Russian History: The Rise and Fall of the Soviet Union, 1917 to the Present (4) III. Brower Lecture—3 hours; term paper. Prerequisite: courses 4B and 4C recommended. The emergence of the Soviet Union as a socialist system and a Great Power; the decline and collapse of the Soviet Union and the formation of independent nation states in its place. Not open for credit to students who have completed former course 137C. GE credit: ArtHum, Wrt.

139A. Medieval and Renaissance Medicine (4) III. Findlen Laboratory/discussion—3 hours; term paper. History of medicine, circa 1000-1700. Revival of ancient medicine; role of the universities; development of anatomy, chemistry and natural history; ideas about the body; cultural understanding of disease; hospital and the public health system. Offered in alternate years. GE credit: ArtHum or SciSc, Wrt.

139B. Medicine, Society, and Culture in Modern Europe (4) III. Kudlick Lecture—2 hours; discussion—1 hour; term paper. History of medicine in Europe, 18th to 20th centuries, by examining the development of medical knowledge in epidemiology and anatomy; function of this knowledge, how it changed with technological breakthroughs and professionalization; and role of medicine in attitudes toward poverty, women, race, disease. Offered in alternate years. GE credit: ArtHum or SciSc, Wrt.

139C. The Age of Ideas (4) The Staff Lecture—3 hours; written reports. The Enlightenment and its background in the seventeenth century. GE credit: ArtHum.

134A. The Age of Revolution (4) I. The Staff Lecture—3 hours; written reports. Ideas and institutions during the French Revolution and the Napoleonic era. GE credit: ArtHum.
History

141. France Since 1815 (4) II. Margadant
Lecture—3 hours; term paper. GE credit: ArtHum, Wrt.

142. Why the Holocaust? (4) II. The Staff
Lecture—3 hours; term paper. Long- and short-term causes of the Holocaust; the emancipation of Euro- pean Jews; origins of modern anti-Semitism; national- ity question in central Europe; anti-Semitism and German politics; Nazism and mass murder; re- sponses by victims and bystanders. GE credit: ArtHum, Div, Wrt.

143. History of Eastern Europe and the Balkans (4) II. Hagen
Lecture—3 hours; essays. History of the Baltic, Danu- bian, and Balkan lands since the Middle Ages. National cultures and conflicts in the Polish Common- wealth and the Habsburg and Ottoman Empires; nationalist movements, 1789-1914; the twentieth cen- tury, including an analysis of the contemporary scene. GE credit: ArtHum, Div, Wrt.

144. History of Germany since 1648 (4) II. Hagen
Lecture—3 hours; essays. Social and political history of German politics; the course of foreign relations; social change. Focus on the work of Baudelaire, Wagner, Nietzsche, Freud, Weber and Kafka. GE credit: ArtHum, Wrt.

145. War and Revolution in Europe, 1789-1918 (4) II. Margadant
Lecture—3 hours; term paper. Survey of revolution- ary movements, international crises, and wars in Europe from the French Revolution to World War I. GE credit: ArtHum, Wrt.

146A. Europe in the Twentieth Century (4) II. Willis
Lecture—3 hours; term paper. Survey of the history of Europe since 1939. GE credit: ArtHum, Wrt.

147A. European Intellectual History, 1800-1870 (4) I. Safer
Lecture—3 hours; term paper. European thought in the early industrial era. Shifting cultural frameworks, from romanticism to scientism, liberal and socialist reactions to social change. Focus on the work of Goethe, Hegel, J.S. Mill, Marx, Darwin and Flaubert. GE credit: ArtHum or SocSci, Wrt.

147B. European Intellectual History, 1870-1920 (4) II. Safer

147C. European Intellectual History, 1920-1970 (4) II. Safer
Lecture—3 hours; term paper. European thought and culture since World War I. Coverage includes: litera- ture and politics; Communism and Western Marxism; Fascism, Extremism, Structuralism; Feminism; Par- ticular attention to Lenin, Brecht, Hitler, Sartre, Camus, Beckett, Marcuse, Foucault, Wollof and de Beauvoir. GE credit: ArtHum or SocSci, Div, Wrt.

148A. Women and Society in Europe: 1500-1780 (4) II. Kudlick
Lecture—3 hours; term paper. Prerequisite: course 4B recommended. Roles and perceptions of women from the French Revolution to World War I, pri- marily in France and England. Emphasis on social and economic developments within a looselychrono- logical and comparative framework. GE credit: ArtHum, Div, Wrt.

151A. England: The Middle Ages (4) III. J. Stitch

151B. England: The Early Modern Centuries (4) The Staff
Lecture—3 hours; term paper. Prerequisite: courses 4A, 4B; course 151A recommended. From Lancaster and York to the Glorious Revolution. Includes growth of the Church of England; beginnings of modern worldwide economy; rise of the gentry and parlia- ment; thought, arts, and literature in the times of More, Shakespeare, Hobbes, Wren, and Newton. GE credit: ArtHum, Wrt.

151C. Eighteenth-Century England (4) I. Landau
Lecture—3 hours; term paper. English history from the Glorious Revolution to the French Revolution. Exami- nation of the transformation of one of Europe’s most politically unstable states into the firmly esta- blished constitutional monarchy which provided an environment fit to engender the industrial revolution. GE credit: ArtHum, Wrt.

151D. Industrial England (4) III. Landau
Lecture—3 hours; term paper. English history from Waterloo to the Battle of Britain; the rise and contin- uance of the first industrial nation; examining the trans- formation of landed to class society, oligarchy to democracy and bureaucracy, Bentham to Blooms- bury, empire to commonwealth. GE credit: ArtHum, Div, Wrt.

151A. History of Colonial Spanish America (4) I. Bauer
Lecture/discussion—3 hours; written reports. Pre- Columbian civilizations of Middle America and the Andean region (mainly Aztec and Inca); the impact of European conquest and colonization; the formation of a hybrid culture. Extensive use of photographic slides. GE credit: ArtHum, Div, Wrt.

151B. Latin American History (4) II. Bauer
Lecture/discussion—3 hours; written reports. Evolu- tion of modern Latin America: export economies; olig- archic rule; military revolution; the difficulties of the twentieth century. Emphasis on Mexico, Cuba, the Andean region, Chile, and Argentina. Photographic slides. GE credit: ArtHum, Div, Wrt.

162. History of the Andean Region (4) II. C. Walker
Lecture/discussion—3 hours; written and/or oral reports. History of the Andean region, the area that now comprises modern Peru, Bolivia, and Chile, from the beginning of human settlement to the present. GE credit: ArtHum, Div, Wrt.

163A. History of Brazil (4) III. Staff
Lecture—3 hours; written reports. The history of colo- nial and imperial Brazil from 1500 to 1889. Offered in alternate years. GE credit: ArtHum.

163B. History of Brazil (4) III. Staff
Lecture—3 hours; written reports. The history of the Brazilian republic from 1889 to the present. Offered in alternate years. GE credit: ArtHum.

164. History of Chile (4) II. Bauer
Lecture—3 hours; term paper. Prerequisite: course 161A, 161B, 165, or 188 recommended. Emphasis on the history of Chilean political economy from 1930 to the present. Various strategies of development (mod- ernization, Marxism, Neo-Liberalism); the rise of mass politics; the course of foreign relations; and the rich- ness of Chilean literature. Offered in alternate years. GE credit: ArtHum.

165. Latin American Social Revolutions (4) II. Bauer
Lecture—3 hours; written reports. Major social up- heavals since 1900 in selected Latin American nations; similarities and differences in cause, course, and consequence. GE credit: ArtHum.

166A. History of Mexico to 1848 (4) III. Bauer
Lecture/discussion—3 hours; written and/or oral reports. Political, economic, and social development of pre-Columbian, colonial and national Mexico to 1848. Offered in alternate years. GE credit: ArtHum.

166B. History of Mexico Since 1848 (4) III. The Staff
Lecture/discussion—3 hours; term paper and/or oral reports. History of Mexico from 1848 to the present. Offered in alternate years. GE credit: ArtHum.

168. History of Inter-American Relations (4) II. The Staff
Lecture—3 hours; written reports. Diplomatic history of Latin America since independence, intra-Latin American relations, relations with the United States, participation in international organizations, and commu- nism in Latin America. GE credit: ArtHum.

194A. Mexican-American History (4) II. Orpeoza
Lecture/discussion—3 hours; written and/or oral reports. Economic, social, religious, cultural and poli- tical development of the Spanish-speaking population of the Southwestern United States from about 1800 to 1910. GE credit: ArtHum, Div, Wrt.

195B. Mexican-American History (4) II. Orpeoza
Lecture/discussion—3 hours; written and/or oral reports. Role of the Mexican and Mexican-American or Chichano in the economy, politics, religion, culture and society of the Southwestern United States since 1910. GE credit: ArtHum, Div, Wrt.

170A. Colonial America (4) I. Taylor
Lecture—3 hours; term paper. Colonial society from 1607 to the American Revolution, with emphasis on European expansion, political, social and economic foundations, colonial thought and culture, and inter- national rivalry. GE credit: ArtHum, Div, Wrt.

170B. The American Revolution (4) II. The Staff
Lecture—3 hours; term paper. Analysis of the Revo- lutionary epoch with emphasis on the structure of British colonial policy, the rise of revolutionary move- ments, the War for Independence and its conse- quences, and the Confederation period. GE credit: ArtHum, Div, Wrt.

170C. The Early National Period, 1789-1815 (4) III. The Staff
Lecture—3 hours. Political and social history of the American republic from the adoption of the Constitu- tion through the War of 1812 and its consequences. GE credit: ArtHum.

171A. The Jacksonian Era (4) II. The Staff
Lecture—3 hours. Political and social history of the American republic from the end of the War of 1812 to the Compromise of 1850. GE credit: ArtHum, Div, Wrt.

171B. U.S. Civil War: Politics and Society (4) III. The Staff
Lecture/discussion—3 hours; term paper. Social cri- sis, 1848-1877: slavery and the West, new political parties, secession, mobilization and emancipation, economic nationalism and Reconstruction (for military aspects, see course 173). GE credit: ArtHum.

173. Becoming an American: Immigration and American Culture (4) I. Rosen
Lecture—3 hours; term paper. Prerequisite: course 17B or 72B recommended. An introduction to the wide range of immigrant experiences and cycles of naturalization that have shaped the identity of the United States in the twentieth century. From novels, memoirs and films, students will explore how external and internal immi- gration has created a multicultural society. Offered alternate years. GE credit: ArtHum.

174. The Emergence of Modern America, 1876-1914 (4) I. Barber
Lecture—3 hours; term paper. Rise of modern busi- ness and labor organizations, changing political institu- tions, the culmination and decline of Victorian culture, and the reaction of muckrakers, Populists, socialists, feminists and social reformers to industrial- ization and urbanization. GE credit: ArtHum, Div, Wrt.

*Course not offered this academic year.
174B. America in War, Prosperity and Depression, 1914-1945 (4) II. Marchand Lecture—3 hours; term paper. America’s emergence as a world power; the business culture of 1920s; the New Deal and World War II. Emphasis on such issues as government regulation of the economy, welfare capitalism, and power conflicts. GE credit: ArtHum, Wrt.

174C. The United States Since World War II, 1945 to the Present (4) III. M. Smith Lecture—3 hours; term paper. America’s struggle to respond to new complexities in foreign relations, social tensions, family changes and media. Emphasis on such topics as: Cold War, anticommunist crusade; civil rights, feminist and environmentally movement; New Left, Vietnam; Watergate, and the moral majority. GE credit: ArtHum, Wrt.

174D. Selected Themes in Twentieth-Century American History (4) The Staff Lecture—3 hours; term paper. Prerequisite: course 17B or the equivalent or consent of instructor. Interpretive overview of a single topic in twentieth-century America with emphasis on the phases and processes of historical change. GE credit: ArtHum.

175A. Intellectual History of the United States (4) The Staff Lecture—3 hours; oral or written reports on reading; panel discussion preparation. Prerequisite: course 17A or 17B or the equivalent; or a course in philosophy since the Renaissance, political theory, American literature, or sociological theory. American thought from the Puritans through the era of the American Enlightenment.

175B. Intellectual History of the United States (4) The Staff Lecture—3 hours; oral or written reports on reading; panel discussion preparation. Prerequisite: courses 17A and 17B or the equivalent; or a course in philosophy since the Renaissance, political theory, American literature, or sociological theory. Nineteenth-century American thought from the 1820s to about 1900, including the transcendentalists and the movement from Protestant orthodoxy to pluralism in industrial America.

183A. The Frontier Experience: Trans-Mississippi West (4) Taylor Lecture—3 hours; extensive written and oral reports. The fur trade, western exploration and transportation, the Oregon Country, the Great Southwest and the Mexican War, the Mormons, mining discovery, and the West during the Civil War. GE credit: ArtHum, Div, Wrt.

183B. The Frontier Experience: Trans-Mississippi West (4) II. Taylor Lecture—3 hours; written and/or oral reports. Spread of the mining kingdom, the range cattle industry, American-Indian conflict, settlement of the Great Plains and Rocky Mountain Regions and political organization of the West. GE credit: ArtHum, Div, Wrt.

185A. History of Science in America (4) The Staff Lecture—3 hours; research paper. Survey of the European background. Study of American scientific institutions, ideas, personalities, creative processes in science, and of relationships between society and science from colonial times to present. GE credit: ArtHum, Wrt.

185B. History of Technology in America (4) Smith Lecture—3 hours; research paper. Study of American technology, emphasizing biographical approach to historical understanding of technological change, creative processes, institutions, ideas, and relationships between technology, and society from colonial times to present. GE credit: ArtHum, Wrt.

187A. American Business History to the 1880s (4) The Staff Lecture—3 hours; term paper. Changes in the role of entrepreneurs, organizations, and management practices from the colonial period to the 1880s, with emphasis on the transition from mercantile capitalism to industrial capitalism, marketing, financial intermediaries, and concentration. Offered in alternate years. GE credit: ArtHum, Wrt.

187B. American Business History, 1880s to the Present (4) The Staff Lecture—3 hours; term paper. Changes in the role of entrepreneurs, organizations, and management practices from the 1880s to the present, with emphasis on the transition from mercantile capitalism to industrial capitalism, marketing, financial intermediaries, and concentration. Offered in alternate years. GE credit: ArtHum, Wrt.

188A. History of Agriculture in the U.S. to 1900 (4) The Staff Lecture—3 hours; term paper. Agricultural settlement and development in the U.S., with emphasis on government policies, economic and social institutions. Offered in alternate years.

188B. History of Agriculture in the U.S. since 1900 (4) II. The Staff Lecture—3 hours; term paper. Agricultural settlement and development in the U.S. with emphasis on government policies, economic and social institutions. Offered in alternate years.

189A. History of California (4) III. The Staff Lecture—4 hours; written and/or oral reports. Exploration and settlement; the mission as a frontier institution; revolt of the Californios; penetration by Mountain Men; pioneer trails and settlement; Bear Flag revolt and Mexican War. GE credit: ArtHum.

189B. History of California (4) I. The Staff Lecture—3 hours; written and/or oral reports. State constitution; land grant and Indian policies; Gold Rush; vigilantes; railroad construction; the wheat era; changing economy; social and political developments; Progressive reform. GE credit: ArtHum.

189C. History of California (4) II. The Staff Lecture—3 hours; term paper. Impact of World War I; conservative reaction of the 1920s; rise of organized labor; the automobile and moving picture industry. New Deal developments; changes with World War II; role of minorities; contemporary politics. GE credit: ArtHum, Div, Wrt.

191A. Classical China (4) Price Lecture—3 hours; term paper. History of Chinese civilization from its origins through the establishment of city states and the flowering of classical philosophy, to the rise and fall of the First Empire. GE credit: ArtHum, Div, Wrt.

191B. Imperial China (4) I. Bossler Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 9A or upper division standing. Patterns and problems of Chinese life traced through the ming and ch’ing dynasties (c. 1500 - 1800), prior to the confrontation with the West in the Opium War. Readings include primary sources and novels portraying elite ethos as well as popular culture. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

191D. Nineteenth Century China: The Empire Confronts the West (4) II. Bossler Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: course 9A or upper division standing. The decline and fall of the Chinese Empire, with particular attention to the social and political crises of the 19th century, and the response of government officials, intellectuals, and ordinary people to the increasing pressures of Western imperialism. GE credit: ArtHum, Div, Wrt.

191E. The Chinese Revolution (4) I. Price Lecture—2 hours; discussion—1 hour; extensive writing. Prerequisite: upper division standing. Analysis of China’s cultural and political transformation from Confucian empire into Communist state. Emphasis on emergence and triumph of peasant revolutionary strategy (to 1949), with some attention to its implications for post-revolutionary culture and politics. GE credit: ArtHum, Div, Wrt.

191F. History of the People’s Republic of China (4) III. Mann Lecture—2 hours; discussion—1 hour; extensive writing. Prerequisite: upper division standing. Comprehensive analysis of recent Chinese history, including land reform, the Cultural Revolution, the post-Mao era, and the consequences of the new economic policies of the 1980s. Not open for credit to students who have completed course 190C, offered in alternate years. GE credit: ArtHum, Div, Wrt.

192. Internship in History (1-12) I, II, III. The Staff (Chairperson in charge) Prerequisite: enrollment dependent upon availability of intern positions, with priority to History majors. Supervised internship and study as historian, archivist, curator, or in another history-related capacity, in an approved organization or institution. (IIP grading only.)
History and Philosophy of Science

Course not offered this academic year.

194A. Aristocratic and Feudal Japan (4) III. Borgen
Lecture—3 hours; term paper and/or discussion. Broad survey of the cultural, social, religious, and political aspects of Japanese history from mythological times through the sixteenth century emphasizing comparison of the organizations, values, and beliefs associated with the aristocratic and feudal eras. Offered in alternate years. GE credit: ArtHum, Div. Wrt.

*194B. Early Modern Japan (4) III. The Staff
Lecture—3 hours; term paper and/or discussion. Survey of the cultural, social, economic, and political aspects of Japanese history from the seventeenth through the nineteenth centuries emphasizing the development of trade patterns of thought and political organization with which Japan met the challenge of the nineteenth-century Western expansionism. GE credit: ArtHum, Div.

194C. Modern Japan (4) III. The Staff
Lecture—3 hours; term papers. Survey of education and technology in Japan from the mid-eighteenth century to the present. Offered in alternate years. GE credit: ArtHum.

194E. Education and Technology in Modern Japan (4) III. The Staff
Lecture—3 hours; term papers. Survey of education and technology in Japan from the mid-eighteenth century to the present. Offered in alternate years. GE credit: ArtHum.

292. College Teaching Internship (4) I, II, III. The Staff
Internship—4 hours. Prerequisite: course 300 (may be taken concurrently). Student prepares and teaches one lower division history course in a nearby community college under the supervision of a UC Davis instructor and a community college instructor. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff
Chairperson in charge)

299. Research (1-12) I, II, III. The Staff
Chairperson in charge)

299D. Individual Study (1-12) I, II, III. The Staff
Chairperson in charge)

Professional Courses

*300. Teaching History in the Community College (3) I. The Staff
Discussion-laboratory—3 hours. Prerequisite: graduate standing. Designed for MAT students. Methods for the presentation of history at the community college and secondary school level. (SU grading only)

389. Introductory Seminar for Teaching Assistants (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: must be enrolled in History 380. An introduction to the broad comparative and theoretical issues of teaching methods and technique in history. (SU grading only)

390. Teaching History in College (2) I, II, III. The Staff
Discussion—2 hours. Designed for teaching assistants with emphasis on problems and procedures encountered by teachers of lower division classes at the university. (SU grading only)

Minor Program Requirements:
The interdisciplinary minor in the history and philosophy of science invites students to examine historical and contemporary problems in a variety of scientific disciplines, and to explore concepts and procedures basic to science and how they have evolved. The minor is sponsored by the Program in the History and Philosophy of Science.

UNITS

History and Philosophy of Science

292. College Teaching Internship (4) I, II, III. The Staff
Internship—4 hours. Prerequisite: course 300 (may be taken concurrently). Student prepares and teaches one lower division history course in a nearby community college under the supervision of a UC Davis instructor and a community college instructor. (SU grading only)

*Course not offered this academic year.
Courses in History and Philosophy of Science (HPS)

Lower Division Courses
*20. Cosmic Origins and Structures: Scientific and Non-Scientific Theories (4) II. The Staff
Lecture/discussion—3 hours; term paper. Broad cultural survey of cosmogonies and cosmologies from several societies. Non-technical study of developments in Western science that produced the cosmologies of Plato, Newton, and Einstein; also cosmological schemes of astrologers, alchemists, Christian mystics, women, and Native Americans.

*90X. Lower Division Seminar (1-2) I, II, III. The Staff (Chairperson in charge)
Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in History and Philosophy of Science through shared readings, discussions, written assignments, or special activities such as films, library work, archival work, etc. May be repeated once for credit when content differs. Limited enrollment.

Upper Division Courses
130A. From Natural History to the History of Nature (4) I. Finneman
Lecture/discussion—3 hours; term paper. Prerequisite: History 135A recommended. Evolution and demise of natural history as a discipline from Aristotle to Linnaeus. Considers ancient views of nature and its Renaissance rediscovery; the emergence of biology, botany, geology, and zoology; the history of taxonomy and classification. GE credit: ArtHum or SciEng, Wrt.

130B. History of Modern Biology (4) II. Dietrich
Lecture-discussion—3 hours; term paper. Prerequisite: course 130A recommended. Development of modern biology from pre-Darwinian roots to the present. Considers emergence of modern biological specialties and consolidation of biological theory around evolutionary ideas. History of allied fields such as genetics, paleontology, embryology, ecology, systematics, and molecular biology. GE credit: ArtHum or SciEng, Wrt.

131. Darwin (4) III. Dietrich, Griesemer
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Students will explore the life and times of Charles Darwin and will trace the development of evolutionary thinking before and after the Origin of Species to appreciate its place in Victorian society and in the corpus of Darwin’s thought. GE credit: ArtHum or SciEng, Wrt.

150. Gender and Science (4) I. Dietrich
Lecture/discussion—3 hours; term paper. An interdisciplinary approach to the relations between gender and science. Topics include the biological and cultural construction of sexual difference, the role of women as practitioners of science, and feminist approaches to science. GE credit: SocSci, Div, Wrt.

*180. Topics in History and Philosophy of Science and Technology (4) II. The Staff
Seminar—3 hours; term paper. Prerequisite: course in History and Philosophy of Science or other course work relevant to the particular offering. In-depth treatment of selected topics in the history and philosophy of science. Possible topics include history of modern physics, history of molecular biology, science and society, scientific explanation, technology and culture, theory testing.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses
*250. History and Philosophy of Science (4) III. Dietrich
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Interdisciplinary seminar in the history and philosophy of science. Focuses on issues such as historiography, methodology, and the conceptual foundations of science. May be repeated for credit with consent of instructor.

298. Group Study (1-5) I, II, III. The Staff (Director in charge)
Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Director in charge)
Prerequisite: consent of instructor. (SU grading only.)

Honors Challenge
Kenneth L. Verosub, Ph.D., Program Director
Program Office, 162 Kerr Hall (916-752-9797)

Honors Council
Deborah K. Canington, Ph.D. (Plant Biology)
Thomas R. Fanula, Ph.D. (Animal Sciences)
Bryan M. Jenkins, Ph.D. (Biological and Agricultural Engineering)
G.J. Mattey, Ph.D. (Philosophy)
Douglas W. McColm, Ph.D. (Physics)
Nora A. McGuinness, Ph.D. (Integrated Studies)
Jay E. Meichling, Ph.D. (American Studies)
Kenneth L. Verosub, Ph.D., Chairperson (Geology)

The Program of Study
The Davis Honors Challenge (DHC) is a program for highly motivated, lower division students interested in enhancing their education through special courses, closer contact with faculty, and dynamic interaction with academic peers. Interested students apply in the spring quarter for places in the following year. DHC participants take two honors courses or sections and one problem-oriented, interdisciplinary seminar per academic year.

Lower division departmental honors courses, DHC sections of regular courses, DHC seminars, and DHC special studies opportunities constitute the course offerings of the Honors Challenge. A complete list of these courses, with course registration numbers, is available to admitted students from the Davis Honors Challenge Office.

Twelve seminars are offered each year: three in the fall, four in the winter and five in the spring. The seminars foster critical thinking and analytic interpretation, improve oral and written communication skills, enhance research skills, provide experience with group dynamics and collaborative exploration of problems, and develop familiarity with electronic communication and visual presentations. Seminar enrollment is limited to 15 students. In 1996-97, approximately 50 first-year and 120 second-year students will be admitted to the Program.

Students not admitted to the Program may not register for Davis Honors Challenge sections, seminars, or special study opportunities.

Integrated Studies is an invitation-only first-year honors residential program associated with the Davis Honors Challenge. For more information about Integrated Studies, see the section titled “Integrated Studies.”

Courses in Davis Honors Challenge (HNR)

Lower Division Courses
94. Honors Seminar (3) I, II, III. The Staff (Director in charge)
Seminar—3 hours. Prerequisite: student in the Davis Honors Challenge. Collaborative, interdisciplinary exploration of a complex contemporary problem. Focus on critical thinking and an oral and written communication. Emphasis on use of electronic media for research. May be taken once each academic year for credit.

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Director in charge)
Independent study—1-5 hours. Prerequisite: student in the Davis Honors Challenge. (P/NP grading only.)

*203. Research Perspectives in Horticulture (3) I. Weinbaum (Pomology), DeJong (Pomology)
Lecture—1 hour; lecture/discussion—2 hours. Prerequisite: Plant Biology 111 and 112, or Environmental Horticulture 102. Following lectures/discussions of scientific methodology, students develop research proposals aided by classroom discussions and individual interactions with instructors and critiques of “classical papers” provide a sense of the evolution of the current concepts in perennial plant biology. Offered in alternate years. Not open for credit to students who have taken Pomology 293.

251. Modeling Horticultural Systems (3) II. Lieth (Environmental Horticulture)
Lecture—2 hours; laboratory—3 hours. Prerequisite: Plant Science 101, calculus, or consent of instructor. Introduces students to systems modeling. Primary emphasis on physiological and ecological models with examples drawn from areas of interest to class participants. Applications to horticultural systems will be explored. Students will receive hands-on experience.

290. Seminar (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate standing at UC Davis. Seminars presented by invited speakers, students, or faculty on selected topics in horticulture. (SU grading only.)
Human Development

(College of Agricultural and Environmental Sciences)

Faculty. See Department of Human and Community Development.

The Major Program

Human development explores the developmental process in humans throughout the life cycle. Cognitive and personality/social development are studied from various perspectives.

The Program. Human development majors complete a group of preparatory courses in anthropology, biological sciences, genetics, nutrition, psychology, psychology, statistics, and human development. Upper division students can design their programs in consultation with a faculty member to emphasize a particular interest. For instance, students can study the social and the biological aspects of human development while emphasizing child or adult development.

Internships and Career Alternatives. At least one practicum course is required. A second practicum or supervised internship can be used to fulfill the requirements for the major. In addition, students can intern in schools, early childhood education centers, hospitals, rehabilitation centers, probation offices, group foster homes, mental health clinics, or as tutors for handicapped or bilingual students. Human development graduates fill a wide variety of positions in preschools, elementary and special educational settings, as well as governmental jobs related to social welfare and recreation. Those who emphasize the biological aspect of human development can apply to medical school or pursue training for para-medical professions within the health sciences. Human development prepares students to pursue advanced degrees in the behavioral sciences, education, child guidance, social welfare, health sciences, or further research in human development.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Composition Requirement</td>
<td>4-12</td>
</tr>
<tr>
<td>See College requirement</td>
<td></td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>38-44</td>
</tr>
<tr>
<td>Anthropology 1, 2, and 15, biological sciences</td>
<td>13</td>
</tr>
<tr>
<td>Biological sciences (Biological Sciences 1A† or 10)</td>
<td>4-5</td>
</tr>
<tr>
<td>Chemistry 2A is recommended prerequisite</td>
<td></td>
</tr>
<tr>
<td>for Biological Sciences 1A. Biological sciences</td>
<td></td>
</tr>
<tr>
<td>1A is prerequisite for Biological Sciences 1B.</td>
<td></td>
</tr>
<tr>
<td>Genetics (Molecular and Cellular Biology 10 or</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences 101)</td>
<td>4</td>
</tr>
<tr>
<td>Human development (Human Development 30)</td>
<td>4</td>
</tr>
<tr>
<td>Nutrition (Nutrition 10 or 101)</td>
<td>3-5</td>
</tr>
<tr>
<td>Physiology (Neurobiology, Physiology and Behavior 10</td>
<td>4-5</td>
</tr>
<tr>
<td>and 10)</td>
<td></td>
</tr>
<tr>
<td>Psychology (Psychology 1 or 15)</td>
<td>3-4</td>
</tr>
<tr>
<td>Statistics (Education 114, Psychology 41, Sociology</td>
<td></td>
</tr>
<tr>
<td>46A and 46B, or Statistics 13)</td>
<td>4</td>
</tr>
<tr>
<td>Breadth/General Education</td>
<td>24-32</td>
</tr>
<tr>
<td>Satisfaction of General Education requirement</td>
<td></td>
</tr>
<tr>
<td>American history/American government (History 17A,</td>
<td>16-24</td>
</tr>
<tr>
<td>17B, 72A, 72B, and Political Science 1 are recommended courses)</td>
<td>8</td>
</tr>
</tbody>
</table>

*Course not offered this academic year.

Depth Subject Matter..52-53

Human Development 100A, 100B, 100C, 110..............................16

Social-cultural processes (Human Development 102 or 103)............4

Assessment (Human Development 120 or 121).4

Cognitive processes (Human Development 101 or 132)...................4

Exceptional children (Human Development 130 or 131).4

Practicum (Human Development 140-140L, or 141 or 142 or 143)4-5

Four additional upper division courses chosen from the Human Development courses or from a list of restricted electives (in consultation with faculty adviser)16

Unrestricted Electives ...39-72

Total Units for the Degree......................................180

Major Adviser. C. Rodning, C. Aldwin.

Related Major Program. See the major in Applied Behavioral Sciences.

Minor Program Requirements:

UNITS

Aging and Adult Development..................................21-27

Human Development 100C, 160, 191............................8

Community Health 180...3

Human Development 110, Applied Behavioral Sciences 173 8

Practicum, 2 units minimum....................................2-8

Minor Adviser. C. Aldwin, B. Ober.

Human Development ...20

Human Development 100A...4

Human Development 100B or 100C.................................4

Human Development 110 or 103 or 151............................4

Two courses from Human Development 101, 102, 130, 131, or 132 ... 8

Minor Adviser. L. Harper.

Graduate Study. Graduate study is available through a Master of Science degree in child development, and a Ph.D. degree in human development. Refer to the Graduate Studies section in this catalog.

Courses in Human Development (HDE)

Questions pertaining to the following courses should be directed to the instructor or to the Human and Community Development Advising Office, 1303 Hart Hall (916-752-2244).

Lower Division Courses

Lecture—2 hours. Vocabulary; structure and function of genital system; sexual response; menstruation; fertility; birth control; pregnancy and childbirth; sex in religion and law; sex education; homosexuality; masturbation; establishing and maintaining intimacy; intimate communication; attitudes and values; sexual dysfunctions; lovemaking. (P/NP grading only.)

13. Parenting (4) III. Bryant.

Lecture/discussion—4 hours. Provides the basis for understanding the nature of the parenting process. Consideration of aspects of parenting that begin before conception and develop throughout the life of the child and parent. GE credit: SocSci.

Lecture—4 hours. Prerequisite: Psychology 1, or 15 and 16. Socialization in families throughout the life cycle. Impact of alcoholism and abuse. Sources of strength and help. Not open to students who have completed courses 100A, 100B, 110 and/or Psychology 112, 114, and 115. GE credit: SocSci.

Lecture—3 hours; discussion—1 hour. Human populations at different levels of organization; including life
course, family life cycle, race, ethnicity, genealogy, and population traits and changes. GE credit: SocEng.

30. Observation Techniques in Human Development (5) I, II, III. The Staff
Lecture—3 hours; laboratory—3 hours. Prerequisite: Psychology 1 and consent of instructor. Analytical techniques used in the study of human behavior and development over six to eight years; analysis and use of observational data. To enroll, students must sign up for laboratory time at the Child and Family Study Center.

98. Directed Group Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Upper Division Courses

100A. Infancy and Early Childhood (4) I. Harper
Lecture—4 hours. Prerequisite: Psychology 1 or 15, Biological Sciences 1A or 10. Analysis of the biological, social, and cultural influences in the psychological growth and development of children, prenatal through age two.

100B. Middle Childhood and Adolescence (4) II, Ge; III. The Staff
Lecture—4 hours; three brief observations of school-age children. Prerequisite: course 100A or the equivalent; introductory biology. Analysis of the interplay of biological and social-cultural factors in the emotional, cognitive and social development from middle childhood through adolescence.

100C. Adulthood and Aging (4) III. Ober
Lecture—4 hours. Prerequisite: Psychology 1 or 15. Development during early, middle, and late adulthood; biological, cognitive, and psycho-social aspects of adult development. Emphasis on normative patterns of development which characterize "successful aging."

101. Cognitive Development (4) I. The Staff
Lecture—4 hours. Prerequisite: courses 100A and 100B, or Psychology 112. Theories of cognitive development including developmental views of perception, learning, memory, concept formation, and language.

102. Social and Personality Development (4) II. Rodning
Lecture—3 hours; discussion—1 hour. Prerequisite: introductory psychology; course 100B or the equivalent. Theories of development of a child's personality through interaction with children and adults; development of interpersonal and culturally valued skills.

103. Cross-Cultural Study of Children (4) II. Werner
Lecture—4 hours. Prerequisite: course 100A or consent of instructor. Cross-cultural studies of children in developing countries and among minority groups in the U.S. GE credit: Div.

110. Contemporary American Family (4) III. Ge
Lecture—4 hours. Prerequisite: introductory psychology. Factors currently influencing American families including changing economic conditions, changing sex roles, divorce, and parenthood; theories and research on family interactions.

120. Research Methods in Human Development (4) II. The Staff
Lecture—3 hours; laboratory/discussion—1 hour. Prerequisite: courses 100A and 100B; elementary statistics. Research methods in selected areas of human development (i.e., infancy, learning, cognition, personality).

121. Psychological Assessment (4) I. The Staff; II. Barton
Lecture—4 hours. Prerequisite: courses 100A-100B; elementary statistics. Current issues and methodologies related to the process of psychological assessment with children.

130. Emotionally Disturbed Children (4) I. Bryant
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100A and 100B or consent of instructor. Discussion of psychosis, neurosis, behavior disorders, and learning difficulties in children.

131. Developmental Disabilities (4) III. Barton
Lecture—4 hours. Prerequisite: course 100A or consent of instructor. Mental retardation and special learning disabilities, etiology, diagnosis, education and socialization. Introduction to community resources.

132. Individual Differences in Giftedness (4) III. Kraft
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 100A and 100B or consent of instructor. Conceptualization, identification and education of the intelligent, the creative, and the talented, gifted individual.

140. Communication and Interaction with Young Children (2) I, II, III. Gaedeke
Lecture—2 hours. Prerequisite: courses 30A, 100A, and 140L (may be taken concurrently) recommended. Theory and practice in the area of effective interaction with young children. Humanistic, child-centered approaches; awareness of goals, beliefs, and values as these affect interactions. To enroll, students must sign up for laboratory time at the Child and Family Study Center.

140L. Laboratory in Early Childhood (3-6) I, II, III. Gaedeke
Discussion—3 hours; laboratory—6-15 hours. Prerequisite: course 140 (may be taken concurrently). Application of theories of learning and development to interactions with children for six months to five years at Early Childhood Laboratory. Applied skills in communication, discipline and curriculum. May be repeated for credit for a total of 12 units. (P/NP grading only.)

141. Field Studies with Children and Adolescents (4-6) I. The Staff; II. Kraft; III. The Staff
Lecture—2 hours; field study—6-12 hours. Prerequisite: course 100B or the equivalent and consent of instructor. Study of children's affective, cognitive, and social development within the context of family/school environments, hospitals and foster group homes. May be repeated for credit for a total of 12 units following consultation with instructor.

142. Field Studies with Exceptional Children (4-6). I. Bryant
Discussion—1 1/2 hours; field study—6-12 hours. Prerequisite: consent of instructor and one course from courses 130, 131, or 132 (may be taken concurrently). Field study with children who are identified as developmentally disabled, emotionally distressed, or intellectually gifted. May be repeated for credit for a total of 12 units following consultation with and consent of instructor.

143. Field Studies of the Elderly (4-6) I. Ober
Fieldwork—8-12 hours; discussion—1-5 hours. Prerequisite: course 100C or 160 may be taken concurrently. To apply theory and research on adult development and aging, to work with older adults in a variety of settings, and to develop skills relevant to that application. Students will also develop a small research project. Offered alternately winter quarter of one year, then in spring quarter the next year.

*150. Supervision and Administration of Early Childhood Education Programs (4) I. The Staff
Lecture—4 hours; course 140 or prior experience in an early childhood education program. History of early childhood programs in California; federal, state and local regulations. Implications of different regulatory frameworks for funding, personnel, policy-making mechanisms, professional and legal responsibilities, staff development, and professional attitudes and issues. Offered in alternate years.

151. Shared Child Care (4) III. Werner
Lecture—4 hours. Prerequisite: courses 100A or 110, Psychology 112, or Anthropology 131. Examines roles of caregivers other than parents in contemporary society, and the impact of grandparents, siblings, family day care providers, foster parents, church- and employer-sponsored child care on children's development. Reviews child care legislation and social policy issues.

160. Social Aspects of Aging (4) II. The Staff
Lecture—4 hours. Prerequisite: course 100C or Psychology 115. How the social context affects adult development and aging. Emphasis on demographic, social policy, culture, and adaptation. Oral histories as class projects. GE credit: Div.

162. Issues in Aging (3) I. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: course 100C or 160. Research and policy issues concerning the elderly and aging in contemporary society.

190C. Introductory Research Conference (1) I, II. The Staff
Discussion—1 hour. Prerequisite: involvement in ongoing research. Instructors lead discussions with undergraduate students who involve themselves in a research project. Research papers are reviewed and aspects of project proposals developed out of class are presented and evaluated. May be repeated for credit. (P/NP grading only.)

191. Proseminar: Issues in Aging (2) I. The Staff
Seminar—2 hours. Prerequisite: upper division standing. Discussion of selected critical issues in aging.

192. Internship (1-12) I, II. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. Supervised internship off and on campus, in community, and institutions. (P/NP grading only.)

196. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses

200A. Early Development (4) I. Harper
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing; basic biology/physiology; one upper division course in psychology or a related field; one upper division or graduate course in developmental psychology (may be taken concurrently). Theory and research on the biological, social, cognitive, and cultural aspects of development from conception to the age of five years.

200B. Middle Childhood and Adolescence (4) II. Ge
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing; basic biology/physiology; one upper division course in psychology or a related field; one upper division or graduate course in developmental psychology (may be taken concurrently). Theory and research on the biological, social, cognitive, and cultural aspects of development from conception to the age of five years until late adolescence.

200C. Development in Adulthood (4) III. Ober
Lecture/discussion—4 hours. Prerequisite: course 200A and 200B. Theory and research focusing on social, personal, cognitive, and biological development from early to late adulthood. Emphasis is on the theory development and continuity and change.

201. Social-Emotional Development in Infancy (4) II. Rodning
Lecture/discussion—4 hours. Prerequisite: course 200A. Analysis of theory, methods, and research on social-emotional development in infancy. Emphasizes the development of primary and secondary emotions, and the development of attachment. Other possible topics include infant temperament, sex differences, compliance, and self-regulation. Offered in alternate years.

*210. Theories of Behavioral Development (3) III. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: graduate standing in behavioral sciences. Consideration of enduring issues in theories of behavioral development; analysis of adequacy of major theoretical schools (e.g., social learning, Piagetian) as scientific theories. Offered in alternate years.
Human Development

“211. Physiological Correlates of Behavioral Development” (3) I. Harper
Seminar—3 hours. Prerequisite: consent of instructor. An overview of mechanisms of organismic development and the implications of developmental biology for the analysis of behavioral ontology: consideration of parallels between processes of organismic development and behavioral development in children and in human mammals.

“212. Adaptation and Aging” (3) I. Aldwin
Lecture/discussion—3 hours. Prerequisite: course 200C. The manner in which cognitive processes are affected by aging as well as an understanding of the changes in the central nervous system occurring with aging. Offered in alternate years.

“213. Cross-Cultural Study of Children” (3) III. Politt
Lecture—2 hours; discussion—1 hour; field project or paper. Prerequisite: graduate standing in Human Development, Education, Anthropology, Psychology, or Sociology. Current theory and research concerned with comparative child development. Introduction into the major issues and methods of cross-cultural research (e.g., biological, cognitive and social development of children in different cultures and subcultures in U.S.A.). Offered in alternate years.

“214. Development of Cortical and Perceptual Laterality” (3) II. Kraft
Seminar—3 hours. Prerequisite: graduate standing in child or human development or consent of instructor. Current theory and research regarding the development of human cortical and perceptual laterality—emphasizing the relationship of this development to thinking and behavior. Offered in alternate years.

“220. Research Methods in Human Growth and Development” (3) III. Barton
Lecture—3 hours. Prerequisite: Statistics 13 or the equivalent and at least two upper division courses in human biology or developmental psychology. Theory and research methods in biological growth, and cognitive and social/emotional development from prenatal period to death.

“221. Psychological Assessment of Children” (4) III. Politt
Lecture—2 hours; discussion—2 hours. Prerequisite: course 121 or consent of instructor. Study of children's behavior through examination, analysis and evaluation of perceptual-motor, cognitive, affective and social development. Problems in assessment of exceptional children considered. Assignments focus on preparation of a comprehensive report on one child.

“222. Applied Research and Program Evaluation” (3) III. Braverman
Lecture/discussion—3 hours. Prerequisite: graduate standing and consent of instructor. Focuses on the design and conduct of applied research and evaluation studies, especially with regard to programs serving children and their families. Offered in alternate years.

“225. Behavioral Development and Food Intake” (4) III. Politt
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in Human Development (and related fields) and Nutrition. Multidisciplinary view covering key theoretical and research issues in basic human development processes related to food intake.

“231. Issues in Cognitive and Linguistic Development” (3) III. Kraft
Seminar—3 hours. Prerequisite: consent of instructor. Study and evaluation of key issues in the theoretical and empirical literature on cognitive and linguistic development.

“232. Cognition and Aging” (3) III. Ober
Lecture/discussion—3 hours. Prerequisite: course 200C. Theoretical and empirical issues in the changes in the central nervous system occurring with aging. Offered in alternate years.

237. Parent-Child Interaction (3) III. Rodning
Seminar—3 hours. Prerequisite: consent of instructor; upper division course on the family recommended. Current theory and research. Emphasis on parental behavior in other animals and other cultures, childrearing practices, the child's perception of parents, the differential influence of each parent on the child's psychological well-being and social development, and moral development. Offered in alternate years.

238. The Context of Individual Development (3) II. Bryant
Lecture/discussion—3 hours. Prerequisite: graduate standing in Human Development, Child Development, Education, Psychology, Anthropology, Sociology, or consent of instructor. Analysis of human development within the context of daily life. Conceptualizing theories and methods of developmental psychology will be distinguished from contextual theories and methods. Developmental psychology models will be distinguished from child psychology models. Offered in alternate years.

“241. Consultation Approaches to Child Development” (3) II. Bryant
Lecture—1 hour; discussion—1 hour; laboratory—3 hours. Prerequisite: graduate standing in Human Development, Child Development, Education, Psychology, Anthropology, Sociology, or consent of instructor. Analysis and application of theories and approaches to child development to facilitate delivery of child-related services (e.g., educational and mental health). Development working knowledge of consultation skills for working with adults directly interacting with children and adolescents. Offered in alternate years.

242. Adolescent Health Behavior: Theory and Programs” (2) II. Braverman
Lecture/discussion—2 hours. Prerequisite: graduate standing in child or human development, or consent of instructor; course 200B recommended. Theoretical conceptions relating to adolescent behaviors that have potential impact on health (e.g., use of tobacco, alcohol and other drugs; sexual behavior; accident prevention). Development and evaluation of programs that aim to influence adolescents' behaviors or attitudes in these areas. Offered in alternate years.

246. Sex, Evolution, and Development” (4) III. Chisholm
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing in child or human development, or consent of instructor; course 200B recommended. An overview of human development in the context of evolution. Emphasis on parallels between processes of organismic development and behavioral development in children and in other animals and cultures, childrearing practices, the child's perception of parents, the differential influence of each parent on the child's psychological well-being and social development, and moral development.

Humanities

(Chairperson in charge)
Rosemarie Kraft, Ph.D., Chairperson of the Group Program Office, 1303 Hart Hall (916-752-1926)
Faculty. Core faculty are housed in the Division of Human Development, Department of Human and Community Development. Students may also choose to work with faculty from the Departments of Anthropology, Behavioral Biology, Neuroscience, Nutrition, Psychology, Physiology, the Division of Education, and the Schools of Law and of Medicine.

Graduate Study. The interdisciplinary and interdepartmental Graduate Group in Human Development offers a program of study leading to the Ph.D. degree. The program provides students with a coordinated postgraduate lifespan study of human behavioral development and educates students in the theories, methods, and accumulating research that provide the basis for current understanding and expanding knowledge of the development of human behavior. The program has a three-pronged structure: (1) it incorporates study in three domains of human development—biological, cognitive, socio-emotional; (2) it organizes the study of human development across the lifespan from conception through aging; and, (3) it emphasizes the internal and external contexts within which human development takes place—cultural institutions such as families, schools, and hospitals, and other contextual conditions such as government/social policy, nutrition, disease, and health/men- tal health. Recipients of the degree will be prepared to teach, to conduct research, and to be actively involved in public service in human behavioral development.

Humanities (College of Letters and Science)
Georges Van Den Abbeele, Ph.D., Program Director
Program Office (916-752-9934)

Committee in Charge
Conrad Atkinson, R.A.S. honors (Art Studio)
Marc G. Blanchard, Aigéret de lettres (Comparative Literature, French)
JoAnn Cannon, Ph.D. (Italian)
Sarah Peiransky, Ph.D. (Women's Studies)
Winfried Schierke, Ph.D. (English)
John Stewart, Ph.D. (African American and African Studies)

The Program of Study
Courses in the Humanities Program provide instruction in interdisciplinary areas which do not fit readily into existing departments or programs.

Courses in Humanities (HUM)
Lower Division Courses
1. Humanities Forum (2) III. The Staff
Seminar—2 hours. Reading and discussion of a single work representative of a particular culture, historical period, or genre and significant for its ongoing cultural impact in the humanities, sciences, social sciences, technology, and popular arenas. Attention to provocative implications for contemporary society. GE credit: Art/Hum, Wrt.

10. Introduction to Film Studies (4) III. Projansky
Lecture—2 hours; discussion—1 hour; film viewing—3 hours. Introduction to the study of cinema. Exploration of the analysis of film form and examination of a variety of issues in film studies, including spectatorship and cultural context. Emphasis on critical
Hydrologic Science

(College of Agricultural and Environmental Sciences)

Faculty. See under Department of Land, Air and Water Resources, Hydrologic Science Section.

The Major Program

Hydrologic Science is the study of the occurrence, distribution, circulation, and behavior of water in the environment of Earth. It includes measurement and analysis of water phenomena in the subsurface, on the Earth’s surface, and in the atmosphere for the purpose of understanding and addressing problems that affect sustainability of both water quantity and water quality.

The Program. Hydrologists generally need strong backgrounds in physics, mathematics, chemistry, biology, geology, field methods, and computer methods. Knowledge of biology and chemistry is important for understanding modulators of water quality. Geology is essential for those working in groundwater hydrology. Field methods are necessary for observing and measuring hydrologic phenomena, and computer methods and mathematics are routinely needed for collectively analyzing field data and forecasting future system behavior.

Contemporary hydrologic problems include more efficient use and development of groundwater and surface water resources; pollution of subsurface and surface waters from such sources as urban runoff, leaky underground storage tanks, and agricultural drainage; water quality criteria for drinking water and for fish and aquatic life; acidic precipitation and its impact on the environment; and the role of water in natural disasters such as floods, landslides, and land subsidence. Other contemporary concerns include artificial recharge of groundwater, remote sensing for water resources, risk analysis in the operation of surface water reservoirs, and hydrologic prediction under uncertainty. The resolution of these problems demands hydrologic scientists with the comprehensive, multidisciplinary education embodied in this program.

Internships and Career Alternatives. Numerous opportunities for internships exist with state and federal agencies in the Greater Sacramento-Davis area. Career opportunities in hydrologic science are available in private consulting firms, environmental and consulting groups, and government agencies dealing with water resources, including the U.S. Geological Survey, U.S. Department of Agriculture (Fish and Wildlife, Agricultural Research, Forest Service, and Soil Conservation Service), Environmental Protection Agency, Department of Agriculture (Fish and Wildlife, Agriculture, and Soil Conservation Service), and California Department of Water Resources, and Water Resources Control Board, Regional Water Quality Control Boards, Conservation, Fish and Game, and Toxic Substances. The major is excellent preparation for advanced degrees in hydrologic science and related fields.

B.S. Major Requirements:

UNITS

<table>
<thead>
<tr>
<th>Writing/oral Expression</th>
<th>0-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breadth/general Education</td>
<td>18-24</td>
</tr>
<tr>
<td>Preparatory Subject Matter</td>
<td>72</td>
</tr>
<tr>
<td>Biological sciences, Biological Sciences 1A, 1B, 1C</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry, Chemistry 2A, 2B, 2C</td>
<td>15</td>
</tr>
<tr>
<td>Physics, Physics 9A, 9B, 9C</td>
<td>12</td>
</tr>
<tr>
<td>Calculus, Mathematics 21A, 21B, 21C, 21D</td>
<td>16</td>
</tr>
<tr>
<td>Linear algebra</td>
<td>3</td>
</tr>
<tr>
<td>Differential Equations, Mathematics 22B</td>
<td>3</td>
</tr>
<tr>
<td>Physical geology, Geology 50, 50L</td>
<td>5</td>
</tr>
<tr>
<td>Applications of computers, Engineering 5 or equivalent</td>
<td>3</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>44-54</td>
</tr>
<tr>
<td>Hydrologic Science 100</td>
<td>5</td>
</tr>
<tr>
<td>Probability and statistics, Civil and Environmental Engineering 114 or Statistics 130A and 130B</td>
<td>8</td>
</tr>
<tr>
<td>Hydrologic Science 103</td>
<td>3</td>
</tr>
<tr>
<td>Hydrology</td>
<td>6</td>
</tr>
<tr>
<td>Select from Atmospheric Science 115, 133, Civil and Environmental Engineering 142, 142L, Hydrologic Science 141, 143</td>
<td>12</td>
</tr>
<tr>
<td>Subsurface hydrology</td>
<td>10-12</td>
</tr>
<tr>
<td>Water quality</td>
<td>10-12</td>
</tr>
<tr>
<td>Select from Civil and Environmental Engineering 140, 140L</td>
<td>3</td>
</tr>
</tbody>
</table>

Water policy and social awareness | 8-6 |

Select from Agricultural Economics 147, Environmental Studies 160, 161, 179, Geography 161, 170, Geology 134, 135, 136, Hydrologic Science 150.

Restricted Electives | 16-26 |

Students select an area of concentration in consultation with the Master Adviser, and then obtain prior approval from the Master Adviser for courses used to satisfy the student’s area of concentration. Areas of concentration include, but are not limited to, Water Quality, Irrigation and Drainage, Groundwater Hydrology, and Surface Hydrology. Coursework for these areas may be taken from Hydrologic Science, Soil Science, Geology, Atmospheric Science, Environmental Toxicology, and Environmental Studies, in addition to advanced courses in Mathematics, Chemistry, and Statistics.

Unrestricted Electives | 2-20 |

(Including units earned from 192 and 199 courses.)

Total Units for the Degree | 180

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Water policy and social awareness | 8-6 |

Select from Agricultural Economics 147, Environmental Studies 160, 161, 179, Geography 161, 170, Geology 134, 135, 136, Hydrologic Science 150.

Students select an area of concentration in consultation with the Master Adviser, and then obtain prior approval from the Master Adviser for courses used to satisfy the student’s area of concentration. Areas of concentration include, but are not limited to, Water Quality, Irrigation and Drainage, Groundwater Hydrology, and Surface Hydrology. Coursework for these areas may be taken from Hydrologic Science, Soil Science, Geology, Atmospheric Science, Environmental Toxicology, and Environmental Studies, in addition to advanced courses in Mathematics, Chemistry, and Statistics.

Minors Program Requirements:

Coursework in the minor provides fundamental skills and knowledge of the hydrologic sciences. The program is sufficiently flexible for students to pursue particular water issues or problems of interest to them.

Hydrologic Science 100 | 5 |

Three depth courses. Select one course from each pair below (the alternate course may be chosen as an elective) | 8 |

(a) Hydrologic Science 141 or 145
(b) Hydrologic Science 122 or 136
(c) Hydrologic Science 150 or Environmental Studies 161

Two elective courses: Select two courses from the following | 6-8 |

Courses in Hydrologic Science (HYD)

Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 111A Wehmeyer Hall or 122 Hoagland Hall (916-752-1669).

Lower Division Courses

21. Water Pollution | 4 |

II. Knight Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1A or the equivalent. Causes and nature of various types of pollution and their effects upon aquatic biota. Particular emphasis on biological effects of toxic compounds, inorganic compounds, suspended matter, organic matter, and heated water on aquatic life. Not open for credit to students who have completed Water Science 41. GE credit: SciEng, Wrt.
Hydrologic Science

92. Hydrologic Science Internship (1-12) I, II, III. The Staff
Internship—3-36 hours. Prerequisite: lower division standing or consent of instructor. Work experience off and on campus in Hydrologic Science. Internship supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses

100. Principles of Hydrologic Science (5) I. Grismer
Lecture—3 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: Chemistry 2B, Physics 5A; Mathematics 16B recommended. Introduction to scientific principles as applied to water and water problems. Topics include hydrology (surface and ground water), flow through porous media, water in soil-plant-atmosphere continuum, water quality, flow through pipes and channels, and representative water-resource problems. Not open for credit to students who have completed Water Science 100 GE credit: SciEng, Wrt.

103. Introduction to Fluid Mechanics (3) I. Parlange
Lecture—3 hours. Prerequisite: Physics 5A and Mathematics 16B; course 100 recommended; or consent of instructor. An introductory course in fluid properties, fluid statics, conservation of mass, momentum and energy, dimensional analysis and boundary layer flow phenomena will also be considered. Not open for credit to students who have completed Water Science 142.

110. Irrigation Principles and Practices (3) III. Schrank
Lecture—2 hours; laboratory—3 hours. Prerequisite: Physics 5A and Soil Science 100 recommended. General course for agricultural and engineering students desiring to study important aspects of irrigation and drainage. Soil-water movement and storage, plant responses to irrigation regimes, water use by crops, procedures for determining frequency and depth of irrigation, drainage. Not open for credit to students who have completed Water Science 103.

113. Water Quality, Soil Salinity and Reclamation (4) I. Biggar
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 2B, Soil Science 100, course 100 recommended; or consent of instructor. Water quality parameters, water analysis and salinity control in relation to soil and plant factors; reclamation of soil and disposal of waste water and their effects on receiving waters; localized and regional river basin problems in relation to salinity control and water quality. Not open for credit to students who have completed Water Science 103.

115. Irrigation and Drainage Systems (4) II. Wallender, Grismer, Hillers
Lecture—4 hours. Prerequisite: Engineering 103A or course 153. Engineering and scientific principles applied to the design of surface, sprinkler and micro irrigation systems and drainage systems within economic, biological, and environmental constraints. Interaction between irrigation and drainage will be emphasized. (Same course as Biological Systems Engineering 145.) Not open for credit to students who have completed Water Science 145.

117. Irrigation Water Management (3) III. Homan
Lecture—2 hours; discussion—1 hour. Prerequisite: course 110 or 124, or consent of instructor. Irrigation principles of soil-water and plant-water relations with irrigation system characteristics and other factors into an analytical framework for irrigation water management. Case studies discussed. Not open for credit to students who have completed Water Science 172.

122. Bioengineering Waters (3) I. The Staff
Lecture—2 hours; discussion—1 hour. Prerequisite: introductory course in biology and junior standing. The study of lotic aquatic animals and plants in relation to their environment; various factors affecting the distribution of freshwater plants and animals is emphasized in a manner particularly suitable for students of freshwater ecology, soil and water science, and available natural resources. Not open for credit to students who have completed Water Science 122.

122L. Biology of Running Waters Laboratory (2) I. The Staff
Laboratory—2 hours (including 2 or 3 weekend field trips). Prerequisite: introductory course in biology or consent of instructor and junior standing; course 122 (concurrently). Course allows interested students to obtain experience in sampling, processing, and synthesizing field data. Field trips will allow students to obtain an understanding of the structure and function of stream ecosystems. Not open for credit to students who have completed Water Science 122L.

124. Plant-Water-Soil Relationships (4) III. Hsiang
Lecture—3 hours; discussion—2 hours. Prerequisite: course 100, Soil Science 100 recommended, and one additional course in botany or plant physiology; or consent of instructor. Principles of plant interactions with soil and water environments and their applications in crop and environmental management. Including nutrient and water uptake and transport; transpiration; soil processes affecting supplies; deficiencies and plant responses. Not open for credit to students who have completed Water Science 104.

134. Aqueous Geochemistry (4) III. Casey
Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 2B, upper division standing. Covers the dielectric properties of water; thermodynamic and mass-action relations; electrolyte activities; metal hydrolysis equilibrium reactions; chemical solubility calculations; electron-exchange reactions; and rate laws.

136. Chemistry of the Hydrosphere (3) III. Tanji
Lecture—3 hours. Prerequisite: Chemistry 2B and an upper division course in soil science, hydrologic science, geology, or limnology; course 134 recommended. Chemical characteristics of water in the hydrologic cycle. Understanding processes and conditions regulating chemical composition of natural waters with particular emphasis on dissolved mineral constituents. Not open for credit to students who have completed Water Science 141.

141. Hydrology (4) II. Puente
Lecture—3 hours; discussion—1 hour. Prerequisite: Physics 5B or 9B, Mathematics 16B or 21B; course 100 recommended. Study of the processes that constitute the hydrologic cycle: precipitation, infiltration, evaporation, transpiration, surface runoff, and ground-water runoff. Not open for credit to students who have completed Water Science 141.

143. Analytical Hydrology and Watershed Management (3) Parragon
Lecture—3 hours. Prerequisite: course 103 or Engineering 103A; working knowledge of FORTRAN. Introduction to watershed hydrology modeling. Techniques in precipitation, evaporation, infiltration, subsurface and overland flow, non-point source pollution, snowmelt, and their formulation in watershed model design and programming. (Same course as Biological Systems Engineering 143.)

145A. Groundwater Hydrology (3) I. Marinho
Lecture—3 hours. Prerequisite: course 100, 103 or Engineering 103A recommended. Occurrence, distribution, and movement of groundwater. Steady and transient groundwater-flow systems. Aquifer tests. Well construction, operation, and maintenance. Groundwater exploration, quality, and contamination. Not open for credit to students who have completed Water Science 149A.

145B. Groundwater Hydrology (4) II. Fogg
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 145A or Civil and Environmental Engineering 144; course 100 recommended. Physical and chemical processes in contaminant transport, with emphasis on effects of aquifer complexity. Groundwater geochemistry and geology. Fundamentals of groundwater flow and transport theory includes field pumping test and work with physical and computer models. Not open for credit to students who have completed Water Science 149B and 149L.

150. Water Law and Water Institutions (3) II. The Staff

236. Chemical Models (3) II. Tanji
Lecture—2 hours; laboratory—3 hours. Prerequisite: background in applied chemistry and PC and mainframe computers; numerical analyses recommended. Application of mathematical and computer models to chemical problems. Emphasis on process level models (transport, rate and equilibrium) with same exposure to systems level models. Not open for credit to students who have completed Water Science 202. Offered in alternate years.

243. Water Resource Planning and Management (3) I. Marinho
Lecture—3 hours. Prerequisite: course 141 or the equivalent. Applications of deterministic and stochastic mathematical programming techniques to water resource planning, analysis, design and management. Water allocation, capacity expansion, and reservoir operation. Conjunctive use of surface water and groundwater. Water quality management. Irrigation planning and operation models. Not open for credit to students who have completed Water Science 206.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in water science. Internship supervised by a member of the faculty. (P/NP grading only.)

Graduate Courses

Seminar—1 hour; paper. Prerequisite: open to students in the Hydrologic Science program. Seminar course exposes students to the diversity of sciences involved in the program. Students prepare a paper and presentation in their area of research interest. May be repeated twice for credit. (SU grading only.)

210. Hydrologic Modeling of the Vadose Zone (3) III. Hopmans
Lecture—2 hours; discussion—1 hour. Prerequisite: Soil Science 107, Mathematics 22B, Programming Language. Principles and modeling of soil water, solute transport, heat and water flow, root water and nutrient uptake. Numerical techniques to incorporate soil heterogeneity. Not open for credit to students who have taken Water Science 200 or Hydrologic Science Graduate Course 210. Offered in alternate years.

212. Evapotranspiration (3) III. Parlange
Lecture—3 hours. Prerequisite: course 103. Review of lower atmosphere properties, introduction to similarity theory; surface roughness parameterization, calculation of energy fluxes, local advection and turbulence mechanisms will be studied in the field. Not open for credit to students who have completed Water Science 202. Offered in alternate years.

236. Hydrochemical Models (3) II. Tanji
Lecture—2 hours; laboratory—3 hours. Prerequisite: background in applied chemistry and PC and mainframe computers; numerical analyses recommended. Application of mathematical and computer models to chemical problems. Emphasis on process level models (transport, rate and equilibrium) with same exposure to systems level models. Not open for credit to students who have completed Water Science 217.

243. Water Resource Planning and Management (3) I. Marinho
Lecture—3 hours. Prerequisite: course 141 or the equivalent. Applications of deterministic and stochastic mathematical programming techniques to water resource planning, analysis, design and management. Water allocation, capacity expansion, and reservoir operation. Conjunctive use of surface water and groundwater. Water quality management. Irrigation planning and operation models. Not open for credit to students who have completed Water Science 206.

244. Multi-phase Transport in Soils (3) II. Grismer
Lecture—3 hours. Prerequisite: course 103 or Engineering 103A or Civil and Environmental Engineering 141. Aspects of multi-phase flow in soils and their
Hydrologic Science (A Graduate Group)

Graham E. Fogg, Ph.D., Chairperson of the Group
Group Office, 113 Verhmeier Hall
(916-752-6900)

Faculty. The Group consists of faculty members from the Departments of Chemical Engineering, Civil and Environmental Engineering, Environmental Studies; Geology; and Land, Air and Water Resources.

Graduate Study. The Graduate Group in Hydrologic Science is an interdisciplinary program offering M.S. and Ph.D. degrees. The group draws on the expertise across the campus from the Colleges of Agricultural and Environmental Sciences, Engineering, and Letters and Science. Coursework is available from many programs, including Hydrologic Science, Civil and Environmental Engineering, Geology, and Soil Science. Education in the group broadens the skills and knowledge of the physical science or engineering student interested in the occurrence, distribution, circulation and properties of water on earth. Because of water’s ubiquity and importance to physical, chemical and biological processes, hydrologic science involves the geologic, atmospheric and oceanic sciences, as well as engineering and other applied physical sciences. The Hydrologic Science program is a core curriculum of courses in fluid dynamics, hydrologic phenomena, hydrobiology, hydrogeochemistry, hydrologic techniques, and hydrologic policy. The program has degree options in Hydrobiology, Hydrogeochemistry and Hydrology. The Hydrology option includes specializations in surface hydrology, subsurface hydrology, irrigation and drainage, and water resources management. The subsurface hydrology specialization includes hydrogeology and vadose-zone hydrology.

Preparation. Applicants to the program are expected to have completed or be in the process of completing an undergraduate degree in environmental or physical sciences, mathematics, or engineering. Undergraduate study must include one year of calculus, one year of physics with calculus, and one year of chemistry. Additional coursework in applied statistics, computer programming, and geology are recommended.

Specialization. Each student will pursue an individual program of advanced study under the direction of a faculty mentor. Faculty members have diverse backgrounds and interests, and coursework in addition to the above is typically taken in the most appropriate department.

Graduate Adviser, M.E. Grismer and M.B. Parlange
(Land, Air and Water Resources).

Immunology (A Graduate Group)

M. Eric Gershwin, M.D., Chairperson of the Group
Group Office, 1202E Meyer Hall (916-752-2512)

Faculty. The faculty includes members from several colleges and the Schools of Medicine and Veterinary Medicine.

Graduate Study. The Graduate Group in Immunology is a multidisciplinary group offering programs of study leading to the M.S. and Ph.D. degrees in various areas of immunology. Possible areas of specialization include molecular biology, immunobiology, immunogenetics, cellular immunology, clinical immunology, and tumor and developmental immunology.

Preparation. Applicants for candidacy to these programs should have completed undergraduate preparation in general biology, zoology or botany, general bacteriology or microbiology, general genetics, mathematics, general physics, chemistry, and biochemistry.

For work leading to the Ph.D. degree, the requirements include cell biology, chemical immunology, cellular immunology, immunohematology, and advanced immunology. In addition to these general requirements more specialized preparation in at least one of the following is required: (a) microbial toxicology; (b) the biology of antigenic determinants (bacteriology, virology, parasitology, medical microbiology); (c) cellular and molecular pathogenesis; (d) immune regulation of antigen processing and presentation; (e) immunology, anatomy, pharmacology, clinical pathology, reproduction, hematology, epidemiology); (d) biochemistry/biophysics specialties (biologically active molecules, control mechanisms); (e) genetic specializations (developmental genetics, population genetics, cytokinetics, molecular genetics).

Graduate Adviser. Contact the Group Office.

Courses in Immunology (IMM)

Additional courses are available and listed under the individual sponsoring departments. Contact the group office for information.

Graduate Courses

292. Immunotoxicology Seminar (2) I. Golub
Seminar—2 hours. Prerequisite: graduate standing in Pharmacology/Toxicology, Immunology, Physiology, or Biochemistry. Seminar presentations dealing with principles of xenobiotic effects on immune system functions and specific examples of drugs and environmental chemicals exerting toxic effects on the immune system. Offered in alternate years. (2U grading only.)

295. Cytokines: An Expanding Class of Cell Regulatory Agents (2) II. Benton, Erickson
Seminar—3 hours. Prerequisite: graduate standing. Presentation, discussion and analysis of research topics in immunology, with emphasis on investigative bench research. (2U grading only.)

Independent Study Program

Information:
Chairperson
Committee on Courses of Instruction
(c/o Academic Senate Office (916-752-2220)

The Independent Study Program provides an opportunity for upper division students to design and pursue a full quarter (12-15 units) of individual study in an area of special interest.

A program qualifying as Independent Study will consist of one or more courses in the 190–199 series. While the theme of such a program may be reasonably broad, a recognizable common thread should unite all the academic work you undertake during an independent study quarter. Regularly offered formal courses will only be acceptable as part of such a program if they clearly fit its theme and contribute something essential toward the realization of the program. The program is not to be considered a way to take more variable-unit courses than normally permitted.
The procedure for enrolling in an Independent Study Program is as follows:
1. develop, in general terms, a plan of study;
2. locate a faculty sponsor or panel of sponsors, and with their help and approval develop a detailed plan;
3. complete a project proposal form (obtained from the Academic Senate Office) and submit it to the Academic Senate Committee on Courses of Instruction.

The deadline for applications is the tenth day of instruction of the term before the term in which the project is to be undertaken. (See the Academic Calendar at the front of the catalog for specific dates.) You must report the completion or termination of the project to the Committee on Courses of Instruction.

Individual Major

Individual Major Committee for the College

Application forms are available in the Individual Major Committee for the College.

Academic Advising Center

Graduation

Proposals for individual majors should be submitted at least four quarters before graduation. Specific requirements for each college are shown below. Application forms are available in program offices.

College of Agricultural and Environmental Sciences

Academic Advising Center, 228 Mrak Hall (916-752-0610)

B.S. Major Requirements:

Units

English Composition requirement0-8

See College requirement

Preparatory Subject Matter(variable)

Lower division courses basic to the program or needed to satisfy prerequisites for upper division requirements.

Breadth/General Education6-24

Satisfaction of General Education requirements

Depth Subject Matter45-54

Upper division coursework must include:

a) related coursework from two or more campus departments focused on a single educational theme, and

b) at least 30 units must be taken from courses provided by the College of Agricultural and Environmental Sciences.

Note: the completed proposal should be submitted to the Individual Major Committee at least four quarters before graduation; otherwise graduation may be delayed.

Unrestricted Electives(variable)

Total Units for the Degree180

Student Proposal. A student submits to the Dean's Office a major proposal and an essay, discussing educational purposes, personal and/or professional objectives, along with faculty letters of recommendation. After initial review, the Faculty Committee on Individual Majors evaluates the proposal and provides final action. Proposals must be received by the end of the fourth full week of instruction for consideration that quarter.

Major Advisers (selected by student), Principal Adviser: a faculty member in a teaching department or program in the College of Letters and Science in major field of emphasis. Second Adviser: a faculty member from secondary area of interest.

Honors Program. By the fourth week of the last quarter of the junior year, students potentially eligible for high or highest honors at graduation (see College section), may petition the Individual Majors Committee for tentative acceptance into an honors program. Final admissions will depend upon the Committee's approval of a senior thesis prospectus that has been agreed upon by the student and faculty adviser. The prospectus must be presented to the Committee by the end of the fourth full week of instruction of the first quarter of the senior year. Graduation with high or highest honors will be conditional upon both the maintenance of the required grade point average and the completion of the senior thesis project. Students who anticipate doing a senior honors thesis should allow up to 3 units of independent study in the program during each of the last quarters in the senior year as course options.

Unrestricted Electives(variable)

Total Units for the Degree180

Master Adviser. T. Foin (Environmental Studies). The individual major proposal must be developed in consultation with the Academic Advising Center and two or more faculty members prior to final review by the Individual Major Committee for the College.

Integrated Studies

Integrated Studies Program Office

200 Social Sciences and Humanities Building (Dean's Office), (916-752-0392)

Committee in Charge

Richard T. Curley, Ph.D. (Anthropology)
Douglas W. McColm, Ph.D. (Psychology)
Nora A. McGuinness, Ph.D. (Integrated Studies)
Jay E. Mechling, Ph.D. (American Studies), Chairperson
Kenneth L. Wroblew, Ph.D. (Geology)

Faculty

Richard T. Curley, Ph.D., Lecturer (Anthropology)
William G. Davis, Ph.D., Professor (Anthropology)
Dennis J. Dingemans, Ph.D., Associate Professor (Geography)
Gar S. Goodman, Ph.D., Professor (Psychology)
Georges Haipern, M.D., Adjunct Professor (Internal Medicine)
C. Blake Keasey, Ph.D., Clinical Professor (Psychiatry)
Catherine J. Kudlick, Ph.D., Assistant Professor (History)
Jerol A. Last, Ph.D., Professor (Internal Medicine, Biological Chemistry)
Douglas W. McColm, Ph.D., Senior Lecturer (Physics)
Nora A. McGuinness, Ph.D., Academic Coordinator (Integrated Studies/Davis Honors Challenge)
Janur S. Manning, Ph.D., Professor (Microbiology)
Jay Mechling, Ph.D., Professor (American Studies)
Kenneth A. Shankel, Ph.D., Associate Professor (Pomology)

The Program of Study

Integrated Studies is an invitational first-year honors residential program associated with the Davis Honors Challenge. Established in 1969, the program encourages cross-disciplinary interests in its faculty and students and values close contact between student and professor. Enrollments are limited to 25 students per class, and program membership is limited to 3% of the entering class. In 1996-97, 68 students will be admitted to the program.

Students enroll in at least three Integrated Studies courses and two seminars during the year. Students not admitted to the Program may not register for Integrated Studies courses or seminars. For more information about the Davis Honors Challenge, see the section titled "Honors Challenge."

Courses in Integrated Studies (IST)

Lower Division Courses

1A. Science and Engineering: Physics (4) I. McCormick
Lecture—2 hours; discussion—2 hours. Introductory course on the history, philosophy and methodology of physics from 600 B.C. to the present day. Changes in ideas about the physical universe explored. Problems not emphasized.

1B. Science and Engineering: Origins of the Universe (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Knowledge of the origins of the universe, of matter, of galaxies, stars, and planets, and of the earth and the variety of life forms that have evolved on this planet.

1C. Science and Engineering: Molecules to Humans (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: high school chemistry. Intended for liberal arts students. Integrates the principles of chemistry, biochemistry, genetics and molecular biology. Students are expected to achieve a fair scientific literacy in all of the subjects.
"2A. Arts and Humanities: Mathematics and Civilization (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: high school algebra and geometry. Topics from arithmetic, geometry, algebra and probability presented in historical context which is designed to convey an appreciation of the role that mathematics has played in shaping our world and civilization.

"2B. Arts and Humanities: Theology (4) I. Robertson
Discussion—4 hours. Major issues in theology, including the existence and nature of God, the nature and destiny of the human species, free will, and morality from both a western and eastern perspective.

"2C. Arts and Humanities: Origins of Western Civilization (4) III. Roller
Lecture—3 hours; discussion—1 hour. Civilizations of the ancient Near East and Greece: the problem of divine-human relations, problems of law and justice, and development of science and of logical thought. Readings include selections from Near Eastern texts and from Greek literature.

"2D. Arts and Humanities: Literature and Writing (4) I. McGuinness
Lecture—3 hours; 3-hour group writing workshop. Prerequisite: completion of Subject A requirement. Exposure to basic methods of literary analysis in drama, fiction and poetry and concepts that guide literary scholars in making critical judgments. Formal writing training.

"2E. Arts and Humanities: Playing Shakespeare (4) III. The Staff
Lecture—3 hours; laboratory—2 hours. Prerequisite: completion of Subject A requirement. Shakespeare as a theatre professional: producer, actor, director. His use and development of Elizabethan theatre acting space. Objective analysis of how Shakespeare's text actually works on stage. Scene exercises to illustrate effective playing of the text.

"3A. Social Sciences: History in Our Time (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Course varies with topic offered. Limited enrollment. May be repeated for credit. GE credit: SciEng, Wrt.

"3B. Society Through Literature: Modern Europe (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Readings and discussion concerning European experience as related to the Russian revolution, two world wars, the rise of Fascism, Nazi holocaust, and the decline of Europe as the center of world politics.

"3C. Society Through Literature: Modern China (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Chinese's twentieth-century experience: national humiliation, invasion, liberation, regression, and the overthrow of ancient values, as reflected in short stories, novels, poetry, and film.

"3D. Social Sciences: Speech, Privacy, and Conscience (4) II. The Staff
Discussion—4 hours. Analysis of the constitutional rights of speech, privacy, and conscience as limits on majoritarian decision-making. Specific topics to be covered include pornography, "hate" speech, broadcast codes, book censorship, sexual and association privacy, abortion, and euthanasia.

"3E. Social Sciences: Sociology (4) III. The Staff
Lecture—2 hours; discussion—2 hours. Introduction to modern sociological research and theory utilizing material drawn from three topical areas: the development of gender identities, the social production of scientific and other forms of knowledge, and the social basis of religious belief.

8. Colloquium (1) I, II. The Staff (N. McGuinness in charge)
Discussion—1 hour. Lectures, films, and readings on the interrelation between the arts and sciences. May be repeated for credit. (P/NP grading only)

8A. Special Topics in Natural Science and Mathematics (4) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour. Group study of a special topic in natural sciences and mathematics.

Unrestricted Electives1-34

Students not possessing a reading/speaking ability in a foreign language will be encouraged to use these electives for language study or to attend an intensive language school.

Total Units for the Degree..............................180

How social and cultural factors influence technological change in agriculture; theories of diffusion of innovations; social impact analysis and technology assessment. (Chairperson in charge) Major Adviser, S. B. Brush (Human and Community Development).

Minor Program Requirements:

IAD

International Agricultural Development

UNITS

International Agricultural Development 10, 102, 110, 111; Agricultural Systems and Environment 110A, 110B, 110C; ... Minimum of four units chosen from Agricultural Systems and Environment 111; International Agricultural Development 103, 141, 195, 196, Economics 115A-115B ... Minor Adviser, S. B. Brush (1361 Hart Hall).

Graduate Study. A program of study and research leading to the M.S. degree is available in International Agricultural Development. Detailed information regarding graduate study may be obtained by writing to the Coordinator of Graduate Recruitment (I.A.D.), Graduate Studies, UC Davis.

Graduate Advisers, S.B. Brush, (Human and Community Development); D.J. Boyd (Anthropology); K.G. Cassman (Agronomy and Range Science); L.S. Jarvis (Agricultural Economics).

Related Courses. See Agricultural Economics 148, 215C; Agricultural Systems and Environment 111; Anthropology 221I, Economics 115A-115B, 215A-215B-215C; Geography 142; Nutrition 20; Sociology 144.

Courses in International Agricultural Development (IAD)

Questions pertaining to the following courses should be directed to the instructor or to the Department of Human and Community Development, Advising Center in 1303 Hart Hall (916-752-2244).

Lower Division Courses

92. Internship (1-12). I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

Upper Division Courses

*102. Limited Resource Animal Agriculture (4). Ill. Brown (Animal Sciences) Lecture—3 hours; laboratory—3 hours; one all-day Saturday field trip required. Prerequisite: Animal Science 2. Environmentally and economically sound methods are presented to meet objectives of limited resource animal agriculture system. Range systems, small farms, Third World systems and suburban enterprises are considered. (Same course as Animal Sciences 102.)

110. Agricultural Production Economics (4). I. The Staff Lecture—4 hours. Prerequisite: upper division status and an introductory course in microeconomics (Economics 1A). Economic analysis of agricultural production in low income countries, from field-level data collection to national food policy. Emphasis is given to construction and use of farm models in project evaluation.

111. Agricultural Marketing Systems (4). II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: upper division status and an intensive introductory course in microeconomics recommended (Economics 1A). Economic analysis of agricultural marketing systems in low income countries, including the functions of transportation, storage, packaging, handling, grading and standardization, processing, and market news. Emphasis is given to evaluation of interventions in marketing systems to speed economic development.

*141. Technology for Agriculture in Developing Regions (3). I. Chancellor (Agricultural Engineering). Lecture—2 hours, laboratory/discussion—2 hours. Prerequisite: upper division status and standing in engineering. Equipment used in tropical agriculture. Man-, animal- and engine-powered devices. Energy requirements, size-scale, costs, support infrastructure development, and productivity potentials. (Same course as Applied Biological Systems Technology 141.)

190. Proseminar in International Agricultural Development (1) I, II, III. The Staff Seminar—1 hour. Presentation and discussion of current topics in international agricultural development by visiting lecturers, staff and students. May be repeated for credit. (P/NP grading only.)

*191. Topics in International Agricultural Development (3) I, II, III. The Staff Lecture/discussion—3 hours. Prerequisite: consent of instructor. Selected topics dealing with current issues in agricultural development in lesser developed nations—variable content. May be repeated for credit.

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: consent of instructor. Supervised internship, off and on campus, in community and institutional settings. (P/NP grading only.)

195. Field Study in Agricultural Development (3) Ill. The Staff Lecture—2 hours total, seminar—8 hours total; field work—overnight visits to sites in California (four two-day visits) or Mexico (one eight-day visit). Students will incur travel expenses. Observation of agricultural development strategies and impact on rural communities. Discussion with farmers, workers and organizational staff members. Study of farm commodities, institutions and experiences in dealing with agricultural development problems. International influence on United States agriculture. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

200. Analysis and Determinants of Cropping Systems (4). III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 101, Agricultural Science and Management 150 (or comparable statistics course). Cropping systems as a function of farmer objectives, resource availability, environment, and yield potential; interactions among management strategies, resource use efficiency, and the agroecosystem; stability, diversity, and sustainability of cropping systems.

201. The Economics of Small Farms and Farming Systems (4). II. Jarvis. Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics 100A. Economic perspective on small farm development. Establishes a basis for predicting farmers’ responses to changes in the economic environment, and for proposing government policies to increase small farm production and improve farmer and national welfare.

202. Social Systems and Agricultural Development (4). I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: upper division coursework in economic development, cultural anthropology, sociology, or political science (especially comparative politics or public administration), or consent of instructor. Social and cultural factors in agricultural and rural development; adaptation of rural people to development process; agrarian movements and revolution; evaluation of theories of rural development; application of social analysis to design and implementation of rural and agricultural policies and programs.

203. Management Systems for Agricultural Development (4). II. Wolf Lecture—3 hours; discussion—1 hour. Prerequisite: course 200 or 201 preferably, or 202; or consent of instructor. Contents of agricultural development; strategies for program implementation; planning, staffing, and financing agricultural development; processes and structures of implementation; delegation, decentralization, devolution, deconcentration, and dispersal.

217. Conservation and Sustainable Development in Third World Nations (4). II. Otolo Lecture/discussion—3 hours; fieldwork—2 hours. Prerequisite: at least one course from two of these three groups: a) Environmental Studies 160, 161, 168A, 168B; b) Environmental Studies 101, 133, International Agricultural Development 142; c) Anthropology 126, 131, Geography 141, Sociology 144, 145A, 145B. Examination of the patterns of resource ownership, control and management in agricultural lands, extractive zones (fisheries, forests), and wildlands, with emphases on conservation and sustainability. Comparison of industrial democracies and poorer nations. (Same course as Ecology 217.)

*220. Food and Nutrition Strategies in Developing Countries (4). II. Wolf Lecture—3 hours; discussion—1 hour. Prerequisite: Agricultural Economics 100A. Identifies important topological problems in food and nutrition policy, develops theoretical frameworks suitable for their analysis, examines the empirical information relevant to the problems and, using theory data, draws appropriate policy implications. Offered in alternate years.

290. Seminar in International Agricultural Development (1-2) I, II, III. The Staff Seminar—1-2 hours. Prerequisite: consent of instructor. Discussion and critical evaluation of advanced topics and issues in international agricultural development. (SU grading only.)

291. Topics in International Agricultural Development (1-3) I, II, III. The Staff Lecture/discussion—1-3 hours. Prerequisite: consent of instructor. Selected topics dealing with current issues in agricultural development in lesser developed nations. Variable content. May be repeated once for credit.

292. Graduate Internship (1-12) I, II, III. The Staff Internship—3-36 hours. Prerequisite: participation in Humphrey Fellow Program or consent of instructor. Individually designed supervised internship, off or on campus, in community, business or institutional setting. Developed with advice of faculty mentor and Humphrey Coordinator. (SU grading only.)

298. Directed Group Study (1-5) I, II, III. The Staff (Graduate Group Chairperson in charge) (SU grading only.)
The Major Program

Problems of security, human rights, energy and mineral resources, and the environment are increasingly confronted at a global rather than a national level. With its theoretical models and real-world application, the study of international relations is an exciting and highly relevant interdisciplinary major.

The Program

Graduation with a major in international relations requires completion of introductory courses in political science, economics, geography, and history. Upper division work is composed of a core of four courses in economics and political science required of all majors, and an additional set of eight courses chosen from one of four clusters which encompass major topical areas in combination with regional emphases. I: World Trade and Development, II: International Relations of the Third World, III: Global Resources and Environment, IV: World Politics. The major also requires fluency in English and a working knowledge (approximately 24 to 30 units of course credits or equivalent fluency) of one other modern language.

Programs, Internships, and Career Alternatives.

One program of special interest to international relations majors is the Education Abroad Program, which provides insights into the life and culture of other countries. At UC Davis, the Internship and Career Center assists students in obtaining legislative, legal, and business internships. In addition, the UC Davis Washington Center arranges internships and runs a full-credit academic program in Washington, D.C. with a full range of opportunities for International Relations majors (see also the UC Davis Washington Center listing). International relations graduates are prepared for employment in governmental agencies abroad (such as the Foreign Service), with state agencies, international or non-governmental organizations (such as the United Nations), foundations, and companies having interests in international business, trade, or finance. The stringent language requirement of the major program enhances career prospects in jobs which demand knowledge of the language and culture of other countries.

International Relations Abroad: International Relations strongly encourages students to participate in the UC Education Abroad Program. A maximum of four courses taken abroad may be applied toward the 12 upper division courses in the International Relations major. Courses are selected with the approval of an adviser for the International Relations program.

Preparatory requirements

Before declaring a major in International Relations, students must complete the following courses with a combined grade point average of at least 2.50 (all courses must be taken for a letter grade):

- Economics 1A, 1B
- Geography 10
- History 4C
- Political Science 3

A.B. Major Requirements:

UNITS

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>24-51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economics 1A, 1B</td>
<td>10</td>
</tr>
<tr>
<td>Geography 10</td>
<td>3</td>
</tr>
<tr>
<td>History 4C</td>
<td>4</td>
</tr>
<tr>
<td>Political Science 3</td>
<td>4</td>
</tr>
</tbody>
</table>

One course selected from Anthropology 2, Environmental Studies 30, Geography 2, History 4B, 9A, 9B, 10, 15, 17B, International Agricultural Development 10, Political Science 1, 2 | 3-4 |

Recommended: one course in statistics (e.g., Sociology 46A, 46B, Statistics 13)

Note: Mathematics 16A is a required prerequisite for some courses.

Foreign language | 0-30 |

One of the following series in a single language:

- Chinese 1, 2, 3, 4, 5, and 630
- or Chinese 7, 17, 2715
- or Chinese 8, 18, 28 | 15 |

International Relations 303

French 1, 2, 3, 21, 22 | 25 |

German 1, 2, 3, 20, 21 | 23 |

Italian 1, 2, 3, 4, 521
| 21 |

Japanese 1, 2, 3, 4, 5, 6, 7, 8 | 15 |

Russian 1, 2, 3, 4, 5 | 23 |

Spanish 1, 2, 3, 4, 525
| 15 |

Sociology 31, 32, 33 | 15 |

Note: The language curricula are subject to change; please check with an adviser for the major. A language not listed above may be substituted only with prior written approval of the International Relations Program Committee.

Depth Subject Matter | 47-50 |

Twelve upper division courses—choose one cluster below:

Cluster I: World Trade and Development

(Heavy economic emphasis, suitable particularly for students who seek careers in international business or international organizations)

- Economics 100 or 104
- Economics 101 or 105
- Economics 115A-115B
- Economics 162A-162B
- Political Science 123, 130
- Two courses to be selected from:
 - Anthropology 122, 126, 131, 135
 - Geography 141, 142
 - Political Science 124, 178
 - Sociology 139, 141, 144, 145A
- Two regional courses from Group A (History)

Cluster II: International Relations of the Third World

(Focuses on problems of development of the Third World in recent times)

- Economics 115A or 115B
- Economics 162
- Political Science 123, 130
- One course to be selected from each of four subjects:
 - Anthropology 123A, 124, 126, 127, 131, 135
 - Economics 110B, 115A or 115B
 - However course is not used to fulfill the core requirement above)
 - Political Science 124, 126, 127, 128, 178
 - Sociology 118, 139, 141, 145A
- Four regional courses focused on Third World
 - Select two courses from Group A (History)
 - Select two courses from Group B (Anthropology, Economics, Geography, Political Science, and Sociology)

Cluster III: Global Resources and Environment

(Designed to familiarize students with major patterns of resource distribution in the world and the role resources play in international affairs)

- Economics 115A or 115B
- Economics 162
- Political Science 123, 130
- Three courses to be selected from:
 - Agricultural Economics 147, 176
 - Environmental Studies 100, 101
 - Political Science 107, 122
- Two additional courses to be selected from two of the following groups:
 - Energy—Agricultural Economics 175, Geology 130, Political Science 171
 - Food Resources—Geography 142, 175, Sociology 144
 - Population—Sociology 170
 - Urbanization—Anthropology 127, Geography 156, Sociology 143A, 145A
 - Water Resources—Geography 162, Geology 116
The Major Program

The major in Italian provides a solid language background which will enable the student to develop an appreciation for Italian language and culture.

The Program. The Italian program is small and geared to the individual needs of the student. The use of Italian is stressed on all levels and a knowledge of the language is required for literature courses which are taught only in Italian. The Italian program actively participates in the Education Abroad Program, the International Internships Program, and the Summer Sessions International (Rome), all of which offer opportunities for travel and study in Italy.

Career Alternatives. Specific career opportunities for those students who have a background in foreign languages are abundant. In addition to the Foreign Service, jobs are available in business and education, both overseas and in the U.S. For example, those wishing to live (for brief or longer periods of time) and work in Italy have a choice of cities: Milan for business, Rome for international concerns in agriculture and nutrition in the F.A.O., and Florence for retail commerce and the arts, just to name a few. In the U.S., foreign-owned companies or American companies with interests in the foreign market need qualified people who are also fluent in a foreign language.

Education Abroad Program. Applicable courses taken on EAP are accepted for credit in the major or the minor programs.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Subject Matter</td>
<td>0-24</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36</td>
</tr>
</tbody>
</table>

Upper division courses in literature, taught in the language, must include at least one course from two of the following literary periods: (a) Early Italian, (b) Renaissance and Baroque, (c) Eighteenth through Twentieth Centuries. Upper division General Education courses in Italian may fulfill this requirement with approval of the major adviser.

A total of 8 units in literature may be replaced by Italian 107 (highly recommended) and/or by courses in related fields such as history, art history, music, comparative literature, English, critical theory, classics, and linguistics. Note: All upper division courses are to be chosen in consultation with the major adviser.

Total Units for the Major | 36-60

Recommended

One year of study abroad with the Education Abroad Program or college Latin or a Romance Language.

Major Adviser. D. Dutschke.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian</td>
<td>20</td>
</tr>
</tbody>
</table>

Three upper division courses in literature chosen in consultation with major adviser. One course chosen from two of the following three areas: (a) Early Italian Literature, (b) Renaissance and Baroque, and (c) Eighteenth through Twentieth Centuries. (One of the above courses may be replaced by course 107 or by a course of literature in translation offered by the Italian Program).

Course not offered this academic year.
Prerequisite Credit. Credit will not normally be given for a course if it is a prerequisite of a course already successfully completed. Exceptions can be made only by the Program Director.

Honors and Honors Program. The honors program comprises two quarters of study under course 194H (3 units) and course 195H (3 units), which will include a research paper and a comprehensive examination. See also sections on University and College requirements.

Teaching Credential Subject Representative. See Major Adviser above and also the section on the Teacher Education Program in this catalog.

Courses in Italian (ITA)

Lower Division Courses

Students offering high school language preparation as a prerequisite must take a placement test.

1. Elementary Italian (5) I, II, III. Foscarini in charge Discussion—5 hours; laboratory—1 hour. Introduction to Italian grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Italian 2 or 3 in the 10th or higher grade in high school may receive credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade only if they take the placement test.)

2. Elementary Italian (5) I, II, III. Foscarini in charge Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of course 1 in areas of grammar and basic language skills.

3. Elementary Italian (5) I, II, III. Foscarini in charge Lecture/discussion—5 hours. Prerequisite: course 2. Continuation of grammar sequence, and practice of all language skills through cultural texts.

4. Intermediate Italian (3) I, II, III. Director in charge Lecture/discussion—3 hours. Prerequisite: course 3 or the equivalent. Review of grammar and syntax through written exercises, and readings of short prose works. Intended to develop the linguistic foundations of students who have completed the first-year language courses.

5. Intermediate Italian (3) I, II, III. Director in charge Lecture/discussion—3 hours. Prerequisite: course 4 or the equivalent. Review and study of grammar and syntax, readings of short prose works, and written exercises. Intended to prepare students to read, understand and discuss modern Italian.

8A. Italian Conversation (3) I, III. The Staff Discussion—3 hours. Prerequisite: course 3 or the equivalent. Course designed to offer practice in speaking Italian. May be repeated once for credit. (P/NP grading only)

8B. Italian Conversation (3) II. The Staff Discussion—3 hours. Prerequisite: course 8A. Course designed to offer practice in speaking Italian.

9. Reading Italian (3) I, II, III. Director in charge Lecture/discussion—3 hours. Prerequisite: course 5. Reading and discussion of modern Italian prose, including selections from creative, scientific and journalistic writings. Introduction to contemporary Italian literature and culture, as well as a means of strengthening the student's command of the Italian language.

50. Studies in Italian Cinema (4) II. Cannon Lecture—2 hours; discussion—1 hour; term paper. Introduction to Italian cinema through its genres. Focus is on cinematic as a reflection of and a comment on modern Italian history. Film will be studied as an artistic medium and as a form of mass communication. GE credit: Arts and Humanities.

90X. Lower Division Seminar (1-2) I, II, III. The Staff Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special subject or important theme in culture (such as Italian culture seen through film, Italian feminism, literature, or politics) through shared readings, discussions, and written assignments, or special activities such as film screening or laboratory work.

*98. Directed Group Study (1-5) I, II. The Staff Primarily intended for lower division students. (P/NP grading only)

Upper Division Courses

101. Advanced Conversation, Composition, and Grammar (4) I. The Staff Lecture—3 hours; weekly essays. Prerequisite: course 9 or consent of instructor.

*104. Italian Translation and Style (4) III. Dutschke Lecture/discussion—3 hours; two research papers; term paper. Prerequisite: course 101 or consent of instructor. Practice in translation from Italian to English literature and culture, as well as a means of strengthening students' command of the Italian language. GE credit: ArtHum.

107. Survey of Italian Culture and Institutions (4) III. Foscarini Lecture—3 hours. Prerequisite: course 9 or consent of instructor. Study of the development of Italian language and literature within the historical context of the Middle Ages. Special emphasis will be placed upon achievements in literature, the arts, the philosophies, and social-political institutions. To be taught in English. GE credit: ArtHum.

112. Medieval and Renaissance Poetry: St. Francis to Petrarch (4) I. Dutschke Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Study of the origins of Italian religious and secular poetry of the 13th and 14th centuries. A diversified poetry is illustrated in works of St. Francis, Dante, Cavalcanti, Petrarch, the Sicilian School, the Sweet New Style Poets, and other authors. Offered in alternate years. GE credit: ArtHum.

*113. Dante Alighieri, Divine Comedy (4) III. Dutschke Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Study of the origins of Dante Alighieri's Divine Comedy, and its role in the development of Italian language and literature. Emphasis will be placed upon the whole poem within the historical context of the Middle Ages. GE credit: ArtHum.

*114. Boccaccio, Decameron and the Renaissance Novel (4) II. Dutschke Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Study of the development of the short story in Italy, as exemplified in Giovanni Boccaccio's Decameron, in his predecessors and Renaissance followers. Offered in alternate years. GE credit: ArtHum.

115A. Studies in the Cinquecento (4) III. Schiesari Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Examination of key texts from the high moment of the Italian Renaissance. The political and aesthetic legacy of humanism will be foregrounded in relation to authors such as Cinico, Ariosto, Machiavelli, Aragonio, Costagione, and Tasso. Offered in alternate years. GE credit: ArtHum.

*115B. Italian Literature of the Renaissance and the Baroque: from Cellini to Marino (4) III. The Staff Lecture/discussion—3 hours; term paper. Prerequisite: course 115A. Continued examination into the loss of an idyllic culture and the conflicts in Michelangelo and Tasso leading to Marino, with an excursion on Galileo's role in the formation of a modern literary standard. GE credit: ArtHum.

*115C. Italian Drama from Machiavelli to the Enlightenment (4) I. Schiesari Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Development of comic and tragic forms as critical representations of their societal and historical contexts, i.e. Machiavellian and the logic of power, Baroque political and religious satire in the service of counter-reformation Italy. Goldoni's comedies and bourgeois social consciousness. Offered in alternate years. GE credit: ArtHum.

*115D. Early Modern Italian Lyric (4) I. Schiesari Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Examination of the poetic tradition influenced by Petrarch. Consideration of the relationship between gender and genre in such poets as Petrarch, Benvenuto Cellini, Tasso, Marino, Gaspara Stampa, Veronica Franco, Isabella di Morra. Offered in alternate years. GE credit: ArtHum.

118. Italian Literature of the Eighteenth Century (4) I. The Staff Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Development of modern Italian literature. Emphasis on the works of Goldoni, Bertinelli, Baretti, Parini, Affieri and Vico. GE credit: ArtHum.

*119. Italian Literature of the Nineteenth Century (4) II. The Staff Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Romanticism in Italy, including Manzoni, Verga, and Verismo. GE credit: ArtHum.

120A. Italian Literature of the Twentieth Century: The Novel (4) III. Cannon Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. Italian poetry with emphasis on Hermeticism; the theater of Luigi Pirandello and its role in the development of contemporary Italian drama. GE credit: ArtHum.

*131. Autobiography in Italy (4) III. Schiesari Lecture/discussion—3 hours; term paper. Prerequisite: course 9 or consent of instructor. The development of representations of selfhood with particular attention to generic conditions, the confessional tradition and the problem of women's expression. Authors studied may include Petrarch, Tasso, Casanova, Affieri, Zvevok, Sibilla Aleramo and Primovi. Offered in alternate years. GE credit: ArtHum.

*139B. Italian Literature in English: Boccaccio, Petrach and the Renaissance (4) II. Dutschke Lecture/discussion—3 hours; term paper. Petrarch and Boccaccio and their relations to the Middle Ages and the Renaissance, with particular attention to the works of Lorenzo del Medici, Leonardo da Vinci, Machiavelli, Ariosto, Michelangelo, and Tasso. GE credit: ArtHum.

*140. Italian Literature in English Translation: Dante, Divine Comedy (4) I. Dutschke Lecture/discussion—3 hours; term paper—1 hour. Prerequisite: any course from the GE Literature Preparation List. Reading of Dante Alighieri's Divine Comedy through the otherworld realms of Inferno, Purgatorio, and Paradise. GE credit: ArtHum, Wrt.

*141. Culture, Gender and the Italian Renaissance (4) II. Schiesari Lecture/discussion—3 hours; term paper. Prerequisite: any course from the GE Literature Preparation List. Critical analysis of texts from the Italian Renaissance. Primary concern focuses on issues such as the legacy of Machiavelli and his impact on gender politics; “high” and “low” culture and its relation to literary practices. GE credit: ArtHum, Div, Wrt.

*142. Masterpieces of Modern Italian Narrative (4) III. Cannon Lecture—1.5 hours; discussion—1.5 hours; term paper. Prerequisite: either English 3, Comparative Lit...
Japanese
See Chinese and Japanese

Land, Air, and Water Resources

(College of Agricultural and Environmental Sciences)

Dennis E. Roiston, Ph.D., Chairperson of the Department

— Program Director, Hydrologic Science Unit
— Ph.D., Program Director, Soils and Biogeochemistry Unit
— Ph.D., Program Director, Atmospheric Science Unit
Department Office, 151 Hoagland Hall (916-752-1406)

Faculty—Soils and Biogeochemistry Unit
Office: 151 Hoagland Hall (916-752-1406)

Caroline S. Biedsoe, Ph.D., Associate Professor
(Plant Nutrition)
William H. Casey, Ph.D., Associate Professor
(Aquaculture) Gymnastics
Randy A. Dahlgren, Ph.D., Associate Professor
(Soil Science)
William R. Horvath, Ph.D. (Soil Biogeochemistry)
André E. Lauchli, Ph.D., Professor (Plant Nutrition)
James H. Richards, Ph.D., Associate Professor
(Plant Nutrition)
Dennis E. Roiston, Ph.D., Professor (Soil Science)
Kate M. Scoow, Ph.D., Associate Professor
(Soil Science)
Wendy Kuhn Slik, Ph.D., Professor (Hydrologic Science)
Michael J. Singer, Ph.D., Professor (Soil Science)
Randal J. Southard, Ph.D., Associate Professor
(Soil Geomorphology)
Joe J. Stasulat, Ph.D. (Environmental and Resource Science)
Robert Zassoski, Ph.D., Assistant Professor
(Plant Science)

Emeriti Faculty

Francis E. Broadbent, Ph.D., Professor Emeritus
Richard G. Burau, Ph.D., Professor Emeritus
C.C. Delwiche, Ph.D., Professor Emeritus
Emmanuel Epstein, Ph.D., Professor Emeritus
Gordon L. Huntington, Ph.D., Lecturer Emeritus
Donald N. Munns, Ph.D., Professor Emeritus
H. Michael Reisenauer, Ph.D., Professor Emeritus
Victor R. Rendig, Ph.D., Professor Emeritus
Harry O. Walker, Ed.D., Senior Lecturer Emeritus
Lynn D. Whittig, Ph.D., Professor Emeritus

Faculty—Atmospheric Science Unit
Office: 151 Hoagland Hall (916-752-1406)

Cort Anastasio, Ph.D. (Topographic Chemistry)
John J. Carroll III, Ph.D., Professor (Meteorology)
Robert G. Flocchini, Ph.D., Professor
(Atmospheric Science)
Terrence N. Nathan, Ph.D., Associate Professor
(Atmospheric Science)
Kyaw Thaw Paw U, Ph.D., Professor
(Atmospheric Science)
Roger H. Shaw, Ph.D., Professor (Meteorology)
Martin L. Sheldon, Ph.D., Professor (Atmospheric Science)

Richard L. Snyder, Ph.D., Lecturer
(Atmospheric Science)
Su-Tai Soong, Ph.D., Associate Professor
(Atmospheric Science)
Bryan C. Weare, Ph.D., Professor (Meteorology)

Emeriti Faculty

Thomas A. Cahill, Ph.D., Professor Emeritus
Kinsell L. Coulson, Ph.D., Professor Emeritus

Faculty—Hydrologic Science Unit
Office: 113 Vehmeyer Hall (916-752-0453)

Graham E. Fogg, Ph.D., Associate Professor
(Atmospheric Science)
David A. Goldhammer, Ph.D., Lecturer (Hydrologic Science)
Stephen Grattan, Ph.D., Lecturer (Hydrologic Science)
Mark E. Grismer, Ph.D., Professor (Hydrologic Science)
Blaine R. Hansen, Ph.D., Lecturer (Hydrologic Science)

Jan W. Hopmans, Ph.D., Associate Professor (Water Management)
Theodore C. Hisao, Ph.D., Professor (Hydrologic Science)
Miguel A. Marilo, Ph.D., Professor (Hydrologic Science)
Marc B. Parlinge, Ph.D., Associate Professor
(Atmospheric Science, Biological and Agricultural Engineering)
Terry L. Prichard, M.S., Lecturer (Hydrologic Science)
Carlos E. Puente, Ph.D., Associate Professor
(Land Sciences)
Lawrence J. Schwankl, Ph.D., Lecturer (Hydrologic Science)
Kenneth K. Tanji, M.S., Professor (Hydrologic Science)

Susan Ustin, Ph.D., Assistant Professor
(Atmospheric and Resource Sciences)
Kinsell L. Coulson, Ph.D., Professor Emeritus
Wesley W. Wallender, Ph.D., Professor (Hydrologic Science, Biological and Agricultural Engineering)

Emeriti Faculty

James W. Biggar, Ph.D., Professor Emeritus
Robert H. Burgy, M.S., Professor Emeritus
Robert M. Hagan, Ph.D., Professor Emeritus
Deibert W. Henderson, Ph.D., Professor Emeritus
Allen W. Knight, Ph.D., Professor Emeritus
Donald R. Nielsen, Ph.D., Professor Emeritus
William O. Pruitt, Jr., Ph.D., Lecturer Emeritus
Frank E. Robinson, Ph.D., Lecturer Emeritus
Verne H. Scott, Ph.D., Professor Emeritus

Land, Air and Water Resources is a multidisciplinary department with faculty who specialize in atmospheric, plant, resource, soil and water science, hydrology, and water engineering. Teaching and research focus on both agricultural and environmental science. The faculty contribute to numerous other undergraduate and graduate programs in the Colleges of Letters and Science, Engineering, and Agricultural and Environmental Sciences.

Advising Center is located in 111A Vehmeyer Hall and 148 Hoagland Hall (916-752-1669).

Graduate Study. Four graduate programs, Atmospheric Science, Hydrologic Science, Soil Science, and Water Science are administered by Land, Air and Water Resources.

Courses. See courses listed under Atmospheric Science, Hydrologic Science, Environmental and Resource Sciences, and Soil Science.

Graduate Study. Graduate work offered in the area of resource sciences is Atmospheric Science, Hydrologic Science, and Soil Science. Detailed information can be obtained from graduate advisors for these areas and the Graduate Announcement.
The Major Program

Landscape architecture is the planning and design of land areas where human use requires adaptation or conservation of the environment. Students who study landscape architecture are concerned about the welfare of the environment and the people who use it. They are capable of solving physical problems and are able to visualize and “think” in terms of spaces and three-dimensional concepts. The program is fully accredited by the American Society of Landscape Architects, which in turn is sanctioned to grant landscape architectural accreditations in the United States, and was last reviewed in 1996. The Program. The curriculum balances creativity and visual and spatial skills with technical expertise and a thorough background in physical, natural, and social sciences. Students develop proficiency at problem-solving relating to design of parks, urban open spaces, energy-efficient neighborhoods, land reclamation projects, and landscape planning for wilderness and scenic regions, coastal and riparian environments, and other sensitive land areas. A process-oriented approach to design is stressed and environmental and community values are emphasized.

Preparatory Requirements. Students are admitted to the landscape architecture major only after submitting a portfolio for review and selection by the faculty. Contact the Environmental Design Advising Center or the Landscape Architecture major adviser for further information.

Career Alternatives. Graduates may find jobs in private landscape architectural firms or public agencies and corporations employing landscape architects. The landscape architecture major provides the student with excellent preparation for graduate school or career development in a wide range of environmental and design-related fields.

B.S. Major Requirements:

(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

English Composition Requirement0-8

See College requirement.

Preparatory Subject Matter ..61-70

Biological sciences (Biological Sciences 1A, 1B)........4-5

Biological Sciences 1C ..4

Chemistry (Chemistry 2A, 1A)4-5

Physics (Physics 1A, 5A, 7A, 10)3-4

Art (Art Studio 2, 16) ..3-5

Three-dimensional design (Art Studio 5, 142, Design 125)4

Earth sciences (Geography 1, Geology 1, Soil Science 10)3-4

Economics 1A, 1B, Agricultural Economics 147)3-5

Mathematics (Mathematics 16A, 36, Statistics 13)3-4

Social sciences (Anthropology 2, Geography 2, 5, Psychology 1, Sociology 1)3-5

Humanities elective ..0-3

Environmental plants, Environmental Horticulture 6

Introductory landscape architecture, Landscape Architecture 11, 21, 22, 23, 40, 19

Breadth/General Education.................................6-24

 Depth Subject Matter ..68

Landscape Architecture studios, Landscape Architecture 111, 112, 113, and 181 or 182, 183, 184, 185, 186, 187, 188, 189, 190

Environmental plants and planting design, Environmental Horticulture 105, 133, Landscape Architecture 12

Communication for architects, Landscape Architecture 122, 123

History of Landscape Architecture, Landscape Architecture 140

Landscape construction and materials, Landscape Architecture 131, 132, 133, 134

Senior project in landscape architecture, Landscape Architecture 193A, 193B

Prosemia in landscape architecture, three quarters, Landscape Architecture 190

Internship (landscape Architecture 192) recommended.

Breadth Subject Matter.................................13-17

Renewable natural resource sciences, two upper division courses with approval of advisor

Ecology (Environmental Studies 100, 110, Entomology 104, Evolution and Ecology 101, 117)

Environmental awareness (Psychology 144 or Landscape Architecture 185)

Unrestricted Electives ..0-41

Total Units for the Major180

Major Adviser. H. Schenker.

Advising Center is located in 152 Walker Hall (916-752-1165)

Graduate Study. Refer to the Graduate Studies section in this catalog.

Courses in Landscape Architecture (LDA)

Lower Division Courses

11. Landscape Studio: Introduction (4) I. The Staff

Studio—8 hours. Prerequisite: courses 21 and 40 (may be taken concurrently). Introductory studio problems in landscape architectural design emphasizing exposure to design, human factors, and natural resource planning. Emphasis is placed on functional and aesthetic considerations for small-scale projects.

1. Landscape Drafting and Visualization (4) I. McNiel and staff

Studio—8 hours; two all-day field trips. Prerequisite: course in free-hand drawing recommended. Development of ideas by expression through graphic media and the use of drawing techniques for visual presentation, including plan, section, and axonometric drawing. Includes an introduction to computerized drafting and drawing.

22. Landscape Graphic Communication (4) II. The Staff

Studio—8 hours; two all-day field trips. Prerequisite: course 21 or other equivalent. Graphic representation of landscape architectural design. Emphasis will include sketching, perspective rendering techniques, sheet layout, lettering and type use, and color use.

23. Computer Graphics for Landscape Architects (4) III. The Staff

Studio—8 hours; two all-day field trips. Prerequisite: course 21. Landscape architectural communications explored through the computer. Includes computer-aided drafting, drawing, rendering, desktop publishing, and photo-realistic simulation.

40. Introduction to Landscape Architecture (3) I. The Staff

Lecture—3 hours. History, theory, philosophy, techniques and applications of landscape architecture and the analysis, planning, design, and management of outdoor spaces.

GE credit: ArtHum or SocSci, Wrt.

Upper Division Courses

111. Intermediate Landscape Architecture Studio 1 (4) I. McNiel and Owens

Studio—8 hours; two all-day field trips. Prerequisite: courses 11, 23, 40, and junior standing in landscape architecture. Studio projects focusing on site analysis and site planning, including the siting of structures, design of circulation systems, outdoor facilities and open spaces. Emphasis on energy-conserving and culturally responsive design.

112. Intermediate Landscape Architecture Studio 2 (4) II. Schenker and staff

Studio—8 hours; two all-day field trips. Prerequisite: course 11; open to majors in Landscape Architecture only. Studio projects focus on visual, spatial, aesthetic, and symbolic characteristics of site design. Emphasis on relationship between form and meaning.

113. Intermediate Landscape Architecture Studio 3 (4) III. Thayer and staff

Studio—8 hours; two all-day field trips. Prerequisite: course 112; open to majors in Landscape Architecture only. Introduction to regional landscape analysis techniques and methods. Studio projects in the analysis, planning, and design of intermediate-scale and large-scale landscapes.

120. Advanced Computer Applications (4) II. Summer, McNiel

Studio—8 hours; two all-day field trips. Prerequisite: course 23; open to majors in Landscape Architecture only. Work using computer-aided design, geographic information systems, and other advanced computer programs.

122. Advanced Communication for Landscape Architects (4) III. Francis and staff

Refer to the Graduate Studies section in this catalog.

131. Landscape Construction: Materials and Detailing (4) I. The Staff

Studio—8 hours; two all-day field trips. Prerequisite: courses 11, 23; open to majors in Landscape Architecture only. Topographic and grading problems in landscape architecture: drainage plans, grading plans, spot elevations, road alignment, sections and profiles and cut and fill calculations. Limited enrollment.

133. Landscape Construction: Advanced Systems (4) III. McCulley

Studio—8 hours; two all-day field trips. Prerequisite: course 132; open to majors in Landscape Architecture only. Advanced study of materials and methods in landscape construction. Emphasis on drainage and irrigation systems, fountains, and roof deck design.

134. Landscape Construction: Professional Practice and Construction Documents (4) I. McCulley

Studio—8 hours; two all-day field trips. Prerequisite: course 133. Legal and professional aspects of landscape architecture, including the development of construction documents (drawings and specifications), proposal writing, fee negotiations, project management, cost estimation, and insurance.
140. History of Landscape Architecture (3) Ill. McNiel
Lecture—3 hours. History of landscape architecture as an art form, technology, and profession. Emphasizes design of gardens and outdoor spaces from prehistoric civilizations to the present. GE credit: ArtHum, Wrt.

153. Introduction to Landscape Ecology (3) Ill. Collinge
Lecture—3 hours. Prerequisite: Biological Sciences 10 or an introductory course in biology, botany, or plant science. Introduction to theories, major concepts, and research methods in the field of landscape ecology, emphasizing spatial structure, function and dynamics of a variety of landscape types. Focus on these ecological principles and application in landscape planning, design, and management. GE credit: SciEng.

155. Plants in the Cultural Environment (3) Ill. The Staff
Lecture—3 hours. Prerequisite: Biological Sciences 10. Cultural parameters of selecting plants for use in environmental design and planning. Contemporary themes in climate, energy and resource conservation, local and regional aesthetics, edible landscapes, historic preservation, native plants, specialized gardens, and computerized plant selection.

156. Landscape Planting Design (4) I. The Staff
Studio—8 hours. Prerequisite: courses 111, Environmental Horticulture 105; open to majors in Landscape Architecture only. Application of aesthetic, functional, and horticultural principles to the composition of the planted landscape and the development of planting plans.

181. Landscape Architecture Studio: Planning and Analysis (4) I. The Staff
Studio—8 hours; two all-day field trips. Prerequisite: course 133; open to majors in Landscape Architecture only. Landscape architecture studio to include the solution of large-scale landscape architectural problems with emphasis on landscape planning and analysis methods and environmental concerns. Limited enrollment.

182. Landscape Architecture Studio: Urban and Community Design (4) II. Owens
Studio—8 hours; two all-day field trips. Prerequisite: course 133; open to majors in Landscape Architecture only. Solution of community and urban landscape design problems with emphasis on community and social processes, participatory design methods, and collaboration and communication of behavioral factors relating to urban open space. Limited enrollment.

183. Landscape Architecture Studio: Landscape Ecology (4) I. The Staff
Study—8 hours. Prerequisite: course 113 and an upper division ecology course. Practical exercises in ecological design emphasizing conservation, habitat restoration, cultural impacts, and bioregionalism. Emphasis on management techniques, restorative methodology, and physical land use planning.

184. Sustainable Landscape Architecture (4) II. Thayer
Studio—8 hours. Prerequisite: course 113 or consent of instructor; open to majors in Landscape Architecture only. Planning and design of urban areas. Focus is on land planning, design, and management techniques to foster the goal of resource conservation. Examines current critical theory in the establishment and management of conservation areas. Offered in alternate years.

185. Postmodern Landscapes and Critical Theory (4) II. Mac Cannell
Lecture—4 hours. Prerequisite: upper division standing in landscape architecture or consent of instructor. Students will develop a working knowledge of basic principles of critical theory and postmodern modes of analysis as they apply to interpretation and change of the designed environment.

190. Pros Seminar in Landscape Architecture (1) I, II, Ill. Thayer, Owens
Seminar—1 hour. Lectures and discussion of critical issues in landscape architecture. May be repeated three times for credit. (P/NP grading only.)

191. Workshop in Landscape Architecture (2-12) I, II, Ill. Francis
Seminar—1 hour workshop—3 hours. Prerequisite: courses 11 and 62; upper division standing and consent of instructor. Faculty-initiated workshops featuring advanced studies and applications of original work in landscape architecture. May be repeated for credit for a total of 12 units.

192. Internship in Landscape Architecture (1-12) I, II, Ill. The Staff
Internship. Prerequisite: senior standing in Landscape Architecture major. Internship will include initial field experience in landscape architecture. May be repeated for a total of 12 units. (P/NP grading only.)

193A. Senior Project in Landscape Architecture (II) Schenker
Studio—6 hours. Prerequisite: senior standing in Landscape Architecture major. Projects will focus on a critical area of landscape architectural design, planning, analysis, communication, or research. Limited enrollment. Required of all landscape architecture majors. (P/NP grading only.)

193B. Senior Project in Landscape Architecture (1-2) Schenker
Seminar—6 hours. Prerequisite: course 193A and senior standing in Landscape Architecture. Projects will focus on a critical area of landscape architectural design, planning, analysis, communication, or research. Limited enrollment. Requires of all landscape architecture majors. (P/NP grading only.)

197. Tutoring in Landscape Architecture (1-5) I, II, Ill. The Staff
Tutoring—3-15 hours. Prerequisite: consent of instructor. Tutoring in landscape architecture courses. (P/NP grading only.)

198. Directed Group Study in Landscape Architecture (1-5) I, II, III. The Staff (Master Adviser in charge)
Prerequisite: consent of instructor. Directed group study. (P/NP grading only.)

199. Special Study for Advanced Undergraduates in Landscape Architecture (1-5) I, II, Ill. The Staff (Master Adviser in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Theory and Philosophy of the Designed Environment (4) Ill. Francis
Seminar—4 hours. Prerequisite: course 140 or the equivalent; graduate standing or consent of instructor. Examines the major theories of environmental design. Epistemology of design serves as framework to examine modern landscape architecture, urban design and planning. Normative theories of design are reviewed along with the social and environmental sciences. Offered in alternate years.

202. Methods in Design and Landscape Research (4) II. Owens
Seminar—4 hours. Prerequisite: Statistics 102 or the equivalent; graduate standing or consent of instructor. Explores many of the research and advanced design and planning methods employed in landscape architecture. Exercises provide the student with a vehicle for designing independent landscape research and creative activities. Lectures provide an historical overview of research methodology. Offered in alternate years.

203. Perceptions of Environmental Quality (4) Ill. Thayer
Seminar—4 hours. Prerequisite: Psychology 144 or consent of instructor. Examines human perceptual responses to the physical environment beginning with aesthetics and leading to more complex cognitive evaluations and personal and social interpretations of environmental quality. Discusses means by which intervention by design can affect human/environmental perception, cognition, and behavior. Offered in alternate years.

204. Case Studies in Landscape Design and Research (4) II. Owens
Laboratory—8 hours. Prerequisite: contact department for prerequisites; graduate standing or consent of instructor. Case studies in landscape design and research have as their primary goal the exposure of the student to real-world, designed-environment situations where creative activity and/or basic research is the primary product. Offered in alternate years.

210. Advanced Landscape Architecture Studio (4) I. The Staff
Laboratory—8 hours. Prerequisite: course 113 or the equivalent; graduate standing or consent of instructor. Exposes students to real-world, designed-environment situations where creative activity and/or basic research is the primary product. Advanced landscape problems will be utilized at the site, urban or rural scale. Offered in alternate years.

220. Public Space and Culture (3) The Staff
Seminar—3 hours. Prerequisite: course 182 or the equivalent; graduate standing or consent of instructor. Examines human perceptual and behavioral responses to the public environment of cities including their streets, parks, and squares. Public life and culture of American cities is examined and design responses to this culture evaluated. Typology is used to identify spaces. Offered in alternate years.

240. Rural Landscape Planning and Design (3) The Staff
Seminar—3 hours. Prerequisite: course 181 or the equivalent; graduate standing or consent of instructor. Addresses physical planning issues facing rural farmsteads, subdivisions, commercial zones, and small communities in their economic and social change. Concern is with runaway growth, shrinking populations, shifting economies, and lack of public funds or consensus. Offered in alternate years.

250. Technology and Sustainable Landscape (3) Ill. The Staff
Seminar—3 hours. Prerequisite: course 184 or the equivalent; graduate standing or consent of instructor. Explores the relationship between technology and landscape quality. Typology of technological landscape adaptations is presented and impacts of these technologies are discussed. Emphasizes a theoretical understanding of technological change and a practical approach to sustainable technologies. Offered in alternate years.

280. Landscape Conservation (3) Ill. Collinge
Seminar—3 hours. Prerequisite: contact department for prerequisite courses; graduate standing or consent of instructor. Focus is on land planning, design, and management techniques to further the goal of resource preservation. Examines current critical theory in the establishment and management of conservation areas. Offered in alternate years.

290. Graduate Seminar in Landscape Architecture (2) I, II, Ill. The Staff
Seminar—2 hours. Prerequisite: graduate standing and consent of instructor. Seminar on selected topics in landscape architecture research, analysis, planning, design, communication, or education. May be repeated for credit. (S/U grading only.)

297. Practicum in Landscape Architecture (1-10) I, II, Ill. The Staff
Independent study—1-10 hours. Prerequisite: graduate standing and consent of instructor. Opportunity for students to work directly in the field with academics at other institutions or with professionals in an office setting. Gives experience beyond the confines of campus and allows direct interaction with the community. (S/U grading only.)

298. Group Study (1-5) I, II, Ill. The Staff
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

299. Directed Individual Research for Graduate Students (1-5) I, II, Ill. The Staff
Prerequisite: graduate standing and consent of instructor. (S/U grading only.)

Latin

See Classics

*Course not offered this academic year.
201A-201B. Property (2-3)
Discussion—2-3 hours. Study of doctrines and concepts of property law with primary emphasis on real property. Course 201B average includes the estate in land system, the landlord-tenant relationship, conveyancing, and private and public land use control. (Deferred grading only, pending completion of sequence.)

202A-202B. Contracts (3-2)
Discussion—3-2 hours. Course examines the sorts of promises that are enforced and the nature of protection given promises. Obligations in both commercial and noncommercial transactions. Inquiry is made into the means by which traditional doctrine adjudicates—or fails to adjust—to changing social demands. (Deferred grading only, pending completion of sequence.)

203A-203B. Civil Procedure (3-2)
Discussion—3-2 hours. Study of the fundamental and recurrent problems in civil actions including the methods used by federal and state courts to resolve civil disputes. Among the topics covered are the relation between federal and state courts; the power of courts over persons, property, and subject matter (jurisdiction); the scope of litigation (power of claims and parties); preparation for trial through pleading, discovery, and pretrial; devices for resolving actions and issues before and during trial; functions of judge and jury; and the finality of the court's disposition. (Deferred grading only, pending completion of sequence.)

204A-204B. Torts (3-2)
Discussion—3-2 hours. Legal concepts which apply to actions brought by litigants who seek relief for injury. Intentional and unintentional invasions of personality and property. Analysis of civil actions based upon wrongs such as assault, battery, false imprisonment, negligence, strict liability, defamation, invasion of privacy, and misrepresentation. (Deferred grading only, pending completion of sequence.)

205. Constitutional Law I (4)
Discussion—4 hours. The principles, doctrines, and controversies underlying the basic structure of, and division of powers in, American government. In particular, course treat judicial review, jurisdiction, standing to sue, federalism, federal and state powers and immunities, and the separation of powers between branches of the federal government. It also begins an examination, continued in course 218, of procedural and substantive constitutional rights and the limits they place on governmental action. Economic substantive due process, procedural due process, and rights of privacy and personal autonomy will also be addressed.

206. Criminal Law (3)
Discussion—3 hours. Study of the bases and limits of criminal liability. Coverage of the constitutional, statutory, and case law rules which define, limit, and provide defenses to individual liability for the major criminal offenses.

207. Legal Research (1)
Discussion—0.5 hours; laboratory—0.5 hours. Description of the evolution and use of sources of law and secondary authority. Class discussion followed by research exercises.

208. Legal Writing (2)
Lecture—2 hours. Instruction in the form and substance of writing. A variety of legal-related documents will be discussed and drafted. An experience in oral advocacy will be included. Graded on the basis of the writing and advocacy assignments. No final examination.

Second and Third Year Courses

209. Alternative Dispute Resolution: Techniques and Practice (2)
Discussion—3 hours. Course focuses on the theory of alternative dispute resolution (ADR). History and evolution of alternatives to the judicial system for resolution of disputes. Particular emphasis on understanding the distinctions between methods used in mediation and arbitration, and the finality of the decision. (Deferred grading only, pending completion of sequence.)

210. Business Reorganizations (2)
Discussion—2 hours. Prerequisite: course 243 recommended. Focus is on businesses trying to survive when they are in substantial default, exploring the structure of relief available under Chapter 11 of the Bankruptcy Code. Focus is on the goals of a troubled debtor and the strategies or options available to meet them.

211. Negotiations and Dispute Resolution (2)
Discussion—2 hours. Course teaches negotiation and mediation skills and theories. Students will do five or more practice negotiations or mediations to develop skills, perception, and personal style. Class discussion and theory development are based on these exercises. Limited enrollment.

212. Financial Information and the Law (3)
Discussion—3 hours. Prerequisite: students with more than two semesters of accounting will not be admitted, except with consent of instructor. Reading and evaluating financial documents—balance sheets, income statements, etc., with the purpose of learning what they tell, and fail to tell, about the value of an enterprise. A few weeks of study on the mechanics of accounting, but focus primarily will be on the job of the lawyer in helping clients to prepare and use material of this sort. Consideration of what investors and creditors expect out of financial documents. Responsibilities of the client and the lawyer in furnishing documents to regulators. The liability of preparers (including lawyers) for real or supposed deficiencies in disclosure documents.

213. International Criminal Law Seminar (2)
Seminar—2 hours. Prerequisite: courses 205 and 206. Explores issues that arise when crime acquires an international character; for example, when an offense occurs in or harms more than one nation or when a person accused in one nation is a citizen of another. Topics may include the United States' role in investigating and prosecuting international offenses, and what law, domestic or international, courts should apply in such cases; the duty of a nation to extradite or prosecute persons accused of breaking the law of another nation; the prosecution of international war criminals in the post-World War II tribunals in Nürnberg and Tokyo and in the current Bosnian and Rwanda tribunals in the Hague; and proposals for a permanent
International Criminal Court with jurisdiction over international offenses such as kidnapping, money-laundering, and drug trafficking. In addition to class participation, students are required to write a research paper which will satisfy the advanced legal writing requirement. Limited enrollment.

214. Estate and Gift Tax (3) Discussion—3 hours. Prerequisite: course 220; course 221 recommended. Fundamentals of federal transfer taxation, including the estate tax, the gift tax, the generation-skipping tax, and the valuation rules under Chapter 2A. May include income taxation of trusts and estates.

215. Business Associations (4) Discussion—4 hours. Course provides a broad survey of the legal rules and concepts applicable to business associations from Fiduciary to Public Corporations. Principal attention is given the corporate form of organization, although partnerships are also treated briefly. Topics surveyed include the planning of business transactions, the process of incorporation, the financing of corporations, the role of managers and shareholders, the federal securities laws, and social responsibility.

216. Commercial Law: Article 9 (3) Discussion—3 hours. The creation and enforcement of security interests in personal property. Focus on Article 9 of the Uniform Commercial Code. Article 9 serves as a guide to the registration given to secured creditors, to the equities belonging to consumers who purchase cars and loans given by businesses in all of their assets. Billions of dollars each day are invented or lent on the strength of Article 9. We will also look at other state and federal laws which affect the Article 9 security interest, and current efforts to reform it.

217. Telecommunications Law (3) Discussion—3 hours. The economic and administrative regulation of radio, television, radio and television broadcasting, and new video technologies such as cable and direct broadcast satellites. Emphasis on the recently enacted Telecommunications Reform Act and the regulations given thereunder to consumers to purchase cars and loans given by businesses in all of their assets. Billions of dollars each day are invented or lent on the strength of Article 9. We will also look at other state and federal laws which affect the Article 9 security interest, and current efforts to reform it.

218. Constitutional Law II (3) Discussion—3 hours. Course principally covers the First Amendment and the Equal Protection Clause. The First Amendment study involves an examination of freedom of speech and assembly, focusing on the values and activities the courts have identified and their constitutional significance: political speech, commercial speech, offensive speech, obscenity, fighting words, and speech constituting a clear and present danger. Attention will also be directed to issues involving the forum in which speech occurs: prior restraint, overbreadth, vagueness doctrine, and the protection provided symbolic expression. The equal protection study will examine suspect class doctrine involving discrimination on the basis of race, gender, alienage, and other characteristics, affirmatively or negatively, the action of the "invidious motive," state action, and the court doctrines under which the equal protection clause prevents government from burdening the exercise of fundamental rights. If time permits, the Establishment Clause and the Free Exercise Clause will also be considered.

219. Evidence (4) Discussion—4 hours. The rules governing the admissibility of testimonial and documentary evidence in trial. The rules of evidence are only one of many ways that the law constrains the capacity of the adversarial system to uncover the truth. The rules are designed to prevent the presentation of inadmissible evidence in trials as well as under other names. The rules also affect the private and public use of information and evidence.

220. Federal Income Taxation (4) Discussion—4 hours. Introduction to basic principles of federal income taxation. Topics include identification of income subject to tax, gains and losses from property transactions, deductions from income, the treatment of income and deductions (tax accounting), and the identity of persons subject to tax on particular items of income.

221. Trusts, Wills and Decedents’ Estates (3) Discussion—3 hours. Study of the law of wills and trusts. Course coverage includes intestate succession, family protection and limits on the exercise of testamentary power, generation skipping testamentary transfers and valuation, revocation and revocability of wills; substitutes; inter vivos and testamentary private trusts. Depending on time, the course may also cover one or more of the following topics: contracts to make will; class gifts; powers of appointment; the Rule Against Perpetuities; and introduction to the administration of estates and trusts, including powers, duties, rights and liabilities of fiduciaries and the management of assets.

222. Advanced Legislative Process Seminar with Clinical Component (3) Seminar—1-3 hours. Prerequisite: prior or concurrent enrollment in course 231. In-depth study of the legislative process focusing on the jurisprudence/"legisprudence" of statutory law, the role of the lawyer in the legislative process, and the legislative culture. Students participate in a weekly 8-hour conference at the Capitol conducted under both the direct supervision of a legislative practitioner who is an attorney, and the periodic supervision of the instructor. A pre-arranged clinical placement will be offered as part of the course; however, students may arrange for their own clinical if approved by the instructor. Seminar and guest speakers. Participants prepare a journal recounting their clinical experience for each day of the experience. Limited enrollment.

223. Estate Planning (2) Seminar—2 hours. Prerequisite: course 221. Selected topic(s) in the estates and trusts area. Class presentation and research paper will satisfy the legal writing requirement. Limited enrollment.

224. Consumer Transactions (3) Discussion—3 hours. Study of selected consumer law problems, including a survey of state and federal regulatory efforts. Course coverage may include the following: credit, contract, advertising, and consumer protection laws; consumer fraud or deceptive practices; disclosure of information; consumer credit regulation, equal credit opportunity legislation, quality standards, enforcement by the consumer remedies, and attorney fees for representing consumers.

225. Marital Property (3) Discussion—3 hours. The California community property system including rights of spouses and treatment of property during and upon dissolution, characterization, valuation, and division of property upon termination of marriage by dissolution, nullity, or death; and premartial contractual agreements. Also covered are nonmarital cohabitation, income and assets, and spousal support.

226. Mass Media Law (2) Discussion—2 hours. Course will survey legal issues associated with the mass media. Topics covered will include legal problems of news media and news gathering, the regulation of broadcasting, free press/fair trial, and cable television, and the effect of the new technologies.

227. Criminal Procedure (3) Discussion—3 hours. The police function: arrest, search and seizure, electronic surveillance, entrapment, police interrogation and confessions, lineups, the exclusionary rule, the role of counsel.

228. Business Planning (3) Discussion—3 hours. Prerequisite: prior or concurrent enrollment in course 215, or consent of instructor; course 220 recommended (may be taken concurrently). Acquaints students with a range of techniques for organizing business enterprises, emphasizing the law aspects of such transactions. Topics may include formation of corporations, executive compensation, retirement of stock interests, financial and managerial aspects and acquisition, dispositions, divisions, and liquidations of business. The class will be taught using the problem method and may include some drafting assignments, and or class presentations.

229. Family Law Mediation (2) Discussion—2 hours. Prerequisite: course 225. Mediation has emerged as the indispensable dispute resolution alternative in family law. Course reviews the history and evolution of mediation in the family law context. Introduction to several different mediation models and practice of mediation techniques with the assistance of the instructor, who is a family law practitioner and mediator. Limited enrollment.

230. International Environmental Law Seminar (2) Seminar—2 hours. Prerequisite: prior or concurrent enrollment in course 248 or consent of instructor. Examination of international law norms applicable to the protection of the environment, including air and water resources, flora and fauna, and historical and cultural treasures of international interest. Study of institutions that make and enforce the norms. Special emphasis on implementation law and a case study of the United States. Required seminar paper will satisfy the advanced legal writing requirement. Limited enrollment.

231. Legislative Process (3) Discussion—3 hours. Course covers fundamental elements of the legislative process, including legislative procedure; the legislature as an institution; the legislative investigative power; lobbying; legislative-executive relations; and the legislature’s constitutional powers and limitations.

232. Real Estate Finance (3) Discussion—3 hours. Examination of the problems involved in the acquisition, financing, development of real estate, and of lender remedies and debtor protections in the event of debtor default. Stresses the practical application of California legal doctrines.

233. Refugee Law Seminar (2) Seminar—2 hours. Prerequisite: course 292 recommended. Focus on the law concerning the admission of refugees into the United States. Detailed study of the Refugee Act of 1980 and the major piece of legislation dealing with refugee admission, the international law that fueled the passage of the Act, and the various regulations promulgated by the Attorney General implementing the law. Analysis of the implementation of the Refugee Act and examination of some criticisms of the immigration bureaucracy's implementation of the law. Study of some topical issues of refugee law, such as gender-based persecution, persecution based on the exercise of reproductive rights, and the persecution of lesbians and gay men. The advanced legal writing requirement may be satisfied at the discretion of the instructor. Limited enrollment.

234. Family Law Practice (3) Seminar—2 hours; clinical—1 hour. Prerequisite: courses 225 and 272. Combined seminar and clinical course provides practical foundation in all aspects of family law. Students required to participate in an "on-campus" clinic (6 hours) and a "Pro Per" Assistance program in connection with Sacramento County Superior Court Family Law Division (6 hours) together with a weekly 2-hour seminar. Limited enrollment. (S/U grading only.)

235. Administrative Law (3) Seminar—3 hours. Administrative due process, agency adjudication, rulemaking, delegation of legislative and judicial review. Emphasis on the federal Administrative Procedure Act, but some comparative aspects of state administrative procedure will be presented.

236. Securities Regulation I (2) Discussion—2 hours. Prerequisite: course 215 or consent of instructor. Focuses on the Securities Act of 1933 and the Securities Exchange Act of 1934. Topics covered include domestic and international public offerings, registration statements, exemptions from registration, secondary offerings, market regulation, and the consequences of a default of a security enforcement of the securities act, responsibilities of securities lawyers, and transactions related to the enforcement of securities. Special attention is devoted to problems of small issuers of securities.

237. Advanced Contracts (3) Discussion—3 hours. Advanced topics in current contract law. Focus primarily on provisions of Article 2

Course not offered this academic year.
of the Uniform Commercial Code relating to warranties and enforcement. Examination of selected portions of Article 2A of the Uniform Commercial Code and of the United Nations Convention of the International Sale of Goods. Examination of proposed revisions to Article 2 that are currently being drafted for adoption by the states.

238. Bankruptcy Law
Discussion—4 hours. Prerequisite: course 220. The owners of partnerships and subchapter S corporations (pass-through entities) are taxed on items of income, gain, loss, and deduction of the entity directly. Corporations and shareholders are subject to income tax at both the entity and shareholder levels. This course examines the entity, organizational, and tax implications of pass-through entities in terms of the income tax impact of these transactions. Also examined are the formation, capitalization, operation, and liquidation of regular corporations subject to the double tax regime of subchapter C of the Internal Revenue Code.

239. Individual Responsibility and the Law (2)
Discussion—2 hours. Consideration of what it is to be a “good lawyer.” Exploring issues such as “zealous advocacy,” professional detachment, and professional expertise, and the prevailing norms on these topics. Understanding how these norms affect society, the client, and the lawyer. While these are issues of “public morality,” the way lawyers approach the standards of individual choice and responsibility, focusing on ways to reconcile the demands of the profession and one’s own demands on oneself. Weekly short papers. (S/U grading only.)

240. Elections and Political Campaigns (2)
Discussion—2 hours. Course covers constitutional, statutory, administrative and case law aspects of federal and state elections, including laws relating to primaries, general elections, initiatives, recounts, filing requirements, financial disclosures, and conflicts of interest. Satisfies advanced writing requirement. Limited enrollment.

241. Law and Psychiatry (2)
Discussion—2 hours. Prerequisite: consent of instructor. Open to medical students participating in the UCDMC Forensic Center of Excellence program, and to law students (third-year students have priority). Advanced seminar on forensic psychiatry for medical and legal professionals. Psychiatrists and forensic fellows will be paired with law students to work in teams as a forensic team. Each team will be assigned to actual cases that have been adjudicated, although the teams will approach each client as if adjudication has not yet taken place. Cases will be evaluated both legally and psychiatrically, so that both team members will confront the legal and psychiatric issues presented, and a written psychiatric and legal assessment will be prepared. Cases selected to provide a broad array of legal/psychiatric problems and to raise specific critical issues around which psychiatrists and lawyers interact and at times collide. Limited enrollment.

242. Conflict of Laws (3)
Discussion—3 hours. Study of multistate and international transactions. Topics include jurisdiction, recognition of foreign judgments, and choice of applicable law. Problems practitioners encounter in a wide variety of contexts and commercial law, family law and personal injury law.

243. Bankruptcy (3)
Discussion—3 hours. Survey of the rights and obligations of debtors in trouble, and of their creditors. Most of it concerns proceedings under the Bankruptcy Code. In the first part of the course, an examination of how and why debtors are permitted to get a “fresh start.” “Second wind” and discharge. Later, consideration of how the bankruptcy trustee collects and distributes money to pay creditors’ claims. Study of the bankruptcy system as it applies to both individuals and corporations.

244. Basic Human Physiology (2)
Discussion—2 hours. Several medical basic science faculty give lectures on the basic anatomy and physiological functioning of the organ systems; basic word roots which underlie medical/scientific terminology are emphasized. Several clinical faculty give lectures on new technologies in medicine and some of the associated legal implications. Exams are in the format of simple, simulated medical-legal problems in which students are expected to evaluate medical/scientific data, as well as determine the kinds of expert witness that might be valuable in particular cases. Limited enrollment. (S/U grading only.)

245. Advanced Criminal Law (3)
Seminar—3 hours. Prerequisite: course 227, membership in a “death penalty defense team” (because of the constraints imposed by professional ethics, the seminar must be limited to work on one side of the death penalty issue). May work only on the defense side); attendance at a meeting during the fall semester to finalize enrollment; and consent of instructor. In-depth study of selected death penalty issues focusing on federal constitutional and California law. Students will work on death penalty cases under the supervision of the lawyers handling the cases and instructor. There will be a formal class component to the course and a paper is required. The student’s work on the case (such as a portion of the brief) will satisfy the paper requirement.

246. Federal Jurisdiction (3)
Discussion—3 hours. Study of the subject matter jurisdiction of federal courts and of the statutory and constitutional authority of federal courts to adjudicate civil actions arising under federal law or between parties of diverse citizenship will be examined in contemporary detail, and from the perspectives of Congress, the Constitu- tion. Federal appellate jurisdiction, federal writs in the nature of habeas corpus, abstention, justiciability, and miscellaneous matters affecting attorneys’ decisions to seek federal forum will also be discussed. In addition to careful study of the relevant legislation in light of its history, the course will examine the constitutional themes of separation of powers and federalism as guides in understanding federal jurisdiction and the need for judicial restraint and the separation of judicial and legislative decision making.

247. Banking Law and Regulation (3)
Discussion—3 hours. Surveys banking law in an era of regulatory reform after one of the worst periods of financial institutional failure and taxpayer bailout in U.S. banking history. Overview of the history of banking in the United States and the basic monetary and financial institutional activities. Examination of the entry process into the banking business, followed by a consideration of the regulatory structure of traditional banking activities as well as a bank’s abilities to participate in non-traditional banking activities.

248. International Law (3)
Discussion—3 hours. Prerequisite: course 217 recommended. This introductory course covers basic international law concepts such as statehood and recognition; treaty law and customary international law; use of force; human rights and war crimes; extraterritoriality; the relationships between international law and national law; and the jurisprudence of international law.

249. Comparative Law (2)
Discussion—2 hours. Comparison of methods and sources of common and civil law; background and structure of the principal civil codes; analysis and study of property and business law in international transactions.

250. Jurisprudence (2)
Seminar—2 hours. Course deals with the philosophy of adjudication. Considers the nature of legal interpretation and the relationship between justice and law, with special attention to the problem of how judges should decide hard cases where the content of the law is in doubt. To what extent should a judge’s personal convictions about justice affect decisions about the legal rights of the parties to a law suit? Does it matter if the judge is interpreting precedent rather than legislation? Introductory readings of a general and synthetic nature will be followed by a detailed study of particular problems and theories of adjudication. Grading will be based on active class participation and on an original paper. Limited enrollment.

251. Labor Law (3)
Discussion—3 hours. Survey of the legislative, administrative, and judicial regulation of labor relations. Focuses on the historical development of labor law, the scope of national legislation, union organization and recognition, the negotiation and administration of collective bargaining agreements, legality of strikes, picketing, boycotts, and secondary boycott interference with employee-conducted activities.

252. International Litigation and Arbitration (3)
Discussion—3 hours. Current developments in international law, conflict of laws, interpretation and application of national laws and international law, and comparative law in the context of transactions and disputes that cut across national boundaries. Topics include jurisdiction, the enforce- ment of judgments, the relation between arbitration and adjudication, international discovery and international choice-of-law problems. Exercises in international arbitration and mediation.

253. Products Liability (3)
Discussion—3 hours. Civil action for harm to the consumer resulting from defective products. Includes manufacturing defects, warning defects and design defects.

254. American Legal History (2)
Seminar—2 hours. Historical study of the relationship between legal change and social and political movements. Between 1953 and 1969, the Warren Court made numerous changes in the law of civil liberties, criminal procedure, federal-state relations, and legislative apportionment. These legal developments occurred in the midst of the McCarthy period and the Cold War, the civil rights struggle, the anti-war movement, the popularity of folk music and rock and roll, the beginning of the space age, the Great Society legislative program and economic prosperity. What is the relationship between legal change and social and political change? Focus on the modern history of the enforcement and assessment of the influence of law, lawyers, lower courts, and the Movement itself on the Court and the elected branches of government. Emphasis on the need to understand law in its social and historical context. Limited enrollment.

255. Pension and Employee Benefit Law (3)
Discussion—3 hours. Federal regulation and taxation of private pensions and employee benefits. Focuses on the Employee Retirement Income Security Act of 1974 (ERISA) and deals with such topics as coverage, vesting, funding, spousal interests (both during marriage and after divorce), retiree health and welfare plans, the imposition of state laws, ERISA litigation and fiduciary duties issues. Internal Revenue Code issues such as discrimination in favor of highly compensated employees are covered. ERISA, to the extent permitted by law, pre-empts state law. Examinations of the Employee Retirement Income Security Act of 1974 on distribution and minimum distribution rules are also highlighted. Problems surrounding plan terminations are also considered, including bankruptcy issues, Pension Benefit Guarantee Corporation insurance, and the issue of asset reversions to employers.

256. Land Use Planning and California Environmental Quality Act (2)
Discussion—2 hours. An assessment of the administrative and judicial applications of land planning and development. Topics include zoning, general plans, and related environmental and local government regulation. In addition, course will analyze the role of the California Environmental Quality Act and its applications to California land use law.

257. Foreign Relations Law (3)
Discussion—3 hours. Prerequisite: course 217 or consent of instructor. Seminar on extraterritoriality in the context of the war power, the treaty power and executive agreements, arms sales and military assistance, the recognition power, the negotiation power, the scope of the appropriations power as a check on executive activities, and other separation-of-powers issues generated by the intersection of international law and constitutional law. Class presentation and required seminar paper will satisfy the advanced legal writing requirement. Limited enrollment.
258A. Professional Responsibility (1) Discussion—1 hour. Study of ethical duties and responsibilities under the American Bar Association and California Professional Responsibility, the Model Rules of Professional Conduct, and the Code of Judicial Conduct and the law of California. Required of all students graduating. (SU grading only.)

259A. Professional Responsibility (2) Discussion—2 hours. Study of lawyers’ ethical duties and responsibilities to clients, the courts, third parties, and the legal system. Application of the American Bar Association and California Professional Responsibility, the Model Rules of Professional Responsibility and the Code of Judicial Conduct. California law studied in more detail than in course 258A and current issues affecting the profession also discussed.

259. Feminist Legal Theory Seminar (2) Seminar—2 hours. Readings selected from the field of feminist legal theory and examination of the relationship between theory and legal practice in support of women’s rights. Students required to help lead class discussions and write a research paper, which will satisfy the advanced legal writing requirement. Limited enrollment.

260. Employment Discrimination (3) Discussion—3 hours. Examination of federal law prohibiting employment discrimination based upon race, color, religion, sex, national origin, age, and sexual orientation. Course will focus on Title VII of the Civil Rights Act of 1964, and include coverage of Art. 981, Art. 1983, the Equal Pay and Discrimination Acts. California fair employment laws will also be discussed.

261. Judicial Process Seminar (2) Seminar—2 hours. Prepares student to participate in the judicial process as an extern. Examines the judge’s role in the legal process, and explores problems in the administration of justice and considers judge’s differing styles and philosophies. Focus primarily on the judge’s role in law creation, dispute resolution, case management and overall administration of justice.

262. Antitrust (3) Discussion—3 hours. Study of the federal antitrust laws including price fixing, limits on distribution, tying arrangements, monopolization, and mergers.

263. Trial Practice (3) Discussion—3 hours. Laboratory—2 hours. Prerequisite course 219 (may be taken concurrently). Introduction to the preparation and trial of cases, featuring lectures, videotapes, demonstrations, assigned readings and forensic drills. Laboratory will be held on Tuesday, Wednesday, or Thursday evening. Limited enrollment. (SU grading only.)

264. Water Law (3) Discussion—3 hours. Property rights in surface and groundwater; riparianism, prior appropriation and federal reserved rights; water administration institutions, including the federal reclamation program; the law of interstate waters and property rights in ground water. Emphasis on California water law and policy.

265. Natural Resources Law (2) Seminar—2 hours. Legal aspects of “ecosystem management,” as currently being developed in the Sierra Nevada mountain range of California. Although national forests and national parks will be the principal areas considered, some attention will be given to privately owned lands such as those in the Tahoe area. Limited enrollment, with preference to students who have taken course 263.

266. Legal Realism and Critical Legal Studies Seminar (2) Seminar—2 hours. Between the two World Wars, American scholars and judges developed and implemented a new approach to law, adjudication, and legal education, known as Legal Realism. Focuses on the antecedents of Legal Realism, the struggle over its influence, and its attachment to “classical legal thought.” Its insights, its impact on American judges and understanding of their responsibilities and power, and its influence on modern American legal scholarship by setting the agenda of questions to be answered and by powerfully affecting the Law and Society, the Law and Economics, and especially the Critical Legal Studies (CLS) movement. Limited enrollment.

268. Jewish Law Seminar (2) Discussion—2 hours. The term “Jewish Law” refers to those subjects that would normally be taught in an American law school as they have been approached by the Jewish legal system. This system is based primarily on the Talmud and on the commentaries and decisions that are derived from it. Jewish law is of interest to American law students not only for its immediate practical value, but because it is a foreign legal system that is one of the oldest in the world, and one that has faced many of the problems now facing American law. Specifically, although Jewish law is purportedly based on immutable religious law, changing conditions over the centuries have encouraged methods of adaptation that are reminiscent of American constitutional law. Each student will be required to prepare and present a paper that would fulfill the advanced legal writing requirement. Neither a knowledge of foreign language nor a previous exposure to Jewish law is necessary. Limited enrollment.

269. Basic Finance (3) Discussion—3 hours. Prerequisite: law basic finance course required; or consent of instructor. Students with a non-law basic finance course will not be admitted, except with the approval of the instructor. Study and exposure to basic techniques of valuation that are part of the standard inventory in good business school. Gives a student background for a range of business-related courses.

270. International Business Transactions (2) Discussion—2 hours. A consideration of select legal problems arising from international business transactions. Topics include the international sales contract, payment of contract, letters of credit, transfers of technology, regulation of bribery, development of joint ventures, repatriation of profits, foreign exchange problems, and national efforts to control imports.

271. Nonprofit Organizations (3) Discussion—3 hours. Focuses on the legal rules and concepts applicable to nonprofit organizations, such as public interest, cultural, religious, educational and other tax-exempt corporations. Nonprofits from the state law perspective, covering organization and dissolution, operation and governance, fiduciary obligations of officers and directors, rights of members of social clubs, trade associations and labor unions, enforcement of obligations and rights by the attorney general and others, and regulation of charitable solicitations. Basic information on the taxation of nonprofits, including qualification of exempt status, the inurement and private benefit concepts, limitations on political activities, the unrelated business income, and charitable contributions.

272. Family Law (3) Discussion—3 hours. For students with substantial interest in family law, especially the legal and psychosocial aspects of parent-child relationships. Who is a “parent” or a “child”? Is parental discipline, discipline, and reconstruct parent-child relationships? Should the law respond differently to biological or genetic as opposed to social (adoptive, foster, de facto) parent-child relationships? When should a court attend more to a “child’s best interests” than to the autonomy and privacy of the child’s parents? These issues are explored in the context of decisions about medical care, child abuse and neglect, child custody and support, abortion and birth control, alternative reproductive techniques, same sex parenting, child support and custody. The relevance of social science and mental health expertise to these issues.

273. Current Issues in Family and Marital Property (2) Seminar—2 hours. Prerequisite: course 225, course 230 or 272, or consent of instructor. Examination in depth of important current issues in the fields of family and marital property law. Heavy emphasis on law reform, including study and direct observation of the legislative process. Each student will select one issue for development and presentation in the seminar. A research paper or draft bill and supporting analysis is required. A more lengthy paper with additional unit credit may be arranged at the discretion of the instructor to satisfy the legal writing requirement.

274. Intellectual Property (3) Discussion—3 hours. Study of the protection of intellectual property and unfair competition. Topics considered are trade secrets, patents, trademarks, misleading and false advertising, and copyrights.

275. Complex Litigation (3) Discussion—3 hours. In-depth treatment of topics introduced in the first-year civil procedure course, with emphasis on cutting-edge issues currently the topic of litigation. Topics include complex party joinder, multistate federal court litigation, motion practice and sanctions, class action litigation, and “discovery abuse,” including privilege and work product claims, judicial management and settlement of litigation, and preclusion (collateral estoppel and res judicata). Not all topics will necessarily be covered in any one semester.

276. Juvenile Justice (3) Discussion—3 hours. Legal and philosophical bases of a separate juvenile justice process for crimes committed by minors; police investigation, apprehension, and diversion; juvenile court hearing and disposition; juvenile corrections. The role of counsel at each phase of the process. Factors that make a juvenile eligible.

277. Native American Law Seminar (2) Seminar—2 hours. Focus on legal relations between Native Americans and the federal and state government. Topics will include rights of indigenous people to tribal autonomy, assimilation, tribal authority, economic and technological development of Native American communities, and special protections and rights of terminated tribes, non-recognized tribes, and Alaska and Hawaiian natives.

278. Pretrial Skills (3) Discussion—3 hours. Not open to students who have completed course 297. Course uses a series of role-playing exercises, class discussions and written assignments to introduce students to non-trial skills basic to the practice of law. Course covers client interviewing and counseling, witness interviewing, discovery practice, pleadings, pretrial motions, negotiation and alternative dispute resolution. Expanded version of the client counseling course. No final examination. Limited enrollment.

279. International Human Rights Seminar (2) Seminar—2 hours. Focus on legal relations between Native Americans and the federal and state government. Topics will include rights of indigenous people to tribal autonomy, assimilation, tribal authority, economic and technological development of Native American communities, and special protections and rights of terminated tribes, non-recognized tribes, and Alaska and Hawaiian natives.

Course not offered this academic year.
include organization, reorganization, and operation (including open meetings); intergovernmental relationships (federal, state, and local, with emphasis on state and local law); separation (authority—police power and citizen-initiated laws—and enforcement); finance; land use and environmental quality; redevelopment; eminent domain; and regional issues.

282. Energy Law Seminar (2) Seminar—2 hours. Focus on the regulation of energy distributing industries, such as electricity and natural gas. Topics will include energy economics, cost-benefit analysis, new technology, alternative energy technologies, conservation, and administrative regulation of the energy sector.

283. Remedies (3) Discussion—3 hours. Survey of modern American civil remedies law in both private and public law contexts. Topics include money damages, injunctive relief, restitution, contempt, power, attorneys fees, and equitable defenses such as estoppel and laches. Additional attention to special obstacles to remedies against governmental officials and institutions, such as sovereign immunity, official immunity, and abstention.

284. Advanced Criminal Procedure (3) Discussion—3 hours. Essential to those who wish to handle criminal cases. In particular, it treats bail, prosecutorial discretion, plea bargaining, trial by jury, and sentencing.

285. Environmental Law (3) Discussion—3 hours. Introduction to the law dealing with the environmental impact of governmental decisions, with emphasis on the National Environmental Policy Act, to federal and state law dealing with air and water quality, and to federal and state law protecting endangered species.

286. Health Law (3) Discussion—3 hours. Course will identify and analyze the myriad legal issues which arise in the dynamic health care industry. Specific focus on the legal implications posed by various business arrangements between providers and payors, from social issues such as AIDS, human reproduction, and the right to die, to external forces, such as government regulation, and the competitive market place. Course explores many substantive issues, and addresses legal issues posed by the various options presented under the label of "health care reform" and the emerging "integrated delivery system" of the health care industry.

287. Public Land Law (3) Discussion—3 hours. Legal aspects of federal land management, including the history of public land policy, authority over federal lands and specialized law dealing with particular natural resources and uses found on federal lands (minerals, timber, range, wildlife, recreation, and preservation).

288. Advanced Constitutional Law Seminar (2) Seminar—2 hours; paper. Explores in-depth selected topics or problems in constitutional law and theory. Initial topics may include the regulation of hate speech, the interpretation of the Establishment Clause, or the development of the Takings Clause doctrine. Other topics selected by the seminar group.

291. International Trade Law and Latin American (3) Discussion—3 hours. Covers the role of the executive, legislative and judicial branches of the United States with respect to international trade policy. International topics include the World Trade Organization (WTO) and the General Agreement on Tariffs and Trade Agreements (GATT, 1947), the GATT, 1994, North American Free Trade Agreement (NAFTA) and economic integration in this Western Hemisphere. Students are encouraged to research and write on selected topics of trade law and Latin America. Satisfies the advanced legal writing requirement.

292. Immigration Law and Procedure (3) Discussion—3 hours. Course will survey a brief history of U.S. immigration and policy; federal agency interrelationship (Justice and State Department); entry of nonimmigrant (temporary) visitors and immigrants into the United States; the worldwide quota and preference systems; family and employment relationship critical to securing favored immigrant status; deportation procedures; discretionary relief available to persons otherwise subject to deportation; available defenses to deportation and exclusion proceedings; immigration consequences of criminal conviction; refugee and asylum law; administrative appeals; federal and state judicial relief; citizenship and naturalization.

293. Public Interest Law Seminar (2) Seminar—2 hours. Examines the problems associated with providing legal services to those people and interests in American society traditionally unable to afford these services. The class will discuss readings that review various theoretical issues and specific problems facing public interest lawyers. May satisfy advanced legal writing requirement. Limited enrollment.

294. Problems in Fiduciary Administration (2) Seminar—2 hours. Prerequisite: course 221. Selected topics in the area of fiduciary administration of estates and trusts. Requirements and research paper will satisfy the advanced legal writing requirement. Limited enrollment.

295. Securities Regulation II (2) Discussion—2 hours. Prerequisite: course 213 or 215, or consent of instructor, course 236 recommended. Principal focus is the Securities Exchange Act of 1934 and the regulation of securities markets. Topics include the evolution of securities markets, market efficiency, continuous market, institutional investors, shareholder voting and going-private transactions, regulation of securities markets and securities professionals, responsibilities of securities lawyers, transactional securities fraud, and enforcement of the securities acts.

296. Copyright and Entertainment Law (3) Discussion—3 hours. Detailed consideration of the law of copyright, with emphasis on its application to motion pictures, music, television, and theater. Study of other legal problems in the entertainment industry, including protection of titles and characters, and the right of publicity.

297. Dispute Resolution and Lawyers (2) Discussion—2 hours. Not open to students previously or concurrently enrolled in courses 278 or 299 or 213. Course uses a series of role-playing exercises and class discussions to introduce students to a set of non-trial skills basic to the practice of law. Exercises include interviewing, counseling, negotiations, arbitration and mediation. Limited enrollment.

Professional Courses

408. Community Education Seminar (3) Seminar/clinic—3 hours. Trains students to educate the community about the rights and responsibilities of citizens. Students attend an initial four-hour orientation, followed by weekly seminars that will prepare students to teach in a local high school at least two times per week. Paper or journal required, to be determined by instructor. Limited enrollment. (SU grading only.)
417. Law Review Editor (1-2)
Editors must have completed an editorial article and must perform editorial duties requiring a substantial time commitment. Credit awarded only after certification by the Editor-in-Chief of the Law Review and approval of the faculty advisers to the Law Review. Students may not enroll for two credits over two semesters for service as an editor. In exceptional cases, students may petition to participate for one semester only and receive two credits. (SU grading only. Departmental grading if completing a sequence.)

418. Environ's Editor (1)
The Editor-In-Chief of Environ's receives one credit for each semester of service. Only one person may receive this credit in any one semester. (SU grading only.)

419. Advanced Writing Project (1-4)
Completion of a writing project under the active and regular supervision of a faculty member in satisfactory of the legal writing requirement. Writing project must be an individually authored work of rigorous intellectual effort of at least 20 typewritten, double-spaced pages, excluding footnotes. Project may take any of several forms, for example, a paper, a brief, a memo-randum of law, a proposed statute, a statutory scheme or set of administrative regulations (with explanatory comments), or a will or agreement (with explanatory comments). Advanced writing project must be completed in connection with a course or seminar to satisfy the legal writing requirement. Number of units for the writing project shall be approved by the faculty supervisor and will depend upon the scope of the writing effort. Grading may be on S/U or letter-grade basis at the faculty supervisor’s discretion.

420. Civil Rights Clinical Program (2-6)
Clinical program. Prerequisite: course 261 required for full-time clinical students and recommended for part-time clinical students. Students may arrange judicial clerkship clinical programs with an approved list of local and federal courts and with the Clinical Office and under the sponsorship of the faculty member in charge. All students must complete weekly time records and bi-weekly journals. Full-time clinical students must submit an evaluative final paper of approximately 10 pages. (SU grading only.)

425. Judicial Clinical (2 to 6 or 12)
Clinical program. Prerequisite: course 261 required for full-time clinical students and recommended for part-time clinical students. Students may arrange judicial clerkship clinical programs with an approved list of local and federal courts and with the Clinical Office and under the sponsorship of the faculty member in charge. All students must complete weekly time records and bi-weekly journals. Full-time clinical students must submit an evaluative final paper of approximately 10 pages. (SU grading only.)

430. Clinical Program in Federal Taxation (2-6)
Clinical program. Prerequisite: course 220. Students will have the opportunity to work with the Internal Revenue Service or other governmental tax agency. Journals and attendance at group meetings are required. (SU grading only.)

440. Immigration Law Clinical (2 to 6 or 12)
Clinical program. Students may represent clients in administrative law hearings in San Francisco. Minimum units for the course are 4 and maximum is 12. Each unit assumes four hours work per week, including participation in the seminar, conference, and case research and development. Students who have completed course 292 may take the clinic for a minimum of 2 units. Limited enrollment. (SU grading only.)

445. Legislative Process Clinical (2-4)
Clinical program. Prerequisite: prior or concurrent enrollment in course 231 or 210, or consent of instructor. Provides students with practical experience in the operation of the office of a legislator or a legislative committee. The major thrust of the program is to enable students to become familiar with the give and take realities of making laws, as contrasted with their interpretation and enforcement. Journals are required. (SU grading only.)

450. Environmental Law Clinical (2-6)
Clinical program. Practical experience in environmental law. Students will work under the direct supervision of a government or private lawyer engaged in some form of environmental law work for a minimum of 8 office hours per week. Students will also be required to prepare a legal memo, noting, commenting upon, and reflecting upon their clinical experience. (SU grading only.)

455. Employment Relations (2 to 6)
Clinical program. Prerequisite: prior or concurrent enrollment in course 251 or 260. Practical experience in employment relations: private and public sector labor law, or employment discrimination. Students will work under the active and regular supervision of a private lawyer and will have the opportunity to participate in a range of activities associated with their specific office, with emphasis on observation and participation in actual investigation, interviewing, drafting of pleadings, and attendance at hearings. Journals and attendance at one or more small group meetings are required. Clinical students must complete an evaluative final paper of approximately 8 pages. (SU grading only.)

460. Public Interest Law Clinical (2-6)
Clinical program. Prerequisite: prior or concurrent enrollment in course 293 recommended. Students work with a public interest practitioner in a nonprofit organization. Journals and attendance at two group meetings are required. Clinical students must complete an evaluative final paper of approximately 8 pages to be submitted to the faculty supervisor. The project may be applied toward the practicum requirement for the Public Interest Law Program. (SU grading only.)

465. Clinical Program in Administrative Law (2-6)
Clinical program. Prerequisite: course 235 (may be taken concurrently) or consent of instructor. For students interested in a work experience in an administrative law setting. Students will work under the direct supervision of an administrative law judge, hearing officer, or government attorney. Placement assistance will be provided by the instructor. A goal of this clinical will be the training of students for work in the areas of formal adjudication, informal adjudication, rulemaking, and judicial review. Students will be required to meet monthly as a group to share experiences and maintain observation of a faculty supervisor. (SU grading only.)

470. Clinical Program in the Administration of Criminal Justice (2 to 6 or 12)
Clinical program. Prerequisite: courses 219, 227 and 263A recommended. This program affords students the opportunity to gain practical experience working full or part time in a District Attorney’s or Public Defender’s office in one of several surrounding counties for a minimum of 10 office hours per week. Students will be required to engage in the full range of activities associated with their specific office with emphasis on observation and participation in factual investigation, interviewing, counseling, negotiating, motion practice, and trials under State Bar rules. Journals and seminar attendance are required. Limited enrollment. May be repeated for a total of 12 units. (SU grading only.)

480. Clinical Program in Prison Law (2-6)
Clinical program. Provides practical experience in providing legal services to real clients who have various problems related to their incarceration in state prison. The services require analysis and application of Constitutional Law, state statutory, agency regulations, and the rules of professional responsibility. Students will work under the direct supervision of the Prison Law clinical director and will be assigned a portion of the director’s caseload. Students will be required to follow the law office procedure of the clinic and employ skills such as investigating, research, writing, negotiating, and possibly, the preparation of legal documents to be filed in court. (SU grading only.)

495. Instruction in Legal Research and Legal Writing Skills (1-2)
Participants will assist in instructing legal research and writing for first-year students under the direction of the legal research and writing instructors. Approval of the research and writing instructors is required for enrollment. Participants may assist once in the legal research program and once in the legal writing program. One unit will be given in the fall semester for legal research instruction and two units in the spring for legal writing instruction. (SU grading only.)

498. Open Study (1-4)
Groups of students (not fewer than 4 or more than 10) with common interest in studying a stated legal problem may plan and conduct their own research and seminar program, subject to the following regulations: (1) the program may extend over no more than two semesters; (2) the plan for the program and the list of members of the group must be submitted to Dean’s Office at least 4 weeks prior to opening of the semester in which the program is to begin; (3) a three-member faculty board will be appointed for each group proposed and will have authority to approve or disapprove the program and establish the amount of credit sought; (4) changes in the program or membership of the group must be approved by the faculty board and normally will be approved only prior to the semester involved; (5) group members must conduct a weekly seminar session to be arranged by them; (6) each member of the group must submit an individual paper or an approved alternative growing out of the seminar subject to the faculty board; (7) SU grading only unless the entire group requests letter grades in advance.

499. Research in Legal Problems (1-4)
Students may receive credit for individual research proposed as subject to the faculty board’s approval. In exceptional cases, only unless the entire group requests letter grades in advance. (1) the project may extend over no more than two semesters; (2) each project will be under the supervision of a faculty member; (3) an outline of the project must be approved by the supervising faculty member in advance of the semester in which it is to be undertaken; (4) normally, no faculty member will be permitted to supervise more than five students working on individual programs during any semester; (5) each student must submit an individual paper or approved alternative to the supervising faculty member. (SU grading only.) In exceptional cases, with prior approval of a professor and an associate dean, students may arrange for directed research in foreign and/or international legal problems by working abroad under the supervision of a UC Davis Law School faculty member and an attorney or faculty member at a foreign or international government agency or educational institution (4 up to 12 units). SU grading only unless letter grading requested in advance.

Linguistics

Steven G. Lapointe, Program Director
Program Office, 922 Sproul Hall (916-752-9933).

Committee in Charge
Wilbur A. Benware, Ph.D. (Linguistics)
Robert Blake, Ph.D., Professor (Spanish)
Diane Brentari, Ph.D. (Linguistics)
Cecilia Colombi, Ph.D., Assistant Professor (Spanish)
Patrick Farrell, Ph.D. (Linguistics)
Steven G. Lapointe, Ph.D. (Linguistics)
Martha Macri, Ph.D. (Anthropology, Native American Studies)
Maria I. Manoli-Manea, Ph.D. (French)
Aimerindo E. Oyeda, Ph.D. (Philosophy)
Ard Freud. Mary Schleppegrell, Ph.D. (Linguistics)
Lenora A. Timm, Ph.D. (Linguistics)
Maximo Torreblanca, Ph.D. (Linguistics)

Faculty
Wilbur A. Benware, Ph.D., Professor
Robert Blake, Ph.D., Professor
Diane Brentari, Ph.D., Assistant Professor
Cecilia Colombi, Ph.D., Assistant Professor
Nina F. Drorner, Ph.D., Assistant Adjunct Professor
Patrick Farrell, Ph.D., Assistant Professor
Jeffrey King, Ph.D. Associate Professor (Philosophy)
Steve G. Lapointe, Ph.D., Associate Professor

*Course not offered this academic year.
The student should note that a number of these courses have prerequisites. Since it is usual to select some emphasis within the Linguistics major (e.g., anthropology, a foreign language, etc.) such prerequisites should be completed as a matter of course.

Total Units for the Major48-68

Major Adviser, P. Farrell.

Grading Recommendation. Though not required, it is recommended that all courses offered in satisfaction of the Linguistics major be taken for a letter grade.

Minor Program Requirements:
The minor in Linguistics provides the student with a basic knowledge of linguistic analysis. It is appropriate for students interested in any aspect of language use.

UNITs
Linguistics24
Linguistics 1, 103A, 103B12
One course from Linguistics 111, 112, 121, 131, 141, 151, 152, 155, 156, 249a, 249b, 249c, 249d, 249e, 249f, 249g, 249h, 249i, 249j, 249k, 249l, 249m, 249n, 249o, 249p, 249q, 249r, 249s, 249t, 249u, 249v, 249w, 249x, 249y, 249z, 249aa, 249ab, 249ac, 249ad, 249ae, 249af, 249ag, 249ah, 249ai, 249aj, 249ak, 249al, 249am, 249an, 249ao, 249ap, 249aq, 249ar, 249as, 249at, 249au, 249av, 249aw, 249ax, 249ay, 249az, 249aa, 249ab, 249ac, 249ad, 249ae, 249af, 249ag, 249ah, 249ai, 249aj, 249ak, 249al, 249am, 249an, 249ao, 249ap, 249aq, 249ar, 249as, 249at, 249au, 249av, 249aw, 249ax, 249ay, 249az, 249aa, 249ab, 249ac, 249ad, 249ae, 249af, 249ag, 249ah, 249ai, 249aj, 249ak, 249al, 249am, 249an, 249ao, 249ap, 249aq, 249ar, 249as, 249at, 249au, 249av, 249aw, 249ax, 249ay, 249az, 249aa, 249ab, 249ac, 2:4 Minor Adviser. Same as Major adviser.

Honor and Honors Program. The honors program consists of six units of 194H credit normally taken in the fall and winter quarters of the senior year. Completion of the program is a prerequisite for High or Highest Honors at graduation. Specific eligibility criteria may be obtained from the major adviser. For general information regarding the honors offered by the Academic Information section of this catalog.

Graduate Study. The Linguistics Graduate Group offers study and research leading to the M.A. degree. Detailed information may be obtained from the Graduate Adviser or from the Chairperson of the Linguistic Group.

Graduate Adviser, A.E. Ojeda.

Courses in Linguistics (LIN)

Lower Division Courses

1. Introduction to Linguistics (LIN) I, II, III
Brentari, Farley, Timm (Brentari in charge), Lapointe, Ojeda Lecture—3 hours; discussion—1 hour. Introduction to the study of language; its nature, diversity, and structure. GE credit: ArtHum or SocSci, Wtr.

10. Elementary American Sign Language (LIN) I
The Staff
Recitation—4 hours; discussion—1 hour. Prerequisite: course 1 recommended. Introduction to American Sign Language grammar and vocabulary, with emphasis on conversational skills.

11. Elementary American Sign Language (LIN) II
The Staff
Recitation—4 hours; discussion—1 hour. Prerequisite: course 10. Continuation of course 10.

12. Elementary American Sign Language (LIN) III
The Staff
Recitation—4 hours; discussion—1 hour. Prerequisite: course 11. Continuation of course 11.

13. Intermediate American Sign Language (LIN) I
The Staff
Recitation—4 hours; discussion—1 hour. Prerequisite: course 12. Grammar review and vocabulary development; enhancement of conversational skills.

The Staff
Recitation—4 hours; discussion—1 hour. Prerequisite: course 13. Emphasis on classifier and numeral systems in American Sign Language; conversational practice.

15. Advanced American Sign Language (LIN) III
The Staff
Recitation—4 hours; discussion—1 hour. Prerequisite: course 14. Study of American deaf culture through conversation and narratives; dialects of American Sign Language; deaf education.

20. Oral English for Undergraduate ESL Students (LIN) III
The Staff (Lowry in charge)
Lecture/discussion—3 hours. Prerequisite: consent of instructor. Limited primarily to students who have fulfilled their Subject A requirement or have completed course 23. Intensive practice in oral English for under-graduate ESL students. Students will learn to identify and modify features of their pronunciation which limit their ability to communicate clearly. Students will also learn and practice strategies for effective participation in academic tasks. (PNP grading only)

21. Introduction to Reading and Composition for Non-Native Speakers (LIN) I, II
The Staff (Lowry in charge)
Lecture/discussion—5 hours. Prerequisite: admission by placement examination only. Provides undergraduate students whose native language is not English with intensive work in reading and in writing organized, coherent, and grammatically correct paragraphs and short academic essays. (Former course English 21) (PNP grading only)

22. Intermediate Reading and Composition for Non-Native Speakers (LIN) I, II, III
The Staff (Lowry in charge)
Lecture/discussion—4 hours. Prerequisite: admission by placement examination or by successful completion of course 22. Provides undergraduate students whose native language is not English with experience writing persuasive essays related to reading passages. Students will also read for tone, style, context, and assumptions and will study advanced grammar needed for persuasive essays. (Former course English 23) (PNP grading only)

25. English for International Graduate Students (LIN) I, II
The Staff (Lane in charge)
Lecture—3 hours; laboratory—6 hours. Prerequisite: admission by placement examination. Limited to international graduate students and limited status (international) undergraduate students. Develops skills needed for studying on the graduate level: note-taking on lectures and readings, reading academic material, writing logically and accurately under time pressure, giving oral presentations, systematically extending vocabulary, and writing a research paper. May be repeated for credit with consent of instructor. (Former course English 25) (PNP grading only)

26. Writing for International Graduate Students (LIN) III
The Staff (Lowry in charge)
Lecture—3 hours. Prerequisite: satisfactory completion of course 25 if held for it, or consent of instructor. Admission limited to international graduate students. Focuses on writing needed for academic work, including summaries, critiques, research and grant proposals, memos, resumes, and research papers. Includes a review of grammar needed for writing and some focus on reading skills and American vocabulary and idioms. (PNP grading only)

50. Languages of the World (LIN) I, II
Benware, Timm
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 1 or Anthropology 4 recommended. Survey of the world’s languages, their classification, distribution, and interrelationships; structural similarities and differences; origins of the origin of human languages; sign languages, pidgin/creoles, “universal” languages, endangered languages, and languages of global significance. GE credit: ArtHum or SocSci, Wtr.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
103A. Linguistic Analysis I: Phonetics, Phonology, Morphology (4) I, II. Brentari, Benware
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Introduction to fundamental methods and concepts used in linguistic analysis, focusing on phonology, phonetics, and morphological phenomena. Emphasizes development of analytical skills and appreciation of structural regularities and differences among languages. Not open for credit to students who have completed course 103B.

103B. Linguistic Analysis II: Morphology, Syntax, Semantics (4) I, II. Lapointe, Farrell, Ojeda
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Introduction to fundamental methods and concepts used in linguistic analysis, focusing on morphological, syntactic, and semantic phenomena. Emphasizes development of analytical skills and appreciation of structural regularities and differences among languages. Not open for credit to students who have completed course 140.

104. English Grammar (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1. Survey of present-day English grammar from the perspective of contemporary linguistics. Focus on major syntactic and morphological constructions, their uses, and variation across dialects, styles, and registers. Not open for credit to students who have completed English 106A.

105. Topics in Language and Linguistics (4) I. The Staff
Lecture—3 hours; term paper. Prerequisite: course 1 and consent of instructor. Discussion of the major contemporary linguistic theory, a major contemporary issue or related set of issues in linguistics, or the history of English. Focus on the particular language or language family. May be repeated for credit when topic differs. Offered in alternate years.

111. Introduction to Phonological Theory (4) II. Brentari
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Introduction to contemporary phonological theory, with emphasis on autosegmental, metrical, and feature theory. Not open for credit to students who have completed course 164.

112. Phonetics (4) II. Brentari
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Detailed examination of articulatory and acoustic phonetics. Not open for credit to students who have completed course 109.

121. Morphology (4) III. Lapointe, Farrell
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Introduction to the study of word structure and the relation of word structure to the lexicon and other grammatical components. Not open for credit to students who have completed course 142.

131. Introduction to Syntactic Theory (4) II. Farrell
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Introduction to syntactic theory, primarily through the examination of a major theory of syntax, emphasizing theoretical reasoning, argumentation, and problems of theory building in syntax. Not open for credit to students who have completed course 165.

141. Semantics (4) I. Ojeda
Lecture—3 hours; term paper. Prerequisite: courses 103A, 103B. Introduction to the study of the meanings of words and phrases. Survey of the meanings expressed by lexical items and derivational and inflectional morphology, as well as the contributions of argument structure, quantification, and coordination to meaning. Not open for credit to students who have completed course 120. GE credit: Wr.

151. Historical Linguistics (4) III. Benware
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 103A, 103B. Description and methods of the historical study of language, including the comparative method and internal reconstruction; sound change, morphological change, syntactic change, semantic change. Not open for credit to students who have completed course 102.

152. Language Universals and Typology (4) II. The Staff
Lecture—3 hours; term paper. Prerequisite: course 1 or Anthropology 4. Investigation of real and putative (stereotypical) universal differences in language structure and usage, with a consideration of some social and psychological consequences of such differences. Focus is on English, but other languages are also discussed. Not open for credit to students who have completed course 113. GE credit: Wr.

166. The Spanish Language in the United States (4) III. Torreblanca
Lecture—3 hours; term paper. Prerequisite: course 1 or Spanish 115N, and Spanish 23 or equivalent. Linguistic features of the varieties of the Spanish language spoken throughout the United States; phonology, morphology, syntax, vocabulary. Focus on the relationship between United States Spanish and other world varieties of Spanish; within a historical framework. Not open for credit to students who have completed course 118. GE credit: Div, Wr.

Lecture—3 hours; term paper. Prerequisite: course 1 or Spanish 115N, and Spanish 23 or equivalent. Discussion of Chicano language and culture. Not open for credit to students who have completed course 118. GE credit: Div, Wr.

171. Introduction to Psycholinguistics (4) II. Lapointe
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; courses 103A, 103B recommended. Introduction to psychological issues relating to the implementation and language and linguistic structure during speech production, comprehension and to the implications of research in psychology and related fields for linguistic theory. Not open for credit to students who have completed course 135. Offered in alternate years.

173. Language Development (4) II. Lapointe
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor; courses 103A, 103B recommended. Theory and research on children’s acquisition of their native language, including the sound system, grammatical systems, and basic semantic categories. Not open for credit to students who have completed course 138. GE credit: SocSci.

175. Biological Basis of Language (4) III. Dronkers
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Overview of issues in the field of neurolinguistics and techniques used to explore representation of language in the human brain. GE credit: SciComp.

192. Internship in Linguistics (1–12) I, II, III. The Staff (Timm in charge)
Internship—3–36 hours; two written reports. Prerequisite: course 1 or the equivalent. Internship applying linguistics-related skills to a fieldwork project in areas such as media, law, or industry, in approved organizations or institutions. Maximum of 4 units applicable toward major. (P/NP grading only.)

194H. Special Study for Honors Students (1–5) I, II, III. The Staff (Director in charge)
Individual study—1–5 hours. Prerequisite: open only to linguistics majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member approved by the Program Director, leading to a senior honors thesis. May be repeated for credit for up to 6 units. (P/NP grading only.)

199. Tutoring in Linguistics (1–4) I, II, III. The Staff (Chairperson in charge)
Discussion—1–4 hours. Prerequisite: upper division standing, consent of instructor, and consent of department chairperson. Focus of small voluntary discussion groups affiliated with one of the department’s regular courses. May be repeated for credit. (P/NP grading only.)

Graduate Courses

205A. Modern Linguistic Theory: Structuralism (4) I. Manea-Marcu I
Lecture—3 hours; term paper. Prerequisite: courses 103A, 103B. History of thought in grammatical theory from de Saussure to 1950 with emphasis on critical examination of major theoretical problems in the field. Offered alternate years. Not open for credit to students who have completed course 225A.

205B. Modern Linguistic Theory: Generative Grammar (4) II. Ojeda, Farochel
Lecture—3 hours; term paper. Prerequisite: courses 111, 131. History of thought in grammatical theory from 1950 to the present with emphasis on critical examination of major theoretical problems in the field. Offered alternate years. Not open for credit to students who have completed course 225B.

205A-205B/205C. Topics in Linguistic Theory and Methods (4) I, II, III. The Staff
Seminar—3 hours; term paper. Prerequisite: consent of instructor. Advanced study of current problems in linguistic theory and methodology. May be repeated for credit when topic differs.

211. Advanced Phonological Theory and Analysis (4) III. Brentari
Lecture—3 hours; term paper. Prerequisite: course 111. Critical examination of current phonological theories. Offered in alternate years. Not open for credit to students who have completed course 239.

212. Advanced Phonetics (4) III. Brentari
Lecture—3 hours; term paper. Prerequisite: course 112. Advanced investigation of the physiological basis of speech production and acoustic phonetics. Not open for credit to students who have completed course 209. Offered in alternate years.

231. Advanced Syntactic Theory and Analysis (4) III. Farrell, Lapointe
Lecture—3 hours; term paper. Prerequisite: course 131. Critical survey of contemporary theories of syntax. Offered in alternate years. Not open for credit to students who have completed course 265.
317

Linguistics (A Graduate Group)

Steven G. Lapointe, Ph.D., Chairperson of the Group

Course Offerings

299. Research
- May be repeated for credit. (S/U grading only.)
- Graduate composition classes; tutoring foreign graduate students; research on international student teaching assistants; continuation of any required ESL courses or consent of instructor.
- Lecture—3 hours; term paper. Broad overview of bilingualism, with focus on theoretical and descriptive research; topics covered range from language processing in bilinguals to code-switching to language as political issue in multilingual states.

297T. English as a Second Language
- Lecture—2 hours; laboratory—1 hour; term paper; computer projects.
- Prerequisite: upper division or graduate standing. Analysis of theory/research on L2 acquisition. Topics include: contrast of L1/L2 acquisition; current theories of L2 such as the natural order and input hypotheses, as well as effects of individual variation, cognition, motivation on L2; research design and basic statistical analyses.

298. Directed Group Study
- (1-5) I, II, III. The Staff (Chairperson in charge)
- Prerequisite: graduate standing. (SU grading only.)

299. Research
- (1-12) I, II, III. The Staff (SU grading only.)

Professional Courses

300. The Teaching of English as a Foreign Language
- Lecture—3 hours; term paper. Prerequisite: course 300 or consent of instructor. Designing and evaluating ESL curricula and proficiency assessment instruments in all areas of language acquisition (pronunciation, reading, listening, comprehension, etc.). Developing lessons, teaching and tutoring in selected language acquisition areas in the UCD ESL clinic. Evaluating (and adapting) published ESL materials.

302. Recent Research and Special Projects in TESOL
- Lecture—4 hours. Prerequisite: course 300 and 301. Review of recent research in second language acquisition and the teaching of English to speakers of other languages. Continued teaching and tutoring in the UCD ESL clinic. Each student also designs and reports on a classroom research project.

391. Oral English for ESL Students
- Lecture—2 hours; laboratory—2 hours. Prerequisite: open only to non-native speakers of English whose prior language and background are not English. Course gives non-native English-speaking students, particularly international student teaching assistants, intensive work in oral English to increase fluency, accuracy, and use of appropriate discourse strategies in academic settings (e.g., seminar, discussion, laboratory). Course may be repeated for credit with consent of coordinator. (SU grading only.)

Literature in Translation

The following courses are open to students throughout the campus. The readings can be in English. Refer to departmental listing for the course description.

Chinese
- 10. Modern Chinese Literature (in English)
- 50. Introduction to the Literature of China and Japan
- 104. Twentieth-Century Chinese Fiction (in English)
- 105. Western Influences on Twentieth-Century Chinese Literature (in English)
- 106. Chinese Poetry (in English)
- 107. Traditional Chinese Fiction (in English)
- 108. Poetry of China and Japan (in English)
- 109A-I. Topics in Chinese Literature (in English)
- 110. Great Writers of China: Texts and Context (in English)

Classics
- 140. Homer and Ancient Epic
- 141. Greek and Roman Comedy
- 142. Greek and Roman Novel
- 143. Greek Tragedy

Comparative Literature
- 1. Great Books of Western Culture: The Ancient World
- 2. Great Books of Western Culture: From the Middle Ages to the Enlightenment
- 3. Great Books of Western Culture: The Modern Crisis
- 4. Major Books of the Contemporary World
- 5. Fairy Tales, Fables and Parables
- 6. Myths and Legends
- 7. Literature of Fantasy and the Supernatural
- 8. Utopias and their Transformations
- 9. The Short Story and Novella
- 10A-N. Master Authors of World Literature
- 12. Introduction to Women Writers
- 13. Dramatic Literature
- 14. Introduction to Poetry
- 15. The Spiritual Quest
- 20. Man and the Natural World
- 25. Ethnic Minority Writers in World Literature
- 53A. Literature of China and Japan
- 53B. Literature of India and Southeast Asia
- 120. Writing Nature: 1750 to the Present
- 130. Women Writers
- 138. Gender and Interpretation
- 140. Thematic and Structural Study of Literature
- 141. Literary Theory and Criticism
- 142. Critical Reading and Analysis
- 144. The Grotesque
- 145. Representations of the City
- 146. Myth in Literature
- 152. Literature of the Americas
- 153. The Forms of Asian Literature
- 157. War and Peace in Literature
- 158. The Detective Story as Literature
- 159A-G. Special Topics in Comparative Literature
- 160A. The Modern Novel
- 160B. The Modern Drama
- 161A. Tragedy
- 161B. Comedy
- 163. Biography and Autobiography
- 164A. The Middle Ages
- 164B. The Renaissance
- 164C. Baroque and Neoclassicism
- 164D. The Enlightenment
- 166A. The Epic
- 166B. The Novel
- 167. Comparative Study of Major Authors
- 168A. Romanticism
- 168B. Realism and Naturalism
- 169. The Avant-Garde
- 170. The Contemporary Novel
Management, School of

Dramatic Art

20. Introduction to Dramatic Art
156A. History of Theatre and Dance: Ancient to 1650
156B. History of Theatre and Dance: 1650-1900
156C. History of Theatre and Dance: The Twentieth Century
159. Contemporary Experimental Theatre and Drama

English

171A. The Bible as Literature: The Old Testament
171B. The Bible as Literature: Prophets and New Testament

French

25. Introduction to French Literature
112. Masterpieces of French Drama
113. Masterpieces of French Novel
114. French Philosophical Literature

German

47. Erasmus and Christian Humanism
48. Myth and Saga in the Germanic Cultures
49. Freshman Colloquium
50. Survey of German Culture
51. Introduction to Literary Analysis
110. Older German Literature
111A-H. Studies of Major Writers
112A-C. Topics in German Literature
113. Goethe's Faust
114. The Faust Tradition before and after Goethe
115A. German Literature since 1945
115B. German Literature since 1945
116. From Goethe's Werther to Today's Wethers
117A. The Tristan Tradition: Medieval, Musical, Modern
117B. The Nibelungen Tradition: Medieval, Musical, and Modern
117C. The Parzival Tradition: Medieval, Musical, and Modern
118A. Fin-de-siècle Vienna (The Swan Song of the Habsburg Empire)
118B. Weimar Culture: Defeat, the Roaring Twenties, the Rise of Nazism
118C. Germany under the Third Reich
118E. Contemporary German Culture
119. From German Fiction to German Film
130. Modernity and its Contents: The Tradition of German Cultural Critique
140. German Political Literature from the Middle Ages to the Present
141. The Holocaust and its Literary Representation
142C. New German Cinema: From Oberhausen to the Present

Italian

139B. Boccaccio, Petrarch and the Renaissance
140. Italian Literature in English Translation: Dante, Divine Comedy

Japanese

10. Masterworks of Japanese Literature (in English)
15. Introduction to Traditional Japanese Culture
50. Introduction to the Literature of China and Japan
101. Japanese Literature in Translation: The Early Period
102. Japanese Literature in Translation: The Middle Period
104. Modern Japanese Literature: War and Revolution
105. Modern Japanese Literature: Hero and Anti-Hero
106. Japanese Culture through Films
107. Modern Japanese Autobiographies (in English)
108. Poetry of China and Japan

Native American Studies

181A. Native American Literature (the novel and fiction)
181B. Native American Literature (non-fiction works by native authors)
181C. Native American Literature (traditional literature and poetry)
188. Special Topics in Native American Literary Studies

Russian

41. Survey of Nineteenth-Century Russian Literature
42. Survey of Twentieth-Century Russian Literature
44. Children's Literature in Russia
121. Nineteenth-Century Russian Prose
123. Twentieth-Century Russian Prose
126. The Russian Theater
130. Contemporary Soviet Culture
131. Literature of Revolution
132. Nature and Culture in the Soviet Union
140. Dostoevsky
141. Tolstoy
150. Russian Culture
151. Soviet Writers and Censorship
154. Russian Folklore
166. Representations of Sexuality in Russian Literature

Spanish

149. Latin-American Literature in Translation

Management, School of

Robert H. Smiley, Ph.D., Dean
Richard P. Castanias, Ph.D., Associate Dean
School Office, 106 ACB 4 (916-752-7399)

Faculty

Brad Barber, Ph.D., Assistant Professor
Nicole W. Biggart, Ph.D., Professor
Richard P. Castanias, Ph.D., Associate Dean
George Bittlingmayer, Ph.D., Associate Professor
Michael Hagerty, Ph.D., Associate Professor
Paul A. Griffin, Ph.D., Professor
Eitan Gerstner, Ph.D., Associate Professor
Peter Clark, Ph.D., Professor
E. Alexander F. McCalla, Ph.D., Professor
Michael Maher, Ph.D., Professor
David S. Bunch, Ph.D., Associate Professor
Michael Hagerty, Ph.D., Associate Professor
George Bittlingmayer, Ph.D., Associate Professor
Nicole W. Biggart, Ph.D., Professor
Brad Barber, Ph.D., Assistant Professor

Emeriti Faculty

Richard C. Dorf, Ph.D., Professor Emeritus
Alexander F. McCalla, Ph.D., Professor Emeritus
Jerome J. Suran, B.S., Ph.D. (hon.), Senior Lecturer Emeritus

Courses in Management (MGT, MGP)

Lower Division Courses

11A. Elementary Accounting (4) II. Darrough
Lecture—3 hours; discussion—1 hour. Basic concepts of accounting; interpreting and using financial statements; understanding accounting principles. (Former course Economics 11A.)

11B. Elementary Accounting (4) II. Darrough
Lecture—3 hours; discussion—1 hour. Prerequisite: course 11A. Product costing; using accounting information for decision making, performance and profitability evaluation. (Former course Economics 11B.)

Upper Division Course

100. Introduction to Financial Accounting (3) Griffin
Lecture—3 hours. Prerequisite: no prior knowledge of accounting is required. Course open to all upper division undergraduate and graduate students, except those in the Graduate School of Management. Introduction to the concepts, methods, and uses of accounting and financial reporting. Preparation of financial statements, including balance sheet and statements of income and cash flow, as well as their analysis by investors and managers.

Graduate Courses

(Core Courses)

200A. Financial Accounting (3) I. Lyon
Lecture—3 hours. Prerequisite: graduate student. Introduction to the concepts and objectives underlying the preparation of financial statements. Topics include understanding the accounting cycle, measurement and valuation problems associated with financial statement components, consideration of the usefulness of financial statements in the analysis of a corporation's operations. Not open for credit to students who have completed former course 201A.

200B. Managerial Accounting (3) III. Maier
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management MBA program or consent of instructor. Information managers should know to be effective, including: product costing, motivating people, and differential analysis for decision making. Includes team projects and written and oral presentations. Not open for credit to students who have completed former course 201B.

201A. The Individual and Group Dynamics (3) I. Palmer
Lecture—3 hours. Prerequisite: graduate student in the Graduate School of Management MBA program or consent of instructor. Examines basic psychological and social psychological processes shaping human behavior and applies knowledge of these processes to the following organizational problems: motivation, job design, commitment, socialization, culture, individual and group decision making, and team building. Not open for credit to students who have completed former course 202.

201B. Organizational Structure and Strategy (3) II. Biggart
Lecture—3 hours; group projects, experiential exercises. Prerequisite: graduate student in the Graduate School of Management MBA program or consent of instructor. Analysis of structural properties of organizing including differentiation and vertical and horizontal integration. Alternative structural arrangements including functional, decentralized, matrix, and hybrid structures. Relationship between environment, structure, and strategic objectives. Organization life cycles and change. Not open for credit to students who have completed former course 203.

202A. Markets and the Economy (3) I. Bittlingmayer
Lecture—3 hours; group projects, experiential exercises. Prerequisite: graduate student in the Graduate School of Management MBA program or consent of instructor. Examines the interaction of consumers, firms and government, and the effect this interaction has on the use of resources and firm profitability. Fundamental economic concepts such as marginal analysis, opportunity cost, pricing, and externalities are introduced and applied. Not open for credit to students who have completed former course 204.

202B. Business, Government, and the International Economy (3) II. Clark
Prerequisite: course 202A or 402A or consent of instructor. Examines the influence of government and international factors on business. Topics include distribution of income, business cycles, inflation and interest rates, the federal debt, monetary policy and
international trade and finance. Not open for credit to students who have completed former course 205.

203A. Data Analysis for Managers (3) (I). Tsai Test—3 hours. Prerequisite: graduate student who has completed the Graduate School of Management MBA program or consent of instructor. Introduction to statistics and data analysis for managerial decision making. Descriptive statistics, principles of data collection, sampling, quality control, statistical inference. Application of data analytic methods to problems in marketing, finance, accounting, production, operations, and public policy with consent of the instructor. Advanced statistical methods for managerial decision making, regression analysis, time series analysis and forecasting, design and analysis of experiments in managerial research. Application of these methods to marketing, finance, accounting, production, operations, and public policy. Not open for credit to students who have completed former course 210A.

203B. Forecasting and Managerial Research Methods (3) II. Rocke Test—3 hours. Prerequisite: course 203A or 403A or consent of instructor. Advanced statistical methods for managerial decision making, regression analysis, time series analysis and forecasting, design and analysis of experiments in managerial research. Not open for credit to students who have completed former course 210A.

204. Marketing Management (3) III. Davis Test—3 hours. Prerequisite: standing and the satisfactory completion of an intermediate-level course in price theory and statistics; or under- graduate introduction to marketing in the major; or consent of instructor. Analysis of market opportunities, elements of market research, development of marketing strategies, market planning and implementations, and controls. Consumer and industrial markets, market segmentation, pricing strategies, distribution channels, promotion, and sales. Not open for credit to students who have completed former course 205.

205. Financial Theory and Policy (3) III. Barber Test—3 hours. Prerequisite: graduate student and course 200A or 400A, 202A or 402A, and 203A or 403A. Corporate financial policy and investment management. Covalence, optimal capital structure, cost-of-capital determination, risk measurement. Develops basic valuation principles for investments with long-lived and risky cash-flows, and extends these to derive and securities, asset portfolios, investment management and hedging. Not open for credit to students who have completed former course 207.

206. Decision Making and Management Science (3) II. Bunch Test—3 hours. Prerequisite: graduate student in the Graduate School of Management MBA program or consent of instructor. Develops decision-making and problem-solving skills in conjunction with a quantitative model-building approach. Emphasizes how structured modeling techniques, probability forecasts, simulations, and computer optimization models are used in the overall process of making decisions in an uncertain environment. Not open for credit to students who have completed former course 211.

207. Management Information Systems (3) II. Topiks, Woodruff Test—3 hours. Prerequisite: graduate student or consent of instructor. Introduction to computer programming and data handling skills. Use of computer in organization, emphasis on managerial aspects of computing. Standard and nonstandard uses of data files, centralization versus decentralization of computing, office automation, computer security. Not open for credit to students who have completed former course 209.

(Second-Year Courses) Students must complete the Management core course requirement before enrolling in any of the following courses, or petition with consent of the instructor.

211. Law (3) The Staff Lecture—3 hours. Introduction to law and legal process in the United States. Sources of law, structure and operation of courts, federal-state relationships, fundamentals of administrative law, fundamentals of business law.

216. Middle-level Management: Budgets, Controls and Ethics (3) I. The Staff Lecture—3 hours. Prerequisite: undergraduate degree. Performance and resource control: budgets, and allocation; budgeting and financial decision making. Credit and financial policies and operations, and public policy. Not open for credit to students who have completed former course 210A.

220. Public Budgeting and Finance (3) The Staff Lecture—3 hours. Fiscal role of government in a mixed economy and democratic society; economics of public finance and resource allocation; intergovernmental financial relations; budgeting activities of local governments.

223. Power and Influence in Management (3) Palmer Seminar—3 hours. Prerequisite: consent of instructor. Investigation of the bases of power in organizations and the tactics used to translate power into influence. Topics include the control of resources (including information), social psychological processes (including commitment), the construction of meaning, and ethics.

224. Human Resources Management (3) Biggert Lecture—3 hours. Problems of recruiting, training, motivating, compensating, and separating workers in contemporary organizations. Topics include design of incentive systems, career management, professionalization, alienation, worker burnout, organizational deviance, and current issues such as affirmative action and the unionization of public employees.

225. Labor Relations (3) The Staff Lecture—3 hours. Course deals with labor organization, employment relationships, employer-employee negotiations, contracts, and litigation. Worker and management rights, and collective bargaining in the public and private sectors will be explored.

227. Managing a Diverse Workforce (3) I. Biggert Lecture—3 hours. Prerequisite: graduate student. Reviews recent demographic changes such as increased ethnic diversity and an aging population in the regional and national labor force. The impact of these changes on hiring practices, internal labor markets, compensation and benefits issues, and non-traditional work arrangements.

228. Statistical Quality Control and Productivity Improvement (3) Rocke Lecture—3 hours. Prerequisite: Statistics 106. Introduces concepts of quality and productivity improvement as applied to the operations industries and the public sector. Methods covered include statistical quality control techniques such as control charts and acceptance sampling, reliability, and graphical tools. (Same course as Statistics 226.)

229. Global Strategy (3) Biggert Lecture—3 hours. Examines recent restructuring in the world economy including the European Economic Community, East Asian economies of Japan, Taiwan, and South Korea, and changes in Eastern Europe. Discussion of the proposed Free Trade Pact between the U.S., Canada, and Mexico.

232. Urban Policy and Planning (3) The Staff Lecture—3 hours. Analysis of public policy in an urban setting, focusing on the efficiency effects of such policies. Topics include urban spatial structure, growth-management policies, housing, transporta- tion, environmental quality, local government finance, and urban planning.

233. Regulation and Policy in Agriculture (3) The Staff Lecture—3 hours. Implications for management of regulation and public policy on agricultural production choices, practices, processing, and marketing; influences on management strategy, organization, business practices and productivity; trends in regulation and policy and their potential for management strategies are explored.

240. Management Policy and Strategy (3) (I). Suran, Hagerty Lecture—3 hours. Prerequisite: first-year core courses of M.B.A. program. Examines the scope of missions, objectives strategies, policies, structures, measurement and incentives which bear on the management of an organization. Real “client” organizations, in the private and public sectors, are assigned to student teams as the subjects of study.

241. Managerial Decision Making (3) Bunch Lecture—3 hours. Develops analytical skills for evaluating decisions and solving problems in various managerial settings. Emphasis is on problem structuring, decision analysis, and implementation. Course examines individual decision strategies, group processes, and organizational decision making.

244. New and Small Business Ventures (3) Dorf Lecture—3 hours. Emphasizes starting a new business venture or managing a small, ongoing business during its formative stages. The business plan. Legal forms, financial considerations, the management team. The entrepreneur. Students develop a detailed business plan.

245. International Marketing (3) II. Hagerty Lecture—3 hours. Prerequisite: graduate student and course 204. Teaches marketing strategies and tactics applied across national borders. Includes lectures and cases on import/export, joint ventures, off-shore subsidiaries, marketing planning, and international currency exchange. Gives methods of market research and competitor intelligence in diverse cultures.

246. Negotiation and Team Building (3) III. I. Tsai Lecture—3 hours. Teaches negotiation and team building. Not open for credit to students who have completed former course 207.

249. Marketing Research (3) Hagerty Lecture—3 hours. Course addresses the managerial issues and problems in planning data gathering and analyzing information for making private and public marketing decisions. Covers the cost and value of information, research design, information collection, measuring instruments, data analysis, and marketing research applications.

252. Production and Operations Management (3) Woodruff Lecture—3 hours. Explores methods of increasing operational efficiency in production and service organizations through planning and scheduling, materials management, inventory control, quality control, and distribution. Students organize, sustain, and manage an actual small business venture. Students are assigned to client organizations in various business fields.
261. Investment Analysis (3) Barber Lecture—3 hours. Examines modern asset pricing theory and the implications of that theory for the analysis and management of stocks, bonds, and other financial securities. Factors influencing the value of stocks, bonds, options, warrants, and other securities are discussed from the perspective of a portfolio fund manager.

262. Money and Security Markets (3) Bittingmayer Lecture—3 hours. Examines how money and securities markets are organized; how public agencies, businesses, others use those markets. Studies nature of various standard options involving options, commodity, financial futures contracts. Price determination in options and futures markets is also examined.

263. Options and Futures Markets (3) Barber Lecture—3 hours. Studies the behavior of options and futures markets; how public agencies, businesses, others use those markets. Studies nature of various standardized options involving options, commodity, financial futures contracts. Price determination in options and futures markets is also examined.

265. Theory of Financial Decision Making (3) Castanias Lecture—3 hours. Prerequisite: course 207 or the equivalent. Theory of financial decision making.

266. International Finance (3) Castanias Lecture—3 hours. Prerequisite: course 207 or the equivalent. Open economy macroeconomics, balance of payments theory, and financial decision making in multinational firms.

267. The National and International Economy (3) Clark Lecture—3 hours. Prerequisite: familiarity with basic macroeconomic concepts is required. Completion of an introductory course in macroeconomics is sufficient, but additional course can be helpful. Open to Graduate School of Management students; non-UGSM graduate students may enroll with consent of instructor. This course provides a framework for the analysis of aggregate output, input prices and the price level within the United States, and the linkage of U.S. economy to the economies of the rest of the world through the exchange rate and international trade.

268. Management Communications (3) Kennedy Lecture—3 hours. The theories, strategies, and skills necessary for effective communication in management. Students will learn to improve their business writing, and will deliver business presentations orally.

269. Case Studies in Corporate Finance (3) Barber Lecture—3 hours. Prerequisite: course 201A, 207. Financial issues facing firms with a need to raise capital in financial markets. Unique course format uses case studies to analyze decisions which firms face.

270. Corporate Financial Reporting (3) Griffith Lecture—3 hours. Introduces financial statements and evaluates contemporary issues in financial reporting and develops implications of those issues for business decision makers, investment managers, and accounting policy makers.

271. Accounting and Budgeting for Management Control (3) Maher Lecture—3 hours. Examines concepts and techniques of accounting and budgeting for management decision making in the private sector. Topics include cost control, capital budgeting, performance evaluation, and the effects of uncertainty in achieving management objectives.

272. Evaluation of Financial Information (3) Griffin Lecture—3 hours. Studies how investors, creditors, others use accounting and other information in making rational investment, lending decisions. Emphasis is placed on the analysis of financial information in a variety of contexts. Where applicable, recent research in finance and economics is discussed.

273. Accounting and Reporting for Government Nonprofit Entities (3) Maher Lecture—3 hours. Concepts, methods, and uses of accounting and financial reporting by governmental and nonprofit entities. Introduction to budgeting and performance evaluation, and accounting for entities such as hospitals, universities, and welfare agencies.

274. Auditing, Internal Control, and Public Accounting (3) Lyon Lecture—3 hours. Concentrates on role of the independent public accountant as auditor and consultant, from the perspective of an enterprise manager. Auditing standards, auditing procedures, and auditing control techniques are discussed. Emphasis is also given to current issues confronting the accounting profession.

275A-275B. Seminar in Finance and Accounting (3-3) II-III. Castanias, Barber, Lyon Seminar—3 hours. Prerequisite: Economics 200A-200B-200C. Foundations and recent developments in the theory of finance and accounting, and relevant empirical evidence. Seminar emphasizing the reading and discussion of academic articles.

276. Real Estate, Finance and Development (3) II. The Staff Lecture—3 hours. Prerequisite: course 201A and 207. Focus on single family, attached, detached, multi-family, and light commercial development. Students will study factors which make up successful real estate developments. Course will consider financial aspects involved in land acquisition, land development, construction, and project lending.

280. Data and File Management (3) Topkis Lecture—3 hours. Concepts of information storage and retrieval on digital computers. Emphasis on file structures and their uses within organizations; applications drawn from both the public and private sector.

281. Systems Analysis and Design (3) Woodruff Lecture—3 hours. Design and specification of computer-based information systems. Applications systems development life cycle, use requirements and feasibility assessment, logical and physical design, program development and testing, conversion and implementation. Review of current practices in data processing.

283. Optimization Theory and Applications (3) Topkis Lecture—3 hours. Introduces applied optimization theory. Examines linear, nonlinear, discrete, and dynamic programming; optimality conditions; transportation, networks, and large-scale systems; and computer implementation. Applications are made to problems in private and public management.

284. Applied Linear Models for Management (3) Tsai Lecture—3 hours. Covers regression, analysis of variance, and multivariate analysis. Topics will focus on applications to management and policy problems.

285. Time Series Analysis and Forecasting (3) Tsai Lecture—3 hours. Considers application of time series methods to evaluation and forecasting problems. Covers univariate and multivariate ARMA models and transfer function models. Applications will be in such areas as economics, finance, budgeting, program evaluation, and industrial process control.

286. Telecommunications and Computer Networks (3) Topkis Lecture—3 hours. Prerequisite: course 280. Communication systems components; common carrier services; design and control of telecommunications networks; network management and distributed environment; local area networks; data security in computer networks.

*288. Special Topics in Management of Information Systems (3) Topkis Lecture—3 hours. Managerial aspects of information systems. Topics stressing applications in organizations chosen from: economics of computers and information systems, decision support systems, management of computer-based information systems, office automation.

290. Seminar in Management (3) Seminar—3 hours. Interdisciplinary case study of a real business or government enterprise.

298. Directed Group Study (1-5) The Staff Prerequisite: consent of instructor.

299. Individual Study (1-12) The Staff Prerequisite: consent of instructor. (SU grading only.)

Mathematics
(Mathematics)

(Remember to make the appropriate changes to the document as necessary.)

Mathematics 127C4
Mathematics 141...3
Mathematics 115A3
Mathematics 127A, 127B8
Mathematics 149A, 149B; or 150A, 150B...8

Total Units for the Major.............................75-86

Total Units for the Major.............................75-86

UNITS

UNIT 3

UNIT 3
Mathematics

Students preparing for an A.B. degree for secondary teaching or general mathematics, or a B.S. degree for graduate study, biological sciences, physical sciences, or engineering, or general mathematics should consult an undergraduate adviser.

Prerequisite Credit. No student may repeat a course, if that course is a prerequisite for a course which has already been completed with a grade of C– or better.

Minor Program Requirements:

Courses in Mathematics (MAT)

Lower Division Courses

B. Elementary Algebra (no credit) I. The Staff Lecture—3 hours. Basic concepts of algebra, including polynomials, factoring, equations, graphs, and inequalities. Offered only if sufficient number of students enroll. Not open to Concurrent student enrollment. (P/NP grading only.) (There is a fee of $45.)

C. Trigonometry (no credit) I, II. The Staff Lecture—2 hours. Basic concepts of trigonometry, including trigonometric functions, identities, inverse functions, and applications. Offered only if sufficient number of students enroll. Not open to Concurrent student enrollment. (P/NP grading only.) (There is a fee of $30.)

D. Intermediate Algebra (no credit) I, II. The Staff Lecture—3 hours. Basic concepts of algebra, designed to prepare the student for college work in mathematics, such as course 16A or 21A. Functions, equations, inequalities, and systems of equations. Offered only if sufficient number of students enroll. Not open to Concurrent student enrollment. (P/NP grading only.) (There is a fee of $15.)

16A. Short Calculus (3) I, II, III. The Staff (Chairperson in charge) Lecture—3 hours. Prerequisite: one and one-half years of high school algebra, plane geometry, plane trigonometry, and obtaining required score on Precalculus Qualifying Examination. Topics selected for their use in calculus, including functions and their graphs, slope, zeros of polynomials, exponential, logarithmic and trigonometric functions, sketching surfaces and solids, computer for credit to students who have completed any of courses 16A, 16B, 16C, 21A, 21B, or 21C with a C– or better.

16B. Short Calculus (3) I, II, III. The Staff (Chairperson in charge) Lecture—3 hours. Prerequisite: course 16A or 21A. Integration, calculus for trigonometric, exponential, and logarithmic functions; applications. Not open for credit to students who have received credit for course 21B. GE credit: SciEng.

16C. Short Calculus (3) I, II, III. The Staff (Chairperson in charge) Lecture—3 hours. Prerequisite: course 16B or 21B. Differential equations; partial derivatives; double integrals; applications to plane geometry, plane trigonometry, and analytic geometry or course 12, and obtaining required score on Precalculus Qualifying Examination and its trigonometric component. Functions, limits, continuity, slope and derivative. Differentiation of algebraic and transcendental functions. Application to motion, natural growth, graphing, extrema of a function. Differentials. L'Hopital's rule. Only two units of credit are allowed to students who have credit for course 16A. (Not open for credit to students who have completed course 16B.) GE credit: SciEng.

21A. Calculus (4) I, II, III. The Staff Lecture/discussion—4 hours. Prerequisite: two years of high school algebra, plane geometry, plane trigonometry, and analytic geometry or course 12, and obtaining required score on Precalculus Qualifying Examination and its trigonometric component. Functions, limits, continuity, slope and derivative. Differentiation of algebraic and transcendental functions. Applications to motion, natural growth, graphing, extrema of a function. Differentials. L'Hopital's rule. Only two units of credit are allowed to students who have credit for course 16A. (Not open for credit to students who have completed course 16B.) GE credit: SciEng.

21AH. Honors Calculus (4) I. The Staff Lecture/discussion—4 hours. Prerequisite: a Precalculus Qualifying Examination score significantly higher than the minimum for course 21A is required. More intensive treatment of material covered in course 21A. GE credit: SciEng.

21AL. Emerging Scholars Program Calculus Workshop (3) I. The Staff Workshop—6 hours. Prerequisite: concurrent enrollment in course 21A. GE credit: SciEng.

21B. Calculus (4) I, II, III. The Staff Lecture/discussion—4 hours. Prerequisite: course 21A or 21AH. Continuation of course 21A. Definition of definite integral, fundamental theorem of calculus, techniques of integration. Application to area, volume, arc length, average of a function, improper integrals, surface of revolution, applications of definite integrals of credit or better in course 21A. GE credit: SciEng.

21BH. Honors Calculus (4) II. The Staff Lecture/discussion—4 hours. Prerequisite: a grade of B or better in course 21A or 21AH. More intensive treatment of material covered in course 21B. Students completing 21BH can continue with course 21CH or the regular 21C. GE credit: SciEng.

21BL. Emerging Scholars Program Calculus Workshop (2) I. The Staff Workshop—6 hours. Prerequisite: course 21A or 21AH. Concurrent enrollment in course 21B. Continuation of course 21A. Definition of definite integral, fundamental theorem of calculus, techniques of integration. Application to area, volume, arc length, average of a function, improper integrals, surface of revolution. Emerging Scholars Program by instructor's invitation only. (P/NP grading only.)

21CH. Honors Calculus (4) III. The Staff Lecture/discussion—4 hours. Prerequisite: a grade of B or better in course 21B or 21BH. More intensive treatment of material covered in course 21C. GE credit: SciEng.

21CL. Emerging Scholars Program Calculus Workshop (3) II. The Staff Workshop—6 hours. Prerequisite: course 21B or 21BH. Concurrent enrollment in course 21C. Continuation of course 21B. Sequences, series, tests for convergence, Taylor expansions. Partial derivatives, total differentials. Applications to maximum and minimum problems in two or more variables. Definition of definite integral, fundamental theorem of calculus, techniques of integration. Application to area, volume, arc length, average of a function, improper integrals, surface of revolution, applications of definite integrals of credit or better in course 21B. GE credit: SciEng.

21DV. Vector Analysis (4) I, II, III. The Staff Lecture/discussion—4 hours. Prerequisite: course 21C. Vector algebra, vector fields and line and surface integrals. Green’s theorem, Stokes’ theorem, divergence theorem. (Former course 22C.)

21EM. Accelerated Calculus (5) I. The Staff Lecture/discussion—4 hours. Prerequisite: courses 21C, 21D, and 21E. More intensive treatment of material covered in courses 21C, 21D, and 21E. Enrollment for students in the Emerging Scholars Program by instructor's invitation only. (P/NP grading only.)

22A. Linear Algebra (3) I, II, III. The Staff Lecture—3 hours. Prerequisite: nine units of college mathematics. Matrices and linear transformations, determinants, complex numbers, quadratic forms.

36. Fundamentals of Mathematics (3) I. The Staff Lecture—3 hours. Prerequisite: eight units of mathematics, including three years of college algebra and trigonometry, and mathematical maturity. A broad survey of mathematical ideas selected from all branches of mathematics, and their applications. Concepts, techniques of rigorous proofs and problem solving are emphasized. Intended for students who want to think about some deeper aspects of mathematics. Not open for credit to students who have taken course 108. GE credit: SciEng.

63. Ideas from Mathematics (3) II. The Staff Lecture—3 hours. Prerequisite: obtaining required score on Precalculus Qualifying Examination. Introduction to fundamental mathematical ideas selected from the principal areas of modern mathematics. Properties of the primes, the fundamental theorem of arithmetic, properties of polynomials over integers and over finite fields, operations on matrices, binary and other number systems. Not open for credit to students who have received credit for course 108. Recommended for non-math majors. GE credit: SciEng.

90. Elementary Problem Solving Seminar (1) I. The Staff Seminar—1 hour. Prerequisite: high school mathematics. Students solve and present solutions to challenging and interesting problems in elementary mathematics at the board. (P/NP grading only.)
98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

108. Introduction to Abstract Mathematics (4) I, II, III. The Staff
Lecture—4 hours. Prerequisite: course 21B or consent of instructor. Rigorous treatment of abstract mathematics with the emphasis on developing ability to understand and present mathematics arguments.

114. The Theory of Convex Sets (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 21C, 22A, 108, or consent of instructor. Topics selected from the theory of convex bodies, convex functions, geometric inequalities, combinatorial geometry, and integral geometry. Offered in alternate years.

115A. The Theory of Numbers (3) I. The Staff
Lecture—3 hours. Prerequisite: course 108. Divisibility and related topics, diophantine equations, selected topics from the theory of prime numbers.

115B. The Theory of Numbers (3) II. The Staff
Lecture—3 hours. Prerequisite: course 108. Euler function, Moebius function, congruences, primitive roots, quadratic reciprocity law. Offered in alternate years.

115C. The Theory of Numbers (3) III. The Staff
Lecture—3 hours. Prerequisite: course 108. Continued fractions, partitions. Offered in alternate years.

116. Metric Differential Geometry (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 21D, or consent of instructor. Vector analysis, curves and surfaces in three dimensions. Offered in alternate years.

118A. Partial Differential Equations: Elementary Methods (3) I. The Staff
Lecture—3 hours. Methods: courses 22B, 22A, 21D. Derivation of partial differential equations; separation of variables; equilibrium solutions and Laplace’s equation; Fourier series; method of characteristics for the one-dimensional wave equation; solution of non-homogeneous equations.

118B. Partial Differential Equations: Eigenfunction Expansions (3) II. The Staff
Lecture—3 hours. Prerequisite: course 118A. Sturm-Liouville Theory; self-adjoint operators; mixed boundary conditions; partial differential equations in two and three dimensions; problems in circular domains; non-homogeneous problems and the method of eigenfunction expansions; Poisson’s Equations.

118C. Partial Differential Equations: Green’s Functions and Transforms (3) III. The Staff
Lecture—3 hours. Prerequisite: course 118B. Green’s functions for one-dimensional problems and Poisson’s equation; Fourier Transforms; Green’s Functions for time dependent problems; Laplace transform and solution of partial differential equations.

119A-119B. Ordinary Differential Equations and Dynamical Systems (3-3) II-III. The Staff

121A. Advanced Calculus for the Sciences (3) I. The Staff
Lecture—3 hours. Prerequisite: courses 21D, 22A, 22B. Functions of a single real variable; power series, convergence, continuity, differentiation, integration, interchange of limiting procedures, Fourier series, integral transforms. Intended primarily for students majoring in science and engineering.

121B. Advanced Calculus for the Sciences (3) II. The Staff
Lecture—3 hours. Prerequisite: course 121A. Functions of several real variables; continuity, differentiation, implicit functions, integration, calculus of variations, vector analysis. Elementary single complex variable theory. Intended primarily for students majoring in science and engineering.

125. Introduction to Mathematical Logic (3) I. The Staff
Lecture—3 hours. Prerequisite: course 108. Propositional calculus, predicate calculus, normal forms, completeness. Offered in alternate years.

126. Introduction to the Theory of Sets (3) III. The Staff
Lecture—3 hours. Prerequisite: course 127A or 150A. Fundamental concepts including cardinal numbers, order types, ordinal numbers. Offered in alternate years.

127A-127B-127C. Advanced Calculus (4-4-4) I, II, III. The Staff
Lecture/discussion—4 hours. Prerequisite: courses 21D, 22A, 108. Real number system, continuity, differentiation and integration on the real line; vector calculus and functions of several variables; theory of convergence.

128A. Numerical Analysis I (4) I. The Staff
Lecture—3 hours; term project. Prerequisite: course 21C. Knowledge of a programming language such as Pascal, FORTRAN, or BASIC. Error analysis, approximation, interpolation, numerical differentiation and integration.

128B. Numerical Analysis II in Solution of Equations (4) II. The Staff
Lecture—3 hours; term project. Prerequisite: course 21C and 22A. Knowledge of a programming language such as Pascal, FORTRAN or BASIC. Solution of non-linear equations and nonlinear systems. Minimization of functions of several variables. Simultaneous linear equations. Eigenvalue problems.

128C. Numerical Analysis in Differential Equations (4) III. The Staff
Lecture—3 hours; term project. Prerequisite: courses 22A, 22B, and a knowledge of a programming language such as Pascal, FORTRAN or BASIC. Difference equations, operators, numerical solution of ordinary and partial differential equations.

131. Methods of Mathematical Probability (4) II. The Staff
Lecture—4 hours. Prerequisite: courses 21C and 22A. Probability space, event, combinatorics; discrete, continuous distributions; joint, marginal and conditional densities; transformation; expectation; sums and moments; inequalities; laws of large numbers; central limit law; probability models via conditioning; tables. Students who have taken Statistics 131A may not receive credit for this course.

132A-132B. Introduction to Stochastic Processes (3-3) III-I. The Staff
Lecture—3 hours. Prerequisite: course 131 or Statistics 131A. Markov chains, Poisson process, birth and death processes, renewal theory, queuing theory, Brownian motion, stationary processes. Course 132B is offered in alternate years.

141. Euclidean Geometry (3) II. The Staff
Lecture—3 hours. Prerequisite: course 108. An axiomatic and analytic examination of Euclidean geometry from an advanced point of view. In particular, a discussion of its relation to other geometries.

145. Combinatorial Mathematics (3) III. The Staff
Lecture—3 hours. Prerequisite: course 108. Combinatorial methods using basic graph theory counting methods, generating functions, and recurrence relations.

147. Topology (3) III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 108, 127A. Basic notions of point set and combinatorial topology. Offered in alternate years.

149A-149B. Topics in Discrete Mathematics (4) II, III. The Staff (Chairperson in charge)
Lecture/discussion—4 hours. Prerequisite: course 22A and 108. Coding theory and counting theory and the algebraic concepts needed in their development.

150A-150B-150C. Introduction to Abstract Algebra (4-4-4) I, II, III. The Staff
Lecture/discussion—4 hours. Prerequisite: course 108. Basic concepts of groups, rings, and fields. Emphasizes the techniques used in the proofs of the ideas (Lemmata, Theorems, etc.) developing these concepts. Develops precise logical thinking, precise writing, and the ability to deal with abstraction.

Lecture—3 hours. Prerequisite: course 108 and familiarity with one high-level computer language. The relational model; relational algebra; relational calculus; normal forms; functional and multivalued dependencies. Separability. Cost benefit analysis of physical database design and reorganization. Performance via analytical modeling, simulation, and queueing theory. Block accesses: buffering, operating system contention; CPU I/O contention.

164. Mathematical Foundations of Fifth Generation Computing (3) II. Milton
Lecture—3 hours. Prerequisite: course 108 and a modern high-level computer language. Study of the uses of predicate and relational programming and knowledge-based systems. Resolution and non-resolution deduction, forward and backward deduction systems, logic programming, symbolic integration, problem solving strategies, functions in search strategies, mathematical treatment of uncertainty in expert systems.

167. Linear Algebra and Applications (3) I, II, III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 22A. Introduction to linear algebra: linear equations, orthogonal projections, similarity transformations, quadratic forms, eigenvalues and eigenvectors. Applications to physics, engineering, economics, biology and statistics.

168. Mathematical Programming (3) III. The Staff
Lecture—3 hours. Prerequisite: courses 21C, and 22A or 167; knowledge of a programming language. Linear programming, simplex method. Basic properties of unconstrained nonlinear programs, descent methods, conjugate direction method. Constrained minimization.

180. Special Topics: Pure and Applied Mathematics (3) III. I, II, III. The Staff
Lecture—3 hours. Prerequisite: course 22A and 22B, or consent of instructor. Special topics from various fields of pure and applied mathematics, such as: analysis, algebra, applied mathematics, geometry, topology, computer science, logic, history. May be repeated for credit in different subject area.

185A. Functions of a Complex Variable with Applications (3) II. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 21D. Complex number systems, analyticity and the Cauchy-Riemann equations, elementary functions, complex integration, power and Laurent series expansions, residue theory.

185B. Functions of a Complex Variable with Applications (3) III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 185A or consent of instructor. Analytic functions, elementary functions and their mapping properties, applications of Cauchy’s integral theorem, conformal mapping and applications to heat flow and fluid mechanics. Offered in alternate years.

190. Advanced Problem Solving Seminar (1-1) I, II, III. Queastel
Seminar—1 hour. Prerequisite: two years of college mathematics. Students solve challenging and unusual problems at the board. The problems require a background at the most second-year university mathematics. (P/NP grading only.)
192. International in Applied Mathematics (1-3) I, II, III. The Staff (Chairperson in charge)
Internship; final report. Prerequisite: upper division standing as determined by faculty sponsor prior to enrollment. Supervised work experience in applied mathematics. May be repeated for credit for a total of 10 units. (P/NP grading only.)

194. Undergraduate Thesis (3) I, II, III. The Staff
Prerequisite: consent of instructor. Independent research under supervision of a faculty member. Student will submit written report in thesis form. May be repeated with the consent of Vice Chairperson. (P/NP grading only.)

197 TC. Tutoring Mathematics in the Community (1-5) I, II, III. The Staff (Chairperson in charge)
Seminar—1-2 hours; laboratory—2-6 hours. Prerequisite: upper division standing and consent of instructor. Special projects in mathematical education which involve the development of techniques for mathematics instruction and tutoring on an individual or small group basis. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (2-2-2) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses
201A-201B-201C. Analysis (4-4-4) I, II, III. The Staff

202. Functional Analysis (4) II. The Staff
Lecture—3 hours; term paper. Prerequisite: course 201A-201B-201C. The theory of Fredholm operators. Examples of Fredholm operators (singular integral operators, elliptic operators in Sobolev spaces). Index theory for Fredholm operators. Unbounded self-adjoint operators. Schrodinger operators and other differential operators. The spectral theorem for these and for unitary operators. Offered in alternate years.

203A-203B-203C. Modern Applied Analysis (3-3-3) I-II-III. The Staff
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Classical mathematical foundations of applied analysis. Linear and metric spaces; Hilbert space; operator theory. Applications to integral and differential equations. Variational methods.

204. Applied Asymptotic Analysis (3) I. The Staff
Lecture—3 hours. Prerequisite: graduate standing or consent of instructor. Asymptotic analysis and perturbation theory, with applications to optimization, differential equations, and scaling.

205. Complex Analysis (4) I. The Staff

210A. Topics in Geometry (3) I. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: bachelor's degree in mathematics or consent of instructor. Topics in advanced geometry related to curriculum at all levels. Required for M.A.T. degree program for prospective teachers. May be repeated for credit with prior consent of instructor.

210B. Topics in Algebra (3) II. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: bachelor's degree in mathematics or consent of instructor. Topics in advanced algebra related to curriculum at all levels. Required for M.A.T. degree program for prospective teachers. May be repeated for credit with prior consent of instructor.

210BL. Topics in Algebra: Discussion (1) I. The Staff
Lecture/discussion—1 hour (to be arranged). Prerequisite: course 210A or consent of instructor. Special topics related to course 210B which are of special interest to teachers and candidates for M.A.T. degree program. May be repeated for credit.

210CL. Topics in Analysis: Discussion (1) I. The Staff
Lecture/discussion—1 hour (to be arranged). Prerequisite: course 210C (concurrently). Consent of instructor. Special topics related to course 210C which are of special interest to teachers and candidates for M.A.T. degree program. May be repeated for credit.

210D. Topics in Analysis (3) III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: bachelor's degree in mathematics or consent of instructor. Topics in advanced analysis related to curriculum at all levels. Required for M.A.T. degree program for prospective teachers. May be repeated for credit with prior consent of instructor.

210DL. Topics in Analysis: Discussion (1) II. The Staff
Lecture/discussion—1 hour (to be arranged). Prerequisite: course 210CL (concurrently). Consent of instructor. Special topics related to course 210D which are of special interest to teachers and candidates for M.A.T. degree program. May be repeated for credit.

213A-213B. Stochastic Dynamics and Applications (3-3) III-III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 210C or 235C or consent of instructor. Stochastic processes including Gaussian, Markov and stationary processes. Distributions, martingales, stochastic differential equations. Applications and advanced topics. Offered in alternate years.

215A-215B-215C. Topology (4-4-4) I-II-III. The Staff (Chairperson in charge)
Lecture—3 hours; discussion—1 hour or paper (instructor's option). Prerequisite: graduate standing in mathematics or consent of instructor. Topics selected from point-set topology, homotopy theory, and homology theory. Offered in alternate years.

218A-218B. Partial Differential Equations (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 127C. Topics from the theory of partial differential equations and integral equations. Offered in alternate years.

219A-219B. Ordinary Differential Equations (3-3) III-III. The Staff
Lecture—3 hours. Prerequisite: courses 22A, 127C. Ordinary differential equations in the real and complex domains. Existence and uniqueness theorems; linear systems; analysis of singular points; Sturm-Liouville theory; asymptotic expansions. Offered in alternate years.

221A-221B. Mathematical Fluid Dynamics (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: course 118B. Dynamics of fluid motion, perfect fluids, rotational and irrotational motion, two-dimensional and three-dimensional axisymmetric flows, compressible and incompressible viscous fluids. Offered in alternate years.

228A-228B-228C. Numerical Solution of Differential Equations (3-3-3) I-II-III. The Staff

229A-229B. Numerical Methods in Linear Algebra (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: consent of instructor. Computational methods for the solution of linear algebraic equations and matrix eigenvalue problems. Analysis of direct and iterative methods. Special methods for sparse matrices. Offered in alternate years.

235A-235B-235C. Probability Theory (3-3-3) I-II-III. The Staff
Lecture—3 hours. Prerequisite: course 127C and Statistics 131A-131B or the equivalent. Measure theoretic foundations, abstract integrations, modes of convergence, limit theorems, independence, laws of large numbers, characteristic functions, central limit theorem, conditional expectations; topics from discrete time Markov and stationary processes, ergodic theory, Brownian motion, weak convergence, Wiener and Poisson processes. (Same course as Statistics 235A-235B-235C.)

240A-240B-240C. Differential Geometry (3-3-3) I-II-III. The Staff (Chairperson in charge)
Lecture—3 hours. Prerequisite: course 116 or consent of instructor. Introduction to differentiable manifolds, the tangent bundle, tensor fields, differential forms. DeRham cohomology, connections, Lie groups, Riemannian geometry. Offered in alternate years.

250A-250B-250C. Algebra (4-4-4) I-II-III.
The Staff (Chairperson in charge)
Lecture—3 hours; discussion—1 hour or paper (instructor's option). Prerequisite: graduate standing in Mathematics or consent of instructor. Theory of groups, rings, and fields.

257. Topics in Optimization (3) III. The Staff
Lecture—3 hours. Prerequisite: graduate standing. Advanced topics in the theoretical foundations of optimization and its applications to constrained optimization problems existing in engineering design and other applications, optimality conditions, linear programming and unconstrained optimization (gradient, Newton, conjugate directions and minimax algorithms), convergence and rate of convergence, selected topics. Offered in alternate years. (Same course as Electrical and Computer Science Engineering 257.)

258A. Optimization I (3) I. The Staff
Lecture—3 hours. Prerequisite: knowledge of FORTRAN or C. Modeling optimization problems existing in engineering design and other applications, optimality conditions, linear programming and unconstrained optimization (gradient, Newton, conjugate directions and minimax algorithms), convergence and rate of convergence, selected topics. Offered in alternate years. (Same course as Electrical and Computer Science Engineering 258A.)

258B. Optimization II (3) III. The Staff
Lecture—3 hours. Prerequisite: course 258A. Modelling constrained optimization problems existing in engineering design and other applications, optimality conditions, linear and nonlinearly constrained optimization problems, projection, feasible directions and reduced gradient algorithms, interior point methods, Lagrangian theory, duality, augmented Lagrangians, sequential quadratic programming, selected topics. Offered in alternate years. (Same course as Electrical and Computer Science Engineering 258B.)

259. Optimal Control, Theory and Algorithms (3) I. The Staff
Lecture—3 hours. Prerequisite: graduate standing. Optimal control and calculus of variations; existence of solutions to optimal control problem; necessary conditions of optimality, Pontryagin maximum principle, Euler equation; sufficient conditions of optimality. Hamilton-Jacobi-Bellman equation, linear quadratic regulator problem; algorithms for unconstrained and constrained optimal control problems. Offered in alternate years. (Same course as Electrical and Computer Engineering 259.)

261A-261B. Lie Groups and Their Representation (3-3) I-II. The Staff
Lecture—3 hours. Prerequisite: courses 215A, 240A, 250A-250B. Mathematical theory of Lie groups and Lie algebras, including the classification of semi-simple Lie groups. Representations of Lie groups, weights and characters, the Weil character formulas. Infinite-dimensional Lie groups, Kac-Moody algebras and the Virasoro algebra. Offered in alternate years.

Course not offered this academic year.
280. Topics in Pure and Applied Mathematics (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: graduate standing. Special topics in various fields of pure and applied mathematics. Topics selected based on the mutual interests of students and faculty. May be repeated for credit in different subject area.

290. Seminar (1-6) I, II, III. The Staff (Chairperson in charge)
Advanced study in various fields of mathematics, including the following: algebraic theory of semi-groups, control theory, mathematical logic, mathematical statistics, ordinary differential equations, partial differential equations, theory of distributions, and univalent functions. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

290D. Dissertation Research (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

Professional Course

390. Methods of Teaching Mathematics (3) I, II, III. The Staff
Lecture—1 hour; discussion—1 hour; laboratory—2 hours. Prerequisite: graduate standing. Practical experience in methods and problems of the teaching of mathematics at the university level. Includes discussion of lecturing techniques, analysis of tests and supporting material, preparation and grading of examinations, and related topics. Required of departmental teaching assistants. May be repeated for credit. (S/U grading only.)

Medical Microbiology
See Medicine, School of

Medical Pharmacology and Toxicology
See Medicine, School of

Medical, School of

Gerald S. Lazarus, M.D., Dean of the School
James J. Castles, M.D., Executive Associate Dean
Fitz-Roy Curry, Ph.D., Associate Dean
Ann Shih, Ph.D., Associate Dean
Ernest L. Lewis, M.D., Associate Dean
Frank J. Loge, M.B.A., Associate Dean
Brian O'Neill, M.D., Assistant Dean
Elizabeth Russell, M.S.N., M.B.A., Associate Dean
Margaret S. Steward, Ph.D., Associate Dean
Donal A. Walsh, Ph.D., Associate Dean
Dean's Office, Medical Sciences 1C (916-752-0331)

Faculty
Deborah S. Ablin, M.D., Associate Professor (Radiology)
Mark Auge, M.D., Assistant Professor (Neurology)
Timothy Albertson, M.D., Ph.D., Professor (Internal Medicine, Pharmacology)
Robbie Allen, M.D., Associate Professor (Internal Medicine)
David Amaral, Ph.D., Professor (Psychiatry)
Eugene Amparo, M.D., Associate Professor (Radiology)
Ezra A. Armstrong, M.D., Professor (Internal Medicine)
Thomas Andrews, M.D., Professor (Psychiatry)
Mark Anderson, M.D., Assistant Professor (Diagnostic Radiology)
Joseph Antognini, M.D., Assistant Professor (Anesthesiology)
Thomas Aoki, M.D., Professor (Internal Medicine)
Suzanne Aquino, M.D., Assistant Professor (Radiology)
Horacio Aisum, M.D., Assistant Professor (Surgery)
Catherine Babcock, M.D., Assistant Professor (Radiology)
Huong Bach, M.D., Assistant Clinical Professor (Internal Medicine)
Peter Barglow, M.D., Professor (Psychiatry)
Peter Barry, Ph.D., Assistant Adjunct Professor (Pathology)
Sue Barton, F.R.C.P., Assistant Clinical Professor (Family Practice)
Felix Battistella, M.D., Assistant Professor (Surgery)
Brian Bay, Ph.D., Assistant Adjunct Professor (Orthopaedic Surgery)
Kathleen Baynes, Ph.D., Assistant Professor (Neurology)
Blaine L. Beanam, Ph.D., Professor (Medical Microbiology and Immunology)
Carol Beatty, M.D., Assistant Professor (Radiology)
James J. Beaumont, Ph.D., Associate Professor (Community and International Health)
Dennis J. Beckley, M.D., Associate Professor (Neurology)
Mahmoud Benbarka, M.D., Associate Professor (Internal Medicine)
John R. Benfield, M.D., Professor (Surgery)
Daniel R. Benson, M.D., Professor (Orthopaedic Surgery)
Ramón Berguer, M.D., Assistant Professor (Surgery)
Herbert Berkoff, M.D., Professor (Surgery)
Klea D. Bertakis, M.D., Professor (Family Practice)
William Birdsong, M.D., Associate Clinical Professor (Obstetrics and Gynecology)
F. William Blaisdell, M.D., Professor (Surgery), Academic Senate Distinguished Teaching Award
Nina Boe, M.D., Assistant Professor (Obstetrics and Gynecology)
James E. Boggan, M.D., Professor (Neurological Surgery)
Hugo G. Bogren, M.D., Professor (Radiology, Internal Medicine)
William J. Bommer, M.D., Professor (Internal Medicine)
H. William Bonek, M.D., Associate Clinical Professor (Internal Medicine)
Ann Bonham, Ph.D., Associate Professor (Internal Medicine, Pharmacology)
John Boone, Ph.D., Associate Professor (Diagnostic Radiology)
Barbara Botelho, M.D., Assistant Professor (Pediatrics)
Constance Bowes, M.D., Associate Professor (Neurology)
Stephen Boyers, M.D., Professor (Obstetrics and Gynecology)
E. Morton Bradbury, Ph.D., Professor (Biological Chemistry)
James Brandt, M.D., Associate Professor (Ophthalmology)
William Brant, M.D., Associate Professor (Diagnostic Radiology)
Eileen Breslin, R.N., D.N.S.C., Associate Adjunct Professor (Internal Medicine)
Hilary Brodie, M.D., Ph.D., Assistant Professor (Otolaryngology)
Tomas Brolfeldt, M.D., Assistant Professor (Internal Medicine, Surgery)

Cherrie Brown, Ph.D., Assistant Adjunct Professor (Obstetrics and Gynecology)
Michael Buonocore, M.D., Ph.D., Associate Professor (Radiology)
Margaret S. Burns, Ph.D., Adjunct Professor (Ophthalmology)
Peter M. Calia, Ph.D., Professor (Human Physiology)
Edward J. Callahan, Ph.D., Professor (Family Practice)
Rodney Camp, M.D., Assistant Clinical Professor (Internal Medicine)
Robert D. Cardiff, M.D., Ph.D., Professor (Pathology), Academic Senate Distinguished Teaching Award
Richard C. Carlsen, Ph.D., Professor (Human Physiology)
James R. Carlson, Ph.D., Associate Professor (Pathology, Internal Medicine)
James J. Castles, Jr., M.D., Professor (Internal Medicine)
R. Jeffrey Chang, M.D., Professor (Obstetrics and Gynecology)
Michael W. Chapman, M.D., Professor (Orthopaedic Surgery)
Anthony Cheung, Ph.D., Adjunct Professor (Pathology)
Richard A. Chole, M.D., Ph.D., Professor (Otolaryngology)
Brian Chong, M.D., Assistant Professor (Radiology)
Michael Choy, M.D., Associate Professor (Pediatrics)
Ronald Y. Chuang, Ph.D., Professor (Pharmacology)
Terry L. Coates, M.D., Assistant Professor (Radiology)
Kent Cochrum, D.V.M., Associate Adjunct Professor (Surgery)
Stuart H. Cohen, M.D., Associate Professor (Internal Medicine)
Matthew H. Connors, M.D., Associate Professor (Pediatrics)
Martha Corcoran, M.D., Assistant Professor (Otolaryngology)
Michael Costa, M.D., Assistant Professor (Pathology)
Paul Cox, M.D., Assistant Clinical Professor (Psychiatry)
Carroll E. Cross, M.D., Professor (Internal Medicine, Human Physiology)
Fitz-Roy E. Curry, Ph.D., Professor (Human Physiology)
Saty Dandekar, Ph.D., Associate Professor (Internal Medicine)
Robert C. Davidson, M.D., Associate Professor (Family Practice)
Kirsten Day, M.D., Assistant Professor (Family Practice)
Michael De Gregorio, Pharm. D., Associate Professor (Internal Medicine)
Sally J. DeNardo, M.D., Professor (Internal Medicine, Radiology)
Thomas A. Depner, M.D., Professor (Internal Medicine)
Robert W. Derlet, M.D., Associate Professor (Internal Medicine)
Ralph deVere White, M.D., Professor (Urology)
Robert Dirmund, M.D., Assistant Professor (Pediatrics)
Paul J. Donald, M.D., Professor (Otolaryngology)
Nina Dronkers, Ph.D., Assistant Adjunct Professor (Neurology)
Arthur Dublin, M.D., Associate Clinical Professor (Radiology)
Jonathan Ducore, M.D., Associate Professor (Pediatrics)
Andrew Duxbury, M.D., Assistant Professor (Internal Medicine)
Martin Edelman, M.D., Assistant Professor (Internal Medicine)
Robert Efron, M.D., Professor (Neurology)
Marlowe Eldridge, M.D., Assistant Professor (Pediatrics)
William G. Ellis, M.D., Professor (Pathology, Neurology)
Kent L. Erickson, Ph.D., Professor (Human Anatomy)
Robert Fairclough, Ph.D., Associate Professor (Neurology)
Irwin Feinberg, M.D., Professor (Psychiatry)
Robert Fendrich, Ph.D., Assistant Adjunct Professor (Neurology)
Linda Ferris, M.D., Assistant Professor (Orthopaedic Surgery)
Nancy Field, M.D., Assistant Professor (Obstetrics and Gynecology)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wr = Writing Experience.
Robin L. Hansen, M.D., Associate Professor (Pediatrics)
Rita Hargrave, Assistant Professor (Psychiatry)
Jay Harness, M.D., Professor (Surgery)
Emily Harris, M.D., Assistant Professor (Psychiatry)
Tony Harris, M.D., Associate Clinical Professor (Obstetrics and Gynecology)
Stephen T. Hecht, M.D., Associate Professor (Radiology, Neurological Surgery)
James Hecker, M.D., Assistant Professor (Anesthesiology)
Herman Hedrana, M.D., Assistant Professor (Obstetrics and Gynecology)
Gary L. Hendricks, Ph.D., Professor (Pharmacology)
Vernon Henderson, M.D., Assistant Professor (Surgery)
Andrew G. Hendricks, Ph.D., Professor (Human Anatomy)
John W. B. Hershey, Ph.D., Professor (Biological Chemistry)
Donald Hilfey, Assistant Clinical Professor (Psychiatry, Clinical Research, Internal Medicine)
Elisa Hirvela, M.D., Assistant Professor (Surgery)
Leonard Hjelmeland, Ph.D., Professor (Ophthalmology)
Hung Ho, M.D., Assistant Professor (Surgery)
James W. Holcroft, M.D., Professor (Surgery)
Michael J. Holland, Ph.D., Professor (Biological Chemistry)
Manfred A. Hollinger, Ph.D., Professor (Radiology)
B. Zane Horowitz, M.D., Associate Clinical Professor (Neurosurgery, Internal Medicine)
Roady S. Jaffe, M.D., Associate Professor (Anesthesiology)
William J. Jagust, M.D., Associate Professor (Neurology)
Kiran Jain, M.D., Assistant Professor (Radiology)
Hanne M. Jensen, M.D., Associate Professor (Pathology)
Rolf R. Issacoff, M.D., Professor (Neurology)
Mariana Ivanovic, Ph.D., Assistant Professor (Radiology)
Lawrence Laskett, M.D., Assistant Professor (Neurology, Pediatrics)
Jerald A. Last, Ph.D., Professor (Internal Medicine, Biological Chemistry)
Derick Lau, M.D., Assistant Professor (Internal Medicine)
Ruth Lawrence, M.D., Professor (Internal Medicine)
Gerald Lazarus, M.D., Professor (Dermatology, Neurology, Neurological Surgery)
Martin H. Leamon, M.D., Assistant Professor (Neurology)
Eun-Kyu Lee, M.D., Assistant Professor (Neurology)
John G. Lee, M.D., Assistant Clinical Professor (Neurology, Internal Medicine)
James C. Leek, M.D., Associate Professor (Internal Medicine)
Bryan Leigh, M.D., Assistant Professor (Radiology, Internal Medicine)
Gary Leiserowitz, M.D., Assistant Professor (Otolaryngology, Otolaryngology, Pediatrics)
William Lewis, M.D., Associate Professor (Internal Medicine, Pathology)
Robert A. Linse, M.D., Associate Professor (Pathology)
Karen K. Lindfors, M.D., Associate Professor (Radiology)
Daniel P. Link, M.D., Professor (Radiology)
Robert G. Loeb, M.D., Associate Professor (Anesthesiology)
Erich Loewy, M.D., Professor (Internal Medicine)
William W. Long, M.D., Professor (Internal Medicine)
Bo Lönnroth, Ph.D., Professor (Internal Medicine)
Samuel Louie, M.D., Associate Professor (Internal Medicine)
Roger Low, M.D., Associate Professor (Urology, Obstetrics and Gynecology)
Paul A. Luciw, Ph.D., Associate Professor (Pathology)
Peter Lynch, M.D., Professor (Surgery, Urology)
Stephen Maceras, M.D., Associate Professor (Anesthesiology)
Richard J. Maddock, M.D., Associate Professor (Psychiatry, Obstetrics and Gynecology)
Sudesh Makker, M.D., Professor (Pediatrics)
Robert Malone, M.D., Assistant Adjunct Professor (Pathology)
Mark J. Mannis, M.D., Professor (Ophthalmology)
Richard A. Mader, M.D., Associate Professor (Orthopaedic Surgery)
Gregory Marelich, M.D., Assistant Clinical Professor (Internal Medicine)
Lawrence Margolis, M.D., Clinical Professor (Radiology, Oncology)
Robert C. Marshall, M.D., Associate Professor (Internal Medicine)
Robert Bruce Martin, Ph.D., Professor (Orthopaedic Surgery)
Ricardo Maselli, M.D., Associate Professor (Neurology)
Hans Matthews, Ph.D., Professor (Biological Chemistry)
Joseph G. Matthews, II, M.D., Associate Professor (Orthopaedic Surgery)
Michael McDermott, M.D., Assistant Adjunct Professor (Pathology)
Stephen A. McCurdy, M.D., Assistant Clinical Professor (Family Practice)
Russell McFall, M.D., Assistant Clinical Professor (Physical Medicine and Rehabilitation)
Ruth McDonal<l>, M.D., Associate Professor (Pediatrics)
Russell McFall, M.D., Assistant Clinical Professor (Radiology)
John McGahan, M.D., Professor (Radiology)
Michael D. McMunn, M.D., Assistant Adjunct Professor (Otolaryngology)
Robert McLain, M.D., Associate Professor (Orthopaedic Surgery)
Kerry McMahon, M.D., Assistant Clinical Professor (Internal Medicine)
Stanley Meisel, Ph.D., Professor (Cell Biology and Human Anatomy)
Norman Meinkoff, M.D., Assistant Clinical Professor (Family Practice)
Joy Melnikow, M.D., M.P.H., Assistant Professor (Pediatrics)
Ages T. Melton, M.D., O.D., Assistant Professor (Anesthesiology)
Janet Mentink, R.N., Lecturer (Family Practice)
Cynthia Merisko, M.D., Assistant Adjunct Professor (Internal Medicine)
Thurman A. Merritt, M.D., Professor (Pediatrics)
Frederick J. Meyers, M.D., Professor (Internal Medicine, Pathology)
Stanley Meyer, M.D., Clinical Professor (Radiation Oncology)
Ciaran MacHale, Ph.D., Professor (Clinical Pathology, Internal Medicine)
Jay M. Milstein, M.D., Professor (Pediatrics)
Marlene Mirasou, M.D., Associate Clinical Professor (Pediatrics)
Annie E. Missavage, M.D., Associate Professor (Surgery)
H. David Moehring, M.D., Associate Professor (Orthopaedic Surgery, Internal Medicine)
Elizabeth Moore, Associate Professor (Radiology)
Peter Moore, M.B.B.S., Professor (Anesthesiology)
Walter Morgan, M.D., Associate Professor (Clinical Family Practice)
David Morris, Ph.D., Assistant Adjunct Professor (Pathology)
James Morrison, Ph.D., Professor (Psychiatry)
Thomas L. Morrison, M.D., Professor (Psychiatry)
Lawrence Morse, M.D., Associate Professor (Ophthalmology)
Dan Murgas, Ph.D., Assistant Adjunct Professor (Community and International Health)
Susan Murin, M.D., Assistant Professor (Internal Medicine)
Jerome Murphy, M.D., Associate Professor (Pediatrics)
Stanley Naguwa, M.D., Associate Clinical Professor (Internal Medicine)
Tsutomu Nakada, M.D., Professor (Neurology)
Steven T. Nakajima, M.D., Assistant Professor (Obstetrics and Gynecology)
Vishwaj Narayana, M.D., Assistant Professor (Dermatology)
William Nemzek, M.D., Assistant Professor (Radiology)
Thomas Nesto, M.D., Associate Professor (Family Practice)
Denyse Nishio, M.D., Assistant Clinical Professor (Internal Medicine)
Thomas E. Nofal, M.D., Ph.D., Associate Professor (Psychiatry)
Robert H. Noth, M.D., Associate Professor (Internal Medicine)
James Nuvol, M.D., Assistant Professor (Family Practice)
Martha O'Donnell, Ph.D., Associate Professor (Human Physiology)
Robert O'Donnell, M.D., Ph.D., Assistant Professor (Internal Medicine)
Steven Olson, M.D., Assistant Professor (Orthopaedic Surgery)
Francesca Orrelli, M.D., Assistant Professor (Internal Medicine)
Claude Organ, M.D., Professor (Surgery)
James W. Överney, M.D., Ph.D., Professor (Human Anatomy, Obstetrics and Gynecology)
John Owings, M.D., Assistant Professor (Surgery)
Michael Paichak, M.D., Assistant Clinical Professor (Internal Medicine)
Gary Palmer, M.D., Assistant Clinical Professor (Internal Medicine)
John M. Palmer, M.D., Professor (Urology)
Edward Panacek, M.D., Associate Professor (Internal Medicine)
Daching Pang, M.D., Professor (Neurological Surgery)
Dennioshen Pathansinghe, M.D., Ph.D., Professor (Medical Microbiology and Immunology)
Jeanne Park, M.D., Assistant Professor (Pediatrics)
Mark Parrish, M.D., Associate Professor (Pediatrics)
Giliya H. Parsons, M.D., Professor (Internal Medicine)
John Payne, Ph.D., Assistant Professor (Human Physiology)
David Pearson, M.D., Assistant Adjunct Professor (Surgery)
Richard Perez, M.D., Assistant Professor (Surgery)
William Pevec, M.D., Assistant Professor (Surgery)
Steven Phillips, M.D., Assistant Professor (Neurology)
Theodore Phillips, M.D., Professor (Surgery)
Stephen D. Pollock, M.D., Ph.D., Professor (Internal Medicine)
Neville R. Pristone, M.D., Professor (Internal Medicine)
George T. Rab, M.D., Professor (Orthopaedic Surgery)
Robert Rafal, M.D., Professor (Neurology)
Ravichandran Ramasamy, Ph.D., Assistant Adjunct Professor (Orthopaedic Surgery)
Vijay Rathore, M.D., Assistant Clinical Professor (Internal Medicine)
Bruce Reed, Ph.D., Assistant Adjunct Professor (Neurology)
Stanley B. Reich, M.D., Professor (Radiology)
Debra Reilly, M.D., Assistant Professor (Surgery)
John A. Reitan, M.D., Professor (Anesthesiology)
Michael P. Remler, M.D., Professor (Neurology)
Tressa Reynolds, M.D., Assistant Clinical Professor (Internal Medicine)
Gary Rhodes, Ph.D., Assistant Adjunct Professor (Pathology)
Steven Richeimer, M.D., Assistant Professor (Anesthesiology)
Carol Richman, M.D., Associate Professor (Internal Medicine)
David P. Richman, M.D., Professor (Neurology)
Mary Roperon, M.D., Assistant Professor (Surgery)
Dick L. Robbins, M.D., Professor (Internal Medicine)
John A. Robbins, M.D., Professor (Internal Medicine)
Gary Roberts, M.D., Assistant Clinical Professor (Internal Medicine)
Lynn Robertson, Ph.D., Associate Adjunct Professor (Neurology)
Juan C. Rodriguez, M.D., Professor (Orthopaedic Surgery)
Patrick Romano, M.D., Assistant Professor (Internal Medicine)
John Rose, M.D., Assistant Professor (Internal Medicine)
Carl J. Rosenquist, M.D., Professor (Radiology)
Frederick Royce, M.D., Assistant Professor (Pediatrics)
Christine Rozance, M.D., Associate Professor (Community and International Health)
Robert B. Rucker, Ph.D., Professor (Biological Sciences)
Douglas Rudell, M.D., Assistant Clinical Professor (Internal Medicine)
Michael Russell, M.D., Assistant Professor (Anesthesiology)
John Rutledge, M.D., Associate Professor (Internal Medicine)
Janice Ryu, M.D., Assistant Professor (Radiation Oncology)
Amira Safwat, M.B.B.C.A., Professor (Anesthesiology)
John Sakles, M.D., Assistant Clinical Professor (Internal Medicine)
Steven J. Samuels, Ph.D., Associate Adjunct Professor (Community and International Health, Obstetrics and Gynecology)
Earl T. Sawai, Ph.D., Assistant Adjunct Professor (Pathology)
Saul Schaefer, M.D., Associate Professor (Internal Medicine)
Marc B. Schenker, M.D., Professor (Community and International Health)
Barbara Schneeman, Ph.D., Professor (Internal Medicine)
Ivan Schwab, M.D., Professor (Ophthalmology)
Robert J. Schild, M.D., Associate Professor (Medical Microbiology and Immunology)
Sidney A. Scudder, M.D., Associate Professor (Radiology)
Leigh Segel, Ph.D., Professor (Surgery)
James A. Seibert, Ph.D., Associate Professor (Radiology)
Craig W. Senders, M.D., Associate Professor (Otolaryngology)
Mark Servis, M.D., Assistant Professor (Psychiatry)
Masud Seryal, M.B.B.S., Associate Professor (Neurology)
Neil Sharkey, Ph.D., Assistant Professor (Orthopedic Surgery)
David Sheldon, M.D., Associate Professor (Diagnostic Radiology)
Allan D. Siekman, M.D., Professor (Internal Medicine)
Karen A. Sigvardt, Ph.D., Associate Adjunct Professor (Neurology)
Joseph Silva, M.D., Professor (Internal Medicine)
Rakesh Sindhi, M.D., Assistant Professor (Surgery, Obstetrics and Gynecology)
Lloyd Smith, M.D., Associate Professor (Obstetrics and Gynecology)
J. Stuart Soeldner, M.D., Professor (Internal Medicine)
Peter Sokolove, M.D., Assistant Clinical Professor (Internal Medicine)
Jay Solnick, M.D., Professor (Internal Medicine)
Robert C. Stadilnik, M.D., Professor (Radiology)
Larry G. Stark, Ph.D., Professor (Pharmacology)
Charles L. Stebbins, Ph.D., Associate Professor (Internal Medicine, Human Physiology)
Moni Stein, M.D., Assistant Professor (Radiology)
David Steinberg, M.D., Assistant Professor (Orthopaedic Surgery)
Judith Stern, Ph.D., Professor (Internal Medicine)
Robin Stern, Ph.D., Assistant Professor (Radiation Oncology)
Frazier Stevenson, M.D., Assistant Professor (Internal Medicine)
Thomas Stevenson, M.D., Professor (Surgery)
Dennis Stewart, Ph.D., Associate Adjunct Professor (Obstetrics and Gynecology)
Anthony R. Stinnett, M.D., Associate Professor (Neurology)
Dennis Synne, M.D., Professor (Pediatrics)
Amir Sweha, M.D., Assistant Clinical Professor (Internal Medicine)
Diane Swick, Ph.D., Associate Adjunct Professor (Neurology)
Artur Swistock, M.D., Associate Professor (Internal Medicine)
Jonathan Sykes, M.D., Assistant Professor (Otolaryngology)
Curriculum for the School of Medicine

The curriculum for the M.D. degree at the University of California, Davis School of Medicine is a four-year program to provide comprehensive training for the practice of medicine. It offers a blend of basic science training and clinical experience with opportunities for research. While the first two years emphasize the basic science basis of medicine, the student is exposed even from the question of patient management, thus providing a natural transition from the entry pregraduate training into the clinical training of the final two years.

The first-year program is for three quarters, beginning in the fall. The basic sciences (anatomy, physiology, biochemistry, histology, endocrinology, neuroscience, immunology, general pathology) are blended with social sciences (the behavioral aspects of medicine), and students are introduced to the art of communicating with patients, and emergency medicine.

The second-year program is for four quarters, but with the Summer Quarter abbreviated to six weeks. The Summer Quarter provides a transition between basic and clinical sciences with the presentation of systematic pathology, and courses on the intergenerational system and reproductive system. In the remaining three quarters, the student completes the core training in basic sciences (pharmacology, microbiology) and are then, from an organ system approach, presented the pathophysiological basis of disease (endocrine, hematopoietic/lymphoreticular, gastrointestinal, nutrition, musculoskeletal, neuromuscular, respiratory, nephrology). During the second year, students continue training in physical diagnosis and are presented with issues in community health, occupational medicine, psychopathology, and human sexuality.

The third-year program is comprised of required clerkship rotations in the clinical specialties: eight weeks each of surgery, medicine, obstetrics/gynecology, pediatrics, primary care plus four weeks family practice, one week each ophthalmology, otorhinolaryngology, orthopedics, and urology. Either obstetrics/gynecology or psychiatry may be deferred until the fourth year.

The fourth year features built-in flexibility to allow students to begin to individualize their medical careers. All students are required to take two weeks of physical medicine and rehabilitation, two weeks of neurology, four weeks of emergency care and 22 weeks of clinical electives. A two-week course on responsibilities of medical practice (medical ethics, jurisprudence and medical economics) is also required. The fourth-year curriculum also provides 12 weeks of undesignated time.

Course not offered this academic year.
The curriculum for the M.D. degree provides flexibility and encourages coordination with other advanced degree programs (Ph.D., M.S., M.A., and M.P.H.). These programs offer a wide breadth of study areas and draw upon the considerable expertise of the entire campus faculty. In addition, the UC Berkeley School of Public Health offers an M.P.H. program in conjunction with the M.D. program.

School of Medicine administrators enthusiastically support students interested in pursuing advanced degree programs. The dual-degree program for the M.D./Ph.D. is targeted to train physicians to meet, respond to and solve the broad diversity of problems and dilemmas facing current and future health care. Students seeking to seek degrees in any of the campuswide Ph.D. programs, including those in social sciences and humanities. The UC Davis School of Medicine awards two competitive fellowships each year to students enrolled in the M.D./Ph.D. program.

Required Curriculum for the M.D. Degree

The following listing is the typical sequencing of all courses required for earning the M.D. degree. Course descriptions are given under the individual departmental course offerings.

First-Year Required Courses

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Internal Medicine 420, Pathogenesis and Human Pathology</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Internal Medicine 420A, Hematopoietic and Lymphoreticular System</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Internal Medicine 420B, Neurological System</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Internal Medicine 420C, Respiratory System</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Internal Medicine 420D, Cardiovascular System</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Neurology 420, Clinical Neurosciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Psychiatry 402, Human Sexuality</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Psychiatry 403, Psychopathology</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Psychiatry 404, Human Sexuality</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Internal Medicine 400C, Physical Diagnosis</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Third and Fourth Year Required Courses

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clerkships</td>
<td>Internal Medicine 430, Medicine Clerkship</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Surgery 430, Surgery Clerkship</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Pediatrics 430, Pediatrics Clerkship</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Internal Medicine 430, Primary Care Plus Clerkship</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Obstetrics and Gynecology 430, Obstetrics and Gynecology Clerkship</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Psychiatry 430, Psychiatry Clerkship</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Internal Medicine 440, Rehabilitation Medicine Clerkship</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Physical Medicine and Rehabilitation 440, Medical Rehabilitation Clerkship</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Emergency Medicine 440, Emergency Medicine Clerkship</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Clerkships</td>
<td>Clinical Electives</td>
<td>22 weeks</td>
</tr>
</tbody>
</table>

Fourth Year Requirements

- Physical Medicine and Rehabilitation 440, Medical Rehabilitation Clerkship: 2 weeks
- Physical Medicine and Rehabilitation 440, Rehabilitation Medicine Clerkship: 2 weeks
- Emergency Medicine 440, Emergency Medicine Clerkship: 4 weeks
- Clinical Electives: 22 weeks

The fourth year curriculum also allows for twelve weeks of undesignated time (electives, interviews, etc.) and draws upon the considerable expertise of the entire campus faculty. In addition, the UC Berkeley School of Public Health offers an M.P.H. program in conjunction with the M.D. program.

The curriculum for the M.D. degree provides flexibility and encourages coordination with other advanced degree programs (Ph.D., M.S., M.A., and M.P.H.). These programs offer a wide breadth of study areas and draw upon the considerable expertise of the entire campus faculty. In addition, the UC Berkeley School of Public Health offers an M.P.H. program in conjunction with the M.D. program.

School of Medicine administrators enthusiastically support students interested in pursuing advanced degree programs. The dual-degree program for the M.D./Ph.D. is targeted to train physicians to meet, respond to and solve the broad diversity of problems and dilemmas facing current and future health care. Students seeking to seek degrees in any of the campuswide Ph.D. programs, including those in social sciences and humanities. The UC Davis School of Medicine awards two competitive fellowships each year to students enrolled in the M.D./Ph.D. program.

Required Curriculum for the M.D. Degree

The following listing is the typical sequencing of all courses required for earning the M.D. degree. Course descriptions are given under the individual departmental course offerings.

First-Year Required Courses

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Biological Chemistry 410A, Molecular and Cell Biology</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Family Practice 400A, Introduction to Patient Evaluation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cell Biology and Human Anatomy 400, Developmental, Gross and Radiologic Anatomy</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Psychiatry 401, Medicine and the Mind</td>
<td>2</td>
</tr>
<tr>
<td>Winter</td>
<td>Biological Chemistry 410B, Cell Biology and Metabolism</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Cell Biology and Human Anatomy 402, Human Metabolic System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Human Physiology 400, Human Physiology</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Family Practice 400B, Introduction to Patient Evaluation</td>
<td>2</td>
</tr>
<tr>
<td>Spring</td>
<td>Biological Chemistry/Human Physiology 418, Mammalian Endocrinology and Homeostasis</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Cell Biology and Human Anatomy/Human Physiology 403, Neurobiology</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Medical Microbiology 408A, Medical Immunology</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Pathology 410A, General Systemic Pathology</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Family Practice 400C, Introduction to Patient Evaluation</td>
<td>2</td>
</tr>
</tbody>
</table>

Second-Year Required Courses

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Course Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>Pathology 410B, General Systemic Pathology</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Obstetrics and Gynecology, Human Reproduction</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Dermatology 420, Integumentary System</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Internal Medicine 400A, Physical Diagnosis</td>
<td>1</td>
</tr>
</tbody>
</table>

Medical Sciences (MDS)

Undergraduate Course

192. Medical Education Internship for Advanced Undergraduates (1-12) I, II, III, summer. Walsh Internship: 3-36 hours. Prerequisite: competency with computers. Enrollment dependent on availability of intern positions. Participate in projects related to curriculum development in support of curriculum for M.D. degree. Gain work experience and appreciation for innovative approaches to learning in basic and clinical sciences of medical education. May be repeated for credit for up to 12 units. (P/NP grading only.)

Professional Courses

401. Applications of Computers to Medical Practice (2) I, II, III, IV. Huntley Autostudy—2 hours. Prerequisite: enrollment in medical school. Proficiency in computer applications related to practice of medicine, with emphasis on e-mail, literature searching, file transfer, and hospital information services. Course given on line, at home or in lab; time and place determined by student. (SIU grading only.)

440. Responsibilities of Medical Practice (3) II. Davidson and staff Lecture/discussion—60 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. Students will address nonbiological components of the patient-physician relationship (medical ethics, medical jurisprudence, medical economics, alcoholism and drug abuse, etc.) and critically explore social, ethical and cultural issues arising in medical practice. (SU grading only.)

450. Introduction to UCD Medical Center (1) III. The Staff Seminar—20 hours total. Prerequisite: second-year medical student. Designed to assist medical student in transition from classroom to hospital setting. (SU grading only.)

480. Insights in Clinical Research (1) II. Walsh Lecture—1 hour. Prerequisite: medical students in good standing. Clinical research presented by School of Medicine faculty; overview of pertinent issues, including medical ethics, human subjects protocols, case control methods, etc. (SU grading only.)

489. Directed Studies (9) I, II, III, IV. Lewis Independent study—40 hours weekly. Prerequisite: individual directed studies in extended preparation for National Board Examination, Part I, and/or as required by Promotion Board. Independent studies to review material from Years I and II in the curriculum in preparation for taking USMLE Part I in the fall, and for remediation course work directed by the Promotion Board. Students are expected to spend 8 to 12 hours per day on these studies. Faculty consultation and tutorial available on individual basis. May be repeated for credit. (SU grading only.)

495. Medicine Literature Review (1-9) I, II, III, IV. Walsh Discussion—3-27 hours. Prerequisite: medical student in good academic standing and permission of the Associate Dean of Curricular Affairs. Independent study: topics for selection include, but are not restricted to, medical ethics, economics and jurisprudence, culture and medicine, ethnicity and medicine, gender and medicine, history of medicine, health manpower, and medical education. A prepared paper on the selected topic will be required. (SU grading only.)

499. Research in Medical Education and Curriculum Development (4-9) I, II, III, IV. Walsh Independent study—10-36 hours. Prerequisite: medical student in good standing and competency with computers. Research and development of an independent project related to expanded computer-assisted resources in support of the M.D. curriculum at UC Davis.

Departmental Courses:

Anesthesiology (ANE)

Upper Division Course

192. Internship in Anesthesiology (1-6) I, II, III, IV. The Staff Internship—3 to 18 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in anesthesia and related fields. (P/NP grading only.)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Professional Courses

460. Anesthesiology Clinical Clerkship (3-18) I, II, III, IV. (Hoitz in charge)
Full-time clinical activity (3 full days per unit). Prerequisite: third- and fourth-year medical students. Provides experience in total anesthetic management including application of physiologic and pharmacologic principles to preoperative, operative and postoperative management of patients. Considers choice and management of general and regional anesthesia techniques, resuscitation, artificial ventilation, inhalation and fluid-electrolyte therapy and pain problems. Students electing portions of the course for credit must receive consent of instructor. Limited enrollment.

462. Airway and Mechanical Ventilation (3) I, II. Holz
Clinical activity—full time. Prerequisite: third- and fourth-year medical students. Introduces medical students to endotracheal intubation and airway management. Includes pharmacology of drugs used and basic principles of anesthesiology.

463. Medical and Surgical Pain Management (2) I, II, III, IV. Richermeir
Clinical activity—20 hours; lecture/discussion—1 hour. Prerequisite: medical students in good standing, with consent of instructor. Round mornings with Acute Pain Service (5 half days/week for 2 weeks). Round rounds are interactive and instructional for understanding acute pain and treatment regimes. Chronic Pain Clinic focused on, to observe a wider range of pain conditions and management strategies. (SU grading only)

498. Individual or Group Study (1-5) I, II, III, IV. Richermeir and staff
Discussion—1-5 hours; laboratory—2-10 hours. Prerequisite: consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics.

499. Anesthesiology Research (4-18) I, II, III, IV. George and staff
Laboratory—12-54 hours. Prerequisite: third- or fourth-year medical students, advanced standing undergraduate and veterinary medicine students; or consent of instructor. Problems in clinical and/or laboratory research. (SU grading only for medical students.)

Biological Chemistry (BCM)

Lower Division Course

92. Internship in Biological Chemistry (1-12) I, II, III, IV. The Staff
Internship—3-36 weeks; final report. Prerequisite: consent of instructor. Supervised work experience in biological chemistry and related fields. (P/NP grading only)

Upper Division Courses

131. Introduction to Magnetic Resonance in Biology (2) III. Jue
Lecture—2 hours. Prerequisite: Chemistry 88B or 118B or 128B. Fundamental concepts in magnetic resonance and their application to protein structure determination. Theoretical and experimental methods. Two-dimensional NMR techniques. Offered in alternate years.

192. Internship in Biological Chemistry (1-12) I, II, III, IV. The Staff
Internship—3-36 hours; final report. Prerequisite: upper division standing, approval of project prior to internship by preceptor. Supervised work experience in Biological Chemistry and related fields. (P/NP grading only)

198. Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. For undergraduate students desiring to explore particular topics in depth. Lectures and conferences may be involved. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (P/NP grading only)

Graduate Courses

*209. Prostaglandins/Leukotrienes and Related Lipids (2) II. Ziboh (Dermatology)

214. Molecular Medicine (1) I. Hanley
Discussion—1 hour. Prerequisite: course in biochemistry or the equivalent. Series of lectures on current topics of biochemistry related to medicine. Material covered stresses concepts derived from biochemical research which have some potential clinical relevance. (SU grading only) (Same course as 414.)

217. Molecular Genetics of Fungi (3) II. Holland
Lecture—3 hours. Prerequisite: graduate standing in a biological science; Biochemistry 101B; Genetics 100, 102A; Botany 119; Plant Pathology 130, 215X; Microbiology 215 recommended. Advanced treatment of molecular biology and genetics of filamentous fungi and yeasts, including gene structure, organization and regulation; secretion; control of reproduction; molecular evolution; transformation; and gene manipulation. Offered in alternate years. (Same course as Plant Pathology 215.)

*222. Mechanisms of Translational Control (2) II. Hershey
Lecture—1 hour; discussion—1 hour. Prerequisite: Biochemistry 201C or consent of instructor. Molecular mechanisms of protein synthesis and translational control in eucaryotic cells, with emphasis on mammalian cells and their viruses. An advanced graduate level treatment of topics of current interest, with readings and discussion of primary papers from the literature. Offered in alternate years.

230. Practical NMR Spectroscopy and Imaging (1) I. The Staff
Lecture—1 hour. Prerequisite: Chemistry 107A-107B, Physics 5A-5B-SC or 9A-9B-SC, or consent of instructor. Basic theory, experimental methods, and instrumentation of NMR. Enables students to understand NMR spectroscopy and imaging experiments. (SU grading only)

*231. Biological Nuclear Magnetic Resonance (3) III. Jue
Lecture—3 hours. Prerequisite: Molecular and Cellular Biology 230 or the equivalent or consent of instructor. Principles and applications of magnetic resonance in biomedicine. Fundamental concepts and the biophysical basis for magnetic resonance applications in areas of tissue characterization, imagining, metabolic regulation, and cellular bioenergetics. Offered in alternate years.

298. Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be involved.

299. Research (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only)

Professional Courses

410A. Molecular and Cell Biology (4.5) I. Matthews, Holland
Lecture—6 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Basic biochemistry of proteins and nucleic acids is presented, followed by molecular genetics, regulation of gene expression, enzymes and structural proteins. Applications to clinical problems are emphasized, particularly sickle cell disease, alkaptonuria, immuno-globulins and monoclonal antibodies, oncogenes, cell proliferation.

410B. Cell Biology and Metabolism (3.5) I. Jue
Lecture—4 hours (for 9 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. Introduction to transport of small molecules and ions across membranes is followed by study of energy metabolism and biosynthetic processes in humans. Membrane receptors are considered as they relate to basic metabolic processes. Correlations to human disease are made throughout.

414. Molecular Medicine (1) I. Hanley
Discussion—1 hour. Prerequisite: course in biochemistry or the equivalent. Series of lectures on current topics of biochemistry related to medicine. Material covered stresses concepts derived from biochemical research which have some potential clinical relevance, and are intended to be of interest to medical students. (SU grading only) (Same course as 217.)

418. Mammalian Endocrinology and Homeostasis (4.5) III. Walsh and staff
Lecture—4 hours; discussion—1 hour; student presentation. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiological and biochemical properties of the mammalian endocrine system at both the cellular and systemic level. Principles that regulate homeostasis, especially in organ-organ interrelationships, metabolites, and minerals. Reproductive endocrinology. (Same course as Human Physiology 418.)

419. Introduction to Clinical Nutrition (3) III. Phinney (Internal Medicine, Clinical Nutrition and Metabolism), Rucker, and staff
Lecture—5 hours; lecture/discussion—1.5 hours; laboratory/discussion—0.5 hour (for 4 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. A 28-hour course that integrates basic and clinical concepts of human nutrition. The course emphasizes nutrient homeostasis and regulation and current perspectives on the role of nutrition in disease. Format is partly lectures, partly discussion/case study. (Same course as Internal Medicine 419.)

497T. Tutoring in Biological Chemistry (1-5) I, II, III, IV. The Staff
Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only)

498. Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: medical students with consent of instructor. (SU grading only)

499. Research (1-12) I, II, III, IV. The Staff
Prerequisite: medical students with consent of instructor. (SU grading only)

Cell Biology and Human Anatomy (CHA)

Upper Division Courses

101. The Gross and Microscopic Structure of the Human Body (4) II. Gross
Lecture—4 hours. Prerequisite: Biological Sciences 1A or 10; Physiology 2-2L or Biological Sciences 1B recommended. A study of the gross and microscopic structure of the human body with emphasis on function. GE credit: SciEng.

101L. The Gross and Microscopic Structure of the Human Body (2) II. Laboratory—6 hours. Prerequisite: course 101 (may be taken concurrently). Laboratory will be taught from projections, models and slides to give students the opportunity to learn structure from direct experience. GE credit with concurrent enrollment in 101. Win.

192. Internship in Morphology (1-12) I, II, III, IV. The Staff
Internship—3-36 hours; final report. Prerequisite: upper division standing; laboratory science experience including some chemistry; approval of project prior to internship by preceptor. Experience of supervised internship in research laboratories of members of the department. (P/NP grading only)

197T. Tutoring in Cell Biology and Human Anatomy (1-5) I. The Staff
Discussion—1 hour; laboratory—6-9 hours. Prerequisite: completion of course 101 with a grade of B or
better and consent of instructor. Provides laboratory instruction in gross and microscopic human anatomy, with small groups of undergraduates under the supervision of the instructor. (SU grading only.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Discussion—1-10 hours. Prerequisite: consent of instructor. Directed group discussion, and/or laboratory experience on selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Gross Anatomy (8) I. Erickson Lecture—3.5 hours, discussion—1 hour, laboratory—10.5 hours. Prerequisite: graduate student status and consent of instructor. To provide students with a vocabulary of human body structure and to acquaint them with structural relationships through dissection and lecture and to introduce them to functional aspects of gross anatomy, particularly as regards anatomical problem solving.

202. Human Microscopic Anatomy (5) II. Fitzgerald Lecture—3 hours; laboratory—6 hours. Examines the normal microscopic anatomy of the central nervous system; motor and sensory pathways; neurophysiology, and cognitive functions.

230. Biology of Neuroglia (6) III. Kumari Lecture—5 hours, laboratory—3 hours. Prerequisite: consent of instructor. Gross and microscopic anatomy of the central nervous system; motor and sensory pathways; neurophysiology, and cognitive functions.

298. Study in Community and International Health (1-5) I, II, III, IV. The Staff Internship—3-36 hours. Prerequisite: student will work with faculty member in areas of research interest, including but not limited to injury control, international health, health policy, occupational and environmental health, health promotion and wellness, women's health, and health demographics. (P/NP grading only.)

Professional Courses

421. Principles of Epidemiology, Occupational Medicine, and Geriatrics (2.5) I. McCurdy Lecture—7.5 hours for 4 weeks; discussion—1.5 hour. Prerequisite: approval by Committee on Student Evaluation and Promotion. Fundamentals of epidemiology and clinical study design, including measures of morbidity, mortality, and risk. Occupational medicine component covers the evaluation of occupational illnesses, and specific examples of occupational diseases. Geriatrics component covers the comprehensive geriatric assessment, treatment issues, and the long-term care system.

455. Multidisciplinary Clinical Preceptorship (4.5) I. The Staff Clinical activity—full time (3 weeks). Prerequisite: second-year student in good academic standing. Students will be introduced to the principal roles of geriatric health care and provided with opportunities for clinical observation and experience in a variety of facilities that serve older adults. Multidisciplinary nature of geriatrics will be emphasized. (SU grading only)

460. Geriatrics in Community Health (6-12) I, II, III, IV. Rozance/Gilmer Discussion—4 hours; clinical activity—full time (4-8 weeks) clinical setting and community needs assessment. Prerequisite: fourth-year medical student. Opportunity to participate in state-of-the-art geriatric programs ranging from well elderly to severely infirm.

461. Clerkship in Community Health Practice (3-9) I, II, III, IV. The Staff Clinical activity—full time (2-6 weeks). Prerequisite: third- or fourth-year medical students. Overview of
local community health in group practice situations. Students participate in treatment at several clinic sites in Yolo County. Topics include primary care, environ-
mental health, maternal and child health, and preventive health care for the aged. (SU grading only.)

465. Community Health Preceptorship (3-18) I, II, III, IV. The Staff Clinical activity—full-time (2-12 weeks). Prerequisite: fourth-year medical student. Students participate at the California Department of Health Services in ongo-
ing investigations into public health problems, e.g., birth defects, cancer control, diabetes, hypertension, injury control, infectious diseases, aging, Alzheimer’s disease, and smoking and tobacco use control.

466. Occupational and Environmental Medicine Elective (6-12) I, II, III, IV. Schenker Clinical and laboratory experience—full time (4 to 8 weeks). Prerequisite: fourth-year medical student and consent of instructor. Participate in activities of Occu-
pational and Environmental Health Unit. Major activity is involvement in an epidemiologic research project of the University. Also participate in Ambulatory Occu-
pational and Environmental Medicine Clinic at UCSD Medical Center. (SU grading only.)

470. Clinical Selective in Occupational and Environmental Medicine (3) I, II, III, IV. McCurdy Clinical experience—full time (4 to 8 weeks). Prerequisite: fourth-year medical students in good academic standing, with consent of instructor. Outpatient clinical experience in Occupational and Environmental Medicine at UCDMC and in local industries. Participants will gain experience in evaluating occupational and environ-
mental medical conditions, use of medical literature resources, the worker’s compensation system, and toxicological principles.

480. Senior Partnership (1-3) I, II, III, IV. Gilmer Clinical activity—3-9 hours. Prerequisite: first- or sec-
ond-year medical student or consent of instructor. Introduction to concepts of geriatric health care. Students are matched with elderly from the community for a project on health and aging, field experiences in clinical geriatrics; attendance at SOM lectures concerning geriatrics or the elderly. (SU grading only.)

495. International Health Care (1) I. Schenker Lecture/discussion—1 hour. Prerequisite: medical stu-
dent in good academic standing. Forum for learning health issues and health care systems in other coun-
tries. Topics include health care for refugees, the impact of political instability on health, the health care profes-
sional in international settings. (SU grading only.)

498. Study in Community and International Health (1-5) I, II, III, IV. The Staff Prerequisite: medical students in good academic standing and consent of instructor. Study and experi-
ence for medical students in any number of areas in community and international health. (SU grading only.)

499. Research in Cutaneous Biology (1-6) I, II, III, IV. The Staff (Isseroff in charge) Laboratory—3-36 hours. Prerequisite: consent of instructor. Independent research in cellular and bio-
chemical mechanisms of cutaneous biology and pathology. (SU grading only.)

420. Integumentary System (2) I, II, III, IV. Huntley and (2) IV. Huntley and Davidson Lecture—3-6 hours. Prerequisite: consent of instructor. Physical diagnosis of the skin and is designed to pre-
pare medical students for clinical service. Recognition of normal variations, and common or important dermatoses is emphasized. Patient demonstrations of selected conditions are included.

460. Dermatology Clinical Clerkship (6) I, II, III, IV. Lynch Clinical activity (inpatient/outpatient service)—40 hours for four weeks. Prerequisite: completion of three years of medical school and consent of instructor. Observation and participation in dermatology clinic-
ics/practice and participation in Ward Rounds and Dermatology Clinics at UCSD Medical Center, Kaiser, and private practitioner offices. Limited enrollment in good academic standing. Consent of instructor. Clinical experience limited to observation of delivery of dermatologic care and attendance at some conferences. (SU grading only.)

498. Special Topics in Clinical Dermatology (1-6) I, II, III, IV. The Staff (Lynch in charge) Independent study—3-18 hours. Prerequisite: medical students with consent of instructor. Individually arranged study of special topics in clinical dermatol-
ogy determined by student and instructor. Assigned readings and/or clinical experience considered. (SU grading only.)

499. Research in Cutaneous Biology (1-6) I, II, III, IV. The Staff (Isseroff in charge) Laboratory—3-36 hours. Prerequisite: consent of instructor. Research, either laboratory or clinical, on ongoing projects within the department under super-
vision of faculty. (SU grading only.)

Family Practice (FAP)

Lower Division Course

92C. Primary Care Clinics (2) I, II, III, IV. Arevalo, Day Clinical activity—6-8 hours; seminar—2 hours; lecture—1-2 hours. Prerequisite: consent of instructor, enrollment at the UCD campus, for freshman and sophomore students. Students must apply and go through an interview process. Field experience exposes lower division students to health care deliv-
yery, patient history, physical diagnosis, history, physical diagnosis, disease prevention, diagnosis; treatment of episodic, acute, chronic illness; appropriate refer-
ral, and follow-up. May be repeated for credit. (P/NP grading only.)

Upper Division Courses

192A. Internship in Family Practice (1-12) I, II, III, IV. Davidson Internship—3-36 hours. Prerequisite: upper division standing and consent of instructor. Work experience supervised in the Department of Family Practice. Upper division students provided an opportunity to acquire research experience in a clinical laboratory setting. (P/NP grading only.)

192C. Primary Care Clinics (2) I, II, III, IV. Arevalo, Day Clinical activity—6-8 hours; seminar—2 hours; lecture—1-2 hours. Prerequisite: consent of instructor, enrollment at the UCD campus, upper division stand-
ing. Students must apply and go through an interview process. Field experience introduces students to health care delivery; patient histories and physical examinations; health promotions and disease preven-
tion; diagnosis and treatment of episodic, acute, and chronic illnesses; basic laboratory testing; appropriate referral and follow-up. May be repeated for credit. (P/NP grading only.)

195. Health Care to Underserved Populations (1) I. Nesbitt Lecture—1 hour. Prerequisite: sociology, political sci-
ence, or applied behavioral science background rec-
ommended, or registration in medical school. Dis-
cusses sociocultural perspectives of underserved populations in California impacting their health, roles of family/interpersonal relationships in making health care decisions; and clinician’s perspectives in treat-
ing people of cultures which are unfamiliar and/or un-
comfortable with Western medicine. (P/NP grading only.)

Graduate Courses

240A-240B-240C-240D-240E-240F. Clinical Preceptorship (1-13) I, II, III, IV. Hess, De Amicis Clinical activity—9-36 hours. Prerequisite: enrollment in the Master’s Track of the FNP Certificate Program, and successful completion of each preceding 240 section. Diagnosis and treatment of patients of all ages in an ambulatory care setting, under the super-
vision of a preceptor. May be repeated twice for credit. (P/NP grading only.)

242A-242B-242C. Clinical Role Seminar (1-1-1) I, II, III, Hess, De Amicis, Leveque Seminar—1 hour. Prerequisite: enrollment in course 240 and in the Master’s Track of the FNP Certificate Program. Course accompanies course 242A. Provides a small group forum for students to explore role development and clinical management issues based on nursing theories and research. (P/NP grading only.)

252A. Nurse Practitioner Role Development (1) I, II, III, Hess Seminar—1 hour. Prerequisite: B.S. degree in nursing and enrollment in the Master’s Track of the FNP Certificate Program. Provides an opportunity to discuss strategies for promoting role development and role satisfaction via discussions of pertinent issues, theory and research.

252B. Nurse Practitioner as Leader (1) I. Mikal-Flynn Seminar—1 hour. Prerequisite: course 252A and enrollment in the Master’s Track of the FNP Certificate Program. Critical analysis of theories, issues, and research related to nurse practitioner role develop-
ment in primary care. Emphasis on leadership and entrepreneurial aspects of practice development, maintenance, and evaluation.

264. Psychosocial Concepts and Issues in Primary Care (1) II. Hess Seminar—1 hour. Prerequisite: B.S. degree in nursing and enrollment in the Master’s Track of the FNP Certificate Program. Focuses on the health and wellness of individuals throughout the lifespan. Critical analy-
ses of nursing interventions in promotion and mainte-
ance based on nursing and other theoretical frameworks and research data are emphasized.

266B. Family Nursing Theory (2) I. Mentink Lecture—2 hours. Prerequisite: course 266A and enrollment in the Master’s Track of the FNP Certificate Program.
Program. Exploration of family theories as related to advanced primary care nursing practice.

266C. Family Nursing Interventions (2) III. Mikal-Flynn
Lecture—2 hours. Prerequisite: course 266B and enrollment in the Master’s Track of the FNP Certificate Program. Course integrates family theoretical and therapeutic frameworks on nursing assessment and intervention strategies appropriate for family nurse practitioners are discussed. May be repeated for credit.

Professional Courses

The following courses are for students enrolled in the Family Nurse Practitioner/Physician Assistant Program:

Clinical activity—3–40 hours. Prerequisite: registered student in Family Nurse Practitioner/Physician Assistant Program. Student spends 8-40 hours per week for an approved physician preceptor in patient care developing clinical skills necessary to assess and manage patients with common medical problems seen in primary care and long-term care facilities. May be repeated for credit.

341A-341B-341C-341D. Advanced Clinical Preceptorship for FNP/PA Students (1-18) I-II-III-IV. Hasselbach, Tully, White
Clinical activity—3–40 hours. Prerequisite: registered student in Family Nurse Practitioner/Physician Assistant Program, and course 340A-340B-340C. Student spends 8-40 hours per week in an approved clinical setting to build on clinical skills in primary care learned in course 340A-340B-340C. Assessment and management of patients with complex and multiple problems. May be repeated for credit. (P/NP grading only.)

343. Inpatient Clinical Experience for FNP/PA Students (5) I, III, IV. Trolinger/Morris
Clinical activity—15 hours. Prerequisite: registered student in the FNP/PA program, successful completion of course 340A-340B-340C, and consent of instructor. Student clerkships in the inpatient setting in Family Medicine, Internal Medicine, and Surgical subspecialty units at UC Davis and affiliated institutions. Exposures to inpatient management and discharge planning for FNP/PA role in the inpatient setting. May be repeated twice for credit. (P/NP grading only; Deferred grading only, pending completion of sequence.)

346. Clinical Geriatrics (3) III-II-IV. Trolinger/Stewart
Clinical activity—90 hours. Prerequisite: registered student in the FNP/PA program and successful completion of course 340A-340B-340C and 354A–354B–354C and 365A–365B–365C or consent of instructor. Application of principles of geriatric care in the outpatient, long-term care, acute hospital and community setting that provides service for the elderly, including visits to patients’ homes. (P/NP grading only; Deferred grading only, pending completion of sequence.)

350. Ethics and Trends in Health Care for FNP/PA Students (2) III. Huffines, Morris
Lecture/discussion—2 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Trends and ethical issues in health care, review of the process and policies for ethical decision-making in patient care. These issues, trends, and policies will be related to the role of the Family Nurse Practitioner/Physician Assistant.

352A-352B. Professional Development of the Physicn Assistant (1-1) I-II. Wrigley, Hasselbach, Tully, Silvera, Wright
Lecture/discussion—1 hour. Prerequisite: registered student in the Physician Assistant Program. Study of the role of the physician assistant and its historical evolution, and of the organizational responsibilities and legal considerations.

353. Geriatric Medicine for FNP/PA Students (1) I. Trolinger/Silveria
Lecture—1 hour. Prerequisite: registered student in the FNP/PA program. Introduction to advanced concepts in geriatric medicine. Correlates assessment, decision making, and management of selected medical problems encountered in primary care. Appropriate consultation and referral are discussed. May be repeated twice for credit.

354A–354B–354C. Fundamentals of Primary Care Health for FNP/PA Students (5-5-5) I-II-III. The Staff
Lecture/discussion—4–5 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Study of anatomy and physiology, pathophysiology, diagnostic criteria, approaches to assess and manage common medical problems seen in primary care. May be repeated for credit.

Lecture/discussion—4 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program, course 354A–354B–354C. Study of anatomy and physiology, pathophysiology, diagnostic criteria, approaches to assess and manage common medical problems seen in primary care. May be repeated for credit.

367B. Family Practice and Community Health for FNP/PA Students (1) I. Trolinger/Stewart
Lecture/discussion—2 hours. Prerequisite: registered student in the FNP/PA program. Examines trends in adult primary care and development related to primary health care. May be repeated twice for credit.

367B. Family Practice and Community Health for FNP/PA Students (1) I. Trolinger/Stewart
Lecture/discussion—1 hour. Prerequisite: registered student in the FNP/PA program. Examines trends in adult primary care and development related to primary health care. May be repeated twice for credit.

368A. Behavioral Science for FNP/PA Students (2) I. Tully/Stewart
Lecture/discussion—2 hours. Prerequisite: registered student in the FNP/PA program. Emphasis on effective communication in therapeutic provider-patient relationship. Students will develop history-taking techniques that foster empathy and respect. Biopsychosocial model of health care will correspond to small group application. May be repeated twice for credit.

368C. Behavioral Science for FNP/PA Students (2) I, II, III, IV. Tully, Stewart
Lecture–2 hours. Prerequisite: registered student in the Family Nurse Practitioner/Physician Assistant Program. Basic principles of crisis assessment and management for the treatment of patients of all age groups in the primary care setting who have experienced interpersonal violence, abuse or common mental health problems (such as anxiety, depression and panic disorder). May be repeated twice for credit.

399. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. Davison
Prerequisite: consent of instructor. Flexibility to develop and pursue research and clinical interests to enhance education in Family Practice (P/NP grading only).

Professional Courses

400A–400B–400C. Introduction to Patient Evaluation (2-2-2) I, II, III. Callahan, Morgan
Lecture/discussion—18 hours total; clinical activity—6 hours total; conference or laboratory—4–8 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. Use of standardized format and simulated patients each student will practice dealing with communication problems and learn...
basic physical examination skills through small group interactions. A continuity preceptorship and introduction to emergency medicine will also be offered. (Deferred grading only, pending completion of sequence.)

401. Preceptorship in Family Practice (1-9) I, II, III, IV. Morgan
Preceptorship—part-time (one 4-hour day per week; 10 weeks) or full-time (40-hour week per 1.5 units; 4 to 6 weeks). Prerequisite: medical students with consent of instructor. Student preceptorship in family physician’s office as an introduction to clinical medicine.

402. Introductory Medical Spanish (2) II, III. Meizel
Lecture/discussion—2 hours. Prerequisite: restricted to medical students in good standing. Teaches the vocabulary needed to conduct a basic history and physical examination in Spanish. (SU grading only.) (Deferred grading only, pending completion of sequence.)

407. Davis Community Clinic (2) I, II, III, IV. Tanji
Clinical activity—5-6 hours. Prerequisite: second-year medical student in good academic standing. Students learn to diagnose and treat common medical problems as seen at a community clinic, under the direct supervision of a physician. (SU grading only.)

430. Primary Care Plus Clerkship (12) I, II, III, IV. Morgan
Clinical activity—45 hours; lecture/discussion—2 hours. Prerequisite: completion of first-year and second-year curriculum for the M.D. degree. A required eight-week primary care clerkship for third-year medical students. The clerkship will be a four-week primary care experience with an additional four weeks in Ophthalmology, Otolaryngology, Orthopaedics and Urology clinics (each providing a primary care focus).

433. Primary Care Plus Continuum Clerkship (6-18) I, II, III, IV. Morgan
Clinical activity—45 hours. (4 weeks). Prerequisite: completion of all required coursework of the first-year and second-year medical curriculum. Four week experience in primary care or in Ophthalmology, Otolaryngology, Orthopaedics and Urology clinics (each providing a primary care focus).

434. Primary Care Clinics (1-12) I, II, III, IV. Arevalo
Clinical activity—32-36 hours; seminar—0-2 hours; lecture—1-2 hours. Prerequisite: open to medical students in all four years of medical school. Medical students will learn counseling, diagnosis and treatment of patients with chronic and acute disease under supervision of physician. Provides exposure to special health care needs of various ethnic and poverty-level populations. May be repeated for credit. (SU grading only.)

Primary Care at Clinica Tepati (3-3-3-3-3-3-3-3-3)
1-I-III-IV-I-I-II-III-IV. Arevalo
Clinical activity—four 8-hour days; group seminar/discussion—ten 1-hour sessions; training session/lecture—four 2-hour sessions. Prerequisite: first- and second-year (full-time) medical students with consent of instructor; pre-application processed. Exposure to episodic and acute disease; learn physical examination and take a complete history; also learn immunization techniques, use of laboratory tests. Limited enrollment. (SU grading only.)

445. Sports Medicine from a Primary Care Perspective (6) I, II, III, IV. Tanji
Clinical activity—full time (4 weeks). Prerequisite: fourth-year medical student in good academic standing. Students spend full time in outpatient clinic settings in family practice, orthopaedic surgery, physical education, internal medicine, and a community primary care practice. Students learn principles and practice of sports medicine from a primary care perspective.

462. Family Practice Preceptorship (3-18) I, II, III, IV. Morgan
Clinical activity—full time. Prerequisite: completion of third year of medical school or medical student with consent of instructor. Preceptorships with primary care physicians in a variety of settings. Involvement in direct patient care and daily activities under supervision of physician-preceptor.

463. Selected Readings in Family Practice (1-9) I, II, III, IV. Morgan
Discussion—3-27 hours. Prerequisite: medical students in good academic standing. Increase understanding of family practice through assigned reading and the forum activities with faculty member.

468. Family Practice in a Foreign Culture (6-18) I, II, III, IV. Davidson
Clinical activity. Prerequisite: completion of third year in medical school. Visit a family practitioner in a foreign country as arranged by Department; accompany and participate in clinic activities of preceptor and analyze and report characteristics of the practice.

469. Family Practice Clerkship (3-18) I, II, III, IV. Morgan
Clinical activity—full time. Prerequisite: third- and fourth-year medical students with consent of instructor (third-year students may elect to enroll for second half of spring quarter). Involvement in comprehensive primary medical care of patients in a family setting and observe the team approach to health care.

480. Insights in Family Practice (1-3) I, II, III, IV. The Staff
Clinical activity—3 to 9 hours; required readings. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Exposure to family practice in outpatient clinical setting. Three to nine hours per week spent with a community physician preceptor who is a member of the clinical faculty. (SU grading only.)

498. Directed Group Study in Family Practice (1-9) I, II, III, IV. The Staff
Lecture/discussion—3-37 hours. Prerequisite: medical students with consent of instructor. Directed study on selected topics relating to family medicine and primary health care delivery, visits to and written analysis of selected innovative health care programs. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff
Prerequisite: medical students with consent of instructor. Research in various aspects of the health care delivery system. (SU grading only.)

Human Physiology (HPH)

Upper Division Courses

192. Internship in Human Physiology (1-12) I, II, III, IV. The Staff (Curry in charge)
Internship—3 weeks. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in physiology and related fields. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Curry in charge)
To be arranged. Prerequisite: consent of instructor. Directed reading, discussion and/or laboratory experience on selected topics. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Curry in charge)
Laboratory—3-15 hours; undergraduate research project. Prerequisite: senior standing in biology, chemistry, physics, psychology, or engineering. (P/NP grading only.)

Graduate Courses

200. Human Physiology (6) I. Curry, Carlsten, and staff
Lecture—48 hours total; discussion—12 hours total. Prerequisite: graduate standing and consent of instructor. General cellular and organ system physiology, including neural, cardiovascular, respiratory, gastrointestinal, endocrine, reproductive systems or the equivalent; graduate standing or the equivalent.

210. Advanced General Physiology (3) III. Curry, Cala
Lecture—3 hours. Prerequisite: Physiology 100B; Biochemistry 101B; Chemistry 107B; graduate standing and consent of instructor. Physiocochemical basis of living systems with emphasis on membrane permeability characteristics at both the cellular and tissue level. Offered in alternate years.

231. Renal Physiology (3) I. Rabinowitz
Lecture—3 hours. Prerequisite: Physiology 112, 113 or the equivalent; graduate standing. Topics in mammalian renal physiology and related areas of biologic transport, fluid and electrolyte homeostasis, comparative renal physiology, and pathophysiology of the kidney in humans. Offered in alternate years.

250. Circulatory Transport and Fluid Exchange (4) I, III. Cross
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 400 or the equivalent; consent of instructor. Clinical laboratory, physiological evaluations of pulmonary function. (Same course as 480.)

285. Peripheral Circulation (3) III. Gray/O’Donnell
Lecture—1 hour; discussion—2 hours. Prerequisite: Physiology 111A, 113; or course 200 and consent of instructor. Lectures and critical analysis of papers on peripheral vascular function, including: structure/functional and pressure/flow relationships, innervation, receptor pharmacology, endothelial and smooth muscle interactions, signal transduction, ion transport, permeability, paracrine mechanisms and disease mechanisms. Offered in alternate years.

298. Group Study (1-5) I, II, III, IV. The Staff (Curry in charge)
Prerequisite: consent of instructor. For graduate students desiring to explore particular topics in depth. Lectures and conferences may be included.

299. Research (1-12) I, II, III, IV. The Staff (Curry in charge)
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

400. Human Physiology (8) II. Carlsten, O’Donnell and staff
Lecture—6 hours; laboratory—6 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiology and anatomy of the normal human nervous system in an integrated format. Focus on gross and microscopic brain structure, functional neuroanatomy, and the physiology, biochemistry, and pharmacology of the nervous system. (Same course as Cell Biology and Human Anatomy 403.)

418. Mammalian Endocrinology and Homeostasis (4.5) III. Surgeon and staff
Lecture—4 hours; discussion—1 hour; student presentation. Prerequisite: approval by Committee on Student Evaluation and Promotion. Physiological and biochemical properties of the mammalian endocrine system both at the cellular and systemic levels (same course as Biochemistry 102). Prerequisites: endocrinology of the kidney and the dog. (Deferred grading only, pending completion of sequence.)

Course not offered this academic year.
480. Pulmonary Function Evaluation (4) I, II, III. Cross
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 400 or the equivalent; consent of instructor. Clinical laboratory, physiologic evaluations of pulmonary function. (Same course as 280.)

497T. Tutoring in Human Physiology (1-5) I, II, III, IV. Cross
Tutoring—3–15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.)

498. Directed Reading and Group Study (1-4) I, II, III, IV. Curry and staff
Discussion—2–8 hours. Prerequisite: medical student. Directed reading and discussion on selected topics in human physiology. (SU grading only.)

499. Research (1-6) I, II, III, IV. Curry and staff
Prerequisite: medical students with consent of instructor. Laboratory investigation on selected topics. (SU grading only.)

Internal Medicine (IMD)

Lower Division Courses

92. **Internship** (1-4) I, II, III, IV. Last Internship—3–12 hours. Prerequisite: lower division standing and consent of instructor. Supervised internship in internal medicine and related fields. (P/NP grading only.)

98. **Directed Group Study** (1-2) I, II, III, IV. Last Seminar—1–2 hours. Prerequisite: lower division standing and consent of instructor. Directed group study in medicine and related fields. (P/NP grading only.)

99. **Undergraduate Research in Medicine: Molecular and Cell Biology** (1-5) I, II, III, IV. Last
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

192. **Internship in Internal Medicine** (1-12) I, II, III. The Staff
Internship—3–36 hours; final report. Prerequisite: upper division standing. Supervised work experience in internal medicine and related fields. (P/NP grading only.)

198. **Directed Group Study** (1-2) I, II, III, IV. Last Seminar—1–2 hours. Prerequisite: consent of instructor. Directed group study in medicine and related fields. (P/NP grading only.)

199. **Special Study for Advanced Undergraduates** (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

Professional Courses

401A–401B–401C–401D. Physical Diagnosis
Practicum B (1-2-2-2) I, II, III, IV. Bonekist Fieldwork—2 hours; lecture—1 hour; laboratory/discussion—1 hour. Prerequisite: approval by Committee on Student Evaluation and Promotion. Provides students with an overall framework for performance of a history and physical exam and with identification of abnormal physical findings. (Deferred grading only, pending completion of sequence.)

419. **Introduction to Clinical Nutrition** (3) III. Halsted, Phinney, Rucker and staff
Lecture—5 hours; lecture/discussion—1.5 hours; laboratory/discussion—0.5 hours (for 4 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. A 28-hour course that integrates basic and clinical concepts of human nutrition. The course emphasizes nutrient homeostasis and regulation and clinical concepts of human nutrition. The course reviews the interpretation of laboratory tests and is staffed by clinical nutritionists.

420B. **Gastrointestinal System** (3.5) III. Leung
Lecture/discussion—3 hours (over a 4-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion. Basic pathophysiologic principles of digestive diseases on which clinical concepts and judgement can be developed. Emphasis on pathophysiologic basis of gastrointestinal and hepatic disorders, with case discussions and symposia presented to exemplify basic principles.

420C. **Respiratory System** (4) II. Louie
Lecture—3 hours; discussion—1 hour (48 hours total). Prerequisite: approval by Committee on Student Evaluation and Promotion. Lectures, demonstrations and small group case discussions of respiratory pathophysiology. Includes review of certain clinical aspects of respiratory anatomy, physiology and pathology, introduction to diagnostic procedures; and description of the major respiratory diseases.

420D. **Cardiovascular System** (3.5) II. Laslett and staff
Lecture—28 hours; discussion—8 hours (36 hours total). Prerequisite: medical student and approval by Committee on Student Evaluation and Promotion. Recapitulates the graduate student and Animal Physiology 113, Human Physiology 200, or the equivalent, and consent of instructor. Introduction to principles of etiology, mechanisms, diagnosis and management of the major diseases of the cardiovascular system, including ischemic, valvular, hypertensive, cardiomyopathic, pericardial, and electrical disorders. Lectures and small group discussions are employed.

420E. **Nephrology** (2.5) III. Kayser
Lecture—4 hours; laboratory—2 hours (over a 6-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion. Fundamental aspects of (a) disorders of electrolytes and acid/base balance; (b) major categories and mechanisms of parenchymal renal diseases; (c) urinary tract infections.

420F. **Metabolic Regulatory System** (3.5) III. Soeldner
Lecture—4 hours; discussion—2 hours (over 8-week period). Prerequisite: approval by Committee on Student Evaluation and Promotion. Basic understanding of pathophysiologic consequences of organ and tissues primarily involved in metabolic regulation and sufficient factual base so that clinical and laboratory findings, diagnosis, and elementary management of patients with endocrinological disorders can be rationalized.

430. **Medicine Clerkship** (12) I, II, III, IV. Lawrence
Clinical activity—45 hours. Prerequisite: medical students with approval by Committee on Student Evaluation and Promotion. Clerkship is divided into two four-week blocks, one each at UCDMC and at Kaiser Hospitals. Time is spent in direct patient care situations under the guidance of faculty. On-going patient write-ups, rounds, conferences are required.

433. **Internal Medicine Continuum Clerkship** (6) I, II, III, IV. Lawrence
Clinical activity—full time (for 4 weeks). Prerequisite: completion of all required coursework of first and second year medical curriculum. Four-week internal medicine clerkship in either UCDMC or Kaiser Hospitals. Direct patient care situations under the guidance of faculty. On-going patient write-ups, rounds, conferences are required.

440. **Ambulatory Medicine Clerkship** (3-12) I, II, III, IV. Desmul
Clinical activity—full time (2 to 8 weeks). Fourth-year medicine clerkship. Two- to eight-week ambulatory medicine experience in an internal medicine setting. Students learn to evaluate and treat patients with common ambulatory medical problems in an urban acute-care setting. This will occur within the “fast track” area of the UCDMC Emergency Department.

459. **Oncology: Research and Treatment of Cancer** (2) I. DeGregorio
Lecture/discussion—2 hours. Prerequisite: second-, third-, or fourth-year medical student and/or consent of instructor. Comprehensive review of current treatment practices of cancer and state of the art research impacting treatment and prevention of cancer. Emphasis on epidemiology, molecular biology, and pharmacology. (SU grading only.)

460. **Correctional Health Care Clerkship** (1-4) I, II, III, IV. Silva
Clinical activity—full time. Prerequisite: fourth-year medical student in good academic standing. Covers Correctional Health delivery and the effects of detention and incarceration on health status. Special emphasis on problems unique to healthcare delivery in a prison setting. Student will spend time in clinical settings at three prison facilities.

461. **Problems in Internal Medicine** (6 or 9) I, II, III, IV. Laughlin
Clinical activity—full time (4 or 6 weeks). Prerequisite: satisfactory completion of third year of medical school; consent of instructor. Study of inpatients hospitalized on Medical Service. Experience in Internal Medicine at Whole and Clinical Hospital. Includes meetings with instructor, Monday through Friday; afternoon patient assignments. Teaching conferences and combined radiology-pathology medicine seminars. Weekly allergy specialty conference.

462. **Externship in Medicine** (1-21) I, II, III, IV. Fitzgerald and staff
Externship—full time (4, 8, or 12 weeks). Prerequisite: Medical Sciences 431, demonstrated ability to accept responsibility, consent of instructor. Special study for medical students which may involve laboratory or library research, ambulatory or inpatient care responsibility on campus, at UCD Medical Center or off campus by specific arrangement. (SU grading only.)

Internal Medicine—Cardiology (CAR)

Upper Division Courses

192. **Internship in Cardiology** (1-12) I, II, III, IV. Longhurst and staff
Internship—3–36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in cardiology. May be repeated for credit up to 12 units. (P/NP grading only.)

199. **Cardiology Research** (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. Special study by individual arrangement in cardiovascular medicine. Will include directed readings, laboratory and discussions. (P/NP grading only.)

Graduate Course

220. **Basic Science in Cardiology** (1) Kaiser
Lecture—1 hour. Prerequisite: graduate or medical student status. Fundamentals underlying cardiovascular medicine. Including hemodynamics, neural control of the circulation, biochemistry and the experimental design and statistics. Experts in each...
Graduate Course

290C. Clinical Nutrition Research Conference (1) I, II, III, Halsted, Phinney, Davis Seminar—1 hour. Weekly seminar presented by a graduate student, taking the form of research completed or in progress, topic review or journal review from current journal. (S/U grading only.)

Professional Courses

461. Nutrition Clinical Clerkship (3-18) I, II, III, IV. Halsted, Phinney, and staff Lecture—2 hours; clinical activity—full time (2 to 12 weeks). In-depth experience in assessment and monitoring of nutritional support of adult patients at UCD Medical Center whose illnesses are complicated by malnutrition, and of patients attending the Nutrition Clinic with problems in under-nutrition due to various illnesses.

480. Insights in Clinical Nutrition (1-3) I, II, III, IV. Halsted, Phinney, and staff Clinical activity—9 hours. Prerequisite: student in good standing; consent of instructor. Student will attend weekly clinical nutrition consult rounds (four evenings) and/or Nutrition Clinic (one day). Introduction to diagnosis and treatment of common nutritional problems. (S/U grading only.)

499. Research in Nutrition (9-18) I, II, III, IV. Halsted, Phinney, Davis Prerequisite: medical student in good standing; consent of instructor. Participation in on-going clinical basic nutrition research. Student may devise own project depending upon time commitments.

Internal Medicine—Emergency Medicine (EMR)

Upper Division Course

192. Internship in Emergency Medicine (1-12) I, II, III, IV. Sakles and staff Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in emergency medicine. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course

299. Research (1-12) I, II, III, IV. The Staff (Prescott in charge) Prerequisite: consent of instructor. Endocrinology research. (S/U grading only.)

Professional Courses

460. Endocrinology Clinical Clerkship (3-18) I, II, III, IV. Prescott and staff Clinical activity (inpatient-outpatient service)—full time (3 days per unit). Prerequisite: Internal Medicine 430 and/or consent of instructor. Participation with members of subspecialty service in the initial evaluation, work-up, management and follow-up of patients with endocrinologic disorders. Limited enrollment.

480. Insights in Endocrinology (1-3) I, II, III, IV. Prescott and staff Clinical activity—9 hours; oral presentation. Prerequisite: student in good standing; consent of instructor. First- or second-year students observe in morning Endocrine and Diabetes clinics and attend bi-weekly noon and afternoon endocrine conferences. They also give brief endocrine physiology oral presentation to the endocrine group. (S/U grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Prescott in charge) Prerequisite: consent of instructor. (S/U grading only.)

Internal Medicine—Gastroenterology (GAS)

Upper Division Course

192. Internship in Gastroenterology (1-12) I, II, III, IV. Leung and staff Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in gastroenterology. May be repeated for credit up to 12 units. (P/NP grading only.)

Graduate Course

299. Research (1-12) I, II, III, IV. Primstone Research in gastroenterology. (S/U grading only.)

Professional Courses

480. Insights in Gastroenterology (1-3) I, II, III, IV. Leung, Hsu Clinical activity—9 hours. Prerequisite: student in good academic standing and consent of instructor. To gain insight in clinical activities of Gastroenterology Division through attendance at any of the following: endoscopic procedures, ward rounds, outpatient clinic, and G.I. grand rounds. (S/U grading only.)
499. Research (1-12) I, II, III, IV. Leung, Pirmstone, Prindiville, Lee, Hsu, Lam
Clinical activity; varied. Prerequisite: medical student status; consent of instructor. Part-time participation in active clinical and basic research projects. Some will involve both patient care and relevant laboratory procedures. Basic research includes liver metabolism, cancer markers, porphyrias diet and cancer, folate metabolism. May be repeated for credit. (S/U grading only.)

Internal Medicine—General Medicine (GMD)

Upper Division Course

192. Internship in General Medicine (1-12) I, II, III, IV. J. Robbins and staff
Internship—3–36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in general medicine. May be repeated for credit up to 12 units. (PNP grading only.)

Professional Courses

440. Introduction to AIDS and Related Disorders (2) I, II, III, IV. Flynn
Clinical activity—30 hours; discussion—10 hours. Prerequisite: first- and second-year medical students in good academic standing and consent of instructor. Familiarizes students with the diagnosis and treatment of individuals infected with the human immunodeficiency virus. Students will interview patients, observe patient care and participate in ongoing clinic research as well as examine alternative life styles. May be repeated for credit. (S/U grading only.)

460. General Medicine Consults (1-18) I, II, III, IV. The Staff (Division Chief in charge)
Clinical activity (inpatient-outpatient service)—40 hours. Prerequisite: fourth-year medical students with consent of instructor; a general medicine clerkship. Supervised opportunity to see entire spectrum of medical problems encountered by a general internist. Student spends time in General Medicine Clinic and on the General Medicine Consult Service. Consultation Service is particularly concerned with medical evaluation of surgical patients. Limited enrollment.

471. Clinical Care of the HIV-Infected Patient (6-8) I, II, III, IV. Lawrence and staff
Clinical activity—full time (4-6 weeks). Prerequisite: successful completion of Internal Medicine 430. Participation in evaluation and management of HIV-infected individuals at all stages of their disease in both inpatient and outpatient settings. Includes consultations, attendance at HIV and infectious disease clinics and multidisciplinary conferences.

480. Insights in General Medicine (1-5) I, II, III, IV. Robbins
Clinical activity—one to nine 2-hour sessions; rounds—one to nine 2- to 4-hour sessions. Prerequisite: student in good academic standing and consent of instructor. Student will observe work-up, diagnostic evaluation and management of common general internal medicine problems in ambulatory and inpatient settings; be supervised by attending physician while attending General Medicine Clinic and/or Consult Rounds, and make brief presentations to consult service. (S/U grading only.)

499. General Medicine Research (1-18) I, II, III, IV. The Staff
Discussion—3 hours; clinical research—8-40 hours. Prerequisite: consent of instructor. The student will be involved in a clinical research problem within the areas, interest and expertise of members of Division of General Internal Medicine. Alternatively, the research effort will be directed toward investigation of a clinical problem of general medical interest. May be repeated for credit.

Internal Medicine—Hematology-Oncology (HON)

Upper Division Course

199. Research in Hematology-Oncology (1-5) I, II, III, IV. Powell and staff
Laboratory—hours variable. Prerequisite: upper division standing and consent of instructor. Experience in laboratory research. (PNP grading only.)

Graduate Courses

298. Topics in Hematology (1-4) I, II, III, IV. Meyers and staff
Prerequisite: one year of graduate work and/or consent of instructor. Basic concepts of the physiology of the hematopoietic organ, the pathophysiology of hematopoietic disease, and concepts of therapeutics will be offered for study. The specific topics to be dictated by the interest and background of the students.

299. Research (1-12) I, II, III, IV. Meyers and staff
Prerequisite: consent of instructor. Laboratory investigation contributing to the dissertation for a graduate degree. (S/U grading only.)

Professional Courses

460. Hematology-Oncology Acting Internship (6-18) I, II, III, IV. Meyers and staff
Clinical activity—full time (4-12 weeks). Prerequisite: fourth-year medical student in good academic standing. Acting internship oncology/inpatient ward service. May be repeated for credit. Limited enrollment.

461. Hematology-Oncology Consult Clerkship (6-12) I, II, III, IV. Meyers and staff
Clinical activity—4-8 weeks. Prerequisite: fourth-year medical student in good academic standing. Student is an integral member of the inpatient hematology and oncology consult service, the bone marrow service, and will attend all conferences sponsored by the Division. May be repeated for credit. Limited enrollment.

462. Hematology-Oncology Ambulatory Clerkship (6-18) I, II, III, IV. Meyers and staff
Clinical activity (inpatient/outpatient service)—full time (4 weeks). Prerequisite: fourth-year medical student in good academic standing. Outpatient rotations in related clinics. Participation with members of the subspecialty service in the initial clinical evaluation, work-up, management and follow-up of the patient with hematologic or oncologic disorders. May be repeated for credit. Limited enrollment.

490. Practicum in Care for the Terminally Ill (6-12) I, II, III, IV. Robbins
Clinical activity—40 hours/week for 4 weeks. Prerequisite: successful completion of the first year of study in School of Medicine, graduate students (approved for graduate credit), and/or consent of instructor. Prerequisite: successful completion of the first year of study in School of Medicine, graduate students (approved for graduate credit), and/or consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results to be reviewed at intervals with instructor and via seminar presentation. (S/U grading only.)

Internal Medicine—Nephrology (NEP)

Upper Division Course

192. Internship in Nephrology (1-12) I, II, III, IV. Kayser and staff
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in nephrology. May be repeated for credit up to 12 units. (PNP grading only.)

Professional Courses

460. Nephrology and Fluid Balance (6-12) I, II, III, IV. Meyers
Prerequisite: successful completion of the first year of study in School of Medicine, graduate students (approved for graduate credit), and/or consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results to be reviewed at intervals with instructor and via seminar presentation. (S/U grading only.)

199. Infectious Diseases Research (1-5) I, II, III, IV. The Staff (Lawrence in charge)
Prerequisite: chemistry through organic chemistry (in addition, physical and biochemistry preferred), biology through basic bacteriology (in addition, microbiology and immunology preferred); and consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results will be reviewed at intervals with instructor and via seminar presentation. (PNP grading only.)

Graduate Courses

280. Molecular Pathobiology for Diagnosis and Therapy of Human and Animal Diseases (3) III. Dandekar
Lecture—3 hours. Prerequisite: graduate standing. Presentation of molecular pathobiology of human and animal viruses. Emphasis on molecular diagnostics at cellular/tissue level, and therapy including vaccines and gene transfer using recombinant DNA technology. Offered in alternate years.

298. Research in Infectious Diseases (1-12) I, II, III, IV. The Staff (Lawrence in charge)
Prerequisite: consent of instructor. Laboratory investigation contributing to the dissertation for a graduate degree. (S/U grading only.)

Graduate Courses

460. Infectious Diseases Clinical Clerkship (3-6) I, II, III, IV. Lawrence
Clinical activity Prerequisite: successful completion of two years of study in an accredited medical school. Limited enrollment with priority to fourth-year medical students. Patients III with infectious diseases, including AIDS, will be evaluated and presented at rounds and case conferences. Patients are also seen in the Infectious Diseases Clinic. Instruction in clinical microbiology and the proper use of the laboratory will be provided.

499. Research Topics in Infectious Disease (2-12) I, II, III, IV. The Staff (Lawrence in charge)
Prerequisite: successful completion of the first year of study in School of Medicine, graduate students (approved for graduate credit), and/or consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results to be reviewed at intervals with instructor and via seminar presentation. (S/U grading only.)

Internal Medicine—Infectious Diseases (IDI)

Upper Division Course

141. Infectious Diseases of Humans (1) I. Dandekar
Lecture—1 hour. Prerequisite: introductory knowledge in biology and chemistry recommended. Course integrates information on biological and molecular nature of the causative organism, modern diagnostics, treatment and prevention strategies, and the role of infectious diseases in contemporary society and throughout human history. (P/N grading only.)

192. Research Internship in Internal Medicine (1-12) I, II, III, IV. Lawrence and staff
Internship—3-36 hours; final report. Supervised work experience in the division of Infectious Diseases. Undergraduates will have an opportunity to acquire research experience in clinical settings. May be repeated for credit up to 12 units. (P/N grading only.)

199. Infectious Diseases Research (1-5) I, II, III, IV. The Staff (Lawrence in charge)
Prerequisite: chemistry through organic chemistry (in addition, physical and biochemistry preferred), biology through basic bacteriology (in addition, microbiology and immunology preferred); and consent of instructor. Discrete problem requiring reading and actual manual effort in solution will be assigned to each student. Progress and results will be reviewed at intervals with instructor and via seminar presentation. (P/N grading only.)
Internal Medicine—Occupational and Environmental Health (OEH)

Professional Course

480. Insights in Occupational and Environmental Medicine (1-3) I, II, III, IV. Schenker
Clinical activity—3–9 hours; small research projects. Prerequisite: first- or second-year medical student in good standing; consent of instructor. Students will observe and participate in research and clinical activities in occupational and environmental medicine which include conferences, occupational and environmental medicine clinical activities and field visits. Students develop and present small individual research projects. (SU grading only.)

Internal Medicine—Pulmonary Medicine (PUL)

Upper Division Course

192. Internship in Pulmonary Medicine (1-12) I, II, III, IV. Albertson and staff
Internship—3–36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in pulmonary medicine. May be repeated for credit up to 12 units. (P/NP grading only)

Graduate Courses

210. Grant and Scientific Paper Writing (1) I, II, III, IV. Last
Discussion—2 hours. Basics of scientific writing for grants and papers. Each student will prepare a grant or paper for critique and tutorial feedback.

299. Pulmonary Disease Research (1-12) I, II, III, IV. Cross Laboratory. Prerequisite: by arrangement only. Pulmonary disease research activity with focus in inhalation toxicity, oxidants or lung biochemistry, and cell and molecular biology. (SU grading only.)

Professional Courses

460. Pulmonary Clinical Clerkship (3-18) I, II, III, IV. Albertson and staff
Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of second year of medical school and/or consent of instructor. Participation at the Sacramento VA clinic with members of the subspecialty service including clinical evaluation, work-up, management, and follow-up of patients with pulmonary disorders. Includes experience in Pulmonary Function Laboratory, and pulmonary diagnostic processes. Limited enrollment.

462. Pulmonary Clinical Clerkship (3-12) I, II, III, IV. Bonekat
Clinical activity—full time (2–8 weeks). Prerequisite: completion of second year of medical school and consent of instructor. Student will attend respiratory outpatient clinics and in-patient pulmonary consultation rounds and medical intensive care rounds. Introduction to diagnosis and treatment of common pulmonary problems. (SU grading only.)

480. Pulmonary-Critical Care Medicine Insights (1-5) I, II, III, IV Albertson
Clinical activity—3–9 hours. Prerequisite: student in good academic standing and consent of instructor. Student will attend respiratory outpatient clinics and in-patient pulmonary consultation rounds and medical intensive care rounds. Introduction to diagnosis and treatment of common pulmonary problems. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Cross in charge)
Prerequisite: consent of instructor. (SU grading only.)

Internal Medicine—Rheumatology-Allergy (RAL)

Lower Division Course

99. Directed Research in Immunology (1-5) I, II, III, IV. Gershwin Laboratory. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (P/NP grading only)

Upper Division Courses

192. Internship in Rheumatology-Allergy (1-12) I, II, III, IV. Gershwin and staff
Internship—3–36 hours; final report. Prerequisite: upper division standing; approval of project by preceptor prior to internship. Supervised work experience in rheumatology-allergy. May be repeated for credit up to 12 units. (P/NP grading only)

199. Directed Research in Immunology (1-5) I, II, III, IV. Gershwin Laboratory. Prerequisite: consent of instructor. Independent research will be encouraged in basic immunology, including the role of the cellular immune system in oncogenesis. (P/NP grading only.)

Graduate Courses

281. Clinical Immunology and Immunopathology (4) III. Gershwin, Robbins
 commanded—4 hours. Prerequisite: Medical Microbiology 107 or Veterinary Microbiology 270, or consent of instructor. Descriptive analysis of animal and human pathologic processes that interact with the immune system. Emphasis on infections, genetics, transplantation, allergy and autoimmunity. Offered in alternate years.

298. Topics in Rheumatology and Clinical Immunology (1-5) I, II, III, IV. Gershwin Laboratory. Prerequisite: consent of instructor. Participation with members of the subspecialty service in the diagnosis and therapeutic management of patients with systemic lupus erythematosus, Sjögren’s syndrome, polymyositis and drug hypersensitivity. (SU grading only.)

Professional Courses

460. Rheumatology Clinical Clerkship (1-18) I, II, III, IV Leek and staff
Clinical activity (inpatient-outpatient service)—full time. Prerequisite: Medical Sciences 431 and consent of instructor. Participation with members of the subspecialty service in the diagnosis and therapeutic management of patients with rheumatologic diseases.

461. Allergy Clinical Clerkship (3-18) I, II, III, IV. Teuber and staff
Clinical activity (inpatient-outpatient service)—full time (2 to 12 weeks). Prerequisite: completion of second year of medical school and consent of instructor. Student will work with participating allergist in daily work with patients and participate in weekly allergy clinic and teaching conferences. Study of the literature. Will see patients with problems in clinical immunology, immunodeficiency, asthma, allergic rhinitis.

480. Insights in Rheumatology (1-3) I, II, III, Leek
Clinical activity—3–9 hours. Prerequisite: student in good academic standing and consent of instructor. Participation in rheumatology consultation rounds, rheumatic disease clinics and conferences with supervised readings in rheumatology. (SU grading only.)

499. Research (1-12) I, II, III, IV. The Staff (Gershwin in charge)
Prerequisite: medical student with consent of instructor. Part-time participation in active clinical and basic research projects which can involve both patient care and relevant laboratory procedures. Students can gain experience in clinical medicine and clinical investigation. (SU grading only.)

Medical Microbiology (MMI)

Upper Division Courses

107. Chemical and Cellular Immunology (4) II. Schlesinger
Lecture—4 hours. Prerequisite: Biological Sciences 101 and 102 or consent of instructor. Chemical and cellular basis of immunity: structure-function relationship of antigens, antibodies and their interactions; molecular basis of antibody diversity; cellular basis of immunity; immunochimical and cellular aspects of hypersensitivity; immunogenetics and regulation of the immune response. (Same course as 407.)

115. Ecological Parasitology (3) II. Theis
Lecture—3 hours. Study of humankind’s influence on environmental factors, behavior, geography that effect the development and spread of parasitic agents.

116. Parasitology for Wildlife Biologists (3) III. Theis
Lecture—2 hours. Prerequisite: upper division standing in wildlife biology or biological sciences or ecology. Emphasis on the role diseases and parasites play in wildlife dynamics. Lectures on techniques of collection, preservation and methods of surveying wildlife for parasites and the pathogenesis, ecology and zoonotic potential of parasites encountered by wildlife biologists.

*130. Medical Mycology (2) II. Pappagianis
Lecture—2 hours. Prerequisite: a course in pathogenic microbiology; consent of instructor. Various aspects of pathogenic fungi particularly affecting humans, will be discussed including epidemiology, pathogenesis and pathology, diagnosis and therapy. Offered in alternate years. (Same course as 430.)

192. Internship in Medical Microbiology (1-12) I, II, III, IV. The Staff (Beanam in charge)
Internship—3–36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in medical microbiology and related fields. (P/NP grading only.)

198. Group Study in Medical Microbiology (1-5) I, II, III, IV. The Staff (Beanam in charge)
Prerequisite: upper division standing and consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics. (P/NP grading only.)

199. Research in Medical Microbiology (1-5) I, II, III, IV. The Staff (Beanam in charge)
Prerequisite: upper division standing and consent of instructor. Individual research. (P/NP grading only.)

Graduate Courses

2000. Mechanisms for Microbial Interactions with Hosts (3) III. Beanam
Lecture/discussion—2 hours. Prerequisite: Microbiology 290A or consent of instructor. Study of mechanisms involved in microbial interactions within a host environment. Understanding the following principles are basic to understanding these interactions: host recognition, invasion, competition and growth, and host defense.

209. Current Immunology (2) I, II, III, Van de Water
Discussion—2 hours. Prerequisite: consent of instructor. Current developments in various aspects of immunology and their interrelationships. May be repeated for credit. (SU grading only.) (Same course as 409.)

*215. Medical Parasitology (5) I. Theis
Lecture—3 hours; laboratory—6 hours. Prerequisite: graduate students with consent of instructor. Epidemiological, pathogenesis, diagnostic methods and laboratory studies of protozoa, helminths and arthropods of medical importance. Offered in alternate years. (Same course as 415.)

220. Current Concepts in Bacterial Ultrastructure (2) II. Beanam
Discussion—2 hours; student presentations; term paper. Prerequisite: Microbiology 290A or consent of instructor. Critical evaluation of current literature dealing with all aspects of bacterial ultrastructure. Discussion of selected and assigned reading and formal student presentations of assigned topics.

*Course not offered this academic year.
Medical Pharmacology and Toxicology (PHA)

Lower Division Courses

92. Internship in Pharmacology (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Internship—3-36 hours; final report. Prerequisite: lower division student with good academic standing; approval of project prior to period of internship. Supervised work experience in pharmacology and related fields. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: lower division standing. (P/NP grading only.)

Upper Division Courses

100. Survey of Pharmacology (2) I. Hollinger
Lecture—2 hours. Prerequisite: introductory physiology or the equivalent, or consent of instructor. Survey of the principles underlying the action of drugs; consideration of the pharmacology of prescription and non-prescription drugs commonly used to treat medical conditions in children of school age; pharmacological aspects of drug dependence and related topics. Offered in alternate years.

192. Internship in Pharmacology (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Internship—3-36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in pharmacology and related fields. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Advanced General Pharmacology (3) I. Hance and staff
Lecture—4 hours. Prerequisite: upper division courses in biochemistry (101A-101B) and mammalian physiology (111A-111B and 112-113) or the equivalent (may be taken concurrently). Core course in human pharmacology designed for graduate and medical students. Principles in pharmacology, including pharmacokinetics and drug metabolism and the actions, use and toxicity of the major classes of drugs.

200B. Advanced General Pharmacology (4) II. Stark and staff
Lecture—4 hours. Prerequisite: upper division courses in biochemistry (101A-101B) and mammalian physiology (111A-111B and 112-113) or the equivalent (may be taken concurrently). Core course in human pharmacology designed for graduate and medical students. The actions, use and toxicity of major classes of drugs. Continuation of course 200A.

203. Pharmacology of the Nervous System: Stimulants and Anticonvulsants (2) I. Stark
Lecture—2 hours. Prerequisite: courses 200A-200B or 400A-400B, or the equivalent. Pharmacology of stimulant and convulsant agents, anticonvulsant agents and their evaluation in animal models. Offered in alternate years.

204. Pharmacology of the Nervous System: Drug Alteration of Behavior (1-3) II. K.F. Kiliam
Lecture—2 hours. Prerequisite: courses 200A-200B or 400A-400B, or the equivalent. Activity of drugs altering mood and behavior. Evaluation of mood-altering drugs. Offered in alternate years.

206L. Pharmacokinetics Laboratory (2) I. Henderson
Laboratory—4 hours. Prerequisite: course 206 (may be taken concurrently). Laboratory procedures for determining pharmacokinetic values in experimental animals. Experiments designed to follow subject matter sequence of course 206. Offered alternate years.

297T. Tutoring in Pharmacology (1-3) I, II, III. The Staff (Chairperson in charge)
Tutoring—9 hours. Prerequisite: courses 200A-200B and 206AL-206BL, or the equivalent; consent of instructor. Under supervision of the instructor, students assist in preparation and teaching of courses in Pharmacology. (S/U grading only.)

298. Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor.

299. Research (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (S/U grading only.)

Professional Courses

400A. Principles of Pharmacology (2.5) I. Hance and staff
Lecture—4 hours for 4 weeks; discussion—2 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Principles in pharmacology, including pharmacokinetics, drug metabolism and the actions, uses and toxicities of the major classes of drugs.

400B. Principles of Pharmacology (6) II. Stark and staff
Lecture—38 hours total; discussion—28 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. The actions, uses and toxicities of the major classes of drugs. Continuation of 400A.

490. Seminar in Pharmacology for Medical Students (1) I, II, III, IV. The Staff Seminar—1 hour. Prerequisite: consent of instructor. Seminar in pharmacology for medical students.

497T. Tutoring in Pharmacology (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Tutoring—3-15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (S/U grading only.)

498. Special Study for Medical Students (1-5) I, II, III, IV. The Staff (Chairperson in charge)
Lecture, directed reading, and/or discussion groups—3-15 hours. Prerequisite: consent of instructor. Special study in pharmacology for medical students. (S/U grading only.)

499. Directed Research for Medical Students (1-12) I, II, III, IV. The Staff (Chairperson in charge)
Laboratory—3-36 hours. Prerequisite: consent of instructor. Directed research in pharmacology for medical students. (S/U grading only.)

Neurology (NEU)

Upper Division Course

199. Individual Special Study and Research (1-4) I, II, III, IV. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Individual special study in neurophysiology and biomedical engineering is offered to qualified students. Studies on psychophysiology, single-unit electrophysiology and instrumentation are offered in Davis. (P/NP grading only.)

Graduate Courses

201. Human Behavioral Neurology (2) I. Robertson
Lecture/discussion—2 hours. Prerequisite: Cell Biology and Human Anatomy 108 or Psychology 108 or 136. Neurobiology of normal and abnormal behavior of humans, based on specific neuroanatomical, neurophysiological, and cognitive parameters. Evaluation of these parameters will be, for example, by application of clinical neurologic, neuropsychologic, and neuroimaging tests.
202. Visuomotor Neurobiology (2) III. Rafal Seminar—2 hours. Prerequisite: course 201, Cell Biol-
yogy and Human Anatomy 203. An overview of neural
mechanisms of visually guided behavior in humans
will examine the integration of visual attention and eye
movements. Performance of normal humans and neu-
rologic patients in reflexive orienting, visual search,
reading and reaching will be considered. Offered in
alternate years.

290. Seminar in Selected Topics (1-4) I, II, III, IV.
Gorrin, Tait Seminar—1 hour. Prerequisite: consent of in-
tuctor. Selected topics in Neuroscience will be offered. (SU grading only.)

298. Group Study (1-45) I, II, III, IV. The Staff (Gabor in charge)
Prerequisite: consent of instructor. For graduate stu-
dents desiring to explore particular topics in depth. Lectures and conferences may be involved. (SU grading only.)

299. Individual Special Study and Research
(1-18) I, II, III, IV. Staff (Richman in charge)
Laboratory—3 to 6 hours. Prerequisite: consent of
structor. Individual special study and research in Neu-
rophysiology and Biomedical engineering is offered at both
Davis and Sacramento Medical Center. (SU grading only.)

Professional Courses

420. Clinical Neurosciences (4) II. Remler and
Staff Lecture—6 hours; laboratory/discussion—5 hours (for
five weeks totaling. Prerequisite: medical student with
approval by Committee on Student Evaluation and
Promotion. Lectures and case discussions of patho-
physiology underlying neurological disorders includ-
ing disorders of development; muscle, nerve, cere-
bral circulation, metabolism, myelin, cortical function,
movement, cerebro-spinal fluid, autonomic function
and special senses. Anatomical basis of clinical test-
ging, nervous system infection, neoplasia and trauma
will be discussed.

450. Clinical Neurology Clerkship (3-6) I, II, III,
IV. Richman and staff
Clinic—full time (4 weeks at UCDMC). Prerequisite:
fourth-year medical student. Essentials of a detailed
neurological examination and principles of differen-
tial neurological diagnosis. Emphasis on common
neurological disorders encountered in practice.

451. Neurology Clerkship (3-6) I, II, III,
IV. The Staff
Clinical activity—full time (2-4 weeks at
Highland General Hospital, Oakland). Prerequisite:
fourth-year medical student. Essentials of detailed
neurological examination and principles of differen-
tial neurological diagnosis. Emphasis on common
neurological disorders encountered in practice.

452. Advanced Clinical Neurology (6) I, II, III,
IV. Richman and staff
Clinical activity—full time (4 weeks). Prerequisite:
completion of four-week Neurology selective and
consent of instructor. Extension of basic Neurology clerk-
ship assignments for students with special interest in
medical disorders of nervous system. By arrange-
ment with department, student may serve as an act-
ing intern. Principles of neurological differential diag-
nosis and therapeutic emphasis emphasized.

453. Advanced Clinical Neurology (6) I, II, III,
IV. Remler and staff
Clinical activity—full time (4 weeks at Highland Gen-
eral Hospital, Oakland). Prerequisite: completion of
four-week Neurology selective and consent of instruc-
tor. Extension of basic Neurology clerkship. Designed
for students with special interest in medical disorders
of the nervous system. By arrangement with depart-
ment, student may serve as an acting intern. Principl-
es of neurological differential diagnosis and ther-
apeutics emphasized.

454. Electroencephalography and Evoked
Potentials (3-18) I, II, III, IV. Gabor, Selay
Clinical activity—full time (2-12 weeks) technique and interpretation. Prerequisite: four-week Neurology clerkship and consent of instructor. Principles of elec-
troencephalographic diagnosis including technical
content of electroencephalography and evoked poten-
tials. Emphasis placed on how these studies are
selected to neurological diagnosis.

455. Child Neurology (6) I, II, III, IV. Goser
Clinical activity—full time (4 weeks). Prerequisite:
satisfactory completion of Internal Medicine 430, Ob-
stetrics and Pediatrics 430, Pediatrics 430 and consent of instructor. Student exposed to children
with disorders of the nervous system, both in outpa-
tient and inpatient services. Cases presented to a
member of faculty, who will discuss clinical find-
ings, differential diagnosis, management and therapy. This course satisfies the fourth year neuro-
science requirement.

456. Cortical Neurology (3-18) I, II, III, IV.
Remler, I. Prerequisite:
Clinical neurological research—full time (12 weeks at
Highland General Hospital, Oakland). Prerequisite:
course 451 or consent of instructor. Student will pursue a small project in clinical neuro-
logic research on higher cortical functions. The
focus is on scientific analysis of behavior in disease states.
Study may be arranged for from two weeks to twelve weeks with unit grading to length of course.

457. Special Topics in Neurology (3-18) I, II, III,
IV. The Staff
Clinical activity—full time (2 to 12 weeks). Prerequi-
site: course 450, 451 or consent of instructor.
Student study areas of special interest in tutorial manner
under supervision of member of faculty with exper-
tise and interest in elected field. Students may elect
tutorial clinical experience with member of staff.

458. Introduction to Neurophysiometric
and Communication Disorders (3) I. Dronkers
Lecture—3 hours; observations, individual projects.
Prerequisite: consent of instructor. Introduction to
cognitive and communication disorders. Includes a sur-
vey of disorders subsequent to brain damage;
management by neurology, neuropsychology, and
speech pathology; and current research on appraisal,
diagnosis, and management. (SU grading only.)

459. Independent Study in Neurogenic
Communication Disorders (1-3) I, II, III, IV.
Dronkers
Conference, observation and data collection—3-9
hours. Prerequisite: consent of instructor. Independ-
ent study of neurogenic communication disorders—
aphasia, dementia, apraxia of speech, dysarthria.
Designed for individual interest and includes discus-
sion, directed reading, research design, data collec-
tion, and preparation of results. (SU grading only.)

464. Advanced Clinical Neurosurgery
(6-18) I, II, III, IV. Pang
Clinical activity—full time (4 weeks). Prerequisite:
surgical management of patients. Neuro-
ological history, examination and diagnostic proce-
dures are emphasized. Students participate in
surgical procedures and are required to attend all
neurosurgical conferences.

465. Clinical Pediatric Neurosurgery (6) I, II,
III, IV. Staff
Clinical activity—full time (4 weeks). Prerequisite: third-
or fourth-year medical student who have satisfactorily
completed course 460, consent of the instructor.
Admission and follow-up of pediatric patients. Neuro-
ological history, examination and diagnostic proce-
dures are emphasized. Students participate in surgical procedures and are required to attend all pediatric neurosurgical conferences.

The Staff (Chairperson in charge)
Clinical activity—full time (3 days per unit; 4 weeks minimum). Prerequisite: third- and fourth-year medical students; consent of instructor. Admission for graduate degree credit. Admission and follow-up of patients. Neurological history, examination and further diag-
nostic procedures emphasized. Students participate
in meaningful aspects of surgical procedures and
attend listed conferences, rounds, and seminars.

465. Neurosurgical Research
(1-18) I, II, III, IV. The Staff (Chairperson in charge)
Clinical activity—full time (4-12 weeks). Prerequisite:
fourth-year medical student having completed a neu-
rosurgical clerkship or consent of instructor. Clerkship in
neurosurgery to be arranged at another institution
with accredited residency program in neurosurgery
under proper supervision.

470. Advanced Clinical Neurosurgery (6-18) I,
III, IV. The Staff (Chairperson in charge)
Clinical activity—full time (4-12 weeks). Prerequisite:
fourth-year medical student at good academic stand-
ing. Student will function as acting intern on neuro-
surgery service. Admission and management of
patients. Neurological history, examination, diagnostic proce-
dures, and surgical management are empha-
sized. Students participate in meaningful aspects of
surgical procedures and attend required conferences
and rounds.

479. Neurosurgery Research
(1-18) I, II, III, IV. The Staff
Clinical activity—full time (4-12 weeks). Prerequisite:
fourth-year medical student at good academic stand-
ing. Student will function as acting intern on neuro-
surgery service. Admission and management of
patients. Neurological history, examination, diagnostic proce-
dures, and surgical management are empha-
sized. Students participate in meaningful aspects of
surgical procedures and attend required conferences
and rounds.

480. Insights in Neurosurgery (1-3) I, II, III, IV.
The Staff
Clinical activity—3 to 9 hours. Prerequisite: first-
and second-year medical students in good academic stand-
ing; consent of instructor. Observation of neuro-
surgical care in emergency room, operating room
and hospital floors, including manner of treatment of a
variety of chronic and acute neurological diseases.
(SU grading only.)

The Staff (Chairperson in charge)
Prerequisite: medical student with consent of instruc-
tor. Student may participate in ongoing neurosurgical projects or may pursue and design independent pro-
jects. (SU grading only.)

Course not offered this academic year.
Obstetrics and Gynecology (OBG)

Upper Division Courses

190. Seminar in Early Mammalian Development (1) I, II, III. Wiley Seminar—1 hour; short paper. Prerequisite: Zoology 100 or the equivalent. Each student will present paper from the recent scientific literature on various research topics in early mammalian development. Short paper will be required at the end of course.

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor (P/NP grading only).

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor (P/NP grading only).

Graduate Courses

290. Current Topics in Research (1) I, II, III, IV. The Staff Seminar—1 hour. Prerequisite: graduate standing and consent of instructor. Selected topics in reproductive biology. (S/U grading only.)

291. Seminar in Early Mammalian Development (1) I, II, III, IV. Wiley Seminar—1 hour. Each student will be asked to present a paper from the recent scientific literature on various research topics in early mammalian development. Short paper will be required at the end of course.

298. Group Study (1-5) I, II, III, IV. Overstreet Prerequisite: graduate standing; consent of instructor.

299. Research (1-12) I, II, III, IV. Overstreet Prerequisite: graduate standing; consent of instructor. (S/U grading only.)

Professional Courses

420. Human Reproduction (2) I, II, III, IV. Wiley Lecture—4 hours (for 6 weeks). Prerequisite: approval by Committee on Student Evaluation and Promotion. Course serves as a bridge between the basic science aspects and clinical aspects of human reproduction. Provides clinically relevant extensions of material introduced in the sciences basic to medicine in anatomy, reproductive physiology and molecular biology genetics.

430. Obstetrics and Gynecology Clerkship (12) I, II, III, IV. Birdsong Clinical activity—45 hours. Prerequisite: medical students with approval by Committee on Student Evaluation and Promotion must be managed by a primary care physician; knowledge of what patients should be referred for opthalmic care. Clinical activity—full time (2 weeks). Prerequisite: consent of instructor. Provides an acquaintance with the fundamentals of routine clinical ophthalmology. 465. Advanced Subspecialty Ophthalmology (6 or 9) I, II, III, IV. Mannis, Keltner, J. Brandt Clinical activity—full time (for 4 weeks). Prerequisite: medical students who have completed either Medical Sciences 430 or course 440 (in third or fourth year); consent of instructor. Provides an acquaintance with the fundamentals of routine clinical ophthalmology.

466. Advanced Subspecialty Ophthalmology (6 or 9) I, II, III, IV. Mannis, Keltner, J. Brandt Clinical activity—full time (for 4 weeks). Prerequisite: medical students who have completed Internal Medicine 430 in third or fourth year; consent of instructor. Participation in ophthalmology/pediatric ophthalmology, diseases of the cornea and external eye, glaucoma and retina. Rotations at UCD Medical Center may be arranged in 6-week units of one semester’s rotation, in combination as arranged with instructors.

480. Insights in Ophthalmology (1-3) I, II, III, IV. J. Brandt and staff Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Clinical exposure in ophthalmology including slide-tape program, patient exposure, and department conferences (i.e., grand rounds and subspecialty conference). (S/U grading only.)

489. Group Study (1-3) I, II, III, IV. The Staff (J. Brandt in charge) Prerequisite: medical students with consent of instructor. Directed reading and discussion. (S/U grading only.)

499. Research in Ophthalmology (1-12) I, II, III, IV. The Staff To be arranged—3-36 hours. Prerequisite: medical students with consent of instructor. Individual re- search on selected topics in optics and visual physiology. (S/U grading only.)

Orthopaedic Surgery (OSU)

Lower Division Course

99. Special Studies for Undergraduates (1-4) I, II, III, IV. The Staff (Martin in charge) Prerequisite: lower division standing and consent of instructor. (P/NP grading only.)

Upper Division Course

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Martin in charge) Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

Professional Courses

421. The Musculoskeletal System (2.5) The Staff Lecture—5 hours (for 5 weeks); laboratory/discus- sion—1 hour. Prerequisite: approval by Committee on Student Evaluation and Promotion. An introduction to the basic and clinical science of orthopaedic surgery and rheumatology.

428. Ambulatory Orthopaedics (3-6) I, II, III, IV. Moehring Clinical activity—full time (2-4 weeks). Prerequisite: third- or fourth-year medical student in good standing and consent of instructor. Introduction to general orthopaedic problems and trauma and their management in an outpatient environment, including the emergency room. Students will conduct orthopaedic examinations, present patients to staff, and lead discussions of treatment regimens. Emphasis placed on orthopaedic physical exam and interpretation of x-rays. Limited enrollment.

462. Community Preceptorship (3-6) I, II, III. Moehring Clinical activity—full time (4 weeks). Prerequisite: third- or fourth-year student in good academic standing and consent of instructor. Designed to acquaint students with private practice of orthopaedics in the community setting. Opportunity to observe and assist private practitioners in office, emergency room and inpatient environment. Preceptorships available in Sacramento and surrounding areas. Student must provide own transportation.

464. Acting Internship (6) I, II, III, IV. Moehring Clinical activity—full time (4 weeks). Prerequisite: third- or fourth-year student in good academic standing; and consent of instructor. Rotation designed to increase basic knowledge of musculoskeletal abnormalities at clinical level. Attention focused on selected case material. For those students who demonstrate proficieney, responsibility will be similar to that of intern.

480. Insights in Orthopaedic Surgery (1-3) I, II, III, IV. Szabo Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Exposure to X-ray, methods and procedures in orthopaedic surgery via attendance at grand rounds, patient case conferences, and group discussions. (S/U grading only.)

481. History of Medicine for Medical Students (1.5) I. Benson Lecture/discussion—2.5 hours (for six weeks). Prerequisite: third- or fourth-year students in the School of Medicine or second-year students with consent of instructor. Overview of the history of medicine.
throughout the world to introduce medical students to landmark accomplishments and key figures in the development of health care and to provide an expanded philosophical perspective on the ever-changing field of modern medicine. (SU grading only.)

499. Orthopaedics Research (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

Otolaryngology (OTO)

Lower Division Courses

192. Internship in Otolaryngology (1-12) I, II, III, IV. Chole and staff
Prerequisite: second-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Obtaining the history, applied anatomy of the regions, and the art of the examination. Head mirror required.

402. Otolaryngology in Family Practice (1) I, II, III, IV. The Staff
Lecture—1 hour; laboratory—1 hour; practical—1 hour total. Prerequisite: second-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Obtaining the history, applied anatomy of the regions, and the art of the examination. Head mirror required.

403. Basic Principles of Reconstructive Surgery I, II. Donald
Lecture—four 2-hour sessions; laboratory—one 2-hour session (5 weeks). Prerequisite: third- or fourth-year medical student with consent of instructor. Formal presentations covering basic principles of reconstructive surgery, including wound healing, treatment of lacerations, skin and bone grafts, flaps, Z-plasties and revision of scars. Laboratory session utilizing animal tissues.

440. Otolaryngology Required Clerkship (3) I, II, III, IV. Brodie
Clinical activity—full time (2 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. Provides fundamental knowledge of otolaryngology diagnostic and therapeutic principles. develops facility with basic Ear, Nose and Throat instruments, provides an understanding of treatment for ear, nose and throat problems manageable by a primary care physician, provides knowledge of what patients should be referred for otolaryngologic care.

Clinical activity—full time. Prerequisite: third- and fourth-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Total involvement in clinical activities of the department.

480. Insights in Otolaryngology (1-3) I, II, III, IV. Brodie
Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Individualized activities (depend upon time available and previous exposure to Ear, Nose and Throat) including observing patient exams, ward rounds and attendance at conferences and grand rounds. (SU grading only.)

490. Journal Seminar (1) I, II, III, IV. Donald, Chole
Lecture/discussion—10 hours total (course given three times per quarter). Prerequisite: fourth-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Monthly review of current otolaryngologic and related literature and recent advances.

498. Individual or Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: advanced undergraduate with consent of instructor. (P/NP grading only.)

Graduate Courses

290C. Research Conference in Otolaryngology (1) I, II. The Staff
Lecture/discussion—1 hour. Prerequisite: graduate students; medical students; advanced undergraduates with consent of instructor. Presentation and discussion of faculty and student research in otolaryngology. (SU grading only.)

291. Principles of Speech, Hearing and Equilibrium (3) II. The Staff
Lecture/discussion—3 hours. Prerequisite: graduate students; medical students; advanced undergraduates with consent of instructor. Presentations by faculty and guest lecturers on anatomy, physiology, and behaviors involved in speech production, hearing, and equilibrium. Each student will be expected to make one class presentation.

296. Group Study (1-5) I, II, III, IV. The Staff
(SU grading only.)

299. Individual Study in Otolaryngology for Advanced Undergraduates (1-5) I, II, III, IV. The Staff
Prerequisite: advanced undergraduate with consent of instructor. (P/NP grading only.)

Professional Courses

401. Clinical Examinations in Otolaryngology (1) I, II, III, IV. Chole
Lecture—1 hour; laboratory—1 hour; practical—1 hour total. Prerequisite: second-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Obtaining the history, applied anatomy of the regions, and the art of the examination. Head mirror required.

402. Otolaryngology in Family Practice (1) I, II, III, IV. Chole
Lecture—10 hours total. Prerequisite: fourth-year medical students and family practitioners with consent of instructor; open to graduate students. Approved for graduate degree credit. Obtaining the history, applied anatomy of the regions, and the art of the examination. Head mirror required.

403. Basic Principles of Reconstructive Surgery I, II. Donald
Lecture—four 2-hour sessions; laboratory—one 2-hour session (5 weeks). Prerequisite: third- or fourth-year medical student with consent of instructor. Formal presentations covering basic principles of reconstructive surgery, including wound healing, treatment of lacerations, skin and bone grafts, flaps, Z-plasties and revision of scars. Laboratory session utilizing animal tissues.

440. Otolaryngology Required Clerkship (3) I, II, III, IV. Brodie
Clinical activity—full time (2 weeks). Prerequisite: consent by Committee on Student Evaluation and Promotion. Provides fundamental knowledge of otolaryngology diagnostic and therapeutic principles. develops facility with basic Ear, Nose and Throat instruments, provides an understanding of treatment for ear, nose and throat problems manageable by a primary care physician, provides knowledge of what patients should be referred for otolaryngologic care.

Clinical activity—full time. Prerequisite: third- and fourth-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Total involvement in clinical activities of the department.

480. Insights in Otolaryngology (1-3) I, II, III, IV. Brodie
Clinical activity—3 to 9 hours. Prerequisite: first- and second-year medical students in good academic standing; consent of instructor. Individualized activities (depend upon time available and previous exposure to Ear, Nose and Throat) including observing patient exams, ward rounds and attendance at conferences and grand rounds. (SU grading only.)

490. Journal Seminar (1) I, II, III, IV. Donald, Chole
Lecture/discussion—10 hours total (course given three times per quarter). Prerequisite: fourth-year medical students with consent of instructor; open to graduate students. Approved for graduate degree credit. Monthly review of current otolaryngologic and related literature and recent advances.

498. Individual or Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: advanced undergraduate with consent of instructor; open to graduate students. Approved for graduate degree credit. Participation in ongoing projects. (SU grading only.)

Pathology (PMD)

Upper Division Courses

192. Internship in Human Pathology (1-12) I, II, III, IV. The Staff
Internship—3 to 9 hours; final project report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in pathology and related fields. (P/NP grading only.)

199. Special Study in Pathology for Advanced Undergraduates (1-5) I, II, III, IV. The Staff
Prerequisite: advanced undergraduate with consent of instructor; open to graduate students. Approved for graduate degree credit. Preservation of evidence, and medical-legal procedures. Introduction to histologic and histochemical, diagnostic, and epidemiological techniques. Stresses mastery of pathophysiology and terminology. Examining gross and microscopic tissue sections is taught. (Course given second five weeks of spring and taken with first-year medical students enrolled in course 410A.) Course not intended for veterinary medical or medical students.

298. Advanced Group Study (1-5) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III, IV. The Staff
Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

404. Forensic Pathology (2) I, II, III, IV. Ellis
Laboratory—9 to 10 hours. Prerequisite: medical student or consent of instructor. Orientation to current forensic cases with emphasis on differential diagnosis, preservation of evidence, and medical-legal procedures. Introduction to histologic, diagnostic, bal- listics, and toxicology. (SU grading only.)

405. Brain-Cutting Conference (1-4) I, II, III, IV. Ellis
Prerequisite: third- and fourth-year medical students or consent of instructor. Current specimens are sectioned, discussed, and clinical correlations proposed.

407. Diseases of the Nervous System (1-3) I, II, III, IV. Ellis
Lecture—1 hour; discussion—1 hour; seminar—1 hour. Prerequisite: third- and fourth-year medical students or consent of instructor. Study of human nervous system reactions to disease including infection, neoplasia and maldevelopment; application of experimental models to human disease; and clinical correlations. Seminars emphasize microscopic findings in current cases; discussions include individualized experience in neuropathologic techniques. Given jointly with the Department of Neurology and Neurosurgery.

408. Basic Diagnostic Anatomic Pathology (1-12) I, II, III, IV. Howell
Discussion—1 hour; laboratory—3 to 24 hours. Prerequisite: third- or fourth-year medical student and consent of instructor. Rotation through autopsy, surgical pathology, and cytology laboratories with participation in diagnostic activities under supervision. Additional correlational discussions of case studies with clinical material, gross, microscopic, and laboratory findings. (SU grading only.)

410A-410B. General/Systemic Pathology (4.5, 7.5) III-IV. Miller, Jensen
Lecture—30, 30 hours total; laboratory/discussion—25, 90 hours total; autotutorial—0, 5 hours total. Prerequisite: approval by Committee on Student Evaluation and Promotion. In-depth study of disease and its causes related to the general mechanisms of disease and each of the specific human organ systems. Concepts of pathophysiology applicable and required for clinical diagnosis. (Deferred grading only, pending completion of sequence.)

464. Advanced Surgical Pathology (6-12) I, II, III, IV. Gandour-Edwards
Clinical activity—full time (4-8 weeks). Prerequisite: third- or fourth-year medical student and consent of instructor. Designed to provide an intensive experience in surgical pathology with emphasis on applications to clinical practice. Students will participate in grossing specimens, frozen sections, microscopic sign-out, conferences, and clinicopathologic correlations. (SU grading only.)

*Course not offered this academic year.
Chairperson in charge

nursery/ambulatory or inpatient services at UCDMC and affiliated clinical sites. Rounds, conferences, student presentations ongoing.

The Staff

Tutoring—3–15 hours. Prerequisite: advanced standing or consent of instructor. Assist instructor by tutoring medical students in preparation for one of the departmental courses that is a component of the required curriculum of the School of Medicine. (SU grading only.)

499. Research (1-18) I, II, III, IV. The Staff

Prerequisite: medical student with consent of instructor. Research in experimental, molecular, comparative, and applied pathology. Limited enrollment. (SU grading only.)

PEDIATRICS (PED)

Upper Division Course

199. Special Study in Pediatric Research (1-5) I, II, III, IV. The Staff (Chairperson in charge)

Prerequisite: undergraduate student with consent of instructor based upon adequate preparation as determined by instructor. (F/P grading only.)

Graduate Course

299. Pediatric Research (1-12) I, II, III, IV.

The Staff (Chairperson in charge)

Prerequisite: graduate students who are candidates for a degree in some area of biology or behavioral sciences; consent of instructor. (SU grading only.)

Professional Courses

401. Preceptorship in Pediatrics (2) I, II, III, IV. Chairperson in charge

Preceptorship—half time. Prerequisite: second-year medical student or first-year medical student with consent of instructor. Opportunity to observe and participate in primary medical care in a practicing pediatrician’s office. Participation in history-taking and physical examination will be at discretion of preceptor and dependent on student’s experience. Evaluation by student.

Clinical activity—full time (2 to 12 weeks). Prerequisite: third- or fourth-year medical student; course 430; consent of preceptor and Chairperson. Opportunity to participate in practice of preceptor, performing such tasks as history taking, physical examination, and patient management.

430. Pediatric Clerkship (12) I, II, III, IV. Hansen

Clinical activity—45 hours. Prerequisite: medical students with approval by Committee on Student Evaluation and Promotion. Four-week clinical clerkship providing students with the opportunity to learn fundamentals of caring for the pediatric patient by participating in nursing, ambulatory and inpatient services at UCDMC and affiliated clinical sites. Rounds, conferences, student presentations ongoing.

433. Pediatric Continuum Clerkship (6) I, II, III, IV. Hansen

Clinical activity—full time (for 4 weeks). Prerequisite: completion of first and second year medical curriculum. Four-week clinical clerkship providing opportunity to learn fundamentals of caring for the pediatric patient by participating in nursing/ambulatory and inpatient services at UCDMC and affiliated clinical sites. Rounds, conferences, student presentations ongoing.

460A. Acting Internship: General Inpatient Pediatric Clerkship (6-18) I, II, III, IV. Connors

Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of course 430 with grade of B or better; letter of recommendation from Pediatrics faculty member. The Ward Acting Intern functions in a manner similar to that of a pediaactic intern. The Acting Intern takes call, provides initial management and is expected to take night call. The Acting Intern can expect to manage between six and ten patients at a time. Limited enrollment.

460B. Acting Internship: Outpatient Pediatrics (3-18) I, II, III, IV. The Staff (Chairperson in charge)

Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of course 430 with grade of B or better; letter of recommendation from Pediatrics faculty member. Supervised experience in pediatric care on outpatient service at UCD Medical Center. Student functions as “Acting Intern” with appropriate supervision by residents and attending faculty. Limited enrollment.

461. Elective in Hematology/Oncology (3-18) I, II, III, IV. Ducore

Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Inpatient and outpatient experience in diagnosis and management of hematologic disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.

462. Elective in Pediatric Endocrinology (3-18) I, II, III, IV. Connors and staff

Clinical activity—full time (2 to 12 weeks). Prerequisite: completion of second-year study or the equivalent; consent of instructor. Inpatient and outpatient experience in diagnosis and management of endocrine disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.

464. Acting Internship in Neonatology (6-18) I, II, III, IV. Merritt

Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of course 430 with grade of B or better; letter of recommendation from Pediatrics faculty member. Diagnostic and therapeutic aspect of the medical and surgical high-risk neonate. Student expected to take night call. Limited enrollment.

465. Pediatric Specialty Clinic Elective (3-18) I, II, III, IV. The Staff (Chairperson in charge)

Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Supervised experience in a variety of pediatric subspecialty clinics. Limited enrollment.

466. Elective in Pediatric Cardiology (3-18) I, II, III, IV. Parrish

Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430. Inpatient and outpatient experience in diagnosis and management of cardiologic disorders in children. Laboratory experience and participation in clinical investigation may be arranged.

467. Elective in Pulmonary Medicine (3-18) I, II, III, IV. McDonald, Joad

Clinical activity—full time (2 to 12 weeks); daily rounds, two weekly half-day clinics. Prerequisite: pediatric clerkship. Inpatient and outpatient management of pediatric patients with pulmonary diseases. These will include but will not be limited to cystic fibrosis, asthma, and other forms of chronic pulmonary diseases as well as congenital abnormalities.

468. Elective in Pediatric Nephrology (3-18) I, II, III, IV. Makker

Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Inpatient and outpatient experience in diagnosis and management of renal disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.

469. Elective in Pediatric Infectious Disease (3-18) I, II, III, IV. Weinman

Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Inpatient and outpatient experience in diagnosis and treatment of infectious disease of infants and children. Laboratory and clinical investigation may be arranged. Limited enrollment.

470. Elective in Pediatric Neurology (3-18) I, II, III, IV. Gospe

Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430, Internal Medicine 430 and Pediatrics 430 and consent of instructor. Inpatient and outpatient experience in diagnosis and management of neurological disorders in children. Students will also participate in other pediatric specialty clinics which serve children with neurological disorders. This course does not satisfy the fourth year neurology requirement. Limited enrollment.

471. Elective in Pediatric Gastroenterology (3-18) I, II, III, IV. Marlowe

Clinical activity—full time (2 to 12 weeks). Prerequisite: satisfactory completion of course 430; consent of instructor. Inpatient and outpatient experience in diagnosis and management of gastroenterology disorders in children. Laboratory experience and participation in clinical investigation may be arranged. Limited enrollment.

474. Acting Internship in Pediatric Intensive Care (6-18) I, II, III, IV. Dimand

Clinical activity—full time (4 to 12 weeks). Prerequisite: completion of course 430 with grade of A or consent of instructor. Supervised experience in Pediatrics faculty member. Evaluation and support of critically ill infants and children. In general, student expected to take night call every third night during rotation. Limited enrollment.

499. Research Topics in Pediatrics (1-18) I, II, III, IV. The Staff (Chairperson in charge)

Prerequisite: student in Medical School with consent of instructor. Individual research project in pediatric subspecialty areas (cardiology, endocrinology, neurology, metabolism, newborn physiology and others) may be arranged with faculty member. Independent research by student will be emphasized and long-term projects are possible. (SU grading only.)

Physical Medicine and Rehabilitation (PMR)

Upper Division Courses

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Chairperson in charge)

Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Chairperson in charge)

Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

Graduate Course

299. Research (1-12) I, II, III, IV. The Staff

Prerequisite: consent of instructor. (SU grading only.)

Professional Courses

440. Rehabilitation Medicine Clerkship (3) I, II, III, IV. McDonald

Clinical activity—full time (2 weeks). Prerequisite: Third- or fourth-year medical student; approval by Committee on Student Evaluation and Promotion. Rehabilitation medicine and geriatrics relating to comprehensive care of the physically disabled and the physical medicine management of neuromuscular and musculoskeletal disorders. Physiological effects, indications and contraindications of therapeutic modalities and their application to common musculoskeletal disorders.

461. Rehabilitation Medicine Clinical Elective (3-18) I, II, III, IV. Klimmer

Clinical activity—full time. Prerequisite: completion of third year in Medical School; Internal Medicine 430, Surgery 430. Intended for non-UC medical students. Emphasis on evaluation of patients with neurological or orthopedic problems requiring rehabilitative techniques for their management. Introduction to management of such patients. Fourth-year student may...
function as acting intern on Physical Medicine and Rehabilitation service.

462. Rehabilitation Medicine Clinical Elective (5-18) I, II, III, IV, Kilmer Clinical activity—full time. Prerequisite: Internal Medi-
cine 430, Surgery 430; completion of third year in Medical School. Emphasis on evaluation of patients with neu-
rological or orthopaedic problems requiring rehabilitative techniques for their management. Intro-
duction to management of such patients. Physical Medicine and Rehabilitation at off-campus facility must be approved by Chairperson.

498. Advanced Group Study (1-5) I, II, III, IV. The Staff Prerequisite: consent of instructor. Study and experi-
ence for medical students in any of a number of areas in physical medicine and rehabilitation. (SU grading only.)

499. Research for Medical Students (1-12) I, II, III, IV. The Staff Prerequisite: consent of instructor. Research on any of a number of medical and surgical problems. (SU grading only.)

Plastic Surgery (PSU)

Professional Courses

460. Clinical Plastic Surgery Elective (1-18) I, II, III, IV. Stevenson Prerequisite: third- or fourth-year medical stu-
dents; Surgery 430; consent of instructor. Total involve-
ment in patient care including surgical preparation, treat-
tment, operative care, and follow-up. Developing and understanding reconstruction and aesthetic plast-
cic surgery. Microsurgical surgery included. Student rotation.

*461. Dentistry for Future Physicians and Surgeons (6-51) I, II, III, IV. Thaller Discussion/seminar—3 hours; laboratory—2 hours; clinic activity—full time (4-6 weeks). Prerequisite: third- or fourth-year medical students. General practi-
tioners must recognize dental-related problems, have the ability to alleviate potential pain, and be able to refer these problems for further definitive evaluation and treatment. Students will have basic knowledge of dentistry; recognize potential dental problems; pro-
vide emergency care; have knowledge of where to refer these problems. (SU grading only.)

Psychiatry (PSY)

Upper Division Courses

198. Directed Group Study (1-5) I, II, III, IV. The Staff (Servis in charge) Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Servis in charge) Prerequisite: advanced standing and consent of instructor. (P/NP grading only.)

Graduate Courses

*226. Psychiatric Implications of Legal Intervention (2) I. Yarvis Discussion—2 hours. Prerequisite: consent of instruc-
tor. The influence of laws on human behavior, and vice versa, will be explored. Particular emphasis on youth and juvenile court procedure. Moot court demonstra-
sions.

298. Directed Group Study For Graduate Students (1-5) I, II, III, IV. The Staff (Servis in charge) Prerequisite: graduate standing and consent of instructor. (SU grading only.)

401. Medicine and the Mind: An Introduction to Psychiatry (2) I. Keasey Lecture/discussion—3 hours. Prerequisite: approval by Committee on Student Evaluation and Promotion. Introduction to concepts and clinical applications of psychiatry throughout the human life cycle. Includes tutorials tailored to individual student inter-
ests which will explore the biological, psychological, social, and cultural factors influencing health and ill-
ness. Includes lecture and video presentations as well as group discussion.

402. Human Sexuality (1) VI. Keasey Lecture—2 hours; discussion—2 hours (4 weeks). Prerequisite: approval by Committee on Student Eval-
uation and Promotion. Normal and variant human sexual-
ity. The focus will be on understanding human sexual function in health and illness. (SU grading only.)

403. Psychopathology (3.5) VI. Feinberg and Leamon Lecture—6 hours; discussion—2 hours (5 weeks). Prerequisite: approval by Committee on Student Eval-
uation and Promotion. Introduction to basic aspects in mental/emotional dysfunction. Focus on understand-
ing the development and symptomatology of major forms of psychiatric dysfunction.

412. Psychiatry Grand Rounds (1) I, II, III, IV. Cox and staff Lecture—1 hour. Prerequisite: medical students or staff or other qualified mental health professionals with consent of instructor. Weekly conference at UCD Medical Center for presentation of selected clinical cases, presentation of lecture and research reports.

413. Outpatient Psychiatry Clerkship (6-12) I, II, III, IV. Cox and staff Clinical activity—full time (4 to 8 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or con-
sent of instructor. Experience in clinical manage-
ment/treatment of adult outpatients with psychiatric and substance abuse disorders; crisis management/ intervention, evaluation/development of diagnosis and treatment plan; emphasis on outpatient psychophar-
macology/brief psychotherapy; observation of group therapy. Individual supervision by faculty/residents.

414. Consultation-Liaison Clerkship (6-12) I, II, III, IV. Cox and staff Clinical activity—full time (4 to 8 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or con-
sent of instructor. Students function as member of the team in evaluation, management, and psychiatric lia-
ison with other medical specialties. Intensive supervi-
sion from senior staff and psychiatric residents.

415. Substance Abuse: Diagnosis and Treatment (3) I, II, III, IV. Barglow Clinical activity—20 hours; independent study—15 hours; lecture/discussion—5 hours. Prerequisite: medical student with consent of instructor. Two-week selective offering supervised contact with patients addicted to alcohol, opioids, cannabis, or psycho-
stimulants. Sites: Travis Air Force Base and regional Methadone and Alcohol Treatment Programs. Phar-
macological, psychosocial, “12-step*“ and behavioral treatments will be demonstrated. (SU grading only.)

416. Child Psychiatry Clerkship (6-12) I, II, III, IV. Cox and staff Clinical activity—full time (4 to 8 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or con-
sent of instructor. Didactic and clinical experience in pediatrics, outpatient, and consultation-liaison experiences with children, adolescents and families. Clinical observa-
tions, diagnostic assessment, and treatment will be undertaken with close supervision. Literature review and casework experience provided on a regular basis.

417. Jail Psychiatry Clerkship (6 or 12) I, II, III, IV. Cox and staff Clinical activity—full time (4 to 8 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or con-
sent of course coordinator. Students gain experience, under close faculty supervision, assessing acute and chronic mentally ill inmates in both inpatient and clinic settings.

418. Off-Campus Clinical Experience (6-12) I, II, III, IV. Cox and staff Clinical activity—full time (4 to 8 weeks). Prerequisite: completion of Medical School and consent of instructor. Clinical or research elective in off-campus medical school or mental health setting. To be arranged with advance approval of instructor and individual in charge of off-campus setting.

420. Acting Internship in Psychiatry (6-12) I, II, III, IV. Cox and staff Clinical activity—full time (4 to 8 weeks). Prerequisite: course 430 (Psychiatry Core Clerkship) and/or con-
sent of course coordinator. Acting intern position with close faculty supervision with emphasis on biological psychiatry, psychopharmacology and psychody-
namic aspects appropriate to diagnostic and long-
term patient management.

422. Readings in Psychiatry (1-3) I, II, III, IV. Cox and staff Readings/discussion—3 to 9 hours. Independent reading of a selected topic in psychiatry. Supervision and discussion with a psychiatry faculty member. (SU grading only.)

430. Psychiatry Clinical Clerkship (12) I, II, III, IV. Cox Clinical activity—45 hours. Prerequisite: medical stu-
dents with approval by Committee on Student Evaluation and Promotion. Students are assigned to clinical settings; building upon the skills gained in preclinical years, with an emphasis on diagnostic, therapeutic, and interpersonal skills. Focus on patient management; interviewing skills, mental status exam, differential diagnosis, basic psychopharmacology, crisis assessment and intervention.

433. Psychiatry Continuum Clerkship (6) I, II, III, IV. The Staff Clinical activity—full time (4 weeks). Prerequisite: completion of all required coursework of first and sec-
ond year medical curriculum. Practice in clinical set-
gings, building upon the skills gained in preclinical years, with an emphasis on diagnostic, therapeutic, and interpersonal skills. Areas of focus: patient man-
agement, interviewing skills, mental status exam, difer-
ential diagnosis, basic psychopharmacology, crisis assessment, and intervention.

480. Insights in Psychiatry (1-3) I, II, III, IV. Cox Clinical activity—3 to 9 hours. Prerequisite: first- or sec-
ond-year medical student in good academic stand-
ing; consent of instructor. On individual basis, provided with an opportunity for gaining insight into various clinical activities in the practice of psychiatry. (SU grading only.)

498. Directed Group Study (1-5) I, II, III, IV. Servis and staff Prerequisite: consent of instructor. Approved for graduate degree credit. Medical students desiring to explore particular topics in depth. (SU grading only for graduate or medical students.)

499. Research (1-12) I, II, III, IV. Maddock and staff Prerequisite: consent of instructor. Approved for graduate degree credit. Individual research on selected topics or research projects. (SU grading only for graduate or medical students.)

Radiation Oncology (RON)

Graduate Course

299. Independent Study and Research (1-12) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: enrollment with Biophysics Group for Ph.D. candidacy, and consent of group adviser and sponsor. (SU grading only)

Professional Courses

643. Radiation Oncology Clerkship (3-9) I, II, III, IV. Castro, Ryu, Wilder Clinical activity—full time (2-6 weeks). Prerequisite: completion of Medical School and consent of instructor. Clinical clerkship, consent of instructor required. Intro-
duction to radiation oncology. Students will participate in workup and treatment planning for radiation oncol-

*Course not offered this academic year.
ogy patients and will be introduced to the concepts involved in clinical radiation oncology, radiation biology, and radiation physics.

141. Radiological Diagnosis II (Physics of Diagnostic Radiology) (5) I. Seibert, Boone Lecture—49 hours total; laboratory—6 hours total. Prerequisite: consent of instructor. Physics of diagnostic imaging; x-ray production and interaction; image formation; modulation transfer function; fluoro-scopic; cine fluoroscopy; stereoscopic; xeroradiography; computerized and geometrical tomography; magnetic-resonance and ultrasound. Principles of radiation protection in imaging will be covered. (SU grading only.)

414. Medical Radiation Biology (3) II. Bushberg Lecture—27 hours total. Prerequisite: consent of instructor. Medical radiation biology; molecular cellular and organ system response to acute and chronic irradiation; radiation carcinogenesis and genetic effects; radiation risk assessment; diagnostic ultrasound and magnetic resonance imaging health effects. Medical/legal considerations of radiation exposure. Offered in even numbered years only. (SU grading only.)

*415. Radiopharmacy (3) III. Vera Lecture—3 hours. Prerequisite: consent of instructor. Fundamentals of radiopharmaceutical science including radiochemistry; radiopharmaceutical production; theory, applications; mechanisms of localization, radionuclide and radiopharmaceutical drug applications and related regulatory aspects. Offered in alternate years. (SU grading only.)

461. Clinical Clerkship in Diagnostic Radiology (1-18) I, II, III, IV. Greenspan Clinical activity—full time (3 days per unit). Prerequisite: completion of third year of Medical School; consent of instructor. Student works with radiologists at UC Davis Medical Center in film reading sessions and radiological procedures; includes fluoroscopy, vascular radiology and special investigations. Includes daily individual teaching sessions with faculty radiologists, radiology learning laboratory, and all-radiology conferences and seminars. Limited enrollment.

498. Group Study in Diagnostic Radiology (1-12) I, II, III, IV. The Staff Prerequisite: consent of instructor. Approved for graduate degree credit. (SU grading only for medical students.)

198. Directed Group Study (1-5) I, II, III, IV. The Staff (S. DeNardo in charge) Prerequisite: upper division standing and consent of instructor. (PNP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III, IV. The Staff (Stadnik in charge) Prerequisite: upper division standing and consent of instructor. (PNP grading only)

Graduate Course

299. Research: Special Study for Graduate Students (1-12) I, II, III, IV. The Staff (Director in charge) Prerequisite: graduate standing and consent of instructor. (SU grading only.)

Professional Courses

401. Biomedical Radiochemistry (3) III. The Staff Lecture—2 hours; laboratory—3 hours. Prerequisite: open to graduate and medical students; consent of instructor. Approved for graduate degree credit. Course is designed to combine basic nuclear physics, chemistry, and biology into a comprehensive and vigorous lecture-laboratory experience in biomedical nuclear chemistry. Subjects include choice and purification of appropriate gamma and beta radioisotopes, compounding biological pharmacodynamics and radioimmunoassay. (Same course as 401.)

411. Radiological Physics I (Physics of Nuclear Medicine) (5) I. Bushberg, Vera Lecture—43 hours total; laboratory—12 hours total. Prerequisite: consent of instructor. Physics of diagnostic and therapeutic nuclear medicine, nuclear physics, radioactive decay; interaction of ionizing radiation; dosimeters, attenuation; internal and external dosimeter; health physics; radiation detection and imaging, scintillation cameras, computerized planar and tomographic imaging. Offered at UC Davis Medical Center. Offered in alternate years. (SU grading only.)

463. Clinical Clerkship in Nuclear Medicine (9 or 18) I, II, III, IV. Shelton Clinical activity—full time (3 days per unit). Prerequisite: satisfactory completion of second year of Medical School or the equivalent; consent of instructor. Clerkship correlates radioisotopic methods with clinical problems and participate in their care.

499. Research: Special Study for Graduate Students (1-12) I, II, III, IV. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Approved for graduate degree credit. (SU grading only for medical students.)

Surgery (SUR)

Upper Division Courses

192. Internship in General Surgery (1-12) I, II, III, IV. The Staff Internship—3-36 hours. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in general surgery and related fields. (PNP grading only.)

199. Special Study in General Surgery for Advanced Undergraduates (1-5) I, II, III, IV. The Staff Prerequisite: upper division standing and consent of instructor. (PNP grading only)

Graduate Course

299. Research (1-12) I, II, III, IV. Wolfe in charge Prerequisite: graduate standing and consent of instructor. (SU grading only.)

468. Cardiothoracic Surgery Clerkship (6-9) I, II, IV. Sendler. Clinical activity—full time (4 to 6 weeks). Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Student works as an extern on the Cardiothoracic Surgical Service, participating in perioperative management and operations on the heart, lungs, mediastinum, and other thoracic structures. Regularly scheduled teaching conferences are conducted.

469. Trauma Service: East Bay (6-9) I, II, III, IV. Organ and staff. Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430 and Internal Medicine 430. Student works as an extern on the Trauma Service at Highland General Hospital (Oakland) participating in resuscitation and management of critically injured patients. Team hours consist of 24 hours on and 24 hours off.

470. General Surgery: East Bay (6-9) I, II, III, IV. Organ. Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430. Student will work as an extern on one of the two general surgery services and participate in the preoperative, operative and post-operative management, and post-operative care of surgical patients.

473. Surgery Intensive Care Unit (6-9) I, II, III, IV. Organ. Clinical activity—full time. Prerequisite: fourth-year medical student or third-year medical student with completion of course 430 and Internal Medicine 430. Student functions as an extern on the ICU service, participating in the clinical management of critically ill patients in the ICU and participating in ICU procedures with appropriate supervision.

478. Surgical Preceptorship: Off Campus (6-18) I, II, III, IV. Holcroft. Clinical activity—full time. Prerequisite: fourth-year medical student and consent of instructor. Student participates in the preoperative, operative and post-operative care of surgical patients under the supervision of attending staff.

480. Insights in Surgery (1-3) I, II, III, IV. The Staff. Clinical activity—3 to 9 hours. Prerequisite: medical student in good academic standing and consent of instructor. Individualized activities, including ward rounds, subspecialty clinics and conferences, grand rounds, and observation of a variety of surgical procedures. (S/U grading only.)

494H. Fourth-Year Surgical Honors Program (18) I, II, III, IV. Holcroft. Prerequisite: completion of third year of Medical School with superior performance on course 430; consent of instructor. To provide intensive and comprehensive training in surgery to students interested in postgraduate surgical career, that would enable them to succeed during the internship and residency training. (S/U grading only.)

498. Group Study (1-5) I, II, III, IV. Prerequisite: medical student; consent of instructor. Directed reading and discussion and/or laboratory investigation on selected topics. (S/U grading only.)
45. Management and Diseases of Captive Wildlife (2) I, Phillips

Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Defining the role of the veterinarian in the health care and management of captive wildlife species in both private and zoological collections. Lecture time concentrates on nondomestic mammalian species stressing a preventive medical approach, including management of captive environments, infectious and noninfectious disease, anesthesiology, diagnostic techniques/approaches.

46. Aquatic Animal Medicine (2) III. Hedrick

Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Etiology, pathology, diagnosis, treatment and prevention of diseases affecting some aquatic arthropods and mammals. Preventive management of diseases in aquaculture.

47. Companion Avian Medicine (2) II. Tell

Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Diseases, diagnostics, medical management and surgery of psittacine species. Avian nutrition, husbandry, and management.

421. Veterinary Dermatology (0.75 per week) I, III. Stannard

Laboratory—25 hours. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the VM Teaching Hospital and outpatient clinics under the direction of the senior staff of the hospital. May be repeated for credit. (SU grading only.)

405. Small Animal Medicine (1 1/2 per week) I, II, III.

The Staff (Smith in charge)

Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the wards and outpatient clinics including history taking, physical examinations, laboratory tests, special diagnostic and therapeutic procedures, and consultations, under the direction of the senior staff. May be repeated for credit. (SU grading only.)

402. Large Animal Medicine (1 1/2 per week) I, II, III.

The Staff (Smith in charge)

Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the wards and outpatient clinics including history taking, physical examinations, laboratory tests, special diagnostic and therapeutic procedures, and consultations, under the direction of the senior staff. May be repeated for credit. (SU grading only.)

401. Small Animal Clinics (1 1/2 per week) I, II, III.

The Staff (Ling in charge)

Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the wards and outpatient clinics including history taking, physical examinations, laboratory tests, special diagnostic and therapeutic procedures, and consultations, under the direction of the senior staff. May be repeated for credit. (SU grading only.)

398. Group Study (1-12) I, II, III.

The Staff

Laboratory—50 hours total. Prerequisite: professional standing, resident in Veterinary Medical Teaching Hospital, or consent of instructor. Residents responsible for the medical care of patients in the wards and outpatient clinics including history taking, physical examinations, laboratory tests, special diagnostic and therapeutic procedures, and consultations, under the direction of the senior staff. May be repeated for credit. (SU grading only.)

396. Clinical Hay Diseases (2) II, III.

Scott

Laboratory—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Etiology, pathology, and clinical presentation, diagnostic evaluation, treatment, prevention, and control of important infectious and noninfectious diseases of cows and horses. A problem-oriented approach for disease diagnosis and clinical management. Emphasis on clinical diagnosis and treatment of bovine and equine patients. (SU grading only.)

395. Equine Medicine (2) I.

K. Cowgill

Lecture—25 sessions; discussion—19 sessions; laboratory—5 sessions. Prerequisite: Veterinary Medicine 447 and course 448A. Medical diseases of the dog and cat. Differential diagnosis of common signs and symptoms in small animal veterinary practice. Emphasis on integration of the systemic organ systems approach to medical diagnosis.

394A. Large Animal Medicine–Level I (6.1) I.

J. Wilson

Lecture—5 hours (for 12 weeks). Prerequisite: Veterinary Medicine 447. Fundamental principles, clinical manifestations, diagnostic methods and therapeutic approaches to the medical diseases of the dog and cat. Course is a core option in the veterinary medical curriculum and preparatory for advanced courses in small animal medical diagnosis and therapeutics.

394B. Small Animal Medicine–Level II (5.3) II.

K. Cowgill

Lecture—29 sessions; discussion—19 sessions; laboratory—5 sessions. Prerequisite: Veterinary Medicine 447 and course 448A. Medical diseases of the dog and cat. Differential diagnosis of common signs and symptoms in small animal veterinary practice. Emphasis on integration of the systemic organ systems approach to medical diagnosis.

444A. Large Animal Medicine–Level I (6.1) I.

M. Wilson

Lecture—5 hours (for 12 weeks). Prerequisite: Veterinary Medicine 447. Instruction in the etiology, pathophysiology, epidemiology, clinical presentation, diagnostic evaluation, treatment, prevention, and control of important infectious and noninfectious diseases of cows and horses. A problem-based approach to differential diagnosis will be emphasized. Emphasis on the diagnostic approach to small animal internal medicine.

449B. Level II Advanced Equine Medicine (4.9) II.

M. Madigan

Lecture—49 hours total. Prerequisite: course 449A. In-depth study of the medical aspects of equine practice including large and small farm management practices, sports medicine principles and applications, perinatology and neonatology, and the etiology, epidemiology and control of various infectious and noninfectious conditions of the equine.

449L. Level II Advanced Equine Medicine Laboratory (0.6) II. Madigan

Laboratory—6 sessions. Prerequisite: course 449A, course 448B concurrently. Clinical presentation and instruction in treatment of the medical aspects of equine practice. (SU grading only.)

450. Small Animal Clinical Immunology (2.2) II.

J. Pedersen

Lecture—16 hours; laboratory—6 sessions. Prerequisite: basic immunology. Comprehensive discussion of the basic mechanisms of immunologic diseases in animals and description of common immunologic diseases including diagnostic procedures and treatment. Emphasis on small animals and analogous disorders of humans. (SU grading only.)

457. Veterinary Business Management (2) II.

J. Wilson

Lecture—10 two-hour sessions. Prerequisite: third- or fourth-year standing in School of Veterinary Medicine or consent of instructor. Course presents a groundwork of information which is essential to the successful management of a veterinary practice. Topics covered include basic accounting, medical record-
Medieval Studies

(College of Letters and Science)

keeping, money management, business and personal insurance, client relations and tax law. (SU grading only.)

481A-481B-481C. Clinic Rounds (1-1-1) I-III
Ling, Smith
Discussion—1 hour. Prerequisite: first or second year standing in the School of Veterinary Medicine. Discussion of problems of selected small and large animal cases from the Veterinary Medicine Teaching Hospital. May be repeated once for credit. (SU grading only.)

486A. Equine Clinical Neuroatology (1) II
Madigan
Discussion—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Discussion of methods of equine neonatal intensive care and disease pathophysiology in a case format. (SU grading only.)

486B. Equine Clinical Neuroatology (1) III
Madigan
Discussion—1 hour. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Discussion of methods of equine neonatal intensive care and disease pathophysiology in a case format. (SU grading only.)

487. Comparative Bio-Medical: Form and Function (2) I-II III
Ling
Lecture—1 hour, discussion—2 hours. Prerequisite: first or second year standing in the School of Veterinary Medicine or consent of instructor. Introduction and background material for the biological sciences, involving comparative biology recommended concepts for nontraditional animal species or alternative pets, zoos, rehabilitation centers, aquaculture, laboratory animals, and non-human primates. (SU grading only.)

491. Small Animal Grand Rounds (0.5) I, II, III
The Staff (Carlson in charge)
Discussion—1 hour. Prerequisite: professional standing as resident in Veterinary Medical Teaching Hospital or consent of instructor. Residents take an active part in the presentation and discussion of selected cases from the small animal clinic. May be repeated for credit. (SU grading only.)

492. Large Animal Grand Rounds (0.5) I, II, III
The Staff (Carlson in charge)
Discussion—1 hour. Prerequisite: professional standing as resident in Veterinary Medical Teaching Hospital or consent of instructor. Residents take an active part in the presentation and discussion of selected cases from the large animal and ambulatory clinics. May be repeated for credit. (SU grading only.)

493. Seminar In Veterinary Medicine (1) I, II, III
The Staff (Cowgill and Spier in charge)
Seminar—2 hours. Prerequisite: professional standing as resident in Veterinary Medical Teaching Hospital. Seminars given by the faculty of the School of Veterinary Medicine in topics relating directly to the practice of clinical medicine and surgery. Residents will assist in the presentation of seminar material. May be repeated for credit. (SU grading only.)

494. Seminar In Veterinary Law (1) I-III
Committee in Charge
Samuel G. Amstaid, Ph.D. (Spanish)
Dennis Dutschke, Ph.D. (Italian)
Ingeborg Henderson, Ph.D. (German)
Phyllis J. Jeste, Ph.D. (History)
Winder McConnell, Ph.D. (German)
Marjorie Osborn, Ph.D. (English)
Peter Schaeffer, Ph.D. (German)
Brenda Schildgen, (Comparative Literature)
Raymond Waddington, Ph.D. (English)
Affiliated Faculty
Lewis Jellings, Ph.D. (Medieval Studies)
Patricia McKinnon, Ph.D. (Comparative Literature)
Kevin Roddy, Ph.D. (Medieval Studies)
Brenda Schildgen, Ph.D. (Comparative Literature)

The Major Program

The major in medieval studies introduces students to the main features of European civilization during the period from the fall of Rome to the beginnings of the Renaissance. The program involves studies in history, art, philosophy, literature, drama, music, national languages, religious studies, and political theory. The Program. The major gives students a broad view of the period and to allow for the flexibility necessary to accommodate their individual interests. The program offers a series of medieval studies courses providing an excellent introduction to the major, and preparation for advanced work within the individual disciplines. On the upper division level, each student completes coursework in specific areas of history (the fall of Rome to the Renaissance), literature (Old and Middle English, Chaucer, romantic literature including French, German, Italian, Russian, Latin), philosophy and religion, arts and language, and political thought. In addition, each student may complete a senior thesis on some selected aspect of medieval culture. Career Alternatives. The major in medieval studies is a liberal arts degree providing excellent preparation for the rigors of the professional schools as well as careers in law, library science, museology, journalism, and teaching.

A.B. Major Requirements:

Preparatory Subject Matter
Language proficiency is a necessity; courses in Latin and other European languages are strongly recommended, particularly for students planning to pursue graduate studies in the medieval field.

Depth Subject Matter

History, at least 12 units from History 102B, 121A, 121B, 121C, 201B. Preparation for 40 units.
(a) English 111, 113A, 113B, 150A, 188, 189.
(b) French 115, 141.
(c) German 120, 122.
(d) Italian 113, 115A, 115B, 139B, 140.

Philosophy and religion, at least 8 units from Philosophy 105, 132, 145, 146, 190; Religious Studies 102, 110. Preparation for 40 units.

Arts and languages, at least 8 units from Art 176A, 176B, 176C, 177A, 178A, 178B; Dramatic Art 156, German 106; Music 121 (note prerequisite), 199, Rhetoric and Communication 110, 111. Preparation for 40 units.

*Course not offered this academic year.

Political thought, at least one course from Political Science 115, 116, 118A. Preparation for 40 units.

Total Units for the Major. Preparation for 40 units.

Minor Advisers. W. McConnell (German), P. Jeste (History), K. Roddy (Medieval Studies).

Minor Program Requirements:

UNITS

Medieval Studies Preparation for 40 units. Preparation for 40 units.

The minor in Medieval Studies is a coherent program of interdisciplinary study. Medieval Studies units may be taken in one or more of the traditional fields of concentration, including art, drama, history, literature, music, national languages, philosophy, political theory, religious studies and rhetoric. Courses must be upper division and chosen from at least two of these subject areas, and they must be within the three periods of Early Medieval Culture, culture of the High Middle Ages, and Medieval transformations. Students may also select a minor with a thematic emphasis. There is no foreign language requirement for the minor, although knowledge of Latin or a European language is recommended.

The minor must be designed in consultation with a Department Adviser.

Minor Advisers. D.J. Dutschke (Italian), W. McConnell (German), M. Osborn (English), Kevin Roddy (Medieval Studies).

Courses in Medieval Studies (MST)

Lower Division Courses

20A. Early Medieval Culture (4) I, Roddy
Lecture—3 hours; discussion—1 hour. Readings in translation in early medieval culture, such as the Códices Justinian, the Confessiones of Saint Augustine, The Consolation of Philosophy of Boethius, Beowulf, the Nibelungenlied, and the Song of Roland. GE credit: ArtHum, Wrt.

20B. The Culture of the High Middle Ages (4) II, Roddy
Lecture—3 hours; discussion—1 hour. Readings in translation in the culture of the high Middle Ages, such as the Summa Theologica of Thomas Aquinas, the Chronicles of Froissart, The Canterbury Tales of Chaucer, and the Divine Comedy of Dante. GE credit: ArtHum, Wrt.

20C. Medieval Transformations (4) III, Roddy
Lecture—2 hours; discussion—1 hour; paper or formal presentation. Course deals with the great medieval transformations that took place before the Renaissance. Topics will be selected from various disciplines, including such as literature, philosophy, religion, history, art, music, political thought, rhetoric, and other pertinent fields. GE credit: ArtHum, Wrt.

98. Directed Group Study (1-5) I, II, III
The Staff (Chairperson in charge)
(PNP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III
The Staff (Chairperson in charge)
(PNP grading only.)

Upper Division Courses

120A-F. The Medieval World (4) I, II, III, The Staff (Chairperson in charge)
Lecture—3 hours; discussion—1 hour; term paper. Course deals with selected themes from the Middle Ages: the Fall of Rome to the beginning of the Renaissance. Subjects will vary from year to year and cover such topics as
(A) The Monastic Orders;
(B) Origins of Universities;
(C) The Seven Liberal Arts, and their Significance in the Middle Ages;
(D) Family and Society;
(E) Christianity and Church and State.
GE credit for 120A or 120B or 120E: ArtHum, Wrt.
Military Science

College of Letters and Science

Reserve Officers’ Training Corps (ROTC), Army
Ronald R. Porter, L.t. Col., Chairperson of the Department
Department Office, 125 Hickey Gymnasium (916-752-0541)

Faculty
Captain James M. Desjardin, Associate Professor
Captain Bret T. Nominoya, Associate Professor
Lieutenant Colonel Ronald R. Porter, Professor
Major Victor B. Scott, Associate Professor

Program of Study
The Military Science Department offers hands-on training in management and leadership. The program stresses the following leadership dimensions: oral and written communication, human relations, human relations with emphasis on eliminating racial and gender discrimination, management and leadership, and critical discussion of staff research activities.

Military Science is a four-year degree program. All three years of the course are required for graduation, and the course includes a month for 10 months for each year that the scholar is in effect.

The U.S. Army Reserve Officers’ Training Corps four-year Active Duty merit scholarships are awarded to qualified high school seniors in a national competition each year. There are two cycles available for submission of the four-year scholarship application. High school juniors can compete for an Early Cycles scholarship by submitting their application complete and postmarked by July 15 between their junior and senior years. Applicants will receive notification of their final status by May 1 of their senior year in high school. Interested students should contact UC Davis, Department of Military Science at 916-752-7682.

The three-year Active Duty and two-year Reserve Forces Duty scholarships are awarded to students planning to attend or attending UC Davis. The U.S. Army ROTC scholarship package pays tuition and educational fees and is awarded in three different levels of annual payment, $12,000 (Tier I), $8,000 (Tier II), and $6,000 (Tier III). All applicants will be considered for each level. Students applying for these scholarships can submit their application before May 1 of their senior year in high school.

The Military Science Department offers hands-on training in management and leadership. The program stresses the following leadership dimensions: oral and written communication, human relations, human relations with emphasis on eliminating racial and gender discrimination, management and leadership, and critical discussion of staff research activities.

Students who receive a commission in the U.S. Army as a model. Military skills (such as drill and ceremonies, map reading, and squad tactics) are taught to the extent necessary to create an environment where students can enter leadership positions and apply theories taught in the classroom. Students learn by doing. The program assists students in all academic fields to prepare for positions of leadership in military or civilian careers.

The department offers two program tracks: (1) a pure academic track, and (2) a precommissioning track for those desiring a commission in the U.S. Army. The academic track entails no obligation to the military and is open to all students. Students pursuing the academic track do not wear a uniform or otherwise participate in extra-curricular activities designed as part of the precommissioning process. Activities for all students include the Ranger Club (a club designed for adventure activities such as rappelling, white-water rafting, orienteering, and patrolling) and intramural sports teams.

Students who desire a commission in the U.S. Army must participate in both the academic portion of the program and in the leadership laboratories and extra-curricular activities designed to enhance their leadership and technical skills. They wear uniforms to leadership laboratories and selected classes and become ROTC cadets. Students may be cadets in the lower division courses without incurring a military obligation. Students participating in the upper division precommissioning program incur a military obligation.

See below for details. Extra-curricular activities for cadets include an intercollegiate sports team (Ranger Challenge), the Ranger Club (a club designed for adventure activities such as rappelling, white-water rafting, orienteering, and patrolling) and intramural sports teams.

Students who desire a commission in the U.S. Army must participate in both the academic portion of the program and in the leadership laboratories and extra-curricular activities designed to enhance their leadership and technical skills. They wear uniforms to leadership laboratories and selected classes and become ROTC cadets. Students may be cadets in the lower division courses without incurring a military obligation. Students participating in the upper division precommissioning program incur a military obligation.

See below for details. Extra-curricular activities for cadets include an intercollegiate sports team (Ranger Challenge), the Ranger Club (a club designed for adventure activities such as rappelling, white-water rafting, orienteering, and patrolling) and intramural sports teams.

Department Programs
Students are enrolled in military science under one of two programs.

Four-Year Program
Students are enrolled in the basic course (lower division) for the first two years on a voluntary basis. There is no military obligation associated with attendance in lower division courses. For the advanced course (upper division), students must meet the academic, physical, and military aptitude requirements. Qualified veterans can enter the advanced course immediately because of their military service experience, upon approval by the Department Chairperson.

Upper division students receive $150 subsistence per month after executing a contract agreeing to complete the course and accept a commission if offered. During the course, all military science text books, uniforms, and equipment are provided without cost. Students are given leadership and operational experience at summer camp (advanced camp) between their third and fourth years of the course. Emphasis is on individual participation, leadership development and the capability to function effectively in positions of significant responsibility.

Two-Year Program
This program is designed for students who have not attended lower division Military Science classes. In lieu of lower division courses an applicant attends a six-week summer camp (basic camp) which is voluntary and carries no military obligation. Applicants are paid for camp attendance and transportation costs. Applications are accepted during the winter and spring terms of the year preceding enrollment in the two-year program.

The Army Reserve Officers’ Training Corps four-year Active Duty merit scholarships are awarded to qualified high school seniors in a national competition each year. There are two cycles available for submission of the four-year scholarship application. High school juniors can compete for an Early Cycles scholarship by submitting their application complete and postmarked by July 15 between their junior and senior years. Applicants will receive notification of their final status by December 1. Those applicants not selected in the Early Cycle are considered in the Regular Cycle competition. Applicants will receive notification of their final status by March 1 of their senior year in high school. Interested students should contact UC Davis, Department of Military Science at 916-752-7682.

The three-year Active Duty and two-year Reserve Forces Duty scholarships are awarded to college students who are already attending UC Davis or transferring from a junior college to UC Davis, and have three or two years remaining before graduating with a baccalaureate. Students interested in competing for these scholarships can submit their application beginning in November of each school year. The deadline for submission of an application is January 15 for the two-year scholarship and February 15 for the three-year scholarship. Additionally, students may...
Military Science

12. Introduction to Military Leadership (2) I
Lecture—2 hours. Prerequisite: lower division standing, and consent of instructor. Introduction to leadership theories used in military organizations. Course surveys the duties and responsibilities of junior Army officers, the general environment in which they work, and leadership roles performed. Introduces military leadership skills and training of the U.S. Army.

13. Introduction to Basic Military Operations (1) III
Lecture—1 hour. Prerequisite: lower division status. Basic military operations and the application of the individual and squad level. Course introduces military tactical operations, and covers military first aid. Principles of war as introduced in course 11 are applied to offensive and defensive tactics.

14A. Introduction to Military Leadership Skills (0.5) I
Laboratory—2 hours. Prerequisite: lower division status and consent of instructor; completion of all previous laboratories. Personal and organizational leadership skills introduced in leadership laboratory. Extensive supervised leadership experiences conducted in a military environment. Basic military skills necessary to function in a leadership role are also covered. (P/NP grading only.)

14B. Introduction to Military Leadership Skills (0.5) II
Laboratory—2 hours. Prerequisite: lower division status and consent of instructor; completion of all previous laboratories. Development of leadership and military skills introduced in course 14A is continued with emphasis on the individual’s role in the squad, the basic organizational element of the Army. As students gain capabilities, supervisory controls are reduced. (P/NP grading only.)

14C. Introduction to Military Leadership Skills (0.5) III
Laboratory—2 hours. Prerequisite: lower division standing and consent of instructor; completion of all previous laboratories. Students demonstrate skill levels required for promotion to non-commissioned officer level. Use of chain of command from company through individual levels emphasized. Interrelationship of squad and platoon organizations is explored. (P/NP grading only.)

21. Military History (2) III
Lecture—2 hours. Prerequisite: lower division status; course 11 or consent of instructor. Survey of military history from 1900 to present, focusing on World War I, World War II, the Korean War, and the Vietnam War. Principles of war as introduced in course 11 are applied to offensive and defensive tactics.

22A. Intermediate Military Leadership and Operations I (2) I
Lecture—2 hours. Prerequisite: lower division status; course 12 or consent of instructor. Develops and exercises personal military leadership skills in extensive supervised leadership laboratories. Intermediate level military skills necessary for leadership roles as junior non-commissioned officers are developed. Students perform in role of junior non-commissioned officers.

22B. Intermediate Military Leadership and Operations II (2) I
Lecture—2 hours. Prerequisite: lower division status; course 22A or consent of instructor. Continuation of course 22A. Individual leadership traits identified in course 22A are studied in more depth enabling each student to improve on targeted weaknesses. Instruction is presented in intermediate defensive tactics at the squad level.

24A. Individual Military Leadership Skills (0.5) I
Laboratory—2 hours. Prerequisite: lower division status; courses 14A, 14B, 14C and 21, or consent of instructor. Develops and exercises personal military leadership skills in extensive supervised leadership laboratories. Intermediate level military skills necessary for leadership roles as junior non-commissioned officers are developed. Students perform in role of junior non-commissioned officers. (P/NP grading only.)

24B. Individual Military Leadership Skills (0.5) II
Laboratory—2 hours. Prerequisite: lower division status; courses 14A, 14B, 14C and 21, or consent of instructor. Develops and exercises personal military leadership skills in extensive supervised leadership laboratories. Intermediate level military skills necessary for leadership roles as junior non-commissioned officers are developed. Students perform in role of junior non-commissioned officers. (P/NP grading only.)

141. U.S. Army Management Systems (2) III
Lecture—2 hours. Prerequisite: upper division status and course 131. Army decision making, personnel and equipment management. Includes command and staff functions, training, intelligence gathering, techniques for the conduct of meetings, and logistics management procedures at unit level.

142. Military Law (2) II
Lecture—2 hours. Prerequisite: upper division status and course 141. Analysis of the American Military Justice System, the Uniform Code of Military Justice, the Hague and Geneva Conventions, and customary law of war. Includes detailed study of selected procedures of military justice system.

*Course not offered this academic year.
143. Military Ethics and Professionalism (2) I. Lecture—2 hours. Prerequisite: upper division status and course 142. Profession of arms, its characteristics, uniqueness, roles, and responsibilities. Discussion topics include the professional soldier’s responsibilities to the Army and the Nation, and the need for ethical conduct. Case studies are used to develop ethical decision making skills.

144A. Military Training Leadership Skills (0.5) I. Laboratory—2 hours. Prerequisite: upper division status; courses 134A, 134B, 134C, and 141. Develops and utilizes leadership skills necessary to plan, coordinate and conduct a training program through practical application under supervision. Emphasis on analysis of objectives, instructor planning, media utilization, and evaluation of learning. Students perform as cadet officers. (P/NP grading only.)

144B. Military Training Leadership Skills (0.5) II. Laboratory—2 hours. Prerequisite: upper division status; courses 134A, 134B, 134C, and 141. Requirements for training of all other levels of the cadet corps are given to students for conduct in laboratory environment (under supervision). Students placed in realistic role of junior officer with appropriate level of responsibility. Students perform as cadet staff officers. (P/NP grading only.)

144C. Military Training Leadership Skills (0.5) III. Laboratory—2 hours. Prerequisite: upper division status; courses 134A, 134B, 134C, and 141. Final laboratories in military science sequence; students are prepared for final testing and certification prior to commissioning as officers. Students will demonstrate all leadership skills necessary to commissioned officers. Students perform leadership tasks at section, company, and battalion levels. (P/NP grading only.)

191. Special Studies in Military Science (2) Tucker. Independent study—6 hours. Prerequisite: consent of department chair, and courses 131, 132A, 132B, 141, 142, 143. Intensive examination of one or more special problems in military science. Possible areas of study include: resource dimensions, principles of war, air-land battle imperatives, military strategy, the operational art and professional ethics. May be repeated twice for credit when different topic is studied. (P/NP grading only.)

Aerospace Studies (Air Force) The Air Force Reserve Officer’s Training Corps (AFROTC) is an educational program providing training in leadership, management, communications and military proficiency on college and university campuses. It also provides opportunity to obtain a commission as a second lieutenant in the Air Force and earns college credit after you complete your bachelor’s or a graduate degree. The skills you acquire will become valuable assets for any subsequent career you choose. The program is normally four years long, but a flexible design allows students to complete the curriculum in as little as two years.

Undergraduate scholarships are available, but are not necessary for participation. Until you accept a scholarship or enter your junior year of the program, you have no obligation to join the Air Force. There are no costs for AFROTC uniforms, books, or classes. To receive hands-on leadership and management practice, freshmen and sophomores take a one-hour academic course and a two-hour Leadership Laboratory each week at UC Berkeley; juniors and seniors take a three-hour course plus the lab. All units can be used as elective credit towards graduation. See the Military Sciences course listings in the UC Berkeley catalogue. Classes are held during the fall and spring semesters and the curriculum includes the history of airpower, leadership and management topics and national security issues.

Between the sophomore and junior years, cadets must attend either a four- or six-week field training program at a designated Air Force base. This comprehensive program consists of physical conditioning, outdoor survival training, career and aircraft orientation and an evaluation of leadership potential. Additional optional training opportunities are available during the summer months and include the Royal Air Force Exchange Program, Pentagon Internships, Jump School and Glider Training at the Air Force Academy, and summer job shadowing. Students are also encouraged to participate in optional orientation flights, base visits, and community service projects throughout the school year.

Qualifications Freshmen/Sophomore applicants must: • be full-time college students in good academic standing • have good moral character • be in strong physical condition • be at least 14 years old Additionally, Juniors/Senior/Recipients must: • be United States citizens or in the process of applying for citizenship • be 18 years old (or 17 years old with consent of parent or guardian) • pass the Air Force Officer Qualifying Test • pass a medical examination • be under the age of 30 at time of graduation (under the age of 29 for personnel with prior service or under age 25 if a scholarship recipient)

Scholarships Opportunities for four-year and three-year undergraduates scholarships are better than ever. Scholarships cover the full cost of tuition, books and required fees at the University of California and are available for eligible high school seniors. It also include $150 monthly stipend during the school year. If you are a junior or senior in high school and plan on attending a college or university in Northern California, you can write and visit the Berkeley AFROTC detachment for a scholarship application. Applications are also available from local Air Force recruiters or your high school guidance counselors.

All scholarships are merit-based and consider a variety of factors: cumulative GPA, class standing, ACT/AP scores, academic awards/achievements, leadership ability, athletic involvement, extracurricular activities, community service and letters of recommendation. A personal interview with an Air Force officer is also part of the application process. Prior to activating a scholarship, students must meet AFROTC medical and physical fitness standards. All scholarships must be used at an accredited college or university that offers AFROTC on campus or through cross-registration. The program is available at more than 700 universities and colleges nationwide. If you are already in college, contact our office directly and apply for enrollment into AFROTC as a cadet. Three- and two-year full tuition scholarships are available for all academic majors, especially scientific and technical majors such as engineering, meteorology, math, computer science, and physics. GPA Scholarship requirements for nontechnical majors are slightly higher. Applicants attend weekly leadership Lab and Aerospace Studies classes at UC Berkeley. Applicants are primarily evaluated on their leadership ability and academic performance. Scholarship boards meet throughout the year for scientific and technical majors and in January and July for all academic majors. Scholarships also include a $150 monthly stipend throughout the school year, required books and fees. Other loans and grants may be used towards room and board costs.

Challenging Careers All commissioned officers enter the Air Force as second lieutenants for a 4-year active duty service commitment. Pilots and navigators serve longer commitments. Whether you are piloting the world’s most sophisticated aircraft, supervising 50 aircraft maintainers on the flightline, or caring for sick personnel in the emergency room, you will be rewarded knowing that you are making a difference. Feel free to visit the AFROTC classes or LLAB any-time. Stop by 10 Callaghan Hall, Berkeley, CA, 94720-3610 or call or e-mail Captain Lisa Hillhouse at 1-800-852-5747 or 510-642-3572. Our e-mail address is hillhous@uclink4.berkeley.edu

Molecular Biosciences (School of Veterinary Medicine) Shri N. Giri, B.V.Sc., Ph.D., Chairperson of the Department Department Office, 1311 Haring Hall (916-752-1059) Faculty Alan R. Buckpitt, Ph.D., Professor Gino A. Cortopassi, Ph.D., Assistant Professor Francis D. Galey, D.V.M., Ph.D., Associate Professor (Molecular Biosciences, California Veterinary Diagnostic Laboratory) Shri N. Giri, B.V.Sc., Ph.D., Professor Robert J. Hansen, Ph.D., Professor Arthur D. Jones, Ph.D., Assistant Adjunct Professor Cynthia Kollaias-Baker, D.V.M., Ph.D., Assistant Professor (Molecular Biosciences, California Veterinary Diagnostic Laboratory) Michael E. Mount, D.V.M., D.V.M., Associate Professor Isaac N. Pessah, Ph.D., Associate Professor Quinton R. Rogers, Ph.D., Professor Henry J. Segal, Ph.D., Professor Philip R. Vultee, D.V.M., D.V.M., Associate Professor Hanspeter Witschi, M.D., Professor (Medicine, Internal Medicine) Emeriti Faculty Arthur L. Black, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award Victor W. Burns, Ph.D., Professor Emeritus Gaylord M. Conzelman, Jr., Ph.D., Professor Emeritus Charles E. Cornelius, D.V.M., Ph.D., Professor Emeritus Richard A. Freedland, Ph.D., Professor Emeritus, Academic Senate Distinguished Teaching Award James G. Morris, Ph.D., Professor Emeritus Otto G. Raabe, Ph.D., Professor Emeritus Courses in Molecular Biosciences (VMB) Lower Division Course 92. Internship (1-12) I, II, III. The Staff Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the Department of Molecular Biosciences. Internships supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses 192. Internship (1-12) I, II, III, summer. The Staff Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in all subject areas offered in the Department of Molecular Biosciences. Internships supervised by a member of the faculty. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

Graduate Courses *205A. Intermediary Metabolism of Animals (4) I. The Staff Lecture—4 hours. Prerequisite: a course in biochemistry or physiological chemistry or consent of instructor; a course in physiology recommended. Biochemical data as related to metabolism of intact ani-
mals. Pathways and control in biosynthesis and degradation of carbohydrates and lipids; including hormonal, nutritional, and genetic effects. Dynamics of animal metabolism including pools and turnover rates. Offered in alternate years.

*205B. Intermediary Metabolism of Animals (3) II. Rogers, Hansen, Hershey (Biological Chemistry), Rucker (Nutrition) Lecture—3 hours. Prerequisite: course 205A or consent of instructor. Pathways and control in animals of the biosynthesis and degradation of amino acids, proteins, nucleotides, and porphyrins; includes hormonal, nutritional, and genetic effects. Offered in alternate years.

*223. Clinical Pharmacokinetics: Concepts and Applications in Comparative Medicine (2) I. Willschi, Wilson Lecture—1 hour; discussion—1 hour. Prerequisite: comparative or veterinary physiology and general pharmacology. Concepts of pharmacokinetics. Absorption and disposition of various drugs, which are used as therapeutic agents, will be compared in different species (man and domestic animals). Course will provide background for research in clinical pharmacology.

243. Heavy Metal Toxicity and Metabolism (2) II. The Staff Lecture—2 hours. Prerequisite: Biological Sciences 102, 103, 104, 110B. Toxicity and metabolism of inorganic compounds with emphasis on heavy metals. Examines the relationship between chemical properties and biologic activity of various metals. Includes discussions on metal-protein interactions, genetic disorders in metabolism, chelation therapy, and inorganic carcinogenesis. Offered in alternate years.

*247. Natural Toxicants (2) III. Segall Lecture—2 hours. Prerequisite: organic chemistry, Biological Sciences 102 and 103, or consent of instructor. Toxicity and metabolism of natural toxicants with emphasis on the toxic plants present in the western United States. General pathways of metabolism plus the relationship between chemical properties and biologic activity of natural toxicants are discussed. Offered in alternate years.

253. Metabolism of Toxicants and Drugs (2) II. Buckpott Lecture—2 hours. Prerequisite: Pharmacology and Toxicology 201, 202, 203, general biochemistry or consent of instructor. Significance of chemical pathways of toxicants and drug metabolism, enzymology and molecular aspects of P450 and flavin monooxygenases, hydrolyses and phase 2 transferases and experimental approaches for metabolism studies. Offered in alternate years.

258. Receptor-Mediated Mechanisms (2) III. Pessah Lecture—2 hours. Prerequisite: Pharmacology and Toxicology 201 or the equivalent. Survey of modern methods for studying physiological receptors including radioligand binding analysis, ion transport/flux measurements, receptor solubilization and purification strategies, and molecular cloning. Theoretical concepts of receptor-mediated signal transduction, information processing, and mechanisms of drug/receptor interactions. Offered in alternate years.

258L. Laboratory in Receptor Methods (1) III. Pessah Laboratory—3 hours. Prerequisite: Molecular and Cellular Biology 120L, course 258 (may be taken concurrently). Design and practical application of receptor binding techniques including subcellular fractionation, equilibrium and kinetic radioligand binding studies, receptor activation/inhibition studies, isotopic ion flux measurements, and analysis of data. Limited to 12 students. Offered in alternate years.

260. Toxicologic Pathology (3) II. Willschi, Wilson Lecture—3 hours. Prerequisite: Pharmacology and Toxicology 201, 202, and 203. Introduction to organ system pathology; provide understanding of pathogenesis and significance of chemically induced tissue injury in the various organs of the body. Offered in alternate years.

265. Mass Spectrometric Methods in Pharmacology and Toxicology (3) II. Jones Lecture/discussion—3 hours. Prerequisite: Biological Sciences 102, and Chemistry 128A or 128B or 128C. Intended to enable students in pharmacology, toxicology, and biochemical laboratory to evaluate and interpret mass spectrometric techniques and results. Emphasis on identification of metabolites and biochemical macromolecules and quantitative stable isotope methods.

290. Seminar (1) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. (S/U grading only)

297T. Tutoring in Veterinary Pharmacology and Toxicology (1-5) II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Group study in selected areas of Pharmacology and Toxicology. (S/U grading only)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. Group study in selected areas of Pharmacology and Toxicology. (S/U grading only)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only)

Professional Course

397T. Tutoring in Molecular Biosciences (1-5) I, II, III. The Staff Prerequisite: graduate or professional student standing and consent of instructor. Designed for graduate or professional students who desire teaching experience. May be repeated for credit up to 5 units. (S/U grading only)

Professional Courses

405. Veterinary Clinical Pharmacology (2) II. Vuille Lecture—2 hours. Prerequisite: three-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Pharmacological basis of therapeutic use of drugs in domestic animals. Emphasis on selection of most appropriate drug, its dosage form, route of administration and dose for treatment of certain disease conditions. (S/U grading only)

475. Diagnosis and Treatment of Food Animal and Equine Poisoning (2) III. Mount Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Clinical systematic approach to poisoning problems in livestock, horses and other ungulate stock emphasizing diagnosis and treatment. Poisonous plants are covered in this course.

485. Advanced Clinical Nutrition (2) II. Hickman Lecture—14 sessions; laboratory—2 three-hour sessions; discussion—2 two-hour sessions. Prerequisite: third-year standing in the School of Veterinary Medicine or graduate student with consent of instructor. Advanced training in the principles and practice of small animal clinical nutrition. (S/U grading only)

*Course not offered this academic year.

Music

(College of Letters and Science)

Christopher Reynolds, Ph.D., Chairperson of the Department

Department Office, 112 Music Building (916-752-5537; FAX: 752-0983)

Faculty

Ross Bauer, Ph.D., Professor
Robert S. Bloch, M.A., Professor
Anna Maria Busse Berger, Ph.D., Associate Professor
Jonathan Elkus, M.A., Lecturer
Andrew D. Frank, M.A., Professor
Paul Hillier, A.G.S.M., Professor
D. Kern Holoman, Ph.D., Professor, Academic Senate Distinguished Teaching Award
Zoila Mendoza-Walker, Ph.D., Assistant Professor
Maria Niederberger, Ph.D., Lecturer
David A. Nutter, Ph.D., Professor
Pable Ortiz, D.M.A., Associate Professor
Christopher A. Reynolds, Ph.D., Professor
Wayne Swanston, Ph.D., Professor

Emeriti Faculty

Sydney R. Charles, Ph.D., Professor Emeritus
Albert J. McNeill, M.S., Professor Emeritus
Jerome W. Rosen, M.A., Professor Emeritus
Richard G. Swift, M.A., Professor Emeritus, Academic Senate Distinguished Teaching Award

Faculty Affiliates in Applied Music

Dona Lee Brandon, M.S.M., Lecturer (organ)
Lois Brandwynne, M.A., Lecturer (piano)
Todd Brody, B.A., Lecturer (flute)
Phebe Craig, M.M., Lecturer (piano)
Daniel Derthick, B.M., Lecturer (string bass)
Joel Elias, M.M., Lecturer (trombone)
Elizabeth Field, M.M.A., Lecturer (violin)
Stephanie Friedman, M.A., Lecturer (voice)
David Granger, M.M., Lecturer (bassoon)
Edward Higgins, M.M., Lecturer (trumpet)
Susan Lamb Cook, M.A., Lecturer (cello)
Stanley Lunetta, M.A., Lecturer (percussion)
Calvin Lynos, B.A. (Gospel Choir)
Peter Nowlen, B.M., Lecturer (French horn)
Deborah Pittman, M.A., Lecturer (clarinet)
Robert Neal Rogers, B.M. (voice)
Deborah Shidler, B.M.E., Lecturer (oboe)
Mark Tulga, M.A. (Jazz Band)

The UC Davis Contemporary Music Players

Ross Bauer, Director
Todd Brody, flute
Deborah Shidler, oboe
Diane Malteser, clarinet
Peter Josheff, clarinet
Carla Wilson, bassoon
Peter Nowlen, French horn
Daniel Kennedy, percussion
Allen Biggs, percussion
Betty Woo, piano
Terrie Baune, violin
Rudy Kreamer, violin
Uli Wertzugg, viola
Susan Larrab, cello
Thomas Derthick, bass

The UCD Faculty Woodwind Quintet

Deborah Shidler, oboe
David Granger, bassoon
Deborah Pittman, clarinet
Todd Brody, flute
Peter Nowlen, French horn

The Major Program

The Bachelor of Arts degree in music provides both a broad liberal arts education and the skills necessary to explore music through its history, theory and performance. A fundamental grounding in music theory,
music history, and performance during the first two years of study leads to more specialized study of composition, history, criticism, or performance during the last two years of undergraduate work.

Student Performing Activities. The Department of Music presents over 100 concerts each year, offering performance opportunities for both majors and non-majors. The Symphony Orchestra, University Chorus, Concert Band, Early Music Ensemble, Baroque Chamber Orchestra, Chamber Singers, Gospel Choir, and numerous chamber ensembles. Also affiliated with the department are the UC Davis Jazz Band, and the Cal Aggie Marching Band. The large groups regularly present three concerts each year, while chamber ensembles perform frequently in the weekly Thursday Noon Concerts. Performance groups have collaborated with the Department of Dramatic Art in productions of musical theater and opera. Study of instruments and voice with professional performers and teachers is required of all majors. Similar opportunities exist for talented non-majors.

Faculty and Facilities. The faculty is noted for its achievements in a variety of areas. The musicologists are active in research, writing, and performance; the music of the composers is performed and recorded nationally and internationally. Two music journals are edited by members of the department, 19th Century Music and Baroque Forum.

The regular faculty is joined during one quarter each year by a visiting Artist-in-Residence, a distinguished performer who gives public concerts and lectures and who works with students informally. Professional performance groups in residence at UC Davis include the UC Davis Wind Quintet, the UC Davis Contemporary Players, and the Theater of Voices.

The department's facilities include a large collection of Renaissance, Baroque, and modern instruments, an electronic and computer music studio, practice and rehearsal rooms, and an excellent music library with over 20,000 recordings, CDs, laser discs and videos. In addition, the library houses the Jan Popper collection of opera scores, books, and memorabilia.

Career Alternatives. Many students who graduate with a degree in music continue on to careers in medicine, law, or business. According the the American Medical Association, the undergraduate major with the highest rate of acceptance into medical school is not chemistry or physics, but music. Students who graduate with a B.A. in music from UC Davis have gone on to graduate programs in music at major conservatories and universities in the country. Some have become professors at distinguished universities or have received teaching credentials to teach at primary or secondary schools; others have become successful performers and were employed in music advertising or record companies.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>UNITs</th>
<th>Preparatory Subject Matter</th>
<th>39-42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music 30, 31 (or the equivalent as determined in consultation with major adviser), one year</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNITs</th>
<th>Depth Subject Matter</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music 104A, 104B, 104C</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Music 124A, 124B, 124C</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>At least 16 units selected from Music 107A, 107B, 107C (Note: only 3 units of 107, electronic music, may be counted toward the major), 108A, 108B, 111, 112, 121, 129, 130, 131, 132, 133, 134, 145, 146</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

Total Units for the Major | 83-86 |

Beginning and transfer students must take an examination in piano playing. Sufficient pianistic ability to perform four-part chorales and compositions comparable in difficulty with The Little Preludes of Bach is prerequisite to upper division courses in the major. Students with deficiencies will be required to pass Music 2A, 2B, 2C. All majors in music will be expected to perform the compositions cited above before a jury of faculty members prior to advancement into the upper division. Students transferring from other conservatories and universities could take the Placement Examination and consult with departmental major advisers before enrolling in any music course.

Foreign Language Requirement. Attention is called to the requirements in foreign languages for higher degrees in music.

Major Advisers. P. Hillier, D.A. Nutter.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>UNITs</th>
<th>Music</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music courses</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

A minimum of upper division Music courses | 16 |

Cources chosen with adviser's consent from: Music 105, 107, 110, 129

A minimum of six units in upper division music performance courses (Music 141, 142, 143, 144, 145, 146) may count toward the minor.

Lower division preparatory work to be determined in consultation with minor advisers.

Teaching Credential Subject Representative. See also the section on the Teacher Education Program.

Graduate Study. The Department of Music offers programs of study and research leading to the M.A. and Ph.D. degrees. Detailed information regarding graduate study may be obtained from the Graduate Adviser.

Graduate Adviser. A. M. Busser Berger.

Courses in Music (MUS)

Lower Division Courses

1. Basic Musicianship (3) Niederberger

Lecture—3 hours. Fundamentals of music, singing, ear-training and conducting for beginners in music. Designed for students with career plans where musical literacy is important, for example, primary level classroom teachers, actors, theatre directors, design- ers, and stage managers. Not open to students who have successfully completed 3A, 4A, or the equivalent.

2A-2B-2C. Keyboard Competence (1-1-1) I-II-III.

The Staff

Laboratory—1 hour. Prerequisite: concurrent enrollment in course 4A-4B-4C; keyboard diagnostic exam (not open for credit to students who have passed the exam). Designed to train students to meet the minimal keyboard requirements for the major in music. All music majors will be expected to perform scales, modulations, to realize figured basses, and to harmonize a given melody at sight.

3A. Introduction to Music Theory (4) I. Elkiss; II. Bloch

Lecture—3 hours; laboratory—1 hour. Fundamentals of music theory, ear-training, harmony, counterpoint, and analysis directed toward the development of listening and writing techniques. Intended for the general student.

3B. Introduction to Music Theory (4) II. Elkiss; III. Bloch

Lecture—3 hours; laboratory—1 hour. Prerequisite: course 3A. Continuation of course 3A. Intended for the general student.

4A-4B-4C. Elementary Theory (4-4-4) I-II-III.

Niederberger

Lecture/discussion—3 hours; practice—2 hours. Prerequisite: keyboard competence; keyboard diagnostic examination; students must pass the exam or take course 2A-2B-2C concurrently. Development of music writing and listening skills through the study of music fundamentals, tonal species counterpoint, harmony, score reading, analysis of repertoire. Intended primarily for music majors.

5A-5B-5C. Intermediate Theory (4-4-4) I. II. III.

Lawson

Lecture/discussion—3 hours; practice—2 hours. Prerequisite: course 4C. Study of imitative tonal counterpoint and of harmony; keyboard harmony; analysis of repertoire.

10. Introduction to Musical Literature (4) I. The Staff

Graduate Advisor. III. Holoman

Lecture—3 hours; listening section—1 hour. An introduction to composers and major styles of Western music. Lectures, listening sections, and selected readings. For non-majors. GE credit: ArtHum; Wrt.

24A. Introduction to the History of Music, I (4) I. Busse Burger

Lecture—3 hours; listening section—1 hour. Prerequisite: course 2A, 4A or 5A (concurrently). Intended primarily for majors in music. History of music from the late Baroque to the Classical Period. GE credit: Wrt.

24B. Introduction to the History of Music, II (4) II. Busse Burger

Lecture—3 hours; listening section—1 hour. Prerequisite: course 4B or 5B, course 4C (concurrently). Intended primarily for majors in music. History of music from the Classical Period to the nineteenth century. GE credit: Wrt.

24C. Introduction to the History of Music, III (4) III. Busse Berger

Lecture—3 hours; listening section—1 hour. Prerequisite: course 4B or 5B, course 4C (concurrently). Intended primarily for majors in music. History of music from the nineteenth century to the present. GE credit: Wrt.

27. Music from Latin America (4) I. Ortiz

Lecture—3 hours; discussion—1 hour. Prerequisite: Spanish 24 or 33. Examination of music in Latin America. Characteristic music (i.e. tango, bossa nova, salsa, musica nortena, musica andina) as well as its implications in other musical genres. Taught in Spanish. For non-majors. Offered as demand indicates.

28. Introduction to Afro-American Music (4) II.

The Staff

Lecture—3 hours; listening and discussion—1 hour. A study of the Afro-American rhythm, field hollers, work songs, spirituals, blues, gospel, and jazz; the contrast between West African, Afro-Caribbean, and Afro-Cuban musical traditions. GE credit: Div, Wrt.

30A-U. Applied Study of Music: Intermediate (1) I. II. III. The Staff

Performance instruction—1 hour. Prerequisite: open to Music majors to ability perform scales and short compositions from standard repertory; admis- sion to the audition and conductivity courses is based on instruction, arranged by section: (A) Voice (prerequi- site of course 1 or the equivalent); (B) Piano; (C) Harpsichord; (D) Organ; (E) Violin; (F) Viola; (G) Cell; (H) Clarinet; (I) Double Bass; (J) Flute; (K) Oboe; (L) Clarinet; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tubas; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit. Offered as demand indicated.

31A-U. Applied Study of Music: Intermediate (Individual) Performance Instruction (2) I. II. III. The Staff

Performance instruction—0.5 hour; independent practice—5 hours. Prerequisite: open to Music majors only; audition by audition and consent of instructor. Individual instruction (in A) Voice (prerequisite of course 1 or the equivalent); (B) Piano; (C) Harpsi- chord; (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trombone; (P) Tubas; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit.

41. University Symphony (2) I. II. III. Holoman

Lecture—4 hours. Prerequisite: admission subject to audition before the first meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal, and performance of music from the orches- tra literature. May be repeated for credit. (FNP grad- ing.)
42. University Chamber Singers (2) I, II, III. Hillier
Rehearsal—3 hours, plus sectionals—at least 1 hour. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of works for small choral group. May be repeated for credit. (P/NP grading only.)

42A. University Concert Band (2) II, III. Elikas
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music for band. May be repeated for credit. (P/NP grading only.)

44. University Chorus (2) I, II, III. Hillier
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University. Rehearsal and performance of choral music. May be repeated for credit. (P/NP grading only.)

45. Early Music Ensemble (2) I, II, III. Nutter
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/NP grading only.)

54. University Gospel Choir (2) I, II, III. Lyimus, Stewart
Rehearsal—4 hours. Prerequisite: consent of instructor; open to any student in the University. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as African American and African Studies 54.) (P/NP grading only.)

59. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

103. Workshop in Composition (3) I; Ortiz; (4-4-4)
II; Frank.
Workshop—3 hours. Prerequisite: course 4C. Workshop in musical composition for undergraduates who are interested in pursuing serious compositional studies. Course will allow students to explore the technical and aesthetic aspects of musical composition. May be repeated for credit. (P/NP grading only.)

104A-104B-104C. Advanced Theory (4-4-4)
I; Frank; II-III; Bauer.
Lecture—4 hours. Prerequisite: course 5C. Twentieth-century compositional procedures: analyses and projects in composition.

105. History and Analysis of Jazz (4) I, III. Bauer
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3A or 10 or the equivalent. Jazz will be studied in its historical and cultural contexts; the evolution of jazz styles will be analyzed. Lectures, discussion/guided listening sections, and selected readings. Designed for non-majors. GE credit: ArtHum, Div, Wrt.

107A. Computer and Electronic Music (3) I. Ortiz
Lecture—3 hours; laboratory—1 hour. Prerequisite: admission subject to audition before first class meeting. Studies in electronic and computer music composition. The principles and procedures of composition in various electronic media are explored through compositional exercises. Limited enrollment.

107B. Computer and Electronic Music (3) II. Ortiz
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 107A and consent of instructor. Continuation of course 107A. Limited enrollment.

107C. Computer and Electronic Music (3) III. Ortiz
Lecture—3 hours; laboratory—1 hour. Prerequisite: course 107B and consent of instructor. Continuation of course 107B. Limited enrollment.

108A-108B. Orchestration (2-2) I, II. Bloch
Lecture—2 hours. Prerequisite: course 5C. Techniques of orchestrating, basic instrumental techniques to analysis of orchestral scores and scoring for various instrumental combinations.

109. Masterworks in Performance (2) I. Holman
Lecture—2 hours. Prerequisite: course 10 recommended. Thorough score study of a single masterwork to be performed on campus during the quarter. Guided listening, selected readings, analysis and study of composer’s milieu. Recommended especially for members of the performing ensembles scheduled to present the work.

110A. The Music of a Major Composer: Beethoven (4) I. Busser Berger
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Beethoven will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.

110B. The Music of a Major Composer: Stravinsky (4) II. Frank
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Stravinsky will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.

110C. The Music of a Major Composer: Bach (4)
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Bach will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.

110D. The Music of a Major Composer: Mozart (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Mozart will be studied in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. GE credit: ArtHum, Wrt.

110E. The Music of a Major Composer: Haydn (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 10 or 3A-3B. The work of Haydn in the context of his time and his contemporaries. Lectures, discussion/guided listening sections, and selected readings. For non-majors. Offered in alternate years. GE credit: ArtHum, Wrt.

111. Choral Conducting (2) II. Hillier
Lecture—2 hours. Prerequisite: courses 4A-4B-4C and consent of instructor. Principles and techniques of conducting choral ensembles.

112. Instrumental Conducting (2) II. Holoman
Lecture—2 hours. Prerequisite: courses 4A-4B-4C and consent of instructor. Principles and techniques of conducting instrumental ensembles. Offered in alternate years.

121. Topics in Music History and Criticism (4) I
The Staff
Seminar—4 hours (includes selected listening). Prerequisite: courses 4A-4B-4C, 24A-24B-24C, and consent of instructor. Sources and problems of a historical period or musical style selected by the instructor and announced in advance. May be repeated for credit. GE credit: Wrt.

122. Topics in Analysis and Theory (4) III. Frank
Seminar—4 hours (includes selected listening). Prerequisite: courses 5C and 25C. Analysis of works of a composer or musical style selected by the instructor and announced in advance. Consideration of theoretical issues. May be repeated for credit. GE credit: Wrt.

124A. History of Western Music: Middle Ages to 1600 (4) I. Hillier
Lecture—3 hours; listening—1 hour. Prerequisite: course 24C and 4C. Historical survey of composers and musical styles from the Middle Ages to the beginning of the 17th century. GE credit: Wrt.

124B. History of Western Music: 1600 to 1750 (4) II. Nutter
Lecture—3 hours; listening—1 hour. Prerequisite: course 124A. Historical survey of composers and musical styles from the late 1500s to the mid-18th century. GE credit: Wrt.

125. Performance and Culture (4) III. Mendoza-Walker
Lecture—3 hours; discussion—1 hour. Prerequisite: course 3A or 10. Introduction to the interdisciplinary study of public expressive forms. Comparative analysis of music, dance, rituals, and dramas from around the world in their social and cultural contexts. Offered in alternate years.

126. American Music (4) II. Hillier
Lecture—3 hours; listening—1 hour. Prerequisite: course 10 or 3A-3B or consent of instructor. Introduc- tory study of American music, including Native American music, Hispanic polyphony, New England psalmody, and selected 20th-century composers and styles. Offered in alternate years. GE credit: Div, Wrt.

129. World Music (4) III. Mendoza-Walker
Lecture—3 hours; listening—1 hour. Selected readings. Prerequisite: course 3A-3B or 10 recommended. Intended for non-majors. Studies in selected areas of non-western music, including appropriate instrumental and performing techniques, analysis of oral systems, melody, rhythm and musical structures. Empha- sis placed on cultural context of the music. GE credit: Div, Wrt.

130A-B. Applied Study of Music: Advanced (1)
I, II, III. The Staff
Performance instruction—1 hour. Prerequisite: open to Music majors with ability to perform scales and short compositions from standard repertoire, admis- sion by audition and consent of instructor. Class instruction, arranged by section: (A) Voice (prerequi- site of course 1 or the equivalent); (B) Piano; (C) Harpsi- chord; (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trom- bone; (P) Tuba; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit. Offered in alternate years.

Performance instruction—0.5 hour; independent practice—5 hours. Prerequisite: open to Music majors only; admission by audition and consent of instructor. Individual instruction in (A) Voice (prerequisite of course 1 or the equivalent); (B) Piano; (C) Harpsi- chord; (D) Organ; (E) Violin; (F) Viola; (G) Cello; (H) Double Bass; (I) Flute; (J) Oboe; (K) Clarinet; (L) Bassoon; (M) French Horn; (N) Trumpet; (O) Trom- bone; (P) Tuba; (Q) Percussion; (R) Classical Guitar; (S) Lute; (T) Viola da gamba; (U) Recorder. May be repeated for credit.

141. University Symphony (2) I, II, III. Holoman
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Sight-reading, rehearsal and performance of music from the orches- tral literature. May be repeated for credit. (P/NP gradi- ng only.)

142. University Chamber Singers (2) I, II, III
Hillier
Rehearsal—3 hours, plus sectionals—at least 1 hour. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of works for small choral group. May be repeated for credit. (P/NP grading only.)

*Course not offered this academic year.
143. University Concert Band (2) II. Illus.
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Rehearsal and performance of music for band. May be repeated for credit. (P/NP grading only)

144. University Chorus (2) I, II, III. Hillier
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University. Rehearsal and performance of choral music. May be repeated for credit. (P/NP grading only)

145. Early Music Ensemble (2) I, II. Nutter
Rehearsal—4 hours. Prerequisite: admission subject to audition before first class meeting. Rehearsal and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/NP grading only)

146. Chamber Music Ensemble (1) I, II, III.
The Staff (Granger in charge)
Rehearsal—2 hours; student practice—1 hour. Prerequisite: admission subject to audition before first class meeting. Open to any student in the University whose proficiency meets the requirements of concert performance. Study, rehearsal, and performance of ensemble music for strings, winds, voice, piano, harpsichord, and organ. May be repeated for credit. (P/NP grading only)

154. University Gospel Choir (2) I, II, III. Lymus, Stewart
Rehearsal—4 hours. Prerequisite: consent of instructor; open to any student in the university. Rehearsal, study, and performance of Gospel music. May be repeated for credit. (Same course as African American and African Studies 154.) (P/NP grading only)

190. Senior Seminar in Music (4) I. The Staff
(Chairperson in charge)
Lecture—4 hours. Prerequisites: courses 5C and 25C, and consent of instructor; course 104C recommended. Intended primarily for majors in music intending to apply for graduate programs in music history, composition, or theory. Review of musical skills, issues in theory and analysis, and the history and literature of music.

198. Directed Group Study (1-5) I, II, III.
The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
(Chairperson in charge)
(P/NP grading only)

Graduate Courses

200. Music Research (4) III. Busse Berger
Seminar—3 hours; term paper. Introduction to problems and techniques of research; practical application of music bibliography to questions about significant issues in musicology, music theory, and performance practice.

201. Advanced Music Research and Criticism (4) II. Swift
Seminar—3 hours; term paper. Study and practice of exposition, analysis, and writing about music. Application of advanced research techniques in writing for different purposes, ranging from essays for the general public to thesis proposals and articles for scholarly journals.

202. Notation (4) II. Busse Berger
Seminar—3 hours; term paper. Study of musical notation; investigation of techniques for editing Medieval and Renaissance music.

203A-203B-203C. Composition (4-4-4) I, II, III.
Bauer
Seminar—3 hours. Technical projects and free composition.

204. Advanced Conducting (3) I, II, III. The Staff
(Holoman in charge)
Discussion—2 hours; practicum—2 hours. Prerequisite: courses 111, 112, or the equivalent; keyboard skills appropriate to graduate standing. Technical aspects of conducting and the broader issues in music history and analysis that conductors must face before leading a rehearsal or performance.

207. Advanced Electronic and Computer Music (4) III. Slawson
Seminar—2 hours; plus individual student/instructor meeting—2 hours. Prerequisite: courses 107A-107B-107C. Advanced composition of computer and electronic music with the Sun 3-based computer-music system and associated facilities.

210A. Proseminar in Music (Theory and Analysis) (4) I. Slawson
Seminar—3 hours; term paper. Voice-leading analysis of tonal music derived from Schenker and pitch-class set theory. Recent work on compositional design, generalizations of the concept of interval, psychologically oriented music theory, and theories of durational structure and timbre.

210B. Proseminar in Music (Musicology and Criticism) (4) I. Nutter
Seminar—3 hours; term paper. Issues and concepts of music history, including performance practice questions for specific repertoires and periods; principles, aims, and methods of archival study; historical theory; evolution of musical styles; philosophical debates about goals and aims of the discipline in general.

210C. Proseminar in Music (Ethnomusicology) (4) III. Mendoza-Walker
Seminar—3 hours; term paper. Intensive examination of major trends in ethnomusicology as exemplified by scholars working in several non-Western cultures. Ethnomusicological theory, ranging from ethnographic description to metasemantic analysis (See-gar) to analysis of individual genres to sociological analysis.

221. Topics in Music History (4) II, Busse Burger, III. The Staff
Seminar—3 hours. Studies in selected areas of music history and theory. May be repeated for credit.

222. Techniques of Analysis (4) II. Frank; II.
Bauer, III. Ortiz
Seminar—3 hours. Analysis and analytical techniques as applied to music of all historical style periods. May be repeated for credit.

223. Ethnomusicology (Pacific Cultures) (4)
Seminar—3 hours; term paper. Court music, religious music, and popular forms of China, Japan, Korea, Melanesia, and Indochina. Issues concerning history, theoretical constructs, performance practice, and cultural settings of the music will be stressed. May be repeated for credit.

224. Performance in the Americas (4) III.
Mendoza-Walker
Seminar—3 hours; term paper. Ethnomusicalological and anthropological approaches to the study of public performance in the Americas. It proposes new ways of looking at music, dance, rituals and other forms of public expression classified as “folklore” or “popular culture.” Offered in alternate years.

299. Individual Study (1-12) I, II, III. The Staff
(Holoman in charge)
(S/U grading only)

Teaching Methods Courses

300. The Teaching of Music (3) II. The Staff
Lecture—3 hours. Prerequisite: course 1 or the equivalent. Methods of teaching music in grades K-8.

301. The Teaching of Music (3) II. The Staff
Lecture—3 hours. Prerequisite: course 5C (or the equivalent). Methods of teaching music in grades 7-12.

Instrumental Methods. The courses in this series consider methods of teaching orchestra and band instruments, and include repertory and program planning for secondary schools.

321A-321B. Stringed Instruments (1-1) I-II.
The Staff
Discussion—2 hours. Prerequisite: course 4C.

322. Brass Instruments (1) III. The Staff
Laboratory—2 hours. Prerequisite: course 4C. Offered in alternate years.

323A-323B. Woodwind Instruments (1-1) I-III.
The Staff
Discussion—2 hours. Prerequisite: course 4C.

324. Percussion Instruments (1) II. Lunetta
Laboratory—2 hours. Prerequisite: course 4C. Consider teaching of percussion instruments. Survey course. Offered in alternate years.

Native American Studies

(College of Letters and Science)
Martha J. Macri, Ph.D., Chairperson of the Department
Department Office, 2401 Hart Hall (916-752-3237)

Faculty
Steven J. Crum, Ph.D., Associate Professor
Inês Hernandez, Ph.D., Assistant Professor
George C. Longfith, M.F.A., Professor
Martha J. Macri, Ph.D., Associate Professor
Stefano Varese, Ph.D., Professor

Emeriti Faculty
Jack D. Forbes, Ph.D., Professor Emeritus
Carl N. Gorman, M.F.A., Lecturer Emeritus
Sarah Hutchison, M.A., Lecturer Emeritus
David Rising, M.A., Senior Lecturer Emeritus

Affiliated Faculty
Anne Dannenberg, Ph.D., Lecturer

The Major Program
Native American studies focuses upon the indigenous peoples of both North and South America. The program is interdisciplinary in its approach to the world of the American Indian and offers a comprehensive and comparative perspective.

The Program. Students electing a major in Native American studies may complete Plan I, Plan II, or Plan III. Plan I enables students to concentrate chiefly upon the Native experience in North America (north of Mexico). Plan II encourages interested students to focus upon Meso-America with, however, some coursework integrating Meso-America with North America and South America. Plan III focuses upon South America, with some coursework integrating that region with areas to the north.

Career Alternatives. Native American studies is excellent preparation for a professional career such as teaching, law, human services, health, tribal administration, social work, and inter-ethnic relations. Graduating students in the native studies are looking for students with broad interdisciplinary preparation and who possess knowledge and sensitivity relating to ethnic issues and cultural diversity.

A.B. Major Requirements:

Preparatory Subject Matter 20
Native American Studies 1, 10
One or two courses from Native American Studies 32, 33, 46, 55 4-8
One or two courses from African American and African Studies 12, 52, Anthropology 2, 3, Asian American Studies 1, Chicano Studies 10, History 17A 4-8

Depth Subject Matter 16
Native American Studies 130A, 157, 180 12
One course from Native American Studies 107, 115, 130B, 130C, 133, 156 4
Note: If a course is counted for both Plans I, II, or III (below), it is also to be counted as part of the 16 units of Depth Subject Matter.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Native American Studies

Areas of Specialization
(complete one of the following plans)

Plan I—North American Emphasis 28
Two courses from Native American Studies (4) 107, 115, 116, 117, 118, 121, 130C, 156, 162, 163 16
Two courses from Ethnic, Native American, and African Studies (4) 101, 181A, 181B, 181C 8
Two courses from Anthropology (4) 113, 136, 161A, 161B, 165, 166, 172, 173, 174, 175, 176 8
Two courses from African American and African Studies (4) 100, 101, 107, 120, 123, 133, 153, 160 8
American Studies 120, Asian American Studies 100, 101, 110, 111, 112, Chicano/a Studies 130 8
Native American Studies 131, 132, 133, 134, 135, 136 8
Geography 120, 121, Sociology 128, Women’s Studies 102 8
One other upper division Native American Studies course, selected in consultation with adviser 4

Plan II—Mexico-Central America Emphasis 28
Native American Studies 107, 133 8
Three courses from History 161A, 166A, 166B, Geography 122A, Anthropology 134, 145, 146, 174, 175, Chicano/a Studies 130 12
Native American Studies 122, 123, 124 8
Two courses from Spanish 155, 157, Art History 151, Native American Studies 101, 156, 181A, 181B, 181C or, if student’s work is specifically focused upon a Meso-American language or topic, from Native American Studies 188, 191 8

Plan III—South American Emphasis 28
Native American Studies 107, 120 12
Two courses from History 161A, 161B, 162, 163A, 163B, 165, Geography 122B 8
Three courses from Anthropology 134, 144, 146, 174, 175, Native American Studies 101, 122, 156, 181A, 181B, 181C or, if student’s work is specifically focused upon from a South American language or topic, from Native American Studies 188, 191, 192, 211, 212 12

Total Units for the Major ... 64

Study Off Campus. May those have the option of spend-
ning one or three quarters elsewhere in the Americas or
or near a reservation as part of the fulfillment of the
Area of Specialization. Each student’s plan must be
approved by the student’s adviser and by the chairperson
and may fulfill from 10 to 20 of the 28 units
required for the major. The courses or field
experience taken elsewhere must be focused upon
indigenous peoples or indigenous languages and the
institution of study shall be located in an area with
substantial indigenous population. Students must have
upper division standing and, for Plan I, course 107 or
the equivalent should have been completed; for Plan
II; courses 107 and 133 should have been completed;
and for Plan III, courses 107 and 120 should have
been completed prior to departure. Several options
may be used for receiving academic credit, includ-
ing course 195 and the Education Abroad Program.

Minor Program Requirements:
The Native American Studies minor provides an intro-
duction to the Native experience in the Americas by
means of exposure to coursework dealing with some of
the major aspects of Indian life, including history,
values, politics, literature, and art.

UNITs

Native American Studies courses 24
Native American Studies 1 or 10 to 4 4
Four courses, 181A, 181B, 181C, 181D 16
Philosophy and values, Native American Studies 156, 157, or 180 8
Politics and current affairs, Native American
Studies 115, 116, 117, 118, 120, 122

Art and literature, Native American Studies
101, 181A, 181B, or 181C
One other upper division course
selected in consultation with adviser.

Courses in Native American Studies (NAS)

Lower Division Courses

1. Introduction to Native American Studies (4) II. Crum; III. Ross
Lecture/discussion—4 hours. Introduction to Native American Studies with an emphasis upon basic concepts relating to Native American historical and political development. GE credit: SocSci, Div.

2. Introduction to Native American Literature (4) I. II. Dannenberg
Lecture/discussion—4 hours. Prerequisite: completion of Subject A requirement. Study of selected Native American texts. Intensive focus on analysis of these texts, with frequent writing assignments to develop critical thinking and composition skills. GE credit: ArtHum, Div., Wrt. (Cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously)

3. Native American History (4) I. Longfish; II. Varese; III. Hernandez-Avila
Lecture—3 hours; discussion—1 hour. Introduction to the diverse cultures of Native American peoples from North, Central, and South America. Emphasis on Native American voices in the expression of political ideas and in the expression of conflicting values. GE credit: ArtHum or SocSci, Div., Wrt.

4. Native American Music and Dance (4) I. The Staff
Lecture/discussion—4 hours. Introduction to the music and dance of the Native peoples of the Americas. Students will study secular Native music and dance from a cross-section of regions and tribes. GE credit: Div.

5. Native American Art (4) I. Longfish
Lecture—4 hours. Comprehensive survey of Indian art forms with emphasis upon design, media, and function. Intent is to familiarize the student with a wide range of styles and techniques. GE credit: ArtHum, Div.

6. Native American Art Workshop (4) II. III. Longfish
Lecture—1 hour; laboratory—6 hours; 3 hours to be
selected in consultation with adviser.

7. Orientation to Research in Native American Studies (4) I. Crum
Prerequisite: consent of instructor. (P/NP grading only.)

8. Ethnopolitics of South American Indians (4) II. Varese
Lecture/discussion—3 hours; term paper. Prerequi-
site: Native American Studies major or minor, or con-
sent of instructor. Introduces students to basic research resources pertinent to Native American sub-
jects available in the region, including libraries, archives, museums, etc. Emphasis is upon learning how to use documentary resources or other collections of data. Students will carry out individual projects. Lim-

9. Special Study for Undergraduates (1-5) I. II. III. The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

10. Contemporary Indian Art (4) II. Longfish
Lecture—4 hours. Prerequisite: course 33. Historical review of contemporary Indian art from 1900 to the present by looking at the two art centers of Oklahoma and Santa Fe. Social pressures that have influenced the imagery that exists today will be examined. GE credit: ArtHum, Div.

107. Special Topics in Native American Languages (4) III. Macri
Lecture/discussion—4 hours. Prerequisite: consent of instructor. Investigation of various subjects in con-
temporary and historical Native American language studies. May be repeated for credit when a different topic is studied. GE credit: Div.

*112. History and Culture of the “Five Civilized Tribes” (4) II. The Staff
Lecture—4 hours. Prerequisite: upper division stand-
ing; course 1. History and culture of the Native Ameri-
can people, found in southeastern part of the U.S.,
called the “Five Civilized Tribes.” Offered in alternate years.

*115. Native Americans in the Contemporary World (4) III. The Staff
Lecture/discussion—4 hours. Prerequisite: course 1, 10, or 55. The sociocultural development of American Indian populations in modern times with emphasis upon North America. Attention will be given to con-
temporary Indian affairs and problems as well as to the background for present day conditions. Not open for credit to students who have completed Anthropology 141B. (Former course Anthropology 141B.) GE credit: SocSci, Div., Wrt.

*116. Native American Traditional Government (4) II. The Staff
Lecture—4 hours. Prerequisite: course 1; Anthropol-
ogy 2. Study of selected Native American Tribals Gov-
ernments, confederations, leagues, and alliances, and Native American political decision making with emphasis on federal and state programs, tribal sovereignty, current political trends and funding for tribal services. Offered in alternate years. GE credit: SocSci, Div., Wrt.

*117. Native American Governmental Decision Making (4) II. The Staff
Lecture—4 hours. Prerequisite: course 116, Political
Science 2; Anthropology 13 recommended. Native American governmental and community decision making with emphasis on federal and state programs, tribal sovereignty, current political trends and funding for tribal services. Offered in alternate years. GE credit: SocSci, Div., Wrt.

*118. Native American Politics (4) III. The Staff
Lecture—4 hours. Prerequisite: course 117. Exami-
nation of the various interest groups and movements found among Native people and how they relate to the determination of Indian affairs. Study of political action available to Native groups, and local commun-
ties, along with relevant theory relating to underde-

120. Ethnopolitics of South American Indians (4) II. Varese
Lecture/discussion—4 hours. Prerequisite: course 1, 10 or 55. Social, political, cultural movements of indigenous South Americans in relation to establish-
ment, expansion of European colonialism, post-

*122. Native American Community Development (4) III. Varese
Lecture—4 hours. Prerequisite: course 1, Applied
Behavioral Sciences 151. Application of community develop-
ment theory and techniques to the develop-
ment problems of Native American communities. Offered in alternate years. (Former course 161.) GE credit: SocSci, Div., Wrt.

130A. Native American Ethno-Historical Development (4) I. Crum
Lecture—4 hours. Prerequisite: course 1 or 10; His-
tory 17A recommended. Study of Native American ethno-

130B. Native American Ethno-Historical Development (4) II. Crum
Lecture—4 hours. Prerequisite: course 1; History 17A-
B recommended. Study of Native American ethno-

Course not offered this academic year.
Selected topics in Native American ethno-history, development, culture, and thought. May be repeated for credit when a different topic is studied. GE credit: ArtHum, Div.

204HA-204HB. Special Studies for Honors Students (4-4) I-II. The Staff (Forbes in charge) Independent study—12 hours. Prerequisite: senior qualifying for honors. Directed reading, research and writing culminating in the completion of a senior honors thesis or project under direction of faculty adviser. (Deferred grading only, pending completion of sequence.)

195. Field Experience in Native American Studies (12) I, II, III. The Staff Field work—36 hours. Prerequisite: senior standing and major in Native American Studies, completion of lower division requirements, and course 181. Field work with governmental and community groups, under supervision of faculty adviser and sponsor. Knowledge acquired in other courses to be applied in field work. (P/NP grading only.)

196. Senior Project in Native American Studies (4) I, II, III. The Staff Discussion—1 hour; independent study—3 hours. Prerequisite: senior standing and major in Native American Studies; thesis submission by 190 may be taken concurrently, and consent of instructor. Guided research project that enables student to apply the theory and research techniques from major coursework. Final product is to be a major senior project or thesis. (P/NP grading only.)

197TC. Community Tutoring in Native American Studies (1-5) I, II, III. The Staff Tutoring—3-5 hours. Prerequisite: consent of major committee; upper division standing with major in Native American Studies. Supervise tutoring in community. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Forbes in charge) Native American Studies. Supervise tutoring in community. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Forbes in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200. Basic Concepts in Native American Studies (4) II. Crum Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Analysis of the characteristics of the discipline: Native American Studies. Concentration is on both traditional and contemporary native scholarship and thought as well as the theoretical and methodological differences derived from application of these ideas. Offered in alternate years.

202. Advanced Topics in Native American Studies (4) II. Hernandez-Avila; III. Ross Seminar—4 hours. Prerequisite: graduate standing. Advanced study of selected topics or themes relevant to the field of Native American studies. Topics will be announced at the time of offering. May be repeated for credit when topics differ.

212. Community Development for Sovereignty and Autonomy (4) III. Varese Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Examines a sample of contemporary indigenous communities from south, central and north America with the goal of understanding and evaluating the strategies adopted by Native American communities to develop and implement forms of sovereignty or autonomous self-management. Offered in alternate years.

220. Colonialism/Racism and Self-Determination (4) III. Varese Seminar—3 hours; term paper. Prerequisite: graduate standing. Examines imperial/colonial systems and their psychosocial impacts upon oppressors and oppressed, of racism as the outgrowth of colonialism, and of nationalism, ethnic conflict and self-determination. Focus on indigenous peoples, but other groups will also be considered. Offered in alternate years.
A.B. Major Requirements:

Preparatory Subject Matter40-41
Nature and Culture 1 ...4
Chemistry 2A-2B ..10
Biological Sciences 1A-1B-1C5
Environmental Studies 30 or Anthropology 23-4
Comparative Literature 1, 2, or 3, or English4
Comparative Literature 204
Recommended: Statistics 13, 32, 102, or 103.

Depth Subject Matter44
Nature and Culture 100 and 1808
Environmental Studies 100, or Evolution and Ecology 101 or 1214
Anthropology/Environmental Studies 1014
Anthropology/Environmental Studies 1334
English 184 or Native American Studies 181A, 181B, or 181C, or Comparative Literature 1204
History and Philosophy of Science 130A4
Electives, a minimum of 16 units to be selected in consultation with an adviser from one or two thematic clusters; these include, in part, Human Evolution and Ecology, Human Culture and Society, Indigenous Peoples, California and the Southwest, Art and Literature, Earth and Environment, The Impact of Humans on the Environment, Environmental Law, Policy and Planning. A complete list of clusters and courses is available from advisers and from the Program Office16

Total units for the major84-85

Minor Program Requirements:

Nature and Culture ..4
Nature and Culture 1004
Environmental Studies 100, Evolution and Ecology 100 or 1104
Anthropology/Environmental Studies 1014
Anthropology/Environmental Studies 1334
English 184 or Native American Studies 181A, 181B, or 181C4
Total units for the minor24

Courses in Nature and Culture (NAC)

Lower Division Courses

1. Intersections of Nature and Culture (4) III.
Moore, Robertson.
Lecture/discussion—3 hours; term paper. Satisfaction of Subject A requirement; Comparative Literature 1, 2 or 3, or English 3 recommended. Nature and culture as human constructs, conditioned by both time and place; importance of nature in human thought, both scientific and spiritual; scientific and literary view of the relation between nature and culture, including forms of observation and methods of analysis. GE credit: ArtHum or SciEng, Wrt.

98. Directed Group Study (1-5) I, II, III.
The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

99. Individual Study (1-5) I, II, III.
The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

*100 The Culture of Nature: Theoretical Frameworks and Case Studies (4) II.
Orlove Lecture/discussion—4 hours; term paper. Prerequisite: course 1. Problems in nature and culture, with particular attention to integrative theoretical frameworks available for the investigation of specific issues. Course studies will vary with instructor. May be repeated once for credit when topic and instructor differ. GE credit: SocSci, Div, Wrt.

180. Fieldwork in Nature and Culture (4)
Barbour, Snyder.
Discussion—1 hour; fieldwork—70 hours/quarter: term paper. Prerequisite: course 100. Fieldwork: one week prior to the beginning of the quarter, plus two weekends. Natural scientific, social scientific, and literary/artistic approaches to the study of nature and culture in one place, which will vary with instructor.

192. Internship in Nature and Culture (1-2)
I, II, III.
The Staff (Director in charge)
Internship—3-36 hours. Prerequisite: course 1. Internship in nature and culture as social sciences, or humanities on or off campus in which students use and improve their interdisciplinary skills and perspectives gained through the Nature and Culture curriculum. Supervised by a faculty member. May be repeated for credit. (P/NP grading only.)

197T. Tutoring in Nature and Culture (1-5)
I, II, III.
The Staff
Tutoring—3-15 hours. Prerequisite: consent of Instructor. Assist in field trips, lead study sessions with groups and individual students. (P/NP grading only.)

198. Directed Group Study (1-5)
I, II, III.
The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

199. Individual Study (1-5)
I, II, III.
The Staff
Prerequisite: consent of instructor. (P/NP grading only.)

Nematology

(180, 190, 245-249)

245. Field Nematology
Kaya.
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A or 1B, or the equivalent. Consideration of nematodes attacking cultivated crops. GE credit: SciEng.

249. Special Study for Advanced Undergraduates (1-5) I, II, III.
Summer.
The Staff
Chairperson in charge
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Molecular and Physiological Plant Nematology (2) II.
Williamson
Lecture—1 hour; discussion—1 hour. Prerequisite: Biological Sciences 101; Plant Pathology 120, course 100 or 110. Molecular biology and physiology of nematodes using Caenorhabditis elegans as a model, but with emphasis on plant-parasitic species. Plant responses to nematodes. Discussion of current literature emphasized. Offered in alternate years.

202. Nematodes and the Soil Environment (2)
Jaffe
Lecture—1 hour; discussion—1 hour. Prerequisite: course 100 or 110, Plant Pathology 120, Soil Sciences 100 or 111. Consideration of how soilborne nematodes (parasites of plants and insects and microbivores) are affected by abiotic factors (especially soil porosity and water potential) and biotic factors (especially fungi and bacteria that parasitize nematodes). Offered in alternate years.

203. Ecology of Parasitic Nematodes (2) III.
Caswell-Chen
Lecture—1 hour; discussion—1 hour. Prerequisite: course 100 or 110 or Entomology 156; Evolution and Ecology 101 or Plant Biology 117. Major concepts in population and community ecology of animal- and plant-parasitic nematodes. Current advances in techniques, theory, and basic information about nematode-host dynamics, and application to management of nematode diseases. Offered in alternate years.

204. Management of Plant-Parasitic Nematodes (2) III.
Westerdahl
Lecture—1 hour; laboratory—3 hours. Prerequisite: course 100 or 110. Theory, foundation, principles and practices of nematode management. Techniques and equipment used to manage nematodes and methods used to analyze their effectiveness. Offered in alternate years.

205. Insect Nematology and Biological Control (2) I.
Kaya
Lecture—1 hour; discussion—1 hour. Prerequisite: courses 100 and 110. Entomology 100 or 110. The biology of insect-parasitic nematodes, their effect on the host, and their potential as biological control agents of insect and other invertebrate pests. Application of ecological theory in classical and augmentative biological control. Offered in alternate years.

225. Nematode Taxonomy and Comparative Morphology (5) II.
The Staff
Lecture—2 hours; laboratory—6 hours; 3 hours of laboratory to be announced. Prerequisite: course 220. The taxonomy, morphology, and comparative morphology of soil, freshwater, and marine nematodes as well as select plant and animal parasites. Offered in alternate years.

245. Field Nematology (1)
I. The Staff
Fieldwork—6 days. Prerequisite: courses 100, 222. Six-day demonstration and field study in applied nematology including diagnosis and prediction of nematode field problem strategies for control field plot

Courses in Nematology (NEM)

Upper Division Courses

100. General Plant Nematology (4) I.
Ferris
Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A or 10. An introduction to the classification, morphology, biology, and control of the nematodes attacking cultivated crops.

110. Introduction to Nematology (2) II.
Caswell-Chen
Lecture—2 hours. Prerequisite: Biological Sciences 1B or the equivalent or consent of instructor. The relationships of nematodes to human environment. Classification, morphology, ecology, distribution, and importance of nematodes occurring in water and soil as parasites of plants and animals. GE credit: SciEng.
design, and establishment in association with diverse California crops. (S/U grading only.)

290. Seminar (1) I, II, III. The Staff (Chairperson in charge) Seminar—1 hour. (S/U grading only.)

290C. Advance Research Conference (1) (Research Faculty) Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Planning and results of research programs, proposals, and experiments. Discussion and critical evaluation of original research being conducted by the group. Discussion led by individual research instructors for research group. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

Neuroscience (A Graduate Group)

Lynn Robertson, Ph.D., Chairperson of the Group Group Office, 188 Briggs Hall (916-752-9092)

Faculty. The group includes 32 faculty members from fourteen departments in the College of Agricultural and Environmental Sciences, College of Letters and Science, the Division of Biological Sciences, and the Schools of Medicine and of Veterinary Medicine.

Graduate Study. The Graduate Group in Neuroscience offers programs of study leading to the Ph.D. degree. Neuroscience is a broad, interdepartmental program with faculty interests ranging from molecular biology of channels to cortical organization and cognition. A major goal of the program is to prepare students for careers as research scientists. Details of the program may be obtained from the Group office.

Graduate Advisers. D. Amaral (Center for Neuroscience), A. Ishida (Neurobiology), Physiology and Behavior), I. Pessah (Molecular Biosciences), R. Rafael (Center for Neuroscience).

Courses in Neuroscience (NSC)

Graduate Courses

200LA. Laboratory Methods in Neurobiology (6) I, II, III. The Staff Laboratory—18 hours. Prerequisite: graduate standing in the Neuroscience Graduate Group. Individual research in the laboratory of a faculty member. Research problems emphasize the use of contemporary methods and good experimental design. May be repeated three times for credit. (S/U grading only.)

200LB. Laboratory Methods in Neurobiology (3) I, II, III. The Staff Laboratory—9 hours. Prerequisite: graduate standing in the Neuroscience Graduate Group. Individual research in the laboratory of a faculty member. Research problems emphasize the use of contemporary methods and good experimental design. May be repeated for credit. (S/U grading only.)

221. Cellular and Molecular Neuroscience (4) I. Wilson Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course dealing with the cellular and subcellular organization of the nervous system. Membrane channels, sensory transduction, synaptic transmission and cellular aspects of development and learning will be covered. (Same course as Neurobiology, Physiology and Behavior 221.)

222. Systems Neuroscience (4) II. Britten Lecture—3 hours; discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced course covering the integrative and information-processing aspects of nervous system organization. Topics include sensory systems, motor function, sensorimotor integration, the limbic system, and the neuropsychology of learning and memory. (Same course as Neurobiology, Physiology and Behavior 222.)

223. Cognitive Neuroscience (4) III. Mangun Lecture—3 hours; discussion—1 hour. Prerequisite: graduate student standing in Psychology or Neuroscience or consent of instructor. Graduate core course for neuroscience. Neuropsychological bases of higher mental function including attention, memory, language. One of three in three quarter sequence. (Same course as Psychology 261.)

243. Topics in Cellular and Behavioral Neurobiology (2) III. Wilson Discussion—1 hour; seminar—1 hour. Prerequisite: consent of instructor. An advanced examination of several current problems in neurobiology. Topics will vary in different years; may be repeated for credit. (S/U grading only.)

250. Biology of Neuroglia (2) III. Kumari Lecture/discussion—1.5 hours. Prerequisite: consent of instructor. The properties and functions of non-neuronal or neuronal cells in the mammalian central nervous system with relevance to neuronal development, physiology and injury response. Offered in alternate years. (Same course as Cell Biology and Human Anatomy 250.) (S/U grading only.)

283. Neurobiological Literature (1) I, II, III. Mulloney, Wilson Seminar—1 hour. Prerequisite: consent of instructor. Critical presentation and analysis of recent journal articles in neurobiology. May be repeated for credit. (S/U grading only.)

290C. Research Conference in Neurobiology (1) I, II, III. The Staff (Chairperson in charge) Discussion—1 hour. Prerequisite: graduate standing in Neuroscience or consent of instructor; course 299 (concurrently). Presentation and discussion of faculty and graduate student research in neurobiology. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only.)

Nutrition

Nutrition (College of Agricultural and Environmental Sciences)

Carl L. Keen, Ph.D., Chairperson of the Department Department Office, 3135 Meyer Hall (916-752-4630)

Faculty

Lindsay H. Allen, Ph.D., Professor Kenneth H. Brown, M.D., Professor Andrew J. Clifford, Ph.D., Professor Kathryn G. Dewey, Ph.D., Professor M.R.C. Greenwood, Ph.D., Professor Louis E. Grivetti, Ph.D., Professor (Nutrition, Geography)

L. Keen, Ph.D., Professor (Nutrition, Internal Medicine)

Bo L. Lonnerdal, Ph.D., Professor (Nutrition, Internal Medicine)

Roger McDonald, Ph.D., Associate Professor Robert B. Rucker, Ph.D., Professor (Nutrition, Biological Chemistry)

Michael A. Satre, Ph.D., Assistant Professor Barbara O. Schneeman, Ph.D., Professor (Nutrition, Food Science and Technology, Internal Medicine)

Judith S. Stern, Sc.D., Professor (Nutrition, Internal Medicine)

Emeriti Faculty

Fredric W. Hill, Ph.D., Professor Emeritus William C. Weir, Ph.D., Professor Emeritus Frances J. Zeman, Ph.D., Professor Emeritus

Affiliated Faculty

Elizabeth A. Applegate, Ph.D., Lecturer Patricia Johnson, Adjunct Professor Jo Ann Prophet, M.S., Lecturer Janet Uru-Hare, Assistant Research Nutritionist Sheri Zidenbert-Cherr, Ph.D., Nutrition Science Specialist

Major Program

See the majors in Community Nutrition, Dietetics, and Nutrition Science.

Minor Program Requirements:

The Department of Nutrition offers four minor programs open to students majoring in other disciplines who wish to complement their study programs with a concentration in the area of food and nutrition.

Note: If the student's major program requires the same course in biochemistry and physiology, only one of the courses may duplicate credit toward the minor. Each program below lists replacement courses to fulfill the minimum unit requirement.

Community Nutrition...............................24
Preparation: plan in advance to include the required course prerequisites.
Nutrition 101 or 110, plus 1119
Nutrition 118, 192 (2)11
Nutrition 1206
Neurobiology, Physiology and Behavior 1015

Replacement courses (see note above):

UNITS

Food Service Management.........................24-25
Preparation: plan in advance to include the required course prerequisites.
Food Science and Technology 100A-100B, 101A-101B10
Food Service Management 120, 120L, 121, 12211
Food Service Management 123 or Agricultural Economics 1123-4
Replacement courses (see note above):

UNITS

Nutrition 359

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Nutrition

Preparation: plan in advance to include the required course prerequisites.
Nutrition 101, 111 .. 9
Nutrition 120 .. 4
Food Science and Technology 100A, 100B, 6
Neurobiology, Physiology and Behavior 101
Replacement courses (see note above):

Nutrition Science .. 20
Preparation: plan in advance to include the required course prerequisites.
Biological Sciences 102 and 103 6
Neurobiology, Physiology and Behavior 101
Nutrition 110, 111 .. 9
Replacement courses (see note above):
Nutrition 114, 115, 116A-116B, 117, 120,
122, 123L, 123, 124, 201, 204.

Minor Adviser: R.B. Ruckjer
Graduate Study: Programs of study leading to the M.S. and Ph.D. degrees are available in Nutrition. For information on graduate study contact the graduate adviser.

Courses in Nutrition (NUT)

Lower Division Courses
Lecture—3 hours. Nutrition as a science; historical development of nutrition concepts; properties of nutrients and foods. Not open for credit to students who have taken an upper division course in nutrition. GE credit: SciEng.

Discussion—1.5 hours; oral reports, written reports, term paper. Prerequisite: course 10 (may be taken concurrently). Assigned readings and discussion of topics of current concern and broad interest in contemporary nutrition. Coordinated with course 10. Not open for credit to students who have taken an upper division course in nutrition. GE credit: SciEng.

12. Nutrition and Food ... 360
Preparation: plan in advance to include the required course prerequisites.

Nutritional basis of psychiatric, neurologic, endocrine, metabolic, and reproductive disorders. GE credit: Div.

111. Human Nutrition (4) III. McDonald
Lecture—3 hours; discussion—1 hour. Prerequisite: course 101 or 110. Nutrition of humans; critical study of nutrient requirements at various phases of life cycle.

12. Nutritional Assessment: Dietary, Anthropometric, and Clinical Measures (2) III. Brown
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 101 or 111 (may be taken concurrently). Methods of nutritional assessment in humans to evaluate dietary intake (dietary records and recalls, food frequency lists), body composition (anthropometry, physiological methods), and clinical signs of malnutrition. Principles of validity and reliability and interpretation of results.

13. Nutritional Assessment: Biochemical Measures (2) I. The Staff (McDonald in charge)
Lecture—1 hour; laboratory—2 hours. Prerequisite: course 111. Variety of biologic markers of human nutritional status including hematological, urine, and hair analyses of clinical importance will be demonstrated and evaluated. Emphasizes the precision, accuracy, reliability, and interpretation of the values.

14. Developmental Nutrition (4) II. Keen, Satre
Lecture—4 hours. Prerequisite: course 110 or 101; course 111. Role of nutritional factors in embryonic and postnatal development. GE credit: SciEng, Wrt.

15. Animal Feeds and Nutrition (4) II. DePeters (Animal Science)

116A-116B. Diet Therapy (3)-3-I-II. The Staff
Lecture—3 hours. Prerequisite: course 111, Physiological 110 (or the equivalent). Biochemical and physiological bases for therapeutic diets. Problems in planning diets for normal and pathological conditions.

116AL. Practicum in Diet Therapy (2) I. Allen
Lecture—1 hour. Prerequisite: courses 116A (may be taken concurrently). Fundamental principles of planning and evaluating therapeutic diets and patient education for pathological conditions covered in 116A.

116BL. Practicum in Diet Therapy (1) II. The Staff
Lecture—0.5 hours; laboratory—1.5 hours. Prerequisite: course 116B (may be taken concurrently) and 116AL. Fundamentals of planning and evaluating therapeutic diets and patient education for pathological conditions covered in 116B. Continuation of course 116AL.

117. Experiential Nutrition (5) I. Clifford
Lecture—3 hours; laboratory—6 hours. Prerequisite: course 111; Biological Sciences 103; a laboratory course in nutrition or biochemistry. Methods of assessing nutritional status. Application of chemical, microbiological, chromatographic and enzymatic techniques to current problems in nutrition.

118. Community Nutrition (4) II. Dewey
Lecture—4 hours. Prerequisite: course 101 or 111, and 116A. Nutrition problems of contemporary communities and of selected target groups in the United States and in developing countries. Nutrition programs and policy; principles of nutrition education.

120. Food Habits and Their Nutritional Implications (4) III. (Group)
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division or graduate standing; upper division course in nutrition or Biological Sciences 103; course 20 recommended. Advanced themes exploring food habits and their nutritional implications; pica, toxicants naturally occurring in food; ethnic diet; food systems; dietary codes; overview and case histories. GE credit: SciEng.

122. Ruminant Nutrition and Digestive Physiology (3) III. Fadel (Animal Science)
Lecture—3 hours. Prerequisite: Physiology 110; Biological Sciences 102, 103. Microbiology 2 recommended. Study of nutrient utilization as influenced by the unique aspects of digestion and fermentation in the ruminant.

122L. Ruminant Nutrition Laboratory (2) III. Macy (Animal Science)
Laboratory—6 hours. Prerequisite: course 122 (concurrently). Students will conduct experiments in small groups and attend demonstrations on topics peculiar to ruminant digestive physiology and nutrition. The laboratory will deal with topics developed in lectures.

123. Companion and Captive Animal Nutrition (4) III. Kissing
Lecture—3 hours; discussion/laboratory—3 hours. Prerequisite: course 110; Biological Sciences 102 and 103. Comparative nutrition of non-ruminant vertebrate animals; including laboratory and companion animals, primates and wildlife. Relation of nutrition to metabolic adaptations and physiological state. Discussion/laboratory exercises leading to written group reports on establishment of nutritional requirements and formulating complete diets. GE credit: SciEng, Wrt.

124. Nutrition and Feeding of Finfishes (3) III. Hung (Animal Science)
Lecture—3 hours. Prerequisite: Biological Sciences 103 and Wildlife, Fish and Conservation Biology 121. Principles of nutrition to feeding of fishes under commercial situations; implication of fish nutrition to the environment and conservancy of endangered species.

129. Journalistic Practicum in Nutrition (2) III. Stern
Discussion—2 hours. Prerequisite: course 111; a course in written or oral expression or consent of instructor. Critical analysis and discussion of current, controversial issues in nutrition; the use of journalistic techniques to interpret scientific findings for the lay public. Students will be required to write several articles for campus media. Course may be repeated once for credit. GE credit: Wrt.

130. Experiments in Nutrition: Design and Execution (2) I, II, III. The Staff (Keen in charge)
Laboratory—6 hours. Prerequisite: consent of instructor required; course 101, 110, 111, or 114 recommended. Experiments in current nutritional problems, discussion of experimental design. Students must choose a project, and, independently or in groups of 2-3, design a protocol, do the project and present their findings. May be repeated for credit with consent of instructor.

190. Proseminar in Nutrition (1) I, II, II. Zidenberg-Cherr
Seminar—1 hour. Prerequisite: senior standing; course 111. Discussion of human nutrition problems. Each term will involve a different emphasis among experimental, clinical, and dietary problems of community, national and international scope. May be repeated twice for credit with consent of instructor.

190C. Nutrition Research Conference (1) I, II, III
Discussion—1 hour. Prerequisite: upper division standing in Nutrition or related biological science; consent of instructor. Introduction to research findings and methods in nutrition. Presentation and discussion of research by faculty and students. May be repeated for credit. (PNP grading only.)

192. Internship (1-2) I, II, III. The Staff
Internship—3-36 hours. Prerequisite: one upper division course in nutrition and consent of instructor. Work experience on or off campus in practical application of nutrition, supervised by a faculty member. (PNP grading only.)

197T. Tutoring in Nutrition (1-2) I, II, III. The Staff (McDonald in charge)
Discussion—1 hour. Prerequisite: upper division in nutrition and consent of instructor. Workshop experience on or off campus in practical application of nutrition, supervised by a faculty member. (PNP grading only.)
peated if tutoring a different course. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Keen in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Keen in charge) (P/NP grading only.)

Graduate Courses

201. Vitamin Metabolism (2) II. Rucker Lecture—2 hours. Prerequisite: upper division nutrition or biochemistry course. Review of studies and relationships involving the metabolic functions of vitamins. Comparative nutritional aspects and the metabolism and chemistry of vitamins and vitamin-like compounds emphasized.

202. Advanced Nutritional Energetics (2) I. Baldwin Lecture—2 hours. Prerequisite: course 110, Biological Sciences 103, Physiology 110 or the equivalent. History of nutritional energetics. Evaluation of energy transformations associated with food utilization. Energy expenditures at cellular, tissue, and animal levels are affected by diet and physiological state. Current and future feeding systems.

203. Advanced Protein and Amino Acid Nutrition (2) III. The Staff (Rogers, Molecular Biosciences, in charge) Lecture—2 hours. Prerequisite: course 110, Biological Sciences 103, Physiology 110 or the equivalent. Nutritional significance of protein and amino acids, including studies of the influence of dietary protein on digestion, absorption, metabolism, resistance to disease, and food intake. Study of dietary requirements and interrelationships among amino acids.

204. Mineral Metabolism (2) II. Lonnerdal, Keen Lecture—2 hours. Prerequisite: upper division nutrition or biochemistry course. Studies of metabolic functions and nutritional interrelationships involving minerals.

*216. Advanced Diet Therapy (3) III. The Staff Lecture—3 hours. Prerequisite: course 116A-116B. Nutrition and disease interrelationships at cellular, tissue, and whole body levels with emphasis on human disease. Critical evaluation of methodology in the study of nutrition in disease states.

*218. Advanced Field Work in Community Nutrition (2-12) I, II, III, extra session summer. The Staff Discussion—1 hour; field work. Prerequisite: courses 118, 119; graduate standing; consent of instructor. Directed experience in community nutrition. Organization and implementation of nutrition programs.

219A. International Nutrition (3) II. Brown, Dewey, Pollitt (Pediatrics) Lecture/discussion—3 hours. Prerequisite: upper division course in nutrition or consent of instructor. Epidemiology, etiology, and consequences of undernutrition in developing countries. Offered in alternate years.

219B. International Nutrition (3) III. Brown, Dewey, Pollitt (Pediatrics) Lecture/discussion—3 hours. Prerequisite: upper division course in nutrition or consent of instructor. Nutrition policies and programs in developing countries. Offered in alternate years.

252. Nutrition and Development (3) II. Keen, Satre Lecture—3 hours. Prerequisite: courses 201, 202, 203. Relationship of nutrition to prenatal and early postnatal development. Offered in alternate years.

*253. Control of Food Intake (3) III. Stern (Nutrition), Gierzen (Anatomy, Physiology and Cell Biology), and staff Lecture—2 hours; discussion—1 hour; 2 or 3 laboratory demonstrations per quarter. Prerequisite: course 201 or 202 consent of instructor. Comprehensive study of the biochemical, nutritional, behavioral, and physiological mechanisms controlling food intake. Subject matter will be approached through lectures, laboratory demonstration and discussions where students and staff will critically evaluate the literature. Offered in alternate years.

254. Applications of Systems Analysis in Nutrition (3) I. Baldwin (Animal Science) Lecture—2 hours; discussion—1 hour. Prerequisite: course 202, Physiological Sciences 205A-205B or the equivalent. Quantitative aspects of digestion and metabolism; principles of systems analysis. Evolution of models of energy metabolism as applied in current feeding systems. Critical evaluation of mechanistic models used analytically in support of nutritional research. Offered in alternate years.

*255. Nutritional Toxicology (3) I. The Staff Lecture/discussion—3 hours. Prerequisite: course 110 or the equivalent, courses 201 and 204, Physiological Sciences 205A-205B or the equivalent. Examination of toxic nutritional aspects and the metabolism, elimination, and consequences of toxic nutrients. Offered in alternate years.

256. Nutritional and Hormonal Control of Animal Metabolic Function (3) III. Baldwin (Animal Science) Lecture—2 hours. Prerequisite: courses 201 through 204; Physiological Sciences 205A-205B. Significance and interpretation of enzyme, metabolite, in vivo and in vivo isotope tracer, energetic and other data. Critical evaluation of metabolic control and limitations in the study of animal metabolism. Diet-hormone interactions in carbohydrate, amino acid, and lipid metabolism will be discussed. Offered in alternate years.

*257. Selected Topics in Nutritional and Hormonal Control of Nitrogen Metabolism (2) I. Klasing (Avian Sciences), Calvert (Animal Science) Lecture—2 hours. Prerequisite: courses 201 through 204; Physiological Sciences 205A-205B or the equivalent. Quantitative and qualitative aspects of nitrogen metabolism; critical evaluation of dietary intake, hormones and diet/hormone interactions which affect nitrogen metabolism. Protein synthesis-degradation, amino acid synthesis-catabolism, nitrogen transport-excretion, depending on current literature. Offered in alternate years.

258. Field Research Methods in International Nutrition (3) II. Brown, Dewey, Pollitt (Pediatrics) Lecture/discussion—3 hours. Prerequisite: graduate standing or consent of instructor. Issues and problems related to implementation of nutrition field research in less-developed countries, including ethics, relationships with local governments, communities, and scientists; data collection techniques and quality assurance; field logistics; research budgets; and other administrative and personal issues. Offered in alternate years.

290. Beginning Nutrition Seminar (1) I, II, III. Satre Seminar—2 hours. Prerequisite: first-year graduate standing. Discussion and critical evaluation of topics in nutrition with emphasis on literature review and evaluation in this field.

290C. Research Conference (1) I, II, III. The Staff (Keen in charge) Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Major professors lead research discussions with their graduate students. Research papers are reviewed and project proposals presented and evaluated. Format will combine seminar and discussion style. (S/U grading only.)

291. Advanced Nutrition Seminar (1) I, II, III. The Staff (Keen in charge) Seminar—1 hour. Prerequisite: second-year graduate standing. Discussion and critical evaluation of advanced topics in nutrition research. (S/U grading only.)

297T. Supervised Teaching in Nutrition (1-12) I, II, III. The Staff (Keen in charge) Seminar—1 hour. Prerequisite: graduate status in nutrition or consent of instructor. Practical experience in teaching nutrition at the university level; curriculum design and evaluation; preparation and presentation of material. Assistance in laboratories, discussion sections, and evaluation of student work. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Keen in charge)

299. Research (1-12) I, II, III. The Staff (Keen in charge) (S/U grading only.)

Professional Course

*380. Supervised Teaching in Dietetics (2-12) I, II, III, extra-semester summer. The Staff Laboratory—3-6 hours. Prerequisite: graduate standing in M.S. program in Nutrition with emphasis in dietetics; consent of instructor. Directed teaching in approved dietetic internships or coordinated program in dietetics. May be repeated for a total of 12 units; 3 units may be counted toward degree credit.

Nutrition

(A Graduate Group)

Q.R. Rogers, Ph.D., Chairperson of the Group

Group Office, 3135 Meyer Hall (916-752-4630)

Faculty. Faculty are drawn from the Colleges of Agricultural and Environmental Sciences, and of Letters and Science, and the Schools of Medicine and of Veterinary Medicine.

Graduate Study. The Graduate Group in Nutrition offers programs of study and research leading to the M.S. and Ph.D. degrees. Research activities in nutrition include work with humans and with laboratory, domestic, and wild animals. Areas of specialization include: the effect of diet on energetics and intermediary metabolism; nutrition and disease relationships; community nutrition; nutrient requirements and utilization; nutrient balance and food intake regulation; biological antioxidants; food toxicants; mineral and vitamin nutrition; various anomalies of pre- and postnatal development; parental nutrition; the application of biomathematics to nutritional analyses; human and animal dietetics; and international nutrition. For detailed information regarding these programs, address the chairperson of the group.

Graduate Advisors. Consult the Nutrition Graduate Group Office.

Nutrition Science

(College of Agricultural and Environmental Sciences)

The Major Program

The study of nutrition encompasses all aspects of the collection, preparation, and consumption of food. Also important in the study of nutrition are the biochemical reactions that take place within the body’s cells to utilize these nutrients. This is the level at which the nutrition science major explores the general subject of nutrition.

The Program. While students may elect to take courses concerning the social, psychological, economic, or cultural aspects of nutrition, the bulk of the coursework making up the major consists of courses in the sciences. Nutrition as it is taught on the Davis campus is a biological science and requires a complete background in chemistry and biology, along with physics and calculus. These courses are generally completed during the first two years, and along with biochemistry, must be completed before the student is permitted to enroll in nutrition classes. Nutrition science students go on to study nutrition in depth during their junior and senior years.
Career Alternatives. The nutrition science major is excellent preparation for technical work in nutrition in animal, food, and pharmaceutical industries. It also provides a strong background for technical writing or health education. Students who wish to continue their studies are well prepared for professional study in nutrition, dietetics,† medicine, and other health sciences.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

English Composition Requirement0-8
See College requirement.

Preparatory Subject Matter55-58
Biological sciences (Biological Sciences 1A, 1B, 1C)15
Chemistry (2A-2B-2C. and 8A-8B or 118A-118B or 128A-128B and 129A)21-23
Computer science (Computer Science Engineering 10 or 15 or Agricultural Systems and Environment 21) ...3-4
Mathematics (Mathematics 16A-16B)6
Physics (Physics 1A-1B)6
Statistics (Statistics 13 or Agricultural Systems and Environment 120)4

Breadth/General Education24
Satisfaction of General Education requirement plus additional coursework in social sciences and humanities

Depth Subject Matter26-28
Biochemistry (Biological Sciences 102, 103) ...6
Nutrition 110, 111, 11714
Nutrition courses selected from 112, 113, 114, 115, 116A, 116B, 122, 122L, 123, 130, 190, 190C, 198, and 1996-8

Restricted Electives42
Biochemistry laboratory (Molecular and Cellular Biology 120L)6
Food science (upper division courses)6
Physiology with laboratory (Neurobiology, Physiology and Behavior 101, 101L, plus an additional physiology course)10
Additional nutrition or related biological and physical sciences20

Unrestricted Electives20-33
Total Units for the Degree180

Major Adviser, E. L. Lonnerdal.
Advising Center for the major is located in 1202E Meyer Hall (916-752-2512).

†To fulfill the academic requirements for an internship in Dietetics, choose the following courses from the categories in which they appear above: English 1 or 3, Psychology 1, Rhetoric and Communication 1, Sociology 1 or 3, and Anthropology 2; Biology 1A or 1B, Biology 1C; and Sociology 110, 111, 112, 115, 116A, 116B, 122, 122L, 123, 130, 190, 190C, 198, and 199.

Orthopaedic Surgery
See Medicine, School of

Pathology, Microbiology, and Immunology
(School of Veterinary Medicine)
N. James MacLachlan, B.V.Sc., Ph.D., Chairperson of the Department
Department Office, 1044 University Hall (916-752-1385)

CAFACulty
Mark L. Anderson, D.V.M., Ph.D., Associate Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Bradd C. Barr, D.V.M., Ph.D., Associate Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Arthur A. Bickford, V.M.D., Ph.D., Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Walter M. Boyce, D.V.M., Ph.D., Associate Professor
Mary M. Christopher, D.V.M., Ph.D., Associate Professor
Pat A. Conrado, D.V.M., Ph.D., Associate Professor
George Cooper, D.V.M., M.S., Assistant Professor of Clinical Diagnostic Microbiology (California Veterinary Diagnostic Laboratory)
James, S. Cullor, D.V.M., Ph.D., Assistant Professor
David A. Ferrick, Ph.D., Associate Professor
Linda J. Lowenstine, D.V.M., Ph.D., Professor
N. James MacLachlan, B.V.Sc., Ph.D., Professor
Charles Mohr, D.V.M., Ph.D., Associate Professor
Peter F. Moore, B.V.Sc., Ph.D., Professor
Frederick A. Murphy, D.V.M., Ph.D., Dean
Bennie L. Osburn, D.V.M., Ph.D., Professor
Deryck H. Read, B.V.Sc., Ph.D., Associate Professor of Clinical Diagnostic Pathology (California Veterinary Diagnostic Laboratory)
Ming Ming Wong, Ph.D., Professor Emeritus

Emeriti Faculty
Norman F. Baker, D.V.M., Ph.D., Professor Emeritus
Ernst L. Biberstein, D.V.M., Ph.D., Professor Emeritus
Donald R. Cordy, D.V.M., Ph.D., Professor Emeritus
Donald L. Dungworth, B.V.Sc., Ph.D., Professor Emeritus
Bernard F. Feldman, D.V.M., Ph.D., Professor Emeritus
Nemi C. Jain, M.V.Sc., Ph.D., Professor Emeritus
John W. Osebold, D.V.M., Ph.D., Professor Emeritus
Harvey J. Olander, D.V.M., Ph.D., Professor Emeritus
Jack E. Moulton, D.V.M., Ph.D., Professor Emeritus

Affiliated Faculty
Bruce Charlton, D.V.M., Veterinary Diagnostician (California Veterinary Diagnostic Laboratory)

Obstetrics and Gynecology
See Medicine, School of

Ophthalmology
See Medicine, School of

Organizational Studies
See Sociology

Orientation
(College of Agricultural and Environmental Sciences)
Course in Orientation (ORI)
Questions pertaining to the following course should be directed to the instructor or to the Biochemistry and Biophysics Department, 149 Briggs Hall.

Lower Division Course
1. Orientation (no credit) I, II, III, Chaykin (Biochemistry and Biophysics)
 Discussion. Exploration of the philosophy, purposes, significance, expectations and mechanisms of university education.
 (P/NP grading only.)

Orthopaedic Surgery
See Medicine, School of

Otolaryngology
See Medicine, School of

Parks and Recreation
See Applied Behavioral Sciences; Design; Environmental Planning and Management (under Environmental Horticulture); Landscape Architecture, and Physical Education (under Exercise Science)

Pathology
See Pathology (Medicine, School of); and Pathology, Microbiology and Immunology (Veterinary Medicine), below

*Course not offered this academic year.
Courses in Pathology, Microbiology, and Immunology (PMI)

Upper Division Courses

101. Comparative Hematology (3) I. Zink Lecture—2 hours. Prerequisite: Biological Sciences 1A, Physiology 111, Biochemistry 101A-101B or Physiology 101A-101B or consent of instructor. Principles, interpretation, and applications of clinical hematology; comparative blood cellular morphology and function. Laboratory—6 hours. Prerequisite: course 101 (should be taken concurrently) and consent of instructor. Introduction to laboratory techniques and procedures of clinical hematology. Limited enrollment.

102. Clinical Biochemistry (3) I. Zink Lecture—3 hours. Prerequisite: Physiology 112, 113, Physiological Sciences 101A-101B or Biochemistry and Biophysics 101A-101B or consent of instructor. Principles of biochemistry as related to alterations in the biochemical constituents of blood, urine and other body fluids.

126. Fundamentals of Immunology (3) I. Ferrick, Gershwin, Scott Lecture—3 hours alternate weeks with lecture—2 hours and discussion—1 hour. Prerequisite: Biochemistry 101A or equivalent. Immunology cases based on currently available case materials from animal pathology, and physiology laboratories. Discussion—1 hour. Prerequisite: graduate standing or consent of instructor. Responsible diagnostic casework. Performance of histology and surgical pathology cases based on clinical records and microscopic study. (S/U grading only.)

128. Medical Bacteria and Fungi (5) III. LeFebvre Lecture—3 hours; laboratory—6 hours. Prerequisite: general microbiology or Microbiology 20 or 102. Basic immunology (Pathology, Microbiology and Immunology 126 or Medical Microbiology 107). An introduction to the bacterial and mycotic pathogens of man and animals, with emphasis on pathogenic mechanisms and ecologic aspects of infectious disease. Limited enrollment.

198. Directed Group Project (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Gershwin in charge) (P/NP grading only.)

Graduate Courses

204. Normal and Abnormal Bone Marrow Cytology (1) III. Zink Lecture—2 hours. Prerequisite: Veterinary Medicine 435 or course 101. Normal maturation of hematopoetic cells followed by a study of the cytology of blood and bone marrow in selected diseases of domestic animals including infections, anemias, myeloproliferative disorders and leukemias.

*216. Immunodiagnostics Techniques (3) II. Lam, Culicor Lecture—3 hours. Prerequisite: enrollment in MPVM program or consent of instructor. Consideration of immunodiagnostic techniques for screening of animal populations for disease. Emphasis on rapid, simple, and inexpensive procedures for mass screening.

270. Advanced Immunology (3) III. Scott Lecture—3 hours. Prerequisite: course 126 or Veterinary Medicine 450 or consent of instructor. Immunoglobulin structure and function, antigenic determinants, complement, Biology of lymphocytes, mediated immune reactions, immunogenetics, hyper-reactivity. Pathogenetic mechanisms in immunologic diseases, immunological unresponsiveness, cancer immunology. Dynamics of infection and resistance. Methods in immunochemistry and immunobiology. Offered in alternate years.

*281. Foreign Animal Diseases (3) III. Oliveira Lecture—2 hours. Prerequisite: course 210, and Veterinary Medicine 451, or 451 or 459. For students interested in research and teaching in tropical veterinary medicine. The diseases studied are the most important ones that currently ravage third-world countries, particularly in Africa and Latin America. Offered in alternate years.

*283. Comparative Avian Anatomy and Pathology (1-3) I. Lowenstein Lecture—3 hours. Prerequisite: anatomy section—upper division undergraduates, graduates, and veterinary students; pathology section—third-year and fourth-year veterinary students and graduate students. Ten lectures outline gross/microscopic anatomy of a wide range of avian species as appropriate for students interested in avian biology. Twenty lectures encompass comparative aspects of avian pathobiology and disease manifestations for students interested in avian diseases. Offered in alternate years.

284. Pathogenesis of Infectious Disease (2) I. Lam, Culicor Lecture—2 hours. Prerequisite: upper division or graduate standing in biology or the medical sciences and introductory courses in microbiology, immunology, hematology, or consent of instructor. Features of pathogenicity and host defense mechanisms common to infection with bacteria, viruses, fungi, and protozoa are emphasized, as well as the important species differences. Perinatal immune responses of dam and offspring are also covered. Offered in alternate years.

*285. Cellular Basis of Disease (2) II, III. Mohr, Wu Lecture—3 hours. Prerequisite: Biochemistry 101A, 101B, Biological Sciences 104, and either Veterinary Medicine 452 or Medical Pathology 210. The disciplines of cell biology, biochemistry and molecular biology will be applied to the understanding of the basic nature of disease. Covers cellular injury and mechanisms of adaptation, host-defense and vascular responses, and cellular transformation. Offered in alternate years.

*287. Comparative Pathology of Laboratory Animals (3) III. Lowenstein Lecture—3 hours. Prerequisite: graduate standing, DVM degree, or final-year veterinary student; consent of instructor in charge. The pathology of diseases of animals commonly kept in laboratory settings includ- ing cold-blooded vertebrates as well as rodents, lagomorphs, and non-human primates. Emphasis will be recognition of lesions and understanding of pathogenesis. Offered in alternate years.

290. Seminar (1) I, II, III. The Staff Seminar—1 hour. (S/U grading only.)

291A. Seminar in Immunology (1) I, II, III. Gershwin Seminar—1 hour. A discussion of the current topics in immunology. (S/U grading only.)

291B. Histopathology Conference (1) I, II, III. The Staff (Wilson in charge) Discussion—1 hour. Prerequisite: graduate standing or final-year veterinary student; consent of instructor. Diagnosis and discussion of current topics based on microscopic slides. Defense of diagnoses. (S/U grading only.)

292A. Seminar in Animal Virology (1) I, II, III. Martin, Miller Seminar—1 hour. A discussion of the current topics in animal virology. (S/U grading only.) (Same course as Microbiology 296.)

292B. Surgical Pathology Conference (1) I, II, III. Zink Seminar—1 hour. Discussion of current topics and cases of infectious diseases. (S/U grading only.)

293B. Necropsy and Surgical Pathology (1-4) I, II, III. The Staff (Wilson in charge) Discussion—1 hour; laboratory—32 hours. Prerequisite: graduate standing; consent of instructor. Responsible diagnostic casework. Performance of necropsies, slide reading, and case reporting. (S/U grading only.)

294A. Comparative Pathology Conference (1) I, II, III. Lowenstein Discussion—1 hour. Prerequisite: graduate standing or final-year veterinary student; consent of instructor. Discussion of selected topics in comparative pathology based on currently available case materials from fish, laboratory animals, zoo and wild animals and non-human primates. Given jointly by the Departments of Veterinary Medicine and the California Primate Research Center. (S/U grading only.)

294B. Conservation Biology and Veterinary Medicine (1) I. Boyce Seminar—1 hour. Discussion of current topics in conservation biology as they relate to veterinary medicine; the emphasis is on wildlife. (S/U grading only.)

296. Microbiological Diagnosis (2-5) I, II, III. Gershwin, Hirsh Lecture—2 hours, laboratory—5–14 hours. Prerequisite: laboratory course in veterinary medicine or the equivalent; course 293 (concurrently); consent of Chief of Microbiology, VM Teaching Hospital. Laboratory diagnosis of infectious diseases involving case work at the VM Teaching Hospital. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff Group Study of advanced topics in pathology. (S/U grading only.)

299. Research (1-12) I, II, III. The Staff (S/U grading only)

Professional Courses

*418. Diseases of Free-Ranging Wildlife (2) III. Boyce Discussion/laboratory—2 hours. Prerequisite: graduate standing in the School of Veterinary Medicine or consent of instructor. Ecology and epidemiology of diseases in free-ranging wild animals, including medical management of free-ranging populations.

*418L. Diseases of Free-Living Wildlife Laboratory (3) III. Boyce Lecture—1 hour; laboratory—90 hours total. Prerequisite: third-year standing in the School of Veterinary Medicine.

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Pharmacology and Toxicology

See Medical Pharmacology and Toxicology (under Medicine, School of); Molecular Biosciences (Veterinary Medicine); and Pharmacology and Toxicology (A Graduate Group), below.

Pharmacology and Toxicology (A Graduate Group)

Jerald A. Last, Ph.D., Chairperson of the Group
Office, 4138 Meyer Hall (Department of Environmental Toxicology, 916-752-4516)

Faculty. The 47 faculty in the graduate group are from more than 20 academic departments and organized research units within the College of Agricultural and Environmental Sciences, the School of Medicine and the School of Veterinary Medicine.

Graduate Study. The program of study and research leading to the Ph.D. degree emphasizes an interdisciplinary approach to graduate student training (students are admitted to the M.S. degree only under unusual and limited circumstances). Many specialty areas in pharmacology and toxicology are represented in the research interests of the faculty. Graduate students can study areas of pharmacology and toxicology which emphasize the effects of chemicals in the environment, on human health, and on ecosystems. Molecular and analytical approaches are used to study reproductive, genetic and developmental, respiratory and neurological systems, as well as metabolic fate and pharmacokinetics. Career opportunities include teaching in professional schools and government, programming, government service, teaching, the ministry, and social work. Non-majors will find a number of philosophy courses listed below that will enhance their education, career and life experiences.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophy—Logic</td>
<td>Philosophy—Logic</td>
<td>20</td>
</tr>
</tbody>
</table>

The Program. The Department of Philosophy offers courses in such areas as the theory of knowledge, metaphysics, logic, ethics, and political philosophy. In addition, upper division courses are offered in moral and political philosophy, and aesthetics, and in the philosophy of religion, of mind, of language, of mathematics, of law, and of the natural, biological, and social sciences.

The problems of philosophy have important roots in past. The history of philosophy is important not only as part of the heritage of educated persons, but also because it is relevant to contemporary issues. For these reasons, the department places great emphasis on the history of philosophy, providing courses on the major figures and traditions of western philosophy.

Honors Program. The department offers an honors program which gives qualifying majors the opportunity to work closely with faculty and graduate students.

Career Alternatives. Students of philosophy learn to understand and evaluate arguments and to think and write precisely and clearly. These analytical skills are assets in any career. Many of our majors have pursued graduate study in philosophy and have become philosophers in their own right. Others have pursued academic careers in related disciplines in the humanities and social sciences. Philosophy majors are well prepared for law, business, or other professional schools and have found employment in computer programming, government service, teaching, the ministry, and social work. Non-majors will find a number of philosophy courses listed below that will enhance their education, career and life experiences.

Preparatory Subject Matter: Three of the following: Philosophy 1, 13, 14, or 24, 21, 22, 23, 31 or 32, 101, 102, 12

Depth Subject Matter: Upper division units in Philosophy selected with approval from the major adviser.

Minor Program Requirements: Students wishing to minor in Philosophy may choose a general minor or a minor specializing in logic. There are no specific courses required for the general minor, so students may create a program to suit their own interests, subject to the approval of the minor adviser. The range of choice in the logic specialization is limited to the courses listed.

Courses in Pharmacology and Toxicology (PTX)

Graduate Courses

201. Principles of Pharmacology and Toxicology I (5) I. Miller (Environmental Toxicology)

Lecture—5 hours. Prerequisite: Biological Sciences 103, Physiology 110. Basic concepts underlying metabolic fate of xenobiotics, receptor and cell biology, and chemotherapy for cancer and infectious disease. Specific topics include fate processes, disposition kinetics, dose-response relationships, cellular toxicity and oncogenesis.

202. Principles of Pharmacology and Toxicology II (5) II. Buckpitt (Molecular Biosciences)

Lecture—5 hours. Prerequisite: satisfactory completion of course 201. Mechanisms of action, pharmacologic and toxic effects, and pathologic changes produced by drugs and other chemical substances on various body systems and their associated organs.

203. Principles of Pharmacology and Toxicology III (3) III. Stark (Molecular Biosciences)

Lecture—3 hours; discussion—1 hour; tutorial—1-3 hours. Prerequisite: courses 201 and 202. Mechanisms of action, pharmacologic and toxic effects, and pathologic changes produced by drugs and other chemical substances on various body systems and their associated organs. Ecotoxicity, risk assessment and epidemiology.

230. Advanced Topics in Pharmacology and Toxicology (1-3) I, II, III. The Staff

Lecture/discussion/seminar—1 hour each (course format can vary at option of instructor). Prerequisite: course 201 and consent of instructor. In-depth age of selected topics for graduate students in Pharmacology-Toxicology and related disciplines. Topics determined by instructor in charge for each quarter.

290. Seminar (1) I, II, III. The Staff

Current topics in pharmacology and toxicology. (S/U grading only.)
Courses in Philosophy (PHI)

Lower Division Courses

1. Introduction to Philosophy (4) I. King; II. Friedman, Ill. Wedin Lecture—3 hours; discussion—1 hour. Problems of philosophy through major writings from various periods. Problems are drawn from political, aesthetic, religious, metaphysical, and epistemological concerns of philosophy. GE credit: ArtHum, Wrt.

5. Critical Reasoning (4) I. Staff Lecture—3 hours; discussion—1 hour. Criteria of good reasoning in everyday life and in science. Topics to be covered may include basic principles of deduction and induction, fallacies in reasoning, techniques and aids to reasoning, principles of scientific investigation; aids to clarity. Not open to students who have completed course 6. GE credit: Wrt.

6. Critical Reasoning and Writing (4) III. Staff Lecture—3 hours; discussion—1 hour. Topics to be covered may include criteria of good reasoning in everyday life and in science; basic principles of deduction and induction; fallacies in reasoning; techniques and aids to reasoning, principles of scientific investigation; aids to clarity. Not open to students who have completed course 5. Offered in alternate years. GE credit: ArtHum, Wrt.

11. Philosophy East and West (4) I. The Staff Lecture—3 hours; discussion—1 hour. Comparative treatment of select theories in Eastern and Western philosophy, e.g., of self, God, being, knowledge, enlightenment. Topics selected from the following philosophers: Eastern—Buddhist, Confucian, Hindu, Taoist, and Western—Platonist, Aristotelian, Medieval Christian, Modern Rationalist/Epimenist, Kantian, Hegelian, Existentialist. Offered in alternate years. (Former course 10E) GE credit: ArtHum, Div, Wrt.

13. The Person (4) III. Wollheim Staff—3 hours; discussion—1 hour. Examination of the concept of the person, that is, of our intuitions about what persons are, e.g., that persons are agents, that they have a distinct psychology, that they are rational, that they are language-users, that they are mortal. GE credit: ArtHum, Wrt.

14. Ethical and Social Problems in Contemporary Society (4) I. The Staff Lecture—3 hours; term paper. Philosophical issues and positions involved in contemporary moral and social problems. Among possible topics are: civil disobedience and revolution, racial and sexual discrimination, environment and population control, genetic engineering, technology and human values, sexual morality, freedom in society. GE credit: ArtHum, Div, Wrt.

24. Introduction to Ethics and Political Philosophy (4) III. The Staff Lecture—3 hours; discussion—1 hour. Reading of historical and contemporary works highlighting central problems in ethics and political philosophy. Why should we be moral? What is moral behavior? What is justice, both for the individual and for society? Is there a right of rebellion? GE credit: ArtHum, Wrt.

31. Appraising Scientific Reasoning (4) III. The Staff Lecture—3 hours; discussion—1 hour. Introduction to scientific hypotheses and the kinds of reasoning used to justify such hypotheses. Emphasis on adequate justification of criteria, and strategies for distinguishing scientific from pseudoscientific theories. Concrete historical and contemporary cases. GE credit: ArtHum or SciEng.

32. Understanding Scientific Change (4) II. Giere Lecture—3 hours; discussion—1 hour. Concepts of scientific change in historical and philosophical perspective. Types of scientific change: continuity, uniformity, discontinuity, revolution. Examples from various sciences. GE credit: ArtHum or SciEng.

90X, Lower Division Seminar in Philosophy (1-2) I, II, III. The Staff Seminar—1-2 hours. Prerequisite: completion of fewer than 84 quarter units; completion of at least one course in philosophy. The seminar focuses on a selected topic in philosophy through readings, discussions, and written assignments. Emphasis upon student participation. Limited enrollment.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

(Certain upper division courses may not be offered every year.)

101. Metaphysics (4) I. Jubien Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy recommended. Theories of being. Such topics as reality, substance, universals, space, time, causality, becoming, body, experience, persons, freedom, and determinism. Views of the nature and method of metaphysics. Antimetaphysical arguments. GE credit: ArtHum, Wrt.

102. Theory of Knowledge (4) I. Mattey Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy. Analysis of the concept of knowledge. The relation between knowledge, belief and truth. Development of foundationalist, coherence-
112. Intermediate Symbolic Logic (4) II. Liben
Lecture—3 hours; discussion—1 hour. Prerequisite: course 12 or consent of instructor. Predicate logic syntax and semantics. Translation between predicative logic and English. Proof techniques. Identity, functions, and definite descriptions. Introduction to concepts of metalogic.

113. Advanced Logic (4) III. Jubien
Lecture/discussion—4 hours. Prerequisite: course 12, or Mathematics 108 or the equivalent. Topics will vary between metalogic of First-Order logic through the Completeness and Lowenheim-Skolem theorems; and Zermelo-Fraenkel set theory typically axiomatized as a First-Order theory. May be repeated once when subject area differs.

114. History of Ethics (4) II. Clark
Lecture—3 hours; term paper. Prerequisite: one philosophy course. Study of some classic texts from the history of philosophical writing on central problems of ethics, taking the form either of a survey or concentrated examination of selected historical figures. Readings from such philosophers as Aristotle, Butler, Hume, Kant, Mill. GE credit: ArtHum, Wrt.

*115. Problems in Normative Ethics (4) III. Clark
Lecture/discussion—3 hours; term paper. Prerequisite: course 114. Philosophy of Morals. Moral philosophy studied through examination of moral problems and the moral principles and common sense intuitions that bear on them. Topics discussed may include animal rights, fetal rights, euthanasia, justice and health care, war, nuclear deterrence, world hunger, environmental protection. GE credit: ArtHum, Wrt.

116. Ethical Theories (4) II. Clark
Lecture—3 hours; term paper. Prerequisite: one course in philosophy; one course in ethics recommended. Study of fundamental concepts and problems in ethical theory through an examination of classical and contemporary philosophical theories of ethics. Among the theories that may be discussed are utilitarianism, virtue theory, theories of natural rights, Kantian ethical theory, and contractarianism.

*117. Foundations of Ethics (4) II. Clark
Lecture—3 hours; term paper. Prerequisite: one of courses 114, 115, 116, 101, or 137. Advanced investigation of questions about the nature and foundations of morality. Among the topics that may be discussed are moral realism and anti-realism, cognitivism and non-cognitivism, types of relativism, moral skepticism, normative language and normative belief.

118. Political Philosophy (4) III. Philosophy
Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy. Intensive examination of some central concepts of political thought such as the state, sovereignty, rights, obligation, freedom, law, authority, and responsibility. Offered in alternate years. General Education credit: Contemporary Societies. (Former course 117.) Not open for credit to students who have completed former course 117. GE credit: SocSci, Div, Wrt.

119. Philosophy of Law (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: one course in philosophy or consent of instructor. Philosophical theories of the nature of law, legal obligation, the relation of law and morals. Problems of law involving liberty and justice; freedom of expression, privacy, rights, discrimination and fairness, responsibility and accountability. (Former course 116.) GE credit: SocSci, Div, Wrt.

*121. Topics in Metaphysics (4) II. Liben
Lecture/discussion—4 hours. Prerequisite: course 101. Examination of up to three topics in metaphysics, e.g., fatalism, necessity, identity; ontological categories; minds, bodies, and persons; space and time; freedom and determinism.

122. Topics in Theory of Knowledge (4) III. The Staff
Lecture—4 hours. Prerequisite: course 102. Examination of one or more topics in theory of knowledge, such as belief, skepticism, justification.

*123. Aesthetics (4) III. Wolheim
Lecture—4 hours. Prerequisite: term paper. Prerequisite: one course in philosophy recommended. Nature of art, of artistic creation, of the work of art, and of aesthetic experience; nature and validity of criticism; relations of art to its environment. GE credit: ArtHum, Wrt.

*127. Philosophy and Economics (4) The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: one upper division course in philosophy. Study of issues at the intersection of economic and moral and at the intersection of political philosophy, e.g., the nature of value, the nature of justice, the nature of rationality, the measurability of human well-being. GE credit: ArtHum or SocSci, Wrt.

*131. Philosophy of Logic and Mathematics (4) Jubien
Lecture/discussion—3 hours; term paper. Prerequisite: course 12 or one course in credit in mathematics. Nature of formal systems and mathematical theories. Selected topics include logical and semantical paradoxes; foundations of mathematics; set theory, type theory, and intuitionistic theory; philosophy of geometry; philosophical implications of Gödel’s incompleteness results.

132. History of Logic (4) The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy or logic recommended. Overview of the chief developments in the history of logic.

133. Topics in Mathematical Logic (4) III. King
Lecture/discussion—4 hours. Prerequisite: course 113 or Mathematics 108 or the equivalent. Study of metalogic and model theory; axiomatic set theory and independence results; Gödel’s incompleteness theorem; computability and the incomputable.

134. Modal Logic (4) King
Lecture—3 hours; discussion—1 hour. Prerequisite: course 112 or Mathematics 108 or the equivalent. Survey of the main systems of modal logic, including Lewis systems S4 and S5. “Possible worlds” semantics and formal proofs. Applications to epistemology, ethics, or temporality. Offered in alternate years.

135. Alternative Logics (4) Mattey
Lecture—4 hours. Prerequisite: course 12, Mathematics 108, or the equivalent. Alternatives to standard truth-functional logic, including many-valued logics, intuitionist logics, relevance logics, and non-monotonic logics.

137. Philosophy of Language (4) I. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy or linguistics. Discussion of philosophical theories of how languages work and philosophy arising from the thinking about language. Emphasis on modern (1879-present) philosophical views on language.

143. Hellenistic Philosophy (4) The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Study of Greek and Roman philosophies after Aristotle, including Epicureanism, Stoicism, Skepticism, and neo-Platonism. GE credit: ArtHum, Wrt.

145. Medieval Philosophy (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 21. Study of major philosophers in the medieval period. GE credit: ArtHum, Wrt.

151. Philosophy of the Nineteenth Century (4) The Staff
Lecture/discussion—4 hours. Prerequisite: courses 21, 22, or 23 recommended. Idealism of Hegel, the pessimism of Schopenhauer, Marxism, the irrationality of Kierkegaard, Nietzsche and Dostoevsky. GE credit: ArtHum, Wrt.

155. American Philosophy (4) The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy recommended. Study of such American philosophers as Peirce, James, Royce, Dewey, Santayana, Whitehead, and C.I. Lewis.

156. Contemporary Analytical Philosophy (4) I. King
Lecture/discussion—3 hours; term paper. Prerequisite: one course in philosophy. Consideration of central issues such as meaning/reference, analytic/synthetic, reductionism, formal and ordinary language, essential properties, ontological commitment, possible worlds semantics; influential works by philosophers such as Russell, Moore, Wittgenstein, Austin, Carnap, Quine, Putnam, Kripke, van Fraassen.

*158. Phenomenology and Existentialism in Germany (4) The Staff
Lecture—3 hours; term paper. Prerequisite: course 23 recommended. Twentieth-century German thinkers such as Husserl, Heidegger, Jaspers.

*159. Phenomenology and Existentialism in France (4) The Staff
Lecture—3 hours; term paper. Prerequisite: course 23 recommended. Twentieth-century French thinkers such as Sartre, Marcel, Merleau-Ponty.

160. Pre-Socratics (4) The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Study of the metaphysical views of such pre-Socratic figures as the Milesians, the Pythagoreans, Heraclitus, Parmenides, Empedocles, Anaxagoras, and the atomists.

161. Plato (4) II. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. Examines Plato’s most important contributions in metaphysics, epistemology, psychology, cosmology, ethics and political philosophy. Dialogue will be selected from Plato’s middle and later writings. Offered in alternate years.

162. Aristotle (4) III. Wavin
Lecture/discussion—3 hours; term paper. Prerequisite: course 21. An overview of Aristotle’s most central and influential writings. Topics selected from fields such as metaphysics, physics, ethics, logic, and psychology. Offered in alternate years.

*168. Descartes (4) Friedman
Lecture/discussion—4 hours; term paper. Prerequisite: course 22. Descartes’ metaphysics, theory of knowledge, and philosophy of science. Readings from Meditations on First Philosophy and Principles of Philosophy. Offered in alternate years.

*169. Spinoza (4) The Staff
Lecture/discussion—4 hours. Prerequisite: course 22.

170. Leibniz (4) II. Mattey
Lecture/discussion—4 hours. Prerequisite: course 22. Survey of the philosophical writings of G. W. Leibniz. Topics include Leibniz’s logic, the existence of God, human freedom, substance, and the relation between science and metaphysics. Offered in alternate years.

172. Locke and Berkeley (4) Mattey
Lecture—4 hours. Prerequisite: course 23. Examination of Locke’s Essay Concerning Human Understanding and Berkeley’s Principles of Human Knowledge and Three Dialogues. Topics include abstract ideas, existence of matter, primary and secondary qualities, the existence of God, and the nature of scientific knowledge.

174. Hume (4) I. The Staff
Lecture/discussion—4 hours. Prerequisite: course 23. Examination of David Hume’s Treatise of Human Nature and related writings. Topics include space and time, necessity, induction, skepticism concerning the external world and concerning personal identity. Offered in alternate years.

175. Kant (4) III. Mattey
Lecture/discussion—4 hours. Prerequisite: course 23. Intensive examination of the Critique of Pure Reason. Topics include the external and limitations of human cognition, space and time, substance and causality, freedom and determinism, and the existence of God. Offered in alternate years.

*177. Hegel (4) The Staff
Lecture/discussion—4 hours. Prerequisite: courses 23 and 175 recommended.

*190. Special Topics in the History of Philosophy (4) The Staff
Lecture—3 hours; term paper. Intensive study of special topic, problem, or authors in the history of philosophy. May be repeated for credit.

193. Research in Philosophy (2) I, II, III. The Staff
Lecture/paper/discussion—4 hours. Prerequisite: consent of instructor. Individual research resulting in a
paper on a specific topic in one of various fields of philosophy. May be repeated twice for credit.

194HA-194HB. Honors Research Project (4-4) I, II, III. The Staff (Chairperson in charge) Tutoring—3 hours; term paper. Prerequisite: consent of instructor; open to students who are members of the honors program in Philosophy. Completion of honors research project under direction of an instructor. Consult departmental major Adviser for list of instructors available in a given quarter.

*198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only).

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

201. Metaphysics (4) III. King Seminar—3 hours; term paper. Topics vary from quarter to quarter. Sample topics include modality, truth, ontology, events, and causation. May be repeated for credit.

*202. Theory of Knowledge (4) The Staff Seminar—4 hours. Prerequisite: graduate standing.

*206. Philosophical Argumentation (4) The Staff Seminar—3 hours; short papers. Prerequisite: graduate standing. Investigation and evaluation of philosophical arguments. Critical discussion of student papers on various aspects of philosophical disputes.

*207. Philosophy of Physics (4) The Staff Seminar—3 hours, term paper. Prerequisite: graduate standing in philosophy or consent of instructor. An intensive treatment of one or more topic(s) in the philosophy of physics, such as foundations of spacetime theories, the interpretation of quantum mechanics, foundations of statistical mechanics. May be repeated for credit with consent of instructor.

*208. Philosophy of Biology (4) Grisemer Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Intensive treatment of one or more general topics in the philosophy of biology, such as foundations of evolution theories, reductionism in biology, sociobiology, and cultural evolution. May be repeated for credit with consent of instructor.

*210. Philosophy of Science (4) II. Teller Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Treatment of one or more general topics in the philosophy of science, such as scientific explanation, theory of confirmation, scientific realism, reduction in physics and biology. Course may be repeated for credit with consent of instructor.

*212. Philosophy of Logic and Mathematics (4) The Staff Seminar—3 hours; term paper. Prerequisite: course 112 or 113, or Mathematics 108 or 125, or the equivalent. Philosophical issues in logic and mathematics. Topics may include nature of logical and mathematical truth or knowledge; correctness of logical systems; foundations of mathematics; metaphysical and epistemological presuppositions; applications to philosophical problems and formalization of philosophical theories.

214. Ethics (4) III. Clark Seminar—3 hours; term paper.

217. Political Philosophy (4) II. The Staff Seminar—3 hours; term paper. Prerequisite: graduate student standing. Advanced study of issues in political philosophy. May be repeated for credit with consent of instructor.

*237. Philosophy of Language (4) King Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Study of philosophical issues raised by language, such as the nature of semantic content, proper semantics for verbs of propositional attitude, feasibility and limitations of formal semantics and pragmatics for natural languages. May be repeated for credit with consent of instructor when the content is sufficiently distinct.

*238. Philosophy of Meaning (4) King Seminar—3 hours; term paper. Prerequisite: graduate standing in philosophy or consent of instructor. Consideration of the meaning of and meaning for language, theories of meaning and their applications to philosophical problems. May be repeated for credit with consent of instructor.

*239. The Emotions (4) Wollheim Seminar—3 hours; term paper. Prerequisite: graduate standing; open to undergraduates with consent of instructor. Considers the emotions in their full variety. Relates emotion to desire, to belief, to sensation, to behavior, and to rationality. Cultural interpretations of emotion will be reviewed. Ancient and modern writers will be read. Offered in alternate years.

*298. Group Study (1-5) I. The Staff Seminar—3 hours. Topics vary from quarter to quarter. Sample topics include study of issues in political philosophy. May be repeated for credit with consent of instructor.

The Major Program

From the smallest subatomic particles to atoms, molecules, stars, and galaxies, the study of physics is the study of what makes the universe tick. Information learned from high-energy particle accelerators and nuclear reactors teaches us not only what holds the nucleus and the atom together but also why stars shine and how radiation therapy fights cancer.

The Program. The Department of Physics offers three degree programs: the Bachelor of Arts in Physics, and the Bachelor of Science in Physics and in Applied Physics. The B.A. degree provides a broad coverage of classical and modern physics while permitting a broader liberal arts education than is possible with the other two programs. The B.S. degree in either Physics or Applied Physics should be followed by the student who plans to enter physics as a profession. The B.S. in Applied Physics provides the student with a solid introduction to a particular applied physics specialty. For the student who plans to enter the job market on completing a B.S. degree, the applied physics orientation will be an asset. Either B.S. program provides a solid foundation in physics for the student interested in graduate work in either pure or applied physics.

Career Alternatives. Careers in physics and applied physics include research and development, either in universities, government laboratories, or industry; teaching in high schools, junior colleges, and universities; management and administration in industrial laboratories; and in government agencies; and in production and sales in industry. A major in physics also provides a strong base for graduate-level work in such interdisciplinary areas as chemical physics, biophysics and medical physics, geophysics and environmental physics, astrophysics and astronomy, computer science, and materials science.

Applied Physics

B.S. Major Requirements:

Depth Subject Matter54 Physics 104A, 104B, 105A, 105AL, 105B, 110A, 110B, 112A, 115A, 116A, 116B, 122 ..36 At least 18 units from approved courses within one of the following concentrations chosen in consultation with a major adviser: 18 Materials science, physical electronics, quantum optics, chemical physics, atmospheric physics, geophysics, physical oceanography. (Lists of approved courses in each concentration with representative programs are available from the Physics Department.)

Total Units for the Major110

Xiangdong Zhu, Ph.D., Associate Professor Gergely Zimanyi, Ph.D., Associate Professor Emeriti Faculty

Thomas A. Cahill, Ph.D., Professor Emeritus James E. Draper, Ph.D., Professor Emeritus Glen W. Erickson, Ph.D., Professor Emeritus Claude Garrod, Ph.D., Professor Emeritus James P. Hurley, Ph.D., Professor Emeritus John A. Jungerman, Ph.D., Professor Emeritus William J. Knox, Ph.D., Professor Emeritus Neal Peek, Ph.D., Senior Lecturer Emeritus Roderick V. Reid, Jr., Ph.D., Professor Emeritus William W. True, Ph.D., Professor Emeritus

The Major Program

From the smallest subatomic particles to atoms, molecules, stars, and galaxies, the study of physics is the study of what makes the universe tick. Information learned from high-energy particle accelerators and nuclear reactors teaches us not only what holds the nucleus and the atom together but also why stars shine and how radiation therapy fights cancer.

The Program. The Department of Physics offers three degree programs: the Bachelor of Arts in Physics, and the Bachelor of Science in Physics and in Applied Physics. The B.A. degree provides a broad coverage of classical and modern physics while permitting a broader liberal arts education than is possible with the other two programs. The B.S. degree in either Physics or Applied Physics should be followed by the student who plans to enter physics as a profession. The B.S. in Applied Physics provides the student with a solid introduction to a particular applied physics specialty. For the student who plans to enter the job market on completing a B.S. degree, the applied physics orientation will be an asset. Either B.S. program provides a solid foundation in physics for the student interested in graduate work in either pure or applied physics.

Career Alternatives. Careers in physics and applied physics include research and development, either in universities, government laboratories, or industry; teaching in high schools, junior colleges, and universities; management and administration in industrial laboratories; and in government agencies; and in production and sales in industry. A major in physics also provides a strong base for graduate-level work in such interdisciplinary areas as chemical physics, biophysics and medical physics, geophysics and environmental physics, astrophysics and astronomy, computer science, and materials science.

Applied Physics

B.S. Major Requirements:

Depth Subject Matter54 Physics 104A, 104B, 105A, 105AL, 105B, 110A, 110B, 112A, 115A, 116A, 116B, 122 ..36 At least 18 units from approved courses within one of the following concentrations chosen in consultation with a major adviser: 18 Materials science, physical electronics, quantum optics, chemical physics, atmospheric physics, geophysics, physical oceanography. (Lists of approved courses in each concentration with representative programs are available from the Physics Department.)

Total Units for the Major110
Physics

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 9A, 9B</td>
<td>Particle Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 11</td>
<td>Fluids and Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 12</td>
<td>Waves and Modern Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 13</td>
<td>Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHY 14</td>
<td>Atomic and Nuclear Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHY 15</td>
<td>Quantum Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

Graduate part. The course is primarily for students in the physical sciences and engineering. Note: Faculty listed for each course are well acquainted with the course, but may not teach it this year.

Lower Division Courses

1A. Principles of Physics (3) I. McColm

- Lecture—3 hours. Prerequisite: trigonometry or consent of instructor. Mechanics. Introduction to general principles and analytical methods used in physics with emphasis on applications in applied agricultural and biological sciences and in physical education. Not open for credit to students who have completed course 5A or 9A.

1B. Principles of Physics (3) II. McColm

- Lecture—3 hours. Prerequisite: course 1A or 5A, and consent of instructor. Continuation of course 1A. Heat, optics, electricity, modern physics. Not open for credit to students who have completed course 5B, 5C, 9B, 9C, or 9D.

5A. General Physics (4) I. II. The Staff

- Lecture—3 hours; laboratory—2.5 hours. Prerequisite: Mathematics 16B (may be taken concurrently). Mechanics and fluids. Introduction to general principles and analytical methods used in physics for future biological science majors. Students who have had course 9A may not receive credit for 5A. Those who have had course 1A may receive only 2 units of credit.

5B. General Physics (4) III. The Staff

- Lecture—3 hours; laboratory—2.5 hours. Prerequisite: course 5A or 1A with consent of instructor and Mathematics 16B or Physics 9A. Continuation of course 5A. Kinetic theory and thermodynamics, wave phenomena, optics. Students who have had course 9B may not receive credit for course 5B. Those who have had course 1B may receive only three units of credit.

5C. General Physics (4) I. III. The Staff

- Lecture—3 hours; laboratory—2.5 hours. Prerequisite: course 5B. Continuation of course 5B. Electricity and magnetism, modern physics. Students who have had course 9C may not receive credit for course 5C. Those who have had course 1B may receive only three units of credit.

7A. General Physics (4) I. II. Coleman, Potter

- Lecture—1.5 hours; discussion/laboratory—5 hours. Prerequisite: Mathematics 16B (may be taken concurrently). Introduction to general principles and analytical methods used in physics for students majoring in a biological science. Only two units of credit allowed to students who have completed course 9B, 9C, or 1B.

7B. General Physics (4) I. II. Coleman, Potter

- Lecture—1.5 hours; discussion/laboratory—5 hours. Prerequisite: course 5A. Continuation of course 7A. Only two units of credit allowed to students who have completed course 9A, 9A, 5A, or 1A.

7C. General Physics (4) III. The Staff

- Lecture—1.5 hours; discussion/laboratory—5 hours. Prerequisite: course 7B. Continuation of course 7B. Only two units of credit allowed to students who have completed course 9C or 5C.

9A. Classical Physics (4) III. The Staff

- Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: Mathematics 21B. Mechanics. Introduction to general principles and analytical methods used in physics for physical science and engineering majors. Only two units of credit allowed to students who have completed course 1A. Only one unit of credit allowed to students who have completed course 5A.

9B. Classical Physics (4) I. The Staff

- Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: course 5A with consent of instructor. Mathematics 21C, Mechanics. Continuation of course 9A. Fluid mechanics, thermodynamics, wave phenomena, optics. Not open for credit to students who have completed Engineering 105A. Only 1 unit of credit allowed to students who have completed course 5B.
9. Classical Physics (4) II. The Staff
Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: course 9B; Mathematics 21D. Mathematics 22A may be taken concurrently. Continuation of course 9B. Electricity and magnetism including circuits and Maxwell’s equations. Only two units of credit allowed to students who have completed course 5C.

9D. Modern Physics (4) III. The Staff
Lecture—3 hours; discussion—1.5 hours. Prerequisite: course 9C and Mathematics 22A; Mathematics 22B may be taken concurrently. Introduction to physics concepts developed since 1900. Special relativity, quantum mechanics, atoms, molecules, condensed matter, nuclear and particle physics. Only two units of credit allowed to students who have completed course 5C.

9HA. Honors Classical Physics (4) III. The Staff
Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: high school physics, Mathematics 21A-21B with at least a B+ average (or by recommendation of academic adviser). Same material as in course 9A, but in greater depth. Only two units of credit allowed for students who have completed course 1A or 5A.

9HB. Honors Classical Physics (4) IV. The Staff
Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: course 9HA (or course 9A with recommendation of course 9B instructor or academic adviser). Mathematics 21C. Mathematics 21D (may be taken concurrently). Continuation of course 9HA. Same material as in course 9B, but in greater depth. Only two units of credit allowed for students who have completed course 5C.

9HC. Honors Classical Physics (4) II. The Staff
Lecture—3 hours; laboratory—2.5 hours; discussion—1 hour. Prerequisite: course 9HB (or course 9B with recommendation of course 9B instructor or academic adviser). Mathematics 21D; Mathematics 22A (may be taken concurrently). Continuation of course 9HB. Same material as in course 9C, but in greater depth. Only two units of credit allowed for students who have completed course 5C.

9HD. Honors Modern Physics (4) III. The Staff
Lecture—3 hours; discussion—1.5 hours. Prerequisite: course 9HC (or course 9C with recommendation of course 9B instructor or academic adviser). Mathematics 22A. Mathematics 22B (may be taken concurrently). Continuation of course 9HC. Same material as in course 9C, but in greater depth. Only two units of credit allowed for students who have completed course 5C.

10. Topics in Physics for Nonscientists (4) I, II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: high school algebra. Emphasis will vary: survey of basic principles or a deeper exploration of some particular branch. Past topics included black holes, space time, and relativistic physics; music; history and philosophy; energy and the environment; and natural phenomena. Check with the office department for the current emphasis. GE credit: SciEng.

90X. Lower Division Seminar (1-2) I, II, III.
The Staff
Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Physics through shared readings, discussions, written assignments, or special activities such as laboratory work. May not be repeated for lower division credit. Limited enrollment.

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor: (P/NP grading only.)

Upper Division Courses

104A-104B. Introduction to Methods of Mathematical Physics (3-3) I-II. Chao
Lecture—3 hours. Prerequisite: courses 9B, 9C, 9D and Mathematics 21D, 22A, and 22B passed with grade C– or better; or consent of department; course 104A passed with a grade C– or better or consent of department required for 104B. Applications of linear equations and matrices, vector spaces (finite and infinite dimensional), ordinary and partial differential equations, infinite series, functions of one complex variable, integration methods, integral transforms, and variational methods.

105A-105B. Analytical Mechanics (3-3) I-II. Roos
Lecture—3 hours. Prerequisite: courses 9B, 9C, 9D and Mathematics 21D, 22A, and 22B passed with grade C– or better; or consent of department; course 104A and 105A passed with a grade C– or better or consent of department required for 105B. Principles and applications of Newtonian mechanics; introduction to Lagrange’s and Hamilton’s equations.

105AL. Computational Laboratory in Mechanics (1) I. Rousseau
Laboratory—3 hours. Prerequisite: Engineering 5 or the equivalent; course 105A concurrently. Introduction to the application of computers to solving physics problems. Introduction to numerical and graphical methods in mechanics. (P/NP grading only.)

105BL. Computational Laboratory in Mechanics (1) II. Rousseau
Laboratory—3 hours. Prerequisite: course 105AL; course 105B concurrently. Computer application of numerical and graphical methods in mechanics. (P/NP grading only.)

105C. Continuum Mechanics (3) III. Yager
Lecture—3 hours. Prerequisite: courses 104B and 105A passed with a grade of C– or better, or consent of department. The continuum hypothesis and limitations of the concept. Tensor methods develop stress-strain relations for linear isotropic solids/fluids and field equations to study wave propagation in solids/liquids, heat flow, potential flow and ocean waves.

108. Optics (3) III. Zhu
Lecture—3 hours. Prerequisite: course 9 or 5 sequence and Mathematics 21 sequence or consent of instructor. The phenomena of diffraction, interference, and polarization of light; with applications to current problems in astrophysics, mathematical science, and astrophysics. Study of modern optical instrumentation. Open to non-majors.

108L. Optics Laboratory (1) III. Zhu
Laboratory—3 hours. Prerequisite: course 108 concurrently. The laboratory will consist of one major project pursued throughout the quarter, based on modern applications of optical techniques.

110A-110B. Electricity and Magnetism (3-3-3) I-II. III. Ko
Lecture—3 hours. Prerequisite: courses 9B, 9C, 9D and Mathematics 21D, 22A, and 22B passed with grade C– or better; or consent of department. Analysis of electric circuits containing direct and alternating currents; potential and field; the electric vector potential; Gauss’s law; solutions to Laplace’s equation; energy levels; tunneling.

110C. Quantum Mechanics (3) III. I. Fong, Carlip
Lecture—3 hours. Prerequisite: courses 104B and 105B passed with grade C– or better, or consent of department. Survey of fundamental principles of quantum mechanics, the Schrödinger equation, energy levels and tunneling.

115A. Foundations of Quantum Mechanics (3) III. I. Fong, Carlip
Lecture—3 hours. Prerequisite: courses 104B and 105B passed with grade C– or better, or consent of department. Angular momentum and spin; hydrogen atom and atomic spectra; perturbation theory; scattering theory.

116A. Electronic Instrumentation (4) I. Cebra
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 9C, Mathematics 22B. An experimental and theoretical study of important electronic circuits commonly used in physics.

116B. Electronic Instrumentation (4) III. Pellett
Lecture—3 hours; laboratory—3 hours. Prerequisite: courses 9C, 116A. Continuation of course 116A. Introduction to the use of digital electronics and microcomputers in experimental physics.

121. Atomic Physics (4) II. McCollum
Lecture—3 hours; term paper. Prerequisite: course 9D. The phenomena of atomic physics including contemporary work: fine- and hyperfine-structure, quantum electronics, laser spectroscopy, beam foil experiments and trapped atoms.

122. Advanced Physics Laboratory (3) I, II.
The Staff
Laboratory—8 hours. Prerequisite: course 9D. Experimental techniques and measurements in atomic, condensed matter, nuclear and particle physics, spectroscopy, optical pumping, magnetic resonance, superconductivity, semiconductors, ferroelectricity, gamma-ray coincidence, Mosebauer Effect, Rutherford scattering, muon lifetime. The student performs three or six experiments depending on enrollment and individual work is stressed. May be repeated once for credit. GE credit: SciEng, Wrt.

127. Introduction to Astrophysics (3) III. Becker
Lecture—3 hours. Prerequisite: course 105B. Introduction to astrophysical mechanics, radiation, astrophysical measurements, electromagnetic processes, the sun, binary and variable stars, stellar structure and evolution, galaxies, cosmology. Offered in alternate years.

129A. Introduction to Nuclear Physics (3) I.
Brady
Lecture—3 hours. Prerequisite: course 115A. Survey of basic nuclear properties and concepts requiring introductory knowledge of quantum mechanics: nuclear models and forces, radioactive decay and detecting nuclear radiation and nuclear reaction products, alpha, beta and gamma decay.

129B. Nuclear Physics, Extensions and Applications (4) II.
Brady
Lecture—3 hours; term paper. Prerequisite: course 129A. Continuation of course 115A. Nuclear reactions, neutrons, fission, fusion accelerators, introduction to meson and particle physics, nuclear astrophysics, and applications of nuclear physics and techniques to mass spectrometry, nuclear medicine, trace element analysis. Not offered every year.

131A-130B. Elementary Particle Physics (3-4) I-II.
Lander
Lecture—3 hours; term paper required for 130B. Prerequisite: course 115A. Properties and classification of elementary particles and the Feynman diagrams, theoretical techniques. Conservation laws and symmetries. Strong, electromagnetic, and weak interactions. Introduction to Feynman calculus. Not offered every year.

137. Science and Technology of Nuclear Arms Effects and Control (3) I. Jungnerman, Craig (Applied Science)
Lecture—3 hours. Prerequisite: upper division standing in any course from courses 1A, 1B, 5C, 9D. Scientific and technical aspects of nuclear arms effects and nuclear arms control including nuclear physics of atomic and hydrogen bombs, blast and radiation effects, radiotoxicity, electromagnetic pulse, ICBM accuracy, laser weapons, verification safeguards, biological and ecological effects. Emphasis on order of magnitude calculations. (Same course as Applied Science Engineering 137.) GE credit: SciEng or SocSci.

140A-140B. Introduction to Solid State Physics (3-4) I-II.
Klein
Lecture—3 hours; term paper for 140B. Prerequisite: course 115A or equivalent. Survey of fundamental ideas in the physics of solids, with selected device applications. Crystal structure, x-ray and neutron diffraction, phonons, simple metals, energy bands and Fermi surfaces, semiconductors, optical properties, magnetism, superconductivity.
160. Environmental Physics and Society (3) I. Jungmann
Lecture—3 hours. Prerequisite: course 9D or SC, or course 10B and Mathematics 16B or the equivalent. Impact of humankind on the environment will be discussed from the point of view of the physical sciences. Courses based on physical principles will be made, and the resulting policy implications will be considered. (Same course as Engineering 160.) GE credit: SciEng or SocSci.

190X. Upper Division Seminar (1-2) I, II, III.
The Staff
Seminar—1-2 hours. Prerequisite: upper division standing and consent of instructor. In-depth examination at an upper division level of a special topic in Physics. Emphasis on student participation in learning. May not be repeated for credit. Limited enrollment.

194HA-194HB. Special Study for Honors Students (4-4) I, II, III. The Staff (Chairperson in charge)
independent study—12 hours. Prerequisite: consent of instructor required. Open only to Physics and Applied Physics majors who satisfy the College Letters and Science requirements for entrance into the Honors Program. Independent research project at a level significantly beyond that defined by the normal physics curriculum. (Deferred grading only, pending completion of sequence.)

195. Senior Thesis (5) I, II, III. The Staff (Chairperson in charge)
Independent study—15 hours. Prerequisite: consent of instructor required. Open only to Physics and Applied Physics majors with senior standing. Preparation of a senior thesis on a topic selected by the student with approval of the department. May be repeated for a total of 15 units.

197. Tutoring of Students in Lower Division at an upper division level of a special topic in Physics. Emphasis on student participation in learning at an upper division level of a special topic in Physics. Emphasis on student participation in learning. May not be repeated for credit. Limited enrollment.

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Theory of Mechanics and Electromagnetics (4) I. Yager
Lecture—3 hours. Independent study—1 hour. Prerequisite: courses 104B, 105B, and 110C or the equivalent; course 204A concurrently. Theoretical approaches in classical mechanics including the use of generalized coordinates and virtual work; variational calculus; Lagrange equations; symmetries, conservation laws, and Noether theorem; Lagrangian density; Hamilton formalism; canonical transformations; Poisson brackets; and Hamilton-Jacobi equations.

200B-200C. Theory of Mechanics and Electromagnetics (4-4) II-III. Reid
Lecture—3 hours; independent study—1 hour. Prerequisite: course 200A, and course 204B concurrently. Theoretical approaches in electromagnetics including static electromagnetic fields; Maxwell's equations; plane waves in various media; magnetohydrodynamics; diffusion theory; radiating systems; and special relativity. (200C is corequisite.)

204A-204B. Methods of Mathematical Physics (4-4) I-II. Singh
Lecture—3 hours; independent study—1 hour. Prerequisite: courses 104A and 104B or the equivalent. Linear vector spaces, operators and their spectral analysis, complete sets of functions, complex variables, functional analysis, Green's functions, calculus of variations, introduction to numerical analysis.

215A-215B-215C. Quantum Mechanics (4-4-4) I-II-III. Erickson
Lecture—3 hours; independent study—1 hour. Prerequisite: course 115B or the equivalent. Formal development and interpretation of non-relativistic quantum mechanics; its application to atomic, nuclear, molecular, and solid-state problems; brief introduction to relativistic quantum mechanics and the Dirac equation. (215A and 215B are prerequisites.)

219A-219B. Statistical Mechanics (4-4) I-II. Scallettar
Lecture—3 hours; independent study—1 hour. Prerequisite: course 215B or the equivalent. Foundations of thermodynamics and classical and quantum statistical mechanics with applications to properties of solids, real gases, nuclear matter, etc., fluctuations about the equilibrium state, and phase transitions and critical phenomena.

221. Atomic Physics (3) III. McColm
Lecture—3 hours; seminar—1-2 hours. Prerequisite: courses 215A-215B. Term structure of atoms using the angular momentum formalism; methods of computing wave functions and radial integrals; splitting in external fields; term structure in crystals; scattering and collisions. Not offered every year.

223A. Group Theoretical Methods of Physics—Condensed Matter (3) III. Fong
Lecture—3 hours. Prerequisite: courses 215A, 215B (215C is co-requisite) or consent of instructor. Theory of groups and their representations with applications in condensed matter.

223B. Group Theoretical Methods of Physics—Elementary Particles (3) III. Kiiskis
Lecture—3 hours. Prerequisite: courses 215A, 215B (215C is co-requisite) or consent of instructor. Theory of groups and their representations with applications in elementary particle physics.

224A. Nuclear Physics (3) III. Cebra
Lecture—3 hours. Prerequisite: course 215B. Comprehensive study of the nucleon-nucleon interaction including the deuteron, nucleon-nucleon scattering, polarization, determination of real parameters of S-, D-, and related topics. Not offered every year.

224B. Nuclear Physics (3) III. Cebra
Lecture—3 hours. Prerequisite: course 224A. Study of nuclear models, including shell model, collective model, unified model. Energy level spectra, static moments, and electromagnetic transition rates. Not offered every year.

224C. Nuclear Physics (3) I. Brady
Lecture—3 hours. Prerequisite: course 224B. Study of nuclear scattering and reactions including the solar model and direct interactions. Beta decay and an introduction to weak interactions. Not offered every year.

229A. Advanced Nuclear Theory (3) II. Brady
Lecture—3 hours. Prerequisite: course 224C. Advanced topics in nuclear theory; theory of quantum-mechanical scattering processes. Exact formal theory and models for two-body scattering. Not offered every year.

229B. Advanced Nuclear Theory (3) III. Brady
Lecture—3 hours. Prerequisite: course 229A. Advanced topics in nuclear theory; theory of quantum-mechanical scattering processes. Exact formal theory and models for three-body scattering. Not offered every year.

230A. Quantum Theory of Fields (3) I. Gunion
Lecture—3 hours. Prerequisite: course 215C. Relativistic quantum mechanics of particles; technical aspects and applications of second quantization; Feynman diagrams; renormalization.

230B. Quantum Theory of Fields (3) II. Gunion
Lecture—3 hours. Prerequisite: course 230A. Continuation of 230A. Advanced topics, such as S-matrix theory, dispersion relations, axiomatic formulations.

240A-240B. Solid State Physics (3-3) I-II. Corruccini
Lecture—3 hours. Prerequisite: courses 215A-215B-215C; courses 140A-140B recommended. Introduction to the phenomena and theory of the solid state. Periodic structures, lattice structures, electron states, static properties, electron-electron interaction, electron dynamics, transport properties, optical properties, the Fermi surface, band structure, and Fermi momentum.

240C-240D. Solid State Physics (3-3) III-I. Zimanyi
Lecture—3 hours. Prerequisite: course 240A-240B or the equivalent. General introduction to many-body techniques as applied in solid state physics.

241. Advanced Topics in Magnetism (3) II. Singh
Lecture—3 hours. Prerequisite: courses 240A-240B, 240C-240D, or consent of instructor. Topics chosen from areas of current research interest. Not offered every year.

242. Advanced Topics in Superconductivity (3) II. Scallettar
Lecture—3 hours. Prerequisite: courses 240A-240B, 240C-240D, or consent of instructor. Topics chosen from areas of current research interest. Not offered every year.

245A. High-Energy Physics (3) III. Kiskis
Lecture—3 hours. Prerequisite: course 230A. Phenomenology and systematics of strong, electromagnetic, and weak interactions of hadrons and leptons; determination of quantum numbers; quarks and quarkonia; deep inelastic scattering; the quark parton model; experiments at hadron colliders and electron-positron colliders.

245B. High-Energy Physics (3) III. Carroll
Lecture—3 hours. Prerequisite: course 245A. Electroweak interactions; phenomenology of the Standard Model of SU(2)LxU(1); weak interaction experiments; properties of and experiments with W and Z vector bosons; Glashow-Weinberg-Salam model and the Higgs boson; introduction to supersymmetry and other speculations.

245C. High-Energy Physics (3) III. Han
Lecture—3 hours. Prerequisite: course 245A. Strong interactions: quantum chromodynamics phenomenology; jets and other experimental tests; quark and gluon distribution functions; quark and gluon scattering; applications of the renormalization group. Not offered every year.

250. Special Topics in Physics (3) I, II, III. The Staff
Lecture—3 hours. Prerequisite: consent of instructor. Topic varies from year to year. May be repeated three times for credit. Not offered every year.

252A. Techniques of Experimental Physics (3) III. Zhu
Lecture—3 hours. Introduction to techniques and methods of designing and executing experiments. Problems and examples from condensed matter research will be utilized. Not offered every year.

252B. Techniques of Experimental Physics (3) III. Mani
Lecture—3 hours. Introduction to techniques and methods of designing and executing experiments. Problems and examples from nuclear and particle research will be utilized. Not offered every year.

290. Seminar in Physics (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in Physics. Topics will vary weekly and will cover a broad spectrum of the active fields of physics research at a level accessible to all physics graduate students. May be repeated for credit. (S/U grading only.)

291. Seminar in Nuclear Physics (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in nuclear physics. May be repeated for credit. (S/U grading only.)

292. Seminar in Elementary Particle Physics (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in ele-
mentary particle physics. May be repeated for credit. (SU grading only.)

293. Seminar in Condensed Matter Physics (1) I, II, III. The Staff
Seminar—1 hour. Prerequisite: graduate standing in Physics or consent of instructor. Presentation and discussion of topics of current research interest in condensed matter physics. May be repeated for credit. (SU grading only.)

295. Introduction to Departmental Research (1) III. The Staff (Chairperson in charge)
Seminar—1 hour. Seminar to introduce first- and second-year physics graduate students to the fields of specialty and research of the Physics staff. (SU grading only.)

297. Research on the Teaching and Learning of Physics (3) I. Potter
Seminar—3 hours. Prerequisite: graduate standing in Physics or consent of instructor. Discussion and analysis of recent research in how students construct understanding of physics and other science concepts and the implications of this research for instruction. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (SU grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(SU grading only.)

Professional Course

390. Methods of Teaching Physics (1) I, II, III. The Staff
Lecture/discussion—1 hour. Prerequisite: graduate standing in Physics; consent of instructor. Practical experience in methods and problems related to teaching physics laboratories at the university level, including discussion of teaching techniques, analysis of quizzes and laboratory reports and related topics. Required of all Physics Teaching Assistants. May be repeated for credit. (SU grading only.)

Graduate Admissions Officer, P. Berger (Animal Science).

Courses in Physiology (PGG)

Graduate Courses

200L. Animal Cell Culture Laboratory (4) I. II. B. Wilson, R. Wu
Discussion—2 hours; laboratory—6 hours. Prerequisite: courses in undergraduate biochemistry, cell biology, or general physiology, or consent of instructor. Techniques of cell culture, with emphasis on cell physiology and the actions of drugs and toxicants on cultured somatic cells. Design, performance and interpretation of experiments with animal cells in vitro.

210A-210B-210C. Advanced Physiology (6-6-6) I-II-III. Jones
Lecture—5 hours; discussion—1 hour. Prerequisite: graduate student in the Physiology Graduate Group Ph.D. program, or consent of instructor. Advanced course on general principles of physiology: surveying homeostasis, cellular, neurophysiology, cardiovascular, respiratory, renal, endocrine, gastrointestinal, metabolic, integrative, comparative, environmental and integrative physiology.

*213. Principles of Electronics for Biologists (2) III. Horowitz
Lecture—2 hours; laboratory—3 hours. Prerequisite: Physics 5A, 5B, SC, and Mathematics 16A, 16B, 16C or the equivalent. Principles of electronics applied to biological measurements. Focuses on interconnection of laboratory instruments including filters and com- puters. Topics covered include: RC networks; operational amplifiers; digital gates; computer interfacing; and programming.

214. Neurophysiology (4) III. Carstens
Lecture—4 hours. Prerequisite: Neurobiology, Physiology and Behavior 110B, 112; consent of instructor. Electrical activity of neurons and neuroeffector junctions; physiology of the nervous system as studied by its electrical activity.

*215. Neurophysiology Laboratory (3) III. Horowitz, Scobey
Discussion—3 hours; laboratory—9 hours. Prerequisite: course 214 (may be taken concurrently). Selected experiments based on modern concepts to illustrate in depth the techniques, stimulating and recording techniques used in neurophysiology research.

216. Neurophysiology Literature (3) I. Pappone
Lecture—1 hour; discussion—2 hours. Lectures covering experimental and theoretical methods in studying cell membrane ion channels and the resulting characterization of the physiological functions and structure/function relationships of some of the most important channel types. Discussion of classical and current original papers.

217. The Vertebrate Eye (2) II. Sillman
Seminar—1 hour; lecture/discussion—1 hour. Prerequisite: graduate standing and a background in biology; Neurobiology, Physiology and Behavior 120F strongly recommended. Physiology, biochemistry, and biology of the vertebrate eye with emphasis on the retina, photoreceptors, and retina. A comparative approach will be taken with adaptations in ocular function related to behavior and environment. May be repeated for credit with consent of instructor. Offered in alternate years.

218. Topics in Circulatory Pathophysiology (3) II. Weidner
Lecture—1 hour; discussion—2 hours. Prerequisite: graduate standing. Selected topic in circulatory or cardiovascular physiology will be addressed each offering. Topics will include pathophysiology. Lecture and discussion based on current research literature in the field. May be repeated with consent of instructor. Offered in alternate years.

*219. Muscle Growth and Development (3) II. R. Carlson (Human Physiology)
Lecture—2 hours; discussion—1 hour. Prerequisite: Biological Sciences 103, Biological Sciences 104 or Molecular and Cellular Biology 150, or consent of instructor. Integration of growth and development of skeletal muscle; morphology, biochemistry, neural control mechanisms, circulatory and nutritional factors. Prenatal and neonatal differentiation of fiber types. Experimental and hereditary myopathies. Offered in alternate years.

220. General and Comparative Physiology of Reproduction (3) I. Anderson (Animal Science), Lasley (Reproduction)
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 110B, 110C, Biological Sciences 101, 103. Basic phenomena of sexual and asexual reproduction and comparisons of processes in a wide variety of animals; gamete formation, structure, and metabolism; fertilization; neuroendocrine mechanisms in maturation and reproductive cycles; behavioral aspects.

222. Mammalian Gametogenesis and Fertilization (3) I. Berger
Lecture/discussion—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 120 or the equivalent. Course will emphasize our current understanding of events in mammalian gametogenesis and the fertilization process. Published results, conclusions drawn from these results, and their contribution to our understanding will be discussed.

230. Advanced Endocrinology (2) II. Moberg
Lecture—2 hours. Prerequisite: Neurobiology, Physiology and Behavior 120B or the equivalent, and graduate standing. Focus on timely topic of endocrine research. Critical review of current literature and discussion of future research strategies in the area. May be repeated for credit when topic differs.

231. Neuroendocrinology (3) II. Woolley
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 110 or the equivalent course in systems physiology. Neurobiology, Physiology and Behavior 130 or the equivalent course in endocrinology. Neural-endocrine interactions; neural regulation of the endocrine system, especially in relation to reproduction; the role of hormones and growth factors in sexual differentiation of the brain.

234. Neurophysiological Basis of Neurotoxicology (3) I. Woolley
Lecture—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 110 or the equivalent; basic understanding of neurophysiology. Mechanisms of action at the cellular and systemic level of a number of different neurotoxins and toxicants. Examples of ways toxins act on the nervous system and techniques for study of neurotoxicology. (Same course as Environmental Toxicology 234.)

*242. Biological Rhythms (3) I. Fuller
Lecture—2 hours; lecture/discussion—1 hour. Prerequisite: Neurobiology, Physiology and Behavior 110 or the equivalent. General aspects and basic mechanisms of biological rhythms; the importance of rhythm desynchronization in animal behavior and space medicine; telemetry; mathematical methods; chronometry; daily, reproductive, and annual periods; shift-work, jet lag and sleep disorders. Offered in alternate years.

275. Neurohumoral Regulatory Mechanisms of Thermogenesis (3) II. Horowitz, Horowitz
Lecture—2 hours; discussion—1 hour. Prerequisite: Biological Sciences 104 or the equivalent, Biological Sciences 102 or the equivalent, consent of instructor. Designed for graduate and advanced undergraduate students, this course will examine thermogenic systems in homeotherms (primarily mammals) with respect to regulation (hormonal control) and effecter mechanisms (basis of heat generation at the target cell).

290. Seminar (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Discussion and critical evaluation of advanced topics and current trends in research. (SU grading only.)

Plant Biology

See Agricultural Systems and Environment; Biological Sciences: Section of Plant Biology; Crop Science and Management; and Plant Biology (below); and Plant Biology (A Graduate Group)

Plant Biology

Deborah P. Delmer, Ph.D., Chairperson of the Section

Section Office, 143 Robbins Hall (916-752-0617)

Committee in Charge

John J. Harada, Ph.D. (Plant Biology), Chairperson
Judith Jernstedt, Ph.D. (Agronomy and Range Science)
Carolyn Napol, Ph.D. (Environmental Horticulture)
Alan Steiner, Ph.D. (Plant Biology)
Robert M. Thornton, Ph.D. (Plant Biology)
John Yoder, Ph.D. (Vegetable Crops)

Faculty

Faculty includes members of the Departments of Agronomy and Range Science; Environmental Horticulture; Land, Air and Water Resources; Plant Pathology; Pomology; Vegetable Crops; Viticulture and Enology; and the Sections of the Division of Biological Sciences.

The Major Program

Plant biology is the study of plants as organisms. It includes the cell and molecular plant biology and the traditional areas of botany, such as anatomy, morphology, systematics, physiology, mycology, physiology, ecology, and evolution.

The Program.

The plant biology major consists of core courses in applied plant biology, plant anatomy, plant physiology, and plant ecology, as well as biochemistry, cell biology, and genetics. In addition, students complete a set of courses in one of the following areas: (1) applied plant biology, (2) plant evolution and ecology, (3) general plant biology, and (4) plant physiology, development, and molecular biology. The major provides breadth in plant biology and depth in one of several areas of specialization. Independent research opportunities in plant biology are available. Consult with an adviser.

Career Alternatives.

A Plant Biology degree is an excellent credential for a wide range of career options, including domestic and international opportunities in business, research and teaching in both governmental and private sectors. Plant biologists can work in the field, in the forest, in the laboratory, in botanical gardens or nurseries, in food or seed companies, or in pharmaceutical, energy or chemical industries, and pursue rewarding careers in the areas of biotechnology, environmental protection, or agribusiness. The program is also an excellent background for students wishing to enter graduate or other professional schools, including medicine, law or journalism.

A.B. Major Requirements:

PREPARATORY SUBJECT MATTER

Biology: 1-3

Mathematics: 1-3

Chemistry: 1-3

Physics: 1-3

Computer Science: 1-3

Total Preparatory Subject Matter: 7-12

AGRICULTURAL SYSTEMS AND ENVIRONMENT

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Total Agricultural Systems and Environment: 6-12

PLANT PHYSIOLOGY, DEVELOPMENT AND MOLECULAR BIOLOGY

Plant Biology: 1-3

Biological Sciences: 1-3

Molecular Biology: 1-3

Enology: 1-3

Total Plant Physiology, Development and Molecular Biology: 6-12

AGRICULTURAL SYSTEMS AND ENVIRONMENT OR PLANT PHYSIOLOGY, DEVELOPMENT AND MOLECULAR BIOLOGY

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Agricultural Systems and Environment or Plant Physiology, Development and Molecular Biology: 6-12

PLANT EVOLUTION AND ECOLOGY

Plant Biology: 1-3

Biological Sciences: 1-3

Enology: 1-3

Total Plant Evolution and Ecology: 6-12

RECOMMENDED ADDITIONAL COURSES

Plant Biology: 1-3

Biological Sciences: 1-3

Enology: 1-3

Total Recommended Additional Courses: 6-12

GENERAL ELECTIVES

Any college course may be substituted for any college course listed above. Three courses must be completed to meet the requirement for a major in plant biology.

Plants Biology: 1-3

Chemistry: 1-3

Mathematics: 1-3

Physics: 1-3

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total General Electives: 12-15

COURSE LIST OPTIONS

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Course List Options: 6-12

THE MAJOR PROGRAM

A major in plant biology consists of breadth in diverse areas of plant biology and depth in one of several areas of specialization. Independent research opportunities in plant biology are available. Consult with an adviser.

1. PLANT PHYSIOLOGY

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Plant Physiology: 6-12

2. PLANT DEVELOPMENT

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Plant Development: 6-12

3. PLANT ECOLOGY

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Plant Ecology: 6-12

4. PLANT GENETICS

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Plant Genetics: 6-12

5. PLANT SYSTEMS

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Plant Systems: 6-12

6. PLANT HORTICULTURE

Agricultural Systems and Environment: 1-3

Plant Biology: 1-3

Conservation Biology: 1-3

Enology: 1-3

Molecular Biology: 1-3

Total Plant Horticulture: 6-12

TOTAL UNITS

39-42

ADDITIONAL RECOMMENDATIONS

Additional units required for a major in plant biology may include a formal laboratory or fieldwork component in plant biology. Consult with an adviser to achieve a total of 42 units.

*Course not offered this academic year.
One course from the Ecology course list (Plant Biology 117 recommended)..............3-4
One course from the Evolution and Diversity course list..............3-5
Additional upper division coursework from the Plant Physiology, Development, and Molecular Biology course list to achieve a total of 24 or more units..................1-3

Course Lists

Applied Plant Biology
Agricultural Systems and Environment 100, 107, 110, 110L, 111, 112, 113, 118, 150, 170A, 170B, 195; Atmospheric Science 133; Entomology 100, 100L, 110, 119, 119L, 135; Environmental Horticulture 102, 105, 107, 120, 125, 130, 133, Environmental Toxicology 101; Hydrologic Science 124; Agricultural

Evolution and Diversity

Plant Physiology, Development, and Molecular Biology
Molecular and Cellular Biology 126; Plant Biology 125, 153, 157, 158, 160; Plant Pathology 130.

Total Units for the Major..105-106

Master Adviser. Contact A. Stiemer, Plant Biology Section Office, 143 Robbins Hall.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Biology ..23</td>
</tr>
<tr>
<td>To satisfy the requirements for a Plant Biology minor, a student must complete Biological Sciences 1C (or equivalent introductory plant biology course)......5-7</td>
</tr>
<tr>
<td>Upper division units including at least one course from each of the four groups below...18</td>
</tr>
<tr>
<td>(b) Physiology and development: Plant Biology 111, 112, 125, Plant Pathology 130.</td>
</tr>
<tr>
<td>(c) Evolution and ecology: Evolution and Ecology 100, Plant Biology 102, 117, 143.</td>
</tr>
</tbody>
</table>

Minor Adviser. Same as for major above.

Honors and Honors Programs. Students on the honors list may elect to substitute a maximum of 5 units of 194H for 5 upper division units of the major; however, recommendations for high honors and highest honors at graduation are not dependent on the completion of 194H. Refer to the Academic Information section and the appropriate College section for Dean’s Honors List information.

Teaching Credential Subject Representative. R. M. Thornton (Section of Plant Biology), 218 Robbins Hall. See above for Teacher Education Program.

Graduate Study. Consult the Plant Biology Graduate Group listing.

Concordance

The following courses in Plant Biology have been renumbered.

<table>
<thead>
<tr>
<th>Former Course</th>
<th>New Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Plant Biology 11</td>
</tr>
<tr>
<td>11</td>
<td>Plant Biology 11 (Plants, People and the Biosphere)</td>
</tr>
<tr>
<td>12</td>
<td>Plant Biology 176</td>
</tr>
<tr>
<td>13</td>
<td>Plant Biology 177 (Action of Herbicides)</td>
</tr>
<tr>
<td>15</td>
<td>Plant Biology 158</td>
</tr>
<tr>
<td>16</td>
<td>Plant Biology 178 (Biology and Management of Freshwater Macrophytes)</td>
</tr>
</tbody>
</table>

Courses in Plant Biology (PLB)

Lower Division Courses

1. Plants for Garden, Orchard and Landscape (2) I, III. Marrush (Vegetable Crops)

Lecture—1 hour; laboratory—3 hours. For non-majors. Hands-on experience with plants cultivated for food, environmental enhancement and personal satisfaction. Topics include establishing a vegetable garden, pruning and propagating trees and vines, growing flowers and ornamental plants, and the role of plants in human health and well being. Not open for credit to students who have completed Agricultural Systems and Environment 2 or Plant Science 1. (Former course Plant Science 1.) GE credit: SciEng.

11. Plants and the Biosphere (3) I. Falk

Lecture—3 hours; one weekend field trip (half-day); term paper. Ethnobotanical and ecological themes are emphasized in examining our dependence on plants, the ecological roles of plants, and the development of botany as a contemporary science. Intended primarily for non-science majors. Not open for credit to students who have completed former course 10 or Botany 10. (Former course Botany 10.) GE credit: SciEng, Wrt.

12. Plants and People (3) I. Bradford; II, Bennett, Michelmore; III. Nevins (Vegetable Crops)

Lecture—3 hours. Prerequisite: high school biology. Plants as a resource for food, recreation, and environmental enhancement. Emphasis on how our relationship to plants has changed through history and how the growth and development of plants affect their utility. Not open for credit to students who have completed course Plant Science 10. (Former course Plant Science 10.) GE credit: SciEng, Div, Wrt.

90X. Plant Science Seminar (1-4) I, II, III.

The Staff

Prerequisite: consent of instructor. Examination of a special topic in a small group setting. Not open for credit to students who have completed course Plant Science 90X. (Former course Plant Science 90X.)

92. Internship (1-12) I, II, III. The Staff

Chairperson in charge

Internship—3-36 hours. Prerequisite: consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Plant Biology Department faculty. (Former course Botany 92.) (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (Former course Botany 98.) (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (Former course Botany 99.) (P/NP grading only.)

Upper Division Courses

For questions about courses numbered 102 through 125, see the Plant Biology Section Office, 143 Robbins Hall. For questions concerning courses numbered 142 through 198, see the Plant Science Advising Center, 152 Hunt Hall.

102. California Floristics (5) III. Dean

Lecture—2 hours; lecture/discussion—1 hour; laboratory—6 hours (includes three one-day, weekend field trips). Prerequisite: Biological Sciences 1A, 1B, or the equivalent in plant science. Survey of the flora of California, with emphasis on field recognition and identification of important vascular plant families and genera characterizing the major floristic regions. Lectures review the taxonomic diversity, evolutionary relationships, and geographical patterns of California flora. Not open for credit to students who have completed Botany 102. (Former course Botany 102.)

105. Developmental Plant Anatomy (5) I. Rost

Lecture—3 hours; laboratory—6 hours. Prerequisite: introductory plant biology (for example, Biological Sciences 1C). Survey of vascular plant structure and development. Current ideas and experimental evidence for developmental concepts. Not open for credit to students who have completed Botany 105. (Former course Botany 105.)

106. Systematics and Evolution of Angiosperms (5) III. Doyle

Lecture—3 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B and 1C. Diversity and classification of angiosperms (flowering plants) on a world scale, and current understanding of the origin of angiosperms and evolutionary relationships and trends within them based on morphological and molecular evidence. (Same course as Evolution and Ecology 108.) GE credit: SciEng.

111. Plant Physiology (3) I. Lucas, Stermer

Lecture—3 hours. Prerequisite: Biological Sciences 1C. Chemistry 89 (may be taken concurrently; Physics 7A, 7B, 7C recommended). Fundamental activities of plants; the plant cell as a functioning unit. Processes of absorption, movement, and utilization of water and minerals. Wound, loss, transpiration, phytosynthesis, respiration. Not open for credit to students who have completed Botany 111. (Former course Botany 111.)

111D. Problems in Plant Physiology (1) I. Lucas, Stermer

Discussion—1 hour. Prerequisite: course 111 concurrently. Discussion of problems and applications relating to principles presented in course 111. Students will be assigned problems each week showing novel applications of principles described in course 111 and will prepare answers to be delivered orally during the class period. Not open for credit to students who have completed Botany 111D. (Former course Botany 111D.) (P/NP grading only.)

111L. Introductory Plant Physiology Laboratory (5) I. Murphy

Lecture/discussion—1 hour; laboratory—9 hours; extensive writing. Prerequisite: Biological Sciences 1C, Chemistry 89. Introduction to basic experimental techniques and instruments used in the investigation of plant physiological processes, such as photosynthesis, water and solute transport, tissue cultures, and detection of hormones. Not open for credit to students who have completed Botany 111L. (Former course Botany 111L.)

112. Plant Growth and Development (3) II. Thornton

Lecture—3 hours. Prerequisite: Biological Sciences 1C, Chemistry 89. Introduction to the mechanisms and control systems that govern plant growth and development and the responsiveness of plants to the environment. Strong emphasis on vegetative development of flowering plants. Not open for credit to students who have completed Botany 112. (Former course Botany 112.) GE credit: SciEng.

112D. Problems in Plant Growth and Development (1) II. Thornton

Discussion—1 hour. Prerequisite: course 112 concurrently. Discussion of problems and applications relating to principles presented in course 112. Students

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
113. Molecular and Cellular Biology of Plants (3) W. Hilbert
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; Biological Sciences 101. Prerequisites include cellular and molecular biology. Focus is on phylogeny through serial endosymbioses. Students will study the interactions between plant populations or vegetation types and their environment. Special emphasis will be placed on California. Students who complete course 117 cannot receive credit for Evolution and Ecology 121. (Same course as Evolution and Ecology 117.) Not open for credit to students who have completed Botany 117. (Former course Botany 117.)

114. Introduction to Phycology (4) J. Canion
Lecture—2 hours, laboratory—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Comparative morphology, physiology, development and reproduction of algae, including cyanobacteria. Focus is on phylogeny through serial endosymbioses. Laboratories study living organisms and have identification exercises. Ecological factors and commercial uses are considered. Not open for credit to students who have completed Botany 118. (Former course Botany 118.)

121. Biology of Weeds (3) I. Rejmanek
Lecture—2 hours, laboratory—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C. Origin and evolution, beneficial and harmful aspects, reproduction and dispersal, seed germination and dormancy, growth and development, interactions of weeds and crops, natural succession, and herbicide-induced succession. Laboratories will emphasize taxonomy of weeds and demonstrate principles discussed in lectures. Not open for credit to students who have completed Botany 121. (Former course Botany 121.)

125. Molecular Biology of Plant Development (3) S. Harada
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; Biological Sciences 101 or Botany 103; Molecular and Cellular Biology 161 or course 111. Gene expression and gene structure and their influence on growth and differentiation of higher plant tissues. Not open for credit to students who have completed Botany 125. (Former course Botany 125.)

142. Ecology of Crop Systems (4) I. Denison
Lecture—3 hours, discussion—1 hour. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1A, 1B, 1C; Mathematics 18A or Physics 1A, or consent of instructor. Ecological processes governing the structure and behavior of managed ecosystems. Emphasis on mechanistic and systems views of the physical environment, photosynthetic productivity, competition, adaptation, nutrient cycling, energy relations and contemporary issues such as climate change. Not open for credit to students who have completed Plant Science 101. (Former course Plant Science 101.)

143. Evolution of Crop Plants (4) I. Gepts (Agronomy and Range Science)
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C or the equivalent. Origins of crops and their relationships to wild species; methodological and theoretical approaches of this field, centers of origin and diversity, crop dissemination pathways, and differences between wild and cultivated plants. Group studies of individual crops give the Internet. Not open for credit to students who have completed Plant Science 103. (Former course Plant Science 103.) GE credit: SciEng, Wrt.

144. Trees and Forests (3) J. Barbour, Berry (Environmental Horticulture), Bledsoe (Land, Air and Water Resources), De Jong (Pomology)
Lecture—3 hours. Prerequisite: Biological Sciences 1C and junior standing. Biological structure and function of trees as organisms; understanding of forests as communities and as ecosystems; use of forests by humans; tree phenology; photosynthesis, respiration, soil processes, life histories, dormancy, forest biodiversity, and forest management. Not open for credit to students who have completed Plant Science 106. (Former course Plant Science 106.)

146. Rhizosphere Ecology (2) I. Phillips (Agronomy and Range Science)
Lecture—2 hours. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1A-1B-1C. Plant-microbe interactions, plant-soil relationships, soil formation, and agricultural sustainability. Course addresses physical, chemical and biological processes which occur at the surface of plant roots. Evolution and microorganisms. Not open for credit to students who have completed Plant Biology 106. (Former course Plant Science 106.)

148. Introductory Mycology (5) J. MacDonald (Plant Pathology)
Lecture—3 hours; laboratory—6 hours; one optional weekend field trip. Prerequisite: Biological Sciences 1A, 1B, 1C, 103. Introduction to general mycology, taxonomy, bioecology and biology of the fungi. Not open for credit to students who have completed former course 119, Botany 119. (Former course 119, Botany 119.) (Same course as Plant Science 140.)

151. Conservation of Plant Genetic Resources (3) I. Bliss (Pomology)
Lecture—3 hours. Prerequisite: Molecular and Cellular Biology 10 or Biological Sciences 10. Biological, social and ethical issues involved in plant genetic resources will be studied beginning with their historical importance to human welfare and covering current and future problems of resource management and protection. Essential elements of genetic resources at the molecular and organismal levels, including transformation, gene expression, analysis of transgenic plants and QTL analysis. Not open for credit to students who have completed Plant Biology 141A. (Former course Plant Biology 141A.)

152. Plant Genetics (4) I. Wilkins (Agronomy and Range Science)
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: Biological Sciences 1A or consent of instructor. Basic principles of transmission genetics, cytogenetics, population and quantitative genetics, and molecular genetics. Practical aspects of genetic crosses and analysis of segregating populations. Not open for credit to students who have completed Plant Science 105. (Former course Plant Science 105.)

153. Plant Cell, Tissue, and Organ Culture (4) I. Burger (Environmental Horticulture), Sutter (Pomology)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 111, 112 (may be taken concurrently); or consent of instructors. Basic and applied aspects of plant tissue culture including media preparation, micropropagation, embryogenesis, anther culture, protoplast culture and transformation. Offered in alternate years. Not open for credit to students who have completed Plant Science 107. (Former course Plant Science 107.)

154. Plant Breeding (4) II. St. Clair (Vegetable Crops)
Lecture—3 hours; demonstration-discussion—2-3 hours. Prerequisite: Biological Sciences 101 (may be taken concurrently). The principles of plant breeding applied to economic crops. Not open for credit to students who have completed Plant Science 113. (Former course Plant Science 113.)

157. Physiology of Environmental Stresses in Plants (3) I. Richards, Lauchli (Land, Air and Water Resources)
Lecture—2 hours; discussion—1 hour. Prerequisite: course 112 (may be taken concurrently) or the equivalent. Principles and selected topics in physiology of environmental stresses in plants. Areas emphasized are general stress concepts, physiological responses of plants to selected environmental stresses and integration of stresses. Not open for credit to students who have completed Plant Science 126. (Former course Plant Science 126.)

158. Mineral Nutrition of Plants (4) III. Richards (Land, Air, and Water Resources), Brown (Pomology)
Lecture—3 hours; laboratory—3 hours. Prerequisite: course 111 or the equivalent. Evolution and scope of plant nutrition; essential and other elements; mechanisms of absorption and translocation; mineral metabolism; deficiencies and toxicities; genetic and ecological aspects of plant nutrient use. Not open for credit to students who have completed Plant Biology/Plant Science 135 or Botany 135. (Former course Plant Science 135; Botany 135.)

160. Principles of Plant Biotechnology (3) I. Dandekar (Agronomy and Range Science)
Lecture—2 hours, laboratory—6 hours. Prerequisite: course 112 and/or 160. Techniques of genetic analysis at the molecular and organismal levels, including segregation and linkage analysis, cytogenetics and recombinant DNA. Not open for credit to students who have completed Plant Biology/Plant Science 135 or Botany 135. (Former course Plant Science 141A.)

161A. Plant Genetics and Biotechnology Laboratory (4) I. Wilkins, Gepts (Agronomy and Range Science), Quiros (Vegetable Crops), Dandekar (Pomology)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 112 and/or 160. Advanced techniques of genetic analysis at the molecular and organismal levels, including transformation, gene expression, analysis of transgenic plants and QTL analysis. Not open for credit to students who have completed Plant Science 141A.

161B. Plant Genetics and Biotechnology Laboratory (4) I. Wilkins, Gepts (Agronomy and Range Science), Dandekar (Pomology)
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 112 and/or 160. Advanced techniques of genetic analysis at the molecular and organismal levels, including transformation, gene expression, analysis of transgenic plants and QTL analysis. Not open for credit to students who have completed Plant Science 141A.

171. Plant Propagation (4) III. Sutter (Pomology)
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: Agricultural Systems and Environment 2 or Biological Sciences 1C. Principles and practices of propagating plants covering anatomical, physiological, and practical aspects. Not open for credit to students who have completed Plant Science 109. (Former course Plant Science 109.)

172. Postharvest Physiology and Handling of Horticultural Commodity (4) I. Kader (Pomology), Reid (Environmental Horticulture), Saltveit (Vegetable Crops)
Lecture—3 hours. Prerequisite: general plant science background and recommended courses e.g., Agricultural Systems and Environment 2, course 12 or Food Science and Technology 2; concurrent enrollment in course 172L

*Course not offered this academic year.
recommended. Physiological processes related to the maturation and senescence of fruits, vegetables, and ornamentals, fundamentals involved in handling, transportation, storage, and marketing practices, e.g., temperature and humidity control, protective treatments, controlled atmospheres. Not open for credit to students who have completed Plant Science 112. (Former course Plant Science 112.)

172L. Postharvest Physiology and Handling Laboratory (2) I. Kader (Pomology), Saltveit (Vegetable Crops) Discussion—1 hour; laboratory—3 hours. Prerequisite: course 172 (may be taken concurrently). Demonstrations and exercises following the subject matter of course 172. Not open for credit to students who have completed Plant Science 112L. (Former course Plant Science 112L.)

173. Biological Applications in Pomology (2) II. De Jong (Pomology) Lecture—1 hour; laboratory—3 hours. Prerequisite: Biological Sciences 1C or consent of instructor. Physiology, growth, development and environmental requirements of fruit trees and cultural practices used to maintain them. Course emphasis is on the application of biological principles in the culture of commercially important temperate zone fruit tree species. Not open for credit to students who have completed Pomology 101. Not open for credit to students who have completed Plant Science 115. (Former course Plant Science 115.)

174. Principles of Fruit Production (4) III. De Young, Polito (Pomology) Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 1C; course 173 recommended. Principles underlying cultural practices associated with fruit and nut production, including morphology and physiology of developing buds, flowers and fruits. Emphasis on commercially important temperate zone species. Not open for credit to students who have completed Pomology 102. Not open for credit to students who have completed former course 172. (Former course Plant Science 116.) (Former course Plant Science 116.)

175. Applied Plant Biology (4) II. Brown, Labavitch (Pomology), Napoli (Environmental Horticulture) Lecture—3 hours; discussion—1 hour. Prerequisite: course 111, and Biological Sciences 101 or course 152. Advanced concepts of plant biology with reference to the uses of plants for food, fiber, and environmental amelioration. Recent research, applications and issues in crop improvement, production, and biotechnology will be presented and discussed. Not open for credit to students who have completed Plant Science 142. (Former course Plant Science 142.)

176. Introduction to Weed Science (3) II. Bayer Lecture—2 hours; discussion—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C; course 107A or consent of instructor. Principles of weed science and weed management. Emphasis on practical aspects of weed ecology, growth, development, and physiology of weeds. Offered in alternate years. Not open for credit to students who have completed Plant Science 107. (Former course Plant Science 107.) (Former course Plant Science 107.)

179. Action of Herbicides (3) III. Bayer/Falk Lecture—2 hours. laboratory—3 hours. Prerequisite: course 176; Soil Science 100; courses 111, 111D recommended. Influence of plants and soils on the action of herbicides: absorption, translocation, fate, mechanism of action and symptoms of herbicides in plants. Effects of herbicides on plant populations. Physical and molecular fate of herbicides in soils. Not open for credit to students who have completed former course 122, Botany 122. (Former course 122, Botany 122.)

178. Biology and Management of Freshwater Macrophytes (3) I. Anderson Lecture—3 hours; two field trips. Prerequisite: Biological Sciences 1A, 1B, 1C; Chemistry 88; course 111 or Hydrologic Science 122 recommended. Brief survey of common fresh water macrophytes, their reproductive, modes, physiology, growth (photosynthesis, nutrient utilization), development (hormonal interactions), ecology and management. Offered in alternate years. Not open for credit to students who have completed former course 150, Botany 150. (Former course 150, Botany 150.)

188. Undergraduate Research: Proposal (3) III. The Staff Lecture—1 hour; discussion—1 hour; independent study—3 hours. Prerequisite: upper division standing and consent of instructor. A faculty sponsor will individually assist each student to develop a problem, conduct a literature survey, identify objectives, generate testable hypotheses, design experiments, plan data analysis, prepare a working outline, and write and revise a draft undergraduate research proposal. Not open for credit to students who have completed Plant Science 191, Vegetable Crops 191. (Former course Plant Science 191.) (P/NP grading only.)

189. Experiments in Plant Biology: Design and Execution (3) III. Labavitch (Pomology), Napoli (Environmental Horticulture) Laboratory/discussion—6 hours. Prerequisite: Biological Sciences 1A, 1B, 1C or the equivalent course in plant sciences, and consent of the instructor. Provides an opportunity for undergraduate students to formulate experimental approaches to current questions in plant biology and to carry out their proposed experiments. May be repeated for credit for a total of 12 units. (Former course Botany 189.) (P/NP grading only.)

190C. Research Conference in Botany (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: upper division standing in botany or related discipline; consent of instructor. Introduction to research methods in botany. Design of field or laboratory research projects, survey of appropriate literature, and discussion of research conducted by faculty and students. May be repeated for credit. (Former course Botany 190C.) (P/NP grading only.)

192. Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: upper division standing; consent of instructor. Technical and/or professional experience on or off campus. Supervised by a member of the Plant Biology Section faculty. (Former course Botany 392.) (P/NP grading only.)

194H. Special Study for Honors Students (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: open only to majors of senior standing on honors list. Independent study of selected topics under the direct supervision of members of the staff. Completion will involve the writing of a senior thesis. Not open for credit to students who have completed Botany 194H. (Former course Botany 194H) (P/NP grading only.)

196. Postharvest Technology of Horticultural Crops (3) III. Kader (Pomology) in charge Lecture/discussion/demonstration—5 days; field trip—5 days. Prerequisite: upper division or graduate student standing. Intensive study of current procedures for postharvest handling of fruits, nuts, vegetables, and ornamentals in California. Scheduled first two weeks immediately following last day of spring quarter. Considered a spring course for preenrollment. Not open for credit to students who have completed Plant Science 196. (Former course Plant Science 196.) (P/NP grading only.)

197T. Tutoring in Botany (1-5) I, II, III. The Staff Tutoring—1-5 hours. Prerequisite: upper division standing and consent of instructor. Designed for undergraduate students who desire teaching experience. Student contact will be primarily in laboratory and discussion sections. (Former course Botany 197T.) (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff Prerequisite: consent of instructor. (Former course Botany 198.) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (Former course Botany 199.) (P/NP grading only.)

General Education (GE) credit: Art/Hum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.

Plant Biology
(A Graduate Group)

Vito S. Polito, Ph.D., Chairperson of the Group

Group Office, 152 Robbins Hall (916-752-7094) Fax: 916-752-5410

Faculty. Includes 100 faculty members from fifteen departments in the field of plant biology.

Graduate Study. The Graduate Group in Plant Biology offers programs of study and research leading to the M.S. and Ph.D. degrees. The program prepares students for careers in teaching or research at colleges and universities, government or industrial laboratories. The graduate curriculum involves both a broad overview of the discipline and in-depth study and research in one of four areas of specialization: cell and molecular biology, ecology, systematics, and evolution; integrative plant and crop physiology; and plant development and structure. These areas of specialization permit individual study and research into diverse aspects of plant biology, including anatomy, biochemistry, cell biology, cytology, developmental biology, ecology, genetics, molecular biology, morphogenesis, paleobotany, physiology, population biology, systematics, and weed science.

Preparation. For both the M.S. and Ph.D. programs, a level of scholastic development equivalent to a Bachelor’s degree in biological sciences from a recognized college or university is required. Courses in the following areas are considered to be prerequisite to the advanced degrees in Plant Biology: inorganic chemistry, organic chemistry, introductory physics, genetics, structural botany, biochemistry, introductory plant physiology, introductory plant physiology laboratory, calculus, introductory statistics, plant ecology/systematics/evolution, genetics, and plant cell/molecular biology. Limited deficiencies can be made up after admission. The graduate advisor, the major professor, and the student will design a program of advanced courses to meet individual academic needs within one of the specializations.

Graduate Adviser. Contact the Group office.

Courses in Plant Biology (PBI)

Graduate Courses

*201. Plant Senescence: Cellular and Molecular Aspects (4) II. Labavitch (Pomology), Bennett (Vegetable Crops)

Lecture—4 hours. Prerequisite: Plant Biology 111, 112; Biological Sciences 102 and 103. Cellular and molecular phenomena associated with the senescence of plants and plant parts. Emphasis on principles and mechanisms. Offered in alternate years.

*202. Advanced Physiology of Cultivated Plants (2) I. Matthews (Viticulture), De Jong (Pomology)

Lecture—1 hour; discussion—1 hour. Prerequisite: Plant Science 101 and 102; Plant Biology 111, 112. Selected physiological topics generally focusing on source-sink behavior affecting crop production and quality. Offered in alternate years. (P/NP grading only.)

*205A. Advanced Plant Physiology (3) III. Lucas Lecture—3 hours. Prerequisite: Plant Biology 112; Chemistry 107A or consent of instructor. Cellular physiology, plant water relations, translocation and membrane transport.

*205B. Advanced Plant Physiology (3) II. Sternier Lecture/discussion—3 hours. Prerequisite: Plant Biology 111, 112; Biological Sciences 102; courses 205A, 205B and Biological Sciences 103 recommended. Internal and environmental regulation of growth and development.

*206A. Advanced Plant Physiology Laboratory
*21A. Advanced Concepts in Plant Cell Biology: Cell Biogenesis (3) III. Bennett, Theg Lecture/discussion—3 hours. Prerequisite: Biological Sciences 102, 103 or consent of instructor. An integrated survey of molecular mechanisms underlying structural and functional differentiation of plant cell subcellular compartments. Topics include membrane assembly, protein targeting and turnover, and regulation of nuclear and organelar gene expression as related to the biogene- sis of plant cell organelles. Offered in alternate years.

*21B. Advanced Concepts in Plant Cell Biology: Signal Transduction and Intercellular Communication (3) III. Lucas, Lagarias Lecture—3 hours. Prerequisite: Biological Sciences 102, 103 or consent of instructor. Intracellular signal transduction pathways in plants as well as longer-term, adaptive responses which involve sig- nals transmitted between plant cells. Weekly lectures and student-led discussions on current literature. Offered in alternate years.

19. Reproductive Biology of Flowering Plants (3) I. Wu (Environmental Horticulture) Lecture—2 hours; discussion—1 hour. Prerequisite: Plant Biology 111 and Biological Sciences 101. Fundamental mechanisms of reproductive biology of flowering plants and their influence on genetic varia- tion, evolution, and cultural practices. Offered in alter- nate years. (Former course Plant Science 270.)

220. Plant Developmental Biology (4) III. Rost, Jernstedt Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: plant anatomy, physiology, and bio- chemistry. A survey of the concepts of plant develop- ment and organization of plant cells, tissues, and organs with special emphasis on experimental evidence for mechanisms regulating developmental processes. Offered in alternate years.

*221. Special Topics in Plant Physiology (2) III. The Staff Discussion—1 hour; seminar—1 hour. Analysis in depth of recent advances in plant physiology. Lectures and discussions by research specialists. Term paper integrating and analyzing lectures required. May be repeated for credit. (SU grading only.)

*222. Special Topics in Plant Morphology, Systematics, and Ecology (2) II. The Staff Seminar—2 hours. Analysis of recent advances in plant structure and evolution. Lectures and discus- sions by research specialists. Term paper integrating and analyzing lectures required. May be repeated once for credit. (SU grading only.)

223. Special Topics in Scientific Method (2) I. Bradford Discussion—2 hours. Examination of the historical and philosophical background of the scientific method. Analyze the rational perceptual, causal, creative and social aspects of scientific knowledge. Clarify the roles of reason, experimentation and creativity in sci- entific research. (SU grading only.)

224. Water in Physiology and Ecology of Plants (4) III. Hsiao (Land, Air and Water Resources) Lecture—3 hours; discussion—1 hour. Prerequisite: Hydrologic Science 124, or Plant Biology 111 and 117, or consent of instructor. Evapotranspiration and energy balance; water and nutrient potentials; water transport to, within, and from plants; dynamics and regulation of water status; drought resistance; responses to water deficits and salinity; water use effi- ciency, adaptation to aridity; productivity in relation to water. Offered every fourth year. (Former course Plant Science 224.)

227. Plant Molecular Biology (4) I. Bowman, Sinha, Britt Lecture/discussion—4 hours. Prerequisite: Molecular and Cellular Biology 121 or 161. Molecular aspects of higher plant biology with emphasis on gene expression. Plant nuclear and organelle genome organization, gene structure, mechanisms of gene regulation, gene transmission and recombination. Special topics related to development and response to biological and environ- mental stimuli.

*Course not offered this academic year.

*228. Plant Molecular Biology Laboratory (5) II. Harada Lecture—2 hours; laboratory—10 hours. Prerequisite: Molecular and Cellular Biology 120L, a course in mole- cular genetics and consent of instructors. Research methods in plant molecular biology. Topics include analysis of gene expression, regulation of gene structure, and gene transfer technology. Emphasis will be placed on analysis of developmentally regulated gene expression. (Same course as Vegetable Crops 228.)

*229. Molecular Biology of Plant Reproduction (3) II. O’Neill Lecture—3 hours. Molecular genetic basis of plant reproduction. Emphasis on understanding develop- mentally regulated gene expression as it relates to the major changes that occur during plant reproduction and on the genetic control of flowering. Offered in alternate years.

*231. Biological Electron Microscopy (1) I. Falk Lecture—1 hour. Prerequisite: consent of instructor. Introduction to biological microscopy. Areas covered are: electron optics, electron specimen interactions, and vacuum systems.

*232L. Biological Electron Microscopy Laboratory (1) I. Falk Laboratory—9 hours. Prerequisite: consent of instruc- tor; course 231 (may be taken concurrently). Intro- duction to biological electron microscopy. Areas covered are: specimen preparation and microscope operation. Limited enrollment.

*233. Biological Nitrogen Fixation (3) III. Phillips Lecture—2 hours; seminar—1 hour. Relationship between fundamental and applied nitrogen-fixation research in biochemistry, genetics, physiology, micro- biology, and ecology with overall emphasis on increasing agronomic productivity. Former course Agronomy 233. Offered in alternate years.

*255. Principles of Plant Taxonomy (4) I. Lecture—2 hours; laboratory—6 hours. Prerequisite: Plant Biology 108, Evolution and Ecology 100 recom- mended. Principles of plant taxonomy; phylogenetic vs. phenetic classification; examples of the way in which various disciplines—taxonomy, embriology, bio- chemistry, etc.—elucidate problems of taxonomic relationship, mainly of genera and higher categories.

*256A. Experimental Plant Taxonomy (2) I. Kyhos Lecture—1 hour; laboratory—3 hours. Prerequisite: course 256A. Continuation of course 256A. Study of variation in natural populations in relation to taxon- omy, the application of population sample analysis, cytogenetics, transplant studies, etc., to the solution of taxonomic problems and the clarification of rela- tionships. Offered in alternate years.

250A. Faculty Seminar (1) I. The Staff Seminar—1 hour. Seminars presented by members of Plant Biology faculty describing their areas of research. Required of all beginning students in the Plant Biology Graduate Group. (SU grading only.)

290B. Seminar (1) I, II, III. The Staff Seminars presented by invited scientists on research topics of current interest. (SU grading only.)

290C. Research Conference in Botany (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: graduate standing and/or consent of instructor. Presentation and discus- sion by faculty and graduate students of research projects in botany. May be repeated for credit. (SU grading only.)

291. Graduate Student Seminar in Plant Biology (1) I, II, III. The Staff Seminar—1 hour. Prerequisite: graduate student standing. Student-given seminars on topics in plant
biology, with critiques by instructor and peers. How to give a seminar, including preparation of visual and other teaching aids. Topics determined by instructor in charge. May be repeated for credit. (SU grading only.)

292. Seminars in Plant Biology (1) II. The Staff Seminar—1 hour. Prerequisite: consent of instructor. Review of current literature in botanical disciplines. Disciplines and special subjects to be announced quarterly. Students present and analyze assigned topics. May be repeated for credit. (SU grading only.)

293. Seminar in Postharvest Biology (1) I, II, III. The Staff Discussion—1 hour. Prerequisite: consent of instructor; open to advanced undergraduates. Intensive study of selected topics in the postharvest biology of fruits, vegetables, and ornamentals. May be repeated for credit. (SU grading only.)

297T. Tutoring in Plant Biology (1–5) I, II, III. The Staff Tutorial—3–15 hours. Offers graduate students, particularly those not serving as teaching assistants, the opportunity to gain teaching experience. (SU grading only.)

298. Group Study (1–5) I, II, III. The Staff Prerequisite: graduate standing.

299. Research (1–12) I, II, III. The Staff Prerequisite: graduate standing. (SU grading only.)

Professional Course

390. The Teaching of Plant Biology (2) I, II, III. The Staff Discussion—2 hours. Prerequisite: graduate standing; concurrent appointment as a teaching assistant in Plant Biology. Consideration of the problems of teaching botany, especially of preparing for and conducting discussions, guiding student laboratory work, and the formulation of questions and topics for examinations. (SU grading only.)

Professional Course

*401. Functioning as a Professional Beyond UC (1) I. Phillips Lecture/discussion—1 hour; seminar—1 hour. Prerequisite: graduate standing as M.S. or Ph.D. candidate. Students will develop a letter of application, a curriculum vitae, a statement of teaching and/or research interest, and a job interview seminar for a position advertised in their area of professional specialization. Group discussions will provide constructive suggestions for strengthening individual presentations. Offered in alternate years. (SU grading only.) Former course Agronomy 401.

Emeriti Faculty

Edward E. Butler, Ph.D., Professor Emeritus
Robert N. Campbell, Ph.D., Professor Emeritus
James E. Delvay, Ph.D., Professor Emeritus
W. Harley English, Ph.D., Professor Emeritus
Raymond G. Grogan, Ph.D., Professor Emeritus
William B. Hewitt, Ph.D., Professor Emeritus
Bert Lestar, Ph.D., Professor Emeritus
Snecko John M. McDermott, Ph.D., Lecturer Emeritus
George Nyland, Ph.D., Professor Emeritus

Affiliated Faculty

Greg Browne, Ph.D, Research Plant Pathologist
E. Civerolli, Ph.D., Lecturer
Michael R. Davis, Ph.D., Lecturer
Deborah A. Golino, Ph.D., Lecturer
W. Douglas Grisham, III, Ph.D., Lecturer
Jerry K. Uyemoto, Ph.D., Lecturer

Related Major Program. See the major in Plant Science.

Graduate Study. The Department of Plant Pathology offers programs of study and research leading to the M.S. and Ph.D. degrees. Information may be obtained from the graduate adviser. See also the Graduate Studies section in this catalog.

Graduate Advisers, R. Gilbertson, B. Kirkpatrick, B.M. Tyler, A.H.C. van Bruggen.

Courses in Plant Pathology (PLP)

Upper Division Courses

119. Introductory Mycology (5) I. MacDonald Lecture—3 hours; laboratory—6 hours; one optional weekend field trip. Prerequisite: Biological Sciences 1A, 1B, 1C. Introduction to morphology, taxonomy and biology of the fungi. Not open for credit to students who have completed Botany 119. (Same course as Plant Biology 148.)

120. Introduction to Plant Pathology (4) I. Duniway, Falk, III, Gliner, Lecture—2 hours; laboratory—6 hours. Prerequisite: Biological Sciences 1C; Microbiology 2 recommended. The nature, cause, and control of plant diseases.

125. Diagnosis and Control of Plant Diseases (4) III. MacDonald Lecture—2 hours; laboratory—6 hours; field trips. Prerequisite: course 120. Clinical plant pathology with emphasis on disease diagnosis, epidemiology, and control of diseases of economic plants. Students may specialize in diseases of fruits, vegetables, field crops, or ornamentals in the laboratory exercises. Offered in alternate years.

130. Fungal Biotechnology and Biochemistry (3) II. Gilchrist, Bostock Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, and 102 (may be taken concurrently). How fundamental physiological and biochemical activities of fungi impact the destructive and beneficial roles of these organisms in nature. Utilization and manipulation of fungi for biotechnological and industrial applications.

192. Internship (1–12) I, II, III. The Staff (Chairperson in charge) Internship—3–36 hours. Prerequisite: course 120 and consent of instructor. Work experience off and on campus, supervised by a member of the faculty. (P/NP grading only.)

196. Directed Group Study (1–5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1–5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

205A-205B. Diseases of Vegetable and Field Crops (4-1) III-Extra-session summer. van Bruggen Lecture—2 hours; laboratory—3 hours; fieldwork—6 hours; research term paper. Prerequisite: course 120, Plant Biology 119 or course 125. Study of vegetable and field crops with emphasis on diagnosis, epidemiology, and control. Lectures on diagnostic techniques, seed pathology, disease assessment and control, and integrated pest management. Field trips and laboratory exercises related to disease diagnosis. (Deferred grading only, pending completion of sequence.)

*206A-206B. Diseases of Fruit, Nut, and Vine Crops (3-1) III-Extra-session summer. Kirkpatrick Lecture—2 hours; laboratory—6 hours. Prerequisite: course 120, Plant Biology 119. Clinical study of fruit, nut, and vine crops diseases with emphasis on etiology, epidemiology, diagnosis, and control. (Deferred grading only, pending completion of sequence.) Course 205 may be taken concurrently. Offered in alternate years.

208. Ecology of Plant Pathogens and Epidemiology of Plant Diseases (4) III. Duniway Lecture—3 hours; discussion—1 hour. Prerequisite: course 120 or the equivalent. Interaction between higher plants, plant pathogens, and the environment which is important in the occurrence and severity of plant disease. Emphasis is placed on the population dynamics and ecology of plant pathogens in the aerial and soil environment. Offered in alternate years.

*209. Principles of Plant Disease Control (3) II. Webster Lecture—3 hours. Prerequisite: course 120 or the equivalent. Discussion on the underlying principles and methods used for the control of plant diseases. Emphasis placed on application of epidemiological principles, biological (including host resistance), and chemical strategies to achieve disease control. Offered in alternate years.

*210. Biochemistry and Molecular Biology of Plant–Microbe Interaction (4) I. Gilchrist, Bostock Lecture/discussion—4 hours. Prerequisite: Biological Sciences 101, 102, 103, and 104, or the equivalent. Discussion of plant–microbe interactions, focused on the underlying cellular, biochemical, and molecular events that determine the diseased state. Offered in alternate years.

215X. Genetics and Molecular Biology of Plant Pathogens (4) II. Tyler Lecture—3 hours; laboratory/discussion—3 hours. Prerequisite: course 120 and Biological Sciences 101. Genetic analysis of pathogenicity, cultivar-specificity, and host-specificity in plant pathogens, particularly fungi; application of molecular biology to the isolation and characterization of the genes involved; and to aspects of pathogen identification; emphasis on research techniques and problem-solving. Offered in alternate years.

*217. Molecular Genetics of Fungi (3) II. Holland, Tyler Lecture—3 hours. Prerequisite: graduate standing in a biological science, Biological Sciences 101, 103, Molecular and Cellular Biology 161. Plant Biology 119, courses 130, 215X. Microbiology 215 recommended. Advanced treatment of molecular biology and genetics of filamentous fungi and yeasts, including gene structure, organization and regulation; plant pathogenesis; secretion; control of reproduction; molecular evolution; transformation; and gene manipulation. Offered in alternate years. (Same course as Biological Chemistry 217.)

224. Pathogenic Fungi (5) III. Rizzo Lecture—3 hours; laboratory—6 hours. Prerequisite: Plant Biology 119. Morphology and taxonomy of plant pathogenic fungi. Offered in alternate years.
Plant Protection and Pest Management

Plant Protection and Pest Management (A Graduate Group)
Lester E. Ehler, Ph.D., Chairperson of the Group

Faculty Includes faculty members from the Colleges of Agricultural and Environmental Sciences and Letters and Science.

Graduate Study: The Graduate Group in Plant Protection and Pest Management offers programs of study and research leading to the M.S. degree. Students may conduct independent research or participate in on-going projects on integrated crop management and sustainable agriculture. Weeds, insects, plant pathogens, nematodes, rodents, and other pests are treated as parts of complex ecosystems and not as isolated problems. Courses include concepts and systems of plant protection and pest management, diagnosis and control of plant pests, toxicology and legal ramifications, and equipment for chemical applications. Detailed information can be obtained from the Group Chairperson and the application for Graduate Admission and Fellowship.

Graduate Adviser: E.P. Caswell-Chen (Nematology).

Courses in Plant Protection and Pest Management (PPP)

Graduate Courses

201. Concepts and Systems of Plant Protection and Pest Management (A) II. The Staff (Ehler in charge)
Lecture—2 hours; discussion—1 hour; laboratory—2 hours; Prerequisites: Agricultural Systems and Environment 120, Entomology 110, Plant Pathology 120, Plant Biology 120 (may be taken concurrently), Nematology 100; Plant Biology 117 or Evolution and Ecology 101 recommended. Ecological perspectives of agricultural systems, the role of pests and pest management in these systems, and the monitoring and modeling of the systems.

202A-202B. Diagnosis of Plant Pest Problems and the Control of Causal Agents (4-4) I. Norris (Weed Science); III. Rosenheim (Entomology)
Discussion—1 hour; fieldwork—9 hours; Prerequisites: Entomology 110, Plant Pathology 120, Plant Biology 120, Nematology 100 (may be taken concurrently). Problems and assessment of losses caused by insects, pathogens, weeds, nematodes, and other pests. Methods of determining infestation levels and the monitoring and modeling of the systems.

295. Seminar in Mycology (1) I. III. The Staff (Chairperson in charge)
Seminar—1 hour. Review and evaluation of current literature and research in mycology. (SU grading only.)

296. Special Group Study (1-5) I. II. III. The Staff (Chairperson in charge)

299. Research (1-12) I. II. III. The Staff (Chairperson in charge)
(SU grading only.)

Plastic Surgery

See Medicine, School of

Political Science

(College of Letters and Science)

Larry Berman, Ph.D., Chairperson of the Department

Department Office, 1246 Social Sciences and Humanities Building (916-752-0966)

Faculty

Josephine Andrews, Acting Assistant Professor
Larry Berman, Ph.D., Professor
Scott S. Gartner, Ph.D., Assistant Professor
John B. Gates, Ph.D., Associate Professor
Emily G. Goldman, Ph.D., Associate Professor
Stuart L. Hill, Ph.D., Associate Professor
Robert W. Jackman, Ph.D., Professor
Bruce W. Jentleson, Ph.D., Professor
Jeanette Money, Ph.D., Assistant Professor
Miroslav Nincic, Ph.D., Professor
Larry I. Peterman, Ph.D., Professor

Number Equivalent new course and number

1 Plant Biology 1 (Plants for Garden, Orchard and Landscape)
10 Plant Biology 12 (Plants and People)
90X Plant Biology 90X (Plant Science Seminar)
101 Plant Biology 142 (Ecology of Crop Systems)
103 Plant Biology 143 (Evolution of Crop Plants)
104 Plant Biology 151 (Conservation of Plant Genetic Resources)
105 Plant Biology 152 (Plant Genetics)
106 Plant Biology 144 (Trees and Forests)
107 Plant Biology 153 (Plant Cell, Tissue, and Organ Culture)
109 Plant Biology 171 (Plant Propagation)
110 Plant Biology 146 (Rhizosphere Ecology)
112 Plant Biology 172 (Postharvest Physiology and Handling of Horticultural Commodities)
112L Plant Biology 172L (Postharvest Physiology and Handling Lab.)
113 Plant Biology 154 (Plant Breeding)
115 Plant Biology 173 (Biological Applications in Pomology)
116 Plant Biology 174 (Principles of Fruit Production)
126 Plant Biology 157 (Physiology of Environmental Stresses in Plants)
135 Plant Biology 158 (Mineral Nutrition of Plants)
140 Plant Biology 160 (Principles of Plant Biotechnology)
141A Plant Biology 161A (Plant Genetics and Biotechnology Laboratory)
141B Plant Biology 161B (Plant Genetics and Biotechnology Laboratory)
145 Plant Biology 175 (Applied Plant Biology)
191 Plant Biology 188 (Undergraduate Research: Proposal)
196 Plant Biology 196 (Postharvest Technology of Horticultural Crops)

*Course not offered this academic year.
The Major Programs

Political science is the study of politics and political systems at the local, national, and international levels. It concerns not only the institutions of government but also the analysis of such phenomena as political behavior, political values, political change and stability, parties, pressure groups, bureaucracies, administrative behavior, justice, national security, and international affairs.

The Program. The Department of Political Science offers two major programs: political science and political science-public service. The political science major aims to provide the student with a broad understanding of political concepts, political institutions, political behavior, and political processes. The political science-public service major is for students who desire opportunities for practical hands-on experience in their major. It differs in particular from the political science major in its internship requirement and its focus on the American political system.

Internships and Career Alternatives. Both the proximity of UC Davis to the state capitol and the programs offered by the UC Davis Washington Center afford exceptional internship possibilities in local, state, and national government offices, providing students with actual experience in politics and government service while still attending school. A student who majors in political science acquires research and analytical skills relevant to many professional fields. Consequently, the majors offered in political science are valuable not only in providing students with a better understanding of politics and political systems, but also as a first step toward careers in teaching, law, management, government, urban planning, journalism, politics, administration, or for graduate studies in numerous fields.

Political Science

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Group A</th>
<th>Field (1) Political theory: Political Science 111–119, 187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group B</td>
<td>Field (2) American government and institutions: Political Science 100–109, 173, 173–175, 180–189, 191, 195</td>
</tr>
<tr>
<td></td>
<td>Field (3) Parties and political behavior: Political Science 160–170</td>
</tr>
<tr>
<td></td>
<td>Field (4) Public law: Political Science 150–156</td>
</tr>
<tr>
<td>Group C</td>
<td>Field (5) Comparative government: Political Science 126, 140–149, 177–179</td>
</tr>
<tr>
<td></td>
<td>Field (6) International relations: Political Science 120–139</td>
</tr>
</tbody>
</table>

Additional upper division units in political science to achieve a total of 36 units: Only 5 units of Political Science 192 (internship) may be counted towards the 36-unit requirement; and Political Science 192A, 192B, or 192W may not be counted toward a field requirement.

Total Units for the Major: 56

Political Science—Public Service

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Preparatory Subject Matter</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>One course from Political Science 1, 5, or 7</td>
<td>...</td>
</tr>
<tr>
<td>Two courses from Political Science 2, 3, or 4</td>
<td>...</td>
</tr>
<tr>
<td>Recommended: Economics 1</td>
<td>8</td>
</tr>
</tbody>
</table>

Depth Subject Matter: 48

Core program: 12

Two courses chosen from Political Science 100, 104, 105, 106, 113, 180, 181, and one course from Political Science 108, 109, 111, 114.

Internship, Political Science 192A, 192B, or 192W: 10

Research paper, Political Science 192W: 1

Total Units for the Major: 60

Minor Program Requirements:

Students selecting a minor in Political Science may choose one of two plans:

- **UNITS**
- **Plan I**: Upper division units in political science (may include 4 units of lower division coursework) distributed among at least two of the three Groups, A, B, and C.
- **Plan II**: A 24-unit plan approved by a faculty adviser. Five units of internship may count toward the minor.

Teacher Credential Subject Representative. Consult Department Office. See also the section on the Teacher Education Program.

Graduate Study. The Department offers programs of graduate study and research leading to the M.A. and Ph.D. degrees. Information concerning admission to these programs and requirements for completion are available in the department office.

Graduate Adviser. Consult Department Office.

Public Affairs Internship Program. This program is open to upper division students in any major who want to obtain an internship in the area of government and public service. Information and applications are available in the Intern Coordinator, Political Science Department, 1246 Social Sciences and Humanities Building, 752-1969.

American History and Institutions. This University requirement may be satisfied by passing any one of the following Political Science courses: 1, 5, 100, 101, 102, 103, 104, 105, 106, 108, 109, 113, 130, 131, 160, 163. (See also Undergraduate requirements.)

Courses in Political Science (POL)

Lower Division Courses

1. American National Government (4) I. Hill; II. Berman; III. Skalaban
 - Lecture—3 hours; discussion—1 hour. Survey of American national government, including the constitutional system, political culture, parties, elections, the presidency, Congress, and the courts. GE credit: SocSci, Wrt.

2. Introduction to Comparative Politics (4) III. Andrews
 - Lecture—3 hours; discussion—1 hour. Introduction to basic concepts in political analysis and application of them in comparative studies of selected countries. Coverage is given to cultural and other informal dimensions of politics as well as to more formal political and governmental structures. GE credit: SocSci, Wrt.

3. International Relations (4) I. Ninicic; II. Goldman; III. Siverson
 - Lecture—3 hours; discussion—1 hour. International conflict and cooperation, including the Cold War, nuclear weapons, and new techniques for understanding international politics. GE credit: SocSci, Wrt.

4. Basic Concepts in Political Theory (4) I. Sinopoli
 - Lecture—3 hours; discussion—1 hour. Analysis of such concepts as the individual, community, liberty, equality, justice, and natural law as developed in the works of the major political philosophers. GE credit: SocSci, Wrt.

5. Contemporary Problems of the American Political System (4) II. The Staff

*7. Contemporary Issues in Law and Politics (4) I. Gates
 - Seminar—4 hours. A seminar which focuses on the political dimensions of American law and institutions. Examines the role of courts in resolving contemporary issues of law and politics including abortion, capital punishment, and civil rights. Limited enrollment. Open
to students having more than 40.1 units. GE credit: SocSci, Wrt.

90X. Lower Division Seminar (4) II. Gartner; III. Skalaban; IV. The Staff—4 hours. Prerequisite: lower division standing and consent of instructor. Examines fundamental issues and concepts that shape the study and practice of political science. May be repeated once for credit when different topic is offered in alternate years. GE credit: SocSci, Wrt.

99. Special Study for Undergraduates (1-5) I, II, III. (Staff in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

*100. Local Government and Politics (4) I. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing or consent of instructor. Politi- cians and government of local communities in the United States, including cities, counties, and special districts. Emphasizes sources and varieties of community conflict, legislative and executive patterns, electoral politics, decision making, and the politics of structure. Observation of local governing boards. GE credit: SocSci, Wrt.

*101. Urban Political Economy (4) II. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: course 100 or consent of instructor. Historical develop- ment of urban political economies. Focuses on ways in which different groups have tried to use local government authority to achieve their objectives and why they succeeded or failed.

*102. Urban Public Policy (4) III. The Staff Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Political and economic relationships among central cities, suburbs, and regional, state, and federal governments. Focuses upon policy areas such as poverty, transportation, welfare, and housing, and upon who governs and who benefits from the policies in these areas. GE credit: SocSci, Wrt.

*103. American Federalism (4) I. The Staff Lecture—3 hours; research paper. Prerequisite: course 1 or 5 recommended. American politics and policy in the context of national-state-local relations. Constitutional roots of Federalism, centralizing and decentralizing tendencies, fiscal relations, current policy issues, and management of intergovernmental programs.

*104. California State Government and Politics (4) II. The Staff Lecture—3 hours; discussion—1 hour. Analysis of the legislative process with emphasis on the United States Congress; legislative organization and procedures, legislative leadership and policy making, legis- lators and constituents, relations between Congress and other agencies. GE credit: SocSci, Wrt.

*105. The Presidency (4) I. Berman Lecture—3 hours; discussion—1 hour, optional term paper. The American presidency’s origins and development; presidential power and influence as manifest in relationships with Congress, courts, parties, and the public in the formulation and administration of foreign and domestic policy; nominations, campaigns, and elections. GE credit: SocSci, Wrt.

107. Environmental Politics and Administration (4) I. Wandesforde-Smith Lecture—3 hours; discussion—1 hour. Introduction to the field as a political issue in the United States and to the development of administrative mechanisms for handling environmental problems. Changing role of Congress, the presidency, the bureaucracy, and the courts in environmental policy formulation and implementation. GE credit: SocSci, Wrt.

*108. Policy Making in the Public Sector (4) III. Skalaban Lecture—3 hours; research paper. The theoretical rationale for governmental activity; program evaluation, PPBS, positive theories of policy-making, the quantitative study of policy determinants, implementa- tion, and others for improved decision making. GE credit: SocSci, Wrt.

*111. Systematic Political Science (4) II. Jackman Lecture/discussion—4 hours. Philosophical basis of modern political science; major specific approaches; selected concepts relevant to modern political concern; and research design and execution.

122. Contemporary Democratic Theory (4) II. Wade Lecture—3 hours; discussion—1 hour. Major contem- porary attempts to reformulate traditional democratic theory; attempts to replace traditional theory by con- ceptual models derived from modern social science findings. Offered in alternate years. GE credit: SocSci, Wrt.

113. American Political Thought (4) II. Sinopoli Lecture—3 hours; term paper. Prerequisite: upper division standing in Political Science or consent of instructor. Origins and nature of American political thought. Principles of American thought as they emerge from the founding period to the present. GE credit: SocSci, Wrt.

*114. Quantitative Analysis of Political Data (4) III. Skalaban Lecture—3 hours; term paper. Logic and methods of analyzing quantitative political data. Topics covered include central tendency, probability, correlation, and non-parametric statistics. Particular emphasis will be placed on understanding the use of statistics in politi- cal science research. Offered in alternate years. GE credit: SocSci, Wrt.

115. Medieval Political Thought (4) III. Peterman Lecture—3 hours; term paper. Prerequisite: course 118A. Examination of the ideas central to medieval political thinking. Emphasis will be upon the thoughts of the major political thinkers of the period, rather than upon political history. GE credit: SocSci, Wrt.

*116. Foundations of Political Philosophy (4) I. Peterman Lecture/discussion—3 hours; term paper. Analysis and evaluation of the major political works of a major politi- cal philosopher or of a major problem in political philo- sophy. May be repeated once for credit when topic differs. Offered in alternate years. GE credit: SocSci, Wrt.

117. Marxian (4) III. The Staff Lecture—3 hours; discussion—1 hour. Examination of the political and social philosophy of Karl Marx, with reference to the evolution of Marxism in the nineteenth and twentieth centuries.

*119. Modern Political Thought (4) III. The Staff Lecture—3 hours; term paper. Prerequisite: upper division standing in Political Science or consent of instructor. Study in depth of philosophers considered central to modern political thought, especially nine- teenth and twentieth century political thought. Empha- sis will be upon an individual philosopher or concept rather than upon a survey of modern political thought.

120. Theories of International Politics (4) II. The Staff, III. Nincic Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing or consent of instructor. Major contemporary approaches to the study of interna- tional politics, including balance of power, game the- orey, Marxist-Leninist theory, systems theory, and decision-making analysis.

121. War (4) II. Sverson Lecture—3 hours; discussion—1 hour. Prerequisite: course 3 recommended. An analysis of political processes involved in the initiation, conduct, and ter- mination of modern international warfare. GE credit: SocSci, Wrt.

122. International Law (4) III. Wandesforde-Smith Lecture—4 hours. Selected topics in international law, territory, sovereign immunity, responsibility, the peaceful settlement or nonsettlement of international disputes. GE credit: SocSci, Wrt.

123. The Politics of Interdependence (4) I. Money, II. The Staff Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. In the past several decades, growing economic interdepen- dence has generated new problems in international relations. Course deals with difficulties in managing complex interdependence and its implication on national policies and politics. GE credit: SocSci, Wrt.

124. The Politics of Global Inequality (4) III. Money Lecture—3 hours; term paper. Prerequisite: upper division standing; course 123 recommended. Long- standing division of the global system into richer and poorer regions poses many important problems in international political economy. Course presents a theoretical background to North-South issues and analyses of current problems in economic and politi- cal relations. GE credit: SocSci, Div, Wrt.

126. Ethnic Self-Determination and International Conflict (4) II. Rothchild Lecture—3 hours; individual meetings with students to discuss term papers. Prerequisite: one international relations course recommended. Compares the claims of the state and ethnic peoples in countries undergo- ing internal conflicts, e.g., South Africa, Northern Ire- land. Analyzes the role of the international community in facilitating the peaceful resolution of conflicts. GE credit: SocSci, Div, Wrt.

127. Nationalism and Imperialism (4) II. The Staff Lecture—4 hours. Prerequisite: upper division standing; course 3 recommended. Theory of nation build- ing illustrated by Western and non-Western experi- ence. Offered in alternate years.

128. International Communism (4) II. The Staff Lecture—4 hours. Prerequisite: upper division standing; course 2 or 3, or consent of instructor. Interna- tional communist movement; ideology organization, strategy. Relations among communist parties; prob- lems of leadership and social composition; the Sino- Soviet conflict and its effects on revolutionary struggle. Offered in alternate years. GE credit: SocSci, Wrt.

*129. Special Studies in International Politics (4) II, III. The Staff Lecture—3 hours; term paper. Prerequisite: upper division standing. Intensive examination of one or more special problems in international politics. May be repeated once for credit when different topic is studied. GE credit: SocSci, Wrt.

130. Recent U.S. Foreign Policy (4) I. Gartner; II. Nincic Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Broad sur- vey of the development of U.S. foreign policy in twen-
142. Politics and Inequality (4) II. Jackman
Lecture—3 hours; term paper or discussion—1 hour. Examines the linkages between politics and the distribution of social and economic goods. Topics include the impact of civil rights legislation, the politics of welfare states, and the effects of political participation on the distribution of goods. GE credit: SocSci, Div.

*143. Politics in the Commonwealth of Independent States and the Baltic (4) III. The Staff
Lecture/discussion—4 hours. Prerequisite: course 2 and upper division standing. Creation of new political and economic structures in newly independent states; departures from central planning; dilemmas of cooperation; analysis of divergent reform strategies; integration into international political and economic system.

144. Russian Politics and Policy (4) I. Andrews
Lecture/discussion—4 hours. Prerequisite: upper division standing and course 2. Democratization, state-building and economic reform; creation of new institutions; impacts of Soviet rule.

*145. Government and Politics in Emergent Nations (4) III. The Staff
Lecture—4 hours; prerequisite: course 2. Conceptual study of problems of political organization and procedure in the context of rapid change engendered by social revolution in “emergent countries” and liberation from colonial oppression. Offered in alternate years.

*146. Contemporary African Politics (4) II. Rothchild
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Analysis of party systems, military coups, bureaucratic, regional integration, and disintegration, and economic development in Africa south of the Sahara.

147. Politics and Policy in Western Europe (4) III. Money
Lecture—4 hours. The evolution, politics, and contemporary problems of selected political systems of Western Europe.

148A. Government and Politics in East Asia: China (4) I. The Staff
Lecture—4 hours. Prerequisite: course 2 recommended. Evolution of political culture, institutions, economy of selected nations in Southeast Asia including Vietnam plus two or three other examples. Emphasis on international relations and diplomacy in East Asia. Emphasis upon twentieth century problems with examples from China, Japan, Korea, and Southeast Asia.

*139. Special Studies in Foreign Policy (4) I. Nincic
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Extensive examination of one or more special problems in foreign policy. May be repeated once for credit when different topic is studied.

*140. Comparative Public Policy (4) I. Skalaban
Lecture—3 hours; term paper. Ideological orientations, institutions, processes, and public policies of modern states. Emphasis on democratic, socialist, communist and fascist experience.

*141. Communist Political Systems (4) III. The Staff
Lecture—4 hours. Prerequisite: course 2 or consent of instructor. Systematic comparative analysis of the origins, structure and performance of communist political systems with emphasis on the Soviet Union and the states of Eastern Europe. GE credit: SocSci, Wrt.

151. The Constitutional Politics of the First Amendment and the Right to Privacy (4) III. Gates
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. The constitutional politics surrounding such issues as the right to free expression, associational rights, the right to free exercise of religious belief, and the right to privacy. GE credit: SocSci, Wrt.

152. The Constitutional Politics of Equality (4) III. Spriggs
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. Constitutional politics of equality in the American political system; issues surrounding constitutional doctrine and judicial policymaking; special attention on racial and sexual equality. Offered in alternate years. GE credit: SocSci, Div, Wrt.

153. The Constitutional Politics of the Justice System (4) III. Spriggs
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. Constitutional politics of the American criminal justice system; the issues surrounding constitutional doctrine and judicial policymaking on issues such as search and seizure, arrest, trial, incarceration, and other issues of due process. Offered in alternate years.

154. Legal Philosophy (4) II. Sinopoli
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing. Analysis of the nature and functions of law; law as an instrument of social control and the relationship between law and morality. Offered in alternate years.

155. Judicial Process and Behavior (4) III. Gates
Lecture—3 hours; discussion—1 hour. Prerequisite: course 150. Constitutional politics of the American criminal justice system; the issues surrounding constitutional doctrine and judicial policymaking on issues such as search and seizure, arrest, trial, incarceration, and other issues of due process. Offered in alternate years. GE credit: SocSci, Wrt.

160. American Political Parties (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Analysis of the structual operations of the party system in the United States; party functions and organizations, nomination processes, campaigns and elections, party trends and reforms. GE credit: SocSci, Wrt.

161. Comparative Political Parties (4) I. Andrews
Lecture—3 hours; discussion—1 hour. Organization, operation, governmental function and social bases of political parties especially in Great Britain and France but with some reference to other Western European countries.

162. Elections and Voting Behavior (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 recommended. Analysis of American elections and partisan behavior; political socialization, political participation, partisanship and individual and group determinants of voting. GE credit: SocSci, Wrt.

*163. Group Politics (4) I. Wade
Lecture—3 hours; discussion—1 hour. Groups, institutions, and individuals, especially in American politics. Historical and analytical treatment of group theories as applied to interest groups (especially labor, business, agriculture, science, military); to racial, ethnic, and sectional groups; to parties, public and legislative groups, bureaucracies. GE credit: SocSci, Wrt.

164. Public Opinion (4) III. Skalaban
Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing and course 1 or 5, or consent of instructor. Nature of public opinion in America as it is measured to be and as it is. Distribution of opinions among different publics and the significance of that distribution for system stability and institutions. Opinion polling and its problems. GE credit: SocSci, Wrt.

165. Mass Media and Politics (4) III. Terklinden
Lecture—3 hours; discussion—1 hour. Organization of and decision making within the media, media audience and the effect of the media on attitudes and behavior; the relationship of the government to the
Political Science

media (censorship, secrecy, freedom of the press, government regulation); the media in election campaigns. GE credit: SocSci, Wrt.

167. Women, Politics and Power (4) II. Terkildsen

Lecture—3 hours; discussion—1 hour. The role of women in American politics. Historical experiences; contemporary organizations and strategies for winning power; contemporary issues; the role of women in public and political life; the significance of differences in social class, race, and ethnicity upon the involvement of women in politics. GE credit: SocSci, Div.

167. Political Socialization (4) II. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 164 or consent of instructor. Who learns what about politics, and when and how they learn it. The process, content and sources of political learning, particularly in preadulthood, and the significance of such factors for the political system as well as for the development of the political self.

168. Chicano Politics (4) II. The Staff

Lecture—3 hours; discussion—1 hour. Political aspects of Chicano life in America; examines the Chicano's political role as it has been historically defined by different groups in society and the Chicano's responses to his/her political environment. GE credit: SocSci, Div.

169. Political Elites (4) I, II. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: course 1, 2, or 4, or consent of instructor. Background and characteristics of political leaders as they exist in the United States. Place of elites in a democratic polity; elite-mass differences; conflict and consensus among elites. GE credit: SocSci, Div, Wrt.

170. Politics and Personality (4) III. Berman

Lecture—3 hours; discussion—1 hour. How is conduct of politics influenced by personal qualities of political actors? Course focuses on developing criteria for analyzing political phenomena in psychological terms. Topics include the selected writings of twentieth-century theorists and psychobiographies.

171. The Politics of Energy (4) II. Wandesforde-Smith

Lecture/discussion—4 hours. Prerequisite: upper division standing—1 hour. How is conduct of politics influenced by personal qualities of political actors? Course focuses on developing criteria for analyzing political phenomena in psychological terms. Topics include the selected writings of twentieth-century theorists and psychobiographies.

172. American Political Development (4) II. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: some background in American politics is strongly recommended. Systematic analysis of contemporary issues in American political development: historical development of the national character of institutional development; conditions for successful political action. Topics may include democratization, political change, party formation, state-building, constitutionalism, race relations.

173. Community Power and Change (4) II. Jackman

Lecture—3 hours; discussion—1 hour. An examination of the relationship between general community characteristics and political power, and policy outputs in the United States. Alternative models of community political change are presented.

174. Government and the Economy (4) II. Skalaban

Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Political basis of economic policy (taxation, spending and regulation); impact of prices, employment and growth on political demands; elite responses to economic conditions; policy alternatives and the public interest. GE credit: SocSci, Wrt.

175. Science, Technology, and Policy (4) III. Hill

Lecture—3 hours; discussion—1 hour. The ability of governmental institutions to over- come constraints on policy innovation. The role of women in American politics. May be repeated once for credit.

176. Power and Coercion (4) II. Jackman

Lecture—4 hours. Prerequisite: course 1 or Sociol- ogy 1 recommended. Examination of the meaning, sources, and diverse expressions of power and coer- cion in human and non-human relations; applying them to a broad range of issues, such as sexual harassment, racial subordination, legislative policy-making, and ideological hegemony. GE credit: SocSci, Div.

177. Modern Dictatorships (4) III. The Staff

Lecture—3 terms; term paper. Prerequisite: upper division standing in Political Science or consent of instructor. Selected political processes and institu- tions of dictatorship in Germany, Italy, Russia, Spain, Japan, and other states. Topics include executives, legislatures, parties, courts, bureaucracies, communi- cations, and public opinion with comparisons to U.S. processes.

178. Political Development in Modernizing Societies (4) I. Jackman

Lecture—3 hours; discussion—1 hour. Nature and sequence of political development; its economic and social consequences; the role of military, bureaucratic, and party systems; social stratification and group politics; social mobilization and political participa- tion; instability, violence, and the politics of inte- gration.

179. Special Studies in Comparative Politics (4) II. The Staff

Seminar—4 hours. Prerequisite: consent of instructor and upper division standing. Intensive examination of one or more special problems appropriate to compar- ative politics. May be repeated once for credit.

180. Bureaucracy in Modern Society (4) II. Wandesforde-Smith

Lecture—4 hours. Prerequisite: upper division standing in Political Science or consent of instructor. Role of bureaucracy in a complex soci- ety, with emphasis upon changing relationships between government and the economy; conse- quences of rapid technological and social change for bureaucratic structures and processes; the prob- lems of reconciling expertise and democracy and increasing the responsiveness of public bureaucracy. GE credit: SocSci, Wrt.

181. The American Administrative System (4) I. The Staff

Lecture—3 hours; discussion—1 hour. Prerequisite: upper division standing in Political Science or consent of instructor. Introduction to the development and organization of administrative institutions in the Amer- ican federal system; focus on design and reconstruc- tion, and the relationship of structure to performance, at the national, subnational, and local levels. GE credit: SocSci, Wrt.

182. Administrative Decision Making and Public Policy (4) II. The Staff

Lecture—3 hours; special assignments. Approaches to and models of administrative decision making; techniques of substantive policy analysis; problems and developments in planning, budgeting, personnel, and administrative reform. GE credit: SocSci, Wrt.

183. Administrative Behavior (4) II. The Staff

Lecture—3 hours; discussion—1 hour. The implica- tions for American public administration of evolving concepts about behavior in organizations.

187. Administrative Theory (4) II. Hill

Lecture—3 hours; discussion—1 hour. Historical and critical analysis of the principal theories of organiza- tion and management of public agencies in the light of such concepts as bureaucracy, authority, power, communication and control; an examination of the role of government bureaucracies in the total society. GE credit: SocSci, Wrt.

188. Manpower Policy and Personnel Administration (4) III. The Staff

Lecture—3 hours; discussion—1 hour. Politics and economics of effective manpower programs; planning manpower needs; recruitment, selection, and admin- istration of public personnel; training and develop- ment; unions and collective bargaining; affirmative action; ethics and morality in the public service.

189. Politics of Budgeting and Finance Administration (4) III. The Staff

Lecture—3 hours; discussion—1 hour. Fiscal role of government in mixed economy and democratic soci- ety; problems of revenue financing; tax policy; inter-governmental financial relations; budget formulation and execution; alternative models of resource allocation; budget as a tool of management.

190. International Relations (4) II. The Staff

Lecture—3 hours; discussion—2 hours. Prerequisite: open to majors in International Relations, or consent of instructor. Analysis and evaluation of substantive issues in contemporary international relations. Reading drawn from current academic and non-academic periodicals.

191. Special Studies in Local Government and Politics (4) III. The Staff

Lecture—3 hours; fieldwork—1 hour. Prerequisite: consent of instructor: enrollment limited to advanced students. Intensive study of one or more topics relat- ing to urban policy and politics, designed for ad- vanced students. Group projects and field work in one or more communities.

192A. Internship in Public Affairs (5) I, II, III. Wandesforde-Smith (Chairperson in charge)

Prerequisite: enrollment dependent on availability of intern positions with highest priority assigned to stu- dents with Political Science–Public Service major; upper division standing. Supervised internship and study in political, governmental, or related organiza- tions. (P/NP grading only). GE credit: SocSci, Wrt.

192B. Internship in Public Affairs (5) I, II, III. Wandesforde-Smith (Chairperson in charge)

Prerequisite: course 192A; enrollment dependent on availability of intern positions with highest priority assigned to students with highest priority assigned to students with Political Science–Public Service major; upper division standing. Supervised internship and study in political, governmental, or related organizations. (P/NP grading only). GE credit: SocSci, Wrt.

192W. Internship in the UC Davis Washington Center Program (6-8) I, II, III. Jentions and staff

Internship—30-35 hours. Prerequisite: junior or senior standing and admission into the UC Davis Washing- ton Center undergraduate program. Internship in Washington, D.C. with associated research project, under the supervision of a faculty sponsor. (P/NP grading only.)

193. Research in Practical Politics (2-3-5) I, II, III. The Staff

Research project—6 hours. Prerequisite: courses 192A, 192B; open only to Political Science–Public Service majors, for whom credit is required. Supervised preparation of an extensive paper relating internship experience to concepts, literature, and theory of polit- ical science.

194A-194HB-194HC. Special Study for Honors Students (2-3-5) I, II, III. The Staff

Directed research. Prerequisite: major in Political Sci- ence or Political Science–Public Service with junior standing and overall grade-point average of 3.5. Directed reading, research, and writing constituting in the preparation of a senior honors thesis under direc- tion of faculty adviser. (Deferred grading only, pend- ing completion of sequence.)

195. Special Studies in American Politics (4) II. Wandesforde-Smith, III. Terkildsen

Seminar—4 hours. Prerequisite: consent of instructor and upper division standing. Intensive examination of one or more special problems appropriate to Amer- ican politics. May be repeated once for credit when different subject matter studied.

196. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

Prerequisite: consent of instructor (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)

(P/NP grading only.)

Course not offered this academic year.
Graduate Courses

201. Urban Government and Politics (4) III. The Staff
Seminar—4 hours. Survey and analysis of the literature in the field of local government and politics in the United States. Approaches to the study of political reform, local autonomy, community power, representation, expertise, service delivery, policy-making and political change. Offered in alternate years.

Seminar—4 hours. Survey and analysis of the literature in the field of state government, politics, and policy. Approaches to the study of the American states as political systems, including their governing institutions and processes and their role in the Federal system. Offered in alternate years.

203A. American Government: The Presidency (4) III. Berman
Seminar—4 hours. Thorough overview of the current research on political executives, with particular emphasis on the American presidency. Two principal goals: the development of important and innovative student research programs; and adequate preparation for qualifying examinations.

203B. American Government: Congress (4) I, The Staff
Seminar—4 hours. Thorough overview of the current research on Congress, with particular emphasis on political representation. Two principal goals: the development of important and innovative student research programs; and adequate preparation for qualifying examinations.

203C. American Government: Courts (4) II. Gates
Seminar—4 hours. Survey and analysis of the literature in the field of American government with a focus on courts. Emphasis on the development and testing of theories of behavior and processes.

205. Field Research in Urban Politics and Policy (4) III. The Staff
Seminar—2 hours; field research—2 hours. Examination of research design and methodologies appropriate to field research in community-level politics and policy, with an emphasis on elite interviewing and observation. Analysis of illustrative studies. Team participation in design, execution, and analysis of a field research project.

207. Environmental Public Policy (4) I. Wandesforde-Smith
Seminar—4 hours. Analysis of the interface between the world of academic reflection about ecological and environmental issues and the world of political action. Evaluation of alternative approaches to policy analysis and recommendation. Individual research, including field research, will parallel discussion of the literature.

208. Policy Analysis (4) II. Hill
Seminar—4 hours. Social science techniques applied to public policy formation and evaluation.

209. The American Political System (4) III. Wade
Seminar—4 hours. Analysis of selected theoretical and empirical issues posed by contemporary research in American government and politics.

211. Research Methods in Political Science (4) I. Jackson
Seminar—4 hours. Prerequisite: Statistics 12. Graduate standing or permission of instructor. Introduction to philosophy of science, research design for experimental and non-experimental settings, and data analysis. Topics include: logic of empirical research, measurement problems, research design, sampling, descriptive statistics, tabular analysis, measures of association, and introduction to correlation and regression.

212. Quantitative Analysis in Political Science (4) II. Skalaban
Seminar—4 hours. Prerequisite: course 211. Topics usually covered in an introductory statistics course with an emphasis on applications in political science—descriptive statistics for samples, probability and hypothesis testing, analysis of variance, chi-square test, and regression analysis.

213. Quantitative Analysis in Political Science II (4) II. Garner
Seminar—4 hours. Prerequisite: courses 211, 212. More advanced topics in the use of statistical methods, with emphasis on applications. Topics include: properties of least squares estimates, problems in multiple regression, and advanced topics (probit analysis, simultaneous models, time-series analysis, etc.)

214A-214B. Research in Political Science (2-2) I-III. The Staff
Seminar—2 hours. Prerequisites: courses 211, 212. Research seminar sequence required of all Ph.D. students. Design, execution and defense of an original piece of research in political science, culminating in a paper of publishable quality. (Deferred grading only, pending completion of sequence.)

215. Introduction to Modeling Political Behavior (4) II. Garner
Seminar—3 hours. Prerequisite: courses 211 and 212. Introduction to formal and game theoretic analyses of politics. Students will learn basic game theory and modeling skills. We examine the benefits of modeling, and look at the examples of formal analysis in a variety of political science sub-fields. Offered in alternate years.

216. Topics in Political Theory (4) III. Sinopoli
Seminar—3 hours; term paper. Topics will vary and may be the work of a single theorist, time period, or political concept, such as justice. Offered in alternate years.

223. International Relations (4) III. Goldman
Seminar—3 hours; term paper.

225. The International System (4) I. Nincic
Seminar—3 hours; term paper. Analysis of the international system by means of theory formulation and integration; critique of research design; use of various techniques of data generation and analysis.

230. American Foreign Policy (4) II. Nincic
Seminar—3 hours; term paper.

231. U.S. Political Culture and Foreign Relations (4) III. Rothchild
Seminar—3 hours; term paper. Relates U.S. political culture to formulation of foreign policy. Analyzes American ideological preferences in historical perspective, contemporary public opinion, decision-making and implementation. Concludes by examining linkages between foreign policy behavior and democratic process. Offered in alternate years.

241. Communist Political Systems (4) III. The Staff
Seminar—4 hours. Prerequisite: course 141 or the equivalent, or consent of instructor. Systematic analysis of selected topics dealing with the political process of Communist political systems.

242. Seminar in Comparative Politics (4) II. The Staff
Seminar—3 hours; term paper. Prerequisite: graduate status or consent of instructor. Systematic survey of theories and methods used in the study of Comparative Politics.

246. Policymaking in Third-World Societies (4) III. Rothchild
Seminar—3 hours. Prerequisite: graduate standing or consent of instructor. Included in an analysis of policy making process in Third-World countries are such topics as political resources, institutional resources, decision-making, state allocations, planning, budgeting, implementation, and distribution of world resources. Offered in alternate years.

248. Politics of East Asia (4) III. The Staff
Seminar—3 hours; term paper. Selected contemporary problems of government and international relationships in East Asia.

250. Policy Development and Impact in U.S. Courts (4) I. Spriggs
Seminar—3 hours; term paper. Prerequisite: graduate standing. Thorough review of the literature regarding courts as policy-making institutions of government, with emphasis on the formation and implementation of judicial policy. Differences and similarities across the judicial, congressional, and executive branch policy processes. Offered in alternate years.

260. Political Parties (4) I. The Staff
Seminar—3 hours; term paper. Survey of selected topics in American and comparative parties.

261. Political Behavior (4) II. The Staff
Seminar—3 hours; term paper. Survey of selected topics in political behavior and public opinion.

274. Political Economy (4) III. The Staff
Seminar—4 hours. Politics of economic policy as reflected in taxation, spending and regulation; impact of prices, employment, and growth on political demands; government responses to economic conditions; electoral politics and the political business cycle. Offered in alternate years.

282. Concepts and Problems in Public Administration (4) I. The Staff
Seminar—4 hours. Nature of administrative processes in modern society; analysis of complex organizations; contemporary management practices and processes; means of controlling bureaucracy. Offered in alternate years.

283. Organizational Behavior (4) II. The Staff
Seminar—4 hours. Organizational behavior as it relates to public sector decision making.

286. Administrative Values (4) III. The Staff
Seminar—3 hours; term paper. Examination of American administrative values. Offered in alternate years.

290A. Research in American Government and Public Policy (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of American government and public policy.

290B. Research in Political Theory (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of political theory.

290C. Research in International Relations (4) I. II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of international relations.

290D. Research in Judicial Politics (4) I, II, III. The Staff
Seminar—4 hours. Prerequisite: graduate standing in political science or consent of instructor. Contemporary research on judicial politics, judicial institutions, jurisprudence, and judicial behavior.

290E. Research in Political Parties, Politics, and Political Behavior (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of political parties, politics, and political behavior.

290F. Research in Comparative Government and Policy (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of comparative government and policy.

290G. Research in Public Administration (4) I, II, III. The Staff
Seminar—4 hours. Special research seminar on selected problems and issues in the study of public administration.

297. Internships in Political Science (2-2) I, II, III. The Staff
Seminar—2 hours. Prerequisite: open only to persons who have internships or other positions in governmental agencies, political parties, etc. Application and evaluation of theoretical concepts through work experience or systematic observation in public and political agencies. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

Political Science 383

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Courses in Pomology (POM)

Lower Division Courses

101. Fruits and Nuts of California and the World (3) II. Polito
Lecture—3 hours; field trips—1 hour. Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

192. Internship in Pomology (1-12) I, II, III.
The Staff (Chairperson in charge)
Internship—3-36 hours. Prerequisite: consent of instructor. (S/U grading only.)

Graduate Courses

210. Plant Reproductive Morphology (4) III.
Lectures—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: consent of instructor (P/NP grading only.)

Pomology

(College of Agricultural and Environmental Sciences)
T.M. De Jong, Ph.D., Chairperson of the Department Department Office, 1045 Duckson Hall (916-752-0123)

Faculty

Fredrick A. Bliss, Ph.D., Professor
Patrick H. Brown, Ph.D., Associate Professor
Carlos R. Cisrosto, Ph.D., Lecturer
Abhaya M. Dandekar, Ph.D., Associate Professor
Theodore M. De Jong, Ph.D., Professor
Louise Ferguson, Ph.D., Lecturer
Thomas M. Gradziel, Ph.D., Associate Professor
Scott Johnson, Ph.D., Lecturer
Adel A. Kader, Ph.D., Professor
John M. Labavitch, Ph.D., Professor
Gale McGranahan, Ph.D., Lecturer
Warren C. Micke, M.S., Lecturer
Elizabeth J. Mitcham, Ph.D., Lecturer
Dan E. Parlett, Ph.D., Lecturer
Vito S. Polito, Ph.D., Professor
Kenneth A. Shackel, Ph.D., Associate Professor
Douglas V. Shaw, Ph.D., Associate Professor
Stephen M. Southwick, Ph.D., Lecturer
Ellen G. Sutter, Ph.D., Professor
Steven A. Weinbaum, Ph.D., Professor

Emeriti Faculty

Royce S. Bringhurst, Ph.D., Professor Emeritus
Dillon S. Brown, Ph.D., Professor Emeritus
Peter B. Catlin, Ph.D., Lecturer Emeritus
Julian C. Crane, Ph.D., Professor Emeritus
William H. Griggs, Ph.D., Professor Emeritus
Paul E. Hanson, Ph.D., Professor Emeritus
Dale E. Kester, Ph.D., Professor Emeritus
George C. Martin, Ph.D., Professor Emeritus
F. Gordon Mitchell, M.S., Lecturer Emeritus
David E. Ramos, Ph.D., Lecturer Emeritus
Roger J. Romani, Ph.D., Professor Emeritus
Kay Ryugo, Ph.D., Professor Emeritus
Noel F. Sommer, Ph.D., Lecturer Emeritus
Kyoto Uru, Ph.D., Professor Emeritus

Related Major Programs. See the majors in Plant Biology and in Agricultural Systems and Environment.

Related Courses. Pomology faculty also teach the following courses that contribute to majors and graduate programs in Agricultural Systems and Environment, Horticulture, and Plant Biology:

Graduate Study. For graduate study related to the field of pomology, see the M.S. degree program in Horticulture. See also the Graduate Studies section in this catalog.

*Course not offered this academic year.
Population Health and Reproduction

Population Health and Reproduction (School of Veterinary Medicine)
Robert H. Bondurant, D.V.M., Chairperson of the Department
Department Office, 1114 Medical Science 1A (916-752-1358; FAX: 916-752-4278)

Faculty
Robert H. Bondurant, D.V.M., Professor
Bruno B. Chomel, D.V.M., Ph.D., Assistant Professor
Dean O. Cliver, Ph.D., Professor
Alan J. Conley, D.V.M., Ph.D., Assistant Professor
Thomas B. Farber, Ph.D., Professor
Lynette A. Hart, M.A., Ph.D., Associate Professor
Charles A. Holmberg, D.V.M., Ph.D., Professor
Philip H. Kass, D.V.M., Ph.D., Associate Professor
Kenneth M. Lam, Ph.D., Professor
Bill L. Lasley, Ph.D., Professor
Irvin K. M. Liu, D.V.M., Ph.D., Professor
James Murray, Ph.D., Professor (Population Health and Reproduction, Animal Science)
Joan D. Rowe, D.V.M., Ph.D., Assistant Professor
Patricia S. Wakenel, D.V.M., Ph.D., Assistant Professor

Emeriti Faculty
Domenico Bernocco, D.V.M., Libera Docenza, Associate Professor Emeritus
Charles E. Franti, Ph.D., Professor Emeritus
Constantin Genigeorgis, D.V.M., Ph.D., Professor Emeritus
Charles A. Hjerpe, D.V.M., Professor Emeritus
Jack A. Howarth, D.V.M., Ph.D., Professor Emeritus
John P. Hughes, D.V.M., Professor Emeritus
Richard H. McCapes, D.V.M., Professor Emeritus
Margaret E. Meyer, Ph.D., Assistant Professor Emeritus
Calvin W. Schwabe, D.V.M., M.P.H., Sc.D., Professor Emeritus
Clyde J. Stormont, Ph.D., Professor Emeritus
Richard H. McCapes, D.V.M., Senior Lecturer

Affiliated Faculty
Edward R. Atwill, D.V.M., Ph.D., Assistant Agronomist/Assistant Cooperative Extension Specialist
Ann Tormershausen Bowling, Ph.D., Adjunct Professor
Philip Jardan, D.V.M., M.P.V.M., Clinician
Jay F. Kiprickat, Ph.D., Associate Adjunct Professor
Donald J. Klingenborg, D.V.M., Lecturer
Nicholas W. Lerche, D.V.M., M.P.V.M., Assistant Adjunct Professor
Naica M. Loskutoff, Ph.D., Assistant Adjunct Professor
Mark Vanderbilt, B.V.Sc., M.P.V.M., Clinician
Leon D. Weaver, Sr. Lecturer
George B. E. West, D.V.M., M.P.V.M., Lecturer

Courses in Population Health and Reproduction (PHR)

Lower Division Course
92. Internship in Veterinary Science (1-4) I, II, III
Discussion/lab—4 hours; final report. Prerequisite: approval of project prior to period of internship by faculty sponsor. Supervised work experience in Reproduction. (P/NP grading only.)

Upper Division Courses
Lecture—2 hours. Prerequisite: upper division standing or consent of instructor. The contributions of animals to human society, including historic, anthropological, developmental, human health, and therapeutic perspectives, as well as effects of humans on animals.

111. Animal Hygiene (3) II, West
Lecture—3 hours. Prerequisite: Biological Sciences 1A or consent of instructor. Causes, prevention, and control of animal diseases important in economic agriculture and in public health, with emphasis upon animal management factors in disease.

150. Food-Borne Infections and Intoxications (4) III. Genigeorgis, Riemann
Lecture—4 hours. Prerequisite: Food Science and Technology 104, Veterinary Microbiology and Immunology 127. Prevalence and characteristics of those diseases of man which are derived from food or food sources; access of disease agents to and distribution in food and food sources; exposure of man to these agents; prevention of foodborne diseases.

199. Special Study for Advanced Undergraduates (1-5) I, II, III, The Staff
Discussion/lab—1-12 hours; clinic—3-36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship. Supervised work experience in Reproduction. May be repeated for credit. (P/NP grading only.)
Preventive Veterinary Medicine

225. Preventive Avian Medical Practice (3) II. West, Wakenell
Lecture—3 hours. Prerequisite: enrollment in avian medicine option of MPVM program, third- or fourth-year standing in School of Veterinary Medicine, or consent of instructor. Discussion of the economic structure of the broiler, commercial egg and turkey industries, and the delivery of preventive veterinary medical services within these industries. Specific prevention and eradication programs pertaining to diseases of economic importance are covered.

231. Pathophysiology of Mammalian Reproductive Processes (3) III. Lasley
Lecture—3 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Study of the influence of techniques and procedures for processing meats and meat products upon their wholesomeness as food.

290A. Seminar (1) I, II, III. Liu
Selection and presentation of current topics in animal reproduction and medicine, as well as presentation of research findings by graduate students and faculty. May be repeated for credit. (SU grading only)

290B. Current Topics in Avian Medicine (1) I, II, III. Larn, Wakenell
Seminar—1 hour. Prerequisite: consent of instructor. Topics from the current literature in avian medicine will be assigned to students for discussion and interpretation.

292. Current Topics In Reproduction (1) I, II, III. Lasley
Seminar—1 hour. Prerequisite: consent of instructor. Discussion of current scientific literature in reproduction, as well as presentation of research findings by graduate students and faculty. (SU grading only)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (SU grading only)

Professional Courses

404. Medical Statistics III (4) II. Farver
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 403. Continuation of course 403. Analysis of covariance, variable selection; analysis of multivariate frequency tables; logistic regression; discriminant analysis; time dependent variation and trends; biomedical applications.

*409A-409B. Topics in Data Analysis (2-3) II-III. The Staff (Chairperson in charge)
Discussion—2 hours (409A); discussion—3 hours (409B). Prerequisite: course 406 (may be taken concurrently) or consent of instructor. Approved for graduate degree credit. Emphasis on decision making with respect to the type and amount of data required for solving epidemiological problems and the selection and use of appropriate data in statistics and economics for processing, analyzing, and interpreting these data. (Deferred grading only, pending completion of course)

*410A-410B. Topics in Applied Epidemiology (3-2) III-III. The Staff (Chairperson in charge)
Discussion—3 hours (410A); discussion—2 hours (410B). Prerequisite: course 405 (may be taken concurrently) or consent of instructor. Approved for graduate degree credit. Collection of data, and/or specimens from field studies, serum banks or data banks. Examination and analysis of the differences among species or groups. Experiments on the interpretation of clinical and laboratory findings.

411. Disease Control and Eradication (3) III. Riemann
Lecture—1.5 hours; discussion—1.5 hours. Prerequisite: Veterinary Medicine 409 or course 405. Studies of various approaches to control/eradicative diseases in animal populations. Design and economic evaluation of control programs.

*420. Zoonoses of Non-human Primates (2) II. Chomel
Lecture—2 hours. Prerequisite: second-, third-, or fourth-year standing in the School of Veterinary Medicine. Consent of instructor. Epidemiological, clinical, and biological features of zoonoses of non-human primates. Emphasis given to major zoonoses which are threatening to human health and their treatment and prevention. Focus also on management of non-human primates in research, zoological gardens and in the wild. Offered in alternate years.

421. Veterinary Public Health (3) III. Chomel
Lecture/discussion—3 hours. Broad coverage of the various functions of the veterinary profession towards human health with special emphasis on zoonoses and major livestock diseases prevention and control, food safety and hygiene and new environmental issues as well as animal welfare.

429A. Herd Health Management of Beef, Cattle, Swine, Sheep, and Goats (4) II. East
Lecture—40 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Consent of instructor. Practical systems for delivering veterinary service to feedlot, cow-calf, stocker, swine, sheep, and goat production units are considered, with emphasis on prevention and control of disease.

429B. Dairy Herd Health Management (4) III. Weaver
Lecture—40 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approaches for graduate degree credit. Practical systems for delivering veterinary services to dairy farms with emphasis on disease prevention and production control. Lectures supplemented with visits to dairy farms to evaluate feeding programs and health management.

430. Issues in Animal Production and Resource Utilization (2) I. Weaver
Lecture—10 sessions; discussion/laboratory—five 3-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Introduction to interfaces of food animal production and environmental protection, wildlife preservation, animal well-being, food safety and animal health. Visits to wildlife preserves, livestock production and processing facilities. (SU grading only)

432. Reproductive Technology in Mammals and Birds (1) I. Lasley
Lecture—10 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine or consent of instructor. Introductory course in the application of technology to the reproductive process in mammals and birds. Emphasis on domestic animals, but birds and non-domestic mammals discussed to a limited extent. A goal is to expose students to some of the "sexier" aspects of population/reproductive management. (SU grading only)

*439. Beef Cattle Nutrition (1) III. The Staff
Lecture—10 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Economically sound methods for meeting nutrient requirements of feedlot and pasture beef cattle (including computer-assisted methods). Strategies for presenting nutritional and ration-associated diseases of beef cattle.

445A. Food Animal Theriogenology (3) II. BonDurant
Lecture—20 hours; laboratory—10 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Emphasis on the reproductive system in the cow, sow, ewe, and goat, with emphasis on symptomatology, pathophysiology, treatment, control, prevention, and herd health applications.

445B. Equine Theriogenology (3) II. Liu
Lecture—20 hours; laboratory—10 three-hour sessions. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Discussion of special problems of equine reproduction with emphasis on methods of diagnosis and interpretation of clinical and laboratory findings.

446A. Food Animal Reproduction (1) III. Rowe
Lecture—6 hours; laboratory—4 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Conditions affecting the reproductive system in the cow, sow, ewe, and goat, with emphasis on symptomatology, pathophysiology, treatment, control, prevention, and herd health applications.

446B. Equine Reproduction (1) III. Liu
Lecture—6 hours; laboratory—4 three-hour sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Discussion of special problems of equine reproduction with emphasis on methods of diagnosis and the interpretation of clinical and laboratory findings.

446C. Reproduction of Non-Domestic Animals (1) III. Lasley
Lecture—10 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Follows course 446A and provides information relating to reproduction in non-domestic mammals, birds, and reptile species. Concepts relating to the evaluation of reproductive status, diagnosis of infertility, assisted reproduction and contraception will be presented.

Discussion/laboratory—3-6 hours. Prerequisite: veterinary student status. Training and experience in responding to pet loss hotline callers who are experiencing grief associated with an animal’s death. Students gain proficiency in supportive listening and referral to community resources and increase effectiveness in dealing with upset pet owners. (SU grading only)

Preventive Veterinary Medicine
(A Graduate Program)

Group Office, 125 Surge IV (916-752-2375/9174)

Graduate Study. The School of Veterinary Medicine offers a program of study and research leading to the Master's degree in Preventive Veterinary Medicine (M.P.V.M.). Detailed information on this program may be obtained by writing the Director, Office of the Dean, School of Veterinary Medicine.

Director. Ian A. Gardner (Medicine and Epidemiology)

Courses in Preventive Veterinary Medicine (MPM)

Professional Courses

402. Medical Statistics I (4) IV. Farver
Lecture—3 hours; laboratory—2 hours. Statistics in clinical, laboratory and population medicine: graphical and tabular presentation of data; probability; binomial, Poisson, normal, t-, F-, and Chi-square distributions; elementary nonparametric methods; simple linear regression and correlation; life tables. Microcomputer applications of statistical procedures in population medicine.

403. Medical Statistics II (4) I. Farver
Lecture—3 hours; laboratory—2 hours. Prerequisite: course 402 or the equivalent. Continuation of course 402. Analysis of variance in biomedical sciences; multiple regression; biomedical applications of statistical methods. Microcomputer applications to reinforcement principles that are taught in lecture.

*Course not offered this academic year.
405. Principles of Epidemiology (5) I. Acredolo, Ph.D., Professor
Lecture—3 hours; discussion—2 hours. Prerequisite: course 402 or consent of instructor. Measuring disease; disease in populations; outbreak investigation; properties of tests; risk analysis; and descriptive and cross-sectional epidemiologic studies.

405L. Epidemiology Laboratory (3) I. Acredolo, Ph.D., Professor
Lecture—6 hours; lecture—1 hour. Prerequisite: grade of C or better in courses 402, 405, and 412 (may be taken concurrently). Course will integrate and reinforce concepts of epidemiology, statistics and microcomputer applications, using a problem-solving approach with examples from livestock health, public health, and wildlife health. Applications of the Epi Info, spreadsheet and database manager software programs.

406. Epidemiologic Study Design (4) II. Acredolo, Ph.D., Professor
Lecture—2 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: grade of C or better in course 405 or the equivalent and consent of instructor. Clinical trials: objectives, random assignment of treatment, outcome, masking, and sample size calculations. Observational cohort studies: objectives, cohort and outcome selection, confounding and bias. Case-control studies: objectives, selection of cases and controls, bias.

408. Veterinary Research: Planning and Reporting (3) I. Thurmond
Lecture—1 hour; laboratory—4 hours. Basic knowledge and skills in microcomputer hardware, DOS commands, word processing, spreadsheets and communications packages. (SU grading only.)

425. Applied Epidemiologic Problem Solving (1) Gardner
Lecture—1 hour; laboratory—6 hours. Basic knowledge and skills in microcomputer hardware, DOS commands, word processing, spreadsheets and communications packages. (SU grading only.)

Psychiatry
See Medicine, School of

Psychology
(Commission of Colleges of Letters and Science)
Richard G. Coss, Ph.D., Professor
Leo M. Chalupa, Ph.D., Professor
Gail S. Goodman, Ph.D., Professor
Albert A. Harrison, Ph.D., Professor
Kenneth R. Henry, Ph.D., Professor
Jacqueline Horn, Ph.D., Lecturer
Joel T. Johnson, Ph.D., Professor
Neal E.A. Kroko talks, Ph.D., Professor
Leah A. Krubitzer, Ph.D., Assistant Professor
Debra L. Long, Ph.D., Associate Professor
George R. Mangun, Ph.D., Associate Professor
Sally P. Mendoza, Ph.D., Professor
Donald H. Owings, Ph.D., Professor
Theodore E. Parks, Ph.D., Professor
Robert B. Post, Ph.D., Professor
Phillip R. Shaver, Ph.D., Professor
Stephanie A. Shields, Ph.D., Professor
Dean K. Simonton, Ph.D., Professor, Academic
Counselor
Gail S. Goodman, Ph.D., Professor
Andrew P. Yonelinas, Ph.D., Assistant Professor
Emeriti Faculty
Jarvis R. Bastian, Ph.D., Professor Emeritus
William F. Dukes, Ph.D., Professor Emeritus
Joseph Lyons, Ph.D., Professor Emeritus
Peter R. Marier, Ph.D., Professor Emeritus
William A. Mason, Ph.D., Professor Emeritus
Charles T. Tart, Ph.D., Professor Emeritus

The Major Programs
Psychology provides knowledge of and means of studying human and animal behavior. The Program. The department offers the Bachelor of Arts degree for the student interested in the liberal arts and the Bachelor of Science program for students with an interest in either biology or mathematicians. The psychology program is extremely broad and represents a wide variety of topics. The courses are organized around three focal points: Personality/Social emphasizes the individual in the social environment and includes such topics as personality theory, social psychology, abnormal psychology, individual differences, developmental psychology, humanistic psychology, and motivation. Psychobiology emphasizes the biological correlates of behavior and includes such topics as sensory psychology, physiological psychology, and comparative psychology. Perception/Communication examines how information from the physical world is sensed, perceived and used, and examines the roles of consciousness, language, perception, and learning in behavior.

Preparatory Requirements. Before declaring a major in psychology, students must complete the following courses with a combined grade point average of at least 2.50 (all courses must be taken for a letter grade):

- Psychology 1, 41 8 units
- Statistics 13 or 102 4 units
- Biological Sciences 1A
- or Biological Sciences 10 and one course from Anthropology 1, Molecular and Cellular Biology 10, Neurobiology, Physiology and Behavior 10 4 units

Careers. A degree in psychology provides broad intellectual foundations which are useful to the graduate for the development of careers in a variety of areas, including social work, the ministry, teaching, business, and counseling. An undergraduate education in psychology also provides excellent preparation for graduate study. Individuals with degrees in psychology may enter graduate programs to prepare for teaching, research, or clinical/counseling careers in psychology, or may go on to professional schools for training in veterinary and human medicine, law, and other professions.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology 1 or the equivalent</td>
<td>4</td>
</tr>
<tr>
<td>Psychology 41</td>
<td>4</td>
</tr>
<tr>
<td>Statistics 13 or 102</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
<tr>
<td>Physics 10 or 5A-5B or 7A-7B</td>
<td>4-8</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A, 2B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B or 128A-128B</td>
<td>6-8</td>
</tr>
</tbody>
</table>

One course in sociology or cultural anthropology (may be lower or upper division), minimum of 4 units.

B.S. Major Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology 1 or the equivalent</td>
<td>4</td>
</tr>
<tr>
<td>Psychology 41</td>
<td>4</td>
</tr>
<tr>
<td>Statistics 13 or 102</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics 16A-16B or 21A-21B</td>
<td>6-8</td>
</tr>
<tr>
<td>Physics 10 or 5A-5B or 7A-7B</td>
<td>4-8</td>
</tr>
<tr>
<td>Biological Sciences 1A, 1B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 2A, 2B</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry 8A-8B or 118A-118B or 128A-128B</td>
<td>6-8</td>
</tr>
</tbody>
</table>

One course in sociology or cultural anthropology (may be lower or upper division), minimum of 4 units.

Depth Subject Matter 100-110

Recommended
Minor Program Requirements:

Psychology

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology 1 or the equivalent.</td>
<td>4</td>
</tr>
<tr>
<td>One course from each of the following three groups</td>
<td></td>
</tr>
<tr>
<td>Group A: Psychology 130, 131, 132, 136</td>
<td>7-9</td>
</tr>
<tr>
<td>Group B: Psychology 108, 129, 134, 150, 152, 160</td>
<td>7-10</td>
</tr>
<tr>
<td>Group C: Psychology 112, 143, 145, 147, 168</td>
<td>7-12</td>
</tr>
<tr>
<td>Additional units to achieve a total of 20 upper division units</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Study

The Department offers programs of study and research leading to the Ph.D. degree in psychology. Detailed information regarding graduate study may be obtained by writing the Graduate Adviser, Department of Psychology.

Graduate Adviser. See Class Schedule and Room Directory.

Courses in Psychology

Lower Division Courses

1. **General Psychology** (4) I, II, III. The Staff

 Lecture—4 hours. Introduction emphasizing empirical approaches. Focus on perception, cognition, personality and social psychology, and biological aspects of behavior. Only 2 units allowed to those who have taken both courses 15 or 16; no credit allowed to those who have taken both courses 15 and 16. GE credit: SocSci, Div, Wrt.

20. **Freshman Psychology Seminar** (4) I, II, III.

 Seminar—4 hours. Prerequisite: freshman standing. Instructor will acquaint students with his or her program of research, the development of scientific questions from the literature, and the application of research methods to examine these questions. Critical thinking will be encouraged by expository writing and brief presentations.

41. **Research Methods in Psychology** (4) I, II, III, The Staff

 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1 or the equivalent; completion of Statistics 13 or 102 strongly recommended. Introduction to experimental design, interviews, questionnaires, field and observational methods, reliability and statistical inference.

90X. **Lower Division Seminar** (1-2) I, II, III.

 The Staff Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Psychology through shared readings, discussions, written assignments, or special activities such as fieldwork or laboratory work. May not be repeated for credit. Limited enrolment.

98. **Directed Group Study** (1-5) I, II, III, The Staff (Chairperson in charge)

 Primarily for lower division students. (P/NP grading only.)

99. **Special Study for Lower Division Students** (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Upper Division Courses

103. **Advanced Research Design and Data Analysis** (5) I, II, III, The Staff

 Lecture—5 hours. Prerequisite: course 1 and either Statistics 13 or 102. Design and analysis of psychological investigations and the interpretation of quantitative data in psychology.

 Examination of the basic principles and applications of classical and modern test theory. Topics include test construction, reliability theory, validity theory, factor analysis and latent trait theory.

105. **Statistical Inference from Psychological Experiments** (4) I, II, III.

 Lecture—4 hours. Prerequisite: upper division standing in Psychology, courses 41 and 103. Probability theory, sampling distributions, hypothesis testing, statistical inference, and nonparametric statistics, with applications in sensory, perceptual, comparative, physiological, and other areas of psychology. Students who have taken Statistics 134 may receive only 2 units of credit.

108. **Psychological Physiology** (5) I, II, III.

 Lecture—4 hours; laboratory—2 hours. Prerequisite: courses 1, 41, at least one zoology or physiology course recommended. Relationship of brain structure and function to emotion, motivation, perception, states of consciousness, language, learning, and memory in humans and other animals; introduction to methods of physiological psychology.

112. **Developmental Psychology** (4) I, II, III.

 Lecture—4 hours. Prerequisite: courses 1, 41. Biological and social factors that influence when and how psychological sex-related differences will be expressed in human development. Special attention to the scientific and social rationales which underlie the study of gender. GE credit: SocSci, Div, Wrt.

120. **History of Psychology** (4) I, II, III. Simonton

 Lecture—3 hours; term paper. Prerequisite: courses 1, 41; upper division standing or consent of instructor. Development of psychological thought and research in context of history of philosophy and science. GE credit: SocSci, Wrt.

129. **Sensory Processes** (5) I, II, III.

 Henry, Krubitzer, Mendoza, Mangun

 Lecture—4 hours; discussion, project, or term paper—1 hour. Prerequisite: course 1 or Biological Sciences 18 or consent of instructor, and course 41. Psychobiology of sensory systems in man and other animals. Relationship of behavior to physiology, structure and function of the senses.

130. **Human Learning and Memory** (4) I, II, III.

 Kroll, Parks, Goodman, Yonelinas

 Lecture—3 hours; discussion—1 hour. Prerequisite: courses 1, 41, and either Statistics 13 or 102; consent of instructor. Consideration of major theories of human learning and memory with critical examination of relevant experimental data.

131. **Perception** (4) I, II, III.

 Parks, Post, Post, Mangun

 Lecture—3 hours; discussion—1 hour. Prerequisite: course 1, 41. The study of representations of objects, space, motion, events.

132. **Language and Cognition** (4) I, II, III.

 Long

 Lecture—4 hours. Prerequisite: course 1 or the equivalent, course 41, and 6 units of upper division work in psychology or linguistics. Zoological, cultural, and individual perspectives of linguistic actions; their production, perception, cognitive significance, and their roles in human conduct, enculturation, and cognitive development.

134. **Animal Learning and Motivation** (5) I, II, III.

 Coss

 Lecture—5 hours. Prerequisite: course 1 or consent of instructor; course 41. General theories of phylogenetic differences in learned and motivated behavior. Motivation drawing upon data from laboratory and field observations. Innate physiological mechanisms, developmental changes, effects of conditioning and other constraints on these processes are examined.

Course not offered this academic year.
Range and Wildlands Science

Admission into the Range and Wildlands Science major has been discontinued. Students interested in this area should refer to the Agricultural Economics and Environment major, Range and Natural Resources specialization.

The Major Program
Range and wildlands science is the study of the biological and physical components of land resources which are used mostly for grazing domestic livestock, but which also provide wildlife habitats, watersheds, recreation, and open space.

The Program
The major provides background in the biological, physical, and social sciences. Comprehensive study in the plant, animal, soil, and resource sciences supplements the core of range management courses. Integration of the knowledge of a variety of specialized fields is learned as a basis for land management oriented toward the multiple use concept and the maintenance of environmental quality.

Career Alternatives
Range and wildlands science graduates, especially those with some experience, may be employed as consultants, extension specialists, ranch managers, or ranchers. They may also qualify for the position of Range Conservationist in governmental agencies such as the Forest Service, Soil Conservation Service, and the Bureau of Land Management. If career work with such an agency is desired, it is recommended that trainee or apprentice experience with that agency be included in the major program of study as an internship. In addition, the training provided by this major should give an excellent background for natural resource management positions.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

English Composition Requirement.........0-6
See College requirements

Preparatory Subject Matter...............63-67
Animal science (Animal Science 2)4
Biological sciences (Biological Sciences 1A, 1B, 1C)15
Chemistry (Chemistry 2A, 2B, 8A, 8B)16
Computer science (Agricultural Science and Management 21, Engineering 5, or Computer Science Engineering 10)3
Economic principles (Agricultural Economics 1, Economics 1A, or 1B)4-5
Geology (Geology 1-1L)4
Mathematics (Mathematics 16A, 16B recommended)4-6
Physics (Physics 1A, 1B)6
Soil science (Soil Science 100)4
Statistics (Agricultural Science and Management 15D)4

Breadth/General Education..............6-24
Satisfaction of General Education requirement to include two non-introductory courses in Agricultural Economics, Economics, Environmental Studies, or Geography.

Depth Subject Matter....................51-56
Plant physiology (Botany 111 or Water Science 104)3-4
Plant ecology (Botany 117 or Plant Science 101)3-4
Meteorology (Geography 3, Atmospheric Science 105)3-4

*Course not offered this academic year.

Radiation Oncology
See Medicine, School of

Radiology
See Medicine, School of

Range and Wildlands Science
See Range and Wildlands Science, below; and Range Science

Range and Wildlands Science
(College of Agricultural and Environmental Sciences)

208. Physiological Psychology (4) I. Chalupa, Henry, Mendoza
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. A conceptual analysis of the contributions of neuroanatomy, neurophysiology and neurochemistry to an understanding of animal and human behavior.

212. Developmental Psychology (4) I. Acredolo, Shields, Goodman
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. The original behavioral repertoire of the child and its subsequent development.

*220. History of Psychology (4) The Staff
Lecture—2 hours; seminar—2 hours. Prerequisite: graduate standing in psychology or consent of instructor. A lecture-seminar on the history of psychology and on the applicability of early psychological theory and research to contemporary investigations. Offered in alternate years.

Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Analysis of the mental processes by which knowledge is acquired, maintained, transformed, retrieved and used. Offered in alternate years.

231. Sensation and Perception (4) II. Post
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Analysis of the role of sensory processes and perception in experience and their effects on behavior. Offered in alternate years.

245. Social Psychology (4) II. Johnson
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and research in social psychology.

247. Personality (4) III. Emmons, Erickson
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and research in human personality.

250. Comparative Psychology (4) III. The Staff
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. The study of animal behavior in an evolutionary and comparative framework.

*251. Topics in Genetic Correlates of Behavior (4) Waller
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and experiment in the genetic contributions to animal and human behavior. May be repeated for credit when topic differs. Offered in alternate years.

252. Topics in Psychology (4) II. Chalupa, Owings, Mendosa
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Critical study in a selected area of psychology. May be repeated for credit when content differs. Offered in alternate years.

261. Cognitive Neuroscience (4) III. Mangun
Lecture—3 hours; discussion—1 hour. Prerequisite: graduate student standing in Psychology or Neuroscience or consent of instructor. Graduate core course for neuroscience. Neurobiological bases of higher mental function, including attention, memory, language. One of three in three quarter sequence. (Same course as Neuroscience 223.)

*263. Topics in Cognitive Psychology I. Acredolo, Goodman, Kroll, Long, Parks, Post
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Selected topics in language processing, memory, perception, problem solving, and thinking, with an emphasis on the common underlying cognitive processes. May be repeated for credit when content differs. Offered in alternate years.

264. Topics in Psycholinguistics (4) III. Long
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Discussion of fundamental issues in the psychology of language. May be repeated for credit when content differs. Offered in alternate years.

*265. Topics in Psychology of Consciousness (4) The Staff
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Theory and research in the psychology of consciousness. May be repeated for credit when content differs. Offered in alternate years.

270. Topics in Personality Psychology (4) II. Elms, Emmons, Erickson, Shaver
Seminar—4 hours. Prerequisite: graduate standing or consent of instructor. Critical study of a selected area of personality psychology. May be repeated for credit when content differs.

290. Seminar (4) I, II, III. The Staff
Seminar—4 hours. Prerequisite: graduate standing in psychology or consent of instructor. Seminar devoted to a highly specific research topic in any area of basic psychology. Special topic selected for a quarter will vary depending on interests of instructor and students.

291. Current Research in Psychology (2) I, II, III.
The Staff (Chairperson in charge)
Seminar—2 hours. Prerequisite: graduate standing in psychology or consent of instructor. Topics relevant to current research in psychology will be discussed and methods employed in contemporary research will be evaluated. Students present a seminar on their own research. May be repeated for credit. (S/U grading only.)

298. Group Study (1-5) I, II, III. The Staff
(S/U grading only.)

299. Research (2-9) I, II, III. The Staff
(S/U grading only.)

299D. Dissertation Research (1-12) I, II, III.
The Staff
Prerequisite: consent of instructor. (S/U grading only.)

Professional Course

390A-390B. The Teaching of Psychology

(6-4) II-III. The Staff
Discussion, lecture, practice. Prerequisite: advanced graduate standing in psychology or a closely related discipline and consent of instructor. Methods and problems of teaching psychology at the undergraduate and graduate levels; curriculum design and evaluation. Practical experience in the preparation and presentation of material. (SU grading only; deferred grading only, pending completion of sequence.)

Range and Wildlands Science

See Range and Wildlands Science, below; and Range Science
Range Science

(College of Agricultural and Environmental Sciences)

Faculty. See under the Department of Agronomy and Range Science.

Courses in Range Science (RMT)

Questions pertaining to the following courses should be directed to the instructor or to the Advising Center.

92. Range Science Internship (1-12) I, II, III, summer. The Staff (Department Chairperson in charge)

Internship—3-36 hours. Prerequisite: consent of instructor. Work experience off or on campus in all subject areas pertaining to range management.

Upper Division Courses

192. Range Science Internship (1-12) I, II, III, summer. The Staff (Department Chairperson in charge)

Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off or on campus in all subject areas pertaining to range management. Internships supervised by a member of the faculty.

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Department Chairperson in charge)

Prerequisite: senior standing and consent of instructor. (P/NP grading only)

Graduate Courses

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)

299. Research (1-12) I, II, III. The Staff (Chairperson in charge)

Religious Studies

(College of Letters and Science)

Naomi Janowitz, Ph.D., Program Director
Program Office, 922 Sproul Hall (916-752-9932)

Committee in Charge

John R. Hall, Ph.D. (Sociology)
Lincoln D. Hurst, Ph.D. (Religious Studies)
Naomi Janowitz, Ph.D. (Religious Studies)
Phyllis Jeste, Ph.D. (History)
WhaIen Lai, Ph.D. (Religious Studies)
Jay Meckling, Ph.D. (American Studies)
Jacob Olupona, Ph.D. (African American and African Studies)

Peter Schaefer, Ph.D. (German)

Faculty

Lincoln D. Hurst, Ph.D., Associate Professor
Naomi Janowitz, Ph.D., Associate Professor
WhaIen W. Lai, Ph.D., Professor

The Major Program

Majoring in religious studies provides an opportunity to explore and analyze the great written and oral traditions of the world’s religions. Hinduism, Buddhism, Judaism, Christianity, Islam, contemporary groups in the U.S., and African religions.

The Program. The major introduces students to the academic study of religion. The religious studies major offers a broad choice of courses including history, philosophy, sociology, anthropology, American studies, classics, and medieval studies. For some students, religious studies is an appropriate second major and might combine well with anything from philosophy to international agricultural development, from history to international relations. The religious studies program has also designed four options for minor programs: religious studies, Asian religions, Judaism, and Christian studies.

Career Alternatives. The emphasis in religious studies courses on developing analytical thinking skills and clear written expression is an asset for many career goals. As a strong liberal arts program, the major can lead to research and/or teaching on all levels, as well as careers in related areas such as the ministry, counseling, social work, and other helping professions. Because the major integrates so many academic areas, it is also an excellent background for professional schools including law, business, and foreign service.

A.B. Major Requirements:

UNITs

Preparatory Subject Matter

Religious Studies 1-20

At least one course from each of the following groups:

(a) Religious Studies 1, 2
(b) Religious Studies 21, 23, 40, 60, 70, 73

Additional requirements

Anthropology 2 or, with approval from advisor, a lower division course related to religion from Philosophy, Native American Studies, African American and African Studies, American Studies, or other departments.

Depth Subject Matter

Religious Studies

Five upper division courses plus Religious Studies 100 to be taken in junior/senior year.

History

Two upper division courses related to religion.

Sociology, philosophy, anthropology

Two upper division courses related to religion in the above disciplines such as Philosophy 105, 145, Sociology 146, 149, Anthropology 124, or, with approval from advisor, in other disciplines such as Medieval Studies, Native American Studies, African American and African Studies, Classics, or other departments.

Recommended

A reading knowledge of a foreign language is highly recommended. Consult major advisor for a complete list of recommended upper division courses.

Minor Program Requirements:

The following four minor program options and others responsive to students’ needs are subject to approval by the major advisor or the Curriculum Committee.

The four areas of emphasis are Religious Studies, Asian Religions, Judaism, and Christian Studies.

Religious Studies

RHE 100

Lower division course

Upper division course

Religious Studies 100 required.

Minor Program Options. Some substitutions from other departments or programs allowed with consent of advisor.

Preministerial Adviser. L. D. Hurst.

Jewish Studies. Students interested in Jewish studies should contact N. Janowitz of Religious Studies or H. Murav of Comparative Literature.

Courses in Hebrew (HEB)

Lower Division Courses

1. Elementary Classical Hebrew (5) I. The Staff

Lecture—4 hours; discussion—1 hour. Introduction to Hebrew alphabet, basic vocabulary, orthography, morphology and syntax. Readings from the Bible. (Students who have successfully completed, with a C- or better, Hebrew 2 or 3 in the 10th or higher grade in high school may receive unit credit for this course on a P/NP grading basis only. Although a passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)

2. Elementary Classical Hebrew (5) II. The Staff

Lecture—4 hours; discussion—1 hour. Prerequisite: course 1 or consent of instructor. Hebrew alphabet, basic vocabulary, orthography, morphology and syntax. Readings from Hebrew Bible. Continuation of course 1.

3. Elementary Classical Hebrew (5) III. The Staff

Lecture—4 hours; discussion—1 hour. Prerequisite: course 2 or consent of instructor. Hebrew alphabet, basic vocabulary, orthography, morphology and syntax. Readings from Hebrew Bible and from post-Biblical Hebrew texts. Continuation of course 2.
Courses in Religious Studies (RST)

Lower Division Courses

1. Survey of Religion (R) (4) I. Lai and staff
 Lecture—3 hours; discussion—1 hour. Basic concepts introduced through readings of the primary religious literature. Discussion of central ideas (creation, history, law, prophecy, suffering, mysticism, asceticism, karma, reincarnation, moksha, etc.); readings from the Bible, Bhagavad Gita, the Koran, selections from Plato and early Buddhist writings. GE credit: ArtHum, Div, Wrt.

 Lecture—3 hours, discussion—1 hour. Myths, rituals and religious symbols found in a variety of religious traditions, including examples from ancient and contemporary religious life. Variety of religious phenomenon; validity of different approaches to the study of religion. GE credit: ArtHum, Div, Wrt.

3A-C. Topics in Comparative Religion (4) II. The Staff
 Lecture—3 hours; discussion—1 hour. Introduction to the methods used in comparative religion, focusing on a particular theme in a number of religious traditions. *(A) The Experiential Dimension: Pilgrimage; (B) The Mythic Dimension: Death and the After-life; (C) The Ritual Dimension: Sacrifice. May be repeated for credit in different subject area. GE credit: ArtHum, Div, Wrt.

*4. Eastern Religions (4) I. Lai
 Lecture—3 hours; discussion—1 hour. Eastern religious traditions, including Hinduism, Buddhism, and Taoism from their origins to the present.

10. Introduction to Religious Studies (2) I, II. Lai
 Lecture—2 hours. Topic of importance in more than one religious tradition as an illustration of the problems and methods of religious studies. May be repeated for credit in a different subject area.

21. Hebrew Scriptures (4) I. Janowitz
 Lecture—3 hours; discussion—1 hour. Selected texts from the Hebrew Scriptures (Genesis—II Chronicles) and review of modern scholarship on the texts from a variety of perspectives (historical, literary, sociological, psychological). GE credit: ArtHum, Div, Wrt.

23. Introduction to Judaism (4) I. Janowitz
 Lecture/discussion—3 hours; term paper. Introduction to the study of religion using examples from the rituals and holy texts of Judaism. No prior knowledge of either Judaism or the study of religion is necessary. GE credit: ArtHum, Div, Wrt.

40. New Testament (4) I. Hurst

*60. Introduction to Islam (4) III. Metcalf
 Lecture/discussion—4 hours. Introduction to topics at core of Islamic tradition including Muhammad, the Qur’an, Islamic law, Sufism and sects as well as to selected topics including Islamic revival.

75. Chinese Philosophy: An Introduction (3) I. Lai
 Lecture—2 hours; discussion—1 hour. Introduction to Chinese philosophy from classical to modern times: emphasis on basic metaphysics and its change over time, including Confucian humanism, Taoist cosmology, the Han syntheses of Tao, Yin-yang and Five Elements; its impact on Buddhism, Sung new synthesis and conflict with the West. Offered in alternate years.

98. Directed Group Study (1-5) I, II, III. The Staff
 (Chairperson in charge)
 Prerequisite: consent of instructor; primarily for lower division students. (P/NP grading only.)

99. Special Study for Lower Division Undergraduates (1-5) I, II, III. The Staff
 (Chairperson in charge)

Upper Division Courses

100. Study of Religion: Issues and Methods (4) III. Janowitz
 Lecture—3 hours; term paper. Principal issues and methods of Religious Studies and associated fields.

102. Christian Origins (4) I. Hurst
 Lecture/discussion—3 hours; term paper. Prerequisite: course 40; course 23 recommended. Beginning of the Christian faith seen in relation to milieu in which it originated. Offered in alternate years.

*110. Life, Meaning and Identity (4) II. Lai
 Lecture/discussion—3 hours; term paper. Prerequisite: course 1 or 2 or upper division standing. Study of religious lives, the quest for meaning and for personal identity; how religions frame the problems of life, how cultural and personal crises affect youth identity; the nature and structure of dreams, myths, and ideals. Offered in alternate years.

115. Mysticism (4) I. The Staff
 Lecture/discussion—4 hours. Prerequisite: one lower division Religious Studies course (except 10, 98, or 99). Course intended primarily for Religious Studies majors, with others admitted. Historical and descriptive analysis of selected mystical traditions, and of selected key figures; readings of representative mystical authors.

*122. Studies in Biblical Texts (4) III. Janowitz
 Lecture—3 hours; term paper. Prerequisite: course 21. Study of a book from the Prophets or writings from critical, historical, and religious perspectives. May be repeated once for credit in different subject area.

124. Topics in Judaism (4) III. Lai
 Lecture—3 hours; term paper. Prerequisite: course 23. Examination of selected aspects of Jewish life, religion, or literature. May be repeated twice for credit in different subject area.

130. Topics in Religious Studies (4) II, III. The Staff (Chairperson in charge)
 Lecture/discussion—3 hours; term paper. Prerequisite: course 40; course 102 recommended. Historical and systematic introduction to Christian doctrine, with attention to doctrinal traditions and the problem of orthodoxy and heresy.

140. Christian Theology (4) III. Hurst
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 40; course 102 recommended. Historical and systematic introduction to Christian doctrine, with attention to doctrinal traditions and the problem of orthodoxy and heresy.

141A. New Testament Literature: Synoptic Gospels (4) II. Hurst
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Life and thought of the early Church as reflected by the Synoptic Tradition—Matthew, Mark, Luke and Acts. Offered every third year to alternate with 141B. 141C. GE credit: ArtHum, Wrt.

*141B. New Testament Literature: John (4) III. Hurst
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Life and thought of the early Church as reflected by the Johannine Tradition—the Gospel and letters of John. Offered every third year to alternate with 141A. 141C. GE credit: ArtHum, Wrt.

141C. New Testament Literature: Paul (4) IV. Hurst
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 40. Life and thought of the early Church as reflected by the Pauline tradition—the letters of Paul. Offered every third year to alternate with 141A, 141B. GE credit: ArtHum, Wrt.

142. Tyndale and the Beginnings of the English Bible (4) I, II. Schaeffer
 Lecture/discussion—3 hours; term paper. Prerequisite: course 40; recommended. Study of Tyndale’s New Testament translation as a literary and cultural monument in the context of previous Biblical translation, the historical situation in the 16th century, and the influence of this version on the English language and its literature. Offered in alternate years. GE credit: ArtHum, Wrt.

*145. Contemporary American Religion (4) II. Hurst
 Lecture—3 hours; discussion—1 hour. Prerequisite: course 40 and History 17B recommended. Examination of several major movements and phenomena in twentieth-century American religion. Offered in alternate years.

150. Religious Ethics (4) II. Lai
 Lecture/discussion—4 hours. Prerequisite: course 4. Study of the religious bases to ethics through concentration on the ethical tracts of one major tradition, or through a comparison of the attitudes of two or more traditions to a common ethical issue. Offered every three years.

*168. Hinduism (4) I. The Staff
 Lecture—3 hours; term paper. Prerequisite: course 4. Hindu tradition from ancient to modern times. Multiplicity of religious forms within Hinduism with mention of Jainism, Buddhism, and Sikhism and their relation to the mainstream of Hindu religion. Offered in alternate years.

*170. Buddhism (4) I. Lai
 Lecture/discussion—3 hours; term paper. Study of Buddhism in its pan-Asian manifestations, from its beginning in India to its development in Sri Lanka and Southeast Asia, Central Asia, China and Japan; teachings and practices, socio-political and cultural impact. Offered in alternate years.

172. Ch’an (Zen) Buddhism (4) II. Lai
 Lecture/discussion—3 hours; term paper. Prerequisite: course 4 recommended. Doctrines and methods of the Patriarchs and great masters, both ancient and modern, in the framework of the orthodox Buddhist tradition. Doctrinal basis of meditational techniques.

178A-E. Undergraduate Proseminar in Religion and Culture (2) II. The Staff
 Lecture/discussion—2 hours. Prerequisite: upper division standing and one course in religious studies or consent of instructor. Individual topics are discussed by lecturers from this campus and elsewhere. Each student writes a term paper in one of these areas. Content of the course is flexible. Offered in alternate years.

189. Senior Colloquium (4) II. The Staff (Chairperson in charge)
 Seminar—3 hours; term paper. Prerequisite: consent of instructor. Primarily for seniors in Religious Studies. Discussion in depth of a problem in religion which requires the methods of several disciplines and is in the forefront in contemporary religions.

190. Seminar (4) I, II, III. The Staff
 Seminar—3 hours; term paper. Prerequisite: consent of instructor; required of all Religious Studies majors. Allows majors to integrate the disciplined study of the field. Emphasis on current scholarly debate about the methods for analyzing and comparing diverse religious traditions. Offered in alternate years.

194A-194HB. Special Study for Honors Students (1-5) I, II, III. The Staff (Director in charge)
 Independent study. Open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member approved by the Program Director, leading to a senior honors thesis on a religious studies topic. (P/NP grading only.)

198. Directed Group Study (1-5) II, III. The Staff (Chairperson in charge)
 Prerequisite: upper division standing and consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
 (P/NP grading only.)
Rhetoric and Communication

(College of Letters and Science)

Charles Berger, Chairperson of the Department
Department Office, 233 AOB 4 (916-752-1222)

Faculty
Rina Aicalay, Ph.D., Associate Professor
Robert A. Bell, Ph.D., Associate Professor
Charles R. Berger, Ph.D., Professor
Michael T. Motley, Ph.D., Professor
John L. Vohs, M.A., Senior Lecturer

Emeriti Faculty
James J. Murphy, Ph.D., Professor Emeritus,
Academic Senate Distinguished Teaching Award
Ralph S. Pornery, Ph.D., Professor Emeritus

The Major Program

The major in rhetoric and communication centers on human beings as communicators, on the ways in which messages and their uses influence our lives.

The Program.
The program of study in rhetoric and communication is designed to provide communication from several points of view. Courses are offered which deal with both historical and contemporary perspectives. Other classes focus on language and the symbolic components of messages. Persuasion and argumentation are studied as well. In addition, it is important to examine communication as it occurs in various kinds of social settings, and therefore the department also offers courses in public communication, mass communication, interpersonal communication, and organizational communication.

Career Alternatives.
Rhetoric and communication graduates have found careers in such fields as broadcast and print journalism, administration, sales, management, politics and government, education, social work, and public relations. A rhetoric and communication degree is also excellent preparation for law school or other graduate programs.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Preparatory Subject Matter</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anthropology 4 or Linguistics 1, 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rhetoric and Communication 1 or 3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Psychology 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sociology 1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Statistics 13</td>
<td>4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication through Rhetoric and Communication 114</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Message codes and research methods, Rhetoric and Communication 115 and one of 103 or 105 or 135</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Social interaction studies, Rhetoric and Communication 134 and one of 130 or 136</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Mass communication processes and effects, Rhetoric and Communication 141, and one of 143 or 145 or 152</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Select four of the following additional courses with approval of faculty adviser (the four courses must be other than those chosen to fulfill the above requirements)</td>
<td>16</td>
</tr>
<tr>
<td>Total Units for the Major</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

Grading recommendation. Although not required, it is recommended that all courses offered in satisfaction of the major, except variable-unit courses, be taken for a letter grade.

Major Advisers. Faculty (contact department). Advising Office. Room 229, AOB 4 (916-752-8393).

Minor Program Requirements:

Rhetoric and Communication24

One course from Rhetoric and Communication 1, 3, 504

A coherent sequence of at least five upper division courses in rhetoric and communication selected with the approval of a minor adviser20

Graduate Study. The Department of Rhetoric and Communication offers programs of study and research leading to the M.A. degree in Rhetoric and Communication. Detailed information may be obtained from the Graduate Adviser, Department of Rhetoric and Communication.

Graduate Adviser. R. Bell.

Courses in Rhetoric and Communication (RCM)

Subject A. Students must have passed the Subject A requirement before taking any course in Rhetoric and Communication.

Lower Division Courses

1. Introduction to Public Speaking (4) I, II, III.

The Staff (Chairperson in charge)

Lecture—1 hour; discussion—3 hours. Practice in the preparation and delivery of speeches with an introduction to rhetorical theory and criticism as applied to public address. GE credit: Wrt cannot be used to satisfy a college or university composition requirement and GE writing experience simultaneously.

2. Interpersonal Communication Competence (4) I, II.

The Staff (Chairperson in charge)

Lecture—2 hours; discussion—2 hours. Communication in interpersonal contexts. Sender, receiver, and message variables, and their interaction with communication competence. Participation in simulations and experiential exercises.

3. Nonverbal Communication (4) I, II.

The Staff (Chairperson in charge)

Lecture—4 hours. Emphasis on critical analysis and construction of effective arguments. Study of various standards for evaluating arguments.

4. Current Humanistic Trends in Rhetorical Theory (4) I, II.

The Staff (Chairperson in charge)

Seminar—1-4 hours. Prerequisite: lower division courses in rhetoric and communication. Participation in shared readings, discussions, written assignments, or special activities such as fieldwork, laboratory work, etc. May not be repeated for credit. Limited enrollment.

69. Special Study for Undergraduates (1-5) I, II.

The Staff (Chairperson in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

Note: Courses 110, 120, 122, 124, 125 are for students who are graduating under the previous major curriculum. These courses are not part of the new curriculum.

103. Analysis of Message Systems (4) I, II.

The Staff

Lecture—4 hours. Examination of elements of the communication process, including sources, messages, media, and receivers. Study of the role of these elements as they are influenced by various communicative situations. GE credit: SocSci.

105. Semantic and Pragmatic Functions of Language (4) III.

The Staff

Lecture—4 hours. Prerequisite: course 115. The role of language in shaping attitudes and perceptions of self and others. The use and abuse of verbal symbols in communicative situations. Concepts of meaning in discourse. GE credit: SocSci.

109. Origins of Rhetoric (4) II.

Abbott

Lecture/discussion—4 hours. Prerequisite: course in ancient history recommended. Issues in the development of rhetoric, from its origins in ancient Greece to A.D. 430. Special attention to works of Plato, Aristotle, Cicero, and Quintilian. Role of grammar and rhetoric in schools of Roman Empire. The Christian rhetoric of Saint Augustine. GE credit: ArtHum, Wrt.

113. Current Humanistic Trends in Rhetorical Theory (4) II.

The Staff

Lecture/discussion—4 hours. Contemporary developments in traditional rhetorical concepts as well as style, meaning, theory of argument, and persuasion.

114. Contemporary Theories of Human Communication (4) I, II.

The Staff

Lecture/discussion—4 hours. Rhetoric as a social science, characteristics of social theories, components of theories, development and testing of hypothesis, general models, theories, and research. GE credit: SocSci.

115. Empirical Methods in Communication (4) II.

The Staff

Lecture—4 hours. Interpretation of formal and informal scientific reports via the logic and methods of scientific inquiry, with emphasis on experimental and descriptive research in communication. GE credit: SocSci.

120. Rhetorical Criticism (4) I.

Blair, II, III.

The Staff

Lecture—4 hours. Survey of critical methods and their use in the interpretation of rhetorical discourse. GE credit: ArtHum.

122. Public Discourse in American Culture (4) II.

The Staff

Lecture—4 hours. Major individuals, movements, and media. Case studies of rhetoric as it has contributed to and is influenced by American culture. Variable content; may be repeated once for credit.

124. Rhetoric of Social Issues (4) I, II.

The Staff

Lecture—4 hours. Overview of nature and function of rhetoric in public controversy. Analysis and evaluation of argumentative discourses and other rhetorical strategies used in the social issues and movements. Study of how rhetoric structures and informs opinions on controversial matters in the public realm.

125. Freedom of Speech (4) III.

Abbott

Lecture/discussion—4 hours. Historical developments of and contemporary controversies in freedom of speech. Political dissent, symbolic speech, slander and obscenity. Offered in alternate years.

130. Group Communication Processes (4) III.

Vohs

Lecture—4 hours. Examination of current theories of group formation, goals, structure, and leadership, as they relate to communication processes. GE credit: SocSci.

134. Interpersonal Communication (4) I, II.

Motley

Lecture—4 hours. Prerequisite: course 1 or 3, or 10 or the equivalent. Communication between two individuals in social and task settings. One-to-one communication, verbal and nonverbal, in developing relationships. Consideration of theory and research on relevant variables such as shyness, self-disclosure, reciprocity, games, and conflict. GE credit: SocSci.

135. Nonverbal Communication (4) I, II.

Abbott

Lecture—4 hours. Examination of the interaction between nonverbal communication and verbal communication channels in influencing outcomes in interpersonal and mass mediated communication contexts. Underlying functions served by nonverbal communication will also be considered. GE credit: SocSci, Div.

136. Organizational Communication (4) II, III.

Vohs

Lecture—4 hours. Examines communication in various organizational situations. Focuses on the use of effective communication strategies for achieving organizational and individual goals. Emphasis is placed on identifying and analyzing ineffective communication within organizations. GE credit: SocSci.
*138. Communication and Cognition (4) I. Berger
Seminar—4 hours. Prerequisite: upper division standing. Relationships between communication and cognition. Models of discourse comprehension and production, the influence of language attitudes on social judgments, and the effects of information processing on decision making are explored. Offered in alternate years. GE credit: SocSci.

140. Mass Communication and the Public (4) I, III. The Staff
Lecture—4 hours. Current issues in mass communications policy, with emphasis on the broadcast media. Examination of the economic and legal influences on media performance; the role of public broadcasting; the social impact of technological advances, including cable television and communications satellites. GE credit: SocSci.

141. Mass Communication Theory and Research (4) I. Alcalay
Lecture—4 hours. Prerequisite: course 115, or the equivalent course in social science research methods. Recent developments in the study of mass communications content and effects, with emphasis on the broadcast medium. Special attention to the function of television for selected audiences: children, minorities, the aged. GE credit: SocSci.

*142A. News Policies and Practices in Television (4) I. Berger
Seminar—2 hours. Prerequisite: course 140 or 141, or consent of instructor. Processes and constraints in gathering, editing, and reporting the news in the broadcast media, as examined by a practicing professional.

*142B. News Policies and Practices in the Press (2) II. The Staff
Seminar—2 hours. Prerequisite: course 140 or 141, or consent of instructor. Processes and constraints in gathering, editing, and reporting the news in the print media, as examined by a practicing professional.

143. Media Criticism: Broadcast (4) I, II, III. The Staff
Lecture—1 hour; discussion—3 hours; one or two major writing assignments. Analysis, interpretation and evaluation of broadcast media content, employing various critical frameworks including genre studies, mythological and dramaturgical criticism, linguistic analysis, iconographic criticism, and theories of popular culture. GE credit: SocSci.

145. Mass Communication and Social Change (4) I. Bell
Seminar—4 hours. Prerequisite: course 115 or the equivalent. Study of communication campaigns as a way to effect social change. Effect on people's behaviors which occur via mass media and interpersonal communication in mass media. Focus on theory and practice of campaigns in such areas as health, intercultural and international communication. GE credit: SocSci.

151. Methods of Advocacy (4) I, II. The Staff
Lecture—4 hours. Prerequisite: course 51 or consent of instructor. Study and practice of methods involved in the effective advocacy of positions on current controversial issues. Relation of inquiry and explanation to advocacy. Consideration of logical and nonlogical means of persuasion. GE credit: SocSci.

152. Theories of Persuasion (4) I. Bell
Lecture—4 hours. Prerequisite: course 114 or 115 recommended. Theory and research on the effectiveness of various communication techniques used to influence the perceptions and behaviors of others. Focus on scientific research into the processes of persuasion and resistance to persuasion in various contexts. GE credit: SocSci.

*180. Current Topics in Rhetoric (4) II, III. The Staff
Seminar—4 hours. Prerequisite: upper division standing with a major in Rhetoric and Communication or consent of instructor. Group study of a special topic in Rhetoric and Communication. May be repeated once for credit; enrollment limited.

*190X. Upper Division Seminar (1-4) I, II, III. The Staff (Chairperson in charge)
Seminar—1-4 hours. Prerequisite: upper division standing and consent of instructor. In-depth examination at an upper division level of a special topic in Rhetoric and Communication. Emphasis upon student participation in learning. May not be repeated for credit. Limited enrollment.

192. Internship in Rhetoric and Communication (1-6) I, II, III. The Staff
Internship—3-18 hours. Prerequisite: declared major in Rhetoric and Communication and units of upper division Rhetoric and Communication courses. Work-research projects, usually at off-campus sites under departmental supervision. May be repeated for credit up to 12 units. Units do not count toward major requirement. (P/NP grading only.)

194H. Senior Honors Thesis (4) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour, individual tutoring on research project—3 hours. Prerequisite: senior standing and approval by Honors Committee. Directed reading, research, and writing culminating in the preparation of honors thesis under direction of faculty adviser.

197T. Tutoring in Rhetoric and Communication (2-4) I, II, III. The Staff
Seminar—1-2 hours; laboratory—1-2 hours. Prerequisite: upper division standing with major in Rhetoric and Communication and units of Department Chairperson. Tutoring in undergraduate Rhetoric and Communication courses, including leadership in small voluntary discussion groups affiliated with departmental courses. May be repeated for credit up to six units. (P/NP grading only.)

198. Directed Group Study (4) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge)
(P/NP grading only.)

Graduate Courses

Seniors may take graduate courses with consent of instructor.

213. Theory Development in Communication Inquiry (4) I. Berger
Seminar—4 hours. This course explores meta-theoretical approaches to developing social-scientific theories of human communication. Perspectives include covering-laws, systems, rules, axiomatic theory construction, causal modeling, scientific realism and grounded theory. Research design and measurement implications of these perspectives are examined.

214. Mass Communication Theory and Research (4) I. Bell
Seminar—4 hours. Prerequisite: course 220 or the equivalent. Examines the basic theories, models, and assumptions of mass communication. Reviews the current state of this discipline and major research developments. Special emphasis on research regarding media and violence, women and minorities, political communication, and new technologies.

*215. Mass Communication and Social Change (4) II. Alcalay
Seminar—4 hours. Prerequisite: course 220 and 214, or the equivalent. To gain an understanding of current theories and concepts in persuasion and mass communication. Topics of persuasion are used in communication campaigns. To acquire skills in the planning, implementation, and evaluation of campaigns. Offered in alternate years.

220. Empirical Methods in Communication (4) I. Motley
Lecture—4 hours. Prerequisite: course 115 or consent of instructor. Introduction to the use of experimental and descriptive research methods in communication research. Topics include survey research, interviewing, experimental and quasi-experimental design, and statistics.

*240. Advocacy in Contemporary Society (4) III. The Staff
Seminar—4 hours. Prerequisite: course 151 or the equivalent. Rhetorical and communication theories of argumentation and advocative stance. Analysis of the persuasive impact of argumentation occurring in current public controversies. Offered in alternate years.

*242. Proseminar in Symbolic Behavior (4) I. Motley
Seminar—4 hours. Prerequisite: course 220. Examination of language and/or other symbolic codes in communication. Investigated phenomena may include stylistic variation, speech acts, cognitive processing, communication rules, and audience effects. Offered in alternate years.

243. Persuasion Theory (4) I. Bell
Lecture/seminar—4 hours. Prerequisite: course 152 or consent of instructor. Major scientific theories of persuasion. Research programs related to persuasion theories.

244. Organizational Communication (4) III. Vohs
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Theory and research on communication processes in organizations.

*246. Perspectives in Rhetoric and Communication (4) II. The Staff
Seminar—4 hours. Critical survey of the current status of inquiry on communication in personal relationships, i.e., friendship, romantic, and marital relationships. Issues examined include the role of communication in constructing, maintaining, and dissolving relationships.

248. Media Criticism (4) II. Ono
Seminar—4 hours. Prerequisite: a course in criticism. Examines broadcast, print, and visual media by means of rhetorical, psychological, semiological, sociological, and cultural studies and perspectives. Comparison of media and of critical theory scope in understanding media messages. Offered in alternate years.

*249. Interpersonal Communication Theory (4) I. Bell
Lecture/seminar—4 hours. Prerequisite: course 134 or consent of instructor. Major theories of interpersonal communication and related research.

251. Special Topics in Interpersonal Communication (4) III. The Staff
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Selected topics in interpersonal communication. May be repeated for credit when topic changes.

252. Special Topics in Mass Communication (4) III. Alcalay
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Selected topics in mass communication theory and research. May be repeated for credit when topic changes.

253. Negotiation (4) III. Vohs
Seminar—4 hours. Prerequisite: graduate standing and consent of instructor. Theory and research on negotiation. Offered in alternate years.

*260. Communication Applications (2-4) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour; supervised field work—3-9 hours. Prerequisite: course 251 or the equivalent. Organization and implementation of a research project for a specific application of a communication program. May be repeated once for credit. (SU grading only.)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Lecture—3 hours.

299. Individual Study (1-12) I, II, III. The Staff (Chairperson in charge)
(S/U grading only.)

299R. Thesis Research (1-12) I, II, III. The Staff (Chairperson in charge)
Independent study—3-36 hours. Prerequisite: graduate standing in Rhetoric and Communication. (SU grading only.)

*Course not offered this academic year.
The Russian major exposes students to a culture rich in art, language, and literature and presents an important skill needed to enter the fields of foreign affairs, world politics, and international trade, or to begin graduate work in literature, history, and international relations.

The Program. The department offers a choice of three emphases. The common basis for the first two is extensive training in the Russian language. The Russian Literature emphasis concentrates on the evaluation of Russian literary movements and cultural trends. The second area of study, the Russian Language emphasis, focuses on linguistics and practical language skills. The third area, the Russian Area Studies emphasis, provides an interdisciplinary program offering training in the Russian language and literature and in the historical development and contemporary social, political, and economic conditions of the former Soviet Union.

Internships, Study Abroad, and Career Alternatives. Students who have completed two years of Russian language study can participate in the Education Abroad Program in Moscow. Many of our students also participate in summer, semester, and year programs sponsored by CIEE and ACTR in St. Petersburg and Moscow. Russian majors may participate in internships where they can serve as translators and interpreters for schools and business firms through Northern California. Upon graduation, many Russian majors enter the business world or enter graduate programs in Slavic studies and international relations. Those interested in furthering their study of Russian are encouraged to supplement their Russian studies with courses in related fields such as international relations, political science, computer science, or economics in order to maximize their career possibilities.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>Major Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature/Language emphasis</td>
<td>0-38</td>
</tr>
<tr>
<td>Russian 1 through 6 (or the equivalent)</td>
<td>. . . 30</td>
</tr>
<tr>
<td>Russian 41, 42</td>
<td>8</td>
</tr>
<tr>
<td>Recommended, Linguistics 1</td>
<td></td>
</tr>
<tr>
<td>Area Studies emphasis</td>
<td>0-30</td>
</tr>
<tr>
<td>Russian 1 through 6 (or the equivalent)</td>
<td>. . . 30</td>
</tr>
<tr>
<td>Russian 41 or 42 or the equivalent course in basic literary analysis</td>
<td>4</td>
</tr>
<tr>
<td>Depth Subject Matter</td>
<td>36-44</td>
</tr>
<tr>
<td>Russian Language emphasis</td>
<td></td>
</tr>
<tr>
<td>Russian 101A, 101B, 101C</td>
<td>12</td>
</tr>
<tr>
<td>Russian 102 or 105</td>
<td>4</td>
</tr>
<tr>
<td>Russian 103 or 105</td>
<td>4</td>
</tr>
<tr>
<td>Russian 121, 123</td>
<td>8</td>
</tr>
<tr>
<td>Russian 127 or 128</td>
<td>8</td>
</tr>
<tr>
<td>Additional upper division units chosen in consultation with adviser</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Units for the Major: 44-78

Major Adviser, J. Gallant

Honors and Honors Program. The honors program comprises at least one quarter of study under course 194H, which will include a research paper. See also the University and College requirements.

Minor Program Requirements:

Two minor programs are available to students interested in obtaining a solid background in Russian language or literature. The Literature minor does not require a knowledge of the Russian language. Individual minor programs may be designed in consultation with the undergraduate adviser.

UNITS

Russian Language emphasis	0-38
Russian 101A, 101B, 101C	12
Russian 102 or 105	4
Russian 103 or 105	4
Russian 160	
Additional upper division units chosen in consultation with adviser	8

Russian Area Studies emphasis	0-38
Russian 105	4
Russian 101A, 103, or 104	4
Russian 150	
Three literature courses to be chosen from Russian 121, 123, 126, 128, 140, 141	12
History 137B, 137C	8
Three courses, with no more than two in one area, to be chosen from the following two areas: (a) History 137A, 138, 120F; (b) Social sciences—Political Science 136, Economics 117, Geography 124	12

To meet special interest course needs, a student should obtain written approval from an adviser.

1. Elementary Russian (5) I. The Staff
 Discussion—5 hours; laboratory—1 hour. Introduction to Russian grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Russian 2 or 3 in the 10th or higher grade in high school may receive unit credit for the course on a P/NP grading basis only. Although a passing grade will be charged to the student's P/NP option, no petition is required. All other students will receive a letter grade unless a P/NP petition is filed.)

2. Elementary Russian (5) II. The Staff
 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Continuation of grammar and language skills developed in course 1.

3. Elementary Russian (5) III. The Staff
 Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Continuation of grammar and language skills developed in course 2.

4. Intermediate Russian (4) I. The Staff
 Discussion—4 hours; laboratory—1 hour. Prerequisite: course 3. Grammar review and conversational practice.

5. Intermediate Russian (4) II. The Staff
 Discussion—4 hours; laboratory—1 hour. Prerequisite: course 4. Russian grammar review. Introduction to literature, conversational practice.

6. Intermediate Russian (4) III. The Staff
 Discussion—4 hours; laboratory—1 hour. Prerequisite: course 5. Grammar review. Intermediate conversation and continued reading instruction.

10. Elementary Conversation (2) II, III. The Staff
 Discussion—2 hours. Prerequisite: course 1; course 2 or 3 (concurrently). Conversational practice to improve pronunciation and master spoken idioms. May be repeated for credit up to a maximum of 6 units.

41. Survey of Nineteenth-Century Russian Literature (in English) (4) I. Murav
 Lecture—3 hours. Introduction to dominant literary trends, major literary figures and works of Russian prose and poetry from the period of Sentimentalism through Romanticism and Realism to the beginnings of Modernism. Offered in alternate years. GE credit: ArtHum, Writ.

42. Survey of Twentieth-Century Russian Literature (in English) (4) II. Rancour-Laferriere
 Lecture—3 hours. Introduction to major literary trends such as Symbolism, Acmeism, Futurism, Neorationalism, and Socialist Realism. Readings from representative writers such as Gorky, Bely, Pasternak, Solzhenitsyn, and Tertz. Offered in alternate years. GE credit: ArtHum, Writ.

44. Children's Literature in Russia (4) I. Druzhnikov
 Lecture—3 hours; term paper. Knowledge of Russian not required. History and theory of children's literature, with special reference to Russian and Soviet examples. Analysis of genres, technique, and folklore elements, contrasted with those of the West. Students will write their own literature for children. Offered in alternate years. GE credit: ArtHum, Div, Writ.

98. Directed Group Study (1-5) I, II, III. The Staff
 Discussion—1-5 hours. (P/NP grading only)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only)

Upper Division Courses

101A. Advanced Russian (4) I. Gallant
 Lecture—2 hours; discussion—1 hour; oral reports. Prerequisite: course 6. Topics in Russian grammar for the advanced student. Reading and discussion of contemporary literary and journalistic texts. Conver-
sation exercises utilizing literary and colloquial variants of current Soviet speech.

101B. Advanced Russian (4) II. Gallant
 Lecture—2 hours; discussion—1 hour; oral reports. Prerequisite: course 101A. Topics in Russian grammar for the advanced student. Reading and discussion of contemporary literary and journalistic texts. Conversational exercises utilizing literary and colloquial variants of current Soviet speech.
101C. Advanced Russian (4) III. Gallant
Lecture—2 hours; discussion—1 hour; oral reports. Prerequisite: course 101B. Continuation of course 101B. Topics in Russian grammar for the advanced student. Reading and discussion of contemporary literary and journalistic texts. Conversational exercises utilizing literary and colloquial variants of current Soviet speech.

102. Russian Composition (4) II. Gallant
Discussion—3 hours; individual tutorial with instructor. Prerequisite: course 6. Practice in writing Russian. Oral composition of a different topic each week. Topics include: history, geography, politics, and literature of Russia; comparison of Soviet and American lifestyles; current events. Conducted in Russian. Optional to attend. GE credit: ArtHum.

*103. Literary Translation (4) III. Murav
Discussion—3 hours. Prerequisite: course 101C. Translation of Russian literary texts into stylistically equivalent idiomatic English. Offered in alternate years.

*104. Scientific Translation (4) III. Rancour-Laferriere
Discussion—3 hours; individual translation projects—1 hour. Prerequisite: course 101A. Techniques of translating scientific texts. Students will select articles from their fields of interest; Russian students will work on materials assigned by instructor. Offered in alternate years.

105. Advanced Russian Conversation (4) III. Druzhnikov
Conversation—3 hours; preparation of texts—1 hour. Prerequisite: course 6. Intensive conversational practice and discussion based on current events and contemporary texts. Offered in alternate years.

121. Nineteenth-Century Russian Prose (in English) (4) I. Druzhnikov
Lecture—3 hours; term paper. Development of prose from Pushkin and Gogol, through Dostoevsky and Tolstoy, to Maxim Gorky. Other writers are selected sequentially: Turgenev, Goncharov, Pisemsky, Saltykov, Chekhov. Romanticism, the Natural School, critical realism, and psychological realism are covered. Offered in alternate years. GE credit: ArtHum.

*123. Twentieth-Century Russian Prose (in English) (4) II. The Staff
Lecture—3 hours; term paper. Examination of various trends including Acmeism, Symbolism, Neorealism, and Socialist Realism in development of prose. Readings from such writers as Gorky, Zamiatun, Sholokhov, Pasternak, and Solzhenitsyn. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*126. The Russian Theater (in English) (4) II. Murav
Lecture—3 hours; discussion—1 hour. The main works of Russian dramatists from Gogol to the present, including Turgenev, Tolstoy, Chekhov, Gorky, Mayakovsky, Bulgakov, Shvarts. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

127. Nineteenth-Century Russian Poetry (4) II. Rancour-Laferriere
Discussion—3 hours; term paper. Prerequisite: course 6. Introduction to the principles of Russian versification followed by historical and poetic analysis of the following figures: Derzhavin, Zhukovsky, Pushkin, Delvig, Baratynsky, Lermontov, Nekrasov, Turgenev, and Fet. Conducted in Russian. Offered in alternate years. GE credit: ArtHum.

*128. Twentieth-Century Russian Poetry (4) II. Druzhnikov
Discussion—3 hours; term paper. Prerequisite: course 6. Introduction to principles of Russian versification followed by historical and poetic analysis of the following figures: Block, Akhmatova, Mandelstam, Eessenin, Mayakovsky, Khlebnikov, Pasternak, Evtushenko, Voznesensky, and Brodsky. Conducted in written Russian. Offered in alternate years. GE credit: ArtHum.

129. Russian Film (4) III. Murav
Lecture/discussion—3 hours; term paper. Prerequisite: completion of Subject Requirement. History of Russian film and social revolution, the cult of Stalin, dissident visions, film and the collapse of the Soviet empire, gender and the nation in Russian film. In English; films with English subtitles. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*130. Contemporary Soviet Culture (4) III. Murav
Lecture—3 hours; written work. Prerequisite: upper division standing or consent of instructor. Knowledge of Russian not required. Study of current trends in Soviet culture and the intricate relationship between artists and the government. Topics include: history of censorship, official and dissident art, recent changes in the cultural scene. Offered in alternate years. GE credit: ArtHum, Wrt.

131. Literature of Revolution (4) II. Murav
Lecture—3 hours; essays. Prerequisite: History 3 or 4, and/or any introductory literature course. Study of impact of ideological doctrine on Russian culture; the major artistic, political and historical works surrounding the Russian revolutions of 1905 and 1917. Offered in alternate years. GE credit: ArtHum, Wrt.

*132. Nature and Culture in the Soviet Union (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: any introductory course in environmental studies. Presents a history of the Soviet environmental movement from the 1920s through the 1990s, analyzing the influence of Stalinism on environmental ethics; concepts of society and nature in Soviet literature and film; and international implications of Soviet environmental policy. No knowledge of Russian required. GE credit: ArtHum, Wrt.

140. Dostoevsky (in English) (4) III. Murav
Lecture—3 hours. Reading and analysis of Dosto¬
evsky’s principal works such as Crime and Punish¬ment, The Idiot, The Brothers Karamazov, and The Diary. Study of social and political views as reflected in Dostoevsky’s works. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

141. Tolstoy (in English) (4) I. Rancour-Laferriere
Lecture—3 hours. Study of Leo Tolstoy’s literary evo¬lution and moral quest. Readings include his Confes¬sion, a major novel such as War and Peace or Anna Karenina, and representative shorter fiction. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*142. Women’s Autobiography (in English) (4) I. Murav
Lecture—2 hours; discussion—1 hour; term paper. Prerequisite: any introductory course in literature. Examination of Russian women’s autobiography from the 18th through the 20th centuries, emphasizing the way in which the genre of autobiography serves as a means of the writer’s creation of herself, as opposed to her definition by others. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*143. Alexander Solzhenitsyn (4) II. Rancour-Laferriere
Lecture/discussion—3 hours; term paper. Prerequi¬site: any introductory literature course or consent of instructor. Examination of the literary and political writ¬ings of the major Russian dissident in the biographical context in which they were created. Knowledge of Russian not required. GE credit: ArtHum, Div, Wrt.

*150. Russian Culture (4) III. The Staff
Discussion—3 hours; term paper. Knowledge of Russian not required. Study of Russian culture in nine¬eteenth and twentieth centuries. Brief introduction of the beginnings up to nineteenth century. Russian art, music, philosophy, church, traditions, and daily life. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

151. Soviet Writers and Censorship (4) II. Druzhnikov
Lecture—3 hours; discussion—1 hour. Prerequisite: any introductory course from the GE Literature Prepa¬ration List or consent of instructor. Literature and censors¬hip in the Soviet Union. Personal responsibility of the author vs. sovietism to state morality. Soviet myths and Soviet realities. GE credit: ArtHum, Wrt.

154. Russian Folklore (4) III. Rancour-Laferriere
Lecture—3 hours; term paper. Knowledge of Russian not required. Russian folklore, rituals, and history will be analyzed and compared with those of other peo¬ple. Sociological implications of attitudes toward family unit, children, etc. Influences of folklore on Russian literature and historiography. Offered in alternate years. GE credit: ArtHum, Div, Wrt.

*160. Russian Phonology and Morphology (4) II. Gallant
Lecture—3 hours; laboratory—1 hour. Prerequisite: courses 101A, 101B, or consent of instructor. Linguis¬tic analysis of the Russian sound system and of Rus¬sian word-formation. Offered in alternate years.

166. Representations of Sexuality in Russian Literature (4) I. Rancour-Laferriere
Lecture—3 hours; term paper. Prerequisite: Women’s Studies 50 or introductory psychology. Sexuality in Russian oral and written literature from a dual, feminist¬psychoanalytic perspective. Monogamy, free love, sexism, homosexuality, incest, androgyny, and others as depicted by such writers as Pushkin, Dostoevsky, Tol¬stoy, Dostoievsky, Akhmatova, Blok, Tolstaya, and oth¬ers. GE credit: ArtHum, Div, Wrt, others.

192. Research Essay (2) I, II, III. The Staff
Prerequisite: a Russian literature course (may be taken concurrently). A research essay, based on primary and secondary sources, dealing in depth with a topic arising from or related to the prerequisite litera¬ture course. May be repeated for credit.

*193. Special Study for Honors Students (4) I, II, III. The Staff
Independent study—4 hours. Prerequisite: open only to majors of senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in Russian studies.

195H. Honors Thesis (4) I, II, III. The Staff
Independent study—4 hours. Prerequisite: course 194H. Writing an honors thesis, under the direction of a faculty member, on a topic in Russian studies.

198. Directed Group Study (1-5) I, II, III. The Staff
(Chairperson in charge)
(P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
(Chairperson in charge)
(P/NP grading only.)

Graduate Courses

*200. Old Church Slavie (4) I. Gallant
Lecture—3 hours; reading projects. A synchronic and diachronic analysis of Old Church Slavic. Offered in alternate years.

202. History of the Russian Language (4) II. Gallant
Seminar—3 hours; individual reading projects—1 hour. Prerequisite: course 201. Survey of Russian historical grammar and develop¬ment of Russian literary language. Reading in the original texts from eleventh to eighteenth century. Offered in alternate years.

*204. Descriptive Russian Grammar (4) III. Gallant
Lecture—3 hours; reading projects—1 hour. Introduc¬tion to modern Russian phonology and morphology. Offered in alternate years.

*210A. Style and Syntax (4) I. Druzhnikov
Discussion—3 hours; reading projects—1 hour. Examina¬tion of stylistic differences between spoken and written Russian.

*210B. Style and Syntax (4) II. Druzhnikov
Discussion—3 hours; reading projects—1 hour. Prerequ¬itive: course 210A or consent of instructor. Examina¬tion of stylistic differences between spoken and written Russian.

*210C. Russian Style and Syntax (4) III. Druzhnikov
Discussion—3 hours; term paper. Prerequisite: course 210B or consent of instructor. Students present formal papers and talk on political, economic, social, and cultural topics, lead and participate in discussions. Conducted in Russian.

*220. Old Russian Literature (4) II. The Staff
Seminar—3 hours. Advanced study of intellectual movements and literary styles of men such as The Song of Igor’s Campaign, Zadonschina, Epilany’s
Science and Society

(College of Agricultural and Environmental Sciences)

Susan B. Kaiser, Ph.D., Program Director
Program Office, 228 Mrak Hall (916-752-8669)

Committee in Charge
Patricia J. Berger, Ph.D., Associate Professor (Animal Science)
Jeffrey Granet, Ph.D., Professor (Entomology)
Glória E. Helfand, Ph.D., Assistant Professor (Agricultural Economics)
Janet L. Hethorn, Ph.D., Assistant Professor (Environmental Design)
Susan B. Kaiser, Ph.D., Professor (Textiles and Clothing)

Annie King, Ph.D., Associate Professor (Asian Science)
Janet Momsen, Ph.D., Professor (Human and Community Development)
David S. Reid, Ph.D., Professor (Food Science and Technology)
Roger J. Romani, Ph.D., Professor Emeritus (Pomology)
Howard G. Schultz, Ph.D., Professor Emeritus (Food Science and Technology)
John Stanfield, Ph.D., Professor (African American and Agriculture)
Eileen Sutter, Ph.D., Associate Professor (Pomology)
Eric Zilbert, Lecturer (Agronomy and Range Science)

The Program. Science and Society is an interdepartmental teaching program administered by the College of Agricultural and Environmental Sciences that offers students throughout the campus the opportunity to discover the connections that link the social, biological, and physical sciences with societal issues and cultural discourse. The program examines processes in relation to societal values, public policy, and ethics, including issues associated with cultural diversity. Whenever possible, outside the classroom opportunities are included as part of the learning experience.

The Science and Society teaching program serves students of all majors and interests. It can allow lower division students who have not yet declared a major a meaningful context for exploring diverse subject matter. The minor for the program includes, in addition to the program courses, upper division courses that offer meaningful context for exploring diverse subject matter. The minor for the program includes, in addition to the program courses, upper division courses.

Minor Program Requirements:

科学与社会 (College of Agricultural and Environmental Sciences)

Susan B. Kaiser, Ph.D., Program Director
Program Office, 228 Mrak Hall (916-752-8669)

委员会成员
Patricia J. Berger, Ph.D., Associate Professor (Animal Science)
Jeffrey Granet, Ph.D., Professor (Entomology)
Glória E. Helfand, Ph.D., Assistant Professor (Agricultural Economics)
Janet L. Hethorn, Ph.D., Assistant Professor (Environmental Design)
Susan B. Kaiser, Ph.D., Professor (Textiles and Clothing)

Annie King, Ph.D., Associate Professor (Asian Science)
Janet Momsen, Ph.D., Professor (Human and Community Development)
David S. Reid, Ph.D., Professor (Food Science and Technology)
Roger J. Romani, Ph.D., Professor Emeritus (Pomology)
Howard G. Schultz, Ph.D., Professor Emeritus (Food Science and Technology)
John Stanfield, Ph.D., Professor (African American and Agriculture)
Eileen Sutter, Ph.D., Associate Professor (Pomology)
Eric Zilbert, Lecturer (Agronomy and Range Science)

该计划。科学与社会是一个跨学科的教学计划，由农业和环境科学学院管理，为校园内的学生提供探索社会、生物和物理科学之间联系的机会。该计划包括课程，以及上学期的课程，提供有意义的上下文，探索多样化的主题。该计划的副专业包括，除了该计划的课程之外，还包括上学期的课程。

相关课程。请参阅非洲和非洲研究165, 农业经济学120, 147, 148, 农业系统和环境1, 101, 122, 动物科学/国际合作发展102, 应用行为科学118, 162, 174, 动物科学13, 环境研究115, 126, 160, 164, 165, 纤维和聚合物科学110, 地理学142, 历史185A, 185B, 历史和哲学科学150, 自然与文化100, 哲学104, 植物病理学140, 植物科学1, 10, 104, 政治科学156, 175, 公共演讲和沟通115, 122, 124, 140, 野生生物, 鱼和野生动物保护生物学10。

辅修课程要求：

科学与社会 (科学与社会) 20-25
科学与社会1, 2, 3, 或5
科学与社会90A, 90B, 90C或90D
科学与社会120

科学与社会120

一个课程从以下的四个地区

科学与社会

适用行为科学118, 162, 历史185A, 185B, 历史和哲学科学

科学与社会150, 自然和文化100, 或哲学104

政策与决策制定

农业经济学120, 147, 环境研究165, 185C, 或科学与社会190X

沟通与社会

农业系统和环境1, 122, 应用行为科学174, 哲学和沟通115, 122, 124, 或140

文化、道德与应用

非裔美国和非洲研究165, 农业系统和环境101, 环境研究115, 126, 164, 地理学142, 或植物病理学140

辅修顾问：S.B. Kaiser。
Social and Ethnic Relations

The interdisciplinary minor in Social and Ethnic Relations explores the racial, ethnic, class and gender aspects of human relations in the modern world. Students study human societies and cultures from a multi-ethnic perspective and across established academic departmental lines. The minor is jointly sponsored by the African American and African Studies Program, the Asian American Studies Program, the Department of Native American Studies, and the Women's Studies Program.

Minor Program Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social and Ethnic Relations</td>
<td>24</td>
</tr>
<tr>
<td>Select one course from each of the following six groups to total 24 units.</td>
<td></td>
</tr>
<tr>
<td>(a) African American and African Studies 100, Anthropology/Native American Studies 134, Women's Studies 102</td>
<td></td>
</tr>
<tr>
<td>(b) African American and African Studies 123, 133, 145A</td>
<td></td>
</tr>
<tr>
<td>(c) Asian American Studies 1, 2, 100, 110, 130</td>
<td></td>
</tr>
<tr>
<td>(d) Chicano/a Studies 130, 132</td>
<td></td>
</tr>
<tr>
<td>(e) Native American Studies 1, 10, 130A, 130B, 130C, 157, 157</td>
<td></td>
</tr>
<tr>
<td>(f) Women's Studies 103, 104, 180</td>
<td></td>
</tr>
</tbody>
</table>

Advising: Contact the African American and African Studies Program, 280 Kerr Hall, 916-752-1548.

Social Theory and Comparative History

William H. Hagen, Ph.D., Program Director and Professor

Program Office: 2231 Social Sciences and Humanities Building (916-752-8707)

Graduate Study: The program comprises coursework and research leading to the Ph.D. with a designated emphasis in Social Theory and Comparative History. The program provides theoretical training and interdisciplinary perspective to Ph.D. candidates in the five participating departments (Anthropology, Economics, History, Political Science, Sociology). Students from other departments are also welcome. All students must fulfill all Ph.D. requirements of their home department. The additional requirements leading to the designated emphasis include: (1) four graduate courses (Social Theory and Comparative History 250 or History 204, Sociology 242A, and two courses sponsored by the Social Theory and Comparative History program, one of which must be offered by a department other than the student's home department); (2) a presentation of a Social Theory and Comparative History field as one area of specialization in the departmental Ph.D. qualifying examination, (3) oral discussion, following passage of the Ph.D. qualifying examination, based on the student's dissertation prospectus; (4) completion of the dissertation to the satisfaction of the student's thesis committee, one of whose members will be a representative of the Social Theory and Comparative History program.

Graduate Advising: Consult the Program Office for advising and detailed information on application and requirements.

Courses in Social Theory and Comparative History (STH)

Graduate Courses

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>Research in Social Theory and Comparative History</td>
<td>4.0</td>
</tr>
</tbody>
</table>

290. Advanced Topics in Social Theory and Comparative History (4) I, II, III. The Staff Seminar—3 hours; term paper. Prerequisite: consent of instructor and History 204 or Sociology 242A. Interdisciplinary study of particular substantive problems in social theory and comparative history. Topics vary.

295. Advanced Group Research in Social Theory and Comparative History (1-12) I, II, III. The Staff Discussion—1 hour. Prerequisite: consent of instructor. Participation in research workshops sponsored by the Center for Comparative Research in History, Society, and Culture. May be repeated for credit. (S/U grading only.)

Sociology

(Study of Letters and Science)

Fred Block, Ph.D., Chairperson of the Department

Department Office, 1282 Social Sciences and Humanities Building (916-752-0782)

Faculty

Nicole W. Biggart, Ph.D., Professor (Sociology, Management)

Fred Block, Ph.D., Professor

Lawrence E. Cohen, Ph.D., Professor

James C. Cramer, Ph.D., Associate Professor

Diane H. Feinmee, Ph.D., Associate Professor

Jack A. Goldstone, Ph.D., Professor

T. Ryken Grattel, Ph.D., Assistant Professor

John R. Hall, Ph.D., Professor

Frank Hirtz, Ph.D., Assistant Professor (Human and Community Development)

Mary Jackman, Ph.D., Professor

Carole E. Joffe, Ph.D., Professor (Sociology, Women's Studies)

Carl C. Jorgensen, Ph.D., Associate Professor

Ming-Cheng Lo, Ph.D., Assistant Professor

Lyn H. Lofland, Ph.D., Professor

Donald A. Palmer, Ph.D., (Management)

Belinda Robott, Ph.D., Assistant Professor (Sociology, Women's Studies)

Vicki Smith, Ph.D., Associate Professor

Judith Stacey, Ph.D., Professor (Sociology, Women's Studies)

John H. Stanfield, Ph.D., (African American and African Studies, Sociology)

John T. Walton, Ph.D., Professor (Anthropology, Sociology)

Diane L. Wolf, Ph.D., Associate Professor

Emeriti Faculty

Bruce M. Hackett, Ph.D., Professor Emeritus

Edwin M. Lernert, Ph.D., Professor Emeritus

John F. Lofland, Ph.D., Professor Emeritus

Leon H. Mayhew, Ph.D., Professor Emeritus

Julius A. Roth, Ph.D., Professor Emeritus

John F. Scott, Ph.D., Professor Emeritus

Affiliated Faculty

Janet Gouldner, Ph.D., Lecturer

Ellen Robert, Ph.D., Lecturer

Norman Skonkov, Ph.D., Lecturer

Ann Van De Pol, Ph.D., Lecturer

The Major Programs

Sociology is the study of human society in all its manifestations. Its aim is to discover the process and structure of human interaction, to identify the main forces that sustain or weaken social groups, and determine the conditions that transform social life. Sociology, like any science, is a disciplined, intellectual quest for knowledge about the fundamental nature of things.

The Program. The Department of Sociology offers two major programs, Sociology and Sociology-Organizational Studies.
Students selecting the Sociology major may choose from four options offered within this major. The General Sociology emphasis allows students to obtain a broad understanding of the concepts, methods, and theories of sociology. This option is designed for students desiring a solid liberal arts education as well as those interested in graduate work in the social sciences. Students with a special interest in the areas of Law and Society or Social Services may choose a more specialized program of courses and practical experience in the sociology major. These options prepare students for careers in such areas as law, corrections, social work or counseling. The Comparative Studies and World Development emphasis provides a sociological perspective on social and economic changes throughout the world, with a stress on relationships between “developed” and “underdeveloped” societies. It prepares students for graduate training leading to careers in international fields.

The Sociology–Organizational Studies major develops a broad understanding of the political, social, and economic organizations that comprise modern society. This major emphasizes a sociological perspective, but incorporates a multidisciplinary field of study. The major introduces students to a range of theories and methods that social scientists use in the analysis of organizations. Majors in Sociology–Organizational Studies will be prepared for a variety of career options, particularly in the field of management. The major specifically meets entry requirements for programs of professional training leading to a Masters degree in public or private management, and may also lead to further study in any of the disciplinary areas incorporated in the major.

SOCIOLOGY MAJOR

A.B. Degree Requirements:

General emphasis:

UNITS

Preparatory Subject Matter ..24-25

Sociology 1, 2, or 3; 46A and 46B (or the equivalents) ..12-13

Select units from Anthropology 2, 204

Select units from History 4A, 4B, 4C, 8, 9A, 9B, 10, 15, 16, 17A, 17B4

Select units from Philosophy 5, 6, 144

Depth Subject Matter ..44

Sociology 100 ..4

A. Sociology 100 ..16

B. Select one course from each of the following clusters:16

Individual, Culture and Society:
Sociology 125, 126, 1354

Stratification and Social Differentiation: Sociology 130, 132, 1404

Organizations and Institutions:
Sociology 118, 131, 146, 180A4

Social Dynamics:
Sociology 141, 143A, 1704

C. Select three upper division courses from one of the following clusters (not counting courses taken to fulfill requirement B).12

Individual, Culture and Society:
Sociology 120, 122, 125, 126, 127, 128, 129, 131, 132, 134, 135, 143B, 148, 150, 152, 172, 173, 175, 176

Stratification and Social Differentiation:
Sociology 118, 128, 129, 130, 132, 133, 134, 140, 145A, 145B, 172, 185, and not more than one of the following courses: African American and African Studies 123, Asian American Studies 100, Chicano/a Studies 110, or Native American Studies 115

Organizations and Institutions:
Sociology 118, 119, 124, 131, 133, 139, 144, 146, 149, 150, 154, 155, 159, 180A, 180B, 181, 182, 183, 185

Social Dynamics:

Sociology 123, 125, 138, 141, 143A, 145A, 145B, 147, 148, 156, 157, 170

Student-selected thematic cluster developed with a faculty adviser and approved by the Sociology Undergraduate Curriculum Committee

D. Eight units of Sociology beyond courses taken to fulfill above requirements, and outside of the course cluster used to fulfill requirement C.

E. One integrative course (prerequisite: senior standing and completion of requirement for Preparatory Subject Matter, Depth Subject Matter, requirement A, and at least two of the courses for requirement B). Choose from Sociology 190X, 191, 194HA-194HB.

Total Units for the Major..68-69

(Law and Society option)

Social Services emphasis:

UNITS

Preparatory Subject Matter ..28

Sociology 2, 3; 46A and 46B (or the equivalents) ..16

Psychology 1 ..14

Select units from African American Studies 10, 15; Asian American Studies 1, 2; Chicano Studies 10, 20; Native American Studies 10, 708

Depth Subject Matter ..44

Sociology 131, 140, 180A12

Select units from upper division human psychology ..4

Select seven courses distributed as specified

Social Issues:

Sociology 119, 120, 122, 124, 139, 143A, 144, 146, 150, 152, 154, 155, 1708

Social Interaction:
Sociology 157, 158, 163, 172, 128, 143B, 148, 157 ..4

Race and Ethnicity:
African American Studies 100; Applied Behavioral Sciences 176; Asian American Studies 110, 111, 150; Chicano Studies 110; Native American Studies 112, 124; Sociology 129, 130, 1344

Gender:
Sociology 132, 133, 145B, 1724

Organizational Behavior:
Sociology 158, 180A, 180B, 181, 182, 183 ..4

Methodology:
Sociology 103, 106 (or the equivalents) 192, 194HA, 194HB4

Total Units for the Major..72

(Social Services option)

Comparative Studies and World Development emphasis:

UNITS

Preparatory Subject Matter ..30-57

Sociology 1; 46A and 46B (or the equivalents) ..13

Economics 1A, 1B ..10

Anthropology 2 ..4

At least 4 units from Geography 2-2G, History 16, Political Science 24

Course work in language instruction in modern foreign language equivalent to 26 units at UC26

Depth Subject Matter ..48

Sociology 141, 145A, 165A, 17816

Economics 115A, Anthropology 1268

At least twelve units from Sociology 118, 131, 134, 141, 142, 15612

Regional focus, three courses from one of the following groups:12

(a) Africa/Middle East:
Anthropology 140A, 140B, 142, Economics 175, Geography 125A, 125B, History 115A, 115B, 115C, 116, Political Science 134, 146

(b) Latin America/Pacific:
Anthropology 144, 147, Geography 122A, 122B, History 161A, 161B, 162, 163, Spanish 135, 136

(c) Asia:

Total Units for the Major..79-105

(Comparative Studies and World Development)

SOCIOLOGY—ORGANIZATIONAL STUDIES MAJOR

A.B. Degree Requirements:

UNITS

Preparatory Subject Matter ..27

Sociology 1, 2, 46A, 46B (or Statistics 131) ..17

Economics 1A, 1B ..10

Depth Subject Matter ..44

Sociology 180A, 180B8

Sociology 1068

Select units from Psychology 183, Rhetoric and Communication 1304

Select 16 units from one of the following two clusters and select 4 units from the other cluster:20

(1) Public Administration

(2) Business and Society

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Select units from Sociology 128, 130, 132, 140, 145A, 145B, 1724
Select from Sociology 190X, 192, 194HA-194HB, 2004
(Required prerequisite for 190X or 192: senior standing and completion of all major requirements other than 12 units of the cluster requirements.)

Total Units for the Major..47

Major Advisers. Consult the Departmental Advising Office, 1282 Social Sciences and Humanities Building.

Honors Program. An Honors Program is available to students in Sociology and Sociology–Organizational Studies majors who have demonstrated excellence in their field of study. To be eligible for the program, students must have a grade-point average of 3.5 in the major and the recommendation of a faculty sponsor familiar with their work. In addition to meeting the standard major requirements, the honors student writes an honors thesis and participates in a two-quarter honors seminar (course 194HA–194HB). Successful completion of the Honors Program, when combined with College GPA requirements, enables the student to graduate with Highest Honors or with High Honors.

Minor Program Requirements:

Students in other disciplines may elect to minor in Sociology by choosing a sociological subject emphasis listed below. On transcripts, the minor will appear as a minor in Sociology.?

Sociology–General...20
Select units from Sociology 126, 140, 165A, 165B, 166A4
One course from three clusters (see cluster lists under Sociology Major—General Emphasis)12

Sociology–Organizational Studies.............................20
Sociology 180A and 180B ..2
Select units from Agricultural Economics 112, American Studies 125, Applied Behavioral Sciences 162, 163, 164, Economics 100, Political Science 190, 191, 183, 187, 188, Psychology 183, Rhetoric and Communication 134, 1368
Select units from Anthropology 122, History 174A, 179, 167A, 167B, 144D, Sociology 118, 139, 141, 156, 159, 175, 181, 1834

Sociology–Social Service..20
Sociology 185, plus 4 units selected from Sociology 131, 132, 133, 145B8
Four units from Sociology 129, 130, 133, 134, 140, 1724
Four units from Social Issues cluster and four units from Social Interaction cluster (See cluster lists under Sociology Major—Social Services emphasis)8

Sociology–Law and Society.......................................20
Sociology 155, plus 4 units selected from Sociology 120, 150, 1528
Four units from Sociology 129, 130, 131, 132, 133, 134, 1724
Four units from Sociology 118, 139, 140, 141, 145A, 165A or 180B, 1854
Four units from Sociology 122, 124, 126, 128, 143A or 143B, 156, 157, 165A or 165B4

Minor Advisers. Consult the departmental Advising Office, 1282 Social Sciences and Humanities Building.

Graduate Study. The Department offers programs of study and research leading to the M.A. and Ph.D. degrees in sociology. Further information and applications regarding graduate study may be obtained at the department office.

Graduate students in Sociology have the opportunity to pursue designated emphases in Critical Theory, Women's Studies, Social Theory and Comparative History, or Native American Studies. See these head-ings for further details on these interdisciplinary programs.

Graduate Advisers. Consult the Graduate Administrative Assistant, 1289 Social Sciences and Humanities Building.

Courses in Sociology (SOC)

Lower Division Courses

1. Introduction to Sociology (5.) I, II, The Staff
Lecture—4 hours; discussion—1 hour. Principles and basic concepts of sociology. The study of groups, culture, collective behavior, classes and caste, commu-
nity and ecology, role, status, and personality. GE credit: SocSci.

2. Self and Society (4.) I, II, The Staff
Lecture—3 hours; discussion—1 hour. Principles and basic concepts of sociological social psychology. Includes the study of the character of the self, identity, roles, socialization, identity change, emotion and social interaction. GE credit: SocSci, Wrt.

Lecture—3 hours; discussion—1 hour. General sociological consideration of contemporary social problems in relation to cultural change and programs for improvement. GE credit: SocSci, Wrt.

4. Immigration and Opportunity (4.) III, Cramer
Lecture—3 hours; term paper/discussion—1 hour. Social and demographic analysis of immigration: motives and elements, immigration and social mobility; immigration, assimilation, and social change; multicultural societies. Detailed study of immigration into the U.S., with comparative studies of Europe, Australia, and other host countries. GE credit: SocSci, Div, Wrt.

5. Global Social Change: An Introduction to Macrosociology (4.) I, Goldstone
Lecture—3 hours; discussion—1 hour. An introduction to social change and diversity in world history, including the United States. Examines population and family, technological change and economic development, power and status, culture and identity. GE credit: SocSci, Div, Wrt.

25. Sociology of Popular Culture (4.) I, III, The Staff
Lecture—3 hours; discussion—1 hour. Social mecha-
nisms that shape modern popular culture. High, folk, and mass culture: historical emergence of popular cul-

46A. Introduction to Social Research (4.) I, II, The Staff
Lecture—3 hours; discussion—1 hour or term paper or project (instructor's option). Examination of the methodological problems of social research. Selection and definition of problems of investigation, data-gathering techniques, and sampling.

46B. Introduction to Social Research (4.) II, Feilmeier, III, The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Data-analysis techniques, measurement, scaling, multivariate analysis, and quantitative measures of association.

90X. Lower Division Seminar (1-2) I, II, III, The Staff (Chairperson in charge)
Seminar—1-2 hours. Prerequisite: lower division standing and consent of instructor. Examination of a special topic in Sociology through shared readings, discussions, written assignments, or special activities such as fieldwork, laboratory work, etc. May not be repeated for credit.

98. Directed Group Study (1-5) I, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. Primarily intended for lower division students. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III, The Staff (Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Classical and Modern Sources of Sociological Theory (4.) II, The Staff
Lecture—3 hours; term paper. Prerequisite: upper division standing or consent of instructor. Historical introduction of sociological thought, with special refer-
ence to its 19th-century origins and 20th-century lines of development. Consideration of theoretical texts may include works of Marx, Durkheim, and early critical theorists, Parsons, and the Chicago School. (Not open for credit to students who have received credit for course 165A.) GE credit: Wrt.

103. Evaluation Research Methods (4.), I, III, The Staff
Lecture—3 hours; discussion—1 hour or field research (decided by instructor each time course offered). Prereq-
site: course 46A and 46B, or Statistics 13 or the equivalent. Intermediate level course in statistical analysis of social data, emphasizing the logic and use of statistical measures, procedures, and inferential models especially relevant to sociological analysis.

118. Political Sociology (4.) I, Goldstone; II, Jackman; III, The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Relation of social cleavages and social cohesion to the functioning of political institu-
tions; the social bases of local and national power structures; social sources of political movement, analysis of concepts of alienation, revolution, ideology, ruling class, and elite.

*119. Peace Institutions (4.) II, Lofland
Lecture—3 hours; discussion—1 hour or term paper or project. Survey and analysis of private and public groups and organizations working for world peace by means other than preparing for war or supporting such preparations. Particular focus on peace institu-
tions in the political, economic, scientific, religious, and educational realms.

120. Deviation and Society (4.) I, II, The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Theory and studies of deviation in relation to societal reactions and processes and social roles. Stigma and incapacity; cosmetic defect. Deviation theory applied to selected crimes, prostitu-
tion, drugs, alcohol use, and mental disorders. Creat-
ivity and society. GE credit: SocSci.

*122. Sociology of Adolescence (4.) I, The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Chronological age and social stat-
tus; analysis of social processes bearing upon the socialization of children and adolescents. The emer-
gence of “youth cultures.” Generational succession as a cultural problem.

123. American Society (4.) I, The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. The geographic and social structure of American society and population, with emphasis on ethnic and class groups as bases for political and economic interest. Attention to selected current social controversies.

*124. Sociology of Education (4.) I, The Staff
Lecture—3 hours; term paper or discussion—1 hour (instructor's option). Education and the social struc-
ture. Class size, curriculum, and economies of scale. Relations between families and schools in socializa-
tion; familial ascription and educational achievement. Education and industrialization. Occupational and structural inequality of schools. Discussion of selected controversies.

125. Sociology of Culture (4.) I, Hall
Lecture/discussion—3 hours; term paper. Sociologi-
cal approaches to study of historical and contempo-

*Course not offered this academic year.
Family structure and gender roles are considered in relation to socio-historical dynamics. Offered in alternate years. GE credit: Div; Wrt.

135. Social Relationships (4) I. Felmlee
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1, 2, 3, or 4, and upper division standing. Social and cultural factors influencing friendships and intimate relationships. Topics include relationship development, relationship maintenance, and relationship loss. Offered in alternate years. GE credit: Div; Wrt.

136. Economic Sociology (4) I. Block
Lecture—3 hours; discussion—1 hour. Prerequisite: Economics 1A or 1B and upper division standing in the social sciences. Overview of the rapidly growing field of economic sociology. Focus on variations in the ways in which social classes, the relationships between individuals and collective rationality will also be emphasized. Offered in alternate years.

139. Corporations and Society (4) I. The Staff; II. Smith
Lecture—3 hours; discussion—1 hour; term paper. Prerequisite: course 1 or 2 or 3, and upper division standing. The study of the history and power of the modern corporation; corporate organization, politics, the state, and the corporation; labor unions and the labor process; competition, regulation and international markets; the multinational and conglomerate corporation, and mass markets and consumerism.

140. Social Stratification (4) I. Jackman; II. The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project (instructor’s option). Social stratification. Offered in alternate years. GE credit: Div; Wrt.

141. Industrialization and Social Change (4) I. The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Selected technological and social factors. Preconditions of economic development and industrialization. Social, political, and cultural influences at various levels of economic development. Major historical differences and major current trends. Emphasis on issues of race and ethnic stratification and to the study of migration and urban social structure.

142. Sociology of Transportation (4) III. The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Selected technological and social factors. Preconditions of economic development and industrialization. Social, political, and cultural influences at various levels of economic development. Major historical differences and major current trends. Emphasis on issues of race and ethnic stratification and to the study of migration and urban social structure.

143A. Urban Sociology (4) I. L. Lofland
Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: course 1 or the equivalent. Prerequisite: course 1 or the equivalent. Theories of city origins. Analysis of the historic process of urbanization and of varying city types. Comparison of American and European experience of metropolitanization, counterurbanization, and neighborhood change. Consideration of competing theories of urban growth and change and competing visions of the urban future. Offered in alternate years.

143B. Sociology of City Life (4) I. L. Lofland
Lecture—3 hours; discussion—1 hour or term paper or project (instructor’s option). Prerequisite: course 1 or the equivalent; course 143A recommended. Critical dissection of the “loss of community” issue. Analysis of the organization of primary ties in the city, of the culture of urban public life and of the learning of city skills. Offered in alternate years. GE credit: Wrt.

144. Agriculture and Society (4) Walton, Wood
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: advanced standing in the social sciences or one year of course work in agricultural and environmental sciences. Development of agriculture as a major enterprise in modern society with the concomitant reduction in the labor force and family farm. Analysis of issues including mechanization, migrant labor, corporate farming, and public resource policy. Offered in alternate years.

145A. Sociology of Third World Development (4) The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 1; upper division standing. Introduction to the theories and contemporary issues in the sociology of development. Topics include urbanization, rural-urbanian change, class, status groups, international division of labor, sectoral shifts, international capital, informal economy, gender, and political processes are analyzed within a comparative-historical framework. GE credit: Div; Wrt.

145B. Gender and Rural Development in the Third World (4) II. Wolf
Seminar—4 hours. Prerequisite: course 1; upper division standing. Political-economic analysis of women and work and during the process of socioeconomic change in the world with particular attention to the family/household context. Offered in alternate years. GE credit: Div; Wrt.

146. Sociology of Religion (4) II. Hall
Lecture—3 hours; discussion—1 hour or term paper or research project. Religion and social change, religion and social movements, religion and social control, religion and social control, religious concepts applied toward understanding Eastern Asian society. Emphasis on the political structure, stratification, and economy in China and Japan. Analysis of historical and contemporary similarities and differences. Offered in alternate years.

148. Collective Behavior (4) The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project (instructor’s option). Prerequisite: course 1 or the equivalent. Prerequisite: course 1 or the equivalent. Prerequisite: course 1 or the equivalent. Study of belief systems and social movements and social processes in extra-ordinary circumstances, including crowd panics, mass scares, collective protests, riots, revolutionary situations, ecstatic and revivalist gatherings, crazes, fads, and fashions.

149. Religion and American Society (4) III. Hall
Lecture—3 hours; class project. Historical, contemporary survey of religious traditions and organizations and their relation to U.S. social and cultural patterns. Cultural evolution, religious pluralism, minority and deviant communities, religious migration, U.S. religion as a social institution, and religion, politics, and social stratification. Offered in alternate years. GE credit: Div; Wrt.

150. Criminology (4) I. The Staff; III. Cohen
Lecture—3 hours; discussion—1 hour or term paper or research project. Sociological analysis of criminal behavior, including criminal behavior and the criminal justice system. GE credit: Wrt.

152. Juvenile Delinquency (4) I. The Staff; II. Cohen
Lecture—3 hours; discussion—1 hour or term paper or research project. Study of juvenile delinquency in relation to the family, peer groups, community, and institutional structures. Consideration of processing of the delinquent by formal agencies of control.

154. Sociology of Health Care (4) III. Joffe
Lecture—3 hours; discussion—1 hour or term paper or research project. Overview of sociological research in medicine and health care, with emphasis on the organizational, institutional, and social psychological aspects.

155. Sociology of Law (4) I, II, III. The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Study of selected legal institutions and processes and the impact of the law on society. GE credit: Div; Wrt.

156. Social Movements (4) I. J. Lofland; III. Lo
Lecture—3 hours; discussion—1 hour or term paper or research project (instructor’s option). Analysis of several topics including the impact of social movements on society.
aspects of social movements: mobilization, forms of organization, ideology, recruitment, leadership, strategies and tactics, development, effects. Frequent use of sound and film/visuals. GE credit: SocSci.

*157. Social Conflict (4) II. Lofland
Lecture—3 hours; discussion—1 hour or term paper or project. Analysis of the causes, dynamics, and regulating mechanisms within and between various kinds of social groupings with particular reference to nonviolent methods of waging and regulating conflict.

*158. Consumer-Vendor Relationships (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Examine the relationship between consumers and the vendors of goods and services using case materials, student projects, and relevant literature in sociology and related fields. Emphasis will be on organizational structure and bargaining power.

*159. Sociology of Occupations (4) III. Smith
Lecture—3 hours; discussion—1 hour or term paper or research project. Natural history of occupations; the institutional matrix of occupations, colleague and client relationships; occupational social controls; career lines, and occupational-related self-definitions; comparative analysis.

170. Population (4) II. Cramer
Lecture—3 hours; discussion—1 hour or term paper or research project. Introduction to the study of human population, including theories and statistical measures of social causes and consequences of population trends; changes in population structure; geographical distribution, migration, socio-psychological factors affecting fertility. GE credit: SocSci.

172. Ideology of Class, Race and Gender (4) II. Jonassen
Lecture—4 hours. Examination of popular belief systems that accompany relations between social classes, whites and blacks, and men and women in the United States. How do dominant groups attempt to justify each relationship, and is there ideological conflict or consensus between groups. GE credit: Div. Wrt.

*173. Sociology Through Literature (4) Walton
Lecture—3 hours; discussion—1 hour or term paper or research project. Introduction to analysis of literature as sociological data. Reading of works on American and other societies by authors such as Steinbeck, Lewis, Dreiser, Schulberg, Orwell, etc. Offered in alternate years.

*175. Mass Communication (4) III. Lofland
Lecture—3 hours; term paper. Prerequisite: course 1 or 2. Examines the relationship between the media and social structures. History of media-state relations. Media as reflector and shaper of values. Emphasis on current European and Marxist and pluralist theories rather than on content analysis. Offered in alternate years.

*176. Sociology of Knowledge (4) I. The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Critical analysis of the social foundations of knowledge in society. The history, problems and dilemmas in classical sociology of knowledge. Contemporary applications. Natural and social sciences as social systems. Sociology of personal knowledge in everyday life.

180A. Complex Organizations (4) I. The Staff; II. Smith
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 180A. An emphasis on organization theory. Designed to introduce sociological concepts, address the alternative psychological and economic models, and involve students in the practice of organizational analysis.

180B. Complex Organizations (4) II. Hackett; III. Smith
Lecture—3 hours; discussion—1 hour or term paper or research project. Prerequisite: course 180A. Concept of instructor. Builds on concepts and skills developed in course 180A. Deals with the issues of organizational decision making, design, and survival. Emphasis on relations between organizations and the effects of those relations in both the public and private sectors.

181. Social Change Organizations (4) III. II. Lofland
Lecture—3 hours; discussion/term paper—1 hour. Prerequisite: course 1. Analysis of organizations with social change and improvement goals and programs, emphasizing the social systems and grassroots citizen groups. Topics treated include formation, decision-making and leadership, strategies and tactics, factionalism and coalitions, effectiveness. Offered in alternate years. GE credit: Wrt.

*182. Experimental and Utopian Communities (4) III. Hackett
Lecture—3 hours; discussion—1 hour. The social structure of intentional, experimental or Utopian settlements and communitarian movements, including comparison with other small settlement forms: villages, neighborhoods, monasteries, encampments and nonsettlement communities based on occupation, ethnicity, and religion.

*183. Comparative Organizations (4) III. Biggart
Biggart/Lecture/discussion—3 hours; term paper. Prerequisite: course 190A or 190B; upper division standing. Examination of economic and political organizations of major industrial nations. Discussion of historical, cultural, social, and political influences on industrial patterns and practices, alternative theoretical models for explaining organizational societies. May include Sweden, Japan, Germany, Taiwan, and South Korea. Offered in alternate years.

185. Sociology of Social Welfare (4) I, II. The Staff
Lecture—3 hours; discussion—1 hour or term paper or research project. Sociological analysis of the evolution and current organization of welfare functions in modern societies.

*189. Social Science Writing (4) II. Walton
Lecture—3 hours; term paper/discussion—1 hour. Prerequisite: course 46A, upper-division standing, and 12 units of social science. Improved analytic writing and methods for reporting social science research to a wider public. Sociological analysis of the conditions of good and bad writing. Offered in alternate years.

190X. Seminar in Sociological Analysis (4) II, III. The Staff
Seminar—3 hours; term paper. Prerequisite: upper division standing and course 100 (former course 190B). In-depth examination at an upper division level of a special topic in Sociology. Emphasis on student participation and faculty guidance. May not be repeated for credit. Limited enrollment.

*191. Workshop in Contemporary Sociological Theory (4) II. Hall
Lecture—2 hours; workshop—1 hour. Prerequisite: course 100 (former 165A) and senior standing. Workshop in contemporary sociological theory that allows students to explore the uses of theory in empirical inquiry on problems of interest to students. Contemporary theory considered in relation to classical and modern influences, concept formation, theory construction, and explanation. (Not open for credit to students who have received credit for course 165B.)

192. Internship and Research Practicum (2-12) I, II, III. The Staff
Internship—33 hours; discussion—1 hour. Prerequisite: upper division standing; course 46A; approval of proposed internship. Supervised internship and study in an agency, organization or institution; application of core concepts in sociology to the work experience. May be repeated for credit only by permission. Maximum of 4 units of 192 may be counted toward the Sociology major. (P/NP grading only.)

*194HA-194HB. Special Study for Honors Students (4) I, II. The Staff
Seminar—3 hours; term paper. Prerequisite: senior standing and admission to the Honors Program. Directed reading, research and writing culminating in the preparation of a Senior Honors Thesis under direction of faculty advisor. May be repeated only pending completion of course sequence.)

197T. Tutoring in Sociology (1-4) I, II, III. The Staff
Tutioral—3-12 hours. Prerequisite: upper division standing; completion of appropriate course with distinction. Activities vary depending on the nature of the course assignment. May include (but not limited to) tutoring on course material, advising on projects and papers, and leading discussion groups. (P/NP grading only.)

*198. Directed Group Study (1-5) I, II, III. The Staff
(Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

*199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
(Chairperson in charge) Prerequisite: open to seniors only. (P/NP grading only.)

Graduate Courses

201. Social Research (4) III. Lofland
Lecture/discussion—3 hours; term paper. Prerequisite: graduate standing, or consent of instructor. Survey of sociological inquiry, taught as practicum. Philosophy of social science; values and research; research agenda and research problem formulation; research process; explanation vs. interpretation; study design; concept formation, measurement, sampling, data acquisition, inference, rhetoric and presentation of findings.

206. Quantitative Analysis in Sociology (4) III. Cohen
Lecture—4 hours. Prerequisite: course 106. Survey of the statistical models and methods that serve as a foundation for quantitative research in sociology, with an emphasis on multivariate regression analysis, as well as measurement theory and time series analysis. (SAU grading only.)

*207A-207B. Methods of Quantitative Research (4) I-III. Felmlee, Cramer
Lecture—3 hours; paper. Prerequisite: course 106 or the equivalent. Principles of study design, examination of sample, measurement, survey data and multivariate analysis. Course will stress actual practice of techniques. Students will carry out quantitative data analysis using packaged computer programs. (Deferred grading only, pending completion of sequence.)

*215. Economy, Polity, and Society (4) I, II. Block
Seminar—3 hours; paper. Prerequisite: consent of instructor. Open to graduate students in sociology and related disciplines. Course combines readings on topics and selected issues in the related fields of economic and political sociology and political economy.

*220. Deviance, Law, and Social Control (4) I, Cohen
Seminar—3 hours; projects. Prerequisite: course 120 or consent of instructor. Report and discussions of literature on selected forms of deviance in relation to law and formal social control; agency contacts and exploratory research projects.

*225. Cultural Sociology (4) II. Walton/Hall
Seminar—3 hours, term paper. Explores the varied ways in which culture is understood in the social sciences and the research questions that follow from contrasting viewpoints. The approach is historically informed and focused on changing cultural forms in relation to industrialization and post-modernism. Offered in alternate years.

*226. Sociological Social Psychology (4) I, II. Lofland
Seminar—3 hours; seminar paper—1 hour. Prerequisite: graduate standing or consent of instructor. Advanced study of the varying approaches, methods, issues and topical concerns of sociological social psychology. Analysis of central and representative historical and contemporary works.

*227. Sociology of Reproduction (4) II. Joffe
Lecture—3 hours; discussion—1 hour. Recent social science scholarship in such areas as teenage pregnancy, family planning, abortion, adoption, AIDS, and new reproductive technologies; topics on the current situation in the United States. Offered in alternate years.
"230. Ethnic (Race) Relations (4) II. Robinett
Lecture—3 hours; paper. Advanced study of the determinants of ethnic groupings and their interrela-
tionships. Major emphasis will be the patterns of ethnic stratification and causes of ethnic conflict. Specific focus upon dominance and resistance to dominance. Influence of social research.

234. Gender, Family, and Society (4) II. Wolf
Seminar—3 hours; seminar paper. Prerequisite: graduate standing or consent of instructor. Comparative approaches to major historical phenomena such as nationalism, bureaucratization, feudalism, and capi-
talism; the relevance of psychological and sociologi-
cal theories to historical interpretation; the verifiability of historically grounded hypothesis; the meaning of analogy, correspondence and causality. Offered in alternate years. (If taken as a sequence, deferred grading only.)

"243. Urban Society (4) L. Lofland
Seminar—3 hours; paper. Broad overview of the issues and concerns of the field of urban sociology. Special emphasis on the human experience of urban living in contemporary, cross-cultural or historical set-
tings.

245. Developing Societies (4) III. Walton
Seminar—3 hours; term paper or project. Prerequi-
site: graduate student status or familiarity with prob-
lems of developing societies. Analysis of social and economic problems of developing societies from the standpoint of theory and research on modernization and underdevelopment. Nature of third world de-
pendency and interdependence in the global political economy. Offered in alternate years.

"248. Social Movements (4) I, II, III. Lofland
Seminar—3 hours; paper. Analysis of current issues in and contributions to the study of collective behavior and social movements; particular focus upon the strategies and tactics of social movements.

"254. Sociological Issues in Health Care (4) I. The Staff
Seminar—4 hours; paper. Prerequisite: consent of instructor. Analysis of the nature of the legal process and its impact on social behavior. Will consider (1) nature and functions of law, (2) the organization and admin-
istration of law, and (3) the capacity of law to affect social behavior.

265A. Classical Sociological Theory (4) I. Biggart
Lecture—3 hours; discussion—1 hour. Introduces graduate students to the work of the main classical thinkers in the tradition of social theory, such as Marx, Durkheim, Weber, Simmel, Freud, G. H. Mead, and Par-
sons, locating them within the historical, cultural, and philosophical milieu in which their ideas originated.

265B. Theory in Contemporary Sociology (4) II. Lo
Lecture—3 hours; discussion—1 hour. Prerequisite: coursework in sociological theory. Use of theory in con-
temporary sociology by tracing their connections with classical sociological writings and their relations to broader theoretical concerns of contemporary social thought, with particular emphasis on relevance to the current historical, cultural and social milieu.

"270. Social Demography (4) III. Cramer
Seminar—4 hours. Prerequisite: course 170 or con-
sent of instructor. How social institutions affect and are affected by the level and variation of mortality, migration, and fertility. Special emphases on the determinants of fertility-related attitudes and behavior, on less-developed countries, and on contemporary empirical studies.

"280. Organizations and Institutions (4) I, III. Smith
Seminar—4 hours. Theory of formal organizations and bureaucracy. Methods of research in organizational and institutional studies. Historical and comparative analysis of political, religious, educational, military, and economic structure.

290. Seminar (4) I, II, III. The Staff (Chairperson in charge)
Seminar—3 hours; term paper. (S/U grading only.)

"292A-292B. Field Research (4-4) II-III. The Staff
Seminar—3 hours; field trips. Prerequisite: graduate standing in Sociology or consent of instructor. The process of collecting, analyzing and reporting quali-
tative social data: techniques of intensive interview-
ing, participant-observation and document analysis; generating, developing, and evaluating analytic frameworks; recording, storing, retrieving, and writ-
ing up qualitative data. Emphasis on application of principles; each participant completes a field work project. Offered in alternate years. (Deferred grading only.)

293. Proseminar in Sociology (2) I. The Staff
Seminar—2 hours. Prerequisite: first-year Sociology graduate students only. Introduction to graduate train-
in in sociology. A seminar designed to introduce stu-
dents entering graduate work in the department to its ongoing research activities. (S/U grading only.)

"295. Special Topics Seminar (4) I, II, III. The Staff
(Seminar Chairperson in charge)
Lecture/discussion—3 hours; term paper. Prerequi-
site: graduate standing or consent of instructor. Research topics in sociology. Topic will vary accord-
ingen to faculty interest and student demand.

298. Group Study (1-5) I, II, III. The Staff
Chairperson in charge)
Prerequisite: consent of instructor. (S/U grading only.)

299. Individual Study (1-12) I, II, III. The Staff
(Seminar Chairperson in charge)
(S/U grading only.)

Professional Course

390A. The Teaching of Sociology (2) I, II. Cramer
Lecture—1 hour; discussion—1 hour. Prerequisite: graduate standing; required for first-time teaching assistants. Practical instruction on teaching methods for qualitative and quantitative courses. Pedagogical issues involved in critical sociological analysis. (S/U grading only.)

390B. The Teaching of Sociology (2) II, III. Cramer
Lecture—1 hour; discussion—1 hour. Prerequisite: graduate standing. Practical instruction of devising course syllabi, lectures and assignments for Associ-
ate-Instructors and others interested in college teach-
ing. Discussion of pedagogical methods of teaching qualitative and quantitative courses. (S/U grading only.)

Professional Course

466. Research Paper Workshop (2) I. The Staff
Workshop—1.5 hours; discussion—0.5 hours. Prepar-
equate: Master of Arts standing. A workshop to assist advanced graduate students in the preparation of an original research paper. Students present their re-
search papers and discuss issues in theory, research design, data, empirical inference, and verbal and writ-
ten presentation of a professional research paper. (S/U grading only.)

Soil and Water Science

(403)

Soil and Water Science

(College of Agricultural and Environmental Sciences)

The Major Program

Soil and water science is concerned with the use and protection of our land and water resources. The major teaches graduates sound scientific principles for managing soil and water resources to benefit both agriculture and the environment.

The Program. Major programs include land use, soil survey, soil management and conservation, plant nutrition, diagnostic technology, irrigation and drainage, water resources management, water qual-
ity, and related environmental programs. For exam-
ple, the emphasis on water quality would include more than the minimum number of units of physical and biological sciences, while an emphasis in resource allocation and land-use planning would include more courses in the social, political, and eco-

B.S. Major Requirements:

(For convenience in program planning the usual courses taken to satisfy the requirements are shown in parentheses where possible. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

UNITS

English Composition Requirement..........................4-12
See College requirement ...9-8

Oral expression (Rhetoric 1)4

Preparatory Subject Matter..74

Biological sciences (Biological Sciences 1A, 1B, 1C)........5

Chemistry (Chemistry 2A-2B-2C and a more advanced course)..18

Computer science (Agricultural Systems and Environment 120)..........................4

Geology (Geology 50)..3

Mathematics (Mathematics 16A, 16B)..........................6

Physics (Physics 7A-7B-7C)...12

Statistics (Statistics 13, Agricultural Systems and Environment 120)..........................4

Additional physical sciences, biological sciences, and/or mathematics with approval of adviser ..8

Breadth/General Education...15-33

Satisfaction of General Education require-
ments ...6-24

At least one upper division course from each of the following areas, with approval of adviser, (1) resource management, (2) environmental law, (3) economics and development, (4) economics and decision making

Depth Subject Matter..9

Soil Science 100...4

Hydrologic Science 100...4

Additional upper division units in soil science and hydrologic science21

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Questions pertaining to the following courses should be directed to the instructor or to the Resource Sciences Teaching Center, 148 Hoagland Hall (916-752-1669).

Soil Science

See Soil Science, below; Soil Science (A Graduate Group); and Soil and Water Science

Soil Science

(College of Agricultural and Environmental Sciences)

Faculty

See under the Department of Land, Air and Water Resources.

Minor Program Requirements

Lower Division Courses

10. Concepts of Soil Science (3) I. Zasoski Lecture—3 hours. Not open for credit to students who have successfully completed course 100 or similar introductory course in soil science. Soils as natural bodies formed by interactive environmental processes; the global ecosystem; their response to use and management; conservation practices for sustainable use of soil resources, and the role of soils in current agricultural and environmental issues. GE credit: SciEng, Wrt.

92. Soil Science Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in soil science. Internship supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses

100. Principles of Soil Science (4) I. Singer Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 1A-1B; Physics 1A-1B, Biological Sciences 1A and 1B, consent of instructor; Geology 50, Biological Sciences 1C, Microbiology 2, and Chemistry 8A recommended. Formation, properties and behavior of soils. Nature and interactions of solid, aqueous, gaseous, and biotic components. Soil-plant-atmosphere relationships. Soil development and vegetation of major biomes; global and regional soil resources.

102. Soil and Water Chemistry (5) I. Zasoski Lecture—3 hours; discussion—1 hour; laboratory—3 hours. Prerequisite: course 100 or the equivalent. Soil solution and solid-phase chemistry of soils in relation to aquatic and environmental concerns. Interactions between soil solids, precipitates and solution phases: mineralogy, ion exchange, adsorption, weathering and buffering, soil colloidal behavior, models of solution and solid-phase interactions.

105. Field Studies of Soil Resources (8) Extra-sessional summer. Dahlgren, Singer, Southard Fieldwork—daily for five weeks, off campus; lecture—1 week, on campus. Prerequisite: consent of instructor; course 120 recommended. Study of soils in the field throughout California. Emphasis on identification, description and classification of soils; relations of soils to geology, vegetation, climate and human activities; role of soils in land use and as components of California ecosystems.

107. Soil Physics (4) J. Rolston, Hopmans Lecture—4 hours; laboratory—3 hours. Prerequisite: course 100, Water Resource 100, Mathematics 16A, or the equivalent. Description of soil physical properties. Principles of water, gas, heat, and solute movement in soil with selected examples related to soil and water management. Influence of soil physical properties on transfer processes.

109. Soil Fertility and Fertilizers (4) III. The Staff Lecture—3 hours; laboratory—3 hours. Prerequisite: course 100 or the equivalent preparation in elements of soil science. Forms and availability of plant nutrient elements in soils; effects of fertilizers and soil amendments on crop and soil characteristics; conduct and interpretation of soil fertility assays.

111. Soil Microbiology (4) II. Scow Lecture—3 hours; laboratory—3 hours. Prerequisite: Chemistry 1C and Biological Sciences 1C. Major groups of microorganisms in soil, their interrelationships, and their responses to environmental variables. Role of microorganisms in cycling of nutrients. Plant-microbe relationships. Transformations of organic and inorganic pollutants.

118. Soils in Land Use and the Environment (4) III. Singer Lecture—3 hours; discussion—1 hour; one one-day field trips. Prerequisite: course 100 or consent of instructor. Soils are considered as elements in land use planning and environmental quality. Topics include: soil survey reports, remote sensing, land capability classification, soil erosion conservation, waste disposal on soils and soil reclamation.

120. Soil Genesis, Morphology, and Classification (5) III. Southard Lecture—4 hours; laboratory—3 hours (includes five one-day weekend field trips). Prerequisite: course 100; Geology 50 recommended. Recognition and description of soils; chemical, biological and physical processes of soil formation. Introduction to classification of soils. Interactions of soils with diverse ecosystems. Introduction to soil classification. Practice using soil taxonomy. Practical experience describing soil properties in the field.

192. Soil Science Internship (1-12) I, II, III. The Staff (Chairperson in charge) Internship—3-36 hours. Prerequisite: completion of 84 units and consent of instructor. Work experience off and on campus in soil science. Internship supervised by a member of the faculty. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Graduate Courses

*207. Transport Processes in Soils (4) II. Rolston, Hopmans Lecture—3 hours; discussion/computer laboratory—2 hours. Prerequisite: course 107 and Mathematics 22B; knowledge of a computer programming language. Physical and mathematical description of nonsteady transport processes in soil and the unsaturated zone. Emphasis on analytical and numerical solutions to water, gas, solute (contaminants), and heat transport processes and the chemical and biological reactions attenuating solute movement. Offered in alternate years.

208. Soil-Plant Interrelationships (3) II. Richards Lecture—3 hours. Prerequisite: course 100, Plant Biology 111B, or consent of instructor. Plant needs, occurrence and reactions of water and mineral nutrients in soils; root systems and their growth in soils; mass flow and diffusion mechanisms in nutrient acquisition; models relating nutrient uptake to soil and plant characteristics; nutrient assimilation and crop quality. Offered in alternate years.

209. Physiology and Ecology of Mycorrhizal Symbioses (3) I. Blieck Lecture/discussion—3 hours. Prerequisite: Plant Biology 111 or consent of instructor; course 100 recommended. Structure, function and evolutionary development of mycorrhizal fungi and the root-fungal symbiosis. Emphasis on regulation of carbon and nutrient exchanges between host and symbiont. Course integrates mycorrhizal physiology and ecology in an ecosystem context. Offered in alternate years.

*211. Advanced Soil Microbiology (3) III. Scow Lecture—3 hours. Prerequisite: Chemistry 8A-8B; course 111; Biological Sciences 102, 103 or an equivalent course recommended. Microbial metabolism of organic chemicals in soil, both natural and xenobiotic. Decomposition of organic matter. Kinetics of microbial processes in soil. Offered in alternate years.

*214. Soil Mineralogy (5) II. Dahlgren Lecture—3 hours; laboratory—6 hours. Prerequisite: course in soil chemistry or consent of instructor. Nature, properties, and occurrence of the common minerals in soils and rocks. Weathering reactions and stability of minerals in the weathering environment. Application of analytical methods in mineral analysis, including x-ray, microscopic and chemical analysis for characterization of mineral systems. Offered in alternate years.

216. Physical Geochemistry (3) I. Casey Lecture—3 hours. Prerequisite: course 102 or Chemistry 110A or Geology 115 and Mathematics 119. First half emphasizes equilibrium thermodynamics, including choices of standard states, ideal solutions, and use of the Gibbs-Duhem relation. Second half covers

*Course not offered this academic year.
Soil Science (A Graduate Group)

Robert J. Zasoski, Ph.D., Chairperson of the Group

Faculty. Includes faculty members from the Departments of Biological and Agricultural Engineering; Agronomy and Range Science; Civil and Environmental Engineering; Land, Air, and Water Resources; Nematology; Pomology; Vegetable Crops; and Viticulture and Enology.

Graduate Study. The Graduate Group in Soil Science offers programs of study and research leading to the M.S. and Ph.D. degrees. Soil science focuses on the physical, chemical, and biological processes that govern the quality and distribution of soils in relation to landform evolution, geochemical environments, and organism habitats. Research in soil science includes the study of soil as a global natural resource, as a critical component of the environment, and as a resource to sustain agricultural and wildland ecosystems. Students may specialize in environmental quality; soil physics; soil chemistry; soil genesis, morphology and classification; soil fertility and plant nutrition; soil microbiology and soil biochemistry; soil-plant-water relationships; or general soil science. For detailed information regarding the programs, address the chairperson of the group.

Spanish

(College of Letters and Science)

Robert Blake, Ph.D., Chairperson of the Department

Department Office (Spanish and Classics), 616 Sproul Hall (916-752-0835)

Faculty

Marta E. Altsisent, Ph.D., Associate Professor
Samuel G. Armistead, Ph.D., Professor
Robert Blake, Ph.D., Professor
Cecilia Colombi, Ph.D., Associate Professor
Linda Egan, Ph.D., Assistant Professor
Almerindo C. Ojeda, Ph.D., Associate Professor

(Linguistics)

Robert M. Scari, Ph.D., Professor
Maximo Torrellano, Ph.D., Professor

(Hugo J. Verani, Ph.D., Professor)

Emeriti Faculty

Donald G. Castanien, Ph.D., Professor Emeritus
Zunilda Gertel, Ph.D., Professor Emerita
Mario González, Ph.D., Lecturer Emeritus
Didier T. Jaelin, Ph.D., Professor Emeritus
Daniel S. Keller, Ph.D., Professor Emeritus
Fabricio A. Samaniego, M.A., Senior Lecturer Emeritus

Antonio Sánchez-Romeralo, Ph.D., Professor Emeritus

Affiliated Faculty

Francisco Alarcón, M.A., Lecturer
Norma López-Burton, M.A., Lecturer

The Major Program

The major program prepares students to perform graduate studies in soil science. Courses in soil science include the study of soil as a global natural resource, as a critical component of the environment, and as a resource to sustain agricultural and wildland ecosystems. Students may specialize in environmental quality; soil physics; soil chemistry; soil genesis, morphology and classification; soil fertility and plant nutrition; soil microbiology and soil biochemistry; soil-plant-water relationships; or general soil science. For detailed information regarding the programs, address the chairperson of the group.

A.B. Major Requirements:

Preparatory Subject Matter

Spanish 1, 2, 3, 21, 22, 23, and 240-33 or Spanish 31, 32, 33, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111N, 115N, or 116N, 3-4

Spanish 21, 22, 23 may be taken in the EAP Taxo or Morella programs.

Course 23 may be substituted by an equivalent course taken on EAP.

Linguistics 1, 2, 3, 4

In consultation with a departmental adviser and with the consent of the department chairperson, Linguistics 1 may be taken concurrently with upper division courses.

Depth Subject Matter

Spanish 218, 219, 220, 221, 222, 223, 224

Seven elective courses may be chosen in consultation with the student's major adviser.

a) Spanish literature
b) Spanish-American literature
c) Chicano/Latino literature
d) Spanish linguistics

Minor Program Requirements:

Spanish

One course in each of the following five areas

Spanish 1, 2, 3, 21, 22, 23, and 240-33 or Spanish 31, 32, 33, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111N, 115N, or 116N, 3-4

Spanish 111N, 115N, or 116N, 3-4

Spanish 130, 131N, or 134N, 4

Spanish 150N, 151N, or 157N, 4

Spanish 117, 174, or 176, 4

Students planning to take Spanish 110 should do so at the beginning of the upper division sequence or concurrently with Spanish 100.

Several elective courses may be taken with EAP, preferably concentrated in two of the following areas. Other combinations are possible with the approval of the major adviser.

a) Spanish literature
b) Spanish-American literature
c) Chicano/Latino literature
d) Spanish linguistics

Students may, with the approval of their adviser, take up to three elective courses outside the Spanish department in such programs as Anthropology (e.g., Anthropology 144), Chicana/o Studies (e.g., Chicana/o Studies 154, 155, 156), Comparative Literature, History (e.g., History 161A, 161B, 164, 165, 166A, 166B, 168W, 169A, 169B), and Linguistics (e.g., Linguistics 115, 116). Given the great flexibility in the Spanish major, it is important that students design their programs in close consultation with their major adviser. This is especially important for students who intend to use their major as preparation for graduate study, for those who are planning a teaching career, and for those who wish to take advantage of our EAP options.

Total Units for the Major

Spanish

Spanish 23-24

One course in each of the following five areas

Spanish 1, 2, 3, 21, 22, 23, and 240-33 or Spanish 31, 32, 33, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111N, 115N, or 116N, 3-4

Spanish 111N, 115N, or 116N, 3-4

Spanish 130, 131N, or 134N, 4

Spanish 150N, 151N, or 157N, 4

Spanish 117, 174, or 176, 4

One upper division elective in Spanish

As many as, but no more than three of the required upper division courses for the minor may be completed with EAP. Consult a departmental adviser.

Prerequisite credit. Credit normally will not be given for a course if that course is the prerequisite of a
course already successfully completed. Exceptions can be made by the Department Chairperson only.

Honors Program. Candidates for high or highest honors must write a senior thesis under the direction of a faculty member. For this purpose, honors candidates must enroll in at least six units of Spanish 194H distributed over two quarters. Normally, a student will undertake the honors project during the first two quarters of the senior year; other arrangements must be authorized by the department chair. Only students who, at the end of their junior year (135 units), have attained a cumulative grade-point average of 3.5 in courses required for the major will be eligible for the honors program. The requirements for earning high and highest honors in Spanish are in addition to the regular requirements for the major in Spanish.

Teaching Credential Subject Representative. C. Colombi. See also under Teacher Education Program.

The Master of Arts Degree. The Department offers courses leading to the M.A. degree in Spanish to students who have completed with distinction the A.B. degree in Spanish, or the equivalent. Candidates will be recommended for admission to graduate studies in Spanish provided they meet the requirements of the Graduate Studies Office and the Department of Spanish. Detailed information may be obtained by writing to the Chairperson of the Spanish Department.

The Degree of Doctor of Philosophy. The Department provides a program of study and research leading to the Ph.D. degree. Detailed information may be obtained by writing to the Chairperson of the Spanish Department.

Graduate Adviser. Consult department.

Courses in Spanish (SPA)

Course placement: Students with two years of high school Spanish normally take Spanish 2, those with three years take Spanish 3, and those with four years take Spanish 4. It is recommended that transfer students who have successfully completed a two-year sequence at the junior college level continue their study by taking Spanish 24 or 100.

Lower Division Courses

1. Elementary Spanish (5) I, II, III. The Staff Discussion—5 hours; laboratory—1 hour. Introduction to Spanish grammar and development of all language skills in a cultural context with special emphasis on communication. (Students who have successfully completed Spanish 2 or 3 in the 10th or higher grade in their native language may request unit credit for this course on a P/NP grading basis only. A passing grade will be charged to the student’s P/NP option, no petition is required. All other students will receive a letter grade. A petition is required.)

2. Elementary Spanish (5) I, II, III. The Staff Discussion—5 hours; laboratory—1 hour. Prerequisite: course 1. Completion of course 1 in the areas of grammar and basic language skills.

3. Elementary Spanish (5) I, II, III. The Staff Discussion—5 hours; laboratory—1 hour. Prerequisite: course 2. Completion of grammar sequence and continuing practice of all language skills through cultural texts.

4. Elementary Spanish Conversation (2) I, II, III. The Staff Discussion—3 hours. Prerequisite: course 21 (concurrently recommended). Designed to develop oral communication skills. Emphasis on increasing vocabulary, improving listening comprehension, pronunciation, accuracy and grammar control. Practice of everyday situations. Not open to native speakers.

5. Intermediate Spanish (5) I, II, III. The Staff Lecture/discussion—5 hours; laboratory—1 hour. Prerequisite: course 3. Designed to review and develop the grammar, vocabulary and composition acquired in Spanish 2, in preparation for composition in Spanish 3. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

6. Upper Division Courses

Course 100 is prerequisite to all upper division literature courses.

100. Principles of Hispanic Literature and Criticism (5) I, II, III. Colombi Lecture—3 hours; term paper. Prerequisite: course 24 or 33. Principles of literary criticism applied to the study of fiction, drama, poetry and essay of major literary writers of the Hispanic world.

2. Spanish Composition II (4) I, II, III. Colombi in charge Lecture—3 hours; term paper. Prerequisite: course 21. Development of advanced level writing skills, with particular emphasis on how to write argumentative prose, essays, and research papers. Introduction to the analysis of literary genres. Compositions, journals, individual and group projects.

24. Spanish Conversation (2) I, II, III. Blake in charge Discussion—3 hours. Prerequisite: course 24. Development of oral communication skills at a more advanced level. Practice in more complex situations. (Former course 9.)

31. Intermediate Spanish for Native Speakers I (5). I. The Staff Lecture/discussion—3 hours; tutorial—1 hour; frequent writing assignments. Prerequisite: course 31 or consent of instructor. Continuation of intensive review of grammar and composition. Development of all language skills through reading of modern texts, presentation/discussion of major ideas, vocabulary expansion, and writing essays on topics discussed. Designed for students whose native language is Spanish. (Former course 7B.)

32. Intermediate Spanish for Native Speakers II (5). II. The Staff Lecture/discussion—3 hours; tutorial—1 hour; frequent writing assignments. Prerequisite: course 32 or consent of instructor. Continuation of intensive review of grammar and composition. Development of all language skills through reading of modern texts, presentation/discussion of major ideas, vocabulary expansion, and writing essays on topics discussed. Designed for students whose native language is Spanish. (Former course 7A.)

107. How Spanish Grew: Its Origins and Development (4) I, II. Blake, Torreblanca Lecture—3 hours; term paper. Prerequisite: course 24 or 33 and Linguistics 1, or consent of instructor. An exploration of the major theoretical and practical issues concerning learning Spanish as a second language. Especially designed for students interested in teaching Spanish as a career.

108. Advanced Spanish Composition (4) I, II, III. Scari Lecture—3 hours; frequent writing assignments. Prerequisite: course 24 or 23. Practice in expository writing with emphasis on clarity and idiomatic expression. Practical application and review of selected grammar topics. (Part of former courses 110A and 110B.)

111N. The Structure of Spanish: Sounds and Words (3) I, II, III. The Staff Lecture—3 hours. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. A linguistic description of the sound patterns of Spanish and those sounds can be used to form larger units, such as morphemes and words. Theoretical and practical comparisons with English and with other Romance languages. (Former course 111.)

112N. The Structure of Spanish: Words and Phrases (3) II, III. Blake, Ojeda Lecture—3 hours. Prerequisite: course 111N. A study of Spanish word and phrase structure, with special emphasis on the constituent structure of noun and verb phrases. Theoretical and practical comparisons with English and with other Romance languages. (Former course 131.)

114N. Contrastive Analysis of English and Spanish (4) III. Colombi, Ojeda Lecture—3 hours; extensive writing. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. Course 111N and 112N recommended. Contrastive analysis of English and Spanish, error analysis, introduction to structuralism and transformational linguistics. Individual and group conferences. (Former course 137.)

115N. How Spanish Grew: Its Origins and Development (4) I, II. Blake, Torreblanca Lecture—3 hours; term paper. Prerequisite: course 24 or 33 and Linguistics 1, or consent of instructor. The Spanish language from its roots in spoken Latin to modernity. Course stresses the close relationship between historical events and language change, as well as the role that literature plays in language standardization.

116. Applied Spanish Linguistics (4) I, II. Blake, Colombi Lecture—3 hours; extensive writing. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. An exploration of the major theoretical and practical issues concerning learning Spanish as a second language. Especially designed for students interested in teaching Spanish as a career.

117. Teaching Spanish as a Native Tongue in the U.S.: Praxis and Theory (4) I. Colombi, Alarcon Lecture—3 hours; extensive writing. Prerequisite: Linguistics 1 and course 24 or 33, or consent of instructor. Course 116 and Linguistics 116 recommended. Designed for students interested in teaching Spanish to native speakers. Focus on cultural diversity of the main Spanish-speaking populations in the U.S.; applied language teaching methodologies in the context of teaching Spanish to native speakers at different levels. Conducted primarily in Spanish.

118. Topics in Spanish Linguistics (4) III. The Staff Lecture—3 hours; term paper. Prerequisite: courses 111 and 112. A study of specialized topics in Spanish linguistics, for example: language and use; text and context; language and society; bilingualism; Spanish dialectology; syntax and semantics. May be repeated once for credit when topics differ.

123. Creative Writing in Spanish (4) III. Alarcon Discussion—4 hours. Prerequisite: course 24 or 33, or consent of instructor. Intensive writing of poetry or fiction in Spanish or in a bilingual (Spanish/English) format. Students will write both in prescribed forms and
in experimental forms of their own choosing. Offered in alternate years.

130. Survey of Spanish Literature to 1700 (4) I. Armistead
Lecture—3 hours; term paper. Prerequisite: course 100. Survey of Spanish literature, focusing on the evolution of the Spanish language and literature through its written records and the literature of the early period. (Part of former courses 103A and 103B.)

131N. Survey of Spanish Literature 1700 to Present (4) I, II. Altisent
Lecture—3 hours; term paper. Prerequisite: course 100. Survey of modern Spanish literature, providing an overview of major literary movements (romanticism, realism, naturalism, modernism, avant-garde). Emphasis on the philosophical and historical background and on the European context for modern Spanish literature. (Part of former courses 104A and 104B.)

132N. Medieval and Renaissance Spanish Literature (4) I. Armistead
Lecture—3 hours; term paper. Prerequisite: course 100. Introduction to the study of the principal works and authors of Medieval and Early 16th-century Spanish literature. (Part of former courses 112 and 103A.)

133N. Golden Age Literature of Spain (4) I. Altisent
Lecture—3 hours; film viewing—1 hour; term paper. Prerequisite: completion of the Subject A requirement. Analysis of the culture of the Spanish-speaking world through film in translation. Emphasis on the cultural significance of films in terms of knowledge of the Spanish language and culture. Films in subtles. Offered in alternate years. GE credit: ArtHum, Wrt.

142. Special Topics in Spanish Cultural and Literary Studies (4) I, II, III. The Staff
Lecture—3 hours; term paper. Prerequisite: course 100. Special topics in the study of Spanish literature and culture. May be repeated twice for credit when topic differs. (Part of former course 151.)

Lecture—3 hours; discussion—3 hours; term paper. Prerequisite: English 3 or the equivalent. Reading, lectures and discussions in English of works by Borges, Cortázar, Fuentes, García Márquez, Paz and others. May not be counted toward the major in Spanish. Offered in alternate years. GE credit: ArtHum, Wrt.

150N. Survey of Spanish-American Literature to 1900 (4) I. Egan, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Spanish American literature from prehispanic texts and the Chronicles of the Conquest to Romanticism and Modernism. Reading selections include fiction, poetry, drama and essays. (Former course 105A.)

151N. Survey of Spanish-American Literature 1900 to Present (4) I. Egan, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Spanish American literature from prehispanic texts and the Chronicles of the Conquest to Romanticism and Modernism. Reading selections include fiction, poetry, drama and essays. (Former course 105B.)

153. Spanish-American Short Story (4) I. Egan, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. The evolution of the Spanish-American short story during the 19th and 20th centuries. Emphasis on the contemporary context. (Former course 128.) Offered in alternate years.

Lecture—3 hours; term paper. Prerequisite: course 100. The evolution of the Spanish-American novel during the 19th and 20th centuries. Emphasis on significant contemporary works. (Part of former courses 108A and 108B.) Offered in alternate years.

155. Mexican Novel (4) I. Egan, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. The evolution of the Mexican novel during the 19th and 20th centuries. Emphasis on the narrative of the Mexican Revolution and significant contemporary works. (Former course 129.)

156. Dario, Modernism and Its Legacy (4) I. Egan, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Modernism as an expression of Latin American literature and its influence on 20th-century poetry and prose. In depth analysis of the works of Dario and other major Modernist writers. (Former course 129B.)

157. 20th Century Masters of Spanish-American Literature (4) I. Egan, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Study of 20th-century Spanish-American writers and their cultural and literary milieu. (Part of former courses 127 and 138.) Offered in alternate years.

158. Spanish-American Poetry: From Vanguardism to Surrealism and Beyond (4) I. Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Study of vanguardism, surrealism, and more recent developments of 20th century poetry. An in-depth analysis of the works of such major poets as Neruda, Vallejo, and Octavio Paz. Offered in alternate years.

159. Special Topics in Spanish-American Literature and Culture (4) I, II, III. Egan, Verani
Lecture—3 hours; term paper. Prerequisite: course 100. Special topics in the study of Spanish-American literature and culture. May be repeated twice for credit when topic differs. Offered in alternate years.

160. Spanish-American Culture (4) II. Colombi
Lecture—3 hours; term paper/discussion—1 hour. Prerequisite: course 24 or 33. Major developments in the arts and social institutions of Spanish America and areas other than Mexico. Readings, lectures and discussions in Spanish. (Former course 138.) GE credit: ArtHum, Div.

172. Mexican Culture (4) III. Egan
Lecture—3 hours; term paper/discussion—1 hour. Prerequisite: course 24 or 33. An interdisciplinary survey of veychico culture. Topics include literature, art, folklife, oral tradition, music, politics, as well as everyday cultural manifestations. Conducted in Spanish. (Former course 124.) GE credit: ArtHum, Div.

174. Chicano Culture (4) II. Alarcón
Lecture—3 hours; term paper. Prerequisite: course 24 or 33. Survey of the literary and cultural contributions of the main Spanish-speaking populations present in the U.S.: Chicanos, Puerto Ricans, Cuban-Americans, Central Americans, and other Latinos. GE credit: ArtHum, Div.

192. Internship in Spanish (1-12) I, II, III.
The Staff (Chairperson in charge)
Independent study—3–36 hours. Prerequisite: course 23. Major standing: major in Spanish, Chicano Studies, or a related field. Internships in fields where Spanish language skills can be used and perfected (teaching, counseling, translating-interpreting). May be repeated for credit for a total of 8 units. Units will not count toward the Spanish major. (P/NP grading only)

194H. Special Study for Honors Students (1-5)
I, II, III. The Staff
Independent study—3–15 hours. Prerequisite: Open only to juniors with senior standing who qualify for honors program. Guided research, under the direction of a faculty member, leading to a senior honors thesis on a topic in Hispanic literature, civilization, or language studies. (P/NP grading only)

197T. Tutoring in the Community (2-4) I, II, III.
The Staff
Tutorial—2–4 hours. Prerequisite: Upper division standing and permission of the chair. Tutoring in public schools under the guidance of a regular teacher and supervision by a departmental faculty member. May be repeated for credit for a total of 6 units. (P/NP grading only)
201. Literary Theory I (4) II. Altisent
Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Major contemporary critical theories including recent, innovative approaches to Spanish literature and culture. Readings from Semiotics and Deconstruction to Psychoanalytical and Sociological-ideological approaches. Emphasis on Postmodern and Neo-colonial discourse.

205. Spanish Phonology (4) II. Torreblanca Seminar—3 hours; term paper. Prerequisite: some knowledge of phonetics is required and consent of instructor. Linguistics 109 and 139 highly recommended. Analysis of sound patterns of Spanish from both linear and non-linear perspectives. Students will develop a clear understanding of what phonology is and the nature of Spanish phonology, as defined by modern linguistic analysis.

206. Spanish Syntax (4) I. Blake, Ojeda Seminar—3 hours; term paper. Prerequisite: Linguistics 140 and 165. An examination of Spanish word order within the framework of general linguistic theory. The student will investigate how to write a grammar of Spanish with particular attention to the structure of noun and verb clauses.

211. Hispanic Dialectology (4) III. Torreblanca Seminar—3 hours; term paper. Prerequisite: course 207. An in-depth linguistic examination of Old Spanish texts from the 12th to the 15th centuries, with particular attention to the significance of orthographic changes.

212. Applied Linguistics (4) I. Colombi, Blake Seminar—3 hours; term paper. Prerequisite: graduate standing and course 215 and 216. Focuses on the relevant linguistic aspects of teaching Spanish. Recommended for graduate students who have an interest in second-language learning and teaching.

215. Special Topics in Hispanic Linguistics (4) III. The Staff Seminar—3 hours; term paper. Prerequisite: courses 205, 206 and consent of instructor. Specialized topics in Hispanic linguistics (e.g., pragmatics, sociolinguistics, topics in syntax, semantics, or diachronic studies). May be repeated for credit when topic differs.

222. Critical Approaches to Spanish Literature I: Prose and Essay (4) II. Altisent, Armistead, Scari Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. A review of the main critical approaches to Spanish narrative and the essay.

223. Critical Approaches to Spanish Literature II: Poetry and Drama (4) II. Altisent, Armistead, Scari Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. A review of the main critical approaches to Spanish poetry and drama.

224. Studies of a Major Writer, Period, or Genre in Spanish Literature (4) III. The Staff Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. An exploration of the major works of a major Spanish writer and his/her intellectual and literary milieu or study of a special topic, period, or genre. May be repeated for credit with consent of instructor.

225. Medieval Spanish Literature: Prose (4) I. Armistead Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Medieval Spanish literary narratives. Major theoretical perspectives on the genesis, diffusion, and character of the Medieval epic. Relationship of epic to ballad literature.

226. Medieval Spanish Lyric (4) II. Armistead Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Medieval Spanish epic narratives. Major theoretical perspectives on the genesis, diffusion, and character of the Medieval epic. Relationship of epic to ballad literature.

254. Medieval Hispanic Lyric (4) II. Armistead Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. An examination of the most representative lyric poetry in the various Peninsular languages and their poetry: kharjas, villancicos, cantigas de amigo, and courtly lyric.

255. Spanish Literature of the Early Renaissance (4) I. Armistead Seminar—3 hours; term paper. Spanish Literature, 1450-1550, with emphasis on La Celestina. (Former course 229.)

256. Spanish Literature of the Renaissance and Golden Age: Poetry (4) I. The Staff Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Extensive critical study of the main currents of Renaissance and Baroque Spanish poetry through its language structures, styles, and concerns (Culturismo-Conceptismo), rhetorical devices, myths, and themes. Love, death, time.

257. Spanish Literature of the Renaissance and Golden Age: Drama (4) I. The Staff Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. An exploration of major 16th and 17th century literary and cultural developments through the study of selected dramatic texts.

258. Spanish Literature of the Renaissance and Golden Age: Prose (4) I. The Staff Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. The origins and development of the Spanish novel during the Renaissance and the Spanish Golden Age.

259. Cervantes and the Novel (4) I. Altisent Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Major Spanish-American drama-tists from Florencio Sánchez to the present. Offered in alternate years. (Former course 240.)

260. Modern Spanish Literature (4) I. Scari, Altisent Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Major Spanish-American drama-tists from 1800 to 1950. (Former course 241A.)

264. Contemporary Spanish Literature: Essay (4) III. Scari Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Major thinkers from Gavít to Unamuno and Ortega y Gasset. Emphasis will be placed on the relationships between Spanish thought and European philosophical currents. Offered in alternate years.

265. Women Writers of Spain (4) I. Altisent Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Introduction to the development of a feminine consciousness in the Spanish contemporary literary scene. Selected texts represent particularly innovative typologies of feminine discourse in the realm of the historical, psychoanalytical, and metafictional, erotic, and allegorical fiction.

272. Critical Approaches to Spanish-American Literature: Narrative (4) I. Egan, Verani Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Extensive critical study of the development of the Spanish-American literary periods and currents in narrative (novel, short story, and essay), from early Colonial times to the present.

273. Critical Approaches to Spanish-American Literature: Poetry and Drama (4) I. Altisent Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Extensive critical study of the development of the Spanish-American literary periods and currents in poetry and drama, from early Colonial times to the present.

274. Studies of a Major Writer, Period, or Genre in Spanish-American Literature (4) I. The Staff Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Extensive critical study of the development of the Spanish-American literary periods and currents in poetry and drama, from early Colonial times to the present.

278. New Trends in Spanish-American Fiction (4) II. Egan, Verani Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Recent developments in Spanish-American narrative, Emphasis on innovative language and structure. Offered in alternate years. (Former course 241B.)

279. Mexican Narrative (4) III. Egan, Verani Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of main trends and key authors in Spanish-America in the first half of the 20th century. Offered in alternate years. (Former course 241A.)

281. Spanish-American Urban Realism (4) I. Egan, Verani Seminar—3 hours; term paper. Works by major writers with emphasis on 20th-century authors such as Quiroga, Borges, García Márquez, Cortázar, and Rulfo. (Former course 243.)

281. Spanish-American Women Writers (4) I. Egan, Verani Seminar—3 hours; term paper. Prerequisite: graduate standing or consent of instructor. Study of feminist critical theories, gender construction, and self-repre-
Statistics

Statistics (Intercollegiate Division)

George G. Roussas, Ph.D., Chairperson of the Division and Associate Dean of Statistics Division Office, 380 Kerr Hall (916-752-2361)

The Major Program

Statistics enables us to make inferences about entire populations, based on samples extracted from those populations. Statistical methods can be applied to problems from almost every discipline and they are vitally important to researchers in agricultural, social, engineering, and medical sciences.

The Program. Statistics majors may receive either a Bachelor of Arts or a Bachelor of Science degree. The A.B. degree is very flexible, facilitating a double major or extensive elective coursework in a field in which statistics is applied. The B.S. degree program has two options: one emphasizes mathematics and is especially recommended as preparation for graduate study in statistics; the other emphasizes computer science. All three programs require theoretical and applied coursework and underscore the strong independence of statistical theory and the applications of statistics.

Preparatory Requirements. Before applying for either the A.B. or B.S. major in Statistics, students must ordinarily complete the following courses with at least C grades:

- Mathematics 21A, 21B, 21C
- Mathematics 22A, 22B
- Computer Science Engineering 30 or Engineering 5 Statistics 32

In addition, due to space limitation in the B.S. major, students admitted to this major will normally be chosen from those having at least a 3.0 grade point average in the above courses. For further information, please contact a Statistics adviser.

Career Alternatives. Probability models and statistical methods are used in a great many fields, including the biological and social sciences, business and engineering. The mathematical theory of statistics has created in both the public and private sectors a strong demand for graduates with statistical training. Current employment opportunities include state and federal government positions with a statistician designation, industrial positions (e.g., in the actuarial series within an insurance company or in the data management unit in a health science facility), and teaching positions.

A.B. Major Requirements:

- Preparatory Subject Matter: Calculus, Mathematics 21A, 21B, 21C24-25
- Linear algebra, differential equations, Mathematics 22A, 22B6
- Computer science, Computer Science Engineering 30 or Engineering 5 (or the equivalent)3-4
- Statistics through computers, Statistics 323

Depth Subject Matter: Analysis of variance, multiple regression, Statistics 106, 108 or the equivalent8
- Probability and mathematical statistics, Statistics 131A, 131B, 131C12
- Three Statistics courses with Statistics 131B as a prerequisite9-10
- Related elective courses3
- Three upper division courses approved by major adviser. They may be in mathematics, computer science or in quantitative aspects of a substantive discipline.

Total Units for the Major: 62-64

B.S. Major Requirements:

(Options: Statistics—General; Statistics—Computer Science)

- Preparatory Subject Matter: Calculus, Mathematics 21A, 21B, 21C24-31
- Linear algebra, differential equations, Mathematics 22A, 22B6
- Computer science: General option3-4
- Computer Science Engineering 30 or Engineering 5 (or the equivalent)10
- Computer Science option: Computer Science Engineering 30 and 46 and Electrical and Computer Science Engineering 70
- Statistics through computers, Statistics 323

Please contact a Statistics adviser for information concerning these degree programs, as well as information concerning these degree programs, as well as information on admissions and on financial support, is available from the Division of Statistics. Major Adviser: J.M. Utts.

Minor Program Requirements:

The Division offers a minor program in Statistics that consists of a survey at the upper division level of the fundamentals of mathematical statistics and of the most widely used applied statistical methods.

Total Units for the Major: 62-64

Statistics—General option

Depth Subject Matter: Analysis of variance, multiple regression, Statistics 106, 108 or the equivalent8
- Introduction to probability, mathematical statistics, Statistics 131A, 131B, 131C or the equivalent12
- Four Statistics courses having Statistics 131B as a prerequisite12-13
- Linear algebra, Mathematics 1673
- Three upper division Mathematics courses selected from 108, 127A-127B-127C, 128A-128B-128C, 168 (Mathematics 127 strongly recommended for students considering graduate work in Mathematics or Statistics)10-12

Related elective courses: Two upper division courses approved by major adviser. These may be in mathematics, computer science or in quantitative aspects of a substantive discipline.

Total Units for the Major: 73-84

Statistics—Computer Science option

Depth Subject Matter: Analysis of variance, multiple regression, Statistics 106, 108 or the equivalent8
- Introduction to probability, mathematical statistics, Statistics 131A, 131B, 131C or the equivalent12
- Two courses having Statistics 131B as a prerequisite6-7
- Statistical computing, Statistics 1413
- Operating systems and System programming, Computer Science Engineering 1504
- Data structures, Computer Science Engineering 1104
- Data base systems, Computer Science Engineering 165 or Mathematics 1603-4
- Computer Science Engineering 122, or Computer Science Engineering 1733

Total Units for the Major: 73-84

Minor Program Requirements:

The Division offers a minor program in Statistics that consists of a survey at the upper division level of the fundamentals of mathematical statistics and of the most widely used applied statistical methods.

Total Units: 19-20

Statistics 106, 108, and 130A-130B or 131A-131B or 131C or 131D16
- One course in Statistics having Statistics 130B or 131B as a prerequisite3-4
- Preparation: Statistics 13 or 32.

Graduate Study. The Graduate Group in Statistics offers study and research leading to the M.S. and Ph.D. degrees in Statistics. Detailed information concerning these degree programs, as well as information on admissions and on financial support, is available from the Division of Statistics.

Graduate Adviser: W.O. Johnson.

Statistics Consulting. The Division provides a consulting service for researchers on campus. For more information, call the Statistical Laboratory Office (916-752-6096).

Speech

See Rhetoric and Communication
Courses in Statistics (STA)

10. Statistical Thinking (3) III. Ults
Lecture—3 hours. Prerequisite: two years of high school algebra. Statistics and probability in daily life. Examines principles of collecting, presenting and interpreting data in order to critically assess results reported in the media. Emphasis is on understanding polls, unemployment rates, health studies, etc.; understanding probability, risk and odds. GE credit: SciEng or SocSci. Wrt.

*12. Introduction to Discrete Probability (3) I. The Staff
Lecture—3 hours. Prerequisite: two years of high school algebra. Random experiments; countable sample spaces; probability axioms; counting formulas; conditional probability; independence; Bayes theorem; expectation; gambling problems; binomial, hypergeometric, Poisson, geometric, negative binomial and multinomial models; limited distributions; Markov chains. Applications in the social, biological, and engineering sciences. Offered in alternate years. GE credit: SciEng.

13. Elementary Statistics (4) I, II, III. The Staff
Lecture—4 hours. Prerequisite: two years of high school algebra. Measures of central tendency and dispersion; binomial, normal, Student-t, and chi-square distributions; testing hypotheses; nonparametric statistics; regression and correlation theory. (Students who have had courses 130A or 131A may not receive credit for Statistics 13.) GE credit: SciEng.

*13AT. Self-Paced Modular Instruction in Elementary Statistics (4) I, II. Wiggins
Autotutorial—4 hours. Prerequisite: two years of high school algebra, no prior knowledge of computers assumed. Computer tutorial. Corresponds to course 13. Students working at computer station randomly chosen (by computer quality) to take examinations. Computer-timed examinations present a fixed number of problems for solution. Exams may be repeated.

32. Basic Statistical Analysis Through Computers (3) II, III. The Staff
Lecture—3 hours. Prerequisite: Mathematics 16B or 21B; ability to program in a high-level computer language such as Pascal. Overview of probability modeling and statistical inference. Problem solving through mathematical analysis and computer simulation. Recommended as alternative to course 13 for students with some knowledge of calculus and computer analyzing. GE credit: SciEng.

90X. Seminar (1-2) I, II, III. The Staff (Chairperson in charge)
Seminar—1–2 hours. Prerequisite: high school algebra and consent of instructor. Examination of a special topic and/or setting in a small group. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff
(Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Upper Division Courses

100. Applied Statistics for Biological Sciences (4) I, II. The Staff
Lecture—4 hours. Prerequisite: Math 16B or its equivalent. Introduction to probability computation and modeling, estimation, hypothesis testing, contingency tables, ANOVA, regression, and to implementation of statistical methods using a computer package. Students who have taken course 13 may receive only 2 units of credit. GE credit: SciEng.

102. Introduction to Probability Modeling and Statistical Inference (4) I, II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: two years high school algebra, and upper division standing. Introductory probability and statistics at a rigorous, preparatory level. Topics include: probability models—binomial, Poisson, geometric, normal and sampling distributions; graphs; exploratory data analysis; parametric and nonparametric estimation; analysis of variance; regression; computing with Minitab package. Students who have taken course 13 or 32 may receive only 2 units of credit; students who have taken course 100 will receive no unit credit. GE credit: SciEng.

103. Applied Statistics for Business and Economics (4) I, II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13, 32, or 102; and Mathematics 16A, 16B. Descriptive statistics; probability; random variables; expectation; binomial, normal, Poisson, other univariate distributions; joint distributions; sampling distributions, central limit theorem; properties of estimators; linear combinations of random variables; testing and estimation; Minitab computer package. GE credit: SciEng.

*104. Applied Statistical Methods: Nonparametric Statistics (3) II. The Staff
Lecture—4 hours. Prerequisite: course 13, 32, or 102. One-way and two-way tables. Tests of independence, association, trend. Binomial, normal, t, chi-square; testing and expectation of a random variable; bivariate random variables (bivariate normal); sampling distributions; central limit theorem; estimation, maximum likelihood principle; basic of hypothesis testing (one-sample).

131A. Introduction to Probability Theory (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 21A, 21B, 21C, and 22A. Fundamental concepts of probability theory, discrete and continuous random variables, standard distributions, moments and moment-generating functions, laws of large numbers and the central limit theorem. Students who have had Mathematics 131 may not receive credit for Statistics 131A.

131B-131C. Introduction to Mathematical Statistics (4) I-II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131A, or Mathematics 22A and 131. Sampling, methods of estimation, sampling distributions, confidence intervals, testing hypotheses, linear regression, analysis of variance, elements of large sample theory, and nonparametric inference.

132. Mathematical Statistics for Economists (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 103 and Mathematics 16B, or their equivalents; no credit will be given to students majoring in Statistics. Probability, basic properties; discrete and continuous random variables (binomial, normal, t, chi-square); expectation and variance of a random variable; bivariate random variables (bivariate normal); sampling distributions; central limit theorem; estimation, maximum likelihood principle; basic of hypothesis testing (one-sample).

133. Multivariate Data Analysis (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130B or 131B. Selected topics in nonparametric statistical inference from a one-sample and a k-sample point of view. Topics include Kolmogorov-Smirnov type tests; confidence intervals for quantities, location and scale parameters; rank tests; dispersion tests, efficiency. Offered in alternate years.

134. Multivariate Inference (3) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130B, and preferably course 131B. Multivariate normal distribution. One-sampling Hotelling’s T-squared comparisons, one-way MANOVA. Principal components. Factors analysis. Canonical correlation analysis. Discriminant analysis. Cluster analysis. Emphasis on intuition, use of computer packages, and interpreting results. Offered in alternate years.

135. Multivariate Linear Models: Analysis of Variance (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22A, and one of courses 130B, 131B, or 133. Review of linear algebra and statistics, problems in a linear model, analysis of variance, advanced topics in analysis of variance, variance components model.

136. Applied Linear Models: Analysis of Variance (4) III. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22A, and one of courses 130B, 131B, or 133. Review of linear algebra and statistics, problems in a linear model, analysis of variance, advanced topics in analysis of variance, variance components model.

137. Applied Time Series Analysis (3) III. The Staff
Lecture—3 hours. Prerequisite: course 130B or 131B or the equivalent; Auto- and cross-correlation, spectral analysis, coherence, transfer relations, linear filters, seasonal adjustment, mean square regression, autoregressive moving average models, forecasting, Box-Jenkins methods, spectral analysis of variance, and signal detection and discrimination methods.

138. Analysis of Categorical Data (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 130B or 131B, or courses 106 and 108. Variables of categorical data, cross-classifications, contingency tables, tests for independence. Multidimensional tables and log-linear models, maximum likelihood estimation; tests of goodness-of-fit. Logit models, linear logistic models. Analysis of incomplete tables. Packaged computer programs, analysis of real data. GE credit: SciEng.

139. Applied Linear Models: Regression Analysis (4) II. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: Mathematics 22A and any one of courses 130B, 131B, or 133. Simple linear regression, general linear model and examples, point estimation, tests of hypothesis, multiple regression, multiple regression analysis, and multiple regression analysis of covariance.
140A. Introduction to Biostatistics I (4) II.
The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 13 or 102 or the equivalent, and Mathematics 16A and 16B. Basic probability concepts and results; diagnostic tests; common distributions; sampling distributions; central limit theorem; likelihood methods; hypothesis testing; likelihood ratio tests. Based on the t-distribution and the chi-square distribution.

140B. Introduction to Biostatistics II (4) III.
The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 140A or 130B. Observational studies; clinical trials; survival analysis; close-response analysis.

141. Statistical Computing (3) II. The Staff
Lecture—3 hours. Prerequisite: course 130A or 131A, and one of courses 13, 32, 100, 102, or the equivalent, and experience in computer programming; course 130B or 131B recommended. Use of computers in statistics. Numerical foundations of statistical procedures. Computation of probabilities and quantiles. Random numbers. Monte Carlo method and bootstrap. Methods for parametric statistical models. Graphical methods and exploratory data analysis.

142. Reliability (3) III. The Staff
Lecture—3 hours. Prerequisite: course 130B or 131B or consent of instructor. Stochastic modeling and inference. Topics include Markov processes, system reliability, reliability theory, Bayesian methods, Bayesian robustness, properties of Bayesian procedures, comparisons with classical procedures, approximation techniques, hierarchical Bayesian analysis, applications. Offered in alternate years.

190X. Seminar (1-2) I, II, III. The Staff
(Chairperson in charge)
Seminar—1-2 hours. Prerequisite: one of courses 13, 32, 102, 103, or 130B. In-depth examination of a special topic in a small group setting.

192. Internship in Statistics (1-12) I, II, III.
The Staff
(Chairperson in charge)
Internship—3-36 hours; term paper. Prerequisite: upper division standing and consent of instructor. Work experience in statistics. (P/NP grading only.)

194A-194HB. Special Studies for Honors Students (4-4) H-I. The Staff
(Chairperson in charge)
Independent study—12 hours. Prerequisite: senior qualifying for honors. Directed reading, research and writing, culminating in the completion of a senior honors thesis or project under direction of a faculty advisor. (Deferred grading only, pending completion of sequence.)

198. Directed Group Study (1-5) I, II, III.
The Staff
(Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
(Chairperson in charge)
Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

205. Statistical Methods for Research (3) III.
The Staff
Lecture—3 hours. Prerequisite: course 106 or Agricultural Science and Management 150, or the equivalent. Topics in experimental design include: Latin squares, Youden squares, balanced and partially balanced incomplete block designs, factorial experiments, confounded designs, split-plot designs, latin square designs, fractional factorial designs, repeated measurements designs, optimal designs based on various criteria, analysis of covariance.

222. Biostatistics: Survival Analysis (4) III.
The Staff
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: courses 131C or consent of instructor. Incomplete data, life tables; nonparametric methods; accelerated failure time models; proportional hazards models; partial likelihood; advanced topics. Offered in alternate years.

223. Biostatistics: Generalized Linear Models (4) II. The Staff
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 131C or consent of instructor. Likelihood and linear regression; generalized linear models; Binomial regression, dose-response studies; dose-response relations; Poisson regression; Gamma regression; quasi-likelihood models; estimating equations; multivariate GLMs. Offered in alternate years.

224. Biostatistics: Clinical Trials and Advanced Topics (4) II. The Staff
Lecture—3 hours; discussion/laboratory—1 hour. Prerequisite: course 223 or consent of instructor. Clinical trials; sequential design; covariate adjustment; meta-analysis; applications of generalized linear models; longitudinal studies; random effects models; advanced topics. Offered in alternate years.

228. Statistical Quality Control and Productivity Improvement (5) II.
The Staff
Lecture—3 hours. Prerequisite: Management 210A, 210B or Statistics 106. Introduces concepts of quality and productivity improvement as applied to service and production industries and the public sector. Methods covered include statistical quality control techniques such as control charts and acceptance sampling, reliability and graphical tools. (Same course as Management 228.)

231A-231B-231C. Mathematical Statistics (4-4-4) I-II-III.
The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131C and Mathematics 127A-127B or the equivalent. Distribution theory, decision theoretic methods, estimation and hypotheses testing, multivariate techniques, large sample theory.

232A-232B. Linear Model Theory (4-4) I-II.
The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: course 131C. Estimation and testing for the general linear hypothesis, components of variance, multiple comparisons.

233. Design of Experiments (3) II.
The Staff
Lecture—3 hours. Prerequisite: course 131C. Topics from balanced and partially balanced incomplete block designs, fractional factorials, and response surfaces. Offered in alternate years.

235A-235B-235C. Probability Theory (3-3-3) I, II, III.
The Staff
Lecture—3 hours. Prerequisite: Mathematics 127C and courses 131A-131B or the equivalent. Measure theoretic foundations, abstract integration, modes of convergence, limit theorems, independence, laws of large numbers, characteristic functions, central limit theorem, conditional expectations; topics from discrete time Markov and stationary processes, ergodic theory, Brownian motion, weak convergence, Wiener and Poisson processes. (Same course as Mathematics 235A-235B-235C.)

237A. Time Series Analysis: Foundations (3) I.
The Staff
Lecture—3 hours. Prerequisite: course 131A or Mathematics 131 or the equivalent. Basic structure of stationary and non-stationary time series. Differentiation, integration, spectral representations, linear filtering, mean square estimation, the discrete Fourier transform, laws of large numbers, autoregressive moving average processes. Offered in alternate years.

237B. Time Series Analysis: Statistical Inference (3) II. The Staff
Lecture—3 hours. Prerequisite: courses 131B-131C and 237A. Multivariate normal processes, spectral estimation, tests of hypothesis, spectral density estimation, filtering, spectral analysis of variance, ARIMA processes, state space models, and maximum likelihood estimation. Offered in alternate years.

238. Theory of Multivariate Analysis (3) II.
The Staff
Lecture—3 hours. Prerequisites: course 135 and 231C. Random vectors and matrices, characteristic functions; multivariate normal; multiple and canonical correlation; Cochran’s Theorem; growth curve models; Wishart distribution, likelihood ratio and union-intersection tests; simultaneous inference; spatial linear models; projection pursuit; Bayesian multivariate methods; Stein and shrinkage estimators. Offered in alternate years.

240A-240B. Nonparametric Inference (3-3) II-I.
The Staff
Lecture—3 hours. Prerequisites: course 235C; courses 235A-235B-235C recommended. Comprehensive two-quarter sequence on nonparametric statistical inference, including the most basic materials from: classical nonparametrics, robust inference, estimation of a distribution function from incomplete data, curve estimation, and theory of resampling methodology. Offered in alternate years.

241. Asymptotic Theory of Statistics (3) III.
The Staff
Lecture—3 hours. Prerequisite: course 231C; courses 235A, 235B, 235C recommended. Topics in asymptotic theory of statistics chosen from: weak convergence, contiguity, empirical processes, Edgeworth expansion, and semiparametric inference. Offered in alternate years.

250. Advanced Data Analysis (4) I. The Staff
Lecture—3 hours; discussion—1 hour. Prerequisite: courses 141, 232A and either course 230 or 231A. Resampling methods and one to three additional topics selected from nonparametric and semi-parametric methods, incomplete data analysis, diagnostics, non-standard multivariate and time series analysis, applied Bayesian methods, sequential analysis and quality control, categorical data analysis. Offered in alternate years.

251. Topics in Advanced Theory of Statistics (3) II.
The Staff
Lecture—3 hours. Prerequisite: course 231C. Bayesian, regression, sequential and survival analysis; bootstrap and reliability theory; change-point problems; empirical and spatial processes, asymptotic inference under dependence; asymptotic theory in linear, parametric and semiparametric models. Offered in alternate years.

280. Orientation to Statistical Research (1) III.
The Staff
Seminar—1 hour. Prerequisite: consent of instructor. Guided orientation to original statistics research papers, and oral presentations in class of such papers by students under the supervision of a faculty member. (S/U grading only.)

290. Seminar in Statistics (1-6) I, II, III.
The Staff
(Chairperson in charge)
Prerequisite: consent of instructor. Seminar on advanced topics in probability and statistics. (S/U grading only.)

292. Graduate Group in Statistics Seminar (1) I.
The Staff
Seminar—1 hour. Prerequisite: graduate standing. Statistics seminars, mostly in applied topics, presented by members of the Graduate Group in Statistics and other guest speakers. (S/U grading only.)

299. Group Study (1-5) I, II, III.
The Staff
(Chairperson in charge)

299. Individual Study (1-2) I, II, III.
The Staff
(Chairperson in charge)
Prerequisite: consent of instructor. (S/U grading only.)
Surgical and Radiological Sciences

(School of Veterinary Medicine)

Janet E. Ilkiv, B.V.M., Ph.D., Chairperson of the Department

Department Office, 2112 Medical Science 1A
(916-752-3599)

Faculty
Cleta S. Bailey, D.V.M., Ph.D., Professor
Eugene M. Bierzynski, D.V.M., Ph.D., Professor
Nedim C. Buyukmihci, V.M.D., Professor
Clare R. Gregory, D.V.M., Professor
Steve C. Haskins, D.V.M., M.S., Professor
Susan V. Hildebrand, D.V.M., Professor
William J. Hornof, D.V.M., M.S., Professor
Janet E. Ilkiv, B.V.M., Ph.D., Associate Professor
James H. Jones, D.V.M., Ph.D., Associate Professor
Philip D. Koblik, D.V.M., M.S., Professor
Richard A. Le Couteur, B.V.Sc., Ph.D., Professor
Bruce R. Madewell, V.M.D., M.S., Professor
Peter Muir, B.V.M., M.VetClinStud., Ph.D., Assistant Professor
Thomas G. Nyland, D.V.M., Professor
Timothy R. O'Brien, D.V.M., Ph.D., Professor
John R. Pascoe, B.V.Sc., Ph.D., Professor
Peter J. Pascoe, B.V.Sc., Associate Professor
Jack R. Snyder, D.V.M., Ph.D., Associate Professor
Eugene P. Steffey, V.M.D., Ph.D., Professor
Alain P. Théon, D.V.M., Ph.D., Associate Professor
Phil Bradley, D.V.M., M.S., Professor

Emeriti Faculty
Roy W. Bellhorn, D.V.M., M.S., Professor Emeritus
Robert M. Cello, D.V.M., Professor Emeritus
Marvin Goldman, Ph.D., Professor Emeritus
Ira M. Gourley, D.V.M., Ph.D., Professor Emeritus
Terrell A. Holliday, D.V.M., Ph.D., Professor Emeritus
Robert L. Leighton, V.M.D., Professor Emeritus
Dennis M. Meagher, D.V.M., Ph.D., Professor Emeritus
Joe P. Morgan, D.V.M., Vet. med. dr., Professor Emeritus
Harold R. Parker, D.V.M., Ph.D., Professor Emeritus
Gordon H. Theilen, D.V.M., Professor Emeritus
John D. Wheat, D.V.M., Professor Emeritus
Alida P. Wind, M.V.D., Lecturer Emeritus

Affiliated Faculty
David D. Cantor, D.V.M., Assistant Clinical Professor
Dennis V. Hacker, D.V.M., Assistant Clinical Professor
Steven R. Hollingsworth, D.V.M., Lecturer
Susan A. Kraegel, D.V.M., Lecturer
Michael L. Magne, D.V.M., M.S., Assistant Clinical Professor
Kyle G. Mathews, D.V.M., M.S., Lecturer
George M. Peavy, D.V.M., Assistant Clinical Professor
Randall H. Scagliotti, D.V.M., Associate Clinical Professor
Sam Silverman, D.V.M., Ph.D., Clinical Professor
James Ticer, D.V.M., Ph.D., Associate Clinical Professor
Melinda K. Van Vechten, D.V.M., Assistant Clinical Professor
Leigh West-Hyde, D.V.M., Associate Clinical Professor
Erik R. Wisner, D.V.M., Assistant Professor-in-Residence

Courses in Surgical and Radiological Sciences (VSR)

Upper Division Course
199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff
(Chairperson in charge) (FNP grading only)

Graduate Courses
230. Principles of Anesthesia and Surgery (2) II. Steffey
Lecture—2 hours. Prerequisite: graduate or professional student or consent of instructor. Presentation and integration of principles and techniques of anesthesiology and surgery for laboratory animals. Course is not restricted to student numbers. Offered in alternate years.

230L. Principles of Anesthesia and Surgery (2) II. Steffey
Laboratory—4 hours. Prerequisite: course 230 concurrently. Laboratory to complement course 230. Limited enrollment. Offered in alternate years. (SU grading only.)

*265A. Principles and Practice of Veterinary Radiation Oncology - A (1.5) I. Theon
Lecture—1 hour; laboratory—3 hours total. Prerequisite: open only to graduate students and residents. Topics and principle of veterinary radiation therapy. Topics will include a series of lectures on physical methods of radiation therapy, biologic effects of therapeutic radiation, and applications in veterinary patients. Offered in alternate years. (Same course as 465A) (SU grading only.)

*265B. Principles and Practice of Veterinary Radiation Oncology - B (1.5) II. Theon
Lecture—1 hour. Prerequisite: course 265A. Principles and practice of veterinary radiation therapy. The topics will include a series of lectures on physical methods of radiation therapy, biologic effects of therapeutic radiation, and applications in veterinary patients. Offered in alternate years. (Same course as 465B) (SU grading only.)

280. Structure and Function of the Mammalian Respiratory System (4) II. Jones
Lecture—4 hours; discussion—1 hour. Prerequisite: Biochemistry 101A-101B, Mathematics 16A, 16B and 16C. Physics 5A and 5B. Advanced study of respiratory physiology and morphology with emphasis on principles of alveolotaxy, ventilation and perfusion, gas exchange, distribution, and transport, and its relation to altered function in exercise, and at high altitude. Offered in alternate years.

290. Clinical Neurology/Neuropathology Conference (1) I, II, III. Cardinet, Higgins, Bailey Seminar—1.5 hours. Prerequisite: third or fourth-year standing in the School of Veterinary Medicine, Veterinary Medicine Teaching Hospital, or UC-Davis resident or graduate student in appropriate discipline. Discussion and review of neural and muscular pathology of selected cases from the Veterinary Medicine Teaching Hospital. (SU grading only.)

291. Anesthesia/Critical Care Basic Science Conference (1) I, II, III. The Staff (P. Pascoe in charge)
Discussion—1 hour. Prerequisite: postdoctoral, medical, or graduate student; consent of instructor. Advanced course in scientific foundations of animal anesthesia and critical care. Format is directed by discussion following reading of assigned material emphasizing foundations in pharmacology and physiology. (SU grading only.)

293. Anesthesia/Critical Care Case Management Conference (1) I, II, III. The Staff (P. Pascoe in charge)
Discussion—1 hour. Prerequisite: postdoctoral, medical or graduate student; consent of instructor. Discussion of Veterinary Medical Teaching Hospital case material to illustrate specific medical problems and their preventive and corrective management. (SU grading only.)

*Course not offered this academic year.
Surgical and Radiological Sciences

413A. Basic Small Animal Dentistry (1 I). Verstraete
Lecture—10 sessions. Prerequisite: third-year veterinary students. Introductory course in small animal dentistry. Covers the principles of oral examination, pathophysiology and treatment of periodontal disease, endodontics, soft tissue surgery and dental emergencies. (SU grading only.)

413B. Advanced Small Animal Dentistry (1 I). Verstraete
Lecture—10 sessions. Prerequisite: course 413A. Advanced course in small animal dentistry. Covers the principles of orthodontics, developmental and regressive dental condition, endodontics, prosthodontics, advanced periodontal therapy, oral medicine and advanced periodontal therapy. (SU grading only.)

414. Veterinary Anesthesiology (1.5 per week) I, II, III. The Staff (Steefy in charge)
Laboratory—50 hours. Prerequisite: professional standing, House Officer in Veterinary Medical Teaching Hospital, or consent of instructor. House Officers responsible for anesthetic care of patients in the operating rooms under the supervision of the senior staff. May be repeated for credit. (SU grading only.)

415L. lameness in Dogs (0.5) III. Vasseur
Laboratory—2 three-hour sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Discussion of lameness examination will be followed by detailed descriptions of lameness in different breeds of dogs and cats and methods to diagnose and treat them effectively. An important goal will be to distinguish those disorders that can be managed by the general practitioner from those that require referral to a specialist. (SU grading only.)

420. Small Animal Neurosurgery (1 I) II. Bailey
Lecture—4 hours; laboratory—16 hours. Prerequisite: VMTH Neurology/Neurosurgery resident. VMTH Surgery resident or consent of instructor. Indications and techniques of selected small animal neurosurgical procedures. (SU grading only.)

422. Veterinary Ophthalmology (0.75–1.5 per week) I, II, III. Buyukmehmet
Laboratory—25–50 hours. Prerequisite: professional standing, House Officer in Veterinary Medical Teaching Hospital, or consent of instructor. House Officers responsible for care of small animal patients in the hospital and out-patient clinic including history taking, ophthalmologic examinations, special diagnostic techniques, assistance at ophthalmic surgical procedures and medical and post surgical care under the direction of the staff ophthalmologist. May be repeated for credit. (SU grading only.)

423. Small Animal Ophthalmology (2 I). Hollingsworth
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Diagnosis and treatment of commonly encountered eye diseases of small animals and nondomestic animals.

423L. Small Companion Animal Ophthalmology Laboratory (0.3) III. Hollingsworth
Laboratory—2 four-hour sessions. Prerequisite: course 422 or the equivalent and concurrent enrollment in course 423. Approved for graduate degree credit. Ocular surgical laboratory. Several surgical procedures involving lids and conjunctiva, as well as enucleation, will be performed at each session. (SU grading only.)

424. Case Studies in Veterinary Oncology (1 I) II. Madewell
Lecture—10 hours. Prerequisite: second-year student of Veterinary Medicine elective course offering. By use of clinical case material, the student will be introduced to the Internal Medicine Subspeciality of Oncology. Course will highlight clinical considerations, but will also serve to introduce basic tenets of tumor biology. (SU grading only.)

460. Emergency and Critical Patient Care (2 I). Harriot
Lecture—20 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Introduction to the essential and practical concepts of care for emergency and critically ill patients.

461. Small Animal Orthopedic Surgery (1.6) II. Vasseur
Lecture—16 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Management of common fractures, luxations and other injuries in dogs.

461L. Small Animal Orthopedic Surgery (0.5) II. Vasseur
Laboratory—3 three-hour sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Hands-on experience in application of external coaptation and basic principles of application of different types of fixation for fractures. (SU grading only.)

462. Radiographic and Ultrasonographic Diagnosis: Small Animal (1.7) III. Hornof
Lecture/discussion—2 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Students will be supplied with small animal radiographic and ultrasonographic case studies. Weekly discussion sections will be held to discuss assigned cases in small group with instructors. Limited enrolment.

463. Soft Tissue Surgical Diseases (2 I) II. Gregory
Lecture—2 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Pathophysiology and surgical treatment of selected soft tissue diseases.

463L. Soft Tissue Surgical Diseases Laboratory (0.9) III. Gregory
Laboratory—9 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine. Course 463 concurrently. Priority given to Small Animal track students. Laboratory course complementing course 463. Three laboratories in applied surgical anatomy and physiology and six in operative surgical exercises which cover common emergency surgical procedures. (SU grading only.)

465A. Principles and Practice of Veterinary Radiation Oncology - A (1.5) II. Theon
Lecture—1 hour; laboratory—3 hours total. Prerequisite: open only to graduate students and residents. Principles and practice of veterinary radiation therapy. Topics will include a series of lectures on physical methods of radiation therapy, biologic effects of therapeutic radiation, and applications in veterinary patients. Offered in alternate years. (Same course as 265A.) (SU grading only.)

465B. Principles and Practice of Veterinary Radiation Oncology - B (1.5) III. Theon
Lecture—1 hour. Prerequisite: course 465A. Principles and practice of veterinary radiation therapy. Topics will include a series of lectures on physical methods of radiation therapy, biologic effects of therapeutic radiation, and applications in veterinary patients. Offered in alternate years. (Same course as 265B.) (SU grading only.)

466. Mixed-Large Animal Anesthesiology (1.5) II. Hildebrand
Lecture—15 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Applied clinical anesthesiology for junior veterinary students. Special techniques and considerations for anesthetizing a variety of species including horses, swine, ruminants, large non-domestic species, cats and dogs. (SU grading only.)

467. Small Animal Anesthesiology (1.5) II. Ikiov
Lecture—15 hours. Prerequisite: third-year standing in School of Veterinary Medicine or consent of instructor. Approved for graduate degree credit. Presentation of material which is basic to safe clinical administration of anesthetic drugs to small animals. Clinical applications, indications and contraindications, and methods
of use of common anesthetic drugs and techniques will be discussed. 468. Equine Lameness and Radiology (4) III. O'Brien. Lecture—40 hours. Prerequisite: third-year standing in School of Veterinary Medicine. Principles in the radiologic diagnosis of conditions that cause lameness in the equine will be emphasized. Methods used in large-animal radiography will be illustrated and latest technique for treating equine lameness will be discussed. Anatomy and pathology of some areas of the musculoskeletal system will also be presented.

468L. Equine Lameness and Radiology (1) III. O'Brien. Laboratory—10 three-hour sessions. Prerequisite: course 468 (concurrently). Priority enrollment for students in equine track, others with consent of instructor. Limited enrollment.

469. Equine Surgery (3) II. Pascoe. Lecture—30 hours. Prerequisite: third-year standing in the School of Veterinary Medicine. Provides junior veterinary students with an understanding of those diseases of the soft tissues of the horse that can be managed surgically.

469L. Equine Surgery Laboratory (1) III. Pascoe. Laboratory—10 three-hour sessions. Prerequisite: course 469 (concurrently). Specific surgical procedures of the horse are demonstrated and performed by students. Participants in the course work in groups of three on rotating basis. Limited enrollment.

492. Large Animal Grand Rounds (0.5) I, II, III. The Staff (Pascoe in charge). Discussion—1 hour. Prerequisite: professional standing, House Officer in Veterinary Medical Teaching Hospital or consent of instructor. House Officers take an active part in the presentation and discussion of selected cases from the large animal and ambulatory clinics. (S/U grading only.)

Textile Arts and Costume Design
See Design

Textile Science
See Fiber and Polymer Science

Textiles (A Graduate Group)
You-Lu Hsieh, Ph.D., Chairperson of the Group. Group Office, 129 Everson Hall (916-752-6650)

Faculty. The Group includes the faculty from the Division of Textiles and Clothing as well as from a variety of other departments representing related disciplinary fields.

Graduate Study. The Graduate Group in Textiles offers a program of study and research leading to the M.S. degree. Students in the program can emphasize either the physical or behavioral science aspects of textiles. Research areas will include chemical, physical, biochemical, and mechanical properties of fibers and polymers as well as fibrous assemblies, including composites, paper, and nonwovens; and psychological and sociological factors relating to perception and consumption of textiles and apparel. Extensive specialized fiber, polymer, and textiles research facilities are available. For detailed information regarding the program, address the Chairperson of the Group.

Graduate Adviser. Y.-L. Hsieh (Textiles and Clothing).

Textiles and Clothing
(4) (College of Agricultural and Environmental Sciences)
Margaret H. Rucker, Ph.D., Chairperson of the Division. Division Office, 129 Everson Hall (916-752-6650)

Faculty
You-Lu Hsieh, Ph.D., Professor
Susan B. Kaiser, Ph.D., Professor
Ning Pan, Ph.D., Associate Professor
Margaret H. Rucker, Ph.D., Professor
Garl Sun, Ph.D., Assistant Professor

Emeriti Faculty
Mary Ann Morris, Ph.D., Professor Emeritus
Howard L. Needles, Ph.D., Professor Emeritus
S. Haig Zerban, Ph.D., D.S.C., Professor Emeritus

Affiliated Faculty
Ken Alger, M.S., Lecturer
Joan Chandler, M.S., Lecturer

The Major Program
The textiles and clothing major emphasizes the connections among (a) the physical characteristics of textile products and values of the consumer, (b) human perceptions of and behavior toward these products, and (c) global economic trends affecting the textile/apparel marketplace. An integrative knowledge base links textile products with peoples and processes, to focus on the production, distribution, and consumer use of textiles and apparel. (See also Fiber and Polymer Science.)

The Program. The textiles and clothing major offers two options: multidisciplinary and marketing/economics. The Multidisciplinary option provides students with a broad knowledge base in both the social and physical sciences. This base includes production, end-use applications and uses of textiles and apparel, physical and chemical properties of textiles, and social-psychological and economic aspects of textiles and clothing. The Marketing/Economics option emphasizes social science and business course work, while also providing students with an awareness of the physical nature of textile products.

Internships and Career Alternatives. Textiles and clothing majors can pursue internships and careers in apparel production and merchandising, retail management, international marketing, textile testing and conservation, and textiles journalism. The majority of textiles and clothing graduates accept entry-level management and technical positions within the textile and apparel industry or in related fields, (e.g., merchandising and marketing, production, research and development, technical service and design). Students may also pursue graduate studies in textiles, business, and other areas depending on their specific selections of restricted elective coursework.

B.S. Major Requirements:
(For convenience in program planning, the usual courses taken to satisfy the requirements are shown in parentheses. Equivalent or more comprehensive courses are acceptable. Courses shown without parentheses are required.)

<table>
<thead>
<tr>
<th>UNITS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-12</td>
<td>English Composition Requirement</td>
</tr>
<tr>
<td>4</td>
<td>Rhetoric 1</td>
</tr>
<tr>
<td>3-4</td>
<td>Preparatory Subject Matter</td>
</tr>
<tr>
<td>39-41</td>
<td>Computer science (Agricultural Systems and Environment) 21, Computer Science Engineering (15 or 30)</td>
</tr>
</tbody>
</table>

History of art or cultural anthropology (Anthropology 2, Science and Society 1) 4, Art History 1A, 1B, 1C, or 1D) 4, Physics (Physics 10 or Physics 1A) 3-4, Psychology (Psychology 1) 4, Sociology (Sociology 2) 4, Statistics (Statistics 13) 4, Textiles and Clothing 1 (Textiles and Clothing 6, 8) 8

Breadth/General Education 6-24
Satisfaction of General Education requirement

Select one of the following two options:

Marketing/Economics Option

Course not offered this academic year.

Option-Specific Preparatory Subject Matter ...

Accounting (Management 11A-11B) 8
Chemistry (Chemistry 10) 4
Mathematics (Mathematics 16A-16B) 6

Depth Subject Matter ...

Agricultural Economics (Agricultural Economics 100A-100B, 106, 136) 16
Statistics (Statistics 103) 4
Psychology or Consumer Science (Psychology 145 or 183, or Consumer Science 100) 3-4

Textiles and clothing (Fiber and Polymer Science 110, Textiles and Clothing 107, 162, 162L, 163L, 164, 165, 171, 173, 174, 177) 34

Restricted Electives ...

Courses selected from the following: Agricultural Economics 112, 114M, 142, 155, 157, 171A, 171B, Anthropology 122, 126, Consumer Science 100, Design 77A, 77B, 143, Economics 101, 121A, 121B, 134, 162, and other relevant course work

Foreign language units may be used to satisfy any or all of the required 12 units.

Mathematics 16C, Psychology 145, 183, Sociology 123, 126, 140, 141, 145, Textiles and Clothing 180A, 180B, 230, 293, with consent of instructor, and a maximum of 5 units in other Textiles and Clothing or 192 or 199.

Unrestricted Electives 15-44

Multidisciplinary Option

Option-Specific Preparatory Subject Matter ...

Chemistry (Chemistry 2A, 2B, 8A, 8B) 16

Depth Subject Matter ...

Agricultural Economics (Agricultural Economics 112, 113) 6

Design (Design 143) 4

Psychology or Consumer Science (Psychology 145 or 183, or Consumer Science 100) 3-4

Textiles and clothing (Fiber and Polymer Science 100, 161, 161L, Textiles and Clothing 107, 162, 162L, 163L, 164, 165, 171, 173, 174, 177) 37

Restricted Electives 16

Unrestricted Electives 17-46
Courses in Textiles and Clothing (TXC)

Questions pertaining to the following courses should be directed to the instructor or to the Division of Textiles and Clothing. See also courses in Fiber and Polymer Science.

Lower Division Courses

6. Introduction to Textiles (4) I. Sun Lecture—3 hours; laboratory—3 hours. Introduction to the structure and properties of textiles. Consumer use and fabric characteristics are emphasized. GE credit: SciEng.

92. Internship in Textiles and Clothing (1-12) I, II, III. The Staff (Rucker in charge) Internship—3-36 hours. Prerequisite: consent of instructor. Work experience off campus in a textiles or clothing-related area. Supervision by a member of the Staff and Textiles and Clothing faculty. (P/NP grading only.)

98. Directed Group Study (1-5) I, II, III. The Staff (Rucker in charge) Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Lower Division Students (1-5) I, II, III. The Staff (Rucker in charge) (P/NP grading only.)

Upper Division Courses

162. Textile Fabrics Laboratory (2) II. Pan Lecture—3 hours. Prerequisite: course 6. Properties of fabrics as related to serviceability, comfort, and appearance. GE credit: SciEng.

162L. Textile Fabrics Laboratory (1) II. Pan Laboratory—3 hours. Prerequisite: course 162 (may be taken concurrently). Laboratory methods and procedures employed in studying properties of textile fabrics as related to serviceability, comfort, and appearance.

163. Textile Coloration and Finishing (3) III. Sun Lecture—3 hours. Prerequisite: course 6, Fiber and Polymer Science 110, or Chemistry 8B. Basic principles of textile dyeing, printing, and finishing; color theory; structure, properties, and application of dyes and finishes; factors affecting application and fastness; maintenance of dyed and finished textiles.

163L. Textile Coloration and Finishing Laboratory (1) I. Sun Laboratory—3 hours. Prerequisite: course 163 (may be taken concurrently). Demonstrates various aspects of dyeing, printing, and finishing of textile substrates including the effect of fiber and finish type, and physical and chemical variables on dyeing and finishing processes and on the properties of the resultant textile.

164. Principles of Apparel Production (3) III. The Staff Lecture—3 hours. Prerequisite: course 6 or 8. Overview of characteristics, technology, processes, and research in apparel manufacturing industries including study of government statistics, material utilization and fabrication, mechanization, management, and production engineering.

171. Clothing Materials Science (4) I. Hsieh, Pan Lecture—3 hours; laboratory/discussion—3 hours. Prerequisite: course 6, Economics 1A, Agricultural Economics 113 or 136. Study of basic elements of fashion marketing including philosophy and objectives, organization, merchandising, pricing, promotion and personnel. Offered in alternate years.

177. Clothing and Social Perception (3) II. Kaiser Lecture—3 hours. Prerequisite: course 107; Sociology 2; Psychology 1. Social and cognitive processes related to the meanings people assign to clothing cues when perceiving one another. Particular attention to the following appearance-related stereotypes: age, sex, physical attractiveness, status, ethnicity. Influences of clothing and appearance on social interactions. GE credit: SocSci, Div, Wrt.

180A-180B. Introduction to Research in Textiles (2-2) I, II, III. The Staff (Rucker in charge) Laboratory—6 hours. Prerequisite: senior standing with textile-related major, and consent of instructor. Senior thesis on independent problems. Research begun in course 180A will be continued and completed in course 180B. (Deferred grading only; pending completion of sequence.)

192. Internship in Textiles and Clothing (1-12) I, II, III. The Staff (Rucker in charge) Internship—3-36 hours. Prerequisite: consent of instructor. Work experience off campus in a textiles or clothing-related area. Supervision by a member of the Staff and Textiles and Clothing faculty. (P/NP grading only.)

197T. Tutoring in Textiles and Clothing (1-15) I, II, III. The Staff (Rucker in charge) Discussion—1 hour. Prerequisite: course 107; Sociology 2; Psychology 1. Social and cognitive processes related to the meanings people assign to clothing cues when perceiving one another. Particular attention to the following appearance-related stereotypes: age, sex, physical attractiveness, status, ethnicity. Influences of clothing and appearance on social interactions. GE credit: SocSci, Div, Wrt.
Undergraduate Academic Internship Program

The UC Davis Washington Center undergraduate program is open to students from all majors at UC Davis who have completed 84 units towards graduation. Students earn 12-16 units of academic credit, continue to be registered as full-time students, and fulfill university residency requirements. A GPA of approximately 3.0 is recommended for admission. Applicants are also evaluated based on a written statement, letters of recommendation and personal interviews.

The Undergraduate Program runs fall and spring quarters, on a 12-13 week “extended quarter” basis. It has two principal components:

• Internships/Research Projects (6-8 units): Students work three to four days per week as interns in Congress, federal agencies, interest groups, trade associations, research institutions, the media, museums or in other organizations related to policy, politics, science and culture and geared to the interests and objectives of individual students. Drawing on the internship experience, each student develops an independent research project, under the supervision of a member of the faculty.

• Policy-Process Seminar (4 units): Each student also enrolls in one upper division seminar course taught at the Washington Center. Most of these courses focus on a particular area of policy (e.g., foreign policy, science policy, social policy, economic policy, agricultural policy) and the key issues, the policies, the principal institutions, and the dynamics of the process within that policy area. Some are of more general interest, designed to draw on some of the unique historical, scientific, cultural and artistic resources of Washington. In addition to regular instruction, seminars often include guest speakers, observations of congressional committees and federal agencies, and other relevant Washington experiences.

Courses are taught by UC Davis faculty in residence, faculty from the UCLA, UC Santa Barbara, UC Santa Cruz and UC Berkeley Washington programs, or visiting faculty from the Washington area.

Financial aid eligibility is maintained, and the aid package can be adjusted to reflect the additional costs of the Program. Some additional financial awards are also awarded directly by the Washington Center, including the University of California President’s Washington Scholarship Program, and the Joyce and Norman Well Scholarships.

Students live in university-arranged housing, convenient to public transportation. Arrangements also are made to cover health services and other aspects of student life. The program also includes many educational, cultural and historical activities in the Washington area.

Students also may participate in a Summer Program. The Summer Program is non-credit. It includes internships and many of the same educational, cultural, historical and social activities but no courses or research projects. The program fee is $200. Some financial assistance is provided but more limited than for the academic year programs.

The Washington Center also has two positions during the academic year for graduate students as Graduate Fellows (combination of a predoctoral research fellowship and a teaching assistantship) and Graduate Summer Internships.

In partnership with faculty on campus, the Washington Center arranges satellite interactive "tele-courses" in which students on the Davis campus participate in interviews and seminars with federal government officials and other experts from the nation’s capital.

Undergraduate Program requires 12-16 units of academic credit continuing to be registered as full-time students, and fulfill university residency requirements. A GPA of approximately 3.0 is recommended for admission. Applicants are also evaluated based on a written statement, letters of recommendation and personal interviews.

The Undergraduate Program runs fall and spring quarters, on a 12-13 week “extended quarter” basis. It has two principal components:

• Internships/Research Projects (6-8 units): Students work three to four days per week as interns in Congress, federal agencies, interest groups, trade associations, research institutions, the media, museums or in other organizations related to policy, politics, science and culture and geared to the interests and objectives of individual students. Drawing on the internship experience, each student develops an independent research project, under the supervision of a member of the faculty.

• Policy-Process Seminar (4 units): Each student also enrolls in one upper division seminar course taught at the Washington Center. Most of these courses focus on a particular area of policy (e.g., foreign policy, science policy, social policy, economic policy, agricultural policy) and the key issues, the policies, the principal institutions, and the dynamics of the process within that policy area. Some are of more general interest, designed to draw on some of the unique historical, scientific, cultural and artistic resources of Washington. In addition to regular instruction, seminars often include guest speakers, observations of congressional committees and federal agencies, and other relevant Washington experiences.

Courses are taught by UC Davis faculty in residence, faculty from the UCLA, UC Santa Barbara, UC Santa Cruz and UC Berkeley Washington programs, or visiting faculty from the Washington area.

Financial aid eligibility is maintained, and the aid package can be adjusted to reflect the additional costs of the Program. Some additional financial awards are also awarded directly by the Washington Center, including the University of California President’s Washington Scholarship Program, and the Joyce and Norman Well Scholarships.

Students live in university-arranged housing, convenient to public transportation. Arrangements also are made to cover health services and other aspects of student life. The program also includes many educational, cultural and historical activities in the Washington area.

Students also may participate in a Summer Program. The Summer Program is non-credit. It includes internships and many of the same educational, cultural, historical and social activities but no courses or research projects. The program fee is $200. Some financial assistance is provided but more limited than for the academic year programs.

The Washington Center also has two positions during the academic year for graduate students as Graduate Fellows (combination of a predoctoral research fellowship and a teaching assistantship) and Graduate Summer Internships.

In partnership with faculty on campus, the Washington Center arranges satellite interactive "tele-courses" in which students on the Davis campus participate in interviews and seminars with federal government officials and other experts from the nation’s capital.

Urban Planning

See Applied Behavioral Sciences; Engineering; Civil and Environmental; Environmental Horticulture and Urban Forestry; Environmental Policy Analysis and Planning; Environmental Studies; and Geography

Vegetable Crops

(College of Agricultural and Environmental Sciences)
Kent J. Bradford, Ph.D., Chairperson of the Department Office, 148 Asmundson Hall (916-752-0516)

Faculty
Lars W. Anderson, Ph.D., Lecturer
David E. Bayer, Ph.D., Professor
Alan B. Bennett, Ph.D., Professor
Arnold J. Bloom, Ph.D., Professor
Kent J. Bradford, Ph.D., Professor
Marita Cantwell, Ph.D., Lecturer
Roger T. Chatelat, Ph.D., Lecturer
Joseph M. DiTomaso, Ph.D., Lecturer
Clyde L. Emore, Ph.D., Lecturer
Timothy K. Hartz, Ph.D., Lecturer
Louise E. Jackson, Ph.D., Associate Professor
Richard A. Jones, Ph.D., Professor
W. Thomas Lani, Ph.D., Lecturer
Muhammad Marrush, Ph.D., Lecturer
Jeffrey J. Mitchell, Ph.D., Lecturer
Richard W. Michmelore, Ph.D., Professor
Donald J. Neuhauser, Ph.D., Lecturer
Robert F. Norris, Ph.D., Associate Professor
Carlos F. Quiros, Ph.D., Professor
Friedrich J. Ryan, Ph.D., Lecturer
Dina S. Clair, Ph.D., Assistant Professor
Mikal E. Saltveit, Ph.D., Professor
Carol Shennan, Ph.D., Associate Professor
David F. Spencer, Ph.D., Lecturer
Trevor V. Suslim, Ph.D., Lecturer
Ronald E. Voss, Ph.D., Lecturer
John I. Yoder, Ph.D., Associate Professor

Emeriti Faculty
James F. Harrington, Ph.D., Professor Emeritus
Robert F. Kasmire, Lecturer Emeritus
James M. Lyons, Ph.D., Professor Emeritus
Jim W. McHenry, Ph.D., Lecturer Emeritus
Lawrence W. Mitch, Ph.D., Lecturer Emeritus
Leonard L. Morris, Ph.D., Professor Emeritus
Harlan K. Pratt, Ph.D., Professor Emeritus
Lawrence Rappaport, Ph.D., Professor Emeritus
Charles M. Rick, Ph.D., Professor Emeritus
Vincent Rupatzyk, Ph.D., Lecturer Emeritus
William L. Sims, Ph.D., Lecturer Emeritus
Paul G. Smith, Ph.D., Professor Emeritus
Arthur R. Spurr, Ph.D., Professor Emeritus
Herman Timm, Ph.D., Lecturer Emeritus
James E. Weich, Ph.D., Lecturer Emeritus
Masatoshi Yamaguchi, Ph.D., Professor Emeritus
Shang Fa Yang, Ph.D., Professor Emeritus

Graduate Study. A program of study is offered leading to the M.S. degree in Vegetable Crops. Information can be obtained from the graduate adviser. Also see the Graduate Studies section in this catalog.

Courses in Vegetable Crops (VCR)

See Medicine, School of

Related Courses. Vegetable Crops faculty also teach the following courses that contribute to majors and graduate programs in Agricultural Systems and Environment, Biological Sciences, Genetics, and Plant Biology:

Lower Division Course

92. Internship in Vegetable Crops (1-6) I, II, III. The Staff (Department Chairperson in charge) Internships—3-36 hours. Work experience off or on campus in all subject areas pertaining to vegetable crops. Internships supervised by a member of the faculty. Maximum of 12 units permitted in the Vegetable Crops 92-192 series. (P/NP grading only.)

Upper Division Courses

192. Internship in Vegetable Crops (1-12) I, II, III. The Staff (Chairperson in charge) Internships—3-36 hours. Prerequisite: consent of instructor. Work experience off or on campus in all subject areas pertaining to vegetable crops. Internships supervised by a member of the faculty. Maximum of 12 units permitted in the Vegetable Crops 92-192 series. (P/NP grading only.)

197T. Tutoring in Vegetable Crops (1-3) I, II, III. The Staff (Chairperson in charge) Tutoring/discussion—3-9 hours. Prerequisite: consent of instructor. Voluntary tutoring for upper division students who desire teaching experience. Under supervision students may prepare laboratory materials, experiments, and autotutorial modules, conduct discussions and demonstrations, and be involved in testing. May be repeated up to a total of 6 units. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) Prerequisite: consent of instructor. (P/NP grading only.)

Graduate Courses

212. Postharvest Physiology of Vegetables (4) I. Saltveit Lecture—2 hours; laboratory—6 hours. Prerequisite: Plant Biology 112 or 172. Comparative physiology of harvested vegetables; emphasis on maturation, senescence, compositional changes, physiological disorders and effects of environmental factors. Laboratories stress concepts and research procedures. Offered in alternate years.

216. Ecology and Agriculture (3) I. Jackson Lecture/discussion—3 hours. Prerequisite: Plant Biology 142 or consent of instructor. Ecological principles and relationships as applied to agriculture. Integration of ecological approaches into agricultural research to develop environmentally sound management practices. Topics include crop ecology, biotic interactions among crops and pests, and crop systems ecology. (Same course as Ecology 216.)

220. Biotechnology and Genetics of Crop Improvement (3) I. Michelmore Lecture—3 hours. Prerequisite: Biological Sciences 101 or Plant Biology 152; Plant Biology 154 or consent of instructor. Integration of modern biotechnology and classical plant breeding including molecular markers, genetic mapping, gene identification, transformation,
tissue culture, incompatibility mechanisms, male sterility, hybrid production, disease resistance, and novel plant products.

220L. Biotechnology and Genetics of Crop Improvement Laboratory (1) II. Michelmore Laboratory—3 hours. Prerequisite: course 220 concurrently. Projects in plant genetics and biotechnology: identification and analysis of molecular markers, generation and characterization of transgenic plants.

*221. Genetics and Cytogenetics of Vegetable Crops (3) III. Quiros Lecture—3 hours. Prerequisite: Plant Science 113 or the equivalent. Genetics and cytogenetics of the principal vegetables on a crop by crop basis. Current advances on the cytogenetic technology, sources of germplasm and applications to practical breeding problems.

*228. Plant Molecular Biology Laboratory (5) II. Bennett, Harada (Botany) Lecture—2 hours; laboratory—10 hours. Prerequisite: Molecular and Cellular Biology 120L, a course in molecular genetics, and consent of instructors. Research methods in plant molecular biology. Topics include analysis of gene expression, characterization of gene structure, and gene transfer technology. Emphasis will be placed on analysis of developmentally regulated gene expression. (Same course as Plant Biology 228.)

290. Seminar (1) I, II, III. The Staff Discussion—1 hour (S/U grading only)

298. Group Study (1-5) I, II, III. The Staff (Chairperson in charge)
Prerequisite: consent of instructor.

299. Research (1-12) I, II, III. The Staff (Chairperson in charge) (S/U grading only)

Professional Course

300. Tutoring in Vegetable Crops (1-3) I, II, III. The Staff (Chairperson in charge)
Tutoring—3-9 hours. Prerequisite: consent of instructor. Voluntary tutoring for graduate students who desire teaching experience, but who are not teaching assistants. Students under supervision may give lectures, prepare laboratory materials, experiments, and autotutorial modules, conduct discussions and demonstrations, and be involved in testing. May be repeated for a total of 6 units. (S/U grading only)

Courses in Veterinary Medicine (VMD)

Lower Division Course

92. Internship in Veterinary Science (1-12) I, II, III, IV. Pascoe Discussion-laboratory—1-4 hours; clinical experience—3-36 hours. Prerequisite: approval of project by faculty sponsor prior to period of internship. Students in this program will be under the supervision of faculty in the School of Veterinary Medicine whose expertise is appropriate for the proposed project. (PnP grading only)

Upper Division Courses

170. Ethics of Animal Use (4) III. Brooks, Dundon, Price Lecture—3 hours; discussion—1 hour. Prerequisite: any basic course in composition or speech. Study of applied ethical methodology, tightly organized writing of critiques and policy statements in ethical use of animals. Learning respect for divergent views in professional and public treatment of animals through case histories and by discussion of consensus policies to protect animals and human values. GE credit: SocSci, Wrt.

192. Internship in Veterinary Science (1-12) I, II, III, IV. Pascoe Discussion-laboratory and clinic—3-36 hours; final report. Prerequisite: upper division standing; approval of project prior to period of internship by preceptor. Supervised work experience in Veterinary Medicine. (PnP grading only)

Graduate Courses

298. Group Study (1-5) I, II, III. The Staff (S/U grading only)

299. Directed Independent Study (1-12) I, II, III. The Staff (S/U grading only)

Professional Courses

400. Informatics (1.0) I. Cardinet Discussion—2 hours; laboratory—8 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Acquisition of elementary skills and proficiency in the use of microcomputing will be achieved through the "real time" use of microcomputers within the science laboratories of instruction. (S/U grading only)

401A. Normal Anatomy of the Canine Locomotor System (3.1) I. Hyde Lecture—12 sessions; laboratory—19 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Normal canine anatomy of bones, joints, muscles, ligaments, tendons, nerves and vessels of the vertebral column, and limbs, with comparison to other species. Microstructure and function of bones and skeletal muscle.

401B. Normal Anatomy of the Canine Head (1.4) I. Cummings Lecture—6 sessions; laboratory—8 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine. Normal canine anatomy of bones, joints, muscles, ligaments, tendons, nerves and vessels of the head, including the eye and ear, with comparison to other species.

402A. Cardiovascular Anatomy and Physiology (2.4) I. Jones Lecture—16 sessions; laboratory—8 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine; residents in Specialty Training or graduate students, with consent of instructor. Integrated view of cardiovascular anatomy and physiology.

402C. Pulmonary Anatomy and Physiology (2.10) II. Jones Lecture—14 sessions; laboratory—7 sessions. Prerequisite: first-year standing in the School of Veterinary Medicine; residents in Specialty Training or graduate students, with consent of instructor. Integrated view of respiratory function.

Veterinary Medicine, School of

Frederick A. Murphy, D.V.M., Ph.D., Dean of the School
John R. Pascoe, B.V.Sc., Ph.D., Associate Dean—Academic Programs
Bennie I. Osburn, D.V.M., Ph.D., Associate Dean—Research
Robert J. Hansen, Ph.D., Associate Dean—Student Programs
Bradford P. Smith, D.V.M., Associate Dean—Clinical Programs; Director, Veterinary Medical Teaching Hospital
Donald J. Klingborg, D.V.M., Assistant Dean—Public Programs; Director, Veterinary Extension
Ian Gardner, D.V.M., M.P.V.M., Ph.D., Director, Master’s of Preventive Veterinary Medicine Program

School Office, Rooms 101–142 Surge IV (916-752-1360)

402D. Structure and Function of the Urinary System and Body Fluids (2.2) III. Bruss Lecture—15 sessions; laboratory—7 sessions. Prerequisite: first-year standing in veterinary curriculum or consent of instructor. For first-year veterinary students. Basic understanding of the structure and function of the urinary system plus physiology of body fluids and acid-base balance. Structure and function are correlated.

403A-403B. Physiological Chemistry (4.6-2.0) I- II. Hansen Lecture—36 sessions/15 sessions (403A/403B); discussion—4 sessions/2 sessions; laboratory—6 sessions/3 sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Emphasis is placed on biochemical concepts used to analyze problems and evaluate metabolic relationships important in animal health and disease.

405. Veterinary Parasitology (3.6) III. Conrad, Boyce Lecture—26 hours; laboratory—10 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Overview of animal behavior with relevance to veterinary medicine.

407. Principles and Techniques of Operative Surgery and Anesthesia (2.4) I. Gregory Lecture—24 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine; course 426. Introduction to operative and anesthetic skills and foundation in the importance of regional anesthesia in the planning and conduct of surgical practice.

407L. Principles and Techniques of Operative Surgery Laboratory (1.4) II. Gregory Lecture—14 sessions. Prerequisite: third-year standing in the School of Veterinary Medicine; course 426. Introduction to surgical anatomy, operative and anesthetic skills. (S/U grading only)

408. Nutrition and Nutritional Diseases in Animals (2.9) II. Morris Lecture—27 hours; laboratory—2 three-hour sessions. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Principles of nutrition and their application to the solution of nutritional disorders of animals.

409. Epidemiology (1.7) III. Hird Lecture—11 hours; discussion—6 hours. Prerequisite: first-year standing in School of Veterinary Medicine. Approved for graduate degree credit. Introduction to epidemiology and its applications in veterinary medicine.

410. Musculoskeletal Radiology (0.7) II. Wisner Lecture—4 sessions; discussion—3 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Introduction to radiographic interpretation as it relates to diagnosis and management of musculoskeletal system disorders in small and large animals. Lectures stress radiographic pattern recognition and include detailed descriptions of representative orthopedic lesions. Discussions are case-based exercises where students apply knowledge gained in lectures.

412. Fundamentals of Zoonoses (1.1) III. Chomel Lecture—11 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine or consent of instructor. Major zoonotic infections transmitted mainly by farm animals and pets. For each animal species and each infection, a short review of symptoms, diagnostic tests, epidemiology and control are presented. Specific lectures on regulatory medicine of major zoonoses: e.g., rabies, tuberculosis.

413. Veterinary Food Safety (1.3) III. Cliver Lecture—10 sessions; discussion—3 sessions. Prerequisite: second year standing in the School of Vet-
418 Veterinary Medicine, School of

erynary Medicine. The food system and diseases transmitted by food. Topics include sources of conta-
minants, the function of processing in food safety, and the role of veterinarians in pre-harvest food safety and in food protection in general.

414A. Principles of Veterinary Pharmacology and Toxicology (2.4) I. Buckpitt Lecture—24 hours; laboratory—1 three-hour session. Prerequisite: second year standing in the School of Veterinary Medicine. Provides a basic foundation for understanding of pharmacology and toxicology. Intro-
duces principles of pharmacology and begins a con-
desideration of drugs by pharmacological class.

414B. Veterinary Pharmacology (1.8) II. Giri Lecture—17 hours; laboratory—1 three-hour session. Prerequisite: second year standing in the School of Veterinary Medicine. Presents discussion of the phar-
macology of several classes of drugs which are of major importance in veterinary medicine.

414C. Veterinary Toxicology (2.1) III. Segall Lecture—21 hours. Prerequisite: second year standing in the School of Veterinary Medicine. General princi-
iples of toxicology, mechanisms of carcinogens, terato-
gens, and genetic and immunotoxins. Course also dis-
cusses the biological effects of toxic substances of biologic and environmental origin. Instru-
tional activities.

419. Virology (2.7) I. Zee, Yilma Lecture—19 hours; laboratory—8 three-hour ses-
sons. Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Introduction to the classification, mor-
phology, and the strategy of replication of animal viruses, covering the molecular pathogenesis of ani-
mal viruses at the cellular level with emphasis on agents of infectious diseases of animals.

420. Immunology (3.0) III. Gershwin Lecture—20 hours; laboratory—10 three-hour ses-
sons. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Concepts of immunity. Emphasis is on the principles of vaccination, responses to pathogenic agents, and the development of hypersensitivity and auto-
nimmune reactions.

421. Principles of Neurosciences (2.7) II. Gietzen Lecture—22 hours; laboratory—5 three-hour ses-
sons. Prerequisite: first year standing in the School of Veterinary Medicine. Approved for graduate degree credit. An integrated study of normal neurobi-
ology, neuroanatomy, and neurophysiology, to enable students to engage in studies of neurologic disorders and clinical neurology.

422. Veterinary Ophthalmology (1.4) II. Buyukmicci Lecture—13 sessions; laboratory—1 session. Prereq-
uisite: first year standing in the School of Veterinary Medicine. Basic information on how the eye is exam-
ined; how it interacts with the rest of the body and what can go wrong with the eye. Discussion of selected ocular diseases of various species.

*425. Introduction to the Abnormal Musculo-
skeletal System (3) III. Stover Lecture—24 hours; laboratory—6 three-hour ses-
sons. Prerequisite: second year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Introduction to the principles of ortho-
pedic diseases of animals, including etiology and pathogenesis, basic responses of musculoskeletal tissues to major types of injuries and disease.

426. Principles of Veterinary Anesthesiology and Critical Patient Care (1.7) III. Steffey Lecture—15 hours; laboratory—2 three-hour ses-
sons. Prerequisite: second year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Offers basic principles of veterinary anesthesiology including techniques of monitoring and anesthetic agents of veterinary anesthesia.

427. Cell and Tissue Structure (3) I. Tablin Lecture—22 sessions; laboratory—8 sessions. Prereq-
uisite: first-year standing in the School of Veteri-
mary Medicine. Relationships between structure and function of animal tissue emphasizing the molecular

and cellular processes which integrate normal physi-
ological activity. Mechanisms of cell division, differ-
etiation and locomotion. Microscopic anatomy and organization of cells and extracellular molecules to form specialized differentiated tissues.

430. Principles of Radiology and Radiographic Anatomy (3.3) I-II-III. Koblik Lecture—25 sessions; laboratory—6 sessions, dis-
cussion—2 sessions (total for series). Prerequisite: first year standing in the School of Veterinary medi-
cine. Physical principles of x-ray production and x-ray matter interactions as they apply to diagnostic med-
ical imaging and radiation safety. Practical aspects of veterinary radiographic techniques. Normal radi-
ographic anatomy of the skeleton, head, thorax and abdomen. (Direct credit, pending comple-
tion of three-quarter sequence.)

431. Endocrinology and Metabolism (2.3) III. Hansen Lecture—22 sessions; laboratory—1 session. Prereq-
uisite: first-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic understanding of structure and normal physio-
logical function of the endocrine glands, their hor-
mones, and other factors that affect the regulation of metabolic processes.

432. Structure and Function of the Gastrointestinal and Mammary Systems (3) III. Tablin Lecture—20 sessions; laboratory—10 sessions. Pre-
requisite: first-year standing in School of Veterinary Medicine or consent of instructor. Basic understand-
ning and correlation of the structure and function of the gastrointestinal and mammary systems. Multiple species’ differences examined.

433. Veterinary Oncology (1.2) II. Madewell Lecture—12 hours. Prerequisite: second year stand-
ing in the School of Veterinary Medicine. Approved for graduate degree credit. Provides veterinary students with a background to define the relationships between pathology, hematology, cytology, immunol-
ogy, and the clinical manifestations of neoplastic dis-
eseas in animals.

435A-435B. Clinical Hematology and Biochemistry (3.7-2.5) I-II. Zinkl, Christopher Lecture—23 sessions/16 sessions (435A/435B); labo-
ratory—11 sessions/5 sessions; discussion—3 ses-
sions (435B only). Prerequisite: second-year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Knowledge and understand-
ing of normal and abnormal tissues and organs in anatomic, exfoliative cytologic, and clinical biochemical systems provide critical information which aids veterinarians in assessing physical status and in understanding the etiopathogenesis of disease.

437A. Issues in Veterinary Medicine: Ethics, Animal Use, Professional Standards, and Communications (0.8) I. Pascoe Discussion—8 hours. Prerequisite: second-year standing in the School of Veterinary Medicine. Continued intro-
duction to the important responsibilities of veterinari-
ans to society through their role as health care providers. (SJU grading only)

437B. Ethics and Issues in Veterinary Medicine (0.8) II. Pascoe Discussion—8 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Continued intro-
duction to the important responsibilities of veterinari-
ans to society through their role as health care providers. (SJU grading only)

438. Introduction to Methods of Animal Handling, Restraint, Examination, and Therapy (1) I. East Laboratory—8 three-hour sessions. Prerequisite: first-
year standing in School of Veterinary Medicine or consent of instructor. Emphasis on the practical aspects of methods of animal handling and restraint and se-
lected techniques of diagnostic examination and ther-
apy, as well as recognition of animal breeds, breed characteristics, and the clinical importance of those species in veterinary importance. (SJU grading only)

440. Veterinary Neurology (2.7) I. Bailey Lecture—21 hours; laboratory—6 three-hour sessions. Prerequisite: second year standing in the School of Vet-
erinary Medicine. Approved for graduate degree credit. Integrated study of the relationship between neuroanatomy, neurophysiology, neuropathology, and the clinical manifestations of the diagnosis of neuro-
ological diseases and the use of the various neurodiag-
ostic aids.

444. Clinical Endocrinology (1.5) II. Feldman Lecture—12 sessions; discussion—3 sessions. Pre-
requisite: third-year standing in the School of Veteri-
inary Medicine. A correlated review of common endocrinology disorders affecting the dog and cat.

446. Reproduction (4.2) II. BonDurant Lecture—32 hours; laboratory—10 three-hour ses-
sions. Prerequisite: second year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Structure, function, pathologic, and clinical aspects of reproduction in animals (normal and abnormal).

447. Basic Medicine of Domestic Animals (4.7) III. Cowgill Lecture—45 hours; laboratory—6 hours. Prerequisite: second year standing in the School of Veterinary Medicine. Introduction to the fundamental principles, clinical manifestations, diagnostic methods and ther-
apeutic approaches common to medical diseases of domestic animals. Preparation for advanced course work in medical diagnosis and therapeutics with spec-
cific species focus and orientation.

451. Veterinary Bacteriology and Mycology (4.9) I. Hirsh Lecture—34 hours; laboratory—15 three-hour ses-
sions. Prerequisite: second year standing in the School of Veterinary Medicine. Approved for graduate degree credit. Basic principles of disease and in par-
ticular the fundamental mechanisms responsible for creating a disease situation. Illustrations of how the application of general pathological principles is used to determine disease pathogenesis and prognosis.

456. Law and Ethics of the Veterinary Profession (1.6) III. Wilson Lecture—16 sessions. Prerequisite: second-year standing in the School of Veterinary Medicine. Application of principles to veterinary medical jurisprudence and legal concepts pertinent to professional activities. (SJU grading only)

459. Systemic Pathology (5.8) II. MacLachlan Lecture—42 sessions; laboratory—16 sessions. Prereq-
uisite: second year standing in the School of Vet-
erinary Medicine. Approved for graduate degree credit. Basic understanding of the pathobiology of major organ systems relevant to a variety of animal species. Emphasis on mechanisms of injury, patterns of response to injury and on balance between dam-
age and repair.

460. Fundamentals of Clinical Orthopedics (1) II. Vasseur Lecture—10 sessions. Prerequisite: third-year stand-
ing in the School of Veterinary Medicine. Fundamental concepts of veterinary orthopedics, including mecha-
nisms of bone healing, types of fractures, and princi-
pies of stabilization.

470A-470B. IC. Hospital Practices (1.1-1.2-1.1) I, II, III. The Staff (Smith in charge) Lecture—10 hours. Prerequisites: third-year standing in the School of Veterinary Medicine. Clinical training in Veterinary Medicine. Assignments in the medical and surgical services and clinical diagnostic facilities of the Veterinary Medical Teaching Hospital. (SJU grading only, pending completion of sequence.)
471. Mixed Animal Practice Clinics (3-15) I-III. Smith
Veterinary clinical practices—40 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with equivalent emphasis on services relating to mixed animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the summer sessions. (SU grading only; deferred grading only, pending completion of three-term sequence.)

472. Small Animal Practice Clinics (3-15) I-II. Smith
Veterinary clinical practices—40 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with equivalent emphasis on services relating to small animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the summer Sessions I-II sequence. (SU grading only; deferred grading only, pending completion of three-term sequence.)

473. Large Animal Practice Clinics (2.5-15) I-II. Smith
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to large animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (SU grading only; deferred grading only, pending completion of three-term sequence.)

474. Equine Practice Clinics (2.5-15) I-II. Smith
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to equine veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the summer Sessions I-II sequence. (SU grading only; deferred grading only, pending completion of three-term sequence.)

475. Food Animal Practice Clinics (2.5-15) I-II. Smith
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to food animal veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (SU grading only; deferred grading only, pending completion of three-term sequence.)

476. Zoological Practice Clinics (2.5-15) I-II. Smith
Veterinary clinical practices—40 hours, plus animal-patient care and emergency/night coverage (by rotation). Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in medical and surgical services and clinical diagnostic laboratories of VM Teaching Hospital with emphasis on those services relating to zoological veterinary practice. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (SU grading only; deferred grading only, pending completion of three-term sequence.)

Veterinary clinical practices—40 hours. Prerequisite: fourth-year standing in School of Veterinary Medicine or consent of instructor. Clinical training in veterinary medicine. Student assignments in the medical and surgical services and clinical diagnostic laboratories of the VM Teaching Hospital with emphasis on small and equine species. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (SU grading only; deferred grading only, pending completion of three-term sequence.)

478. Small Animal/Food Animal Practice Clinic (2.5-15) I, II, Smith
Veterinary clinical practices—7.5-45 hours per week. Prerequisite: fourth-year standing in the School of Veterinary Medicine. Clinical training in veterinary medicine. Students will have assignments in the medical and surgical services and clinical diagnostic laboratories of the Veterinary Medical Teaching Hospital with emphasis on small and food animal species. May be repeated for credit. Students in combined DVM/MPVM program enroll for the Summer Sessions I-II sequence. (SU grading only.) (Deferred grading, pending completion of sequence.)

490A. Hospital Practices for Veterinary Students (2) I, II, III. Ling Laboratory—60 hours. Prerequisite: first-year standing in the School of Veterinary Medicine. Introduction to procedures and knowledge integral to working in a veterinary clinical practice and the VMTH. (SU grading only; deferred grading only, pending completion of sequence.)

490B. Hospital Practices for Veterinary Students (2) I, II, III. Smith, Ling Laboratory—10–60 hours. Prerequisite: course 490A. Introduction to procedures and knowledge integral to working in a veterinary clinical practice and the VMTH. (SU grading only; deferred grading only, pending completion of sequence.)

490C. Hospital Practices: Small Animal Clinic (2) I, II, III. Ling Laboratory—10–six-hour sessions. Prerequisite: third-year standing in the School of Veterinary Medicine and course 490B. Continuation of 490B. (SU grading only, pending completion of sequence.)

99. Special Study for Undergraduates (1-5) I, II, III. The Staff (Chairperson in charge) (P/NP grading only.)

Viticulture and Enology

(College of Agricultural and Environmental Sciences)
Linda F. Bisson, Ph.D., Chairperson of the Department
Department Office, 1023 Wickson Hall
(916)-752-0296

Faculty
Douglas O. Adams, Ph.D., Associate Professor
Linda F. Bisson, Ph.D., Professor
Roger B. Boulton, Ph.D., Professor (Viticulture and Enology; Chemistry and Engineering)
Susan E. Ebeler, Ph.D., Assistant Professor
Mark A. Matthews, Ph.D., Associate Professor
Carole P. Meredith, Ph.D., Associate Professor
Ann C. Noble, Ph.D., Professor
M. Andrew Walker, Ph.D., Assistant Professor
Andrew L. Waterhouse, Ph.D., Assistant Professor
Larry E. Williams, Ph.D., Professor

Emeriti Faculty
Maynard A. Averine, Ph.D., Professor Emeritus
James A. Cook, Ph.D., Professor Emeritus
Richard E. Kepner, Ph.D., Professor Emeritus
W. Mark Kliewer, Ph.D., Professor Emeritus
Ralph E. Kunkee, Ph.D., Professor Emeritus
A. Dinsmoor Webb, Ph.D., Professor Emeritus

Cornelius S. Ough, D.Sc., Professor Emeritus
Vernon L. Singleton, Ph.D., Professor Emeritus
Linda F. Bisson, Ph.D., Professor Emeritus
Robert J. Weaver, Ph.D., Professor Emeritus
A. Dinsmoor Webb, Ph.D., Professor Emeritus

Affiliated Faculty
Christian Butzke, Ph.D., Lecturer
Al Peter Christensen, M.S., Lecturer
Nick Dokoi, Ph.D., Lecturer
James Wolfert, Ph.D., Lecturer

The Program of Study. Enology is a specialization under the Fermentation Science major; and viticulture is a specialization under the Plant Science and the Agricultural Systems and Environment majors.

Graduate Study. Various graduate groups offer programs of study leading to advanced degrees in the fields of viticulture and enology. For the M.S. or Ph.D. degree see Agricultural and Environmental Chemistry, Chemical Engineering, Ecology, Food Science, Genetics, Horticulture, Microbiology, Plant Biology, Plant Pathology, and Soil Science.

Courses in Viticulture and Enology (VEN)

Lower Division Courses
2. Introduction to Viticulture (2) I. Williams Lecture—2 hours. Fundamental principles of biology and culture of the grapevine including taxonomy, morphology, physiology, distribution, domestication, utilization, propagation, production systems, harvesting, and storage and processing of grapes. Successful completion of the course should prepare students for upper division courses in viticulture.

3. Introduction to Winemaking (3) I. Waterhouse; II. Meredith; III. Adams Lecture—3 hours. Overview of the history of wine, viticulture, fermentation, winery operations, the physiology of wine consumption, wines produced in California and other major wine-producing regions and the sensory evaluation of wine. GE credit: SciEng or SocSci.

3W. Introduction to Winemaking: Writing Experience (1) I. Waterhouse; II. Meredith; III. Adams Term paper/discussion—1 hour. Preparation of a term paper on a subject covered in course 3. Includes an introduction to the exceptional collection of wine and grape literature in Shields Library and instruction on the preparation of a library research paper. GE credit with concurrent enrollment in course 3W.

Upper Division Courses
101A. Viticultural Practices (2) I. Walker Discussion-laboratory—4 hours. Prerequisite: course 2. Provides the information required to identify the major wine, raisin, and table cultivars grown in California and elsewhere. Also provides experience in vineyard sampling techniques and vine disease identification.

101B. Viticultural Practices (2) II. Walker Discussion-laboratory—4 hours. Prerequisite: course 2. Field-oriented experience in the principles and practices of grapevine production, including pruning, propagation, weed identification and control, frost protection, and physical examination of soil profiles and root distribution patterns.

101C. Viticultural Practices (2) III. Walker Discussion-laboratory—4 hours. Prerequisite: course 2. Field-oriented experience in the principles and practices of grapevine production, including vineyard establishment, vine training, trellising, canopy management practices, irrigation and water management, and methods of crop adjustment for improvement of fruit quality.
110. Grapevine Growth and Physiology (3) II. Matthews
Lecture—3 hours. Prerequisite: course 2. Botanical aspects including morphology and domestication will precede lectures covering flower development and energy budget concepts. Impact of physiological variables such as photosynthesis translocation, mineral nutrition, and interactions on fruit ripening and composition will be covered.

111. World Viticulture (3) III. Meredith
Lecture—3 hours. Prerequisite: upper division standing. Study of the diversity of viticulture, both geographical and historical. History of grape growing and its spread throughout the world will be covered, along with discussions of current viticultural practices in different countries of the world, including California.

112. Critical Evaluation of Wines of the World (1) III. Meredith
Laboratory/discussion—3 hours. Prerequisite: course 111 (must be taken concurrently), course 125 with a grade of C or better. Critical analysis of wines produced in different parts of the world with emphasis on the relationship between sensory properties of the wines and factors associated with their place of origin. Not open for credit to students who have received credit for course 145. (P/NP grading only.)

115. Raisin and Table Grape Production (2) I. Williams
Lecture—2 hours. Prerequisite: course 2. Overview of the raisin and table grape industries in California and other production areas of the world. Cultural practices associated with raisin and table grape production will also be discussed. Offered in alternate years.

116. Winegrape Production (3) III. Matthews
Lecture—3 hours. Prerequisite: course 2. Covers principles underlying cultural practices associated with winegrape production, including establishing and planting, training, summer and winter pruning, canopy management, irrigation, mineral nutrition, weed control, frost protection, crop regulation, and harvesting.

118. Grapevine Pests, Diseases and Disorders (3) I. Williams
Lecture—3 hours. Prerequisite: course 2. Describes the various pests and diseases of vineyards throughout California. Pest/disease identification and control methods (to include sampling techniques) also will be discussed. Integrated management approach to pest control methods will be emphasized. Offered in alternate years.

123. Analysis of Musts and Wines (3) I. Ebeler
Lecture—2 hours; laboratory—3 hours. Prerequisite: Chemistry 2A, 2B, 2C, 8A, and 8B. Open to undergraduate and graduate students majoring in Plant Science and Plant Biology, and graduate students in Agricultural and Environmental Chemistry, Food Science, Horticulture, and Microbiology. Principles of grape juice and wine analysis, and the reasons for use of each analysis. Analyses of a practical and useful nature are chosen for the laboratory exercises demonstrating various chemical, physical, and biochemical methods. GE credit: Wrt.

124. Wine Production (4) I. Bisson
Lecture—2 hours; laboratory—3 hours; independent study—3 hours. Prerequisite: course 3 and Biological Sciences 102; course 123 (may be taken concurrently). Open to undergraduate students in Fermentation Science, Microbiology, Molecular and Cellular Biology, and Plant Science; and graduate students in Agricultural and Environmental Chemistry, Food Science, Horticulture, and Microbiology. Principles and practice of making various standard types of wines, with special reference to the grape varieties used and the method of vinification required for each. GE credit: Wrt.

125. Wine Types and Sensory Evaluation (4) II. Noble
Lecture—2 hours; laboratory—6 hours. Prerequisite: course 124, Agricultural Systems and Environmental 125, or consent of instructor. Restricted to juniors and seniors in Fermentation Science major; others by consent of instructor only. Principles of sensory evaluation are introduced and applied to wines. To investigate factors influencing wine flavor, data from sensory analysis of model solutions and wines are analyzed and interpreted in extensive weekly lab reports. GE credit: Wrt.

126. Wine Processing (4) I. Boulton
Lecture—2 hours; laboratory—3 hours; discussion—1 hour. Prerequisite: course 123. Principles of equilibria and rates of various physical and chemical reactions in wines; treatment of unstable components in wines by adsorption, ion exchange, refrigeration, filtration, and membrane processes. GE credit: Wrt.

128. Wine Microbiology (4) III. Bisson
Lecture—2 hours; laboratory—6 hours. Prerequisite: courses 123, 124; courses 125, 126 recommended. Nature, development, physiology, biochemistry, and control of yeasts involved in the making, aging, and spoilage of wines. (Former course 217.)

130. Management, Marketing, and Economics of the California Wine Industry (9) III. Lapsley
Lecture—24 hours; lecture/discussion—4 hours; fieldwork—8 hours. Prerequisite: course 124. Introduction to management, marketing and economics of wine in the United States with particular emphasis on California. Reviews market segmentation and explores alternative strategies of acquisition, production, brand development, distribution, and social policy formation. (Deferred grading only.) GE credit: Wrt.

135. Wine Microbiology (4) III. Noble
Lecture—2 hours; laboratory—3 hours. Prerequisite: Chemistry 8B; Food Science and Technology 110A, 110B recommended. A course for undergraduate students which provides a systematic description of unit operations and processing equipment used in modern commercial winemaking. Emphasis is given to the principles and techniques of operation and to the performance of this equipment with grapes, juices, and wines.

140. Distilled Beverage Technology (3) III. Boulton
Lecture—3 hours. Prerequisite: Chemistry 8B; Food Science and Technology 110A. Distillation principles and practices; production technology of brandy, whiskey, rum, vodka, gin, and other distilled beverages; characteristics of raw materials, fermentation, distillation, and aging. Offered in alternate years.

146. Wine Processing (4) III. Noble
Lecture/discussion—1 hour; studio—6 hours. Prerequisite: courses 124, 135; Food Science and Technology 110A, 110B recommended. Design of wineries. Includes process calculations, equipment selection, process layout and building choice and siting. Project scheduling, capital costs and ten-year cash flow analysis for the winery. Grading based on design project. Offered in alternate years.

205. Advanced Sensory Analysis of Wines (3) III. Noble
Lecture/discussion—2 hours; laboratory—4 hours. Prerequisite: course 124 and 125 (or Food Science and Technology 107) and sophomore/freshman status. GE credit: Wrt.

210. Grape Development and Composition (4) III. Polito, Adams
Lecture—3 hours; discussion—1 hour. Prerequisite: Biological Sciences 102, 103. The anatomy, physiology, and biochemistry of grape berry development, with emphasis on the development of grape composition relevant to winemaking. Offered in alternate years.

216. Vineyard Establishment and Development (3) I. The Staff
Lecture/discussion—2 hours; fieldwork—3 hours. Prerequisite: courses 110, 115, or 116, or consent of instructor. Application of basic knowledge in viticulture, meteorology, soil, water, plant, and biological sciences to establishment and development of vineyards. To prepare a comprehensive feasibility study of suitability of a given piece of property for growing wine, raisin, or table grapes. Offered in alternate years.

219. Natural Products of Wine (3) III. Waterhouse
Lecture—3 hours. Prerequisite: courses 123 and 124, or natural products background and consent of instructor. Structure, occurrence, and changes due to wine production to the natural products found in wine. Chemicals with a sensory impact will be emphasized, including flavonoids and other phenolics, terpenes and norisoprenoids, pyrazines, oak volatiles and other wine constituents.

225. Advanced Sensory Analysis of Wines (3) III. Noble
Lecture/discussion—2 hours; laboratory—4 hours. Prerequisite: course 124 and 125 (or Food Science and Technology 107) and sophomore/freshman status. GE credit: Wrt.

Discussion—2 hours. Prerequisite: consent of instructor. Contemporary research topics in biological sciences. Students choose, present and lead discussion of recent research articles in a special topic area chosen by instructor. Intended to develop skills in critical evaluation of scientific publications. May be repeated for credit. (SU grading only.)

280. Seminar (1) I, II, III. Ebeler Seminar—1 hour. Prerequisite: consent of instructor. (SU grading only.)

290. Advanced Research Conference (1) I, II, III. Research Faculty
Discussion—1 hour. Prerequisite: graduate standing and consent of instructor. Planning and results of research programs, proposals, and experiments. Discussion and critical evaluation of original research being conducted by the group. Discussion led by individual research instructors for research group. May be repeated for credit. (SU grading only.)

291. Advances in Viticulture (1) I. Matthews
Seminar—1 hour. Prerequisite: consent of instructor. Experts in various fields of viticulture will lead discussions on recent advances in their fields of expertise. Emphasis and topics will vary from year to year and course may be repeated for credit. (SU grading only.)

292. Advances in Enology (1) III. Waterhouse
Discussion—1 1/2 hours, seven to ten weeks. Prerequisites: courses 123, 124, 125, 126, 128, 140, 146, and previously assigned reading material, usually in the form of two to three reprints. Discussions led by faculty to acquaint students with their current research interests. May be repeated for credit. (SU grading only.)

Course not offered this academic year.
War–Peace Studies
(College of Letters and Science)
The interdisciplinary minor in War–Peace Studies examines the causes and dynamics of intra- and international wars and efforts to prevent and settle such conflicts. Students in the minor are encouraged to participate in the educational activities of the Davis Program of the UC Institute on Global Conflict and Cooperation (IGCC).

The minor is sponsored by the International Relations Program.

Minor Program Requirements:

| UNITS | War–Peace Studies | 20 |

One or two courses from each of the following areas:

Approaches
- Anthropology 123B, 131, Comparative Literature 157, Philosophy 115, 118, Physics 137, Political Science 121, 123, 124, 126, 176, Sociology 119, 157, Women’s Studies 102
- Northern and Western Regions

Restriction: No more than two courses from a single department may be offered in satisfaction of the minor requirements.

Advising: International Relations Program, 916-752-3063.

Water Science

See Hydrologic Science

Wildlife, Fish and Conservation Biology

(College of Agricultural and Environmental Sciences)

Joseph J. Cejch, Jr., Ph.D., Chairperson of the Department
Department Office, 1088 Academic Surge (916-752-6686)

Faculty
- Daniel W. Anderson, Ph.D., Professor
- Louis W. Bottford, Ph.D., Professor
- Tim Caro, Ph.D., Professor
- Joseph J. Cejch, Jr., Ph.D., Professor
- Ronald E. Cole, B.S., Lecturer
- Chris Dewees, Ph.D., Lecturer
- John M. Eade, Ph.D., Assistant Professor
- Don C. Erman, Ph.D., Professor
- Nancy A. Erman, M.S., Lecturer
- Nadine K. Jacobsen, Ph.D., Associate Professor
- Douglas A. Kelt, Ph.D., Assistant Professor
- Peter B. Moyle, Ph.D., Professor
- Dirk Van Vuren, Ph.D., Assistant Professor

Emeriti Faculty
- Walter E. Howard, Ph.D., Professor Emeritus
- Dale F. Lott, Ph.D., Professor Emeritus
- Rex E. Marsh, A.B., Lecturer Emeritus
- Robert G. Schwab, Ph.D., Professor Emeritus

The Major Program

The wildlife, fish and conservation biology major deals with the relationships between the needs of people and the requirements of wildlife. Understanding these relationships is vital for the maintenance of ecological diversity, recreational resources, and food supplies for future generations.

The Program. Because of the diversity of problems in the field, emphasis in the major is placed on broad training in biological and physical sciences, with specialization in one of seven areas. The major is designed primarily for students interested in eventually becoming professionals in wildlife, fish and conservation biology, but its breadth of course requirements, when combined with suitable electives, also make it suitable as a preparatory major for such areas as veterinary medicine and secondary school teaching. Certification by professional societies such as the Wildlife Society, the American Fisheries Society, or the Ecological Society of America for preparation for specialized resource-related graduate studies may also be achieved by careful planning of electives with a faculty adviser.

Career Alternatives. Positions now held by graduates in this major include wildlife, fisheries, management of problem vertebrates, and resource biologists and managers with local, state and federal agencies. Some graduates are biologists or consultants with private industries such as commercial fishing businesses, electrical utilities, sportsman’s clubs, aquaculture operators, and environmental consulting firms. Also, some are veterinarians, medical physicians, and professors/researchers who teach and/or conduct research in academic institutions.

Areas of Specialization

1. **Behavioral ecology:** Choose one course from each group:
 - a. Neurobiology, Physiology and Behavior 102 or Psychology 134
 - b. Entomology 104, Environmental Studies 101 or Anthropology 154A-154B
 - c. Environmental Studies 128, Statistics 110, Wildlife, Fish, and Conservation Biology 151 or Range Science 136

2. **Conservation biology:** Complete Wildlife, Fish, and Conservation Biology 154 and Evolution and Ecology 102. Choose one course from each group:
 - a. Entomology 147, Geography 173, Evolution and Ecology 117, 136, 144 or 147
 - b. Economics 123, Environmental Studies 161, 166 or Geography 173

3. **Ecotoxicology and disease ecology:** Complete Wildlife, Fish, and Conservation Biology 153, Biological Sciences 102, 103. Choose two courses from a and one from b, or one from a and two from b:
 - a. Environmental Toxicology 101, 112A (112B recommended), 132, 138 or Hydrologic Science 21
 - b. Pathology, Microbiology and Immunology 101, Medical Microbiology 115 or 116

4. **Fisheries biology:** Complete Wildlife, Fish, and Conservation Biology 102, 102L, 120L, 121L, Biological Sciences 102, 103, and:
 - a. One course from Wildlife, Fish, and Conservation Biology 123, Entomology 116 or Evolution and Ecology 112–112L
 - b. Two courses from Environmental Studies 116 (or 150C), 151 or Hydrologic Science 122

5. **Physiological ecology:** Complete Wildlife, Fish, and Conservation Biology 121 and 130, Biological Sciences 102, 103. Choose two courses from Environmental Studies 129-12BL or Neurobiology, Physiology and Behavior 126, 127, 128, 129, 140 or 141.

Statistics

- (Statistics 100, 102 or Agricultural Systems and Environment 120).................4

Breadth/General Education

- Satisfaction of General Education requirement.

Depth Subject Matter

Ecology (Environmental Studies 100 or Evolution and Ecology 101).................4
Evolution and Ecology 100).................4
Genetics (Biological Sciences 101).........4
Physiology (Neurobiology, Physiology and Behavior 101).................5
Vertebrate anatomy (Anatomy, Physiology and Cell Biology 100 or Evolution and Ecology 170).........................3-4
Organismal core: Choose three lecture courses and two (laboratory) courses: [Wildlife, Fish, and Conservation Biology 110, (110L), 111, (111L), 120, (120L), or Evolution and Ecology 134, (134L)].................12-13
Disciplinary core (Wildlife, Fish, and Conservation Biology 122, 140 or 141, and either 121 or 130).........................11-12
Statistics: Choose one course (two recommended) from Statistics 104, 106, 108 or 110.................................3-8
Research methods (Wildlife, Fish, and Conservation Biology 100 or 102L).................................3-7

Restricted Electives.................9-34

Choose one from the seven Areas of Specialization shown below.
6. Vertebrate pest ecology: Complete Wildlife, Fish, and Conservation Biology 151, Agri-
cultural Systems and Environment 110, Biological Sciences 106, 101, and choose one course from Plant Biology 120, 121 or Entomology 110.

a. Choose two courses from Plant Biology 102 or (108), 117, 121, Evolution and Ecology 121, 144, Environmental Studies 155.
b. Choose one course from Wildlife, Fish, and Conservation Biology 131, 136 or Range Science 135.

Unrestricted Electives ...0-62
Total Units for the Degree (minimum)180

Major Adviser. N. Jacobsen.

Students transferring to Davis from another institution or new students declaring the major of Wildlife, Fish, and Conservation Biology must consult the Master Adviser so that their program can be evaluated and a faculty adviser assigned. See receptionist in 1088 Academic Surge Building or telephone 752-6586.

Graduate Study. See the Graduate Studies section in this catalog.

Courses in Wildlife, Fish, and Conservation Biology (WFC)

Lower Division Courses

10. Wildlife Ecology and Conservation (4) I. Kelt, Moyle

92. Internship (1-6) I, II, III. The Staff (Department Chairperson in charge)
Internship—3–18 hours. Prerequisite: lower division standing and consent of instructor. Work experience off and on campus in all subject areas offered in the department. Internships supervised by a member of the faculty. (P/NP grading only.)

Upper Division Courses

100. Field Methods in Wildlife Biology (3) III. The Staff (Chairperson in charge)
Lecture—10 hours; laboratory—40 hours total (7 days); Prerequisite: courses 110, 110L or 111L, 111L, and Evolution and Ecology 101, or the equivalent courses, and consent of instructor. Methods for research in ecological study of avian and mammal species. Emphasis on the study of demography, intraspecific and interspecific interactions, activity budgets, home range, diets, and on report writing. Held between winter and spring quarters. Limited enrollment.

102. Field Studies in Fish Biology (1) III. Moyle, Cech
Lecture/discussion—1 hour. Prerequisite: upper division course in each of ecology, aquatic biology, fish biology, and statistics, and consent of instructor. Emphasis on theory of quantitative capture method capture methods and design of individual research projects on ecology, behavior, physiology or population biology of fishes. Offered in alternate years.

102L. Field Studies in Fish Biology: Laboratory (6) III. Moyle, Cech
Field study—8 hours; laboratory—12 hours; discussion/lab—3 hours. Prerequisite: course 102, upper division course in each of ecology, aquatic biology, fish biology, and statistics, and consent of instructor. Field investigations of fish biology are emphasized including quanitative capture methods and individual research projects on ecology, behavior, physiology or population biology of fishes at the field site in relation to their environment. Offered in alternate years. (Deferred grading pending completion of projects.) GE credit: SciEng, Wrt.

110. Biology and Conservation of Wild Mammals (3) III. Kelt
Lecture—3 hours. Prerequisite: Biological Sciences 1A, 1B, 1C, consent of instructor recommended. Biology and conservation of wild mammals. Natural history, taxonomy, geographical-ecological distribution; anatomical-physiological-behavioral adaptations of mammals to their environment; and research management techniques are emphasized.

110L. Laboratory in Biology and Conservation of Wild Mammals (2) III. Kelt
Laboratory—6 hours; prerequisite: course 110 (may be taken concurrently) and consent of instructor. Laboratory exercises in the morphology, systematics, species identification, anatomy, and adaptations of wild mammals to their environment. Limited enrollment.

111. Biology and Conservation of Wild Birds (3) I. Eadie, Anderson
Lecture—3 hours, Prerequisite: Biological Sciences 1A, 1B, 1C, and Evolution and Ecology 101. Phylogeny, distribution, migration, reproduction, population dynamics, behavior and physiological ecology of wild birds. Emphasis on adaptations to environments, species interactions, management, and conservation.

120. Biology and Conservation of Fishes (3) I. Moyle
Lecture—3 hours. Prerequisite: Biological Sciences 1B. Introduction to evolution, ecology, and conservation of marine and freshwater fishes.

120L. Laboratory in Biology and Conservation of Fishes (3) I. Moyle
Laboratory—3 hours. Prerequisite: course 120 (may be taken concurrently); consent of instructor. Laboratory exercises in identification, anatomy, molt, age and sex, specialized adaptations, behavior, research, with emphasis on conservation of wild birds. Limited enrollment.

121. Physiology of Fishes (4) II. Cech
Lecture—3 hours; laboratory—3 hours. Prerequisite: upper division courses in nutrition and physiology or consent of instructor. Comparative physiology, growth, reproduction, behavior, and energy relations of fishes. GE credit: SciEng, Wrt.

122. Population Dynamics and Estimation (3) III. Bodmer
Lecture—3 hours; laboratory—3 hours. Prerequisite: Mathematics 16A-16B; Statistics 13 or the equivalent; an upper division course in ecology. Description of bird, mammal, plant, and population dynamics, modeling philosophy, techniques for estimation of animal abundance (e.g., mark-recapture, change-in-ratio, etc.), mathematical models of populations (e.g., Leslie matrix, logistic, dynamical pool, stock-recruitment); case histories.

123. Freshwater Invertebrate Ecology (4) III. N. Erman
Lecture/discussion—2 hours; laboratory—3 hours; fieldwork—3 hours; one all-day Saturday field trip required. Prerequisite: Biological Sciences 1A and 1B or the equivalent. Ecology and classification of fresh water invertebrates with emphasis on life history, habit, diversity, and behavior. Invertebrate monitoring to assess environmental impacts and classification based on morphology as a tool for understanding ecology and biology of aquatic organisms. GE credit: SciEng, Wrt.

130. Physiological Ecology of Wildlife (4) II. Jacobsen
Lecture—4 hours. Prerequisite: course 110, 111 or 112; 100 or 101 Behavior 101; and Evolution and Ecology 101. Animal functions, adaptations, and ecological energetics of wildlife. Nutrition, metabolism, and productivity are emphasized as a pattern of relationships for understanding the distribution and abundance of all ecosystems and endo- thermals in time and space.

131. Biology and Management of Cervidae (3) III. Jacobsen
Lecture—2 hours; laboratory—3 hours. Prerequisite: Neurobiology, Physiology and Behavior 101 and Evolution and Ecology 101, or the equivalent; course 110 recommended. Evolution, biology, and management of cervids. Topics include: world problems in nutrition, nutrition, bienergetics, reproduction and growth, use of habitats, and research methodologies. Emphasis on North American species of caribou, elk, moose, and deer. Offered in alternate years.

136. Ecology of Waterfowl and Game Birds (3) II. Eadie
Lecture—2 hours; laboratory—3 hours; field trip. Prerequisite: courses 111 and 111L or the equivalent. Detailed examination of distribution, behavior, population dynamics, and management of waterfowl and upland game birds. Offered in alternate years.

140. Ecology and Evolution of Vertebrate Social Organization (4) II. Lott
Lecture—4 hours. Prerequisite: Biological Sciences 1B or upper division ecology course (Evolution and Ecology 101 or the equivalent). Spacing competition, cooperation, and streaming of wild vertebrates are described and analyzed as adaptive products of their evolutionary history and ecology. Minimal consideration is given to humans and other primates. Offered in alternate years. GE credit: SciEng, Wrt.

151. Wildlife Ecology (3) I. Van Vuren
Lecture—3 hours; Prerequisite: Biological Sciences 1A, 1B, and 1C, or the equivalent. Population biology of wild vertebrates, particularly habitat selection, demography, competition, predation, population growth, and regulation set in the context of human-caused degradation of environments in North America.

152. Ecological Management of Problem Wildlife (3) II. Van Vuren
Lecture—3 hours; Prerequisite: Biological Sciences 1A, 1B, and 1C, or the equivalent. Ecological approaches to managing wild vertebrates that cause problems for agriculture, public health, or conservation of biodiversity. Offered in alternate years. GE credit: SciEng, Wrt.

153. Wildlife Ecotoxicology (4) II. Anderson
Lecture—3 hours; discussion—1 hour. Prerequisite: introductory courses in organic chemistry, ecology, and physiology, or consent of instructor; Environmental Toxicology 101 recommended. Various forms of environmental pollution in relation to fish and wildlife, the effects and mechanisms of impacts on individuals and systems, laboratory and field ecotoxicology, examples/case histories, philosophical/management considerations. Offered in alternate years. GE credit: SciEng, Wrt.

154. Conservation Biology (3) III. Caro
Lecture—3 hours; Prerequisite: Evolution and Ecology 101 or Environmental Studies 100. Introduction to conservation biology. Background to the biological issues and controversies surrounding loss of species and habitats.

190. Proseminar in Wildlife and Fisheries Biology (1) I, II, III. The Staff (Chairperson in charge)
Seminar—1 hour. Prerequisite: upper division standing in biological sciences or consent of instructor. Reports and discussions of recent advances related to wildlife and fisheries biology. May be repeated twice for credit. (P/NP grading only.)

190C. Research Group Conference (1) I, II, III. The Staff (Chairperson in charge)
Discussion—1 hour. Prerequisite: advanced standing; consent of instructor. Weekly conference on research problems, progress and techniques in wildlife and fisheries biology. May be repeated for credit. (P/NP grading only.)

Women's Studies

(College of Letters and Science)

Judith Newton, Ph.D. Program Director
Program Office, 271 Kerr Hall (916-752-4686)

Committee in Charge

Angie Chabram-Dernersesian, Ph.D. (Chicana/o Studies)
Rosa Linda Fregoso, Ph.D. (Women's Studies)
Wendy Ho, Ph.D. (Asian American Studies, Women's Studies)
Carole Joffe, Ph.D. (Sociology, Women's Studies)
Dona Reed, Ph.D. (Linguistics, Women's Studies)
Lara Rosella, Ph.D. (History, Women's Studies)

Irig Rogoff, Ph.D. (Art Studio)
Judith Stacey, Ph.D. (Sociology, Women's Studies)
Martha West, J.D. (Law)

Faculty

Charlayne Allian, Lecturer (Classics)
Cynthia L. Brantley, Ph.D., Associate Professor (History)
JoAnn Cannon, Ph.D., Professor (French and Italian)
Angie Chabram-Dernersesian, Ph.D., Associate Professor (Chicana/o Studies)
Elizabeth Constable, Ph.D., Associate Professor (French and Italian)
Joanne Diehl, Ph.D., Professor (English)
Karin P. Eriksen, Ph.D., Professor (Psychology)
Diane Feinrebe, Ph.D., Associate Professor (Sociology)
Paula Findlen, Ph.D., Associate Professor (History)
Gail Finney, Ph.D., Professor (Comparative Literature, German)
Yvette Flores-Ortiz, Ph.D., Assistant Professor (Chicana/o Studies)
Ruth Frankenberg, Ph.D., Assistant Professor (American Studies)
Rosa Linda Fregoso, Ph.D., Associate Professor (Women's Studies)
Sandra Gilbert, Ph.D., Professor (English)
Karen Halttunen, Ph.D., Professor (History)
Ines Hernandez, Ph.D., Assistant Professor (Native American Studies)
Lynn Hershman, M.F.A., Professor (Art)
Wendy Ho, Ph.D., Assistant Professor (Asian American Studies, Women's Studies)
Mary Jackman, Ph.D., Professor (Sociology)
Carole Joffe, Ph.D., Professor (Sociology, Women's Studies)
Alessa Johns, Ph.D., Assistant Professor (English)
Suad Joseph, Ph.D., Professor (Anthropology)
Susan Kaiser, Ph.D., Associate Professor (Textiles and Clothing)
Cathy Kudlick, Ph.D., Assistant Professor (History)
Anna K. Kuhn, Ph.D., Professor (German)
Kari Lokke, Ph.D., Associate Professor (Comparative Literature)
Dianne Sachko Macleod, Ph.D., Associate Professor (Art History)
Martha Macri, Ph.D., Assistant Professor (Anthropology, Native American Studies)
Lata Mani, Ph.D., Assistant Professor (Women's Studies)
Sara Mann, Ph.D., Professor (History)
Sandra J. McPherson, B.A., Professor (English)
Jay Mechling, Ph.D., Professor (American Studies)
Janet Monisen, Ph.D., Professor (Geography)
Patricia Moran, Ph.D., Assistant Professor (English)
Linda Morris, Ph.D., Professor (English)
Harriet Murav, Ph.D., Associate Professor (Russian)
Judith Newton, Ph.D., Professor (Women's Studies)
Beatriz M. Pesquera, Ph.D., Associate Professor (Chicana/o Studies)
Michele Praznaer, Ph.D., Assistant Professor (French and Italian)
Sarah Pragansky, Ph.D., Assistant Professor (Women's Studies)
Donna Reed, Ph.D., Lecturer (Comparative Literature)
Janelle Reinelt, Ph.D., Professor (Dramatic Art)
Ada Riddell, Ph.D., Professor (Chicana/o Studies)
Belinda Robnett, Assistant Professor (Sociology, Women's Studies)
Catherine Robinson, Ph.D., Acting Assistant Professor (Chicana/o Studies)

Irig Rogoff, Ph.D., Associate Professor (Art Studio)
Ruth E. Rosen, Ph.D., Professor (History)
Laurie Ross, Ph.D., Assistant Professor, (Native American Studies)
Seth Schein, Ph.D., Professor (Comparative Literature)
Juliana Schieszari, Ph.D., Associate Professor (French and Italian)
Stephanie A. Shields, Ph.D., Professor (Psychology)
Carol Smith, Ph.D., Professor (Anthropology)
Barbara Sommer, Ph.D., Lecturer (Psychology)
Judith Stacey, Ph.D., Professor (Sociology, Women's Studies)

Women's Studies 423

General Education (GE) credit:
ArtHum = Arts and Humanities;
SciEng = Science and Engineering;
SocSci = Social Sciences;
Div = Social-Cultural Diversity;
Wrt = Writing Experience.
Women's Studies

Margit Stange, Ph.D., Assistant Professor (English)
Lenora A. Timm, Ph.D., Professor (Linguistics)
Carol Tomlinson-Keasey, Ph.D., Professor (Psychology)
Patricia Turner, Ph.D., Associate Professor (African American Studies, American Studies)
Dan Van Leer, Ph.D., Professor (English)
Martha West, J.D., Professor (Law)
Diane Wolf, Ph.D., Associate Professor (Sociology)

The Major Program

Women's Studies is an interdisciplinary major founded on the premise that gender is a historically variable construction that centrally shapes the historical experience and everyday lives of women as well as men. Women's Studies also assumes that gender, race, class, and sexual identities are constructed in relation to each other. The intersections of these categories of experience as well as the history of debate over what these categories mean is an important strand of the Women's Studies curriculum. Women's Studies at UC Davis is particularly rich in these categories of experience as well as the history of women and gender in Africa, the Caribbean, the Americas, China, Europe, Japan, India, and various countries of the Middle East, Southeast Asia, and the United States.

The Major Program

Students majoring in this field may take courses in African American and African studies, American studies, anthropology, comparative literature, English, history, linguistics, Chicano/a studies, political science, psychology, sociology, Asian American studies, Native American studies, French, German, Italian, Spanish, textiles and clothing, and other related disciplines. Depending on individual career goals, each student will design a program in consultation with an adviser.

Career Alternatives. Women's Studies prepares undergraduates for a variety of careers. The B.A. degree in Women's Studies, for example, provides excellent grounding in undergraduates with career aspirations in law, medicine, public administration, and social services. Students wishing to pursue doctoral work will also find that interdisciplinary training in Women's Studies equips them with theoretical and methodological strengths in most disciplines and applied research fields. Increasingly, too, specialists in Women's Studies are being used as consultants in industry and higher education, insurance companies and personnel firms. State and federal government agencies require people who have special training in women's experience and everyday lives of women as well as men.

A.B. Major Requirements:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Preparatory Subject Matter</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two courses from Women's Studies 20, 50, 70</td>
<td>20</td>
</tr>
</tbody>
</table>

Three courses selected from the following...12

African American and African Studies 10, 15, American Studies 1, 1F, Anthropology 2, Art History 15, Asian American Studies 10, 12, Classics 15, Comparative Literature 12, English 30A or 30B, 45, 46A or 46B or 46C, History 72A, 72B, Native American Studies 1, 10, Psychology 1, Sociology 1, 2, 3, Women's Studies 80.

Depth Subject Matter...44

Choose one of two tracks: (1) Disciplinary or (2) Thematic. Each track consists of three parts (A, B, C).

(A) Core courses in Women's Studies:16

Disciplinary track and Thematic track

Women's Studies 103, 104, 190 and one additional upper division Women's Studies course.

(B) Cross-Cultural Requirement:16

Disciplinary track and Thematic track

Choose four courses (at least one from each category). Courses used to meet this requirement may not duplicate those used to meet the requirement for Part C, Major Emphasis. The list that follows represents a partial list of options; other courses may be included with the consent of the Women's Studies Adviser.

Ethnic Studies: Women of Color in the United States

Cultures Outside the United States

Historical Material Prior to 1920

(C) Gender-Based Courses...12

Disciplinary track:

Choose three courses from one of the following focus groups:

Anthropology focus

Anthropology 130, 131, 134, 139, 145B, 158.

History focus

History 102H, 102G, 148A, 148B.

Language and Literature focus

Sociology and Psychology focus

OR

Thematic track:

Choose three courses that form a thematic cluster (for example, Gender and Autobiography; The Body, representations of Gender; Gender and Anthropology; The Body, Theory and Representation). Other clusters may be developed in consultation with a Women's Studies adviser.

Total units for the major...64

Additional Electives from approved list of upper division cross-listed and Women's Studies courses

Note: With prior consultation with an adviser, other upper division courses may be accepted toward the major program. Under no circumstances may more than one lower division course be offered in satisfaction of requirements for the minor.

Minor Adviser. All Women's Studies majors and minors must consult with a faculty adviser, individually, at least once each academic year.

Graduate Study. The Women's Studies Program offers a Designated Emphasis in Feminist Theory and Research for students enrolled in the Ph.D. programs of twelve other affiliated departments. Please see catalog listing “Feminist Theory and Research.”

Courses in Women's Studies (WMS)

Lower Division Courses

20. Cultural Representations of Gender (4) I

Fregoso, Patricia

Lecture/discussion—4 hours. Prerequisite: one course specified for the Women’s Studies major. Interdisciplinary investigation of how specific cultures represent gender difference. Examine a variety of cultural forms and phenomena including film, television, literature, music, popular movements, and institutions. GE credit: ArtHum, Div. Wrt.

50. Introduction to Women's Studies (4) I, II, III

Fregoso, Patricia

Lecture—3 hours; discussion—1 hour or term paper (instructor’s option). Interdisciplinary introduction which will survey and integrate literary, anthropological, psychological, historical, sociological and biological perspectives on the study of sex roles. GE credit: ArtHum or SocSci, Div. Wrt.

60. Feminist Perspectives on Western Social Thought (4) II

The Staff

Lecture/discussion—4 hours. A critical introduction to major traditions of social thinking in the West from a feminist perspective. GE credit: ArtHum or SocSci, Div.

70. Theory and History of Sexualities (4) I

The Staff

Lecture/discussion—4 hours. Key issues in the social construction, organization, and reproduction of sexualities such as the intersection of sexual identity with gender, race, ethnicity, and class, and the relation between movements for sexual liberation and the regulation of the body. GE credit: ArtHum or SocSci, Div.

80. Special Topics in Women's Studies (4) II

The Staff

Lecture/discussion—4 hours. In-depth examination of a women’s studies topic related to the research interest of the instructor. May be repeated for credit when topic differs. Limited enrollment.

96. Directed Group Study (1-5) I, II, III

The Staff (Director in charge)

Prerequisite: consent of instructor. (P/NP grading only.)

99. Special Study for Undergraduates (1-5) I, II, III

The Staff (Director in charge)

(P/NP grading only.)

Upper Division Courses

102. Colonialism, Nationalism, and Women (4) II

Joseph

Lecture/discussion—4 hours. Prerequisite: one course specified for Women's Studies major. Explores key dimensions of women's relationship to colonialism and nationalism in one or more societies. GE credit: SocSci, Div.

103. Introduction to Feminist Theory (4) I

The Staff

Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. Introduction to the emergence of feminist theory and to key con-
cepts in feminist theorizing. Examination of past and current debates over sexuality, race, identity politics, and the social construction of women's experience.

104. Feminist Approaches to Inquiry (4) II. Projakosy
Lecture/discussion—4 hours. Prerequisite: one course specified for the Women's Studies major. Feminist applications and transformations of traditional disciplinary practices; current issues and methodologies in feminist interdisciplinarity work.

*130. Feminism and the Politics of Family Change (4) III. Stacey
Lecture/discussion—4 hours. Prerequisite: any Women's Studies course or Sociology 131 or 132. An examination of contemporary conflict over family values and the changing family from a feminist perspective. Offered in alternate years. GE credit: ArtHum or SocSci, Div.

140. Gender and Law (4) I. West
Lecture/discussion—4 hours. Prerequisite: one course in Women's Studies. Exploration of women's legal rights in historical and contemporary context, discussing a variety of legal issues and applicable feminist theories. Topics include constitutional equal protection, discrimination in employment and education, sexual orientation discrimination, and the regulation of abortion. GE credit: SocSci, Div.

158. Contemporary Masculinities (4) III. Newton
Lecture/discussion—4 hours. Prerequisite: one course specified by the Women's Studies major. A multicultural study of contemporary trends in masculinity and the economic, social, and political forces that have shaped them. Topics may include men's movements, ethnic nationalist masculinities, and images of masculinity in popular culture. GE credit: ArtHum or SocSci, Div.

*160. Representations of Women of Color in Cinema (4) I. Fregoso
Lecture/discussion—3 hours; film viewing—3 hours. Prerequisite: course 20 or another film course. The representations of women of color in commercial and independent films from a feminist perspective. GE credit: ArtHum, Div.

162. Feminist Film Theory and Criticism (4) I.
Projakosy
Lecture/discussion—4 hours. Prerequisite: one course specified by the Women's Studies major. Contemporary issues in feminist film theory including representation, spectatorship, and cultural production. Film stars, women film makers and the intersection of gender, race, sexuality and class in films and their audiences. GE credit: ArtHum, Div.

164. Topics in Gender and Cinematic Representation (4) I, II, III. Fregoso
Lecture/discussion—4 hours. Prerequisite: one course specified by Women's Studies major. Examines a specific topic within the broader rubric of “gender and cinema”. Topics vary with instructor. May be repeated twice for credit when topic differs. Offered in alternate years. GE credit: ArtHum, Div.

180. Women of Color Writing in the United States (4) II. Ho
Lecture/discussion—4 hours. Prerequisite: course 20 or 50. Literature, especially novels, written by contemporary women of color in the United States, under-studied in their socio-economic, cultural and historical contexts. GE credit: ArtHum, Div.

182. Globalization, Gender and Identity (4) II. Joseph

184. Gender in the Arab World (4) III. Joseph
Lecture/discussion—4 hours. Examination of the history, culture, and social/political/economic dynamics of gender relations and gendering in the Arab World. GE credit: SocSci, Div, Wrt.

*187. Gender and Social Policy (4) II. The Staff
Lecture/discussion—3 hours; term paper. Prerequisite: upper division standing and a course in Women's Studies. The role of gender in the creation of social policies, especially with respect to issues brought into the policy arena by contemporary feminism. Offered in alternate years. GE credit: SocSci, Div.

190. Senior Seminar (4) II. Stacey
Seminar—4 hours. Prerequisite: Women's Studies senior status. Capstone course for senior Women's Studies majors, which focuses on current issues on feminism as they impact on theory, public policy, and practice.

192. Internship in Women's Studies (1-12) I, II, III
The Staff (Director in charge)
Internship—3-36 hours; written report. Prerequisite: completion of a minimum of 84 units and consent of instructor; enrollment dependent on availability of intern positions with priority to Women's Studies majors. Supervised internship and study in positions/institutional settings dealing with gender-related problems or issues, as for example, a women's center, affirmative action office, advertising agency, or social welfare agency. Final written report on internship experience. (P/NP grading only.)

195. Thematic Seminar in Women's Studies (4)
II, III. Joffe, Robnett
Seminar—4 hours. Prerequisite: two courses specified for women's studies major. Group study of a topic, issue or area in feminist theory and research involving intensive reading and writing. May be repeated for credit when topic differs. Enrollment limited. GE credit: ArtHum or SocSci, Div.

197. Tutoring in Women's Studies (1-4) I, II, III
The Staff (Director in charge)
Tutoring—3-12 hours. Prerequisite: upper division standing and consent of instructor. Leading small, voluntary discussion groups affiliated with a Women's Studies course. May be repeated for credit for a total of 8 units. Activities vary depending on the nature of the course assignment. May include (but not limited to) tutoring on course material, advising on projects and papers, leading discussion groups. (P/NP grading only.)

198. Directed Group Study (1-5) I, II, III
The Staff (Director in charge)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

199. Special Study for Advanced Undergraduates (1-5) I, II, III
The Staff (Director in charge)
Prerequisite: upper division standing; consent of instructor. (P/NP grading only.)

Graduate Courses

200A. Current Issues in Feminist Theory (4) I.
Fregoso
Seminar—4 hours. Current issues in feminist theory; techniques employed to build feminist theory in various fields.

200B. Problems in Feminist Research (4) II.
Projakosy
Seminar—4 hours. Prerequisite: course 200A with a grade of B+ or better. Application of feminist theoretical perspectives to the interdisciplinary investigation of a problem or question chosen by the instructor(s). May be repeated for credit when subject area differs.

201. Special Topics in Feminist Theory and Research (4) II, III
The Staff
Lecture/discussion—4 hours. Explores in depth a topic in feminist theory and research related to the research interests of the instructor. May be repeated as often as desired for credit in different subject areas. Limited enrollment.

299. Special Study for Graduate Students (1-12) I, II, III
The Staff
(S/U grading only.)

General Education (GE) credit: ArtHum = Arts and Humanities; SciEng = Science and Engineering; SocSci = Social Sciences; Div = Social-Cultural Diversity; Wrt = Writing Experience.
Residence for Tuition Information

Tuition Fee for Nonresident Students

If you have not been living in California with intent to make it your permanent home for more than one year immediately before the residence determination date for each term in which you propose to attend the University, you must pay a nonresident tuition fee in addition to all other fees. The residence determination date is the day instruction begins at the last of the University of California campuses to open for the quarter, and for schools on the semester system, the day instruction begins for the semester.

Law Governing Residence

The rules regarding residence for tuition purposes at the University of California are governed by the California Education Code and implemented by Standing Orders of the Regents of the University of California. Under these rules, adult citizens and certain classes of aliens can establish residence for tuition purposes. There are particular rules that apply to the residence classification of minors (see below).

Who is a Resident?

If you are an adult student (at least 18 years of age) you may establish residence for tuition purposes in California if: (1) you are a U.S. citizen; (2) you are a permanent resident or other immigrant; or (3) you are a nonimmigrant who is not precluded from establishing a domicile in the U.S. Nonimmigrants who are not precluded from establishing a domicile in the U.S. include those who hold visas of the following types: A, E, G, H-1, H-4, I, K, L, O-1, O-3, or R. To establish residence you must be physically present in California for more than one year and you must have come here with the intent to make California your home as opposed to coming to this state to go to school. Physical presence within the state solely for educational purposes does not constitute the establishment of California residence, regardless of the length of your stay. You must demonstrate your intention to make California your home by severing your residential ties with your former state of residence and establishing those ties with California. Evidence of intent must be dated one year before the term for which you seek resident classification. If these steps are delayed, the one-year durational period will be extended until you have demonstrated both presence and intent for one full year. Effective Fall 1993, if your parents are not residents of California or you were not previously enrolled as a UC student, you will be required to be financially independent in order to be a resident for tuition purposes.

Requirement for Financial Independence

You will be considered “financially independent” if one or more of the following applies: (1) you are at least 24 years of age by December 31 of the calendar year for which you are requesting residence classification; (2) you are a veteran of the U.S. Armed Forces; (3) you are a ward of the court or both parents are deceased; (4) you have legal dependents other than a spouse; (5) you are married, or a graduate student or a professional student, and you were not claimed as an income tax deduction by your parents or any other individual for the tax year immediately preceding the term for which you are requesting resident classification; or (6) you are a single undergraduate student and you were not claimed as an income tax deduction by your parents or any other individual for the two tax years immediately preceding the term for which you are requesting resident classification, and you can demonstrate self-sufficiency for those years and the current year. (Note: Financial independence will not be a factor in residence status for graduate student instructors, graduate student teaching assistants, research assistants, junior specialists, post-graduate researchers, graduate student researchers, and teaching associates who are employed 49% or more of full time or who have funding equivalent to employment that is 49% or more of full time for the term for which classification is sought.)

Establishing Intent to Become a California Resident

Indications of your intent to make California your permanent home can include the following: registering to vote and voting in California elections; designating California as your permanent address on all school and employment records, including military records if you are in the military service; obtaining a California driver's license or, if you do not drive, a California Identification Card; obtaining California vehicle registration; paying California income taxes as a resident, including taxes on income earned outside California from the date you establish residence; establishing a California residence in which you keep your personal belongings; and licensing for professional practice in California. The absence of these indicia in other states during any period for which you claim residence can also serve as an indication of your intent. Documentary evidence is required and all relevant indications will be considered in determining your classification. Your intent will be questioned if you return to your prior state of residence when the University is not in session.

General Rules Applying to Minors

If you are an unmarried minor (under age 18), the residence of the parent with whom you live is considered to be your residence. If you have a parent living, you cannot change your residence by your own act, by the appointment of a legal guardian, or by the relinquishment of your parent's right of control. If you lived with neither parent, your residence is that of the parent with whom you last lived. Unless you are a minor alien present in the U.S. under the terms of a nonimmigrant visa which precludes you from establishing domicile in the U.S., you may establish your own residence when both your parents are deceased and a legal guardian has not been appointed. If you derive California residence from a parent, that parent must satisfy the one-year durational residence requirement.

Specific Rules Applying to Minors

1. Divorced/Separated Parents

You may be entitled to resident status if you are a minor U.S. citizen or eligible alien whose parent(s) was a resident of California who left that state within one year of the residence determination date if: 1) you remained in California after your parent(s) departed; 2) you enroll in a California public post-secondary institution within one year of the time your parent(s) depart and establish residence elsewhere; and 3) once enrolled, you maintain continuous attendance in that institution. Financial independence will not be required in this case.

2. Parent of Minor Moves From California

You may be entitled to resident status if you are a minor U.S. citizen or eligible alien and either a minor or age 18 and can prove the following: 1) you lived in California for the entire years immediately preceding the residence determination date; 2) you have been self-supporting for that year; and 3) you intend to make California your permanent home.

3. Self-Support

You may be entitled to resident status if you are a U.S. citizen or eligible alien and you have lived continuously with an adult who is not your parent for at least two years prior to the residence determination date. The adult with whom you are living must have been responsible for your care and control for the entire two-year period and must have been residing in California during the one year immediately preceding the residence determination date.
Exemptions from Nonresident Tuition

1. Member of the Military
 If you are a member of the U.S. military stationed in California on active duty, unless you are assigned for educational purposes to a state-supported institution of higher education, you may be exempt from the nonresident tuition fee until you have lived in California long enough to become a resident. You must provide the residence deputy on campus with a statement from your commanding officer or personnel officer stating that your assignment to active duty in California is not for educational purposes. The letter must include the dates of your assignment to the state.

2. Spouse or Other Dependents of Military Personnel
 You are exempt from payment of the nonresident tuition fee if you are a spouse or a natural or adopted child of a dependent of a member of the U.S. military stationed in California on active duty. The exemption is available until you have lived in California long enough to become a resident. If you are enrolled in an educational institution and the member of the military is transferred on military orders to a place outside California where he or she continues to serve in the armed forces, or the member of the military retires from active duty immediately after having served in California on active duty, you may retain this exemption under the conditions listed above.

3. Child or Spouse of Faculty Member
 To the extent funds are available, if you are an unmarried dependent child under age 21 or the spouse of a member of the University faculty who is a member of the Academic Senate, you may be eligible for a waiver of the nonresident tuition fee. Confirmation of the faculty member's membership on the Academic Senate must be secured each term this waiver is granted.

4. Child or Spouse of University Employee
 You may be entitled to resident classification if you are the unmarried dependent child or the spouse of a full-time University employee whose assignment is outside of California (e.g., Los Alamos Scientific Laboratory). Your parent's or spouse's employment status with the University must be ascertained each term.

5. Child of Deceased Public Law Enforcement or Fire Suppression Employee
 You may be entitled to a waiver of the nonresident tuition fee if you are the child of a deceased public law enforcement or fire-suppression employee who was a California resident at the time of his or her death and who was killed in the course of fire suppression or law enforcement duties.

6. Dependent of a California Resident
 A student who has not been an adult resident of California for more than one year and who is the dependent child of a California resident who has been a resident for more than one year immediately prior to the residence determination date may be entitled to resident classification until the student has resided in California for the minimum time necessary to become a resident so long as continuous attendance is maintained at an institution.

7. Native American Graduate of BIA School
 A student who is a graduate of a California school operated by the Federal Bureau of Indian Affairs (BIA), i.e., Sherman Indian High School, and who enrolls at the University of California may be eligible for an exemption of the nonresident fee.

Temporary Absence

If you are a nonresident student who is in the process of establishing a residence for tuition purposes and you return to your former home during non-instructional periods, your presence in the state will be presumed to be solely for educational purposes and only convincing evidence to the contrary will rebut this presumption. (A student who is in the state solely for educational purposes will NOT be classified as a resident for tuition purposes regardless of the length of his or her stay.) If you are a student who has been classified as a resident for tuition purposes and you leave the state temporarily, your absence could result in the loss of your California residence. The burden will be on you (or your parents if you are a minor) to verify that you did nothing inconsistent with your claim of a continuing California residence during your absence. Steps that you (or your parents) should take to retain a California residence include:

1. Continue to use a California permanent address on all records—educational, employment, military, etc.
2. Satisfy California resident income tax obligations. (Note: If you are claiming California residence, you are liable for payment of income taxes on your total income from the date you establish California residence. This includes income earned in another state or country.)
3. Retain your California voter’s registration and vote by absentee ballot.
4. Maintain a California driver’s license and vehicle registration. If it is necessary to change your driver’s license and/or vehicle registration while you are temporarily residing in another state, you must change them back to California within the time prescribed by law.

Classification to Resident Status

All changes of status must be initiated prior to the payment deadline for the term which you intend to be reclassified.

Incorrect Classification

If you were incorrectly classified as a resident, you are subject to reclassification and to payment of all nonresident tuition fees not paid. If you concealed information or furnished false information and were classified incorrectly as a result, you are also subject to University discipline. Resident students who become nonresidents must immediately notify the campus residence deputy.

Inquiries and Appeals

Inquiries regarding residence requirements, determination and/or recognized exceptions should be directed to the Residence Deputy, Office of the Registrar, 12 Mrak Hall, Davis, California 95616, (916) 752-0879. NO OTHER UNIVERSITY PERSONNEL ARE AUTHORIZED TO SUPPLY INFORMATION RELATIVE TO RESIDENCE REQUIREMENTS FOR TUITION PURPOSES. You are cautioned that this summary is not a complete explanation of the law regarding residence. Please note that changes may be made in the residence requirement between the publication of this statement and the relevant residence determination date. Any student, following a final decision on residence classification by the residence deputy, may appeal in writing to the legal analyst (Legal Analyst—Residence Matters, 300 Lakeside Dr., 7th Floor, Oakland, CA 94612-3565) within 45 days of notification of the residence deputy’s final decision.

UNIVERSITY POLICY ON NONDISCRIMINATION, SEXUAL HARASSMENT, STUDENT RECORDS, AND PRIVACY

Nondiscrimination. The University of California, in accordance with applicable Federal and State law and University policy, does not discriminate on the basis of race, color, national origin, religion, sex, disability, age, medical condition (cancer-related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities. Inquiries regarding the University's student-related nondiscrimination policies may be directed to Student Judicial Affairs Director Jeanne Wilson, Room 308, South Hall 916-752-1128.

Sexual Harassment. Sexual harassment of students, staff, or
Appendix

faculty members is prohibited by law and by University regulation (Policy 380-12). Sexual harassment is unacceptable and will not be condoned on the UC Davis campus. The campus community will take all necessary and appropriate steps to protect students, staff, and faculty from sexual harassment and all forms of sexual intimidation and exploitation. The Sexual Harassment Education Program (752-2255) provides information and assists students in resolving complaints of sexual harassment informally. Formal grievance procedures for student complaints charging legally impermissible discrimination (Policy 280-05) are available in the Office of Student Judicial Affairs and may be used to bring complaints of sexual harassment or other discrimination. Students may receive informal counseling and formal assistance by contacting any of the following offices: Vice Chancellors, Deans of the Schools and Colleges, the Office of Student Judicial Affairs, or the Sexual Harassment Education Program. In addition, the ASUCD Student Grievance Center, Counseling Center, and the Women's Resources and Research Center are available to provide referral service.

Disclosures from Student Records. In accordance with the Federal Family Educational Rights and Privacy Act of 1974 and campus procedures implementing the University of California Policies Applying to the Disclosure of Information from Student Records, students at the Davis campus of the University have the right:

- To inspect and review their own records;
- To grieve alleged violations of privacy rights;
- To consent to disclosures from their records, except as disclosures are authorized without consent under law and University policy;
- To request correction of their records; and
- To file complaints with the Department of Education for alleged violations of the rights accorded them by the Federal Act.

These rights are implemented on the Davis campus by UCD Policy and Procedure Manual, Section 320-21, “Disclosure of Information from Student Records.”

Questions about these rights should be referred to Jeanne Wilson, Office of Student Judicial Affairs, telephone 916-752-1128. Copies of the Federal Act, the full text of the U.C. Policies and the UCD Policy and Procedure Manual, Section 320-21, may be consulted at the Reference Desk of the Shields Library. Copies of Section 320-21 may be obtained at the Office of Student Judicial Affairs.

Categories of personally identifiable information designated by the campus as public information are: name, address (local and/or permanent), telephone numbers, date and place of birth, major field of study, dates of attendance, number of course units in which enrolled; degrees and honors received, the most recent previous educational institution attended, participation in officially recognized activities, including intercollegiate athletics and the name, weight, and height of the participants on intercollegiate University athletic teams, provided, however, that address and telephone numbers are not public information with respect to internships, residency training, and name of medical school awarding the M.D. degree.

Parental/guardian information is confidential. It is used by the University only for notification of events, ceremonies, awards, and development or in case of an emergency involving the student.

Students may request in writing by the tenth day of instruction that their addresses, including e-mail address, and telephone listings or all personally identifiable information from their records not be regarded as public information. Students who desire to withhold their addresses and telephone listings may so indicate on the Student Address Form included with registration materials. Students who wish to keep their e-mail addresses confidential should connect to mothra.ucdavis.edu and type “services” at the login prompt, and follow the instructions provided for changing “whois” directory information. If a student does not indicate that he or she wishes to keep his or her address and telephone number confidential, then the information may be released as a matter of public record and will be included in a campus Student Directory.

Students who desire to withhold all information from the category of public information must file a form in the Office of the Registrar. Students availing themselves of this right should understand what the consequences of such action may be. For example, if all information is designated non-public information, the campus cannot make public any honors received by the student (e.g., the award of a Regents’ Scholarship or election to Phi Beta Kappa) and cannot include the student’s name and degree earned in the campus commencement program without the student’s written consent.

Similarly, the student’s status as a student cannot be verified for potential employers without the student’s written consent. Finally any degrees earned and the dates they were conferred may not be confirmed for any third party in connection with the appointment of that graduate to a new position or published in connection with an honor that individual subsequently receives. Students may reverse the decision to withhold their address and phone number at registration for a new quarter on the Student Address Form. The decision to withhold address and phone number or all information can be reversed at any time by filing a form with the Office of the Registrar.

Privacy Act. A student’s Social Security number is used to verify personal identity in the UCD Student Records System. In accordance with the Federal Privacy Act of 1974, students are hereby notified that disclosure of their social security number is mandatory. This recordkeeping system was established prior to January 1, 1975 pursuant to the authority of The Regents of the University of California under Art. IX, Sec. 9, of the California Constitution.

ACCREDITATION

The University of California, Davis is accredited by the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges, an institutional accrediting body recognized by the Council on Postsecondary Accreditation and the U.S. Department of Education. UC Davis is also accredited by the Association of American Law Schools, American Bar Association, American Dietetic Association, Association of American Medical Colleges, American Association for Accreditation of Laboratory Animal Care, Accreditation Council for Graduate Medical Education, Council on Education of the American Veterinary Medical Association, Engineering Accreditation Commission of the Accreditation Board of Engineering and Technology, American Chemical Society, American Assembly of Collegiate Schools of Business, American Society of Landscape Architects, the Commission on Teacher Credentialing, and the Joint Commission on Accreditation of Hospitals. Students interested in reviewing the accreditation documents may do so by scheduling an appointment with the Office of the Provost, Mkr Hall.

THE BOARD OF REGENTS

Governance of the university is entrusted to a corporation called The Board of Regents. Of the individuals composing the board, 19 are prominent California citizens appointed by the Governor; and seven, including the president of the university and the governor of California, serve ex officio. A student regent is selected each year from a list of names submitted to the board by the Student Body Presidents’ Council.

The regents have delegated authority in academic matters to the Academic Senate of the faculty, which determines academic policy and supervises the instructional activities of the entire university. All of the permanent faculty, as well as key administrators, are members of the Senate.
The regents have delegated authority for the organization of the university to the president. Richard C. Atkinson is president and head of the universitywide administration. Authority for the administration of each campus has been delegated to a chancellor.

THE REGENTS OF THE UNIVERSITY OF CALIFORNIA

Regents Ex Officio

Pete Wilson
Governor of California and President of The Regents

Gray Davis
Lieutenant Governor of California

Curt Pringle
Speaker of the Assembly

Delaine Eastin
State Superintendent of Public Instruction

Pat Kessler
President of the Alumni Associations of the University of California

Richard Russell
Vice President of the Alumni Associations of the University of California

Richard C. Atkinson
President of the University

Appointed Regents
(Current term expires on March 1 of year indicated)

- William T. Bagley (2002)
- Roy T. Brophy (1998)
- Clair W. Burgener (2000)
- Frank W. Clark, Jr. (2000)
- Tirso del Junco, M.D. (1997)
- Alice J. Gonzales (1998)
- S. Sue Johnson (2002)
- Meredith J. Khachigian (2001)
- Leo S. Kolligian (1997)
- Howard H. Leach (2001)
- David S. Lee (2006)
- Velma Montoya (2005)
- Tom Sayles (2006)
- **Student Regent**
- Jess Bravin (UCB) (June 30, 1997)
- **Faculty Representatives**
- Duncan Mellichamp (August 31, 1997)

Principal Officers of The Regents

- James E. Holst
 General Counsel and Vice President—Legal Affairs
- Herbert M. Gordon
 Treasurer
- Patricia L. Trivette
 Secretary

ADMINISTRATIVE OFFICERS OF THE UNIVERSITY

- Richard C. Atkinson
 President of the University
- C. Judson King
 Interim Provost and Senior Vice President—Academic Affairs
- V. Wayne Kennedy
 Senior Vice President—Business and Finance
- William B. Baker
 Vice President—University and External Relations
- Cornelius L. Hopper, M.D.
 Vice President—Health Affairs
- William H. Gurtner
 Vice President—Clinical Services and Development
- W.R. (Reg) Gomes
 Vice President—Agriculture and Natural Resources
- James E. Holst
 General Counsel and Vice President—Legal Affairs

UNIVERSITY CHANCELLORS

- Chang-Lin Tien
 Chancellor at Berkeley
- Larry N. Vanderhoef
 Chancellor at Davis
- Laurel L. Wilkening
 Chancellor at Irvine
- Charles E. Young
 Chancellor at Los Angeles
- Raymond L. Orbach
 Chancellor at Riverside
- Robert C. Dynes
 Chancellor at San Diego
- Joseph B. Martin
 Chancellor at San Francisco
- Henry T. Yang
 Chancellor at Santa Barbara
- MR.C. Greenwood
 Chancellor at Santa Cruz

ADMINISTRATIVE OFFICERS—DAVIS

- **Chancellor**
 - Larry N. Vanderhoef, Ph.D.
- **Chancellor Emeritus**
 - James H. Meyer, Ph.D.
- **Vice Chancellors**
 - Robert D. Grey, Ph.D.
 Provost and Executive Vice Chancellor
 - Janet C. Hamilton, B.S.
 Vice Chancellor—Administration
 - Richard E. Matheny, Ed.D.
 Vice Chancellor—University Relations
 - Robert N. Shelton, Ph.D.
 Vice Chancellor—Research
 - Carolyn F. Wall, Ph.D.
 Vice Chancellor—Student Affairs
- **Vice Provosts**
 - Peter Dale, Ph.D.
 Vice Provost—Undergraduate Studies
 - **Vice Provost—Academic Outreach**
 - Carol Tomlinson-Keasey
 Vice Provost—Academic Planning and Personnel
- **Assistant Chancellor**
 - Sally P. Springer, Ph.D.
- **Associate/Assistant Vice Chancellors**
 - Carole A. Barone, Ph.D.
 Associate Vice Chancellor—Information Technology
 - Trevor L. Chandler, Ph.D.
 Assistant Vice Chancellor—Campus Diversity
 - Tom Compton, J.D.
 Acting Assistant Vice Chancellor—Student Affairs
 (Student Relations)
 - Anthony B. Flores, M.P.A.
 Assistant Vice Chancellor—Finance, Accounting Officer
Robert G. Franks, Ph.D., J.D.
Associate Vice Chancellor—Student Affairs
(Administration and Student Life)

Virginia Kelsch, B.A.
Associate Vice Chancellor—University Relations

Yvonne L. Marsh, M.S.
Assistant Vice Chancellor—Student Affairs
(Enrollment, Advising and Academic Support Services)

Richard J. Meisinger, Jr., Ph.D.
Associate Vice Chancellor—Planning and Budget

Darrell P. Ralls, A.B.
Associate Vice Chancellor—Facilities

Dennis W. Shimek, B.S.
Associate Vice Chancellor—Human Resources and Risk Management

University Librarian
Marilyn J. Sharrow, M.A.L.S.

Registrar
Evelyn R. Babey, Ph.D.

Directors
Marjorie M. Dickinson, A.B.
Director of Government and Community Relations

Patricia A. Kearney, Ph.D.
Director of Student Housing

Robert A. Kerr, Ph.D.
Executive Director, Cal Aggie Alumni Association

Stan Nosek, M.S.
Director of Event Management and Administrative Services

William C. Ward, B.S., M.H.A.
Director of Student Health Center

Steven H. Weiss, M.B.A.
Director of University Cultural Programs

Daniel L. Wick, Ph.D.
Director of Summer Sessions

Greg Warzecka, M.S.
Director of Athletics

College of Agricultural and Environmental Sciences
Barbara O. Schneeman, Ph.D., Dean

André Lauchli, Ph.D., Executive Associate Dean

Alan Bennett, Ph.D., Divisional Associate Dean—Plant Sciences

Susan Kaiser, Ph.D., Divisional Associate Dean—Human Health and Development

Annie King, Ph.D., Associate Dean—Undergraduate Academic Programs

Gary Moberg, Ph.D., Divisional Associate Dean—Animal Biology

Michael S. Reid, Ph.D., Divisional Associate Dean—Environmental and Resource Sciences and Policy

College of Engineering
Mohammed S. Ghausi, Ph.D., Dean (through 9/30/96)

Alan J. Laub, Ph.D, Dean (effective 10/1/96)

Benjamin J. McCoy, Ph.D., Associate Dean—Research

Zuhair A. Munir, Ph.D., Associate Dean—Graduate Studies

James E. Shackelford, Ph.D., Associate Dean—Undergraduate Studies

College of Letters and Science
___________________, Dean—Division of Humanities, Arts, and Cultural Studies

Barbara D. Metcalf, Ph.D., Dean—Division of Social Sciences

Peter A. Rock, Ph.D., Dean—Division of Mathematical and Physical Sciences

George G. Roussas, Ph.D., Associate Dean—Division of Statistics

Fred E. Wood, Ph.D., Associate Dean—Undergraduate Education

Division of Biological Sciences (Intercollege)
Mark G. McNamee, Ph.D., Dean

Division of Education
Jonathan H. Sandoval, Ph.D., Acting Director

Graduate School of Management
Robert H. Smiley, Ph.D., Dean

Richard P. Castanias, Ph.D., Associate Dean—Academic Affairs

Graduate Studies
___________________, Ph.D., Dean

Jeffery C. Gibeling, Ph.D., Executive Associate Dean

Rosemarie H. Kraft, Ph.D., Associate Dean

School of Law
Bruce A. Wolk, J.D., Dean

Rex R. Perschbacher, J.D., Associate Dean—Academic Affairs

Antonia Bernhard, J.D., Assistant Dean—Student Affairs

School of Medicine
Gerald S. Lazarus, M.D., Dean

James J. Castles, M.D., Executive Associate Dean

Fitz-Roy E. Curry, Ph.D., Associate Dean—Research and the Basic Sciences

Ernest L. Lewis, M.D., Associate Dean—Student Affairs/Admissions

Frank J. Loge, M.B.A., Associate Dean—Hospitals and Clinics

Elizabeth Russell, M.S.N., M.B.A., Associate Dean—Administration

Allan Siefkin, M.D., Associate Dean—Clinical Affairs

Margaret S. Steward, Ph.D., Associate Dean—Women’s Affairs

Donal A. Walsh, Ph.D., Associate Dean—Curricular Affairs

School of Veterinary Medicine
Frederick A. Murphy, D.V.M., Ph.D., Dean (through 8/31/96)

Robert J. Hansen, Ph.D., Associate Dean—Student Programs

Bennie I. Osburn, D.V.M., Ph.D., Associate Dean—Research and Graduate Education

John R. Pascoe, B.V.Sc., Ph.D., Associate Dean—Academic Programs

Bradford P. Smith, D.V.M., Associate Dean—Clinical Programs and Director—VMTH

University Extension
Charles A. Lacy, Ph.D., Dean
PROPORTION OF UC DAVIS GRADUATES FINDING WORK IN THEIR FIELDS OF CHOICE

The percent of alumni whose full-time job is in the field of their choice is shown by field of study. Figures do not include the 13 percent of graduates who had not decided on a career field at the time of the survey.

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Percent Finding Work in Field of Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Sciences</td>
<td>79%</td>
</tr>
<tr>
<td>Applied Economics</td>
<td>68%</td>
</tr>
<tr>
<td>Behavioral Sciences</td>
<td>66%</td>
</tr>
<tr>
<td>Computer Science</td>
<td>100%</td>
</tr>
<tr>
<td>Food/Consumer Sciences</td>
<td>89%</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>61%</td>
</tr>
<tr>
<td>Resource Sciences</td>
<td>71%</td>
</tr>
<tr>
<td>Engineering</td>
<td>81%</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>30%</td>
</tr>
<tr>
<td>Letters</td>
<td>50%</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>80%</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>58%</td>
</tr>
<tr>
<td>Total</td>
<td>64%</td>
</tr>
</tbody>
</table>

1Source: A 1994 survey of June 1993 graduates conducted by Student Affairs Research and Information, UC Davis.
2Fields of Study are groups of related undergraduate majors; for example, “Animal Sciences” would include such majors at UC Davis as Animal Science, Avian Sciences, and Wildlife, Fish and Conservation Biology.

RETENTION DATA AND GRADUATION RATES AT UC DAVIS

Freshmen

(Retention and graduation rates through Spring 1995 for all undergraduates entering UC Davis from high school.)

<table>
<thead>
<tr>
<th>Fall Quarter of Initial Enrollment:</th>
<th>Number of Students</th>
<th>Percent Enrolled 4 Quarters</th>
<th>*Percent Graduating in 12 Quarters</th>
<th>*Percent Graduating in 15 Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>2,718</td>
<td>91%</td>
<td>29%</td>
<td>68%</td>
</tr>
<tr>
<td>1986</td>
<td>2,474</td>
<td>93%</td>
<td>28%</td>
<td>73%</td>
</tr>
<tr>
<td>1987</td>
<td>3,336</td>
<td>93%</td>
<td>29%</td>
<td>73%</td>
</tr>
<tr>
<td>1988</td>
<td>3,417</td>
<td>93%</td>
<td>31%</td>
<td>73%</td>
</tr>
<tr>
<td>1989</td>
<td>3,120</td>
<td>94%</td>
<td>34%</td>
<td>72%</td>
</tr>
<tr>
<td>1990</td>
<td>3,164</td>
<td>94%</td>
<td>37%</td>
<td>68%</td>
</tr>
</tbody>
</table>

Transfer Students

(Retention and graduation rates through Spring 1995 for all undergraduates transferring to UC Davis as juniors.)

<table>
<thead>
<tr>
<th>Fall Quarter of Initial Enrollment:</th>
<th>Number of Students</th>
<th>Percent Enrolled 4 Quarters</th>
<th>*Percent Graduating in 6 Quarters</th>
<th>*Percent Graduating in 9 Quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>455</td>
<td>91%</td>
<td>36%</td>
<td>79%</td>
</tr>
<tr>
<td>1987</td>
<td>520</td>
<td>92%</td>
<td>31%</td>
<td>77%</td>
</tr>
<tr>
<td>1988</td>
<td>569</td>
<td>91%</td>
<td>31%</td>
<td>75%</td>
</tr>
<tr>
<td>1989</td>
<td>623</td>
<td>92%</td>
<td>32%</td>
<td>73%</td>
</tr>
<tr>
<td>1990</td>
<td>844</td>
<td>93%</td>
<td>35%</td>
<td>77%</td>
</tr>
<tr>
<td>1991</td>
<td>658</td>
<td>93%</td>
<td>41%</td>
<td>77%</td>
</tr>
<tr>
<td>1992</td>
<td>862</td>
<td>92%</td>
<td>42%</td>
<td>73%</td>
</tr>
</tbody>
</table>

*These are not necessarily quarters of continuous enrollment. Students may drop out or go on Planned Educational Leave for a quarter or longer, and then resume their studies. (There are three quarters in each academic year.)

1Source: Student Affairs Research and Information, UC Davis (January, 1996).

AVERAGE MONTHLY SALARY OFFERED TO GRADUATES WITH BACHELOR’S, MASTER’S, AND DOCTORATE DEGREES

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Bachelor’s</th>
<th>Master’s</th>
<th>Doctorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>$2865</td>
<td>$3393</td>
<td>$4504</td>
</tr>
<tr>
<td>Humanities/Social Sciences</td>
<td>$1926</td>
<td>$2452</td>
<td>$3012</td>
</tr>
<tr>
<td>Health Sciences/Life Sciences</td>
<td>$2531</td>
<td>$2997</td>
<td>$4115</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>$2358</td>
<td>$2911</td>
<td>$3949</td>
</tr>
</tbody>
</table>

1Source: 1995 National Salary Survey data provided by the College Placement Council.
Agricultural and Environmental Chemistry, 121–122
Agricultural and Environmental Sciences, 122
Agricultural and Managerial Economics, 122
Agricultural and Resource Economics, 122–125
Agricultural Computing and Information Systems, 125–126
Agricultural Education, 126 (see also Agricultural Systems and Environment)
Agricultural Engineering (see Biological and Agricultural Engineering)
Agricultural History Center, 15
Agricultural Practices (see Applied Biological Systems Technology)
Agricultural Systems and Environment, 126–129
Agronomy, 129–130
Agronomy and Range Science, 130 (see also Range and Wildlands Science)
Allergy (see Rheumatology-Allergy)
Alumni Association, 45
American College Tests (ACT), 23
American History and Institutions requirement, 75
American Studies, 130–131
Anatomy (see Cell Biology and Human Anatomy, in Medicine, School of)
Anatomy, Physiology and Cell Biology (Veterinary Medicine), 132–133
Anesthesiology, 329–330
Animal Behavior, 133 (see also Neurobiology, Physiology and Behavior)
Animal breeding (see Animal Genetics; Animal Science)
Animal Genetics, 133–134
Animal Nutrition (see Nutrition)
Animal Science, 134–136
Animal Science and Management, 136–137
Animal Surgery Laboratory, 17
Annual student expenses, average, 32
Anthropology, 137–142
Apiculture (see Entomology)
Applied Behavioral Sciences, 142–144
Applied Biological Systems Technology, 144–145
Applied Chemistry (see Chemical and Materials Science Engineering)
Applied Mathematics, 145
Applied Physics, 367–368
Applied Science Engineering, 221–224
Aquaculture (see Animal Science; Applied Biological Systems Technology; Biological and Agricultural Engineering; Wildlife, Fish and Conservation Biology)
arboretum, Davis, 14–15
Archaeology (see Anthropology)
Architecture (see Art History; Design; Landscape Architecture)
Area requirement, 93–94
Art galleries, 43
Art History, 146–147
Art Studio, 148–149
Arts at Davis, 42–43
Asian American Studies, 149–150
Asian Studies (see Asian American Studies; East Asian Studies)
Associated Students (ASUCD), 43–44
Astronomy, 368
ASUCD, 43–44
ASUCD Grievance Center, 51
Athletics, 42 (see also Exercise Science)
Atmospheric Science, 150–152
Avian Medicine (see Medicine and Epidemiology)
Avian Sciences, 152–154
Bachelor's degree requirements, 74–95
second baccalaureate, 28–29
Bacteriology (see Microbiology)
Basement Gallery, 43
Bicycles, 10, 32, 52
Biochemical Engineering (see Chemical and Materials Science Engineering)
Biochemistry, 157
Biochemistry and Biophysics (see Biochemistry and Molecular Biology; Biophysics; Molecular and Cellular Biology)
Biochemistry and Molecular Biology, 154
Biochemistry and Special Instrumentation Laboratory, 17
Biological and Agricultural Engineering, 154–155, 210, 212–213, 224–225
Biological Chemistry, 330
Biological Sciences, 48, 70–71, 155–171 courses, 160 major, 155–156 Sections of, 161–171
Biological Systems Engineering, 210, 212–213, 224–225
Biomechanics (see Biomedical Engineering)
Biomedical Engineering, 171–172, 213
Biophysics, 172
Biotechnical Engineering (see Biological and Agricultural Engineering)
Biotechnology, 172–173
Index

Engineering, College of, 13–14, 71–72, 88–92, 210–245
Aeronautical Science and Engineering, 211, 241, 244–245
Applied Science, 221–224
Biological and Agricultural, 210, 212–213, 224–225
Chemical, 210, 213–215, 226–229
Civil and Environmental, 210–211, 215–216, 229–233
Computer Science, 211, 217, 233–236
Electrical and Computer Engineering, 211, 217–219, 236–241
Engineering core courses, 220–221
Food Engineering, 210, 213, 214
Mechanical, 211, 219–220, 241–245
Engineering design requirement, 89
Engineering electives, 89–91
Engineering Geology, 279
Engineers, Graduate Certificate Program, 100
English, 245–250
English 57 (see Subject A)
English as a Second Language, 26–27, 314–317 (see also Linguistics)
English composition examination, 87, 88–89, 93
English composition requirement, 74–75, 87, 88–89, 93
English proficiency requirement, 22, 98
Enology (Viticulture and Enology), 419–421
Entomology, 250–252
Environmental and Resource Sciences, 252–253
Environmental Biology and Management, 253–254
Environmental Design, 254 (see also Design; Landscape Architecture)
Environmental Engineering (see Chemical and Materials Science Engineering; Civil and Environmental Engineering)
Environmental Geology, 254
Environmental Horticulture, 255–256
Environmental Horticulture and Urban Forestry, 256
Environmental Planning and Management, 256 (see also Environmental Biology and Management; Environmental Horticulture; Environmental Horticulture and Urban Forestry)
Environmental Policy Analysis and Planning, 257
Environmental Studies, 258–260
Environmental Toxicology, 260–262
EOP/SAA, 28, 34, 49, 50
Epidemiology, 262 (see also Medicine and Epidemiology)

Equestrian Center, 41
Evolution and Ecology, 157–158, 161–162
Examination in English as a Second Language, 27
Examinations
Advanced Placement, 24–25
credit by, 57
final, 61
High School Proficiency, 24
midterm, 60–61
requirement (ACT and SAT), 23
TOEFL (Test of English as a Foreign Language), 27, 108, 115
Exercise Science, 262–267
Expenses
annual, 32
housing, 38
international student, 32
Exploratory program, 47
Extension courses (see University Extension)
Facility for Advanced Instrumentation, 18
Family Practice, 332–334
Farming/Field equipment (see Applied Biological Systems Technology; Biological and Agricultural Engineering)
Fee
course materials, 31
duplicate degree, 31
employee-student, 31
parking permit and bicycle licensing, 32
refunds, 32
Fees and expenses, 31–32
Fees for professional schools,
Law, 105
Management, 108
Medicine, 111
Veterinary Medicine, 115
Fellowships, 100
Feminist Theory and Research, 267
Fermentation Science, 267
Fiber and Polymer Science, 267–268
Film Studies, 268
Financial aid, 33–35, 100
Fine Arts Collection, 43
First Resort, The, 49
Fisheries (see Animal Science; Biological and Agricultural Engineering; Wildlife, Fish and Conservation Biology)
Food Biochemistry, 268–269
Food Engineering, 210, 213, 214
Food Intake Laboratory, 17
Food Process Engineering (see Chemical and Materials Science Engineering)
Food Science, 269–270
Food Science and Technology, 270–272
Food Service Management, 272, 359
Footnotes, key to symbols, 118
Foreign language requirement, 94–95
Foreign student (see International student)
Forest Engineering, 212–213
Forestry (see Environmental Horticulture and Urban Forestry)
French, 272–275
Freshman Seminar Program, 275–276

Facilities, art, 43
Games Area, 41
Gastroenterology, 336–337
Gender studies (see Women's Studies)
General Education (GE)
GE Requirement for 1996-97, 79–84
GE requirement for continuing students, 84–86
GE requirement and college requirements
Agricultural and Environmental Sciences, 87
Engineering, 90–91
Letters and Science, 94
General Education courses for 1996-97, 79–84
for continuing students, 85
General Medicine, 337
Genetics, 158, 276
(see also Molecular and Cellular Biology)
Geochemistry, 279
Geographic Information Systems, 276
(see also Applied Biological Systems Technology)
Geography, 276–278
Geology, 278–282
Geophysics, 282
Geotechnical Modeling, Center for, 18
German, 283–287
Gorman Museum, 43
Governmental Affairs, Institute of, 19
Grade point average (GPA), 61–62
Grade points, 61
Grades, 61–63
change of, 50, 63
final, 63
incomplete, 63
in-progress, 62
Passed/Not Passed, 62
repeated course, 63
Satisfactory/Unsatisfactory, 62
Graduate admission, 97–99
advising, 49
certificate program for engineers, 100
deadlines, 97
degrees, 6–7, 99–100
fees and expenses, 99
placement services, 54
program of study, 99–100
Graduate Record Examination (GRE), 97, 114
Graduate Student Association (GSA), 44
Graduate Studies, 97–101
Graduates, proportion finding work in their field of study, 431
Graduation filing for, 5, 76
honors, 64
rates, 431
Grants, 33–35
Greek, 182–183, 184
Grievances, resolving, 50, 51
Handicapped students, services to,
(see Disability Resource Center)
Health
education, 51–52
insurance, 31, 32, 38
services, 38, 51–52
Health Sciences Research Laboratories, 17
Hebrew, 391
Hematology-Oncology, 337
Herbarium, J.M. Tucker, 15
Herpetology (see Evolution and Ecology)
High school proficiency examination, 24
History, 287–292
History and Philosophy of Science, 292–293
Honorary societies, 65
Honors and Prizes, 63–64
Honors Challenge, 64, 293
Honors Program, College of Letters and Science, 64
Horticulture, 293
(see also Environmental Horticulture)
House, The, 51
Housing, 38
Human Anatomy (see Cell Biology and Human Anatomy)
Human and Community Development, 294
Human Corps Program, 54
Human Development, 294–296
Human Performance Laboratory, 17–18
Human Physiology, 334–335
Humanities, 296–297
Humanities Institute, 19
Hydrologic Science, 297–299
IGETC, 76, 86
Immunology, 299
(see also Medical Microbiology; Pathology; Microbiology and Immunology)
Incomplete grades, 63
Independent Study Program, 299–300
Individual major, 59, 60, 300
Infectious Diseases, 337
Information Technology, 15
In-Progress grading, 62
Insect Ecology (see Entomology)
Integrated Studies, 64–65, 300–301
Intercampus exchange program, 100
Intercampus Visitors Program, 58
Intercampus Institute for Research at Particle Accelerators, 19
Intercollegiate athletics, 42, 266
Interior Design (see Design)
Internal Medicine, 335
International Agricultural Development, 301–303
International Relations Program, 303–304
International student
admission, undergraduate, 26–27
admission to Graduate Studies, 98–99
expenses, 32
Services for International Students and Scholars, 52–53
International study (see Education Abroad Program)
Internship and Career Center, 54
Internship Program, 54, 304
Intersegmental General Education Transfer Curriculum (IGETC), 76, 86
Intramural Sports/Sports Clubs, 42
Irrigation (see Civil and Environmental Engineering; Hydrologic Science; Soil and Water Science)
Italian, 304–306
Japanese, 179, 181–182
Jepson Prairie Reserve, 16
John Muir Institute of the Environment, 15
Judicial Affairs, 45, 51
Land, Air and Water Resources, 306
Landscape Architecture, 307–308
LaRue Park Children's House, 39
Latin, 183, 184
Law School Admission Test (LSAT), 103
Law, School of, 103–105, 309–314
calendar, 105
fees, 105
Learning disabilities, 61
Learning Skills Center, 50
Learning Resources Center, 50
Leave of absence, 65–66
Lesbian, Gay and Bisexual Resource Center, 52
Letters and Science, College of, 14, 72–74, 92–93
Library, University, 14
Linguistics, 314–317 (see also Anthropology)
Literature in Translation, 317–318
Living accommodations, 38
Loans, 34–35, 100
Major Programs, 69–74
Majors
change of, 59
cross-college, 59
declaration of, 47, 58–59
degree certification, 76, 87
double, 59–60
individual, 39, 60
list of, 6–7
multiple, 59–60
Management, Graduate School of, 107–108, 318–320
fees, 108
Managerial economics (see Agricultural and Managerial Economics)
Mann Laboratory, 16
Manufacturing (see Mechanical and Aeronautical Engineering)
Marine biology (see Biological Sciences; Neurobiology, Physiology and Behavior)
Master of Education, 320
Master of Preventive Veterinary Medicine, 116, 386–387
Master's degree, 99
Mathematics, 321–325
McLaughlin Reserve, 16
Mechanical Engineering, 211, 219–220, 241–245
Medical Microbiology, 338–339
Medical Pharmacology and Toxicology, 339
Medical Sciences, 329
Medicine and Epidemiology (Veterinary Medicine), 346–348
Medicine, School of, 110–112, 325–346
fees, 98
Medieval Studies, 348–349
Memorial Union, 40–41
Memorial Union Art Gallery, 43
Mexican-American (Chicano) Studies (see Chicana/Chicano Studies)
Microbiology, 158, 162–164, 349
(see also Medical Microbiology; Pathology; Microbiology and Immunology)
Midterm examinations, 60–61
Military Science, 349–351
Minimum progress, 57, 66–67
Minor programs, 8, 60, 69–71, 72–74
Molecular and Cellular Biology, 164–166
Molecular Biosciences, 351–352
Motorist Assistance Program, 40
Music, 43, 352–355

Name, change of, 56
Native American Studies, 355–357
Natural Reserve System, 16
Nature and Culture, 357–358
Nelson Gallery, 43
Nematology, 358–359
Nephrology, 337
Neurobiology, Physiology and Behavior, 167–168
Neurology, 339–340
Neuroscience, 359
Neurosurgery, 340
Nondiscrimination, 427
Nonresident admission, 23, 26–27
Nuclear Magnetic Resonance Facility, 19
Nutrition (see Clinical Nutrition and Metabolism; Community Nutrition; Dietetics; Nutrition; Nutrition Science)
Nutrition, 359–361
Nutrition Science, 360, 361–362

Obstetrics and Gynecology, 341
Oceanography, 279
Occupational and Environmental Health, 338
Ophthalmology, 341
Organizational Studies, 399–400
Orientation, 49, 362
Ornithology (see Evolution and Ecology)
Orthopaedic Surgery, 341–342
Otolaryngology, 342
Outdoor Adventures, 41

Paleobiology, 279
Parking fees and permits, 32, 40
Parks and recreation (see Applied Behavioral Sciences, Design; Environmental Planning and Management; Landscape Architecture; Physical Education)
Part-time status, 31, 57
Passed/Not Passed grading, 62
Pathology (Medicine), 342–343
Pathology, Microbiology and Immunology, 362–364
Pediatrics, 343
PELP, 66
Perfect Tender Infant Care, 39
Pharmacology (see Medical Pharmacology and Toxicology; Molecular Biosciences)
Pharmacology and Toxicology, 364
Ph.D. degree, 99–100
Philosophy, 364–367
Photography (see Art Studio)
Physical Education 262, 263, 266–267 (see Exercise Science)
Physical Medicine and Rehabilitation, 343–344
Physiology, 367–371
Plant Biology, 159, 169–171, 372–377
Plant Pathology, 377–378
Plastic Surgery, 344
Political Science, 378–384
Political Science–Public Service, 379
Polymer Science (see Fiber and Polymer Science; Chemical Engineering)
Pomology, 384
Population Biology, 384–385 (see also Ecology)
Population Health and Reproduction, 385–386
Premedical engineering (see Biological and Agricultural Engineering; Chemical and Materials Science Engineering)
Presidential Award for Excellence in Undergraduate Research, 65
Preventive Veterinary Medicine, 386–387
Primate Research Center, California Regional, 17
Principles of Community, 11
Privacy Act, 413
Prizes, 65
Probation, 66–67
Proficiency examination, high school, 24
Protein Structure Laboratory, 18
Psychiatry, 344
Psychology, 387–390
Pulmonary Medicine, 338
Putah Creek Campus Reserve, 16
Putah Creek Lodge, 41
Quail Ridge Reserve, 16
Quantum physics, 368
Quarter system
explanatory note, 118
how to convert units, 57
Radiation Oncology, 344–345
Radiological Sciences (see Surgical and Radiological Sciences)
Radiology, Diagnostic, 345
Radiology, Nuclear Medicine, 345
Range and Wildlands Science, 390–391
Range Science, 391
Rape Prevention Education Program, 52
Readmission
after an absence, 28
in graduate standing, 98–99
(see also Reentry Student Services)
Rec Pool Lodge, 41
Records, disclosures from, 428
Recreation, 254 (see also Environmental Policy Analysis and Planning)
Recreation Hall, 42
Recreation Swimming Pool, 41
Recreational facilities and programs, 40–43
Reentry Student Services, 53–54
Refunds, fee, 32
Regents, 429
Registration
cancellation of, 32
late, 56
priority, 56
procedures, 56
RSVP (telephone registration), 56
Registration Fee Child Care Subsidy Program, 39
Registration Fee Deferred Payment Plan (RFDPP), 31
Religious observances, 61
Religious Studies Program, 391–392
Repeated courses, 63
Requirements, bachelor’s degree, 74–95
Residence halls, 38
Residence for tuition purposes, 426–427
Residence requirement, 75, 87, 88, 426–427
Retention data, 431
Rhetoric and Communication, 393–394
Rheumatology-Allergy, 338
Ridesharing, 40
ROTC, 328–329
RSVP (telephone registration), 5, 56
Russian, 395–397
Russell Park Child Development Center, 39
Satisfactory/Unsatisfactory grading, 62
Satisfactory academic progress, 57, 66–67
Scholarship deficiencies, 66–67
Scholarship requirement, 23, 76, 87, 88, 93
Scholarships, 35–36, 64
Scholastic Assessment Test (SAT), 22, 23
Science and Society, 397–398
Services for International Students and Scholars (S.I.S.S.), 52–53
Sexual harassment, policy against, 428
Shuttle, campus, 40
Silo Union, 42
Social and Ethnic Relations, 398
Social Science Data Service, 19
Social Theory and Comparative History, 398
Sociology, 398–403
Sociology–Organizational Studies, 399–400
Soil and Water Science, 403–404
Spanish, 404–405
Soil Science, 404–405
Soil and Water Science, 403–404
Spanish, 405–409
Special Transitional Enrichment Program (STEP), 50
Speech (see Rhetoric and Communication)
Spirit Squad, 44
Sports, 42 (see also Exercise Science)
Stafford/Ford Student Loans, 34–35
Statement of Intent to Register (SIR), 28, 29
Statement on Legal Residence, 426–427
Statistics, 409–412
Stebbins Cold Canyon Reserve, 16
STEP, 50
Structural engineering (see Civil and Environmental Engineering)
Student conduct and discipline, 45
family housing, 38
government, 43–44
health services, 38
housing, 38
records, disclosures from, 428
responsibilities, 45
services, 38–40
Student Affirmative Action, 28, 49, 50
Student Employment Center, 35, 40
Student Experimental Farm, 16
Student Judicial Affairs, 45, 51
Student Programs and Activities Center, 44–45
Student Special Services, 53–54
Study list, 56
Study plan approval, 87
Subject A (English requirement), 74–75
Subject requirements, 22
Substance abuse prevention
Campus Alcohol and Drug Abuse Prevention Program (CADAPP), 51
Student Educators in (SESAP), 51
Summer Advising, 49
Summer Sessions, 67
Surgery (Medicine), 345–346
Surgical and Radiological Sciences (Veterinary Medicine), 412–414
Sustainable Agriculture Program, 16
Swimming pool, 41
Teacher Credential Program, 101
Teacher Education, 203
Teaching Assistantships, 100
Teaching, Program in College Teaching, 100
Telephone registration (RSVP), 5, 56
Test of English as a Foreign Language (TOEFL), 27, 108, 115
Textile Science (see Fiber and Polymer Science)
Textiles and Clothing, 414–415
(see also Fiber and Polymer Science)
Textile Arts and Costume Design (see Design)
Theater (see Dramatic Art)
Theoretical Dynamics, Institute of, 18–19
TOEFL, 27, 108, 115
Tours, campus, 12
Toxicology (see Environmental Toxicology; Medical Pharmacology and Toxicology; Pharmacology and Toxicology; Molecular Biosciences)
Toxicology and Environmental Health, Institute of, 15
Transcripts, 63
Transfer admission, 24, 26, 28
credit, 24, 26, 73, 86
intercampus, 26
scholastic deficiencies, 67
to College of Engineering, 26
Transfer Core Curriculum (TCC), 76, 86
Transfer Student Services, 54
Transportation and parking, 31, 40
Transportation planning (see Civil and Environmental Engineering; Environmental Policy Analysis and Planning; Mechanical Engineering)
Tuition, 31, 426–427
UC Agricultural Issues Center, 16
UC Davis Presents, 42
UC Davis Washington Center, 415–416
Units limitations, 57, 92–93
quarter to semester, 57
requirements, 75, 87, 88, 92
value (credit), 57
Unitrans, 40
University Extension, 28, 75, 87, 88, 93
University of California, 12
University requirements for bachelor’s degree, 74–76
Urban planning/development (see Applied Behavioral Sciences; Civil and Environmental Engineering; Environmental Horticulture and Urban Forestry; Environmental Policy Analysis and Planning; Environmental Studies; Geography)
Urology, 346
Variable-unit courses, 118
Vegetable Crops, 416–417
Veterans Affairs Office, 54
Veterinary Genetics Laboratory, 18
Veterinary Medicine, School of, 114–116
417–419
calendar, 116
fees, 115
Veterinary Medicine Teaching and Research Center, 18
Viticulture and Enology, 419–421
War-Peace Studies, 421
Washington Center, UC Davis, 415–416
Water quality/management (see Civil and Environmental Engineering; Environmental Policy Analysis and Planning)
Water Resources Center, 16
Water resources engineering (see Civil and Environmental Engineering)
Water science (see Hydrologic Science)
Weed science (see Plant Biology)
Wildlife, Fish and Conservation Biology, 421–423
Wildland Resources Center, 16
Wines and wine-making (see Viticulture and Enology)
Withdrawals, 32, 65–66
Women’s Resources and Research Center, 39, 53
Women’s Studies Program, 423–425
Work-learn (see Internship and Career Center)
Work-Study, 35
X-Ray Crystallographic Facility, 19
Zoology (see Evolution and Ecology)